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Abstract 
 

Energy dissipation is crucial for understanding the mechanics of granular materials. Discrete 

element modelling has been carried out to investigate the mechanism of energy dissipation 

in granular materials.  

 

Firstly, the relationship between energy dissipation and contact networks is investigated. 

Using the discrete element method, a series of triaxial compression tests with different stress 

paths have been simulated. The energy dissipation was analysed using two existing contact 

force network partitioning approaches, one based on the magnitude of average contact force 

and the other one based on the contribution of contact forces to the global deviator stress. 

The results indicate that for both techniques, neither the strong nor the weak contact 

networks exhibit negligible energy dissipation. When the average contact force partitioning 

approach is used, more than 70% of the energy dissipation occurs in the weak contact 

network, although the dissipation per sliding contact is greater in the strong contact network 

because the tangential contact force is greater. When the contact network is partitioned 

depending on the contribution of contact forces to global deviator stress, the strong contact 

network dissipates around 60% of the total energy. A new normal contact force threshold is 

found for partitioning the contact force based on the contribution to energy dissipation. 

Almost 93% of energy dissipation occurs at contacts with a normal contact force that is less 

than two times the average normal contact force. As a result of little particle sliding, 

interactions with a greater normal contact force result in a negligible amount of energy loss.  

 

Secondly, a quantitative investigation of stored plastic work and energy dissipation in granular 

materials has been studied using discrete element modelling. Drained triaxial compression 

tests on samples with different particle size distributions (PSD) have been simulated. The 

elastic stiffness is measured using stress probe tests and then used to calculate the elastic and 

plastic strain in the samples. The total work input is decomposed into two parts, including the 

elastic free energy and plastic work, which are dependent on the elastic and plastic strain, 

respectively. The plastic work is further decomposed into stored plastic work and dissipated 
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energy. There is little elastic free energy in the material due to the small elastic strain. The 

stored plastic work is much smaller than the dissipated energy for samples with all particle 

size distributions. This could be due to a lack of interlocking among spherical particles, which 

is expected to ‘freeze’ plastic work in the material. 

 

 

Finally, DEM simulation was also carried out to analyse some of the existing energy dissipation 

and stored plastic work equations. These energy dissipation functions showed inaccuracy in 

predicting the amount of energy dissipation. A new modified dissipation function was 

produced. This new function was able to offer a reasonable prediction for samples with 

different particle size distributions. Furthermore, a new stored plastic work function is 

developed based on the DEM results. As the quantity of stored plastic is small, a suitable 

function should be depending on the pressure increment. The new function can provide a 

good prediction for samples with different particle size distributions. 
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Chapter 1: Introduction  

 

The mechanics of granular materials is complex due to the interaction among individual 

particles. Sand is a typical granular material that is widely seen in geotechnical engineering. 

Their mechanical response is crucial for understanding the development of natural hazards 

(landslides and debris flows) and the performance of many essential components of 

infrastructure, such as buildings, bridges, and dams. Therefore, extensive research has been 

done on the mechanics of granular materials. 

 

Energy dissipation has a significant influence on the mechanical behaviour of granular 

materials, such as shear strength and dilatancy. The energy aspect has been included in many 

constitutive models to characterise the behaviour of the soil. The Cam-Clay model, upon its 

initial development, was constructed under the assumption that all plastic work is dissipated 

through friction dissipation (Roscoe et al., 1963). Furthermore, the modified Cam-Clay model 

also utilised the energy consideration and addressed some of the deficiencies in the original 

model by adding the increment of volumetric strain to the dissipation to the equation (Roscoe 

and Burland, 1968). 

 

 In addition, all proposed changes to the Cam-Clay model, such as those changes provided by 

Gens and Potts (1988) kept energy consideration as a fundamental part. Furthermore,  the 

energy consideration was used for many other constitutive models, such as NorSand (Jefferies 

and Shuttle, 2002, Jefferies, 1993), Severn-Trent sand (Gajo and Muir Wood, 1999) and the 

state-dependent sand model by Manzari and Dafalias (1997). The energy-based approach is 

also considered a key in seismic analysis and geotechnical earthquake engineering. There are 

many energy-based approaches have been proposed to predict the possibility of sand 

liquefaction during the seismic loading (Trifunac, 1995, Law et al., 1990, Berrill and Davis, 

1985).  
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The contemporary ideas of thermomechanics are applied to develop families of models that 

explain the elastic/plastic behaviour of soils deforming under triaxial conditions. These 

theories rely in some way on the dissipation and free energy functions, which after specifying 

both functions, the corresponding yield loci, flow rules, isotropic and kinematic hardening 

rules, and elasticity law are defined systematically (Collins, 1997, Collins and Houlsby, 1997, 

Collins and Kelly, 2002, Collins and Hilder, 2002, Houlsby, 1981). Even though energy 

dissipation has been previously investigated, there is still a lack of details on the microscale 

behaviour of energy dissipation under different stress paths, confining pressure, and initial 

density. In addition, providing microscale investigation regarding the free energy (free energy 

is the energy stored in the representative volume element) can help distinguish the difference 

between the internal energy that is stored or dissipated in the system. 

 

1.1 Scope of research  

 

This study aimed to contribute to the understanding of the mechanisms of energy dissipation 

at the micro-scale using discrete element modelling (DEM) simulations. All simulations 

conducted within the scope of this research were conducted using idealised, completely 

spherical particles. The simulations used in this study were carried out using a modified 

version of the LAMMPS code (Plimpton, 1995). Simulations were performed on high-

performance computers, allowing the modelling of relatively larger samples with a substantial 

number of particles. DEM offers an idealised numerical environment in which loading 

conditions can be properly controlled and stress-strain response can be exactly quantified. 

Using three-dimensional loading conditions this research will provide a quantitative 

investigation regarding energy dissipation and free energy. Consideration is given to the 

impact of loading conditions on the mechanical behaviour of energy dissipation. The effect of 

particle size distribution on the energy dissipation mechanism will also be investigated. 
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1.2 Research objectives  

 

Using numerical simulations, the following objectives will be addressed in this study: 

1. Investigation of the relationship between contact networks and energy dissipation: 

a. DEM simulations of samples with uniform PSDs.  

b. Examination of the contact force partitioning methods based on the 

contribution of the contact network to force transmission.     

c. Investigation of the effect of the partitioning method on the relationship 

between contact networks and energy dissipation.  

d. Proposing an alternative partitioning method for dividing the contact network 

based on the contribution of the contact network to energy dissipation.  

2. Investigation of stored plastic work in granular materials 

a. providing a deeper understanding of the mechanism of stored plastic work 

using different examples. 

b. Investigating the effect of different PSDs on the amount of stored plastic work.  

c. Proposing new energy dissipation and stored plastic work equations based on 

the DEM results. 

 

1.3 Thesis chapter organisation  

 

This thesis contains seven chapters. Chapter 1 introduces the subject, scope and objectives 

of the research in this thesis. In Chapter 2, a literature review of the DEM simulation is 

presented, with a particular emphasis on its application in investigating the macro and micro-

mechanical behaviour of granular materials. Additionally, the chapter conducts a thorough 

review of existing literature concerning energy dissipation and stored plastic work, while also 

identifying areas where research gaps persist. 

Chapter 3 describes the DEM simulation that will be used throughout this study. The chapter 

focuses on describing the methods required to perform DEM simulation, including a 

description of the contact model, servo-control, periodic boundaries, and the selection of 
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simulation parameters used throughout this study. In addition, this chapter describes the 

method used in this study to monitor the energy dissipation during simulations. 

 

Chapter 4 investigates the effect of the contact networks partitioning method, sample initial 

density, confining pressure, and stress path on the relationship between contact networks 

and energy dissipation.  

 

Chapter 5 investigates the distinction between energy dissipation and plastic work by 

analysing the plastic work stored in granular materials. This chapter also examines the 

influence of various PSDs with varying particle numbers on the results of plastic work storage. 

 

Chapter 6 provides an evaluation of energy dissipation and stored plastic work functions in 

granular materials. This chapter utilises the same simulations as chapter 5 to evaluate a 

variety of free energy and dissipation functions and provides an alternative function based on 

the DEM simulation findings. 
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Chapter 2: Literature review 

This chapter presents a literature review of the DEM simulation, with a particular emphasis 

on its application in investigating the macro and micro-mechanical behaviour of granular 

materials. Additionally, the chapter conducts a thorough review of existing literature 

concerning energy dissipation and stored plastic work, while also identifying areas where 

research gaps persist. 

 

2.1 Discrete element method  

 

The DEM is based on modelling granular materials as an assembly of rigid particles by 

considering the interparticle interaction (Cundall and Strack, 1979). A contact model is applied 

to calculate the contact forces developed between neighbouring particles. The existing 

contacts between particles can break and new contacts can be developed.  

Figure 2.1 is a flowchart to show the key stages of DEM simulation and the calculation that 

will be carried out during every timestep (O'Sullivan, 2011). Even with a simple contact model 

to simulate inter-particle contact, DEM proves to be effective in capturing the essential 

mechanical response characteristics of granular materials. By simplifying particle shapes and 

employing a basic contact model, DEM simulations can effectively analyse systems comprising 

a large number of particles while accurately representing soil behaviour. In DEM models, 

virtual specimens can be subjected to loads and deformations to explore their response, 

making it a valuable tool for investigating physical laboratory tests (O'Sullivan, 2011). DEM 

simulation allows monitoring the mechanisms of granular materials at the particle scale which 

can simplify the complexity of the material's response. These mechanisms are involved in 

evaluating contact force, particle rotations, particle orientation and contact sliding, etc., all 

this information is difficult or might be impossible to be quantified in laboratory experiments.  

 

Soil grains have several shape properties, such as sphericity, roundness, and roughness, which 

are influenced by their production, transit, and deposition histories, as well as their 

mineralogical composition. The degree of interlocking between soil grains varies according to 

the degree of form irregularity. Numerous experimental investigations have been used to 
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examine the influence of particle shape on soil behaviour (Cho et al., 2006, Shin and 

Santamarina, 2013, Yang and Wei, 2012). Cho et al. (2006) examined a large dataset derived 

from physical tests and demonstrated that particle shape influences packing density, small 

strain stiffness, volumetric response, and strength. Consideration of the non-spherical shape 

of soil grains in DEM simulations is challenging. Several methods that can be used to create 

non-sphere particles will be discussed here. 

 

Regularly shaped particles method  

The production of particles having non-spherical shapes can be achieved by using regularly-

shaped particles, such as ellipses in two-dimensional space (Fu and Dafalias, 2011), ellipsoids 

in three-dimensional space (Ng, 2009b), polygons in two-dimensional space (Pena et al., 

2008), and polyhedrons in three-dimensional space (Langston et al., 2013) (see Figure 2.2).  

 

Sphere or regularly shaped clusters particles method  

Alternatively, several spheres or regularly-shaped particles are bonded together to produce a new 

form of particle shape (clusters/ clumps) (see Figure 2.3) (Ferellec and McDowell, 2010, Kozicki 

et al., 2012, Yang and Wei, 2012). 

 

Superquadrics method 

Superquadrics are a class of parametric shapes that are derived from the fundamental quadric 

surfaces. In mathematical terms, a superquadric is defined as a spherical product of two 

parametric 2D curves. The superquadric's implicit formula in the body-fixed coordinate 

system is represented as follows: 

 

  𝑓(𝑥, 𝑦, 𝑧) = [(
𝑥

𝑎
)

2

𝜀2 + (
𝑦

𝑏
)

2

𝜀2]

𝜀2
𝜀1

⁄

+ (
𝑧

𝑐
)

2

𝜀1 − 1 = 0                                                  (1) 
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where a, b and c are the half-lengths along the related principal axis; 𝜀1 and 𝜀2 are the 

roundness parameters which control the edge sharpness. By altering the values of the five 

parameters, it is possible to make modifications to a wide range of shapes. By replacing the 

squaring operations with arbitrary powers, a greater number of shapes can be represented. 

Furthermore, through the manipulation of roundness parameters, a diverse range of shapes 

can be achieved, encompassing prevalent particle forms such as cylinders, prolate spheroids, 

boxes, and cubes. Figure 2.4 shows some examples of particles when semi-axes equal to 1,1,2, 

respectively (Gao et al., 2022).  

 

Level set method 

In DEM simulations, the level set method is used to represent and monitor the shape and 

boundaries of particles. It provides a flexible framework for accurately capturing particles' 

complex geometries and deformations. By modifying the level set function, the method can 

simulate changes in particle morphology and fragmentation. In DEM simulations, the level set 

method can be used to generate particles and their initial positions. By defining a suitable 

level set function that describes the intended particle shapes, it is possible to create particles 

based on the contour of the function (Harmon et al., 2021, Wang and Ji, 2022). This enables 

simulations of granular materials with complex and irregular particle geometries by 

facilitating the initialization of realistic particle configurations. 

 

Spherical harmonics method 

The concept behind spherical harmonic analysis involves expanding the radial dimension of a 

particle's surface using a unit sphere. By doing so, the associated coefficients of the spherical 

harmonic series can be computed (Wei et al., 2018, Zhou and Wang, 2017, Zhou et al., 2015). 

These coefficients represent the particle's shape and can be described based on the various 

frequencies of spherical harmonics present. The amplitudes of these frequencies determine 

the strength of the morphological features in the frequency domain (Wei et al., 2018). For 

more comprehensive insight into the utilisation of the spherical harmonics method for the 

generation of particles with non-spherical shapes, further details can be found in the seminal 
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work by Capozza and Hanley (2021). Their research provides an in-depth exploration of the 

application of spherical harmonics for producing non-spherical particles. 

Rotational resistance 

Rotational resistance is another method used to investigate the influence of particle shape on the 

behaviour of granular materials (Huang, 2014).  Several researchers have proposed an alternate 

method, which involves the addition of extra rotational resistance (Huang et al., 2017a, 

Iwashita and Oda, 1998, Jiang et al., 2015). This method is explained in the PhD thesis by 

Huang (2014). Although this technique has been used in several works, it is not physically 

realistic (Hanley et al., 2018).  

 

Despite the recognised importance of particle shape, using spherical particles in DEM 

simulations offer several advantages, making them a popular choice in many applications. 

Some of these advantages can be related to simplicity and computational efficiency. Spherical 

particles have a simple and well-defined geometry, which simplifies their representation and 

computational analysis in DEM simulations. Calculating particle-particle interactions and 

contact forces for spherical particles is computationally efficient compared to more complex 

particle shapes. Furthermore, contact detection between spherical particles is 

straightforward and efficient. As a result, spherical particles have been selected for use in this 

research to simplify the process and reduce the computational time required to achieve all 

the research goals.   
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Figure 2.1 Flowchart for DEM simulation (O'Sullivan, 2011). 
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Figure 2.2 Different particle shapes used for DEM simulations (Fu and Dafalias, 2011, Ng, 
2009b, Pena et al., 2008).  
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Figure 2.3 Symmetric clusters of spheres used in DEM simulations (Kozicki et al., 2012). 
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Figure 2.4 Superquadrics particles with semi-axes a = b = 1 and c =2, 𝜀1  and 𝜀2 varying 
between 1  3(Gao et al., 2022).  
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2.2 Macro- and micro-mechanical behaviour of granular materials using DEM.  

2.2.1 Macroscale response of granular materials using DEM. 

 

The macroscale behaviour of granular materials during quasi-static deformation is influenced 

by the spatial and size distributions of the constituent particles and the displacement 

behaviour at the interparticle contacts (Thornton and Antony, 1998). Experimental and 

theoretical studies of granular materials are restricted by the lack of quantitative information 

happening inside the material. Laboratory investigations on real materials depend on the 

estimation of macroscopic stress and strain states derived from boundary measurements, 

which are in turn based on material behaviour assumptions. However, it is uncommon to get 

information regarding the interior response of materials during these laboratory testing. 

Furthermore, since exact replicas of the physical system are not available, comparisons 

between sets of test data are uncertain (O'Sullivan, 2011). In the traditional approach, 

attempts to mathematically model granular media are based on intuitive speculation as to 

how to best modify continuum mechanics theories to model the observed experimental 

behaviour. As a result, new parameters are invariably introduced into the theories, whose 

precise meaning is not entirely clear. This makes it difficult to choose suitable experiments to 

properly test a hypothesis (Thornton and Antony, 1998). 

 

Alternative strategies such as computer simulation integrate theory and experiment into a 

single environment, allowing material properties to be adequately described and quantifiable 

findings to be produced. This technique provides perfect control over experiments while also 

providing information on interior micromechanical processes (Huang, 2014, Lee et al., 2012, 

Thornton and Antony, 1998). Discrete element simulation is a well-established method used 

for studying the behaviour of granular materials. Several studies have utilised DEM to 

examine the macroscale response of particulate materials. A few of these are highlighted 

below.   
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Stress-strain relationship using DEM 

Granular materials are composed of discrete particles that interact through contact forces. 

Understanding the stress-strain relationship in granular materials is essential for predicting 

their behaviour under different loading conditions. The DEM method offers a powerful 

computational tool to investigate the macroscopic behaviour of granular materials, enabling 

a detailed analysis of the stress-strain relationship and its influence on the macroscopic 

response. Several works have examined the stress-strain relationship during DEM simulation. 

In these studies, DEM simulations effectively capture the state-dependent behaviour of 

granular soil, such as contraction and static liquefaction in very loose soil and dilatancy and 

hardening in dense soil. Thornton and Antony (1998) conducted a study where they 

investigated the quasi-static shear deformation of granular media through DEM simulations. 

In their research, they used spherical particles to create samples with varying degrees of 

compaction, including loose and dense samples. These samples were subjected to constant 

mean effective stress 100 kPa and compressed within a periodic boundary. Figure 2.5 and 

Figure 2.6 depict the findings of the study, supporting the conclusion that the stress-strain-

dilation response observed in both the dense and loose systems aligns with typical behaviour 

observed in laboratory experiments. The dense system displays a higher initial shear modulus, 

exhibiting a peak in the stress-strain curve at approximately 5% strain, followed by strain-

softening behaviour. On the other hand, the loose system does not exhibit any strain 

softening; the deviator stress increases at a decreasing rate until it stabilizes at a relatively 

constant value at around 15% strain. The volumetric strain responses, determined by changes 

in void ratio, highlight that the dense system experiences expansion, while the loose system 

undergoes contraction. At larger strains, both systems deform while maintaining a constant 

volume, associated with a consistent deviator stress independent of the initial packing 

density. According to traditional soil mechanics, this constant volume deformation at large 

strains would correspond to a "critical void ratio" unaffected by the initial packing density. 

 

Huang et al. (2014a) Provided DEM research that addressed the sensitivity of the critical state 

response to different coefficients of interparticle friction using samples with gradings that are 

indicative of real soil. The majority of samples in the study employed a particle size 

distribution (PSD) that closely resembled Toyoura sand. Additionally, a subset of simulations 
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is considered analogous to Dunkirk sand. The Toyoura sand grading consisted of 20,164 

spherical particles, while the Dunkirk sand grading comprised 43,906 spherical particles. They 

used two different boundary conditions: periodic boundaries and rigid walls. They 

investigated three distinct loading paths: conventional drained compression (CDC), constant 

volume compression (CVC), and constant mean effective stress (𝑝′) compression (CPC). After 

the isotropic consolidation, the coefficient of friction (μ) was adjusted to values of 0.1, 0.25, 0.5, 

0.75, or 1.0, corresponding to the desired shearing conditions. The sample was allowed to 

reach a state of equilibrium before commencing the shearing process. Their finding regarding 

the stress-deformation behaviours of a representative subset of periodic boundary 

simulations conducted on conventional drained triaxial compression tests is presented in 

Figure 2.7. All simulations in this subset sheard with identical initial conditions, including an 

initial void ratio (𝑒0 ) of 0.533 and an initial isotropic stress of 100 kPa. Throughout the 

shearing process, the confining pressure of 𝜎3= 100 kPa was maintained. During shearing, the 

interparticle friction coefficients utilised in the simulations varied. In Figure 2.7 (a), it can be 

observed that all samples initially exhibited high stiffness due to their dense initial state. As 

the value of μ increased, the stiffness also increased. However, for samples with μ exceeding 

0.5, the deviatoric stresses reached their peak almost vertically, which indicates an 

unrealistically rigid response. Figure 2.7(a) also demonstrates that both the peak and critical 

state strengths increased with higher values of μ. When μ was increased, the samples 

displayed a more brittle post-peak behaviour. Figure 2.7(b) illustrates that the volumetric 

strain (𝜀𝑣), which indicates dilatation, increased with higher values of μ. Nevertheless, when 

μ surpassed 0.5, further increases in μ had negligible effects. 

 

Liu et al. (2013) conducted 3D DEM simulations to examine the impact of particle size 

distribution on the stress-strain and critical state behaviour of granular materials in 

conventional drained triaxial tests under both compression and extension. They employed 

five distinct particle sizes, as illustrated in Figure 2.8. Each sample's particle size was 

characterized by its coefficient of uniformity 𝐶𝑢 , which is a shape parameter used to 

differentiate between well-graded and poorly-graded coarse-grained soil. The samples 

consisted of spherical particles, and the number of particles varied approximately from 2,277 

to 8,617. Figure 2.9 depicts the stress-strain relationships of specimens with different grain 
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size distributions (GSDs). When all specimens were subjected to relatively large strains 

(greater than 25%), they attained a critical state characterised by constant stress and volume. 

In both Figure 2.9(a) and (b), the final deviatoric stress under each loading condition was the 

same regardless of the GSDs. In contrast, the ultimate deviatoric stress in compression tests 

was greater than that in extension tests. 

 

 

Figure 2.5 The relationship between deviator stress and deviator strain (Thornton and 
Antony, 1998).   
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Figure 2.6 The relationship between void ratio and deviator strain (Thornton and Antony, 
1998).   

 

 

 

Figure 2.7 Comparison of stress-strain behaviour with different interparticle friction; a) relationship 

between axial strain and deviator stress; b) evolution of volumetric strain (Huang et al., 2014a) 
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Figure 2.8 Particle size distribution used by Liu et al. (2013).   
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Figure 2.9 Stress-strain responses of granular soil with different GSDs: (a) Deviator stress 
against deviator strain of compression tests; (b) Deviator stress against deviator strain of 

extension tests; (c) Volumetric strain against deviator strain of compression tests; (d) 
Volumetric strain against deviator strain of extension tests (Liu et al., 2013). 

 

 

Critical-state behaviour using DEM 

 

The term ‘critical void ratio’ has been utilised first by Casagrande (1936) to characterize a specific state 

in sandy soils with constant volume. Taylor (1948) proposed two alternative definitions: the constant 

𝜎3 critical void ratio and the constant-volume critical void ratio. The former definition is derived from 

drained triaxial tests and differs from Casagrande's definition by considering the void ratio after the 

consolidation as the initial void ratio. Roscoe et al. (1958) brought these two definitions together, 

forming the concept of a unique critical void ratio line (C.V.R line) in (𝑝′, 𝑒, 𝑞) space based on the 

behaviour of Weald Clay. This concept served as a fundamental element in the framework of critical 
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state soil mechanics (CSSM) described by Schofield and Wroth (1968b). The original CSSM framework 

depicted the critical state through two distinct relationships, as illustrated in Figure 2.10. 

