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Abstract

Conventional medical imaging instruments are bulky, expensive, and use harmful ionising radia-
tion. Combining ultrafast single-photon detectors and pulsed laser sources at optical wavelengths
has the potential to offer inexpensive, safe, and potentially wearable alternatives. However, pho-
tons at optical wavelengths are strongly scattered by biological tissue, which corrupts direct imag-
ing information about regions of absorbing interactions below the tissue surface. The work in
this thesis studies the potential of measuring indirect imaging information by resolving diffuse
photon measurements in space and time. The practical limits of imaging through highly diffusive
material, e.g., biological tissue, is explored and validated with experimental measurements. The
ill-posed problem of using the information in diffuse photon measurements to reconstruct im-
ages at the limits of the highly diffusive regime is tackled using probabilistic machine learning,
demonstrating the potential of migrating diffuse optical imaging techniques beyond the currently
accepted limits and underlining the importance of uncertainty quantification in reconstructions.
The thesis is concluded with a challenging biomedical optics experiment to transmit photons
diametrically through an adult human head. This problem was tackled experimentally and nu-
merically using an anatomically accurate Monte Carlo simulation which uncovered key practical
considerations when detecting photons at the extreme limits of the highly diffusive regime. Al-
though the experimental measurements were inconclusive, comparisons with the numerical re-
sults were promising. More in-depth numerical simulations indicated that light could be guided
in regions of low scattering and absorption to reach deep areas inside the head, and photons can,
in principle, be transmitted through the entire diameter of the head. The collective evidence pre-
sented in this thesis reveals the potential of diffuse optical imaging to extend beyond the currently
accepted limits to non-invasively image deep regions of the human body and brain using optical
wavelengths.
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Chapter 1

Introduction

Medical imaging instruments are crucial to medical diagnostics, treatment and research. How-
ever, they are bulky, expensive and often use harmful ionising radiation. Optical imaging tech-
niques offer a safe, cheap and potentially wearable alternative but they are currently hindered by
the physical process of scattering which degrades imaging information and restricts most modal-
ities to imaging through depths to 1–2cm of tissue.
To image deep into the human body and brain (e.g., >5cm), the problem of collecting imaging
information from scattered light becomes exponentially more difficult. As such, there is a lack of
research exploring potential optical medical imaging modalities in the highly diffusive regime.
The work presented in this thesis investigates optical imaging through diffusive materials at ex-
treme length scales and at the limits of photon detection, with a particular focus on imaging deep
within the human brain.
Anyone who has tried covering a torch with their hand will find that the human body is translucent
to red light, yet the trans-illuminated shadow of dense structures such as bone are not visible.
Unlike X-rays, red and near-infrared light interacts with the body predominately by scattering
events due to microscopic changes in refractive index within biological tissue. Scattered photons
are categorised in three types [1–3]: ballistic photons propagate through tissue in a direct path to
the detector (i.e. maintaining their spatial coherence) and therefore a trans-illuminated shadow of
absorbing regions embedded inside the material can be directly resolved by accumulating many
of these photons on an imaging detector array; snake photons are weakly scattered and lose some
spatial coherence, resulting in a loss of some imaging information; and diffuse photons which
undergo multiple scattering events and have a trajectory that no longer corresponds to their initial
direction of propagation. As a consequence, diffuse photons appear in randomised locations at
a detector array and the imaging information is considered to be corrupted. An illustration of
these photon propagation regimes can be found in figure (2.8).

1



CHAPTER 1. INTRODUCTION 2

It is commonly accepted in current literature that diffuse photons contain little to no imaging in-
formation and, consequently, most techniques aim to remove the diffuse photons from the mea-
sured signal to isolate the ballistic and snake photons [2, 4–10]. However, more recent works
show that including diffuse photons can enhance imaging through diffusive materials [11] and
enable imaging through more scattering than ever thought possible [12]. This indicates that there
is potential for new imaging regimes which do not attempt to remove diffuse photons from the
signal but instead use this information to enhance image retrieval quality, or image in cases where
ballistic and snake photons cannot be detected.
The work in presented in this thesis first investigates, empirically and theoretically, the informa-
tion contained in statistical measurements of diffuse photons and the practical limits of image
information transfer through highly diffusive materials. Using a recent machine learning frame-
work for computational imaging inverse problems [13], simulated and experimental evidence of
imaging near these derived limits is shown and the practical advantages of using probabilistic
inversion models to determine the uncertainty in the solutions is discussed. Finally, a challeng-
ing but relevant biomedical optics experiment to detect photons transmitted through an entire
adult human head is explored to demonstrate the detection of photons at the extreme limits of
tissue scattering. Anatomically accurate simulations of photon migration in the human head are
presented to conclude the thesis and justify the potential for a paradigm shift in diffuse optical
imaging to explore deep regions of the human body and brain.

1.1 Thesis outline

Chapter 2 begins with a background theory discussion of the physical process of photon diffu-
sion through scattering materials and introduces some key variables that are frequently used in
the following chapters. A literature review of diffuse optical imaging provides context and mo-
tivation of the thesis and provides an overview of the methodologies and hardware that are used
in the field. The chapter concludes with an intuitive example that gives a sense of the difficulties
involved with determining accurate solutions to ill-posed inverse problems such as diffuse optical
imaging.
In Chapter 3, the data and methods used in the work of Lyons et. al. [12], which demonstrates
the reconstruction of images using the spatiotemporal distribution of highly diffuse photons, are
used in an analysis study to distinguish imaging in the highly diffuse regime from early photon
imaging methods. The analysis demonstrates the advantage of including diffuse photons for im-
proving image reconstruction quality and underlines the importance of resolving diffuse photon
measurements in both space and time when imaging in the highly diffusive regime.
Chapter 4 takes a more rigorous approach to studying the importance of fully resolving mea-
surements by comparing the information content of the simulated diffuse photon measurements.



CHAPTER 1. INTRODUCTION 3

The principle of using information theory concepts to analyse measurements of multiple scatter-
ing is introduced with a case study in collaboration with the co-authors of [14]. These analysis
concepts are then applied to the setting of diffuse optical imaging to compare the information
resolved in different measurement domains and estimate the practical limits of imaging through
highly diffusive materials. This numerical study of simulated measurements is then validated
with an experiment that demonstrates that the estimated parameters used in the study are rea-
sonable using today’s technology. The impact of resolving information in different measurement
domains on the reconstructed image quality is then assessed using a simple linear inversion model
to indicate the ill-conditioning of the inverse problem.
Using the conclusions of Chapter 4, Chapter 5 demonstrates that the information content of
measurements at the extreme limits of photon diffusion is sufficient to reconstruct images us-
ing a state-of-the-art machine learning inverse retrieval. The chapter begins by introducing the
probablistic machine learning framework developed by Tonolini et al. [13], with a case study
of a challenging inverse optics problem conducted in collaboration with the co-authors of [13].
An experimental design optimised using the conclusions of Chapter 4 is then simulated and a
machine learning inverse model is used to demonstrate the potential to reconstruct images using
measurements at the limits of the highly diffusive regime. The experiment was also implemented
in the laboratory to test the inverse model with real-world data and take the first steps towards
extending diffuse optical imaging beyond currently accepted limits.
Chapter 6 tackles an ambitious real-world biomedical optics challenge of transmitting photons
diametrically though an adult human head. First the evolution of the laboratory experiments is
introduced that lead to the measurement of plausible results. These results are then compared
with anatomically accurate Monte Carlo simulations of the laboratory experiments, which were
extended to examine the distribution of light in the head with different experimental conditions. A
discussion of the possible inaccuracies of the Monte Carlo model leads to potential new research
avenues that might enable imaging deep regions of the adult human brain.



Chapter 2

Background

2.1 Physics of photon transport in diffusive materials

Light is an electromagnetic (EM) wave which can interact with matter in two ways: absorption
and scattering. Light-matter interaction encompasses the various pathways in which light can
transfer its energy to charged particles in a material. It also describes how matter can transfer its
energy by the creation of a photon by an electron transition to a lower energy state.
A photon is the elementary particle of light, a discrete wave packet of electromagnetic energy.
Photons can be described as waves or as particles, i.e., the excitation of quantised mode of the
electromagnetic field. The quantum nature of a photon refers to the phenomenon that a photon
can only be created or destroyed as a whole entity and is indivisible. The energy of a photon is
linearly related only to its frequency 𝜈 by Planck’s constant [15]:

𝐸 = ℎ𝜈. (2.1)

The term “photon” is used throughout this thesis and justified since, at the extreme limits of light
detection, we employ single-photon counting detectors. Light detectors operate by the processes
of absorbing quanta of electromagnetic energy by excitation of electrons to generate free charge
carriers that produce a detectable change in electrical current at the detector output. However,
the generation of a small number of charge carriers at low light levels produces an electrical
current too weak to detect. Single-photon counting detectors typically amplify the number of
free charge carriers to produce a detectable electrical current when the energy of just a single
photon is absorbed in the photosensitive region.
Although a photon is a quantum particle, this thesis does not consider the quantum effects of
light-matter interaction beyond discrete detection events as described above. The following sec-

4



CHAPTER 2. BACKGROUND 5

tion describes the physical phenomenon of absorption and scattering, where light consists of
numerous photons. Therefore the classical theory of electromagnetic (EM) wave interaction
with dielectric materials is a sufficient description. In the subsequent section, the photon dif-
fusion model used throughout this thesis is derived using radiative transfer theory, which is yet
a simpler model, where all scattering contributions of light by a material are independent such
that the interaction of EM fields can be neglected and only the addition of each scattered energy
distribution may be considered.
However, photon propagation in a diffusive material can also be modelled numerically as a ray-
tracing problem using geometrical optics. These models consider the complex path of a photon
(or a “packet” of multiple photons) through a scattering material by independently sampling se-
quential steps of a random walk. Accumulating the distribution of trajectories with numerous
random walks, and sampling the probability of absorption on each step in a Monte Carlo ap-
proach, is an accurate model of the macroscopic statistical distribution of photon transport in
diffusive media [16–18]. Although these models are not used for simulations for the majority of
work in this thesis, they provide an intuitive framework to describe the propagation of photons
in a scattering material, where each random walk is commonly referred to as the trajectory of a
single “photon”.

2.1.1 Classical light-matter interaction

The interaction of light with a dielectric material can be considered classically by the Lorentz
oscillator model [15,19,20]. In this description of the interaction, incoming (primary) EM radi-
ation transfers energy to the material by displacing negatively charged electrons from positively
charged nuclei causing temporary dipole moments throughout the bulk material. The driven
oscillation of the dipole moments immediately re-radiates electromagnetic waves known as sec-
ondary radiation. The electrostatic attraction between positive nuclei and negative electron cloud
also acts as a restoring force with a natural frequency 𝜔0. Since electrons have significantly less
mass than protons, it can be assumed that only the cloud of electrons is displaced. Furthermore,
the outer orbital electrons are displaced significantly more than the inner orbitals for visible light
with relatively high-frequency EM oscillations. Therefore, the outer electron displacements from
the nucleus can be modelled by a driven damped harmonic oscillator with a resonant frequency
at the natural frequency 𝜔𝑟 = 𝜔0.
Suppose the energy of the incoming EM wave is close to the resonant frequency 𝜔𝑟 of the dipole
moments. In that case, there is sufficient energy transferred to the atom or molecule to excite
it to a higher energy state with high probability, e.g., by promotion of an electron to a higher
energy orbital (mainly energies in the visible spectrum) or excitation of a vibration/rotation mode
of molecules in the gas phase (predominantly energies in the infrared spectrum). This defines
absorption of light as the transfer of incoming light energy to excite the electronic energy state
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of a material, which is then either re-radiated by mechanical vibrations in the material (i.e.,
collisions of particles in a densely packed material leading to thermal energy) or re-emitted as
an EM wave with frequency and direction of propagation which depends on the specifics of the
dipole transition energy to the ground state (e.g., fluorescence). It is also possible for energy to
be re-radiated as a combination of these processes so long as energy is conserved [15, 19].
However, if incoming light is not close to a resonance of the dipoles within the material, energy
will still be transferred to cause the displacement of charges, but the oscillation of the displaced
electrons will in turn cause immediate re-radiation of this energy as an EM wave which has
a phase lag with respect to the primary wave. Each scattering centre (e.g., atom, molecule or
solid/liquid particle) in the material can be considered as a dipole which radiates EM waves in
all directions and the resulting superposition of both primary and secondary fields will interfere.
In cases where the primary and secondary fields have the same energy, this is known as elastic
scattering [15].
For densely packed scattering centres, where the spacing is much less than the wavelength, then
neighbouring scattered fields will cancel each other in all directions apart from the forwards di-
rection. This is a description of Rayleigh scattering in dense materials, where scattering particles
are typically ≤ 𝜆

10 (e.g., individual atoms and molecules) [15].
This forward propagating scattering phenomena is not the case for loosely packed materials,
which have interacting particles sparsely spaced greater the wavelength of the primary wave and
the size of the scatterers [17]. In this case, the large spacing between dipole emitters means
that light does not completely destructively interfere in lateral and backwards directions. This
allows light to scatter away from the initial propagation direction where the probability to scatter
in different directions depends on the microscopic local environment and configuration of the
dipoles [15].
For larger particles > 𝜆

10 , which contain numerous molecules (such as fat globules and proteins),
the dipole oscillations at opposite boundaries of the particle no longer produce secondary emis-
sion that constructively interferes in the lateral direction. Mie theory more accurately describes
scattering for single particles in this regime, which results in more directional (anisotropic) scat-
tering than in the Rayleigh case [15].
In the context of this thesis and photon diffusion in biomedical optics, scattering particles are
loosely packed and elastically scattering such that the contributions of each particle can be as-
sumed independent of all other scattering events. Mie scattering can be used to model scattering
of a single spherical particle of any size [17], but when the scatterers are > 10𝜆 a simpler treat-
ment using geometrical optics is sufficient [15].
The interaction of light with a single scattering particle can be described using light as an electro-
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magnetic wave to determine the probability of interaction outcomes. The statistical description
of single-particle scattering can then be summed for an ensemble of particles in loosely packed
materials according to radiative transfer theory. Monte Carlo sampling models use the statisti-
cal description of single-particle interactions derived by treating light as a wave but then treat
light as a classical particle to sample random walk trajectories between scattering events [17].
These models are suited to accurately simulate photon diffusion in materials with arbitrary com-
plex and heterogeneous geometries but are computationally expensive. However, probabilistic
descriptions for single-particle interactions can also be extended to statistical analytic expres-
sions of photon diffusion, which can be derived using the principles of radiative transfer theory.
These analytical models use approximations and are non-trivial for complex materials, but they
are computationally inexpensive and have been shown to model simple homogeneous materials
accurately [21]. These analytically derived models will be used in the majority of work presented
in this thesis.
The absorption and scattering coefficients are introduced in the following sections of this chapter.
These coefficients are statistical parameters which extend this microscopic description of scat-
tering to the macroscopic radiative transfer theory by considering the summation of ensembles
of absorption and scattering particles, where contributions are treated as independent of one an-
other in loosely packed materials. Approximations to this theory that consider photon diffusion
are then used to derive the photon diffusion approximation to the radiative transfer equation, the
solution of which is at the core of the work in this thesis.

2.1.2 Absorption coefficient

Rather than characterise the various dissipative absorption pathways specific to each particle in
a bulk material, a statistical approach can also be used to describe the absorptive properties of an
ensemble of particles. This treatment first considers an absorption interaction as a loss of energy
upon interacting with a single particle (e.g., atom or molecule) in the material irrespective of the
way in which the energy is dissipated.
The efficiency of a single absorbing particle within a material to absorb light can be described
the ratio of power absorbed 𝑃𝑎𝑏𝑠 compared with the incident power 𝑃𝑖 [17, 19]:

𝑄𝑎𝑏𝑠 =
𝑃𝑎𝑏𝑠
𝑃𝑖

. (2.2)

For a particle with geometrical cross section 𝜎𝑔, the absorption efficiency can be rewritten by
substituting the incident power with the product of the incident fluence rate Φ𝑖 (Wcm-2) and
the area of interaction. This leads to a relationship between the absorption efficiency and the
geometrical cross section of a particle, and defines a parameter known as the absorption cross
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section 𝜎𝑎 (cm2) [19]:

𝑄𝑎𝑏𝑠 =
𝑃𝑎𝑏𝑠
Φ𝑖𝜎𝑔

=
𝜎𝑎
𝜎𝑔

. (2.3)

The absorption cross section is typically defined in units of cm2 in biomedical optics literature,
which will also be the units used in the context of this thesis.
To transition this single-particle description to bulk materials, a statistical approximation is re-
quired since the number, size and shape of every particle is unknown in practice. Instead of
considering each particle’s individual geometry, a bulk material is assumed to consist of distri-
bution of spherical particles whereby the radius is determined by the average radius of the true
geometrical shape, 𝑟avg. Furthermore, each particle is considered to have an absorption efficiency
which is independent of direction of incident light [19].
Considering the regime where the distances between particles is much greater than the wave-
length, interference effects can be neglected which allows for a simplified calculation of the col-
lective absorption cross section per volume of material. This assumption considers the absorption
contribution of each particle to be independent and therefore the net effect of an ensemble of par-
ticle is simply the summation of each contribution. The macroscopic statistical characterisation
of the absorption of an ensemble of particles is known as the absorption coefficient [19]:

𝜇𝑎 = ∫

∞

0
𝜎𝑎(𝑟avg)𝜉(𝑟avg)𝑑𝑟avg, (2.4)

where 𝑑𝑁 = 𝜉(𝑟avg)𝑑𝑟avg is the number of particles in a unit volume with radii in the interval
𝑑𝑟avg. The absorption coefficient describes the mean number of absorption events per unit length
of propagation through the material. Note that for identical particles which all have the same
average radius 𝑟0, then 𝜉 = 𝜌𝛿(𝑟avg− 𝑟0) = 𝜌, and the absorption coefficient reduces to 𝜇𝑎 = 𝜌𝜎𝑎,
where the density 𝜌 =𝑁∕𝑉 (cm-3) is the number of absorbing particles 𝑁 per volume 𝑉 [19].
Since 𝜎𝑎 has units cm2, 𝜇𝑎 has units cm-1.

2.1.3 Scattering coefficient

The scattering of a light by an ensemble of particles can also be described statistically. Similar
to determining the absorption cross section above, the scattering cross section of a single par-
ticle can found by considering the scattering efficiency i.e., taking the ratio of incident power
compared with the power scattered by the particle.
Consider a time-independent incident monochromatic plane wave electric field, with wavenum-
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ber 𝑘 = 2𝜋
𝜆 propagating in direction 𝑠̂ [19]:

𝐸𝑖(𝑟) = |𝐸0|exp(𝑖𝑘𝑠̂ ⋅ 𝑟), (2.5)

where the |𝐸0| is the amplitude. The scattered electric field 𝐸𝑠(𝑟) by a particle in the far-field can
be expressed by a spherical wave originating at the centre of a particle with a decaying amplitude
inversely proportional to the radius 𝑟 [19]:

𝐸𝑠(𝑟) = |𝐸0|𝑓 (𝑠̂′, 𝑠̂)
exp(𝑖𝑘𝑟)
4𝜋𝑟

, (2.6)

where 𝑓 (𝑠̂′, 𝑠̂) is the scattering amplitude which determines the contribution of the incident field
scattered from the 𝑠̂ direction into the direction 𝑠̂′. The scattering amplitude function encom-
passes the size, shape and spatially varying refractive index properties of a particle, and is nor-
malised by the amplitude |𝐸0| of the incident wave. Unlike the case of absorption, the scattering
amplitude must be included to determine the scattered power as a function of direction.
The power per area of an electromagnetic wave is represented by the time-averaged Poynting
vector ⟨𝑆⟩ (W/m2), which for a plane-wave in the far-field is [15, 19]:

⟨𝑆⟩ =
𝑐𝜀0
8𝜋

|𝐸⃗|

2𝑠̂, (2.7)

where 𝑐 is the speed of light and 𝜀0 is the permittivity of free space. Note that the time-averaged
Poynting vector has the units of fluence rate (or intensity), but is a vector quantity. However, the
magnitude of the Poynting vector is equivalent to the fluence rate:

Φ = |⟨𝑆⟩|. (2.8)

Substituting (2.5) and (2.6) into (2.7), expressions for the incident ⟨𝑆𝑖⟩ and scattered ⟨𝑆𝑠⟩ Poynt-
ing vectors can be written by:

⟨𝑆𝑖⟩ =
𝑐𝜀0
8𝜋

|𝐸0|
2𝑠̂, (2.9)

and

⟨𝑆𝑠⟩ =
𝑐𝜀0
8𝜋

|𝐸0|
2𝑓 (𝑠̂′, 𝑠̂)

𝑟2
𝑠̂′, (2.10)

respectively.
Furthermore, the power scattered by a particle 𝑃𝑠 in the absence of any external contributing
fields can be expressed as the divergence of the scattered Poynting vector ⟨𝑆𝑠⟩ integrated over
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the volume of the particle:

𝑃𝑠 = ∫𝑉
∇ ⋅ ⟨𝑆𝑠⟩𝑑𝑉 , (2.11)

where ∇=
⟨

𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧

⟩

and the scalar product represents the rate of change in power density out
of the volume.
Similar to the derivation of the absorption cross section, the scattering cross section can be found
by considering the scattering efficiency of the particle:

𝑄𝑠 =
𝑃𝑠
𝑃𝑖

,

=
𝑃𝑠

Φ𝑖𝜎𝑔
,

=
𝜎𝑠
𝜎𝑔

, (2.12)

where the incident power 𝑃𝑖 on the denominator is substituted as a product of the incident fluence
rateΦ𝑖 and the geometrical cross section of the particle 𝜎𝑔. The expression for the scattering cross
section is then:

𝜎𝑠 =
𝑃𝑠
Φ𝑖

. (2.13)

Substituting (2.8) and (2.11) into the equation above yields,

𝜎𝑠 = ∫𝑉
∇ ⋅ ⟨𝑆𝑠⟩

|⟨𝑆𝑖⟩|
𝑑𝑉 ,

= ∫𝑆
⟨𝑆𝑠⟩ ⋅𝑛

|⟨𝑆𝑖⟩|
𝑑𝑆, (2.14)

where the divergence theorem is used to express the volume integral as a surface integral. Substi-
tuting the expressions for the incident (2.9) and scattered (2.10) time-averaged Poynting vectors
into (2.14) and using the definition of differential solid angle 𝑑Ω = 𝑑𝑆

𝑟2 , the scattering cross sec-
tion can be expressed in its most common form [19]:

𝜎𝑠 = ∫𝑆
|𝑓 (𝑠̂′, 𝑠̂)|2

𝑟2
𝑑𝑆,

= ∫𝑆
|𝑓 (𝑠̂′, 𝑠̂)|2 𝑑𝑆

𝑟2
,

= ∫4𝜋
|𝑓 (𝑠̂′, 𝑠̂)|2𝑑Ω. (2.15)
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To describe the scattering statistics of a macroscopic ensemble of particles, the same assumptions
made for the absorption coefficient can be made whereby each particle in the volume is assumed
to be spherical with a radius determined by the average radius of their true geometric shape, 𝑟avg.
Furthermore, if the interference of light is neglected then the contribution of scattering from each
particle is additive. These assumptions allow for the integration of the scattering cross section
for every particle, and defines the macroscopic quantity known as the scattering coefficient:

𝜇𝑠 = ∫

∞

0
𝜎𝑠(𝑟avg)𝜉(𝑟avg)𝑑𝑟avg, (2.16)

where 𝑑𝑁 = 𝜉(𝑟avg)𝑑𝑟avg is the number of particles in a unit volume with radii in the interval
𝑑𝑟avg. As discussed in the derivation of absorption case, for particles with identical radius, (2.16)
reduces to 𝜇𝑠 = 𝜌𝜎𝑠, where the density 𝜌 =𝑁∕𝑉 (cm-3) is the number of scattering particles 𝑁
per volume 𝑉 , and because 𝜎𝑠 has units of cm2, 𝜇𝑠 has units cm-1.

2.1.4 Reduced scattering coefficient

The angular dependence of scattering is encapsulated by the scattering amplitude 𝑓 (𝑠̂′, 𝑠̂) intro-
duced in the previous section. Although the scattering amplitude depends on the geometry and
optical properties of each individual particle in a material, in the context of biomedical optics it is
sufficient to assume that all particles are statistically equivalent and a common generic function
can be used. Furthermore, since the scattering of a single particle can be characterised by its
scattering cross section, only the modulus-squared of the scattering amplitude needs considera-
tion, as per equation (2.15). This introduces a new parameter, the phase function 𝑝(𝑠̂′, 𝑠̂), which
represents the probability of incident light travelling in direction 𝑠̂′ to scatter into the direction
𝑠̂ [19, 22]:

𝑝(𝑠̂′, 𝑠̂) = 1
(𝜎𝑎+𝜎𝑠)

|𝑓 (𝑠̂′, 𝑠̂)|2. (2.17)

The normalisation factor is a requirement of a probability distribution. Note that the phase func-
tion has no relationship to the phase of the EM wave and is purely a naming convention originated
in astronomy applications where it was first used [19].
Interestingly, the integration of the phase function over all angles describes the total probability
of interacting light to scatter, which is commonly referred to as the albedo [19]:

𝑊0 = ∫4𝜋
𝑝(𝑠̂′, 𝑠̂)𝑑Ω,

=
𝜎𝑠

(𝜎𝑠+𝜎𝑎)
. (2.18)

When no absorption is present𝑊0 =1 and all the interacting light will be scattered, whereas𝑊0 <
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1 is an indication of the scattering to absorption ratio. This parameter is commonly used when
defining the phase function for scattering regimes such as the trivial isotropic phase function [19]:

𝑝(𝑠̂′, 𝑠̂) =
𝑊0
4𝜋

, (2.19)

or the Henyey-Greenstein phase function, which is more relevant for biomedical optics [17,19]:

𝑝(𝑠̂′, 𝑠̂) = 1
4𝜋

𝑊0(1−𝑔2)
(1+𝑔2−2𝑔[𝑠̂′ ⋅ 𝑠̂])3∕2

. (2.20)

The Henyey-Greenstein phase function has been shown to accurately describe the statistical scat-
tering bulk properties of biological tissue, however it is not general to all biological scattering,
especially when considering scattering by a small number of single cells [23].
The Henyey-Greenstein phase function introduces an important parameter known as the anisotropy
factor 𝑔, which is the expected value of the cosine scattering angle between incident 𝑠̂′ and mea-
sured 𝑠̂ directions [19]:

𝑔 = 1
𝑊0 ∫4𝜋

𝑝(𝑠̂′, 𝑠̂)[𝑠̂′ ⋅ 𝑠̂]𝑑Ω,

= 1
∫4𝜋 𝑝(𝑠̂′, 𝑠̂)𝑑Ω ∫4𝜋

𝑝(𝑠̂′, 𝑠̂)[𝑠̂′ ⋅ 𝑠̂]𝑑Ω,

= ⟨𝑠̂′ ⋅ 𝑠̂⟩,

= ⟨cos𝜃⟩, (2.21)

where ⟨.⟩ denotes the expected value. An anisotropy factor of 𝑔 = 0 represents an isotropic
material, since the forward and backward probability of scattering are equal and cancel. Most
biological materials are highly forward scattering and have an anistropy factor 0.8 < 𝑔 < 1 [24,
25].
Note that the normalisation factor in (2.21) is required since 𝑔 does not depend on absorption. To
avoid confusion with various literature definitions, it is convenient to absorb this normalisation
and define the probability density function (PDF) of scattering from direction 𝑠̂′ into 𝑠̂ with a
separate parameter:

𝑃 (𝑠̂′, 𝑠̂) =
𝑝(𝑠̂′, 𝑠̂)
𝑊0

, (2.22)

where ∫4𝜋 𝑃 (𝑠̂
′, 𝑠̂)𝑑Ω = 1 by definition. Furthermore, since the assumption was made that the

particles were spherical on average in Section (2.1.2), it is often a reasonable assumption that
the PDF is independent of incident direction, and can be parameterised by just the cosine angle
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between the incident and scattered directions:

𝑃 (𝑠̂′, 𝑠̂) = 𝑃 (𝑠̂′ ⋅ 𝑠̂). (2.23)

The purpose of the 𝑔 factor in the Henyey-Greenstein phase function is to account for the pref-
erential direction of scattering as a function of the cosine angle of the incident and scattered
directions. Therefore this phase function can also be expressed by this simplified parameterisa-
tion, 𝑝(𝑠̂′, 𝑠̂) = 𝑝(𝑠̂′ ⋅ 𝑠̂) and, when normalised, can be used to determine the PDF of scattering,
e.g., for biological tissue [17].
However, so far, only single-particle anisotropic scattering has been considered. For homoge-
neous materials (i.e., the density and nature of scatters does not change throughout the volume
of the material) consisting of many anisotropically scattering particles, the scattering coefficient
𝜇𝑠 can be modified to the reduced scattering coefficient:

𝜇′
𝑠 = (1−𝑔)𝜇𝑠. (2.24)

For isotropic materials 𝑔 = 0, and the 𝜇′
𝑠 is equivalent to 𝜇𝑠. However, 𝜇′

𝑠 generalises to descrip-
tions of anisotropic materials, e.g., biological tissues where 𝜇′

𝑠 ∼ 0.1𝜇𝑠, and reduces the number
of scattering events per cm by an order of magnitude.

2.1.5 Extinction coefficient

The combined attenuation of a beam of light due to both absorption or scattering is known as
extinction [17]. The extinction cross section of a particle within a material is the sum of the
scattering and absorption cross sections 𝜎ext = (𝜎𝑎+𝜎𝑠) and so the statistical value of extinction
coefficient for the ensemble of particles in bulk material can be expressed by

𝜇ext = 𝜇𝑎+𝜇𝑠. (2.25)

This definition is useful when considering the extent of interaction a photon has with a material
and in the Beer’s law to describes the total attenuation of light through an axial distance 𝑧 through
a material [17]:

Φ(𝑧) = Φ0 exp−𝜇ext𝑧, (2.26)

where Φ(𝑧) is the fluence rate (Wcm-2) as a function of the distance and Φ0 is the incident fluence
rate on the material.
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2.1.6 Transport mean free path

Since the work presented in this thesis considers materials with varying degrees of scattering,
it is useful to use length scales in terms of the total number of scattering and absorption events
experienced by light propagating through the material and remain agnostic to material thickness.
The scattering mean free path is reciprocal of the scattering coefficient 𝓁𝑠 = 1∕𝜇𝑠 and describes
the average distance light propagates in a medium before it interacts via a scattering event. Note
that this is not the same as the distance between physical scattering particles in the material.
The scattering coefficient 𝜇𝑠 (Eq. (2.16)) is defined by the total scattering cross section 𝜎𝑠 per
volume. The scattering cross section (Eq. (2.15)) is the effective cross section area of the particle
compared to the physical geometrical cross section when considering its scattering efficiency 𝑄𝑠.
However, as discussed in the previous section, scattering is not exclusively isotropic, and it is
important to consider the preferred scattering direction of the material. For example, a material
for which there is a high probability of forward scattering will cause an incident light beam to
retain information about its initial direction of propagation over a greater distance compared with
an isotropic scattering material. In this case, the distance between scattering events is still 𝓁𝑠,
but the distance over which the direction of propagation of light is randomised is determined
by the reduced scattering mean free path 𝓁′

𝑠 = 1∕(1− 𝑔)𝜇𝑠 = 1∕𝜇′
𝑠, which also accounts for the

anisotropy of scattering from each particle. Figure (2.1) illustrates this equivalent path length
for an isotropic and anisotropic example. In the isotropic case the length scale over which the
direction is randomised is simply the scattering mean free path𝓁𝑠 =𝓁′

𝑠, whereas in the anisotropic
case, the photon propagates further before losing memory of its initial direction. Therefore the
reduced scattering mean free path is a more general length scale of material scattering statistics,
which can encompass both isotropic and anisotropic scattering materials.
The (reduced) transport mean free path (TMFP) is yet another length scale, which combines the
effects of both scattering and absorption and describes the average propagation length of light
before it is either absorbed or loses information about its initial direction of propagation:

𝓁∗ = 1
(𝜇𝑎+𝜇′

𝑠)
. (2.27)

This parameter is the reciprocal of the extinction coefficient and is particularly useful when mod-
elling the attenuation of light in a material. Moreover, when in the diffuse regime (i.e., 𝜇𝑠 ≫𝜇𝑎)
and the material is not back-scattering (i.e., 𝑔 ≥ 0), such that 𝜇′

𝑠 ≤ 𝜇𝑠, then the transport mean free
path essentially describes the length scale travelled by a photon before its propagation direction
is randomised. When light propagates through a thickness much greater than the transport mean
free path length, 𝐿≫ 𝓁∗, then this is considered the diffusive regime.
Since the phenomenon of randomisation of the propagation direction of light is the cause of
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Figure 2.1: An illustration comparing the scattering mean free path (𝓁𝑠) (red arrows) and the
reduced scattering mean free path (𝓁′

𝑠) (blue arrows) for an isotropic scattering material (upper)
and a forward scattering (lower) material. The reduced transport mean free path is an equivalent
scattering length which represents the distance of propagation experienced by a photon until it
loses memory of its initial propagation direction.

the degradation to direct image quality, the number of TMFPs in the highly diffuse regime is
an indicator of the level of imaging information corruption due to the random nature of light
scattering.

2.2 Radiative transfer equation

A mathematically rigorous approach to photon transport in scattering media can be derived from
Maxwell’s equations which includes the effects of diffraction and interference effects when com-
bining scattered EM-waves from multiple scattering particles. However, this approach is mathe-
matically complicated for large numbers of scattering particles and a more tractable approach is
to use radiative transport theory, which assumes that the energy distribution from each scattered
wave is independent. This mitigates the problem of calculating the interaction of all EM fields,
and allows for a simpler model which sums the scattered power contributions [26]. Although this
alternative approach neglects the effects of polarisation, coherence and non-linear susceptibility,
the context of this thesis is to investigate linear materials in the highly diffusive regime, in which
coherence effects such as speckle interference patterns have unresolvable sub-wavelength grain
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sizes and polarisation states are completely randomised.
The radiative transfer equation (RTE) is a heuristic model used to describe the propagation of
light through a volume element of material with absorption coefficient 𝜇𝑎 and scattering coeffi-
cient 𝜇𝑠. The RTE still remains challenging to solve analytically for practical problems and fur-
ther approximations are made about photon transport in the diffusive regime (i.e., where 𝜇𝑠 ≫𝜇𝑎
as explained in Section (2.1.3)) to simplify the equation. The result of these assumptions leads
to the photon diffusion approximation which has a Green’s function solution that enables com-
putationally efficient simulations of practical experimental configurations.
In this section, the RTE is derived from energy conservation, from which the photon diffusion
approximation is subsequently derived. The following derivations in this thesis are an adaptation
from Wang and Wu [17], which is a modern interpretation of the derivation by Ishimaru [22].

2.2.1 Derivation of the radiative transfer equation

Consider the volume element of scattering media pictured in figure (2.2), there are four possible
physical processes which contribute to a change in radiant energy of a light beam within a solid
angle 𝑑Ω around propagation direction 𝑠̂:

1. Divergence: unless a beam of light is collimated or converging, it will diverge and spread
radially outwards causing a loss in energy within solid angle 𝑑Ω. This contribution is
present even in vacuum.

2. Extinction: photons can be absorbed by the material or scattered out of the solid angle 𝑑Ω.
3. Scattering: photons travelling in direction 𝑠̂′ can be scattered into 𝑑Ω around direction 𝑠̂.
4. Source: a source of photons inside the volume element can add to the radiant energy.

Each of the contributions above can be combined to find an expression for flow of energy through
a material. Expressed mathematically, the radiant energy 𝑑𝐸 per time 𝑑𝑡 transported through area
𝑑𝐴 and within solid angle 𝑑Ω is

𝑑𝐸 = 𝐿(𝑟, 𝑠̂, 𝑡)(𝑠̂ ⋅ 𝑛̂)𝑑𝐴𝑑Ω𝑑𝑡. (2.28)

Radiance𝐿(𝑟, 𝑠̂, 𝑡) (Wm-2sr-1) describes the energy flow per second per area per solid angle where
𝑟 = ⟨𝑥,𝑦,𝑧⟩ is position in space, 𝑠̂ = ⟨sin𝜃 cos𝜑,sin𝜃 sin𝜑,cos𝜃⟩ is a unit vector describing di-
rection of flow parameterised by spherical coordinates, and 𝑛̂ is the unit vector normal to the
area element. The scalar product 𝑠̂ ⋅ 𝑛̂ calculates the cosine angle between the direction 𝑠̂ of the
radiance with the surface normal 𝑛̂ to determine the contribution of the energy flow through the
surface.
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Figure 2.2: Scattering of light from 𝑑Ω′ around direction 𝑠̂′ into 𝑑Ω around direction 𝑠̂ in a
differential volume element (adapted from Ishimaru [22]).

Divergence term
The differential power 𝑑𝑃div is determined by the rate of change of the radiance traveling out of
(divergence), or into (convergence), the differential volume or differential solid angle 𝑑Ω:

𝑑𝑃div =
𝜕𝐿(𝑟, 𝑠̂, 𝑡)

𝜕𝑥
𝑑Ω𝑑𝑉 , (2.29)

where 𝑑𝑉 = 𝑑𝐴𝑑𝑥 is the differential volume. More generally, the three-dimensional gradient
vector projected onto the direction 𝑠̂ can be used to express the divergence term by

𝑑𝑃div = 𝑠̂ ⋅∇𝐿(𝑟, 𝑠̂, 𝑡)𝑑Ω𝑑𝑉 , (2.30)

where ∇ =
⟨

𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧

⟩

is the del operator.
Extinction term
The extinction of photons refers to the loss in energy due to scattering out of the solid angle
and absorption within the volume element. The differential power 𝑑𝑃ext lost due to extinction is
given by

𝑑𝑃ext = (𝜇ext𝑑𝑥)𝐿(𝑟, 𝑠̂, 𝑡)𝑑𝐴𝑑Ω, (2.31)

where 𝜇ext = (𝜇𝑎+𝜇𝑠) describes the combined number of scattering and absorption events per
cm, as described in Section (2.1.5).
Scattering term
There will be an addition of power in the volume element due to scattering of photons from solid
angle 𝑑Ω′ around directions 𝑠̂′ into solid angle 𝑑Ω around 𝑠̂.



CHAPTER 2. BACKGROUND 18

To determine the contribution from all possible incoming angles requires integrating the incom-
ing radiance over all possible incoming solid angles and so the differential power gain due to
scattering can be expressed by

𝑑𝑃scat = (𝑁𝑠𝑑𝑉 )
[

∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡)𝑃 (𝑠̂′, 𝑠̂)𝜎𝑠𝑑Ω′

]

𝑑Ω, (2.32)

where 𝑁𝑠 is the number density of scatterers and 𝜎𝑠 is the scattering cross section. For identical
scattering particles the scattering coefficient can be substituted for the scattering coefficient 𝜇𝑠 =
𝑁𝑠𝜎𝑠. Note that in the case of non-identical scattering particles, the more general definition in
equation (2.16) would be used instead. The introduction of a probability density function (PDF)
𝑃 (𝑠̂′, 𝑠̂) describes how likely light is to scatter from direction 𝑠̂′ to 𝑠̂. In the context of biological
optics, the assumption can be made that the scattering PDF depends only on the cosine of the
angle of scattering, and can subsequently be written 𝑃 (𝑠̂′ ⋅ 𝑠̂) as discussed in Section (2.1.3).
The scattering term in equation (2.32) can then be rewritten:

𝑑𝑃scat = (𝜇𝑠𝑑𝑉 )
[

∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′

]

𝑑Ω. (2.33)

Source term
A source 𝑆(𝑟, 𝑠̂, 𝑡) (Wm-3sr-1) within the differential volume may arise from e.g., fluorescence,
bioluminescence or a fibre-optic guided source embedded in the material and will add to the
power in the volume element within the solid angle element. The source term of differential
power is given by

𝑑𝑃src = 𝑆(𝑟, 𝑠̂, 𝑡)𝑑𝑉 𝑑Ω. (2.34)

Combining the terms leads to the energy conservation equation:

𝑑𝑃total = −𝑑𝑃div−𝑑𝑃ext +𝑑𝑃scat +𝑑𝑃src, (2.35)

where the differential change in total power 𝑑𝑃total can be written in terms of radiance as

𝑑𝑃total = 𝑐−1
𝜕𝐿(𝑟, 𝑠̂, 𝑡)

𝜕𝑡
𝑑𝑉 𝑑Ω. (2.36)

The introduction of the speed of light factor 𝑐 is required since radiance is defined as energy per
second per area per solid angle (Wm-2sr-1) and dividing by speed gives energy per volume per
solid angle (Jm-3sr-1) which, when taking the derivative with respect to time, gives the units of
power per volume per solid angle (Wm-3sr-1). Note that this is the speed of light in the mate-
rial 𝑐 = 𝑐0

𝑛 where 𝑐0 is the speed of light in vacuum and 𝑛 is refractive index of the material.
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Substituting each contribution described above gives an expression for the radiative transport
equation:

𝑐−1
𝜕𝐿(𝑟, 𝑠̂, 𝑡)

𝜕𝑡
= −𝑠̂ ⋅∇𝐿(𝑟, 𝑠̂, 𝑡)−𝜇ext𝐿(𝑟, 𝑠̂, 𝑡)+𝜇𝑠∫4𝜋

𝐿(𝑟, 𝑠̂′, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′+𝑆(𝑟, 𝑠̂, 𝑡).

