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Abstract

Nowadays, the internet is taking a revolutionary step forward, which is known as Internet of

Skills. The Internet of Skills is a concept that refers to a network of sensors, actuators, and
machines that enable knowledge, skills, and expertise delivery between people and machines,
regardless of their geographical locations. This concept allows an immersive remote operation
and access to expertise through virtual and augmented reality, haptic communications, robotics,
and other cutting-edge technologies with various applications, including remote surgery and
diagnosis in healthcare, remote laboratory and training in education, remote driving in trans-
portation, and advanced manufacturing in Industry 4.0.

In this thesis, we investigate three fundamental communication requirements of Internet of
Skills applications, namely ultra-low latency, ultra-high reliability, and wireless resource uti-

lization efficiency. Although 5G communications provide cutting-edge solutions for achieving
ultra-low latency and ultra-high reliability with good resource utilization efficiency, meeting
these requirements is difficult, particularly in long-distance communications where the distance
between source and destination is more than 300 km, considering delays and reliability issues in
networking components as well as physical limits of the speed of light. Furthermore, resource
utilization efficiency must be improved further to accommodate the rapidly increasing number
of mobile devices. Therefore, new design techniques that take into account both communication
and computing systems with the task-oriented approach are urgently needed to satisfy conflicting
latency and reliability requirements while improving resource utilization efficiency.

First, we design and implement a 5G-based teleoperation prototype for Internet of Skills ap-
plications. We presented two emerging Internet of Skills use cases in healthcare and education.
We conducted extensive experiments evaluating local and long-distance communication latency
and reliability to gain insights into the current capabilities and limitations. From our local exper-
iments in laboratory environment where both operator and robot in the same room, we observed
that communication latency is around 15 ms with a 99.9% packet reception rate (communica-
tion reliability). However, communication latency increases up to 2 seconds in long-distance
scenarios (between the UK and China), while it is around 50-300 ms within the UK experi-
ments. In addition, our observations revealed that communication reliability and overall system
performance do not exhibit a direct correlation. Instead, the number of consecutive packet drops
emerged as the decisive factor influencing the overall system performance and user quality of
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experience. In light of these findings, we proposed a two-way timeout approach. We discarded
stale packets to mitigate waiting times effectively and, in turn, reduce the latency. Neverthe-
less, we observed that the proposed approach reduced latency at the expense of reliability, thus
verifying the challenge of the conflicting latency and reliability requirements.

Next, we propose a task-oriented prediction and communication co-design framework to
meet conflicting latency and reliability requirements. The proposed framework demonstrates
the task-oriented joint design of communication and computing systems, where we considered
packet losses in communications and prediction errors in prediction algorithms to derive the
upper bound for overall system reliability. We revealed the tradeoff between overall system
reliability and resource utilization efficiency, where we consider 5G NR as an example com-
munication system. The proposed framework is evaluated with real-data samples and generated
synthetic data samples. From the results, the proposed framework achieves better latency and
reliability tradeoff with a 77.80% resource utilization efficiency improvement compared to a
task-agnostic benchmark. In addition, we demonstrate that deploying a predictor at the receiver
side achieves better overall reliability compared to a system that predictor at the transmitter.

Finally, we propose an intelligent mode-switching framework to address the resource uti-
lization challenge. We jointly design the communication, user intention recognition, and mode-
switching systems to reduce communication load subject to joint task completion probability.
We reveal the tradeoff between task prediction accuracy and task observation length, showing
that higher prediction accuracy can be achieved when the task observation length increases. The
proposed framework achieves more than 90% task prediction accuracy with 60% observation
length. We train a DRL agent with real-world data from our teleoperation prototype for mode-
switching between teleoperation and autonomous modes. Our results show that the proposed
framework achieves up to 50% communication load reduction with similar task completion
probability compared to conventional teleoperation.
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Chapter 1

Introduction

1.1 Internet of Skills

The internet has been and will be one of the most transformative technologies of the modern
age by revolutionizing how we communicate, work, learn, teach, and live [8]. In the beginning,
i.e., at the early stage of the internet, it was primarily used for time-sharing of big and pow-
erful computers, enabling multiple users to access a single machine, i.e., a desktop computer,
simultaneously from different geographical locations.

With technological advancements, the internet has become mobile and more accessible with
a broader range of devices, including cell phones, laptops, and other mobile devices [9]. The
mobile internet allows users to access the internet and, in turn, information at anytime, anywhere.

In recent years, the internet has taken another leap forward with the Internet of Things
(IoT) [10, 11]. The IoT is defined as the network of devices, including vehicles, home appli-
ances, sensors, actuators, and any item with embedded electronics and software which enables
connected things to exchange information for different purposes such as monitoring, surveil-
lance, and automation, to name a few.

Nowadays, the internet is taking another revolutionary step forward, which is known as In-

ternet of Skills [12, 13]. The Internet of Skills is a concept that refers to a network of sensors,
actuators, and machines that enable knowledge, skills, and expertise delivery between people
and machines, regardless of their geographical locations. This concept allows an immersive
remote operation and access to expertise through virtual and augmented reality, haptic commu-
nications, robotics, and other cutting-edge technologies [14, 15]. The Internet of Skills aims
to provide a near-real experience of the remote location to enable real-time interactions, allow-
ing people to perform tasks remotely without requiring physical presence as before. There are
various applications of the Internet of Skills, including remote surgery and diagnosis in health-
care [16], remote laboratory and training in education [17], remote driving in transportation [18],
and advanced manufacturing in Industry 4.0 [19].

An Internet of Skills system, as shown in Fig. 1.1, has three main domains, namely the

1
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Figure 1.1: Internet of Skills

operator domain, communication domain, and teleoperator domain. In the operator domain,
the skills of the operator are sampled by an operator device equipped with the haptic interface.
Accurately sampled operator skills are converted to specific commands or instructions and need
to be transmitted to the teleoperator at the teleoperator domain via the communication domain
with ultra-low latency and ultra-high reliability. The received commands/instructions are exe-
cuted in the teleoperator domain to reproduce the operator’s skills. Concurrently, the real-time
status of the remote environment is fed back to the operator domain [13]. For a fully immersive
and interactive Internet of Skills system, real-time multimodal sensing, including audio, video,
haptic feedback, and real-time control of remote teleoperator, are vital. Specifically, the end-to-

end (E2E) delay should be around 1 ms, and reliability should be higher than 99.999%. These
requirements are very challenging to meet and require interdisciplinary research in robotics,
communications, and artificial intelligence (AI).

In this thesis, we conduct an interdisciplinary study in robotics, communications, and AI
to fulfill the communication and quality of service (QoS) requirements of Internet of Skills
systems. In this section, we first identify key enabling technologies of the Internet of Skills.
Then, we investigate technical requirements from a communications perspective. Considering
technical requirements, we emphasize the role of fifth-generation cellular communications (5G)
by explaining current capabilities and limitations. With the knowledge of current limitations and
capabilities, we explain our motivation along with our design perspective. Finally, we state our
objectives, tasks required to achieve our objectives, and research contributions.
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1.2 Key Enabling Technologies

In this section, we provide key enabling technologies of the Internet of Skills concept to inves-
tigate requirements and current capabilities in terms of communications and QoS , which are
summarized in Table 1.1.

1.2.1 High Quality 360o Video Streaming

Users need to experience the remote environment as close to actual physical attendance as pos-
sible to be fully satisfied with the experience. To achieve this, high-quality 360◦ video streaming
will be used in emerging Internet of Skills applications, which will be observed via headsets to
provide a real-time experience of a remote environment, irrespective of distance. For example,
we need to consider the human eye as a reference to achieve optimum user experience. The
human eye has the capability of focusing on close and far objects, sees under low and high light,
and has a very wide view even without moving the head (horizontally 150◦ and vertically 120◦)
which requires 720 million pixels of display [20]. That is why the high resolution 360◦ video
streaming is one of the key enabling technologies of future Internet of Skills applications to en-
able human eye-quality streaming, in turn, real attendance experience in a remote environment.
However, this requires very high data rates and ultra-low latency, which will be delivered by 5G
and beyond communications.

1.2.2 Augmented Reality (AR), Virtual Reality (VR), and Extended Real-
ity (XR)

The new Internet of Skills paradigm requires remote interactivity to achieve an immersive ex-
perience, which would enable users to hear, see, feel, and interact with the remote environment.
AR, VR, and XR will be the key enabling technologies of the aforementioned interactive In-
ternet of Skills environment. AR mainly focuses on the real environment by applying virtual
information on top of it. In contrast, VR focuses on a virtual environment without reality aspect,
creating a fully synthetic virtual environment. On the other hand, XR is considered as an inte-
grated cyber-physical environment which becomes indistinguishable by user. AR, VR, and XR
can provide common environments for users, who are physically in different locations, for inter-
action and collaboration. Users will be able to access, meet, communicate, and interact with the
remote cyber-physical environment. The 5G mobile communication will play an enabler role
considering stringent communication requirements such as low latency and high data rates.

1.2.3 Tactile Sensing

Current perception capabilities of remote operations such as video and audio alone cannot pro-
vide the envisaged experience of the Internet of Skills. Users need to feel and interact with the
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environment to achieve a complete sense of presence. The tactile sensing paradigm provides
real-time sensing of the remote environment to complete the remote attendance puzzle, which
includes seeing, hearing, feeling, controlling, and communicating interactively. With recent
advances in haptic communications, it is possible to feel the texture of remote surfaces in real-
time, which provides a real sense of presence. However, typical haptic sensors are sampled and
transmitted with a frequency of more than 1kHz to ensure the stability of the system [21]. In this
sense, the system requires stringent latency, reliability, and data rate requirements from the com-
munication point of view, which will be enabled with ultra reliable low latency communications
(URLLC) and enhanced mobile broadband (eMBB) features of 5G.

1.2.4 Teleoperation

There needs to be more than just attending remote environments over video and audio for In-
ternet of Skills applications. Users will have control over the remote environment to achieve
interactivity which requires teleoperation capability with the integration of robotics by real-time
control and automation. However, real-time teleoperation comes with stringent communica-
tion requirements to achieve seamless operation. Moreover, real-time control requires dedicated
bandwidth, ultra-low latency, and ultra-high reliability, which cannot be supported by pre-5G
communication technologies.

1.2.5 Artificial Intelligence (AI) and Machine Learning (ML)

The ubiquitous, flexible, adaptive, and personalized environment will be the core features of the
Internet of Skills which is expected to be enabled by the integration of AI and ML on com-
munication networks via mobile edge computing (MEC) technology. However, this approach
increases the communication overhead and introduces more stringent communications require-
ments. Therefore, pre-5G technologies become insufficient to support the new Internet of Skills
ecosystem, which will require on-the-fly AI and ML with minimal delay by residing AI/ML
algorithms at the edge of the network. All previously described enabling technologies will rely
on AI/ML to deliver high-quality user experience in the Internet of Skills. This puts stringent
constraints on communication networks, which in turn have to rely on AI/ML to self-optimize
and support dynamic user demands. These communication needs include high data rates to en-
able the fast exchange of a massive amount of data, ultra-low latency to mitigate outdated data
problems, and ultra-high reliability to ensure data integrity. Furthermore, wider coverage and
ultra connectivity with other devices will further enable and develop future on-the-fly AI and
ML.
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Table 1.1: Connectivity Requirements of key enabling technologies [1–3]

Enabling
Technology Data Rate Latency Packet

Loss Rate

Virtual Reality
> 530
Mbps

< 10 ms < 10−6

Remote
Interaction

100 - 200
Mbps

< 2 ms < 10−5

High Quality
360◦ Video
Streaming

> 120
Mbps

< 20 ms < 10−5

Tactile Sensing - 1 ms 10−6

1.3 Technical Requirements

Considering today’s technological capabilities in terms of communication, it is possible to dis-
cuss some technical requirements to realize the Internet of Skills. We summarize the technical
requirements of Internet of Skills systems from a communication perspective considering en-
abling technologies as shown in Table 1.2.

1.3.1 Ultra-high Reliability

Reliability of the wireless links is one of the most important issues, especially in critical applica-
tions, since wireless links are prone to failures and packet losses, directly affecting the system’s
performance. For applications such as remote surgery and remote diagnosis, a wireless link fail-
ure probability of 10−5 or less is expected to allow seamless performance over wireless commu-
nications. Ultra-reliability is vital since the action itself is life-critical and severe consequences
result from failure [3]. In addition, response efficiency of real-life control can be achieved with
ultra-reliable communications as well as upgraded hardware to support ultra-reliability [22].
Since new Internet of Skills systems include haptic feedback, reliable communication becomes
more crucial. Reliability failures may lead to incorrect diagnoses, treatments, injuries, and even
death in life-critical scenarios [23].

1.3.2 Ultra-low Latency

To ensure the stability and performance of the system, another critical requirement is low la-
tency, i.e., low end-to-end delay. In Internet of Skills systems, multimodal feedback requires
transmission in every millisecond. Since the current communication technologies (i.e., pre-5G)
lag behind the latency requirements of Internet of Skills systems, the forthcoming 5G technol-
ogy is expected to become the solution for such requirements with shorter transmission time
intervals (TTI) [24] and grant-free uplink transmission schemes [25], to name a few. However,
it is very challenging to meet the latency requirements of Internet of Skills systems considering
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Table 1.2: Technical Requirements of Internet of Skills Applications

Latency Packet
Loss Rate Reference

Scalar Data (heart rate,
blood pressure, temperature,

respiration rate )
< 250 ms < 10−3 [27]

Multimedia Data (audio,
video)

< 150 ms < 10−3 [28], [29], [30]

Haptic Feedback Data < 1 ms < 10−5 [29], [30], [31]

long-distance communications since propagation delay becomes the dominant factor. Therefore,
new design methodologies need to be investigated to address the low-latency challenge.

1.3.3 Security and Privacy

Internet of Skills applications, especially remote surgery and diagnosis applications, require
high security and privacy since life-critical actions are performed over wireless links. In this
case, the security requirements of the communication systems are as necessary as reliability
and low latency. Internet of Skills systems can face some malicious actions such as Denial-
of-Service (DoS) attacks by User Datagram Protocol (UDP) or Transmission Control Protocol
(TCP) flooding, malicious code injections into the application by a buffer overflow, altering
transmitted packets between the operator and teleoperator robot illegitimately, and replaying
some legitimate packets [26]. Such malicious actions can lead to severe problems for the pa-
tient’s health and the system’s performance. To overcome security issues, new network security
approaches should be investigated by collaborating with developing 5G technology. In addition,
the tradeoff between the security of the system and latency requirements should be investigated
to ensure that new security schemes meet both security and QoS requirements [21].

1.3.4 Edge Artificial Intelligence

Edge computing techniques are popular for increasing resource utilization efficiency since com-
puting activity is performed close to the site where data are generated (i.e., on the edge). To
overcome latency, reliability, or packet loss problems, artificial intelligence (AI) solutions can
be deployed to the edge of the network to realize predictive control and caching. For example,
in the presence of packet loss, predictive packets can be used from the buffer to keep the perfor-
mance of the system stable in real-time control systems [3]. It becomes inevitable that scientists
will research and discuss new machine learning and AI techniques to use wireless network re-
sources optimally as well as to overcome problems of wireless communications such as packet
loss and latency.
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Figure 1.2: Three main services of 5G [6, 7].

1.4 Role of 5G

The key technologies described in the previous section will enable new Internet of Skills appli-
cations. In this section, we provide connectivity requirements of key enabling technologies by
emphasizing the role of 5G in fulfilling these requirements considering three main services of
5G as seen in Fig. 1.2.

1.4.1 Data Rate and Capacity

Internet of Skills applications have high data rate demands due to use cases that involve AR/VR/XR
and 360◦ video streaming. Pre-5G cellular communication systems are incapable of supporting
the high data rate requirements, mainly due to limited spectrum. 5G New Radio (5G NR), on the
other hand, will provide new spectrum opportunities, especially in millimeter wave (mmWave)
frequency bands (24 GHz to 100 GHz) [32]. mmWaves provide high data rates and larger band-
width, while the coverage is one of the concerns. Therefore, 5G communications will make
use of different frequency bands for different use cases. For example, massive Machine Type
Communications (mMTC) will use frequency bands below 1GHz, which will provide wide area
coverage for relevant applications where coverage is one of the main concerns. On the other
hand, eMBB will make use of high frequency bands to provide higher data rates for specific
applications such as live 360◦ video streaming. In addition, it is also possible to meet high
data rate and capacity requirements with the help of AI and ML driven digital twins. Digital
twin (DT) is the digital representation of a physical system by providing two-way or one-way
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Figure 1.3: Remote laboratory with AI enabled digital twin (AI-DT) has three control loops. The
operator to AI-DT and robot to AI-DT control loops provide instant interaction to the operator
and the robot. The AI-DT to AI-DT control loop is to synchronize the two ends of the system
and to mitigate poor communication in the core network.

communication between a physical and digital system which makes it possible to have real ex-
perience with lower requirements over digital model [33]. For example, in remote laboratory
and training use cases in education, it is convenient to deploy the DT concept since the task
is not life-critical as in healthcare or surveillance for disaster management, where guaranteed
network performance is vital. For example, as shown in Fig. 1.3, DT can continue to operate
with the help of integrated AI to mitigate mobile network limitations in case of poor network
performance in a remote laboratory environment.

1.4.2 Reliability and Latency

Teleoperation, real-time remote control, and tactile sensing require ultra-low latency and ultra-
high reliability in mobile communications to enable the seamless operation and high Quality of
Experience (QoE). Less than 1 ms end-to-end latency and packet loss rate below 10−5 are re-
quired to guarantee high quality and smooth remote operation [1], especially in mission-critical
scenarios. Smooth remote operation can be achieved with AI/ML advanced mechanisms. AI-
aided Communication-Control Co-design (AI-CoCoCo) is one of the solutions to mobile net-
work limitations by relaxing latency and reliability requirements based on dynamic requirements
of the control process [34]. For example, some control packets may have outdated information
or not carry crucial information for the control task. Therefore, it is possible to relax latency
and reliability requirements with AI-CoCoCo considering the value of each packet concern-
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ing various communication and control related metrics such as latency, reliability, and Age of
Information (AoI) instead of providing the same resources to all packets.

1.4.3 Edge/Cloud Computing

With the new data-driven and AI-enabled Internet of Skills environment, mobile communica-
tions have become more critical to exchange vast amounts of data. However, the increasing
number of connected smart devices and the increased demand for bandwidth bring about new
challenges for mobile communication systems. MEC [35] feature of the 5G mobile commu-
nications provides cloud storage and computing capabilities available at the edge of the mobile
network to enable data processing at close proximity to the user. It enables the exchange of infer-
ence instead of raw data, which minimizes the amount of data traffic, and isolates network data
from the core network to enable less resource consumption. For example, as shown in Fig. 1.3,
MEC-enabled remotely controlled laboratories can benefit from computing resources available
on the edge of the network. Instead of transmitting raw sensory information from the operator to
the controller over the communication network, MEC enables computation on the operator side
and transmission of control commands to the remote robot, which would dramatically increase
wireless resource utilization efficiency.

1.4.4 Security and Privacy

The Internet of Skills applications will have access to personal data that could also contain in-
formation on users’ behaviours and skills, which raises significant concerns about security and
privacy. In addition, the increasing number of user devices towards a fully connected Internet
of Skills ecosystem amplifies the consequences of security breaches. More secure authentica-
tion and encryption schemes are required to guarantee security and privacy in the Internet of
Skills. The mutual authentication scheme is one of the solutions to this problem [36]. Both the
user equipment and the network perform mutual authentication using Evolved Packet System
Authentication and Key Agreement (EPC-AKA). AKA works based on symmetric-key authen-
tication, which is more efficient than public-key based mechanisms. In the Internet of Skills,
mutual authentication is vital to ensure the security of facilities as well as the privacy of the
user. Both user and remote facility need to authenticate to ensure that the user is authorized to
access the provided resources and that resources are legitimate entities to access the information
provided by the user. In addition, it is also essential to ensure that authenticated users continue
to use the system after the authentication process. Therefore, it becomes necessary to ensure
perpetual authentication with the help of AI and ML, where users can be certified continuously
according to behaviour or previous user data.
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1.5 Motivation

Considering discussions in previous sections, we consider three main communication require-
ments of Internet of Skills applications in this thesis, namely ultra-low latency, ultra-high relia-

bility, and wireless resource utilization efficiency. Although 5G communications provide state-
of-art solutions to achieve ultra-low latency and ultra-high reliability with good resource uti-
lization efficiency, it is challenging to guarantee these requirements, especially in long-distance
communications (more than 300 km), considering delays and reliability issues in networking
components as well as physical limits of the speed of light. In addition, resource utilization
efficiency needs to be further improved to facilitate rapidly increasing number of mobile de-
vices. To fulfill these three requirements, new design methodologies are in urgent need con-
sidering both communication and computing systems to satisfy conflicting delay and reliability
requirements with improved resource utilization efficiency. One of the main challenges is the de-
sign methodology of communication and computing systems for the emerging Internet of Skills
paradigm where computing and communication systems are tightly coupled and interact with
each other more than before1. There are two main design approaches in the existing literature;
i)independent/separate design, ii)joint/co-design [37]. Table 1.3 gives the comparison of two
approaches for networked control systems.

In the independent design approach, computing and communication systems are designed
separately. For example, in networked control systems, control systems are designed first. Then,
according to the requirements of the control systems in terms of communication, such as data
rate, latency, and reliability, the communication system is designed to fulfill the requirements
specified [38]. In other words, communication parameters are tuned to fulfill control system
requirements. This approach simplifies the system design and creates flexibility so control sys-
tems are generally compatible with different communication systems. However, the main prob-
lem with the independent design is that control requirements need to be fulfilled by providing
required communication resources which may lead to vast use of wireless resources [37], since
the independent design uses communication as a tool to fulfill control requirements, yet it does
not consider communication resource efficiency as a design parameter. As a result, the created
system fulfills the control requirements, but it may not operate optimally in terms of resource
(e.g., wireless and energy resources) utilization efficiency.

In the co-design approach, both computing and communication parameters are tuned jointly
to achieve better overall performance. Instead of considering two separate sub-systems, the
co-design approach considers the system as a whole and optimizes the performance parameters
jointly by considering the tradeoff between communication and computing sub-systems [37].
For example, in networked control systems, the system performance relies not only on control

1Here, the communication system refers to a wireless communication system in Internet of Skills applications
including radio and networking components, whereas computing system refers to robotics, control, and, machine
learning systems in Internet of Skills applications
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Table 1.3: Independent Design vs Co-Design

Independent design Co-design
Complexity Less complex, easier to

model
More complex and rela-
tively difficult to model

Overall performance High sub system perfor-
mance but low overall per-
formance

High overall performance
since parameters are
jointly tuned

Wireless resource usage Low optimization of wire-
less resources since re-
quirements are considered
separately

High optimization of
wireless resources since
both wireless resources
and computing parameters
are jointly optimized con-
sidering tradeoff between
them

Flexibility More flexible sub systems Flexibility is less since two
sub systems are modeled
as one system

Failure detection/diagnosis Failure detection and di-
agnosis are relatively easy
since the complexity of the
system is low

It’s challenging to detect
and diagnose failures be-
cause of system’s com-
plexity

performance but also on the performance of the communication system [38]. In such a case, only
fulfilling the requirements of the control system does not leverage the performance of the whole
system to higher levels. In independent design, it is more flexible and less complex to design the
systems, whereas it is more challenging in co-design. However, considering two separate sub-
systems degrades overall system performance and consumes vast amounts of wireless resources.
In short, the main goal of the co-design approach is to consider both computing and communi-
cation parameters jointly to design a better system in terms of overall system performance since
the system’s overall performance depends not only on sub-system performances.

In this thesis, we apply a co-design approach considering computing and communication
sub-systems considering the benefits of the co-design approach on overall system performance.

1.6 Objectives

The main objective of this thesis is to establish a communication and computing co-design
framework to reduce the E2E communication latency and improve the communication reliability

and resource utilization efficiency for Internet of Skills applications. The following research plan
and tasks are considered to achieve the main objective.

• Design and implement 5G-enabled Internet of Skills testbed. Using the testbed, conduct
real-world communication latency and reliability experiments to investigate current com-
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munication capabilities and limitations.

• Identify specific research challenges and formulate the research problem.

• Propose novel design frameworks for the Internet of Skills and validate them on the testbed
to achieve the main research objective.

1.7 Research Contributions

Considering the aforementioned research plan, the following research contributions arose from
this thesis.

• 5G-enabled Internet of Skills Testbed: We design and implement the 5G-enabled In-
ternet of Skills testbed (Chapter 3) with haptic feedback. We conduct experiments con-
sidering two important use cases in education and healthcare. In education, we design
an Education 4.0 use case that enables students worldwide to connect remote laboratory
resources in the University of Glasgow during the Covid-19 lockdown and conduct ex-
periments which provide an immersive learning environment and exchange of skills over
communication networks. In healthcare, we consider remote dental inspection use case in
which skilled dentists can conduct remote dental inspections from all around the world.
Considering both Internet of Skills use cases, we conduct communication latency and
reliability experiments to investigate the current capabilities and limitations of 5G com-
munications for the Internet of Skills applications. Experiment results are used to better
understand and investigate open research questions to formulate solid research problem
considering practical systems.

• Task-oriented Prediction and Communication Co-Design: We propose a task-oriented
prediction and communication co-design framework (Chapter 4) in the context of Internet
of Skills systems, where the utilization efficiency of the communication system is maxi-
mized subject to the requirements of different operating tasks. In particular, in the scenario
with limited real-world data samples, we generate synthetic data via time-series generative
adversarial networks (TimeGAN). This allows us to obtain the relationship between Just
Noticeable Difference (JND)2 threshold and the prediction error probability that is below
10−5. We take 5G NR as an example to demonstrate the proposed framework, where we
compare the performance of the systems with and without task-oriented design. We fur-
ther compare the performance difference of deploying the predictor at the transmitter and
receiver sides. Specifically, the main contributions of this chapter are listed below.