  𝑞 = 𝑀𝑝′                                                  (2) 

  𝛤 = 𝑣 + 𝜆𝑙𝑛𝑝′                                                  (3) 

The equations represent various parameters associated with the critical state line (CSL) in 𝑣 − 𝑙𝑛𝑝′ 

space where 𝑀  describes the inherent frictional coefficient between grain surfaces, while 𝛤 

represents the intersection point of the CSL with the 𝑝′ = 1 kPa axis in 𝑣 − 𝑙𝑛𝑝' space. The specific 

volume 𝑣, defined as 1 +  𝑒 (where 𝑒 is the void ratio), and λ indicates the slope of the CSL in 𝑣 −

𝑙𝑛𝑝′ space. Soils that initially lie above the CSL, as defined by 4 in 𝑣 − 𝑙𝑛𝑝′ space, are classified as 

being in a 'wet' or loose state and tend towards the CSL. Conversely, soils that start below the CSL are 

in a 'dry' or dense state and tend to expand or dilate towards the CSL.  

 

DEM simulations have been employed to investigate the critical-state behaviour of granular materials 

using both 2D disk systems (Maeda et al., 2010) and 3D sphere systems (Gu et al., 2014, Guo and Zhao, 

2013, Huang et al., 2014a, Ng, 2009a). As depicted in Figure 2.11, the previous DEM studies have 

confirmed that, under triaxial compression loading conditions, the CSL is unique and independent of 

initial states and loading conditions. It is worth mentioning the work of Zhao and Evans (2011), they 

observed variations in the position of the CSL in 𝑒 − 𝑙𝑜𝑔(𝑝′) space in relation to the initial void ratio. 

Nevertheless, their observations were limited to strains up to 10% axial strain, and the genuine 

response of the critical state, which is typically attained at strains surpassing 10% axial strain, remains 

uncertain. 

 

Perez et al. (2016) utilised 3D DEM simulations to investigate triaxial tests across different 

initial densities and confining pressures. Their objective was to evaluate the quasi-static 

conditions for shearing in granular media within the framework of critical state soil 

mechanics. The simulation involved 10,624 particles, representing Toyoura sand, and the 

samples were enclosed with periodic boundaries. Isotropic compression was applied to 

achieve various combinations of void ratio and stress state. Subsequently, the samples were 

subjected to shearing under constant 𝑝′ conditions. The simulations were conducted using 

different inertial numbers, denoted as 𝐼, which quantified the inertia effects by considering 

the ratio of inertial forces to imposed forces. The quasi-static regime was indicated by small 
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values of 𝐼, while intermediate values represented a dense flow regime, and large values 

indicated a collisional dynamic regime. In Figure 2.12  the critical void ratio is presented for 

different combinations of 𝐼 and 𝑝′. It is worth noting that each data point represents the 

average value of 𝑒 and 𝑝′ over the last 10-20% of axial strain to account for fluctuations in the 

load-deformation response. When 𝐼 ≥ 2.5e3 the CSLs exhibit a downward movement with 

decreasing I. However, for 𝐼 ≤ 2.5e3., the CSLs show no significant variation. 

 

Gu et al. (2014) investigated the mechanical behaviour of granular soils at different initial 

densities and confining pressures in drained and undrained triaxial tests by using 3D DEM 

simulations. Figure 2.13 shows their findings regarding the CSLs for both undrained and 

drained tests. As seen in Figure 2.13a, the stress ratio 𝑞/𝑝 is a constant of 0.78 at the critical 

state, despite the initial conditions and stress paths. The shear stress ratio is smaller than 

those in experiments which is probably due to the rounded particle shape and lack of rolling 

resistance. It can be noticed too in Figure 2.13b that the critical void ratio varies linearly with 

𝑝0.78. 
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Figure 2.10 The proposed definition of CSL (Schofield and Wroth, 1968b) 

 

(a) 
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(b) 

Figure 2.11 The CSL in 𝑒 − 𝑙𝑜𝑔(𝑝’) space based on DEM studies under conventional triaxial 
loading conditions for Ng (2009a) and Guo and Zhao (2013) respectively. 

 

 

Figure 2.12 Void ratio at critical state for different values of 𝐼 and 𝑝′ (Perez et al., 2016).  
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Figure 2.13 Critical state line in  a) 𝑞 − 𝑝 space  and b)  𝑒 − 𝑙𝑜𝑔 (𝑝′) space (Gu et al., 2014). 

 

2.2.2 Microscale behaviour of granular materials using DEM 

 

DEM simulation has been used in several studies to bridge the gap between the macro and 

micro behaviour of granular materials. It is commonly acknowledged in the mechanics of 

granular materials that the internal structure, such as, contact network, sliding of contact 

network and energy dissipation has a significant influence on the macroscopic behaviour of 

these materials (Kruyt and Rothenburg, 2006, Radjai et al., 1999, Shire et al., 2014, Thornton 

and Antony, 1998). 
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Force transmission and contact networks in granular materials 

 

 The applied loads are distributed evenly across typical solids and liquids. This is not true for 

granular materials, which consist of discrete macroparticles (Jaeger et al., 1996). In granular 

materials, forces are transferred between particles through their contact points. The mode of 

propagation shows a complex force network with quick branch shape changes during material 

deformation (Peters et al., 2005). Photoelastic experiments on two-dimensional arrays of 

discs have been utilised to directly evaluate the stress distribution in granular materials 

(Dantu, 1957, De Josselin de Jong, 1969). This technique works by placing granular material 

between crossed-polarising filters. Each facet of the granular material rotates the polarisation 

of light according to the level of local stress. The tests indicate that load is transferred via 

heavily stressed columns of particles known as strong force chains, as presented in Figure 2.14 

(Radjai, 2015). 

 

Zheng et al. (2019) used a photoelastic experimental approach to demonstrate the 

development of a force chain network in a photoelastic granular system with soft confining 

limits (Figure 2.15). During each step of shear, records are kept of the particle positions, 

orientations, and photoelastic reactions. Analysing these data allows for the determination 

of the coordination number of each particle, which serves as an indicator of the transition to 

the jammed state before any dilation occurs. In the context of two-dimensional frictional 

granular systems, the term "jammed" refers to a state in which particles are densely packed 

and exhibit limited movement. Once a granular material reaches the jammed state, the 

particles become locked in, requiring a significant amount of force or energy for further 

movement or rearrangement. The jamming state is achieved when the coordination number, 

denoted as Z, equals 3 (Jaeger et al., 1996). The coordination number represents the average 

number of force-bearing contacts per particle within the force network (Zheng et al., 2019). 
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The initial state of the granular sample is deliberately set to be unjammed, meaning there are 

no initial forces present, as depicted in the first snapshot of Figure 2.15. They found that 

during the initial stage of compression, the coordination number rapidly reaches 3. At this 

point, the granular system is primarily undergoing compression, increasing by packing friction 

and densification of the sample. The coordination number continues to rise with strain even 

after reaching Z = 3, although at a slower rate. They concluded that this phenomenon can be 

attributed to the fact that the granular system has already entered the jammed state. Beyond 

this specific point, as the compression strain increases, the sample experiences oscillation 

between jamming and unjamming states along the yield boundary due to the application of 

additional external loading.  

 

Later research employing DEM simulations gives a better understanding of force transmission 

in granular materials and its link to the content network. The inhomogeneous load 

transmission in the soil has also been demonstrated using DEM simulation. DEM simulations 

have proven that stress is transmitted across granular materials through a highly 

inhomogeneous network. As load is applied to the soil, it is mostly transmitted by strong 

contact particles forming a sparse network that carries above-average force and is aligned in 

the direction of major principal stress (Radjai, 2015). This strong chain is supported by weak 

networks that carry the below-average force that is perpendicular to the major principal stress 

(Radjai, 2015). Cundall and Strack (1979) used a numerical simulation of a simple shear test 

to investigate the force transmission in granular materials, they demonstrate a good 

qualitative agreement between the simulation and a corresponding photoelastic experiment 

by Oda and Konishi (1974). Radjai et al. (1997) suggest that the contact force network can be 

divided into two complementary subnetworks: a strong network that carries an above-

average normal contact force and a weak network carrying a below-average normal contact 

force, as shown schematically in Figure 2.16. They used two-dimensional simulation and 

concluded that the strong networks carry the whole deviator stress while the weak network 

only contributes to the main effective stress.  
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Thornton and Antony (1998) used three-dimensional DEM simulation to investigate the quasi-

static deformation of granular materials. They used a sample containing 3620 elastic sphere 

particles with an average diameter of 0.26mm. They evaluated the macroscopic and 

microscopic behaviour of loose and dense samples at the micro-scale. They partitioned the 

contacts as proposed by Radjai et al. (1997) to examine the contribution of the strong and 

weak networks to deviator stress. Figure 2.17 shows that most of the deviator stress is carried 

by the strong network, with a small contribution from the weak network. This finding does 

not support observations by Radjai et al. (1997), as it can be seen in Figure 2.17 that weak 

contact also contributes to deviator stress. Subsequent studies separated the contact force 

networks, based on the average normal force approach (Thornton and Antony, 1998, Shi et 

al., 2018, Kruyt, 2016, Estrada et al., 2008). However, there is evidence to suggest that 

separating the contact force in this way may not be appropriate. For example, Huang et al. 

(2017b) used DEM to examine the Radjai approach to separating contact networks using 

average normal force. They found that weak contacts also participate in stress transmission 

and contribute to structural anisotropy, whereas some of the weak contact orientation occurs 

in the same direction as the major principal stress. They have also shown that the 

characteristic normal contact force, which indicates the transition from a negative to a 

positive contribution to the overall deviator, changes until the critical state is reached, after 

which it remains constant. Finally, they observed that characteristic normal contact force for 

demarcating strong and weak networks based on contribution to deviator stress and the 

structural anisotropy varies. Thus, they concluded that using average normal force to 

separate the networks is not a robust method. Kruyt (2016) proposed an alternative definition 

of weak and strong contact with his partitioning method being based on comparing the 

contact force with the average force corresponding to the contact orientation. Contrary to 

Radjai et al. (1997) findings, the load in Kruyt definition is carried out equally by strong and 

weak contact.  
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Figure 2.14 Photoelastic experiment showing that most of the load is transferred by the 

particles that are marked with a line that is called strong contact (Radjai, 2015). 

 

 

 

 

  

Figure 2.15  Photoelastic test: force transmission in particles system under shear at the 
different strain levels (Zheng et al., 2019). 
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Figure 2.16 Examples of strong and weak networks 
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Figure 2.17 The contribution of strong and weak networks to the deviator stress presented 
against axial strain for the dense sample (Thornton and Antony, 1998).  

 

Sliding of the contact force in granular materials.  

 

The investigation of the contact network, encompassing both strong and weak networks, has 

been a longstanding subject of research interest. As the strong contacts (or strong force chains) 

are responsible for carrying most of the deviator stress in the granular materials system, many 

researchers have focused on the stability of the strong network. They have found that the 

stability of the strong force network influences the strength of the granular materials 

(Tordesillas et al., 2011, Zhang et al., 2017). The failure model for granular materials has 

primarily focused on the concept of sliding along a failure plane. Many researchers, such as 

Horne (1969) and Rowe (1962), have considered sliding at the contacts as the principal 

mechanism responsible for the failure of granular materials. Thornton and Antony (1998) 

evaluated the sliding of the contact networks with different interparticle friction. They found 

that as the interparticle friction increased the contact networks become more stable and the 

ratio of contact sliding decreased (Figure 2.18). Similar results were observed by Göncü and 
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Luding (2013) and Suiker and Fleck (2004). However, there was no examination of how the 

contact networks slid during the whole shearing prosses. Tordesillas et al. (2014) found that 

the mechanical response of dense granular materials subjected to indentation by a rigid flat 

punch is highly related to force chain stability. Liu et al. (2019a) conducted a study to examine 

the influence of sliding contacts on shear banding in granular materials. They utilised a quasi-

2D biaxial test and used DEM simulations to model the mechanical behaviour and formation 

of shear bands. Shear bands refer to localised zones within the material where significant 

shear deformation occurs when subjected to shear forces, such as compression or shearing. 

The numerical simulation involved a model consisting of a single layer of 20,000 spheres 

within a rectangular domain, with particle sizes following a uniform distribution. In their 

study, they consider that sliding between connected spheres occurred when the tangential 

contact force attained its maximum value, which was limited by the normal force and the 

friction angle.  They calculated the sliding ratio, as the number of sliding contacts divided by 

the total number of contacts, to analyse the sliding behaviour. Figure 2.19 presents their 

findings regarding the sliding ratio, which was divided into two parts: inside and outside the 

shear band. Initially, the proportion of sliding contacts gradually increased until reaching State 

C, which indicated the maximum rearrangements of the bulk material. After reaching the peak 

value of the sliding ratio, the probability of sliding decreased gradually. When a single shear 

band eventually formed, the sliding ratio stabilised at around 0.007. During this period, the 

magnitudes of sliding ratios inside and outside the shear band exhibited distinct patterns. The 

majority of sliding contacts were concentrated within the shear band area, while only a small 

proportion of sliding contacts occurred outside this area. 

 

Several studies have focused on evaluating the buckling of the force chain (strong contact) 

(Guo, 2012, Tordesillas, 2007, Tordesillas et al., 2011, Tordesillas and Muthuswamy, 2009). 

Buckling refers to deformation or instability that occurs in a structural element or a force 

transmission path when subjected to compressive loads. It is a mode of failure that typically 

involves a sudden lateral deflection or bending of the structure or force chain. Buckling occurs 

when the compressive load exceeds the critical buckling load, leading to a loss of stability and 

a change in the shape or behaviour of the element or force chain. According to Zhang et al. 

(2017), a force chain is described as a connection of at least three particles that align 
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approximately in a linear manner and endure stresses greater than the average value. The 

failure of force chains is identified by the occurrence of buckling. Force chain buckling is 

defined based on changes in the geometry of the particles within the chain. For instance, at 

time t, a three-chain-particle segment is present, and at time t + δt, as shown in Figure 2.20. 

Tordesillas (2007) used 2D DEM simulations to study force chain buckling, unjamming 

transitions and shear banding in dense granular assemblies. They found that the initiation of 

global unjamming occurs as a result of force chain buckling. Initially, buckling is localised 

within a limited number of force chains in a small area of the band. However, it rapidly 

propagates along the band, leading to elastic unloading of the outer regions on both sides. 

The dynamic particle rearrangements triggered by buckling and the subsequent collapse of 

force chains are responsible for non-affine motion and serve as the mechanisms for energy 

dissipation at two distinct length scales: friction at the contact scale and irreversible structural 

rearrangements at the mesoscopic scale.  

 

Zhang et al. (2017) investigated the role of the force chain in granular materials in 2D and 3D 

DEM simulations. They found that the development of the force chain leads to an increase in 

the strength of granular materials and that a decrease in strength is due to the buckling of the 

force chain (i.e. it is the buckling of force chains that is primarily responsible for the shear 

resistance of granular materials). Furthermore, they studied the relationship between 

deviator stress, the development of kinetic energy and buckling events. Figure 2.21 shows 

that, as the deviator stress reaches its peak and starts decreasing, the buckling of the force 

chain will start building up and, as the buckling of the force chain occurs, the kinetic energy 

also increases which is illustrated in the figure by the dotted line that linking the three figures. 

Figure 2.21 also shows that the sliding or buckling is responsible for the strength of the sample 

as well as the release of kinetic energy.   

 

However, it is important to note that these studies have a specific focus on force chains, which 

represent strong contacts, often overlooking the significant contribution of weak contacts to 

sliding behaviour. According to the hypotheses proposed by Radjai et al. (1997), all sliding 

occurs within the weak contacts, while the strong contacts remain non-sliding. Nevertheless, 
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it is crucial to highlight that there is currently insufficient evidence available to substantiate 

this hypothesis 

 

 

 

 

 

 

Figure 2.18 Effect of interparticle friction on sliding ratio (Thornton and Antony, 1998). 
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Figure 2.19 Sliding ratio against axial strain (Liu et al., 2019a).  

 

 

 

 

Figure 2.20 Geometry change of force chain buckling between two timesteps (Zhang et al., 
2017).    
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Figure 2.21 Evaluating kinetic energy and buckling event (Zhang et al., 2017). 

 

 

 

2.3 DEM investigation of energy dissipation in granular materials  

 

Monitoring energy dissipation both improves the knowledge of how particles interact at a 

microscopic level and offers a technique through which it can better comprehend the 

mechanics behind the macroscale stress-strain relationship. Energy dissipation in granular 

media has been a topic of interest for a very long time, and researchers have either 
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investigated this phenomenon theoretically or via the use of DEM modelling. When the load 

is applied to granular materials, it will be transferred across the network of contacts, and the 

energy in these contacts, as a result, will partly be dissipated within the networks as they 

slide. Several studies employed DEM modelling to track energy dissipation in granular 

materials.  

 

Asmar et al. (2003) used a sophisticated energy analysis approach and applied it to the DEM 

simulation of vibrating particles, which records the kinetic energy, gravitational potential 

energy, spring strain energy, dissipated energy related to damping and gross frictional sliding, 

and boundary wall work. Their key finding is that energy is mostly lost through normal 

damping and gross sliding when utilising conventional friction and damping coefficients. 

Furthermore, they also found that the friction coefficient has a moderate effect on the 

proportion of dissipated energy components, but it has no effect on the maximum rate of 

energy dissipation. The particle stiffness has a very minor impact on the proportion of 

dissipated energy components, but it does affect the maximum rate of energy dissipation.  

 

Kozicki et al. (2012) investigated the effects of grain roughness on strength, volume changes, 

and elastic and dissipated energies during quasi-static homogeneous triaxial compression 

using DEM simulation. They found that simulations of a homogeneous triaxial compression 

test indicate that DEM is capable of reproducing the most essential macroscopic 

characteristics of cohesionless granular materials. They also observed that grain roughness 

increases energy and energy rate fluctuations. El Shamy and Denissen (2012) used DEM 

modelling to conduct a microscale analysis of energy dissipation in granular materials 

subjected to cyclic loading. They conducted undrained cycle triaxial tests across a wide range 

of relative densities. The models were also subjected to cyclic loadings at a variety of 

frequencies and shear strain amplitudes. They found that the majority of energy is dissipated 

due to inter-particle frictional sliding, the amount of which rises with increasing shear strain 

level and packing density. Their findings indicate that microscale energy dissipation calculated 

from DEM simulation is similar to macroscale energy dissipation calculated from the area 

under the deviator stress-axial strain loops, as can be seen in Figure 2.22. 
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Wang and Yan (2012) have investigated energy dissipation in crushable soils using DEM 

simulation. They found that the simulation findings demonstrate that the initial specimen 

density and crushability have a significant impact on the energy distribution of the soil at both 

small and high strains. They also found that particle breakage only dissipates a small proportion of 

the input energy. However, it plays a significant role in the formation of soil fabric changes that 

promote the dissipation caused by interparticle friction. Mukwiri et al. (2016) examined 

energy dissipation during a one-dimensional normal compression test with a three-

dimensional DEM simulation. The link between energy dissipation and particle size 

distribution was examined. They discovered that when the uniformity of particle size 

distribution increased, more energy is dissipated.  

Hanley et al. (2018) investigated energy dissipation during drained triaxial shearing using DEM 

modelling. They used numerical samples consisting of 101,623 unbreakable spherical 

particles with a particle size distribution comparable to Dunkirk sand. Additionally, they 

utilised three distinct initial densities. The difference between the samples is based on their 

initial state parameters ψ0, which adheres to the definition proposed by Been and Jefferies 

(1986). Specifically, ψ0 represents the disparity between the initial void ratio and the critical 

state void ratio. As shown in Figure 2.23, for all the samples the majority of the internal energy 

is dissipated by contact network friction sliding, which is also independent of the initial 

density during shearing.  

Kruyt and Rothenburg (2006) studied the influence of the coefficient of friction μ on the shear 

strength, dilatancy and energy dissipation. They used a two-dimensional DEM simulation to 

perform a biaxial test for a granular sample containing 50,000 particles. Figure 2.24 illustrates 

the variation of dU (strain energy), δW (total work), and δD (dissipation) (in non-dimensional 

form) as strain is applied, considering three different values of μ. Initially, there is a positive 

change in strain energy, indicating an increase in strain energy. Subsequently, the energy 

change approaches zero rapidly, indicating a stabilisation of energy levels. The work done on 

the assembly, δW , quickly reaches a constant value. The dissipation, δD , start small, 

representing elastic behaviour. However, it rapidly increases until, at higher strains. The 

qualitative dissipative characteristics observed in the extreme cases of μ →  0 and μ →  
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∞ are similar to those observed when μ has a "normal" value of 0.5. Notably, even in the 

limit cases of μ →  0 and μ →  ∞  where there is no frictional dissipation at the contact 

level, the dissipation remains substantial. 

 

Keishing et al. (2020) conducted a parametric investigation using undrained cyclic triaxial 

discrete-element method simulations. They used cuboidal samples that contain 28,309 

unbreakable, spherical particles to determine energy terms for five factors: void ratio, initial 

mean effective stress, mean deviator stress, deviator stress amplitude, and 

compressive/extensive initial loading. They found that only the void ratio substantially 

influences the relationship between excess pore water pressure and unit dissipated energy. 

Through the information provided at the microscale, they determined a preferable contact 

orientation for frictional dissipation of 30 to 40 degrees. In addition, they concluded that 

following a shear reversal, all simulations exhibit a negligible frictional dissipation at around 

0.04% axial strain. They also concluded that incorporating mean deviator stress into the 

commonly used energy-based model for evaluating soil liquefaction potential could 

considerably improve its predictive accuracy. 

 

The previous studies in this field primarily focused on investigating the overall energy 

dissipation in granular materials and the influence of different material behaviours on energy 

dissipation. However, there is a significant gap in understanding the microscale behaviour of 

energy dissipation. It is crucial to explore the relationship between the sliding of contact 

forces and energy dissipation because sliding contacts play a major role in the dissipation 

process. Through a meticulous examination of this relationship, valuable insights can be 

obtained into the underlying mechanisms that govern energy dissipation in granular 

materials.  Based on the hypothesis made by Radjai et al. (1997), suggest that the majority of 

energy dissipation takes place within weak contact networks as they slid more. These 

hypotheses have been formulated based on the average force network partitioning method, 

which takes into account the magnitudes of contact forces (Radjai et al., 1997).  Later 

theoretical investigations conducted by Collins and Kelly (2002) and Collins and Hilder (2002) 

have further advanced the hypothesis that energy dissipation in normal compaction is 
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primarily driven by the plastic deformation (sliding) of strong contact networks. Conversely, 

weak contacts will store energy, as they lack the sufficient stress levels needed to induce 

plastic deformation (sliding). However, they additionally demonstrated that in shear 

processes, energy dissipation predominantly takes place within weak contacts. 

