

Bahadir, Ozan (2023) Investigating deep-learning-based solutions for flexible
and robust hand-eye calibration in robotics. PhD thesis.

https://theses.gla.ac.uk/83779/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

Investigating Deep-Learning-based Solutions for Flexible and
Robust Hand-Eye Calibration in Robotics

Ozan Bahadir

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

April 2023

Abstract

The cameras are the main sensor for robots to perceive their environments because they provide
high-quality information and their low-cost. However, transforming the information obtained
from cameras into robotic actions can be challenging. To manipulate objects in camera scenes,
robots need to establish a transformation between the camera and the robot base, which is known
as hand-eye calibration. Achieving accurate hand-eye calibration is critical for precise robotic
manipulation, yet traditional approaches can be time-consuming, error-prone, and fail to account
for changes in the camera or robot base over time.

This thesis proposes a novel approach that leverages the power of deep learning to auto-
matically learn the mapping between the robot’s joint angles and the camera’s images, enabling
real-time calibration updates. The approach samples the robot and camera spaces discretely and
represents them continuously, enabling efficient and accurate computation of calibration param-
eters. By automating the calibration process and using deep learning algorithms, a more robust
and efficient solution for hand-eye calibration in robotics is offered.

To develop a robust and flexible hand-eye calibration approach, three main studies were
conducted. In the first study, a deep learning-based regression architecture was developed that
processes RGB and depth images, as well as the poses of a single reference point selected on
the robot end-effector with respect to the robot base acquired through the robot kinematic chain.
The success of this architecture was tested in a simulated environment and two real robotic envi-
ronments, evaluating the metric error and precision. In the second approach, the success of the
developed approach was evaluated by transferring from metric error to task error by performing
a real robotic manipulation task, specifically a pick-and-place. Additionally, the performance of
the developed approach was compared with a classic hand-eye calibration approach, using three
evaluation criteria: real robotic manipulation task, computational complexity, and repeatability.
Finally, the learned calibration space of the developed deep learning-based hand-eye calibra-
tion approach was extended with new observations over time using Continual learning, making
the approach more robust and flexible in handling environmental changes.Two buffer-based ap-
proaches were developed to eliminate the catastrophic forgetting problem, which is forgetting
learned information over time by considering new observations. The performance and compar-
ison of these approaches with the training of the developed approach in the first study using all
datasets from scratch were tested on a simulated and a real-world environment.

i

ABSTRACT ii

Experimental results of this thesis reveal that: 1) a deep learning-based hand-eye calibration
approach has competitive results with the classical approaches in terms of metric error (posi-
tional and rotational error deviation from the ground-truth) while eliminating data re-collection
and re-training camera pose changes over time, and has 96 times better repeatability (precision)
than the classic approach as well as it has the state-of-the-art result for it in comparison to the
other deep learning-based hand-eye calibration approaches; 2) it also has competitive results
with the classic approaches for performing a real-robotic manipulation task and reduces the
computational complexity; 3) the leveraging deep-learning based hand-eye calibration approach
with Continual Learning, it is possible to extend the learned calibration space over new observa-
tions without training the network from scratch with a lower accuracy gap (less than 1.5 mm and
2.5 degrees in the simulations and real-world environments for the translation and orientation
components).

Overall, the proposed approach offers a more efficient and robust solution for hand-eye cal-
ibration in robotics, providing greater accuracy and flexibility to adapt to environments where
the poses of the robot and camera base change according to each other over time. These changes
may come from either robot or camera movement.The results of the studies demonstrate the
effectiveness of the approach in achieving precise and reliable robotic manipulation, making it
a promising solution for robotics applications.

Contents

Abstract i

Nomenclature xii

Acknowledgements xiv

Declaration xvi

1 Introduction 1
1.1 A Brief Introduction to the Hand-eye Calibration 1

1.1.1 The importance . 2
1.2 Current Literature and Challenges . 4

1.2.1 Current Literature . 4
1.2.2 Challenges . 5

1.3 Aims and Objectives . 6
1.3.1 Aim of the study . 6
1.3.2 The hypotheses and research questions 7

1.4 A Brief Overview of the Proposed Approaches 8
1.5 The Significance of the Proposed Approaches 10

1.5.1 Contributions . 10
1.5.2 List of publications . 11

1.6 The Outline of the Thesis . 11

2 Background and Literature Review 12
2.1 An Overview of Hand-eye Calibration Problem 12
2.2 Hardware and Software . 13

2.2.1 Robotic environments . 13
2.2.2 Robot operating system (ROS) . 14
2.2.3 The StereoLabs camera (ZED) . 14

2.3 Background . 15
2.3.1 Representation of position and orientation in 3D Space (R3) 15

iii

CONTENTS iv

2.3.2 Image Formation . 21
2.4 Camera Calibration . 25

2.4.1 Marker-based approaches . 25
2.4.2 Self-calibration approaches . 26

2.5 Robot Calibration . 27
2.6 Classic Hand-eye Calibration . 27

2.6.1 AX=XB Formulations . 29
2.6.2 AX=YB Formulations . 32
2.6.3 Reprojection error-based approaches 33

2.7 Deep Learning-based Hand-eye Calibration 35
2.8 Continual Learning . 36
2.9 Discussion . 38

3 Deep Learning-Based Hand-eye Calibration Approach 41
3.1 Introduction . 41
3.2 Motivation and Objectives . 42
3.3 Methodology . 44
3.4 Simulation Experiments . 45

3.4.1 Data Generation . 45
3.4.2 Network Architectures . 47
3.4.3 Loss Function and Metric . 48
3.4.4 Experimental Results . 48
3.4.5 Ablation Study . 49

3.5 Real-world Experiments . 51
3.5.1 Data Generation . 51
3.5.2 Network Architecture . 53
3.5.3 Real-world Results . 53

3.6 Conclusion . 55

4 Pick-and-Place Pipeline 57
4.1 Introduction . 57
4.2 Motivation and Objectives . 57
4.3 Methodology . 59

4.3.1 Hand-eye Calibration Methods . 59
4.3.2 Object Detection . 61

4.4 Experimental setup . 62
4.5 Results . 66
4.6 Conclusions . 70

CONTENTS v

5 Continual Learning for Hand-Eye Calibration 72
5.1 Introduction . 72
5.2 Motivation and Objectives . 73
5.3 Methodology . 74

5.3.1 The formulation of the HEC problem as Continual Learning problem . 75
5.3.2 Deep Learning-based Hand-eye Calibration 76
5.3.3 Naive approach . 76
5.3.4 The reservoir buffer with class balance 76
5.3.5 The reservoir buffer with class balance and camera pose selection . . . 77

5.4 Simulation Experiments . 78
5.4.1 Data generation and split . 78
5.4.2 Experimental design . 80
5.4.3 Experimental results . 82

5.5 Real-world Experiments . 86
5.5.1 Data collection and split . 86
5.5.2 Experimental design . 89
5.5.3 Experimental results . 89

5.6 Conclusion . 93

6 Conclusion 96
6.1 Main Research Findings . 96
6.2 Implications of the Knowledge . 98
6.3 Significance of Findings . 98
6.4 Limitations . 99
6.5 Future Works . 100

6.5.1 Integration with manufacturing robotic systems 100
6.5.2 Integration with other robotic systems 100
6.5.3 Investigation of different learning paradigms 100
6.5.4 Exploration of other deep learning architectures 101

List of Tables

2.1 An Overview of the Classic Hand-eye Calibration Approaches 28

3.1 Generated data in the simulation environment 45
3.2 Experimental Results in Simulation . 49
3.3 Mean and standard deviation of the fusion approach, which estimates the trans-

lation and orientation parameters simultaneously, where training and testing are
87 and 21 camera poses, respectively. 50

3.4 Average mean and std of reprojection error (pixel) for m camera configuration
by employing Tsai hand-eye calibration method (ground-truth) on UR3 testbed 52

3.5 Average mean and std of reprojection error (pixels) for m camera configuration
by employing Tsai hand-eye calibration method (ground-truth) on the Baxter
testbed . 53

3.6 Experimental Results for Baxter and UR3 robots 53
3.7 Comparison with the state-of-the-art . 55

4.1 Comparison of computational complexity . 67
4.2 Repeatability Comparison . 68
4.3 The results of the classic hand-eye calibration approach on the pick-and-place

task. 69
4.4 The results of the deep learning-based hand-eye calibration approach on the

pick-and-place task. 69

5.1 An overview of the adopted Continual Learning-based approaches in the hand-
eye calibration problem . 75

5.2 An overview of the time step for Continual Learning-based approaches in the
simulated environment . 79

5.3 The parameters analysis of the reservoir buffer with a class balance CL approach 80
5.4 Naive CL experimental results for the translation 82
5.5 Naive CL experimental results for the orientation 82
5.6 Experimental results of the reservoir buffer with class balance approach for the

translation, where c1, c2, and c3 are four, 14 and 100%, respectively. 85

vi

LIST OF TABLES vii

5.7 Experimental results of the reservoir buffer with class balance approach for the
orientation, where c1, c2, and c3 are four, 14 and 100%, respectively. 85

5.8 Experimental results of the reservoir buffer with class balance and pose estima-
tion approach for the translation error (mm) in the final time step. 86

5.9 Experimental results of the reservoir buffer with class balance and pose estima-
tion approach for the orientation error (degrees) in the final time step. 86

5.10 An overview of the time step for Continual Learning-based approaches in the
real-world environment . 88

5.11 Naive CL experimental results for the translation in the real-world 90
5.12 Naive CL experimental results for the orientation in the real-world 90
5.13 Experimental results of the reservoir buffer with class balance approach for the

translation in the real-world environment, where c1, c2, and c3 are four, all ob-
served camera poses in the previous time step and 100%, respectively. 91

5.14 Experimental results of the reservoir buffer with class balance approach for the
orientation in the real-world environment, where c1, c2, and c3 are four, all ob-
served camera poses in the previous time step and 100%, respectively. 91

5.15 Experimental results of the reservoir buffer with class balance and pose estima-
tion approach for the translation in the real-world environment, where c1, c2,
c3, and threshold are four, all observed novel camera poses in the previous time
step, 100% and 3 mm, respectively. 92

5.16 Experimental results of the reservoir buffer with class balance and pose estima-
tion approach for the orientation in the real-world environment, where c1, c2,
c3, and threshold are four, all observed novel camera poses in the previous time
step, 100% and 4 degrees, respectively. 93

List of Figures

1.1 This figure depicts the relationship between the robot space, camera space, and
object space. 2

1.2 This figure depicts the static and dynamic hand-eye calibration scenarios. In the
static scenario, the camera and the robot base remain fixed, and the calibration
parameters estimated during training can be used for all robotic manipulations.
In contrast, in the dynamic scenario, the camera pose changes with respect to the
robot base during the robotic manipulation, requiring recalibration to maintain
accurate alignment. 3

1.3 The figure outlines the key steps of classic hand-eye calibration: robot cali-
bration for precise end-effector poses, camera calibration for accurate camera
poses, and a hand-eye calibration model to estimate parameters from these poses. 4

1.4 This figure depicts conducted three studies to develop a flexible and autonomous
hand-eye calibration approach by using deep learning. 9

2.1 This figure shows the Rethink Baxter robot with two parallel grippers. 13
2.2 This figure depicts a Universal Robot 3 (UR3) equipped with a three-finger mod-

ular grasper. 14
2.3 The ZED camera which has two RGB cameras (left and right) 15
2.4 This figure shows two 3D coordinate frames ({A} and {B}) and the pose of point

P with respect to these frames. 16
2.5 This figure shows ZXZ (R(ẑ,φ)R(ŷ,θ)R(ẑ,ψ)) Euler angle sequence applica-

tion on XY Z reference frame to get xyz final frame. 18
2.6 This figure shows the relationship of the vector υ in R3 and pure Quaternions

space. 20
2.7 Pinhole Camera Geometry: O is the projection (camera) centre, and the princi-

pal axis lies towards the Z axis. P (X ,Y,Z) and Pc(u,v) represent the real-world
(3D) and pixel (2D) coordinates of the same point. 21

2.8 This figure shows the triangle similarity in the image plane. 22

viii

LIST OF FIGURES ix

2.9 Image coordinate system: (c,x,y) is the ideal image coordinate system centred
in the principal point, while (o,u,v) is the actual image coordinate system in
which the centre is the upper left corner. θ shows the angle between the u and v
axes. 23

2.10 The euclidean transformation between the camera and the world coordinates. R
and t are the 3x3 rotation and 3x1 translation matrices. 23

2.11 This figure shows the eye-in-hand (a) and external camera (b) configurations. . 29

3.1 (a) and (b) depict the two real-world robotic testbeds and (c) present the simu-
lated environment used in this study, as observed from the camera view. 42

3.2 The geometric representation of the proposed hand-eye calibration approach.
The homogeneous transformation between the robot base and the camera is rep-
resented by X. A1....n represents the pose of the reference point with respect to
the robot base, while B1....n are the camera pose with respect to the reference point. 43

3.3 This figure shows the 108 camera positions (red dots) and the robot centre (green
star) in the simulation environment. 46

3.4 This figure depicts the research design for addressing Q1. Subfigure (a) shows
data collection with camera positions and end-effector configurations. Subfigure
(b) presents the distinct neural network for position and orientation, providing
outputs for unknown hand-eye transformations (X). 46

3.5 This figure outlines the research design for Q2 and Q3. In subfigure (a), data
collection involves diverse camera positions and end-effector setups. Subfigure
(b) showcases the deep learning architecture using U-Net encoders for RGB and
depth data. Concatenated with known A transformation, the network separately
focuses on position and orientation. Trained network outputs B (Q2) or X (Q3). 47

3.6 This figure displays the testing error of the translational component as a function
of the training dataset size. 51

3.7 This figure shows the performance of the pure and 10D quaternion representa-
tion according to the training size. 52

4.1 The figure shows the experimental set-up, which consists of a Universal Robot
equipped with a three fingers gripper. The robot is mounted on the table, and
three objects with unique colours have been placed in the robot’s workspace. . . 58

4.2 This figure shows the adopted hand-eye calibration system. A camera is placed
in an external location, and a checkerboard is attached to the robot’s end-effector.
A1,2 describe the poses of the end-effector with respect to the robot base for
different configurations, while B1,2 shows the poses of the camera with respect
to the calibration target for the corresponding configurations. X presents the
static transformation between the robot base and the camera. 60

LIST OF FIGURES x

4.3 This figure presents the designed hand-eye calibration architecture, with two
encoders extracting features from RGB and depth images separately. The ex-
tracted features are concatenated with the pose of the reference point (marked as
the blue circle) with respect to the robot base and passed to three fully connected
layers. The network’s output is either translation (3D) or orientation (4D). . . . 61

4.4 This figure shows the difference between the training (a) and testing (b) envi-
ronments. 63

4.5 This figure outlines the pick and place pipeline used to evaluate two hand-eye
calibration methods. (1) displays the camera configuration count. (2) and (3) de-
pict experiments with classic and DL-based approaches, respectively. Each row
in (2) and (3) represents object sub-experiments (cubes, boxes, cups), repeated
10 times. 64

4.6 This figure depicts 3D camera pose locations and the table. Yellow represents
the table area. Blue points are within the network’s trained space, while red
points are outside. Axes are labelled X, Y, and Z in meters. 65

5.1 This figure visualises the camera configurations used in the PyBullet simulation
environment. The 108 camera configurations are divided into six subsets, each
represented by a different colour. The dots and stars indicate the camera config-
urations used for training and testing within each subset, respectively. The black
star in the figure represents the robot’s base, serving as a reference point for the
camera configurations. 79

5.2 This figure illustrates the training stage of the reservoir buffer with class balance
and camera pose selection approach in a simulation environment. The testing
camera configurations for each subset are represented by colourful stars. The
eliminated camera configurations, which are marked as not novel through algo-
rithm 4, are indicated by black crosses. 81

5.3 This figure shows the performance of the parameter for c1, c2, and c3 for the
translation with the reservoir buffer with the class balance approach. 83

5.4 This figure shows the performance of the parameter for c1, c2, and c3 for the
orientation with the reservoir buffer with the class balance approach. 84

5.5 This figure compares each testing set’s translation errors for adopted CL ap-
proaches with the baseline approach in the final time step. The baseline ap-
proach is dl-based regression architecture trained by all training sets building
from the ground up without CL. 87

5.6 This figure compares each testing set’s orientation errors for adopted CL ap-
proaches with the baseline approach in the final time step. The baseline ap-
proach is dl-based regression architecture trained by all training sets building
from the ground up without CL. 87

LIST OF FIGURES xi

5.7 This figure shows the camera configurations used in the real-world environment.
The 24 camera configurations are divided into three subsets. The red and blue
colours represent the training and testing sets, respectively. 88

5.8 This figure compares each testing set’s translation errors for adopted CL ap-
proaches with the baseline in the final time step. 94

5.9 This figure compares each testing set’s orientation errors for adopted CL ap-
proaches with the baseline in the final time step. 95

Nomenclature

A a matrix

A−1 inverse of A

AT transpose of A

R set of real numbers

R3 set of real numbers in 3 dimensional space

υ a vector

υ̂ the unit vector of υ

|υ | norm of vector υ

υ1 ·υ2 dot product

υ1×υ2 vector product

C camera matrix

K camera calibration matrix

R an orthonormal rotation matrix

T homogeneous transformation matrix

P world point

ATB homogeneous transformation frame B with respect to frame A

f focal length

θ angle , rad

q quaternion

q◦ unit quaternion

xii

NOMENCLATURE xiii

|q| scalar norm of quaternion

q∗ the complex conjugate of q

q◦(υ) pure quaternion of vector v

Acknowledgements

I would like to express my sincere appreciation to Dr Gerardo Aragon-Camarasa and Dr Jan
Paul Sibert for their exceptional guidance and mentorship throughout the past four years. Your
dedicated supervision has been instrumental in shaping my academic journey and contributing
to my growth as a researcher. Your insights, expertise, and unwavering support have been in-
valuable, and I am truly grateful for the opportunity to learn under your guidance. Thank you
for your commitment and encouragement, which have been instrumental in my academic and
personal development.

I want to extend my gratitude to Dr Ali Gooya for his organisation of my final Viva meeting.
Additionally, I sincerely appreciate the efforts put forth by Dr Emma Li and Dr Randika Kosala
Wathavana Vithanage in meticulously examining my PhD thesis. Their valuable feedback and
insightful suggestions have significantly contributed to enhancing the quality of my work.

I would like to extend my sincere gratitude to Dr. José Cano Reyes and Prof. Phil Trinder
for their invaluable feedback provided during my annual progress reviews. Their constructive
insights and suggestions have significantly contributed to enhancing the robustness and quality
of my research.

I am deeply grateful for the invaluable contributions and support extended by the Computer
Vision and Autonomous Systems Group (CVAS) at the School of Computing Science, Univer-
sity of Glasgow. The enriching experiences and opportunities I have had within this esteemed
community have significantly enhanced my research endeavours and my capabilities in present-
ing and academic writing. I extend my heartfelt appreciation for their unwavering encourage-
ment and the platform they provided, which has been instrumental in fostering my academic and
professional development.

I extend my heartfelt gratitude to my dear friends Abdulkadir Ciris, Kutlu Balci, and Hande
Balci, who have been steadfast companions since the inception of my PhD journey, forming a
bond akin to a family here in Scotland. Additionally, I wish to express my sincere appreciation
to Ahmet Burak Ozyurt, Meltem Haktaniyan, Ceren Erdem, Ozgu Goksu, and Elifcan Beyazit,
individuals with whom my paths crossed during my PhD endeavour. Your unswerving support
and camaraderie have been a constant source of solace and motivation. Amid the rigours of this
academic pursuit, your friendship has served as a reassuring presence, alleviating the challenges
of the academic journey. Your willingness to lend a listening ear, share invaluable insights, and

xiv

ACKNOWLEDGEMENTS xv

offer your aid have significantly enriched my experience. I am truly indebted for your presence
and how you have made this journey more navigable through your companionship. The shared
moments we have cherished together have been an unequivocal blessing, and I am profoundly
grateful for the enrichment you have brought to my academic voyage.