2In the literature, user experience in haptic communications is characterized by JND threshold, which is defined
as the minimum difference between the operator and teleoperator that can be perceived by human users [39].
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– We propose a task-oriented prediction and communication co-design framework
with a predictor at the receiver side. We derived an upper bound of the overall error
probability in the framework by taking packet losses and prediction errors into ac-
count. From the upper bound, we reveal the tradeoff between the resource utilization
efficiency and the overall reliability.

– To illustrate how to use this framework in practical system design, we take remote
robotic control in 5G NR as an example. Then, we formulate an optimization prob-
lem to optimize bandwidth allocation and communication data rate subject to con-
straints on the E2E delay and overall reliability. An optimization algorithm is pro-
posed to find the optimal solution.

– We collect real-world data from a teleoperation prototype. We further use TimeGAN
to generate synthetic data for predictor training and testing. With both synthetic data
and real-world data, we illustrate the tradeoff between the prediction horizon and
prediction error probability, and further evaluate the overall reliability. Our results
show that the proposed task-oriented prediction framework can save up to 77.80%
bandwidth compared with a benchmark design that is task-agnostic.

• Intelligent Mode-switching Framework: We propose an intelligent mode-switching
framework (Chapter 5) for long-distance teleoperation in the context of Internet of Skills
systems, where the communication load of the communication system is minimized sub-
ject to requirements on task completion probability. In particular, we design a general
framework by jointly considering the communication and decision-making systems to
switch between autonomous and teleoperation modes. User intention recognition is done
at the operator side with a Convolutional Neural Networks (CNN)-based classification
model. Based on user intentions, a deep reinforcement learning (DRL) agent is trained
and deployed at the operator side to switch between the autonomous and teleoperation
modes considering communication load and task completion probability. A real-world
data set is collected from our Internet of Skills testbed to train and test both user inten-
tion recognition and DRL algorithms. We further compare our results with conventional
teleoperation. Specifically, the main contributions of this chapter are listed below.

– We propose an intelligent mode-switching framework for long-distance teleopera-
tion in the context of Internet of Skills systems by jointly considering the commu-
nication system and the mode-switching system to switch between autonomous and
teleoperation modes. To efficiently use available wireless resources, we formulate
an optimization problem to minimize communication load subject to joint task com-
pletion probability.

– To illustrate how to use the proposed framework in practical system design, we im-
plement a CNN-based classification model for user intention recognition. Based on
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user intentions, a DRL agent is trained with Deep Q-Learning (DQN) algorithm for
decision-making on mode-switching. We collect real-world data from our Internet of
Skills testbed to train and test both user intention recognition and DRL algorithms.

– We reveal the tradeoff between communication reliability and task completion prob-
ability as well as the tradeoff between operator experience coefficient and task com-
pletion probability. Our results show that the proposed intelligent mode-switching
framework can achieve up to 50% communication load reduction with similar task
completion probability compared to conventional teleoperation without mode-switching.

1.8 Thesis Organisation

In this section, we provide the thesis organisation for the rest of the thesis, which can be given
as follows.

• In Chapter 2, we provide background information and discuss the existing literature.
Specifically, we first provide fundamental tradeoffs on communication reliability, latency,
and data rate considering short packet communications in 5G NR and haptic communica-
tions. Then, we provide fundamental machine learning models used in this thesis, explain-
ing the underlying working mechanisms of CNN, Recurrent Neural Networks (RNN),
Long Short Term Memory (LSTM), reinforcement learning (RL), and Generative Ad-
versarial Networks (GAN). Furthermore, existing literature on co-design approaches for
communication packet loss and latency compensation is surveyed and discussed along
with research gap analysis to identify the research problem. Similarly, existing literature
on co-design approaches for autonomous teleoperation and mode-switching is surveyed
and discussed along with a separate research gap analysis section to investigate open re-
search questions.

• In Chapter 3, we provide design and implementation details of the 5G-enabled Internet of
Skills testbed. We first explained the operator, teleoperator, and communication domains,
along with implementation details. Then, we present two Internet of Skills use cases in
healthcare and education. First, we provide details of the remote dental inspection use
case in healthcare, which can be used by a dentist to inspect a patient’s teeth remotely. We
conducted communication reliability and latency measurements and proposed a two-way
timeout approach by dropping stale packets for better reliability and latency performance.
Our experimental results show that the proposed approach achieves a 65% reduction in
latency and around 40% reduction in jitter. Moreover, we provide details of the Educa-
tion 4.0 use case in education, where we explain design and implementation details by
comparing them with existing implementations in the literature. We conduct local (in the
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lab) and long-distance (within the UK and between UK and China with more than 200
students) latency measurements and discuss current capabilities and limitations.

• In Chapter 4, we propose a task-oriented prediction and communication framework for
Internet of Skills applications. We take packet losses in communications and prediction
errors in prediction into account and derive an upper bound for the overall error probabil-
ity. Then, we reveal the tradeoff between the resource utilization efficiency and the overall
reliability. We formulate an optimization problem to optimize the resource utilization ef-
ficiency subject to constraints on the E2E latency and overall system reliability. Then, we
propose an optimization algorithm to find the optimal solution. To evaluate our framework
and train our prediction algorithms, we collect real-world data and generate synthetic data
using GANs. We show that 77.80% resource reduction can be achieved with the proposed
framework compared to a task-agnostic benchmark.

• In Chapter 5, we propose an intelligent mode-switching framework for long-distance tele-
operation in the context of Internet of Skills systems. The proposed framework jointly
considers communication and mode-switching system parameters and switches between
autonomous and teleoperation modes to reduce communication load subject to joint task
completion probability. We implement a CNN-based classification algorithm for user in-
tention recognition and DQN based DRL algorithm for decision making, which are trained
and tested with real-world data from our Internet of Skills testbed. We reveal the trade-
offs between communication reliability and task completion probability as well as opera-
tor experience and task completion probability. We show that 50% communication load
reduction can be achieved by switching between autonomous and teleoperation modes
compared to conventional teleoperation.

• In Chapter 6, we conclude the thesis with concluding remarks and future research direc-
tions.



Chapter 2

Background and Literature Review

In this chapter, we provide background information and review the existing literature. In Sec-
tion 2.1, we provide fundamental background on short packet communications, explaining basic
tradeoffs on reliability, latency and data rate for wireless communications. In Section 2.2, we
introduce and discuss haptic communications. In Section 2.3, fundamental machine learning
models that are used in communications research are presented. Section 2.4 provides exten-
sive literature review for co-design approaches in existing literature for latency and packet loss
compensation. Lastly, Section 2.5 presents existing literature in autonomous teleoperation for
Internet of Skills emphasizing co-design approach for better overall performance. In Sections
2.4 and 2.5, research gap analyses are conducted considering existing studies to highlight con-
tributions of this thesis.

2.1 Short Packet Communications in 5G NR

In communications, packet transmission process starts with channel coding, in which the infor-
mation bits that need to be transmitted are mapped into a continuous-time signal. Therefore, the
channel code can be defined as the mapping between the information bits and the signal. The
packet length can be described as N = WT for a continuous-time signal with duration T and
bandwidth W [40]. Therefore, short packet communications can be described as the communi-
cations with short packet length N. One of the main objectives of the communication system
design is to achieve as large as possible rate with a very small error probability, ε . Rate is de-
fined as the rate of information bits to the packet length, i.e., R = b/N. The fundamental upper
bound on maximum achievable rate without error is firstly introduced by Shannon [41] in 1948
which is known as Shannon capacity. For an Additive White Gaussian Noise (AWGN) channel,
Shannon capacity is expressed as

R =W log2(1+ γ) (bits/sec), (2.1)

16
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where γ is the signal-to-noise ratio (SNR). This is an asymptotic result with an assumption of
infinitely large packet length, i.e., N −→ ∞, which is extensively used in communication systems
over decades considering no constraints on packet length and communication delay. Over last
decade with introduction of 5G, new application areas emerged necessitating low latency com-
munications which can be achieved with shorter packet length. In this case, Shannon capacity
is no longer accurate for short packet communications since short packets do not hold the as-
sumption of infinitely large packet length. For example, in Internet of Skills applications, the
packet length is very short, e.g., 32 bytes or even shorter according to 3rd Generation Partnership
Project (3GPP) specifications [24]. In this case, more refined analysis of maximum achievable
rate became a must to analyse communication systems for such applications. However, find-
ing closed-form expression of achievable rate is very challenging and considered as a NP-hard
problem [42] in the literature. Fortunately, Polyanskiy et al. [43] provided an approximation to
find tight bounds of achievable rate for short packets in 2011. According to [43], the maximal
achievable rate for AWGN channels for short packet length can be accurately approximated as

R ≈C−
√

V
N

Q−1(ε) (bits/s/Hz), (2.2)

where C = log(1+γ) is the Shannon capacity, γ = αgP
N0W is the received SNR at base station (BS),

α is the large-scale channel gain, g denotes the small-scale channel gain, P denotes the transmit
power, N0 is the single sided noise spectral density, V =

[
1− 1

(1+γ)2

]
is the channel dispersion,

N =WT is the packet length (i.e., blocklength), T is the transmission duration, W is the band-
width, and Q−1(.) is the inverse of the Gaussian Q-function given as Q(x)≜

∫
∞

x
1

2π
e−t2/2dt. It is

worthy noting that (2.2) approaches Shannon capacity when N −→ ∞. From this result, Shannon
capacity cannot be achieved in short packet communications and error probability cannot be
assumed as zero, i.e., error probability is not negligible. From (2.2), the error probability can be
derived as

ε ≈ Q
(

TWC−b+ log(TW )/2√
TWV

)
, (2.3)

which shows the fundamental tradeoffs between transmission duration T , error probability ε ,
and the required bandwidth W (i.e., spectrum efficiency).

In this thesis, we use fundamental results of maximum achievable rate for short packet com-
munications in our analyses considering the Internet of Skills applications.
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2.2 Haptic Communications

In Internet of Skills applications, multi-modal sensory feedback is necessary to enable immer-
sive remote operation capabilities. In recent years, haptic feedback is introduced as a comple-
mentary information to audio and video feedback in remote operation applications [44]. Hap-
tic term refers to two types of perception in the current literature, namely kinesthetic and tac-
tile [45]. Kinesthetic perception includes the information of forces, torques, velocity, and posi-
tion. On the other hand, tactile perception includes the information of object textures, surface
frictions, and other modalities sensed by human skin. Haptic information, compared to other
sensory information such as audio and video, is more sensitive to communication imperfections
such as delay and reliability issues, especially in real time applications [44]. Therefore, hap-
tic feedback enabled real-time applications, e.g., Internet of Skills, comes with very stringent
communication requirements. Haptic communications considers these requirements which are
well aligned with URLLC communications in 5G [21]. In the literature, the most commonly
used performance metrics for haptic communications are latency, jitter, packet loss and data
rate [21, 44].

In this thesis, we consider requirements of haptic communications in prototype design and
implement haptic feedback enabled teleoperation system. Haptic term refers to force feedback
(kinesthetic perception) in our implementation and design.

2.3 Machine Learning for Communications

Machine learning is a subfield of computer science with more than 70 years of history [46]. The
main idea is to learn from real-life data to be able to forecast future for more precise decision
making without any human intervention, i.e., without programmed instructions. In other words,
machine/computer uses real-life data and develops a model which captures the trends and pat-
terns in the given data. Using trained model, the machine becomes capable of carrying tasks
without needing to be programmed explicitly. Therefore, the fuel of the machine learning can
be considered as data. Advanced algorithms and methods are used to efficiently analyse the
data. Over the last decade, data availability increased rapidly with the advancements in sen-
sors (i.e., hardware) and communications (e.g., Internet of Things technology) which enable to
monitor and collect data for various phenomenon in a cheap and efficient way, which in turn,
produced the fuel for machine learning algorithms. In addition, advancements in computation
hardware (e.g., high performance central processing units (CPUs) and graphical processing units
(GPUs)) enable processing of large amount of data and development of advance machine learn-
ing techniques by providing required computation power for machine learning [47] which allow
wide application of machine learning in various areas such as in healthcare for monitoring and
early diagnosis [48], in finance for future market forecasts [49], and in education for precision



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

education [50], to name a few.
Machine learning is divided in three categories considering the training approaches, namely

supervised learning, unsupervised learning and reinforcement learning [51]. In supervised learn-
ing, data samples (xi,yi), i ∈ [1,N] are used to train machine learning algorithms. Each element
xi is a feature vector which describes the i-th example in the data sample. For each exam-
ple, yi is called label which can be a continuous value for regression models and discrete (i.e.,
category/class) for classification models which are two basic types of supervised learning. In
regression, given the input feature xi, the ML model outputs a continuous value yi. On the other
hand, classification models are trained to output a discrete value yi which belongs to finite set of
classes {1,2,3, ...,C}. In unsupervised learning, data samples (xi), i ∈ [1,N] do not have labels
where the main aim is to understand the underlying patterns in the data. For example, clustering
is one of the well studied area in which unsupervised learning is widely used. Reinforcement
learning, on the other hand, aims to find a policy, π , (similar to model in supervised learning)
by perceiving state of the environment, s, and taking some action, a, which results in getting
reward, r, and change in state of the environment. Machine learns the optimal policy, π∗, which
maximize the expected reward, E[r].

Machine learning is widely applied in communications in various areas such as channel
prediction [52, 53], traffic prediction [54, 55], mobility and trajectory prediction [56, 57], QoS
and QoE prediction [58, 59], and optimal policy approximation [60, 61].

In this thesis, we use machine learning for trajectory prediction, task classification, policy
optimization and synthetic data generation.

For trajectory prediction and task classification, there are three main well established models,
namely convolutional neural networks, recurrent neural networks, and long short term memory.
Convolutional neural networks [62] is a well known deep learning model for both classification
and regression tasks. Recurrent neural networks, on the other hand, are widely used deep learn-
ing algorithm, especially for sequential and time varying data [63]. Similarly, long short term
memory [64] is a variant of RNN which is designed to overcome vanishing gradient problem
and learn long term dependencies in a sequence. It is worth noting that the prediction perfor-
mance of RNN, LSTM, and CNN depend on the datasets [65–68]. In general, RNN and LSTM
outperform CNN in time-series data. But for some datasets, where the time-series data change
suddenly, CNN can be better than RNN and LSTM [69]. With these considerations, we design
trajectory prediction and task classification algorithms by using CNN, RNN, and LSTM. Then,
we choose the best performing model for different tasks.

For synthetic data generation, there are two main approaches, namely autoregressive models,
and generative adversarial networks (GANs) [70]. Autoregressive models focus on predicting
future elements in a sequence by looking at past elements. They try to factor the distribution
of sequences into smaller parts called conditionals. However, they lack true randomness, and
one cannot generate entirely new sequences from them without additional information. GANs,
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on the other hand, are advanced technique to model high dimensional distributions of data [71].
GANs are widely used for synthetic data generation in which real data collection is hard, costly
or takes huge amount of time. They are successfully used in image processing and computer
vision [72, 73], and text generation [74, 75] as well as data augmentation [76, 77]. However,
GANs don’t take full advantage of the information in past elements like autoregressive models
do, and it can be challenging to capture step-by-step dependencies in the data. Therefore, we
apply Time-series GAN [70] to generate synthetic time-series data, which is the special variant
of GAN framework for time-series data generation.

In this section, we provide background information and fundamental concepts for convolu-
tional neural networks, long short term memory, and recurrent neural networks as well as basics
of reinforcement learning. In addition, we provide basics of Time-series generative adversarial
networks which is a GAN for time-series data. These methods are used for trajectory prediction,
policy optimization and synthetic data generation in the following chapters.

2.3.1 CNN for Prediction

Convolutional neural networks [62] is a well known deep learning model which consists of
mainly convolution layers, pooling layers and fully connected layers as seen in Fig. 2.1. In con-
volution layers, element-wise convolution operation is applied to the input features to generate
the feature representations of inputs (i.e., feature maps) with a given kernel ψ . Then, non-linear
activation function is applied to obtain the output of the convolution layer. For input xi and
kernel ψi, the output of the convolution layer is a feature matrix Yi which can be computed from
the following steps for resulting feature at location (k, j) in Yi,

Zk, j
i = Wψi ∗xk, j

i +bψi, (2.4)

Yk, j
i = Φ(Zk, j

i ), (2.5)

where Wψi is the weight matrix, bψi is the bias matrix, and Φ(·) is the non-linear activation
function, and ‘∗’ is the convolution operator. After performing convolution operation, the pool-
ing layer is deployed to decrease the number of features, i.e., the resolution of the feature map.
One of the well known pooling operation is max-pooling [78]. In max-pooling operation, new
feature map is computed by traversing the output of convolution layer and calculating the maxi-
mum of each subsection of the convolution output according to the kernel size. After computing
feature maps with several convolution and pooling layers, computed features are flatten to be fed
to fully connected layer (i.e., dense layer) as seen in the Fig. 2.1 which is trained for estimations.
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Figure 2.1: Convolutional neural networks

2.3.2 RNN for Prediction

Recurrent neural networks are widely used deep learning algorithm, especially for sequential
and time varying data [63]. RNNs process the inputs with arbitrary lengths by maintaining a
hidden state, ht . Hidden state depends on the input xt at current time t and the previous hidden
state, ht−1. This can be tought as the memory of the network for previous computations. The
feedback loop that feeds the hidden state to the network as an input for the next time step is
the key feature of the RNNs which allows RNNs to exhibit temporal dependencies between
elements of a sequence [79]. RNN model updates the output and hidden states by applying the
following steps,

ot = σ(Wo[ht−1,xt ]+bo), (2.6)

ht = σ(Whot +bh), (2.7)

where ot is the output of the RNN cell, ht is the new hidden state, Wo and Wh are weight
matrices, bo and bh are bias terms, and σ(·) is the activation function. Depending on the specific
application requirements, various activation functions can be used such as sigmoid acivation
function, hyperbolic tangent (tanh) activation function, rectified linear unit (ReLU) activation
function, and exponential linear unit (ELU) activation function. One of the main problem of the
RNNs is the vanishing gradient problem which is known as the problem of back propagating
errors in time.

2.3.3 LSTM for Prediction

Long short term memory [64] is a variant of RNN which is designed to overcome vanishing
gradient problem and learn long term dependencies in a sequence. Each LSTM cell has three
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Figure 2.2: Recurrent neural networks

types of gates to control the flow of information, namely the input gate it , forget gate ft , and
output gate ot . In addition, LSTM cell has a cell state which can be thought as a long term
memory. The cell state is updated using the information from input and forget gates and output
of the timestep is computed by passing updated cell state to the output gate. Each LSTM cell
takes three inputs at each time slot: the feature observed in the current slot xt , the previous
LSTM cell state (i.e., long-term memory unit) Lt−1, and the previous hidden state (i.e., the
short-term memory unit) ht−1. Then, LSTM model updates the output, hidden state, and cell
state by applying following steps.

ft = σ(Wf[ht−1,xt ]+bf), (2.8)

it = σ(Wi[ht−1,xt ]+bi), (2.9)

L̃t = tanh(Wx[ht−1,xt ]+bx), (2.10)

Lt = ftLt−1 + itL̃t , (2.11)

ot = σ(Wo[ht−1,xt ]+bo), (2.12)

ht = ot tanh(Lt), (2.13)

where ft is the forget gate which decides what information will be kept from the previous cell
state, it is the input gate which decides what information will be added to the cell state of the
network, ot is the output gate of the LSTM cell, ht is the new hidden state of the network,
W f ,Wi,Wx, Wo are the coefficient matrices, b f ,bi,bx,bo are the bias terms, and σ(·) is the
activation function. As in RNNs, sigmoid, tanh, ReLU and ELU can be used as an activation
function depending on the specific application scenario.
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2.3.4 Reinforcement Learning

Reinforcement learning [80] is a machine learning technique where an agent learns to make
decisions by interacting with a dynamic environment to maximize the reward. The main aim
is to learn an optimal policy which can be taught as a mapping between states of the dynamic
environment and actions of the agent that maximizes expected reward.

One of the widely used mathematical frameworks to model the reinforcement learning prob-
lems is Markov Decision Process (MDP) [81]. A set of states and a set of actions are used to
define an MDP along with transition and reward functions. The transition function characterizes
the probability of transitions from one state to another for a given action. On the other hand, the
reward function characterizes the reward for taking an action in a given state. The Markov prop-
erty is the fundamental assumption of the MDP. In other words, a process is an MDP if it satisfies
the Markov property. Markov property, which is also known as memoryless property, states that
the probability of future states only depends on the current state and action. In other words, it is
not depend on the history of states and actions. Before explaining the training process and some
well known reinforcement learning algorithms, we define fundamental concepts.

• Environment: Environment is the external world or system. It can be taught as an infor-
mation source which is used by the agent to learn and make decisions. For example, it can
be a physical system that the agent interacts with in an autonomous driving scenario.

• Agent: Agent is an entity which learns to make decisions by interacting with the envi-
ronment. For example, it can be the intelligent system in an autonomous driving scenario
which observes the state of the road conditions and take actions accordingly for driving
the car.

• State: State is the current condition of the environment that the agent interact with. The
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state can be anything depending on the environment such as sensor readings from au-
tonomous vehicle.

• Action: Action is a decision made by the agent considering agent’s current policy to
affect/change the state of the environment that the agent is in. For example, agent can
accelerate, decelerate, or keep stable the velocity of the car depending on the state in an
autonomous driving scenario.

• Reward: Reward is the numerical feedback which shows how desirable the action taken
for a particular state. It can be positive, negative or zero and can be immediate for an
action or delayed depending on the specific application. For example, agent can receive no
reward during the driving, receives negative rewards for traffic rule violations and receives
positive reward once arrive the destination in an autonomous driving scenario.

• Policy: Policy is the mapping of the states to the actions which characterizes the be-
haviours of the agent in a given environment. Using the policy, agent take actions depend-
ing on the current state. The policy of the agent can be deterministic or stochastic.

Given the MDP assumption and the definitions, the goal of the reinforcement learning is to
find an optimal policy π∗ that maximizes expected reward E[r]. During the learning process,
the agent interacts with the dynamic environment by observing the current state. According to
current state observation, st , agent takes action, at , considering the current policy πt . For each
action, agent receives a reward, rt , based on the reward function and considering the current
state. After each action, environment changes to the next state, st+1. Depending on the observed
state, action, received reward, and next state, the agent updates its policy in every training step.
After applying many training steps, the policy of the agent converges to an optimal policy,
π∗, and agent learns to make decisions for the environment that it is trained for. This process is
achieved using various reinforcement learning algorithms such as policy optimization algorithms
[82], and Q-learning [83].

Q-Learning

Q-learning is a model-free reinforcement learning algorithm, in which agent does not have an
explicit model of the environment which characterizes the underlying dynamics of the environ-
ment. Instead, agent learns the optimal policy by interacting with the environment and using
experiences, without assuming knowledge of the environment [83]. The main goal of the Q-
learning is learning to approximate the optimal Q-function, which is known as action-value
function. Q-function characterizes the expected cumulative reward for a particular action in a
given particular state by following the optimal policy. In Q-learning algorithm, agents learns
a Q-function which estimates the expected cumulative reward. To apply Q-learning, systems
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needs to satisfy Markov property, i.e., future states does not depend on history of states and ac-
tions. In each iteration of learning process, Q-function is updated using the Bellmann equation,
based on the current observed state, action and the reward which can be expressed as

Q(st ,at) := Q(st ,at)+α(rt + γ max
a

(Q(st+1,a))−Q(st ,at)), (2.14)

where st is the state at time t, at is the action at time t, α is the learning rate, rt is the expected
immediate reward, γ is the discount factor, st+1 is the next state, a is the set of possible actions,
and Q(., .) is the Q-function. This update policy is suitable for reward based framework which
agent tries to maximize the reward. In penalty based framework, the max(.) operator in the
above equation should be replaced with min(.) operator to minimize the penalty, i.e., negative
reward. The pseudocode of Q-learning is given in Algorithm 1.

Algorithm 1 Q-Learning

Input: Initialize Q(s,a), s, a, r
1: for episode = 1,... do
2: for each iteration = 1,... do
3: Choose an action at randomly with probability ε , or obtain the action with highest

Q-value with probability 1− ε (ε-greedy policy)
4: Take the action at
5: Compute the reward rt and next state st+1
6: Update Q-function by applying (2.14)
7: Update the current state st = st+1
8: end for
9: end for

2.3.5 Generative Adversarial Networks

Generative adversarial networks (GANs) are advanced technique to model high dimensional
distributions of data [71]. GAN structure consists of two neural networks that are trained simul-
taneously in a competition or game like framework. These neural networks are called generator
and discriminator. Intuitively, generator tries to generate synthetic data samples that are not
distinguishable from the genuine samples. On the other hand, discriminator tries to distinguish
the fake/synthetic samples from the genuine ones. The main aim is to train a generator which
can generate synthetic data samples whose distribution is similar to genuine data distribution.
GANs are widely used for synthetic data generation in which real data collection is hard, costly
or takes huge amount of time. They are successfully used in image processing and computer
vision [72, 73], and text generation [74, 75] as well as data augmentation [76, 77].

The main natural question would be why we need to generate synthetic data although we
can have access to huge amount of data with the advancements in communications and sensor



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

technologies. There would be several reasons to generate synthetic data such as data augmenta-
tion, privacy and security concerns on the available data and data de-biasing and balancing [84].
For example, data augmentation would be required in some cases where real world data avail-
able is limited to be used to train machine learning algorithms due to cost and time limitations
of data collection process. In addition, the data to be used may contain sensitive information
which needs to be protected such as medical records of patients. Furthermore, the data in hand
may be imbalanced or biased which may affect the training. In such circumstances, synthetic
data generation is a solution which enable us to perform statistical analyses and train machine
learning models on synthetic data that are statistically similar to the real data.

In this thesis, we use GANs for synthetic time-series data generation. In the following, we
provide fundamental principles of GAN for time series data generation.