 

While the relationship between energy dissipation and contact networks has been the subject 

of numerous studies, the specific contribution of sliding contact networks to energy 

dissipation remains inadequately understood. Previous hypotheses have not thoroughly 

examined this aspect, and their development relied on the average force network partitioning 

method. It remains uncertain how the utilisation of alternative partitioning methods might 

impact the relationship between energy dissipation and contact networks. Further research 

is necessary to elucidate these aspects and enhance our comprehension of energy dissipation 

mechanisms in granular materials. 

 

 

Figure 2.22 Comparison of microscopic and macroscopic energy dissipated cumulatively (El 
Shamy and Denissen, 2012). 
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Figure 2.23 The evolution of friction dissipation and boundary work against axial strain 
(Hanley et al., 2018). 
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Figure 2.24 Effect of interparticle friction on input work 𝛿𝑊, dissipation 𝛿𝐷 and strain 
energy 𝑑𝑈 against axial strain (Kruyt and Rothenburg, 2006).  

 

2.4 Stored plastic work  

 

Energy is a key consideration when describing the behaviour of sand. In particular, energy 

dissipation has been widely used to explain the mechanical behaviour of soils.  However, 

there was a common misconception about plastic work and energy dissipation. It has been 

pointed out by Collins and Hilder (2002), that the misconception was created decades ago, 

where all the plastic deformation was assumed to contribute to the friction sliding between 

particles, and therefore all plastic work is dissipated (Okada and Nemat-Nasser, 1994, Luong, 

1986).  Subsequently, Collins and his co-workers revisited this misconception and suggested 
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that a portion of the plastic work within a granular system should be stored instead of being 

entirely dissipated. The stored plastic work or frozen plastic energy is the difference between 

the plastic work and the energy dissipation in the soil. The stored plastic work has been 

mentioned in the context of several elastic-plastic materials (Ulm and Coussy, 2003, Mróz, 

1973, Maugin, 1992). Furthermore, the stored plastic work was also mentioned in soil 

mechanics by some of the early work by Houlsby (1981) who first applied thermomechanical 

principles to soil mechanics. Jefferies (1997) also noted the possibility of some plastic work 

being stored. Collins and his co-workers highlighted theoretically the importance of including 

the stored plastic work for constitutive modelling of sand (Collins and Hilder, 2002, Collins 

and Muhunthan, 2003, Collins and Kelly, 2002). Afterwards, Collins (2005) explains the 

concept of stored plastic work at both macro and micro levels and also provided a 

comprehensive discussion about the consequences of including the concept of stored plastic 

work. A thermodynamic framework for the constitutive modelling of soils has been 

established based on their research, in which the stored plastic work is considered. However, 

there is little understanding of the mechanism of stored plastic work in sand. For instance, 

The works by El Shamy and Denissen (2012) and Kruyt and Rothenburg (2006) studied energy 

dissipation, however, there is no information was provided regarding the stored plastic. 

Hanley et al. (2018) examined the work equations for both Cam Clay and Modified Cam Clay. 

They also examined the work equation developed by Collins and Hilder which is based on a 

thermomechanical approach. Figure 2.25 shows the difference between the work equations 

and frictional dissipation in different sample densities. The legend ‘’ Equation 25’’ indicates 

the thermomechanical work equation proposed by Collins and Hilder δΨ + δΦ in which the 

total plastic work is the sum of stored plastic work and energy dissipation. They concluded 

that all work equations provide a good representation of the total frictional dissipation that 

occurs during shearing for loose samples. Nevertheless, differences grow as sample density 

increases. The modified Cam Clay work equation significantly overestimates the frictional 

dissipation for the densest sample. However, they showed that the thermodynamically work 

equation (Collins & Hilder, 2002) matches the actual frictional dissipation almost perfectly. 

However, the approach they employed to estimate elastic strains in the system, which 

assumes that the shear modulus is constant throughout shearing, differs from what can be 

determined by the experiment. Although it is possible that this function might overestimate 
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or underestimate the amount of stored plastic work, they have not provided a calculation of 

the actual plastic work that is stored in the system during the simulation.  

In their study, Yang et al. (2018) conducted a thorough analysis of energy dissipation in elastic-

plastic materials, focusing on thermodynamic formulations. They particularly emphasised the 

significance of stored plastic energy through theoretical formulations. Additionally, they 

applied this formulation to finite element method (FEM) simulations, where they found that 

the amount of stored plastic work was not particularly significant. Nonetheless, they stressed 

that including this stored plastic work is essential to uphold the fundamental principles of 

thermodynamics. Despite substantial efforts to theoretically explain the concept of stored 

plastic work in the system, there remains much to explore regarding the underlying 

mechanisms. One of the unresolved questions is the amount of plastic work that is stored 

during a triaxial test.  

 

 

Figure 2.25 Difference between the work equations and frictional dissipation as a function 

of deviatoric strain For 𝜓0 of; a) -0.0923, b) -0.0457 and c) 0.0117. A positive error indicates 

an overestimation of energy dissipation. (Hanley et al., 2018). 
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2.5 Constitutive modelling of granular materials based on energy consideration   

 

Numerous constitutive models for geomaterials have been formulated based on fundamental 

mechanical concepts such as work, recoverable and irrecoverable energy, and dissipation. 

These models primarily emerged during the period spanning from the 1940s to the 1970s. 

After this period there were several developments using the principles of thermodynamics. 

The general theories of thermomechanics can be found in the work by Ziegler, summarised 

in his book Ziegler (1983) and the paper by Ziegler and Wehrli (1987). One example of these 

theories applies to rate-independent, elastic-plastic material PSD distributions s especially 

soils, which was described by Houlsby and Puzrin (2000) and Collins and Houlsby (1997). A 

key aspect of this approach is that the constitutive behaviour of soil can be completely 

determined when both free energy and dissipation function is specified (Collins and Kelly, 

2002). These two energy equations can be used to determine the yield function and flow rule.  

 

The interest in modelling the plastic component of free energy in granular materials has 

grown significantly. In these approaches, the notion of plastic-free energy is introduced 

during the development of constitutive models to ensure compliance with the second law of 

thermodynamics. Moreover, plastic-free energy serves as a valuable tool for distinguishing 

between plastic work and energy dissipation, where plastic work represents a combination of 

energy dissipation and plastic-free energy. Subsequently, the term "stored plastic work" or 

"frozen energy" was coined by Collins in 2005 to refer to plastic-free energy. This terminology 

helps to emphasise the role of this stored energy in the material's behaviour, reflecting the 

changes that occur during plastic deformation. The incorporation of stored plastic work into 

constitutive models has enhanced our understanding and ability to accurately describe the 

behaviour of granular materials, particularly in the context of irreversible deformations and 

energy dissipation processes. 

 

Furthermore, adequate knowledge about free energy and energy dissipation functions is 

capable of determining elasticity law, yield function, flow rule and hardening rule (Collins, 

1997, Collins, 2002, Collins and Houlsby, 1997, Collins and Kelly, 2002, Collins and Hilder, 
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2002, Houlsby, 1981). Although understanding free energy and energy dissipation functions 

is crucial for developing any model based on the concept of thermomechanics, the 

development of these function are mainly focused on the theoretical formulation and none 

was supported by quantitative results. Kruyt and Rothenburg (2006) used DEM simulation 

and 2D modelling to examine energy dissipation, proposing a new dissipation function based 

on the link between stress and dilatancy. However, they ignored the stored plastic work as 

they assumed that all plastic work is dissipated.  

 

2.5.1 The thermomechanical process that is used to determine elastic-plastic 

constitutive laws 

Initially, the influence of thermodynamic principles on plasticity models was primarily focused 

on models applicable to metals. However, as time progressed, these thermodynamic 

concepts began to equally impact models applicable to soil, rocks, and concrete. Numerous 

studies in the field of geomaterials have discussed the development of soil models based on 

thermodynamic principles. This process typically involves formulating plasticity theory, 

including yield surfaces, plastic potentials, and hardening functions and subsequently 

incorporating thermodynamic laws. 

Another approach involves starting with thermodynamic hypotheses related to free energy 

and energy dissipation and deriving the plasticity theory from these hypotheses. Figure 2.26  

illustrates this process, simplifying it through a flowchart that demonstrates how plasticity 

can be derived from free energy and dissipation functions (Collins and Hilder, 2002). This 

methodology provides a systematic way to integrate thermodynamics into the development 

of plasticity models for various geomaterials. Figure 2.26 illustrates that after creating the 

free energy function, it can be utilised to derive both the elastic law and shift stress. The 

elastic law characterises the relationship between stress and strain within the elastic range of 

a material, capturing its behaviour when subjected to small deformations and returning to its 

original shape upon load removal. On the other hand, shift stresses refer to stresses that 

cause a translation of yield surfaces without altering their shape. These shift stresses are 

significant in linear, anisotropic, and kinematic hardening models as they represent the stress 

at the "centre" of the shifted yield surface (Collins and Kelly, 2002, Puzrin and Houlsby, 2001).  



Chapter 2: Literature review 

46 
 

 

Whereas the dissipation function can be used for the yield condition and the flow rule. In 

geotechnical engineering, the yield condition is a critical criterion that marks the transition 

from elastic to plastic behaviour in soils. It signifies the stress state at which the material 

undergoes plastic deformation. The yield condition is typically expressed in terms of the 

principal stresses or deviatoric stresses acting on the material. Several yield criteria have been 

proposed, including the well-known Mohr-Coulomb criterion, Drucker-Prager criterion, and 

Cam-Clay model, each characterised by its unique mathematical formulation and associated 

parameters. The selection of a specific yield condition depends on the particular behaviour 

exhibited by the soil under consideration. 

 

Concurrently, the flow rule in geotechnical engineering elucidates the correlation between 

the incremental plastic strain rates and the stress state during plastic deformation. It provides 

valuable insights into how the material deforms plastically in response to applied stresses. At 

its core, the flow rule is grounded in the principle that plastic deformation transpires along 

the path of the maximum plastic potential gradient. This rule governs both the magnitude 

and direction of the incremental plastic strains experienced by the material. By 

comprehending and incorporating the yield condition and the flow rule into geotechnical 

analyses, engineers gain a deeper understanding of the complex behaviour exhibited by soils. 

These concepts serve as fundamental pillars within geotechnical constitutive models, 

enabling engineers to accurately predict and simulate the mechanical response of soils under 

various loading and deformation conditions. 
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Figure 2.26 The proposed approach involves the development of a model by incorporating 

the concepts of free energy and dissipation function, as originally suggested by  Collins and 

Kelly (2002).   

 

The fundamental method for obtaining constitutive laws for rate-independent materials, 

starting with thermodynamic principles, will be described here. Several publications by Collins 

(2002), Collins and Houlsby (1997), Houlsby and Puzrin (2000), Collins and Kelly (2002) contain 

an explanation of the procedure of using thermodynamics to develop constitutive models 

suitable for geomechanics. These procedures will be detailed below using notation adequate 

for analysing triaxial testing. In isothermal deformations, the incremental work due to the 

applied stresses is the sum of the free energy function Ψ and the dissipation function Φ. Note 

that these functions are defined per unit volume. According to the fundamental energy 

relation, the incremental work that is accomplished as a result of the applied mean effective 
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p and deviator stress q is equivalent to the increase in free energy plus the energy that is 

dissipated: 

  pδεv + qδεq = δΨ + δΦ, where δΦ ≥ 0                                                   (2.5) 

Where δεv  and  δεq  are the increment volumetric strain and increment deviator strain 

respectively. This inequality is the expression of the second law of thermodynamics that is 

suitable for use with isothermal deformations. This law strictly required δΦ to be positive 

whenever any irreversible plastic deformation occurs (Dugdale, 1996, Wilmanski, 1998). 

 

The free energy is determined by the observable variables that are present in the kinematic 

state, for example, the total strains εv, εq and plastic strains εv
p

, εq
p

. Instead of employing these 

volumetric strains, one might utilise the logarithm of the total and plastic-specific volumes 

(Collins and Kelly, 2002). However, strains will be used as the independent variables in this 

study. Therefore, the increment of the free energy will be as  

 

  δΨ = (∂Ψ/ ∂εv)δεv + (∂Ψ/ ∂εq)δεq + (∂Ψ/ ∂εv
p

)δεv
p

+ (∂Ψ/ ∂εq
p

)δεq
p

           (2.6) 

 

The dissipation function is not a state function as it should only depend on the increments of 

plastic strains. It cannot depend on the total strain increments because if it does, a perfectly 

elastic deformation would result in energy dissipation. Therefore, the incremental dissipation 

function is in the form of δΦ (εv
p

, εq
p

; δεv
p

, δεq
p

). This function is homogenous of degree 1 in 

the plastic strain increments when applied to rate-independent, elastic/plastic materials. 

Collins and Kelly (2002) wrote about this function as  

 

  δΦ = (∂(δΦ)/ ∂(δεv
p

))δεv
p

+ (∂(δΦ)/ ∂(δεq
p

))δεq
p

                                 (2.7) 

 

Collins and Houlsby (1997) have shown that in the case of frictional materials, δΦ depends 

also on the effective pressure. As stated by Collins and Kelly (2002) this has no influence on 
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the validity of Equation (2.7), however, by equating the four independent strain increment 

terms and eliminating the free energy and dissipation functions between Equations (2.2) –

(2.7), the fundamental relations can be obtained   

  p =  ∂Ψ/ ∂εv and q = ∂Ψ/ ∂εq                                                   (2.8) 

  π = − ∂Ψ/ ∂εv
p

= ∂(δΦ)/ ∂(δεv
p

) and τ = − ∂Ψ/ ∂εq
p

= ∂(δΦ)/ ∂(δεq
p

)                      (2.9) 

 

The effective stresses can be derived from the free-energy function, as shown by Equations 

(2.8), In addition, Equations (2.9) describe the dissipative (thermodynamic or generalised) 

effective pressure π, and dissipative shear invariant τ in terms of the free energy function and 

demonstrate that they can also be obtained from the dissipation function. More discussion is 

provided in papers by Collins and Houlsby (1997) and Collins and Kelly (2002) regarding the 

validity of Equations (2.8) and (2.9).  

 

Distinguishing between dissipation and plastic work is crucial. Equations (2.7) and (2.9) can 

be used to obtain the incremental dissipation, as shown below. 

  δΦ = πδεv
p

+ τδεq
p

                                                   (2.10) 

whereas the plastic work increment is defined as  

  δWp = pδεv
p

+ qδεq
p

                                                   (2.11) 

as mentioned earlier δΦ function is homogeneous of degree 1 in the plastic strain increment, 

hence, both derivatives of  δΦ in Equation (2.9) are homogeneous of degree zero: which 

means that they only depend on the ratio of the plastic strain increment, also known as the 

plastic dilation (Collins and Kelly, 2002): 

 

  δp = −δεv
p

/δεq
p

                                                   (2.12) 
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Collins and Kelly (2002) stated that if the ratio in Equation 2.13 is eliminated from Equations 

(2.6) and (2.7), it provides a relationship between π and τ which is the yield condition in 

dissipative stress space more details regarding this derivation can be found in the works by 

Collins and Houlsby (1997), Houlsby and Puzrin (2000), Maugin (1992) and Maugin (1999). In 

addition, the general theory demonstrates that the plastic strain increments in this stress 

space are always presented by the normal flow rule. The link between the dissipative stresses 

and the true stresses depends on the form of the free-energy function. For example, if the 

free energy function depends only on the elastic strain, then the true stresses and dissipative 

stresses are identical. Consequently, the yield surface and flow rule can be easily converted 

to the true stress space (Collins and Kelly, 2002). Nevertheless, Collins and Houlsby (1997) 

proved, however, that for the exceptional situation of frictional materials, when the 

dissipation function and therefore the yield function in dissipative stresses space rely directly 

on p, the normality aspect of the flow rule vanishes when transferred to real stress space. In 

the case of decoupled materials, the free energy function will depend on elastic and plastic 

strains.  

Ψ (εij
e ,   εij

p
) =  Ψe(εij

e ) +  Ψp (εij
p

)                                                  (2.14) 

 

where Ψ (εij
e ,   εij

p
) is the total free energy, Ψe(εij

e ) is the elastic part of the free energy, and 

Ψp (εij
p

) is the plastic part of the free energy. εij
e ,   εij

p
 are the elastic and plastic strain tensors 

respectively. Collins and Kelly (2002) stated that using Equations (2.8) and (2.9) provide the 

relation between the two sets of stress variables, which are as follows: 

      p = ρ + π and q = ξ +  τ, where ρ = ∂Ψp/ ∂εv
p

 and ξ = ∂Ψp/ ∂εq
p

                           (2.15) 

where ρ  and ξ  are termed shift stresses. These stresses work on transferring the yield 

surfaces without changing their shape. In linear, anisotropic, and kinematic hardening 

models, these shifts (or back) stresses are very important because they show the stress at the 

"centre" of the shifted yield surface (Lemaitre and Chaboche, 1990, Puzrin and Houlsby, 

2001).  On the other hand, it does not seem that it has been completely recognised that they 

also play an essential role in the process of creating isotropic models of geomaterials with 
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varying strengths in tension and compression, as will be illustrated in the following 

paragraphs.  

 

These shift stresses may be thought of as resulting from recoverable (elastic) deformations, 

which are only activated when plastic strains are present. As explained in Puzrin and Houlsby 

(2001), they may be conceptualised as a spring that is placed in parallel with the plastic slider. 

Walton and Braun (1986) were the ones who came up with the idea of developing such 

models to characterise the elastic/plastic deformations of the contacts that occur between 

individual granular particles. However, the conceptual models that are detailed in the books 

written by Mróz (1973) and Besseling and Van Der Giessen (1994) may provide a more 

satisfactory explanation for the natural occurrence of such shift stresses. Both authors' works 

are pertinent to the study of geomaterials. Although it is assumed that a macro-continuum 

element is plastically deforming, it is acknowledged in this model that certain micro-elements 

contained within this continuum element will not be subjected to plastically stressed but will 

still be elastically deforming. This is because some of these micro-elements will have a 

different stress state. This recoverable energy, which is 'locked' into the macro-deformation, 

is what create to the second free energy function, as well as the shift stress that relates to it. 

This energy can only be released it the plastic strain are reversed. More details are provided 

in chapter 5 regarding the second part of the free energy.   

 

2.6 Conclusion  

 

In conclusion, Discrete Element Method (DEM) is a powerful approach for modelling granular 

materials by considering the interaction between rigid particles. DEM employs contact 

models to calculate contact forces between neighbouring particles, allowing for the 

simulation of inter-particle contact, breakage of existing contacts, and formation of new 

contacts. By using a simplified representation of particle shapes and adopting a basic contact 

model, DEM simulations can capture the key mechanical response characteristics of granular 

materials. This enables the analysis of systems containing a large number of particles while 

still capturing the essential behaviour of soil. 
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DEM simulations provide valuable insights into the macroscale response of granular 

materials, including the stress-strain relationship. They enable the analysis of state-

dependent behaviours, such as strain softening, dilation, and hardening, and help understand 

the influence of parameters like interparticle friction and particle size distribution on the 

material's behaviour. In addition. DEM simulations can provide valuable insights into the 

critical-state behaviour of granular materials, confirming the existence of a unique CSL and 

investigating the influence of factors such as initial densities, and confining pressures on the 

critical void ratio. These findings contribute to the understanding of granular material 

behaviour and can be applied in various engineering and geotechnical applications. 

 

DEM provides researchers with a powerful tool to study granular materials at the microscale, 

offering valuable insights into their mechanical behaviour, flow properties, and structural 

characteristics. In particular, DEM simulations can shed light on the energy dissipation 

mechanisms within granular materials. While previous studies have focused on the overall 

energy dissipation resulting from particle friction or internal mechanisms like particle 

crushability, there is a need for more detailed information regarding the internal mechanisms 

of energy dissipation. Specifically, there is a lack of a quantitative link between the sliding of 

the contact network (i.e., particle interactions) and the energy dissipated within the granular 

material. By quantifying the sliding behaviour of the contact network and relating it to the 

energy dissipated, can establish a more detailed and precise understanding of the energy 

dissipation mechanisms. This knowledge is crucial for optimising the design and performance 

of granular systems in various applications, such as geotechnical engineering, material 

processing, and industrial processes. 

 

Furthermore, this chapter addresses a common misconception concerning the distinction 

between plastic work and energy dissipation. Theoretical analysis has revealed that a portion 

of the plastic work within a granular system is stored rather than entirely dissipated. This 

stored plastic work is a significant aspect to consider. Despite substantial efforts dedicated to 

elucidating this concept, there remains a considerable amount to explore regarding the 

characteristics of stored plastic work. For instance, previous studies have not offered 



Chapter 2: Literature review 

53 
 

quantitative results to represent the amount and behaviour of the energy stored in a granular 

system. 

 

In this chapter, the development of constitutive modelling based on thermodynamic laws was 

examined. This process relies on two important functions: the dissipation function and the 

free energy function. Although various dissipation functions have been developed, however, 

their development is only limited to the theoretical formulation and similarly for a free energy 

function.  Nevertheless, the development of constitutive modelling for granular materials 

could be greatly simplified by providing quantitative studies on both the free energy and 

dissipation functions. By conducting empirical investigations and obtaining quantitative data, 

researchers can enhance their understanding of these functions and facilitate their practical 

application in constitutive modelling. This would enable a more accurate representation of 

the thermodynamic behaviour of granular materials and contribute to the development of 

more reliable and robust models.
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Chapter 3: Methodology  

 

This chapter describes the DEM simulation that will be used throughout this study. The 

chapter focuses on describing the methods required to perform DEM simulation, including a 

description of the contact model, servo-control, periodic boundaries, and the selection of 

simulation parameters used throughout simulations. In addition, this chapter will describe 

the approach used in this study to monitor energy dissipation during DEM simulations. 

 

3.1 The open-source code LAMMPS 

 

The DEM simulations during this study were carried out using a modified version of LAMMPS 

(Plimpton, 1995). LAMMPS is the abbreviation of Large-scale Atomic/Molecular Massively 

Parallel Simulator. LAMMPS simulations can be performed on multiprocessor machines with 

distributed memory. A Message Passing Interface is used to parallelise these simulations 

(MPI). The parallel capability of LAMMPS may be used on multi-core desktop computers as 

well as massively parallel high-performance systems. In LAMMPS, simulations are run using 

an input script. In this study, all simulations were run on high-performance computers.  

 

3.2  Contact model  

 

A simplified Hertz-Mindlin contact model is used (Itasca Consulting Group2008, Hanley et al., 

2018, Huang, 2014). The simplified Hertz-Mindlin contact model combines the normal and 

tangential forces to describe the overall contact behaviour. It accounts for the elastic 

deformation under the normal force and the frictional resistance to tangential motion. This 

model is commonly used in simulations and calculations involving granular materials, as it 

provides a simplified yet effective representation of the contact forces between particles. The 

simplified Hertz-Mindlin contact model strikes a balance between computational efficiency 
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and accuracy, making it a popular choice in DEM studies for a wide range of applications in 

geotechnical engineering (Cundall, 1988, Hanley et al., 2018, Huang, 2014, O'Sullivan, 2011)  

This model uses Hertzian theory for the normal direction, for two overlapping sphere particles 

as presented in Figure 3.1 the normal component of the contact force is given by.  