I sincerely thank the Association of Turkish Alumni and Students in Scotland (ATAS), a
charitable organisation, for its significant impact on my academic journey. Their well-organised
social events not only provided me with the opportunity to meet a diverse and valuable network
of individuals but also served as a means of alleviating the stress associated with my PhD pur-
suit. Additionally, their academic events facilitated connections with colleagues and researchers
within the broader academic community of Scotland. Above all, I am grateful to ATAS for
creating an environment that genuinely allows me to feel Scotland as my home.

Last but certainly not least, I wish to extend my heartfelt gratitude to my family, whose
unwavering and unconditional support has been a constant source of strength throughout my
entire life.

I also thank the Turkish Ministry of Education, which funded this project.

Declaration

xvi

Chapter 1

Introduction

In this thesis, novel hand-eye calibration methodologies have been developed using deep learn-
ing, which allow for the estimation of calibration parameters in dynamic robotic environments
where the camera and robot base can change after data collection. This is in contrast to static en-
vironments, where the pair of the camera and robot base are fixed and exact in both the training
and testing stages. The approach extends the learned calibration space through Continual Learn-
ing, enhancing its adaptability to new situations. The effectiveness of the proposed approach is
demonstrated through a real-world robotic manipulation task involving pick-and-place opera-
tions. Unlike classical hand-eye calibration approaches that rely on metric error, this approach
provides a more robust and accurate calibration process, resulting in improved manipulation
performance.

1.1 A Brief Introduction to the Hand-eye Calibration

Robotic systems rely heavily on cameras to capture visual data that can be used for various
tasks, such as object recognition, localisation, and manipulation. However, the camera must be
accurately aligned with the robot’s kinematic chain to make the most of this data. This process,
known as hand-eye calibration (HEC), is a critical step in many robotic applications, such as
pick-and-place operations [1], assembly lines [2], and quality control [3]. Despite significant
progress in the static hand-eye configuration, where the camera and the robot base remain fixed
after data collection and calibration estimation, achieving accurate and efficient dynamic HEC
configurations remains a challenging problem. In this configuration, the camera pose changes
with respect to the robot base after data collection and calibration parameters’ estimation over
time. Dynamic hand-eye calibration is essential in various robotic applications where the robot
and the camera continuously move or operate in a changing environment.

Figure 1.1 shows a visualisation of the three spaces involved in robotic manipulation: the
robot, camera, and object space. The camera captures an image of the scene and uses its extrinsic
parameters to identify the object and determine its pose with respect to the camera base, a

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: This figure depicts the relationship between the robot space, camera space, and
object space.

process known as object detection. However, the information captured in the camera space must
be transferred to the robot space to manipulate the object. This is achieved through hand-eye
calibration, which establishes the transformation link between the two spaces.

Figure 1.1 depicts the transformation from robot space to object space using camera space,
assuming that the robot space is fixed and serves as the world space. The object’s pose is
obtained via object detection, and its pose relative to the camera base frame is given by Pcam

ob j .
To manipulate the object, its pose must be defined with respect to the robot base frame.

Two cases exist for this transformation. In the first case, the camera or cameras can be
embedded the robot joints, such as the head or the end-effectors. The poses of these cameras
are linked to the robot kinematic chain and can be used directly to manipulate the object. In the
second case, which is common in robotic systems, the camera may be placed externally. In the
second case, hand-eye calibration is needed to determine the transformation between the camera
and robot base frames for manipulating the object.

For the second case, there are two main scenarios: static and dynamic hand-eye calibration
(depicted in Figure 1.2). In the static hand-eye calibration scenario, the camera and the robot
base remain fixed for robotic manipulation after data collection and camera pose estimation with
respect to the robot base. As for the dynamic scenario, the camera pose changes with respect
to the robot base over time. In this scenario, the calibration approach must be updated the
calibration parameters over time.

1.1.1 The importance

Hand-eye calibration is critical to robotic manipulation, allowing robots to accurately perceive
their environment and perform precise manipulation tasks. Robots may need proper calibration

CHAPTER 1. INTRODUCTION 3

Figure 1.2: This figure depicts the static and dynamic hand-eye calibration scenarios. In the
static scenario, the camera and the robot base remain fixed, and the calibration parameters es-
timated during training can be used for all robotic manipulations. In contrast, in the dynamic
scenario, the camera pose changes with respect to the robot base during the robotic manipula-
tion, requiring recalibration to maintain accurate alignment.

to locate and manipulate objects, leading to inefficiencies and inaccuracies.
This thesis focuses on two hand-eye calibration scenarios. The first is the static hand-eye

calibration configuration, where the camera’s pose and the robot’s base frames remain fixed
after data collection and calibration. This scenario is common in industries where robots perform
repetitive tasks, such as pick-and-place operations. In such cases, classical hand-eye calibration
approaches have successfully provided accurate calibration by collecting data and solving the
hand-eye calibration equation offline.

The second scenario (dynamic robotic environments) is more complex and involves changes
to the camera and robot base frames over time. In dynamic robotic environments, such as those
operating outside enclosed spaces, changes to the camera and robot base frames over time can
lead to degraded performance and safety risks. As an illustration, the robots can execute carry-
ing operations within diverse camera fields of view positioned in external locales. To guarantee
safety and stability in these operations, the hand-eye calibration parameters must be continu-
ously updated online. A flexible and autonomous hand-eye calibration approach is essential
to ensure that robots can adapt to these changes without requiring manual recalibration. One
promising approach is to use deep learning and continual learning techniques to develop a sys-
tem that can adapt to changing environments and tasks. With deep learning algorithms, the
system can learn to map the visual features of the camera to the robot’s pose, enabling the robot
to adapt to changes in the camera and robot base frames. Continual learning allows the system

CHAPTER 1. INTRODUCTION 4

to improve the accuracy of hand-eye calibration over time by updating the calibration parame-
ters based on new data. Robots can operate in dynamic environments with improved accuracy,
performance, and safety using this flexible and autonomous hand-eye calibration approach.

1.2 Current Literature and Challenges

1.2.1 Current Literature

There are several classic approaches to solving the HEC problem that are widely used in the
robotics community. These approaches typically involve moving the robot to multiple different
positions while recording the camera and end-effector poses with respect to the robot or world
frame. The HEC problem can then be broken down into three main steps (depicted in Figure
1.3): robot calibration, camera calibration, and hand-eye calibration.

Figure 1.3: The figure outlines the key steps of classic hand-eye calibration: robot calibration
for precise end-effector poses, camera calibration for accurate camera poses, and a hand-eye
calibration model to estimate parameters from these poses.

The first step, robot calibration, involves determining the end-effector poses with respect
to the robot or world base frame. This calibration is assumed to be known via the predefined
robot kinematic chain, but it may become inaccurate over time due to wear and tear on the

CHAPTER 1. INTRODUCTION 5

robot. Continuous usage and environmental conditions can gradually shift the robot’s joints,
changing their relative positions. These changes accumulate and eventually result in calibration
discrepancies, affecting the precision and accuracy of the robot’s movements and interactions.
The magnitudes of positional errors typically range from a few millimetres to centimetres, while
orientation errors can span from fractions of a degree to several degrees. These error ranges
hinge on the application’s intricacies, the robot system’s complexity, and the exacting of the
precision requirements. This issue is not typically addressed in classic approaches.

The second step, camera calibration, is used to obtain the camera’s intrinsic and extrinsic
parameters (the focal length, principal point coordinates, and lens distortion coefficients). Cali-
bration targets [4, 5] or QR-code-based markers [6, 7] are used to capture images from different
viewpoints, and these images are then used to calculate the camera’s intrinsic parameters. The
extrinsic parameters can be obtained using the known poses of the calibration targets or markers
in the world frame. These extrinsic parameters can then be used to determine the camera’s pose
for different robot end-effector configurations.

The final step, hand-eye calibration, involves formulating linear or nonlinear equations based
on the camera and robot calibration data and solving for the HEC parameters using mathemat-
ical optimisation techniques. Classic approaches include methods such as AX=XB [8–12] and
AX=YB [13–17], which involve solving a linear system of equations, and the projection error
and 3D reconstruction methods, which use nonlinear optimisation techniques. In AX=XB for-
mulation, X is the unknown transformation between the camera base and the robot’s base or
end-effector, while A and B are observed linear transformations of end-effector poses with re-
spect to the robot base and camera poses relative to the calibration target across n successive
configurations. In AX=YB formulation, Y is the unknown transformation from the robot base
to the world coordinate base, and X is the camera base to the robot base. A and B stand for the
observable pose of the robot’s end-effector and the camera’s pose, respectively.

The approaches mentioned above have demonstrated satisfactory outcomes; however, they
are offline, implying that their outcomes are only valid for camera positions used during cali-
bration. When the camera position changes, all the data must be collected again for the new
configuration, thus making them unsuitable for dynamic real-world robotic applications. To
tackle this limitation, researchers have proposed deep learning-based approaches [18] [19] that
eliminate the data collection process and allow the model to be re-trained when the camera pose
changes, providing a more flexible hand-eye calibration model. Current hand-eye calibration
methods have achieved significant success. However, a robust and flexible method is still re-
quired to recalibrate the system without data recollection and can be easily deployed into other
robotic environments.

1.2.2 Challenges

The limitations of classic hand-eye calibration approaches are as follows:

CHAPTER 1. INTRODUCTION 6

• Firstly, they are offline methods, meaning that the hand-eye calibration parameters they
generate are only applicable to the specific camera and robot configurations used during
data collection. When the pose of the camera with respect to the robot base changes, these
methods cannot automatically adjust to the new configuration. Consequently, they are not
well-suited to dynamic robotic systems, where frequent recalibration may be required.

• Secondly, classic hand-eye calibration approaches require expertise to collect data and
generate hand-eye calibration parameters. Moreover, the resulting calibration parameters
may not always be accurate, which can necessitate multiple rounds of data collection and
parameter tuning to obtain a satisfactory result.

• Finally, classic hand-eye calibration approaches lack flexibility in adapting to new envi-
ronments, as the calibration space they learn is typically limited to a particular setup for
external hand-eye configuration where an external camera observes the robot from a dis-
tance. As a result, they may not be suitable for applications where the robot must operate
in diverse and changing environments.

• Current deep learning-based approaches applied to external hand-eye configuration pre-
dominantly leverage deep learning techniques for feature extraction rather than directly
estimating the calibration parameters.

1.3 Aims and Objectives

1.3.1 Aim of the study

This thesis aims to address the limitations (detailed in section 1.2.2) of classical hand-eye cal-
ibration (HEC) approaches by developing a flexible and autonomous approach that leverages
deep learning techniques. This thesis encompasses three main studies.

The first study (chapter 3) presents a deep learning-based hand-eye calibration approach that
uses RGB and depth images and a reference point on the robot’s end-effector to process data
over various camera and robot configurations. Unlike classical approaches, this deep learning-
based approach autonomously recalibrates itself to adapt to new camera poses within the 3D
manifold data samples captured without requiring data re-collection or re-training. This feature
makes it suitable for dynamic robotic environments where camera or robot poses may change
over time for manipulation. Furthermore, this study addresses the first limitation of the current
HEC approaches, which is their static nature.

The second study (chapter 4) in this thesis focuses on evaluating the performance of the deep
learning-based hand-eye calibration approach developed in Chapter 3 in a real-world robotic ma-
nipulation task, specifically pick-and-place. Additionally, a comparison between the developed

CHAPTER 1. INTRODUCTION 7

approach and a classic HEC approach was conducted regarding computational complexity, re-
peatability, and success of performing robotic manipulation. Computational complexity and
repeatability are essential in assessing the suitability of the developed HEC approach for real-
world applications. The performance of the manipulation shows the accuracy and precision of
the HEC on a real task, in contrast to metric error. In addition, this study addresses two addi-
tional limitations of current HEC approaches: their computational complexity and the deviation
of their success repeatability.

The third study (chapter 5) in this thesis focuses on developing a continuous deep learning-
based hand-eye calibration approach that extends the learned calibration spaces through Con-
tinual Learning. This approach allows the deep learning-based HEC approach developed in
Chapter 3 to adapt to new environments without requiring all the data to be stored and retrained
from the beginning. As a result, the final HEC approach is flexible and can autonomously recal-
ibrate itself even outside of the pre-learned calibration space. This makes the developed HEC
approach suitable for dynamic robotic environments where recalibration is frequently required.
Moreover, this HEC approach addresses the lack of flexibility limitation of the current HEC
approaches.

1.3.2 The hypotheses and research questions

The main hypothesis of this thesis is:
A hand-eye calibration approach, which recalibrates external camera pose by observing a

single reference point on the robot end-effector through a 3D vision system, enables a robot

to perform robotic manipulation and grasping tasks by being adaptable and robust to environ-

mental changes. Moreover, it has the same success on a real robotic manipulation task while

reducing the computational complexity and increasing the repeatability compared to classical

approaches.

On the other hand, each chapter has its hypothesis, which is detailed below.
Hypothesis in Chapter 3:
It is possible to carry out hand-eye calibration by tracking the known transformation of a

single reference point on the robot’s end-effector with respect to both the robot base and the

camera via a 3D vision system. This HEC approach enables to get hand-eye calibration pa-

rameters without data re-collection within the learned calibration space while the repeatability

score is better than the state-of-the-art deep learning-based approach, which is 10 millimeters.

To examine this hypothesis, the following research questions have been posited.

Q1 In contrast to closed-form hand-eye approaches, is it possible to find the geometric trans-
formation between the camera and the robot where camera and robot calibrations are
known in advance by using a neural network?

CHAPTER 1. INTRODUCTION 8

Q2 Is it possible to find the camera’s pose with respect to the reference point by observing
the motions of this reference point via a 3D vision system and using deep learning as a
calibration model?

Q3 Is it possible to carry out hand-eye calibration where camera calibration is not known by
observing the motions of the reference point via a 3D vision system and employing a deep
learning-based regression architecture as a model?

Hypothesis in Chapter 4:
The deep learning-based HEC approach can achieve accurate calibration with reduced com-

putational complexity and improved repeatability compared to classic methods. Specifically, this

approach performs similarly to the classic hand-eye calibration approach on a real robotic ma-

nipulation task, such as a pick-and-place task, while reducing the number of attempts needed

to obtain hand-eye calibration parameters and decreasing the data collection time. Further-

more, it achieves lower repeatability errors compared to the classic approach (Tsai’s HEC ap-

proach [8]), which shows the precision of the HEC approach.

To examine this hypothesis, the following research questions have been posited.

Q4 How does the performance of the deep learning-based HEC approach compare to other
state-of-the-art methods in the field of hand-eye calibration, in terms of both accuracy and
computational efficiency?

Q5 What are the limitations of the deep learning-based HEC approach, and how can they be
addressed to improve its practical application in various dynamic robotic environments?

Hypothesis in Chapter 5:
A Continual Learning-based hand-eye calibration system can extend the learned calibration

space through new observations over time.

To examine this hypothesis, the following research questions have been posited.

Q6 Can hand-eye calibration be handled as a time sequence problem in terms of camera pose
changes through Continual Learning?

Q7 Is it possible to extend the learned hand-eye calibration space via Continual Learning?

1.4 A Brief Overview of the Proposed Approaches

The thesis aims to develop a flexible and autonomous hand-eye calibration approach using deep
learning, which can recalibrate itself without data recollection. To achieve this goal, the thesis
conducted three main studies (presented in Figure 1.4) in simulated and real-world environ-
ments.

CHAPTER 1. INTRODUCTION 9

Figure 1.4: This figure depicts conducted three studies to develop a flexible and autonomous
hand-eye calibration approach by using deep learning.

In the first study (Figure 1.4(1)), a deep learning-based HEC approach was developed by
selecting a single reference point on the robot’s end-effector through a 3D vision system. This
approach allows the recalibration of the external camera poses without the need for data rec-
ollection. The experiments were conducted in both simulated and real-world environments to
validate the effectiveness of the approach.

In the second study (Figure 1.4(2)), the deep learning-based HEC approach developed in the
first study was tested on a real robotic manipulation task, specifically pick-and-place. Addition-
ally, a classic HEC approach was used to make a comparison of the success of the approaches
as well as their computational complexity and precision.

Finally, in the third study (Figure 1.4(3)), a continual learning-based HEC approach was
proposed, which extends the learned calibration space through new observations over time. This
approach aims to address the problem of catastrophic forgetting, which can occur when a deep
learning model forgets previously learned information as it learns new information. The ap-

CHAPTER 1. INTRODUCTION 10

proach was evaluated through simulation and real-world experiments to demonstrate its effec-
tiveness.

Overall, these three studies aim to develop a flexible and autonomous HEC approach using
deep learning, which can be applied in dynamic robotic environments where the pose of the
robot or camera changes over time to perform manipulation tasks.

1.5 The Significance of the Proposed Approaches

1.5.1 Contributions

The contributions of Chapter 3 are listed below:

• A deep learning-based regression architecture is proposed for estimating the camera pose
by tracking a single reference point defined by the robot’s kinematic chain. This architec-
ture can be used as a hand-eye calibration model by automatically detecting the reference
point using a 3D vision system.

• The developed deep learning-based HEC approach allows for estimating calibration pa-
rameters within seconds in the learned space during training, without the need for data
recollection.

• The deep learning-based HEC approach achieves competitive results in terms of met-
ric accuracy compared to classic HEC approaches that require data recollection for each
camera pose. Additionally, the approach exhibits superior repeatability scores (precision)
compared to state-of-the-art techniques, which is 7 and 3 times better than [18] and [19].

The contributions of Chapter 4 are listed below:

• Based on the experimental results, the deep learning-based HEC approach demonstrates
comparable performance to the classic approach in executing a real-world robotic manip-
ulation task.

• Furthermore, the deep learning-based HEC approach shows a reduction in computational
complexity, as evidenced by the decreased number of attempts required to obtain calibra-
tion parameters and the reduced time needed for calibration when compared to the classic
HEC approach.

The contributions of Chapter 5 are listed below:

• The results indicate that the hand-eye calibration problem can be addressed as a time-
series problem, where the calibration parameters can be updated continuously over time
as the camera pose changes.

CHAPTER 1. INTRODUCTION 11

• The proposed continual learning-based HEC approach utilises a buffer system to extend
the learned calibration space with new observations without retraining starting from the
beginning. This allows for the calibration parameters to adapt and improve over time,
resulting in a more flexible and autonomous calibration approach.

1.5.2 List of publications

Published Papers

• Bahadir, Ozan, Jan Paul Siebert, and Gerardo Aragon-Camarasa. "A Deep Learning-
Based Hand-eye Calibration Approach using a Single Reference Point on a Robot Ma-
nipulator." 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO).
IEEE, 2022. (Chapter 3)

Papers Under Review

• Bahadir, Ozan, Jan Paul Siebert, and Gerardo Aragon-Camarasa. "Performance Analysis
of Hand-eye Calibration Approaches in a Real Robotic Manipulation Task." Engineering
Applications of Artificial Intelligence. (Chapter 4)

• Bahadir, Ozan, Jan Paul Siebert, and Gerardo Aragon-Camarasa. "Extending Learned
Hand-eye Calibration Space via Continual Learning." Robotics and Autonomous Systems.
(Chapter 5)

1.6 The Outline of the Thesis

The thesis aims to address the limitations of existing hand-eye calibration (HEC) approaches by
developing a flexible and autonomous deep learning-based HEC approach. Chapter 2 provides
an overview of the HEC problem, current literature, and its limitations. Chapter 3 focuses on
developing a deep learning-based HEC approach that can estimate calibration parameters with-
out data recollection in the learned space; Chapter 4 evaluates the developed HEC approach on
a real robotic manipulation task and compares its performance with a classic HEC approach;
Chapter 5 proposes a continual learning-based HEC approach that can extend the learned cal-
ibration space over time. This chapter also investigates the approach’s ability to address the
catastrophic forgetting problem and enable the autonomous recalibration of the HEC system.
The thesis concludes with Chapter 6, which summarises the main contributions and outlines po-
tential future works. The proposed approach has the potential to be applied in various robotics
and automation applications.