To generate synthetic time-series data, one can apply Time-series GAN [70], which is one of
the variants of GAN framework for time-series data generation. In TimeGAN framework, there
are four neural networks that are trained jointly. They are called embedding neural network,
recovery neural network, sequence generator, and sequence discriminator.

To explain how the training works, let us denote the parameters of the embedding network,
recovery network, sequence generator, and sequence discriminator as θem, θre, θg, and θd, re-
spectively. In addition, let’s denote the time-series input features as xt:t ′ in feature space X , and
the latent variable as vt:t ′ in latent space V . In the training, embedding and recovery networks
are trained to learn mappings from feature space to the latent space. Embedding network takes
the sequence of features as an input and outputs the sequence of latent variables which can be
given as

vt:t ′ = ϑem(xt:t ′|θem). (2.15)

Similarly, the recovery network do the reconstruction of input features from latent variable by
taking latent variable as its input and outputting the sequence of input features as follows

x̂t:t ′ = ϑre(vt:t ′|θre). (2.16)

The generator network, on the other hand, is trained to learn generating synthetic sequences
in latent space by taking a sequence of random variables zt:t ′ from a distribution which is known.
The generator network can be expressed as

v̂t:t ′ = ϑg(zt:t ′|θg), (2.17)

where v̂i:i′ is the generated synthetic sample in latent space. The discriminator network is trained
to classify the fake/synthetic and real samples. In other words, it is trained as a classification
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network in the latent space which tries to distinguish the synthetic sequences from the real
sequences. The discriminator network takes a sequence of latent variable (it can be a synthetic
sequence or real sequence) and provides a binary output which can be expressed as

ỹ = ϑd(vt:t ′|θd), (2.18)

where ỹ = 1 means that the sequence is classified as a real/genuine sequence and ỹ = 0 means
that the sequence is classified as a fake/synthetic sequence.

In the training process, the aforementioned four neural networks are jointly trained consid-
ering three loss functions: reconstruction loss, LR, unsupervised loss, LU, and supervised loss,
LS. Reconstruction loss is used to measure the difference between the reconstructed features,
x̂t:t ′ , and the original features, xt:t ′ . In other words, this is the loss to measure the performance
of embedding and recovery networks which can be expressed as

LR = Ext:t′

[
∑

i
||xi − x̂i||2

]
. (2.19)

Unsupervised loss is used to maximize the probability of correct classification for the discrimi-
nator network which can be given as

LU = Ext:t′

[
∑

i
log(ỹi)

]
+Ex̂t:t′

[
∑

i
log(1− ỹi)

]
. (2.20)

Supervised loss, on the other hand, is used to measure the discrepancy between real and
synthetic data distributions in latent space which can be given as

LR = Ext:t′

[
∑

i
||p(vi)− p̂(vi)||2

]
. (2.21)

where p(vi) and p̂(vi) are real and synthetic data distributions in latent space.
The generator and discriminator networks are trained jointly and iteratively by solving the

following optimization problem,

min
θem,θre

αLS +LR, (2.22)

where α ≥ 0 is a hyperparameter.
The embedding and recovery networks are trained to minimize LS and maximize LU which

yields to following optimization

min
θg

ηLS +max
θd

LU, (2.23)



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 28

where η ≥ 0 is a hyperparameter that balances two losses.

2.4 Co-Design for Latency and Packet Loss Compensation

In this section, we review the existing co-design studies for latency and packet loss compensa-
tion, considering communication models, prediction models, performance evaluation metrics,
and prediction accuracy performances. Table 2.1 provides a categorization of the reviewed stud-
ies.

In the existing literature [4, 85–97], the prediction has been considered as a promising ap-
proach to meet stringent latency and reliability requirements by deploying predictors to reduce
user experienced delay and improve system reliability.

In [4], prediction and communication co-design is proposed for ultra-reliable low latency
communications in 5G. The proposed co-design approach reduces user experienced latency by
predicting future packets and transmitting them in advance. Here, user experienced latency
is the difference between communication latency and the prediction horizon of the prediction
algorithm. With the proposed approach, authors show that achieving zero user-experienced
latency is possible. However, it should be noted that the user-experienced latency is not the
same as communication latency since the communication latency cannot be zero. In the study,
the authors use short packet communications model to characterize the transmission errors in the
system. A linear prediction method is used to derive prediction error probability. The probability
of less than 10−5 JND violation is achieved. User-experienced delay and reliability are used as
a performance metric by jointly optimizing prediction horizon, bandwidth allocation, and delay
components. It is demonstrated with simulations and experiments that zero user-experienced
delay is possible with the joint design of prediction and communication systems. In addition,
prediction and communication co-design improves the tradeoff between user-experienced delay
and reliability compared to no prediction case.

Tong et al. in [85] proposed communication and control co-design considering packetized
predictive control (PPC) for real-time cyber physical systems. The main idea is to predict future
packets at the remote controller and send them to the actuator over unreliable wireless links.
After receiving the predicted packets, the receiver executes the current command and caches
the remaining sequence of commands to be used in case of packet loss. Let us consider that
the remote controller transmits the predicted sequence with length K, and then the system can
tolerate up to K −1 consecutive packet losses. Short packet communications are used to model
the wireless channel. Prediction length and wireless resources are jointly optimized to minimize
the power consumption. However, the prediction algorithm and prediction error are not speci-
fied in the study. Similarly, authors proposed communication control co-design for PPC in [97].
Short packet communications are considered, while an explicit prediction model is not specified.
Information freshness is used as a performance metric, while wireless energy efficiency is min-
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imized subject to system outage probability. Results show that the proposed approach achieves
a better tradeoff between energy efficiency and information freshness.

The needle insertion use case is considered in 5G remote robotic surgery in [86]. A Gaussian
mixture regression model is used to predict haptic feedback to a surgeon in a needle insertion
process. The prediction model is deployed at the surgeon (receiver) side to predict haptic feed-
back in case of packet loss in the communication network. 5G network is considered, although
a specific model is not used to characterize the communication system. From the results, the
proposed method achieves a prediction time under 1 ms with around 10−3 prediction error.

In [87], a two-stage prediction framework is proposed for haptic feedback prediction in
a remote driving setting to assist the driver in poor network conditions. The communication
system is assumed to be LTE with some time delay, yet no channel model is specified. For the
prediction, a single-track model is used, which is a mathematical model to predict the future
trajectory of a vehicle. Study shows that the proposed approach provides better telepresence for
remote driving.

Girgis et al. in [88] proposed a predictive actuation framework by predicting the missing
state at the receiver using the previously received state for wireless networked control systems
(NCSs). Communication and control systems are optimized jointly to achieve higher resource
efficiency, i.e., increase the number of controlled plants with available wireless resources. Age
of information, which is defined as the amount of time elapsed since the generation of the lat-
est received information [98], is used as a metric to minimize along with transmission power.
Gaussian process regression (GPR) is used as a prediction algorithm at the remote controller and
plant end. The communication system is assumed as analog uncoded communications. From the
results, the proposed framework achieves the stable control of more plants with similar wireless
resources compared to the benchmark event-triggered scheduling.

In tactile internet, burstiness aware resource allocation is proposed [90]. Packet arrival pro-
cesses are classified by their burstiness. After traffic state classification, resources are allocated
depending on the traffic state. Short packet communications are considered as a communication
model, while model-based and data-driven methods are used for classification. The Neyman-
Pearson method is used as a model-based method, whereas the k-means unsupervised learn-
ing method is employed for a data-driven approach. The required bandwidth is minimized by
jointly optimizing communication and prediction parameters subject to joint error constraints
where both communication and prediction errors are considered. According to the results, the
proposed approach reduces bandwidth requirement by up to 70%.

Considering emerging metaverse applications, sampling, communication, and prediction co-
design is proposed in [91] to synchronize the physical world and its digital model on the meta-
verse. The authors proposed to jointly optimize the sampling rate and prediction horizon to
minimize the communication load under different Mean Squared Error (MSE) tracking error
constraints. A deep reinforcement algorithm is proposed to adjust the sampling rate and predic-
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Table 2.1: Co-Design for Latency and Packet Loss Compensation

Study Year Communication
Model

Prediction Model Performance
Evaluation

Prediction
Accuracy

[4] 2019 Short packet com-
munications

Linear prediction
model

User experi-
enced delay and
reliability

JND violation
probability <
10−5

[85] 2018 Short packet com-
munications

Not specified Energy con-
sumption

Not specified

[86] 2020 Not specified Gaussian mixture
model

Prediction time
and accuracy

< 1ms and <
10−3

[87] 2016 Not specified Single track vehi-
cle model

Steering wheel
reversal rate

Not specified

[89],
[88]

2020,
2021

Analog uncoded
communications

Gaussian process
regression

AoI & resource
efficiency

Not specified

[90] 2018 Short packet com-
munications

Neyman-Pearson
method and k-
means method

Resource effi-
ciency

10−2

[91] 2022 Short packet com-
munications

MLP and DRL Communication
Load

MSE < 0.002o

for tracking er-
ror

[92] 2022 Not specified RNN Prediction per-
formance

2.75 mm head
motion predic-
tion error for
100 ms latency

[93] 2020 Not specified LSTM and MLP Prediction per-
formance

around 4%
pixel mis-
match

[94] 2021 Short packet com-
munications

Linear prediction
method and RL

AoI Not specified

[95],
[96]

2022,
2022

Short packet com-
munications

Linear state transi-
tion model

AoI Not specified

[97] 2019 Short packet com-
munications

Not specified Information
freshness & en-
ergy efficiency

Not specified

tion horizon with the inclusion of expert knowledge. Short packet communications are consid-
ered in communication, while Multi Layer Perceptron (MLP) is deployed on the receiver side for
prediction. The simulation and experimental results show that the proposed approach reduces
communication load with a reliability guarantee.

In [92], the head motion prediction method is proposed to compensate for latency in aug-
mented reality glasses. The proposed solution considers an RNN model for predicting sequential
hand movement trajectory. Communication latency is assumed to be constant, and prediction
performance is presented considering the given communication latency. The study shows that
the proposed prediction method can reduce the effects of communication latency by predict-
ing head movement compared to the baseline without prediction. Similarly in [93], the motion
prediction method is proposed for VR applications considering URLLC in 5G. The proposed
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approach conducts motion prediction and pre-rendering on edge to compensate for rendering la-
tency. Multi-task LSTM and MLP models are used for motion prediction using real-world head
and body motion datasets. The proposed framework achieves better prediction performance
compared to baseline methods.

AoI oriented prediction framework for intelligent transportation systems is proposed in [94].
The effect of the prediction and prediction horizon is investigated for long-distance communi-
cations on the AoI. The general linear prediction method is used for prediction, and short packet
communications are considered. Predicted packets are transmitted to the receiver in advance
to compensate for the latency. The expression for average AoI is derived, and the relationship
between prediction horizon and average AoI is investigated. According to the results, predic-
tion is more suitable for short-distance communications regarding AoI performance. There-
fore, an RL algorithm is trained to make a decision on when to predict or not predict. Results
show that dynamic switching between predict and not predict modes provides better AoI perfor-
mance. Similarly, the status prediction and data aggregation approach is proposed to improve
AoI performance in short packet communication systems in [95]. Two transmission schemes are
proposed considering prediction errors. In predict-compare transmission scheme, the predicted
status update is compared with the actual update, and the transmission is terminated in case of
prediction errors. In predict-aggregate-compare transmission scheme, two status updates are
predicted with different prediction horizons and aggregated considering their time correlations.
The prediction model utilizes a general linear state transition model. Proposed schemes provide
64% average AoI reduction compared to the baseline without prediction.

2.4.1 Research Gap Analysis

Deployment Strategy

Considering existing studies summarized in this section, the predictor is either deployed at the
transmitter [4, 85, 87, 89] or at the receiver [86, 88]. Both deployment strategies have advan-
tages and disadvantages. If the predictor is deployed at the transmitter, the advantage is that
the historical information used in the prediction algorithm is accurate. The disadvantage is that
either a prediction error or a packet loss in communication may result in a JND violation. If
the predictor is deployed at the receiver, it can adjust the prediction horizon according to the
communication delays of different packets. If the communication delay is satisfactory, there
is no need to make any prediction. In this way, a JND violation happens when both the com-
munication and the prediction fail. The disadvantage of this framework is that the historical
information used in the prediction algorithm may not be accurate because some packets are lost
or severely delayed. Nevertheless, the effects of deployment strategy have not been investigated
in the existing literature and deserve further analyses.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 32

Task Awareness

Existing studies optimized communication systems with given QoS requirements (such as com-
munication delay and decoding error probability) [4, 85, 88, 89]. In haptic communications, the
overall reliability is characterized by the probability that the difference between the operator and
the teleoperator is larger than a threshold referred to as Just Noticable Difference (JND) [39].
The relationship between QoS and JND of different tasks in haptic communications remains
unclear. If the communication system is designed to meet the given QoS requirements without
considering the JND thresholds of different tasks, the communication resource utilization effi-
ciency can be extremely low. For example, the JND threshold in remote surgery is much smaller
than that in remote education. Even if the required JND violation probability is the same, the
required prediction accuracy in these two systems is very different. To improve communication
resource utilization efficiency, we should consider diverse JND thresholds of haptic tasks when
we design the prediction and communication systems.

Prediction Reliability

In the existing literature, another issue is the evaluation of reliability. Unlike communication
systems that are built upon fundamental theories, most prediction algorithms are data-driven.
Since the JND violation probability should be lower than 10−5, it takes a very long time to
evaluate the probability of the rare event from real-world data. If we use model-based prediction,
it is possible to derive the JND violation probability, but the mismatch between the theoretical
models and practical systems is inevitable. Therefore, we need to develop innovative methods
for estimating the reliability of prediction algorithms.

Considering research gap analysis conducted, we observe that existing studies did not inves-
tigate the effects of predictor deployment strategies, diverse task requirements, and prediction
algorithm reliability in system design. In chapter 4, we propose a task-oriented prediction and
communication co-design framework to address open research questions in the existing litera-
ture.

2.5 Co-Design for Autonomous Teleoperation

In this section, we review the existing literature on autonomous teleoperation considering user
intention recognition techniques, task performance metrics, and decision-making algorithms,
which are summarised in Table 2.2.

Autonomous teleoperation is extensively studied in the existing literature [99–111]. The
main idea of autonomous teleoperation is predicting user intention and performing some parts of
the task autonomously to decrease the demand on the operator and increase the task success rate.
Hence, existing works can be categorized based on their user intention recognition techniques,
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task performance, and decision-making algorithms. User intention recognition is done either
by model based methods [99, 103, 111], data-driven methods [104–110] or combination of both
[100]. User intention recognition accuracy varies between 20% and 95%. On the other hand,
some studies do not consider accuracy. Performance metrics change from task to task. However,
task success rate and task completion time are the most popular objective measures in addition
to subjective measures such as operators’ mental and physical demands.

In [99], a manipulation assistance system is proposed for teleoperation to minimize the ef-
fects of communication delays, limited bandwidth, and environmental effects. The proposed
system captures user intention and assists the user in two modes, namely shared control and
autonomous control. In shared control, the system corrects the movement of the remote teleop-
erator while tasks are executed autonomously in autonomous mode. Task parameterized hidden
semi-markov model is used to learn the manipulation tasks from operator demonstrations. The
proposed solution provides improvements in task-execution time.

In another study [100], authors propose Stochastic Assistive Teleoperation System to in-
crease the operator efficiency and throughput. In the proposed approach, the system provides
visual scene estimations of applicable actions to allow the operator to choose from possible ac-
tions. A combination of the Markov process and RNN model is considered to generate applica-
ble action sequences. The proposed system increases operator throughput by 92% by performing
93% of the task autonomously. Similarly, Gao et al. [103] propose an assistive teleoperation ap-
proach for search and rescue robot teleoperation. User intention is recognized with a Gaussian
mixture regression model with a recursive Bayesian filter. Based on user intention recognition,
the system assists the user by blending user input and inference from user intention recognition.

Policy blending approach is proposed for assistive teleoperation for manipulation tasks in
[101]. In policy blending, user input and robot policy are blended with a state dependent function
to perform manipulation tasks. Full autonomy and direct control are two extremes depending
on the blending function parameters. By adjusting the parameters of the blending function, the
mode of operation can be adjusted to achieve good performance in terms of task execution time.

Zein et al. [104] proposed autocomplete teleoperation approach for unmanned aerial vehicles
(UAV) teleoperation. A machine learning model is utilized at the operator end to recognize user
intention as motion primitives such as lines, arcs, and full circles. If the recognized motion
primitive is correct, the operator commands to switch to autonomous mode to autocomplete
the task. Support Vector Machine (SVM) is used for user intention recognition which achieves
around 80% accuracy. Compared to conventional teleoperation, the proposed approach reduces
the average distance covered and the average time spent to finish a track with a UAV. In [105],
authors improve the autocomplete teleoperation approach [104] by introducing mixed reality. In
addition, a deep learning model, which consists of CNN and RNN layers, is considered instead
of an SVM classifier. Prediction accuracy is improved by 10% with a reduction in average
distance covered and average time spent to finish a track by teleoperating a UAV.
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Table 2.2: Autonomous Teleoperation Literature

Study Year Idea Performance
Metric

Prediction
Model

Prediction
Accu-
racy

Decision
Making

Comm.
Persp.

[99] 2017 Shared /Au-
tonomous
control
modes

Task per-
formance,
robustness,
task execu-
tion time

Task-
parameterized
hidden semi
Markov
model

x User x

[100] 2022 Assistive
teleopera-
tion system

Command
automa-
tion rate,
robustness,
scalability
and runtime
performance

Combination
of Markov
process and
RNN

Not spec-
ified

User x

[101] 2012 Assistive
teleopera-
tion

Execution
time

Policy
blending

x User x

[103] 2014 Assistive
teleopera-
tion

Estimation
accuracy

Gaussian
mixture
regression

80-97% User x

[104,
105]

2020,
2021

Autocomplete
teleopera-
tion

Average
distance
covered,
average time
required

SVM and
Conv-LSTM

79%,
88%

User x

[106] 2021 Semi-
autonomous
teleopera-
tion

Task success
under delay,
recognition
accuracy

LSTM 95% User x

[107,
108]

2019,
2021

Transfer
learning for
task recogni-
tion

Classification
accuracy
over obser-
vation length

LSTM,
CNN and
SVM

95%,
85%

- x

[109,
110]

2021,
2022

Personalized
Autocom-
plete

Number of
mistakes
over time

CNN and
GRU

80% to
90%

User x

Semi-autonomous teleoperation is proposed for remote surgery under communication delays
in [106]. Surgeon intention is recognized using a deep learning model which utilizes an LSTM
model. The deep learning model recognizes the surgeon’s intention and sends high-level com-
mands to the robot, which executes the received commands. The proposed approach achieves
around 95% surgeon intention recognition accuracy and around 80% task success rate.

In [107], a transfer learning approach is proposed for surgeon intention recognition using
kinematics and images to transfer knowledge to the real robot acquired from a surgical simulator.
SVM and Random forest models are used, which achieve around 95% recognition accuracy
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with up to 30% transfer accuracy gain. Similarly, authors propose a transfer learning approach
for surgeon intention recognition for remote surgery teleoperation scenario in [108]. Surgeon
intention recognition is performed using an LSTM model. Prediction accuracy of around 85%
is achieved. It is also shown that the transfer learning approach requires 40% less training data
than no-transfer learning.

In [109], a personalized version of the autocomplete teleoperation [104] is proposed for UAV
teleoperation. Personalization is achieved by transfer learning using user input and partial feed-
back (user’s feedback to switch or not switch to autocomplete mode) to minimize the number
of mistakes over time. A combination of CNN and gated recurrent unit (GRU) models is used
for user intention recognition, which reduces the number of mistakes by 30%. Authors improve
their approach in [110] by introducing incremental learning to adapt the previously trained user
intention recognition model to the new user. From the input of the new user, an exemplar set is
created, which is used to update the user intention recognition model, which enables adaptation
of new users and improves the previous model [109] by 20%.

2.5.1 Research Gap Analysis

Operator Overhead

Considering the existing studies, decision-making for mode-switching is generally assumed to
be done by the operator [99–111], which brings an extra degrees of freedom (DoF) to be con-
trolled by the operator. The operator needs to make concurrent decisions on mode-switching
alongside the task that he/she is performing, which may prevent the operator from focusing on
the task. This is almost impossible in life-critical tasks like remote surgery, which requires full
attention to the task. Although task auto-completion can enhance user experience and task suc-
cess, the mental and physical demand introduced by mode-switching decisions is not taken into
account in the existing literature. Hence, it is an open problem how mode-switching can be
performed autonomously and seamlessly.

Communication Perspective

On the other hand, the communication perspective is not investigated, although some studies
discuss the performance under communication delays [99, 106]. Making strong assumptions on
communication delay and reliability by assuming constant delay or zero packet loss is unrealistic
and cannot be applied to practical systems. Moreover, the task success rate cannot be captured
fully by only considering user intention recognition accuracy without considering communica-
tion imperfections. Therefore, communication errors and their impact on task success rates need
to be considered in system design. Furthermore, communication errors can lead to task failure
or even system failure, especially in critical applications. Hence, autonomous teleoperation sys-
tems need to be designed jointly by considering tight interactions between communication and
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computing (e.g., prediction and control) systems. Therefore, how a communication system can
be designed to accommodate autonomous teleoperation in an efficient manner is still an open
research question that needs to be addressed.

Considering research gap analysis conducted, existing studies in the literature operator over-
head is not taken into account in autonomous teleoperation systems which may lead to lower
task completion probability. In addition, effects of communication imperfections on task com-
pletion probability are not investigated. In chapter 5, we propose an intelligent mode-switching
framework for autonomous teleoperation systems to address open questions in the existing liter-
ature.



Chapter 3

Design and Implementation of 5G-based
Teleoperation Prototype

3.1 Overview

We design and implement a 5G-enabled teleoperation prototype with haptic feedback1 for the
emerging Internet of Skills applications. At the operator domain, 3D systems haptic device is
deployed as a haptic controller, capable of 6-DoF positional sensing and 3-DoF force feedback.
The human operator uses the haptic device to control the remote robotic arm on the teleoperator
domain over the communication domain. We deployed Franka Emika Panda robotic arm as a
teleoperator, a 7-DoF serial manipulator with 1kHz control and sensor sampling capabilities.

In this chapter, we explain the flow of information in each domain and describe the pro-
totype setup. Then, we conduct experiments considering two important use cases in education
and healthcare. In education, we design an Education 4.0 testbed, which enables students world-
wide to connect remote laboratory resources and conduct experiments that provide an immersive
learning environment and exchange of skills over communication networks. In healthcare, we
consider remote dental inspection use case in which skilled dentists can conduct remote dental
inspections worldwide. Considering both Internet of Skills use cases, we conduct communi-
cation latency and reliability experiments to understand the current capabilities and limitations
of 5G communications for the Internet of Skills applications. We proposed a two-way timeout
approach by dropping stale packets for better reliability and latency performance. We consider a
joint Cost Function (CF), defined as the cost of successfully transmitting a packet. Our experi-
mental results show that the proposed approach achieves a 65% reduction in latency and around
40% reduction in jitter. Experiment results are used to understand better and investigate open
research questions to formulate solid research problems considering practical systems.

1The demonstration video: https://youtu.be/c3onK5Vh6QE
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3.2 Operator Domain

A local computer at the operator domain samples 3D positions, p = {px, py, pz} of the end
effector of the haptic device at the haptic device working space. As seen in Fig. 3.1, the robot
and haptic device coordinate systems do not match. To avoid the mismatch, we investigate their
local coordinate systems and match their movement axes where the Y-axis of the haptic device
corresponds to the X-axis of the robotic arm (i.e., towards up), the Z-axis of the haptic device
corresponds to the Y-axis of the robotic arm (i.e., towards to user), and X-axis of the haptic
device corresponds to Z-axis of the robotic arm (i.e., towards right). Then, positions are scaled
up to match the workspace of the robotic arm and haptic device since one unit of movement in
the haptic workspace does not correspond to one unit of movement in robot space, and mapping
is required. The mapping between haptic device workspace and robotic arm workspace can be
given as

p
′
=


p
′
x = (py/d)+a

p
′
y = (pz/d)+b

p
′
z = (px/d)+ c

(3.1)

where p′
= {p

′
x, p

′
y, p

′
z} is the 3D position of the end effector of the robotic arm. The constants

a,b, and c are the offsets between haptic device end effector and robotic arm end effector in X,
Y, and Z axes. The constant d is the scaling factor between haptic device work space and robotic
arm work space. Computed position values, p′

, with fixed quaternion rotations (since we only
consider position control) are then fed into the inverse kinematics (IK) solver of the robotic arm,
which is based on the Denavit–Hartenberg [112] parameters of the Franka Emika Panda robotic
arm [113] which can be given as follows.

θ = fik

(
p
′
,q
)

(3.2)

where θ = {θ1,θ2,θ3,θ4,θ5,θ6,θ7} are computed joint angles, q = {qw,qx,qy,qz} are fixed
quaternion rotations, and fik(.) is the inverse kinematics solver function. The same computation
is performed in each sampling cycle, and computed joint angles are transmitted to the teleoper-
ator.

3.3 Communication Domain

In the communication domain, we deploy a UDP server at 5G base station MEC unit. It is worth
to note that UDP is used to guarantee the required control frequency since it is more suitable than
TCP for real-time applications considering latency requirements [114]. The haptic controller and
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Figure 3.1: Coordinate systems of Franka Emika Panda robotic arm and 3D systems haptic
device.

the robotic arm computers are equipped with 5G dongles to access the local BS. At the UDP
server, we utilize two separate ports to communicate with two clients (i.e., the haptic device
computer and the robotic arm computer). In addition, we deploy two buffers which are used to
keep the latest received packets from the robot and haptic device. The haptic device computer
transmits the latest computed joint angles to the server, and then the server writes them into an
angle buffer, as shown in Fig. 3.2. The latest joint angles are transmitted to the robotic arm
whenever a new packet request is received. New packets are requested by transmitting the latest
sample to the server. In other words, each client transmits the latest sample, then the server
receives the latest sample and updates the corresponding buffer. In return, the server transmits
the content of the buffer to the client. If the client is a haptic device, the angle buffer is updated,
and the content of the force buffer is returned. If the client is a robotic arm, the force buffer is
updated, and the content of the angle buffer is returned.