(2.37)

2.3 Diffusion approximation

Radiance is a general term which can be used to derive other useful physical quantities which are
easier to measure in practice such as fluence rate (also known as intensity) Φ(𝑟, 𝑡) (Wm-2) which
describes the total radiant energy flowing per second per area integrated over solid angle:

Φ(𝑟, 𝑡) = ∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡)𝑑Ω, (2.38)

and current density 𝐽 (𝑟, 𝑡) (Wm-2), which is the vector equivalent of fluence rate:

𝐽 (𝑟, 𝑡) = ∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡)𝑠̂𝑑Ω. (2.39)

Since radiance depends on direction, each unit direction vector in this integration will be weighted
by a radiance value. The result is a vector field which does not depend on direction but points
in the direction of net difference in flow of energy. If the flow of energy is equal in all directions
(i.e., isotropic) then the integral, and hence current density, will be zero. As shown later in this
section, fluence rate and current density will be useful quantities for describing isotropic and
anisotropic diffusion respectively. However, the goal of the diffusion approximation is to rewrite
the RTE (2.37) in terms of fluence rate only. This reduces the problem of solving the RTE for
a vector field with 6 variables (𝑥,𝑦,𝑧,𝜃,𝜑, 𝑡), to solving for a scalar field with only 4 variables
(𝑥,𝑦,𝑧, 𝑡). There are two assumptions in the diffusion approximation:

1. Directional broadening: in the diffusive regime there is very little absorption events com-
pared with scattering events (i.e., 𝜇𝑠 ≫𝜇𝑎). This means that after many scattering events,
the radiance will be close to isotropic.

2. Temporal broadening: in materials where scattering dominates, each photon in a pulse of
light incident on the material will experience a variety of different path lengths. This results
in a broadening of the pulse in time. Concretely, this assumption states that a fractional
change in current density over one transport mean free path must be very small (much less
than one).

Both of the assumptions can be represented by the condition that 𝜇′
𝑠 ≫𝜇𝑎.



CHAPTER 2. BACKGROUND 20

Deriving a scalar differential equation in terms of only fluence rate which is valid for the diffusive
regime involves five major steps:

1. Using the directional broadening assumption, the expression for radiance can be expanded
using spherical harmonics and expressed in terms of isotropic and anisotropic contribu-
tions.

2. Integrating the radiance terms in the RTE (2.37) over solid angle as in equation (2.38)
derives a scalar differential equation in terms of fluence rate and current density.

3. To write the equation in terms of only fluence rate, an expression for current density can be
determined by multiplying each radiance term in the RTE by 𝑠̂ and integrating over solid
angle as in equation (2.39).

4. The resulting vector differential equation can be rearranged for current density in terms of
fluence rate using the temporal broadening assumption and Fick’s first law of diffusion.

5. The current density can be substituted into the scalar differential equation derived in step
(2) which yields the photon diffusion approximation to the RTE.

Each of these steps will now be presented in more details in the following subsections, which will
results in the solution the photon diffusion approximation to the RTE in terms of fluence rate.
Although this derivation closely follows Chapter 5 of Wang and Wu [17], the reasoning for each
step is my own interpretation, and many of the omitted mathematical steps left as an exercise to
the reader have been written explicitly in this thesis adaptation.
This thesis can be understood without understanding how the diffusion approximation is de-
rived (skip to Section (2.3.6)). However some key assumptions and parameters introduced in
the following derivation will help to give context to the restricted regimes where this equation is
accurate for modelling photon diffusion.

2.3.1 Expansion of radiance (directional broadening assumption)

The radiance is assumed to be mostly isotropic after many scattering events. This can be math-
ematically expressed by expanding radiance scalar field as the superposition of the spherical
harmonics where only the isotropic and first order anisotropic terms are used:

𝐿(𝑟, 𝑠̂, 𝑡) ≃
1
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝐿𝑛,𝑚(𝑟, 𝑡)𝑌𝑛,𝑚(𝑠̂), (2.40)
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where 𝐿𝑛,𝑚 are the expansion coefficients of radiance and 𝑌𝑛,𝑚 are the spherical harmonics which
form an orthonormal basis set:

∫4𝜋
𝑌𝑛,𝑚(𝑠̂)𝑌 ∗

𝑛′,𝑚′(𝑠̂)𝑑Ω = 𝛿𝑛𝑛′,𝑚𝑚′ . (2.41)

The spherical isotropic term is denoted by 𝑛 = 0 and 𝑚 = 0 and the first 3 isotropic terms are
𝑛 = 1 and 𝑚 = 0± 1 which determine the Legendre polynomials and normalisation factors of
each basis function:

𝑌0,0(𝜃,𝜑) =
1

√

4𝜋
, (2.42)

𝑌1,−1(𝜃,𝜑) =
√

3
8𝜋

sin𝜃𝑒−𝑖𝜑, (2.43)

𝑌1,0(𝜃,𝜑) =
√

3
4𝜋

cos𝜃, (2.44)

𝑌1,1(𝜃,𝜑) = −
√

3
8𝜋

sin𝜃𝑒𝑖𝜑. (2.45)

Using equation (2.38), fluence rate can be written in terms of spherical harmonics by

Φ(𝑟, 𝑡) =
1
∑

𝑛=0

𝑛
∑

𝑚=−𝑛∫4𝜋
𝐿𝑚,𝑛(𝑟, 𝑡)𝑌𝑚,𝑛(𝑠̂)𝑑Ω,

= ∫

𝜋

0 ∫

2𝜋

0
𝐿0,0(𝑟, 𝑡)𝑌0,0(𝑠̂) sin𝜃𝑑𝜑𝑑𝜃,

= 𝐿0,0(𝑟, 𝑡)𝑌0,0(𝑠̂)

(

∫

𝜋

0 ∫

2𝜋

0
sin𝜃𝑑𝜑𝑑𝜃

)

,

= 𝐿0,0(𝑟, 𝑡)𝑌0,0(𝑠̂) (4𝜋) , (2.46)

where the 𝑛 = 1 terms are zero when integrating over solid angle.
Likewise, the current density as defined in equation (2.39) can also be rewritten in spherical
harmonics. Firstly, the radiance expansion must be multiplied by the unit vector 𝑠̂. Using the
definitions of spherical harmonics above and exponential expressions for sine and cosine, the
unit vector can be expressed by

𝑠̂ = ⟨sin𝜃 cos𝜑,sin𝜃 sin𝜑,cos𝜃⟩ ,

=
⟨

sin𝜃
(

𝑒𝑖𝜑+ 𝑒−𝑖𝜑

2

)

,sin𝜃
(

𝑒𝑖𝜑− 𝑒−𝑖𝜑

2𝑖

)

,cos𝜃
⟩

,

=
⟨1
2
sin𝜃𝑒𝑖𝜑+sin𝜃𝑒−𝑖𝜑,−1

2
𝑖
(

sin𝜃𝑒𝑖𝜑−sin𝜃𝑒−𝑖𝜑
)

,cos𝜃
⟩

,
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=

⟨

1
2

√

8𝜋
3

(

−𝑌1,1(𝑠̂)+𝑌1,−1(𝑠̂)
)

,−1
2

√

8𝜋
3
𝑖
(

−𝑌1,1(𝑠̂)−𝑌1,−1(𝑠̂)
)

,
√

4𝜋
3
𝑌1,0(𝑠̂)

⟩

,

=

⟨
√

2𝜋
3

(

𝑌1,−1(𝑠̂)−𝑌1,1(𝑠̂)
)

,
√

2𝜋
3
𝑖
(

𝑌1,1(𝑠̂)+𝑌1,−1(𝑠̂)
)

,
√

4𝜋
3
𝑌1,0(𝑠̂)

⟩

,

=
√

2𝜋
3

⟨

(

𝑌1,−1(𝑠̂)−𝑌1,1(𝑠̂)
)

, 𝑖
(

𝑌1,−1(𝑠̂)+𝑌1,1(𝑠̂)
)

,
√

2𝑌1,0(𝑠̂)
⟩

. (2.47)

Using the following symmetry property of spherical harmonics:

𝑌 ∗
𝑛,𝑚(𝜃,𝜑) = (−1)𝑚𝑌𝑛,−𝑚(𝜃,𝜑), (2.48)

where ∗ denotes the complex conjugate, an equivalent expression for equation (2.47) can be
determined:

𝑠̂ =
√

2𝜋
3

⟨(

−𝑌 ∗
1,1(𝑠̂)+𝑌 ∗

1,−1(𝑠̂)
)

, 𝑖
(

−𝑌 ∗
1,1(𝑠̂)−𝑌 ∗

1,−1(𝑠̂)
)

,
√

2𝑌 ∗
1,0(𝑠̂)

⟩

,

=
√

2𝜋
3

⟨(

𝑌 ∗
1,−1(𝑠̂)−𝑌 ∗

1,1(𝑠̂)
)

,−𝑖
(

𝑌 ∗
1,1(𝑠̂)+𝑌 ∗

1,−1(𝑠̂)
)

,
√

2𝑌 ∗
1,0(𝑠̂)

⟩

. (2.49)

This form of the unit vector allows for a trivial derivation of the current density in terms of
the expanded radiance by multiplying (2.40) with (2.49), substituting into (2.39) and using the
orthonormal property of basis functions in (2.41):

𝐽 (𝑟, 𝑡) =
√

2𝜋
3

⟨

(

𝐿1,−1(𝑟, 𝑡)−𝐿1,1(𝑟, 𝑡)
)

,−𝑖
(

𝐿1,1(𝑟, 𝑡)+𝐿1,−1(𝑟, 𝑡)
)

,
√

2𝐿1,0(𝑟, 𝑡)
⟩

. (2.50)

The component of current density in the direction 𝑠̂ the scalar product between equations (2.47)
and (2.50):

𝐽 ⋅ 𝑠̂ = 2𝜋
3

[(

𝐿1,−1−𝐿1,1
)(

𝑌1,−1−𝑌1,1
)

+
(

𝐿1,1+𝐿1,−1
)(

𝑌1,−1+𝑌1,1
)

+2𝐿1,0𝑌1,0
]

,

= 2𝜋
3

[

2𝐿1,−1𝑌1,−1+2𝐿1,1𝑌1,1+2𝐿1,0𝑌1,0
]

,

= 4𝜋
3

1
∑

𝑚=−1
𝐿1,𝑚𝑌1,𝑚 (2.51)

where the dependent variables are omitted to avoid cluttered presentation. Rearranging (2.51)
and combining with the isotropic term derived in (2.46) gives an expression for the radiance in
the diffusive regime in terms of fluence and current density:

𝐿(𝑟, 𝑠̂, 𝑡) = 1
4𝜋

Φ(𝑟, 𝑡)+ 3
4𝜋

𝐽 ⋅ 𝑠̂ (2.52)
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2.3.2 Scalar differential equation

To simplify the RTE and write it in terms of more manageable physical quantities such as fluence
rate and current density, the expansion for radiance derived in (2.52) can be substituted into (2.37)
and integrated over solid angle. This integration is best described on a term-by-term basis.
Left term
The left hand side of the RTE in (2.37) can be written as fluence rate as defined in equation
(2.38):

∫4𝜋
𝑐−1

𝜕𝐿(𝑟, 𝑠̂, 𝑡)
𝜕𝑡

𝑑Ω = 𝑐−1
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
. (2.53)

First right term
The first term on the right of equation (2.37) integrated over solid angle can be written:

∫4𝜋
𝑠̂ ⋅∇𝐿(𝑟, 𝑠̂, 𝑡)𝑑Ω = ∫4𝜋

∇ ⋅
(

𝐿(𝑟, 𝑠̂, 𝑡)𝑠̂
)

𝑑Ω, (2.54)

where 𝑠̂ ⋅∇𝐿=∇ ⋅ (𝑠̂𝐿)−𝐿(∇ ⋅ 𝑠̂) using the identity (for an arbitrary function 𝑓 (𝑥,𝑦,𝑧) and vector
𝑎 = ⟨𝑎1,𝑎2,𝑎3⟩ in Cartesian coordinates):

∇ ⋅
(

𝑓𝑎
)

=
(

𝜕𝑓
𝜕𝑥

𝑎1

)

+
(

𝜕𝑓
𝜕𝑦

𝑎2

)

+
(

𝜕𝑓
𝜕𝑧

𝑎3

)

,

=
(

𝜕𝑓
𝜕𝑥

𝑎1+𝑓
𝜕𝑎1
𝜕𝑥

)

+
(

𝜕𝑓
𝜕𝑦

𝑎2+𝑓
𝜕𝑎2
𝜕𝑦

)

+
(

𝜕𝑓
𝜕𝑧

𝑎3+𝑓
𝜕𝑎3
𝜕𝑧

)

,

= 𝑓
(

𝜕𝑎1
𝜕𝑥

+
𝜕𝑎2
𝜕𝑦

+
𝜕𝑎2
𝜕𝑧

)

+
(

𝜕𝑓
𝜕𝑥

𝑎1+
𝜕𝑓
𝜕𝑦

𝑎2+
𝜕𝑓
𝜕𝑧

𝑎3

)

,

= 𝑓 (∇ ⋅𝑎)+𝑎 ⋅ (∇𝑓 ), (2.55)

and ∇ ⋅ 𝑠̂ = 0, since it does not depend on position and is a constant vector describing direction1:

∇ ⋅ 𝑠̂ = 𝜕
𝜕𝑥

(sin𝜃 cos𝜑)+ 𝜕
𝜕𝑦

(sin𝜃 sin𝜑)+ 𝜕
𝜕𝑧

cos𝜃,

= 0. (2.56)

The intuition for equations (2.54), (2.55) and (2.56) requires revisiting the explanation of the
divergence term in Section (2.2.1). Radiance depends on the variables (𝑥,𝑦,𝑧,𝜃,𝜑, 𝑡), and the
gradient of the radiance w.r.t position 𝑟 = ⟨𝑥,𝑦,𝑧⟩ projected onto direction 𝑠̂, produces a scalar

1Although in the same coordinate system, the direction unit vector 𝑠̂ is parameterised by only 𝜃 and 𝜑. Explicitly,
the direction unit vector and position vector can be written as 𝑠̂= sin𝜃 cos𝜑𝑖+sin𝜃 sin𝜑𝑗+cos𝜃𝑘̂ and 𝑟= 𝑥𝑖+𝑦𝑗+
𝑧𝑘̂. This means 𝑠̂ remains constant for all positions 𝑟 (i.e., they are independent of each other). Therefore, the ∇ ⋅ 𝑠̂
term, which arises solely from the identity in (2.55), describes the total gradient in all dimensions of a constant
vector, which must be zero.



CHAPTER 2. BACKGROUND 24

field describing the rate of change of power due to divergence of a beam out of a differential
volume 𝑑𝑉 or solid angle 𝑑Ω at every position 𝑟. This describes the left term of equation (2.54),
where integrating yields another scalar field representing the total power loss due to divergence
over all directions rather than only direction 𝑠̂.
The right term of (2.54) uses the identity described in (2.55) to describe an equivalent scalar
field produced when taking the sum of the rate of change in each spatial dimension (i.e., the
divergence operator ∇⋅) of radiance in direction 𝑠̂. Again, integrating finds the total contribution
for all angles.
The integration of radiance in direction 𝑠̂ over all angles yields a vector field which describes
power per area with a net direction of flow. This is the definition of current density in (2.39) and
hence the first right term of the integrated RTE can be written:

∫4𝜋
∇ ⋅

(

𝐿(𝑟, 𝑠̂, 𝑡)𝑠̂
)

𝑑Ω = ∇ ⋅𝐽 (𝑟, 𝑡). (2.57)

Second right term
Similar to the left term, the second right term can be written as

𝜇ext ∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡) = 𝜇extΦ(𝑟, 𝑡), (2.58)

using equation (2.38).
Third right term
Substituting radiance with its expanded form in (2.52), the third right term can be written as the
sum of two integrals:

𝜇𝑠∫4𝜋 ∫4𝜋
𝐿(𝑟, 𝑠̂′, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω =

𝜇𝑠
4𝜋 ∫4𝜋 ∫4𝜋

(

Φ(𝑟, 𝑡)+3𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω,

(2.59)
where the first integral is

𝜇𝑠
4𝜋 ∫4𝜋 ∫4𝜋

Φ(𝑟, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω =
𝜇𝑠
4𝜋

Φ(𝑟, 𝑡)∫4𝜋 ∫4𝜋
𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω,

=
𝜇𝑠
4𝜋

Φ(𝑟, 𝑡)∫4𝜋
(1)𝑑Ω,

=
𝜇𝑠
4𝜋

Φ(𝑟, 𝑡)(4𝜋),

= 𝜇𝑠Φ(𝑟, 𝑡), (2.60)
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and the second integral is

∫4𝜋 ∫4𝜋

(

𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω = ∫4𝜋 ∫4𝜋

(

|𝐽 (𝑟, 𝑡)||𝑠̂′|cos𝜃′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω,

= |𝐽 (𝑟, 𝑡)|∫4𝜋 ∫4𝜋

(

(1)cos𝜃′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω,

= |𝐽 (𝑟, 𝑡)|∫4𝜋
cos𝜃′

[

∫4𝜋
𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω

]

𝑑Ω′,

= |𝐽 (𝑟, 𝑡)|∫

𝜋

0 ∫

2𝜋

0
cos𝜃′ sin𝜃′𝑑𝜑′𝑑𝜃′,

= |𝐽 (𝑟, 𝑡)|2𝜋∫

𝜋

0
cos𝜃′ sin𝜃′𝑑𝜃′,

= |𝐽 (𝑟, 𝑡)|2𝜋
[

cos2 𝜃′
2

]𝜋

0
,

= |𝐽 (𝑟, 𝑡)|𝜋
[

cos2 𝜃′
]𝜋
0 ,

= 0. (2.61)

Note that the integrated probability density function 𝑃 (𝑠̂′ ⋅ 𝑠̂) is equal to 1 by definition, 𝑑Ω =
sin𝜃𝑑𝜑𝑑𝜃 and 𝑎 ⋅ 𝑏⃗ = |𝑎||𝑏|cos𝜃. In this case, 𝐽 (𝑟, 𝑡) is aligned along the z-axis and has no 𝜑
component for simplicity. Therefore, the third term is given by the solution to the first integral:

𝜇𝑠∫4𝜋 ∫4𝜋
𝐿(𝑟, 𝑠̂′, 𝑡)𝑃 (𝑠̂ ⋅ 𝑠̂)𝑑Ω′𝑑Ω = 𝜇𝑠Φ(𝑟, 𝑡). (2.62)

Fourth right term
The final term in equation (2.37) is the source term. The source is assumed to be inside the
material at the location where the scattering becomes isotropic. Under this assumption the source
term can be expressed as only the isotropic component in spherical coordinates 𝑆0,0(𝑟, 𝑡)𝑌0,0(𝑠̂) =
𝑆(𝑟,𝑡)
4𝜋 (Wm-2) similar to (2.46). After integration the source term is simply

∫4𝜋
𝑆(𝑟, 𝑠̂, 𝑡)𝑑Ω = ∫4𝜋

𝑆(𝑟, 𝑡)
4𝜋

𝑑Ω,

=
𝑆(𝑟, 𝑡)
4𝜋 ∫4𝜋

𝑑Ω,

=
𝑆(𝑟, 𝑡)
4𝜋

(4𝜋),

= 𝑆(𝑟, 𝑡). (2.63)

Collecting terms
Collecting all the terms together, the scalar differential equation derived by substituting the ex-
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panded radiance in (2.52) into the RTE (2.37) and integrating gives

𝑐−1
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= −∇ ⋅𝐽 (𝑟, 𝑡)−𝜇extΦ(𝑟, 𝑡)+𝜇𝑠Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡). (2.64)

2.3.3 Vector differential equation

To write the differential equation (2.64) above in terms of only fluence rate, an expression for
𝐽 (𝑟, 𝑡) must be determined and substituted into the first right term. To do this, the process of
deriving (2.64) is repeated but every radiance term must also be multiplied by the unit vector 𝑠̂
before integrating as per the definition of current density in (2.39). As before, this integration is
best presented on a term-by-term basis.
Left term
Using the definition of current density in (2.39), the left term is

∫4𝜋
𝑐−1

𝜕𝐿(𝑟, 𝑠̂, 𝑡)
𝜕𝑡

𝑠̂𝑑Ω = 𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
. (2.65)

First right term
The first right term of the RTE (2.37) can be split into two integrals by substituting the expansion
of radiance (2.52):

∫4𝜋

(

𝑠̂ ⋅∇𝐿(𝑟, 𝑠̂, 𝑡)
)

𝑠̂𝑑Ω = 1
4𝜋 ∫4𝜋

(

𝑠̂ ⋅∇Φ(𝑟, 𝑡)
)

𝑠̂𝑑Ω+ 3
4𝜋 ∫4𝜋

[

𝑠̂ ⋅∇
(

𝐽 (𝑟, 𝑡) ⋅ 𝑠̂
)]

𝑠̂𝑑Ω, (2.66)

where the first integral is

∫4𝜋
(𝑠̂ ⋅∇Φ)𝑠̂𝑑Ω = ∫4𝜋

(Φ𝑥 sin𝜃 cos𝜑+Φ𝑦 sin𝜃 sin𝜑+Φ𝑧 cos𝜃)𝑠̂𝑑Ω,

= ∫4𝜋
𝐹 𝑠̂𝑑Ω, (2.67)

Note that the variables of fluence rate have been omitted for brevity and 𝐹 = 𝑓 (𝑥,𝑦,𝑧,𝜃,𝜑, 𝑡)
represents the function on the right in the brackets and will be used for efficient note-keeping
in the subsequent steps. The subscripts of the fluence rate denote the gradient in each direction
(

∇Φ =
⟨

Φ𝑥,Φ𝑦,Φ𝑧
⟩). Addressing the integrals of the three dimensions in (2.67) individually,

the integral in the first dimension is

∫4𝜋
𝐹 (sin𝜃 cos𝜑)𝑑Ω = ∫4𝜋

(Φ𝑥 sin𝜃 cos𝜑+Φ𝑦 sin𝜃 sin𝜑+Φ𝑧 cos𝜃)(sin𝜃 cos𝜑)𝑑Ω,

= ∫4𝜋

(

Φ𝑥 sin
2 𝜃 cos2𝜑+Φ𝑦 sin

2 𝜃 sin𝜑cos𝜑+Φ𝑧 cos𝜃 sin𝜃 cos𝜑
)

𝑑Ω,
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= ∫

𝜋

0 ∫

2𝜋

0

(

Φ𝑥 sin
3 𝜃 cos2𝜑+Φ𝑦 sin

3 𝜃 sin𝜑cos𝜑...

+Φ𝑧 cos𝜃 sin
2 𝜃 cos𝜑

)

𝑑𝜑𝑑𝜃,

= Φ𝑥∫

𝜋

0

(

sin3 𝜃
[𝜑
2
+sin𝜑cos𝜑

]2𝜋

0
+[0]+ [0]

)

𝑑𝜃,

= Φ𝑥∫

𝜋

0
sin3 𝜃[𝜋]𝑑𝜃,

= 𝜋Φ𝑥

[ 1
12

(cos3𝜃−9cos𝜃)
]𝜋

0
,

= 4𝜋
3
Φ𝑥. (2.68)

Following the same process, the integral in the second dimension is

∫4𝜋
𝐹 (sin𝜃 sin𝜑)𝑑Ω = ∫4𝜋

(Φ𝑥 sin𝜃 cos𝜑+Φ𝑦 sin𝜃 sin𝜑+Φ𝑧 cos𝜃)(sin𝜃 sin𝜑)𝑑Ω,

= ∫4𝜋

(

Φ𝑥 sin
2 𝜃 cos𝜑sin𝜑+Φ𝑦 sin

2 𝜃 sin2𝜑+Φ𝑧 cos𝜃 sin𝜃 sin𝜑
)

𝑑Ω,

= ∫

𝜋

0 ∫

2𝜋

0

(

Φ𝑥 sin
3 𝜃 cos𝜑sin𝜑+Φ𝑦 sin

3 𝜃 sin2𝜑...

+Φ𝑧 cos𝜃 sin
2 𝜃 sin𝜑

)

𝑑𝜑𝑑𝜃,

= Φ𝑦∫

𝜋

0

(

[0]+ sin3 𝜃
[𝜑
2
+sin𝜑cos𝜑

]2𝜋

0
+[0]

)

𝑑𝜃,

= Φ𝑦∫

𝜋

0
sin3 𝜃[𝜋]𝑑𝜃,

= 𝜋Φ𝑦

[ 1
12

(cos3𝜃−9cos𝜃)
]𝜋

0
,

= 4𝜋
3
Φ𝑦. (2.69)

Finally the integral in the third dimension is

∫4𝜋
𝐹 (cos𝜃)𝑑Ω = ∫4𝜋

(Φ𝑥 sin𝜃 cos𝜑+Φ𝑦 sin𝜃 sin𝜑+Φ𝑧 cos𝜃)(cos𝜃)𝑑Ω,

= ∫4𝜋

(

Φ𝑥 sin𝜃 cos𝜑cos𝜃+Φ𝑦 sin𝜃 sin𝜑cos𝜃+Φ𝑧 cos2 𝜃
)

𝑑Ω,

= ∫

𝜋

0 ∫

2𝜋

0

(

Φ𝑥 sin
2 𝜃 cos𝜑cos𝜃+Φ𝑦 sin

2 𝜃 sin𝜑cos𝜃+Φ𝑧 cos2 𝜃 sin𝜃
)

𝑑𝜑𝑑𝜃,

= Φ𝑧∫

𝜋

0

(

[0]+ [0]+cos2 𝜃 sin𝜃[𝜑]2𝜋0
)

𝑑𝜃,

= Φ𝑧∫

𝜋

0

(

cos2 𝜃 sin𝜃[2𝜋]
)

𝑑𝜃,

= 2𝜋Φ𝑧

([

−cos3 𝜃
3

]𝜋

0

)

,
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= 4𝜋
3
Φ𝑧. (2.70)

Combining the terms gives the result the first integral of (2.66):

∫4𝜋

(

𝑠̂ ⋅∇Φ(𝑟, 𝑡)
)

𝑠̂𝑑Ω =
⟨4𝜋

3
Φ𝑥,

4𝜋
3
Φ𝑦,

4𝜋
3
Φ𝑧

⟩

,

= 4𝜋
3
∇Φ. (2.71)

The second integral of (2.66) can be solved in a similar way. First the coordinate system is
orientated such that 𝐽 (𝑟, 𝑡) is aligned with the 𝑘⃗ direction. In this case the scalar product can be
expressed using only azimuthal angle by 𝐽 (𝑟, 𝑡) ⋅ 𝑠̂= |𝐽 (𝑟, 𝑡)||𝑠̂|cos𝜃, where |𝑠̂|= 1 by definition.
The integral can then be written as

∫4𝜋

[

𝑠̂ ⋅∇
(

𝐽 ⋅ 𝑠̂
)]

𝑠̂𝑑Ω = ∫4𝜋

[

𝑠̂ ⋅∇
(

|𝐽 |cos𝜃
)]

𝑠̂𝑑Ω,

= ∫4𝜋

[

𝑠̂ ⋅
⟨

|𝐽 |𝑥, |𝐽 |𝑦, |𝐽 |𝑧
⟩

cos𝜃
]

𝑠̂𝑑Ω,

= ∫4𝜋

[(

|𝐽 |𝑥 sin𝜃 cos𝜑+ |𝐽 |𝑦 sin𝜃 sin𝜑+ |𝐽 |𝑧 cos𝜃
)

cos𝜃
]

𝑠̂𝑑Ω,

= ∫4𝜋
[𝐺cos𝜃] 𝑠̂𝑑Ω, (2.72)

where the variables of current density have been omitted for brevity and again𝐺= 𝑔(𝑥,𝑦,𝑧,𝜃,𝜑, 𝑡)
is used to represent the function on the right of the equation in curved brackets. The integral in
𝜑 evaluated along each dimension is the same as (2.68),(2.69) and (2.70). Using these results,
the remaining integral over 𝜃 for each dimension of (2.72) can be evaluated. Integrating the first
dimension gives

∫4𝜋
𝐺cos𝜃(sin𝜃 cos𝜑)𝑑Ω = 𝜋|𝐽 |𝑥∫

𝜋

0
sin3 𝜃 cos𝜃𝑑𝜃,

= 𝜋|𝐽 |𝑥

[

sin4 𝜃
4

]𝜋

0

= 0. (2.73)

Similarly for the second dimension:

∫4𝜋
𝐺cos𝜃(sin𝜃 cos𝜑)𝑑Ω = 𝜋|𝐽 |𝑦∫

𝜋

0
sin3 𝜃 cos𝜃𝑑𝜃,

= 𝜋|𝐽 |𝑦

[

sin4 𝜃
4

]𝜋

0

= 0. (2.74)
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Finally, the integral along the third dimension is

∫4𝜋
𝐺cos𝜃(sin𝜃 cos𝜑)𝑑Ω = 2𝜋|𝐽 |𝑧∫

𝜋

0
cos3 𝜃 sin𝜃𝑑𝜃,

= 2𝜋|𝐽 |𝑧

[

−cos4 𝜃
4

]𝜋

0

= 0. (2.75)

Collecting the results in each dimension, the second integral of (2.66) is 0⃗ = ⟨0,0,0⟩ which leaves
the result of the first integral as the result for the first right term of vector differential equation:

∫4𝜋

(

𝑠̂ ⋅∇𝐿(𝑟, 𝑠̂, 𝑡)
)

𝑠̂𝑑Ω = 1
3
∇Φ(𝑟, 𝑡). (2.76)

Second right term
Using the definition of current density in (2.39) the second right term is

𝜇ext ∫4𝜋
𝐿(𝑟, 𝑠̂, 𝑡)𝑠̂ = 𝜇ext𝐽 (𝑟, 𝑡). (2.77)

Third right term
Similar to the derivation of the third right term for the scalar differential equation in Section
(2.3.2), the expansion for radiance in (2.40) can be substituted into the third term of (2.37) and
the double integral can be split into two terms:

𝜇𝑠∫4𝜋 ∫4𝜋

[

𝐿(𝑟, 𝑠̂, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)
]

𝑠̂𝑑Ω′𝑑Ω =
𝜇𝑠
4𝜋 ∫4𝜋 ∫4𝜋

[(

Φ(𝑟, 𝑡)+3𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)
]

𝑠̂𝑑Ω′𝑑Ω.

(2.78)
The first integral reduces to

Φ(𝑟, 𝑡)∫4𝜋
𝑠̂∫4𝜋

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω = Φ(𝑟, 𝑡)∫4𝜋
𝑠̂𝑑Ω,

= 0⃗, (2.79)

since the integration of the PDF is ∫4𝜋 𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω = 1 by definition and

∫4𝜋
𝑠̂𝑑Ω = ∫

𝜋

0 ∫

2𝜋

0
⟨sin𝜃 cos𝜑,sin𝜃 sin𝜑,cos𝜃⟩sin𝜃𝑑𝜑𝑑𝜃,

= ∫

𝜋

0 ∫

2𝜋

0

⟨

sin2 𝜃 cos𝜑,sin2 𝜃 sin𝜑,cos𝜃 sin𝜃
⟩

𝑑𝜑𝑑𝜃,

= ∫

𝜋

0

⟨

0,0,cos𝜃 sin𝜃 [𝜑]2𝜋0
⟩

𝑑𝜃,
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=
⟨

0,0,
[

−1
2
cos2 𝜃

]𝜋

0
2𝜋

⟩

,

= ⟨0,0,0⟩ ,

= 0⃗. (2.80)

The second integral of (2.78) can be expressed as

∫4𝜋
𝑠̂∫4𝜋

(

𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω′𝑑Ω = ∫4𝜋

[

∫4𝜋
𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑠̂𝑑Ω

]

(

𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑑Ω′. (2.81)

The inner integral in square brackets can be expanded and solved using the vector triple product
identity 𝑎×(𝑏⃗× 𝑐) = (𝑎 ⋅ 𝑐)𝑏⃗−(𝑎 ⋅ 𝑏⃗)𝑐, where 𝑎 = 𝑐 = 𝑠̂′ and 𝑏⃗ = 𝑠̂. In which case the unit vector
can be written 𝑠̂ = (𝑠̂′ ⋅ 𝑠̂)𝑠̂′+ 𝑠̂′×(𝑠̂× 𝑠̂′), where (𝑠̂′ ⋅ 𝑠̂′) = 1. Substituting this identity form of 𝑠̂
into the inner integral of (2.81) gives

∫4𝜋
𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑠̂𝑑Ω = 𝑠̂′∫4𝜋

(𝑠̂ ⋅ 𝑠̂′)𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω+ 𝑠̂′×
[

∫4𝜋
𝑠̂𝑃 (𝑠̂′ ⋅ 𝑠̂)𝑑Ω

]

× 𝑠̂′,

= 𝑠̂′𝑔, (2.82)

where the first term uses the definition of 𝑔 as shown in (2.21) and the second term is zero since
𝑃 (𝑠̂′ ⋅ 𝑠̂) is symmetric about 𝑠̂. This means that when 𝑠̂𝑃 (𝑠̂′ ⋅ 𝑠̂) is integrated over all possible
directions 𝑠̂, the summation of opposing vectors around 𝑠̂′ cancel and the result is a vector which
must be parallel with 𝑠̂′. In general, the cross product of two vectors separated by angle 𝜃 is
𝑎× 𝑏⃗ = |𝑎||𝑏⃗|sin𝜃, hence the cross product is zero for two parallel vectors and the second term
disappears.
This allows the right term of (2.78) to be rewritten:

∫4𝜋 ∫4𝜋

[(

Φ(𝑟, 𝑡)+3𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)
]

𝑠̂𝑑Ω′𝑑Ω = 3𝑔∫4𝜋
𝑠̂′
(

𝐽 (𝑟, 𝑡) ⋅ 𝑠′
)

𝑑Ω′, (2.83)

where the right of the equation is of the same form of the integral in (2.71):

∫4𝜋
𝑠̂′
(

𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑑Ω′ = 4𝜋
3
𝐽 (𝑟, 𝑡). (2.84)

Therefore the final form of (2.78) is:

𝜇𝑠∫4𝜋 ∫4𝜋

[

𝐿(𝑟, 𝑠̂, 𝑡)𝑃 (𝑠̂′ ⋅ 𝑠̂)
]

𝑠̂𝑑Ω′𝑑Ω =
𝜇𝑠
4𝜋 ∫4𝜋 ∫4𝜋

[(

Φ(𝑟, 𝑡)+3𝐽 (𝑟, 𝑡) ⋅ 𝑠̂′
)

𝑃 (𝑠̂′ ⋅ 𝑠̂)
]

𝑠̂𝑑Ω′𝑑Ω

=
𝜇𝑠
4𝜋

[

3𝑔
(4𝜋
3
𝐽 (𝑟, 𝑡)

)]

,

= 𝜇𝑠𝑔𝐽 (𝑟, 𝑡). (2.85)
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Fourth right term
The source is again defined as isotropic and by following the derivation in (2.46), is equal
𝑆0,0(𝑟, 𝑡)𝑌0,0(𝑠̂) = 𝑆(𝑟, 𝑡)∕4𝜋 (Wm-2). However when multiplied by 𝑠̂ this term disappears:

∫4𝜋
𝑆(𝑟, 𝑠̂, 𝑡)𝑠̂𝑑Ω =

𝑆(𝑟, 𝑡)
4𝜋 ∫4𝜋

𝑠̂𝑑Ω

= 0⃗, (2.86)

since the integration of the unit vector is ∫4𝜋 𝑠̂𝑑Ω = 0⃗ as shown in (2.80).
Combining terms
When combining the terms above the following vector differential equation can be formulated:

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
= −1

3
∇Φ(𝑟, 𝑡)−𝜇ext𝐽 (𝑟, 𝑡)+𝜇𝑠𝑔𝐽 (𝑟, 𝑡). (2.87)

Rearranging yields

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+ 1
3
∇Φ(𝑟, 𝑡)+𝜇ext𝐽 (𝑟, 𝑡)−𝜇𝑠𝑔𝐽 (𝑟, 𝑡) = 0,

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+ 1
3
∇Φ(𝑟, 𝑡)+𝐽 (𝑟, 𝑡)(𝜇ext −𝜇𝑠𝑔) = 0,

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+ 1
3
∇Φ(𝑟, 𝑡)+𝐽 (𝑟, 𝑡)(𝜇𝑎+𝜇𝑠−𝜇𝑠𝑔) = 0,

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+ 1
3
∇Φ(𝑟, 𝑡)+𝐽 (𝑟, 𝑡)

(

𝜇𝑎+𝜇𝑠(1−𝑔)
)

= 0,

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+ 1
3
∇Φ(𝑟, 𝑡)+𝐽 (𝑟, 𝑡)(𝜇𝑎+𝜇′

𝑠) = 0, (2.88)

where 𝜇ext = 𝜇𝑎+𝜇𝑠 is the extinction attenuation coefficient and 𝜇′
𝑠 = 𝜇𝑠(1− 𝑔) is the reduced

scattering coefficient. The final form of this differential equation when collecting terms can be
expressed as

𝑐−1
𝜕𝐽 (𝑟, 𝑡)

𝜕𝑡
+𝐽 (𝑟, 𝑡)(𝜇𝑎+𝜇′

𝑠) = −1
3
∇Φ(𝑟, 𝑡). (2.89)

2.3.4 Current density expression (temporal broadening assumption)

The temporal broadening assumption states that the change in fractional current density is very
small compared with one transport mean free path. This is an important assumption which in-
validates the diffusion approximation for weak scattering and thin materials, where a short laser
pulse has not sufficiently spread in time compared with the time taken to propagate over one trans-
port mean free path. The time taken for a photon to propagate over a transport mean free path
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is calculated by dividing by the speed of light in the material (𝓁∗∕𝑐). The temporal broadening
assumption expressed in mathematical terms is

⎛

⎜

⎜

⎝

|

|

|

𝜕𝐽 (𝑟, 𝑡)∕𝜕𝑡||
|

|

|

|

𝐽 (𝑟, 𝑡)||
|

⎞

⎟

⎟

⎠

(

𝓁∗

𝑐

)

≪ 1. (2.90)

Rearranging this expression shows that the second term of equation (2.89) dominates over the
first:

𝑐−1
|

|

|

|

|

𝜕𝐽 (𝑟, 𝑡)
𝜕𝑡

|

|

|

|

|

≪ |

|

|

𝐽 (𝑟, 𝑡)||
|

𝓁∗. (2.91)

Under this assumption the rate of change of current density in equation (2.89) can be set to zero
and the remaining expression can be written as

𝐽 (𝑟, 𝑡)𝓁∗ = −1
3
∇Φ(𝑟, 𝑡). (2.92)

The equation above can be directly compared with Fick’s first law of diffusion which states that
the diffusion flux (i.e., current density) goes from regions of high concentration (i.e., fluence) to
low concentration proportional to the concentration gradient multiplied by a diffusion coefficient
𝐷:

𝐽 (𝑟, 𝑡) = −𝐷∇Φ(𝑟, 𝑡) (2.93)

Comparing equations (2.92) and (2.93) determines the diffusion coefficient to be 𝐷 = 1∕3𝓁∗ =
1∕[3

(

𝜇′
𝑠+𝜇𝑎

)

].

2.3.5 Photon diffusion approximation

Finally, the equation for current density in (2.93) can be substituted into the scalar differential
equation (2.64) to give:

𝑐−1
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= −∇ ⋅𝐽 (𝑟, 𝑡)−𝜇extΦ(𝑟, 𝑡)+𝜇𝑠Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡),

= −∇ ⋅
[

−𝐷∇Φ(𝑟, 𝑡)
]

−𝜇extΦ(𝑟, 𝑡)+𝜇𝑠Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡),

=𝐷∇2Φ(𝑟, 𝑡)+ (−𝜇ext +𝜇𝑠)Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡),

=𝐷∇2Φ(𝑟, 𝑡)+ (−𝜇𝑎−𝜇𝑠+𝜇𝑠)Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡),

=𝐷∇2Φ(𝑟, 𝑡)−𝜇𝑎Φ(𝑟, 𝑡)+𝑆(𝑟, 𝑡). (2.94)



CHAPTER 2. BACKGROUND 33

The final form of the equation is commonly known as the photon diffusion equation:

𝑐−1
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= 𝑆(𝑟, 𝑡)+𝐷∇2Φ(𝑟, 𝑡)−𝜇𝑎Φ(𝑟, 𝑡). (2.95)

2.3.6 Solution to the photon diffusion equation

The solution to the photon diffusion approximation accurately describes photon statistics in the
diffusive regime where 𝜇′

𝑠 ≫𝜇𝑎 [21]:

Φ(𝑟, 𝑡) = 𝑐
(4𝜋𝐷𝑐𝑡)3∕2

exp
(

−
|𝑟|2

4𝐷𝑐𝑡
−𝜇𝑎𝑐𝑡

)

, (2.96)

where Φ(𝑟, 𝑡) (Wcm-2) is the photon fluence rate resolved in space and time, 𝐷 = 1∕[3(𝜇′
𝑠+𝜇𝑎)]

is the diffusion coefficient, 𝑟 is the radial distance of the output surface of the material from a
source/object pixel, 𝑡 is time and 𝑐 is the speed of light in the medium.
This solution, originally derived by Chandrasekhar [27], is for a short pulse from an isotropic
point source in an infinite homogeneous medium. However, Patterson et al. [21] later validated
the accuracy of this model for quantifying biological tissue properties when the measurement is
made far from the source location at times long after the pulse incidence.
The time dependence of the solution is the product of an exponentially increasing component
due to spatial and temporal broadening, and an exponentially decreasing component in the form
of Beer’s law (Eq.(2.26)), which considers only the absorption of the material. However, note
that these exponential terms cannot be separated into independent scattering and absorption
contributions, since the diffusion coefficient is dependent on both of these parameters: 𝐷 =
1∕[3(𝜇′

𝑠 + 𝜇𝑎)]. The prefactor also contains the diffusion coefficient and its time dependency
ensures the solution is localised in time as 𝜇𝑎 → 0.
Examples of normalised fluence rate using Eq. (2.96) are plotted in Fig. (2.3) to demonstrate
the sensitivity of the equation to the absorbing and reduced scattering coefficients. The fluence
rate is normalised by the area to represent the probability density of observing a photon in time
at a radius of 𝑟 = 5cm. Interestingly, increasing absorption has a dramatic effect on the width
and mean time-of-flight of the distribution. Intuitively, this reflects the physics of the problem,
where the number of photons which have a long optical path length in the material due to multiple
scattering are much more likely to be absorbed. Therefore, an increase in overall absorption of
the material suppresses the probability of observing highly scattered photons. Note that both 𝜇𝑎
and 𝜇′

𝑠 have an effect on the shape and mean of the normalised distribution.
Note that the photon diffusion equation is parameterised by the reduced scattering coefficient 𝜇′

𝑠,
not the underlying anisotropy factor 𝑔 and scattering coefficient 𝜇𝑠. When using this equation, it
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Figure 2.3: The solution to the photon diffusion approximation to the RTE (Eq. (2.96)) for a
radius of 𝑟 = 5cm. Left) The normalised fluence rate versus time for a fixed reduced scattering
coefficient 𝜇′

𝑠 = 10cm-1 and varying absorption coefficient 𝜇𝑎. Right) The normalised fluence
rate versus time for varying reduced scattering coefficient𝜇′

𝑠 for a fixed absorption 𝜇𝑎 =0.01cm-1.

is not possible to simulate (or extract by fitting) the anisotropy properties of the material. This
degeneracy of the equation for different combinations of 𝑔 and 𝜇𝑠 is known as the similarity
relation [17]. However, these parameters are unimportant in this thesis since knowledge of 𝜇′

𝑠
is sufficient to contextualise the results to biomedical applications by comparing with reported
values for biological tissue types (see [25] for a review).