Chapter 2

Background and Literature Review

2.1 An Overview of Hand-eye Calibration Problem

Hand-eye calibration is the problem of finding the homogeneous transformation between the eye
(camera) and the robot’s end-effector [8]. Although this transformation is conceptually straight-
forward, it is essential for successful robot manipulation tasks as it enables us to relate camera
observations to the robot’s links or joints. The hand-eye calibration problem has been investi-
gated for over 30 years via mathematical optimisation approaches [20]. These approaches have
provided superior results under some particular constraints. The primary constraint of these
approaches is that they are valid only for the current camera and the robot base. When the
camera pose changes with respect to the robot base for the external hand-eye configuration,
all data collection and optimisation should be repeated from scratch. With the increasing de-
mand for flexible and adaptable robots that can quickly adapt to environmental changes, deep
learning-based approaches have been proposed as a potential solution to the limitations of math-
ematical optimisation-based approaches. One of the primary challenges of deep learning-based
approaches is the need for ground truth in the training stage. In addition, the hand-eye calibra-
tion problem has specific constraints, such as the orthogonality between each axis, that must be
considered.

The hand-eye calibration problem can be decomposed into three main steps; camera calibra-
tion, robot calibration and the hand-eye calibration model. Besides these components, the suc-
cess of the hand-eye calibration methods is highly affected by the adopted robotic environments
and used technologies, i.e. cameras. To provide a comprehensive overview of the literature
on hand-eye calibration, this thesis covers the adopted technologies, a brief background, cam-
era calibration, robot calibration, classic hand-eye calibration models, and deep learning-based
hand-eye calibration.

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

Figure 2.1: This figure shows the Rethink Baxter robot with two parallel grippers.

2.2 Hardware and Software

2.2.1 Robotic environments

In this thesis, two real-world robotic systems were used: The Rethink Baxter (Baxter) [21] and
a Universal Robot (UR3) [22].

The Rethink Baxter robot

Baxter (depicted in Figure 2.1) has two arms with 7 degrees of freedom and three embedded
cameras. One of the cameras is on the head, and the others are in the end-effector of the arms.
It is compatible with two types of end-effectors: an electric parallel gripper and a vacuum cup
gripper. In this thesis, we used the electric parallel grippers for both arms to manipulate objects.
Baxter is also compatible with the Robot Operating System (ROS) [23].

UR3 robot

The UR3 (depicted in Figure 2.2) is a robotic arm with 6 degrees of freedom, and all its joints
can rotate 360 degrees, and it has a 500 mm workspace range from its base. Although it has its
programming tool and interface (PolyScope [24]), it is also compatible with ROS, and flexible
for different types of grippers. In this thesis, we equipped the UR3 with a Shadow Modular
Grasper (depicted in Figure 2.2) with three fingers and three joints for each finger (a total of 9
degrees of freedom).

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

Figure 2.2: This figure depicts a Universal Robot 3 (UR3) equipped with a three-finger modular
grasper.

2.2.2 Robot operating system (ROS)

The Robot Operating System (ROS) is an open-source robotic software framework [23] designed
to mitigate large-scale software integration. ROS allows for communication between multiple
machines and components, such as motors, robotic arms, and monitors. The framework is based
on several key components, including nodes, messages, topics, and services [23]. Nodes are
executable scripts which can be programmed in Python, C++, Octave [25] and LISP [26], and
communicate with each other by using messages, which are the predefined typed data struc-
tures.To send messages, nodes publish topics, and to receive messages, nodes subscribe to top-
ics. ROS also supports services for synchronous communication between topics that require
request and response transactions. By facilitating communication and integration between com-
ponents, ROS has become a popular framework for developing robotic applications. Examples
of ROS-based robots include autonomous vehicles [27], drones, and industrial robots.

2.2.3 The StereoLabs camera (ZED)

The ZED camera (depicted in Figure 2.3) developed by Stereolabs [28] has been used for
visual perception in this thesis. This camera is a stereo vision system, which consists of two
RGB cameras separated by a fixed baseline. The depth map in this camera is calculated by the
differences in matched points on two images from the left and the right camera. ZED camera
enables the selection of different parameters that control the resolution of RGB image (up to 2k),
the quality of depth map, and frame rate (up to 120 frames per second). Besides, it is compatible
with ROS [23] and publishes different topics for visual perception, i.e. RGB images, depth

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

Figure 2.3: The ZED camera which has two RGB cameras (left and right)

maps, disparity images and camera intrinsic’s parameters.

2.3 Background

2.3.1 Representation of position and orientation in 3D Space (R3)

The poses of point P with respect to the two reference frames (A and B) are shown in Figure
2.4, where Ap and Bp represent the positions of point P in the reference frames A and B, respec-
tively. These reference frames have orthogonal axes in 3D Cartesian space. The displacement of
reference frame B with respect to reference frame A is represented by vector t(x,y,z). The trans-
formation from frame B to A includes both rotation and translation components, which ensure
the orthogonality constraint between the axes of the two frames is maintained.

Orientation representation in the 3D Cartesian space (R3): Rotation in 3D is an operation
which enables us to rotate the whole space with θ angle through counterclockwise along a fixed
axis while the origin remains fixed. In 3D Cartesian space, this rotation can be represented via
an 3×3 orthonormal matrix (R) where R−1 = RT and det(R)=1.

Rotation matrices: The rotation matrix is a orthonormal matrix that represents a rotation in
3D space. It is a three-by-three matrix denoted by R(n̂,θ), where n̂ is the unit vector of the
rotation axis, and angle (θ) is the angle of rotation in a counterclockwise direction along the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

Figure 2.4: This figure shows two 3D coordinate frames ({A} and {B}) and the pose of point P
with respect to these frames.

axis. Equation (2.1) provides an example of this formulation, where a rotation is performed
around the z-axis with a counterclockwise angle of θ .

R(ẑ,θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2.1)

The formulation in equation (2.1) can be extended via equation (2.2) for all three axes in 3D
Cartesian space.

R(n̂,θ) =

 cosθ +n2
1(1− cosθ) n1n2(1− cosθ)−n3 sinθ n1n3(1− cosθ)+n2 sinθ

n1n2(1− cosθ)+n3 sinθ cosθ +n2
2(1− cosθ) n2n3(1− cosθ)−n1 sinθ

n1n3(1− cosθ)−n2 sinθ n2n3(1− cosθ)+n1 sinθ cosθ +n2
3(1− cosθ)


(2.2)

where,
n̂ = (n1,n2,n3)

n2
1 +n2

2 +n2
3 = 1

(2.3)

In this formulation, the angle θ must be between zero to π:

• if theta is equal to zero, there is no solution (trivial solution),

• if theta is equal to π , R(n̂,π) and R(−n̂,π) yield the same solution,

• otherwise, there is a unique solution.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

In this rotation representation, nine parameters must be estimated simultaneously under the
orthogonality constraints among its axes. Besides, this representation is not intuitive; in other
words, it is not easy to understand and interpret each element of the matrix presented in the
equation (2.2).

Euler angles: Rotation in 3D Cartesian space can be represented by the product of three con-
secutive rotation matrices around different and orthogonal axes described in equation (2.4).

R(x̂,φ) =

1 0 0
0 cosφ −sinφ

0 sinφ cosφ



R(ŷ,θ) =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ



R(ẑ,ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1



(2.4)

where, φ , θ and ψ are the Euler angles. In theory, there are 27 possible sequences to define
a rotation with Euler angles. However, only 12 of these meet the constraint that two successive
rotations are about different axes [29]. Equation (2.5) shows the three common sequences found
in the literature, all of which can be described using a 3×3 matrix. Euler angles can be defined
using two conventions: extrinsic and intrinsic. The intrinsic convention involves performing ro-
tations using the coordinate system of the rotating object, while the extrinsic convention uses the
external frame for rotations. Intrinsic rotations are performed in the same order as the formula,
while extrinsic rotations are performed in the opposite order. Figure 2.5 shows the intrinsic con-
vention of the Euler angle. The rotation begins with a φ angle, which maps X to x1 and Y to y1

while keeping the z-axis constant. The second rotation, which converts y1 and z1 to y2 and z2, is
applied to the x1 axis with a θ angle. psi angle is then applied via the z2 axis, which transforms
x2 and y2 into X and y, respectively.

R(n̂,θ) = RZXY (φ ,θ ,ψ) = R(ẑ,φ)R(x̂,θ)R(ẑ,ψ)

R(n̂,θ) = RXY Z(φ ,θ ,ψ) = R(x̂,φ)R(ŷ,θ)R(ẑ,ψ)

R(n̂,θ) = RZY Z(φ ,θ ,ψ) = R(ẑ,φ)R(ŷ,θ)R(ẑ,ψ)
(2.5)

Despite the intuitive nature of Euler angles, the Gimbal lock problem occurs in all sub-
sequences when one of the axes is rotated by a certain angle. The Gimbal lock occurs when
two of the axes become aligned, resulting in the loss of one degree of freedom in describing the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

Figure 2.5: This figure shows ZXZ (R(ẑ,φ)R(ŷ,θ)R(ẑ,ψ)) Euler angle sequence application on
XY Z reference frame to get xyz final frame.

rotation. For example, in the RXY Z(φ ,θ ,ψ) sequence, when θ approaches π

2 , the second and
third axes become aligned, making them indistinguishable [30].

Unit Quaternions: Quaternions are the three-dimensional extension of complex algebra [31].
A quaternion (q) with scalar (q0) and vectorial (q1, q2, q3) components can be expressed as
follows,

q = q0 +q1i+q2 j+q3k

= q0 +qv
(2.6)

where,
i2 = j2 = k2 = i jk =−1

i j = k jk = i ki = j

ji =−k k j =−i ik =− j

(2.7)

The complex conjugate of the quaternion (q), which is negating the vector part of the quater-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

nion, is defined as follows :
q∗ = q0−qv

= q0−q1i−q2 j−q3k
(2.8)

Geometrically, the conjugate of a quaternion reflects the original rotation about the plane or-
thogonal to the axis of rotation. When we multiply the conjugate of the quaternion itself, we can
get:

q∗q = q0q0−qvqv

= q2
0 +q2

1 +q2
2 +q2

3

(2.9)

The norm of the quaternion (|q|) equals to
√

q∗q:

|q|=
√

q2
0 +q2

1 +q2
2 +q2

3 (2.10)

When the norm of the quaternion (|q|) equals one, it is called the unit quaternion (q◦). A unit
quaternion (q) can be described as follows:

q = q2
0 +q2

v = 1

q2
0 = cos2

θ

∥qv∥2 = sin2
θ

(2.11)

This implies that there is a θ angle between zero and π such that cosθ = qo and sinθ = ∥qv∥.
Then the unit quaternion (q) can be also expressed as follow:

q = cosθ +usinθ
(2.12)

where,
u =

qv

∥qv∥
(2.13)

In R3, any vector can be expressed as a pure quaternion (depicted in figure 2.6) where its scalar
component (q0) is zero: q◦(υ) = 0+ xi+ y j + zk. A conjugate operator can be defined on a
vector υ in R3 with the unit quaternion q (presented in equation(2.12)) as follow:

Lq(υ) = qυq∗ (2.14)

This operator represents the rotation of vector υ in R3 about axis u with θ angle. Unit
quaternions are a commonly used representation for rotations in 3D space, as they are free
from the issue of gimbal lock. However, the mapping from rotations to unit quaternions is
not continuous, which can cause problems for numerical computations. This is because each
rotation has two corresponding unit quaternions (q and −q). This problem is called a double

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

Figure 2.6: This figure shows the relationship of the vector υ in R3 and pure Quaternions space.

cover. To address this problem, some approaches have leveraged higher-dimensional spaces to
represent rotations in a more continuous and unambiguous way.

According to Zhou et al. [32], deep learning methods may encounter to learn from discontin-
uous orientation representations, and it has been suggested that at least 5D or 6D parameters are
needed to represent continuous (one-to-one mapping) orientations in 3D space. Peretroukhin
et al. [33] proposed a 10D orientation representation based on a Quadratically Constrained
Quadratic Program, which uses a symmetric 4× 4 matrix with ten parameters to enable con-
tinuous rotation in 3D space. This representation allows for the eigenvalue decomposition of the
matrix, which can be solved to obtain corresponding unit quaternion parameters. The use of a
10D representation in this context allows for a more continuous and unambiguous representation
of camera pose orientation.

Linear Transformation in R3: The linear transformation of reference frame {B} to {A} (pre-
sented in figure 2.4) can be expressed as follow by using the homogeneous transformation rep-
resentation: 

Ax

Ay

Az

1

 ·
[

ARB t
01×3 1

]
=


Bx

By

Bz

1


where

R =
[
r1 r3 r3

]
=

r1 r2 r3

r4 r5 r6

r7 r8 r9

 and t =

t1
t2
t3


(2.15)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

Figure 2.7: Pinhole Camera Geometry: O is the projection (camera) centre, and the principal
axis lies towards the Z axis. P (X ,Y,Z) and Pc(u,v) represent the real-world (3D) and pixel (2D)
coordinates of the same point.

Rotation (R) and translation (t) are two main components of linear transformation.
Hand-eye calibration problem can be solved by finding the transformation matrix that re-

lates the end-effector’s motion and the camera’s motion with respect to a world reference frame.
Linear transformation describes how the position and orientation of the camera and the robot’s
end-effector are related. By knowing the linear transformation between the two frames of refer-
ence, the relative position and orientation of the camera with respect to the robot’s end-effector
can be determined.

2.3.2 Image Formation

To enable robotic manipulation tasks based on camera images, it is necessary to transform pixel
measurements in the image plane into world coordinates [34]. This process requires the ac-
quisition of the camera’s intrinsic and extrinsic parameters. The intrinsic parameters are used
to transform 3D camera coordinates into 2D image coordinates and vice versa. The extrin-
sic parameters, which describe the camera’s rigid transformation with respect to a fixed origin,
transform 3D points from camera coordinates to world coordinates bidirectionally.

The projection of 3D points in the real world to 2D pixels in the image space needs a camera
model including both the camera’s intrinsic and extrinsic parameters. The pinhole camera model
(depicted in Figure 2.7) is widely used in computer vision and robotics. The distance between

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

Figure 2.8: This figure shows the triangle similarity in the image plane.

the projection centre and the image plane is called the focal length (f). The projection of the
world point (P) on the image plane is calculated by using the triangle similarity (in Figure 2.8)
equations as follows:

f
Z
=

u
X

=
v
Y

(2.16)

which gives

u =
fX
Z

and v =
fY
Z

(2.17)

The projection of the point P in the image plane Pc can be represented as follow:u

v

1

=

 f 0 0
0 f 0
0 0 1


Xcam

Ycam

Zcam

 (2.18)

Figure 2.9 shows the ideal and real image coordinate systems. The real image coordinate
system considers the offset (u0,v0) between the ideal centre point c and the new centre o, and
the non-orthogonal image coordinate system, which has θ angle among its axes. Let ku and
kv be the orthogonal axes along u and v. We conclude that there is a transformation matrix (H
detailed in equation (2.19)) which enables us to transfer point p (x,y) coordinates to the real
image coordinates (u,v).

H =

ku ku cot(θ) u0

0 kv/sin(θ) v0

0 0 1

 (2.19)

Equation (2.18) can be extended by multiplying with matrix H. Equation (2.20) shows the cam-
era intrinsic’s matrix, which enables us to transform points for the camera to the image coordi-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23

Figure 2.9: Image coordinate system: (c,x,y) is the ideal image coordinate system centred in
the principal point, while (o,u,v) is the actual image coordinate system in which the centre is
the upper left corner. θ shows the angle between the u and v axes.

Figure 2.10: The euclidean transformation between the camera and the world coordinates. R
and t are the 3x3 rotation and 3x1 translation matrices.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

nate system. The matrix K can also be expressed in the homogenous coordinate system by using
equation (2.21).

K =

ku ku cot(θ) u0

0 kv/sin(θ) v0

0 0 1


 f 0 0

0 f 0
0 0 1

=

 f ku f ku cot(θ) u0

0 f kv/sin(θ) v0

0 0 1

 (2.20)

K =

αx s u0 0
0 αy v0 0
0 0 1 0

 (2.21)

where
αx = f ku

αy = f kv/sin(θ)

s = f ku cot(θ)

In this formulation, the camera’s origin and the world’s origin are the same. However, the
camera and the world coordinate are different in most robotic manipulation or computer vision
applications. Hence, the transformation between the camera and the world coordinate must be
calculated. Figure 2.10 illustrates this transformation. The transformation consists of the rota-
tion (R) and translation (t) components. Equation (2.22) shows the homogeneous transformation
of the camera and world coordinate by using R and t. Equation (2.23) shows the straightforward
camera model, including intrinsic and extrinsic camera parameters.

Xcam

Ycam

Zcam

1

= P


X

Y

Z

1


where

P =

[
camRworld t

01×3 1

]
(2.22)

u

v

1

=

αx s u0 0
0 αy v0 0
0 0 1 0

[camRworld t
01×3 1

]
Xworld

Yworld

Zworld

1

 (2.23)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

2.4 Camera Calibration

Two mainstream approaches have been widely employed in the literature to acquire the intrinsic
and extrinsic parameters: marker-based approaches and self-calibration [20]. In marker-based
approaches, a calibration target, such as a checkerboard and fiducial markers, is a specially de-
signed object with a particular pattern whose shape and size are known. As for self-calibration,
there is no calibration object, and the camera’s parameters are estimated by extracting features
in all images [20].

2.4.1 Marker-based approaches

The early camera calibration methods utilised 3D calibration objects to estimate the camera’s
intrinsic and extrinsic parameters by capturing their 2D pixel coordinates. The Direct Linear
Transformation (DLT) method was employed in [35] and [36] to estimate these parameters.
However, these methods did not consider the effect of lens distortion, and the accuracy of the
calibration heavily relied on the precise manufacture of the calibration object [37]. Nonlinear
optimisation-based methods were later proposed to handle the distortion problem. However,
they require more parameters than the degree of freedom, which may lead to linear dependence
among the parameters, making them sensitive to noise [4]. Additionally, these methods require
reasonable initial values for the optimisation process to converge [38].

Tsai [4] is a pioneer of the 2D calibration target-based approach and proposed a two-stage
camera calibration method combining linear estimation and nonlinear optimisation. Tsai de-
fined the extrinsic parameters of the camera through the equation (2.22) and employed the Euler
angles to represent the rotation component of the extrinsic parameters. Then, these parameters
were estimated by using linear optimisation. As for internal camera parameters, a three-stage
representation was used: ideal images coordinate via the simple pinhole camera model in equa-
tion (2.18), the second-order radial lens distortion, and the scale factor. The focal length (f) was
estimated using linear estimation in the first stage of the intrinsic parameters. Tsai then used
nonlinear optimisation to estimate the lens distortion and scale factor, with the estimated focal
length as an initial solution.

Zhang proposed a flat camera calibration approach using a 2D calibration target, the Checker-
board [5]. Zhang adjusted Equation (2.21) under the assumption of zero value of the Z axis.
Zhang utilised the homography transformation from the calibration target to the image plane by
adopting the tailored Equation (2.21). The camera’s intrinsic parameters were calculated using
the least squares error approach in this step. Then, the camera’s extrinsic parameters were calcu-
lated via Equation (2.23) under the known camera’s intrinsic parameters. Finally, Zhang refined
the estimated parameters via nonlinear optimisation because the distance in the previous step is
in parameter space and does not reflect the actual metric.