3.4 Teleoperator Domain

Franka Emika Panda robotic arm and a local computer reside in the teleoperator domain. Re-
ceived joint angles from the server are written into a buffer for execution. The main reason to
use the buffer is that the frequency of the real-time control loop is 1kHz, which means that the
control loop needs to be fed with new joint angles in every 1 ms. This requires new packet
arrival in every 1 ms, which is not possible in physical implementation because of the commu-
nication and computation latencies. Therefore, we utilize a buffer at the robot end, which act as
an information source for the control loop and enable us to run the control loop with a frequency
of 1kHz.
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Figure 3.2: 5G-enabled teleoperation system with haptic feedback

On the other hand, we update the buffer with the latest received joint angles whenever a
new packet arrives from the server. We employ a proportional integral derivative (PID) control
algorithm on a local computer which computes joint angular velocity commands for received
joint angles considering the difference between received joint angles and the current state of the
robotic arm. Computed commands are executed using provided functions of libfranka, which is
a C++ implementation of Franka Control Interface (FCI) [113]. This process is repeated in each
control loop to enable real-time control. In addition, the robotic arm’s built-in sensors are used
to sample external forces applied to the robot, which are transmitted as feedback to the server,
which enables us to control the robot in real-time with haptic feedback (i.e., sense of touch).

3.5 Remote Dental Inspection Use Case: Two-way Timeout
Approach

Some serious studies have been conducted in teleoperation for life-critical actions in healthcare.
For example, the first known remote surgery was demonstrated in 2001 with constant latency of
155 ms and zero packet loss [115]. The patient was in Strasbourg, France, and the surgeon was in
New York. Another example was demonstrated in 2016 by Ericsson and King’s College London
using 5G technology. The most recent example of remote surgery was carried out in China
in 2019. The patient was 3000 km away from the surgeon, and brain surgery was performed
using 5G technology with the collaboration of Chinese PLA General Hospital (PLAGH), China
Mobile, and Huawei 5G technology [116].
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Figure 3.3: Remote dental inspection prototype

In this section, we describe the remote dental inspection prototype2 system and propose
the two-way timeout approach for communication latency reduction. Remote dental inspection
(see Fig. 3.3) ensures that everyone has equal access to appropriate dental care by removing
geographical, personal, and physical barriers. Our remote dental inspection prototype allows
patients to get remote specialist care while also allowing specialists to undertake real-time ex-
aminations remotely. This type of application decreases the burden of treatment by reducing
travel time and improving access to dental services. Furthermore, it saves the dentist’s time and
decreases carbon emissions.

3.5.1 Two-way Timeout Approach

As seen in Fig. 3.3, our prototype consists of three main domains. At the operator domain,
a controller equipped with a haptic interface is used by a human operator to control a robotic
arm at the teleoperator domain. The haptic controller samples the operator’s inputs (i.e., con-
trol commands) and transmits them via the communication domain to accomplish a task. In
the communication domain, a server is utilized to exchange packets between the operator and
teleoperator domains. In the teleoperator domain, a remote robotic arm receives control com-
mands and provides force feedback over the communication domain. Generally, UDP is used
to guarantee the required control frequency since it is more suitable than TCP for real-time
applications [114].

In conventional UDP, clients request packets and wait for the response from the server. Wait-

2Demonstration video: https://youtu.be/afJFUwUW6Dg
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ing time is related to the latency and packet loss experienced in the communication domain.
Since UDP is unreliable, packet losses are to be expected, which may result in communica-
tion deadlock. Deadlock can be described as the event that both the client and the server are
in the receiving (Rx) state. In most cases, this is caused by packet loss in the communication
domain. For example, a client transmits a packet to the server and waits for the response in the
Rx state. If the transmitted packet drops, the server will also be in the Rx state, resulting in a
packet exchange deadlock. In the sequel, we propose a technique to minimize communication
latency and the chance of a deadlock. As shown in Fig. 3.2, two clients, a haptic device and
a robotic arm, communicate with the UDP server to exchange control commands and haptic
feedback, respectively. In this scenario, each client sends the most recent sample to the server
and waits for the most recent feedback or control command. As a result, clients can be in either
the Rx or transmitting (Tx) state. We use a timeout technique at each client end (i.e., two-way
timeout) to limit the waiting time in the Rx state and to mitigate the event of a deadlock. In
other words, the client transmits the most recent sample and waits until the timeout threshold,
τ , is reached. If no packet is received before then, it switches to the Tx state to transmit a new
sample. As a result, the client is not required to wait in the Rx state for any longer than the
timeout threshold τ . Please note that the timeout threshold, τ , must be adjusted according to
application requirements. For example, if the required latency for an application is 10 ms, then
waiting more than 10 ms is a waste of time because any packet received after the threshold will
be stale. In other words, if a packet is not received before the timeout, the receiver assumes it is
lost. Fresh information can thus be retrieved without wasting time waiting for stale information.

Let us denote the communication latency from the haptic device to the server as dhs and
the communication latency from the server to the haptic device as dsh. Similarly, denote the
communication latency from the robotic arm to the server and from the server to the robotic arm
as drs and dsr, respectively. Then, E2E communication latency (i.e., round trip latency) can be
given as

de2e = dhs +dsr +drs +dsh. (3.3)

The proposed timeout approach limits dsr, and dsh by the timeout threshold τ , i.e., dsr ≤ τ ,
and dsh ≤ τ . It is worth noting that τ is a task-dependent parameter which needs to be determined
as a design parameter for each specific task. For time critical tasks, τ is expected to be smaller
compared to tasks which can tolerate larger delay. In this case, the E2E communication latency
becomes

de2e ≤ dhs +drs +2τ. (3.4)

While the timeout strategy ensures that there is no deadlock in the communication channel,
it also means that packets may be discarded or dropped if they do not arrive before the timeout
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expires. This implies that the proposed approach has a lower level of reliability. To account
for this, we denote the reliability as γ and compute the reliability using Packet Delivery Ratio
(PDR), which can be expressed as

γ = R/T, (3.5)

where R is the total number of packets received by the receiver and T is the total number of
packets transmitted by the transmitter. To capture the overall performance, we consider a joint
Cost Function (CF), defined as the cost of successfully transmitting a packet, which is inspired
by retransmission scheme in URLLC to improve the reliability [4, 24]. For given E2E latency
de2e, and reliability γ , CF can be defined as

CF =
1
γ

de2e (ms), (3.6)

where 1
γ

is the number of repetitions required to transmit a packet with probability 1, and de2e is
the time required to transmit a packet.

3.5.2 Latency Measurement Setup

One of the main challenges in latency measurements is the unsynchronized end devices. Since
the E2E latency is typically in the range of a few milliseconds (e.g., 1-10 milliseconds), ensur-
ing that the end devices are synchronized to the same clock is critical for achieving reliable and
accurate results. One method for synchronizing end devices is to use Network Time Protocol

(NTP) servers, in which each device synchronizes its local clock with the same NTP server,
allowing time synchronization. However, even this solution has a synchronization error of tens
to hundreds of milliseconds (ms) depending on the NTP server load and other communication
channel characteristics [117], which is insufficient for our experiments. To overcome this dif-
ficulty, we collect exchanged packets with timestamps at the server, allowing us to perform the
measurements on the same machine and eliminate the time synchronization issue. Let us denote
t i
c as the time the i-th packet received by the server from the client c. Then, the E2E latency

between the server and the client c for the i-th packet becomes

de2e,c(i) = t(i)c − t(i−1)
c , (3.7)

where de2e,c is the time difference between two consecutive packets, which measures the round
trip time required from server to client and client to server. Then, the mean E2E latency for
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Figure 3.4: Latency comparison between the proposed approach and the benchmark UDP with-
out a timeout.

received N packets from client c becomes

dmean,c =
1
N

N

∑
i=1

de2e,c(i). (3.8)

On the server side, control and feedback packets are exchanged over two dedicated ports.
Furthermore, two threads are running concurrently to provide real-time communication. One
thread handles server and haptic device communication. Another thread runs for server and
robot communication. The server buffers the received control packets from the haptic device
and transmits the most recent feedback packet back. Similarly, received feedback packets are
buffered, and the server returns the most recent available control packet to the robot. Since both
the control and feedback buffers have a capacity of one packet, the server always has the most
recently received control and feedback packets. Furthermore, the server records packet traffic
from both the haptic device and the robot. Every received packet is recorded with a timestamp,
providing a chronological record of packet exchanges.

3.5.3 Experimental Results

In this section, we provide our results. We conduct measurements on our 5G-enabled teleop-
eration testbed. Latency and packet loss measurements are conducted, as discussed in earlier
sections. In Fig. 3.4, we provide an average E2E latency comparison between the proposed
approach and the benchmark UDP without a timeout. We conducted experiments for different
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Figure 3.5: Packet delivery rate comparison between the proposed approach and the benchmark
UDP without a timeout.

timeout values and for the benchmark UDP where we exchanged 10,000 packets in every ex-
periment. As seen from the figure, the proposed approach outperforms the benchmark UDP in
terms of E2E latency, where the proposed approach achieves mean E2E latency of around 5 ms
while the benchmark UDP achieves mean E2E latency of around 50 ms. This is reasonable since
the proposed approach reduces the waiting time in the Rx state and mitigates the long waiting
time delays. On the other hand, E2E latency increases with increasing timeout period τ . This is
also reasonable since the E2E latency is related to the communication latency and the timeout
period.

In Fig. 3.5, we provide the reliability comparison in terms of PDR. As discussed in previous
sections, the proposed approach has a negative impact on reliability. This is due to the fact that
the waiting time in the Rx state is limited by the timeout period τ , which allocates very little
time for packet reception. However, in order to reveal overall performance, we must consider a
joint metric CF.

CF results are provided in Fig. 3.6 to compare the performance of the proposed approach
with the benchmark UDP without a timeout. As seen from the figure, the proposed approach
outperforms the benchmark UDP. In other words, the proposed approach requires less than 20
ms to successfully transmit a packet, whereas the benchmark UDP requires more than 50 ms.
The results show that the proposed approach can achieve up to 65% less E2E latency under
identical network conditions.

Furthermore, we provide the latency measurements in Fig. 3.7 for the first 300 packets to
demonstrate the difference between the proposed approach and the benchmark UDP in terms
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Figure 3.6: Cost function comparison between the proposed approach and the benchmark UDP
without a timeout.
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and the benchmark UDP without a timeout.
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UDP without a timeout.
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Figure 3.9: The structure of the remote circuit design lab

of jitter, which is the deviation of the latency. The figure shows that the proposed approach
reduces jitter and provides more stable and predictable network conditions.To further evaluate
the latency deviations, we provide latency distributions in Fig. 3.8 for the benchmark UDP (see
Fig. 3.8a) and the proposed approach (see Fig. 3.8b). As seen from the figures, the proposed
approach reduces the standard deviation of latency, σ , from 14.84 to 10.28 compared to the
benchmark UDP which is consistent with the results in Fig. 3.7 and justifies them.

3.6 Remote Education Use Case: Education 4.0

In this section, we present one of the earliest prototypes of the Internet of Skills in Education
which we call Education 4.03. Education 4.0 prototype (see Fig. 3.9) offers an unrivaled ex-
perience of remote interaction to students all around the world. Physically, the lab is located at
James Watt School of Engineering, University of Glasgow, UK. It is now accessible to students
worldwide, where students take control of a robotic arm to conduct circuit design experiments
remotely. The robotic arm is capable of assembling electrical circuits according to students’
control commands by precisely placing electronic components (e.g., resistors, capacitors, etc.)
on circuit boards. In addition, the remote lab prototype enables remote measurement of an actual
circuit to complete lab tasks in circuit design courses.

3The demonstration video: https://youtu.be/RCR5l72HVuM
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Table 3.1: Local Throughput, latency, and jitter measurements on 5G.

Throughput (Mbps)
Latency (ms) Jitter (ms)Uplink Downlink

Min Avg Max Min Avg Max Min Avg Max Min Avg Max
53 54.4 56 457 526.5 553 14 14.8 16 1 2.99 5.09

3.6.1 Setup

Specifically, the remote lab enables three main capabilities. Students can observe the remote lab
environment via high-quality video streaming, which provides more engagement in a remote en-
vironment. Students can control the remote robotic arm using a custom design control interface.
Students are able to control lab equipment (digital signal generator and oscilloscope) to take
remote measurements. To realize such an application, three main components are vital. High-
quality streaming to observe remote environments, which requires video streaming software and
hardware at both the user and robot end. Robotic control is vital to control the remote robotic
arm, which requires control of the graphical user interface (GUI) at the user end and control
of software at the robot end. Control of laboratory equipment (e.g., digital signal generator and
oscilloscope) is also essential for remote experiment and measurement, which requires hardware
at the laboratory and lab equipment GUI at the user end. Presented prototype can be controlled
remotely by using our custom GUI. From the GUI, students select components, e.g., capacitors,
and resistors, to assemble an electric circuit. After selecting components, control commands are
transmitted to the remote robotic arm over a UDP-based server. A UDP-based server is used
instead of a TCP-based server to further mitigate the overhead and, in turn, communication la-
tency. Received control commands are executed by the robotic arm to assemble the circuit. In
addition, real-time video feedback can be provided over different commercial video conferenc-
ing platforms such as Zoom and Microsoft Teams, allowing multiple attendees in one laboratory
session and creating a more interactive environment.

3.6.2 Measurements

In the remote lab prototype, the 5G operating frequency is 3.75 GHz (i.e., it operates on band
n78) with 100 MHz bandwidth. Experimental measurements on our local 5G testbed are pro-
vided in Table 3.1. In addition to 5G-based tests, we have done experiments by inviting students
from UK and China to use our prototype, in which more than 200 students attended and tested
the remote lab. In these experiments, the laboratory/robot end runs on 5G, and student access the
remote lab over conventional internet which supports equitable learning by enabling students to
access remote labs even from places where 5G is not available yet. In our remote experiments
within the UK and between UK and China, we recorded communication latency of between
50− 300 ms within the UK and up to 2 seconds between UK and China. Latency values are
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Table 3.2: Existing Remote Laboratory Prototypes

Key Enabling Technologies
Study High Quality

360o Video
Streaming

AR/VR/XR Tactile
Sensing

AI/ML Remote
Interaction
(Teleopera-

tion)
[118], [119],
[120], [121],
[122], [123],
[124], [125]

X X X X ✓

[126] ✓ ✓ X X ✓
[127] X X X ✓ ✓
[128] X ✓ X X ✓

Our prototype ✓ X ✓ ✓ ✓

unstable and change depending on location, internet speed, or other uncontrollable parameters
in the public internet, making latency the main contributing factor to low-quality user experi-
ence. It is also worth noting that we do not provide packet loss results in Education 4.0 use case
to avoid repetition considering that the reliability results are similar to remote dental inspection
use case presented in previous subsection. URLLC is the most important enabler of this use
case since reliable and low-latency communication is critical in such applications to ensure high
quality of service. Therefore, this prototype is crucial to investigate current capabilities and
further emphasize the necessity of 5G communications.

3.6.3 Discussions

The Education 4.0 prototype is crucial for demonstrating the communication requirements with
real-life testbed implementation to further emphasize the necessity of 5G cellular communica-
tions. There are some existing remote laboratory prototypes in the literature. These studies
are compared considering Education 4.0 key enabling technologies in Table 3.2. As seen from
the comparison table, most studies only have remote interaction/control capability, while only
some have AR/VR/XR capability. On the other hand, AI/ML and tactile sensing capability are
not common in existing remote laboratory prototypes, which are some of the most important
features of upcoming 5G-enabled Education 4.0.

Another important aspect is the reliability of the communication network. Similar to other
industrial robots, the robot is sensitive to packet losses which affect the control performance.
For example, it can compensate for up to 20 consecutive packet drops then the control process
becomes unstable [113]. This implies that packet loss rate is very crucial in ensuring stable
control, which cannot be guaranteed with current communication networks.

Another critical aspect of 5G-enabled Education 4.0 is the deployment and management
strategies of the network to ensure high quality of service. There would be two strategies for
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the deployment and management of the network. The first is private campus networks, where
universities would have their own and operate private networks by themselves. We already have
well-known examples, such as the University of Glasgow, the University of Surrey, Shanghai
University, the University of Tennessee, and Coventry University. The second strategy would be
public networks which are owned by Mobile Network Operators (MNOs) instead of education
institutions. MNOs would deploy, own, and manage the network. They can also create cam-
pus networks by using network slicing to ensure high quality of service to support 5G-enabled
Education 4.0 use cases. On the other hand, one of the most critical challenges of setting up
the 5G facility is the unavailability of User equipments (UEs)/dongles considering from the user
perspective. Currently, the most advanced 5G UEs available are smartphones, and 5G dongle
availability is quite limited, which limits 5G access and related testbed implementations. How-
ever, this challenge is expected to be solved with the rapid development of 5G hardware and the
prevalence of 5G. In our case study, we have used our 5G dongles, which we built in-house at
the University of Glasgow.

3.7 Chapter Summary

In this chapter, we present a 5G-enabled teleoperation prototype for Internet of Skills appli-
cations. We first provide three main domains, namely the operator domain, communication
domain, and teleoperator domain. Each domain is explained in detail to provide fundamental
design and implementation decisions. Furthermore, we present two Internet of Skills use cases
in healthcare and education. Considering use cases, we perform communication latency and re-
liability experiments both locally in a laboratory environment and over the internet to investigate
the current capabilities and limitations of the emerging Internet of Skills applications. We show
that current communications can achieve around 15 ms E2E latency in local network settings,
whereas 50 ms to 300 ms latency is observed within the UK experiments. On the other hand,
the latency increases by up to 2 seconds in the experiments between UK and China, showing
the effect of distance between operator and teleoperator on the latency. Around 99.9% packet
reception rate is achieved in the experiments, showing the reliability of the communication net-
work. The main concern in reliability is the number of packets lost consecutively. In other
words, we observe that the prototype can tolerate a lower packet reception rate unless the num-
ber of consecutive packet losses is greater than the tolerable threshold4. In the remote dental
inspection use case, we propose a two-way timeout approach to eliminate waiting time for stale
packets by discarding the packets that are not delivered before a threshold. The proposed ap-
proach shows that the E2E latency can be improved by compromising reliability. In addition,
discarding packets would affect the control performance, too. Retransmission of packets would

4For example, Franka Emika Panda robot can compensate for up to 20 consecutive packet drops, then the control
process becomes unstable [113].
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be a better approach in terms of reliability and control performance, compared to discarding
packets. However, it would further increase the communication resource consumption. In brief,
we observe that latency and reliability are two conflicting requirements of Internet of Skills ap-
plications. Therefore, we need to develop novel methods to achieve the stringent requirements.
Considering the takeaways of this chapter, we propose two different frameworks in Chapter 4
and Chapter 5 for long-distance Internet of Skills applications to address latency and reliability
challenges with co-design approach.



Chapter 4

Task-Oriented Prediction and
Communication Co-Design Framework

4.1 Introduction

Haptic communications is the foundation for emerging Internet of Skills applications such as re-
mote surgery and diagnosis in healthcare [16], remote laboratory and training in education [17],
remote driving in transportation [18], and advanced manufacturing in Industry 4.0 [19]. Teleop-
eration is one of the most important components of the Internet of Skills systems. To provide
high quality user experience, haptic communications need to meet stringent requirements on
latency and reliability [21]. These requirements are well-aligned with URLLC in the fifth gen-
eration cellular networks [24]. Specifically, the E2E delay should be around 1 ms and reliability
should be higher than 99.999%. However, it is very challenging to meet the latency and re-
liability requirements, especially when the communication distance between the operator and
teloperator devices is longer than 300 km [3].

In the existing literature [4, 85–88, 94, 129], the prediction has been considered as a promis-
ing approach to meet stringent QoS requirements, such as latency and reliability. The user-
experienced latency can be reduced by predicting future packets and transmitting them in ad-
vance. In addition, predictions can be used in case of packet loss to improve system reliability,
as discussed in Chapter 2 in detail.

In a packetized predictive control system, predicted packets are sent to the receiver in ad-
vance and are used in case of packet loss [85]. The authors of this work jointly optimized
prediction and communication systems to minimize wireless resource consumption. In [87], a
two-stage prediction framework was proposed for haptic feedback prediction in remote driv-
ing to assist the driver in poor network conditions, where prediction errors were not consid-
ered [85, 87]. In [86], a haptic feedback prediction framework was proposed in remote surgery
use case. Gaussian mixture regression model was used to predict haptic feedback to surgeon in
a needle insertion process, where the prediction accuracy was measured by Root Mean Square

53
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Error (RMSE) between predicted force and ground truth. In [88], authors proposed a predic-
tive actuation framework by predicting missing state at receiver using previously received state.
A model-based prediction algorithm was used to minimize average AoI and transmit power.
However, in both [86] and [88], human perception capabilities were not taken into account.

Recently, user experience was considered in haptic communications, and was characterized
by JND [39]. Here, JND is defined as the minimum difference between the operator and tele-
operator that can be perceived by human users. Since human can only notice the difference
when it is larger than a certain JND threshold, it is reasonable to design the predictor by con-
sidering the JND violation probability, which is defined as the probability that the difference
between the predicted value and the ground truth is larger than a threshold. In [4], the authors
used the JND violation probability as the performance metric to measure the reliability of the
predictor and proposed a prediction and communication co-design framework to reduce user
experienced delay, where a model-based prediction algorithm was deployed at the transmitter. It
was demonstrated that prediction and communication co-design improves the tradeoff between
user experienced delay and reliability compared to the communication system with no predic-
tion. In [94], JND violation probability was used as the overall performance metric to illustrate
the benefits of prediction on AoI in Intelligent Transport Systems (ITS). Similarly in [129], the
tradeoff between prediction length and AoI was analyzed by using JND violation probability in
prediction design. The results showed that the prediction algorithm used in the system can help
to improve the AoI performance.

In practice, the JND threshold is a task dependent parameter with large variation. For ex-
ample, the JND threshold value would be different when human operator controls a robotic arm
for different tasks. The large JND threshold is expected when human operator has the full arm
movement. In contrast, the small JND threshold is required in fine control. However, current
design methods cannot capture such JND threshold dynamics since the fundamental relationship
between JND threshold and QoS is not clear yet. As a result, current design methods suffer from
over-provisioning of wireless resource that impedes their implementation in real-world systems.

In addition, it is very challenging to obtain the relationship between JND threshold and QoS.
Unlike communication systems that are built upon fundamental theories, most of the prediction
algorithms are developed via data-driven design. This raises a huge challenge when the required
error probability is at the level of 10−5, which requires a large number of real-world data samples
to evaluate the probability of the rare event. If we use model-based prediction, it is possible to
derive the prediction error probability, but the mismatch between the over simplified theoretical
models and practical complex systems will lead to inaccurate results. Therefore, we need to
develop innovative methods to overcome the above challenge.

In this chapter, we propose a task-oriented prediction and communication co-design frame-
work in the context of teleoperation system, where the utilization efficiency of the communica-
tion system is maximized subject to the requirements of different operating tasks. In particular,
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in the scenario with limited real-world data samples, we generate synthetic data via TimeGAN.
This allows us to obtain the relationship between JND threshold and the prediction error prob-
ability that is below 10−5. We take 5G New Radio as an example to demonstrate the proposed
framework, where we compare the performance of the systems with and without task-oriented
design. We further compare the performance difference of deploying the predictor at transmitter
and receiver sides. Specifically, the main contributions of this chapter are listed below:

• We propose a task-oriented prediction and communication co-design framework with a
predictor at the receiver side. We derived an upper bound of the overall error probability
in the framework by taking packet losses and prediction errors into account. From the
upper bound, we reveal the tradeoff between the resource utilization efficiency and the
overall reliability.

• To illustrate how to use this framework in practical system design, we take remote robotic
control in 5G New Radio as an example. Then, we formulate an optimization problem
to optimize bandwidth allocation and communication data rate subject to constraints on
the E2E delay and overall reliability. An optimization algorithm is proposed to find the
optimal solution.

• We collect the real-world data from a teleoperation prototype. We further use TimeGAN
to generate synthetic data for predictor training and testing. With both synthetic data and
real-world data, we illustrate the tradeoff between the prediction horizon and prediction
error probability, and further evaluate the overall reliability. Our results show that the
proposed task-oriented prediction framework can save up to 77.80% bandwidth compared
with a benchmark design that is task-agnostic.