2.4 Time-correlated single photon counting

Most modern time-resolved diffuse optical imaging techniques use photon counting detectors
and time-correlated single photon counting (TCSPC). Therefore, in this section an introduction
to this technique is discussed before introducing the concepts of time-resolved diffuse optical
imaging in the following section.
Time-correlated single photon counting is a technique used to build a histogram of the time delay
between the emission and detection of a photon with picosecond resolution. In the context of dif-
fuse optical imaging, the goal is to build a distribution of the time taken for a photon to propagate
though a scattering material. Using the ray tracing analogy of photon diffusion, a photon which
experiences more scattering will have a longer optical path length before reaching the detector
than a less scattered photon. To measure the time taken for a photon to propagate through a ma-
terial, the delay between the electronic reference signal of the source emission and the electronic
signal indicating the arrival of a photon from a single-photon detector is determined. Note that
this is a relative measurement and the absolute time delay of the laser pulse reaching the detec-
tor in the absence of a scattering sample must be known to realise an absolute measure of time
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with this technique. By repeating this measurement for many photons, a histogram representing
the distribution of the time-of-flight for every detected photon through the material is resolved.
The various electronics which are required for accurately timing the difference between the sig-
nal from the detector and the reference pulse from the source will be referred to as the TCSPC
module from hereon.

Divide Delay

Invert

Sum

Zero-crossing 
pointThreshold

Timing jitter

Principle of a constant fraction discriminator (CFD)

Figure 2.4: The basic principle of a constant fraction discriminator. An input pulse is replicated
and divided. In the upper path the signal is delayed, and in the other the signal is inverted.
The combination of these two signal results in a signal which crosses the zero amplitude (zero-
crossing point) at the same time position (𝑡ZC), which is independent of initial amplitude of the
signal (right box). Whereas, an amplitude-dependent method of timing (e.g., using a threshold)
results in significant timing jitter (Δ𝑡) (left box).

The signal electric pulse is generated by the detection of a single photon on a single-photon sensi-
tive detector, which produces a digital high from the detector in the form of a nuclear instrument
module (NIM) or a transistor-transistor logic (TTL) signal. Unlike typical photodetectors which
have a proportional electrical response to incident light, single-photon detectors usually operate
in Geiger mode which, like a Geiger-Müller tube, register a single click regardless of the number
of photons or energy incident on the active region. This signal is input into a TCSPC module
which starts a timing process until it receives the subsequent signal from the source. This mode
of operation is known as reversed start-stop, since the time measured is the time between the sig-
nal pulsed followed by its reference, rather than the more intuitive method of timing between the
emission and detection. This causes the detection of photons with long time-of-flight to have the
shortest delay times to the subsequent reference pulse, and requires the histogram to be reversed
when interpreting the distribution of photon times through the material.
A requirement of the reversed start-stop mode is that the reference signal from the laser must be
delayed such that it arrives after the detector signal. If this is not the case, or the signal pulse is
delayed too much such that it is stopped by a later reference pulse, then this will introduce jitter
caused by the variation in time between source emissions into the impulse response function of
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the whole system. In cases where the electrical trigger from the source has an odd shape or is
unstable, the time of emitted pulses from the source can be measured directly by sampling the
beam directly after the emission output and using an avalanche photodiode or a fast photodiode.

Principle of time-correlated single photon counting (TCSPC)

CFDSYNC IN

CFDSIGNAL IN

…

Reference from 
pulsed source

Signal from 
detector

TAC

START

STOP
…

AMP ADC

Time

C
ou

nt
s

Figure 2.5: The basic principle of classical TCSPC. The single photon detector and laser synchro-
nisation signals are NIM signals, which are input into a constant fraction discriminator (CFD)
to accurately determine the time-of-arrival independent to the amplitude of the pulse. The TTL
output of the CFD is then input to a time to analogue converter (TAC), which is a capacitor that
starts charging when the detector pulse is input and stops charging when the next synchronisation
pulse arrives (if operating in stop-start mode). The readout voltage of the capacitor is then am-
plified and quantised by an analogue to digital converter (ADC). The time-stamp value is input to
memory adds a count to the corresponding time-bin of the time-of-flight histogram. Over many
pulses, a distribution of arrival times is built up.

An important consideration for precise timing of the delay between electrical signals is to min-
imise jitter due to variations of the amplitude and precise shape of the electrical pulses (e.g.,
from electrical noise). To address this, a constant fraction discriminator (CFD) is used to reli-
ably determine the time that the signal and reference pulses reach the TCSPC module. The basic
principle of a constant fraction discriminator is shown in Fig. (2.4). A naïve discriminator to
determine the time of arrival of a signal would simply use a threshold voltage, such that when
the leading edge of the signal reached the threshold the timing is started or stopped. However,
as illustrated in the left red box of Fig. (2.4), the varying amplitude or shape of the pulse will
cause significant timing jitter, even if the discriminator had infinite timing resolution [28]. To
overcome this with a constant fraction discriminator, the signal is first replicated, where in one
arm a delay is applied, and in the other the signal is flipped. Since the replicated signals had
the same shape and amplitude, when recombined the leading edge of the summed signal will
always cross from negative to positive voltage at a constant fraction of the amplitude. The point
at which this occurs is known as the zero crossing point, shown in the right red box of Fig. (2.4).
In practice, using exactly zero as a threshold is not possible and moreover, the discriminator used
to determine when the leading edge crosses zero has some intrinsic delays which should be com-
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pensated for by adjusting the zero crossing level [28]. Therefore the zero crossing level is left as
an adjustable parameter in TCSPC modules. This description of constant fraction discriminators
is high level, and more sophisticated designs are used to achieve sub-ps resolution in modern
TCSPC modules.
A TCSPC module uses a constant fraction discriminator for both the signal and reference (SYNC)
channels, as shown in Fig. (2.5). The output TTL pulses of the CFDs are input into a time-to-
amplitude converter (TAC) to measure the delay time. A TAC consists of a capacitor which
begins charging when the signal pulse is input and stops charging when the reference arrives.
The analogue voltage reached by the capacitor in this time is then amplified to increase the dy-
namic range when converting it to a digital value with an analogue-to-digital converter (ADC).
Finally, the quantised value of voltage is stored in memory as the value “1” stored at an address
corresponding to the magnitude of the ADC output.
The resolution of the histogram time-bins is set by minimum time difference which can be re-
solved by the TAC and ADC, however this is much smaller than the impulse response function
of the hardware used in TCSPC experiments.
Time-correlated single photon counting is not the only way to time-resolve photons in experi-
ments, but one of the benefits is that it can be used with a large variety of single-photon sensors,
and it is the sole technique used for experiments in this thesis.

2.4.1 Time-resolved photon counting hardware

Early time-resolved diffuse imaging apparatus included optical Kerr gates or streak cameras. The
optical Kerr effect is a nonlinear response of a material to intense polarised incident light, which
proportionally modifies the refractive properties and causes temporary birefringence. When
placed between two crossed polarising filters, an ultrafast pulse of light can induce birefringence
for as short as 10ns. The re-emitted pulse of light coming from the sample can be gated such
that only a short fraction of the pulse is transmitted [29]. The delay between the pump beam,
which induces the birefringence, and the weaker signal beam from the sample, can be tuned to
allow, e.g., only early photons to be transmitted through the Kerr gate and imaged by a sensitive
detector array such as a cooled CCD [2].
On the other hand, streak cameras resolve the time-of-flight of the photons using a photocathode
to generate a photoelectron beam proportional to the incident intensity of light. A fast-scanning
electric field maps the photoelectron beam onto a fluorescent screen which can be imaged with a
sensitive detector array. These devices are costly but can resolve the full time distribution of the
arrival pulse of light with only a single pulse with sub-picosecond timing resolution. Kerr gate
and streak camera techniques can be single-photon sensitive with an appropriate detector.
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Detectors used for time-correlated single photon counting (TCSPC) must be suitable for opera-
tion in Geiger mode, whereby the output is not proportional to incident intensity but, upon detec-
tion of a single photon, produces a binary high or low represented by a transistor-transistor-logic
(TTL) or a nuclear instrument module (NIM) pulse. A typical detector for TCSPC experiments
is a photomultiplier tube (PMT) which works by the principle of the photoelectric effect. Light
is incident on a photocathode material with a low ionisation energy corresponding to the energy
of a single photon. A generated photoelectron is accelerated towards a dynode with a low work
function and ionises secondary electrons. This process is repeated for successive dynodes until
a readily detectable current is produced at the anode. A microchannel plate (MCP) works by the
same principle as a PMT, but the dynode cascade is performed by a two-dimensional array of
narrow tubes which spatially resolve detection events.
Recent advancements in solid-state hardware, such as single photon avalanche detectors (SPADs),
has miniaturised large and delicate equipment such as PMTs/MCPs, which require rack-mounted
TCSPC Modules [30,31]. The working principle of a SPAD is to reverse bias a p-n junction with
a high electric field, such that when an electron-hole pair is produced from the absorption of a
single photon, the electron is accelerated with enough kinetic energy to collide with other atoms.
When collisions occur, more electrons in the active region are promoted to the conduction band
in a process known as impact ionisation. The secondary electrons then collide with other atoms
until an “avalanche” produces a detectable current in the circuit. A quenching resistor actively
or passively suppresses the current to stop the avalanche. Passive quenching is achieved using
a resistor in series with the diode that increases in voltage with increasing current and therefore
reduces the bias voltage over the p-n junction. A reduced bias over the active region will reduce
the kinetic energy of the free electrons below the impact ionisation energy until the avalanche
stops. When all the free charge carriers have dissipated in the p-n junction, the voltage over the
quench resistor is low again, and the high bias over the diode returns, ready to absorb another
photon. Active quenching is the quicker process of using a discriminator as an electrical switch
to reduce the bias voltage across the p-n junction.
Single photon avalanche diodes can be used as single pixels to make up arrays as large as one-
megapixel [32]. Some benefits of SPADs over alternative devices are that the silicon camera
industry can be leveraged to fabricate them at low cost, they are also more mechanically ro-
bust, orders of magnitude more compact than alternative detectors, and they are not as sensitive
to magnetic fields or overexposure of light. However, SPADs typically have more coarse tim-
ing resolution and higher dark count noise compared with other single-photon detectors, but as
SPAD research develops, this is expected to improve. An avalanche photodiode (APD) is a com-
monly used detector in non-time-resolved diffuse imaging as a sensitive detector. The operation
principle is the same, but the bias voltage across the active region is lower so that the avalanche
is controllable and proportional to the intensity of incident light.
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One of the drawbacks of using single-photon detectors for TCSPC is the requirement for a ded-
icated TCSPC electronic module. However, some SPAD arrays have been fabricated with inde-
pendent timing electronics integrated into every pixel to overcome this [33]. The timing electron-
ics differs from a conventional TCSPC module which uses time-to-analogue capacitors followed
by analogue-to-digital converters and instead uses a fully digital time-to-digital converter (TDC).
The principle is to start a digital counter known as a ring oscillator upon detecting an electron
avalanche. The basic principle of a ring oscillator is to create a digital clock using an odd num-
ber of NOT gates connected in a ring such that the output is continuously flipping between high
and low states. When the reference pulse from the source (e.g., a pulsed laser) is received, the
number of clock cycles since the detected photon is recorded as an integer value. Each integer
can be converted to a timestamp using the knowledge of the clock period (∼ 50ps). A histogram
of all of the timestamps produces a reversed start-stop distribution of the time-of-arrival of the
photons at the pixel, which can be flipped to represent the time-of-flight of the photons through
the scattering material. Unfortunately, because of the space required for TDC electronics on the
microchip, the active area for detecting light has a much lower fill factor than other single-photon
detectors such as PMTs. Fortunately, new designs have improved the fill factor, but this is still an
active research field [34]. Integrating independent TDCs for every pixel can realise the miniatur-
isation of single-photon TCSPC detectors, which can be incorporated into wearable biomedical
imaging technologies.
One way to increase the fill factor and efficiency of SPAD arrays is a related detector known
as a silicon photomultiplier (SiPM). These devices comprise an array of SPADs connected to a
common output rather than timing every SPAD independently [35,36]. This decreases the spatial
resolution since it is unknown which SPAD in the array produced the signal at the common
output. However, two significant bottlenecks of conventional SPAD arrays can be overcome.
Firstly, the time for a SPAD to quench and reset (known as dead time) is typically nanoseconds,
which is much longer than the repetition rate of the source used in an experiment (e.g., 12.5ps for
an 80MHz pulsed laser). Whilst one SPAD is resetting, a neighbouring SPAD can detect another
photon and increase the overall detection efficiency by parallelising the detection.
The second major bottleneck is the active area; since timing electronics are only required for a
group of SPADs rather than individually, the fill factor can be much higher for SiPMs. Further-
more, if spatial resolution is not needed, the number of SPADs can be scaled to cover a large
area. Although each SPAD operates in Geiger mode, the output of the SiPM can be a voltage
which is proportional to the number of active SPADs within a small time frame (analogue mode)
or a train of short digital high pulses corresponding to detection from any of the SPADs (digital
mode). The latter can be used for TCSPC experiments.
Superconducting nanowire single-photon counting detectors (SNSPDs) are another single-photon
sensitive detector which can be used in TCSPC experiments. The principle is to cool a conduc-



CHAPTER 2. BACKGROUND 40

tive nanowire to around one kelvin, which becomes superconductive. However, when the energy
of a single photon is incident on the wire, it is absorbed by the splitting of electron cooper pairs,
raising the energy state of the electrons and creating a thermal hot spot. This causes a non-
zero resistivity in the nanowire and causes the current to flow through a shunt resistor of lower
impedance, which produces a detectable voltage. These detectors have very high quantum effi-
ciency for a broad range of wavelengths, but they are bulky, expensive, and restricted to coupling
light to a single-mode fibre.
The pulsed source is the final piece of equipment to be considered in a time-domain diffuse op-
tical imaging system. The ideal pulsed source is a near-IR laser source with powers of 10s of
mW, < 200ps pulse duration and high repetition rates (> 20MHz) [30]. Although not explored
in the scope of this thesis, vertical-cavity surface-emitting lasers (VCSELs) are a suitable can-
didate for a cost-effective way to miniaturise expensive and bulky ultrafast pulsed lasers that are
predominantly used to date.

2.5 Diffuse optical imaging overview

Diffuse optical imaging is a term used in the context of this thesis to encompass a variety of
techniques which involve resolving images of hidden absorbing or scattering inhomogeneities
inside diffusive materials. Note that in this definition, there is a distinction between imaging
through diffusive rather than scattering materials. Imaging through scattering/complex/turbid
media is a broader research field, of which diffuse optical imaging is a sub-field that concerns
the regimes where the diffusion approximation is valid (i.e., 𝜇′

𝑠 ≫𝜇𝑎 and 𝐿≫ 𝓁∗).
The motivation for pursuing solutions to imaging through diffusive materials is mainly to realise
biomedical imaging applications, namely monitoring brain activity and optical mammography.
These applications exploit the low absorption of biological tissues in the near-infrared (near-IR)
wavelengths (Fig. (2.6)) and hold promise for optical technologies to overcome the limitations
of current medical imaging devices. For example, the transmissibility of near-IR light to the
human skull overcomes the issue of high reflectivity to bone when using ultrasound to image the
brain [37]. Optical wavelengths also present a safer alternative to instruments that use ionising
radiation, such as X-ray computed tomography (CT) and positron emission tomography (PET).
Another benefit is that optical hardware is much cheaper, easier to operate, and less bulky than
CT, PET, or magnetic resonance imaging (MRI) devices. Optical biomedical imaging technolo-
gies also overcome contraindications that restrict the use of MRI in cases where the patient has
metallic implants or is required to be monitored continuously at the bedside [30].
Diffuse optical imaging devices in the near-IR can also monitor brain activity at the outer cortical
surface using a technique known as functional near-infrared spectroscopy (fNIRS), which indi-
rectly measures brain activity by monitoring blood oxygenation levels similar to blood-oxygen-
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Figure 2.6: Absorption coefficient for various biological tissues highlighting the optical window
for biological imaging in the near-infrared. The difference of oxyhaemoglobin (O2Hb) and de-
oxyhaemoglobin (HHb) absorption spectra between 650nm-950nm is used in Near-infrared spec-
troscopy (NIRS) to measure blood oxygenation content (figure from Scholkmann et. al. [38]).

level-dependent (BOLD) contrast signals measured in functional MRI (fMRI) [39]. Therefore,
fNIRS offers a portable alternative to fMRI for conducting neuroscience experiments and presents
opportunities such as: enabling studies with multiple participants simultaneously, allowing par-
ticipants to move freely in a natural environment, and negating unwanted brain activity associated
with the loud sounds of MRI scanners [30, 40]. The potential presented by fNIRS devices is to
enable affordable access to a wearable technologies [41] that can monitor whole brain function
with a sample rate up to 200Hz [42], which is orders of magnitude faster than fMRI (1Hz-3Hz)
or PET (<0.1Hz), and with a better spatial resolution (2cm-3cm) than comparable wearable tech-
niques like electroencephalography or magnetoencephalography (5cm-9cm) [43].
However, fNIRS is limited in other respects. Unlike fMRI, the sensitivity of fNIRS devices to
changes in blood oxygenation is restricted to the outer layer of cortical tissue and activity in
the deep cortical or subcortical regions cannot be measured with current devices. Furthermore,
fNIRS devices do not provide any anatomical information. Consequently, a structural MRI scan
of the participant’s head is usually required for precise localisation of activity. The precision
of brain activity signals is also inherently limited by the sensitivity of fNIRS to all vasculature,
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including arteries, veins, and capillaries, which makes signals harder to interpret [40].
Another hindrance of fNIRS is contamination of signals due to changes in blood chromophore
concentration in superficial layers of tissue between the scalp and brain [40]. However, signal
contamination can be mitigated by subtracting short source-detector from long source-detector
channels [44] or using time-resolved techniques to isolate photons that have a high probability
of exploring deeper regions [45].
Near-infrared spectroscopy
Near-infrared spectroscopy (NIRS) works by the same principle as pulse oximeters, which ex-
ploit the difference in spectral absorption for oxy- and deoxyhaemoglobin in the near-IR window
(Fig. (2.6)) to extract the oxygen content of blood non-invasively. However, unlike conventional
oximetry, which determines the percentage of arterial oxygen saturation of the blood (SaO2),
NIRS extends these measurements to monitor the dynamics of oxygen saturation in all vas-
culature of the tissue (StO2), including capillaries and veins. Therefore, NIRS is sensitive to
metabolic processes in tissue, leading to increased sensitivity compared with pulse oximeters in
clinical settings, e.g., for measuring systemic hypoxia for bedside cardiorespiratory monitoring
and early warning of airway obstructions in sedative dentistry [46].
Functional near-infrared spectroscopy is a technique which extends NIRS to monitor haemody-
namics of the cerebral cortex. Specifically, measuring the differential measurement of absorption
between oxyhaemoglobin (O2Hb) and deoxyhaemoglobin (HHb) within different explored vol-
umes under the scalp, provides an indirect way of localising brain activity. Active regions of the
brain require oxygen to metabolise glucose for energy. Red blood cells each have 4 Fe2+ sub-units
which bind with oxygen in the lungs and transport it around the body. Fortunately, the differ-
ence in the electronic band structure of oxygenated and deoxygenated blood leads to different
absorption spectra. Functional near-infrared spectroscopy monitors the dynamics of oxygenated
blood surges in the brain by measuring the change in intensity of reflected light around 800nm
due to the total increase in blood volume compared with the change in intensity at some other
wavelength where the absorption of light is more sensitive to oxygenated blood [19, 47, 48].
The technique of fNIRS dates back to the 1977, where Jobsis [49] reported correlations between
induced hypoxia and near-IR absorption of a transilluminated cat head in-vivo. These initial
transillumination experiments were extended to human subjects but only partial measurements
were obtained. However, in the following decades, successful studies were reported to measure
blood oxygenation using near-IR spectral absorption measurements in humans for transillumi-
nated neonates [50] and in adult heads using reflected measurements [47, 51, 52].
There are three main techniques in fNIRS: Continuous-Wave (CW-NIRS), Frequency-Domain
(FD-NIRS), and Time-Domain (TD-NIRS). The most successful is CW-NIRS which has been
developed into a portable wearable devices for adult psychological studies [38, 41, 53], breast
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tumour identification [54,55], neonatal brain monitoring [56,57], and has been demonstrated to
have up to similar resolution (accuracy within 4mm) to functional MRI scans [39, 58]. In this
configuration, compact inexpensive sources (e.g., LEDs, diode lasers) provide a constant ampli-
tude light source in direct contact with the surface of the scalp using optical fibres. Likewise,
light collection optical fibres are also placed on the scalp and used to guide light to detectors, pro-
ducing an arrangement of source-detector channels. However, more recently commercial devices
have the sources and detectors built-in to a fibreless wearable cap (e.g., [59]).
A large source-detector (SD) distance provides information about explored volumes deeper re-
gions of the material (Fig. (2.7)). Shorter SD channels probe blood oxygenation levels in shallow
layers and are used to mitigate the contribution of the signal from blood in superficial tissues and
increase the sensitivity of the measurement to the cortical surface. Since there is an exponen-
tial decrease in light intensity for increasing SD distances, sensitive detectors such as avalanche
photodiodes (APDs) are commonly used [30, 53].

Figure 2.7: The source-detector distances 𝑑1 and 𝑑2 illustrate sensitivity to blood in different
explored volumes in the brain (figure from Pinti et al. (2018) [43]).

Diffuse optical tomography (DOT) is the three-dimensional reconstruction of subsurface hetero-
geneities in optical properties using information from diffuse light re-emitted from a scattering
medium. This technique was extended to fNIRS applications by placing channels close to one
another such that numerous detectors receive light from the same source, but the detected pho-
tons will have explored different sub-surface volumes. More specifically, this is known as high-
density DOT (HD-DOT) [60]. The multiple SD channels measured for a single source position
enable superior spatial resolution and allow depth information to be resolved2. The sensitivity of

2Devices not in the HD-DOT regime are restricted to reconstructing only two-dimensional maps of blood oxy-
genation concentration and are not strictly tomographic techniques. For this reason, there is a distinction between
diffuse optical topography and diffuse optical tomography, which are easily confused. Unfortunately, they share
also the same DOT acronym.
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NIRS to blood volume and oxygen content, combined with DOT techniques to image subsurface
absorbing heterogeneities, has also found numerous other applications such as locating tumours
in breast tissue [61] or identifying strokes [62].
The principle of CW-NIRS is to measure the extinction of light at multiple wavelengths and infer
the concentration of oxy- and deoxyhaemoglobin. However, scattering also contributes to the ex-
tinction of light, and any changes in scattering during the measurement could be misinterpreted
as absorption. This limits CW-NIRS to measuring relative haemodynamics rather than quanti-
fying absolute chromophore concentrations. Furthermore, it must be known a priori the optical
path length travelled by the photons detected, which not only requires knowledge of the geom-
etry of the tissue layers, which varies between subjects, but is also dependent on the unknown
scattering properties [63].
The second common fNIRS technique is frequency-Domain (FD-NIRS), which are an evolution
of CW-NIRS techniques that use amplitude modulated sources (>100MHz) and measure both
absorption and the phase of the re-emitted light [64, 65]. The additional phase information in
this context allows an estimation of the average time taken for photons to reach the detector and
hence the reduced scattering coefficient 𝜇′

𝑠 of the material can be estimated independently from
the absorption coefficient 𝜇𝑎. The quantification of these parameters allows accurate estima-
tion of absolute chromophore concentration. This technique is less commonly used due to the
complexity of the post-processing and the size of equipment required [30].
Time-domain techniques (TD-NIRS) utilise time-of-flight information for photons to propagate
through the medium to directly determine 𝜇𝑎 and 𝜇′

𝑠 using a simulated photon diffusion forward
model to perform parameter estimation with regression algorithms [38, 66–68]. Although FD-
NIRS can also determine reduced scattering and absorption coefficients, time-domain techniques
enable better depth discrimination and are sensitive to a larger sub-surface volume of tissue com-
pared with FD-NIRS [69]. In a different approach known as null source-detector (null-SD) or
quasi-null source-detector separation, the method of measuring many SD channels to quantify
depth information (i.e., HD-DOT) is not used. Instead, the time-of-flight of the photons is used to
separate photons which have explored shallow volumes versus deep volumes [30,70,71]. Using
this null-SD approach, the limit of depth sensitivity can be extended by at least two-fold com-
pared with continuous-wave techniques in the ideal case of detector efficiency and noise. This
improvement corresponds to extending the maximum depth sensitivity to ∼ 6cm below the scalp,
and experiments have demonstrated sensitivity up to ∼ 4cm with prototype devices [72].
Extending the depth of penetration using TD-NIRS systems could enable imaging of other organs
to emerge that are currently difficult to image non-invasively, such as monitoring heart perfusion
to detect infarction [73], and measuring optical properties of the lungs to determine physiolog-
ical and morphological changes associated with cardio-pulmonary diseases [74]. Additionally,
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DOT instruments may also be used to image bones [75], and diagnose bone pathologies such as
osteoporosis [76].
Diffuse optical imaging techniques
The research field of NIRS is a crucial motivator for the evolution of diffuse optical imaging
(DOI). Indeed many of the technological milestones in DOI were achieved in the sub-field of
NIRS. This section will discuss a brief overview of the history and recent advancements in the
broader field of DOI, which also references some literature that reports significant development
of hardware and image reconstruction methods in NIRS.

Figure 2.8: The three regimes of photon propagation in diffusive materials and their arrival times
highlighted in a time-of-flight distribution.

The overarching methodologies in DOI stem from three different regimes of photon transport in
diffusive materials: ballistic, snake, and diffuse propagation (Fig. (2.8)). Ballistic photon propa-
gation describes light which does not interact with the material and maintains spatial coherence.
Detecting ballistic photons is appealing since any spatial absorption information is directly cast
as a shadowgram at the detector, similar to the principle of X-ray imaging. However, the proba-
bility of a non-interacting photon exponentially decreases with an increasing number of transport
mean free path lengths and techniques which exploit ballistic photons are restricted to weakly
scattering regimes. Diffuse photon transmission refers to photons which have scattered multiple
times, and information about their initial propagation direction is randomised. Of course, if these
photons have experienced an extreme number of scattering events, there is a very high proba-
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bility of absorption, even in materials with a relatively low absorption coefficient. However,
diffuse photons are orders of magnitude more likely to be transmitted through the material and
detected for forward scattering materials such as biological tissue. Between these two extremes,
there exist weakly scattered photons which are referred to as snake photons. These photons are
loosely defined as those which do not deviate significantly from their initial direction of propa-
gation [3, 77–79].
When a photon is scattered, the information about the initial direction of propagation is ran-
domised, and consequently, the direct transilluminated spatial information about hidden absorb-
ing objects is corrupted. Therefore, most techniques for imaging through scattering materials
attempt to isolate coherent ballistic or snake photons to retrieve images. There are a variety of
techniques to achieve this, the earliest of which are reported in the 1980s-1990s.
One method to isolate coherent photons is to exploit the definition that they retain their direction
of propagation through the material using spatial filtering. The principle of a spatial filter in this
context is to block uncollimated light by placing a pinhole at a position corresponding to the zero
frequency component in the Fourier plane of a lens. One of the earliest demonstrations of this
technique for biomedical imaging was reported by Jarry et al. [80], which successfully resolved
images of metallic objects embedded in various mammalian organs using spatial filtering to iso-
late collimated transmitted light. This idea was explored further by Hebden et al. [81]. In this
study, the attenuation of ballistic light with increasing thickness of pig adipose tissue is reported
using a spatial filter. The findings show that isolating ballistic photons is unlikely to be useful
for clinical applications due to the difficulty of detecting them in thick samples. However, in a
separate experiment, they examined the image resolution of a thin plastic target embedded be-
tween relatively thick adipose tissue slices (2.4mm total thickness). They concluded that, even
though strictly no ballistic photons are present, an image enhancement can be gained using spa-
tial filtering methods due to the forward scattering nature of tissue. This is because, in forward
scattering materials, photons deviate only slightly from their initial propagation direction over
relatively small length scales and therefore retain most of their direct transillumination imaging
information.
This conclusion that photons which only slightly deviate from their initial propagation direction
(snake photons) can also be useful for imaging through biological tissue validate the findings of
an earlier numerical study Maarek et al. [82]. The focus of this numerical study however, was
to show that gating the earliest arriving photons in time has potential for biomedical imaging
applications where the sample is too thick for spatial filtering. Interestingly, the authors of this
study also envisioned that the use of distribution of all photons may also be used to reconstruct
three-dimensional images with future imaging devices, an idea which was realised in the follow-
ing decades and is the principle used in many of today’s time-domain diffuse optical tomography
devices.
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Time-resolved measurements of re-emitted scattered light can also isolate ballistic photons. The
photons which have a direct path through the material follow the shortest optical path length
and arrive at the detector the earliest, whereas the multiple scattering of diffuse photons have a
much longer path and arrive later (Fig. (2.8)). Using a time-gate to isolate the earliest arriving
photons can produce direct images using ballistic photons in weakly scattering or thin materials.
More commonly, quasi-coherent snake photons are the first photons to arrive in thicker samples
which have not significantly deviated from their initial propagation direction and still provide
significant direct imaging information. The technique of using the first photons to arrive is most
commonly known as early photon imaging (discussed in more detail in Section (2.5.1)).
Time-resolved techniques can also be used to measure indirect imaging information about the
internal structure of a diffusively scattering material. Similar to TD-NIRS discussed in the pre-
vious sub-section, the statistical moments of the time-of-flight distribution, or curve fitting the
time-of-flight distribution to a photon diffusion forward model to retrieve the reduced scattering
𝜇′
𝑠 and absorption 𝜇𝑎 coefficients, can add additional information to the image reconstruction

process. This information can be useful when imaging in regimes where the direct intensity in-
formation is strongly attenuated in thick highly diffusive samples. Indirect time-resolved diffuse
optical imaging techniques are discussed in more detail in Section (2.5.2).

2.5.1 Time-resolved early photon imaging

In the 1970s-1980s, the first time-resolved measurements of light-in-flight were reported. They
used an optical Kerr gate as an ultrafast camera shutter to image a laser pulse transmitted through
milky water [83], and topographic depth images of internal mammalian heart ventricles [84].
Since ballistic photons have the most direct path through a scattering material, the optical path
length and time-of-flight are the shortest. Therefore, numerous studies in the following decade
report the use of time-resolved measurements of light to time-gate the first arriving photons at
the detector and access direct image information of absorbing hetereogeneities embedded inside
scattering materials.
The first attempts to isolate ballistic transilluminated photons using a time-gated approach used
a 8ps resolution streak camera to record the transmission of an 80fs laser pulse incident on a
glass cell containing suspended latex beads [85]. The results show that as the concentration
of latex beads increase, the coherent contribution of the signal diminishes, which was an early
indicator of the limitations of ballistic imaging. Shortly following this study, an optical Kerr gate
was also used to isolate the first transmitted photons from a fluorescent target when excited by a
pulsed source [77]. This technique improved the spatial resolution of imaging fluorescent targets
through samples of millimetre thickness, including ex vivo human breast tissue, ex vivo chicken
breast tissue, and a phantom consisting of polystyrene balls suspended in water. However, these
samples were also relatively weakly scattering, equivalent to < 8𝓁∗.
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Time-gating the earliest arriving photons can also be achieved with a time-resolved detector
rather than the use of Kerr gates. Measurements using a ultra-short pulsed lasers and an ultra-fast
single-photon detectors to enhance transilluminated images of absorbing occlusions in diffusive
media using the first-arriving photons also data back to the early 1990s. Work by Hebden et al.
[79] used a streak camera to resolve the time-of-flight of distribution, and show that isolating the
first-arriving photons at the detector could image absorbing objects embedded inside the medium
which were unresolvable when integrating photons from all times (i.e., using a continuous wave
source). Similar approaches around the same time were demonstrated using photomultiplier
tube (PMT) and microchannel plate (MCP) detectors, which use time-correlated single photon
counting (TCSPC) to resolve the temporal statistics of photon time-of-flight [86, 87].
Following these pioneering studies, early photon imaging emerged as a technique which aimed to
isolate the earliest arriving photons which may not strictly have perfect spatial coherence. Even
though scattered, the first photons to arrive at the detector after propagating through a forward
scattering material do not significantly deviate from their initial direction of propagation and
retain some direct imaging information. From hereon, the term early photon imaging will be
used to refer to techniques which aim to isolate ballistic and snake photons which retain some
direct imaging information.
In an alternative use of time-of-flight information for early photon imaging, Benaron et. al [88]
introduced a method which uses the absolute time-of-flight corresponding to the upper bound
of integrating the first 1% of photons, and produces an image directly using these time-of-flight
values. They demonstrated impressive results which resolve the locations of vital organs of a tran-
silluminated deceased rat, and highlight the difference of imaging the total absorption through
samples versus using the time-of-flight information of the earliest arriving photons.
Early photon imaging techniques continued to evolve with various techniques and applications.
Reconstruction of complex shapes inside relatively weak scattering materials using early pho-
tons was enhanced when measuring from multiple angle projections similar to computed tomog-
raphy [89]. In a similar projection approach, Chen et al. [90] show improved reconstruction
quality when using time-gated pattern illumination to parallelise measurements without intro-
ducing increased spatial blurring. Early photon imaging was also demonstrated to enhance the
quality of reconstructed tomographic images of fluorescent targets in scattering phantoms [91]
and mice [92,93], and in another combined technique, it was shown that early time-gated off-axis
holography could improve the sensitivity of imaging through turbid water and extend the depth
sensitivity by 1.5 absorption lengths (i.e., 1.5𝓁∗) [8].
More recently, Tanner et al. [4] successfully located the distal-end of an optical fibre with 1cm
precision through ventilated sheep lungs, the palm of a human hand, and through the entire human
torso (∼ 25cm). Further studies by McShane et al. [94] have shown to resolve point-like emitters
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in various locations along the length of an optical fibre using early photons to improve location
precision. These works have profound clinical relevance for locating endoscopes non-invasively
through the body.
There are also coherence-gating methods to isolate coherent ballistic photons from the incoher-
ent diffuse photons. Using interferometric methods to gate ballistic photons has been shown
to enhance synthetic aperture imaging of three-dimensional objects hidden behind scattering
materials [9]. In a similar experiment, Maruca et al. [10] used mode selective frequency up-
conversion in a non-linear waveguide to filter coherent backscattered photons through a scat-
tering phantom (19𝓁𝑠), and a thin slice of chicken breast (15𝓁𝑠). This technique was shown to
resolve three-dimensional objects with diffraction limited lateral resolution and sub-mm depth
resolution. However, these techniques as well as imaging through scattering materials using
laser speckle imaging and wavefront shaping techniques [95] are better suited to non-diffusive
regimes due to the rarity of strictly coherent light propagating through samples larger than 1cm
of biological tissues.

2.5.2 Time-resolved all photons imaging

Around the same year (1990) as the first reports of isolating ballistic photons discussed in the
previous sub-section, Singer et al. [96] reported the use of an image retrieval algorithm which
could reconstruct the optical properties of a diffusive material using the intensity distribution of
scattered photons. Importantly, method does not attempt to isolate coherent (ballistic) photons,
but instead uses the distribution of the coherent and incoherent light at various detector locations
to determine the internal absorbing structures. The proposed algorithm used a Monte Carlo ran-
dom sampling simulation as a forward model, in which the absorption and scattering properties
of voxels in the material can be updated by gradient descent of the least-squares problem between
the output of the simulation and the measurements.
This early study of image retrieval in diffuse optical tomography was hindered by finding solu-
tions in local minima and limited by the small computer memory capacities of its time. However,
regularisation techniques such as truncated singular value and Tikhonov regularised least-squares
algorithms (see Section (2.6) for overview of regularised least-squares algorithms) were applied
in subsequent studies e.g., by Arridge et al. [97], to overcome local minima, and fortunately small
memory capacities in computers are no longer a major issue. This lead to a parallel research effort
to early photon imaging techniques, which instead used the distribution of diffused light resolved
in both space and time as indirect imaging information used to reconstruct the internal structure
of a material using inversion algorithms.
More sophisticated retrieval processes were introduced at the turn of the century which were
used for tomography in cylindrical geometries with multi-channel time-resolved [98–100] and
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frequency-resolved [101] apparatus. Reconstruction algorithms were introduced to resolve re-
constructions in depth as well as laterally [102, 103], and simultaneously reconstructing scatter-
ing and absorption inhomogeneities was demonstrated [104, 105].
However, early time-resolved techniques did not directly use the full raw data in the reconstruc-
tion. Instead, these methods showed improved image reconstruction quality compared with fre-
quency domain and continuous wave techniques by: time-gating early photons, improving the
forward model by quantifying optical parameters from the fitted measurements, or using the sta-
tistical moments of the time-traces to incorporate additional information to the image retrieval
process [105, 106]. However, in 2002, Gao et al. [107] developed an algorithm which exploits
the full shape of the time traces and show a significant improvement in reconstruction quality
compared with algorithms which use only the moments of the time-resolved data.
Time-resolved imaging, which used regression techniques to fit the full temporal distribution
of the measurements with a photon diffusion model and determine tomographic projections of
the absorption and scattering properties, was demonstrated beyond phantoms in the early 2000s.
Reconstructions of a human forearm [108, 109] and a mouse lung in vivo [5] indicated the po-
tential of leveraging the full time distribution. However, at the time, these experiments were
hindered by the complexity of the necessary hardware and algorithms. They were also much
more expensive to build than continuous wave or frequency domain devices. Fortunately, the
introduction of powerful computers and cheaper, more compact pulsed lasers and single-photon
detectors have sparked a revival of time-resolved all-photons diffuse optical imaging in the recent
decade [30, 67].
The choice of forward model and inverse retrieval algorithm is task-specific and generally cus-
tom designed by each research group. However, the majority of algorithms are some form of
regularised least-square retrieval that use an iterative convex optimisation solver (e.g., Leven-
berg–Marquardt algorithm, alternating direction method of multipliers (ADMM), conjugate-
gradient method, etc.). Detailed reviews of the forward and inverse methods used in diffuse
optical imaging can be found in [110–112].
All photons imaging is a technique introduced by Satat et al. [11] which measures the full spa-
tiotemporal distribution of photon time-of-flight through a transilluminated scatterer using a
streak camera. Compared with the methods mentioned above, the difference of this technique is
that there is no requirement for scanning the source or using multiple point-like detector posi-
tions which sparsely sample the diffused light. Instead, the sample is uniformly illuminated, and
the detector is wide-field. The retrieval algorithm consists of a regularised least-squares curve
fitting between the measured normalised spatiotemporal profile and a simplified forward model
using a convolution kernel derived from the photon diffusion approximation (Eq.(2.96)). The
results show that this method dramatically improves the peak signal-to-noise and structural sim-
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ilarity metrics with the target image compared with early photon imaging. However, in this study
considers only weak scattering and a resemblance of the target is apparent in the early photon
time-gated image, which was used as an initial guess to the retrieval.
More recently, Lyons et al. [12] demonstrated the use of the full measured spatio-temporal profile
with a similar regularised least-squares retrieval algorithm which was shown to reconstruct im-
ages through more than 80𝓁∗. This experiment consisted of two 2.5cm polystyrene foam slabs,
in which an absorbing black piece of tape is placed in various geometric shapes which is tran-
silluminated by an expanded beam of an ultrafast pulsed laser. The diffuse photons are resolved
in space and time using a single photon avalanche array and, unlike all photons imaging, there
is no resemblance of the target object when time-gating for early photons. This is an indication
that this demonstration of diffuse optical imaging is in a much stronger diffusive regime than
previous studies. Aspects of this study will be discussed in more detail in the following chapters,
as it is a precursor to the experiments and analysis of the work conducted in this thesis.
The most current time-resolved diffuse optical imaging techniques are exploring the use of ma-
chine learning for inverse retrieval algorithms [113,114]. The use machine learning for the pro-
cess of image reconstruction in diffuse optics is a relatively new field, but progress is discussed
in more detail in Chapter 5.

2.6 Diffuse optical imaging as an inverse problem

Inverse problems are a set of mathematical problems for which the input and output (with error)
are known, and we wish to estimate the model. Alternatively, the model and the output are
known, and we wish to know the input. The latter is the most relevant for diffuse optical imaging
and so this will be referred to as the inverse problem in this section. These inverse problems are
considered ill-posed if: many solutions could be plausible for the same known information, there
exist no solutions, or the solution is highly sensitive to perturbations of the given data.
More formally, an ill-posed problem is the opposite of a well-posed problem which meets three
criteria defined by Jacques Hadamard [115]:

1. Existence - the problem has a solution.
2. Uniqueness - there is only one solution.
3. Stability - the solution depends continuously on the initial conditions.