Although Tsai’s [4] and Zhang’s [5] approaches are the most widely used for camera cal-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

ibration, their success highly depends on the pattern detection algorithm. Besides, they are
offline approaches; hence, they are unsuitable for online camera calibration. To eliminate the ef-
fect of pattern detection for classic checkerboard calibration targets, QR-code-based approaches
have been developed. ARToolkit, ARTag, and Aprilgrid are the prominent QR-code for camera
calibration and robot localization [6]. ARToolkit markers consist of a black square with dif-
ferent internal symbols. Abdullah and Martinez [7] proposed ARToolkit marker-based camera
calibration. They employed the epipolar geometry to get the camera’s intrinsic parameters via
equation (2.21) by using extracted 3D points in ARtoolkit on at least three different camera
configurations. Then they extracted the camera’s extrinsic parameters using the known intrinsic
parameters. ARTag markers are 2D black square shapes, but unlike ARToolkit, white squares
are inside. These white squares provide more stable marker detection and identification, un-
like grey colour segmentation in ARToolkit. Aprilgrid markers have the same pattern as the
ARTag. Olson [39] developed Aprilgrid-based camera calibration by matching the 3D centre of
the segmented squares with their image coordinates via Direct Linear Transformation.

Camera calibration is an essential part of the hand-eye calibration problem, which involves
determining the relationship between the camera and the robot’s end-effector. Checkerboard
and chessboard-based approaches have dominated the literature on camera calibration, but these
targets are not very flexible when handling changes in camera pose. Specifically, when the cam-
era’s position or orientation changes, the calibration target must be re-attached to the robot or
re-placed in the external space to collect all data from scratch. In contrast, QR code-based ap-
proaches are more flexible in handling camera pose changes. However, they can be susceptible
to occlusion, sensitivity to lighting conditions, and dependence on QR code size in some appli-
cations. This thesis uses neither a classic calibration target nor a QR code for camera calibration
due to these limitations.

2.4.2 Self-calibration approaches

Although calibration target-based approaches have dominated the literature and have had great
success, they are not suitable for online camera calibration. Hence, the estimation of the camera
parameters directly from the images has gained attention over several decades, known as self-
calibration [40] [41]. In these methods, n key points (n ≥ 6) are selected on the initial input
image, and these key points are tracked while changing the perspective of the view by either
moving the camera or the object in the scene. Then, the camera parameters are calculated by
using the differences between these key points on different images. However, these approaches
assume that the camera or the robot’s motion is known.

The literature on self-camera calibration is relatively sparse, likely due to the requirement
for a significant amount of motion and texture in the environment to detect and track key points
accurately. However, in this thesis, an approach for explicit and implicit camera calibration,
detailed in Chapter3, can be classified as a form of self-calibration. In contrast to traditional

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

self-calibration approaches, the developed approach does not rely on key points detection and
tracking. Instead, a single reference point is selected on the robot end-effector to serve as a
reference frame.

2.5 Robot Calibration

For hand-eye calibration approaches, the assumption is that the robot is calibrated. However, a
robot calibration solution can become outdated because of the displacement of the robot joints
due to wear and tear. This source of errors affects the hand-eye calibration success because
of the difference between the end-effector’s actual pose and the controller’s nominal pose.
Hence, robot calibration is vital for hand-eye calibration. Robot calibration can be divided
into four steps [42]: robot kinematic model selection, pose measurement approaches, optimi-
sation methods, and pose redefinition. Although approaches such as the product of exponents
(POE) [43] and quaternion model (QM) [44] exist for robot kinematic model representation,
Denavit-Hartenberg (DH) parameters [45] and its extension [46] (which eliminates the singu-
larity problem) are the most popular in the literature. For pose measurement, laser-based ap-
proaches [47] have emerged as a powerful method in the robot calibration literature. However,
the cost of these specialised devices is considerable. Hence, planar contact [48, 49], visual ob-
servation [50], self-touch [51] and the combinations of them [52–54] have arisen as powerful
methods in the robot calibration literature.

In conclusion, hand-eye calibration approaches rely on robot calibration to achieve accurate
results. It is essential to apply the proper calibration techniques to make sure that the robot’s
joints are correctly aligned because wear and tear might cause robot calibration to become out-
dated. In this thesis, we did not employ any robot calibration approach. However, the pro-
posed deep learning-based hand-eye calibration approach (detailed in Chapter3) can alleviate
this problem because it is based on camera observation from different points of view, and these
observations are linked with the robot workspace.

2.6 Classic Hand-eye Calibration

This section details the classic hand-eye calibration approaches regarding adopted formulations
and metric error. AX = XB, AX = Y B and reprojection error are the mainstream methods for
classic hand-eye calibration approaches. Additionally, each subsection contains solution ap-
proaches for these formulations. Table 2.1 shows the classification of the approaches in terms
of the formulations and solution methods. The main limitation of these classic approaches is
that they are not flexible against changes in the camera pose. More detailed limitation for each
formulation is presented in subsections.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 28

Table 2.1: An Overview of the Classic Hand-eye Calibration Approaches

Approach Formulation Solution Method Orientation
Representation

Tsai [8] AX=XB Separation Euler angles
Chou and Kamal [9] AX=XB Separation quaternion

Andreff et al [10] AX=XB Separation
Axis angle and
quaternion

Horaud [11] AX=XB Simultaneous quaternion
Daniilidis [10] AX=XB Simultaneous Dual quaternion

Zhao [55] AX=XB Simultaneous
Rotation matrice and
Quiaternion

Zhuang et al. [13] AX=YB Separation quaternion
Dornika and Haroud [14] AX=YB Separation quaternion
Shah [15] AX=YB Separation Kronecker delta
Dornika and Haroud [14] AX=YB Simultaneous quaternion
Li et al [56] AX=YB Simultaneous Dual quaternion
Tabb and Yousef [16] AX=YB Simultaneous Euler angles

Zhao [17] AX=YB Simultaneous
Kronecker delta and
Dual quaternion

Zhi and Schwertfeger [57] AX=XB reprojection error Kronecker delta

Ali et al. [58]
AX=XB and
AX=YB reprojection error quaternion

Tabb and Yousef [16] AX=YB reprojection error
quaternion, Euler angles
And the axis angle

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 29

(a) eye-in-hand (b) external camera configuration

Figure 2.11: This figure shows the eye-in-hand (a) and external camera (b) configurations.

2.6.1 AX=XB Formulations

AX = XB is the most preferred formulation of the hand-eye calibration problem in the classic
approaches because of its simple and easily understandable nature. Figures 2.11(a) and 2.11(b)
show the geometric interpretation of this formulation for two primary visual modalities. Fig-
ure 2.11(a) represents the eye-in-hand configuration, in which the camera is attached to the
robot end-effector. In contrast, figure 2.11(b) shows the external camera configuration, where
a calibration target is attached to the robot end-effector. In this formulation, X is the unknown
transformation between the camera base and the robot’s base or end-effector. A and B, which are
observable, are the linear transformations of the end-effector’s poses with respect to the robot
base and the poses of the camera with respect to the calibration target in n successive configu-
rations, respectively. Equation (2.24) shows the formulation of these linear transformations (A
and B).

A1 ·X ·B1 = A2 ·X ·B2

A−1
2 ·A1 ·X ·B1 ·B−1

1 = A−1
2 ·A2 ·X ·B2 ·B−1

1

A−1
2 ·A1 ·X = X ·B2 ·B−1

1

A = A−1
2 ·A1 and B = B2 ·B−1

1

(2.24)

A ·X = X ·B (2.25)

where [
RA tA
0 1

]
·

[
RX tX
0 1

]
=

[
RX tX
0 1

]
·

[
RB tB
0 1

]
(2.26)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 30

Equation (2.25) shows the general formulation of AX = XB formulation and how it is de-
rived. Equation (2.26) shows the homogenous transformation-based matrix formulation. Equa-
tion (2.25) can be decomposed into two components represented by equations (2.27) and (2.28).
There are two mainstream solution approaches: separately and simultaneously. In separate so-
lutions approaches, equation (2.27) and equation (2.28) are considered independently, while
simultaneous approaches solve these equations at the same time.

RARX = RX RB (2.27)

RAtX + tA = RX tB + tx (2.28)

Separation method

Tsai [8] proposed a separation-based hand-eye calibration approach by adopting the AX = XB
formulation. To represent the orientation component, he converted equation (2.27) to equation
(2.2). He then solved equation (2.2) to compute RX using the least squared error method. The
translation component was then calculated by substituting the computed RX into equation (2.28).
While Tsai’s method produces satisfactory outcomes, it requires expertise for data collection
and has limitations on the distance between the camera and the calibration target. Additionally,
a solution does not exist for 0 and π because Tsai’s approach uses Euler angles as described in
section 2.3.1. To address these issues, Chou and Kamal [9] employed quaternion to represent
the rotation component in the AX = XB formulation. They decomposed the quaternion-based
rotation matrix (RX) using the Singular Value Decomposition (SVD) method and solved the
equations via the closed-form method. Finally, they computed the translation component by
replacing the computed RX into equation (2.28).

Calibration target-based approaches typically rely on the relationship between 3D-to-2D

key points on a calibration target to determine the camera poses for n frames. In contrast,
self-calibration approaches estimate the camera pose for each frame using 2D-to-2D key point
matching. Andreff et al. [10] proposed a self-calibration approach based on the AX=XB for-
mulation within the structure-from-motion paradigm. Unlike previous approaches, Andreff et

al. [10] used 2D key point matching from n different frames to estimate the camera pose. Two
methods were developed in [10]: calibration targets for key points (M1) and self-calibration
(M2). While the calibration target-based method produces similar results to those achieved
by [8], [11], and [12], the accuracy of the self-calibration method (M2) is lower, with a 17-fold
decrease compared to (M1), and compared to those achieved by [8], [11], and [12].

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 31

Simultaneous method

Separation methods are commonly used for hand-eye calibration, but they can suffer from error
transfer, where the estimation error in the rotation matrix is transferred to the translation vector.
To address this issue, simultaneous solution approaches have been developed. Unlike separation
methods, simultaneous solution methods jointly estimate the rotation and translation matrices,
thereby preventing error transfer.

Horaud and Dornika [11] tailored AX = XB formulation to eliminate explicit camera cali-
bration as follows:

MY = M
′
YB (2.29)

where Yis the unknown transformation between the robot’s end-effector to the calibration target
frame. Daniilidis [12] enhanced Horaud [11] approach by representing the rotation components
of the transformation through dual quaternion. Thereby, he transformed the hand-eye calibration
problem into a linear equation system. Then he employed the SVD to find the rotation and
translation components of the unknown transformation. [12] is the first approach that finds hand-
eye calibration parameters simultaneously using linear optimisation.

In equation (2.21), the initial perspective transformation matrix between the calibration tar-
get and the camera frame, denoted as M’, is explicitly generated and kept constant for n frames.
On the other hand, M represents the perspective transformation matrix for n consecutive frames
and varies for each frame. B is the transformation of the robot’s end-effector with respect to the
robot base in n successive movements, as in the AX = XB formulation. The rotation component
of the transformation is represented using quaternion, and the translation and rotation compo-
nents are estimated using nonlinear objective functions and the Levenberg-Marquardt nonlinear
optimisation method. Horaud and Dornika [11] eliminate transferring errors from the rotation to
translation in separation methods. In addition to, it makes a more flexible hand-eye calibration
system enabling different camera models. However, it does not provide the transformation be-
tween the robot’s end-effector and the camera because Y in [11] is the transformation between
the robot’s end-effector and the calibration target frame. Hence, it requires a linear optimisation
step to find X using the estimated Y.

Daniilidis [12] further improved Horaud’s approach by using dual quaternion to represent
the rotation components of the transformation, leading to a linear equation system. The rotation
and translation components of the unknown transformation are estimated using the SVD, and
the hand-eye calibration parameters are found simultaneously using linear optimisation.

Zhao [55] developed a convex optimisation-based hand-eye calibration approaches with two
different rotation representations: rotation matrices and quaternion. Unlike previous nonlin-
ear optimisation approaches, they employed L∞ norm-based objective function that eliminates
defining the good initial solutions in previous approaches. Their quaternion-based approach has
competitive results with classic nonlinear optimisation-based approaches while eliminating the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 32

dependence on good initial values.

2.6.2 AX=YB Formulations

The end-effector motion’s order significantly impacts the performance of AX = XB formulation-
based techniques. This implies that even little modifications to the robot’s trajectory can cause
large errors in the calibration. As a result, AX = YB has emerged as a novel formulation to
address the issues in the hand-eye calibration problem. In this formulation, Y is the geometric
transformation from the robot base to the world coordinate base, and X is the hand-eye trans-
formation. A and B stand for the pose of the robot’s end-effector and the pose of the camera,
respectively.

Equation (2.31) shows the mathematical model of the AX=YB formulation. This model can
be decomposed into two components, like in the AX=XB formulation. Equations (2.32) and
(2.33) show the rotation and translation components.

A ·X = Y ·B (2.30)

where, [
RA tA
0 1

]
·

[
RX tX
0 1

]
=

[
RY tY
0 1

]
·

[
RB tB
0 1

]
(2.31)

RARX = RY RB (2.32)

RAtX + tA = RY tB + tY (2.33)

Separation method

Zhuang et al. [13] proposed a separation-based hand-eye calibration approach by representing
rotation with unit quaternion. They solved the rotation component (equation (2.32)) using SVD.
Then they solved equation (2.33) by substituting Ry estimated previously and using linear opti-
misation. However, their method transfers errors from the rotation to the translation same as the
AX=XB formulation with separation solution approaches. Besides, their method suffers from
a singularity problem when the angle between two successive calibration frames is zero or π .
Dornaika and Horaud [14] tailored [13] approach using a closed-form solution. For equation
2.32, they established a positive quadratic objective function with a unit Quaternion the same
as in [13]. They applied these constraints to their objective function with two Lagrange multi-
pliers to guarantee unit Quertarnions for RX and RY. After minimising this function, they used
the least squared error method to solve the equation (2.33). Shah [15] employed the Kronecker

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 33

product method to represent rotation presented in equation (2.32). The author obtained the rota-
tion matrices RX and RY through the use of singular value decomposition (SVD). Subsequently,
Shah used the least squared method to calculate translations for tX and tY with estimated rota-
tions.

Simultaneous method

Dornaika and Horaud [14] presented a simultaneous solution-based approach in addition to the
closed-form method. They devised a nonlinear objective function which consists of four compo-
nents with Lagrange multipliers. The first component is the estimation error of the rotation. The
rotation was represented by the rotation matrix, which has 18 parameters. The second compo-
nent is the sum of translation errors (6 parameters). The other components are the orthogonality
constraints for RX and RY. The success of this approach highly depends on the selection of
the Lagrange multipliers. Moreover, it requires good initialising for the nonlinear optimisation
process to get the global solution.

Li et al. [56] proposed two methods to obtain hand-eye calibration parameters simultane-
ously with closed-form methods. In their first method, they represented rotation with dual
quaternion and simultaneously obtained rotation and translation components using SVD. Fur-
thermore, the authors utilised the Kronecker product to transform the problem into a new linear
equation system, which is solved using the least squares method.

Tabb and Yousef [16] proposed an iterative approach with AX=YB formulation to obtain
hand-eye calibration parameters simultaneously. This approach consists of three main steps:
initialisation, iterative optimisation, and refinement. In the initialisation step, an initial guess
for the hand-eye calibration parameters is obtained using a closed-form method. In the iterative
optimisation step, the authors iteratively refine these parameters by solving linear equations
relating to the robot and camera measurements. In the refinement step, the authors further
improve the calibration accuracy by using a nonlinear optimisation algorithm to minimise the
difference between the predicted and actual measurements.

Zhao [17] proposed two semi-convex optimisation approaches to simultaneously obtain ro-
tation and translation of unknown X and Y. The author converted the AX=YB formulation into
a semi-convex optimisation problem utilizing the Kronecker product in their first approach. In
the second approach, the semi-convex optimisation problem was reconstructed using the dual
quaternion representation.

2.6.3 Reprojection error-based approaches

The AX=XB and AX=YB methods for hand-eye calibration are limited in their ability to handle
noise and outliers coming from camera calibration. To eliminate this problem, reprojection
error-based hand-eye calibration approaches have been developed. In these approaches, X and

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 34

Y are obtained by using the reprojection error detailed in equation (2.34) without explicit A and
B.

error =
n

∑
i=1

m

∑
i=m

∥∥pi j− pi j
∥∥2 (2.34)

where n and m are the total numbers of frames (stations) and key points.
The equation represents the summation of the squared Euclidean distances between the ob-

served image coordinates pi j and the corresponding estimated coordinates pi j for all key points
m across all frames n.

Zhi and Schwertfeger [57] developed a projection error-based hand-eye calibration approach
with AX=XB formulation. They first extract features on the camera scene and match them in n

frames. The RANSAC algorithm [59] was used to eliminate outliers. They transform AX=XB
formulation into a linear equation system by using Kronecker delta and skew-symmetric matrix.
Then they obtained the initial hand-eye calibration parameters via the least-squared linear opti-
misation method. To refine these initial hand-eye calibration parameters, they applied bundles
adjustment [60] and triangulation [61] several times. They do not use any calibration target in
this method. However, this method assumes that the camera’s intrinsic parameters are known.

Ali et al. [58] proposed several approaches for hand-eye calibration using unit quaternion-
based rotation representation. They considered AX=XB and AX=YB formulations with differ-
ent error metrics, including the real error metric (homogeneous transformations) and the pro-
jection error. To improve the accuracy of their projection error-based methods, they proposed a
nonlinear objective function that incorporates the camera’s internal and external parameters. In
their paper, Ali et al. provided a comprehensive review and comparison of existing methods for
simultaneous robot-world-hand-eye calibration with their proposed approaches. To evaluate the
performance of their methods, they created six datasets consisting of three real-world and three
simulation scenarios with varying image resolutions and numbers of collected poses. Their ap-
proaches performed well in some specific scenarios and sub-evaluation metrics, outperforming
other hand-eye calibration methods. However, these approaches were not as flexible and robust
for all scenarios, and their performance varied depending on the calibration dataset and the spe-
cific evaluation metric. Specifically, their projection error-based methods struggled to handle
noisy data and could be sensitive to initialisation.

Tabb and Yousef [16] conducted a study to investigate the impact of different rotation rep-
resentation methods on the accuracy of hand-eye calibration. They developed two nonlinear
objective functions that consider the camera’s intrinsic and extrinsic parameters, which can be
used for separate or simultaneous solution approaches. They employed quaternion, Euler angles,
and axis-angle representations to parameterise these objective functions. Their study pointed
out that the choice of rotation representation significantly impacted the accuracy of both real
metrics and reprojection errors. Specifically, they found that the quaternion-based method per-
formed best, while the axis-angle method performed the worst. However, they noted that the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 35

performance of each method was highly dependent on the quality of the initial solution. This is
because their nonlinear objective functions require nonlinear optimisation solvers, and the initial
solution heavily influences the success of these solvers.

2.7 Deep Learning-based Hand-eye Calibration

While mathematical optimisation-based (classic) hand-eye calibration approaches have been
successful for fixed external camera configurations, they lack flexibility when the camera’s
pose changes with respect to the robot base or end-effector. Deep learning has emerged as a
promising approach for developing flexible hand-eye calibration systems because of its ability
to generalise from data and fast approximation capabilities when there are enough training sam-
ples. Compared to classical approaches, deep learning-based hand-eye calibration methods can
accommodate changes in camera configuration and provide more accurate and reliable calibra-
tion results. These methods typically require a large amount of data for training, which can be
time-consuming and expensive to collect. However, recent data generation techniques and hard-
ware acceleration advancements have made obtaining the necessary data more accessible and
cost-effective.

The literature on deep learning-based hand-eye calibration approaches is relatively sparse
compared to classical approaches. This is attributed to the fact that, in the early stages of hand-
eye calibration research, the application areas, such as robotic manipulation, 3D reconstruction,
and augmented reality, did not require a high degree of flexibility, and classical approaches
yielded satisfactory results for these stationary systems. Robotic systems require a degree of
flexibility, resulting in flexible hand-eye calibration systems. To meet these requirements, deep
learning-based approaches have gained attention and are being developed to provide flexible
and online calibration systems that can adapt to varying environmental conditions and system
dynamics.