The rest of the chapter is organized as follows. In Section 4.2, we develop a general design
framework for task-oriented prediction and communication co-design. In Section 4.3, we illus-
trate packet losses in communications by taking 5G New Radio as an example. In Section 4.4,
we introduce prediction algorithms. In Section 4.5, we propose efficient resource allocation with
task-oriented prediction. In Section 4.6, we present simulation and numerical results. Section
4.7 concludes this chapter. Notations used throughout the chapter are listed in Table 4.1 for
clarification.
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Table 4.1: Descriptions of Notations

Notation Description Notation Description
Km(t) control command send by m-

th transmitter at time slot t
EB

m effective bandwidth for the
m-th link

n number of features in a con-
trol command

bm number of bits per packet for
the m-th link

Dc
m E2E communication delay for

the m-th link
Wm bandwidth for the m-th link

De
m user experienced delay for the

m-th link
Cm capacity for the m-th link

Dr
m core network and backhaul

delay for the m-th link
Rm achievable rate for the m-th

link
Dq

m queuing delay for the m-th
link

Vm channel dispersion for the m-
th link

Dt
m transmission delay for the m-

th link
γm SNR for the m-th link

Dch
m channel coherence time for

the m-th link
αm large-scale gain for the m-th

link
Dth

m queuing delay threshold for
the m-th link

gm small-scale gain for the m-th
link

T p
m prediction horizon for the m-

th task
Pm maximum transmit power for

the m-th link
Tth prediction horizon threshold N0 single sided noise spectral

density
Dmax

m delay requirement for the m-
th task

lm blocklength for the m-th link

ε
q
m queuing delay bound viola-

tion probability for the m-th
task

A number of critical tasks

εd
m decoding error probability for

the m-th task
B number of non-critical tasks

ε
p
m prediction error probability

for the m-th task
Q(.) Q-function

εo
m overall error probability for

the m-th task
Q−1(.) inverse of the Q-function

εmax
m maximum tolerable error

probability for the m-th task
W−1(.) -1 branch of Lambert W-

function
δm JND threshold for the m-th

task
f
ε

p
m
(.) function of prediction error

probability for the m-th task
λm average packet arrival rate for

the m-th link
f
ε

q
m
(.) function of queuing delay

bound violation probability
for the m-th task
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Figure 4.1: System model

4.2 A General Design Framework

We consider a haptic communication system shown in Fig. 4.1, where multiple human users
can remotely control robots via a communication system. N pairs of transmitters and receivers
are considered over a shared wireless channel, where orthogonal subchannels are assigned to
different transceiver pairs to avoid interference. The predictors are deployed at receivers to
reduce user experienced delays.

4.2.1 User Experienced Delay and Delay Requirement

Time is discretized into slots. At the t-th time slot, the m-th transmitter sends the control com-
mand Km(t) = [k1

m(t),k
2
m(t), ...,k

n
m(t)]

T to the receiver, where n is the number of features in the
command (e.g., joint angles, angular velocity, forces, and torque). Then, Km(t) arrives at the
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m-th receiver at (t +Dc
m)-th time slot, where Dc

m is E2E communication delay. If the commu-
nication system has no prediction capability, the time delay experienced by the user, denoted as
De

m, is the same as the communication delay, i.e., De
m = Dc

m
1. Here, the communication delay

Dc
m consists of the delay in core network and backhauls Dr

m, the queuing delay in the buffer of
the base station (BS) Dq

m, and the transmission delay in the radio access network Dt
m. Then, we

have Dc
m = Dr

m +Dq
m +Dt

m.
In this work, Dr

m and Dt
m are assumed to be bounded by a constant, but Dq

m is a random
variable. As a result, the communication delay Dc

m is a random variable that could be longer
than the maximum tolerable delay bound Dmax

m . To reduce the user experienced delay De
m, a

predictor is equipped at each receiver to predict the delayed or lost trajectories. We denote the
prediction horizon of the m-th user by T p

m , which is smaller than the maximum prediction horizon
Tth. This means that the predictor cannot predict the trajectory beyond the maximum prediction
horizon Tth because the temporal correlation of data becomes very weak.

Since the user experience delay is determined by the relationship among the communication
delay Dc

m and the prediction horizon Tth, we need to consider the following three cases:

• Case 1: Dc
m ∈ (0,Dmax

m ]

The receiver only needs the predicted trajectory when some packets are lost. The predic-
tion horizon depends on the number of consecutive packet losses. We consider a block
fading channel. The channel gain remains constant within duration Dch

m , and varies inde-
pendently from one duration to another. Dch

m is referred to as the channel coherence time.
When the wireless channel is in deep fading, most of the packets cannot be decoded by
the receiver. Given this fact, it is reasonable to assume that Dch

m is upper bound of the time
horizon with consecutive packet losses.2 With the block fading channel, the prediction
horizon is bounded by T p

m ≤ Dch
m . In this case, the user experienced delay is equal to the

communication delay, i.e.,
De

m = Dc
m ≤ Dmax

m .

• Case 2: Dc
m ∈ (Dmax

m ,Tth +Dmax
m ]

To satisfy the delay requirement, the prediction horizon is T p
m = Dc

m−Dmax
m . With the help

of the predictor, the user experienced delay becomes

De
m = Dc

m −T p
m = Dmax

m .

• Case 3: Dc
m ∈ (Tth +Dmax

m ,∞)

1There are different delay components such as computing delay and control delay. However, we focus on
communication system design in this work and ignore other delay components.

2The probability that the channel stays in deep fading in multiple consecutive blocks is extremely small, i.e.,
much smaller than 10−5, and hence is not considered.
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In this case, it is not possible to meet the delay requirement even with the maximum
prediction horizon. Then, the user experienced delay becomes

De
m = Dc

m −T p
m > Dmax

m .

For haptic communications, the delay experienced by a user should not exceed a delay
bound. The maximum tolerable delay bound of the m-th user is denoted by Dmax

m . Then, the
user experienced delay, De

m, should satisfy the following requirement

De
m ≤ Dmax

m . (4.1)

It is worth noting that the above constraint cannot be satisfied with probability one since the
queuing delay is stochastic in most of communication systems. In the next subsection, we will
analyze the delay bound violation probability.

4.2.2 Reliability Components and Reliability Requirement

Let’s denote the overall error probability and the maximum tolerable error probability of the
m-th task by εo

m and εmax
m , respectively. The overall error probability consists of decoding error

probability, εd
m, queuing delay bound violation probability, ε

q
m, and prediction error probability,

ε
p
m.

The decoding error probability of the m-th user depends on the channel fading, the resource
allocation policy, and the modulation and coding scheme in wireless communications. We need
to optimize the communication system to obtain a satisfactory decoding error probability. In the
next section, we will provide the expression of εd

m in a specific communication system.
The prediction error probability is defined as the probability that the prediction error is larger

than the required JND threshold of a task. By considering JND violation probability, we take
position control accuracy into account which is the discrepancy between operator’s position and
robot’s position. In other words, it is the probability of tracking error being larger than a JND
threshold that can noticeable by the operator. For the m-th user, the JND threshold is denoted by
δm. For a given prediction algorithm, the relationship between prediction error probability, ε

p
m,

the prediction horizon, T p
m , and the JND threshold is characterized by the following function,

f
ε

p
m
(T p

m,δm) =Pr{|K̂m(t +T p
m)−Km(t +T p

m)|> δm}, (4.2)

t = 1,2,3, ...

where K̂m(t +T p
m) is the predicted trajectory for the (t +T p

m)-th slot and Km(t +T p
m) is the

actual trajectory in this slot. As shown in [4], f
ε

p
m
(T p

m,δm) increases with T p
m and decreases with

δm.
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Similarly, we denote the relationship between the queuing delay bound and the delay bound
violation probability by a function f

ε
q
m
(κ). It is the probability that the queuing delay, Dq

m, is
greater than a queuing delay bound, κ , i.e.,

f
ε

q
m
(κ) = Pr{Dq

m > κ}. (4.3)

Since the delay bound violation probability decreases with the required delay bound, f
ε

q
m
(κ) is

a monotonic decreasing function. To meet the maximum delay bound, a threshold of queuing
delay is given by Dth

m = Dmax
m −Dt

m −Dr
m.

In the sequel, we analyze the overall error probability in the three cases discussed in the
previous subsection.

• Case 1: Dc
m ∈ (0,Dmax

m ]

In this case, we have Dq
m ≤ Dth

m . From the definition of f
ε

q
m
(κ), the probability that the

queuing delay does not exceed Dth
m can be expressed as

Pr{Dq
m ≤ Dth

m}= 1− f
ε

q
m
(Dth

m). (4.4)

Since the maximum prediction horizon does not exceed Dch
m , the prediction error prob-

ability is bounded by f
ε

p
m
(Dch

m ,δm). Given the decoding error probability, εd
m, the error

probability in case 1 can be expressed as εc,1
m = f

ε
p
m
(Dch

m ,δm)ε
d
m.

• Case 2: Dc
m ∈ (Dmax

m ,Tth +Dmax
m ]

In this case, Dq
m ∈ (Dth

m ,D
th
m +Tth], which happens with a probability of

Pr{Dq
m ∈ (Dth

m ,D
th
m +Tth]}=

f
ε

q
m
(Dth

m)− f
ε

q
m
(Dth

m +Tth). (4.5)

The prediction horizon is bounded by Tth, and thus the error probability is bounded by
ε

c,2
m ≤ f

ε
p
m
(Tth,δm).

• Case 3: Dc
m ∈ (Tth +Dmax

m ,∞)

In this case, Dq
m ∈ (Tth +Dth

m ,∞). Case 3 happens with a probability of

Pr{Dq
m ∈ (Tth +Dth

m ,∞)}= f
ε

q
m
(Dth

m +Tth). (4.6)

Since the delay requirement is not satisfied, all the packets are lost. The error probability
in this case is ε

c,3
m = 1.
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The overall error probability is a combination of error probabilities in the above three cases. It
can be expressed as follows,

ε
o
m =ε

c,1
m Pr{Dq

m ≤ Dth
m}+ ε

c,2
m Pr{Dq

m ∈ (Dth
m ,D

th
m +Tth]}

+ ε
c,3
m Pr{Dq

m ∈ (Tth +Dth
m ,∞)}

≤ f
ε

p
m
(Dch

m ,δm)ε
d
m(1− f

ε
q
m
(Dth

m))

+ f
ε

p
m
(Tth,δm)( f

ε
q
m
(Dth

m)− f
ε

q
m
(Dth

m +Tth))

+ f
ε

q
m
(Dth

m +Tth). (4.7)

It is worthy to note that the overall error probability is formulated considering both com-
munication and prediction errors to take implications of wrong predictions into account in the
system design. The reliability requirement εo

m ≤ εmax
m can be satisfied if the upper bound in (4.7)

meets the following constraint,

f
ε

p
m
(Dch

m ,δm)ε
d
m(1− f

ε
q
m
(Dth

m))+ f
ε

p
m
(Tth,δm)( f

ε
q
m
(Dth

m)

− f
ε

q
m
(Dth

m +Tth))+ f
ε

q
m
(Dth

m +Tth)≤ ε
max
m . (4.8)

We denote the general utilization efficiency of a communication system by U(x), where
x = [x1, ...,xN ] is the optimization variables of the N tasks. A general task-oriented prediction
and communication co-design framework can be formulated as follows,

max
x

U(x) (4.9)

s.t. (4.1) and (4.8).

With this framework, we can jointly optimize prediction and communication systems to
achieve better resource utilization efficiency.

4.3 5G New Radio: An Example of Communication System

To illustrate how to obtain the upper bound in (4.7), we consider 5G New Radio as an example
in the rest part of this work and derived the decoding error probability, εd

m, and the queuing delay
bound violation probability, f

ε
q
m
(.), in this section.
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4.3.1 Decoding Error Probability

To achieve low transmission delay, the blocklength of channel codes is short. In the finite block-
length regime, the maximal achievable rate can be accurately approximated as [130]

Rm ≈Cm −
√

Vm

lm
Q−1(εd

m) (bits/s/Hz), (4.10)

where Cm = log(1+γm) is the Shannon capacity, γm = αmgmPm
N0Wm

is the received signal to noise ratio
(SNR) at BS, αm is the large-scale channel gain, gm denotes the small-scale channel gain, Pm de-
notes the transmit power, N0 is the single sided noise spectral density, Vm = log(e)2

[
1− 1

(1+γm)2

]
is the channel dispersion, lm = Dt

mWm is the blocklength, Dt
m is the transmission duration, Wm

is the bandwidth, and Q−1(.) is the inverse of the Q-function. Then, decoding error probability
can be expressed as

ε
d
m ≈ Q

(
Dt

mWmCm −bm + log(Dt
mWm)/2√

Dt
mWmVm

)
, (4.11)

where bm = Dt
mWmRm is the number of information bits. If SNR is higher than 5dB, channel

dispersion Vm becomes log(e)2 [131]. Then, εd
m becomes

ε
d
m ≈ Q

(
Dt

mWmCm −bm + log(Dt
mWm)/2

log(e)
√

Dt
mWm

)
. (4.12)

From (4.12), we can obtain the following Lemma.
Lemma 1: Given Wm, εd

m increases with bm.
Proof: Given Wm, the input of the Q-function in (4.12) decreases with bm. Since Q-function

is a decreasing function, εd
m increases with increasing bm.

4.3.2 Queuing Delay Violation Probability

In URLLC, the transmission delay (transmission time interval could be 0.125 ms in 5G) is much
shorter than the channel coherence time. Thus, the service rate of the queuing system is a
constant. We use effective bandwidth to characterize the minimum service rate that is required
to achieve the delay bound and delay bound violation probability [132]. To derive the closed-
form expression of queuing delay violation probability, we further assume that the packet arrival
processes are Poisson processes. Denote the average packet arrival rate of the m-th user by λm

with the unit of (packets/s). As discussed in [4, 133], the queuing delay violation probability
decreases exponentially as the delay bound increases, i.e.,

f
ε

q
m
(κ) = eκξ (EB

m ,λm), (4.13)

ξ (EB
m,λm) = EB

mW−1

(
−λm

EB
m

e
− λm

EBm

)
+λm, (4.14)
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∂ f
ε

q
m

∂bm
=κ exp


κ

λm +

bm W−1

(
−Dt

m λm e
−Dt

m λm
bm

bm

)
Dt

m




×


W−1

(
−Dt

m λm e
−Dt

m λm
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)
Dt

m

−
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m e
Dt
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(
Dt
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−Dt
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m

− Dt
m

2
λ 2

m e
−Dt

m λm
bm

b3
m

)
W−1

(
−Dt

m λm e
−Dt

m λm
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)

Dt
m

2
λm

(
W−1

(
−Dt

m λm e
−Dt

m λm
bm

bm

)
+1

)
< 0.

(4.17)

where W−1(.) is the -1 branch of Lambert W-function, which is defined as the inverse function
of f (x) = xex and EB

m is the effective bandwidth, which is the required service rate. To meet the
queuing delay bound κ and the delay bound violation probability in (4.13), the number of bits
transmitted in a transmission time interval should satisfy the following expression

bm/Dt
m = EB

m. (4.15)

Upon substituting EB
m into (4.13) and (4.14), the queuing delay bound violation probability can

be expressed as

f
ε

q
m
(κ) = exp

{
κ

[bmW−1

(
−λmDt

m
bm

e−
λmDt

m
bm

)
Dt

m
+λm

]}
. (4.16)

With the expression given in (4.16), the following property of queuing delay bound violation
probability function can be obtained.

Lemma 2: For given κ , λm, and Dt
m, f

ε
q
m
(κ) strictly decreases with bm.

Proof: To check the monotonicity of f
ε

q
m
(κ) in terms of bm, we have the partial derivative in

(4.17).
Since W−1(.) is always negative, and exponential function is always positive, the partial

derivative in (4.17) is negative. Therefore, f
ε

q
m
(κ) decreases with bm when κ , λm, and Dt

m are
given.
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4.4 TimeGAN Assisted Prediction: An Example of Prediction
Algorithm

To characterize the tradeoff between the prediction error probability, the prediction horizon, and
the JND threshold, we require a large number of trajectories for evaluating the prediction error
probability below 10−5. 3 However, collecting enough trajectories in a real-world robotic plat-
form may take years. To address this issue, we generate synthetic data using TimeGAN. In this
section, we provide details of real-world data collection, synthetic data generation, training and
testing of different prediction algorithms. It is also worth noting that the prediction performed
in this work is only for robot’s trajectory, i.e., it does not include prediction of communication
latency or reliability.

4.4.1 Real-world Data Set Collection

The real-world trajectory data samples are collected from our teleoperation testbed4. The robotic
arm is controlled by a human user to finish three types of tasks as shown in Fig. 4.2.

1. Pushing a box: Push a small box from the starting point to the end point along a given
routine.

2. Grouping items with different colors: Move items with the same color to the same area.

3. Writing symbols: Write symbols by controlling the robotic arm.

Each trajectory is a time-series of observations given by kt:t ′ = {kt ,kt+1, ...,kt ′} where each
observation, kt = [qt , q̇t ], consists of an angular position, qt , and angular velocity, q̇t , in the t-th
time slot. In experiments, we recorded around 1.7× 107 observations with timestamps at the
frequency of one thousand observations per second.

4.4.2 Synthetic Data Set Generation

To generate synthetic data, we apply TimeGAN [70], which is a framework for time-series data
generation. TimeGAN framework consists of four neural networks namely embedding network,
recovery network, sequence generator, and sequence discriminator. The parameters of the four
neural networks are denoted by θem, θre, θg, and θd, respectively.

Embedding and recovery networks are mappings from feature space to latent space and vice
versa. Let’s denote the latent variable and the latent space by vi:i′ and VT , respectively. Then, the
embedding network outputs a sequence of latent variables from a given sequence of features, i.e.,

3The reliability requirement is defined by the 5G standard in [24].
4The demonstration video: https://youtu.be/c3onK5Vh6QE
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Figure 4.2: Tasks for data collection.

vi:i′ =ϑem(ki:i′|θem). The recovery network reconstructs features from latent variables according
to k̂i:i′ = ϑre(vi:i′|θre).

The generator network is denoted by v̂i:i′ = ϑg(zi:i′|θg). It takes a sequence of random vari-
ables zi:i′ from a known distribution as its input and generates synthetic sequences in the latent
space, v̂i:i′ . The discriminator is a classification network in the latent space. Given a sequence
of latent variables, a synthetic sequence or a real sequence, the output of the discriminator is
an indicator ỹ = ϑd(vi:i′|θd). If ỹ = 1 the sequence is classified as a real one. Otherwise, the
sequence is classified as a synthetic one.

In TimeGAN, the four components are trained jointly with three loss functions: reconstruc-
tion loss, LR, unsupervised loss, LU, and supervised loss, LS.

Reconstruction loss is used to measure the difference between the reconstructed features,
k̂i:i′ , and the original features, ki:i′ i.e.,

LR = Eki:i′

[
∑
t
||kt − k̂t ||2

]
. (4.18)

Unsupervised loss comes from the zero-sum game as in conventional GAN [71]. It maximizes
the likelihood of correct classifications for the discriminator. Supervised loss, on the other hand,
is introduced to check the discrepancy between real and synthetic data distributions in latent
space. The definitions of LU and LS can be found in [70, 134].

The generator and discriminator networks are trained iteratively by solving the following
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Table 4.2: TimeGAN model and Hyper-parameters.

Hyper-parameters Values
Sequence length 600

Number of features 2
Hidden units for generator 24

Gamma (used for discriminator loss) 1
Noise dimension (used by generator as a starter dimension) 32

Number of layers 128
Batch size 128

Learning rate 5x10−4

problem,

min
θem,θre

αLR +LS, (4.19)

where α ≥ 0 is a hyperparameter.
The embedding and recovery networks are trained to minimize LR and LS which yields to

following optimization

min
θg

ηLS +max
θd

LU, (4.20)

where η ≥ 0 is a hyperparameter.
In our training, we have implemented the TimeGAN in Tensorflow 2.0 [135] using original

implementation in [136], and ydata-synthetic package in [137]. The hyper-parameters are listed
in Table 4.2.

4.4.3 Prediction Algorithms

We design trajectory prediction algorithms with three different types of neural networks(NNs):
Recurrent Neural Networks (RNN) [63], Long Short Term Memory (LSTM) networks [64], and
Convolutional Neural Networks (CNN) [62].

RNN for Prediction

In the t-th time slot, the input of a RNN cell includes the feature observed in the current slot kt ,
and the hidden state generated by the previous RNN cell, ht−1. Then, RNN model updates the
output and hidden states from the following steps,

ot = σ(Wo[ht−1,kt ]+bo) and ht = σ(Whot +bh),
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where ot is the output of the RNN cell, ht is the new hidden state, Wo and Wh are weight
matrices, bo and bh are bias terms, and σ(·) is the activation function.

LSTM for Prediction

Each LSTM cell takes three inputs at each time slot: the feature observed in the current slot kt ,
the previous LSTM cell state (i.e., long-term memory unit) Lt−1, and the previous hidden state
(i.e., the short-term memory unit) ht−1. Then, LSTM model updates the output, hidden state,
and cell state as follows.

ft = σ(Wf[ht−1,kt ])+bf, (4.21)

it = σ(Wi[ht−1,kt ]+bi), (4.22)

L̃t = tanh(Wk[ht−1,kt ]+bk), (4.23)

Lt = ftLt−1 + itL̃t , (4.24)

ot = σ(Wo[ht−1,kt ]+bo), (4.25)

ht = ot tanh(Lt), (4.26)

where ft is the forget gate which decides what information will be kept from the previous cell
state, it is the input gate which decides what information will be added to cell state of the
network, ot is the output gate of the LSTM unit, ht is the new hidden state of the network,
W f ,Wi,Wk, Wo are the coefficient matrices, b f ,bi,bk,bo are the bias terms, and σ(·) is the
activation function.

CNN for Prediction

CNN consists of convolution layer, pooling layer and fully connected layer. In convolution layer
the feature representations of inputs (i.e., feature maps) are computed by applying element-wise
convolution to the input with the kernel and then applying non-linear activation function to
obtain the output of the layer. For input kt and kernel ψt , the resulting feature at location (i, j)

can be computed from the following steps,

Zi, j
t = Wψt ∗ki, j

t +bψt , (4.27)

Yi, j
t = Φ(Zi, j

t ), (4.28)

where Wψt and bψt are the weights and bias of the filter ψt , ki, j
t is the subsection of the input

centered at (i, j), Φ(·) is the non-linear activation function, and ‘∗’ is the convolution operator.
Then, the pooling layer is employed to decrease the number of features or resolution of the
feature map after the convolution layer. The most used pooling operation is max-pooling [78]
which computes a new feature map by traversing the output of convolution layer and calculating
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Figure 4.3: Illustration of trajectory prediction via CNN.

the maximum of each patch (i.e., subsection of the convolution output according to filter size).
After computing feature maps with several convolution and pooling layers, computed features
are flatten to be fed to fully connected layer (i.e., dense layer) as seen in the Fig. 4.3 which is
trained to forecast the future trajectories.

4.4.4 Training and Testing of Prediction Algorithms

For all the three types of NNs, we use mean squared error, MSE = ∑t(k̂t −kt)
2/s, as the loss

function since it is a differentiable function and eases the mathematical operations in optimiza-
tions throughout training process, where s is the number of samples. In addition, we use relative

root mean squared error, RRMSE(%) =

√
∑t(k̂t−kt)2/s)

k̄t
× 100, to compare the performance of

different prediction algorithms, where k̄t is the mean value of the observations. We set the
maximum number of training epochs as 1000. To avoid over fitting, an early stopping criteria
is adopted. Specifically, the training process is terminated and the latest model is saved if the
model does not improve for 10 consecutive epochs. The hyper-parameters of prediction algo-
rithms are listed in Table 4.3. To train the predictors, each input sample consists joint position
and velocity in the past Nin time slots. Given the history window with Nin number of steps,
kt−Nin:t = {kt−Nin ,kt−Nin+1, ...,kt}, predictor is trained to predict the joint positions in the next
Nout number of steps (i.e., prediction window) as shown in the example in Fig. 4.3. In this study,
we consider multi-step prediction in which predictor predicts Nout steps at once since it is more
accurate than single-step prediction [56, 138].

The testing results are provided in Table 4.4. Here, the dimension of the input is Nin =
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Table 4.3: Hyper-Parameters of Prediction Algorithms

RNN LSTM CNN
Number of

layers 1 1 1

Number of cells
in each layer 128 RNN cells 128 LSTM cells

128
Convolutional

cells
Batch size 64 64 64
Optimizer Adam Adam Adam

Loss function MSE MSE MSE
Accuracy metric RRMSE RRMSE RRMSE

Max training
epochs 1000 1000 1000

Early stopping
criteria

min validation
loss, patience=10

min validation
loss, patience=10

min validation
loss, patience=10

Activation
function tanh tanh ReLu

Table 4.4: Performance of Different Predictors

Errors(%) LSTM RNN CNN
Training RRMSE 0.8% 0.5% 0.07%

Validation RRMSE 0.8% 0.5% 0.08%
Test RRMSE 0.9% 0.6% 0.2%

500 ms and the length of prediction window is Nout = 100 ms. According to our results, CNN
outperforms both LSTM and RNN. Therefore, we use CNN in our system and will be referring
to CNN as the predictor in the rest part of the chapter. It is worth noting that the prediction
accuracies of RNN, LSTM, and CNN depend on the datasets [65–68]. In general, RNN and
LSTM outperform CNN in time-series data. But for some datasets, where the time-series data
change suddenly, CNN can be better than RNN and LSTM [69].

4.4.5 Tradeoff between Prediction Error Probability and Prediction Hori-
zon

In this subsection, we illustrate how to obtain the tradeoff between the prediction error prob-
ability and the prediction horizon. The goal is the estimate the prediction error probability
f
ε

p
m
(T p

m,δm), in (4.2), i.e., the probability that the tracking error is greater than a required JND
threshold δm, when the prediction horizon is T p

m .
When the probability is extremely small, e.g., f

ε
p
m
(T p

m,δm) = 10−5, the real-world data set is
not enough to obtain an accurate estimation. To overcome this difficulty, the synthetic trajec-
tories generated by TimeGAN are used to estimate the prediction error probability. For every
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Table 4.5: Hyper-Parameters and Training Results of FNN

Number of layers 4
Number of cells in each layer 64

Batch size 64
Activation ReLu

Max training epochs 1000
Loss function MSE

Accuracy metric RRMSE
Training RRMSE 0.6%

Validation RRMSE 0.9%
Test RRMSE 0.9%

input trajectory kt−Nin:t = {kt−Nin ,kt−Nin+1, ...,kt}, there is a corresponding predicted trajectory
k̂t+1:t+Nout = {k̂t+1, k̂t+2, ..., k̂t+Nout} and ground truth kt+1:t+Nout = {kt+1,kt+2, ...,kt+Nout}. The
prediction errors with different prediction horizon (from 1 time slot to Nout time slots) are given
by et+1:t+Nout = {et+1,et+2, ...,et+Nout}, where et = k̂t − kt . With both experimental data and
synthetic data, we can model the prediction error probability with different prediction horizons
and JND thresholds using feedforward neural network (FNN) that takes the prediction horizon,
T p

m , and the JND threshold, δm, as its inputs and outputs the prediction error probability, i.e.,

f
ε

p
m
(T p

m,δm) = FNN(T p
m,δm|φm), (4.29)

where φm is the training parameters of the FNN. Hyper-parameters and training results are pro-
vided in Table 4.5.