For context, it is easiest to consider some simple examples of ways in which these criteria can
be violated and how to reformulate the problem to one which is well-posed. A simple example
which violates the existence criteria is an over-determined system of equations such as 𝑎= 1 and
2𝑎 = 3 (adapted from [115]). There is no solution for 𝑎 which satisfies both equations. This
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may seem a trivial example, but is common in the case where experimental uncertainties cause
repeated measurements to take different values. A common way to solve such problems is to
add information by the introduction of reasonable constraints, such as the expectation that the
magnitude of the residual for both equations is minimised for a given 𝑎. To do this, the problem
can be reposed as a minimisation of the least-squares error:

argmin
𝑎

||𝑓 (𝑎)||22 = argmin
𝑎

{

(𝑎−1)2+(2𝑎−3)2
}

, (2.97)

where ||.||22 denotes the is the 𝐿2-norm (also known as the Euclidean norm) squared. This prob-
lem is differentiable and has a solution which exists:

𝑑𝑓 (𝑎)
𝑑𝑎

= 2(𝑎−1)+4(2𝑎−3) = 0,

2𝑎−2+8𝑎−12 = 0,

10𝑎−14 = 0,

𝑎 = 1.4. (2.98)

Note that this is not equivalent to taking the mean of each independent solution (𝑎= 1.25), which
would result in a larger residual error. This method is of course commonly used to fit linear
regression models to noisy experimental data-sets, such that the solution has smallest sum of
distances from every measurement.
The uniqueness criteria is also simple to violate with the equation 𝑎+ 𝑏 = 1, which has infinite
solutions when 𝑎,𝑏 ∈ℝ [115]. Contrary to the example given for existence above, this ill-posed
equation is underdetermined since there are more unknowns than knowns. To solve this re-
quires a prior assumption about the properties of 𝑎 and 𝑏 to constrain the space of solutions.
The most common assumption is that the magnitude of each unknown variable are comparable,
and therefore the reformulation of the problem is to find the solution which has the minimum
𝐿2-norm for 𝑎 and 𝑏 which still satisfies the right hand side of the equation(s). However, min-
imising the 𝐿2-norm has an equivalent solution to the more readily solved square of the 𝐿2-norm
i.e., argmin

𝑎
||𝑓 (𝑎)||2 = argmin

𝑎
||𝑓 (𝑎)||22, which is equivalent to the least-squares regression in

Eq.(2.97). Therefore, this problem which had no unique solutions, can be reformulated as

argmin
𝑎

||𝑓 (𝑎)||22 = argmin
𝑎

{

𝑎2+(1−𝑎)2
}

, (2.99)

which leads to a simple calculation of the derivative and yields a unique solution to the problem:
𝑑𝑓 (𝑎)
𝑑𝑎

= 2𝑎+2(1−𝑎)(−1) = 0,

2𝑎+2𝑎 = 2,
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𝑎 = 1
2

= 𝑏. (2.100)

Finally, the stability condition requires that a solution must be continuously dependent on the ini-
tial conditions. For example, an arbitrarily small change in the initial parameters of the problem
should mean the solution also varies by a small amount. Conversely, if a small perturbation of
initial parameters causes a large change in solution, the problem is unstable. Ill-posed problems
are often also ill-conditioned. However, an ill-conditioned problem specifically considers when
small error contributions in the forward problem become large ones in the inverse solution.
A problem can be well-posed but ill-conditioned, which is a numerically solvable problem that
depends continuously on the data. Whereas, if it is an ill-posed problem due to the violation of the
stability condition, then the problem is not numerically solvable due to the extent of sensitivity
to perturbations in the input, and it needs to be reformulated as a well-posed problem, similar to
the examples above, using a technique called regularisation.

Figure 2.9: An example of an increasingly ill-conditioned problem of determining the point of
intersect between two lines. A constant error 𝜀 = 0.01 applied to the y-intercept of the red line
causes an increasingly large error in the point of intersect (bounds denoted by dashed lines) when
the gradient (𝑚) of the red line, a) 𝑚= 0, b) 𝑚= 0.5, and c) 𝑚= 0.8, becomes increasingly similar
to the gradient of the blue line (𝑚 = 1).

An interesting example (inspired by [116]) which illustrates the stability conditions is solving
the point of intersection between two almost parallel lines. Consider the examples shown in Fig.
(2.9a-c), where the inverse problem is to determine the intersect between the blue line 𝑦 = 𝑥+1
and the red lines. For each of the three examples, there is a unique and exact solution for the
point of intercept at [0.5,1.5]. Furthermore, when a small perturbation is made 𝜀 = ±0.01 to the
y-intercept of the red lines, the error in determining the intercept will increase proportionally,
making this a well-posed problem.
However, as the gradient of the red line approaches the gradient of the blue line, the problem
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becomes increasingly ill-conditioned. When the lines approach parallel, but still intersect at
some point, then a small perturbation of the y-intercept in the red line will cause an arbitrary
large change in the solution. When the solution varies by magnitudes which are not possible
to compute, (i.e., beyond the dynamic range limited by the numerical precision of computers)
then the problem is unstable and therefore ill-posed [117]. To solve this, regularisation can be
introduced to constrain the possible range of solutions to a sub-set of a priori expected values.
However, this inevitably introduces inaccuracies and a dependency on introducing information
based on prior expertise.
To illustrate the implications of an ill-conditioned problem on the solution space, consider the
example for determining the x-coordinate of the intersect in Fig. (2.9c) as an inverse problem.
The equation of the blue line is 𝑦 = 𝑥+ 1, and the equation of the red line is 𝑦 = 0.8𝑥+ 1.1.
The problem of determining the coordinate of intersection can be written as a system of linear
equations:

𝐴𝑏 = 𝑐,
[

1 −1
0.8 −1

][

𝑥
𝑦

]

=

[

−1
−1.1

]

, (2.101)

where 𝐴 can be interpreted as a linear mapping from the coordinates 𝑏= [𝑥,𝑦]𝑇 to the y-intercept
values 𝑐. To find the solution where the two lines have a common coordinate, we simply invert
the matrix on the left and multiply by the right-hand side:

𝑏 = 𝐴−1𝑐,
[

𝑥
𝑦

]

=

[

1 −1
0.8 −1

]−1[
−1
−1.1

]

. (2.102)

The inverse of 2×2 matrix is a well-known problem, which can easily be solved by hand. How-
ever, for any arbitrary real- or complex-valued matrix can be inverted using a Moore-Penrose
pseudo-inverse by computing the singular value decomposition (SVD).
The SVD of a matrix is similar to an eigendecomposition of a matrix, but it generalises to non-
square matrices by squaring it and then finding the eigenvalues and eigenvectors. The idea is
to decompose a matrix 𝐴 into an orthonormal set of left singular vectors 𝑈 and right singular
vectors 𝑉 which are related by a diagonal matrix Σ composed of scalar singular values 𝜎:

𝐴 = 𝑈Σ𝑉 𝑇 . (2.103)

To calculate these matrices there are two major steps which use the orthonormal properties
𝑈𝑇𝑈 = 𝑉 𝑇𝑉 = 𝐼 . Firstly, the matrix squared to find an expression for the right singular vectors
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and the singular values by eigendecomposition:

𝐴𝑇𝐴 = 𝑉 Σ𝑇𝑈𝑇𝑈Σ𝑉 𝑇 ,

= 𝑉 Σ𝑇Σ𝑉 𝑇 , (2.104)

where the eigenvalues 𝜆 and eigenvectors 𝑣 can be found using the condition:

(𝐴𝑇𝐴−𝜆𝐼)𝑣 = 0⃗. (2.105)

Once the eigenvalues are found then the corresponding singular values are 𝜎 =
√

𝜆, and the right
singular vectors are the unit eigenvectors 𝑣̂.
The second step is to determine the left singular vectors by simply rearranging the definition of
the SVD to 𝐴𝑉 = 𝑈Σ. Multiplying 𝐴 by 𝑉 and normalising for the singular values yields the
left singular vectors, and the SVD is complete.
The left singular vectors𝑈 can be treated as a set of eigenvectors which capture fundamental basis
features of the problem. These basis vectors are weighted by the singular values. Importantly,
the singular values are ordered by magnitude (i.e., 𝜎1 ≥ 𝜎2 ≥⋯≥ 𝜎𝑛 ≥ 0 [115]), and give insight
into how important each of the left singular values are for representing the column vectors of in
the original matrix.
The right singular vectors 𝑉 , indicate how much of each left singular vectors (weighted by their
singular value) are required to reconstruct the matrix back into its original form 𝐴. As an intu-
itive example, consider the eigenfaces problem [118], whereby a matrix constructed of images
of peoples faces arranged as column vectors is decomposed by SVD. Each column of the left
singular vectors represents a basis image containing fundamental features of the faces in the pro-
vided data set. These are weighted by the singular values, ordered from most important to least
important. The right singular vectors contain the weights required to reconstruct the original
images from the set of singular-value-weighted left singular vectors.
The SVD of a matrix can be used to determine the pseudo inverse by [115]:

𝐴−1 = 𝑉 Σ−1𝑈𝑇 . (2.106)

Since the singular values matrix is diagonal, the inverse is calculated by simply taking the recipro-
cal of each element. However, the reciprocal of the small singular values associated unimportant
features (e.g., noise) will become the strongest weighted contributions in the inverse matrix and
cause inaccuracies. The ratio of the largest to the smallest singular vector is known as the con-
dition number of the matrix 𝜅 = 𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
, which quantifies the sensitivity of the inversion to small

perturbations in noise contributions of an ill-conditioned problem.
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Returning to the example of the inverse operation to determine the coordinates of intersection of
two lines outlined in Eq.(2.102). Using the SVD to calculate the pseudo inverse yields:

[

𝑥
𝑦

]

=

[

1 −1
0.8 −1

]−1[
−1
−1.1

]

,

=

[

5 −5
4 −5

][

−1
−1.1

]

,

=

[

0.5
1.5

]

. (2.107)

This exact solution is found since the problem is well-posed and relatively well-conditioned. To
investigate the conditioning of the problem, consider again the slight perturbation of 𝜀 = 0.01 to
the second element of the y-intercept:

[

𝑥
𝑦

]

=

[

5 −5
4 −5

][

−1
−1.1+𝜀

]

,

=

[

5 −5
4 −5

][

−1
−1.09

]

,

=

[

0.45
1.45

]

. (2.108)

As expected from the visual inspection of the right plot of Fig. (2.9), the 𝑥 and 𝑦 co-ordinates
have an error of 10% and 3.3% compared with the exact values, for an introduction of only 0.9%
in the y-intercept value. As the gradient of the red line becomes increasingly similar to the blue
(but the y-intercept value is adjusted to maintain a true intersection of the lines at [0.5,1.5]𝑇 ,
e.g, 𝑦 = 0.9999𝑥+1.00005), the addition of an error of the same small error 𝜀 = 0.01 causes the
solution to be very far from the true solution:

[

𝑥
𝑦

]

=

[

1 −1
0.9999 −1

]−1[
−1

−1.00005+𝜀

]

,

=

[

1000.5
1001.5

]

. (2.109)

The sensitivity is due to the amplification of the small singular values in the pseudo inverse
operation. The condition number of the example in (2.108) is 𝜅 = 18.145, whereas in (2.109)
𝜅 = 39998. To improve the condition of the problem, a regularisation can be introduced to
stabilise the problem. One way to do this is to remove the small singular value in the inversion
by setting it to zero. This technique is called a truncated SVD (TSVD). Applying a TSVD to
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(2.109) lowers the condition number to 𝜅 = 1, since there is now only one non-zero singular
value. The regularised problem yields a solution of [−0.525,0.525]𝑇 , which is much closer to
the exact solution of [0.5,1.5]𝑇 than the result of (2.109).
The truncated SVD finds a lower rank matrix which approximates the mapping between inputs
and outputs, without including the small contributing singular vectors. However, if the rank is
reduced too much as the problem becomes increasingly more ill-conditioned, then not enough
linearly independent singular vectors remain to reconstruct the solution accurately. This is equiv-
alent to the problem of an increasingly underdetermined linear system of equations, which also
violates the uniqueness criteria of a well-posed problem. Therefore, the inversion has increas-
ingly many solutions as the problem becomes more ill-conditioned. For this reason, increasingly
ill-conditioned inverse problems are also increasingly ill-posed.
Another way to regularise an ill-conditioned problem is to add a penalty term to a least-squares
optimisation, which favours solutions with a small norm. This suppresses the likelihood of find-
ing a solution which has a large norm due to the amplification of high-frequency components.
Such a technique is known as Tikhonov regularisation, and the magnitude of the amplification
can be tuned using a regularisation parameter, often denoted by 𝜆. When the regularisation
parameter is chosen to be a scalar value, then the Tikhonov regularisation is equivalent to intro-
ducing an additional constraint to a least-squares minimisation problem that the 𝐿2-norm of the
parameter must also be minimised [115]:

argmin
𝑏

{

||𝐴𝑏− 𝑐||22+𝜆2||𝑏||22
}

. (2.110)

Regularisation is used to improve the condition of an inverse problem. However, in cases where
the ill-conditioning is extreme, the stability condition is violated, and the problem becomes ill-
posed. In these cases, introducing regularisation is a method of reformulating the problem to
become well-posed.
Numerous other regularisation techniques exist to improve the conditionality of the inverse prob-
lem. It is important to introduce regularisation, which constrains the solution based on prior ex-
pertise and reasonable assumptions about the problem. There is also a risk of over-regularising
a problem, e.g., using a large regularisation parameter 𝜆 or truncating too many singular values,
which can result in reducing the accuracy of the solution because there are not enough singu-
lar vectors to reproduce the solution, or the high-frequency components often associated with
smaller singular values are suppressed and information is lost.
In the context of diffuse optical imaging, the aim is to invert the measured distribution of diffused
light at the detectors to reproduce the optical parameters which were the underlying cause of the
distribution. Since the photon diffusion approximation (Eq.(2.96)) is a smoothing kernel in space
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and time. The resulting forward model, consisting of convolution integrals with this kernel,
will cause a dampening of the high-frequency components of the direct imaging information.
Upon inverting, the dampened high-frequency components will be associated with small singular
vectors that cause the problem to become increasingly ill-conditioned for an increasing number
of transport mean free path lengths, and the problem quickly becomes ill-posed. As a result, the
inverse problem of image reconstruction in diffuse optical imaging in highly diffusive materials
often has many plausible solutions which are highly sensitive to small noise perturbations in
the measured data. To overcome this regularisation in the form of a priori, expectations of
the solution need to be introduced to reformulate the problem as a well-posed problem with a
constrained solution space.
Numerous computational techniques have been developed to improve the condition of the in-
verse problem by combining physical models of photon diffusion with regularisation, such as
total-variation (TV-norm), Tikhonov, L1-norm and L2-norm, to dampen or remove the small
contributing basis vectors during the inversion process [11, 12, 72, 75, 98, 119–121]. Informa-
tion theoretical regularisation approaches have also been used to co-register a priori anatomical
images from high-resolution modalities with diffuse reconstructions to improve the accuracy of
the results [122]. More recently, the inverse problem has been tackled by fusing physical mod-
els with learned, data-driven priors in machine learning frameworks for computational imaging
inverse retrievals [13, 123–125].
The following chapters of this thesis study the ill-posed problem of diffuse optical imaging using
indirect imaging information in the spatial distribution of photons transmitted through a highly
diffusive material. The concepts discussed here, such as the condition number, are used as indi-
cators of the difficulty of image reconstruction for different regimes. The sensitivity of the so-
lution to perturbations of the measurements is an important consideration for critically ill-posed
problems when imaging beyond the regime of 100𝓁∗ and a probabilistic inverse model that can
be used to assess the diversity of solutions for imaging in this extreme regime is introduced in
Chapter 5.



Chapter 3

The role of late photons in diffuse optical
imaging

Most techniques to image through diffusive materials aim to isolate ballistic or snake photons
which maintain their initial direction of propagation and preserve spatial coherence. As discussed
in Section (2.5), these photons take the most direct path to the detector and therefore arrive
the earliest. Isolating the earliest arriving photons using time-resolved techniques removes the
less coherent diffuse photons from the signal and a direct image of absorbing regions behind or
embedded inside the material can be directly resolved.
However, ballistic photons are exponentially suppressed with an increasing number of transport
mean free path lengths of propagation in the material, and when imaging through > 80𝓁∗ the
rate of detection is roughly equivalent to one ballistic photon per age of the universe. Therefore,
when using time-resolved methods in the highly diffusive regime, early photon methods fail,
since even the first photons to arrive are diffuse photons.
In this chapter, the role of late photons for image reconstructions in the highly diffuse regime
> 80𝓁∗ is studied using experimental data and the regularised least-squares image retrieval algo-
rithm developed by the authors of [12]. Findings show that indeed early photon imaging methods
fail to improve the quality of reconstructed images, and surprisingly, reconstructed images using
exclusively late photons have comparable fidelity. The main conclusion of this study is that, in
the highly diffusive regime, there are no coherent photons containing direct imaging informa-
tion to perform early photon imaging techniques. Therefore, the inversion algorithm is instead
sensitive to the indirect imaging information embedded in the full profile of the spatiotemporal
distribution of photon counts.

59
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3.1 Introduction

Most techniques to image through highly scattering materials aim to isolate ballistic or snake
photons that maintain spatial coherence and preserve direct imaging information. These photons
can be filtered using time-resolved equipment to perform early photon imaging, which time-gates
the first arriving photons at the detector, as described in Section (2.5.1). However, early photon
imaging is restricted to weakly scattering regimes since the number of photons that weakly inter-
act with the material is exponentially suppressed with increasing transport mean free path lengths
(TMFPs). This is illustrated in Fig. (3.1), which shows simulated examples of time-gating for
early photons for increasing TMFPs using the model described in the following subsection (Sec-
tion (3.2)). The enhancement of contrast using early time-gating of photons degrades signifi-
cantly beyond 40𝓁∗ when filtering for the first 1% of photons as shown in Fig. (3.1a).
However, in practice, the noise contribution to the signal would prevent perfect filtering of the
small fraction of photons which arrive this early. A more realistic situation is to integrate a
larger portion of the early-arriving photons to improve the signal-to-noise ratio (SNR). Unfor-
tunately, by including later-arriving photons, the contrast enhancement degrades significantly
after only 20𝓁∗, as shown in Fig. (3.1b). Note that the illustration of this figure is for ideal sig-
nals, but in practice, noise contributions and the exponential extinction of photons for increasing
TMFPs would further reduce the contrast enhancement and restricts most early photon imaging
to regimes < 10𝓁∗. Even in ideal conditions, it is clear that early photon imaging fails beyond
80𝓁∗. Most of the detected signal consists of incoherent diffuse photons which have a much
greater SNR but remain unused in early photon imaging.
The internal absorbing and scattering structure of a diffusively scattering material can also be
reconstructed by measuring the intensity distribution of incoherent light re-emitted from the
material [38, 96, 121]. Furthermore, effort has been focused on time-resolved techniques that
use the full spatiotemporal distribution of photon counts to improve the spatial resolution of
reconstructed images [11, 12, 107, 126].
All photons imaging (API) is a technique for imaging through diffusive materials introduced by
Satat et al. [11], which emphasises that the full spatiotemporal profile of the detected photons can
enhance the spatial resolution of reconstructed images. However, this work is in the regime of
relatively weak diffusion (∼ 15𝓁∗), and as a result, there is a resemblance of the target image in
both the time-integrated and early-gated images. The gated image of ballistic photons is also used
to provide a strong initialisation prior for the retrieval algorithm, which would not be applicable
in experiments in the highly diffusive regime, in which the early-gated images have little or
no resemblance to the target object. The API technique also assumes that there is no spatial
information in the temporal profile of the detected photons and subsequently normalises all the
spatial pixels of the measurement by the time traces with the highest signal-to-noise ratio. This
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Figure 3.1: Simulated measurements of a hidden object in the shape of the letter “k” through
increasing number of transport mean free paths. The middle column of each box shows the
enhancement of contrast when early gating a) the first 1% of photons to arrive at the detector
and b) the first 20% of photons to arrive at the detector. The right column in each figure shows
the pixel aggregate time of flight distribution, where 𝑡 = 0 integrated up to the red dashed line
indicates the first 1% and first 20% of photons respectively

assumption overlooks the potential to use the diversity in the shape of the time traces at different
detector locations, but admittedly the diversity is most likely negligible in this weakly scattering
regime with a limited solid angle of collection.
Another study published by Proskurin [127] also highlights that there is valuable information
in diffuse photons. The study concludes that late-arriving photons alone can locate embedded
absorbing regions of an otherwise homogeneous scattering material without the aid of any inverse
retrieval algorithm. This technique is demonstrated with a cylindrical phantom with a single
source fibre and a ring of detection fibres arranged around the circumference. In the case of no
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embedded absorber, each detector will measure the same rate of decay of late-arriving photons
with respect to time. When an absorber is placed close to a detector fibre, there is a much faster
decay rate of late-arriving photons since there is an increased probability that highly scattered
photons will be absorbed before reaching the detector. Looking only at the rate of decay of the
late-arriving photons in each detection channel, one can estimate the position of the absorber
without the requirement of an inverse image retrieval algorithm. Unlike the technique of API,
this work does not accurately spatially resolve the shape of a hidden absorbing object. Still, it
indicated that the diversity of time traces in spatiotemporal measurements alone could provide
information about the existence and whereabouts of hidden inhomogeneities. The experimental
results were shown for phantoms corresponding to transmitting photons through ∼ 35𝓁∗ where
the diversity of the time traces of measurements is probably more significant than in the work of
Satat et al. [11].
Realising diffuse optical imaging in practical settings for imaging deep inside the human body
with the goal of replacing modalities such as X-ray or MRI requires a paradigm shift of the field
to image beyond 100𝓁∗ - where early photon imaging techniques fail. The challenge of working
in this highly diffusive regime can be appreciated by considering the attenuation of transmitted
photons through an increasing number of transport mean free path lengths.
The attenuation of ballistic photons is described by the Beer-Lambert law, which depends strictly
on the average distance before either a scattering or absorption event [3, 128–130]:

Φ =Φ0 exp
[

−(𝜇𝑎+𝜇𝑠)𝐿
]

= Φ0 exp
[

−𝐿
𝓁

]

. (3.1)

Note that the exponential trend depends on the number of transport mean free paths 𝓁 = 1∕(𝜇𝑎+
𝜇𝑠) and not the reduced number of transport mean free paths 𝓁∗ = 1∕(𝜇𝑎+𝜇′

𝑠). This is because,
by definition, a ballistic photon is transmitted through a material without any interaction and,
therefore, cannot be described by the reduced scattering coefficient since there can be numerous
scattering events in one reduced scattering length. The reduced scattering coefficient is a com-
bination of the scattering coefficient and the expected angle of scattering (𝜇′

𝑠 = (1−𝑔)𝜇𝑠), which
is used to more accurately describe light diffusion in anisotropic materials (see Section (2.1.3)).
However, it is strictly the scattering coefficient that determines a photon’s mean free path before
a scattering interaction. Therefore the scattering coefficient 𝜇𝑠 is the appropriate parameter to
use in Eq. (3.1).
Early photon techniques also use quasi-coherent snake photons, which have weakly interacted
with the material and only slightly deviate from their initial direction of propagation. The abun-
dance of these photons transmitted to the detector is related to the anisotropy of the material’s
scattering properties. Determining the exact number of snake photons expected to be transmit-
ted through a material is challenging since they have a loose definition with varying degrees of
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interaction. A reasonable estimate can be found by replacing 𝓁 with 𝓁∗ in Eq. (3.1) [131], which
for forward scattering materials such as biological tissue (𝑔 ≃ 0.9) would result in one order of
magnitude reduction in the exponent compared with ballistic photons. This loosely defines the
transition from ballistic to diffusive propagation between 1𝓁∗−10𝓁∗. However, the solid angle
of collection of the detector must also be considered in practice since spatial filtering for spatially
coherent light can extend this point of transition [132]. Note that for isotropic materials 𝑔 = 0,
then 𝓁 = 𝓁∗ and the number of photons which maintain some coherence for early photon imaging
techniques decays as per Eq. (3.1).
When in the diffusive regime (i.e., 𝜇′

𝑠 ≫𝜇𝑎 and the thickness of material 𝐿≫ 𝓁∗) the fluence rate
of diffuse photons Φ measured by a detector with a solid angle of collection 𝛿Ω can be modelled
as [130],

Φ =Φ0
𝛿Ω
4𝜋

exp
[

−
√

3𝜇𝑎(𝜇′
𝑠+𝜇𝑎)𝐿

]

, (3.2)
where Φ0 is the source fluence rate incident on the material.

Figure 3.2: Graph published in [133] showing the number of transmitted ballistic photons trans-
mitted per second (blue line) based on Eq. (3.1) for an isotropic scattering material where 𝓁 = 𝓁∗,
and the number of diffuse photons per second (red line) based on Eq. (3.2), as the transport mean
free path length increases.

Using typical experimental parameters as in the configuration used by Lyons et al. [12] (𝜆 =
808nm, 𝜇𝑎 = 0.09cm-1, 𝜇𝑎 = 16.5cm-1, Φ0 = 1W/cm2, 𝐿 = 5cm, 𝛿Ω∕4𝜋 = 10−6) the expected
transmitted number of coherent (ballistic or snake) photons versus incoherent (diffuse) photons
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can be calculated and compared as shown in Fig. (3.2). The trends show that, even with a rel-
atively high power source of 1W, collecting ballistic photons is restricted to < 50𝓁∗ for this
experimental configuration, and in the regime of most literature ∼ 10𝓁∗ there are approximately
1014 ballistic photons per second corresponding to readily detected microwatt power levels at the
detector. However, in the regime of Lyons et al. [12] beyond 80𝓁∗, it is clear that the only pho-
tons to reach the detector are incoherent diffuse photons. In fact, at ∼ 80𝓁∗, there exist around
10−17 ballistic photons per second, corresponding to one detection per age of the universe. For
this reason, the definition of early photons in the context of this study presented in this chapter
and [133] is defined not by the collection of ballistic or snake photons but as diffuse photons that
arrive before the peak of the time-of-flight distribution.
Although it is known from Fig. (3.2) that there are no coherent photons detected for the measure-
ments made in [12], the purpose of the study presented in this chapter is to demonstrate that the
concept of early photon imaging does not aid the retrieval quality in the highly diffuse regime.
Instead, the late photons contribute significantly to producing higher-quality image retrievals
and sampling the full extent of the temporal statistics of photon counts results in the best image
reconstructions.

3.2 Analytical forward model simulation

Using the solution to the diffusion approximation to the radiative transfer equation (Eq. (2.96))
derived in Section (2.2.1), a simulation of diffuse light resolved in space and time can be con-
structed for homogeneous scattering material with an embedded 2D absorbing object to emulate
the experimental configuration used in [12] and shown in Fig. (3.3). The principle of the simu-
lation is first to use the solution to the photon diffusion approximation Eq. (2.96) to determine
a point spread function (PSF) given parameters [𝜇𝑎,𝜇′

𝑠, 𝑟
]. The plane 𝑟 is chosen to be midway

through the material where the absorber is located. Once the PSF is calculated, it is convolved
with the source’s spatiotemporal profile. The result is multiplied by zeros for every element in
space and time that interacts with the absorbing object. The resulting array is treated as a new
source located midway through the material, and convolving with a second PSF corresponding to
the second slab, the distribution of the light in space and time at the output plane of the material
can be calculated.
Mathematically, the model is an operator (𝑚) which simulates the output profile of diffuse
photons in space and time for a given 2D perfect absorber 𝑚(𝑥,𝑦) embedded inside a homoge-
neously scattering material. The laser pulse profile can be any arbitrary spatiotemporal data cube
𝐼(𝑥,𝑦, 𝑡), but for a femtosecond pulsed laser, the time resolution of the system is determined by
the detector (∼ 10−11s) which is much longer than the pulse duration (∼ 10−13s). Therefore, the
source pulse can be approximated by a 2D spatial profile at a single time-bin width set by the
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Figure 3.3: An illustration of the experimental configuration in [12] that is emulated by the
simulations in this thesis. On the right is examples of simulated images and time traces for a)
0.6cm (10𝓁∗) and b) 6.0cm (100𝓁∗) of material (𝜇𝑎 = 0.09cm-1, 𝜇′

𝑠 = 16.5cm-1), for the hidden
object in the shape of a letter "k" from the EMNIST dataset [134].

resolution of the detector. The laser pulse is convolved with the PSF Φ(𝑟𝑚, 𝑡) using Eq. (2.96)
calculated at the plane of the absorber 𝑟𝑚 =

√

𝑥2+𝑦2+𝐿2
𝑚, where 𝐿𝑚 is the thickness from the

incident surface to the plane of the absorber. The absorption is simulated by element-wise multi-
plying the result by a binary array in the shape of the embedded object 𝑚(𝑥,𝑦)𝑇 repeated for the
number of time-bins 𝑇 . The result is then considered a source located at the plane corresponding
to the location of the absorber which is convolved with a second PSF Φ(𝑟𝑜𝑢𝑡, 𝑡) calculated from
plane of the absorber to the exit plane 𝑟𝑜𝑢𝑡 of the material:

(𝑚) = Φ(𝑟𝑜𝑢𝑡, 𝑡) ∗
[[

𝐼(𝑥,𝑦, 𝑡) ∗ Φ(𝑟𝑚, 𝑡)
]

⊙𝑚(𝑥,𝑦)𝑇
]

, (3.3)

where ∗ represents a convolution and ⊙ is an element-wise multiplication.
Using the convolution theorem (i.e., 𝑓 ∗ 𝑔 ={𝑓}{𝑔}) and appropriately applying zero-padding,
the simulation can be made more computationally efficient:

(𝑚) = Re
[

−1{
{

Φ(𝑟𝑜𝑢𝑡, 𝑡)
}


{

𝜙𝑚⊙𝑚(𝑥,𝑦)𝑇
}}]

, (3.4)

where  and −1 denote a Fourier transform and an inverse Fourier transform, respectively. The
term𝜙𝑚 is the result of the convolution of the laser intensity profile 𝐼(𝑥,𝑦, 𝑡)with the point spread
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function of the fluence rate at the object plane Φ(𝑟𝑚, 𝑡):

𝜙𝑚 = Re
[

−1{ {𝐼(𝑥,𝑦, 𝑡)}
{

Φ(𝑟𝑚, 𝑡)
}}]

. (3.5)

When normalised by the area, the final result is a probability mass function (PMF) of photon
arrival at the detector resolved in space and time. To calculate the fluence or number of photons
at the output, the PMF can be multiplied by the the expected quantities calculated using equations
(3.1) and (3.2). When simulating photon counts it is also important to discretise e.g., by rounding
down to the nearest integer or numerically sampling the PMF using a random number generator.
For the inverse retrievals presented in this chapter, the forward model included in the algo-
rithm developed by Lyons et al. [12] is used. However, the simulations shown in Fig. (3.1) and
Fig. (3.3), and all simulations in the remaining chapters of this thesis, use an amended version of
the forward model in [12] that I have developed in Python. The forward model developed in [12]
and the amended Python version use the same mathematical principles described in this section.

3.3 Methods

The methodology of this numerical study of early- and late-arriving photons is to use experimen-
tal data and inversion methods developed by Lyons et. al. [12] to investigate the contribution of
different segments of time-of-flight data to the final image reconstruction. This is performed by
truncating the data for different segments of time by replacing the actual values with zero and
assessing the impact on the reconstructed image quality. The simulated data are truncated in
the same way to avoid large gradients due to the residual between the zero’d time-bins and sim-
ulated values. The results are quantitatively compared using image comparison metrics which
were chosen to indicate the accuracy of determining the location of the hidden object and the
similarity in shape between the target and the reconstructions.

3.3.1 Experimental layout

The experiment described in [12] consists of a hidden absorbing piece of black tape in the shape
of the letters “A” and “X” placed between two pieces of polystyrene foam as shown in Fig. (3.3).
A pulsed laser beam (808nm, 1W, 130fs, 80MHz) was expanded using a diverging lens to 5cm di-
ameter and aligned along the same optical axis as the centre of the hidden object and the detector
array.
The detector is a single photon avalanche diode (SPAD) array developed by Richardson et. al.
[33] and commercialised by Photon Force. There are 32x32 SPAD pixels in the array, each have a
built-in time-to-digital (TDC) converter which produce a time-tag label with 55ps resolution. The
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time-tags are used to produce a histogram of the time difference between the laser pulse emission
and the arrival time of the photon for every pixel in the array. This results in a spatiotemporal
distribution of photon counts at the detector.
The TDC of each SPAD is 10-bit and so has an upper limit of 1024 possible time-tag values.
However, the first time-bin is used to record when no photon is detected within one period of
the laser repetition rate which results in an upper limit of 56.265ns. Furthermore, since the
repetition rate is 80MHz, the TAC is restricted to approximately 12.5ns and therefore only 230
time-bin values are used in the TPSF. For this experimental configuration, the total time spread
of photon arrivals above the noise level is less than 6ns and so only 100 time-bins are used in
the image reconstruction process to reduce computational memory requirements. An example
of the preprocessed data when integrated in time is shown in Fig. (3.4) which demonstrates that
there are no discernible features of the ground truth image present, even when time-gating the
data for early photons. However, it is the full spatiotemporal profile that is used as input to the
reconstruction algorithm. Note that the data presented in the bottom row of Fig. (3.4) is smoother
due to increased filtering of the data during preprocessing performed by the authors of [12]. The
time-gated unprocessed data can be found in [12], which also shows no resemblance of the target.
The material properties were determined to be 𝜇′

𝑠 = 16.5cm-1 and 𝜇𝑎 = 0.09cm-1 by the authors
of [12], corresponding to a transport mean free path length of 𝓁∗ = 603𝜇m. Since the thickness
of each polystyrene slab is 2.5cm, the total length of material is equivalent to 83𝓁∗.

Figure 3.4: The ground truth images and early photon time-gated images of the preprocessed
data used in [12] and [133]. From left to right shows integrating the first 1%, 10%, and 20%
of photon arrival times as well as integrating over all arrival times. The data for the "X" in the
bottom row looks smoother because it has been filtered more during preprocessing by the authors
of [12]. The time-gated unprocessed data can be found in [12] which also shows no resemblance
of the target.
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3.3.2 Image retrieval algorithm

To reconstruct the hidden object from the measurements at the SPAD array, the iterative regu-
larised least-squares algorithm developed by Lyons et al. [12] was used. A least-squares optimi-
sation is a convex formulation of the problem as discussed in Section (2.6) whereby the square
of the residual between the measured data 𝑌 and the output of the forward model (𝑚) (Eq. 3.3)
is minimised to find the hidden object 𝑚:

argmin
𝑚

{𝑂(𝑚)} = argmin
𝑚

{

||(𝑚)−𝑌 ||22+𝜆1||𝑚||𝑇𝑉 +𝜆2||𝑚||1
}

, (3.6)

where ||𝑚||𝑇𝑉 and ||𝑚||1 are the total variation norm and 𝐿1-norm regularisers weighted by the
regularisation parameters 𝜆1 and 𝜆2 which are tunable parameters. The effect of the regularisation
parameters is discussed in more detail in the following subsection (Section (3.4)).
This minimisation can be solved iteratively using gradient descent:

𝑚(𝑘+1) = 𝑚(𝑘)−𝛼𝑂′(𝑚), (3.7)

where 𝑘 is the iteration number, 𝛼 is the step size and 𝑂′(𝑚) is the gradient of the loss function
𝑂(𝑚) in Eq. (3.6).
Reconstructing an image of a hidden absorbing object from diffused light is an ill-posed problem
and ill-conditioned. As a result, small changes due to small noise contributions in the input can
lead to large errors in the solution that can be very far from the true target in the space of solutions
but still satisfy the minimisation of the residual term in Eq. (3.6). To constrain the problem and
achieve more accurate results, the possible solutions of the minimisation which are less likely
are penalised using regularisation terms. The regularisation terms is the addition of a priori
information which explicitly bias the solution to contain known physical characteristics of the
target object.
The first regularisation term enforces the total variation norm (TV-norm) to be minimised. The
TV-norm is the sum of the gradient of the image:

||𝑚||𝑇𝑉 =
∑

𝑖,𝑗

√

|𝑚𝑖,𝑗 −𝑚𝑖+1,𝑗|
2+ |𝑚𝑖,𝑗 −𝑚𝑖,𝑗+1|

2. (3.8)

A small value of the TV-norm promotes uniformity in the image whilst preserving sharp step-
like features. The inclusion of this regularisation term is motivated by the expectation of the
reconstructed image to contain a binary shape with a constant value in its interior and sharp
boundaries around the edges [12].
The second regularisation term minimises the 𝐿1-norm of the reconstruction. This norm is the
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absolute sum of all of the pixel values in the image:

||𝑚||1 =
∑

𝑖,𝑗
|𝑚𝑖,𝑗| (3.9)

where |.| denotes the absolute value. The effect of minimising this norm is to promote sparsity; in
other words, it increases the number of pixels with the value zero. The motivation for using this
regularisation term in this context is because the reconstructed image is expected to be binary
whereby the area of the object consists of value one on a background of zeros [12].
A derivation of the gradient 𝑂′(𝑚) of the loss function 𝑂(𝑚) described in Eq. (3.6) is presented
in Appendix (A).

3.4 Image reconstructions with early and late photons

It is demonstrated in Fig. (3.2) that no ballistic photons exist in measurements beyond 80𝓁∗.
Therefore, in the experimental data, we define early photons as arriving before the peak of the
pixel-aggregated histogram and late photons as arriving after the peak. The experimental data
used in [12] is cropped accordingly to study the sensitivity of the reconstructions to the early and
late segments of the distribution compared with the full spatiotemporal measurement. This is
performed by multiplying each pixel in the data with a unit step function which selects a subset
of the full distribution. The same step function is applied in the forward model to avoid the
retrieval fitting to the regions with zero counts in the measurements.
The image retrieval algorithm described in Section (3.3.2) is sensitive to hyperparameters. The
step size 𝛼 and regularisation parameters 𝜆1 and 𝜆2 can affect the quality of the reconstructed
image. Adjusting each hyperparameter independently and comparing the retrieved images de-
termined that only 𝛼 and 𝜆1 were significantly sensitive and required optimisation. A linearly
spaced coarse-scale parameter grid search was performed for the expected range of both sensitive
parameters. The retrievals scoring the best match with the ground truth image were optimised
further with a fine-scale parameter search. A combination of the mean squared error (MSE)
and the multi-scale structural similarity (MS-SSIM) metrics were used to compare the retrieved
images with the ground truth image.
The MSE is a standard image processing metric which sums the squared residual between the
ground truth image 𝑋 and the reconstructed image 𝑋̂:

MSE = 1
𝑁

𝑁
∑

𝑖
(𝑋𝑖− 𝑋̂𝑖)2, (3.10)

where𝑁 is the number of pixels. This metric determines whether the values in the reconstruction
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directly overlap with the ground truth image. However, in practice, unaccounted experimental
effects such as the incidence angle of the source beam not being exactly normal with the material
surface or lens aberrations from a mispositioned lens could cause the reconstruction to have
accurate structural features that do not perfectly overlap with the ground truth image.
The MS-SSIM metric is particularly suited to quantitatively assessing the structural content of
images when they differ by noise or distortions. The structural similarity (SSIM) metric is
derived by combining functions that compare luminance, contrast and structure between im-
ages [135]. First, the images are blurred by a pre-defined Gaussian blur kernel which is chosen
based on the expected feature sizes and improves the robustness of the measure to noise and
spurious artefacts. A scanning window of the same dimension as the blur kernel calculates the
mean 𝜇𝑥 and 𝜇𝑥̂, standard deviations 𝜎𝑥 and 𝜎𝑥̂, and covariance 𝜎𝑥𝑥̂ for every scan position of
the windows 𝑥 and 𝑥̂ of the ground truth (𝑋) and predicted (𝑋̂) images. The result is a map of
SSIM values can be produced using [135]:

SSIM(𝑥, 𝑥̂) =

(

2𝜇𝑥𝜇𝑥̂+𝐶1
)(

2𝜎𝑥𝑥̂+𝐶2
)

(

𝜇2
𝑥+𝜇2

𝑥̂+𝐶1
)(

𝜎2𝑥+𝜎2𝑥̂+𝐶2
) , (3.11)

where the arbitrary constants 𝐶1 and 𝐶2 are added for stability when the denominator approaches
zero. Taking the mean of the SSIM map in Eq. (3.11) (referred to as the MSSIM) provides
a global estimate of the similarity between images. Multi-scale SSIM is a more general metric
than the single-scale MSSIM described above. In the calculation of multi-scale SSIM, the images
are iteratively blurred and downsampled by a factor of two and the MSSIM of each iteration is
combined by their geometric mean. Each iteration is also weighted, typically with a Gaussian
distribution since the human visual system is optimal in the middle frequencies [135]. The MS-
SSIM metric can have values [−1,1] where one corresponds to the maximum similarity between
the images, zero corresponds to no similarity, and an MS-SSIM of negative one represents the
maximum dissimilarity between the images. In this work, the Matlab function multissim()
is used to calculate the MS-SSIM metric using the default arguments.
The purpose of comparing the retrieved images with the ground truth with the absolute error
metric of the MSE is to give an insight into the accuracy of the object’s location compared with
the position of the ground truth. Whereas, the MS-SSIM metric quantitatively asses the similar-
ities in the geometric features. If the images are identical, the MSE is zero, and the MS-SSIM is
one.

3.4.1 Results

The results in Fig. (3.5) show that using late photons exclusively can reconstruct images with
comparable fidelity compared to using early photons exclusively in the highly diffusive regime
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Figure 3.5: Figure published in [133] showing the ground truth of hidden object in the shape of
the letter “A” and the optimised reconstructed images (top) for the same experimental data. The
data is exclusively windowed for early- and late-arriving photons and the full time of flight (ToF)
information (left to right). The mean squared error (MSE) and multi-scale structural similarity
(MS-SSIM) metrics are with reference to the ground truth.

Figure 3.6: Figure published in [133] showing the ground truth of hidden object in the shape of
the letter “X” and the optimised reconstructed images (top) for the same experimental data. The
data is exclusively windowed for early and late arriving photons and the full time-of-flight (ToF)
information (left to right). The mean squared error (MSE) and multi-scale structural similarity
(MS-SSIM) metrics are with reference to the ground truth. The purpose of this figure is to show
consistency and validation of the findings in Fig. (3.5) using a second independent measurement
from the same experiment.
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beyond 80𝓁∗ considered. This contradicts the concept of early photon imaging, which aims to re-
move the late photons since they have less direct information. However, as previously discussed,
in the regime > 80𝓁∗, there is no direct imaging information in the early or late photons. Instead,
the diversity of the spatiotemporal distribution of photon arrivals at the detector array contains
indirect statistical information about photon interactions with an absorber. For this reason, it is
better to sample the full distribution to increase the sensitivity of the inverse retrieval algorithm
to find diversity in the shape of time-of-flight (ToF) histograms.
A second independent measurement from the same experiment validates this conclusion is shown
in Fig. (3.6) using a different absorber in the shape of the letter “X”. Similar to the results in
Fig. (3.6), the early photons have lower MSE but higher MS-SSIM than retrievals using late
photons. This can be explained by comparing the common features in the reconstructions of
both figures. Reconstructions with late photons have larger structural features that closely re-
semble the ground truth’s geometry but have regions of blur spanning a large area. Whereas
reconstructions with early photons have less blur, and the structure is less defined. In both cases,
using the full distribution of photons gives the best trade-off between structural definition and
blur. However, this discussion of features present in reconstructions using different time-gates
is likely to be specific to the chosen image retrieval algorithm, and these conclusions cannot be
expected to be general for all algorithms.