Lambrecht [62] proposed a deep learning-based approach to make a flexible hand-eye cali-
bration approach. He employed the faster R-CNN (Region-based Convolutional Network method)
[63] method to find the bounding box of key points. They selected the robot joints as key
points because their 3D pose is known through the robot kinematic chain. After obtaining 2D
key points, their corresponding 3D and the camera’s intrinsic parameters were given to the
Perspective-N-Point (PnP) [64] algorithm to find hand-eye calibration parameters. PnP is an
algorithm enabling to derive the camera pose, encompassing both translation and orientation,
from a set of n 3D points in real-world space and their corresponding 2D projections within the
image plane. This derivation relies on the geometric relationships inherent to these n points.
This method uses deep learning as a feature detection algorithm. Moreover, although it makes a
more flexible hand-eye calibration system, empirical results demonstrate a relatively diminished
efficacy compared to conventional approaches. Lee et al. [18] presented the same method as

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 36

in [62].However, they devised an encoder-decoder-based network to obtain 2D key points on the
robot joints. Unlike [62], they trained their network only with simulation data and employed
domain adaptation techniques to deploy the trained method on real robotic environments.

While [62] and [18] employ deep learning as a feature detection algorithm, it is possible to
use deep learning architectures as a direct method for estimating hand-eye calibration parame-
ters. Valassakis et al. [19] developed three end-to-end deep learning-based architectures for this
purpose. In their first method, they used a deep learning-based regression architecture to process
RGB images and estimate hand-eye calibration parameters directly. Their network produced
nine parameters, the first three representing the translation component and the remaining six
converted to the unit quaternion using a 6D representation [32]. In their second approach, they
employed a deep learning architecture to estimate 2D key points on the robot’s end-effector and
then used the PnP algorithm to obtain hand-eye calibration parameters. In their final approach,
they used three networks for the depth map, segmentation mask of the robot’s end-effector, and
initial hand-eye calibration parameters. These networks, together with the camera’s intrinsic
parameters and the model of the robot end-effector, were combined, and the Iterative Closest
Point (ICP) [65] approach was used to refine the hand-eye calibration parameters estimated by
the networks. All three approaches were trained on simulated and real-world environments, and
the direct regression architecture produced the best results, which implies that end-to-end deep
learning-based architectures have a vast potential to develop flexible hand-eye calibration sys-
tems. This paper is the state-of-the-art result of deep learning-based hand-eye calibration, and
their results are comparable with the classic approaches. Their results also indicate that orien-
tation representation is crucial for deep learning architecture, similar to in classical approaches.
Continuity and the one-to-one relationship between the orientation representation space and the
3D Cartesian Space must be ensured to train deep learning architectures smoothly.

Indeed, the predominant paradigms within deep learning-based methodologies [18, 62] for
external camera configuration in hand-eye calibration involve using deep learning for feature
extraction. Integrating auxiliary algorithms complements this practice to deduce the requisite
calibration parameters. Consequently, any inaccuracies in feature detection can potentially be
propagated to the subsequent additional algorithm, influencing the overall performance of these
approaches.

2.8 Continual Learning

Classic deep-learning architectures have exhibited superior performance to human capabilities
in specific tasks, notably evidenced in domains such as Atari games [66] and object recog-
nition [67]. However, their training paradigm is predominantly offline, characterised by the
availability of the entire training dataset at the inception of the training process. Subsequently,
the trained model remains static and is not subject to continuous updates during testing. Con-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 37

sequently, their adaptability to novel streaming data scenarios is constrained, particularly in the
face of evolving data distribution dynamics over time [68]. As human beings, we are capa-
ble of learning new tasks sequentially while preserving previously known concepts. However,
when the stream data are added to offline trained models, classic deep learning approaches face
the catastrophic forgetting problem, which means that learned concepts are gradually forgot-
ten. This catastrophic forgetting problem is also referred to as stability-plasticity [69], where
stability and plasticity refer to retaining previous knowledge and the ability to integrate new
observations.

Continual Learning (CL) has emerged as a powerful method to address the stability-plasticity
dilemma in machine learning. CL algorithms enable the model to learn from a continuous stream
of new data, which can be categorised into three primary scenarios [70]. The first scenario is
task-incremental learning, where the model learns isolated tasks sequentially over time from new
data. For instance, the model may learn sub-tasks such as reaching, picking, and placing objects
incrementally in robotic manipulation tasks. The second scenario is domain-incremental learn-
ing, where the model adapts to new observations with a different distribution than the original
training data. This scenario is characterised by concept drift, where the input data distribution
changes over time. An example of this scenario could be adapting an object detection model
for autonomous driving to different weather conditions. The third scenario is class-incremental
learning, where the model needs to classify an increasing number of classes over time. In this
scenario, the model must simultaneously deal with concept drift and learn new class labels for
the new observations.

CL approaches can be classified into three categories to handle the aforementioned scenar-
ios: parameter isolation (architectural design), replay-based (memory), and regularisation-based
approaches. Parameter isolation (architectural design) methods aim to handle the stability-
plasticity problem by dedicating each task to different parameters. These methods can be cat-
egorised as dynamic and static models. In dynamic models, there is no limit to architecture
size, and when a new task is introduced, the network is expanded. Meanwhile, the weights
associated with previous tasks are frozen [71] or copied [72] to overcome the stability (catas-
trophic forgetting) problem. Static models are fixed-size architectures, and each task has its
dedicated weights [73, 74]. Replay methods sampled previously used raw data while updating
the model with new stream data to overcome the stability problem. The most straightforward ap-
proach is naive memory [75], which randomly stores a subset of the previous data. Besides, the
nearest-mean classifier [76], reservoir sampling which is a uniform distribution-based random
selection [77], and their combination [68] are the main approaches for selecting samples from
previous data. Regularisation-based approaches modify the loss functions to penalise changes
in important weights. This method has two main strategies: estimation importance of the pa-
rameters and knowledge distillation. The parameters importance estimation strategy aims to
detect important weights by employing Elastic Weight Consolidations [78, 79], Memory Aware

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 38

Synapses [80], or Deep Model Consolidation [81]. The second strategy is to use the knowl-
edge distillation function, which enforces preserving previously consolidated knowledge while
learning a new task [82, 83].

To best of the author’s knowledge, there is no study for hand-eye calibration using Continual
Learning. However, Wang et al. [84] developed a Continual Learning-based visual localisation
(camera pose estimation) approach. In [84], they trained their network sequentially with a novel
buffer system. They combined reservoir and class-balance [85] buffer methods to overcome
the catastrophic forgetting problem. The reservoir method enables them to sample previous
data with uniform distribution, while the class-balance method ensures that selected samples
represent all scenes.

By inspiring this study [84], it is possible to design a deep learning-based hand-eye calibra-
tion approach using Continual Learning, which extends its learned calibration space using new
observations over time. The buffer system could store previous hand-eye calibration parameters
and corresponding data, and the network could be trained sequentially outside of the learned
space while also revisiting and fine-tuning previously observed space.

2.9 Discussion

The literature review summarises and compares the existing hand-eye calibration approaches.
Section 2.2 presents the adopted hardware, software and technology. A brief background is
provided to understand the hand-eye calibration problem in Section 2.3. Hand-eye calibration
consists of three main components: camera, robot, and hand-eye calibration approaches.

Section 2.4 details the current camera calibration approaches. The marker-based approaches,
such as checkerboard, chessboard, and QR-codes, have been widely adopted at the early stage of
the research. Checkerboard and chessboard calibration targets are not suitable for flexible cam-
era calibration scenarios because they must be attached to the robot end-effector or placed in
world space for data collection steps. After data collection, they must be removed, and when the
camera pose changes, all these steps must be repeated from scratch. Although QR-code-based
calibration targets are more flexible than the classic calibration targets, they may be occluded
with the robot joint while robotic manipulation is performed. Moreover, QR-code-based ap-
proaches is too sensitive to their size and highly affected by lighting conditions.

Self-calibration-based approaches have been developed over the last decades, and they have
huge potential to develop flexible and autonomous calibration systems. However, their current
success is not comparable with the marker-based approaches. These methods use the environ-
ment’s feature points or natural landmarks to estimate the camera’s intrinsic parameters. How-
ever, they require careful data collection, pre-processing, and post-processing steps to ensure
accurate results. These methods are more flexible than marker-based approaches but are highly
dependent on the environment and the camera’s field of view. They also require more com-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 39

putational power, and the accuracy highly depends on the feature detection algorithms. Deep
learning-based approaches have been recently introduced to overcome these limitations and have
shown promising results.

Section 2.5 provides an overview of the literature on robot calibration, an important aspect
often assumed to be known in hand-eye calibration research. However, accurate robot cali-
bration is crucial for the success of hand-eye calibration approaches that rely on the AX=XB
and AX=YB formulations. Deviations in robot calibration can introduce significant errors into
the hand-eye calibration results, making it essential to address this issue. Deep learning-based
approaches have the potential to mitigate such errors by leveraging large amounts of data and
learning from them, thereby reducing the dependence on precise robot calibration knowledge

Section 2.6 provides a comprehensive overview of the evolution of classic hand-eye cali-
bration literature and presents an insightful analysis of the nature of the problem. The AX=XB
formulation established the relationship between the end-effector and camera configurations and
was the first and most straightforward method proposed to solve the hand-eye calibration prob-
lem. Separation-based and simultaneous solution approaches have been proposed to obtain the
hand-eye calibration parameters using this formulation. However, separation-based approaches
tend to transfer errors from the orientation component to the translation component, while si-
multaneous solution approaches require good initialisation to converge to the optimal solution.
Moreover, AX=XB formulation is sensitive to the motion of the calibration target or the robot’s
end-effector, which limits its flexibility in handling camera pose changes. To address this limita-
tion, AX=YB formulation-based approaches have been developed, which do not depend on the
calibration target or robot motion. However, these approaches also have separation and simul-
taneous solution methods, which have their drawbacks, similar to AX=XB formulation-based
approaches. Additionally, reprojection error-based approaches have been proposed to minimise
errors resulting from camera calibration. Despite their advantages, classic hand-eye calibration
approaches lack flexibility in dealing with camera pose changes.

In conclusion, each formulation has its own advantages and limitations. Researchers have
proposed various approaches to address the challenges associated with hand-eye calibration.
However, the lack of flexibility in handling camera pose changes remains a significant limitation
of classic hand-eye calibration approaches.

Section 2.7 provides a detailed description of deep learning-based hand-eye calibration ap-
proaches. Early attempts of using deep learning involved using it as a supplementary tool to
extract, detect, and track key points. However, Valassakis et al. [19] introduced an end-to-end
deep learning-based hand-eye calibration approach, which demonstrated that deep learning can
serve as a hand-eye calibration model.

Moving on, Section 2.8 provides an overview of the Continual Learning literature, which has
a high potential to expand the learned calibration space via new observations while preserving
previously acquired knowledge. Although no study has investigated hand-eye calibration prob-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 40

lems using a Continual Learning approach, the lifelong learning paradigm of Continual Learning
can aid in developing more flexible and autonomous hand-eye calibration systems.

Chapter 3

Deep Learning-Based Hand-eye
Calibration Approach

3.1 Introduction

This chapter introduces a novel approach to solve the hand-eye calibration problem using deep
learning. The approach is designed to enable a hand-eye calibration system that can recalibrate
itself without the need for data recollection. To achieve this, the hand-eye calibration problem
was divided into three sub-tasks. In the first sub-task, deep learning was used to estimate the
hand-eye calibration parameters by processing known transformations of a single reference point
selected on the robot end-effector with respect to both the robot and camera base, assuming that
the camera and robot calibration were already known. In the second sub-task, deep learning was
used for the camera calibration, using the single reference point pose with respect to the robot
base and corresponding RGB and depth images in n different robot end-effector configurations
and m different camera configurations, with the assumption that only the robot calibration is
known. Notably, this approach does not require a calibration target. Finally, deep learning
was utilised to estimate the hand-eye calibration parameters by tracking a single reference point
using a 3D vision system, utilising RGB and depth images and the pose of the reference point
over different camera and robot end-effector configurations as inputs.

The effectiveness of the approaches mentioned above were evaluated through experiments
conducted in two robotic testbeds (a Universal Robot and a Rethink Baxter), as well as a sim-
ulated environment, as illustrated in Figure 3.1. In the simulation environment, a stereo vision
camera was placed in 108 different locations, and for each camera position, 50 different end-
effector configurations were executed to collect samples. In the real-world experiments, 24 and
19 locations were chosen to cover the camera space, while 100 and 85 robot end-effector con-
figurations were executed to cover the robot space for the Universal Robot 3 and the Rethink
Baxter Robot, respectively.

41

CHAPTER 3. DL-BASED HEC APPROACH 42

Figure 3.1: (a) and (b) depict the two real-world robotic testbeds and (c) present the simulated
environment used in this study, as observed from the camera view.

3.2 Motivation and Objectives

Early approaches that have successfully solved the hand-eye calibration problem relied on offline
data collection to acquire the required poses of the camera and robot’s end-effector to perform
hand-eye calibration. The main limitation of offline hand-eye calibration approaches is that they
are not flexible against camera pose changes with respect to the robot base after obtaining the
geometric transformation model between the camera with respect to the robot’s world coordinate
frame. To overcome this problem, online hand-eye calibration approaches [86] [18] have been
developed over the last decade, the most recent leveraging deep learning. Although current hand-
eye calibration methods have significant success, a robust and flexible method that recalibrates
the system without data recollection and is easily deployable to other robotic environments has
not been proposed as described in Chapter 3.

This chapter hypothesises that a hand-eye calibration approach, which recalibrates external

camera pose by observing a single reference point on the robot end-effector through a 3D vision

system, enables a robot to perform robotic manipulation and grasping tasks by being adaptable

and robust to environmental changes. Moreover, it has the same success on a real robotic ma-

nipulation task while reducing the computational complexity and increasing the repeatability

CHAPTER 3. DL-BASED HEC APPROACH 43

Figure 3.2: The geometric representation of the proposed hand-eye calibration approach. The
homogeneous transformation between the robot base and the camera is represented by X. A1....n
represents the pose of the reference point with respect to the robot base, while B1....n are the
camera pose with respect to the reference point.

compared to classical approaches.

The contributions of this chapter are threefold:

1. It is demonstrated that it is possible to estimate the camera pose by tracking a single
reference point defined by the robot’s kinematic chain and automatically detecting this
reference point using a 3D vision system.

2. A deep learning-based hand-eye calibration approach with single RGB and depth images
has competitive accuracy for position and orientation errors than classical hand-eye cali-
bration methods and the state-of-the-art.

3. It is shown that it is possible to carry out hand-eye calibration without explicit camera
extrinsic calibration (i.e. camera pose).

CHAPTER 3. DL-BASED HEC APPROACH 44

3.3 Methodology

Figure 3.2 shows the hand-eye calibration formulation in this paper. A, B, and X are the poses
of the reference point with respect to the robot base, the pose of the camera with respect to
the reference point, and the geometric transformation between the camera and the robot base,
respectively. The poses of the end-effector or reference points and the corresponding poses of
the camera in consecutive frames should be known for hand-eye calibration. Therefore, three
primary research questions were posited to evaluate the feasibility of deep learning-based ap-
proaches as a solution for hand-eye calibration

Q1 In contrast to closed-form hand-eye approaches, is it possible to find the geometric trans-
formation between the camera and the robot where camera and robot calibrations are
known in advance by using a neural network?

Q2 Is it possible to find the camera’s pose with respect to the reference point by observing
the motions of this reference point via a 3D vision system and using deep learning as a
calibration model?

Q3 Is it possible to carry out hand-eye calibration where camera calibration is not known by
observing the motions of the reference point via a 3D vision system and employing a deep
learning-based regression architecture as a model?

The experiments were conducted in a simulation environment for all research questions,
while for Q3, experiments were also conducted in the real world due to the unavailability of
ground truth data for Q1 and Q2.

The objective of Q1 was to assess the feasibility of a deep learning-based approach as a hand-
eye calibration model. In this experiment, it was assumed that the robot and camera calibration
were known, and a deep learning-based regression architecture was designed to take the known
transformations of the reference point (A) and camera pose (B) as inputs and output the unknown
hand-eye transformation (X).

The applicability of a deep learning-based regression model for camera calibration was ex-
plored in Q2. In this experiment, the extrinsic camera parameters were unknown, unlike in Q1.
These parameters were estimated with respect to the reference point by tracking the reference
point using a 3D vision system. Additionally, the regression model used in Q1 was extended to
input the pose (A) of the reference point with respect to the robot’s world frame and the corre-
sponding RGB and depth images. This architecture outputted the pose (B) of the camera with
respect to the robot’s world reference frame.

Finally, Q3 aimed to carry out hand-eye calibration directly using a deep learning-based
regression architecture. In this configuration, the robot calibration and the camera’s intrinsic
parameters were assumed to be known, while the camera pose and the geometric transformation

CHAPTER 3. DL-BASED HEC APPROACH 45

between the camera and the robot base were unknown. A deep learning-based regression archi-
tecture was trained using poses of the reference point (A) in n frames and corresponding RGB
and depth images as inputs. The architecture estimated the unknown geometric transformation
(X). The experimental setup and network architecture used for Q3 are illustrated in Figure 3.1.

3.4 Simulation Experiments

3.4.1 Data Generation

A virtual Universal Robot 10 (UR10) was utilised in the PyBullet simulation environment, along
with a stereo vision camera. The data for the experiments was generated by placing the cam-
era over 108 different locations (depicted in Figure 3.3) in the PyBullet environment, and the
robot end-effector was moved to 50 different configurations for each camera pose. For the first
research question (Q1), the reference point poses with respect to the robot (A) and the cam-
era base (B), and the homogeneous transformation between the robot base and the camera (X)
were recorded for each end-effector configuration. For the second research question (Q2), RGB
and depth images were captured along with the reference point poses with respect to the robot
base (A), and the homogeneous transformation (B) between the camera and the reference point
(camera’s extrinsic parameters with respect to the reference point) for each end-effector config-
uration. Finally, for the third research question (Q3), RGB and depth images were captured for
each end-effector configuration along with the geometric transformations of A and X.

The transformation matrices X, A, and B consist of a seven-element array where the first
three elements represent the position, and the last four elements are the orientation parameters
(unit quaternion) of the transformation. The RGB images are 16− bit with a resolution of
1024x1024 pixels, while the depth images are also 16− bit with a resolution of 1024x1024
pixels. Table 3.1 summarises the generated data in the simulation environment for each research
question.

Table 3.1: Generated data in the simulation environment

Simulation Environment UR 10
Research Question Q1 Q2,Q3
Camera Configurations 108 108
End-effector Configurations 50 for each cam. 50 for each cam.

Data 5300 A,B and X (ground-truth)
5300 RGB and depth images,

A, B, and X (ground-truth)

CHAPTER 3. DL-BASED HEC APPROACH 46

Figure 3.3: This figure shows the 108 camera positions (red dots) and the robot centre (green
star) in the simulation environment.

Figure 3.4: This figure depicts the research design for addressing Q1. Subfigure (a) shows data
collection with camera positions and end-effector configurations. Subfigure (b) presents the
distinct neural network for position and orientation, providing outputs for unknown hand-eye
transformations (X).

CHAPTER 3. DL-BASED HEC APPROACH 47

Figure 3.5: This figure outlines the research design for Q2 and Q3. In subfigure (a), data
collection involves diverse camera positions and end-effector setups. Subfigure (b) showcases
the deep learning architecture using U-Net encoders for RGB and depth data. Concatenated with
known A transformation, the network separately focuses on position and orientation. Trained
network outputs B (Q2) or X (Q3).

3.4.2 Network Architectures

A deep learning-based regression architecture (as shown in Figure 3.4(b)) was developed for
Q1 to estimate the geometric transformation between the robot base and the camera. The archi-
tecture was designed with separate training for the position and orientation components of the
transformation due to their differing solution spaces, i.e., translation is in millimeter space while
orientation is in radian space. The network consists of three fully connected layers with a Rec-
tified Linear Units (ReLU) [87] activation function and is trained using meters and radians for
position and orientation, respectively. The architecture starts with 512 neurons, chosen through
empirical experimentation, and systematically halves for each layer except the last layer, which
is three and four for position and orientation, respectively. The architecture was trained for 50
epochs using Adam optimiser [88], with a learning rate of 1e−3 and a batch size of 100.