4.5 Efficient Resource Allocation with Task-oriented Predic-
tion

Based on the communication system in Section 4.3 and the predictor in Section 4.4, we illustrate
how to optimize resource allocation, Wm, and data rate, bm, in the task-oriented prediction and
communication co-design framework. To maximize the number of users, N, served by a BS, the
optimization problem in (4.9), can be re-formulated as follows,

max
Wm,bm

N (4.30)

s.t.
N

∑
m=1

Wm ≤Wmax (4.30a)

De
m ≤ Dmax

m (4.30b)

ε
o
m ≤ εmax (4.30c)

(4.7), (4.12), (4.16), and (4.29),
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where (4.30a) is the constraint on the maximum available bandwidth, (4.30b) and (4.30c) are the
constraints on the QoS requirement. As shown in (4.7), the overall error probability is bounded
by

ε
ub
m (Wm,bm)≜ f

ε
p
m
(Dch

m ,δm)ε
d
m(1− f

ε
q
m
(Dth

m))

+ f
ε

p
m
(Tth,δm)( f

ε
q
m
(Dth

m)− f
ε

q
m
(Dth

m +Tth))

+ f
ε

q
m
(Dth

m +Tth).

In the 5G New Radio system, the expression of the decoding error probability, εd
m, is given

by (4.12). Given the queuing system in Section 4.3, the relationship between the queuing delay
bound and the queuing delay violation probability, f

ε
q
m
(·), is derived in (4.16). With our predictor

in Section 4.4, the tradeoff between the prediction error probability and the prediction horizon
f
ε

p
m
(·,δm) is obtained in (4.29). From (4.12), (4.16), and (4.29), we can see that the upper bound

is determined by the bandwidth allocation and the data rate, and is denoted by εub
m (Wm,bm).

The number of constraints and the number of optimization variables are not deterministic
in (4.30), i.e., they depend on the number of users, N. Thus, it is hard to derive closed-form
solution of this problem. To overcome this difficulty, we decompose the problem into multiple
single-user subproblems.

4.5.1 Single User Subproblem

To maximize the number of users that can be served with a given bandwidth, we turn to minimize
the bandwidth that is required to guarantee the QoS of each user. As such, the optimization
problem can be decomposed into independent single-user subproblems, i.e.,

min
Wm,bm

Wm (4.31)

s.t. ε
ub
m (Wm,bm)≤ εmax, (4.1), (4.7), (4.12), (4.16), and (4.29).

Please note that the objective function in (4.31) is special linear function: 1×Wm + 0. Such
a formation follows the standard form of optimization problem in [139]. We develop a two
dimensional binary search algorithm to find the optimal solution of problem (4.31). We first fix
the value of Wm and find the optimal data rate that minimizes the upper bound of the overall
reliability in (4.7), i.e.,

min
bm

ε
ub
m (Wm,bm) (4.32)

s.t. (4.1), (4.12), (4.16), and (4.29),
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The optimal solution of the problem (4.32) is denoted by b∗m(Wm). Then, we use binary search
to find the value of Wm that satisfies the following equation,

ε
ub
m (Wm,b∗m(Wm)) = εmax. (4.33)

We denote the solution of (4.33) by W ∗
m.

In the rest part of this section, we prove that W ∗
m and b∗m(W

∗
m) are the optimal solution of

problem (4.31). To prove this, we need two lemmas.
Lemma 3: For given Wm, εub

m (Wm,bm) first decreases and then increases with bm.
We first validate that εub

m (Wm,bm) first decreases and then increases with bm in two asymp-
totic scenarios: 1) bm is sufficiently small such that the decoding error probability is close to
zero; 2) bm is sufficiently large such that the queuing delay violation probability is close to zero.

In the first scenario that bm is very small, the queuing delay violation probability f
ε

q
m
(.) is

large and, the decoding error probability εd
m is close to zero. Then, εub

m (Wm,bm) can be simplified
as f

ε
p
m
(Tth,δm)( f

ε
q
m
(Dth

m)− f
ε

q
m
(Dth

m +Tth))+ f
ε

q
m
(Dth

m +Tth). Since f
ε

q
m
(.) is a decreasing function

of bm according to Lemma 1, εub
m (Wm,bm) decreases with bm.

When bm is sufficiently large, the queuing delay violation probability f
ε

q
m
(.) is close to zero,

but the decoding error probability εd
m is large. Then, εub

m (Wm,bm) is dominated by εd
m, which

increases with bm according to Lemma 2. In this case, εub
m (Wm,bm) increases with bm.

In non-asymptotic scenarios, it is difficult to prove Lemma 3. We will validate Lemma 3
with numerical results.

Lemma 4: εub
m (Wm,b∗m(Wm)) decreases with Wm.

Proof: From (4.7), (4.16), and (4.12), we can see that given the value of bm, only the
decoding error probability decreases with the value of Wm, and all the other terms remain
constant. If Wm < W̃m, then, εub

m (Wm,b∗m(Wm)) > εub
m (W̃m,b∗m(Wm)). According to the defini-

tion of b∗m(W̃m), it is the solution of (4.31). Given bandwidth W̃m, the optimal value of bm

that minimize the upper bound of the decoding error probability is b∗m(W̃m). In other words,
εub

m (W̃m,b∗m(Wm))> εub
m (W̃m,b∗m(W̃m)). Then, we have εub

m (Wm,b∗m(Wm))> εub
m (W̃m,b∗m(W̃m)).

Lemma 4 indicates that the optimal solution of problem (4.31) should satisfy (4.33) and the
optimal bandwidth can be obtained by binary search. To find the optimal bm for a given Wm, we
can also use binary search as indicated by Lemma 3. Therefore, the optimal solution of problem
(4.31) can be obtained via the two dimensional binary search given in Algorithm 2.

4.6 Evaluation of the Proposed Framework

In this section, we evaluate the proposed task-oriented prediction and communication co-design
framework with numerical results where Table 4.6 provides the parameter settings. We consider
the path loss model 10log10(αm) =−128.1−36.7log10(dm), where dm = 200 m is the distance
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Algorithm 2 Algorithm for solving (4.31)

Input: Delay requirement Dmax
m , reliability requirement εmax

m , threshold for queuing delay Dth
m ,

prediction horizon threshold Tth, channel coherence time Dch
m , average packet arrival rate λm,

JND threshold δm, initial bandwidth W0, maximum bandwidth Wmax, large-scale channel
gain αm, small-scale channel gain gm, transmit power Pm, single sided noise spectral density
N0, initial number of bits b0, maximum number of bits bmax.

Output: Optimal W ∗
m, b∗m(W

∗
m) to ensure URLLC QoS requirements for mth task.

Initialisation : WL =W0, WR =Wmax, Wmid = (WL +WR)/2.
1: Binary search bm in [b0,bmax] and obtain εub

m (Wmid,b∗m(Wmid))
2: while |εub

m (Wmid,b∗m(Wmid))− εmax
m |> (εmax

m )2 and WL <WR do
3: if εub

m (Wmid,b∗m(Wmid))≤ εmax
m then

4: W ∗
m =Wmid

5: WR =Wmid
6: Wmid = (WL +WR)/2
7: else
8: W ∗

m =Wmid
9: WL =Wmid

10: Wmid = (WL +WR)/2
11: end if
12: Binary search bm in [b0,bmax] and obtain εub

m (Wmid,b∗m(Wmid))
13: end while
14: return W ∗

m, b∗m(W
∗
m)

between the BS and the receiver [4]. The overall error probability, εo
m, is obtained from (4.7).

In the following, we first illustrate the tradeoff between prediction error probability and
prediction horizon for different JND thresholds. Then, we consider the single-user scenario to
illustrate the optimality of the Algorithm 2 as well as we compare the two frameworks, where the
predictors are either deployed at transmitter sides or at the receiver sides. Finally, we consider
the multi-user scenario to evaluate the performance gain of the proposed framework in terms of
the required bandwidth for each user or the maximum number of users that can be served.

Table 4.6: Numerical Values of Parameters for Overall Error [4, 5].

Parameter Value
λm, average packet arrival rate 100 packets/s
Pm, maximum transmit power 23 dBm

N0, single sided noise spectral density −144 dBm/Hz
Dr

m, core network and backhaul delay 10 ms
Dt

m, transmission delay 0.5 ms
Dch

m , channel coherence time 10 ms
Tth, prediction horizon threshold 50 ms

Dth
m , queuing delay threshold max{Dmax

m −Dt
m −Dr

m,0}
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Figure 4.4: Dataset collection from 5G-enabled Teleoperation Prototype

4.6.1 Prediction Error Probability and Prediction Horizon Tradeoff

In Fig. 4.5, we compare a real-world trajectory segment with a synthetic trajectory segment.
The results show that real and synthetic trajectories follow similar trend but with different values.
This is reasonable since the motivation of generating synthetic data is for increasing the diversity
of the dataset rather than generating the same data. Therefore, it is expected to have some
differences between synthetic data and real data. We use both synthetic and real trajectories
to obtain the tradeoff between the prediction error probability and the prediction horizon for
different JND thresholds. In Fig. 4.6, we provide the tradeoff between the prediction error
probability and the prediction horizon. The results validate our assumption that the prediction
error probability increases with the prediction horizon T p

m and decreases with the required JND
threshold δm.

4.6.2 Single-user Scenarios

In single-user scenario, we consider two categories of tasks namely critical and non-critical
tasks (see Fig. 4.2 where task 1 and task 2 are non-critical, and task 3 is critical), whose JND
thresholds are δm = 0.1%, and δm = 1%, respectively. For fair comparison, we consider both
tasks have the same value of delay requirement Dmax

m as well as reliability requirement εmax
m .

Fig. 4.7 illustrates the trade-off between the required delay bound and the overall error
probability with different JND thresholds. Here, the allocated bandwidth Wm is 140 kHz and
the packet size bm is 256 bits. The results show that the overall error probability is constant
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Figure 4.5: Real and synthetic trajectory comparison to illustrate the quality of generated data.
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Figure 4.6: Prediction error probability versus prediction horizon for different JND thresholds.
Prediction error probability curves for different JND thresholds are obtained from 1.7×107 real-
world data samples and 2× 1011 synthetic data samples which correspond to 6.7× 108 history
and prediction window pairs.
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Figure 4.7: Overall error probability versus delay requirement, where Wm = 140 kHz and bm =
256 bits.

and equal to prediction error probability when delay requirement smaller than or equal to the
communication delay, i.e., Dmax

m ≤ Dc
m. Then, it decreases rapidly as the delay requirement

Dmax
m grows from 10 to about 25 ms. This is reasonable because the queuing delay violation

probability f
ε

q
m
(Dth

m) is the dominant factor in the region 10 < Dmax
m < 25 ms. When the delay

requirement is larger than 25 ms, both curves are nearly constant with Dmax
m . This is because

f
ε

p
m
(Dch

m ,δm)ε
d
m becomes the dominant factor in (4.7) and does not change with the required

delay bound. Furthermore, the error probability of the critical task is much higher than that
of the non-critical task. This implies that the bandwidth consumption of different task will be
significantly different if they require the same error probability.

To validate Lemmas 1-3, we provide the relationship between different error probabilities
in Fig. 4.8. The results show that the queuing delay bound violation probability, f

ε
q
m
(Dth

m),
decreases with number of bits and the decoding error probability, εd

m, increases with number of
bits. These two curves validate Lemma 1 and Lemma 2, respectively. For both critical and non-
critical tasks, the overall error probability, εo

m, first decreases and then increases with number
of bits. Moreover, when the queuing delay violations are larger than the decoding errors, the
overall error is dominated by the queuing delay violation. When the decoding errors are larger
than the queuing delay violations, the overall error is dominated by the decoding errors. These
observations are consistent with Lemma 3.

In Fig. 4.9, we compare error probabilities of critical and non-critical tasks under different
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(a) Error probability versus number of bits, where δm = 0.1%.

60 70 80 90 100 110 120 130
10

-8

10
-6

10
-4

10
-2

10
0

(b) Error probability versus number of bits, where δm = 1%.

Figure 4.8: Error probabilities versus number of bits, where Dmax
m = 20 ms and εmax

m = 10−5.
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Figure 4.9: Error probabilities versus allocated bandwidth, where Dmax
m = 20 ms and εmax

m =
10−5.

values of allocated bandwidth, Wm. Here, the delay requirement is 20 ms and the reliability re-
quirement is 10−5. From the figure, the overall error probability decreases with increasing band-
width in both critical and non-critical cases which is consistent with Lemma 4. The results in
Figs. 4.8 and 4.9 indicate that the overall error probability achieved by the proposed framework
for critical case is εub

m (W ∗
m,b

∗
m(W

∗
m)) = 1.00×10−5 with W ∗

m = 145.24 kHz, b∗m(W
∗
m) = 268 bits

and for non-critical case is εub
m (W ∗

m,b
∗
m(W

∗
m)) = 1.00×10−5 with W ∗

m = 32.19 kHz, b∗m(W
∗
m) = 92

bits.
In the existing literature, the predictor is either deployed at the transmitter [4, 85, 87, 89] or

at the receiver [86, 88]. Both deployment strategies have advantages and disadvantages. If the
predictor is deployed at the transmitter, the advantage is that the historical information used in
the prediction algorithm is accurate. The disadvantage is that either a prediction error or a packet
loss in communication may result in a JND violation. If the predictor is deployed at the receiver,
it can adjust the prediction horizon according to the communication delays of different packets.
If the communication delay is satisfactory, there is no need to do any prediction. In this way, a
JND violation happens when both the communication and the prediction fail. The disadvantage
of this framework is that the historical information used in the prediction algorithm may not
be accurate, because some packets are lost or severely delayed. Nevertheless, the effects of
deployment strategy hasn’t been investigated and deserve further analyses.

Here, we provide comparison between two deployment strategies to highlight the differences
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(a) Overall error probability versus packet loss probability in communi-
cations, where Dmax = 20 ms.
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(b) Overall error probability versus user experienced delay, where εd =
10−5.

Figure 4.10: Predictor at transmitter versus predictor at receiver where, Wm = 140 kHz, δm = 1%.
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and deliver some insights for prediction and communication co-design research. Fig. 4.10 com-
pares the overall system reliability of two deployment strategies under different values of packet
loss probabilities in communications (Fig. 4.10(a)) and user experienced delay (Fig. 4.10(b)).
From Fig. 4.10(a), deploying predictor at receiver achieves better overall reliability with iden-
tical communication conditions. The reason behind this result is that if the predictor at the
transmitter, then the overall system reliability dominated with least reliable system (i.e. either
prediction system or communication system) since predicted future trajectories transmitted over
communication system. However, if predictor at receiver, then it becomes compensation mech-
anism for communication system where lost packets can be predicted with cost of prediction
errors. From Fig. 4.10(b), deploying predictor at receiver can achieve better delay and reliability
tradeoff. Both strategies can compensate or reduce user experienced delay. However, deploy-
ing predictor at receiver can achieve similar user experienced delay with higher reliability. The
insight is that if the communication system reliability is high, i.e., packet loss probability less
than 10−5, both strategies are suitable to reduce user experienced delay with accurate predictor.
However, when the communication system is not reliable, i.e. packet loss probability greater
than 10−5, we can achieve the URLLC QoS requirements by only deploying the predictor at the
receiver.

4.6.3 Multi-users Scenarios

In multi-user scenarios, we compare the proposed task-oriented prediction and communication
framework with the task-agnostic prediction and communication benchmark. Similar to single-
user scenario, we assume two types of tasks and used the results from single-user scenario for
the minimum required bandwidth and optimal packet rate. Furthermore, we denote critical task
ratio to total number of tasks as r = A

A+B ,A ≥ 0,B ≥ 0 where A is the number of critical tasks
and B is the number of non-critical tasks.

Fig. 4.11 compares the resource utilization of the proposed task-oriented prediction and
communication framework and the benchmark that is task-agnostic under different values of
available resources and critical task ratios. From the figures, the proposed approach achieves
more efficient use of resources with up to 77.80% resource saving. This is because the proposed
approach allocates resources according to JND thresholds of different tasks.

4.7 Conclusions

In this chapter, we proposed the task-oriented prediction and communication co-design frame-
work to increase the wireless resource utilization efficiency for haptic communications, where
low latency and high reliability performance are required. The basic tradeoff between resource
utilization efficiency and overall reliability are provided. For predictions, we see that real-
world data are not enough to achieve URLLC level reliability. To address this issue, we de-
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(b) Number of supported users versus maximum available bandwidth.

Figure 4.11: The proposed task-oriented design versus task-agnostic design in terms of resource
utilization.
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ploy TimeGAN to generate realistic synthetic data which we use to reveal experimental tradeoff
between prediction reliability and prediction horizon for different JND thresholds. We anal-
ysed prediction and communication systems and studied their relationship to reveal the tradeoff
between wireless resources and reliability in proposed task-oriented communication and predic-
tion co-design. We considered the teleoperation scenario via 5G New Radio and demonstrated a
design example using the proposed framework. We formulated a joint optimization problem to
maximize the number of users in a communication system by jointly optimizing communication
data rate and task-dependent JND threshold. Numerical results show that the proposed approach
can reduce the wireless resource consumption by 77.80% compared with the benchmark that is
task-agnostic.



Chapter 5

Intelligent Mode-Switching Framework

5.1 Introduction

The typical teleoperation1, in which a human operator manually controls a remote teleoperator,
is difficult and requires an excessive amount of time to reach the level of expertise due to the
limited perception, high communication latency, and limited DoF at the operator side [104]. In
addition, the operator’s mental and physical demands are relatively high in conventional teleop-
eration [105] which makes the process cumbersome for the operator since s/he needs to concen-
trate on every single detail in the control process instead of focusing on the task at hand.

To address these issues, autonomous teleoperation systems are proposed and extensively
studied in the existing literature [99, 100, 102–106, 108–111]. The basic idea of autonomous
teleoperation is to predict user intention and execute some parts of the task autonomously to
decrease the demand on the operator and increase the task completion rate. Existing studies
can be categorized based on user intention recognition techniques, task performance metrics,
and decision-making algorithms. User intention recognition is performed either by model based
methods [99,103,111], data-driven methods [104–106,108–110] or combinations of both types
of methods [100]. It is worth noting that user intention recognition accuracy varies between 20%
and 95%, which was not considered in some references. Performance metrics highly depend on
specific tasks. To better measure the performance, both objective metrics (e.g., task success rate
and task completion time) and subjective metrics (e.g., operators’ mental and physical demands)
are considered.

In some existing studies [104, 105], decision-making for mode-switching is assumed to be
done by the operator. This approach brings an extra DoF to be controlled by the operator and
generally introduces extra mental demand [100]. Hence, developing a mode-switching pol-
icy that works autonomously and seamlessly is in urgent need. Furthermore, communication
imperfections and resource limitations are the main bottlenecks for long-distance teleopera-

1Teleoperation covers any remote operation done by a human operator by controlling a remote robot (which can
be a manipulator robot, mobile robot, UGV, UAV, etc.) over a communication network.

83
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Figure 5.1: Intelligent Mode Switching Framework for Long Distance Teleoperation

tion. Nevertheless, how a communication system can be designed to accommodate autonomous
teleoperation efficiently is an open question. Therefore, we need a new design methodology
to jointly optimize autonomous teleoperation systems and communication systems to achieve
seamless operation with low physical and mental operator demand.

With the aforementioned considerations, we propose an intelligent mode-switching frame-
work for long-distance teleoperation. We design a general framework by jointly considering
the communication system and the decision-making system. User intention recognition is done
at the operator side with a CNN-based classification model considering that the CNN-based
models perform better in the existing literature compared to other model-based and data-driven
classification algorithms for user intention recognition [99–111]. Based on user intentions, a
DRL agent is trained and deployed on the operator side to switch between the autonomous and
teleoperation modes. A real-world data set is collected from our teleoperation testbed to train
both user intention recognition and DRL algorithms. Our results show that the proposed frame-
work can improve task completion probability tradeoffs with up to 50% communication load
reduction compared to conventional teleoperation.

5.2 System Model

The proposed framework consists of three main domains, namely operator domain, communica-
tion domain, and teleoperator domain, as shown in Fig. 5.1, and time is discretized into slots. A
human operator uses a controller with a haptic interface to control a remote teleoperator. At time
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slot t, m-th operator’s control commands, Km(t), are sampled and transmitted. Sampled control
commands are also saved in the observation memory to be used by a local task-level prediction
algorithm, which attempts to recognize the user’s intention in every time slot using the history
of observations. Prediction output, Lm(t) = {l1

m(t), ..., l
N
m(t)}T, is a probability vector obtained

from task-level prediction algorithm, where ln
m(t) ∈ [0,1] is the probability that the user intends

to execute task n in the t-th time slot. Lm(t) is used by a DRL agent to make a mode-switching
decision, and we will introduce the intention recognition algorithm and the DRL algorithms in
the next section.

In teleoperation mode, the system works as a conventional teleoperation system in which
the controller and the teleoperator exchange packets over the communication domain. In au-
tonomous mode, there is no real-time packet exchange between the operator and the teleoper-
ator. Task-level predictor works as an error detection mechanism in autonomous mode, which
enables recovery from wrong user intention recognition. In case of prediction error, the sys-
tem switches back to the teleoperation mode, i.e., gives control to the operator, and continues
to monitor prediction output to recognize user intention for possible switching to autonomous
mode again. Teleoperator is also equipped with a trajectory-level predictor that is used in au-
tonomous mode. In other words, the teleoperator predicts future trajectories and finishes the
task autonomously. It is worth noting that the computation time for user intention recognition
and error detection is less than 1 ms considering execution time of a CNN-based classification
model [140]. Therefore, we assume that it is negligible compared to long-distance communica-
tion delay.

5.2.1 Communication Load

We define the communication load as the average data rate required for a task, Dm, which can
be given as

Dm =
dm

Zm
bm (bits/slot), (5.1)

where dm is the number of time slots the controller is in the teleoperation mode, Zm is the number
of time slots required to finish the task and bm is the number of bits transmitted in each time
slot. We consider 5G NR as an example communication system. For teleoperation applications,
the packet size is small and the transmission duration of each packet is much smaller than the
channel coherence time. In other words, the channel fading coefficient remains constant over the
transmission duration [40]. In such a scenario, the maximal achievable rate can be accurately
approximated as [130]

Bm ≈Cm −
√

Vm

τmWm
Q−1(εd

m) (bits/s/Hz), (5.2)
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where Cm = log(1+ γm) is the Shannon capacity, γm = αmgmPm
N0Wm

is the received SNR at the base
station, αm is the large-scale channel gain, gm denotes the small-scale channel gain, Pm denotes
the transmit power, N0 is the single sided noise spectral density, Vm = log(e)2

[
1− 1

(1+γm)2

]
is

the channel dispersion, τmWm is the blocklength, τm is the transmission duration, Wm is the
bandwidth, Q−1(.) is the inverse of the Gaussian Q-function, Q(x) ≜

∫
∞

x
1

2π
e−t2/2dt, and εd

m is
the decoding error probability. Given that bm = τmWmBm, communication load, Dm becomes,

Dm ≈ dmτmWm

Zm

[
Cm −

√
Vm

τmWm
Q−1(εd

m)

]
(bits/slot). (5.3)

5.2.2 Task Completion Probability

The task completion probability can be analyzed in teleoperation mode and autonomous mode.
We denote the probability that the system stays in the teleoperation mode and the autonomous
mode by Pt and Pa, respectively, where Pt +Pa = 1.

• Case 1: Teleoperation Mode

In the teleoperation mode, the task completion probability highly depends on the com-
munication reliability and the operator’s experience since real-time packet exchange takes
place. The reliability of a communication system can be measured by the decoding error
probability, εd

m, and the queuing delay violation probability, ε
q
m. To take operator experi-

ence into account, we denote the operator experience coefficient by, ρm ∈ [0,1]. In this
case, task completion probability becomes the multiplication of the communication relia-
bility and user experience coefficient. In other words, any communication imperfections
such as decoding error or queuing delay violation, and operator errors can cause task fail-
ure. Hence, the task completion probability in the teleoperation mode can be expressed
with the following relationship between the decoding error probability, εd

m, the queuing
delay violation probability, ε

q
m and the operator experience coefficient ρm.

Pµ
m = f µ

m (εq
m,ε

d
m,ρm) (5.4)

= (1− ε
q
m)(1− ε

d
m)ρm

• Case 2: Autonomous Mode

In the autonomous mode, task completion probability depends on the intention recogni-
tion algorithm, the error detection algorithm, and the trajectory prediction algorithm. To
take these into account, we define the task-level prediction error probability, εc

m, the error
detection system failure probability, ε f

m, and the trajectory-level prediction error proba-
bility, ε t

m. In this case, task completion probability becomes the multiplication of the
task-level prediction reliability, error detection system reliability and trajectory-level pre-
diction reliability. In other words, prediction error on trajectory-level prediction can cause
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task failure. Similarly, prediction error in task-level can cause task failure if it cannot be
captured by error detection system. Hence, task completion probability in the autonomous
mode can be expressed with the following relationship between the task-level prediction
error probability, εc

m, the error detection system failure probability, ε f
m, and the trajectory-

level prediction error probability, ε t
m.