Figure 3.7: a) The optimal reconstructed images and image comparison metrics with the ground
truth shown in Fig. (3.5) when including an increasing number of late time-bins in the measure-
ment (bottom row). b) The optimised reconstruction and metrics when including an increasing
number of early time-bins. The trend in both cases shows that including the full distribution of
data provides the most faithful reconstruction.
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The analysis was extended further to quantitatively assess the trend of the reconstruction fidelity
when incrementally increasing the number of late photons included in the data. The results in
Fig. (3.7a) show that increasing the number of late time-bins in the data improves the accuracy
of image reconstructions. Interestingly, this is also true when including an increasing number of
early time-bins Fig. (3.7b). In both cases, the trend in the MSE and MS-SSIM metrics indicate
that including the full distribution of photons produces the most accurate image retrievals, which
have the highest correlation in terms of absolute position and similarity of geometric features
compared with the ground truth shown in Fig. (3.5). This result further validates the conclusion
that the inverse retrieval algorithm is sensitive to the full spatiotemporal distribution of photon
counts and demonstrates that the diversity of every time-bin in every pixel contributes to the final
reconstructed image quality.

3.4.2 Hyperparameter optimisation

Figure 3.8: An example grid search of the step size 𝛼 and the 𝐿1 regularisation weight 𝜆2 which
shows retrievals when using the full distribution of photon arrival times in the measurements
corresponding to the ground truth hidden object “A” as shown in Fig. (3.5). The image com-
parison metrics with the ground truth are shown below each retrieval, where the minimum MSE
and maximum MS-SSIM are highlighted in red. The optimised image reconstruction is found
by further tuning the parameters around the best values indicated in the grid search.
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As discussed above, the quality of the reconstructed images using the minimisation algorithm in
Eq. (3.6) is significantly sensitive to the step size 𝛼 and the 𝐿1-norm regularisation weight 𝜆1.
To optimise these hyperparameters for reconstructions in Fig. (3.7), a 10× 10 grid search was
performed for 108 < 𝛼 < 109 in increments of 108, and 10−11 < 𝜆2 < (3×10−10) in increments
of 3.22×10−11 for a fixed number of 2000 iterations.
A smaller 5×5 grid search of the parameters used for the full ToF reconstruction presented in
Fig. (3.5) is shown as an example in Fig. (3.8). The optimised retrieval is found by further tuning
the hyperparameters around the values in the grid search that correspond to the best metric values
highlighted by red text.
The parameter search in Fig. (3.8) also shows the effect of the 𝐿1-norm regulariser to increase
the number of zeros in the retrieval when the 𝜆2 weighting parameter is increased. Whereas, the
increased step size progresses the minimisation towards a solution quicker for the same number
of iterations. However, a step size too large can overshoot the minima and the solution is further
from the ground truth.
Each retrieval takes around three minutes, which corresponds to > 100 hours computing time
in total to perform all of the hyperparameter grid searches for the reconstructions shown in the
figures of this chapter.

3.5 Conclusion

In the highly diffusive regime beyond 80𝓁∗, no ballistic or snake photons exist to perform early
photon imaging techniques, and all photons measured by the detector are diffuse. The key contri-
bution of this study is to show the importance of sampling of the full spatiotemporal distribution
of detected photon counts when reconstructing images in the highly diffusive regime beyond
80𝓁∗ using the data and retrieval algorithm from Lyons et al. [12]. Contrary to the concept of
early photon imaging, including the full distribution of photon arrival times in the retrieval pro-
cess can improve the accuracy of the reconstructions. Furthermore, using late-arriving photons
exclusively, which are commonly assumed detrimental to the image reconstruction process, can
reconstruct images with similar fidelity to using early photons exclusively. Although none of
the detected photons has direct image information about absorbing regions in the material, the
diversity in the spatiotemporal statistics of photon arrival at the detector array can indirectly pro-
vide information which can be retrieved using the iterative regularised least-squares algorithm
provided with an analytical forward model of diffuse photon propagation. This indirect informa-
tion is critical for developing methods to image beyond 100𝓁∗ where early photon imaging fails,
and can be leveraged to realise the potential of diffuse optical imaging in real-world applications
such as imaging deep inside the human body and brain.



Chapter 4

Information analysis of diffuse photon
measurements

Motivated by the sensitivity study of spatiotemporal measurements of photon diffusion in the
previous chapter, this chapter examines the information contained in the data more closely using
the quantitative information metric of Shannon entropy. Whereas the previous chapter consid-
ered the sensitivity of the inverse retrieval algorithm used in [12] to different segments of the
spatiotemporal distribution of photon counts, the study presented in this chapter is agnostic to
how an image can be retrieved from the measurement and instead considers only the extent of
dependent relationships between input (the hidden object) and the output (spatially-resolved TC-
SPC measurements).
One of the most significant early contributions to the field of time-resolved diffuse optical imag-
ing was the validation of the computationally inexpensive solution to the photon diffusion approx-
imation to the radiative transport equation by Patterson et al. [21] (Eq. (2.96)). In the conclusions
of this work, they speculate that there is much to be explored by studying the temporal evolution
of light as it propagates in diffusive media, and that this temporal information is likely to have
a key role in aiding image retrieval processes to locate absorbing inhomogeneities in the human
breast and brain non-invasively. They claim that this computationally inexpensive alternative to
Monte Carlo models could present an opportunity to create efficient simulations to allow studies
to gain insight about the importance of the time evolution of light propagation through diffu-
sive materials. However, aside from observation that using the moments of the time-of-flight
distribution reduces the ill-conditioning of the inverse problem of image retrieval [97,105], liter-
ature refers to time-resolved measurements as a method of gaining “superior information” com-
pared with continuous-wave and frequency-domain techniques, but do not explicitly quantify
the contribution of this additional information content in the time dimension for reconstructing
images [98, 104, 107, 136].

75
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The conclusion of the previous chapter was that measuring spatially-resolved photon counts for
the full extent of the temporal impulse response of the material improved the reconstruction of
an embedded absorbing object inside a diffusive material. However, it is interesting to compare
the information resolved in space and time with measurements which are resolved only in space
(i.e., continuous-wave configuration). The following information theory study presented in this
chapter will compare measurements resolved in space, time and space-time to quantitatively
evaluate the sensitivity of measuring photon counts in each domain for the task of reconstructing
images.
Furthermore, the quantitative nature of using an information theory approach provides insight
regarding the limits of detecting useful measurements about a hidden object embedded inside a
diffusive material for increasing number of transport mean free path lengths. Although this is a
numerical analysis, the studies presented in this chapter use typical experimental parameters and
idealistic noise considerations to indicate the maximum number of transport mean free paths
which could be imaged through using today’s technology. An experimental validations of the
assumptions used in the numerical models is presented in Section (4.5).

4.1 Quantifying information with Shannon entropy

To quantitatively asses the information content in diffuse light measurements, statistical tools
such as Shannon entropy and mutual information which derive from information theory provide
the most general approach compared with other correlation metrics1.
Shannon entropy describes the expected reduction in uncertainty when observing the outcome
of a random variable. It is the fundamental metric used in the mathematical field of information
theory and best explained using an example. First consider a fair coin toss, revealing the value
has reduced uncertainty by two-fold. To communicate the result of a coin toss, binary values
of one and zero can be used. Therefore there is 1 bit of information in a fair coin toss. Now
consider a fair die which, when rolled, there are six equally likely possibilities. By revealing
the value, the uncertainty is reduced six-fold. To communicate the result of a die roll as a bi-
narised message, at least three bits are needed since two bits can represent only the values from
one to four. Mathematically, the number of bits required to represent six equiprobable outcomes
is log2 6 = 2.58 bits. This defines Shannon information as the number of bits required to com-
municate the reduction in uncertainty given the outcome of a random variable. In the example
of a fair die roll, there is a surplus of 0.42 bits which is redundant when using a 3-bit encoding

1E.g., other statistical linear metrics such as Pearson’s correlation coefficient or non-linear approaches such as
Spearman’s rank correlation coefficient are restricted in their generalisation to complicated dependent relationships
in data sets and make assumptions about the underlying statistics of the variables. Information theory metrics such
as mutual information do not make prior assumptions about the distribution of variables and are sensitive to any
dependent relationship type [137].
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scheme. This highlights the difference between the information content due to the distribution
of the random variable (2.58 bits) versus the information contained in the distribution used to
encode and represent the variable (3 bits).
The trivial example of rolling a die above assumes that each roll has an equal probability. If a
biased die is used which has two identical faces then the number of outcomes is reduced to five
with probabilities {1

3 ,
1
6 ,

1
6 ,

1
6 ,

1
6

}. In which case, the expected value determines the number of
bits [138]:

𝐻(𝑋) = −
𝑁
∑

𝑖
𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖), (4.1)

where 𝑋 = {𝑥1,𝑥2, ...,𝑥𝑁} denotes random variable (in this case the possible outcomes of each
die roll) and 𝑝(𝑥𝑖) is the probability of sampling the 𝑖𝑡ℎ outcome. The expected value of the
reduction in uncertainty measured in bits in Eq. (4.1) is known as Shannon entropy and is the
general form of Shannon information used as the foundation for the majority of information
theory. Note that the negative sign is due to using probability as an argument to the logarithmic
function, which is the reciprocal of the reduction in uncertainty used in the definition of Shannon
information above. Continuing with the example of the biased die, the entropy/information of the
distribution of outcomes is 2.25 bits, this is lower than for the unbiased case since, although there
are still six sides to the die, there is less surprise when observing the outcome that is labelled on
two of the sides.
The examples above assume all events are independent; however, this is often not the case.
If, by some magic, rolling a six on an unbiased die causes it to be modified such that it be-
comes more likely to roll a four on the subsequent roll, then this results in a dependency in the
statistics between these outcomes. The governing statistical criteria to determine dependence
between two random variables is that when the product of the marginal distributions is equal
to their joint distribution, then the variables are independent, i.e., the independence criterion
𝑃 (𝑋)𝑃 (𝑌 ) = 𝑃 (𝑋,𝑌 ) is only true if variables 𝑋 and 𝑌 are statistically independent. In the con-
text of the example, for a fair die, rolling a six or a four both have a probability 1

6 . If the product
of these probabilities is equal to the joint probability of rolling a six followed by a four ( 1

36

),
then these outcomes are independent. For clarity, the first variable 𝑋 in this example is the out-
come of the first throw, and the second variable 𝑌 is the outcome of the subsequent throw. If
this independence condition is violated, then a relationship exists between the variables whereby
knowing the outcome of one variable (e.g., the first roll) can reduce the uncertainty about the
outcome of the second variable (e.g., the second roll).
When observing a random variable reduces the uncertainty of another random variable, there
is mutual information between them. This is a measure of how much information is shared
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Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Roll 1 (X) 1 2 3 5 1 2 1 6 3 4
Roll 2 (Y) 4 2 6 4 3 3 4 4 5 3

Table 4.1: An example of data where a biased die is rolled two times for every trial and the
objective is to determine if there is a dependency between the first (X) and second (Y) rolls. Since
only ten trials are used, this data is under-sampled but it is sufficient to serve as an illustration
for calculating independent and dependent information using Shannon entropy.

X=1 X=2 X=3 X=4 X=5 X=6 P(Y)
Y=2 1/10 1/10
Y=3 1/10 1/10 1/10 3/10
Y=4 2/10 1/10 1/10 4/10
Y=5 1/10 1/10
Y=6 1/10 1/10
P(X) 3/10 2/10 2/10 1/10 1/10 1/10

Table 4.2: The joint probability matrix 𝑃 (𝑋,𝑌 ) and marginal distributions 𝑃 (𝑋) and 𝑃 (𝑌 ) for
the data in table (4.1). Note that the Y=1 row is omitted since this case does not occur in the
data set.

between the two variables, which can be calculated by subtracting the amount of independent
information from the total information of each variable. For example, take the fictitious results
of multiple trials of consecutive rolls of a biased die in table (4.1)2. The first step is to determine
the joint probability matrix by calculating the probability of each possible trial outcome. Then
the marginal probabilities are found by calculating the number of times an observable occurs in
the first roll divided by the number of trials, and likewise for the second roll. This information is
displayed in table (4.2) and will serve as a reference for calculating the quantities for determining
mutual information.
The Shannon entropy of each variable in table (4.1) can be calculated with equation (4.1) using
the marginal probabilities in table (4.2), which yields 𝐻(𝑋) = 2.45 bits and 𝐻(𝑌 ) = 2.05 bits.
Likewise, the Shannon entropy of the joint probability distribution is 𝐻(𝑋,𝑌 ) = 3.12. Using
the rule of logs that log𝑎𝑏 = log𝑎+ log𝑏, then the independence criterion becomes a summa-
tion rather than a product of marginals when considering the logarithm of the probabilities, i.e.,
𝑃 (𝑋)𝑃 (𝑌 ) = 𝑃 (𝑋,𝑌 ) becomes log𝑃 (𝑋) + log𝑃 (𝑌 ) = log𝑃 (𝑋,𝑌 ). Therefore, if the summa-
tion of the marginal entropies is equal to the joint entropy, then the information is independent.
However, when the difference is non-zero, there must be shared information between the two
variables. This leads to the definition of mutual information:

𝑀𝐼(𝑋;𝑌 ) =𝐻(𝑋)+𝐻(𝑌 )−𝐻(𝑋,𝑌 ). (4.2)
2Note that there are only ten trials in this data, and the probabilities are severely undersampled. Undersampling

a distribution will cause mutual information to be overestimated. However, the toy data set in this table is sufficient
as a simplified example to illustrate the calculation of independent and mutual information of two random variables.
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For the example data in table (4.1) there is 𝐻(𝑋) = 2.45 bits of information in the first roll
and 𝐻(𝑌 ) = 2.05 bits of information in the second roll which is a combined total information
of 4.5 bits in the data set. Of the total, 𝐻(𝑋,𝑌 ) = 3.12 bits are independent, which leaves
𝑀𝐼(𝑋;𝑌 ) = 1.38 bits of shared information. This quantifies the relationship between the vari-
ables since knowing the observations of either the first roll or second roll exclusively can reduce
the uncertainty about the values in the other roll and provide 1.38 bits of information (i.e., over
half the information about one of the variables is contained in the other).
This is a useful measure of the compressibility of a variable, and this calculation can provide
insight into redundant information in cases where the variables are measuring similar information
(e.g., neighbouring pixels of a camera when imaging a blurry object). Note that in this example,
the value of the second roll is a conditional probability based on the outcome of the first roll. If,
instead, a biased die was used for every second roll which preferentially had outcome four, there
would not be any mutual information since the product of the marginal distributions would equal
the joint probability. In other words, the probability of rolling four is not affected by the outcome
of the first roll.
The expression for mutual information in (4.2) is more commonly expressed as the Kullback-
Liebler divergence (KL-divergence) between the product of the marginals and the joint distribu-
tion [139, 140]. The KL-divergence is a statistical measure of how similar distributions are. It
can be used to calculate the statistical distance between the product of the marginal distributions
and the joint probability distribution, which is equivalent to mutual information. This can be
proved by rewriting (4.2) using the explicit form of entropy in (4.1). The derivation of the mu-
tual information expressed as a KL-divergence below uses the rule of logarithms, a substitution
trick of using ∑

𝑋,𝑌 𝑝(𝑥|𝑦) =
∑

𝑋,𝑌 𝑝(𝑦|𝑥) = 1 to get double sum operators, and the use of the
product rule 𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥) = 𝑝(𝑥,𝑦) to calculate the joint probability:

𝑀𝐼(𝑋;𝑌 ) =𝐻(𝑋)+𝐻(𝑌 )−𝐻(𝑋,𝑌 )

= −
𝑀
∑

𝑖=1
𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)−

𝑁
∑

𝑗=1
𝑝(𝑦𝑗) log2 𝑝(𝑦𝑗)−𝐻(𝑋,𝑌 ),

= −
𝑀
∑

𝑖=1

[

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)× (1)
]

−
𝑁
∑

𝑗=1

[

𝑝(𝑦𝑗) log2 𝑝(𝑦𝑗)× (1)
]

−𝐻(𝑋,𝑌 ),

= −
𝑀
∑

𝑖=1

[

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)×

( 𝑁
∑

𝑗=1
𝑝(𝑦𝑗|𝑥𝑖)

)]

−
𝑁
∑

𝑗=1

[

𝑝(𝑦𝑗) log2 𝑝(𝑦𝑗)×

( 𝑀
∑

𝑖=1
𝑝(𝑥𝑖|𝑦𝑖)

)]

−𝐻(𝑋,𝑌 ),

= −
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝(𝑦𝑗|𝑥𝑖)𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)−

𝑁
∑

𝑗=1

𝑀
∑

𝑖=1
𝑝(𝑥𝑖|𝑦𝑖)𝑝(𝑦𝑗) log2 𝑝(𝑦𝑗)−𝐻(𝑋,𝑌 ),
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= −
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝(𝑥𝑖,𝑦𝑗) log2 𝑝(𝑥𝑖)−

𝑁
∑

𝑗=1

𝑀
∑

𝑖=1
𝑝(𝑥𝑖,𝑦𝑗) log2 𝑝(𝑦𝑗)−𝐻(𝑋,𝑌 ),

= −
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝(𝑥𝑖,𝑦𝑗) log2 𝑝(𝑥𝑖)𝑝(𝑦𝑗)+

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝(𝑥𝑖,𝑦𝑗) log2 𝑝(𝑥𝑖,𝑦𝑗),

=
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝(𝑥𝑖,𝑦𝑗) log2

( 𝑝(𝑥𝑖,𝑦𝑗)
𝑝(𝑥𝑖)𝑝(𝑦𝑗)

)

, (4.3)

=𝐷𝐾𝐿(𝑃 (𝑋,𝑌 )||𝑃 (𝑋)⊗𝑃 (𝑌 )). (4.4)

Later in this chapter, the measures of Shannon entropy, mutual information and joint entropy are
used to analyse the information content contained in measurements of photon diffusion. First,
however, a study that uses these concepts to analyse the information in time-resolved measure-
ments of multipath echoes is presented. Although this study is not of photon diffusion, it analyses
the importance of sampling the full temporal distribution of the signal in macroscopic specular
scattering settings. In the context of this thesis, it serves as an example of using information
theory analysis to gain insights into multiply scattered signals.

4.2 Information in multipath echoes

Recently, Turpin et. al. [14] showed that supervised machine learning algorithms can reconstruct
three-dimensional images using only the one-dimensional time-of-flight data of an optical pulse.
In later studies, it was found that the high reflectivity of surrounding walls in the room when us-
ing radar and acoustic devices, the time-of-flight consisted of return echoes which experienced
multiple reflections around the environment before reaching the detector (Fig. 4.1a-b). The prin-
ciple of using joint entropy as a metric for quantifying the additional independent information
was used in a separate study to analyse the importance of multipath radar information.
Comparing the information content of echoes which experience up to 𝑛 bounces compared with
up to 𝑛−1 bounces showed that this additional diversity of the data leads to improved image re-
constructions (Fig. (4.1d)) [141]. This analysis helps to explain why the neural network proposed
in [14] performs better when provided data containing later arrival times since the additional
multipath information helps break the degeneracy of possible solutions.
The following study presented in this subsection was my contribution to the published work
presented in [141]. Given an ensemble of simulated multipath echo data generated by the co-
authors of this study, an information theory analysis was developed to analyse the additional
information in consecutive echo bounces. The results correlate closely with a sensitivity analysis
Fig. (4.3d) of the proposed machine learning image reconstruction algorithm performed by the
co-authors using the same data set.



CHAPTER 4. INFORMATION ANALYSIS OF DIFFUSE PHOTON MEASUREMENTS 81

(a)

(b)
(c)

Time (ns)

co
un

ts
 (

a.
u.

) D
epth (m

)

Emitter &
Receiver

ToF camera
M

S
E

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10

(d)

0 20 40 60 80 100
0

2

4

6

R
econstru

ction exam
p

les

Figure 4.1: Figures produced by the co-authors of [141]. a) A diagram of the simulated experi-
ment. b) An example time-of-flight distribution of a return echo. c) A depth image of the scene.
d) The mean square error (MSE) between the reconstructed and true depth maps when the ma-
chine learning algorithm is given echo data with increasing multipath contributions. Example
reconstructions are shown for input ToF traces containing up to one, four, and ten scattering
events.

4.2.1 Method

The simulations produced by the co-authors of [141] used stochastic random sampling of a ray-
tracing model for 2000 different environments. The environments were created by randomly
positioning a cuboid pillar in a perfectly reflective square room (Fig. (4.1a)). A total of 10,000
samples were used to simulate time-of-flight (ToF) echoes (Fig. (4.1b)), which have scattered in
the environment up to one time, two times, three times, etc.
The arrival time of an echo with one reflection could appear within a range of time values, so
directly comparing the mutual information between the counts at each time-bin is non-trivial.
Instead, the ToF distributions were simplified by binarising the counts such that any time-bin
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containing a count to one and zero otherwise. Matching ToF distributions containing the echo of
only a single bounce from the environment were then grouped into classes with unique integer
identifiers.
A probability mass function (PMF) can then be determined by calculating a normalised histogram
of the number of ToF distributions in each class. The PMF represents the probability of observing
a binarised ToF distribution produced from echoes which have experienced only a single bounce
before returning to the detector. This process is repeated for ToF distributions containing 𝑛
bounces.
The analysis aims to determine the additional independent information in binarised ToF distri-
butions containing 𝑛 bounces (𝑌 ) compared with 𝑛−1 bounces (𝑋). Using Shannon entropy
as a measure of information, the conditional entropy 𝐻(𝑌 |𝑋) of the PMF 𝑃 (𝑌 |𝑋) is the met-
ric which addresses this aim. The interpretation of this conditional entropy is to consider the
diversity of the ToF containing 𝑛 bounces, which are otherwise identical for 𝑛−1 bounces.

Figure 4.2: Venn diagram of the relationship between the marginal entropy of 𝑋 (blue) and 𝑌
(red) with conditional entropies 𝐻(𝑋|𝑌 ) and 𝐻(𝑌 |𝑋) and mutual information 𝑀𝐼(𝑋;𝑌 ). The
joint entropy 𝐻(𝑋,𝑌 ) is the combined area outlined in black of the intersecting circles.

Intuitively, data 𝑌 also contains information of 𝑋; therefore, to find the additional information
exclusive to 𝑌 , the mutual information can be subtracted from the total information in 𝑌 : 𝐻(𝑌 )−
𝑀𝐼(𝑋;𝑌 ). Rearranging Eq.(4.2) gives the equivalent expression that the joint entropy (i.e.,
the independent information) subtracted by the entropy of 𝑋, 𝐻(𝑋,𝑌 )−𝐻(𝑋) also leaves the
additional independent information contained in 𝑌 . The Venn diagram shown in Fig. (4.2) is
a helpful illustration of these relationships, where the objective, in this case, is to identify the
independent information in 𝑌 given knowledge of𝑋, 𝐻(𝑌 |𝑋). The interpretation of the problem
from the perspective of conditional entropy is to consider the diversity of the ToF containing 𝑛
bounces, which are otherwise identical for 𝑛−1 bounces.
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It is useful to note that the mutual information can go to zero if 𝑋 and 𝑌 are completely indepen-
dent, but the joint entropy has a lower bound of the marginal entropy with the largest value. This
indicates that the second variable with less entropy shares all its information with the first vari-
able. When the marginal entropy of a variable is equal to the mutual information, the additional
independent information provided by the other variable is simply the difference in marginal en-
tropies. This should be the regime for this study where the echo time traces for 𝑛 bounces should
contain all of the information of 𝑛− 1 bounces. However, since the data was independently
stochastically sampled for each scene to have up to 𝑛 bounces, in some cases, the 𝑛−1 data could
provide a minor improvement in independent information. The more robust method of calculat-
ing 𝐻(𝑌 |𝑋) =𝐻(𝑋,𝑌 )−𝐻(𝑋) was used to treat any additional information due to stochastic
sampling as independent.

Figure 4.3: a) The additional independent information 𝐻(𝑌 |𝑋) =𝐻(𝑋,𝑌 )−𝐻(𝑋) when cap-
turing multipath echo data which has experienced increasing number of bounces around the
scene. Surprisingly, the gain in information when measuring echoes which have experienced
up to two bounces is more than the direct reflection (1 bounce). b) A rendered scene produced
by the co-authors of [141] showing a mannequin in a room showing the “hall of mirrors” effect
where: black = one bounce, red = up to two bounces, light blue = more than two bounces. The
additional bounces of an echo contain information about different perspectives of the scene.

4.2.2 Results

The results shown in Fig. (4.3a) indicate that, surprisingly, there is a larger gain in independent
information when measuring echo ToF distributions that have experienced two bounces com-
pared with the direct line-of-sight one-bounce reflections. This can be visualised as a “hall of
mirrors” effect in Fig. (4.3b) where it is clear that echoes that have experienced more than one
bounce contain information about different perspectives of the scene that would otherwise be
inaccessible from the direct line-of-sight.
Echoes containing more than two bounces give decreasing independent information about the
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scene. This suggests that the inclusion of later bounces adds increasingly redundant information,
which can be explained by echoes that have experienced fewer bounces. Multipath echoes which
experience more than five bounces do not significantly add any new independent information.
However, the ToF distributions were binarised to simplify the information calculations. The di-
versity in the number of counts at each time-bin would also add more independent information in
practice. The machine learning reconstruction algorithm almost certainly uses the amplitude of
the ToF distribution to break the degeneracy between similar ToF distributions further. Neverthe-
less, the simplified problem gives significant insight into the information content in multi-bounce
time-of-flight data. Incorporating amplitude into the calculation would require many more sam-
ples to approximate the relevant population distributions.
Although this study is not an analysis of diffusion, it is a study of specular scattering in a macro-
scopic regime. In the context of this thesis, this analysis serves as an example of how information
theory concepts can provide insight into how late-arriving scattered signals contribute to improv-
ing the quality of image retrieval algorithms. The following section applies the same information
theory concepts to simulations from the diffuse light propagation model outlined in Section (3.2)
to gain insight into resolving measurements in different domains and determine the practical
limits of measuring information through highly scattering materials.

4.3 Information contained in different measurement domains

As concluded in Section (3.4), including the entire spatiotemporal measurement of diffuse pho-
tons improves the image reconstruction quality. However, it remains unclear how important it
is to resolve photon counts in space-time compared with measurements exclusively in space or
time domains. The analysis in this section quantitatively examines the measured information
when resolving re-emitted diffuse light in different domains, which uncovers insights about how
to maximise information collection about hidden absorbing objects inside highly diffusive ma-
terials.

4.3.1 Method

The forward model described in Section (3.2) is used to generate 1024 simulations using pro-
cessed images from the EMNIST data set of handwritten letters [134]. The motivation for using
this set of images as absorbing objects reflects the experimental work of Lyons et al., [12], in
which absorbing black electrical tape was used to create occluded targets between two pieces of
polystyrene foam. This image data set consists of 80,000 28×28 greyscale images of handwritten
letters, binarised using a threshold such that the background is ones and the interior of the letter is
zeros. This image set provided an efficient way of producing a sufficient distribution of relevant
non-trivial targets and simulated photon counting measurements from which entropy values can
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be calculated. Note that a canonical basis set could have been used, such as a pixel-wise raster
scan or the Hadamard basis. However, these sets have sharp edges and common feature sizes,
whereas the chosen image set has a more random set of asymmetric features and curved edges
which is more representative of real-world applications, e.g., identifying boundaries of a tumour.
Each simulation used a uniform "flood" illumination as a source for all 28×28 pixels. Instead
of zero padding, the forward model used padding with all values set to one to prevent high-
frequency edge artefacts in the Fourier transforms. The simulation was configured such that
there is an equal length of scattering material either side of the hidden object plane. The optical
parameters of the diffusive material were chosen to be 𝜇𝑎 = 0.09cm-1 and 𝜇′

𝑠 = 16.5cm-1 to match
the work in [12]. Simulations for the first 1024 images of the binarised EMNIST image set were
calculated from 50𝓁∗ to 1000𝓁∗ in increments of 20𝓁∗ which takes around 12hrs computing time
using just-in-time (JIT) compiled python functions and parallel CPU processing (18-core). The
timing resolution of 55ps was also chosen to reflect the work in [12] and a total length of 500
time-bins ensured that the width of the distribution at 1000𝓁∗ was not clipped (after shifting to
avoid the zero bins at the start of the histogram due to the time delay of the first-arriving photons).
Once simulated as spatiotemporal photon counting distributions, each distribution is normalised
to sum to one, producing a set of probability mass functions (PMF) of resolving a photon in space
and time for each target binary image. To generate an equivalent data set resolved exclusively
in space and exclusively in time, the spatiotemporal PMFs are integrated in time and space,
respectively, and re-normalised (i.e., the marginal distributions are computed). For simplicity,
each pixel in the space domain, and time-bin in the time domain, will be collectively referred to
as “pixels” of the relevant PMF in the remainder of this chapter.
The entropy calculation in each domain is calculated by:

𝐻(𝐶) = −
𝐾
∑

𝑖
𝑝(𝑐𝑖|𝑥,𝑦, 𝑡) log2 𝑝(𝑐𝑖|𝑥,𝑦, 𝑡), (4.5)

where 𝑐𝑖 ∈ 𝐶 is the number of photons with count value 𝑐𝑖 for every pixel coordinate (𝑥,𝑦, 𝑡),
and 𝐾 is the number of bins in the probability mass function 𝑃 (𝐶|𝑥,𝑦, 𝑡). In other words, a
histogram is calculated for every pixel coordinate representing the distribution of photon counts
for the ensemble of 1024 EMNIST hidden targets.
Representing distributions with histograms requires a careful consideration of bin width. After
normalisation, each PMF is multiplied by 108 and discretised by converting from a floating-point
array to an integer array which causes numbers to round down to the nearest whole number. This
is to avoid rounding upwards, which produces more diversity in the data and increased entropy
due to the discretisation process. The integer array can be interpreted as the number of photon
counts in each pixel which can conveniently be histogrammed with a bin width of one. For a
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fair comparison, the PMF in each domain for every number of transport mean free path lengths
are consistently multiplied by 108, which is chosen heuristically by examining the histograms for
random pixels to ensure there is no under-sampling nor oversampling due to the bin width. When
considering real-world experimental parameters, 108 photons would correspond to a reasonable
detected power of 20pW at 𝜆 = 800nm.
To determine the total information in each domain, the entropy 𝐻(𝐶) for every pixel is summed
and the process is repeated for simulated data through increasing number of transport mean free
path lengths.

4.3.2 Results

The results shown in Fig. (4.4) and published in [142] show the Shannon entropy trends on a
logarithmic scale for increasing transport mean free path lengths (TMFPs) for each domain. The
first conclusion of the results in Fig. (4.4) is that measurements resolved in space-time have orders
of magnitude more information than resolving in each domain exclusively. The sharp increase
in space-time information at low TMFPs is due to the broadening of the distribution in the time
domain which is sampled by an increasing number of time-bins. However, since the total number
of pixels remains fixed for increasing TMFPs, each pixel in the signal has a decreasing average
number of photons which results in less diversity, and hence a decrease in information content
evident in the downward trend after 200𝓁∗. Note that choosing to increase the number of photons
> 108 would shift the peak of this trend to longer TMFPs and vise-versa when using less photons.
In practice, experimental parameters such as collection efficiency, exposure time and acquisition
time of the camera determines the collected number of photons and will increase the information
of the measured signal. Although space-time has the highest information content, the distribution
is spread over more pixels compared with resolving in the alternative domains. The trade-off of
gathering more information with an additional dimension is that there is a lower signal-to-noise
ratio (SNR). This could be problematic in practice when the attenuation of photons is very high
or the measurement is required to have a short exposure time.
This photon budget trade-off is also a limitation when using detectors with higher timing reso-
lution. It was shown in [12] that increasing the timing resolution of the detector results in better
spatial resolution of the reconstruction. Unfortunately decreasing the bin width in the time do-
main will result in an under-sampled histogram in regimes with a low number of collected pho-
tons. Regimes with low photon budget it may benefit by sacrificing resolution in the time domain
to increase SNR and produce a sample distributions which closer resemble the true population
distribution.
The same argument can be made for an increased number of pixels in the space domain (given the
same field of view), since the same number of photons will be spread across a higher number of



CHAPTER 4. INFORMATION ANALYSIS OF DIFFUSE PHOTON MEASUREMENTS 87

Figure 4.4: Figure published in [142] showing summed Shannon entropy of every pixel in the
space-time, space-only (multiplied by 50) and time-only (multiplied by 100) domains for in-
creasing number of transport mean free path lengths (TMFPS). A fixed acquisition of 108 photon
counts was used for all simulated measurements.

pixels. Interestingly, it is expected that the number of pixels, and field of view of the array should
be chosen to maximise the diversity in the spatial distribution. Since the spatial distribution
becomes increasingly smooth (as can be seen in Fig. (3.1)), the field of view should be increased
such that each pixel samples more independent information compared with the neighbouring
pixels. In other words, oversampling the spatial distribution of photons in the highly diffuse
regime may not add significant independent information and cause the signal-to-noise ratio to
decrease.
As expected, Fig. (4.4) shows that the information in space decreases as the spatial features
become increasingly blurred such that the number of photon counts at each pixel becomes less
diverse between hidden object. Interestingly, the information in time increases with TMFPs
since the distribution of photon counts is spread across more time-bins. These arguments can be
visualised from the examples shown in Fig. (3.1) which demonstrates that the integrated space-
resolved photon distributions become increasingly like a two-dimensional Gaussian distribution,
whereas the distribution in time is sampled across an increasing number of time-bins.
The information in time also begins to plateau and is expected to eventually decrease since the
distribution of photon counts in time will become less diverse (tending towards identical Gaussian
distributions) at extreme number of transport mean free path lengths. However, even at 1000𝓁∗

the information in the time domain continues to increase.
Unfortunately, it is unrealistic to assume a collection of 108 photons in the extreme regimes
around 1000𝓁∗ since light is exponentially attenuated with increased thickness, scattering or
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absorption as per Eq. (3.2). This is the topic of the following section which considers practical
experimental parameters and the mutual information of the signals with the pixels of the hidden
object.

4.4 Limits of information transport in diffuse optical imaging

The previous section calculated the absolute information content of signals with a fixed number of
photon counts and ideal noise-free signals. However, to determine how much shared information
there is between the measurement and the pixel values on the hidden target, a mutual information
analysis is required. By also introducing typical experimental parameters and considering noise
contributions in the signal, a prediction of practical limits of transmitting information about a
hidden absorbing target through a scattering material can be deduced.

4.4.1 Method

The mutual information between the pixels of a two-dimensional hidden absorption target and an
𝑛-dimensional measurement is easier to calculate by first transforming the data into some shared
domain. Since the forward model in Eq. (3.3) is a linear operator acting on the image of the
hidden object, a basis set of impulse response functions (IRFs) can be constructed in the mea-
surement domain which maps to every pixel in the object image to a corresponding distribution
of photon counts as shown in Fig. (4.5a). To do this, a set of measurements are simulated for a
pixel-wise raster scan of the value one on a background of zeros. Careful consideration is needed
for the zero-padding boundaries in the forward model. Since the source is a uniform flood illumi-
nation, non-zero contributions of transmitted light in the padding can cause edge artefacts in the
simulated measurement which can be strong contributions that wash out the intended impulse
response from a single pixel in the hidden object plane. For this reason, zero-padding was used
for these IRF simulations rather than padding with ones. Each of the 28×28 = 784 raster scan
non-absorbing pixel images were simulated from 10𝓁∗ to 250𝓁∗ in increments of 10𝓁∗.
The same 1024 binarised EMNIST images used in the previous study (Section (4.3)) are used
in this study to create distribution of hidden absorbing objects. However, the simulations were
amended to have identical parameters as the IRF basis simulations.
When the image set of a pixel-wise raster scan is reshaped such that each image is a column of
the matrix, it is simply the identity, and so projecting the target images of the hidden objects onto
these basis images does nothing since they already exist in this basis. However, the simulated
measurements shown in Fig. (4.5b) need to be mapped into the 28×28 image domain, which is
achieved by projecting them onto the matrix of IRFs.
More concretely, every impulse response is normalised to sum to one and arranged as a column
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in the matrix 𝑄 ∈ ℝ𝑚×𝑛 (Fig. (4.5a)), where 𝑚 is the number of elements in the measurement
domain (i.e., number of pixels and timebins) and 𝑛 is the number of elements in the hidden object
domain (i.e., 28×28 = 784). Each of the 1024 simulated measurements of EMNIST images is
then also normalised such that their sum is equal to one, and they are arranged as one-dimensional
vectors in a matrix𝑅∈ℝ𝑚×𝑁 (Fig. (4.5b)), where𝑁 is the number of hidden objects (1024). The
inner product of these matrices 𝑌 = ⟨𝑅,𝑄⟩ is a set of projection coefficients which determine the
contribution of each basis function that make up the measurements. The projection coefficients
can then be binarised to a high/low value using the mean value as a threshold (Fig. (4.5c)).
After this projection mapping, the problem can be considered a binary symmetric communica-
tion channel whereby every high/low value transmitted by pixels in the hidden object propagates
through a noisy channel of photon diffusion where cross-talk occurs between neighbouring pix-
els. The measurement of photon count distributions resolved in space and time at the detector
is then projected onto a basis, and the mean projection coefficient determines which detection
channels are high/low. This is repeated for each of the 1024 EMNIST objects such that each
channel has a Bernoulli distribution 𝑃 (𝑋) of high/low input (i.e., the distribution of high/low
values for a single pixel over the set of 1024 EMNIST images, as shown by the blue distribution
in Fig. (4.5b)). This input distribution can be directly compared with the corresponding Bernoulli
distribution 𝑃 (𝑌 ) or binarised projection coefficients after the information is propagated through
the noisy channel, as shown by the red distribution in Fig. (4.5c). In this case, the extent of cross-
talk of the noisy channel is determined by the number of transport mean free paths used in the
simulation.
The mutual information between every input and output channel can then be calculated by con-
structing the joint probability distributions𝑃 (𝑋,𝑌 ) =𝑃 (𝑋|𝑌 )𝑃 (𝑌 ) and using the KL-divergence
as derived in (4.3). This calculation is repeated for every pixel and averaged to find the mutual
information between hidden images and output measurements for simulations corresponding to
10𝓁∗ to 220𝓁∗ in increments of 10𝓁∗.

4.4.2 Results

The solid blue curve in Fig. (4.6a) shows the mutual information for increasing TMFPs for space-
time resolved simulations. When repeating the process for space-only measurements (i.e., inte-
grating all simulations in time), the trends show that mutual information is lower when resolving
in space-only (solid red line) compared with space-time. However, the advantage of measur-
ing in space-time diminishes towards 100𝓁∗. The mutual information resolved in time-only was
negligible in comparison for all transport mean free path lengths for the simulated configuration,
and therefore only the space and space-time domains are studied in this section.
To account for the attenuation of photons with increasing TMFPs, each PMF is multiplied by
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Figure 4.5: The pipeline for calculating the mutual information between hidden objects and dif-
fuse photon measurements resolved in the space-only domain. a) First a matrix of basis functions
𝑄 is constructed using the point spread function associated with every pixel in the input. b) A
matrix of measurements 𝑅 is constructed by simulating 1024 binary EMNIST hidden objects.
c) The inner product of the measurements and the basis functions ⟨𝑅,𝑄⟩ produces a matrix of
projection coefficients, which are binarised using the mean value in each column as a threshold.
The mutual information between a pixel at the input 𝑋 (e.g., [18,8]) (blue) and the associated
projections at the output 𝑌S (red) can be calculated using the KL-divergence between the product
of the marginal distributions 𝑃 (𝑋) and 𝑃 (𝑌S) and the joint probability 𝑃 (𝑋,𝑌S) distribution (not
shown).
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the expected number of photons 𝑁ph given by Eq.(3.2), where the solid angle of collection is
𝛿Ω
4𝜋 =10−5 for consistency with previous work [12,133] and the input intensity is a modest 4W/m2
(10mW for a (5×5)cm2 area) which is three orders of magnitude below the British safety limit
for exposure to human skin [143].

Figure 4.6: Figure published in [142]. a) The average mutual information between hidden object
and measurements resolved in space-time (blue) and space (red) for increasing number of trans-
port mean free paths (TMFPs). b) The entropy of each pixel in the set of hidden object images.
c) The mutual information between each pixel in the hidden image and the output resolved in
space-time for 50𝓁∗.
However, the total number of photons is underestimated when rounded to the nearest integer
to quantise the data into photon counts. To overcome this, a gradient descent algorithm was
implemented in python to multiply the PMF by a dummy multiplicative factor until the sum of
photons after quantisation 𝑁q meets the condition 𝑁ph <𝑁q < (𝑁ph+20). Although in practice,
larger absorbing objects will cause increased extinction of photons compared with smaller objects
for the same experimental conditions, it is simpler to instead consider an experiment where the
acquisition time is adjusted to collect same number of photons for each measurement. This is a
conservative assumption which reduces the diversity in the measurements compared with a fixed
acquisition rate but ensures that each measurement has equivalent signal-to-noise ratio.
Quantisation noise due to the discrete nature of photon counting will reduce the diversity of
the photon counts between measurements. However, this only has a significant effect when a
low number of photons is collected. The larger contribution of noise is due to Shot noise since
the variance of any counting statistics will increase noise as the square root of the number of
counts. To include Shot noise contributions, each quantised measurement is replaced with a
value sampled from a random number generator which samples a Poisson distribution 𝑃 (𝑋 =
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𝑘) = 𝜆𝑘𝑒−𝜆

𝑘! , which determines the probability of observing 𝑘 counts given the expected value
𝜆 = 𝔼[𝑋]. In this context, the number of counts in each data pixel is the expected value 𝜆 of the
Poisson distribution. Unlike the case of quantisation noise, the random sampling of Shot noise
causes an increase in diversity of the measurements and the absolute information in terms of
Shannon entropy will increase. However, the variations due to noise will also be independent of
the distribution of pixel values of the hidden object. Therefore, this information will not lead to
an increase in mutual information.
Figure (4.6a) shows that including these practical considerations, the mutual information resolved
in both space-time (blue dashed) and space (red dashed) deviates from the ideal curve only for
regimes > 100𝓁∗. Furthermore, there exists no mutual information in the data beyond 200𝓁∗

which corresponds to ∼ 12cm of tissue (𝜇𝑎 = 0.09cm-1, 𝜇′
𝑠 = 16.5cm-1).