For Q2 and Q3, a deep learning-based regression architecture was also developed. This ar-
chitecture takes as inputs RGB and depth images of dimensions 256x256, as well as the poses
of the reference point with respect to the robot base. The architecture is inspired by the U-Net
architecture [89], with the encoder part tailored to extract features from RGB and depth images
separately (as shown in 3.5(b)). The encoders are composed of two consecutive Conv2D-3x3
layers, each with a stride of 1 and no padding, succeeded by a subsequent Maxpool-2x2 layer for
dimensionality reduction. The output is then subjected to the ReLU activation function. The en-
coded features for RGB and depth images are then concatenated with the known transformation
A, and a fully connected network with three hidden layers is employed to estimate the translation
or orientation component of the unknown transformation B and X for Q2 and Q3, respectively.
The network is trained separately for position and orientation for both Q2 and Q3 due to differ-
ences in their solution spaces. The network is trained for 20 epochs with 4 mini-batches and a

CHAPTER 3. DL-BASED HEC APPROACH 48

learning rate of 1e−3 using Adam optimiser [88].
The direct representation of the camera’s position with respect to the robot base in 3D Carte-

sian space is obtained from the last three neurons in the deep learning-based regression archi-
tectures for position estimation. However, for orientation estimation, the last ten neurons are
converted to a 4×4 symmetric matrix S(θ) (as detailed in Equation 3.1), which is then passed
through a Quadratically Constrained Quadratic Program-based model (presented in [33]) to pro-
duce a unit quaternion representing the camera’s orientation in 3D Cartesian space. The double
cover problem between the quaternion and 3D Cartesian Space (detailed in chapter 2.3.1) was
resolved by handling this representation.

S(θ) =


θ1 θ2 θ3 θ4
θ2 θ5 θ6 θ7
θ3 θ6 θ8 θ9
θ4 θ7 θ9 θ10

 (3.1)

3.4.3 Loss Function and Metric

The models for position estimation were trained using the Mean Square Error (MSE) metric.
The accuracy of the solution in the original units was evaluated using the Root Mean Square
Error (RMSE). The RMSE values for position estimation were converted to millimetres for
interpretation. For orientation estimation, the chordal loss function (equation 3.3) described
in [33] was utilised.

dchord(R,Rgt) = ∥Rgt−R∥F (3.2)

To interpret the orientation parameters, they were converted to degrees using equation 3.4.

Lchord(R,Rgt) = dchord(R,Rgt)
2 (3.3)

In equation 3.2, R and Rgt represent estimated and ground-truth unit quaternions, respec-
tively, and F is the Frobenius norm.

angle = 4∗ sin(0.5∗min(∥Rgt−R∥F ,∥Rgt +R∥F))
−1 ∗180/π (3.4)

3.4.4 Experimental Results

The networks were trained three times for each research question using the parameters men-
tioned in Section 3.4.2. 84 and 24 camera poses were used as training and testing sets. The
mean and standard deviation of all research questions’ position and orientation results are pre-
sented in Table 3.2. A direct comparison of Q2 with Q1 and Q3 is not possible because Q2

CHAPTER 3. DL-BASED HEC APPROACH 49

Table 3.2: Experimental Results in Simulation

Position Error (mm) Orientation Error (degree)
Mean 1 Std Mean 1 Std

Q1 0.415 0.016 0.036 0.003
Q2 5.44 0.343 0.563 0.111
Q3 1.69 0.11 1.91 0.28

enables acquiring the camera’s extrinsic parameters only, while Q1 and Q3 are hand-eye cali-
bration models.

The positional and orientational errors for Q1 were 0.42 mm and 0.036 degree, respectively.
These results indicate that a deep learning-based regression architecture could serve as a hand-
eye calibration model in situations where the camera and robot calibration are already known.
As for Q3, the positional and orientational errors were 1.69 mm and 1.91 degree, respectively,
which is slightly worse than Q1. However, the model can implicitly solve unknown camera
calibration, making the hand-eye calibration system more flexible and deployable in real-world
scenarios.

Regarding Q2, the position error was 5.44 mm (standard deviation, 0.343 degrees), while
the orientation error was 0.56 degrees (standard deviation 0.112 degrees). These results are
competitive, but using multiple reference points, as in our approach, could potentially improve
the success rate of explicit camera pose estimation. However, the estimation of camera extrinsic
parameters falls outside the scope of this thesis, as we only considered the hand-eye calibration
problem. Further research could investigate the impact of multiple reference points on camera
pose estimation to provide more evidence supporting Q2. It should be noted that camera ex-
trinsic parameters in Q2 are with respect to the reference point, unlike Q3, where the camera
extrinsic’s parameters are with respect to the robot base (hand-eye calibration).

It should be noted that the developed deep learning-based regression architecture is not
closed-form optimisation and it is an iterative optimisation approach. Hence, even in the simu-
lation environment, it is not expected that it directly produces precisely zero error for the testing
set.

3.4.5 Ablation Study

Table 3.3 presents the translational and orientational errors of a fusion model used for simul-
taneous estimation using mean squared error (MSE). In contrast to the previous model, which
estimates these components separately, this model estimates them together. However, the re-
sults indicate that the errors in the fusion model are worse than those in the separate solution
approach, which are presented in Table 3.2. Specifically, the orientation error in the fusion
model is 4.416 degrees, which is twice of the separate model (1.79 degrees). This difference
reveals that considering translation and orientation parameters simultaneously is challenging for

CHAPTER 3. DL-BASED HEC APPROACH 50

deep learning models because the solution spaces for translation and orientation are different, as
mentioned in Section 3.4.2.

It is crucial to carefully consider and systematically design deep learning models, especially
when tackling complex tasks such as hand-eye calibration. While the simultaneous estimation
of the translation and orientation components of calibration parameters might appear straightfor-
ward, it is essential to understand each parameter’s inherent constraints and solution spaces and
choose the most appropriate approach based on the specific task requirements. This ablation
study found that separately estimating translation and orientation parameters produced better
results than the fusion model, highlighting the importance of thorough analysis and deliberate
selection of deep learning model architectures for optimal performance.

Table 3.3: Mean and standard deviation of the fusion approach, which estimates the translation
and orientation parameters simultaneously, where training and testing are 87 and 21 camera
poses, respectively.

Fusion
Components Mean STD
Translation (mm) 2.02 0.126
Orientation (degree) 4.416 0.685

Figure 3.6 illustrates the translation error for unseen camera poses as a function of the train-
ing and testing dataset sizes. The horizontal axis (x-axis) denotes the size of the training dataset,
while the testing dataset size equal to the difference between 108 (total camera poses) and the
training dataset size. The results indicate that as the size of the training dataset increases, the
translation error decreases. The optimal training size for representing 108 camera configurations
is 45, which has an error of approximately 3.65 mm. This error is nearly the same as that of the
training size 87, which has an error of approximately 1.69 mm.

After using around 85% of the training dataset (about 80 camera poses), Figure 3.6 shows
a clear drop. This drop indicates that the balance between training and testing poses is not
even, with fewer camera poses used for testing. While the decrease in testing error might seem
positive, it is important to note that this might not accurately predict how the model will perform
with new, unseen data. The uneven distribution of testing poses could introduce bias and affect
how well the model can handle different situations. So, while the testing error goes down, it is
essential to consider the imbalance in the testing data distribution.

Figure 3.7 compares the testing orientation error across different training sample sizes for
two representations: pure quaternion and 10D quaternion. The results indicate that the 10D
representation outperforms the pure quaternion representation, with an error that is 2.5 times
smaller for each training sample size. This performance gap can be attributed to the double
cover problem, which arises from the fact that pure quaternion and 3D Cartesian space are not
one-to-one mappings, and this problem is resolved in the 10D representation. More information
on this problem can be found in Chapter 2.3.1.

CHAPTER 3. DL-BASED HEC APPROACH 51

Figure 3.6: This figure displays the testing error of the translational component as a function of
the training dataset size.

3.5 Real-world Experiments

3.5.1 Data Generation

Universal Robot (UR3) robotic testbed The UR3 robot was equipped with a Shadow Modu-
lar Grasper [90] featuring nine degrees of freedom (three fingers and three joints for each finger),
of which the last link of one of these fingers was selected as the reference point. The UR3’s re-
peatability was reported to be 0.1 mm. Next, the Stereolab’s ZED camera [28] was placed in 24
different locations around the robot’s workspace, and the Robot Operating System (ROS) [23]
was employed to control the robot and connect the camera. Tsai hand-eye calibration method [8]
was used for each camera pose to obtain a baseline for the geometric transformation between the
robot base and the camera. Tsai hand-eye calibration was repeated five times for each camera
configuration, and the best calibration result was used as the input to the regression neural net-
work. The rationale for repeating the calibration five times was due to the dependency of Tsai’s
calibration on the quality of pose sequences. Table 3.4 shows the average of the best of these
five hand-eye calibration attempts for the UR3.

Subsequently, the robot was allowed to plan for 100 different robot end-effector poses for
each camera location, and RGB and depth images were captured using the camera while record-
ing the poses of the reference point with respect to the robot base using the ROS Transform
Library (TF) [91]. In total, 2400 RGB and depth images of 1920×1080 image resolution were
captured.

CHAPTER 3. DL-BASED HEC APPROACH 52

Figure 3.7: This figure shows the performance of the pure and 10D quaternion representation
according to the training size.

Table 3.4: Average mean and std of reprojection error (pixel) for m camera configuration by
employing Tsai hand-eye calibration method (ground-truth) on UR3 testbed

UR3 (pixels)
Mean 1 Std

1.04 0.42

The Rethink Baxter robotic testbed The Baxter robot with electric parallel grippers was
used as a second real robotic environment. Baxter has reported repeatability in the left and right
arm of 2.9 mm and 3.3 mm, respectively [92]. As it can be observed, the UR3 has better repeata-
bility than Baxter. This repeatability difference allows us to quantitatively measure whether our
approach can accommodate wear and tear, as Baxter’s compliant actuation system inherently
introduces errors in the robot’s end-effector positioning.

The Seterolab’s ZED camera was placed in 19 configurations, and Tsai hand-eye calibration
was employed to get a baseline for each camera pose. Tsai’s hand-eye calibration was carried
out five times for each camera configuration, and the best calibration was used as the input to the
neural network (detailed in Table 3.5). The right finger of the right gripper in Baxter was selected
as the reference point for Q3. The ROS and TF library were employed to control the robot and
get the reference point transformations. For each camera configuration, the end-effector on the
right arm of the Baxter robot was allowed to move to 85 different poses for each camera location.
RGB and depth images were captured, and the geometric transformation between the robot base
and the reference point was recorded. In total, 1615 RGB and depth images were collected with

CHAPTER 3. DL-BASED HEC APPROACH 53

Table 3.5: Average mean and std of reprojection error (pixels) for m camera configuration by
employing Tsai hand-eye calibration method (ground-truth) on the Baxter testbed

Baxter (pixels)
Mean 1 Std

2.41 0.97

an image resolution of 1920×1080 pixels.

3.5.2 Network Architecture

A deep learning-based regression architecture is developed for Q3, similar to the architecture
designed for the simulation environment in Section 3.4.2 (Fig.3.5(b)). However, to handle real-
world complexity, the number of double Conv2D-3x3 layers was increased from two to five.
While the shallow network proved to be highly effective in the simulation environment, the
deep network was deemed more suitable for real-world experiments involving various noise
sources, such as illumination and image acquisition. The network was trained for 20 epochs
using the Adam optimiser with four mini-batch and a learning rate of 1e− 4 for position and
orientation parameters estimation. To account for variation from the optimiser, the network was
trained three times with the same seed, and all training repetitions were recorded in the results.

3.5.3 Real-world Results

Table 3.6 summarises the position and orientation errors based on ground-truth coming from
Tsai’s hand-eye calibration approach [8] for Q3 in the Baxter and UR3 robotic testbeds. The
positional and orientational parameters derived from Tsai’s hand-eye calibration approach have
been treated as the reference standard. Following multiple iterations of data collection, this
methodology demonstrates commendable outcomes within specific camera and robot base con-
figurations. Our deep learning-based regression architecture demonstrated 2.07 mm and 5.8
degrees of error for translation and orientation, respectively, in the test set for the UR3 robotic
environment. In the case of Baxter, our approach yielded 4.54 mm and 9.2 degrees of error in
the test set for translation and orientation, respectively. As anticipated, the difference between
the UR3 and Baxter calibration results was attributed to Baxter’s inherent inaccuracy. Never-
theless, our approach doubled the error but remained below similar approaches presented in the
literature (refer to Table 3.7).

Table 3.6: Experimental Results for Baxter and UR3 robots

Position Error (mm) Orientation Error (degree)
Mean 1 Std Mean 1 Std

Baxter 4.543 0.081 9.2 1.35
UR3 2.07 0.331 5.8 1.02

CHAPTER 3. DL-BASED HEC APPROACH 54

The indirect error function presented and used in [8, 19] is employed to make a fair com-
parison with the literature because the results are highly dependent on the experimental setup,
the robot and the camera. However, the use of this error function shows the repeatability of a
hand-eye calibration approach that is independent of the robotic environment. Specifically, the
indirect error function is given in equation 3.5.

εstd =
1
K

K

∑
k=1

1
m

m

∑
j=1

(
1
n

n

∑
i=1
∥x−µ∥2

2

) 1
2

(3.5)

where k, m, n, and µ are the neural network training repetitions (see Section 3.5.2), the total
number of unseen camera configurations, the total number of end-effector configurations for
each camera confıguration, and the mean of predicted camera positions or orientations.

Table 3.7 presents a comparative analysis encompassing the baseline, the state-of-the-art
approaches, and the proposed approach, focusing on the metric of repeatability error. The values
depicted therein signify the mean deviation of positional error from the corresponding mean
position within a given camera and robot pose configuration for a specified range of camera
poses (m in total). The first two rows summarise the best Tsai’s hand-eye calibrations in the
experiments for the Baxter and UR3 robots. The repeatability error of the Tsai’s approach
[8] is 96 times higher than that of the DL-based approach. This significant difference can be
attributed to two main factors. Firstly, the classic approach transfers the rotational error into
the translational error, as it solves the rotation component (detailed chapter 2.6) first and then
substitutes the solution of the rotation to solve the translation component. Secondly, the success
rate of this approach is highly dependent on the selection of calibration target poses. Lee et

al. [18] and [19] report an indirect error of 27.4 mm and 10.4 mm with respect to their sample
mean, respectively. This represents a difference of 23.45 mm and 6.45 mm with respect to the
approach in the UR3. It should be noted that Lee et al. [18] and [19] do not use a reference
point that is aligned to the robot’s kinematic chain but instead relies on the captured images
to infer the hand-eye calibration parameters. The approach explicitly defines a reference point
from which a neural network can create an embedding that considers the robot’s end-effector
and the kinematic chain (i.e. robot calibration in chapter 2.5).

The achieved reduction in repeatability error, as observed through the proposed DL-based
approach, implies a commendable enhancement in the calibration accuracy. While this enhance-
ment aligns with the trend observed in similar DL-based calibration approaches, there remains
the need to delve into the complexities inherent to these methodologies, including their po-
tential limitations when applied in dynamic environments. The substantial repeatability error
observed in Tsai’s approach across both robotic testbeds implies susceptibility to yielding im-
precise calibration parameters. This underscores that multiple iterations are essential to acquire
valid hand-eye calibration parameters even within a fixed camera and robot base configuration.
Consequently, this inherent characteristic renders Tsai’s approach ill-suited for dynamic hand-

CHAPTER 3. DL-BASED HEC APPROACH 55

eye calibration scenarios, necessitating the continual or iterative updating of camera poses to
accommodate evolving conditions.

Table 3.7: Comparison with the state-of-the-art

Method Position(εstd(mm))
Tsai-Baxter (420.13±175.55)
Tsai-UR3 (382.8±150.98)

Keypoint+PnP [18] (27.4±4.7)
Direct Regression [19] (10.4±4.0)
Our approach-Baxter (9.66±1.58)
Our approach-UR3 (3.95±1.25)

3.6 Conclusion

This chapter has verified the following hypothesis:
A hand-eye calibration approach, which recalibrates external camera pose by observing a

single reference point on the robot end-effector through a 3D vision system, enables a robot

to perform robotic manipulation and grasping tasks by being adaptable and robust to environ-

mental changes. Moreover, it has the same success on a real robotic manipulation task while

reducing the computational complexity and increasing the repeatability compared to classical

approaches.

A deep learning-based hand-eye calibration approach was described in this chapter, which
enabled the estimation of the unknown geometric transformation between the robot base and
an external camera without requiring data recollection after network training. The motion of a
single point on the robot’s end-effector was tracked through a 3D vision system during experi-
ments. The chapter also proposed three research questions (as detailed in Section 5.3). The first
research question (Q1) demonstrated the use of a deep learning-based regression model instead
of mathematical models (e.g. [8]) for hand-eye calibration. In this approach, it was assumed
that robot and camera calibration were known, and the unknown transformation was directly
estimated via the deep learning-based regression model. The second research question (Q2) in-
vestigated a tailored regression approach with the addition of two encoders for RGB and depth
images to find the camera’s extrinsic parameters when camera calibration is unknown. Finally,
the third research question (Q3) employed the network architecture to estimate the unknown
transformation between the camera and the robot base. All these research questions were tested
in a simulation environment, and the experimental results demonstrated that a deep learning
model can be used for hand-eye calibration. To further validate the approach, experiments for
Q3 were performed on two real robotic environments (a Universal Robot 3 and the Rethink
Baxter robot), which yielded an overall position error of 2.07 and 4.54 mm and orientation er-
ror of 5.8 and 9.2 degrees, respectively. These results showed the robustness of the approach

CHAPTER 3. DL-BASED HEC APPROACH 56

to camera pose changes while having only a repeatability error of 3.95% and 9.6% for unseen
camera poses that were not used during network training.

An autonomous and flexible hand-eye calibration system is crucial in robotics applications
where robots need to adapt continuously to new environments and tasks without requiring signif-
icant manual intervention. Such systems can benefit various industries, such as manufacturing,
logistics, and healthcare, by enabling robots to learn from vast amounts of data and improve
their accuracy and precision. This is particularly useful in dynamic and changing environments
where robots must perform various tasks on different production lines or adapt to changes in lay-
outs [93]. By continuously calibrating their hand-eye system, robots can accurately track their
position and orientation and perform tasks with incredible speed and efficiency while reducing
the risk of errors or accidents.

Chapter 4

Pick-and-Place Pipeline

4.1 Introduction

This chapter examines the performance of classic and deep learning-based hand-eye calibration
approaches in a real robotic manipulation task, specifically pick-and-place. Three evaluation
criteria were proposed to assess the task’s functionality: computational complexity, repeatability
score, and success rate in performing the task. Tsai’s [8] method, known for its high success
rate and extensive usage in the literature, was employed as the classic hand-eye calibration
approach. Meanwhile, Bahadir et al.’s method [94] (developed in Chapter 3), which was trained
using ground truth data from Tsai’s method, served as the deep learning-based approach.

The camera was positioned in ten different locations for the experiments, and both Tsai’s and
the deep learning-based calibration approaches were carried out to obtain the camera’s pose. A
simple pick-and-place experiment was then designed using three objects of varying shapes and
sizes (cube, box, and cup), as shown in Figure 4.1. Colour segmentation was utilised to deter-
mine the 6D pose of the objects accurately and quickly. This method rapidly identifies objects in
an image when the colour codes are manually defined. Moveit Motion Planning [95] was utilised
to pick and place the objects in the scene. To assess the success rate of both approaches, the pick-
and-place task was divided into four main steps: reaching, touching, picking, and placing. The
success rate of each of these steps and the computational costs of the hand-eye calibration using
both methods were presented.