Pσ
m = f σ

m (εc
m,ε

f
m,ε

t
m) (5.5)

= ((1− ε
c
m)+(εc

m(1− ε
f
m)))(1− ε

t
m)

Then, the overall task completion probability can be given as,

Po
m = PtPµ

m +PaPσ
m ,

= Pt f µ
m (εq

m,ε
d
m,ρm)+Pa f σ

m (εc
m,ε

f
m,ε

t
m). (5.6)

5.2.3 Problem Formulation

To efficiently use available wireless resources, we minimize communication load, Dm, by jointly
optimizing communication and mode-switching systems subject to joint task completion proba-
bility, Po

m, which can be formulated as

min
bm,dm

Dm ≈ dmτmWm

Zm

[
Cm −

√
Vm

τmWm
Q−1(εd

m)

]
(5.7)

s.t. Po
m > ψm.

where ψm is a task-dependent task completion requirement.

5.3 Intelligent Mode-switching Framework

5.3.1 Task-level Prediction: User Intention Recognition

User intention recognition problem can be modeled as time series classification where CNNs
[141], LSTM [142], RNNs, and distance based classification methods [143] such as k-Nearest
Neighbours (kNNs) and Dynamic Time Warping (DTW) are used in the existing literature [144].
In this study, we design CNN based time series classification model as shown in Fig. 5.2. In
input layer, multivariate time series data, kt:t ′ , are received at time slot t

′
with observation length

t
′ − t time slots. In convolution layers, the element-wise convolution operation is applied to

compute the feature representations of inputs (i.e., feature maps). For input kt:t ′ and kernel ρ̂t ,
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Figure 5.2: Task-level Prediction: User Intention Recognition Model

the resulting feature at location (i, j) can be computed as,

Xi, j
t:t ′

= Wρ̂
t:t′

∗ki, j
t:t ′

+bρ̂
t:t′
, (5.8)

Yi, j
t:t ′

= Φ(Xi, j
t:t ′
), (5.9)

where Wρ
t:t′

and bρ
t:t′

are the weights and bias of the filter ρt:t ′ , ki, j
t:t ′

is the subsection of the
input centered at (i, j), Φ(·) is the non-linear activation function, and ‘∗’ is the convolution
operator. Then, activation layers are employed after convolution layers using Leaky Rectified
Linear Unit, LeakyReLu, activation function. After feature map computations with several con-
volution and activation layers, the pooling layer is employed to decrease the dimension of feature
maps in which global average pooling is used. Then, two dense, i.e., fully connected, layers are
employed to train the classification model with softmax activation function. For a given obser-
vation window, kt:t ′ , the classifier is trained to predict the class of the task. The categorical
cross-entropy function is used as a loss function with one-hot encoded labels. Each convolution
layer has 128 CNN cells and the batch size is 64. Early stopping criteria is adopted to avoid
over-fitting, i.e., the best model is saved if there is no improvement for 10 consecutive epochs in
the training process.

5.3.2 Trajectory-level Prediction

The teleoperator predicts the future trajectory from the observed trajectory to be able to finish the
task autonomously, in the autonomous mode. Let’s assume the teleoperator has observation of
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Table 5.1: Hyper-Parameters of Trajectory-level Prediction Models

LSTM CNN
Number of

layers 1 1

Number of
cells in each

layer

128 LSTM
cells

128 Convo-
lutional cells

Batch size 128 128
Optimizer Adam Adam

Loss function MSE MSE
Accuracy

metric RRMSE RRMSE

Max training
epochs 1000 1000

Activation
function tanh ReLu

trajectories, kt:t ′ , at t
′
-th time slot with observation length t

′ − t. Given the observation window
and the task label, the trajectory-level predictor predicts future trajectory, kt ′ :t ′′ , with prediction
horizon t

′′ − t
′
. We use two types of predictors, namely LSTM and CNN for trajectory-level

prediction. Observation and prediction window lengths depend on mode-switching timings.
For example, if the mode is switched from teleoperation to autonomous in the middle of the
task, then the observation and the prediction windows are in equal length. Hyper-parameters of
trajectory-level prediction algorithms are given in Table 5.1.

5.3.3 DRL Framework

In this section, we formulate the problem as discrete-time Markov Decision Process.

States

Let’s denote the state of the M devices in the t-th slot as S(t) = (S1(t),S2(t), ...,SM(t)). The
state of the m-th device consists of the predicted user intention, Lm(t), the observation length,
Tm(t), and the current mode, Mm(t), i.e.,

Sm(t) = {Lm(t),Tm(t),Mm(t)} (5.10)

Actions

The action to be taken by the controller is to either switch the mode or keep the system in the
same mode. We denote the action by Am(t), which is a discrete binary value: (0) staying in the
current mode (1) switching to a different mode.
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Reward

DRL agent errors can have significant consequences, impacting both the communication load
and the successful completion of tasks. Firstly, when a DRL agent remains in teleoperation mode
instead of switching to autonomous mode, it can result in unnecessary communication load. This
inefficiency can hinder the overall system performance. Secondly, if the DRL agent mistakenly
switches to autonomous mode when it should remain in teleoperation mode, it may lead to task
failure. To address these challenges effectively, we have defined a reward function that considers
these potential pitfalls. By providing a small reward in autonomous mode, we encourage the
DRL agent to minimize communication load. Additionally, we incorporate an ultimate reward,
contingent upon task completion outcomes, to encourage successful task execution. This reward
structure ensures that the DRL agent is motivated to balance both communication efficiency and
task accomplishment, thus improving overall system performance and reducing the likelihood
of errors. Therefore, the reward depends on the current state and the final outcome of the task,
which is defined as follows.

Rm(t) =


1, t ≤ Zm and Mm(t) = auto

0, t ≤ Zm and Mm(t) = tele
Zm−dm

Zm
×100, t = Zm and Po

m > ψm

(5.11)

5.3.4 DRL Training

We apply DQN [145] to find the optimal mode-switching policy. The details are given in Al-
gorithm 3. The DQN algorithm has a main network, Q, and a target network, Q̃. The initial
parameters of both neural networks are denoted by θ and θ̃ , respectively. We apply the ε-
greedy policy to achieve a good trade-off between exploration and exploitation, where the agent
chooses a random action with probability ε and chooses the action, At , with probability 1− ε

according to,

At = argmax
At

Q(St ,At |θ). (5.12)

After taking the action, At , agent observes the reward, Rt , and the next state, St+1. The observed
transition < St ,At ,Rt ,St+1,,1t > is stored in replay buffer, Γ, with capacity κ . We denote 1t

as an indicator showing whether the task is terminated or not in the t-th slot. After collecting
enough transitions in the replay buffer, the training starts. Specifically, the agent samples a
batch of transitions, < S j,A j,R j,S j+1,1 j >, j ∈ N , and estimates the long-term reward from
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the target network,

Y j =

R j, 1 j = 1

R j + γ maxA j+1 Q̃(S j+1,A j+1), 1 j = 0
(5.13)

Then the Stochastic Gradient Descent (SGD) algorithm is applied to minimize the mean square
Bellman error, i.e., the difference between the main network and Yj,

L =
1
N

N

∑
j=1

(Q(S j,A j)−Yj). (5.14)

Finally, the target network is updated in every C steps.

Algorithm 3 DQN training

Input: Initialize main network, Q and target network, Q̃ with random weights, θ and θ̃ , respec-
tively. Initialize replay buffer, Γ. Observe the initial state, St = {Lt ,Tt ,Mt}, with predicted
user intend, Lt , observation length, Tt , and current mode, Mt .

1: for episode = 1,... do
2: Choose an action, At , randomly with probability ε , or obtain the action At =

argmaxAt Q(St ,At |θ) with probability 1− ε

3: Apply action At , observe reward, Rt , and next state, St+1
4: Store transition < St ,At ,Rt ,St+1,1t > in replay buffer, Γ

5: Sample N batch of transitions randomly from replay buffer, Γ

6: for each transition < S j,A j,R j,S j+1,1 j > in N batches do
7: if done j then
8: Yj = R j
9: else

10: Yj = R j + γ maxA j+1 Q̃(S j+1,A j+1)
11: end if
12: end for
13: Update θ by minimising loss L = 1

N ∑
N
j=1(Q(S j,A j)−Yj)

14: Copy θ into θ̃ in every C steps
15: end for

5.4 Evaluation of the Proposed Framework

In this section, we evaluate task-level prediction, trajectory-level prediction, and the proposed
intelligent mode-switching framework. In the simulations, we use the relationships derived in
(5.6). In trajectory-level prediction, we utilize the LSTM model. The operator coefficient, ρm, is
assumed to be 0.85 and each packet has bm = 256 bits of information. Communication system
reliability is set to 1−10−5.
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Figure 5.3: Dataset collection from teleoperation testbed

5.4.1 Dataset Collection from Teleoperation Prototype

To train task-level predictor, trajectory-level predictor, and DRL agent, we collect real-world
trajectory samples from our teleoperation testbed. A human operator controls a robotic arm to
write four different letters, i.e., a, b, c, d, as four types of tasks as seen in Fig. 5.3. Each ob-
servation is a time series trajectory given by kt:t ′ = {kt ,kt+1, ...,kt ′} where each observation,
kt = [qt ,vt ,at , ft , tqt ], consists of an angular position, qt , and angular velocity, vt , angular accel-
eration, at , measured external force and torque on the end-effector, ft , and tqt , respectively, in
the t-th time slot. Each trajectory is collected with timestamps and letter labels at a frequency of
33 Hz. In total, 600 letter trajectory samples are collected which corresponds to 1.98×105 data
points.

5.4.2 Task-level Prediction: User Intention Recognition

To evaluate the task-level prediction, we conduct experiments with the collected trajectory data.
The classification accuracy of task-level prediction is studied with different observation lengths.
The accuracy of the task-level prediction increases with observation length, as shown in Fig.
5.4. This is reasonable since more information about the task leads to a more accurate task clas-
sification. After 60% of the task, the classification model achieves more than 90% classification
accuracy with smaller deviation as shown in Fig. 5.4.



CHAPTER 5. INTELLIGENT MODE-SWITCHING FRAMEWORK 93

10 20 30 40 50 60 70 80 90 100

Observation Length (%)

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: User intention recognition (task-level prediction) accuracy vs observation length(%
of task).

Table 5.2: Performance of Trajectory-level Predictors

Observation Length (%) Errors(%) LSTM CNN

50%
Training RRMSE 10.66% 11.04%
Testing RRMSE 10.93% 11.08%

60%
Training RRMSE 9.37% 9.49%
Testing RRMSE 9.84% 9.91%

70%
Training RRMSE 6.61% 6.94%
Testing RRMSE 7.48% 7.68%

80%
Training RRMSE 4.24% 5.01%
Testing RRMSE 4.93% 5.30%

90%
Training RRMSE 1.99% 1.93%
Testing RRMSE 2.42% 2.50%

5.4.3 Trajectory-level Prediction

Trajectory-level prediction algorithms are evaluated with different observation lengths between
50% and 90%. The observation length of the trajectory-level prediction algorithm depends on
mode-switching timings. For example, if the observation length is 50%, it means that the system
is switched to the autonomous mode in the middle of the task and the trajectory-level predictor
needs to predict the remaining trajectory to finish the task. Results for both LSTM and CNN
models are provided in Table 5.2. According to the results, the accuracy of the trajectory-level
prediction increases with increased observation length. This is reasonable since the prediction
horizon decreases as the observation length increases. LSTM outperforms CNN, although CNN
produces similar accuracy results. This is expected since LSTM performs better on time series
(i.e., sequential) data compared to CNN.
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Figure 5.5: DRL training results for task completion probability, where ψm = 0.85.

5.4.4 DRL Agent

In DRL training, we use the proposed task-level and trajectory-level predictors. We provide
training results in Fig. 5.5. From the figure, task completion probability increases at the begin-
ning and converges to a value after training around 100,000 steps. We further evaluate the agent
with a single task and multiple consecutive tasks, as shown in Figs. 5.6 and 5.7. System starts
with the teleopertion mode, then the agent switches to the autonomous mode around 70% of
the task. There are multiple mode switches that are triggered by the error detection mechanism.
In other words, the agent switches back to the teleoperation mode if there is an error in user
intention recognition. Around 75% of the task, agent switches back to the autonomous mode
to finish the task autonomously. As seen from the Figs. 5.6 and 5.7, robot’s operating mode
switches rapidly and frequently over a period of time before switching to fully autonomous
mode. These frequent switches happens in very small amount of time, i.e., < 500 ms, hence,
they are not noticeable by the operator. In other words, frequent and rapid switches over a period
of time before switching to fully autonomous mode do not lead to unsmooth robot operation. In
brief, results show that the agent learns the dynamics of the system and acts as expected.

5.4.5 Overall Results

We evaluate the proposed framework by comparing it with conventional teleoperation. In con-
ventional teleoperation, the operator controls the robotic arm to finish the task, and task com-
pletion probability depends on the communication reliability and the operator coefficient as
formulated in (5.5). In the proposed framework, intelligent mode-switching is applied and task
completion probability depends on the intention recognition algorithm, the error detection sys-
tem, and the trajectory-level prediction as formulated in (5.6).
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Figure 5.6: Single task example.

Figure 5.7: Multi task example.

According to our results, the proposed framework demonstrates comparable task comple-
tion probabilities while significantly reducing communication load, as illustrated in Fig. 5.8.
The figure reveals an interesting trend: task completion probability initially increases and then
decreases with the probability that the system is in teleoperation mode, denoted as Pt. This
behavior can be explained through two asymptotic scenarios. Firstly, when Pt is too small, the
system operates solely in autonomous mode, relying on user intention recognition and trajectory
prediction algorithms, which are not entirely error-free. Consequently, task completion proba-
bility may suffer due to limited operator input. Conversely, when Pt is excessively large, the sys-
tem remains constantly in teleoperation mode, relying heavily on communication performance
and operator experience, both of which are also prone to errors. In such cases, task completion
probability may decline due to overreliance on human intervention. To achieve an optimal task
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Figure 5.8: Task completion probability and communication load vs probability that system
stays in teleoperation mode, where ρm = 0.85, bm = 256 bits/slot, and εd

m = ε
q
m = 10−5.

completion probability, the system must strike a balance between autonomy and teleoperation,
effectively combining the advantages of both approaches. By finding this equilibrium, the pro-
posed framework achieves promising results, maintaining task completion probabilities while
significantly reducing communication load.
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Figure 5.9: Task completion probability vs probability that system stays in teleoperation mode,
for different operator experience coefficient ρm, where bm = 256 bits/slot, and εd

m = ε
q
m = 10−5.

We further illustrate task completion probability for different operator experience coefficient
in Fig. 5.9. As seen from the figure, we observe similar trend of task completion probability for
different user experience coefficient values.
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In addition, we provide the comparison between conventional teleoperation and proposed
approach in terms of task completion probability for different packet loss probabilities in Fig.
5.10. From the figure, both approach perform similar when the packet loss probability is low.
On the other hand, proposed framework outperforms the conventional teleoperation when the
packet loss probability is higher, showing that proposed framework is more resilient to poor
network conditions.
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Figure 5.10: Task completion probability vs packet loss probability in communications, where
bm = 256 bits/slot, Pt = 0.7, and ρm = 0.85.
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Figure 5.11: Task completion probability vs operator experience coefficient, where bm = 256
bits/slot, Pt = 0.7, and εd

m = ε
q
m = 10−5.

Furthermore, we provide the comparison between conventional teleoperation and proposed
approach in terms of task completion probability for different operator experience coefficient
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values in Fig. 5.11. From the figure, both approach perform similar when the operator ex-
perience coefficient is high. On the other hand, proposed framework outperforms the conven-
tional teleoperation when the operator experience coefficient is lower, showing that proposed
framework is more resilient to novice operator. In brief, the proposed framework improves task
completion probability for novice operators and under poor communication conditions.

5.5 Conclusions

In this chapter, we propose an intelligent mode-switching framework to reduce communication
load and improve task completion probability. The proposed framework presents an end-to-end
joint design of mode-switching and communication systems to provide better overall perfor-
mance. A real-world data set is used to train and test the system to validate the feasibility of the
proposed framework in realistic scenarios. Our results corroborate that the proposed framework
achieves better task completion probability for novice operators and under poor communication
conditions with up to 50% communication load reduction.



Chapter 6

Conclusions and Future Works

In this thesis, we proposed the task-oriented joint design of communication and computing for
Internet of Skills applications to meet three main stringent communication requirements, namely
ultra-low latency, ultra-high reliability, and wireless resource utilization efficiency. We showed
that it is challenging to meet these requirements, especially in long-distance communications.
To address these challenges, we proposed novel design frameworks jointly considering commu-
nication and computing systems.

Specifically, we designed and implemented a 5G-based teleoperation prototype for Internet
of Skills applications in Chapter 3. We presented two emerging Internet of Skills use cases in
healthcare and education. We performed local and long-distance communication latency and
reliability experiments considering both use cases to investigate the current capabilities and lim-
itations. From our local experiments, we observed that communication latency is around 15 ms
with a 99.9% packet reception rate (communication reliability). However, communication la-
tency increases up to 2 seconds in long-distance scenarios (between the UK and China), while it
is around 50-300 ms within the UK experiments. In addition, we observed that communication
reliability and system performance are not directly related; instead, the number of consecutive
packet drops is decisive on the overall system performance and user quality of experience. Fur-
thermore, we proposed a two-way timeout approach considering the remote dental inspection
use case where we discarded stale packets to mitigate waiting times. However, we observed that
the proposed approach reduces the latency in the cost of reliability, which validates that latency
and reliability are two conflicting requirements that are very challenging to meet.

As a future work, synchronization issues need to be considered between different feedback.
Our implementation lacks a synchronization module that can guarantee synchronized video, au-
dio, and haptic feedback. It is essential to implement this feature since unsynchronised feedback
signals may lead to poor quality of experience and unstable performance.

We proposed a task-oriented prediction and communication co-design framework in Chap-
ter 4 to meet conflicting latency and reliability requirements. In the proposed framework, we
considered packet losses in communications and prediction errors in prediction algorithms to de-

99
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rive the upper bound for overall system reliability. The tradeoff between overall reliability and
resource utilization efficiency was revealed, and we proposed an optimization problem to max-
imize resource utilization efficiency subject to E2E latency and overall reliability constraints.
We took 5G NR as an example communication system. We derived closed-form expressions of
queuing delay violation probability and decoding error probability for communication reliability.
Similarly, we revealed the tradeoff between prediction error probability and prediction horizon
for different JND thresholds. The proposed framework was evaluated with real-data samples and
generated synthetic data samples. We showed that TimeGAN can be used to generate synthetic
data samples if real data samples are not sufficient. From the results, the proposed framework
achieved a 77.80% resource usage reduction compared to a task-agnostic benchmark. In addi-
tion, we showed that deploying a predictor at the receiver side achieves better overall reliability
compared to a system that predictor at the transmitter.

As a future work, our framework can be extended by deploying predictors at both trans-
mitter and receiver to compensate for reliability and latency imperfections for feedback links.
Furthermore, the proposed framework assumes that the BS has knowledge about the task that is
performed. Then, it allocates resources according to how critical the task is. However, it would
be more interesting to extend our framework by adding a decision engine to categorize tasks
according to their criticality level and allocate resources accordingly using our framework.

We proposed an intelligent mode-switching framework in Chapter 5 with a task-oriented co-
design approach to address the wireless resource utilization challenge. We jointly considered
communication, user intention recognition, and mode-switching parameters to reduce commu-
nication load subject to joint task completion probability. To achieve user intention recognition,
we utilized a CNN-based classification model that takes the operator’s real-time signal and tries
to categorize the task. We revealed the tradeoff between task prediction accuracy and task ob-
servation length. We showed that higher prediction accuracy can be achieved when the task
observation length increases. We achieved more than 90% task prediction accuracy with 60%
observation length. Furthermore, we utilized LSTM for trajectory prediction that can achieve
around 98% accuracy with 90% observation length. We trained a DRL agent with real-world
data collected from our teleoperation prototype for mode-switching between teleoperation and
autonomous modes. Our results showed that the proposed framework achieves up to 50% com-
munication load reduction with similar task completion probability compared to conventional
teleoperation.

As a future work, the proposed framework can be improved with more advanced classifica-
tion and DRL algorithms. For DRL, expert knowledge can be used to improve performance. In
addition, the trained DRL can only work with the trained tasks, which cannot be generalized. It
can be interesting to extend our work by developing generalized DRL algorithms which can be
used on any task.



Bibliography

[1] A. Aijaz and M. Sooriyabandara, “The tactile internet for industries: A review,” Proceed-

ings of the IEEE, vol. 107, no. 2, pp. 414–435, 2018.

[2] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, “Cellular-connected wireless
virtual reality: Requirements, challenges, and solutions,” IEEE Communications Maga-

zine, vol. 58, no. 5, pp. 105–111, 2020.

[3] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled tactile internet,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 460–473, 2016.

[4] Z. Hou, C. She, Y. Li, L. Zhuo, and B. Vucetic, “Prediction and communication co-design
for ultra-reliable and low-latency communications,” IEEE Transactions on Wireless Com-

munications, vol. 19, no. 2, pp. 1196–1209, 2019.

[5] Z. Hou, C. She, Y. Li, D. Niyato, M. Dohler, and B. Vucetic, “Intelligent communications
for tactile internet in 6g: Requirements, technologies, and challenges,” IEEE Communi-

cations Magazine, vol. 59, no. 12, pp. 82–88, 2021.

[6] M. Series, “Imt vision–framework and overall objectives of the future development of imt
for 2020 and beyond,” Recommendation ITU, vol. 2083, no. 0, 2015.

[7] M. Series, “Minimum requirements related to technical performance for imt-2020 radio
interface (s),” Report, pp. 2410–0, 2017.

[8] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,
L. G. Roberts, and S. Wolff, “A brief history of the internet,” ACM SIGCOMM computer

communication review, vol. 39, no. 5, pp. 22–31, 2009.

[9] G. Fettweis and S. Alamouti, “5g: Personal mobile internet beyond what cellular did to
telephony,” IEEE Communications Magazine, vol. 52, no. 2, pp. 140–145, 2014.

[10] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer net-

works, vol. 54, no. 15, pp. 2787–2805, 2010.

101



BIBLIOGRAPHY 102

[11] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information systems

frontiers, vol. 17, pp. 243–259, 2015.

[12] M. Dohler, T. Mahmoodi, M. A. Lema, M. Condoluci, F. Sardis, K. Antonakoglou, and
H. Aghvami, “Internet of skills, where robotics meets ai, 5g and the tactile internet,” in
2017 European Conference on Networks and Communications (EuCNC), pp. 1–5, IEEE,
2017.

[13] M. A. Lema, K. Antonakoglou, F. Sardis, N. Sornkarn, M. Condoluci, T. Mahmoodi,
and M. Dohler, “5g case study of internet of skills: Slicing the human senses,” in 2017

European Conference on Networks and Communications (EuCNC), pp. 1–6, IEEE, 2017.

[14] M. Dohler, “The internet of skills: How 5g-synchronized reality is transforming robotic
surgery,” Robotic Surgery, pp. 207–215, 2021.

[15] M. Dohler, “The future and challenges of communications—toward a world where 5g
enables synchronized reality and an internet of skills,” Internet Technology Letters, vol. 1,
no. 2, p. e33, 2018.

[16] S. Latif, J. Qadir, S. Farooq, and M. A. Imran, “How 5G wireless (and concomitant
technologies) will revolutionize healthcare?,” Future Internet, vol. 9, no. 4, pp. 93–117,
2017.

[17] B. Kizilkaya, G. Zhao, Y. A. Sambo, L. Li, and M. A. Imran, “5G-enabled education
4.0: Enabling technologies, challenges, and solutions,” IEEE Access, vol. 9, pp. 166962–
166969, 2021.

[18] T. Zhang, “Toward automated vehicle teleoperation: Vision, opportunities, and chal-
lenges,” IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11347–11354, 2020.

[19] R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “Tactile internet and its applications in 5G
era: A comprehensive review,” International Journal of Communication Systems, vol. 32,
no. 14, p. e3981, 2019.

[20] E. Bastug, M. Bennis, M. Médard, and M. Debbah, “Toward interconnected virtual real-
ity: Opportunities, challenges, and enablers,” IEEE Communications Magazine, vol. 55,
no. 6, pp. 110–117, 2017.

[21] K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Toward haptic
communications over the 5G tactile internet,” IEEE Communications Surveys & Tutori-

als, vol. 20, no. 4, pp. 3034–3059, 2018.



BIBLIOGRAPHY 103

[22] Y. Miao, Y. Jiang, L. Peng, M. S. Hossain, and G. Muhammad, “Telesurgery robot based
on 5g tactile internet,” Mobile Networks and Applications, vol. 23, no. 6, pp. 1645–1654,
2018.

[23] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the tac-
tile internet: Haptic communications over next generation 5g cellular networks,” IEEE

Wireless Communications, vol. 24, no. 2, pp. 82–89, 2016.

[24] 3GPP, TR 38.802, Study on New Radio (NR) Access Technologies. TSG RAN, Release
14, Mar. 2017.

[25] T. Jacobsen, R. Abreu, G. Berardinelli, K. Pedersen, P. Mogensen, I. Z. Kovács, and T. K.
Madsen, “System level analysis of uplink grant-free transmission for urllc,” in 2017 IEEE

Globecom Workshops (GC Wkshps), pp. 1–6, IEEE, 2017.

[26] A. A. El Kalam, A. Ferreira, and F. Kratz, “Bilateral teleoperation system using qos and
secure communication networks for telemedicine applications,” IEEE Systems Journal,
vol. 10, no. 2, pp. 709–720, 2015.

[27] M. Patel and J. Wang, “Applications, challenges, and prospective in emerging body area
networking technologies,” IEEE Wireless communications, vol. 17, no. 1, pp. 80–88,
2010.

[28] M. Perez, S. Xu, S. Chauhan, A. Tanaka, K. Simpson, H. Abdul-Muhsin, and R. Smith,
“Impact of delay on telesurgical performance: study on the robotic simulator dv-trainer,”
International journal of computer assisted radiology and surgery, vol. 11, no. 4, pp. 581–
587, 2016.

[29] M. Eid, J. Cha, and A. El Saddik, “Admux: An adaptive multiplexer for haptic–audio–
visual data communication,” IEEE Transactions on Instrumentation and Measurement,
vol. 60, no. 1, pp. 21–31, 2010.