Another key insight is that the number of photons calculated with Eq.(3.2) also goes to zero
around the same number of transport mean free path lengths at the limit of mutual information
shown in Fig. (4.6a) (the quantised data has an average of only 16 photons at 200𝓁∗). Further-
more, the theoretical trends (solid lines) show that mutual information continues beyond 200𝓁∗,
this suggests the surprising conclusion that so long as there is a detected photon, there exists
mutual information at the detector about a hidden object. The impact this has for real-world ex-
periments is that the attenuation of photons is the limitation to imaging in the highly diffusive
regime rather than the loss of information due to cross-talk noise in the process of random photon
scattering.
Figure (4.6b) shows the entropy contained in each pixel of the image set used as the absorbing
objects. An illustration of this for a single pixel is shown by the blue histogram in Fig. (4.5b).
The entropy is relatively uniform in the centre of the image and can be interpreted as where
the information is distributed in space for the given input image distribution. The information
map in Fig. (4.6c) shows the mutual information between the pixels in the hidden objects and
the binarised projection coefficients for space-time resolved measurements through 50𝓁∗. The
distribution of mutual information indicates which pixels preserve the most information when
transmitted through 50𝓁∗ of diffusion. Interestingly, the dark region in the centre corresponds to
losing almost all of the information for these pixel values. This is most likely due to the cross-
talk of neighbouring pixels around the centre region. However, it is clear from the entropy of
the hidden object pixels in Fig. (4.5b) that there is no information transmitted by border regions.
This reduces the blurring cross-talk for the pixels at the edges of the hidden objects, and the
information from these pixels is better preserved.
This analysis is continued in Fig. (4.7d-e) which compares the mutual information maps for
measurements resolved in space-time and space-only for increasing number of transport mean
free path lengths. For weakly scattering materials equivalent to 10𝓁∗, the information about the
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Figure 4.7: a) The entropy of each pixel in the set of 1024 hidden objects. b) The entropy of the
binarised projection coefficients when resolving in the space-time domain for increasing transport
mean free path (TMFP) lengths. c) The same as (b), but using measurements resolved only in
space. d) A map of the mutual information between each pixel at the input and the corresponding
binarised projection coefficients when using measurements resolved in the space-time domain for
increasing TMFP lengths. e) The same as (d) but using measurements resolved only in space. f)
The difference between the mutual information maps presented in (d-e).
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centre pixels of the hidden objects is relatively well preserved.
However, as the number of transport mean free paths tends towards 100𝓁∗ regions of high in-
formation “hot spots” emerge. This mutual information analysis could be used to guide the
design of experiments to sample information about different regions of hidden absorbers using
patterned illumination or patterned detection, e.g., similar to experimental designs of Chen et
al. [90], Konecky et al. [121] and Manohar et al. [144]. There is not a significant difference in
the distribution of mutual information when measuring in space-time compared with space-only
as shown in Fig. (4.7f). The entropy of each basis at the output is also consistently uniform for
both space-time and space as shown in Fig. (4.7b-c) which indicates that absolute measure of
information at the detector is spread evenly over all channels.
The currently accepted theoretical limit of diffuse optical imaging was presented in a study
by Mora et al. [72], that concluded a maximum penetration depth of a time domain diffuse
optical tomography device used in a null source-detector configuration (discussed in Section
(2.5)), is expected to be around 6cm in human tissue, corresponding to roughly 121𝓁∗ round
trip (𝜇𝑎 = 0.1cm-1, 𝜇′

𝑠 = 10cm-1). The analysis performed in [72], determined the maximum
depth of sensitivity to detect a 1cm3 perfectly absorbing object embedded in a (6× 6×6) cm3
homogeneous scattering volume using a Monte Carlo photon diffusion simulation. Experimental
results of this study also show a trivial reconstruction of a black plastic cylinder inside a phantom
scattering volume with a return trip corresponding to around 80𝓁∗.
The limits of diffuse optical imaging in [72] were determined by comparing the difference in
photon counts in a time-gated window which isolated late-arriving photons between the simula-
tions with and without an absorbing object. When the relative contrast is less than 1% then it is
assumed there is no information. However, in this reflection configuration, photons which take
a long optical path in the medium due to multiple scattering in shallow regions of the material
will also be detected in the same time-gate and contribute to a decrease in contrast. Whereas, in
the transmission geometry studied in this thesis, all of the detected photons must have travelled
through the entire medium and are therefore more likely to interact with the absorbing object.
This may be the reason that the limit of information concluded in this thesis (and published
in [142]) is that, so long as there is a photons detected then there is information about internal
absorbing objects embedded inside the material.
The most current experimental limit of detecting photons in transillumination configuration was
demonstrated by Lyons et al. [12], which presented evidence of reconstructing hidden absorbing
objects with a non-trivial geometry through more than 80𝓁∗. In this study, the measurements
were used to reconstruct images rather than the location of a point-like inclusion.
The information study presented in this thesis and published in [142] show that imaging infor-
mation can be detected at more than double the number of transport mean free path lengths
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demonstrated by the currently accepted extreme depth sensitivity in [72] and [12].
However, to validate the claim of transmitting photons through > 200𝓁∗, it must be shown ex-
perimentally that it is possible to detect photons through such scattering materials. This is the
aim of the experiment performed in the next section.

4.5 Evidence of photon transmission beyond 200𝓁∗

To validate the claims made in the previous section that information can be transmitted through
200𝓁∗ using realistic parameters, it is important to demonstrate experimental proof that it is
possible to detect photons in this regime.

4.5.1 Method

An experiment was performed by transilluminating polystyrene foam with an ultrafast pulsed
laser (140fs, 80MHz, 800nm). The laser was coupled to a 5mm diameter liquid light guide and
the output was expanded to 1-inch diameter using a collimator. The diffuse light re-emitted from
the foam was collected by a large aperture lens (Meike MK-35mm, f/1.4) and a single-photon
sensitive photomultiplier tube (PMT) (Hamamatsu H7422P-50) was used to detect photons in
Geiger mode. The solid angle of collection was calculated to be 𝛿Ω = 0.277.
The experiment was performed using TCSPC (Becker and Hickl SPC-150N TCSPC module)
such that the correlation of time-of-arrival of the photons with the laser repetition rate made it
convenient to isolate signal photons from noise, and the time traces could be used to fit the time
distribution to the forward model described in Section (3.2) and extract the optical coefficients.
The instrument response function (IRF) was recorded by replacing the polystyrene foam with a
piece of paper to act as a diffuser which spreads the light in all directions without significantly
broadening the pulse in time. This is a standard technique to ensure that the angular distribution
of collected light is as close as possible to the distribution of collection for the measurements
[145, 146].
Measurements were taken for increasing thicknesses of foam 𝐿 by stacking 𝑑 = 2.58cm±0.01cm
slabs between the source and detector from 𝐿= 5.16cm to𝐿= 15.48cm. The power of the source
was adjusted for every measurement to avoid saturating the detector.
The measured IRF was convolved with the forward model described in Section (3.2) and a least-
squares optimisation was performed to extract the absorption 𝜇𝑎 and reduced scattering coeffi-
cient 𝜇′

𝑠 for each thickness of foam using the function optimize.curve_fit() from the
SciPy Python module. Using these fitted parameters the number of transport mean free paths
can be calculated by 𝐿

𝓁∗ = (𝜇𝑎+𝜇′
𝑠)𝐿.
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The number of signal photon counts was determined as the total counts minus a background
measurement obtained by turning off the laser and acquiring data for the same conditions. For
each thickness of polystyrene, a measurement and a repeat measurement were taken with the
laser on and off. The entire experiment was then repeated twice more to average the effects of
background light changes in the lab (e.g., door opening and closing).

Figure 4.8: Normalised experimental data averaged over two trials (black dots) and forward
model fits (red) for increasing thickness of polystyrene foam. The same 12.5ns time window was
cropped for each set of data. The tail of the distribution from the previous pulse begins to wrap
around and add to the rising edge as the thickness increases. This is due to the fixed period of
the laser repetition rate which is shorter than the total temporal broadening of the pulse.

The mean of the background-subtracted signals for each thickness of foam was used to extract the
optical coefficients 𝜇𝑎 and 𝜇′

𝑠. However, first the signal is cropped to select only 1024 time bins
starting from the time bin corresponding to the peak of the IRF. This will accurately determine
the relative delay caused only by the diffusion of light and removes delay introduced by the
experimental set up (e.g., difference in cable lengths used for the reference and signal electronics
or optical path length of the laser in the absence of the sample). Since the absolute delay is
unknown before the experiment, the TCSPC module was set to use only every fourth reference
pulse from the laser.
Furthermore, the laser repetition rate is fixed at 80MHz which corresponds to 12.5ns. As the time
distribution of the photons broadens longer than the laser repetition period, photons which take
longer than 12.5ns to arrive at the detector will be counted as early photons in the timing window
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of the following pulse. Wrapping causes consecutive pulses to become increasingly overlapped
for greater thicknesses, which can be seen in the experimental data in Fig. (4.8). This wrapping
is unavoidable since the repetition rate of the laser is fixed, however this was accounted for when
fitting for the optical coefficients by adding repeat pulses before and after the timing window in
the forward model.
To determine the extinction ratio, the detected fluence rate Φ is normalised by the initial fluence
rate Φ0. This ratio was found by first converting the measured incident power on the foam to
the number of incident photons by divided by the energy of a photon at 800nm. The incident
number of photons was then divided by the total number of background-subtracted photons at
the detector.
A line of best fit can be used when plotting the number of signal photons in log-scale against
transport mean free path lengths to determine the rate of extinction which can be extrapolated to
estimate the extreme limits of photon detection.

4.5.2 Results

The results shown in Fig. (4.9) show that photons were detected well beyond 200𝓁∗. The black
dashed lines indicate the extinction corresponding to a detection of one photon per second for a
10mW source and a 1W source. The intersection of these dashed lines with the extrapolated line
of best fit indicate that this increase can extend the detection limit by around 50𝓁∗. Furthermore,
extrapolation shows that using a 1W source, an experiment with the same quantum efficiency and
collection can readily detect photons transmitted beyond 300𝓁∗, and improvements in quantum
efficiency of detectors at 800nm could extend this limit even further.
It is important to validate the practical assumptions used in the numerical experiments of the
previous sections using these experimental results. To do this, the experimental best fit to the
data shown by the black line in Fig. (4.9) was normalised by first dividing the experimental solid
angle of collection factor 𝛿Ω

4𝜋 = 0.022 and quantum efficiency (15%), and then multiplying by
the solid angle of collection factor used in the previous numerical studies 𝛿Ω

4𝜋 = 10−5. This new
extinction ratio for the simulated parameters is shown by the red line in Fig. (4.9), where the
uncertainty in the best fit is shown in pale red.
For a clear comparison with the simulation parameters, Eq. (3.2) was used to determine the num-
ber of transport mean free paths corresponding to a transmission rate of one photon per second
for 10mW source power, 𝛿Ω

4𝜋 = 10−5, 𝜇𝑎 = 0.09cm-1, and 𝜇′
𝑠 = 16.5cm-1 used in the previous

numerical studies. The calculated value is denoted by the blue cross in Fig. (4.9), which over-
laps almost exactly with the estimated extinction rate using the experimental data. This validates
the assumptions made in the previous studies and is evidence that the numerical forward model
described in Section (3.2) accurately emulates photon diffusion propagation for homogeneous
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Figure 4.9: The experimental extinction Φ∕Φ0 for increasing transport mean free paths (TMFPs)
and the optimised line of best fit. The experimental solid angle of collection factor is 𝛿Ω∕4𝜋 =
0.022 and the detector had a quantum efficiency (QE) of 15%. The black dashed lines show the
extinction rate corresponding to transmitting one photon per second for an incident power 10mW
and 1W. The red dashed line is the estimated rate of extinction for the simulated parameters
(10mW, 𝛿Ω∕4𝜋 = 10−5, QE=100%) used in the numerical studies in the previous sections of
this chapter. The pale red area is the uncertainty of the estimated rate. The blue cross represents
the number of TMFPs corresponding to a transmission of one photon per second for the simulated
parameters.

materials such as the polystyrene foam used in this experiment.
Although the limits of mutual information using the simulated parameters was found to be around
200𝓁∗ in Section (4.4). The results of this experimental validation suggest that in practice,
larger solid angle of collection, source power and quantum efficiency could extend this limit
well beyond 250𝓁∗ which corresponds to around 15cm of biological tissue (𝜇𝑎 = 0.09cm-1,
𝜇′
𝑠 = 16.5cm-1). Although there exist information in these extreme regimes, it is still unclear

how to use this information to produce images. This topic will be discussed further in the Chap-
ter 5.

4.5.3 Estimating uncertainty

The uncertainty for each thickness 𝐿 was found by taking the combined error when adding 𝑛
slab thicknesses 𝑑 together: Δ𝐿𝑛 =

√

(Δ𝑑1)2+(Δ𝑑2)2+…(Δ𝑑𝑛)2, where Δ𝑑1 = Δ𝑑2 = Δ𝑑𝑛 =
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0.01cm is the measurement error found by taking the variance of digital calipers readings for
each slab. The variance of the estimated optical parameters returned from the fitting function
were negligible and so the error in the number of transport mean free paths (TMFPs) was found
by multiplying by the fractional error of the length of material ΔTMFPs = TMFPsΔ𝐿𝐿 .
The uncertainty in the extinction ratio Φ

Φ0
was found by calculating the norm of the standard

deviation of measured power fluctuations over ten seconds and the standard deviation of the
background-subtracted signal counts from six trials (two trials for each experiment).
The line of best fit was weighted by the norm of the relative errors of transport mean free path
and extinction ratio. Since the fit was performed to the extinction ratio values in log-scale, the
log error of the extinction ratio values was first calculated by:

Δln(Φ∕Φ0) =
Δ(Φ∕Φ0)
(Φ∕Φ0)

. (4.6)

The uncertainty shown in pale red in Fig. (4.9) for the estimated extinction rate using simulated
parameters is determined by the standard deviation of the y-intercept returned by the least-squares
fitting function.

4.6 Improved ill-conditioning of the inverse problem

Although quantifying the information collected at the detector gives insights into the limits of
imaging in the highly diffuse regime and how best to maximise this information, it is also impor-
tant to consider the impact of collecting more information when reconstructing images. In this
context, the inverse problem of image retrieval is ill-posed, or more specifically, ill-conditioned,
such that a small perturbation in the measurements can cause a significant change in the recon-
structions. To quantify this, the condition number 𝜅 = 𝜎max

𝜎min
introduced in Section (2.6) can be

used as an indication to the stability of the inverse problem, where 𝜎max and 𝜎min are the maxi-
mum and minimum singular values of the forward operator.
The singular value decomposition (SVD) analysis has been used in other studies of diffuse light
to quantify the improvement of the conditioning of the inverse problem of image reconstruction
with early photon imaging. Leblond et al. [147] showed that early time-gating of detected pho-
tons from fluorescent targets inside diffusive materials improved the condition number of the
inverse problem by an order of magnitude. However, these experiments were demonstrated in
phantoms < 13𝓁∗, where early photon imaging is viable. Zhang et al. also used SVD analysis to
demonstrate that early photon time-gating improves the inverse problem of locating fluorescent
targets. In this analysis a fixed condition number was used as a threshold to truncate singular val-
ues. They show that time-gating for early photons preserves more singular vectors and therefore
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higher frequency features can be more reliably retrieved. However, neither of these studies con-
sidered the highly diffusive regime and using an approach which utilised the full spatiotemporal
distribution of the photon counts.
Aside from time-gating early photons, inverse retrieval algorithms in the highly diffusive regime
typically add a priori information in the form of regularisers to improve the condition of the
inverse problem. However, in this section, the improved conditioning of the problem is analysed
by adding information solely by resolving the measurements in both space and time rather than
only in space. Therefore, to quantify the effect of resolving measurements in a different domain
and remain agnostic to a priori information, a simple linear inversion operator is constructed
from which the condition number can be calculated: 𝐴𝑥 = 𝑦, where the operator 𝐴 is a matrix
operation which maps from the images 𝑥 (1024 binarised EMNIST images used in the previous
information study sections) to the measurements 𝑦 (space-time, space and time-resolved photon
counting simulations using the forward model described in Section (3.2)).
The forward operator 𝐴 for each transport mean free path length of material were constructed in
the same way as the raster-scanned impulse response functions used in Section (4.4). The inverse
operators are then found by calculating the pseudo-inverse:

𝐴−1 = 𝑉 Σ−1𝑈𝑇 , (4.7)

where 𝑈 , 𝑉 and Σ are the left and right singular vectors of the singular value decomposition of
the forward operator 𝐴, respectively.
The condition number 𝜅 = 𝜎max

𝜎min
uses the ratio maximum (𝜎max) and minimum (𝜎min) singular val-

ues of the forward operator 𝐴, which indicates the amplification of insignificant singular vectors,
often associated with noise contributions when finding the reciprocal of their respective singular
values in Eq.(4.7).
The singular values shown in Fig. (4.10a) are for the forward operators constructed using noise-
free simulated measurements for 50𝓁∗ resolved in space-time, space and time domains, where
each measurement is normalised to sum to one such that it is a probability mass function. The
most obvious observation from the trends shown in graph is that the operator constructed ex-
clusively in the time domain is severely ill-conditioned. Typically matrices are considered non-
invertible when the condition number approaches ∼ 1016 [117].
The normalised singular values in Fig. (4.10b) show that the space-time operator singular values
decay at a slightly lower rate than the space operator. This indicates that the relative weighting
associated with the decomposed singular vectors is similar, and hence the respective contribu-
tions in the inverse mapping will produce more accurate solutions [115, 117]. Although the
difference in the decay rate of singular values between space-time and space is relatively small,
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Figure 4.10: a) The normalised singular values for the linear operator 𝐴 resolved in space-time
(blue), space (red) and time (green) for 50𝓁∗. b) The rank of the forward operator 𝐴 resolved in
space-time, space and time for increasing transport mean free path lengths.

both are severely ill-conditioned and subtle differences in the magnitude of the smallest singular
values will translate to large differences when inverted. This difference will result in a more
robust inversion for the space-time operator when small noise contributions are present in the
measurements since they will not be amplified as much as when using the space operator.

Figure 4.11: Figure published in the supplementary material of [142] showing the condition
number 𝜅 of the forward operator 𝐴 resolved in different domains after adjusting the number
of singular values based on the rank of the operator. The dashed lines show that the space-
time resolved operator is still consistently less ill-conditioned when including all of the singular
values.
Although the singular values of the space-time and space operators appear to be at full rank (i.e.,
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full rank corresponds to the smallest dimension of the operator, in this case, 28×28 = 784 which
is the dimensionality of the solution space), the numerical precision of computing the pseudo-
inverse limits the rank of the inverse operator [117]. Since the number of pixels is greater in
space-time, the values of the probability mass functions will be smaller compared with the space
domain after normalisation. Since the size of the space-time operator is larger and consists of
values with smaller magnitude than the space operator, it has a lower rank beyond 24𝓁∗. When
taking the pseudo-inverse, the minimum singular value, which is accurately inverted, does not
correspond to the smallest singular value shown in Fig. (4.10a) but instead corresponds to the
first value above the numerical precision boundary.
Determining the numerical precision boundary requires taking the product of the size of the
matrix and the floating-point precision of the matrix norm [117]. Matlab has a built-in function
rank(), which conveniently calculates this when given a matrix as an argument. The forward
operator for each domain was calculated from 10𝓁∗ to 50𝓁∗ in increments of 1𝓁∗ and was input
into the rank() function. The return value was then used to determine the cut-off threshold of
absolute singular values. The rank of the operators is shown in Fig. (4.10b), which shows that
the space-time operator suffers low rank due to numerical precision inaccuracies for increasing
transport mean free path lengths. It is also clear that the time domain operator can only be reliably
decomposed into < 20 singular vectors.
The condition number 𝜅 shown in Fig. (4.11) was calculated for the matrices resolved in each
domain using the rank to threshold for the singular values. However, to ensure this truncation
of singular values did not impact the conclusions of the condition number comparisons, the
condition number of the operators before truncation is also included in Fig. (4.11) as dashed
lines. The condition number of the space-time operator is consistently lower than the space
operator for all cases, which indicates a more accurate inversion which is more robust to noise.
This can be directly observed in Fig. (4.12a), which shows truncated SVD solutions when adding
a small noise perturbation to the data. When truncating too many singular values, only the low-
frequency features are resolved. However, when increasing the number of singular vectors to
𝑘 = 150 there is still a stronger resemblance of the target in the space-time domain compared
with space due to the increased robustness to noise.
The noise perturbation was added by randomly sampling a Poisson distribution using the NumPy
np.random.poisson() function, where the value of every element in the data is given as the
mean. However, before random sampling, the data were normalised by the sum and multiplied
by 1010 to achieve a high enough signal-to-noise to ensure a computable reconstruction. Since
there are more pixels in the space domain than in the space-time domain, the maximum value of
counts will be higher, and the signal-to-noise ratio (SNR) will be better when introducing Shot
noise by sampling a Poisson distribution in this way. This reflects the case in real-world settings,
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Figure 4.12: Figures published in the supplementary material of [142]. a) Truncated SVD recon-
structions using the inverse operators 𝐴−1 applied to data with Shot noise resolved in different
domains. Increasing number of singular vectors (truncated by the parameter 𝑘) shows an in-
creased sensitivity to noise in the inversion. There is a stronger resemblance of the ground truth
image when using 𝑘 = 150 singular vectors in the space-time domain indicating a better robust-
ness to noise in the data. b) The mean squared error (MSE) between the ground truth and the
TSVD reconstructed images for increasing truncation parameter 𝑘 using data with 10 different
Shot noise sampling instances resolved in space-time (blue) and space (red). The mean is indi-
cated by the bold line and error bars are the standard deviation.

where binning the same number of photon counts into fewer pixels will improve the SNR. Using
the maximum count number of the simulated measurement 𝑁 as signal and √

𝑁 as noise, this
corresponds to introducing a 5×10−3% error in the time domain, 0.2% error in the space domain
and a 1% error in the space-time domain.
Simulating through 50𝓁∗ was a non-trivial inverse problem that was not too ill-posed such that
a truncated SVD was still possible for 𝑘 ∼ 100. Since the problem is very sensitive to noise per-
turbations, measurements with different noise realisations were compared with the ground truth
image using the mean squared error for increasing truncation parameter 𝑘. The mean squared
error between the ground truth and ten different realisations of noise are shown in Fig. (4.12b),
where the mean and standard deviation show a consistent improvement when using space-time
resolved measurements even though the SNR is five times worse than resolving only in space.
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4.7 Conclusion

Following the sensitivity study in Chapter 3, the experiments in this chapter present an informa-
tion analysis of diffuse photon measurements that is agnostic to the chosen inversion algorithm.
First, a case study using information theory concepts to analyse multipath echoes was introduced
which provided insights into the increased accuracy of a machine learning image reconstruction
algorithm developed by the authors of [141] when given echo measurements with increasing
number of scattering events. The findings show that, surprisingly, there is more gain in indepen-
dent information from echoes containing up to two bounces than direct reflections. This indicates
that, although scattered signals appear to have less direct imaging information, when using in-
verse algorithms that utilise the full extent of the indirect imaging information, including the
scattered signal can improve image reconstruction quality.
The following study analysed the information content of diffuse photon measurements resolved
in space, time and space-time domains. For the same number of photons, it was clear that space-
time resolved measurements have orders of magnitude more information than resolving in only
space since there are more pixels in the distribution and the diversity in both the space and time
dimensions is captured. Interestingly, the information in the time domain increases with increas-
ing transport mean free paths (TMFPs) since the distribution of the photon counts is spread over
an increasing number of time bins. The information content of the signals continued beyond
1000𝓁∗. However, assuming a large signal-to-noise ratio at these limits would be unrealistic.
The study was continued to show the mutual information captured in each domain between the
pixel values of the hidden object and the diffuse photon measurements. It was clear that there is a
slight increase in average mutual information when resolving photon counts in space-time com-
pared with exclusively resolving in space. However, this advantage diminishes beyond 100𝓁∗

for the experimental configuration considered, i.e., uniform source illumination, (5×5)cm2 field
of view, 28×28 spatial pixels and a time resolution of 55ps. The advantage of measuring photon
counts in different domains is expected to differ for different experimental parameters, but the
chosen parameters are typical and reflect the experimental conditions of [12].
Furthermore, the mutual information between pixels of the hidden object and measurements
can be plotted as a map to highlight areas of preserved information. These mutual information
maps show that the information about central regions of the hidden objects is less preserved for
increasing TMFPs. This is due to cross-talk from neighbouring pixels, which causes increasing
noise in the measurements. Information in pixels at the edges of the hidden objects is better
preserved since there is no information transmission (i.e., diversity in pixel values) at the borders
of the chosen image set. Therefore, to retain as much information as possible about pixels, it is
vital to reduce the cross-talk between neighbouring pixels by carefully considering source and
detector placement, e.g., a scanning source or patterned illumination would decrease cross-talk



CHAPTER 4. INFORMATION ANALYSIS OF DIFFUSE PHOTON MEASUREMENTS 105

and enhance mutual information.
When considering practical photon collection and incorporating noise into the simulations, the
mutual information extended beyond 200𝓁∗. This well exceeds the currently accepted limits for
diffuse optical imaging and corresponds to around 12cm depth penetration in human tissue. This
limit also correlates closely with the expected number of collected photons, indicating that infor-
mation about occluded absorbing objects in highly diffuse material remains as long as photons
are detected.
An experiment was performed in the lab to measure the extinction of photons for increasing trans-
port mean free path lengths to validate the numerical estimates of information transmission in
the highly diffusive regime. It was shown that for the experimental configuration used, photons
were collected well beyond 200𝓁∗. Furthermore, when normalising the data and multiplying by
the collection efficiency used in the numerical studies, the experimental data precisely coincided
with the expected number of TMFPs corresponding to a detection rate of one photon per second
using the numerical parameters. This validates the assumptions used in the simulations for the
numerical studies and proves that it is reasonable to expect photon transmission through highly
diffusive materials beyond 200𝓁∗. The number of photons detected in the experimental mea-
surements was also much higher than expected for the number of TMFPs used in the numerical
studies. This highlights the importance of collection efficiency and source power for extending
the limits of information transport through highly diffusive materials.
A simple linear operator also assessed the impact of resolving measurements in different domains
for improving the ill-posed image retrieval inverse problem. It was shown in Fig. (4.12) that
in the absence of a priori information used to regularise the problem, resolving in space-time
improved the condition number of the inverse problem despite having a lower signal-to-noise
ratio than resolving measurements exclusively in space. This results in more accurate image
reconstructions, which are more robust to noise perturbations when using measurements resolved
in space-time.
Overall, the studies presented in this chapter provide insight into the limits of information trans-
port through highly diffusive materials and identify sensitive experimental parameters that can
be optimised to preserve as much mutual information about hidden absorbing objects as pos-
sible. For reasonable experimental considerations with today’s technology, it was shown to be
numerically plausible to collect imaging information in diffuse photons well beyond the regime
of 100𝓁∗, up to a limit of around 200𝓁∗, which can be extended by experimental considerations.
However, the studies in this chapter do not indicate how to efficiently extract the information
contained in the measurements to reconstruct images. Guided by the conclusions of this chapter,
the next chapter presents an experiment designed to image beyond 100𝓁∗ using a probabilistic
machine learning inverse reconstruction algorithm.



Chapter 5

Imaging beyond 100 transport mean free
paths

The analysis of the previous chapters indicate that there exist indirect imaging information in
diffuse photon measurements beyond 100𝓁∗. Furthermore, the information can be enhanced by
consideration of experimental design such as source power, collection efficiency and source and
detector arrangement. Although information theory was used to prove the existence of imag-
ing information beyond 100𝓁∗, it does not indicate if there is enough information to accurately
reconstruct images in this regime, or how this information should be used to reconstruct images.
As described in section (2.6), solving an ill-posed inverse problem is possible using a regularised
least-squares error, where the choice of prior is based on domain expertise. Indeed this is done
in many applications for diffuse optical tomography [11,12,111,148]. However, recent machine
learning methods have demonstrated capabilities beyond standard SVD techniques and regu-
larised least-squares optimisation algorithms for solving the inverse problem of diffuse optical
imaging [13, 113, 123–125].
In this chapter an experiment is designed using the conclusions of the previous chapter to max-
imise information through more than 100𝓁∗, and a probabilistic machine learning image recon-
struction algorithm developed by the co-authors of [13] is used to asses the potential of imaging
at the extreme limits of the highly diffusive regime.
Before discussing the experiment to image beyond 100𝓁∗, the first section of this chapter in-
troduces the machine learning framework with a case study of an ill-posed holographic image
reconstruction problem used in [13]. The machine learning framework was developed by the
co-authors of the study and my contribution to the holographic image reconstruction experiment
was the simulation and collection of experimental data, as well as the training and testing of
the measurement in the proposed framework. The image reconstruction quality was compared
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with reconstructions from a conventional holographic reconstruction algorithm performed by the
co-authors, as well as a conventional deep neural network that I designed, trained, and tested.
The relevance of the experiment to this thesis is to demonstrate an example of current state-of-
the-art image reconstruction algorithm that considers the stability of the ill-posed problem in its
reconstructions. This framework was also demonstrated by the co-authors of [13] to improve the
diffuse optical imaging results of Lyons et al. [12] with measurements corresponding to > 80𝓁∗,
which makes this proposed inversion algorithm a promising option to reconstruct images beyond
100𝓁∗.

5.1 Holographic image reconstruction using variational infer-
ence

Phase retrieval of a complex light field is a well-studied problem in optical physics since directly
measuring the amplitude and phase of a diffraction pattern requires expensive and delicate inter-
ferometric instruments [149]. Instead, measuring the intensity (i.e., the square of the amplitude
of the light field) with a conventional digital camera and using algorithms to reconstruct the phase
and amplitude information of the light field is a more practical, inexpensive alternative technique.
This is an ill-posed problem since many different phase and amplitude profiles can have iden-
tical diffracted intensity profiles at the measurement plane. Therefore, this example serves as a
simple design of a challenging ill-posed inverse imaging problem to validate a machine learning
variational inference framework developed by the co-authors of [13].
Typically deep neural networks output a single deterministic solution given some input data.
Since the learned mapping between input and output can be arbitrarily complex, deep neural
networks are powerful tools to directly solve inverse problems. Furthermore, because measure-
ments can be learned to map directly to the targets, there is no additional instabilities associated
with numerical inversions [150]. The training set of images also introduces an implicit bias to
regularise the possible set of solutions to be more relevant to the problem compared with using
general assumptions, e.g., introducing an 𝐿1-norm regularisation to promote sparsity [13].
However, if the inverse problem is significantly ill-conditioned then the reconstructed solutions
will still be very sensitive small changes in the inputs. Deterministic machine learning mod-
els will predict only one plausible solution for a given measurement, whereas in reality there
are many plausible solutions. The objective of the framework developed in [13] is to instead
use a generative model conditioned on the measurements to predict the probability density of
solutions. This framework allows for a prediction of many plausible solutions for the same mea-
surement, which can be used to estimate the pixel-wise mean and variance of plausible image
reconstructions as well as estimate the most likely reconstruction.
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The goal of the proposed image retrieval algorithm is to reformulate the inverse problem in terms
of probabilities using Bayes rule:

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
, (5.1)

where the task is to approximate the posterior density 𝑝(𝑥|𝑦) of the image 𝑥 corresponding to
the measurement 𝑦. The data likelihood 𝑝(𝑦|𝑥) is the probability of a observing a measurement
given an image, and samples of this distribution can be obtained by observing real-world mea-
surements. The distribution 𝑝(𝑥) is the prior knowledge of the probability density of all possible
images and 𝑝(𝑦) = ∫ 𝑝(𝑥)𝑝(𝑦|𝑥)𝑑𝑥 is the density of all possible measurements.
In practice, we do not have all the required ingredients to produce the true posterior, but it can
be approximated by combining all sources of information that can observed:

1. A sampled set of high-fidelity real measurements drawn from the true data likelihood dis-
tribution 𝑦 ∼ 𝑝(𝑦|𝑥). These samples are often time-consuming and/or expensive to gather.

2. A set of low-fidelity simulated measurements using a forward model based on the physics
of the problem. These are samples drawn from an approximate data likelihood 𝑦 ∼ 𝑝(𝑦|𝑥)
and are easy to gather but less accurate.

3. A large set of example target images from an open-source database chosen based on prior
expertise to be representative of the true target images 𝑥 ∼ 𝑝(𝑥).

Of course, gathering more samples better approximates the true distributions and leads to a closer
estimate of the posterior in Eq. (5.1). The proposed framework in [13] describes how these avail-
able data sets can be combined to accurately estimate the posterior using conditional variational
autoencoders (CVAEs). The full details are not required to understand the work presented in
this thesis, however, it is worthwhile summarising the framework to contextualise how these
pieces of information lead to the results. The following subsections describing the multi-fidelity
model and the inference model used in the framework is a summary of the work conducted by
the coauthors in [13] to contextualise the results presented later in this chapter.
Both the multi-fidelity and inverse models of the framework are implemented using conditional
variational autoencoders (CVAEs). An autoencoder is a type of deep neural network which first
encodes an input to a lower dimensional latent variable. Using only the low-dimensional encod-
ing, a decoder neural network must reconstruct the original input. Like most neural networks,
the predicted reconstruction of the input is compared with the true target with a differentiable
objective function (e.g., the mean squared error), and the network weights and biases are updated
using mini-batch gradient descent using backpropagation [151].
At first glance, reconstructing an input seems like a redundant task. However, it is the lower
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dimensional latent representation of the input that is useful. Since the number of learnable pa-
rameters (i.e., weights and biases) in the bottleneck of the autoencoder is relatively small, there
is a limited capacity to capture all of the information of the original data. Therefore, the net-
work learns to represent only the most information-rich features of the input in the encoding to
reconstruct the input accurately. Once trained, the low-dimensional latent vector can be explored
by manipulating the latent variable and observing the decoded output. This is a useful method
of uncovering the important features in data, much like finding the singular vectors using SVD.
However, unlike SVD, which is a linear decomposition of the data, autoencoders can deal with
more complex data by harnessing the ability of deep neural networks to learn complex highly
non-nonlinear mappings [151].
A variational autoencoder is an extension of an autoencoder architecture introduced by Kingma
and Welling [152] that instead learns to map an input to a low-dimensional probability distribu-
tion in latent space rather than a deterministic vector. Samples from a highly complex distribution
of inputs (e.g., a distribution of handwritten number images) can be mapped to the moments of
a much simpler distribution (e.g., a multidimensional Gaussian distribution) using a deep neural
network as a non-linear mapping. Once trained, the simpler latent distribution can be efficiently
sampled to generate images that are approximately from the same distribution of images as the
training set.
A conditional variational autoencoder (CVAE) learns to map to conditional distributions in latent
space given additional input conditions. For example, instead of learning the full distribution
of handwritten numbers, the latent distribution is conditioned by the label of the class that the
image belongs to. This model is useful for inverse problems since the conditional probability of
the input can be inferred given an output measurement of a system [153].
An overview of how CVAEs are used in the framework proposed in [13] to find the relevant
distributions that approximate the posterior distribution described in Eq. (5.1) will be explained
in the following subsections.

5.1.1 Multi-fidelity model

The first consideration of building a model of the posterior in Eq. (5.1) is to gather many samples
from the data likelihood 𝑦 ∼ 𝑝(𝑦|𝑥). Unfortunately, obtaining real-world experimental measure-
ments is challenging and leads to the undersampling of this distribution. The first step of the
framework proposed in [13] is to build a generative model which can be used to non-iteratively
sample many measurements that are as close as possible to experimental measurements.
A generative model in this context is a probabilistic model of high-dimensional data that can
be stochastically sampled to generate new data points. A simple example of a parametric prob-
abilistic model is modelling a person’s height from an ensemble of sample measurements. A
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Gaussian distribution can be used to model that data parameterised by the mean and variance,
which can be determined using maximum likelihood estimation. Once the parameters are known,
a random number generator can generate new data from the distribution. This simple example
is one-dimensional, and there is an easy analytical solution. However, in most imaging inverse
problems, building a model representing the distribution is much more complex and usually an-
alytically intractable. Therefore, deep neural networks can be used to model these distributions
instead.
Usually, in inverse problems, a forward model simulation can be used to generate low-fidelity
measurements 𝑦 ∼ 𝑝(𝑦|𝑥), which approximate real-world measurements but with some error.
In the context of the proposed framework, the multi-fidelity model aims to map low-fidelity
measurements to high-fidelity measurements using a generative model. Once trained, a large set
of high-fidelity training data can be generated for training the inverse model. Mathematically, the
multi-fidelity model 𝑝𝛼(𝑦|𝑥,𝑦) that generates high-fidelity measurements 𝑦, given target images
𝑥 and the low-fidelity simulations 𝑦, can be used to make an approximation 𝑝𝛼(𝑦|𝑥) to the true
data likelihood:

𝑝𝛼(𝑦|𝑥) = ∫ 𝑝(𝑦|𝑥)𝑝𝛼(𝑦|𝑥,𝑦)𝑑𝑦, (5.2)

where the model is parameterised by 𝛼.
To capture the complexity in the distribution 𝑝𝛼(𝑦|𝑥,𝑦), a latent variable model is used. In other
words, the goal is to transform the inputs into a lower dimensional latent space, where a simple
distribution can represent the data (e.g., a multivariate Gaussian distribution). A deep neural
network’s parameters 𝛼 are optimised to output latent variables𝑤 that correspond to the moments
of a multivariate Gaussian distribution that encodes the input data distribution. Using the concept
of a less-restrictive latent variable model leads to an expression for 𝑝𝛼(𝑦|𝑥,𝑦) which is composed
of two neural networks with parameters (i.e., weights and biases) 𝛼1 and 𝛼2:

𝑝𝛼(𝑦|𝑥,𝑦) = ∫ 𝑝𝛼1(𝑤|𝑥,𝑦)𝑝𝛼2(𝑦|𝑥,𝑦,𝑤)𝑑𝑤, (5.3)

where the outputs of the models are the moments of multivariate Gaussian distributions. The
models’ parameters 𝛼1 and 𝛼2 are optimised by maximising the likelihood of the log of the ex-
pression in Eq. (5.3).
However, Eq. (5.3) requires an integral over latent variables, which is computationally intractable.
Therefore a variational lower bound is used as a surrogate optimisation problem [152]. This also
introduces a recognition model 𝑞𝛽(𝑤|𝑥,𝑦,𝑦), which is also chosen to be a multivariate Gaussian
distribution parameterised by the moments output by a neural network, and leads to a tractable
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objective function [13, 152, 153]:

argmax
𝛼1,𝛼2,𝛽

𝐾
∑

𝑘=1

𝑉
∑

𝑣=1

[ 𝑆
∑

𝑠=1
log𝑝𝛼2(𝑦𝑘|𝑥𝑘,𝑦𝑣,𝑤𝑠)−𝐷𝐾𝐿(𝑞𝛽(𝑤|𝑥𝑘,𝑦𝑘,𝑦𝑣)||𝑝𝛼1(𝑤|𝑥𝑘,𝑦𝑣))

]

, (5.4)

where 𝑠 denotes independent samples from the latent distribution, 𝑣 denotes different independent
noise realisations used in the simulations to emulate the noise in experiments, and 𝑘 denotes
different images and associated measurements drawn from the distribution of targets 𝑥𝑘 ∼ 𝑝(𝑥).
The mathematical derivation to get to Eq. (5.4) from Eq. (5.3) can be found in the appendix
of [13].
The first term of the objective function in Eq. (5.4) maximises the log-likelihood of the predic-
tions. Because a normal distribution is chosen for the parametric distributions, the mean squared
error between the predictions and the targets can be used - a standard loss function for machine
learning models that can be easily differentiated.
The second term in Eq. (5.4) aims to ensure that the recognition model 𝑞𝛽(𝑤|𝑥,𝑦,𝑦), which maps
all the input variables to the latent variable, is close to the model which maps only the low-fidelity
simulations and the target images to the latent variable 𝑝𝛼1(𝑤|𝑥𝑘,𝑦𝑣). The latter generates images
when the high-fidelity is unknown, but both are vital for training. The KL-divergence quantifies
the statistical distance between the distributions, which has a differentiable closed-form solution.
Once trained, a large set of simulated measurements and associated targets can be used to effi-
ciently generate high-fidelity samples that can be used to train the inverse model and produce a
more accurate posterior.