  𝐹𝑛 =
4𝐺𝑟𝑔

3(1−𝑣)
𝛼𝑛

3/2
𝒏                                                   (3.1) 

 and the ‘no-slip’ Mindlin theory for calculating the tangential contact force incrementally as  

  𝐹𝑡
𝛽

= 𝐹𝑡
𝛽−1

+ 𝑘𝑡∆𝑠                                                  (3.2) 

   𝑘𝑡 =
4𝐺𝑟𝑔

2−𝑣
√𝛼𝑛                                                  (3.3) 

where 𝐺 is the shear modulus of particles, 𝑣  is the particle’s Poisson ratio, 𝛼𝑛  is the 

interparticle overlap, 𝑟𝑔 =  √𝑟𝑎𝑟𝑏/(𝑟𝑎 + 𝑟𝑏) where 𝑟𝑎 and 𝑟𝑏are the radius of two overlapping 

particles, 𝒏 is a unit vector along the line joining the sphere centres, 𝛽 is the timestep, and 𝑘𝑡 

is the shear tangent stiffness and ∆𝑠 is the increment of relative tangential displacement.  By 

calculating the tangential force incrementally and considering the limiting condition, the 

Hertz-Mindlin contact model in DEM simulations can capture the gradual development and 

evolution of tangential forces during particle sliding, allowing for a more accurate 

representation of the frictional behaviour between particles (O'Sullivan, 2011). 
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Figure 3.1 Diagram of two-particle in contact (O'Sullivan, 2011). 

 

3.3 Servocontrol using periodic boundaries.   

 

Periodic boundaries (PB) are used during this study. As shown in Figure 3.2, the periodic 

boundary condition presents the actual sample with multiple repeated structures 

surrounding the sample representative volume elements (REV). Periodic boundaries are used 

in DEM simulations to simulate an infinite system by creating a periodic repetition of a finite 

simulation domain. These boundaries allow particles to exit one side of the domain and re-

enter from the opposite side, simulating continuous motion without encountering physical 

walls (Cundall, 1988). The use of periodic boundaries allows DEM simulations to be free of 

boundary effects that may considerably influence the material responses (Thornton, 2000).  

 

In a simulation involving a strain field, the positions of particles within the simulation domain 

are continuously monitored as the simulation progresses. This tracking allows for the 

determination of the relative motion between particles and their interactions with the 

boundaries. As particles move within the simulation domain, their displacements are carefully 

observed to assess their motion relative to each other and the boundaries. This information 
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is essential for accurately understanding and modelling the behaviour of the system under 

strain. Additionally, when calculating the contact forces between particles, it is crucial to 

consider the influence of the periodic cell deformation rate. In cases where the periodic cell 

undergoes deformation, the relative motion between particles becomes a combination of 

two components. Firstly, the relative motion is determined based on the dynamic equilibrium 

considerations, which involve calculating velocities according to the forces acting on the 

particles. This accounts for the interactions and equilibrium of forces within the system. 

Secondly, relative motion is also affected by the velocity related to the periodic space. As 

described by Cundall (1988), when a periodic cell deforms, this velocity component 

contributes to the overall relative motion between particles. It captures the effects of the 

periodic nature of the system and the changes occurring due to the deformation of the cell. 

By considering both components of relative motion, the simulation can accurately capture 

the complex dynamics of the system under strain. This comprehensive approach ensures that 

the effects of particle displacements, relative motion, and the deformation of the periodic 

cell are properly accounted for, leading to more accurate and realistic simulations. It was also 

found that these boundaries eliminate inhomogeneities at the sample's periphery (Huang et 

al., 2014b). 

 

3.3.1 Stress-controlled periodic boundary  

 

The DEM simulation achieves stress-controlled loading conditions by continuously adjusting 

the boundary locations according to Equation (3.4). This allows triaxial simulations to be 

carried out using a variety of stress paths. 

  𝜀̇ =  
2�̇�𝑚𝑎𝑥

𝜎′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
(𝜎′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 −  𝜎′𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)                                           (3.4) 

where 𝜀̇  is the strain rate, 𝜀�̇�𝑎𝑥  is the maximum allowable strain rate, 𝜎′𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the 

current stress within the assembly, and 𝜎′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the target stress. The first part of the 

equation 
2�̇�𝑚𝑎𝑥

𝜎′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
= 𝑔 , where 𝑔  is the gain parameter which controls the speed of 

convergence between the target 𝜎′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 and the current stresses within a numerical 

assembly 𝜎′𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . Huang (2014) implemented this definition for the gain parameter in 
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LAMMPS, where it is generally calculated by trial and error. Utilising Equation (3.4) has several 

benefits. It quickly converges when the measured stress is much less than the required stress. 

This is very helpful during the first stage of isotropic compression when particles have little 

interaction, and the sample is in a condition of zero stress. Furthermore, the strain rate will 

decrease as the measured stress approaches the required stress.  

If a reasonable 𝜀�̇�𝑎𝑥  has been established in one parametric study, the same 𝜀�̇�𝑎𝑥  can be 

utilised for other samples even with the different initial states; hence, there is no need for 

further trial and error. Selecting the proper gain parameter is essential. When 𝑔 is too small, 

the simulation will take a long time to attain the target stress, and the steady-state stress is 

much greater than the target stress. When 𝑔 is very big, oscillations may arise, which degrade 

the quality of the servo control and may cause instability if the oscillation amplitude increases 

over time. 

In this study on triaxial compression, two different stress path loading conditions are 

performed: 

• Drained triaxial shearing with constant radial stress. Shearing in Z-direction while 𝜎𝑥 =

 𝜎𝑦 and mean effective stress 𝑝 = variable.  

• Drained triaxial shearing with constant 𝑝. shearing in Z-direction while 𝜎𝑥 =  𝜎𝑦 and 𝑝 

= constant.  

To simulate these triaxial stress path conditions, a particular method is used. These methods 

were built using the ‘fix multistress’ command in LAMMPS code (Huang, 2014). To produce 

triaxial shearing while maintaining constant radial stress, the movement of the lateral 

boundaries must be controlled by the following:  

  𝜀�̇�,𝑡 =
2�̇�𝑚𝑎𝑥

𝜎𝑖,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
′ (𝜎𝑖,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

′ − 𝜎𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
′ )                                                  (3.5) 

where 𝜀�̇�,𝑡 is the strain rate of boundaries normal to the 𝑖 th axis at the current time step, 𝑡. 

In addition, the 'constantp' option is added to the LAMMPS 'fix multistress' command line to 

produce drained triaxial shearing with constant 𝑝. If the strain-controlled is applied in the Z-

direction while keeping the stress in the other direction equal, an estimate of the target 

stresses for the next timestep may be found at each timestep as follows: 
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  𝑝 =  
1

3
 (𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) → 𝜎𝑥 = 𝜎𝑦 =

1

2
(3𝑝 − 𝜎𝑧)                                      (3.6) 

Because the timesteps are small, the change in 𝜎𝑧 from 𝑡 to 𝑡 + ∆𝑡 is approximately equal to 

the change from 𝑡 − ∆𝑡 to 𝑡 when the load is applied in the Z-direction. Consequently, the 

stress at 𝑡 + ∆𝑡 can be estimated as follows: 

  𝜎𝑧,𝑡+∆𝑡 =  𝜎𝑧,𝑡 + (𝜎𝑧,𝑡 − 𝜎𝑧,𝑡−∆𝑡)                                                  (3.7) 

Hence, the target stresses in the x and y directions at 𝑡 + ∆𝑡 can be calculated as follows: 

    𝜎𝑥,𝑡+∆𝑡 =    𝜎𝑦,𝑡+∆𝑡 =  
1

2
(3𝑝 −   𝜎𝑧,𝑡+∆𝑡)                                                  (3.8) 

There is further information regarding the servocontrol equations that can be found in 

Huang's PhD thesis (Huang, 2014). These servo-control algorithms have been used in a 

number of different publications to investigate the behaviour of granular materials when 

subjected to triaxial test conditions (Hanley et al., 2018, Huang et al., 2014a, Huang et al., 

2014b, Huang et al., 2017b). Therefore, these servo-control methods have been chosen for 

use in this investigation. 

 

 

3.4 DEM simulation parameters and number of particles  

 

The computational cost restricts the number of particles in DEM simulations. Typically, 

physical laboratory tests are conducted on a larger scale, with a sample size to particle size 

ratio of at least six times greater. For example, ASTM (2011) recommends that the diameter 

of a cylindrical sample for triaxial compression tests should not be less than 33 mm, which is 

at least 30 times the characteristic size (i.e.,𝐷50) of ordinary sands. Head (1980) proposed that 

the thickness of samples in shear box testing should be at least 10 times the largest particle 

diameter. It is difficult to adhere to these principles while doing DEM simulations, especially 

when real particle size is utilised since a huge number of small particles need to be simulated 

for every bigger particle. The existence of these smaller particles not only increases the total 

number of degrees of freedom of the system but also requires very small timesteps to 

maintain numerical stability (Huang, 2014). The sample size, the number of particles, and the 



Chapter 3: Methodology 

60 
 

particle size distributions that were utilised for this investigation are presented in Chapters 4 

and 5. To select the appropriate simulation parameters for this study, a thorough review of 

existing literature was conducted, as shown in Table 3.1. The relevance of these studies lies 

in their utilisation of similar simulation procedures, such as employing periodic boundary 

conditions and employing comparable contact models. Notably, the coefficient of friction 

ranges from 0.25 to 0.5 across these studies. Moreover, the contact model parameters were 

examined, which include a range of values for the shear modulus (1.46 GPa to 29.17 GPa), 

Poisson's ratio (0.12 to 0.3), and particle density (2570 kg/m³ to 2670 kg/m³). These 

parameters play a significant role in characterising the behaviour of the granular material. The 

values presented in Table 3.2 are used in the present study.  

Table 3.1 Summary of some DEM parameters used in previous studies 

Published work 
Coefficient of 

friction μ 

Contact model 

parameters 

Number of 

particles 

Boundary 

condition 

(Hanley et al., 

2018) 
0.25 

G = 29.17GPa 

101,623 
Periodic 

boundaries 
𝑣 = 0.2 

𝜌 = 2670kg/m3 

(Shire et al., 

2014) 
0.3 

G = 27GPa 

304,205 
Periodic 

boundaries 
𝑣 = 0.3 

𝜌 = 2670kg/m3 

(Huang et al., 

2017b) 
0.25 

G = 29GPa 

20,164 
Periodic 

boundaries 
𝑣 = 0.12 

𝜌 = 2670kg/m3 

(Keishing et al., 

2020) 
0.25 

G = 1.46GPa 

28,309 
Periodic 

boundaries 
𝑣 = 0.2 

𝜌 = 2650kg/m3 

(Thornton, 

2000) 
0.3 

G = 26.92GPa 

3,620 
Periodic 

boundaries 
𝑣 = 0.3 

𝜌 = 2650kg/m3 

0.3-0.5 
G = 28.68GPa 

4,000 
Periodic 

boundaries 𝑣 = 0.22 
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(Barreto and 

O’Sullivan, 

2012) 

𝜌 = 2570kg/m3 

 

Table 3.2 DEM simulation parameters used in this study 

Parameter type Parameter value 

Shear modulus G 25 GPa 

Poisson's ratio ν 0.2 

Particle density ρ 2,670 kg/m3 

 

 

The ever-increasing computational power has greatly facilitated the exploration of 

polydisperse systems (Da Cruz et al., 2005, Radjai, 2009). Additionally, algorithmic 

advancements in contact detection (Andreotti et al., 2013, Perez et al., 2016) have significantly 

improved the efficiency of simulations in this field. Despite these advancements, challenges 

persist, especially when simulating systems with long timescales. Many real-world processes 

and standard laboratory tests, such as geomechanical element testing, involve the application 

of extremely low strain rates over prolonged durations, leading to quasi-static shearing 

phenomena. However, replicating such conditions in DEM simulations with reasonable 

computational costs is impractical. To overcome this limitation, simulated strain rates are 

artificially magnified by several orders of magnitude. To maintain correspondence with 

reality, the granular material is loaded quasi-statically, ensuring that loading occurs at a 

sufficiently slow rate to neglect inertial effects. The dimensionless inertial number serves as 

a key parameter to discern the boundary between the quasi-static regime and the inertial or 

dense-flow regimes. This inertial number quantifies the ratio of inertial force to the applied 

force and a small value of I indicates the quasi-static regime (Da Cruz et al., 2005). 𝐼 defined 

as below:  

  𝐼 =  𝜀̇𝑑√
𝜌 

𝑝′                                                                       (3.9) 
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where 𝜀̇ is strain rate, 𝑑 is the diameter of the maximum particles, ρ is the density of the 

particle and 𝑝′ is the mean effective stress. According to Da Cruz et al. (2005), it has been 

determined that the practical threshold for the quasi-static regime is set at an inertial number  

𝐼 ≤ 10−3 . For this study, the inertial number used is  𝐼 ≤ 10−4   based on established 

literature (Hanley et al., 2018, Huang et al., 2017b). This specific value is adopted to ensure 

consistency with previous research and maintain compatibility with the expected behaviour 

of the simulated system. In this study, the simulation timestep was established by adapting 

relationships from PFC3D (Itasca Consulting Group2008), which were derived from 

considerations of the critical timestep for spring-mass systems: 

 

  𝑇𝑐𝑟𝑖𝑡 =  √
𝑀

𝐾𝑛
                                                                  (3.10) 

  𝑇𝑠𝑖𝑚 =  
𝑇𝑐𝑟𝑖𝑡

𝐹𝑂𝑆
                                                                  (3.11) 

where 𝑇𝑐𝑟𝑖𝑡  and 𝑇𝑠𝑖𝑚  represent the critical and simulation timestep respectively; 𝑀  is the 

mass of the smallest particle; 𝐾𝑛 is the normal tangent contact stiffness. PFC3D calculates the 

critical time step (𝑇𝑐𝑟𝑖𝑡) for each particle at every timestep and selects the minimum 𝑇𝑐𝑟𝑖𝑡 

value. In the non-linear Hertz-Mindlin contact model, the normal contact stiffness ( 𝐾𝑛 ) 

depends on the overlap between two contacting particles, which changes throughout the 

simulation. Consequently, 𝑇𝑐𝑟𝑖𝑡 also varies during the simulation. PFC3D follows an explicit time 

integration scheme. In LAMMPS, a fixed timestep is used, necessitating assumptions for 

Equation 3.12. Given the limited understanding of polydisperse system behaviour in DEM, a 

conservative approach has been adopted here. Equation 3.13 utilises the mass and stiffness 

of the smallest particle in the system, with stiffness calculated conservatively using a 

maximum allowable overlap of 2%. To ensure further conservatism, Equation 3.14 

incorporates a conservative factor of safety (FOS = 10) (Shire, 2014),  
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Figure 3.2 Periodic boundary (Huang, 2014). 

 

 

3.5 DEM-based energy modelling 

 

This DEM study employs the energy tracing technique that has been applied to granular 

LAMMPS by (Hanley et al., 2018). This technique is used to simulate spherical particles 

without numerical damping, rolling resistance or grain crushing. The DEM code contains 

calculations of energy and work terms. The energy dissipation across all contact sliding is 

calculated as  

  𝑊𝑓
𝑐,𝑡 = ∑ 𝑊𝑓

𝑐,𝑡−∆𝑡 + 𝐹𝑠
𝑐∆𝑠𝑐,𝑡−∆𝑡→𝑡 

𝑁𝑐𝑠𝑙𝑖𝑑𝑖𝑛𝑔

𝑐=1                                            (3.15) 

where 𝑊𝑓
𝑐,𝑡−∆𝑡 and 𝑊𝑓

𝑐,𝑡 are the energy dissipated by friction up to time ∆𝑡 − 𝑡 and time 𝑡 

respectively, 𝐹𝑠
𝑐 the shear component of the contact force before rescaling it in accordance 

to 𝐹𝑛 × 𝜇 . ∆𝑠𝑐,𝑡−∆𝑡→𝑡   is the incremental tangential displacement at the sliding contact 

between time 𝑡 − ∆𝑡and 𝑡 . The total translational kinetic energy 𝑊𝑘𝑡  at any point in the 

particle system is given by 

  𝑊𝑘𝑡 =  
1

2
∑ 𝑚𝑝𝑣𝑝

2     
𝑁𝑝

𝑝=1                                                   (3.16) 
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where 𝑁𝑝 is the number of particles in the system, 𝑣𝑝 is the translation speed for particle 𝑝 

and 𝑚𝑝 is the mass of particle 𝑝. The rotational kinetic energy is given by:   

  𝑊𝑘𝑟 =  
1

2
∑ 𝐼𝑝𝜔𝑝

2     𝑁𝑝
𝑝=1                                                   (3.17) 

where 𝐼𝑝 and  𝜔𝑝 are the moment of inertia and rotational speed of particle p respectively. 

Translational kinetic energy in granular materials is the energy associated with the linear 

motion of individual grains, arising from their movement and collisions. Rotational kinetic 

energy in granular materials emerges from the collective rotational motion of grains, 

contributing to macroscopic behaviour.    

 

The normal component of strain energy is found to be the area underneath the normal 

component of the contact normal force │𝐹𝑛│ against interparticle overlap 𝛼𝑛 (Hanley et al., 

2018). 

  𝑊𝑠𝑛 =  ∫ │𝐹𝑛│𝖽𝛼𝑛
𝛼𝑛

0
=

4𝐺𝑝𝑟𝑔

3(1−𝑣)
│𝙣│ ∫ 𝛼𝑛

𝟑

𝟐𝖽𝛼𝑛
𝛼𝑛

𝟎
=

𝟐

𝟓
│𝐹𝑛│𝛼𝑛                (3.18) 

In contrast to the normal component of strain energy, the calculation of the tangential 

component involves an incremental approach. This calculation is performed after the 

magnitude of the tangential force is rescaled to 𝜇│𝐹𝑛│ . Following the rescaling, the 

incremental calculation of the tangential component is conducted using the adjusted 

magnitude of the tangential force. 

  𝛿𝑊𝑠𝑡 =
│𝐹𝑡

𝛽−1
+𝐹𝑡

𝛽
│

2

│𝐹𝑡
𝛽

− 𝐹𝑡
𝛽−1

│

𝑘𝑡
                                                 (3.19) 

To confirm that the source of energy dissipated during the simulation has been correctly 

defined and implemented in DEM code, the margin of error in the energy at any timestep can 

be calculated using Equation (3.17) (Hanley et al., 2018),  

 

     ∆𝐸 =  𝑊𝑠𝑛
0 + 𝑊𝑠𝑡

0 + 𝑊𝑘𝑡
0 + 𝑊𝑘𝑟

0 +  𝑊𝛽 −  𝑊𝑓
𝛽

− 𝑊𝑠𝑛
𝛽

− 𝑊𝑠𝑡
𝛽

− 𝑊𝑘𝑡
𝛽

− 𝑊𝑘𝑟
𝛽

                   (3.20) 

The energy balance equation represents the conservation of energy, ensuring that the system 

maintains an energy balance without any spurious generation of energy due to numerical 
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instability. In this equation, 𝑊𝛽  represents the total work done in the system, specifically 

referring to boundary work. The first part of the equation corresponds to the initial energies 

at the start of shearing, denoted by the subscript 0. Conversely, the second part of the 

equation represents the energies at different time steps, indicated by the subscript β. 

 

 

3.6 Stress-strain calculation used in this study 

 

The stress quantities used in this study include the mean effective stress 𝑝 and deviator stress 

𝑞 which are defined as  

              𝑞 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]                                             (3.21) 

                                                     𝑝 =  
1

3
(𝜎1 + 𝜎2 + 𝜎3)                                                           (3.22) 

                                                                𝜂 =  
𝑞

𝑝
                                                                           (3.23) 

where 𝜎1 ,  𝜎2  and 𝜎3  represent the major, intermediate, and minor principal stress, 

respectively; 𝜂 is the stress ratio.  

 

The normal strain component is defined as  

                                                           ԑ𝑖 =  ∫
∆𝐿𝑖

𝐿𝑖
                                                                         (3.24) 

where ∆𝐿𝑖 is the change in length and 𝐿𝑖  is the current length, 𝑖 is representing the axial and 

radial strain. The shear strain and volumetric strain are defined below respectively.  

                                                        𝛿𝜀𝑞 =  
2

3
 (𝛿𝜀𝑎 − 𝛿𝜀𝑟)                                                        (3.25) 

                                                      𝛿𝜀𝑣 =   𝛿𝜀𝑎 + 2 𝛿𝜀𝑟                                                        (3.26) 

where 𝛿𝜀𝑎 is the axial strain and 𝛿𝜀𝑟 is the radial strain. 
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Chapter 4: The relationship between contact network and energy dissipation 

in granular materials 

 

 

4.1 Introduction  

 
The mechanical behaviour of sand (e.g., shear strength and dilatancy) at the macro-scale is 

dependent on the interaction between sand particles at the micro-scale (Zhao and Guo, 2013, 

Collins, 2005, Li and Li, 2009, Thornton and Antony, 1998). There has been extensive research 

on bridging the gap between the micro and macro responses of sand (Shire et al., 2014, 

Masson and Martinez, 2001, Li and Li, 2009, Arevalo et al., 2009, Liu et al., 2020). In particular, 

it is found that the energy dissipation in granular materials which occurs at the sand particle 

level is closely related to the macroscale response, such as shear strength, critical state and 

dilatancy (Mukwiri et al., 2017, Kruyt and Rothenburg, 2006, Collins and Muhunthan, 2003, 

Collins, 2005).  

 

While some theoretical research has explored the relationship between energy dissipation 

and the behaviour of sand, our understanding of the microscale mechanism of energy 

dissipation remains limited (Zhao et al., 2008, Wang and Huang, 2014, Wang and Yan, 2012, 

Hanley et al., 2018, El Shamy and Denissen, 2010). It is widely recognised that frictional sliding 

between contact forces predominantly contributes to energy dissipation in granular materials 

(El Shamy and Denissen, 2010, Hanley et al., 2018). However, the role of contact networks 

during shearing in granular materials and their connection to energy dissipation has not been 

thoroughly investigated. 

 

As discussed in Chapter 2, an important aspect that requires attention is establishing a 

quantitative relationship between the sliding behaviour of the contact network (i.e., particle 

interactions) and the dissipated energy within granular materials. By accurately quantifying 

the sliding behaviour of the contact network and its correlation with the dissipated energy, 

we can develop a more precise and comprehensive understanding of the mechanisms 
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underlying energy dissipation. Therefore, the primary objective of this chapter is to investigate, 

through DEM simulations, the quantitative relationship between energy dissipation and 

contact networks in granular materials. 