4.2 Motivation and Objectives

Several mathematical models have been proposed in the literature to represent the hand-eye
calibration problem, including AX = XB, AX = ZB, projection error, and 3D reconstruction
(detailed in Chapter 2). These models have shown successful results but are offline approaches,
meaning their results are only valid for the current camera configuration. Therefore, they are not
suitable for real-world robotic applications where the camera pose may change. Deep learning-

57

CHAPTER 4. PICK-AND-PLACE PIPELINE 58

Figure 4.1: The figure shows the experimental set-up, which consists of a Universal Robot
equipped with a three fingers gripper. The robot is mounted on the table, and three objects with
unique colours have been placed in the robot’s workspace.

based approaches have been proposed to address this limitation, eliminating the data collection
process and re-training the model when the camera pose changes. However, these approaches
require ground truth data and are trained in a supervised manner.

After collecting data and solving an optimisation problem or training the proposed deep
learning architecture using a learning signal, an evaluation metric is necessary to judge the
developed approach. However, there is no direct evaluation metric for hand-eye calibration be-
cause it is difficult to know precisely where the camera is with respect to the robot base in the
real world. Hence, average rotation and translation error, projection error, 3D reconstruction
error, and repeatability error [18] are the most preferred evaluation metrics in the hand-eye cal-
ibration literature [20]. However, the ideal scenario is performing a robotic manipulation task
and judging the developed hand-eye calibration model by using the success rate of the accom-
plished task. Thus, this chapter considers an ideal evaluation scenario involving performing
a real pick-and-place task with different objects to compare classic and deep learning-based
hand-eye calibration approaches’ accuracy, strengths, and limitations. This is the first study that
considers a real robotic manipulation task to compare hand-eye calibration approaches in the
literature.

Evaluating a hand-eye calibration method on a real robotic task is essential because it pro-
vides a more realistic and practical assessment of its performance. This is because the ultimate
goal of hand-eye calibration is to enable the robot to perceive and manipulate objects in the real
world accurately. Hence, assessing the success of a hand-eye calibration method in terms of its
ability to perform a real-world robotic manipulation task is a better indication of its practical
usefulness than simply evaluating it based on metrics such as average rotation and translation
error, projection error, 3D reconstruction error, and repeatability error. Therefore, testing the
success of hand-eye calibration on a real robotic task can help researchers and practitioners to
make informed decisions about the practical applicability of the method.

CHAPTER 4. PICK-AND-PLACE PIPELINE 59

This chapter examines the following research questions to compare the classic and deep

learning-based hand-eye calibration approach in terms of computational complexity, repeata-

bility and successful performance on a real robotic manipulation task.

• How does the performance of the deep learning-based HEC approach compare to other
state-of-the-art methods in the field of hand-eye calibration, in terms of both accuracy and
computational efficiency?

• What are the limitations of the deep learning-based HEC approach, and how can they be
addressed to improve its practical application in various dynamic robotic environments?

4.3 Methodology

Figure 3.2 displays a real-world pick-and-place pipeline, which is employed to examine the
success rate, strengths, limitations, and computational cost of both a classic and a deep learning-
based hand-eye calibration approaches. This section is divided into two subsections. Subsection
4.3.1 outlines the process of determining hand-eye calibration parameters using [8] and [94]
(chapter 3), while the object detection method adopted is presented in 4.3.2.

4.3.1 Hand-eye Calibration Methods

The classic hand-eye calibration approach selected for this study is [8], which is commonly used
in the literature due to its simplicity and success under specific constraints, such as a specific
distance between the camera and the robot base and changing orientation maximally between
0 to 89 degrees for each axis. For the deep learning-based hand-eye calibration approach, [94]
(Chapter 3) was chosen as it is state-of-the-art, and [8] is used to provide ground truth for [94].
An overview of these approaches is presented in the remainder of this subsection.

Tsai’s Hand-eye Calibration [8]

Figure 4.2 illustrates the hand-eye system used in this study. To calibrate the system, the cali-
bration target attached to the robot’s gripper is sampled at least eight times with different trans-
lations and orientations. The corresponding poses of the robot’s end-effector and the camera’s
extrinsic parameters are collected for each configuration using OpenCV camera calibration [96].
Tsai’s approach [8] is employed to solve the hand-eye calibration problem using the AX = XB

formulation (Equation (2.26) detailed in Chapter 2). These matrices are then decomposed into
their orientation and translation components using Equations (2.28 and 2.27 detailed in Chapter
2). Finally, the orientation component of calibration parameters is solved using a linear optimi-
sation method, and the translation component is calculated using the solution of the orientation.

CHAPTER 4. PICK-AND-PLACE PIPELINE 60

A1 X

B1

A2
B2

Figure 4.2: This figure shows the adopted hand-eye calibration system. A camera is placed in
an external location, and a checkerboard is attached to the robot’s end-effector. A1,2 describe
the poses of the end-effector with respect to the robot base for different configurations, while
B1,2 shows the poses of the camera with respect to the calibration target for the corresponding
configurations. X presents the static transformation between the robot base and the camera.

Evaluation of the ascertained calibration parameters is conducted through the utilisation of
the reprojection error. A solution is regarded as the ground truth for the given camera and robot
base configuration when this error is confined to less than 2 pixels. Notably, this error value,
measured in pixels, signifies successful hand-eye calibration outcomes suitable for applications
within industrial robotics [97].

Deep Learning-based Hand-eye Calibration

The developed deep learning-based hand-eye calibration approach in Chapter 3 is used [94].
This approach employs an RGB image, a depth image, and the known transformation of a single
point on the robot’s end-effector to obtain the hand-eye calibration parameters. Unlike [8],
which uses a calibration target and explicitly handles the camera extrinsic’s parameters for each
end-effector pose, [94] uses a single reference point, and the camera extrinsic’s parameters are
handled implicitly. It should be noted that there is no detection for this single reference point
using images, as detailed in Chapter 3. Its pose with respect to the robot base is given as input
to the network directly by using the robot kinematic chain.

To collect data, the robot’s end-effector is sampled in n different locations to span the robot’s
workspace for each of the m camera configurations. Tsai’s hand-eye calibration approach [8] is
performed at least five times, and the best calibration in terms of reprojection error is used as the

CHAPTER 4. PICK-AND-PLACE PIPELINE 61

Figure 4.3: This figure presents the designed hand-eye calibration architecture, with two en-
coders extracting features from RGB and depth images separately. The extracted features are
concatenated with the pose of the reference point (marked as the blue circle) with respect to the
robot base and passed to three fully connected layers. The network’s output is either translation
(3D) or orientation (4D).

ground truth. The pose of the reference point with respect to the robot base and corresponding
RGB and depth images are also collected.

After data collection, a deep learning regression architecture is designed, as shown in Figure
4.3. The network has two separate encoders for RGB and depth images and is trained separately
to obtain translation and orientation parameters. Mean Square Error is the loss function for the
translation parameters, represented in the 3D Euclidean space. A 10D quaternion representa-
tion [33] is employed for the orientation parameters, enabling the one-to-one mapping from the
quaternion space to the 3D Cartesian space.

In the experiments conducted in this study, the deep learning-based regression architectures
developed in Chapter 3 were used for pick-and-place operations. The trained models from Chap-
ter 3 were used directly in this study without re-training or fine-tuning.

4.3.2 Object Detection

Colour segmentation is a prominent method for object detection because it provides fast and
online detection when the threshold for the objects is pre-defined. In this study, an RGB image
is first passed through several filters to eliminate noise, such as blur and discrepancies. Next, the
image is transformed from BGR to HSV colour space, which enables us to change the satura-
tion and brightness of the image, as well as the colour information. Then, the threshold value for

CHAPTER 4. PICK-AND-PLACE PIPELINE 62

each object is determined, and the image is passed through three morphological operations (ero-
sion, dilation, and erosion) to determine specific features of the objects. The pre-defined colour
thresholds specific to the illumination and scene environments are used to obtain the mask of
the objects, and the masked image is passed to the OpenCV findContours function [98]
to obtain the border of the objects. Finally, the output of the contour is sent to the OpenCV
fitEllipse function [98] to obtain the smallest ellipse fitting this contour, which includes
the centre of the masked objects and the angle with respect to the origin of the image plane.

4.4 Experimental setup

A Universal robot (the UR3) with a three-finger grasper has been mounted on a table. Then a
Stereolab (ZED) [99] camera was placed in ten different configurations. For each camera con-
figuration, we run several Tsai’s hand-eye calibrations to get the camera pose with respect to
the robot base because the quality of this approach depends on the collected data. Algorithm
1 presents the steps used for Tsai’s approach for one camera configuration. An error threshold
(reprojection error of 2 pixels is used in this study because it is found that this value produces re-
liable HEC results) was given as input to Algorithm 1. Then, the robot arm was moved to at least
eight configurations using the ROS Moveit Library [95]. End-effector poses and corresponding
checkerboard images were collected by subscribing to the TF library [91] and ZED Camera
via ROS [100]. The 2D corner points of the checkerboard were obtained using the OpenCV
findChessboardCorners function, which takes images and predefined 3D coordinates of
the checkerboard’s corner with respect to the world coordinates. The estimated corner points
in the images were refined by the OpenCV cornerSubPix function to obtain more precise
calibration. Finally, the camera pose was calculated using the OpenCV calibrateCamera

function, which takes the checkerboard’s 3D and 2D corner points. Hand-eye calibration pa-
rameters were then calculated by processing the camera poses and corresponding end-effector
poses via Tsai’s approach. This operation was repeated until the error from Tsai’s approach was
less than the defined threshold (reprojection error of 0.9). During the experiments, the estimated
hand-eye calibration parameters and time were recorded.

After obtaining the hand-eye calibration parameters using Tsai’s approach, the deep learning-
based hand-eye calibration method developed in Chapter 3 was applied to the same camera con-
figuration outlined in algorithm 2. This method does not require any calibration target or explicit
camera extrinsic calibration. RGB and depth images were captured using the Zed camera, and
the pose of the reference point relative to the robot base was recorded using the TF library [91].
The captured images and poses were then fed into a trained network in a different environment
to obtain the hand-eye calibration parameters.

Figure 4.4 illustrates the training and testing environments. It should be noted that the neural
network underwent training within a distinct environment. It is subsequently applied to the pick-

CHAPTER 4. PICK-AND-PLACE PIPELINE 63

(a) Training environment (b) Testing environment

Figure 4.4: This figure shows the difference between the training (a) and testing (b) environ-
ments.

Algorithm 1 Classic hand-eye calibration algorithm
Require: Attach the checkerboard to the robot gripper
Require: Treshold ≥ 0

Xbest ,X ← /0 ▷ Hand-eye calibration parameters,Tx,Ty,Tz,Rx,Ry,Rz
n← 0
Error← ∞

while Error ≥ Treshold do
Images← /0
EndE f f ectorPoses← /0
for i← 1 to 8 do

Images← imagei
EndE f f ectorPoses← posei ▷ Collect images and end-effector’s poses

end for
CameraPoses= Camera calibration (Images)
T = Perform Tsai Hand-eye calibration (EndEffectorPoses, CameraPoses)
Error← T0
X ← T1(Tx,Ty,Tz,Rx,Ry,Rz)
n← n+1

end while
Xbest ← X
return Xbest , n

Require: Detach the checkerboard from the robot gripper

CHAPTER 4. PICK-AND-PLACE PIPELINE 64

Figure 4.5: This figure outlines the pick and place pipeline used to evaluate two hand-eye cal-
ibration methods. (1) displays the camera configuration count. (2) and (3) depict experiments
with classic and DL-based approaches, respectively. Each row in (2) and (3) represents object
sub-experiments (cubes, boxes, cups), repeated 10 times.

CHAPTER 4. PICK-AND-PLACE PIPELINE 65

Figure 4.6: This figure depicts 3D camera pose locations and the table. Yellow represents the
table area. Blue points are within the network’s trained space, while red points are outside. Axes
are labelled X, Y, and Z in meters.

and-place task within a new environment without requiring retraining or fine-tuning procedures.
However, a vital prerequisite remains that the relative configuration of the camera and robot base
aligns with the learned configuration from the preceding environment.

Algorithm 2 Deep learning-based hand-eye calibration algorithm
X ← /0
Capture an RGB and depth image
Record corresponding reference point’s pose
Get hand-eye calibration parameters processing these data
return X

Figure 4.5 provides an overview of the experimental setup, while Figure 4.6 depicts all
camera configurations used in the experiments. The experiment began by placing the camera
in an external location, followed by acquiring the hand-eye calibration parameters using the
classic approach via algorithm 1 (shown in the bottom left image in Figure 4.5). Next, three
sub-experiments were conducted sequentially for each object (yellow cubes, white boxes, and
blue cups), as shown in Figure 4.1. After completing all sub-experiments in step 2 (Figure 4.5),
the hand-eye calibration parameters were estimated using the DL-based approach via algorithm
2 (depicted in step 3 in Figure 4.5). All sub-experiments were then performed using the newly
obtained hand-eye calibration parameters. Finally, the camera configuration was changed, and
the above steps were repeated until all camera locations (depicted in Figure 4.6) were visited.

The sub-experiments involve placing one or multiple objects on the table, with the assump-

CHAPTER 4. PICK-AND-PLACE PIPELINE 66

tion that the objects are separated and their contours do not overlap. An RGB image is then
captured using the ZED camera and passed through the object detection module (as detailed in
section 4.3.2) via ROS. The detected objects’ 3D world coordinates and orientations are calcu-
lated by feeding the 2D pixel coordinates obtained from the object detection module into the
point cloud and subscribing to the corresponding depth image via ROS. Next, these 3D coordi-
nates are transformed from the camera frame to the robot reference frame using the estimated
hand-eye calibration parameters. Finally, the robot is commanded to pick and place the closest
object with respect to the robot base using the ROS Moveit library.

The experimental procedure involved the following steps:

• The camera was placed in the first configuration and the hand-eye calibration parameters
were obtained using the classic approach.

• Yellow cubes were placed within the robot’s workspace, and pick-and-place operations
were performed ten times. This was repeated for the white box and blue cup objects.

• Once all objects had been tested with the classic hand-eye calibration method, the same
experiments were conducted using hand-eye calibration parameters obtained through the
deep learning-based approach for the same camera configuration.

• This process was repeated for the other nine camera configurations; in total ten camera
configurations are considered in this study for each HEC approach. .

In total, the pick-and-place procedure was carried out 600 times, taking into account the ten
camera configurations, two hand-eye calibration approaches, and three objects with ten repeti-
tions for each object.

4.5 Results

In this study, computational complexity, repeatability, and success rate of performing pick-and-
place were employed as performance criteria. Table 4.1 compares the average computational
complexity of the classic and deep learning-based hand-eye calibration approaches for ten cam-
era configurations. The first row shows the number of collected images for one camera config-
uration. The classic approach requires eight RGB images, while the DL-based approach needs
only two images (one RGB and one depth). The second row presents the average number of
attempts to obtain the hand-eye calibration parameters above and the acceptance level (i.e., 0.9
reprojection error). The average attempt to obtain hand-eye calibration parameters for the clas-
sic approach is 8.3, meaning data has to be collected from the beginning eight times for one
camera configuration. However, the second approach requires only one attempt to estimate
these parameters. Finally, the last row compares the average time to perform these methods to
get hand-eye calibration parameters. It was observed that data collection and finding solutions

CHAPTER 4. PICK-AND-PLACE PIPELINE 67

Table 4.1: Comparison of computational complexity

Classic HEC DL-based HEC
Number of Image 8 RGB 1 RGB + 1 Depth
Average Attempt 8.3±3.37 1±0
Average (minutes) 83 0.06

with the classic approach for one experiment takes 10 minutes because the calibration target’s
position and orientation have to be manually changed for each repetition. Apart from calibra-
tion target manipulation, attaching and detaching the calibration target was also considered for
time calculation. Hence, this time (10 minutes) was multiplied by the average attempts for one
camera configuration to calculate the average computational cost of the classic approach. The
average computational cost for the DL-based approach is four seconds because it only requires
one RGB and depth image to estimate hand-eye calibration parameters.

The repeatability of the DL-based approach (as utilised in [19] and [94](developed in Chap-
ter 3)) was tested by evaluating the standard deviation of the estimated hand-eye calibration
parameter for camera poses. For completeness, this equation is:

εstd =
1
k

K

∑
k=1

1
m

m

∑
j=1

(
1
n

n

∑
i=1
∥xk ji−µk j∥2

2

) 1
2

(4.1)

where k, m, and n refer to the total trained models, camera configurations, and testing images,
respectively. While DL-based approaches estimate hand-eye calibration parameters for each
image, classic approaches estimate these parameters by processing a set of images. Thus, the
standard deviation of the estimated hand-eye calibration parameter for several attempts in a fixed
camera pose is used to calculate the repeatability function for classic approaches. Therefore
Equation 4.1 was modified for the classic approach as follows:

εstd =
1
m

m

∑
j=1

(
1
n

n

∑
i=1
∥x ji−µ j∥2

2

) 1
2

(4.2)

where m and n represent the number of camera configurations and hand-eye calibration at-
tempts for one camera pose. To compute the repeatability score, only the translation compo-
nent of the hand-eye calibration parameters is considered. This is because directly taking the
element-wise average of the rotation component, represented by Euler angles, rotation matrix,
or Quaternions, is not possible. For example, the rotation matrix representation must consider
orthogonality constraints, or the Quaternions representation requires that the norm of it must be
1.

Table 4.2 presents the repeatability of the three methods for ten camera configurations using
Equations 4.1 and 4.2. This study has two deep learning-based approaches to repeatability
scores because the developed regression architecture in Chapter 3 ([94]) and the current study

CHAPTER 4. PICK-AND-PLACE PIPELINE 68

Table 4.2: Repeatability Comparison

Approach Position(εstd(mm))
Tsai 382.8±150.98

DL-based in this study 4.95±1.5
Bahadir [94] 3.95±1.25

are in different environments. The repeatability score of the current experiment environment
was calculated by collecting images of each camera configuration during experiments. The
repeatability score of Chapter 3 ([94]) is used to show transferring performance of the developed
deep learning-based HEC approach from one environment to another.

The repeatability error for Tsai’s approach was determined by calculating the standard devi-
ation across all calibration attempts (eight times) for one camera configuration. This measures
how much the translation component varies among calibration attempts for the same configura-
tion. The results show that Tsai’s repeatability error is high. Tsai’s approach propagates error
from the orientation component to the translation component because it solves the problem se-
quentially. Additionally, the success of Tsai’s approach is heavily contingent on the selection
of calibration target poses, which, if not chosen optimally, can introduce imprecision into the
calibration results.

The classic approach exhibits a repeatability error of 96 and 77 times higher than the deep
learning-based HEC approaches in terms of environments in [94] and this study, respectively.
This difference can be attributed to two primary reasons. Firstly, the classic approach transfers
the rotational error into the translational error as it solves the rotation component in Equation
2.27 before determining the translation component by substituting the solution of the rotation.
Secondly, the success rate of the classic approach heavily relies on the selection of calibration
target poses. While a procedure for selecting these positions has been proposed in [8], it can be
challenging to follow this procedure by merely observing the calibration target movements, and
expertise is required to collect image samples.

On the other hand, the DL-based approach utilises a deep learning architecture, as explained
in Section 4.3.1, which was trained in a different environment than the one in which the ex-
periments were conducted (as shown in Figure 4.4 (left)). Thus, the repeatability error of this
approach is only 1.2 times higher than that of [94] and Chapter 3. However, this difference
is negligible when accounting for the environmental change, as described in Section 4.4 and
depicted in Figure 4.4. The results suggest that the DL-based approach can handle the environ-
mental change and rely on the robot’s features to estimate hand-eye calibration parameters.