5.1.2 Inverse model

The true posterior 𝑝(𝑥|𝑦) of Eq. (5.1) can be closely approximated using a parametric model
𝑟𝜃(𝑥|𝑦). Therefore, the objective is to make 𝑟𝜃(𝑥|𝑦) as close as possible to the true posterior.
This is achieved by minimising the expectation of the cross-entropy between the distributions
with respect to the parameters of the model 𝜃 [13]:

argmin
𝜃

𝔼𝑝(𝑦)
[

𝐻(𝑝(𝑥|𝑦), 𝑟𝜃(𝑥|𝑦)
]

= argmax
𝜃

𝔼𝑝(𝑦)∫ 𝑝(𝑥|𝑦) log𝑟𝜃(𝑥|𝑦)𝑑𝑥. (5.5)

The cross-entropy between two distributions 𝑃 and 𝑄 is 𝐻(𝑃 ,𝑄) = −∫ 𝑝(𝑥) log2 𝑞(𝑥)𝑑𝑥. The
expression in Eq. (5.5) can be rewritten using Bayes rule defined in Eq. (5.1) by [13]:

𝔼𝑝(𝑦)∫ 𝑝(𝑥|𝑦) log𝑟𝜃(𝑥|𝑦)𝑑𝑥 =∬ 𝑝(𝑦)
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
log𝑟𝜃(𝑥|𝑦)𝑑𝑦𝑑𝑥,
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= ∫ 𝑝(𝑥)∫ 𝑝(𝑦|𝑥) log𝑟𝜃(𝑥|𝑦)𝑑𝑦𝑑𝑥, (5.6)

where the expectation is over the distribution of input measurements 𝑝(𝑦).
The expression in Eq. (5.6) reformulates the problem to contain tractable distributions. The
distribution 𝑝(𝑥) is the distribution of targets, 𝑝(𝑦|𝑥) is the multi-fidelity model defined in the
previous subsection. All that remains is to define a model for the approximate posterior 𝑟𝜃(𝑥|𝑦).
Similar to the multi-fidelity model described previously, a CVAE is used as a latent variable
model for 𝑟𝜃(𝑥|𝑦) such that neural networks can be used to capture the complexity of the distri-
bution [13]:

𝑟𝜃(𝑥|𝑦) = ∫ 𝑟𝜃1(𝑧|𝑦)𝑟𝜃2(𝑥|𝑧,𝑦)𝑑𝑧, (5.7)

where, in this case, the latent variable is represented by 𝑧. Substituting (5.7) into (5.6) gives an
expression for the objective function in Eq. (5.5):

argmax
𝜃1,𝜃2 ∫ 𝑝(𝑥)∫ 𝑝(𝑦|𝑥) log∫ 𝑟𝜃1(𝑧|𝑦)𝑟𝜃2(𝑥|𝑧,𝑦)𝑑𝑧𝑑𝑦𝑑𝑥. (5.8)

However, just as the case with the multi-fidelity model, this objective function is intractable to
compute since it integrates over a high-dimensional latent variable. Therefore the variational
lower bound is optimised instead [13]:

argmax
𝜃1,𝜃2,𝜙

𝐿
∑

𝑙=1

𝑇
∑

𝑡=1

[ 𝑆
∑

𝑠=1
log𝑟𝜃2(𝑥𝑙|𝑧𝑠,𝑦𝑙,𝑡)−𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥𝑙,𝑦𝑙,𝑡)||𝑟𝜃1(𝑧|𝑦𝑙,𝑡))

]

, (5.9)

where 𝑠 denotes samples from the latent distribution, 𝑡 denotes different samples from the multi-
fidelity forward model, and 𝑙 denotes different images and associated measurements drawn from
the distribution of targets 𝑥𝑙 ∼ 𝑝(𝑥). The mathematical derivation of Eq. (5.9) from Eq. (5.8) can
be found in the appendix of [13].
An illustration of the architecture used in training and testing of the inverse model is shown in
Fig. (5.1). In the training phase, three neural networks are trained end-to-end using the objective
function defined in Eq. (5.9). The first term in the objective function is to maximise the log-
likelihood of the target images. the output distribution 𝑟𝜃2(𝑥|𝑧,𝑦) is chosen to be an isotropic
multivariate Gaussian with moments determined by the network such that the minimisation of
the log-likelihood is simply the mean squared error between predictions and targets. This ensures
the decoder faithfully reconstructs the target images.
Similar to the multi-fidelity model, the second term of the inverse model objective function is
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Figure 5.1: a) An illustration of the conditional variational autoencoder (CVAE) used in training
inverse model. The objective function defined in Eq. (5.9) optimises the parameters of the neu-
ral networks 𝜙, 𝜃1, and 𝜃2 to minimise the difference between the recognition model 𝑞𝜃(𝑧|𝑥,𝑦)and 𝑟𝜃1(𝑧|𝑦) by penalising the statistical distance between them using the KL-divergence whilst
simultaneously maximising the log-likelihood of the generated outputs of 𝑟𝜃2(𝑥|𝑦,𝑧) (e.g., min-
imising the mean squared error between predictions and targets). b) When testing the trained
network, the recognition model is no longer required and samples can be drawn from the latent
distribution conditioned only on the measurement. By sampling the latent distribution many
times, the ensemble of generated images can be used to calculate the mean and variance of the
reconstructions. The fully connected nodes represent neural networks of any type which have
the capacity to accurately learn mappings to and from the latent space.

to minimise the statistical distance between the recognition model 𝑞𝜃(𝑧|𝑥,𝑦) and the conditional
distribution 𝑟𝜃1(𝑧|𝑦) using the KL-divergence. In the testing phase shown in Fig. (5.1b) the recog-
nition model can be ignored since these distributions are optimised to be very close in training,
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which means the moments of the conditional latent distribution 𝑟𝜃1(𝑧|𝑦) can be determined using
only the measurement 𝑦. This is useful since the target image that we wish to estimate is not
required as an input to the model when testing.
For a given measurement, many samples can be drawn from the latent distribution 𝑧𝑖 ∼ 𝑟𝜃1(𝑧|𝑦)
and used to generate numerous samples from the approximate posterior of the inverse problem
𝑟𝜃(𝑥|𝑦) = ∫ 𝑟𝜃2(𝑥|𝑧,𝑦)𝑑𝑧. Each sample can be considered different plausible image reconstruc-
tions for the given measurement and a pixel-wise mean and variance can be calculated form the
ensemble of generated images [13].
Furthermore, generating a reconstruction using the maximum of the latent distribution, i.e., us-
ing the mean vector predicted by 𝑟𝜃1(𝑧|𝑦), produces an efficient way to determine the near-optimal
maximum likelihood of 𝑟𝜃2(𝑥|𝑧,𝑦). This reconstruction can be interpreted as the “pseudo-maximum
likelihood,” which estimates the most likely reconstruction given the measurement and is anal-
ogous to the solution predicted by a conventional deterministic neural network optimised using
maximum likelihood [13].
The multi-fidelity CVAE has the same architecture shown in Fig. (5.1) but with the inputs, targets
and loss function described in Section (5.1.1).

5.1.3 Method

To demonstrate the full potential of the variational framework proposed in [13] for solving in-
verse problems, a simple ill-posed optics experiment was constructed in the lab (Fig.(5.2)). An
expanded laser beam was incident on a digital micromirror device (DMD) which projected am-
plitude images of binary handwritten numbers from the MNIST open-source data base [154]
with a constant phase. A DMD is an array of micron-sized mirrors which can be angled in one
of two possible directions. Pixels on the DMD which direct light through the optical system have
an “on” state, whereas pixels configured in the other direction can be used as an “off” state. A
lens placed at the focal distance from the display maps the image into the Fourier plane, where an
iris was used to isolate the first-order diffraction pattern to avoid the high power direct reflections
of the laser damaging the camera pixels. Using two lenses in a 4f configuration, a demagnified
image of the Fourier plane was projected onto a digital camera.
To exactly reconstruct the amplitude image displayed by the DMD using the information cap-
tured in the Fourier plane, both the phase and amplitude is required. However, only the intensity
information is detected at the camera, which makes this problem ill-posed since there are mul-
tiple amplitude images with various phases that could result in the same intensity image at the
detector. Furthermore, the camera was deliberately saturated to further make the inverse problem
underdetermined, and therefore more ill-conditioned. This was to encourage the trained model
to produce images with increased uncertainty and more diversity in the possible valid solutions
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for the given data.

Laser

DM
D

Fourier lens

Camera

Image at DMD Image at camera

Fourier transform

Figure 5.2: Simplified diagram of the experimental setup produced by the co-authors of [13]. A
binary amplitude image is projected by the digital micromirror device (DMD) and a lens placed
at the focal distance from the DMD display produces the corresponding Fourier image at the
camera.
Since the buffer on the DMD can only hold 96 images at one time, the process of gathering
experimental data is time-consuming and measurements from only the first 9600 images from
the MNIST handwritten digits data set were obtained. This experimental data is samples from
the true data likelihood distribution 𝑦 ∼ 𝑝(𝑦|𝑥). However, as explained previously, this is not
enough samples to accurately approximate the posterior distribution of Eq. (5.1).
To increase the training set, the multi-fidelity forward model described in Section (5.1.1) was
used to generate 60,000 high-fidelity measurements using samples from a low-fidelity simulation
of the forward problem 𝑦 ∼ 𝑝(𝑦|𝑥). The low-fidelity forward model created images by taking the
real part of the squared modulus of the two-dimensional fast-Fourier transform MNIST digits
to emulate the real measurements. The images were then artificially saturated and qualitative
resizing and co-registration was performed to match the experimental data. Both the high and
low fidelity targets were then down-sampled to 28×28 using nearest neighbour interpolation to
reduce computational memory requirements.
The multi-fidelity model was trained using the 9600 high-fidelity experimental observations and
corresponding low-fidelity simulations. Note that this model is emulating the forward problem
which is well-posed and does not require as much training data as the inverse model.
Once trained, the multi-fidelity model was used to generate high-fidelity measurements for the re-
maining 50,400 MNIST images and low-fidelity simulations. These multi-fidelity samples were
used as training for the inverse model. Additional experimental measurements can optionally be
included by concatenating these examples to the samples drawn from the multi-fidelity model,
but in this case it was not required.
Both the multi-fidelity model and the inverse model consist of fully-connected neural networks.
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The two encoder networks and the decoder network of the multi-fidelity CVAE model were
constructed with two initial layers followed by two independent layers that predict the mean and
log-variance of a 20-dimensional multivariate Gaussian latent distribution. All layers consist of
500 nodes and use ReLu activation functions. The inverse model CVAE has identical structure
but each layer has 800 nodes.
For comparison of performance against other phase retrieval techniques, a hybrid input-output
(HIO) complex light-field retrieval algorithm [155] and a conventional deep artificial neural net-
work (deep ANN) (trained only with the 9600 experimental observations) were given the same
test examples. The HIO algorithm is a commonly used iterative algorithm for complex light-
field retrieval in the field of optics and provides a baseline reconstruction of the target images to
compare with. The co-authors of [13] implemented the HIO on test data. A simple supervised
deep ANN with four fully-connected layers and a mean squared error objective function was
also tested on the same test data to compare the framework with a conventional deep learning
approach.

5.1.4 Results

The results in Fig. (5.3) show that performance of the proposed variational framework perfor-
mance far exceeded other techniques such as hybrid input-output (HIO) and a deep artificial neu-
ral networks (deep ANN). The HIO algorithm fails after only one iteration due to the extreme
saturation and down-sampling. On the other hand, the deep ANN can make reasonably accurate
image reconstructions due the capacity to learn complex non-linear mappings even with such
corrupted data. However, the deep ANN is limited in performance due to the relatively small
number of training data samples collected experimentally.
The pseudo-maximum images in Fig. (5.3d) show much more accurate reconstructions of the
target images. The other benefit of the framework is to take many samples from the latent dis-
tribution and reconstruct other possible solutions. In the last row of Fig. (5.3d) it is clear that,
although the pseudo-maximum likelihood image closely resembles the target image of a four,
some of the sampled reconstructions are of nines with similar structure to the target. This is also
reflected in the pixel-wise mean and standard deviation of the images which are non-zero in the
top region between the two vertical lines of the number four. The pixel-wise mean and standard
deviation is evaluated by drawing numerous samples from the latent distribution and taking the
mean and standard deviation of each pixel over the ensemble of decoded images. In all of the
examples, the standard deviation shows that the edges of the image are more uncertain than the
interior and exterior regions of the shapes. This is exactly as expected for binary images since
the regions inside and outside the structures are always a constant value and the borders are what
define the shape of the object in the image.
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Figure 5.3: Figure published in [13]. a) The target amplitude image displayed on the DMD.
b) The saturated down-sampled intensity image of the Fourier plane captured with the digital
camera. c) The hybrid input-output algorithm reconstructions which fail due to the instability
of the algorithm after one iteration because of the extreme saturation and down-sapling of the
measurement. d) The proposed variational framework using multi-fidelity and inverse CVAE
models. The pseudo-maximum (Pmax) likelihood is sampled using the mean values of the latent
distribution and represents the most likely reconstruction given the measurement. The posterior
draws are generated reconstructions from random sampling of the latent distribution. The mean
and standard deviation of many samples is also shown.

To test the framework further, the problem was made increasingly more ill-posed by down-
sampling the resolution of the Fourier images. The mean and standard deviation of reconstruc-
tions Fig. (5.4) reflect the increase uncertainty for lower resolution measurements which have
increased diversity in the sampled reconstructed images.
Unlike most inverse image reconstruction methods, this CVAE framework harnesses the capacity
of deep neural networks to learn complex non-linear mappings in the inverse direction directly
avoiding error introduced by numerical inversion. The capacity of neural networks can produce
higher quality reconstructions than conventional image reconstruction approaches and combined
with the proposed variational inference framework, can be used to model the conditional distri-
bution of the possible solutions given a measurement. This allows access other possible solutions
and an estimation of the pixel-wise uncertainty of the reconstructions.
This framework has also been shown by the co-authors of [13] to work in diffuse optical tomog-
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Figure 5.4: Figure published in [13]. a) Experimental Fourier intensity image data down-
sampled to 28×28, 22×22 and 16×16 for the same target image (b). c) The proposed variational
framework which shows the reconstructed image quality degrades with decreasing resolution of
the measured data. As expected, the standard deviation and samples from the recovered poste-
rior show high variability to the solution when reaching the critically ill-posed resolution limit
of 16×16.

raphy experiments which dramatically outperform the previous algorithm proposed by Lyons et
al. [12], and make it a promising candidate inversion algorithm to reconstruct images beyond
100𝓁∗.

5.2 Imaging beyond 100𝓁∗ using variational autoencoding

An experiment was designed to maximise the transmission of information through diffusive ma-
terials beyond 100𝓁∗ guided by the results of Chapter4.
The first consideration is to optimise the collection of photons through the material. The selected
photomultiplier tube (PMT) has a higher quantum efficiency (15% at 800nm), lower dark count
rate (∼15Hz) and larger photosensitive area (5mm diameter cathode) than comparable photon
counting detectors such as single photon avalanche diode arrays. The sensitivity and low-noise
of this detector ensures a high detection rate of photons, and the large area maximises the solid
angle of collection.
However, using a single-pixel detector conflicts with the findings in Chapter4 that there is more
information when combining the space and time domains. Therefore, the area of incidence of
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the source was chosen to be small, and the position is raster scanned across the material. The
advantages are two-fold: firstly, this introduces spatial information to the measurements, and
secondly, using a source which covers only a small localised area of incidence will mitigate
cross-talk noise compared with sources expanded over a large area of incidence.
This intuition is derived from the analysis of the mutual information maps in Fig. (4.7) that
show information is better preserved if neighbouring regions remain at a constant light level.
Using a source with a small area of incidence reduces the probability of a photon to interact
with regions of the hidden object with large lateral separation from the position of direct line-
of-sight as illustrated in Fig. (5.5a). Note that in highly diffusive materials, the source beam
will still be significantly broadened in space before reaching the plane of the hidden object and
photons are likely to illuminate all regions of the hidden object to some extent. However, the
extinction of photons is related to the number of transport mean free paths a photon experience
in a material as per the Beer-Lambert law introduced in Eq. (2.26). Regions of the hidden object
that are separated laterally from the direct line-of-sight of the source are further from the point
of incidence and light will be attenuated more. In the case of uniform illumination, all regions
of the hidden object have an equal probability of illumination and information of neighbouring
pixels will strongly interfere. The trade-off is that the point source needs to be scanned to gather
information from different regions of the hidden object.

Figure 5.5: An illustration demonstrating short direct optical paths (red), longer optical paths
(blue) and the longest optical path (green) from incident source positions to three laterally sep-
arated regions at the hidden object plane (x,y,z) for regimes with a) a low number of transport
mean free paths (TMFPs) and b) a large number of TMFPs. Scanning the incident source po-
sitions sequentially will suppress the cross-talk, because the illumination of the hidden object
inside the material is concentrated over a small area compared with uniform illumination. As the
number of TMFPs increases, the difference between the path lengths decreases and the informa-
tion between scanning points will become less diverse.

For materials corresponding to a greater number of transport mean free paths, the distance trav-
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Figure 5.6: Figure used in the conference proceeding [156]. a) Experimental configuration where
a pulsed laser is incident on one of 9 different locations on a diffusive material (𝜇𝑎 = 0.04cm−1,
𝜇′
𝑠 = 12.1cm−1) in which an absorbing object is hidden (e.g. EMNIST handwritten letter). The

transmitted photons are counted using a photomultiplier tube (PMT) operated in Geiger mode
and a distribution of the time-of-flight of the photons is recorded using TCSPC. b) The simu-
lated time-of-flight histogram for source position 5 using the analytical forward model. c) The
integrated photon counts at each position of the source.

elled by photons to reach the line-of-sight and laterally offset regions of the hidden objects will
become increasingly similar as shown in Fig. (5.5b), and the advantage of cross-talk mitigation
due to the extinction of photons decreases.
Similarly, if the scanning points are too close together, then the geometry is equivalent to Fig. (5.5b)
even for a small number of transport mean free paths and the sampled information of the hidden
object is less diverse between the measurements. Therefore, it is redundant to have sequentially
scan the incident position with a small pitch separation when imaging through a large number of
transport mean free paths. For this reason, a 3×3 grid scan of incident positions with a separation
of 2.5cm was chosen to be a reasonable estimate of sampling independent spatial information of
objects 2–3cm in size through 10cm of foam (i.e., ∼ 120𝓁∗). An illustration of the proposed
experiment is shown in Fig. (5.6a).
Another consideration is to maximise the power of the source. However, if the power per area
is too great then the material can be damaged. This is a vital consideration in the context of
medical imaging where the maximum permissible exposure of human tissue limits the maximum
irradiance that can be used.
Due to the highly ill-posed nature of the problem, the CVAE inverse model described Section
(5.1.2) is used to reconstruct images. The CVAE model used in [13] was rewritten using the Keras
library and the deep neural networks were modified to use three-dimensional convolutional layers
which capture the local structure in both space and time of the 3×3×𝑇 measurement data cube,
where 𝑇 = 512 is the number of time-bins in the diffuse photon measurement (Fig. 5.5). The full
details of the CVAE network can be found in Appendix B.
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First, the experiment was simulated using a modification of the forward model described in Sec-
tion (3.2) to determine the performance of a CVAE inverse model in the extreme limits of photon
diffusion beyond 100𝓁∗ using ideal signals. Since the training and test measurements are gener-
ated from an analytical forward model, there is no requirement for a multi-fidelity model since
all of the data are samples of the true data likelihood distribution 𝑦 ∼ 𝑝(𝑦|𝑥).
The trained inverse model is then tested with real data acquired in the lab. Unlike the holographic
reconstruction example described in Section (5.1), gathering measurements of different hidden
objects in the lab requires placing 1000s of different configurations of black tape between two
foam slabs by hand, which is not practical. Therefore, the real-world measurements are used
only for testing the model which is trained using only simulations generated by the low-fidelity
forward model 𝑝(𝑦|𝑥).

5.2.1 Simulations

To simulate the experiment in Fig. (5.6) and described in the previous subsection, the forward
model introduced in Section (3.2) was adapted to account for a scanning source. Since the for-
ward model uses two-dimensional fast Fourier transforms that require zero padding to avoid high-
frequency artefacts at the boundaries, the source beam was always incident in the centre of the
field of view and the hidden object was displaced to emulate the signal obtained from the source
in different positions as shown in Fig. (5.7a). The result of the model at the output plane was
cropped to match the field of view of the detector to ensure the hidden object remained in a fixed
position (Fig. (5.7b)). The simulations at the output plane of the second slab (Fig. (5.7c)) were
integrated in space to produce the single-pixel TCSPC histograms for each position as shown in
Fig. (5.7d). For simplicity in the figures in the remainder of this chapter, the total integration of
counts at each source position (as displayed in Fig. (5.6c)) is used to represent the measurements.
However, it is the result shown in Fig. (5.7d) which emulates the experimental measurements and
is used as the input to the inverse model.
Four instances of the CVAE inverse model were trained using simulations from 5cm, 10cm,
15cm, and 20cm using optical parameters determined by fitting the modified forward model to
the experimental results (discussed in the next section). These thicknesses correspond to 60.5𝓁∗,
121𝓁∗, 181.5𝓁∗, and 242𝓁∗. Once trained, the model was tested on unseen simulated measure-
ments and an example of the results are shown in Fig. (5.8).
A qualitative comparison of the reconstructions of the inverse model show that the accuracy of
the reconstructed target decreases for increased number of transport mean free path lengths. This
is also reflected in the increased standard deviation of the pixel estimates. Interestingly, although
the pseudo-maximum likelihood of the posterior 𝑝(𝑥|𝑦) of the images 𝑥 given the measurements
𝑦 is accurate up to 121𝓁∗, at 242𝓁∗ other plausible reconstructions generated by random sam-
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Figure 5.7: a) The forward model simulations of the proposed experiment displaces the hidden
absorbing object (e.g., the letter “G”) and fixes the position of the source to the centre of the field-
of-view (FOV) to prevent boundary artefacts when taking two-dimensional Fourier transforms.
b) The simulations at the output plane of the first slab were cropped to match the FOV of the
detector which keeps the hidden object in a fixed position and emulates a scanning source. c)
The simulations at the output plane of the second slab are integrated in space to produce a single
TCSPC histogram (d). The co-ordinate position of the source is indicated above each image in
units of centimetres. All images are normalised and the time traces shown in (c) are normalised
by the maximum counts of all nine positions.

pling of the latent distribution show a closer qualitative resemblance of the structure of the target.
The access to other plausible reconstructions given the measurement is a key advantage of us-
ing a probabilistic machine learning model compared with conventional deterministic machine
learning models.
Reconstructing images in the highly diffusive regime beyond 200𝓁∗ is clearly possible using
machine learning inverse models when given ideal measurements. This supports the claims of
Chapter 4 that there exist imaging information beyond 200𝓁∗. Furthermore, the experimental
design guided by the previous information theory analysis likely enhanced the collection of in-
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Figure 5.8: Figure used in the conference proceeding [156]. The data, shown as the sum of counts
for each detector location, is simulated by the analytical forward model for increasing transport
mean free paths (TMFPs). The most likely reconstruction is the pseudo-maximum likelihood
of the estimated posterior distribution 𝑝(𝑥|𝑦), and generating many plausible reconstructions by
sampling the latent distribution gives an estimate mean and standard deviation of each pixel. A
close resemblance of the target object can still be seen in the sampled reconstructions at 242𝓁∗.
All images are normalised.

formation and enabled reconstructions through as much as 242𝓁∗.
However, as discussed in the results of Chapter 4, the challenge of imaging in the extreme regimes
of highly diffusive materials is to overcome the exponential extinction of photons. The next sec-
tion discusses real-world measurements that were collected in the lab using the same experimen-
tal configuration to test the inverse model with data that does not have an ideal SNR.

5.2.2 Experiment

The experiment in Fig. (5.6a) was built in the lab to gather real-world data to test on the CVAE
inverse model described above. An ultrafast pulsed laser (800nm, 140fs, 1.12W) is coupled to a
liquid light guide (LLG) (5mm diameter) which is placed into one of nine possible positions in
a 3D printed 3×3 LLG mount pressed against a polystyrene slab. At the opposing side of the
slab, a hidden absorbing object is embedded with black tape and obscured from the detector by
a second polystyrene slab. The output fluence of the transilluminated slabs is imaged using a
fish-eye lens (Samyang 8mm f/3.5) and focused onto the photocathode of a photomultiplier tube
(PMT) (Hamamatsu H7422P-50). A 3D printed lens cover with an (6.5× 6.5)cm2 cutout was
placed over the lens to stop background light from entering, and the area of polystyrene imaged
onto the detector. This area was measured to be slightly larger than the cutout ((6.6×6.6)cm2)
by raster scanning the LLG at the plane being imaged using a reduced laser power and low PMT
gain to avoid saturating the detector.
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When a photon is detected, the PMT sends an electrical pulse to a TCSPC module which mea-
sures the time delay from the laser trigger signal and creates a histogram of photon time-of-flight
through the material over many pulses. Although the resolution of the TCSPC module was
12.215ps, the data was re-binned by summing the counts in neighbouring time bins decreasing
the resolution to 24.43ps to reduce the memory requirement of the training data for the inverse
model. A five second exposure for each position of the LLG is used to create a 3 × 3 × 512
measurement for each of the three hidden objects used.

Figure 5.9: The normalised experimental measurements and simulations corresponding to the
best fit optical parameters of 𝜇𝑎 = 0.04cm-1 and 𝜇′

𝑠 = 12.1cm-1 when no absorbing object is
present. The position numbers correspond to the labelled source positions in Fig. (5.6).

However, first a measurement of the material without any absorbing object was performed and
optical parameters were extracted by fitting the forward model simulation to the measured data
using the SciPy library optimize.curve_fit() function. Since there is little spatial infor-
mation collected in the measurements, co-registering the simulations and measurements required
calibration. The cropping windows of the simulation output were shifted horizontally and verti-
cally by parameters optimised as part of the fitting process.
The extracted parameters were found to be 𝜇𝑎 = 0.04cm-1 and 𝜇′

𝑠 = 12.1cm-1 and the best fit
simulation overlaid with the experimental data is shown in Fig. (5.9). The total thickness of
foam was measured to be 10cm, which is equivalent to 121𝓁∗.
Each measurement was background subtracted and a Savitzky-Golay filter was used to remove
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high-frequency noise from the data before testing with the trained inverse model. The results of
the inverse model tested on experimental data are shown in Fig. (5.10). There is a qualitative
resemblance of the shape of the object in the pseudo-maximum reconstructions, e.g., the “x”
target reconstruction has diagonal elongations, the “T” object has vertically elongated features,
which are horizontally stretched at the top, and the “=” object has horizontally elongated features.

Figure 5.10: Reconstructed images using an inverse model CVAE trained on simulated data
and tested with experimental measurements. The most likely image is the pseudo-maximum
likelihood estimate. The mean and standard deviation are calculated from drawing many samples
from the latent distribution and generating reconstructions. All images are normalised.

The low variability of the sampled reconstructions compared with the simulated reconstructions
at 121𝓁∗ in Fig. (5.8) is an indication that the underlying posterior distribution of has not been
accurately approximated by the model. In cases where variational autoencoder decoders learn to
ignore the samples from the latent distribution and generate degenerate solutions, this is known
as “posterior collapse” [157]. This is a common pitfall of VAEs and indicates that the model
is not performing as required for this intended application. However, since the variability of
the reconstructed images when testing on simulated measurements is performing as expected
(Fig. 5.8), but using real experimental measurements results in low variability, this provides
insight that the CVAE model is sufficiently trained but the learned latent distribution is not close
enough to the true underlying posterior for the real-world measurements.
Ideally, the inverse model should be trained using measurements acquired experimentally. Un-
fortunately, it is not practical to collect this data in the lab as it is too time-consuming. Instead,
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simulations from a more accurate photon transport forward model could be used to better ap-
proximate draws from the data likelihood distribution 𝑝(𝑦|𝑥). However, more accurate forward
models such as Monte Carlo ray tracing or finite element methods is that they are more compu-
tationally expensive simulations and take longer to generate simulated measurements.
Using the framework described in [13], a multi-fidelity CVAE forward model could be trained to
map from inexpensive low-fidelity simulations to high-fidelity simulations from a more accurate
forward model, which requires less training data than the inverse CVAE. Once trained, a CVAE
multi-fidelity model could be used to efficiently generate samples from a closer data likelihood
approximation 𝑦 ∼ 𝑝(𝑦|𝑥) that can be used to train the inverse model and better approximate
the posterior distribution 𝑝(𝑥|𝑦). Following this framework, it can be expected that the fidelity
reconstructions would improve and the posterior distribution would be better approximated and
produce more diversity between reconstruction samples.

5.3 Conclusion

A state-of-the-art probabilistic machine learning framework for computational imaging inverse
problems developed by Tonolini et al. [13] was demonstrated with a challenging ill-posed holo-
graphic reconstruction problem. The problem was critically ill-posed due to the extreme down-
sampling and saturation at the camera such that a hybrid input-output phase retrieval algorithm,
commonly used by the optics community, could not converge on a solution.
A conventional four-layer deep artificial neural network to directly learn the inverse problem re-
trieved images that resemble the targets but the performance was inhibited by the limited number
of training examples due to the time-consuming acquisition of experimental data.
Using a low-fidelity simulation of the experiment, a conditional variational autoencoder (CVAE)
was used as a multi-fidelity forward model trained to learn the well-posed problem of generat-
ing high-fidelity measurements from low-fidelity simulations and targets. A large number of
high-fidelity measurements were then sampled from the trained forward model, which closely
approximated real-world experimental data. The large ensemble of generated images were used
to train a CVAE inverse model to reconstruct target images from measurements. Since a statisti-
cal inverse model was used, random sampling of the latent distribution generated other plausible
reconstructions to provide an indication of the uncertainty in the predictions.
To increase the difficulty of the inverse problem, the measurements were successively down-
sampled to decrease their information content. As expected, the inverse model showed increased
diversity of the reconstructions for decreasing resolution of the measurements. This demonstrates
the framework’s ability to accurately determine the uncertainty in predictions of an ill-posed
imaging inverse problem, which is not only informative in research settings but is critical when
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using machine learning for applications such as medical imaging.
Guided by the results of the information theory analysis of imaging in the highly diffusive regime
in Chapter 4, an experiment was designed to maximise imaging information collection from
diffuse photon measurements. A CVAE inverse model was used to confirm that there is sufficient
imaging information in diffuse photons beyond 200𝓁∗ to reconstruct images of hidden absorbing
objects for ideal measurements. Furthermore, a resemblance of the target structure could still be
identified in the reconstruction samples up to 242𝓁∗.
The performance of the model trained on ideal signals was then qualitatively assessed on real-
world experimental data obtained through 121𝓁∗. The results show that the CVAE inverse model
could reconstruct some identifiable features of the target objects. However, the accuracy and di-
versity of the reconstructions is expected to improve when incorporating a multi-fidelity forward
model trained to closely approximate the true data likelihood distribution of the real-world mea-
surements using more accurate simulations of diffuse photon propagation.
The experimental paradigm used in this chapter focuses on non-trivial absorbing objects oc-
cluded by a highly scattering slab of polystyrene introduced in Fig. (3.3). However, this toy
diffuse imaging problem is a simplified approximation of real-world biological scenarios such
as imaging regions of blood oxygenation at the surface of the human brain. In the next chapter,
photon propagation in an adult human head is explored experimentally and numerically to ex-
amine the feasibility of imaging a biologically relevant sample at the limits of the highly diffuse
regime.



Chapter 6

Transmitting photons through an adult
human head

Transmitting light diametrically through an entire human head is a challenging biomedical optics
problem which, if solved, would have a significant impact for medical and research applications.
Functional near-infrared spectroscopy (fNIRS) has been shown to outperform the sampling speed
of fMRI and the spatial resolution of EEG for monitoring brain activity at a relatively inexpen-
sive cost [30, 40]. The portability, robustness to motion artefacts, and real-time brain activity
monitoring capability of fNIRS devices has enabled neuroscience studies which were previously
not possible e.g., due to the limited mobility, loud noise, and cost of fMRI, or the low spatial
resolution and sensitivity to motion artefacts associated with EEG [41].
The field of fNIRS indirectly monitors neural activity of the brain by measuring cerebral blood
oxygenation. The human head has a relatively complex geometry compared with imaging tu-
mours in breast tissue or identifying regions of absorption in a homogeneous scattering phantom.
The heterogeneous superficial layers of tissue and bone not only cause added complications for
the modelling of photon propagation into and out of the head, but the vasculature in these layers
also transport oxy- and deoxy-haemoglobin which interferes with the measurement in the deeper
volume of interest at the surface of the brain.
Despite these difficulties, fNIRS has overcome the complexity of the heterogeneous modeling
using Monte-Carlo ray tracing models of anatomically correct MRI scans of subjects and, using
multiple source detectors or time-gating methods can mitigate the sensitivity of the measurements
to superficial layers [70,72]. However, the challenge of extending the depth of sensitivity beyond
4cm from the scalp remains unsolved and would enable higher fidelity image reconstructions,
access to monitoring activity in cortical folds (sulci), and would extend the use of fNIRS to
many clinical applications which require sensitivity to deeper regions of the brain, e.g., imaging
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deep intracranial haemorrhages [62, 158].
An attempt to transmit light diametrically through the adult human head from one temple to
another was presented in one of the pioneering experiments of fNIRS led by Jobsis [49]. The
experiment aimed to detect a signal corresponding to an increase in transmission of near-IR light
due to a decrease in cerebral blood volume during hyperventilation where a measurement of
the transmitted number of photons was recorded every ten seconds. However, the results were
incomplete due to stopping the experiment early before the signal could return to baseline. Since
then, the only studies which detect light diametrically through the head use neonatal or infant
subjects [50] who have more transparent skulls and smaller diameter head compared with adults.
The theoretical attenuation ratio order of magnitude for transmission of photons through the
diameter of the head can be estimated using Eq. (3.2) using reported global optical coefficients
for the human head. Typical values of human brain optical coefficients in the near-IR are of the
order 𝜇𝑎 = 0.1cm-1 and 𝜇′

𝑠 = 10cm-1 [25]. The typical human head has a diameter of around
15cm. This provides a rough estimate of an attenuation of ∼ 10−12.
However, more precise average estimates of the global parameters for the human head have been
reported in fNIRS studies [159, 160] to be 𝜇𝑎 = 0.13–0.14cm-1 and 𝜇′

𝑠 = 7.2–12cm-1 at a wave-
length of 830nm. Using these reported estimated gives an attenuation between 1011 and 1014.
For context, this corresponds to a transmission rate between 104–107 photons per second for an
input power of 1W at 800nm (∼ 1018 photons per second). However, in practice the quantum
efficiency (∼ 10% at 800nm) and collection efficiency of the detector (∼ 10−5) reduces the de-
tection rate to around one photon per second or less. Moreover, the noise of photon counting
detectors is not ideal which makes it hard to distinguish if a photon count is from the head or due
to the intrinsic dark count rate associated with the detector.
Unsurprisingly, the fNIRS community use a reflection geometry rather than transmitting light
through the head. However, the relatively large signal-to-noise ratio of back-scattered photons
makes it challenging to post-select photons that have interacted with deeper regions of the brain
beyond the outermost surface (gyri). Detecting photons in a transmission geometry ensures that
the photons have interacted with deeper regions of the brain.
The conclusions of the work presented in previous chapters of this thesis indicate that the limit
of transmitting information in the highly diffuse regime extends well beyond what is currently
acknowledged as the limits of imaging through diffusive media. It was also concluded in Chapter
4 that if photons can be detected, then there exist information for imaging. In this chapter, the
limit of photon transmission is tested with an ambitious and relevant biomedical experimental
challenge of transmitting photons diametrically through the adult human head.
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6.1 Experimental methods

Using time-correlated single photon counting (TCSPC), signal measurements in low-photon
number experiments are identifiable by the correlation between the time of photon detection
and a pulsed source. Furthermore, the time-of-flight distribution of photons transmitted through
the head is expected to resemble the characteristics of photon diffusion. This is an information-
rich signal which can directly be compared with simulations of time-resolved photon migration
that can aid in the process of determining the plausibility that the detected light was transmitted
through the head.
First a description of the evolution of the experimental work is introduced which uncovered im-
portant considerations when detecting light through extreme length scales. The analysis pipeline
is then discussed which lead to the result of plausible time-correlated signals. The following
section then compares features of the signal with Monte Carlo simulations and elaborates on the
sensitive parameters which could lead to variation in the signal.

6.1.1 First steps using SNSPDs

The first attempt to transmit photons diametrically through an adult human head used supercon-
ducting nanowire single-photon detectors (SNSPDs). These detectors have very high quantum
efficiency (≥ 85% at 800nm) and low dark count rate (≤ 10Hz) which make them one of the most
sensitive single-photon detectors in the near-infrared [161].
The experiment was set up as shown in Fig. (6.1). The laser power was set to 20mW using a
half-wave plate and polarising beamsplitter (Fig. (6.1a)) which was coupled into a multimode
fibre to direct the laser light to a collimator pressed against the side of the head. The light was
collected using a collimator placed on the diametrically opposite side of the head and guided
to an SNSPD using a single mode fibre. Upon the detection of a photon the SNSPD sends an
electrical NIM pulse to the TCSPC card which is synchronised with the laser trigger to produce
a histogram of the time-of-flight of photons through the head.
Despite the high sensitivity of the detectors used in this experiment, it is fundamentally flawed
by the requirement of coupling the detector to a single-mode fibre. This limits the detection of
photons to a small angle of collection over a small area on the side of the head.
Nonetheless, convincing signals of photon diffusion were obtained. However, using an infrared
viewing scope, it was clear that the multimode fibre used to guide light to the head from the laser
was leaking light through the outer plastic jacket of the patch cord. When the optical fibre was
brought closer to the collection collimator, the signal dramatically increased, which confirmed
the cause of the signal. Interestingly, moving the fibre close to the collection collimator without
the presence of a human head in the set up did not cause and increase in the signal detection. This
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Figure 6.1: The experimental set up for head transmission experiments with superconducting
nanowire single-photon detectors (SNSPDs). a) Power control using an achromatic half-wave
plate and a polarising beam splitter (PBS). b) Before power control, 90% of the light from the
laser transmitted using an anti-reflection coated beam sampler which is absorbed by a beam dump
as a safety precaution to prevent high powers reaching the subject. After power control, the light
is collimated into a multimode fibre (MMF) and a collimator projects the light directly onto the
head. A collimator on the opposing side couples light into a single mode fibre (SMF) which is
input to an SNSPD. For longer wavelengths the layout is identical, but the laser is used to pump
an optical parametric oscillator (Coherent Levante IR fs OPO) which can be tuned from 1300nm-
2000nm and the SNSPD detector is swapped (Single Quantum Eos 1350nm). (Laser = Coherent
Chameleon Discovery (Tunable 650nm-1300nm, 100fs, 80MHz); SNSPD = Superconducting
nanowire single photon detector (Single Quantum Eos 900nm); TCSPC = Time-correlated single
photon counting module (Becker and Hickl SPC-150N)

is because the light leaked from the fibre was not in direct line-of-sight with the collection optics,
and the presence of an object immediately in front of the collection collimator was required to
reflect the light into the detector.
Although the experiment did not achieve the original goal of transmitting photons through the
human head, it highlighted the importance of the collection of photons compared with detector
sensitivity. The measurement of a convincing diffuse light signal of light leakage through the
jacket of an optical fibre also reinforced the importance of isolating background sources of signal
from the experiment.

6.1.2 Increasing angle of collection using SPADs

Light exiting a highly diffusive material is emitted over a large area with a uniform angular
distribution. Therefore, to maximise the collection of diffuse light, the area and solid angle of
collection must be as large as possible. The solid angle of collection of a fibre Ω is related
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to the numerical aperture (NA) by Ω = 4𝜋 sin2 𝜃 = 4𝜋(NA)2, where the numerical aperture is
𝑁𝐴 = 𝑛sin𝜃, 𝑛 ≃ 1 in air, and 𝜃 is the half-angle. However, the collection of light from a fibre
also scales with the area of the fibre core. The product of the solid angle of collection and the area
of collection 𝐴Ω is known as etendue (or throughput) of radiative transfer. In air, the radiance 𝐿
and 𝐴Ω product is conserved [162]:

𝑃 = 𝐿𝐴Ω = 𝐿′𝐴′Ω′, (6.1)

where 𝑃 is power (W), 𝐿 is the radiance (W/m2sr) from the object with area 𝐴 (m2) collected by
the optics of the system with solid angleΩ (sr), and the primed variables are for the corresponding
image plane as shown in Fig. (6.2).

Figure 6.2: Figure adapted from [162] illustrating the conservation of etendue. The power, i.e.,
the product of the radiance 𝐿 from an object with area 𝐴 collected by a lens with a solid angle
of collection Ω, must be conserved in the image plane.

When using a fibre, the area and solid angle of collection is fixed by the core size and numer-
ical aperture. Introducing a collimating lens before the fibre (as per the experiment shown in
Fig. (6.1)) will collect light from a larger area in the object plane but must sacrifice the solid
angle of collection due to the conservation of etendue (Eq. (6.1)). The collection of photons is
therefore inherently restricted by the 𝐴Ω product of the single-mode fibre required to couple to
the SNSPD, irrespective of the optics used to collect the light.
Silicon photomultipliers (SiPMs) do not have a requirement to be fibre coupled and the 𝐴Ω
product can be made much larger. In the next evolution of the experiment the SiPM was pressed
directly against the temple region of the head and held in place using velcro straps (Fig. (6.3a)).
The active area of the SiPM used in experiments was 𝐴 = (1.3×1.3)mm2 and the sensor is ex-
posed with only a minor recess into the protective casing. This means the solid angle of collection
can be increased when placed in close proximity to the head. However, due to the increased angle
of collection, this prototype was very sensitive to light entering the detector from gaps between
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the contact of the detector and the skin. Unsurprisingly, there was clear evidence of scattered
background light from around the room in measurements.
To reduce reflection from the surrounding environment in the measurements, a rugby scrum cap
was modified to accommodate the source fibre and SiPM detector to block light from entering in
the gaps between the detector and the skin. An image of this prototype indicating light leakage
through gaps in the cap is shown in Fig. (6.3b). It is apparent from this image that the diffusive
signals from the background environment most likely originates from back-reflections of tissue
immediately surrounding the source position. To suppress the background light further, black
cloth was used to block light from regions surrounding the source.

Figure 6.3: a) The silicon photomultiplier (SiPM) was placed directly against the head to max-
imise the solid angle of collection. b) In the following prototype, a rugby scrum cap was modified
to accommodate the source fibre and detector in an attempt to suppress background light from
entering the detector. However, it is evident that the source of diffuse light most likely originates
from back-reflections of the tissue immediately surrounding the source, as indicated by the light
leakage through gaps in the cap.