 

4.2 DEM simulations 

 

DEM samples were created containing 8262 spherical particles with a minimum diameter of 

0.1 mm and a maximum diameter of 0.14 mm. Figure 4.1 shows the particle size distribution 

(PSD). The number of particles was varied to ensure a representative volume element (RVE) 

was obtained. Figure 4.2 compares the stress-strain relationship for the sample used in this 

chapter with a bigger sample that contains 21663 particles. It is evident that both samples 

yield comparable results. The larger sample displays a smoother curve, which can be 

attributed to its higher particle count compared to the smaller sample. Therefore, 8262 

particles will be employed in this chapter to reduce computational time. As explained in 

Chapter 3, A simplified Hertz–Mindlin contact model and periodic boundaries were used.  Two 

samples were produced in loose and dense states. The loose samples were first prepared by 

placing the particles randomly as a non-touching cloud in the periodic cell and then the cell 

was isotopically compressed to the target mean normal stress 𝑝0 = 250, 500 and 1000 kPa 

with a friction coefficient μ of 0.3. Once the target stress was reached the samples were 

allowed to equilibrate. The dense sample was prepared using the two-step process (Hanley et 

al., 2014). The particles were placed randomly in a periodic cell and the sample was 

equilibrated with μ = 0 to reach the target 𝑝0. The μ was then set to 0.3 and the sample was 

left to equilibrate again. Drained triaxial compression tests were then carried out, following 

two different stress paths, one with constant radial stress σr and the other with constant mean 

effective stress 𝑝 . Loading was controlled by moving the upper boundary while the lower 

boundary was fixed. The shear rate was constant with the inertial number of 𝐼 = 1 × 10−4, 

which indicates quasi-static loading. In line with the work conducted by Huang (2014), a local 

damping coefficient of 0.3 was selected and implemented during the preparation phase of 

this study. This local damping is utilised to facilitate the dissipation of kinetic energy, allowing 

the system to reach equilibrium efficiently within a reasonable number of calculation cycles 

(Huang, 2014). However, it should be noted that during shearing, the local damping was 
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specifically set to 0 to ensure that the dissipation is solely attributed to interparticle friction 

during triaxial compression. It is worth mentioning that any energy dissipation resulting from 

rolling friction or resistance has been excluded from consideration due to an ongoing dispute 

surrounding its impact.   

 

 

Figure 4.1 Particle size distribution (PSD). 
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Figure 4.2 Effect of the particle number on the relationship between axial strain and 

deviator stress  

 

4.2.1 Method for evaluating the contribution of contact networks to energy 

dissipation.   

 
Throughout the simulation, LAMMPS identifies sliding contacts at each timestep, as seen in 

Figure 4.3. Then, the quantity of energy dissipation induced by each sliding contact will be 

measured. The energy dissipation will be outputted at both macro and micro levels. At the 

macroscale, LAMMPS outputs the total energy dissipation at a certain timestep generated by 

all sliding networks, with no information about the contribution of strong and weak contacts 

to energy dissipation. At the microscale, however, LAMMPS output energy dissipation due to 

the sliding networks at a specific timestep for each sliding network separately. The data 

provided at the microscale allows the contribution of weak and strong contact to be 

investigated. For instance, in a single timestep, both the weak and strong contact sliding and 

energy dissipation can be distinguished, as seen in Figure 4.4. To precisely quantify the 

amount of energy dissipated at the microscale, the output data must be printed at each 

timestep. Otherwise, some information will be lost between timesteps as contacts build and 
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collapse. Figure 4.5 gives an example of how some information will be lost. In the example, 

the data is printed out every 100 timesteps, as shown in the figure. If contact is lost at timestep 

50, there will be no information about it at timestep 100 when the data is printed out. 

Therefore, To correctly estimate energy dissipation, the data should be printed at each 

timestep, as shown by this example. Nonetheless, printing data at each timestep would 

generate a massive data file of around 40GB for 8262 particles. This is impractical to store and 

analyses.  

 

In order to streamline the computation process while ensuring a precise assessment of the 

contribution of contact networks to energy dissipation, a simplified approach has been 

adopted. This method provides an accurate and efficient means of evaluating energy 

dissipation, thereby reducing computational complexity. This research utilised a probing test 

method. First, information about the sample during the simulation is stored at different strain 

levels which in this work are stored at every 1% axial strain, as shown in Figure 4.6. At each 

specific location, represented by the red dot, the probe test is done by applying a small strain 

increment  ∆𝜀𝑎 = 1 × 10−5 and the data is printed out for all contacts at every timestep. This 

provided information about dissipation at specific points (“snapshots”) in the simulation 

without losing information. After applying the probe test method for each point shown in 

Figure 4.6. MATLAB code is used to analyse the results of each probe test. A flow chart 

illustrating and describing the technique used by the MATLAB code to determine microscale 

energy dissipation between two timesteps is shown in Figure 4.7. The MATLAB code is 

summarised in the following equations. 

  𝛿𝐸𝑐,𝑓𝑑
𝛽

=  𝐸𝑐,𝑓𝑑
𝛽

−  𝐸𝑐,𝑓𝑑                
𝛽−1

                                                   (4.1) 

    𝛿𝐸𝑡𝑜𝑡
𝛽

=  ∑ 𝐸𝑐,𝑓𝑑
𝛽

           
𝑁𝑐
𝐶,𝑓𝑑=1                                                    (4.2) 

  ∅𝐸𝑡𝑜𝑡
𝛽

= 𝛿𝐸𝑡𝑜𝑡
𝛽−1

+ 𝛿𝐸𝑡𝑜𝑡
𝛽

                                                            (4.3) 

where 𝐸𝑐,𝑓𝑑
𝛽

 is friction dissipation per single contact at timestep β, 𝐸𝑐,𝑓𝑑
𝛽−1

  is friction dissipation 

per single contact at timestep β-1, 𝛿𝐸𝑡𝑜𝑡
𝛽

  is total increment energy dissipation across all 

contact in timestep β, and ∅𝐸𝑡𝑜𝑡
𝛽

  is total cumulative energy dissipation at timestep β. To 

validate the MATLAB code, the results of both Equations (4.2) - (4.3) have to be compared 

with the DEM simulations. However, validating Equations (4.1) and (4.2) are time-consuming, 
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and therefore, only Equation (4.3) has been validated. The results computed by the code 

(Equation (4.3)) should match the sum of energy dissipation outputted by the DEM simulation; 

however, this validation cannot be performed on a large sample including a large number of 

particles. Therefore, a sample containing just 15 particles was prepared. This sample was 

simulated for around 600 timesteps, which is sufficient for the contact to begin dissipating 

energy. The data was outputted at every timestep during the simulation. The MATLAB code 

was then used to analyse energy dissipation for each contact network during the 600 

timesteps, and the findings were compared to DEM results at the macroscale as shown in 

Figure 12. Both outcomes are identical, indicating that the code is running correctly. 

 

 

Figure 4.3 Example of sliding contacts at specific timestep 
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Figure 4.4 Example of identifying the weak and strong sliding contacts at a single timestep 

during the simulation.   
 

 

Figure 4.5 Example of how energy dissipation information is lost if only recorded every 100 
timesteps  
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Figure 4.6 Schematic representation of data snapshots 
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Figure 4.7 flow chart describes the steps that the MATLAB code follows to calculate energy 
dissipation at the microscale 

 

 

Timestep t 

Find contact ID at the 

current timestep 

Get the energy 

dissipation for each 

contact at the current 

timestep  

Determine the total amount 

of energy lost due to the 

sliding of all contacts at 

timestep t 

 Timestep t + 1 

Find contact ID moved 

from t to t + 1 

Get the energy dissipation 

for contact moved from t to 

t + 1 

Find the contact ID for 

new contact developed at 

Timestep t + 1 

Get energy dissipation for 

new contact 
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Figure 4.8 Energy dissipation results calculated at the macroscale (simulation output) and at 

the microscale (using MATLAB code) 

 
4.3 Results  

 

4.3.1 Stress-strain relationship  

 

Figure 4.9 and Figure 4.10 show the stress-strain relationship of dense and loose sand. The 

dense sand shows strain softening and volume expansion while the loose sand shows strain 

hardening and volume contraction during the tests. Note that the true strain is used in this 

study. Furthermore, Figure 4.11 shows the stress ratio against axial strain, it can be noticed 

that regardless of the stress path applied, there is a unique relationship between 𝜀𝑎 and 𝑞/𝑝 

when the initial void ratio is the same.  

 

Figure 4.12 shows the critical state line (CSL) in the 𝑒 − 𝑙𝑜𝑔(𝑝) plot and 𝑞 − 𝑝 plot. To obtain 

a broader Critical State Line (CSL) in both −𝑙𝑜𝑔(𝑝)  plot and 𝑞 − 𝑝  space, additional 

simulations were conducted. These simulations maintained a constant 𝜎3  stress path and 
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utilised two initial density conditions (loose and dense). Various values of the main effective 

stress were employed in these simulations. It is observed that the critical state stress ratio, 

denoted as M, is equal to 0.7. The CSL is nonlinear in the 𝑒 − 𝑙𝑜𝑔(𝑝) plot, which is consistent 

with previous results (Hanley et al., 2018, Perez et al., 2016, Peña et al., 2009, Huang et al., 

2014a). It can be seen that the critical state void ratio is almost constant when p < 1000 kPa, 

which is different from that for real sand. There are several possible reasons for this. First, 

spherical particles cannot represent the shape and movement of real sand particles in the 3D 

space (Ng, 2009b). Secondly, it should be acknowledged that the contact model utilised in this 

study may not accurately represent the true contact behaviour between sand particles. 

Additionally, it is important to note that excessively high mean effective stress, such as 

reaching 104 kPa, can result in significant overlap between particles, potentially leading to 

unrealistic outcomes. 
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Figure 4.9 Stress-strain relationship for dense and loose sand during drained triaxial tests 

with different stress paths a) constant 𝜎𝑟; b) constant 𝑝. 
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Figure 4.10 Dilatancy behaviour for dense and loose sand during drained triaxial simulation 

test with different stress paths a) constant 𝜎𝑟; b) contstant 𝑝. 

 

 

Figure 4.11 stress ratio against the axial strain for triaxial shearing with different stress paths 
and soil density.   
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Figure 4.12 Critical state lines in the a) 𝑒 − 𝑙𝑜𝑔 (𝑝) and b) 𝑞 − 𝑝 spaces. 



Chapter 4: The relationship between contact network and energy dissipation  

80 
 

 

4.3.2 Energy dissipation   

 

In this study, the energies were traced using the method implemented in Granular LAMMPS 

by (Hanley et al., 2018). The error in the energy balance during the simulation is examined by 

using Equation 4.4 as described in (Hanley et al., 2018).  The error in the energy balance during 

triaxial compression is illustrated in Figure 4.13a and Figure 4.13b. The error is quantified as a 

percentage of the boundary work and is consistently negligible throughout the simulation, 

demonstrating the absence of spurious energy generation caused by numerical instability. It 

is worth noting that, at the outset of the simulations, the errors may appear relatively higher 

compared to the subsequent stages, primarily due to the boundary work being zero during 

the initial shearing phase. These findings are consistent with the observations reported by 

Hanley et al. (2018).     

 

It is well known that interparticle sliding in granular materials is the main source of energy 

dissipation (El Shamy and Denissen, 2012). Other sources of energy, such as strain energy and 

kinetic energy, are negligible in the system due to quasi-static loading conditions (Hanley et 

al., 2018, El Shamy and Denissen, 2012, El Shamy and Denissen, 2010). In this study, the main 

focus is on the energy dissipation associated with sliding within the contact networks. During 

loading, the energy dissipation is continuously monitored. When sliding occurs, the increment 

of energy dissipation 𝛿𝑊𝑓
𝛽

 is calculated using the equation below  

𝛿𝑊𝑓
𝛽

=
1

𝑉
∑ 𝐹𝑠

𝑐∆𝑠𝛽←𝛽−1
𝑁𝑐𝑠𝑙𝑖𝑑𝑖𝑛𝑔

𝑐=1                                               (4.5) 

where 𝛽  denotes a time step, ∆𝑠𝛽←𝛽−1  is the incremental tangential displacement at the 

sliding contact between timestep 𝛽 ← 𝛽 − 1. 𝐹𝑠
𝑐 is the tangential component of the contact 

force of sliding contacts; 𝑉 is the volume of the sample and 𝑁𝑐 is the number of sliding contact 

in the system. Note that the energy increment has been normalised by the total volume 

because the response of a representative soil element is considered. The total frictional 

energy dissipation as accumulation is 

  𝑊𝑓
𝛽

=   𝑊𝑓
𝛽−1

+ 𝛿𝑊𝑓
𝛽

                                             (4.6) 

The energy dissipation results in this work are presented per unit volume and expressed as a 

rate of energy and the unit of the energy dissipation is converted to kPa. This offers valuable 
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insights into the behaviour and stability of the systems being studied. By adopting this 

approach, a more comprehensive understanding of the processes of energy dissipation during 

triaxial shearing can be provided. Figure 4.14a displays the incremental energy dissipation, 

while Figure 4.14b illustrates the cumulative energy dissipation. These figures show the 

energy dissipation for various soil densities and stress paths. However, it is important to 

highlight that the results presented in Figure 4.14 solely represent the dissipation of all contact 

sliding, without providing specific information about the contribution of weak and strong 

contacts to energy dissipation. The subsequent discussion will introduce a method for 

determining the respective contributions of strong and weak contacts to energy dissipation. 

In Figure 4.14a it is observed that the energy dissipation stabilises at a constant rate when the 

critical state is reached. The initial void ratio and stress path have minimal influence on the 

energy dissipation mechanism, except for cases where samples are sheared with a constant 

𝜎𝑟  , resulting in higher energy dissipation. Figure 4.14b shows the cumulative energy 

dissipation compared to the boundary work, revealing a close correspondence, particularly 

when the samples reach the critical state. These findings align with previous studies by El 

Shamy and Denissen (2012) and Hanley et al. (2018).   
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Figure 4.13 Error in energy balance as percentage of boundary work for dense and loose 
sand during a drained triaxial  simulation test; a) constant 𝜎𝑟; b) constant 𝑝. 
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Figure 4.14 Energy dissipation during drained triaxial compression for dense and loose sand 

with different stress paths; a) evaluation of energy dissipation; b) cumulative energy 
dissipation. 

4.3.3 Partitioning of contact networks  

 

This chapter utilised two methods for partitioning contact networks. The first method is based 

on average normal force magnitude (Radjai et al., 1997), and the second is based on the 

contribution of contact networks to deviator stress (Huang et al., 2017). Though the average 

contact force partitioning method is widely used, it was not considered a robust method when 

the contribution to global deviator stress is considered for 3D modelling (Huang et al., 2017b). 

To illustrate this, this work examines the average contact force partitioning method based on 

how the contact network contributes to deviator stress.  

 

The deviator stress is calculated from the contact force, where the stresses are obtained based 

on the stress tensor equation in (Bagi, 1996) 
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     𝜎𝑖𝑗 =
1

𝑉
∑ 𝑓𝑖

𝑐𝑁𝑐
𝑐=1 𝑙𝑗

𝑐                                                   (4.7) 

where 𝑉 is the volume of the domain considered  𝑓𝑖
𝑐 is the component of the contact force 

acting on the particle and 𝑙𝑗
𝑐 is the component of the branch vector from the centre of the 

contacting neighbour to the centre of the particle and 𝑁𝑐  is the number of contacts. To 

determine the contribution of weak and strong networks to total deviator stress, the total 

average stress tensor can be decomposed into contributions from the strong (
1

𝑉
∑ 𝑓𝑖

𝑠𝑁𝑐
𝑆

𝑐=1 𝑙𝑗
𝑠)  

and weak contacts (
1

𝑉
∑ 𝑓𝑖

𝑤𝑁𝑐
𝑤

𝑐=1 𝑙𝑗
𝑤)   in which 𝑓𝑖

𝑠  and 𝑓𝑖
𝑤  are the components of the contact 

force of strong and weak contacts, 𝑙𝑗
𝑠  and 𝑙𝑗

𝑤  are the components of the branch vector of 

strong and weak contacts, and 𝑁𝑐
𝑆  and 𝑁𝑐

𝑤   are the number of strong and weak contacts 

respectively. 

 

Figure 4.15 depicts the cumulative contribution of the contact force to deviator stress as a 

function of the normalised contact force, where 𝑓𝑛 is the magnitude of normal contact force 

and 〈𝑓𝑛〉  is the average magnitude of normal contact force. The figure evaluates the 

contribution in several positions during the test: near peak (2%, 3% and 5% axial strain) and 

the critical state (30% axial strain and 50% axial strain). To generate this figure, the contacts 

are arranged in ascending order based on the magnitude of the normalised force. The 

contribution of each contact to the value of 𝑞 is calculated using Equation 4.8. It is evident 

that the weak contacts (contact force below average) also contribute to deviator stress, with 

approximately half of the weak contacts contributing to the overall deviator stress which is in 

agreement with the findings by (Huang et al., 2017b). In addition, it can be noticed from  

Figure 4.15 that approximately half the mean normal contact force (𝑓𝑛/〈𝑓𝑛〉 = 0.5) gives a 

reasonable separation for the contact network contribution to the overall deviator stress at 

all strain levels. Therefore, 𝑓𝑛/〈𝑓𝑛〉 = 0.5  is used as the second partitioning method in this 

study. This partitioning definition is based on the assumption that weak contacts do not 

contribute to deviator stress and strong contacts are responsible for carrying out all deviator 

stress. This method will thus be called a deviator stress partitioning method. As shown in 

Figure 4.16,  the value of 𝑓𝑛/〈𝑓𝑛〉  = 0.5 used for the deviator stress partitioning is valid for all 

the tests with different initial densities and stress paths.  Therefore, the value of 𝑓𝑛/〈𝑓𝑛〉  =
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0.5 is used for partitioning the force networks based on contribution to the deviator stress in 

a 3D system. Figure 4.17 illustrates the contribution of the strong and weak force networks to 

the total deviator stress and compares both partitioning methods (Thornton and Antony, 

1998). It is apparent from the figure that all deviator stress is carried by strong contacts when 

the deviator partition method is used, which confirms that the load will be transferred via the 

strong contact only. However, when the average force partition method is used it is apparent 

that some of the weak contacts also contribute to deviator stress. The contribution of weak 

and strong contact to deviator stress is analysed for loose and dense samples under 500 kPa 

using both partitioning approaches, as seen in Figure 4.18. Consistent relationships are 

observed, indicating that the findings are independent of variable densities and confining 

pressure. Given this similarity, the remaining figures are included in Appendix A for reference. 

 

Figure 4.15  Accumulated deviator stress as a function 𝑓𝑛/〈𝑓𝑛〉  at peak and at the critical 

state.  
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Figure 4.16 Accumulated deviator stress as a function 𝑓𝑛/〈𝑓𝑛〉  for different stress paths and 

densities at the critical state (30% axial strain).  

  

 
Figure 4.17 Contribution of weak and strong contact networks to the deviator stress when 
average force and deviator stress partitioning methods are used sheared with 250 kPa and 

constant 𝜎𝑟. 
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Figure 4.18 Contribution of weak and strong contact networks to the deviator stress when 
average force and deviator stress methods are used. Loose and dense samples sheared with 
500 kPa and constant 𝜎𝑟: a) dense sample average force partition, b) dense sample deviator 

partition, c) loose sample average force partition, d) loose sample deviator partition.   
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4.3.4 Relationship between contacts network and energy dissipation  

 

To understand the relationship between energy dissipation and contact networks, results at 

the microscale are needed. In this study, the objective is to identify the amount of energy 

dissipated by each type of contact network (strong and weak) separately. Therefore, the 

method explained in section 4.2.1 is used here. Since all the energy is dissipated by the sliding 

of contact networks, it is initially convenient to assess the percentage of contacts that are 

sliding during the shearing process. In this study, the particles considered to be sliding if  Ft ≤

|fn|μ  where Fn is the normal contact force, Ft tangential force and the tolerance used for this 

calculation is 0.999. The contribution of strong and weak networks to the proportion of total 

contact sliding is illustrated in Figure 4.19 for dense samples sheared with 250 kPa and 

constant σr . The figure also compares both partitioning methods used in this study. The 

results reveal that the majority of sliding occurs in weak contacts, but a portion of strong 

contacts also exhibit sliding behaviour. This behaviour is consistent when employing both 

partitioning methods. However, it is noteworthy that the use of the deviator stress 

partitioning method leads to an increase in the proportion of sliding observed in strong 

contacts, from approximately 18% to around 29%. Additionally, there is an increase in the 

proportion of sliding observed in weak contacts, from 55% to around 65%. Previous studies 

have suggested that all sliding occurs in weak contacts, while non-sliding contacts are 

classified as strong contacts (Radjai et al., 1997). In contrast, the present study demonstrates 

that the sliding occurring at strong contacts is not negligible, challenging the notion that 

sliding is solely confined to weak contacts. Additionally, the data used to create Figure 4.19   

are presented in Table 4.1 and Table 4.2 which show the total number of contacts categorised 

as total, weak, and strong, the total number of contacts sliding also categorised as total, weak, 

and strong networks, along with the corresponding percentage of sliding observed in each 

category. The categorisation is based on the average force and deviator stress partitioning 

methods. The data pertains to dense samples subjected to shearing with 250 kPa stress and 

constant σr . An observable difference is observed when utilising the deviator stress 

partitioning method, as it results in an increase in the number of strong contacts. 

Consequently, this leads to a corresponding increase in the number of sliding contacts within 
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the strong contacts. Furthermore, a similar relationship is observed for the proportion of 

sliding across various confining pressures and densities (Figure 4.20). The remaining results, 

encompassing different stress paths, confining pressures, and densities, are included in 

Appendix A, and they consistently exhibit similar behaviours. 

 
Figure 4.19 Proportion of sliding contacts for the average contact force magnitude and 

deviatoric partitioning methods for dense samples sheared with 250 kPa and constant 𝜎𝑟. 
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Table 4.1 The distribution of contacts categorised as total, weak, and strong, along with the corresponding percentage of sliding observed in 
each category divided based on the average force partitioning method, for dense samples sheared with 250 kPa and constant σr. 