[30] B. Cizmeci, X. Xu, R. Chaudhari, C. Bachhuber, N. Alt, and E. Steinbach, “A multiplex-
ing scheme for multimodal teleoperation,” ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), vol. 13, no. 2, p. 21, 2017.

[31] T. Hachisu and H. Kajimoto, “Vibration feedback latency affects material perception dur-
ing rod tapping interactions,” IEEE transactions on haptics, vol. 10, no. 2, pp. 288–295,
2016.

[32] J. Lee, E. Tejedor, K. Ranta-aho, H. Wang, K.-T. Lee, E. Semaan, E. Mohyeldin, J. Song,
C. Bergljung, and S. Jung, “Spectrum for 5g: Global status, challenges, and enabling
technologies,” IEEE Communications Magazine, vol. 56, no. 3, pp. 12–18, 2018.



BIBLIOGRAPHY 104

[33] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for 5g and beyond,”
IEEE Communications Magazine, 2020.

[34] J. Park, S. Samarakoon, H. Shiri, M. K. Abdel-Aziz, T. Nishio, A. Elgabli, and M. Bennis,
“Extreme urllc: Vision, challenges, and key enablers,” arXiv preprint arXiv:2001.09683,
2020.

[35] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[36] I. Ahmad, S. Shahabuddin, T. Kumar, J. Okwuibe, A. Gurtov, and M. Ylianttila, “Security
for 5g and beyond,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3682–
3722, 2019.

[37] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless network design
for control systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2,
pp. 978–1013, 2018.

[38] G. Zhao, M. A. Imran, Z. Pang, Z. Chen, and L. Li, “Toward real-time control in future
wireless networks: communication-control co-design,” IEEE Communications Magazine,
vol. 57, no. 2, pp. 138–144, 2018.

[39] S. Feyzabadi, S. Straube, M. Folgheraiter, E. A. Kirchner, S. K. Kim, and J. C. Albiez,
“Human force discrimination during active arm motion for force feedback design,” IEEE

Transactions on Haptics, vol. 6, no. 3, pp. 309–319, 2013.

[40] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency
wireless communication with short packets,” Proceedings of the IEEE, vol. 104, no. 9,
pp. 1711–1726, 2016.

[41] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical

journal, vol. 27, no. 3, pp. 379–423, 1948.

[42] R. A. Costa, M. Langberg, and J. Barros, “One-shot capacity of discrete channels,” in
2010 IEEE International Symposium on Information Theory, pp. 211–215, IEEE, 2010.

[43] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength
regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.

[44] E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias,
“Haptic communications,” Proceedings of the IEEE, vol. 100, no. 4, pp. 937–956, 2012.

[45] S. J. Lederman and R. L. Klatzky, “Haptic perception: A tutorial,” Attention, Perception,

& Psychophysics, vol. 71, no. 7, pp. 1439–1459, 2009.



BIBLIOGRAPHY 105

[46] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of research and development, vol. 44, no. 1.2, pp. 206–226, 2000.

[47] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey and
benchmarking of machine learning accelerators,” in 2019 IEEE high performance extreme

computing conference (HPEC), pp. 1–9, IEEE, 2019.

[48] H. A. Helaly, M. Badawy, and A. Y. Haikal, “Deep learning approach for early detection
of alzheimer’s disease,” Cognitive computation, pp. 1–17, 2021.

[49] B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Literature review: Machine learn-
ing techniques applied to financial market prediction,” Expert Systems with Applications,
vol. 124, pp. 226–251, 2019.

[50] H. Luan and C.-C. Tsai, “A review of using machine learning approaches for precision
education,” Educational Technology & Society, vol. 24, no. 1, pp. 250–266, 2021.

[51] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[52] J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural network-based multiple-
rate compressive sensing for massive mimo csi feedback: Design, simulation, and anal-
ysis,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2827–2840,
2020.

[53] Y. Yang, D. B. Smith, and S. Seneviratne, “Deep learning channel prediction for transmit
power control in wireless body area networks,” in ICC 2019-2019 IEEE International

Conference on Communications (ICC), pp. 1–6, IEEE, 2019.

[54] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotemporal mod-
eling and prediction in cellular networks: A big data enabled deep learning approach,” in
IEEE INFOCOM 2017-IEEE conference on computer communications, pp. 1–9, IEEE,
2017.

[55] A. Azari, P. Papapetrou, S. Denic, and G. Peters, “User traffic prediction for proactive
resource management: Learning-powered approaches,” in 2019 IEEE Global Communi-

cations Conference (GLOBECOM), pp. 1–6, IEEE, 2019.

[56] W. Zhang, Y. Liu, T. Liu, and C. Yang, “Trajectory prediction with recurrent neural net-
works for predictive resource allocation,” in 2018 14th IEEE International Conference on

Signal Processing (ICSP), pp. 634–639, IEEE, 2018.

[57] H. Gebrie, H. Farooq, and A. Imran, “What machine learning predictor performs best
for mobility prediction in cellular networks?,” in 2019 IEEE International Conference on

Communications Workshops (ICC Workshops), pp. 1–6, IEEE, 2019.



BIBLIOGRAPHY 106

[58] M. Lopez-Martin, B. Carro, J. Lloret, S. Egea, and A. Sanchez-Esguevillas, “Deep learn-
ing model for multimedia quality of experience prediction based on network flow pack-
ets,” IEEE Communications Magazine, vol. 56, no. 9, pp. 110–117, 2018.

[59] G. White, A. Palade, and S. Clarke, “Forecasting qos attributes using lstm networks,” in
2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2018.

[60] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to opti-
mize: Training deep neural networks for interference management,” IEEE Transactions

on Signal Processing, vol. 66, no. 20, pp. 5438–5453, 2018.

[61] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control scheme
based on convolutional neural network,” IEEE Communications Letters, vol. 22, no. 6,
pp. 1276–1279, 2018.

[62] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, and
G. Wang, “Recent advances in convolutional neural networks,” Pattern Recognition,
vol. 77, pp. 354–377, 2018.

[63] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic recurrent neural networks: Theory
and applications,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 153–156,
1994.

[64] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[65] C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks on mobile
traffic forecasting,” in Proc. IEEE PIMRC, pp. 1–6, 2017.

[66] S. Khan, N. Javaid, A. Chand, A. B. M. Khan, F. Rashid, and I. U. Afridi, “Electricity
load forecasting for each day of week using deep cnn,” in Proc. WAINA, pp. 1107–1119,
Springer, 2019.

[67] T. Li, M. Hua, and X. Wu, “A hybrid cnn-lstm model for forecasting particulate matter
(pm2.5),” IEEE Access, vol. 8, pp. 26933–26940, 2020.

[68] R. Yan, J. Liao, J. Yang, W. Sun, M. Nong, and F. Li, “Multi-hour and multi-site air quality
index forecasting in beijing using cnn, lstm, cnn-lstm, and spatiotemporal clustering,”
Expert Systems with Applications, vol. 169, p. 114513, 2021.

[69] S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman, “Stock
price prediction using lstm, rnn and cnn-sliding window model,” in Proc. IEEE ICACCI,
pp. 1643–1647, 2017.



BIBLIOGRAPHY 107

[70] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative adversarial networks,”
in Proc. NeurIPS, pp. 5509–5519, 2019.

[71] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,
“Generative adversarial networks: An overview,” IEEE Signal Processing Magazine,
vol. 35, no. 1, pp. 53–65, 2018.

[72] X. Liang, H. Zhang, L. Lin, and E. Xing, “Generative semantic manipulation with
mask-contrasting gan,” in Proceedings of the European Conference on Computer Vision

(ECCV), pp. 558–573, 2018.

[73] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “Cartoongan: Generative adversarial networks for photo
cartoonization,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 9465–9474, 2018.

[74] Y. Zhang, Z. Gan, and L. Carin, “Generating text via adversarial training,” in NIPS work-

shop on Adversarial Training, vol. 21, pp. 21–32, 2016.

[75] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: better text generation via filling in
the_,” arXiv preprint arXiv:1801.07736, 2018.

[76] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Gan-
based synthetic medical image augmentation for increased cnn performance in liver lesion
classification,” Neurocomputing, vol. 321, pp. 321–331, 2018.

[77] Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui, “Enhancing collabo-
rative filtering with generative augmentation,” in Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 548–556, 2019.

[78] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in visual
recognition,” in Proc. ICML, pp. 111–118, 2010.

[79] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, vol. 5,
pp. 64–67, 2001.

[80] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[81] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and

management science, vol. 2, pp. 331–434, 1990.

[82] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[83] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, 1992.



BIBLIOGRAPHY 108

[84] J. Jordon, L. Szpruch, F. Houssiau, M. Bottarelli, G. Cherubin, C. Maple, S. N. Cohen,
and A. Weller, “Synthetic data–what, why and how?,” arXiv preprint arXiv:2205.03257,
2022.

[85] X. Tong, G. Zhao, M. A. Imran, Z. Pang, and Z. Chen, “Minimizing wireless resource
consumption for packetized predictive control in real-time cyber physical systems,” in
Proc. IEEE ICC Workshops, pp. 1–6, 2018.

[86] F. Boabang, R. Glitho, H. Elbiaze, F. Belqami, and O. Alfandi, “A framework for pre-
dicting haptic feedback in needle insertion in 5G remote robotic surgery,” in Proc. IEEE

CCNC, pp. 1–6, 2020.

[87] A. Hosseini, F. Richthammer, and M. Lienkamp, “Predictive haptic feedback for safe
lateral control of teleoperated road vehicles in urban areas,” in Proc. IEEE VTC-Spring,
pp. 1–7, 2016.

[88] A. M. Girgis, J. Park, M. Bennis, and M. Debbah, “Predictive control and communication
co-design via two-way gaussian process regression and AoI-aware scheduling,” IEEE

Transactions on Communications, vol. 69, no. 10, pp. 7077–7093, 2021.

[89] A. M. Girgis, J. Park, C.-F. Liu, and M. Bennis, “Predictive control and communication
co-design: A gaussian process regression approach,” in Proc. IEEE SPAWC, pp. 1–5,
2020.

[90] Z. Hou, C. She, Y. Li, T. Q. Quek, and B. Vucetic, “Burstiness-aware bandwidth reserva-
tion for ultra-reliable and low-latency communications in tactile internet,” IEEE Journal

on Selected Areas in Communications, vol. 36, no. 11, pp. 2401–2410, 2018.

[91] Z. Meng, C. She, G. Zhao, and D. De Martini, “Sampling, communication, and prediction
co-design for synchronizing the real-world device and digital model in metaverse,” IEEE

Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 288–300, 2022.

[92] S. Yoon, H. jeong Lim, J. H. Kim, H.-S. Lee, Y.-T. Kim, and S. Sull, “Deep 6-dof head
motion prediction for latency in lightweight augmented reality glasses,” in 2022 IEEE

International Conference on Consumer Electronics (ICCE), pp. 1–6, IEEE, 2022.

[93] X. Hou and S. Dey, “Motion prediction and pre-rendering at the edge to enable ultra-low
latency mobile 6dof experiences,” IEEE Open Journal of the Communications Society,
vol. 1, pp. 1674–1690, 2020.

[94] Y. Wang, S. Wu, J. Jiao, P. Yang, and Q. Zhang, “On the prediction policy for timely
status updates in space-air-ground integrated transportation systems,” IEEE Transactions

on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2716–2726, 2022.



BIBLIOGRAPHY 109

[95] Q. Xiong, X. Zhu, Y. Jiang, J. Cao, X. Xiong, and H. Wang, “Status prediction and data
aggregation for aoi-oriented short-packet transmission in industrial iot,” IEEE Transac-

tions on Communications, 2022.

[96] Q. Xiong, X. Zhu, Y. Jiang, J. Cao, and Y. Wang, “Status prediction for age of information
oriented short-packet transmission in industrial iot,” in 2022 IEEE Wireless Communica-

tions and Networking Conference (WCNC), pp. 794–799, IEEE, 2022.

[97] Q. Wang, S. Xie, G. Zhao, L. Zhang, and Z. Chen, “Urllc packet management for pack-
etized predictive control,” in 2019 IEEE Wireless Communications and Networking Con-

ference (WCNC), pp. 1–5, IEEE, 2019.

[98] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or wait:
How to keep your data fresh,” IEEE Transactions on Information Theory, vol. 63, no. 11,
pp. 7492–7508, 2017.

[99] A. K. Tanwani and S. Calinon, “A generative model for intention recognition and ma-
nipulation assistance in teleoperation,” in 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 43–50, IEEE, 2017.

[100] A. Akay and Y. S. Akgul, “An end-to-end stochastic action and visual estimation system
towards autonomous teleoperation,” IEEE Access, vol. 10, pp. 16700–16719, 2022.

[101] A. D. Dragan and S. S. Srinivasa, “Assistive teleoperation for manipulation tasks,” in
Proceedings of the seventh annual ACM/IEEE international conference on human-robot

interaction, pp. 123–124, 2012.

[102] L. V. Herlant, R. M. Holladay, and S. S. Srinivasa, “Assistive teleoperation of robot arms
via automatic time-optimal mode switching,” in 2016 11th ACM/IEEE International Con-

ference on Human-Robot Interaction (HRI), pp. 35–42, IEEE, 2016.

[103] M. Gao, J. Oberländer, T. Schamm, and J. M. Zöllner, “Contextual task-aware shared au-
tonomy for assistive mobile robot teleoperation,” in 2014 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 3311–3318, IEEE, 2014.

[104] M. K. Zein, A. Sidaoui, D. Asmar, and I. H. Elhajj, “Enhanced teleoperation using auto-
complete,” in 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 9178–9184, IEEE, 2020.

[105] M. K. Zein, M. Al Aawar, D. Asmar, and I. H. Elhajj, “Deep learning and mixed reality
to autocomplete teleoperation,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA), pp. 4523–4529, IEEE, 2021.



BIBLIOGRAPHY 110

[106] G. Gonzalez, M. Agarwal, M. V. Balakuntala, M. M. Rahman, U. Kaur, R. M. Voyles,
V. Aggarwal, Y. Xue, and J. Wachs, “Deserts: Delay-tolerant semi-autonomous robot
teleoperation for surgery,” in 2021 IEEE International Conference on Robotics and Au-

tomation (ICRA), pp. 12693–12700, IEEE, 2021.

[107] M. M. Rahman, N. Sanchez-Tamayo, G. Gonzalez, M. Agarwal, V. Aggarwal, R. M.
Voyles, Y. Xue, and J. Wachs, “Transferring dexterous surgical skill knowledge between
robots for semi-autonomous teleoperation,” in 2019 28th IEEE International Conference

on Robot and Human Interactive Communication (RO-MAN), pp. 1–6, IEEE, 2019.

[108] M. Agarwal, G. Gonzalez, M. V. Balakuntala, M. M. Rahman, V. Aggarwal, R. M. Voyles,
Y. Xue, and J. Wachs, “Dexterous skill transfer between surgical procedures for teleop-
erated robotic surgery,” in 2021 30th IEEE International Conference on Robot & Human

Interactive Communication (RO-MAN), pp. 1236–1242, IEEE, 2021.

[109] M. H. Hussein, I. H. Elhajj, and D. Asmar, “Personalized autocomplete teleoperation:
Real-time user adaptation using transfer learning with partial feedback,” in 2021 IEEE

11th Annual International Conference on CYBER Technology in Automation, Control,

and Intelligent Systems (CYBER), pp. 175–180, IEEE, 2021.

[110] M. H. Hussein, B. Ibrahim, I. H. Elhajj, and D. Asmar, “Incremental learning for en-
hanced personalization of autocomplete teleoperation,” in 2022 International Conference

on Robotics and Automation (ICRA), pp. 515–521, IEEE, 2022.

[111] S. Jain and B. Argall, “Probabilistic human intent recognition for shared autonomy in
assistive robotics,” ACM Transactions on Human-Robot Interaction (THRI), vol. 9, no. 1,
pp. 1–23, 2019.

[112] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based
on matrices,” 1955.

[113] “Franka control interface documentation.” Available:https://frankaemika.
github.io/docs/, 2017. Accessed: 2020-11-25.

[114] P. M. Kebria, H. Abdi, M. M. Dalvand, A. Khosravi, and S. Nahavandi, “Control meth-
ods for internet-based teleoperation systems: A review,” IEEE Transactions on Human-

Machine Systems, vol. 49, no. 1, pp. 32–46, 2018.

[115] J. Marescaux, J. Leroy, F. Rubino, M. Smith, M. Vix, M. Simone, and D. Mutter,
“Transcontinental robot-assisted remote telesurgery: feasibility and potential applica-
tions,” Annals of surgery, vol. 235, no. 4, p. 487, 2002.

Available: https://frankaemika.github.io/docs/
Available: https://frankaemika.github.io/docs/


BIBLIOGRAPHY 111

[116] ChinaDaily, “China performs first 5g-based remote surgery on hu-
man brain.” http://www.chinadaily.com.cn/a/201903/18/

WS5c8f0528a3106c65c34ef2b6.html, 2016.

[117] R. Durairajan, S. K. Mani, J. Sommers, and P. Barford, “Time’s forgotten: Using ntp to
understand internet latency,” in Proceedings of the 14th ACM Workshop on Hot Topics in

Networks, pp. 1–7, 2015.

[118] J. García-Guzmán, F. H. Villa-López, J. A. Vélez-Enríquez, L. A. García-Mathey, and
A. Ramírez-Ramírez, “Remote laboratories for teaching and training in engineering,” in
Design, control and applications of mechatronic systems in engineering, ch. 3, pp. 47–50,
Intech Open, 2017.

[119] M. Rampazzo, A. Cervato, and A. Beghi, “Remote refrigeration system experiments
for control engineering education,” Computer Applications in Engineering Education,
vol. 25, no. 3, pp. 430–440, 2017.

[120] C. M. Ionescu, E. Fabregas, S. M. Cristescu, S. Dormido, and R. De Keyser, “A remote
laboratory as an innovative educational tool for practicing control engineering concepts,”
IEEE Transactions on Education, vol. 56, no. 4, pp. 436–442, 2013.

[121] M. T. Restivo, J. Mendes, A. M. Lopes, C. M. Silva, and F. Chouzal, “A remote laboratory
in engineering measurement,” IEEE transactions on industrial electronics, vol. 56, no. 12,
pp. 4836–4843, 2009.

[122] E. Fabregas, G. Farias, S. Dormido-Canto, S. Dormido, and F. Esquembre, “Developing
a remote laboratory for engineering education,” Computers & Education, vol. 57, no. 2,
pp. 1686–1697, 2011.

[123] A. Chevalier, C. Copot, C. Ionescu, and R. De Keyser, “A three-year feedback study of a
remote laboratory used in control engineering studies,” IEEE Transactions on Education,
vol. 60, no. 2, pp. 127–133, 2016.

[124] F. Luthon and B. Larroque, “Laborem—a remote laboratory for game-like training in
electronics,” IEEE Transactions on learning technologies, vol. 8, no. 3, pp. 311–321,
2014.

[125] N. Wang, X. Chen, G. Song, Q. Lan, and H. R. Parsaei, “Design of a new mobile-
optimized remote laboratory application architecture for m-learning,” IEEE Transactions

on Industrial Electronics, vol. 64, no. 3, pp. 2382–2391, 2016.

[126] P. Trentsios, M. Wolf, and S. Frerich, “Remote lab meets virtual reality–enabling im-
mersive access to high tech laboratories from afar,” Procedia Manufacturing, vol. 43,
pp. 25–31, 2020.

http://www.chinadaily.com.cn/a/201903/18/WS5c8f0528a3106c65c34e f2b6.html
http://www.chinadaily.com.cn/a/201903/18/WS5c8f0528a3106c65c34e f2b6.html


BIBLIOGRAPHY 112

[127] A. Yayla, H. Korkmaz, A. Buldu, and A. Sarikas, “Development of a remote laboratory
for an electronic circuit design and analysis course with increased accessibility by us-
ing speech recognition technology,” Computer Applications in Engineering Education,
vol. 29, no. 4, pp. 897–910, 2021.

[128] J. M. Andujar, A. Mejías, and M. A. Márquez, “Augmented reality for the improvement of
remote laboratories: an augmented remote laboratory,” IEEE transactions on education,
vol. 54, no. 3, pp. 492–500, 2010.

[129] Y. Zhang, Y. Chen, B. Yu, X. Diao, and Y. Cai, “Minimizing age of information based on
predictions and short packet communications in uav relay systems,” in 2021 13th Interna-

tional Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–5,
IEEE, 2021.

[130] W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-antenna fading
channels at finite blocklength,” IEEE Transactions on Information Theory, vol. 60, no. 7,
pp. 4232–4265, 2014.

[131] S. Schiessl, J. Gross, and H. Al-Zubaidy, “Delay analysis for wireless fading channels
with finite blocklength channel coding,” in Proc. ACM MSWiM, pp. 13–22, 2015.

[132] C.-S. Chang and J. A. Thomas, “Effective bandwidth in high-speed digital networks,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 6, pp. 1091–1100, 1995.

[133] C. She, C. Yang, and T. Q. Quek, “Cross-layer optimization for ultra-reliable and low-
latency radio access networks,” IEEE Transactions on Wireless Communications, vol. 17,
no. 1, pp. 127–141, 2017.

[134] J. Yoon, D. Jarrett, and M. van der Schaar, “Supplementary materials: Time-series gener-
ative adversarial networks.” https://www.vanderschaar-lab.com/papers/
NIPS2019_TGAN_Supplementary.pdf.

[135] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. USENIX OSDI, pp. 265–283, 2016.

[136] J. Yoon, D. Jarrett, and M. van der Schaar, “Time series generative adversarial networks-
github repository.” https://github.com/jsyoon0823/TimeGAN.

[137] Y. AI, “ydata-synthetic.” https://github.com/ydataai/ydata-synthetic.

[138] N. Nikhil and B. T. Morris, “Convolutional neural network for trajectory prediction,” in
Proc. ECCV, Springer, pp. 186–196, 2018.

https://www.vanderschaar-lab.com/papers/NIPS2019_TGAN_Supplementary.pdf
https://www.vanderschaar-lab.com/papers/NIPS2019_TGAN_Supplementary.pdf
https://github.com/jsyoon0823/TimeGAN
https://github.com/ydataai/ydata-synthetic


BIBLIOGRAPHY 113

[139] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[140] A. Shustanov and P. Yakimov, “Cnn design for real-time traffic sign recognition,” Proce-

dia engineering, vol. 201, pp. 718–725, 2017.

[141] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time
series classification,” Journal of Systems Engineering and Electronics, vol. 28, no. 1,
pp. 162–169, 2017.

[142] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional networks for
time series classification,” IEEE access, vol. 6, pp. 1662–1669, 2017.

[143] A. Abanda, U. Mori, and J. A. Lozano, “A review on distance based time series classifi-
cation,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp. 378–412, 2019.

[144] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: a review,” Data mining and knowledge discovery, vol. 33,
no. 4, pp. 917–963, 2019.

[145] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.


	Thesis cover sheet
	2023KizilkayaPhD (1)
	Abstract
	Declaration
	List of Publications
	List of Acronyms
	Acknowledgements
	Introduction
	Internet of Skills
	Key Enabling Technologies
	High Quality 360o Video Streaming
	Augmented Reality (AR), Virtual Reality (VR), and Extended Reality (XR)
	Tactile Sensing
	Teleoperation
	Artificial Intelligence (AI) and Machine Learning (ML)

	Technical Requirements
	Ultra-high Reliability
	Ultra-low Latency
	Security and Privacy
	Edge Artificial Intelligence

	Role of 5G
	Data Rate and Capacity
	Reliability and Latency
	Edge/Cloud Computing
	Security and Privacy

	Motivation
	Objectives
	Research Contributions
	Thesis Organisation

	Background and Literature Review
	Short Packet Communications in 5G NR
	Haptic Communications
	Machine Learning for Communications
	CNN for Prediction
	RNN for Prediction
	LSTM for Prediction
	Reinforcement Learning
	Generative Adversarial Networks

	Co-Design for Latency and Packet Loss Compensation
	Research Gap Analysis

	Co-Design for Autonomous Teleoperation 
	Research Gap Analysis


	Design and Implementation of 5G-based Teleoperation Prototype
	Overview
	Operator Domain
	Communication Domain
	Teleoperator Domain
	Remote Dental Inspection Use Case: Two-way Timeout Approach
	Two-way Timeout Approach
	Latency Measurement Setup
	Experimental Results

	Remote Education Use Case: Education 4.0
	Setup
	Measurements
	Discussions

	Chapter Summary

	Task-Oriented Prediction and Communication Co-Design Framework
	Introduction
	A General Design Framework
	User Experienced Delay and Delay Requirement
	Reliability Components and Reliability Requirement

	5G New Radio: An Example of Communication System
	Decoding Error Probability
	Queuing Delay Violation Probability

	TimeGAN Assisted Prediction: An Example of Prediction Algorithm
	Real-world Data Set Collection
	Synthetic Data Set Generation
	Prediction Algorithms
	Training and Testing of Prediction Algorithms
	Tradeoff between Prediction Error Probability and Prediction Horizon

	Efficient Resource Allocation with Task-oriented Prediction
	Single User Subproblem

	Evaluation of the Proposed Framework
	Prediction Error Probability and Prediction Horizon Tradeoff
	Single-user Scenarios
	Multi-users Scenarios

	Conclusions

	Intelligent Mode-Switching Framework
	Introduction
	System Model
	Communication Load
	Task Completion Probability
	Problem Formulation

	Intelligent Mode-switching Framework
	Task-level Prediction: User Intention Recognition
	Trajectory-level Prediction
	DRL Framework
	DRL Training

	Evaluation of the Proposed Framework
	Dataset Collection from Teleoperation Prototype
	Task-level Prediction: User Intention Recognition
	Trajectory-level Prediction
	DRL Agent
	Overall Results

	Conclusions

	Conclusions and Future Works