When carefully blocking background light sources, a two-minute acquisition showed no time-
correlated photon detection synchronised with the laser. This is assumed to be because of the
relatively low quantum efficiency of the SiPM at near-infrared wavelengths (∼ 8% at 800nm).
Furthermore, the active area (1.33× 1.33)mm2 is small compared with the area of the side of
the head, and the modifications to suppress background light increased the distance between
the detector and the head from 0.5cm to around 3cm, significantly reducing the solid angle of
collection from Ω≃ 0.8 to Ω≃ 0.02. Multiple two-minute recordings could have been taken and
averaged, but the main limiting factor of using the SiPM is the high dark count rate (∼ 2.5kHz),
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which would result in a low signal-to-noise ratio compared with other detectors.
Guided by the consideration of 𝐴Ω product, quantum efficiency, and dark count rate, numerous
other detectors were trialled. Measurements at 1720nm were attempted with an InGaAs single
photon avalanche diode (SPAD) (IDQ ID230), but no time-correlated signal was apparent. This
InGaAs SPAD is also fibre coupled, which restricts the 𝐴Ω product.
Using a large NA (0.52) and core diameter (5mm) liquid light guide to collect light which was
projected directly onto a 32 × 32 SPAD array (MF32, commercialised by Photon Force) also
yielded no time-correlated signal. The disadvantages of the SPAD array are low quantum effi-
ciency at the near-IR wavelengths (∼ 6.5% at 780nm), and the on-chip TDC electronics reduce
the fill-factor of the detector to around 2% [163].
The SPAD array was swapped for an electron-multiplying charge-coupled device (EMCCD)
which has a pixel array area two orders of magnitude higher (177mm2), a high quantum effi-
ciency (75% at 800nm). However, EMCCDs do not have ultrafast timing capabilities for TCSPC
experiments. Therefore, the measured photon counts are not correlated with the laser and cannot
be distinguished from noise and background counts.

6.1.3 Optimising diffuse light collection from the head

An experiment was designed to optimise the sensitive parameters discussed in the previous
subsection, namely maximising the 𝐴Ω product at the detector plane whilst minimising back-
reflected light from regions of tissue immediately surrounding the source and suppressing any
time-correlated diffuse light in the room from entering the collection optics.
The most suitable detector for measuring diffuse photons in the near-IR was determined to be a
Hamamatsu H7422P-50 photomultiplier tube (PMT). This detector has a 5mm diameter photo-
cathode optimised for near-IR wavelengths (∼15% at 800nm) and a low dark count rate (∼15Hz).
A fish-eye lens (Samyang 8mm f/3.5) was placed in front of the PMT to image a large area of
approximately (6.6×6.6)cm2 onto the photocathode as shown in Fig. (6.4a). A light baffle con-
structed from sponges wrapped in layers of black cloth was used to create a light-tight seal around
the head and prevent stray light from entering the optics. A 3D printed black lens cover with a
(6.5×6.5)cm2 area cutout was placed over the lens to suppress background light further.
The PMT was confined in a black foamboard enclosure filled with black cloth. The detection
area shown in Fig. (6.4b) was then also filled with black cloth and enclosed. The laser coupling
area and head area were also enclosed, leaving only one side for access in and out of the central
head compartment. As a final measure, black cloth was layered over all the enclosures and a
laser safety curtain was placed as an outer layer.
The source laser (80MHz, 1.2W, 140fs, 800nm) was directed to the head area with a liquid light
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Figure 6.4: a) Experimental design to optimise the collection of diffuse light transmitted through
the adult human head. A pulsed laser is expanded to one-inch diameter using a collimator which
uniformly illuminates the side of the head. A light baffle made from black cloth and sponges cre-
ates a light-tight seal that conforms with the shape of the head and prevents background light from
entering the collection optics. A fish-eye lens is used to image an area of (6.63×6.63)cm2 onto
the photocathode of the photomultiplier tube. A TCSPC module time-correlates the detected
photon counts with the laser synchronisation trigger from an optical constant fraction discrimi-
nator. b) An image of the set up in the lab with the outer enclosures removed showing the laser
coupling, head area, and detection compartments.
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guide (LLG) attached to a one-inch collimator which expanded the beam uniformly. During an
experiment, the participant presses the collimator directly against the side of the head above and
behind the ear while maintaining pressure on the sponge light baffle. This corresponds to an
irradiance of 2368Wm-2, which is 75% of the maximum permissible exposure for skin outlined
in the British laser safety standards for (3169Wm-2) [143]. An experiment collected up to 30
two-minute acquisitions with the laser on and a two-minute background reading with the laser
switched off every three measurements. The TCSPC module was configured to trigger every
fourth synchronisation pulse from an optical constant fraction discriminator since the signal’s
expected shape and time delay was unknown.
The participant was informed that they could stop the experiment or take breaks at any time
by alerting the laser operator to switch off the laser. The status of the laser was communicated
loudly to the participant with a countdown any time the laser was switched on or off. Participants
provided informed consent before experiments and the experiments were approved by the Uni-
versity of Glasgow College of Science and Engineering Ethics Committee (application number:
300180292).
The experiment was repeated thirty-one times across two experimental setups. The first setup
is pictured in Fig. (6.4) and described above. However, this was disassembled, and a second
modified setup was built in a new lab to enhance the light collection efficiency and reduce light
leakage.
To reduce light leakage from the area around the source, a silicone mould made to make a tight
seal with the skin (Fig. (6.5a)). This was made by pouring liquid silicone into the bottom half of
an aluminium can around a threaded lens tube placed in the centre. Once set, the circular ridge
of the mould made from the bottom of the can conformed to the shape of the head and prevented
gaps for light to escape. The lens tube was glued to the silicone so that it could be screwed onto
the collimator as a single piece.
To isolate the head area (Fig. (6.4b)) from background light, a black cloth body wrap was made
to surround the participant as shown in Fig. (6.5b). This alleviated the requirement for placing
black cloth around the participant for every trial which was quicker, more reproducible, and made
room for a fan and a foam cube the participant can use to rest their forehead, which improved the
comfort of experiments. to improve the comfort of the experiments (Fig. (6.5c)).
In an attempt to improve light collection, the fish-eye lens with solid angle of collection Ω =
3.3×10−3 was replaced with a larger aperture lens with Ω = 0.366 but less magnification. This
was a trade-off between the area of the head imaged onto the detector compared with the range
of angles which could be collected. Since the PMT photocathode was recessed into the casing,
this restricted the aperture to Ω≃ 0.2. Transilluminating polystyrene foam with a constant power
showed around a twenty-fold improvement of the collection of photons when using the lens with
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Figure 6.5: The modified experimental setup. a) A silicone mould conformed to the shape of
the head and prevented reflected light leakage from the area around the source. b) A black cloth
body wrap was attached to the head enclosure with velcro and was a more reproducible way of
suppressing background light from entering the setup. c) A fan and a head rest were introduced
to increase the comfort of experiments for participants.

greater solid angle of collection.
However, this was improved further when removing the lens and placing the PMT directly against
the foam. Although the collected photons are from a smaller area, using a bare sensor also
removed any possible losses due to Fresnel reflection from lens surfaces and absorption due to
anti-reflection coatings that are not optimised for near-IR wavelengths. Therefore, the lens shown
in Fig. (6.5) was removed.

6.2 Results

An example of a raw and a filtered signal taken with participant one using the first experimental
set up (Fig. (6.4)) for increasing number of experimental trials is shown in Fig. (6.6). A third-
order Savitzky-Golay filter was used with a window of 251 time-bins to filter the data. Although
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there is no measurement of the impulse response function (IRF) for this measurement, the curve
resembles a solution to the photon diffusion approximation and has an average full-width half-
maximum (FWHM) of 1.99±0.01ns.

Figure 6.6: An example of raw and filtered data for participant one using the first experimental
setup. There is no signal after a) a two-minute experiment trial, but after b) twenty minutes a
time-correlated signal emerges, which is clear after c) sixty minutes of experimental acquisition.

Results from the second experimental setup (Fig. (6.5)) show similar signals and their averaged
IRF. The peak-to-peak time delay from the IRF to the signals is 2.1±0.2ns and the FWHM is
1.7 ± 0.2ns. The transparent signals shown in Fig. (6.7) are the averaged filtered background
measurements.
The rate of detected photons above the background for the signals in Fig. (6.6) is 2.0±0.9 pho-
tons per second. This was found by cropping the raw signal data and raw background data to
include two complete periods of the laser repetition rate (9.16ns to 34.18ns). The mean over all
two-minute trials was calculated and the difference between the sum of the averaged signal and
background measurements was found. The difference was multiplied by two since the TCSPC
module triggered on every fourth pulse from the laser. The result was then divided by the acqui-
sition time to find the photon rate for the three experiments, and the mean and standard deviation
was calculated.
The experimental attenuation was determined to be 2×1013±1×1013. This estimate was found
using the ratio of the photon detection rate (2± 1 photons per second), with the input photon
rate calculated using the input power (1.2W) and wavelength (800nm). This ratio was then nor-
malised by the quantum efficiency (15%) and the 𝐴Ω product (∼ 4× 10−5m2) of the detector.
The experimental photon detection rate is the same order of magnitude (1 photon per second)
estimated by the theoretical arguments made in the introduction to this chapter which is a promis-
ing indication that the experimental attenuation of photons matches the attenuation expected for
photons transmitted through the entire head.
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Figure 6.7: The filtered mean photon counts for a two-minute exposure for three separate thirty-
minute experiments conducted on different dates using the second experimental setup. The semi-
transparent traces are the filtered mean counts of the background measurements. The mean of
the normalised impulse response (IRF) can be used to estimate the absolute delay of the photons
due to photon diffusion.

6.3 Simulations of light propagation in the human head

6.3.1 Method

A GPU-accelerated Monte Carlo program (MCX) was developed by Fang and Boas [164] which
was motivated by the field of functional near-infrared spectroscopy (fNIRS) to accurately simu-
late photon propagation through anatomically accurate human head models remeshed from MRI
scan data. This program is an ideal tool to estimate the expected signal at the detector for pho-
tons that are diametrically transmitted through the head, and can also be used to determine the
distribution of light inside the head.
The simulation pipeline of MCX is described in [164]. To summarise, a photon packet is launched
from the position of the source in a specified direction towards a 3D volume mesh object. The
mesh can be any arbitrary geometry and different segmented volumes within the mesh can be
assigned any optical properties. Using the specified scattering coefficient of the current voxel,
the distance to the next scattering location is randomly sampled from an exponential distribution,
and the azimuth and zenith scattering directions are sampled from a distribution specified by the
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Henyey-Greenstein phase function (Eq. (2.20)). The photon packet is stepped one voxel length
in the direction of the trajectory, decreasing in weight by the absorption coefficient in the step,
until the scattering length is complete. A new scattering length and direction is sampled based
on the optical properties of the current voxel. The process is repeated until the photon exits the
volume, reaches a minimum weight threshold, or reaches the maximum time-gate. The process
described above for one photon packet can then be repeated for a specified number of photons
packets.

Figure 6.8: a) Various viewing angles of the multi-layered head volume used for MCX Monte
Carlo simulations. The green spheres represent detectors with diameter 25mm and the red circle
is a uniformly distributed collimated disk source with diameter 25.4mm. b) The right side of the
head showing detector labels. Obscured labels are visualised in part (a). c) The optical properties
used in the simulations for each layer of the head from [165] for 810nm. The scalp collectively
describes superficial tissues and the optical parameters for skin were used. d) The left side of the
head noting the position of the source relative to the boundaries of the simulation volume.

Detectors can be placed near the surface of a mesh to collect photons that exit the mesh at a given
position. Since the surface geometry of the mesh can be complex, a detector is specified by a
sphere of a chosen radius which intersects the surface of the mesh. If a photon packet exits the
mesh within the region encompassed by the detector sphere then its information is saved, e.g.,
direction of propagation, total path length, and final weight value.
The fluence rate can be calculated in space and time for the mesh by tracking the weight of each
photon packet through each voxel and creating a distribution in time. The time-bin length can be
determined by the user and the final result is normalised by the total number of photon packets
such that the calculated fluence rate is in units of 1/mm2s, i.e., the fluence rate for 1J of energy at
the input. The full details of normalising the weights of the mesh to determine fluence rate can
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be found in [166].
The simulation was defined using the geometry and optical properties outlined in Fig. (6.8).
The head model used in the study is a modification of the open source Colin27 segmented MRI
phantom [167] that reduces the number of segmented layers. The mesh is a part of the open-
source MCX package [168] and the only modifications made for the simulations in this chapter
are the optical parameters specified for each segmented volume. Although the optical properties
remain uncertain for each tissue type in the head [160], a careful estimate of these values for the
Colin27 segmented MRI was determined in [165]. The optical properties specified for 810nm
in [165] were used and the source was configured to be a one-inch diameter uniform illumination
placed above and behind the ear to emulate the experiments discussed in the previous section. A
total of nineteen detectors were configured around the surface of the head, the first ten detectors
were placed in close proximity to the position of the detector used in lab experiments.
A total of 647 simulations were run on two NVIDIA RTX 3090 and two NVIDIA RTX 4090
GPUs for 2×1010 photon packets, and took around 52hrs computation time. The results from
all simulations were aggregated which is equivalent to simulating 1.294×1013 photon packets.

6.3.2 Results

A direct comparison of the simulation results and the experimental results obtained in the lab is
shown in Fig. (6.9a). The time-resolved photon counts in detectors, shown in Fig. (6.8b) labelled
1–10, were binned into 0.782ns time-bins which was chosen as a multiple of the time-bins used
in experiments (12.215ps) to avoid undersampling the distribution. The total weight in each
detector was normalised by the total number of input photon packets to determine the attenuation
factor, which was then multiplied by the number of photons corresponding to the 800nm 1.2W
source used in laboratory experiments. The results in each detector were aggregated to determine
the time-resolved photon rate shown in Fig. (6.9a).
The aggregated attenuation factor of detectors 1–10 is 2.8× 1018 corresponding to around two
photons per second for a 1.2W 800nm source. This is the same as the measured photon rate of
the laboratory experiments, however, the additional attenuation due to 𝐴Ω product and quantum
efficiency are not accounted for. Therefore, the attenuation factor of the experimental results is
around five orders of magnitude less than estimated in simulation. Despite a high number of
launched photon packets, the number of photon packets reaching each detector with a non-zero
weight is low. Using the weight values of a relatively small number of photon packets at the
detector to calculate the attenuation value is likely to give an inaccurate estimation.
The full-width half maximum of the Monte Carlo results (∼ 2ns) is comparable to the width of
the experimental measurements. Increasing the bin size of a histogram containing few samples
better approximates the true population distribution [169] and therefore this result is likely to
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Figure 6.9: a) The background-subtracted and filtered mean of the experimental data normalised
to photons per second and the sum of the Monte Carlo simulated time-resolved photon counts
at detectors 1–10 (Fig. 6.8b)). b) Sagittal planes of the segmented head mesh overlayed with
the energy-normalised fluence rate (1/m2s) plotted in log-10 scale (top) and the corresponding
normalised time distribution (bottom).

be accurate despite detecting a relatively small number of samples. It can also be assumed that
the simulated distribution is unimodal given the trend of the normalised time-resolved fluence
rate for sagittal planes of the head for increasing thickness tending towards the position of the
detectors as shown in Fig. (6.9b). This trend also shows an increasing width of the time-resolved
distribution towards 2ns.
The peak-to-peak difference of the simulated and experimental distributions is around 1.8ns.



CHAPTER 6. TRANSMITTING PHOTONS THROUGH AN ADULT HUMAN HEAD 143

This difference can partially be accounted for by the difference in head diameter. The measured
head diameter of the participant in experimental work is 15.5cm, whereas, the corresponding
source/detector distance in the Colin27 mesh is 16.9cm. A first-order approximation to the delay
shift of a 200ps difference can be estimated using the peaks of the 4cm (0.7ns) and 16cm (2.6ns)
traces in Fig. (6.9b) to determine a rate of delay with respect to thickness.
Another sensitive parameter that can lead to a difference in the delay is the source placement. The
spatial distribution of light through the head shown in Fig. (6.9b) highlights two main pathways
for light to transmit though the head. Guided by the channels of cerebrospinal fluid (CSF) sur-
rounding the brain, light travels above or below the cerebral cortex and most likely exits the head
from the region of porous bone of the skull behind the ear. This is illustrated more clearly when
visualising different plane dimensions scanned in time in Fig. (6.10). Because of the high ex-
tinction properties of the brain, the distribution of light migrates from the source position above
and below the cerebral cortex over time. This is an effective light guiding mechanism through
the regions of low scattering and absorption.

Figure 6.10: The log-10 energy-normalised fluence rate (1/m2s) for increasing time at a) the
sagittal plane 80mm from the source, b) the coronal plane 88mm from the back of the simulation
volume, and c) the transverse plane 90mm from the bottom of the simulation volume.

Interestingly, the mechanism of light guiding in this context is not due to conventional reflective
waveguides or total internal reflections due to a difference in refractive index in the material, but
a statistical process whereby light preferentially migrates in regions of low extinction. The phe-
nomenon of light guiding in CSF is an active research topic in fNRIS [170–172] which originated
at the turn of the century [173–175] to improve the accuracy of the inverse retrieval models for
estimation of regions of blood oxygenation in the brain. However, there has yet to be any rigorous
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explanation of the underlying physics of the mechanism in diffusive media. A study by Kienle and
Hibst [176] discusses guiding of light in arbitrary directions by a microscopic tubule structure of
dentin. In this study, the authors show that the light guiding mechanism is not due to reflections
or wave effects but the preferential scattering direction of aligned cylindrical microstructure of
the material. Although the light guiding in the Monte Carlo simulations presented in this chapter
do not have aligned structures on the microscopic scale, this study hints that scattering materials
can act as light guides.

Figure 6.11: a) An illustration showing the exact displacement of the source compared with the
initial position in Fig. (6.8d). The modified source position is shifted by 2cm in the direction of
the arrow. b) The corresponding normalised fluence rate (1/m2s) distribution in log-10 scale at
the sagittal plane of the head 8cm from the source. c) A comparison if the time distribution at
different sagittal planes coloured corresponding to the source position that was used.
There is clearly also scope for more studies into the guiding of light through heterogeneous
models which also include the microscopic structure of tissues to more accurately simulate light
transport through biological tissues beyond the assumptions of made in the diffusion approx-
imation to the radiative transfer equation. For example, the fibrous structure of white matter
could preferentially guide light through the brain which may be overlooked in current Monte
Carlo photon transport models that are designed with applications that study the outer layer of
gray matter. Careful consideration of the location of air cavities in the interior structure of skull
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and regions of CSF could also be used to preferentially guide light to target areas by configur-
ing source placement for photo-dynamic therapy applications [165] or to sample functional and
anatomical information by detecting photons which have explored deep regions of the head.
To estimate the sensitivity of source placement for guiding light through different regions of
the head, four additional Monte Carlo simulations were performed using the same configuration
outlined in Fig. (6.8) using a source position which was translated 2cm above, below, backward,
and forward from the location used in the previous larger simulation. The goal of this simulation
is not to analyse the transmitted photons at the opposite side of the head but to visualise the
preferential guiding of light due to scattering to different volumes in the head. Therefore, a
reduced number of 2×1011 initial photon packets was used to reduce the simulation time (a total
of 4hrs computation time using a NVIDIA RTX 4090).
The results shown for a sagittal plane midway through the head (8cm from the source) in Fig. (6.11b)
indicate that the explored volume of the light dramatically varies depending on source position.
Moving the source up or down can selectively isolate the path of migration around the top of
the head in the CSF layer between brain and skull, or through the lower regions of the brain in
CSF surrounding the cerebellum. Furthermore, the normalised time-resolved fluence rate shown
in Fig. (6.11c) for different sagittal planes through the head show that displacing the source can
have an effect on the time-delay of the photon distribution. A peak-to-peak time difference of
300ps was observed midway through the head (8cm from the source) between simulations that
have a source 2cm above and below the original placement.
A time difference between the top and bottom guided paths of 220ps was also observed for the
same plane midway through the head in the results of the original larger simulation. The cropped
regions shown in Fig. (6.12) clearly show this difference even though the source is fixed to one
position. This indicates that it is not necessarily the difference in source position, but the dif-
ference in guided photon paths which causes a difference in the delay and width of the time
distribution.
The sensitivity of light coupling due to different source placement was also observed experimen-
tally by illuminating a human skull in the lab with a 20mW 532nm laser as shown in Fig. (6.13).
The light diffused by the illumination side of the skull projects onto the interior walls and the
transilluminated light was photographed using a digital camera. There is clear difference in
density and thickness of the side wall of the skull which have drastically different transmission
properties. Light is also more intense close to the coronal suture at the top of the skull that could
be used to indicate regions where light may be better coupled in and out of the brain.
Although the effects outlined above highlight the sensitivity to source position to the time-of-
flight distribution of photons in the head, this still does not account for the delay between the
experimental and simulated results. However, the differences between experimental results and
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Figure 6.12: a) The normalised fluence rate (1/m2s) distribution in log-10 scale at the sagittal
plane of the head 8cm from the source. This result is from the simulation outlined in Fig. (6.8)
using 1.294× 1013 photon packets. b) The time distribution of the fluence rate of the cropped
regions coloured to indicate the upper (red) region and the lower (green) region.

simulations due to the cerebrospinal fluid guiding mechanism throughout the head is still an
active field of research for fNIRS. The differences studied in fNIRS are over relatively short
distances which are likely to be amplified when considering the length scales of propagation
through an entire head studied in this chapter.

Figure 6.13: A photograph of a transilluminated human skull using a 20mW 532nm laser demon-
strating regions of bone with higher transmissivity.

Furthermore, the optical properties of the human head in-vivo are still not accurately known and
will have inter-subject variability e.g., hair thickness, hair colour, and skull density [177]. For
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example, the reported reduced scattering coefficient of the human brain differ by around 100%
[25,160], and in a more recent study, inter-subject absorption and reduced scattering coefficient
was shown to differ by around 50% [160]. Using different optical parameters would have a
significant effect of the time distribution of transmitted light over such large distances.
Lastly, the microscopic structures of different tissue layers in the brain (e.g., fibrous white mat-
ter structure) could be unaccounted for by the diffusion approximation to the radiative transfer
equation, which may cause light to be guided in other tissues other than the CSF, such as white
matter, that could also lead to differences in the time distribution of transmitted photons for these
length scales.

6.4 Conclusion

Transmitting photons through the head is a challenging, yet relevant, unsolved biomedical optics
problem. In this chapter, the various experimental approaches were discussed, which uncovered
important considerations when maximising the collection of photons in the extreme limits of
the highly diffuse regime. Since there is no reference for the precise features that the signal
transmitted through the head should have, an estimate of the signal was simulated using a detailed
anatomically accurate multi-layer model of the human head.
From the analysis presented in this chapter it is inconclusive whether the detected light in exper-
iments was transmitted through the head. However, the time distribution is not entirely different
to the Monte Carlo simulated signal considering the difference in head diameter, sensitivity to
source placement and potential inaccuracies of the model over large distances. It is promising
that light can be guided to different regions of the brain in simulation, which could be exploited
to selectively isolate regions of interest in deep brain regions currently unexplored in the field of
fNIRS. Furthermore, it was shown in simulation that photons transmitted diametrically through
the head can be collected by the detectors at a rate of around two photons per second which
indicates that it is not unfathomable to have sensitivity to deep regions of the brain using near-
IR wavelengths. Differential measurements using different source placement and detector could
lead to isolating information from different deep volumes of the brain which may unlock the po-
tential of diffuse optical imaging to reconstruct anatomical or functional information in currently
inaccessible regions.
The work of this chapter indicates some future avenues of research towards enabling deep diffuse
optical imaging of the human brain. The first of which is experimental considerations to optimise
collection efficiency by maximising the etendue of the detector. The ideal sensor has a large solid
angle of collection and area covering the entire side of the head. Hypothetically, this could be
realised with 100% fill factor large area detectors that are placed directly against the skin and
have sensitivity to photon detection at high angles of incidence. Multiple of these sensors could
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be arranged on the interior of a highly absorbing wearable cap which would extend the total
area of collection without requiring collection optics that are constrained by the conservation of
etendue. A wearable design in close contact with the skin is also easier to isolate from background
light entering the system. If such a wide-field modular detector also had low noise and high
quantum efficiency in the near-IR, towards the ideal specifications of superconducting nanowire
single-photon detectors, this would also dramatically increase the collection efficiency of diffuse
photons. The next evolution of the experimental prototype is currently under construction. The
design uses a black rubber-lined bicycle helmet with a PMT detector directly attached. Using
3D-printed mounts, the PMT can be brought into proximity to the skin sealed with a silicone
mould that conforms to the shape of the head and prevents background light from entering the
detector.
The challenge of determining whether the detected signal truly propagated through the head could
be tackled by changing the experimental paradigm to gradually move the source and detector
further apart from one another around the circumference of the scalp. These measurements would
help determine the change of signal features as the separation increases so that the numerical
model could be validated using experimental signals with high SNR. Understanding how the
signal changes with increased propagation distance and tuning the numerical model with real-
world data would increase the accuracy of extrapolation of these signals for photon propagation
distances through the entire diameter of the head. Furthermore, knowledge of how the signal
changes through short to medium distances through the head could also provide a more accurate
framework for explaining the origin of experimentally measured signals.
There is also scope for studies into the mechanism of light guiding by scattering which could un-
cover more accurate descriptions of light-matter interaction, especially for tissues such as white
matter which have microscopic fibrous structure. Incorporating this into Monte Carlo light trans-
port models will be critical for developing techniques that deliver and collect photons in deep
brain regions.
There are also some recent studies showing the potential of using longer wavelengths such as
1300nm and 1750nm that have favourable scattering and absorption coefficients for probing
deep regions of the brain [178–180]. The different optical properties of the chromophores in
the head and brain tissues at these wavelengths may also present opportunities to monitor func-
tional processes other than blood oxygenation. The difference in optical coefficients may also
lead to different guiding pathways through the head compared with 800nm light studied in this
chapter. Multispectral approaches may provide complimentary independent information about
anatomy and physiological processes in the brain.



Chapter 7

Conclusion

Diffuse optical imaging beyond 100𝓁∗ is an important step towards the development of non-
invasive medical imaging technologies that are low-cost, compact, easily portable, and do not
use harmful ionising radiation. This could enable clinical applications currently restricted by
contraindications of alternative medical imaging technologies and present new opportunities for
medical and neuropsychology research.
The physical problem of diffuse optical imaging to overcome is the process of photon scatter-
ing that randomises the direction of light propagation and degrades direct imaging information.
Time-resolved methods such as early photon imaging can recover images through scattering ma-
terials using the first-arriving photons that maintain some spatial coherence. Unfortunately, the
detection of these photons is exponentially suppressed with an increasing number of transport
mean free path lengths. Therefore, early photon imaging methods fail in the highly diffuse regime
beyond 80𝓁∗ where the detection rate of a ballistic photon is roughly one per age of the universe.
However, it was shown in Section (3.4) that indirect imaging information remains in the full spa-
tiotemporal distribution of detected photons, which enables image reconstructions of embedded
absorbing objects in highly diffusive materials.
The information content of measurements was quantified using Shannon entropy and mutual in-
formation in Chapter 4. First a case study was presented using information theory concepts to
analyse multipath echo signals used to reconstruct three-dimensional scenes. The analysis un-
covered a surprising insight that return echoes from ray paths which have bounced twice around
the environment contain more information than direct reflections. This can intuitively be inter-
preted as a “hall of mirrors” effect where including signals that have scattered multiple times
contain information about the scene from many different perspectives.
Information theory analysis concepts were then applied to diffuse photon measurements. The
results showed that imaging information can be measured beyond 200𝓁∗ for simulated measure-
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ments including practical experimental conditions, which corresponds to more than 10cm of hu-
man tissue. Surprisingly, the estimated limit of detecting mutual information was not due to the
physical process of photon diffusion but the exponential extinction rate of transmitted photons.
Experimental results show that this limit can extend further by increasing collection efficiency
or using higher source power.
Furthermore, it is clear from inspection of the spatial maps of mutual information in Section (4.4)
that information about the input is preserved for regions with low cross-talk between neighbour-
ing regions. Therefore, information throughput can be enhanced by minimising the cross-talk of
the signals due to spatial broadening of the pulse after the object plane, e.g., by using a scanning
source rather than uniformly illuminating the material.
It was also shown that resolving in both space and time improved the condition of the ill-posed
problem. Resolving measurements in space-time decreases the sensitivity of the inverse problem
to noise perturbations and is more likely to produce accurate image reconstructions. The extra
dimension of the data helps to diversify the measurements and provide additional independent
information.
The problem of imaging thorough > 100𝓁∗ can be broken down into maximising the information
collection and designing inverse image reconstruction algorithms to utilise all available collected
information. A state-of-the-art machine learning algorithm for computational imaging inverse
problems [13] was introduced in Chapter 5, which harnesses the capacity of neural networks to
learn arbitrarily complex non-linear mappings between measurements and targets, and employs
a probabilistic framework that can be used to assess the diversity of predictions for critically
ill-posed inverse problems.
The machine learning framework designed by the co-authors of [13] was demonstrated using a
simple optics experiment with a challenging ill-posed inverse image retrieval problem. Using
only a limited number of experimentally acquired measurements and a low-fidelity simulation of
the system, a multi-fidelity forward model was built using a conditional variational autoencoder
(CVAE) to generate a large training set that could be used to train an inverse image retrieval
model. A probabilistic inverse model was then constructed, also using CVAE, to accurately
reconstruct the amplitude image from critically down-sampled and saturated experimental mea-
surements such that a conventional holographic phase retrieval algorithm failed to converge on
a solution. An advantage of using a probabilistic inverse model is the access to alternative plau-
sible solutions which were shown to become more diverse when further degrading the quality of
the measurements.
To assess the potential of a probabilistic machine learning model to reconstruct images of hidden
objects embedded in highly diffusive materials, a CVAE inverse model was trained and tested
with ideal diffuse photon measurements simulated through more than 100𝓁∗. The proposed ex-
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perimental configuration was guided by the results in Chapter 3 and 4, which incorporated a raster
scanning source and a detector with high collection efficiency to maximise information through-
put. The results verify that there is enough information contained in measurements up to 242𝓁∗

to qualitatively reconstruct images. Estimates of other possible solutions were also predicted
which accurately reflected the increased instability of the ill-conditioned problem for measure-
ments through a greater number of transport mean free path lengths. Quantifying the variability
in reconstructed images is critical for some real-world applications, e.g., medical imaging of
tumours.
The inverse CVAE model trained on ideal simulations was then tested on experimental data
and the predicted reconstructions contained resembling features of the target images. Future
work is to incorporate a multi-fidelity approach using more accurate simulations that reflect the
experimental conditions and produce a training data distribution more representative of the true
distribution of experimental measurements.
As a real-world experiment at the extreme limits of the highly diffusive regime with relevance
to medical and neuroscience applications, experiments conducted towards transmitting photons
through an adult human head were presented in Chapter 6. The evolution of experiments uncov-
ered key considerations of collection efficiency of diffuse light, such as maximising etendue and
quantum efficiency whilst minimising the detection of background light and dark count rate.
These trade-offs are considered in the most recent experimental configuration, and although
promising signals of diffuse light have been measured, future work is to reliably reproduce these
signals to investigate further if the detected photons have been transmitted through the head.
Simulations were performed using a Monte Carlo photon propagation solver to estimate the tra-
jectory of photons inside the head using an anatomically correct mesh. Comparisons with the
experimental data show that there are similarities such as the width of the distribution, how-
ever, there is not enough evidence to conclude if the detected light propagated through the head.
Findings show that regions of cerebral spinal fluid guide light around the cerebral cortex have
different temporal propagation statistics and can be coupled preferentially by changing the source
location. The underlying mechanism of light guiding in the head is also an interesting topic to be
explored in more detail. Understanding the principles of light guiding in the head could lead to
optimised experimental configurations that couple into guiding pathways that efficiently deliver
to deep regions of the brain, or optimised sensor locations that detect light that has interacted
with deep regions.
In this thesis, it is clear that there is promising potential for using time-resolved diffuse optical
imaging to reconstruct images deep inside regions of the human body and brain. However, to
enable these technologies to image beyond 100𝓁∗, the focus of research must migrate from early
photon imaging concepts to utilising the full available information of the detected photons.



CHAPTER 7. CONCLUSION 152

The potential for diffuse optical imaging to be extended to deep regions of the brain, as ex-
plored in this thesis, could inspire the development of novel functional imaging techniques and
applications e.g., incorporating signals from cortical folds to provide complimentary informa-
tion about brain activity with cortical surface signals measured using existing fNIRS. Further-
more, the current progress of creating wearable time-domain multi-spectral fNIRS instruments
enables imaging activity from other interesting physiological processes such as directly mea-
suring metabolic activity using the spectral properties of cytochrome-c-oxidase. This modality
extends the clinical applications of fNIRS to monitoring stroke recovery or the progression of
neurological diseases [177, 181].
Beyond functional imaging, extending the depth of sensitivity of diffuse optical imaging could
open opportunities for anatomical imaging anywhere in the body if the sensitivity of the imag-
ing algorithms to accurately determine subtle differences in absorption coefficients is improved
beyond the binary absorption samples in this thesis. Additionally, extending the work of this the-
sis to depth-resolved reconstructions of absorbing objects e.g., extending the machine learning
algorithm in Section (5.2) to use 3D convolutional layers in the Decoder network such that the
model maps from diffuse photon measurements to 3D mesh structures from simulation or MRI
scans, could realise depth-resolved imaging of anatomical structures in deep tissue regions.
The future of diffuse optical imaging is likely a combination of these ideas which harnesses
advances in time-resolved multi-spectral single-photon detector hardware to further increase the
diversity of information captured at the detector by simultaneously sampling different spectral
regions and resolving functional and anatomical information in space and depth.
Information can also be enhanced by resolving measurements in other domains and considering
the experimental configuration, such as collection efficiency and source and detector placement.
Beyond resolving photon counts in space, space-time, and multi-spectral domains, other plenop-
tic information could further increase the independent information content of the measurement,
e.g., using a lenslet array to measure the angle of incidence of photons at the detector. Further-
more, imaging retrieval algorithms that consider the instability of the critically ill-posed problem
of imaging in the highly diffusive regime are key to estimate the uncertainties of the reconstruc-
tions, which is especially important for medical imaging applications. However, in principle,
other imaging applications currently limited by photon diffusion, such as using diffuse X-ray
photons to enhance X-ray image quality, or imaging through fog and water, can apply the same
conclusions of this thesis.



Appendix A

The derivative of the regularised
least-squares algorithm

The regularised least-squares inverse retrieval algorithm developed by Lyons et al. [12] can be
formulated as a minimisation of the operator 𝑂(𝑚), where the argument 𝑚 is the hidden two-
dimensional absorbing object we wish to reconstruct:

argmin
𝑚

{𝑂(𝑚)} = argmin
𝑚

{

||(𝑚)−𝑌 ||22+𝜆1||𝑚||𝑇𝑉 +𝜆2||𝑚||1
}

. (A.1)

The regularisers ||𝑚||𝑇𝑉 and ||𝑚||1 are the total variation norm and𝐿1-norm regularisers weighted
by the regularisation parameters 𝜆1 and 𝜆2.
The gradient 𝑂′(𝑚) of the loss function 𝑂(𝑚) defined in Eq.(A.1) can be found by considering
the derivative of each term separately. The least-squares fidelity term can be found using the
chain rule:

𝑑
𝑑𝑚

||(𝑚)−𝑌 ||22 =
∑

𝑡∈𝑇
∗ ((𝑚)−𝑌 ) , (A.2)

where ∗(𝑚) is the adjoint operator of Eq. (3.3). The summation of time-bins 𝑡 for the full set of
time-bins 𝑇 in the histograms results in a two-dimensional gradient map that is used to update
each pixel independently in the image estimate.
The forward operator photon diffusion model described in Eq.(3.3) can be rewritten using the
convolution theorem:

(𝑚) = Re
[

−1{
{

Φ(𝑟𝑜𝑢𝑡, 𝑡)
}


{

𝜙m⊙𝑚(𝑥,𝑦)𝑇
}}]

. (A.3)

The term 𝜙m is the result of the convolution of the laser intensity profile 𝐼(𝑥,𝑦, 𝑡) with the point
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spread function of the fluence rate at the object plane Φ(𝑟m, 𝑡):

𝜙m = Re
[

−1{ {𝐼(𝑥,𝑦, 𝑡)}
{

Φ(𝑟𝑚, 𝑡)
}}]

. (A.4)

To find the adjoint operator in terms of Fourier transforms, the conjugate is found for each op-
erator in Eq.(A.3) acting on the argument 𝑚 in reverse order from the last operation to the first
operation. Starting with the conjugate of the final operation in the forward model (an inverse
Fourier transform), and ending with the first operation (multiplication by 𝜙m), the adjoint oper-
ator ∗(𝑚) can be found by,

1. Conjugate of last operation: {𝑚},

2. Conjugate of last two operations: ∗{Φ(𝑟m, 𝑡)}{𝑚},

3. Conjugate of last three operations: −1{∗{Φ(𝑟m, 𝑡)}{𝑚}},

4. Conjugate of all operations: 𝜙∗
m

−1{∗{Φ(𝑟m, 𝑡)}{𝑚}},

∗(𝑚) = Re
[

𝜙∗
m

−1{∗{Φ(𝑟m, 𝑡)}{𝑚}}
]

, (A.5)

Where ∗ denotes the conjugate results of the Fourier transform, rather than the conjugate of the
Fourier transform itself, which is the inverse Fourier transform.
The second term of the gradient of the loss function is the derivative of the TV-norm [182]:

∇||𝑚||𝑇𝑉 = −∇ ⋅
[

∇𝑚(𝑥,𝑦)
|∇𝑚(𝑥,𝑦)|

]

. (A.6)

Finally, the gradient of the 𝐿1-norm is just the sign (positive or negative) of the pixel values:

∇||𝑚||1 = sign(𝑚). (A.7)



Appendix B

CVAE model architecture: DOI beyond
100𝓁∗

The inverse conditional variational autoencoder (CVAE) model architecture for diffuse optical
imaging beyond 100 transport mean free paths experiment described in section 5.2 is explained
in more detail in this appendix.
Figure (B.1) shows a high-level block diagram of the inputs and outputs of the CVAE for training
and testing. To understand the motivation between the connections and outputs of the model as
a whole, consider the objective function [13]:

argmax
𝜙,𝜃1,𝜃2

log𝑝𝜃2(𝑥|𝑧,𝑦)−𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥,𝑦)||𝑝𝜃1(𝑧|𝑦)), (B.1)

where the minimisation is performed with respect to the learn-able parameters of Encoder 1 (𝜙),
Encoder 2 (𝜃1), and the Decoder (𝜃2). The first term of Eq. (B.1) ensures the output recon-
struction is accurate by maximising the log-likelihood of predictions. Assuming that the output
distributions for each pixel are Gaussian, then this can be realised by minimising mean squared
error between the prediction. The second term of Eq. (B.1) can intuitively be interpreted as min-
imising the difference between the distributions modeled by the first and second encoders. Each
encoder maps to the moments of a 10-dimensional multivariate Gaussian (i.e., multivariate nor-
mal) and so the KL-divergence can be explicitly defined. The objective function in Eq. (B.1) can
be rewritten in terms of inputs and outputs of the model as

argmin
𝜙,𝜃1,𝜃2

1
𝑁

𝑁
∑

𝑖=1
(𝐱̂(𝑖)−𝐱)2+𝐷𝐾𝐿( (𝝁𝑬𝟏,𝝈𝑬𝟏)|| (𝝁𝑬𝟐,𝝈𝑬𝟐)), (B.2)

where 𝐱̂(𝑖) is the 𝑖𝑡ℎ prediction from 𝑁 samples from the latent distribution (for this case 𝑁 = 1),
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𝐱 is the target image, and  (𝝁𝑬𝟏,𝝈𝑬𝟏) and  (𝝁𝑬𝟐,𝝈𝑬𝟐) are multivariate normal distributions
parameterised by the predicted moments of Encoder 1 (E1) and Encoder 2 (E2).
When training Fig. (B.1a), all three networks are used to minimise the objective function as per
Eq. (B.2) and the samples are taken using the output moments of Encoder 1. However, when
testing, Encoder 1 is redundant and samples are taken using the moments from Encoder 2.

Figure B.1: The high-level block diagram of the CVAE architecture when a) training and b)
testing. The shapes of the inputs/outputs are displayed under the variable names.

The layers and connections used in each of the neural networks in Fig. (B.1a) is illustrated in
Fig. (B.2). Encoder 1 (Fig. (B.2a)), the measurements input to the model are spatially resolved
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Figure B.2: The layers and connections used for a) Encoder 1, b) Encoder 2, and c) Decoder
presented in Fig. (B.1a). Each layer type is represented as a colour block which is described by
the key at the bottom of the figure. The output shape of each layer is displayed under the layer
name and the inputs/outputs are highlighted using a box outline. Sampling the latent distribution
is performed using 𝐳=𝝁+𝝈⊙𝜺, where⊙ is an element-wise product and 𝜺∼𝑈 (0,1) is a random
number between zero and one from a uniform distribution.

time-of-flight diffuse photon measurements 𝐱, therefore 3-dimensional convolutional filters (ker-
nel size (3,3,3)) are used to extract local spatial and temporal features. The resulting feature maps
are then reshaped to match the dimensions of the target images 𝐲 followed by 2D convolutional
layers (kernel size (3,3)) which extract features from both the measurement and the target image.
The feature maps are successively down-sampled using max pooling until the features are flat-



APPENDIX B. CVAE MODEL ARCHITECTURE: DOI BEYOND 100𝓁∗ 158

tened to produce a column vector which is input to fully-connected dense layers that predict the
moments of the latent distribution.
Similarly Encoder 2 (Fig. (B.2b)) uses 3-dimensional convolutional layers for feature extraction
of the diffuse photon measurements 𝐲 and dense layers to predict the moments of the latent
distribution.
The Decoder (Fig. (B.2c)) has both the diffuse photon measurement 𝐱 and the sampled latent vec-
tor 𝐳 as input. Again the features of the measurements are extracted using a 3-dimensional convo-
lutional layer and the resulting feature map is concatenated with the latent vector 𝐳. To produce a
predicted image at the output of the decoder, the feature vector is reshaped to 2-dimensions and
consecutively up-sampled to match the shape of the target images 𝐲. The use of 2-dimensional
convolutional layers in this context is to increase the number of learn-able parameters to map
between the low-dimensional reshaped feature maps ((7,7,64) i.e., 64 feature maps with shape
7×7) to the high dimensional output shape (28,28,1).
Encoder 1 has 57,890,164 trainable parameters, Encoder 2 has 178,164 trainable parameters, and
the Decoder has 231,269,185 trainable parameters. The total number of trainable parameters for
the combined networks in Fig.(B.1a) is 289,337,513.
The model was trained using an Adam optimiser for 1000 epochs using a mini-batch size of 200.
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