Axial 
strain % 

Number of 
total 

contacts 

Number of 
weak 

contacts 

Number of 
strong 

contacts 

Number of 
total 

contacts 
sliding 

Number of 
weak 

contacts 
sliding 

Number of 
strong 

contacts 
sliding 

Total 
contacts 
sliding  

% 

Weak 
contacts 
sliding  

% 

Strong 
contacts 
sliding  

% 

1% 20503 12596 7907 9233 7763 1470 45 62 19 

2% 18869 11747 7122 7473 6337 1136 40 54 16 

3% 18754 11646 7108 7353 6233 1120 39 54 16 

4% 18560 11406 7154 6984 5899 1085 38 52 15 

5% 18622 11428 7194 6958 5898 1060 37 52 15 

6% 18628 11393 7235 6841 5817 1024 37 51 14 

7% 18639 11380 7259 7031 5929 1102 38 52 15 

8% 18703 11458 7245 7037 6015 1022 38 52 14 

9% 18823 11526 7297 7140 6060 1080 38 53 15 

10% 18704 11436 7268 7000 5905 1095 37 52 15 

11% 18789 11392 7397 7070 5903 1167 38 52 16 

12% 18676 11215 7461 6921 5857 1064 37 52 14 

13% 18643 11265 7378 7016 5875 1141 38 52 15 
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14% 18526 11130 7396 6826 5733 1093 37 52 15 

15% 18593 11232 7361 6948 5854 1094 37 52 15 

16% 18570 11229 7341 6924 5830 1094 37 52 15 

17% 18502 11090 7412 6918 5738 1180 37 52 16 

18% 18590 11168 7422 6800 5642 1158 37 51 16 

19% 18736 11299 7437 7024 5838 1186 37 52 16 

20% 18658 11204 7454 6913 5758 1155 37 51 15 

21% 18638 11297 7341 6967 5853 1114 37 52 15 

22% 18672 11362 7310 6999 5882 1117 37 52 15 

23% 18516 11198 7318 6920 5770 1150 37 52 16 

24% 18481 11358 7123 6821 5767 1054 37 51 15 

25% 18551 11216 7335 6990 5859 1131 38 52 15 

26% 18393 11062 7331 6799 5689 1110 37 51 15 

27% 18467 11168 7299 6823 5644 1179 37 51 16 

28% 18654 11259 7395 7148 5871 1277 38 52 17 

29% 18483 11126 7357 6659 5524 1135 36 50 15 

30% 18480 11200 7280 6684 5624 1060 36 50 15 
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31% 18497 11099 7398 6781 5650 1131 37 51 15 

32% 18464 11143 7321 6893 5720 1173 37 51 16 

33% 18601 11292 7309 6998 5843 1155 38 52 16 

34% 18437 11117 7320 6737 5600 1137 37 50 16 

35% 18510 11216 7294 6736 5652 1084 36 50 15 

36% 18461 11213 7248 6654 5576 1078 36 50 15 

37% 18372 11138 7234 6740 5700 1040 37 51 14 

38% 18461 11107 7354 7058 5821 1237 38 52 17 

39% 18368 11000 7368 6766 5544 1222 37 50 17 

40% 18473 11111 7362 6778 5640 1138 37 51 15 
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Table 4.2 The distribution of contacts categorised as total, weak, and strong, along with the corresponding percentage of sliding observed in 
each category divided based on the deviator stress partitioning method, for dense samples sheared with 250 kPa and constant 𝜎𝑟. 

Axial 
strain  

% 

Number of 
total 

contacts 

Number of 
weak 

contacts 

Number of 
strong 

contacts 

Number of 
total 

contacts 
sliding 

Number of 
weak 

contacts 
sliding 

Number of 
strong 

contacts 
sliding 

Total 
contacts 
sliding  

% 

Weak 
contacts 
sliding  

% 

Strong 
contacts 
sliding  

% 

1% 20503 7414 13089 9233 5438 3795 45 73 29 

2% 18869 6982 11887 7473 4489 2984 40 64 25 

3% 18754 6855 11899 7353 4353 3000 39 64 25 

4% 18560 6579 11981 6984 4083 2901 38 62 24 

5% 18622 6512 12110 6958 4027 2931 37 62 24 

6% 18628 6379 12249 6841 3963 2878 37 62 23 

7% 18639 6286 12353 7031 4024 3007 38 64 24 

8% 18703 6323 12380 7037 4015 3022 38 63 24 

9% 18823 6351 12472 7140 4014 3126 38 63 25 

10% 18704 6354 12350 7000 4000 3000 37 63 24 

11% 18789 6354 12435 7070 4020 3050 38 63 25 

12% 18676 6266 12410 6921 3959 2962 37 63 24 

13% 18643 6120 12523 7016 3877 3139 38 63 25 
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14% 18526 6092 12434 6826 3782 3044 37 62 24 

15% 18593 6174 12419 6948 3899 3049 37 63 25 

16% 18570 6136 12434 6924 3863 3061 37 63 25 

17% 18502 6066 12436 6918 3774 3144 37 62 25 

18% 18590 6172 12418 6800 3774 3026 37 61 24 

19% 18736 6130 12606 7024 3822 3202 37 62 25 

20% 18658 6159 12499 6913 3871 3042 37 63 24 

21% 18638 6260 12378 6967 3962 3005 37 63 24 

22% 18672 6306 12366 6999 3915 3084 37 62 25 

23% 18516 6263 12253 6920 3884 3036 37 62 25 

24% 18481 6285 12196 6821 3865 2956 37 61 24 

25% 18551 6236 12315 6990 3928 3062 38 63 25 

26% 18393 6236 12157 6799 3855 2944 37 62 24 

27% 18467 6111 12356 6823 3747 3076 37 61 25 

28% 18654 6090 12564 7148 3862 3286 38 63 26 

29% 18483 6104 12379 6659 3638 3021 36 60 24 

30% 18480 6205 12275 6684 3798 2886 36 61 24 
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31% 18497 6101 12396 6781 3781 3000 37 62 24 

32% 18464 6054 12410 6893 3731 3162 37 62 25 

33% 18601 6236 12365 6998 3856 3142 38 62 25 

34% 18437 6041 12396 6737 3727 3010 37 62 24 

35% 18510 6247 12263 6736 3829 2907 36 61 24 

36% 18461 6170 12291 6654 3732 2922 36 60 24 

37% 18372 6192 12180 6740 3806 2934 37 61 24 

38% 18461 6045 12416 7058 3845 3213 38 64 26 

39% 18368 6074 12294 6766 3663 3103 37 60 25 

40% 18473 6067 12406 6778 3735 3043 37 62 25 



Chapter 4: The relationship between contact network and energy dissipation  

97 
 

 

 



Chapter 4: The relationship between contact network and energy dissipation  

98 
 

 

 

Figure 4.20 Proportion of sliding contacts when average force and deviator stress methods 

are used. Loose and dense samples sheared with 500 kPa and constant 𝜎𝑟  : a) dense sample 

average force partition, b) dense sample deviator partition, c) loose sample average force 

partition, d) loose sample deviator partition.   
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Energy dissipation was traced for both the strong and weak contact networks separately. As 

depicted in Figure 4.23, the contribution of the strong and weak contacts to the total energy 

dissipation was analysed using the average force partitioning method. Notably, around 70% 

of the dissipation occurs in weak contacts, with the remaining 30% in strong contacts. The 

results highlight that the dissipation in strong contacts is not negligible, indicating that the 

strong contacts dissipate more energy per sliding contact network. To provide further insight, 

Figure 4.22  shows the dissipation per sliding contact network at various locations during the 

simulation. The results demonstrate that strong networks dissipate approximately two times 

more energy per sliding contact network compared to weak contact networks. However, when  

the deviator stress partitioning method is used, the relationship appears differently, Figure 

4.23 shows that the energy dissipation occurs more in the strong contact with approximately 

65%, while the weak contact is approximately 35%.  

 

Table 4.3 shows the split of energy dissipation at different strain levels for a dense sample. 

Note that the portion of sliding contacts is calculated with reference to a specific contact 

network (e.g., strong or weak). Contribution to energy dissipation is defined as the ratio of 

energy dissipation in a contact network and the total dissipation in the sample. The 

examination is specifically located before and after the critical state at 2%,3%,5%,30% and 50% 

axial strain. The table shows that although strong contact sliding was around 15% when the 

average force partitioning method was used, this caused around 30% of total energy 

dissipation. Around 53% of weak contacts slide when applying the average force partitioning 

method, causing around 70% of the total energy dissipation. Using the deviator stress 

partitioning method leads to an increase in the proportions of strong contacts sliding to 

around 25%, which results in their contribution to energy dissipation being around 65% of the 

total dissipation.  

 

Additionally, using deviator stress partitioning increased the proportion of sliding in weak 

contacts significantly. However, the contribution of weak contacts to energy dissipation 

decreased to around 35%. The results show that the relationship between energy dissipation 

and contact networks is not influenced only by the number of sliding contacts but also by how 

much force each contact network carries. When the normal and tangential components of 

contact force in a strong contact network are large, the dissipation during sliding becomes 
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greater. The remaining results, encompassing different stress paths, confining pressures, and 

densities, are included in Appendix A, and they consistently exhibit similar behaviours. 

 

 

 

 

Figure 4.21 Contribution of weak and strong networks to the energy dissipation based on 
average force partition from probe test for dense sample sheared with constant 𝜎𝑟  (𝜎3 = 250 

kPa).  
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Figure 4.22  Dissipation rate per-sliding contact networks for dense sample sheared with 
constant 𝜎𝑟  (𝜎3 = 250 kPa) and using average force partitioning method.  

 

 

 

Figure 4.23 Contribution of weak and strong networks to the energy dissipation from probe 
test for dense sample sheared with constant 𝜎𝑟  (𝜎3 = 250 kPa); a) average force partition; b) 

deviator stress partition. 
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Table 4.3 The percentage contribution of weak and strong networks to the energy 
dissipation and sliding from probe test for dense sample sheared with constant 𝜎𝑟  (𝜎3 = 250 

kPa) using the average force and deviatoric partitioning methods. 

Axial 
strain % 

Average force partitioning Deviator stress partitioning 

Portion of 
sliding contacts 

(%) 

Contribution to 
total energy 

dissipation (%) 

Portion of sliding 
contacts (%) 

Contribution to 
total energy 

dissipation (%) 

Strong Weak Strong Weak Strong Weak Strong Weak 

2 19 62 29 71 29 73 64 36 

3 16 54 26 74 25 64 63 37 

5 15 52 27 73 24 62 62 38 

30 15 50 29 71 24 60 66 34 

50 15 51 28 72 25 62 64 36 

 

The presence of substantial energy dissipation is apparent in both the strong and weak 

networks when employing both partitioning methods. This observation underscores the 

significance of exploring energy dissipation in contact networks according to their normal 

force magnitude. To examine this, it is convenient to begin by examining the distribution of 

the contacts network based on 𝑓𝑛/〈𝑓𝑛〉. Figure 4.24 shows the distribution of contact forces 

at the critical state using the probability density function PDF. Though there is an exponential 

decay after the peak, the number of contacts with 𝑓𝑛/〈𝑓𝑛〉 between 1 and 3 is not negligible. 

Figure 4.25 shows the energy dissipation per contact network for contacts with different 

ranges of 𝑓𝑛/〈𝑓𝑛〉  near peak (5% axial strain) and critical state (30% axial strain). To create 

these figures, the contact networks are arranged in ascending order according to the 

magnitude of the normalised normal force 𝑓𝑛/〈𝑓𝑛〉. Then, the networks are grouped based on 

different ranges of the magnitude of the normalised normal force 𝑓𝑛/〈𝑓𝑛〉 . The energy 

dissipation is summed up for each contact group. It is worth noting that the unit used to 

present these results is Joule, as it specifically describes the energy dissipation at a specific 

location during the simulation. It is evident that the energy dissipation rate is much higher 

when  𝑓𝑛/〈𝑓𝑛〉 ≤ 2.  

Figure 4.26 depicts the cumulative energy dissipation for several contact groups throughout 

the simulation. Similar results to are found, with the majority of energy dissipation occurring 

at the contact  𝑓𝑛/〈𝑓𝑛〉 ≤ 2 .  Furthermore, Table 3 shows the portion of sliding contacts and 

energy dissipation for contacts with 𝑓𝑛/〈𝑓𝑛〉 ≤ 2  and 𝑓𝑛/〈𝑓𝑛〉 > 2 . It can be seen that the 
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majority of energy dissipation (>93%) occurs in contact with 𝑓𝑛/〈𝑓𝑛〉 ≤ 2. The primary reason 

is that the portion of sliding contacts is much higher when 𝑓𝑛/〈𝑓𝑛〉 ≤ 2 (Table 3). 

 

 
Figure 4.24 The distribution of contact forces at the critical state. 
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Figure 4.25 Energy dissipation per-contact networks at different contact groups: a) peak (5% 

axial strain); b) critical state (30% axial strain). 

 

Figure 4.26 Cumulative energy dissipation per-contact networks at different contact groups. 
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Table 4.4 Sliding and energy dissipation in contacts with different normal contact forces 
(dense sample with constant 𝜎𝑟   of 250 kPa) 

Axial 
strain % 

Portion of sliding contacts 
(%) 

Contribution to total energy 
dissipation (%) 

𝑓𝑛/〈𝑓𝑛〉 > 2 𝑓𝑛/〈𝑓𝑛〉 ≤ 2 𝑓𝑛/〈𝑓𝑛〉 > 2 𝑓𝑛/〈𝑓𝑛〉 ≤ 2 

5 5 42 4 96 

30 5 40 8 92 

50 5 40 7 93 

 
 
4.4 Conclusion  

 

In this study, a DEM-based investigation is conducted to investigate the mechanism of energy 

dissipation in granular materials. The relationship between contact networks and energy 

dissipation is investigated for dense and loose sand in drained triaxial compression with 

different stress paths.  

 

• Two partitioning methods for the contact force networks were used. The first partition 

method is based on the contact force magnitude and the second is based on the 

contribution to global deviator stress.  

• When the average contact force partitioning method is used, more interparticle sliding 

and energy dissipation occur in the weak networks. However, the strong contact 

network has a two times higher energy dissipation per sliding contact due to higher 

contact forces.  

• When the deviator stress partitioning method is used the sliding still occurs more in 

the weak contact. Nonetheless, there has been a slight increase in the proportion of 

strong contact sliding compared to the average contact force partitioning results. This 

increase of sliding in strong contacts has led to more energy dissipation in the strong 

contacts. 

• It is observed that the energy dissipation that occurs in both strong and weak contacts 

is not negligible when both partitioning methods are used.  Therefore, A new threshold 

of 𝑓𝑛/〈𝑓𝑛〉  for partitioning the contact network has been identified. Specifically, 

𝑓𝑛/〈𝑓𝑛〉 = 2 can be used to determine if the contact contributes to energy dissipation. 

Over 93% of the total energy dissipation occurs in contact with 𝑓𝑛/〈𝑓𝑛〉 ≤ 2. 
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The results of this study confirm that both the proportion of sliding contacts and the 

magnitude of tangential contact force between particles play a significant role in the 

relationship between contact networks and energy dissipation. For simplicity, this work has 

used only a uniform particle size distribution. Mukwiri et al. (2016) demonstrated that particle 

size distribution influences the total amount of energy dissipation. It is expected that the 

particle size distribution does not have a significant influence on the conclusions of this study.  
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Chapter 5: Stored plastic work and energy dissipation in granular materials 

 

 

5.1 Introduction  

In granular materials, the concept of stored plastic work has emerged as a significant and 

interesting aspect. Granular materials, such as sand, exhibit complex behaviours that are 

essential to understand in various engineering and geotechnical applications. The distinction 

between plastic work and energy dissipation in such materials has been a subject of 

theoretical analysis and investigation(Collins, 2005, Collins and Houlsby, 1997, Collins and 

Kelly, 2002, Collins and Hilder, 2002, Houlsby, 1981). The stored plastic work refers to a 

phenomenon in which the plastic work during plastic deformation is not completely 

dissipated by interparticle friction; rather, a portion of it is stored in the system. This 

conserved energy can play an important role in the mechanical behaviour and development 

of constitutive models for granular materials. Despite the fact that several works have 

highlighted the significance of stored plastic work, there is still a lot to explore about this 

concept.  

The main objective of this chapter is to investigate the evolution of stored plastic work and 

energy dissipation in granular materials using 3D DEM simulation. The investigation will be 

carried out using different particle size distributions and drained triaxial compression tests. 

To calculate both the plastic work and the stored plastic work the elastic stiffness of the 

samples will be measured.  

 

5.2 Theoretical and computational formulations 

 

The basic energy equation is expressed as  

  𝛿𝑊 = 𝛿𝑊𝑒 + 𝛿𝑊𝑝 = 𝛿𝛹 + 𝛿𝛷                                                   (5.1) 

where 𝛿𝑊 is the incremental applied work, 𝛿𝑊𝑒 is the increment elastic work, 𝛿𝑊𝑝 is the 

increment plastic work, 𝛿𝛹  is the free energy, which describes the energy stored in the 
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representative elementary volume (REV) and can be recovered; and 𝛿𝛷 is the increment of 

energy dissipation in the system. Based on the second law of thermodynamics 𝛿𝛷  must 

always be positive, whereas the 𝛿𝛹 is not restricted by a sign which can be either positive or 

negative. In the past, it was assumed that free energy is equal to elastic work, which is very 

small and is often ignored (𝛿𝑊𝑒 = 𝛿𝛹 ). This means that the entire work in the system 

dissipates, and for this reason, Equation (5.1) becomes as: 

  𝛿𝑊𝑝 = 𝛿𝛷                                                   (5.2) 

As noted by Collins (2005) if this assumption is employed, modelling unloading conditions will 

be difficult. This is due to the increment of the plastic work and energy dissipation becoming 

negative during unloading, which violates the second law of thermodynamics. This problem 

can be solved if the formulation of the free energy depends on both elastic and plastic strains 

(Collins, 2002, Collins, 2005, Collins and Houlsby, 1997).  

      𝛹(𝜀𝑖𝑗
𝑒 ,   𝜀𝑖𝑗

𝑝 ) =  𝛹𝑒(𝜀𝑖𝑗
𝑒 ) +  𝛹𝑝(𝜀𝑖𝑗

𝑝 )                                          (5.3) 

where 𝛹(𝜀𝑖𝑗
𝑒 ,   𝜀𝑖𝑗

𝑝 ) is the total free energy, 𝛹𝑒(𝜀𝑖𝑗
𝑒 ) is the elastic part of the free energy, and 

𝛹𝑝(𝜀𝑖𝑗
𝑝 ) is the plastic part of the free energy. In addition, the basic work equation can be 

rewritten also as follow. 

  𝛿𝑊 = 𝛿𝑊𝑒 +  𝛿𝑊𝑝 =  𝛿𝛹𝑒 + 𝛿𝛹𝑝 + 𝛿𝛷                                              (5.4) 

 If the elastic contribution is cancelled from both sides of the equation. The plastic work 

equation can be rewritten as follow.   

  𝛿𝑊𝑝 = 𝛿𝛹𝑝+ 𝛿𝛷                                                  (5.5) 

 

5.3 Conceptual explanation of the stored plastic work 

 

The mechanism of energy dissipation and stored plastic work has been explained in previous 

studies (e.g., Collins, 2005). Figure 5.1 shows a 1D example for illustrating this, which consists 

of a spring and slider. The model is commonly used in granular media (Collins, 2005, Iwan, 

1967, Puzrin and Houlsby, 2001). This model can be used to simulate elastic perfectly plastic 
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stress-strain behaviour which consists of two parts. The first contains one spring, which 

represents the elastic deformation. The second contains a spring and slider, which represents 

the plastic deformation. During loading before the load reaches the value that moves the 

slider, the behaviour is linearly elastic, and only spring A is affected. At this stage, there will 

be some elastic energy stored in spring A which is represented as 

  𝛹𝐴 =  
1

2
𝐾𝐴(𝜀𝑒)2                                                  (5.6) 

 where 𝛹𝐴 is the energy stored in spring A, 𝐾𝐴 is the stiffness of spring A, and 𝜀𝑒 is the amount 

of deformation that occurs in spring A. As soon as the load is removed, the spring will return 

to its original position, releasing all the elastic energy that was stored. However, if the model 

is loaded until spring B and the slider gets into action. In this stage, both elastic and plastic 

strains will occur, as well as energy is stored in springs A and B and energy dissipate as the 

block slides. The total energy in the model can be represented as 

  𝑊 =  
1

2
𝐾𝐴(𝜀𝑒)2 +  

1

2
𝐾𝐵(𝜀𝑝)2 + 𝐹𝑘∆𝑠                                                    (5.7) 

where 𝐾𝐵 is the stiffness of spring B, 𝜀𝑝 is the amount of deformation that occurs in spring B, 

𝐹𝑘 friction force due to the movement of the slider and ∆𝑠 is the amount of displacement of 

the slider. The second part of Equation (5.7) represents the amount of energy stored in spring 

B, whereas the last part of Equation (5.7) represents the energy dissipation due to the 

movement of the slider. When the load is removed, spring A will return to its initial state in 

which both the elastic strain and the elastic stored energy are recovered. However, in the 

second part of the model, the slider will prevent spring B from returning to its initial position. 

Therefore, the remaining energy in the system is the total plastic energy, represented as 

   

  𝑊𝑝 =
1

2
𝐾𝐵(𝜀𝑝)2 +  𝐹𝑘∆𝑠                                                  (5.8) 

The two parts in Equation (5.8) represent the stored plastic work in spring B and the energy 

dissipation caused by the movement of the slider, which is similar to Equation (5.5). In order 

for this energy to be released, the load must be reversed, which will return the slider to its 

original position and let the spring release its stored energy. In summary, the elastic and 
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plastic parts of the free energy differ significantly which the elastic part is released during 

unloading, whereas the plastic part needs reverse loading to be released.      

 

Figure 5.1 Spring and slider model representing a deformation in REV, also showing plastic 
work storage during plastic deformation. 

 

The plastic work stored within granular materials is associated with the particles that are 

trapped and unable to release their energy (Collins, 2005, Collins and Kelly, 2002, Collins and 

Muhunthan, 2003, Iwan, 1967, Puzrin and Houlsby, 2001). This hypothesis is illustrated using 

the schematic particle diagrams shown in Figure 5.2. In this example, particle A is tracked 

during a loading-unloading cycle. At state (a) sample is at the initial state, and particle A is in 

contact with particles B, C, and F. Upon loading at state (b), particle B will start transferring 

the load, which will push particle A down. At this stage, particle A will be surrounded by 

particles B, C, D, E, and F. If the sample is unloaded as shown in state (c) some of the 

compressed particles will be able to release their stored elastic energy and go back to 

their initial state. But particle A will be trapped between particles C, D, E, and F, which will 

prevent it from returning to its initial state. The energy stored in particle A is the plastic part 

of the free energy which is only released by reversing the stress direction (Collins, 2005) 
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Figure 5.2 2D schematic diagrams of particle rearrangement during: (a) Initial state; (b) 
Loading; (c) Unloading.  

 

Furthermore, the development of stored plastic work in granular materials is associated with 

the force chain network in granular materials (Yang et al., 2018). Strong force chain formation 

and collapse have a direct effect on the dilatancy of sand, where the buckling of the strong 

force chains will lead to volumetric contraction (Cundall and Strack, 1979, Li and Li, 2009, Oda 

et al., 1982). Meanwhile, the collapse of strong force chains is associated with interparticle 

sliding, which leads to energy dissipation. On the other hand, the formation of the strong 

force chains as shown in Figure 5.3 will lead to more particles getting trapped in the weak 

force networks, which causes the accumulation of stored plastic work.  

Collins (2005) proposed a hypothesis linking the stored plastic work in granular materials to 

the volumetric strain. This hypothesis can be better understood through the behaviour of 

dense sand subjected to shearing. At the start of shearing, as the dense sand experiences 

compression, the particles come closer together, leading to a change in volume. During this 

phase, the applied load is transferred, resulting in the formation of a strong force network. 

Some contacts between particles start sliding and dissipate energy, while others become 

trapped and store some of the applied energy. As shearing continues and reaches its peak, 

the sample starts to dilate, causing a change in the stored energy associated with the change 

in the sample volume. During this dilation, the force chains within the granular assembly 

break and reform, releasing some stored plastic energy. This process leads to a reduction in 

material density and a decrease in strength and stiffness. Upon reaching the critical state, 

there is no further change in volume or stored plastic work.  
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Figure 5.3 Schematic diagrams of the particle system.  

 

5.4 DEM simulations 

 

5.4.1 Sample preparation and shearing  

 

DEM samples were generated using three different particle size distributions (PSD). The first 

sample has a PSD representative of Dunkirk sand with 40150 spherical particles. The second 

sample has a PSD representative of Toyoura sand with 27961 spherical particles, while the 

third sample has a uniform PSD containing 21663 spherical particles with a minimum 

diameter of 0.1 mm and a maximum diameter of 0.14 mm. Figure 5.4 shows the DEM particle 

size distributions match the PSD distributions from the experiment. The experimental data 

were measured by the authors using a plot digitizer (Alshibli and Cil, 2018, Liu et al., 2019b). 

Drained triaxial simulations were performed on these samples. A dense sample was created 

for each PSD type. These samples were prepared using a two-step process (Hanley et al., 

2014). To begin, the particles were randomly placed into the periodic cell, which was then 

isotopically compressed to the target mean normal stress p0 = 250 kPa with a friction 

coefficient μ = 0 to reach the target p0. Then μ was set to 0.3 and the sample was left to 
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equilibrate again. When samples reach the target stress, they are subjected to drained triaxial 

compression to the critical state with constant radial stress σr . The upper boundary was 

moved to control loading, while the lower boundary remained fixed. The samples were 

sheared with a constant inertial number of I = 1 × 10−4, which indicates quasi-static loading. 

Local damping of 0.3 was used during the preparation but set to 0 during shearing, which 

ensures that all dissipation is due to interparticle friction during triaxial compression. Table 

5.1 shows the codes generated for samples tested in this study based on their PSD type. 

 

 

Figure 5.4 Particle size distribution (PSD). 

 

Table 5.1 Sample codes used in this study based on their PSD type and density. 

Sample type 

Void ratio at 
end of 

isotropic 
compression 

Confining 
pressure 

Stress path Sample code 

Dunkirk sand 0.479 250 kPa Constant 𝜎𝑟  DS-1-D 
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Toyoura sand 0.522 250 kPa Constant 𝜎𝑟  TS-1-D 

Uniform PSD 0.553 250 kPa Constant 𝜎𝑟  US-1-D 

 

 

5.4.2 Measurement of stored plastic work 

 

The measurement of the stored plastic work requires the measurement of both the total 

plastic work and energy dissipation. As previously demonstrated, energy dissipation can be 

determined directly from DEM simulation. To compute the plastic work, it is necessary to 

measure plastic strains throughout the simulation. The plastic work may then be determined 

based on pδεv
p

+ qδεq
p

. This work proposes a technique for estimating plastic strains. In this 

approach, simulation is performed in two phases. In the first stage, the simulations are run 

until the critical state (50% axial strain), during which the state of the samples is stored at 

different strain levels, as shown in Figure 5.5a. In the second stage, stress probe tests are 

done at each strain level to get the elastic bulk modulus K and shear modulus G.  

𝐺 =  
𝛿𝑞

3𝛿𝜀𝑞
                                                  (5.9) 

𝐾 =  
𝛿𝑝

𝛿𝜀𝑣
                                                  (5.10) 

where δq is the increment of deviator stress, δεq is the incremental deviatoric strain, δp is 

the incremental main effective stress, and δεv is the incremental volumetric strain. The probe 

test is performed by applying a small strain increment ∆ε in the axial direction whereas the 

lateral stress is controlled based on the stress path (e.g, constant p or σr) until the increment 

of shear strain δεq  reaches 10−6. During the probe test, the coefficient of friction 𝜇  is set 

infinite to prevent sliding, this will ensure the deformation is linearly elastic and there is no 

plastic deformation (Cundall, 1989). Figure 5.5b shows schematic diagrams of a probe test at 

a specific location during the simulation (point A), and it will produce a linear stress-strain 

relationship as shown in Figure 5.5c.   
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Figure 5.5 Schematic diagrams of probe test for calculating elastic stiffness in the DEM 
simulation. 

The elastic modulus obtained during this study is used to calculate the elastic shear strain 

increment 𝛿𝜀𝑞
𝑒 and elastic volumetric strain increment 𝛿𝜀𝑣

𝑒. In addition, the total shear strain 

increment 𝛿𝜀𝑑 and total volumetric strain increment 𝛿𝜀𝑣 can be calculated as below 

𝛿𝜀𝑑 =
2

3
(𝛿𝜀𝑎 − 𝛿𝜀𝑟)                                                   (5.11) 

𝛿𝜀𝑣 = 𝛿𝜀𝑎 + 2𝛿𝜀𝑟                                                   (5.12) 

where 𝛿𝜀𝑎 is increment axial strain and 𝛿𝜀𝑟 is the increment radial strain. The plastic strain 

increment then can be calculated as  

  𝛿𝜀𝑞
𝑝 =  𝛿𝜀𝑑 −  𝛿𝜀𝑞

𝑒                                                  (5.13) 

  𝛿𝜀𝑣
𝑝 =  𝛿𝜀𝑣 −  𝛿𝜀𝑣

𝑒                                                  (5.14) 

The following work increment can then be obtained as below 

  𝛿𝑊𝑒 = 𝑞𝛿𝜀𝑞
𝑒 + 𝑝𝛿𝜀𝑣

𝑒                                                  (5.15) 

  𝛿𝑊𝑝 = 𝑞𝛿𝜀𝑞
𝑝 + 𝑝𝛿𝜀𝑣

𝑝                                                  (5.16) 

  𝛿𝑊 = 𝑞𝛿𝜀𝑞 + 𝑝𝛿𝜀𝑣                                                  (5.17) 

The stored plastic work increment is then calculated based on Equation (5.5). 

 



Chapter 5: Stored plastic work and energy dissipation in granular materials  

116 
 

 The small strain stiffness (e.g., shear modulus 𝐺 and bulk modulus 𝐾 ) contributes 

significantly to many geotechnical problems, such as liquefaction, foundation mechanics and 

earthquake. Experimental tests are the most common method for measuring small strain 

properties. During laboratory tests, small stress is applied to measure elastic stiffness, but 

particles are not fixed, causing particle sliding and energy dissipation. In DEM probe tests, 

however, the stress probe is applied, and particle movement is fixed, which ensures no energy 

is dissipated during the test. Several recent studies have used DEM probe tests to investigate 

the elastic properties of granular materials (Gong et al., 2019, Gu et al., 2017, Gu et al., 2013).  

  

The DEM probe tests utilised in this study undergo rigorous validation to ensure their 

reliability and accuracy. Multiple validation procedures are conducted to verify that this 

method yields results consistent with those obtained in previous studies. By subjecting the 

DEM probe tests to thorough validation, the credibility and validity of the results are upheld, 

providing confidence in the approach used. The first validation is done in accordance with the 

results of Cundall (1989). Cundall (1989) run a DEM simulation with 432 particles and particle 

diameters of 0.1075 and 0.1825. The sample sheared to 0.4% axial strain with 138 kPa. 

Additionally, he compared his results with a physical experiment (Chen et al., 1988). Chen et 

al. (1988) performed a laboratory experiment to measure the elastic properties of a sample 

made of glass spheres with two diameters of 0.300 to 0.425mm and 0.180 to 0.250. In this 

chapter, DEM simulation is carried out similarly to the simulation done by Cundall except for 

the number of particles used, where in this work the sample contains 21663 particles and 

Uniform PSD is used. The results are compared with Cundall and Chen's results in Figure 5.6 

and Figure 5.7.  

 

Figure 5.6 and Figure 5.7 shows the shear modules against axial strain compared with Cundall 

and Chen's results. The results obtained in this work are indicated by "Validation data" while 

the other two are Cundall and Chen. The findings of this research are more similar to those of 

Chen et al. (1988) than they are to those of Cundall (1989). The initial shear modulus obtained 

in this study is 151MPa with a reduction of around 10% at 0.3% axial strain, while Chen et al. 

(1988) initial shear modulus 161MPa with a reduction of around 20% at 0.3% axial strain. The 
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initial shear modulus obtained by Cundall is 127MPa with a reduction of around 32% at 0.3% 

axial strain. A second validation was made with the study by Gu et al. (2013). Gu et al. (2013) 

carried out a DEM probe test to study the effect of stress ratio on small strain stiffness of 

granular materials. They evaluated the shear modulus at different isotropic stress states 

250,500, and 1000 kPa. This work also performed similar simulations and evaluated shear 

modulus at three effective stresses 250,500, and 1000 kPa. The results are presented in Figure 

5.7, the results obtained in this work are indicated by "Validation data" as well. It can be 

noticed this validation also showed similar results to those found by Gu et al. (2013). Based 

on the validation done in this part, it is clear that the DEM probe tests used in this research 

are capable of producing accurate data that may be used to examine the chapter's goals. 

 

Figure 5.6 Validation for DEM probe test against Cundall (1989) DEM probe test.  
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Figure 5.7 Validation for DEM probe test against Gu et al. (2013) DEM probe test data.  

 

 

5.5 Stress-strain response  

 

Figure 5.8 shows the stress-strain response for dense samples with different PSD. All samples 

show strain-softening and volume expansion throughout the simulation, which is consistent 

with the results of the experiment. Figure 5.8a and Figure 5.8b show the stress ratio and 

deviator stress against axial strain respectively. The deviator stress increases rapidly for all 

samples, reaching a peak at around 2.5% axial strain and then decreasing gradually until 

reaching a critical state at around 30% axial strain. It is interesting to see that all the samples 

reach the same critical state stress ratio, indicating that the critical state friction angle is 

insensitive to the PSD, which is consistent with previous studies (Voivret et al., 2009, Yang 

and Luo, 2018). In addition, as the samples are all prepared dense, their initial relative 

densities (or equivalently initial state parameters) are close, leading to close peak stress ratios 
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as well. Figure 5.8c shows the void ratio against axial strain for all samples. Due to the 

different PSDs of the samples, it can be observed that the initial and critical state void ratios 

of each sample vary. US-1-D has the largest void ratios, while DS-1-D with the widest PSD span 

exhibits the lowest. 
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Figure 5.8 Comparison of the stress-strain behaviour of all samples; a) stress ratio against 
axial strain; b) deviator stress against axial strain; c) void ratio against axial strain. 
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5.6 Energy dissipation  

 

The energy was traced in all simulations conducted in this chapter, employing the same 

method as elucidated in Chapter 3. Figure 5.9 shows the error in the energy balance as a 

percentage of the applied work. It is worth noting that, at the outset of the simulations, the 

errors may appear relatively higher compared to the subsequent stages, primarily due to the 

boundary work being zero during the initial shearing phase. These findings are consistent with 

the observations reported by (Hanley et al., 2018).  The energy dissipation resulting from 

sliding friction is evaluated by computing the incremental energy dissipation and 

subsequently normalising it by the sample volume. This normalisation accounts for the 

response of a representative soil element, enabling a more accurate assessment of energy 

dissipation per unit volume within the granular material. Figure 5.10 shows the rate of energy 

dissipation against axial strain for all samples utilised in this investigation. The results show 

similar behaviour for all samples, except for a slight difference in the amount of dissipation. 

It is noted that the DS-1-D has the highest rate of energy dissipation and the US-1-D has the 

lowest. There are two main reasons for this: (a) DS-1-D has the most particles per unit volume, 

which causes the most interparticle sliding; (b) DS-1-D has the most heterogeneous force-

chain structure due to its widest PSD.  There is more interparticle sliding when the force-chain 

structure becomes more heterogeneous (Hanley et al., 2018). The dissipation rate is relatively 

low at the outset of shearing and rapidly increases afterwards. The maximum rate of energy 

dissipation is observed at about 5% axial strain. At the critical state, the rate of energy 

dissipation becomes constant. Figure 5.11 shows the cumulative energy dissipation for all 

samples with different PSDs. It can be seen that energy dissipation has accumulated rapidly 

since the simulations began. Additionally, the influence of the PSD on the amount of energy 

dissipation is observed in cumulative energy dissipation, with the largest accumulated 

dissipation recorded for the sample DS-1-D and the lowest for the sample US-1-D. 
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Figure 5.9 The error in the energy balance as percentage of the boundary work plotted 
against axial strain as a percentage of the boundary work for all simulations 

 

 

Figure 5.10 Evaluation of energy dissipation during the simulations with different PSD 
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Figure 5.11 Cumulative energy dissipation during the simulations with different PSD. 

 

5.7 Elastic behaviour  

 

Using the probing test described earlier in section 5.4.2, the shear modulus G and bulk 

modulus K are determined throughout the simulation at different strain levels. Figure 5.12 

illustrates the elastic modulus determined for each sample with a different PSD. It can be 

noticed from the results that the elastic modulus shows nonlinear behaviour at low strain 

levels for all samples. To investigate the difference in elastic modulus at a small strain level, 

the probe test was conducted more often before 1% axial strain. After 1% axial strain, the 

probe test was performed less frequently since no significant variation in the findings was 

seen. Figure 5.13 shows the evolution of shear modulus reduction (G/G0)  for the three 

samples used, where G0 is the initial or the maximum shear models at the start of shearing. 

It can be seen that the decrease occurs mostly before 1% axial strain; nevertheless, after the 

strain surpasses 1% axial strain, the modulus remains constant, which is consistent with the 
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results (Mair, 1993, Xu et al., 2014). These stiffness modulus are used to calculate the total 

elastic strains during the simulation as explained in 5.4.2.  

 

Figure 5.12 Properties of small strain stiffness G shear modulus and K bulk modulus vs axial 
strain. 
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Figure 5.13 Comparison of the degradation curves of the normalised shear modulus. 

 

5.8 Stored plastic work results 

 

In this work, the stored plastic work is assumed to be zero at the start of shearing.  

Figure 5.14 shows the evolution of different energy terms for all three samples. The elastic 

work rate is very small due to the small elastic strain in the samples. The plastic work is the 

summation of stored plastic work and dissipation. It is found that stored plastic work is much 

smaller than the dissipation in all samples (Fig. 7a-c). Note that the stored plastic work is 

assumed to be equal to zero at the beginning of shearing. 

 

For DS-1-D, the stored plastic work rate exhibits fluctuation with negative values recorded at 

the beginning, which indicates the release of plastic work that is stored during isotropic 

compression. The rate of stored plastic work becomes positive after the axial strain reaches 

about 3% and reaches the peak at about 10% axial strain. This means that plastic work is being 

stored in this strain range Following that, the stored plastic work rate rapidly diminishes until 

it becomes almost zero at the critical state. This is consistent with the assumption by Collins 
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(2005) that the stored plastic work increment is dependent on the volumetric strain 

increment which is 0 at the critical state. Similar results have been observed for TS-1-D ( 

Figure 5.14b).  

 

 

Figure 5.14c shows the results of US-1-D. The stored plastic work rate shows both negative 

and positive values for this sample as well. But there is respectively storage and release of 

plastic work at lower and higher axial strain, which is opposite to the trend observed in the 

other two samples. At a critical state, the stored plastic work is approximately zero, which is 

the same as the other two samples. Figure 5.15 shows the accumulative stored plastic work 

for the three samples. There is net plastic work storage for DS-1-D and TS-1-D, and net release 

for US-1-D. This indicates that PSD affects the evolution of stored plastic work. The DS-1-D 

sample shows more stored plastic work than the other two samples because it has the widest 

range of particle sizes. In granular materials, plastic work is stored when particles are trapped 

among the larger ones during loading. This is more likely to occur when there is a wider range 

of particle size. The US-1-D has the smallest range of particle size and net plastic work release 

is observed. A plausible reason is that the particle size is so close that none of the particles is 

trapped during triaxial compression. Instead, the volume expansion during triaxial 

compression causes the release of plastic work stored in isotropic compression.  
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Figure 5.14  Energy rates for (a) DS-1-D (Dunkirk sand-PSD), (b)TS-1-D (Toyoura sand-PSD) 

and (c) US-1-D (Uniform-PSD). 
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Figure 5.15 Cumulative stored plastic work against the axial strain with different PSDs. 

 

5.9 Conclusion  

 

This chapter provided a numerical investigation of energy dissipation and stored plastic work 

during triaxial shearing to a critical state. The effect of particle size distribution on both energy 

dissipation and stored plastic work is examined. Three separate PSDs were utilised to produce 

three different samples with various numbers of particles. These samples were produced and 

sheared to the critical state, a probe test technique was utilised to assess the elastic and 

plastic stresses of the samples during shearing. The key results of this chapter are: 

• Some plastic work was stored during shearing, but only before the critical state. At the 

critical state, all plastic work is dissipated. It was also observed that the stored plastic 

work is not restricted by a sign which either negative or positive. It was also obvious 

that the varied PSDs utilised in this study affected the quantity of stored plastic work, 

with samples with finer particles exhibiting a larger amount of stored plastic work. 

Even though the quantity of stored plastic was not extremely high in general. 
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However, it is imperative to incorporate the stored plastic work in the development 

of constitutive models that involve energy analysis. By doing so, we ensure persistent 

adherence to the fundamental principles of thermodynamics throughout the any 

study. 

• The energy dissipation results had a similar trend for all PSDs utilised in this research 

with slightly variable quantities of dissipation across samples. 
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Chapter 6: The development of energy dissipation and stored plastic work 

equations. 

 

6.1 Introduction 

 

As discussed in Chapter 2, the development of constitutive models based on the principles of 

thermodynamics requires assuming or constructing a dissipation function and free energy 

function that can be used to drive some relationships. Several dissipation functions have been 

proposed. Taylor (1948) found that part of the input energy is dissipated by a critical state 

friction component and part by the work needed to increase the volume of dense sand. Taylor 

utilised the relation 𝜏𝑥 − 𝜎𝑦 =  𝜇𝜎𝑥, where 𝜏 is applied shear stress, 𝜎 is the constraining 

normal stress, 𝑥 and 𝑦 are horizontal and vertical coordinates, and 𝜇 is a friction coefficient 

(Figure 6.1). Later on Schofield (1999) elaborated on Taylor's relationship, stating that Taylor 

proposed that two variables contributed to the strength of soil: frictional resistance between 

particles as they slid during a shear distortion and a phenomenon he termed interlocking, 

which the required work needed to increase the volume. Thurairajah (1962) carried out 

triaxial shear tests on kaolin sand and clay. He found that during plastic deformation the rate 

of energy dissipation is equal to the product of mean effective stress 𝑝, with 𝑀 the slope of 

the critical state line, and the increment of shear strain. These finding were later reviewed by 

Muhunthan and Olcott (2002) and Schofield (2000). Accordingly, Taylor's equation can be 

rewritten for triaxial test notation as 

  𝑝𝛿𝜀𝑣
𝑝 + 𝑞𝛿𝜀𝑞

𝑝 = 𝑀𝑝𝛿𝜀𝑞
𝑝 =  Φ                                                  (6.1) 

where 𝛿𝜀𝑞
𝑝  and 𝛿𝜀𝑣

𝑝  are the increment of shear and volumetric components of the plastic 

strain respectively. The right-hand side of the equation is the increment of plastic dissipation, 

which expressed as 𝑀𝑝𝛿𝜀𝑞
𝑝. Constitutive models of soil that developed based on the concept 

of work and dissipation made use of Equation (6.1) and a similar form of the Reynolds stress-

dilatancy relationship. Consider, for instance, Equation (6.1) can be rewritten as 

  𝜂 = 𝑑 + 𝑀, or tan 𝜙 = tan 𝜓 + tan 𝜙𝑐                                         (6.2) 
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where  

 

             𝜂 ≡ tan 𝜙 ≡ 𝑞/𝑝, 𝑑 ≡ tan 𝜓 ≡ − 𝛿𝜀𝑣
𝑝/𝛿𝜀𝑞

𝑝, and 𝑀 = tan 𝜙𝑐                             (6.3) 

 

where 𝜙 is the mobilised friction angle, 𝜓 is the dilation angle and 𝜙𝑐  is critical state friction 

angle. The stress dilatancy relationship expressed by Equation (6.2) was used as the basis for 

the original Cam clay model (Schofield and Wroth, 1968a). They found that this relation can 

be used as an equation for plastic potential 𝑔(𝑝, 𝑞), which can be rewritten as follow: 

  
𝑞

𝑝
=  − 

𝜕𝑔/𝜕𝑝

𝜕𝑔/𝜕𝑞
+ 𝑀 ≡

𝑑𝑞

𝑑𝑝
+ 𝑀                                                  (6.4) 

this can be integrated to give: 

  𝑞 = 𝑀𝑝ln(𝑝𝑐/𝑝)                                                  (6.5) 

 

Equation (6.5) can be also used as that of the yield surface, where 𝑝𝑐 is normal consolidation 

pressure and can be calculated based on the assumption of an elliptical yield locus 𝑝
𝑀2+ 𝜂2

𝑀2  

(Muir Wood, 1990). Even though the above model is well known as an appropriate model for 

modelling plastic shearing behaviour at the critical state line, it does not accurately represent 

the isotropic compression of soils. Consequently, Burland (1965) and Roscoe and Burland 

(1968) introduced a modified energy dissipation function replacing Equation (6.1) as  

   𝑝𝛿𝜀𝑣
𝑝 + 𝑞𝛿𝜀𝑞

𝑝 = 𝑝√𝛿𝜀𝑣
𝑝2

+ 𝑀2𝛿𝜀𝑞
𝑝2

=  Φ                                                  (6.6) 

which now the increment of volumetric plastic strain also contributes to dissipation function. 

Collins and Muhunthan (2003) rewrite Equation (6.6) as a stress-dilatancy equation as follow: 

  𝑑 =
𝜂2−𝑀2

2𝜂
                                                  (6.7) 

this relationship can also be integrated, giving the yield functions for modified Cam clay (Muir 

Wood, 1990): 

  𝑞2 −  𝑀2𝑝(𝑝𝑐 − 𝑝) = 0                                                  (6.8) 
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 This procedure differs from the original model by Taylor, the difference is not only associated 

with volume change induced by shearing but also due to dilation and isotropic compaction. 

Collins and Muhunthan (2003) have also pointed out that this approach has serious internal 

inconsistencies in the logical steps that lead from Equation (6.6) to Equation (6.8). 

Additionally, they noted that Equation (6.6) cannot truly represent the work equation of 

modified Cam clay. The derivation of both the true plastic work equation and the dissipation 

function associated with modified Cam clay is first discussed by (Houlsby, 1981) and further 

discussed in later studies (Collins and Houlsby, 1997, Collins and Kelly, 2002, Collins and 

Hilder, 2002). Building on Equation (6.8) as representative of the yield functions of modified 

Cam clay, the associated plastic volumetric and shear strains can be expressed as follows: 

  𝛿𝜀𝑣
𝑝 = −𝛿𝜆𝑀2(𝑝𝑐 − 2𝑝) and 𝛿𝜀𝑞

𝑝 =  𝛿𝜆2𝑞                                                 (6.9) 

where 𝜆 is the slope of the normal consolidation line. If the 𝑝 and 𝑞 are eliminated between 

Equations (6.8) and (6.9) will give the following equation for proportional constant 𝛿𝜆.  

  𝛿𝜆 =
√𝛿𝜀𝑣

𝑝2
+𝑀2𝛿𝜀𝑞

𝑝2

𝑀2𝑝𝑐
                                                  (6.10) 

Therefore the stress invariants can be expressed using Equation (6.9) as follow: 

  𝑝 =  
1

2
𝑝𝑐 +

1

2
 𝑝𝑐  𝛿𝜀𝑣

𝑝
 

√𝛿𝜀𝑣
𝑝2

+𝑀2𝛿𝜀𝑞
𝑝2

  and  𝑞 =
1

2
 𝑀2𝑝𝑐𝛿𝜀𝑞

𝑝

√𝛿𝜀𝑣
𝑝2

+𝑀2𝛿𝜀𝑞
𝑝2

                                (6.11) 

and hence the true plastic work equation is expressed: 

  𝛿𝑊𝑝 ≡  𝑝𝛿𝜀𝑣
𝑝 + 𝑞𝛿𝜀𝑞

𝑝 =  
1

2
 𝑝𝑐  𝛿𝜀𝑣

𝑝 +  
1

2
 𝑝𝑐 √𝛿𝜀𝑣

𝑝2
+ 𝑀2𝛿𝜀𝑞

𝑝2
                  (6.12) 

The first term in Equation (6.12) on the right is integrable and can be positive or negative, and 

it represents the amount of stored plastic work that can be recovered during a reversing 

loading. The second term in Equation (6.12) is not integrable because it contains a shear 

strain. If plastic strain occurs, this term should be always positive, which represents the 

dissipation part of plastic work. Therefore, the modified dissipation function expressed as     

  𝛿𝛷 =
1

2
 𝑝𝑐 √𝛿𝜀𝑣

𝑝2
+ 𝑀2𝛿𝜀𝑞

𝑝2
                                                  (6.13) 

As pointed out by Collins and Hilder (2002) any dissipation function expressed as  
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  𝛿𝛷 = 𝑝√𝛿𝜀𝑣
𝑝2

+ 𝑀2𝛿𝜀𝑞
𝑝2

     or    𝛿𝛷 = √(𝑝𝛿𝜀𝑣
𝑝

)2 + (𝑞𝛿𝜀𝑞
𝑝

)2                                (6.14) 

is not correct since this kind of function defines purely frictional materials (Coulomb type), 

and to develop models with a close yield surface, the dissipation function should be defined 

in terms of the consolidation pressure. Almost all these functions are derived from theoretical 

formulations without numerical evidence to support them. The prediction of these functions 

to energy dissipation at different strain levels is still not clear. In addition, any dissipation 

function should depend on the plastic strains in the system, and any function that relies on 

the total strain is incorrect. If the dissipation function depends on the total strain, then any 

purely elastic deformation will generate energy dissipation (Collins, 1997, Collins and Kelly, 

2002). This also raises the difficulty of evaluating these functions, and any work which 

examines these functions should also calculate the plastic strain in the system at the outset.   

  

The main objective of this chapter is to use DEM simulation to investigate some of the 

suggested dissipation functions and stored plastic work functions. In addition, a proposal for 

alternate equations of dissipation and stored plastic work will be developed based on the 

DEM data.  
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Figure 6.1 Typical direct shear testing plotted on Ottawa sand (Taylor, 1948). 

 

6.2 DEM simulation  

 

The DEM simulation used in this chapter is similar to the simulations described in chapter 5. 

In this investigation, three samples with different particle size distributions are used. The 
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plastic strains measured in Chapter 5 are also used in this chapter to evaluate the dissipation 

function and stored plastic work functions   

 

Table 6.1 Sample code used in this study based on their PSD and density 

Sample type 

Void ratio at 
end of 

isotropic 
compression 

Confining 
pressure 

Stress path Sample code 

Dunkirk sand 0.479 250 kPa Constant 𝜎𝑟  DS-1-D 

Toyoura sand 0.522 250 kPa Constant 𝜎𝑟  TS-1-D 

Uniform PSD 0.553 250 kPa Constant 𝜎𝑟  US-1-D 

 

 

6.3 Evaluation of existing energy dissipation functions  

 

Figure 6.2a, b and c demonstrate the difference between the dissipation from DEM 

simulations with the prediction of the dissipation functions for samples DS-1-D, TS-1-D and 

US-1-D respectively. All the dissipation functions overestimate the amount of energy 

dissipation before the critical state. The modified Cam-Clay equation produces the biggest 

overestimation, whereas the Taylor equation and the Collins and Hilder equation give 

comparable results. Figure 6.3 a, b and c show the prediction error of the dissipation functions 

as a percentage of DEM energy dissipation for samples DS-1-D, TS-1-D and US-1-D 

respectively. The vast majority of errors occur before the critical state, with a positive error 

indicating an overestimation. The prediction of the modified Cam-Clay equation has the 

highest error, which is roughly 80%. The other equations have an error that is about 60%. At 

the critical stage, however, these errors rapidly reduce until they are close to zero.  
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Figure 6.2 Compare energy dissipation from DEM for all samples and dissipation according 

to dissipation functions (Equations 6.1, 6.6 and 6.13); a) sample DS-1-D (Dunkirk sand-PSD); 

b) sample TS-1-D (Toyoura sand-PSD); c) sample US-1-D (Uniform-PSD). 
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Figure 6.3 Error of the dissipation function as a percentage of DEM energy dissipation,  

positive error means over-prediction; a) sample DS-1-D (Dunkirk sand-PSD); b) sample TS-1-

D (Toyoura sand-PSD); c) sample US-1-D (Uniform-PSD). 

 

6.4 Proposed dissipation function based on DEM results   

 

The analysis presented in the previous section demonstrates that none of the existing 

dissipation functions can provide a reasonable prediction for the DEM results and more error 

is observed before the critical state. The prediction is good at the critical state when there is 

no increment of volumetric strain. It is therefore inferred that the volumetric strain increment 

term should be revised in these equations. Even though the equation by Taylor does not 

include the contribution of the volumetric strain, it does produce results similar to the 

equation by Collins and Hilder that include the volumetric strain contribution. In this work, 

the modification of energy dissipation focuses primarily on the contribution of volumetric 

strain to the dissipation function. Based on the results of this study, a modified dissipation 

function is proposed as follows: 
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  𝛿𝛷 = 𝑝√(𝑀𝛿𝜀𝑞
𝑝

)
2

−  (𝛿𝜀𝑣
𝑝

)
2
                                                  (6.15) 

This function differs from both the modified Cam Clay model function and the 

thermomechanical function (Collins and Hilder, 2002, Roscoe and Burland, 1968, Taylor, 

1948) in several aspects. Firstly, while the modified Cam Clay model function and the 

thermomechanical function are developed based on theoretical formulations, this function is 

developed through curve fitting. Secondly, this function aligns with the modified Cam Clay 

model function by using '𝑝' instead of '𝑝𝑐'. This is because using 𝑝𝑐' in the equation leads to 

an overestimation of the energy dissipation. Although Collins recommends that any energy 

dissipation function should rely on consolidation pressure, this can result in an overestimation 

of the actual amount of energy dissipation. Finally, the contribution of plastic volumetric 

strain in this function deviates from both the modified Cam Clay model function and the 

thermomechanical function. However, it has been observed that incorporating this 

contribution yields the most accurate fitting of the curve to the DEM results. Figure 6.4 a, b 

and c show comparisons between the prediction of Equation (6.15) and the DEM result for 

samples DS-1-D, TS-1-D, and US-1-D respectively. The results show that the modified 

dissipation function provides a good prediction of energy dissipation measured in DEM 

simulations for samples with different PSDs.  

 



Chapter 6: The development of energy dissipation and stored plastic work equations  

142 
 

 



Chapter 6: The development of energy dissipation and stored plastic work equations  

143 
 

 

 

Figure 6.4 Compare the prediction of new modified dissipation functions with the energy 

dissipation obtained from DEM simulations; a) sample DS-1-D (Dunkirk sand-PSD); b) sample 

TS-1-D (Toyoura sand-PSD); c) sample US-1-D (Uniform-PSD). 

 



Chapter 6: The development of energy dissipation and stored plastic work equations  

144 
 

 

6.5 Stored plastic work equation. 

 

The investigation reveals that the stored plastic work is significantly smaller than the 

dissipated energy and remains constant once the critical state is attained. Therefore, it is 

reasonable to consider expressing the stored plastic work rate in terms of the volumetric 

strain increment, which is zero at the critical state, as proposed by Collins (2005). 

 

However, the stored plastic function suggested by Collins, 2005 exhibits a noteworthy issue 

of excessively overpredicting the stored plastic work. This is demonstrated in Figure 6.5, 

where the predictions deviate from the actual values. Additionally, the findings in chapter 5 

indicate that the evolution of stored plastic work is influenced by the particle size distribution 

(PSD).  

 

In this study, the stored plastic work equation is proposed as below:  

  𝛿𝛹𝑝 = (𝛿𝑝/𝛼)𝛿𝜀𝑣
𝑝                                                  (6.16) 

where 𝛼 is a parameter that is dependent on the PSD. Note that 𝛿𝑝 is typically much smaller 

than 𝑝 or 𝑝𝑐  which are used in the energy dissipation equations. This eventually makes the 

stored plastic work rate much smaller than the energy dissipation rate, which has been 

observed in the DEM simulations. A comparison is made between the prediction of this 

function and the measured stored plastic work in Figure 6.6. This analysis is carried out for 

each of the PSDs that were used for this investigation. The results demonstrate that Equation 

16 offers a good prediction for all samples. The 𝛼 value varies with the PSD of the samples, 

with 𝛼 = 0.1, 𝛼 = 0.2 and 𝛼 = −0.2 for DS-1-D, TS-1-D and US-1-D, respectively. 
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Figure 6.5 Comparison between the measured stored plastic work with the prediction of 
Collins equation for the sample DS-1-D (Dunkirk sand-PSD).  
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Figure 6.6  Compare the measured stored plastic work with the prediction of the proposed 

function for the stored plastic work; a) sample DS-1-D (Dunkirk sand-PSD); b) sample TS-1-D 

(Toyoura sand-PSD); c) sample US-1-D (Uniform-PSD). 

 

 

6.6 Conclusions 

 

This chapter discusses and evaluated multiple functions for energy dissipation that have been 

suggested in prior research. Nonetheless, these functions have not been quantitatively 

confirmed. Using DEM simulation, this chapter examines some of the dissipation functions. 

And provide some modifications for the dissipation function to provide a good prediction for 

the energy dissipation. The findings of this chapter are summarised as follows: 
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• Most of the dissipation functions overestimated the amount of energy dissipation, 

especially before the critical state. However, At the critical state, all these functions 

provide good results that match the DEM simulation results. 

• It has been found that the error of the energy dissipation functions (Taylor equation, modified 

Cam Clay equation and Collins and Hilder equation) is not negligible, ranging from 60 to 80%. 

Due to this error, a new modified dissipation function has been proposed which provides good 

prediction even with different particle distributions. 

• The development of a new stored work plastic function was analysed. As the quantity of 

stored plastic is quite little, the appropriate work function for stored plastic should rely on the 

pressure increment rather than the total.  An equation stored plastic work was proposed. It 

has been discovered that function is capable of providing satisfactory results when dealing 

with actual particle size distribution. 
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Chapter 7: Conclusion  

7.1 Summary  

The overall objective of this research is to study the mechanical behaviour of energy 

dissipation under three-dimensional loading conditions using DEM. The work primarily aimed 

to accomplish three main objectives. First, studying the interparticle behaviour of the energy 

dissipation by analysing the relationship between energy dissipation and contact networks. 

Secondly, this work investigates the difference between energy dissipation and plastic work 

by studying the stored plastic work during triaxial shearing. Finally, this work evaluates some 

existing dissipation functions and stored plastic work functions. Additionally, based on the 

DEM data, alternative equations for dissipation and stored plastic work will be proposed. 

These objectives were split into three main chapters. 

 

Chapter 4 of the thesis investigated the relationship between energy dissipation and contact 

networks. A series of drained triaxial tests have been carried out using a modified version of 

LAMMPS (Plimpton, 1995). DEM samples were created containing 8262 spherical particles 

with a minimum diameter of 0.1 mm and a maximum diameter of 0.14 mm. Two different 

initial density samples were created in dense and loose states. The sample sheared with 

different stress paths (constant 𝜎𝑟  and constant 𝑝) and different confining pressure (250,500 

and 1000 kPa). The energy dissipation was analysed using two existing contact force network 

partitioning approaches, one based on the average contact force magnitude and the other on 

the contribution of contact forces to the global deviator stress. The contribution of contact 

networks to stress transmission was used to examine both partitioning techniques. In addition, 

the contribution of contact networks (strong and weak) to sliding and energy dissipation was 

evaluated based on both partitioning methods. 

 

In chapter 5 an investigation of the stored plastic work in granular materials was provided. 

This work mainly focuses on clarifying a common misconception about plastic work and 

energy dissipation. This misconception was created long ago assuming that all plastic work is 

dissipated by friction. Using theoretical and computational formulations physical meaning of 

stored plastic work has been discussed. Using DEM modelling, this chapter conducted a 
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numerical analysis of energy dissipation and stored plastic work during triaxial shearing to a 

critical state. Investigating the influence of particle size distribution on energy dissipation and 

stored plastic work. Three distinct PSDs were used to generate three samples with varying 

particle counts. A probe test approach was used to evaluate the elastic and plastic strains of 

the specimens during shearing. 

 

In Chapter 6, DEM simulations were utilised to investigate the prediction of some energy 

dissipation functions and stored plastic work described in prior research. In addition, the 

impact of the various PSDs on the prediction of these functions was assessed. Based on data 

DEM simulations, modification of the dissipation function and stored plastic work function is 

carried out.  

 

7.2 Key finding  

 

The primary findings that have emerged from the relationship between energy dissipation 

and contact networks (Chapter 4) are:  

 

• Weak networks exhibit more interparticle sliding and energy dissipation when the 

average contact force partitioning method is used. Since strong contacts have higher 

contact forces, they dissipate five times more energy per sliding contact. 

• When the deviator stress partitioning method is used, sliding is still more prevalent in 

weak contacts. However, the percentage of strong contact sliding has increased 

somewhat compared to the average contact force partitioning data. This increase in 

sliding in strong contacts has led to an increase in energy dissipation.  

• It is observed that the strong and weak contacts both contribute significantly to the total 

amount of energy dissipation when both partitioning methods are utilised. Consequently, a 

new threshold of 𝑓𝑛/〈𝑓𝑛〉  is proposed for partitioning the contact network based on the 

contribution to energy dissipation. Specifically, it is observed that 𝑓𝑛/〈𝑓𝑛〉 = 2 can be used 

to identify whether the contact contributes to the dissipation of energy or not, which contacts 
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with 𝑓𝑛/〈𝑓𝑛〉 ≤ 2 dissipate more than 93% of total energy dissipation  

 

The findings that have emerged from the stored plastic work in granular materials (Chapter 

5) are: 

• This investigation confirms that some of the plastic work is being stored during the 

triaxial shearing. However, the stored plastic work was only observed before the 

critical state with its rate differing from negative to positive. At the critical state, the 

rate of stored plastic work becomes constant, and its mechanism no longer varies. At 

the critical point, the total applied work equals the total energy, which indicates that 

no more plastic work will be stored in the sample. 

• It was also observed that the varied PSDs utilised in this study affected the quantity of 

stored plastic work, with samples with real PSD exhibiting a larger amount of stored 

plastic work. Even though the quantity of stored plastic is not extremely high in 

general. However, stored plastic work must always be included during the 

development of constitutive models that include energy analysis. To ensure that the 

fundamental concept of thermodynamics is constantly respected. 

• There is a similar pattern of energy dissipation for all PSDs used in this study, although 

the amounts of dissipation varied slightly. 

The findings that have emerged from the energy dissipation and stored plastic work functions 

in modelling granular materials.  (Chapter 6) 

• The majority of the dissipation functions that have been evaluated in this chapter 

showed an overestimation of the amount of energy dissipation, particularly before the 

critical state. Nevertheless, when the test reaches the critical state, all of these 

functions provide accurate results that agree with the DEM simulation findings. 

• It has been shown that the estimated error for the evaluated functions ranges 

between 60 and 80 %. However, at the critical state, this error fell dramatically to 

almost zero. An alternative equation for dissipation has been suggested, and it has 

been shown that this function delivers a very excellent prediction for the energy 

dissipation, which is comparable to the results of the DEM simulation. It has also been 

discovered that this function produces correct results even when the PSD used is 

different. 
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• Analysis was provided to develop a new stored work plastic function. As the quantity 

of stored plastic is quite little, the appropriate work function for stored plastic should 

rely on the pressure increment rather than the total.  An equation for stored plastic 

work was proposed. It has been discovered that function can provide good results for 

all the particle size distributions used in this investigation. 

 

7.3 Future work  

 

As with any research study, the study is not thorough, and the results indicate the need for 

more research. Following the main structure of the thesis, the suggestions for future study 

are categorised for each of the works presented in this thesis. 

 

 

• The relationship between energy dissipation and contact network in granular materials 

(Chapter 4). 

Explore how different particle shapes (non-spherical particles) impact the energy dissipation 

behaviour in granular materials. This could involve conducting DEM simulations with various 

particle shapes and comparing their energy dissipation patterns to understand shape-

dependent effects. In addition, Investigate how variations in material properties affect energy 

dissipation and the evolution of contact networks. 

• Stored plastic work and energy dissipation in granular materials (Chapter 5). 

Although the scope of this current work has been accomplished, there is potential for further 

extension to investigate the impact of various particle shapes on the magnitude of stored 

plastic work.  

• Energy dissipation and stored plastic work functions in modelling granular materials.  

The suggested energy dissipation function and stored plastic work function have 

demonstrated remarkable predictive accuracy. However, their underlying physical 

significance remains uncertain, warranting further research to determine their applicability in 
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determining the elasticity law, yield function, flow rule, and hardening rule. While 

thermodynamic functions for both energy dissipation and stored plastic work may not yield 

results similar to DEM results, investigating the reasons behind this discrepancy should be 

considered as a potential area of future research. Furthermore, both functions proposed in 

this study were originally developed based on spherical particles. However, it is crucial to 

conduct further investigation to assess the predictive capability of these functions when 

applied to particles with different shapes. Understanding the limitations and potential 

improvements of these functions can enhance their effectiveness and broaden their 

applications in granular material analysis. 
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Appendix. A  

 

Figure  A-1 Contribution of weak and strong contact networks to the deviator stress; a) when 
the average force partitioning method is used; b) when the deviator stress partitioning 

method is used. Dense sample sheared with 250 kPa and constant 𝜎𝑟. 

 

Figure  A-2 Contribution weak and strong contact networks proportion of sliding contacts; a) 
when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 250 kPa and constant 𝜎𝑟. 
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Figure  A-3 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 250 kPa and constant 𝜎𝑟. 

 

 

Figure  A-4 Contribution weak and strong contact networks proportion of sliding contacts; a) 
when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Loose sample sheared with 250 kPa and constant 𝜎𝑟. 
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Figure  A-5 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Dense sample sheared with 500 kPa and constant 𝜎𝑟. 

 

 

 

Figure  A-6  Contribution weak and strong contact networks proportion of sliding contacts; a) 
when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 500 kPa and constant 𝜎𝑟. 
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Figure  A-7 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 500 kPa and constant 𝜎𝑟. 

 

 

Figure  A-8 Contribution weak and strong contact networks proportion of sliding contacts; a) 
when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Loose sample sheared with 500 kPa and constant 𝜎𝑟. 
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Figure  A-9 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Dense sample sheared with 1000 kPa and constant 𝜎𝑟 . 

 

 

 

Figure  A-10  Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 1000 kPa and constant 𝜎𝑟. 
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Figure  A-11 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 1000 kPa and constant 𝜎𝑟. 

 

 

 

Figure  A-12 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. loose sample sheared with 1000 kPa and constant 𝜎𝑟. 
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The results for constant p simulations 

 

 

Figure  A-13 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Dense sample sheared with 250 kPa and constant 𝑝. 

 

 

Figure  A-14 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 250 kPa and constant 𝑝. 
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Figure  A-15 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 250 kPa and constant 𝑝. 

 

 

 

Figure  A-16 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Loose sample sheared with 250 kPa and constant 𝑝. 
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Figure  A-17 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Dense sample sheared with 500 kPa and constant 𝑝. 

 

 

Figure  A-18 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 500 kPa and constant 𝑝. 
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Figure  A-19 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 500 kPa and constant 𝑝. 
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Figure  A-20 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Loose sample sheared with 500 kPa and constant 𝑝. 
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Figure  A-21 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Dense sample sheared with 1000 kPa and constant 𝑝. 

 

 

 

Figure  A-22 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Dense sample sheared with 1000 kPa and constant 𝑝. 
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Figure  A-23 Contribution weak and strong contact networks to the deviator stress; a) when 
average force partitioning method is used; b) when deviator stress partitioning method is 

used. Loose sample sheared with 1000 kPa and constant 𝑝. 

 

 

 

Figure  A-24 Contribution weak and strong contact networks proportion of sliding contacts; 
a) when average force partitioning method is used; b) when deviator stress partitioning 

method is used. Loose sample sheared with 1000 kPa and constant 𝑝. 
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Figure  A-25 Contribution of weak and strong networks to the energy dissipation from probe 
test for loose sample sheared with constant 𝜎𝑟  (𝜎3 = 250 kPa); a) average force partition; b) 

deviator stress partition 

 

 

 

Figure  A-26 Contribution of weak and strong networks to the energy dissipation from probe 
test for dense sample sheared with constant 𝜎𝑟  (𝜎3 = 500 kPa); a) average force partition; b) 

deviator stress partition 
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Figure  A-27 Contribution of weak and strong networks to the energy dissipation from probe 
test for loose sample sheared with constant 𝜎𝑟  (𝜎3 = 500 kPa); a) average force partition; b) 

deviator stress partition 

 

 

Figure  A-28 Contribution of weak and strong networks to the energy dissipation from probe 
test for dense sample sheared with constant 𝜎𝑟  (𝜎3 = 1000 kPa); a) average force partition; 

b) deviator stress partition 
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Figure  A-29 Contribution of weak and strong networks to the energy dissipation from probe 
test for loose sample sheared with constant 𝜎𝑟  (𝜎3 = 1000 kPa); a) average force partition; b) 

deviator stress partition 
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