The success rate of the two methods, classic and DL-based hand-eye calibration, were com-
pared on a real-world pick-and-place pipeline. The performance criteria were divided into four
sub-tasks: reaching, touching, picking, and placing. These sub-tasks were sequential, meaning
that if reaching failed, the other sub-tasks also failed. Reaching was considered the simplest task

CHAPTER 4. PICK-AND-PLACE PIPELINE 69

and was used to evaluate the estimated hand-eye calibration parameters. However, a successful
reaching operation did not directly imply that the following operation could also be performed
successfully. Touching was used to determine if the estimated parameters were good enough
to touch the objects. Picking was the main evaluation criterion, indicating the success of the
estimated hand-eye calibration parameters. Finally, placing was the last task evaluated in this
study.

Table 4.3: The results of the classic hand-eye calibration approach on the pick-and-place task.

Classic hand-eye calibration
Reach Touch Pick Place Objects

Mean 100 95 62 51 Cube
Std 0 7.07 6.32 14.49

Mean 100 100 87 84 Box
Std 0 0 4.83 6.99

Mean 100 99 74 60 Cup
Std 0 3.16 10.75 20

Mean 100 98 74.33 65 Total
Std 0 3.41 7.3 13.83

Table 4.4: The results of the deep learning-based hand-eye calibration approach on the pick-
and-place task.

DL-Based hand-eye calibration
Reach Touch Pick Place Objects

Mean 100 93.75 66.25 50 Cube
Std 0 5.18 7.44 16.04

Mean 100 100 88.75 85 Box
Std 0 0 9.91 9.26

Mean 100 98.75 73.75 52.5 Cup
Std 0 3.54 7.44 19.09

Mean 100 97.5 76.25 62.5 Total
Std 0 2.90 8.26 14.79

Table 4.3 presents the mean and 1-standard deviation of experiments performed on three
objects using the classic hand-eye calibration approach for ten camera configurations. Table
4.4 shows the corresponding results for the DL-based hand-eye calibration approach, but it only
includes the first eight camera configurations due to space constraints. These configurations are
shown as blue points in Figure 4.6, while the last two configurations, represented as red points

CHAPTER 4. PICK-AND-PLACE PIPELINE 70

in Figure 4.6, are outside of the space from which the network was trained. We performed the
pick-and-place pipeline for these two configurations using DL-based hand-eye calibration, but
only reaching was successful, while the other sub-tasks failed.

The results in Tables 4.3 and 4.4 indicate no meaningful difference between the success rates
of reaching and touching operations for every object and both hand-eye calibration approaches.
However, due to unstable picking operations, there is a gap between the success rates of picking
and placing for every object in both approaches. The Shadow Modular Grasper with three
fingers was used in the experiments, and collisions among the fingers could happen when an
object was successfully picked, preventing the robot from placing it. This issue can be addressed
by developing a more stable grasping approach, but it is beyond the scope of this PhD thesis.
Furthermore, the success rates differ for each object in both approaches due to the object’s size
and materials. For instance, the white box has the highest success rate for pick-and-place tasks
in both classic and DL-based hand-eye calibration approaches (84% and 85%, respectively),
followed by the blue cup (60% and 52.5%) and yellow cube (51% and 50%)

DL-based hand-eye calibration approach surpasses the results of the classic approach in all
sub-tasks in the white box object and picking sub-task for the cube (76.5%). As for the other
result (performances of picking and placing tasks for yellow cubes and the blue cup), DL-based
hand-eye calibration has competitive results compared to the classic approach. Incidentally, it
is crucial to consider that the classic HEC approach is the baseline of the DL-based approach,
which means that the best result of the classic approach for a camera pose is used as ground
truth to train the DL-based approach.

In conclusion, DL-based hand-eye calibration has comparable results for a real-world pick-
and-place pipeline and observes better results for specific sub-tasks. For example, it performs the
picking sub-task for all objects 2.25% better than the classic approach. Besides, the DL-based
approach is much better than the classic hand-eye calibration approach in terms of computa-
tional complexity and repeatability. This means the DL-based approach is more flexible than the
classic approach and eliminates data re-collection in camera pose changes. The main limitation
of the DL-based hand-eye calibration is that the camera must be placed in a location that lies
within the sampled 3D space. Moreover, DL-based hand-eye calibration is trained in a super-
vised manner and with respect to the best Tsai’s hand-eye calibration parameter, which means
its success highly depends on the quality of these calibrations.

4.6 Conclusions

The chapter compares the performance of classic and DL-based hand-eye calibration approaches
in a real-world pick-and-place pipeline, using three criteria: computational complexity, repeata-
bility score, and success in performing a robotic manipulation task. The camera was placed at
ten different locations, and the hand-eye calibration parameters were estimated for each method.

CHAPTER 4. PICK-AND-PLACE PIPELINE 71

The time and number of attempts required to obtain a valid hand-eye calibration for one camera
location were recorded, and pick-and-place tasks were carried out for three objects using each
camera configuration and hand-eye calibration method, resulting in 600 trials.

The results indicate that the DL-based approach outperforms the classic approach in terms
of computational complexity and repeatability score (77 times better). Although the DL-based
approach performs slightly worse overall than the classic method, it performs better than the
classic method in some sub-experiments, such as the white box pick-and-place task, where the
success rate is 1% higher than the classic approach. Moreover, the DL-based approach outper-
forms the classic method by 4.2%, 1.75%, and 1.98% in picking sub-tasks for the yellow cube,
white box, and total, respectively.

The chapter findings suggest that DL-based hand-eye calibration approach is more adaptable
to camera pose changes than traditional methods. The results indicate that obtaining good cal-
ibration parameters using the classic approach requires multiple attempts and is challenging to
deploy when the camera pose changes due to external factors. The DL-based hand-eye calibra-
tion [94](developed in Chapter 3) approach’s performance decreases when the camera is placed
outside the trained 3D space.

The chapter raises the question of how to make DL-based approaches more adaptable out-
side the learning environment. Large-scale data capturing, which samples all space around 360
degrees of the robot base with a distance at the beginning of the training network, can elim-
inate this problem. On the other hand, to address this issue, Chapter 5 plans to update the
trained model using Continual Learning on new data outside the learning space. The Continual
Learning-based approach can also provide a more flexible hand-eye calibration system, which
addresses the layout changes, the distance between the camera and the robot base changes while
eliminating the adaptability problem outside the learning space. Furthermore, the Continual
Learning-based approach can provide an online hand-eye calibration system which controls the
hand-eye calibration parameters while performing a robotic manipulation task and updates the
trained model when the novel observation has arrived (camera poses).

Chapter 5

Continual Learning for Hand-Eye
Calibration

5.1 Introduction

This section introduces a novel approach based on Continual Learning principles that extends
the domain of hand-eye calibration. The experiments conducted in Chapter 4, specifically in the
context of pick-and-place tasks, empirically validated the efficacy of the deep learning-based
Hand-Eye Calibration (HEC) method introduced in Chapter 3. This method exhibits significant
adaptability, particularly in response to environmental alterations, such as changes in the back-
ground. This effectively mitigates the impact of environmental variations, including lighting
changes often encountered in industrial robotic environments. However, it should be noted that
this adaptability is effective when the relative camera and robot base pose remain within the
learned space.

When the camera is placed outside of this learned relative space, observation from Chapter
4: shows that the efficacy of our proposed approach diminishes. This scenario can arise when
the layout of an assembly line is altered. In this scenario, the relative pose of the camera and
robot space can be changed, and the new relative calibration space must be learned to update the
calibration parameters continuously. Learning this new calibration can be addressed by extend-
ing previously learned calibration space using the continuous learning paradigm. This approach
preserves the pre-established relative calibration space while seamlessly incorporating the ex-
ploration of novel relative calibration domains. To this end, three Continual Learning-based
approaches are proposed: naive CL, reservoir rehearsal, and reservoir rehearsal with camera
pose selection.

The effectiveness of these approaches was evaluated through experiments conducted in a
simulated and real-world environment. In the simulation environment, a stereo vision camera
was positioned in 108 different locations, and 50 different end-effector configurations were run
for each camera position to collect samples. In the real world, the camera was positioned in

72

CHAPTER 5. CL-BASED HEC APPROACH 73

24 different locations, and 100 end-effector configurations were run for each camera pose. The
dataset was partitioned into subsets for Continual Learning-based training. The success of the
approach was evaluated based on the accuracy of hand-eye calibration in both environments.
Finally, the performance of the three Continual Learning-based approaches was compared with
batch training (detailed in Chapter 3) for both environments. The results demonstrate that the
presented approach outperforms the other approaches and achieves superior accuracy in both
simulated and real-world environments.

5.2 Motivation and Objectives

Recent advancements in deep learning architectures, such as convolutional neural networks,
have led to the development of hand-eye calibration systems [18, 19, 94] capable of estimat-
ing different camera poses with respect to a single robot base, thus providing greater flexibil-
ity and adaptability to industrial manufacturing systems. However, these deep learning-based
approaches have limitations; since they are trained offline on fixed datasets, they may not gen-
eralise well to new situations or environments. In contrast, humans are able to continuously
update and refine their internal model of hand-eye coordination based on new experiences. In
robotic manipulation, this type of continuous learning can be achieved through Continual Learn-
ing (CL) [101], a paradigm in deep learning where a model is trained on a continuous stream of
data over time. By utilising CL, robots can learn and adapt in a similar way to human learning,
enabling them to perform more complex tasks and operate in a broader range of environments.

One of the main challenges in CL is the catastrophic forgetting problem [101], which means
that when new data is processed, the previously learned information is degraded over time. To
overcome this problem, three main strategies have been proposed: regularisation [78, 79, 81],
modular architectural design [71, 72] and rehearsal model (buffer) [75–77]. The regularisation
methods aim to prevent catastrophic forgetting by adding terms in the objective function to con-
trol changes in model weights. Modular architecture design methods mitigate the catastrophic
forgetting problem by dedicating sub-modules for different tasks or expanding network archi-
tecture when a new task is defined. Rehearsal approaches replay stored old data (some parts) to
the model again periodically to prevent the catastrophic forgetting problem.

This study used replay buffer systems to prevent catastrophic forgetting problems for several
reasons. In the case of hand-eye calibration, replay buffer systems can be used to store previ-
ously learned calibration parameters and corresponding data, allowing the network to continue
learning sequentially outside of the learned space while also revisiting and fine-tuning previ-
ously observed space. Replay buffers can ensure that a diverse data set is stored and used for
training, which can help prevent the catastrophic forgetting problem. This is achieved by peri-
odically sampling from the replay buffer and including new and old data in the training process.
Another advantage of using replay buffer systems in hand-eye calibration is that they can help

CHAPTER 5. CL-BASED HEC APPROACH 74

reduce the storage capacity and memory usage required for the calibration process. Since the
calibration parameters and data are stored in the replay buffer, there is no need to keep all of the
data in memory during training, which can help reduce the overall memory usage of the system.
Additionally, replay buffers can enable efficient storage and retrieval of the data, allowing for
faster and more efficient training of the network.

Overall, replay buffer systems in hand-eye calibration can help prevent catastrophic forget-
ting problems, ensure a diverse set of data is used for training, and reduce storage capacity and
memory usage, making it an attractive approach for continual learning in hand-eye calibration.

This chapter examines the following research questions to develop a Continual Learning-

based hand-eye calibration system, which extends the learned calibration space through new

observations over time.

• Can hand-eye calibration be handled as a time sequence problem in terms of camera pose
changes through Continual Learning?

• Is it possible to extend the learned hand-eye calibration space via Continual Learning?

• How does the continual learning-based HEC approach address the catastrophic forgetting
problem over time?

This chapter provides the first study investigating the hand-eye calibration problem through
Continual Learning.

5.3 Methodology

The hand-eye calibration problem was approached as a regression problem using deep learning.
In chapter 3, an end-to-end deep learning-based approach for hand-eye calibration was devel-
oped and tested in a simulated environment and two real robotic environments, namely the Re-
think Baxter (depicted Figure 2.1 in Chapter 2) and a Universal Robot 3 (depicted Figure 2.2 in
Chapter 2). The deep learning-based approach has been extended to Continual Learning-based
hand-eye calibration. Three methods were employed to extend the deep learning-based approach
to Continual Learning-based hand-eye calibration (detailed in Table 5.1): naive, reservoir buffer
with class balance, and reservoir buffer with class balance with camera pose elimination.

Two Replay-buffer-based methods were adopted to address the catastrophic forgetting prob-
lem, which is the challenge of maintaining previously learned knowledge while adapting to new
knowledge. As noted in [84], these techniques have shown promising results in regression tasks
for domain-incremental scenarios, particularly relevant for Continual Learning-based hand-eye
calibration. The goal was to mitigate the issue of catastrophic forgetting, where previously
learned information is degraded over time when new data is processed, by storing previous cali-
bration parameters and corresponding data in the replay buffer and training the network sequen-

CHAPTER 5. CL-BASED HEC APPROACH 75

tially while revisiting and fine-tuning previously observed space. By utilising these methods,
the study aimed to improve the stability and robustness of the hand-eye calibration model.

Table 5.1: An overview of the adopted Continual Learning-based approaches in the hand-eye
calibration problem

Approach Description Time Step Advantage Drawback

Naive CL

Update the networks
weights by using
the training data
in the current time step

An area which
contains a group
of camera poses

Handle the HEC
problem with CL

Suffers from the
catastrophic forgetting
problem

The reservoir
buffer with
class balance

Updates the network
weights by leveraging
both the training data
in the current time step
and samples from past
observations.

An area which
contains a group
of camera poses

Eliminating the
catastrophic
forgetting problem

It is an offline approach

The reservoir
buffer with
class balance
and camera
pose selection

Updates the network
weights by leveraging
both the training data
in the current time step
and samples from past
observations. Additionally,
it employs a threshold to
eliminate camera poses
that do not contain novelty.

One camera pose
It provides an
online CL-based
HEC approach

5.3.1 The formulation of the HEC problem as Continual Learning prob-
lem

Continual Learning involves processing data over time to update the model with new observa-
tions, which can be formulated as a time sequence problem. This thesis used a group of camera
poses, including different robot end-effector configurations, as time steps. The camera poses
were grouped based on their proximity to split the dataset into subsets for training and testing in
the naive and reservoir buffer with class balance approaches. For instance, in real-world experi-
ments, camera poses on each side of the table was considered a subset. The data generation and
split details are presented in the experimental design subsections.

In the reservoir buffer with class balance and camera pose elimination approach, each camera
pose was used as a time step, unlike the previous two CL-based approaches. This method
controls whether the pose contains novelty and provides an online approach. In other words,
these methods store a representative subset of the data, including camera poses not encountered
during the previous training iterations. Hence, this method ensures that the model remembers
the previously learned information and adapts to new information effectively and online.

The implementation details of the CL-based approaches are presented in Sections 5.4 and
5.5 for the simulated and real-world environments, respectively.

CHAPTER 5. CL-BASED HEC APPROACH 76

5.3.2 Deep Learning-based Hand-eye Calibration

The developed deep learning-based approach for hand-eye calibration in Chapter 3 served as the
baseline for the Continual Learning-based approaches in this thesis. This approach involves pro-
cessing n different camera configurations and m different end-effector configurations for each
camera pose to cover a wide range of hand-eye calibration spaces. A regression architecture
based on deep learning is utilised to predict the camera’s pose with respect to the robot base,
separately for the translation and orientation components of the calibration parameters. The
architecture takes RGB and depth images as input, along with the pose of a reference point se-
lected on the robot’s end-effector with respect to the robot base. It then produces the translation
and orientation components of the calibration parameters as output.

5.3.3 Naive approach

The traditional approach of updating a trained model without any buffering is known as the naive
approach. The second row in Table 5.1 illustrates the Naive CL approach. This approach uses a
small batch size to update the network weights with new observations each time step, consisting
of a set of camera poses detailed in the second column of Table 5.1. The naive approach trains
the network with the dataset in the current time step and passes the learned weights to the new
time step. Moreover, the naive CL approach evaluates the performance of the trained model for
each time step by using all testing subsets. This evaluation shows the performance of the Naive
CL approach in both the observed and non-observed spaces.

5.3.4 The reservoir buffer with class balance

The reservoir buffer with class balance approach employs two distinct techniques to tackle the
catastrophic forgetting problem (detailed in third row of the Table 5.1). Specifically, this ap-
proach combines the use of reservoir and class balance techniques. The reservoir component
employs a normal distribution to randomly sample from a buffer of previous data points, which
helps maintain a diverse and representative sample of the training data. Meanwhile, class bal-
ance ensures that the training data is balanced across all classes, in this case, the camera poses.
It prevents the model from focusing excessively on one class at the expense of others.

Algorithm 3 details the training of the network procedure with the reservoir buffer with
the class balance approach. This algorithm requires training and testing datasets in the time
domain. It also requires three parameters that are c1, c2 and c3. c1 is the number of sample sizes
for previous camera poses, while c2 is the number of camera poses used for sample collection.
Finally, c3 is the number of training samples for the current time. The dataset partition is detailed
in section 5.5.1, and 14 camera poses are used for training in each time step, which means 700
data (RGB and depth images and the pose of the reference point).

CHAPTER 5. CL-BASED HEC APPROACH 77

Algorithm 3 The reservoir buffer with class balance algorithm
Require: n the number of training subsets
Require: Training dataset (Tr1 to Trn), Test datasets (Te1 to Ten)
Require: c1,c2,c3← the number of sample size, camera configurations, training size

Sn×n← /0 ▷ The matrix of the success of the model for each test set in every stage
for i← 1 to n do

if i← 0 then
trainset← select c3 samples from Tri via uniform distribution
train dl-based regression architecture (chapter 3) by using trainset
S1,.,n

i ← test network success on each test set Te1 to Ten
else

trainset← select c3 samples from Tri via uniform distribution
bu f f erset← select c1 samples from c2 camera configuration in the previous time steps

(1 to i-1) via uniform distribution
trainset ← trainset + bu f f erset
train the dl-based regression architecture (Chapter 3) by using trainset
S1,.,n

i ← test network success on each test set Te1 to Ten
end if

end for
return Sn×n

This approach considers a set of camera poses as a time step presented in the third column
of Table 5.1, which represents a 3D region of the calibration space. In the first time step, the
deep learning-based regression architecture was trained on the current dataset, and the learned
weights were passed to the next time step. The learned weights were updated for the following
time steps by processing the current training data and buffer data from previous observations.
The performance of the approach was evaluated on the current and all test sets for each time
step.

5.3.5 The reservoir buffer with class balance and camera pose selection

It is a hybrid method to streamline the processing of camera poses while maintaining the in-
tegrity of previously acquired data through the use of a reservoir buffer and the class balance
technique. To determine whether a new camera pose contains novel information, a random
sample is drawn and compared to a threshold value, which is determined experimentally and
described in the experimental design section. The reservoir buffer plays a crucial role in this
process, enabling the retention of relevant data while eliminating redundant information.

Algorithm 4 details the reservoir buffer with class balance and camera pose selection ap-
proach. This algorithm requires a threshold for judging whether the current camera pose con-
tains novelty or not. When a new subset is introduced, a sample consisting of 10% of each
camera pose is randomly selected using a normal distribution. Next, the mean errors for each
camera pose are computed based on the last trained model. If the mean error for any camera

CHAPTER 5. CL-BASED HEC APPROACH 78

pose exceeds a predefined threshold, that camera pose is considered to be novel and marked as
such for further processing.

Algorithm 4 The reservoir buffer with class balance and camera pose selection algorithm
Require: threshold the threshold for success evaluation
Require: Training dataset (Tr1 to Trn)

S1×n← False ▷ The novelty matrix for each camera pose in the current time step
for i← 1 to n do

select 10% of samples from the current camera pose via uniform distribution
error← calculate the mean of the collected sample using the last model
if error ≥ threshold then

S1×i← Novelty == True
else

S1×i← Novelty == False
end if

end for
return S1×n

The training stage started by processing the dataset consisting of a set of camera poses via
DL-based regression architecture (developed in Chapter 3) in the first time step. Then this
approach considers each camera pose as a new time step (as detailed in Table 5.1). Hence, when
the new camera pose arrived, algorithm 4 was used to determine whether the current camera
pose contained novelty. If it contains novelty, the learned weights were updated by processing
this camera pose and buffer from past observations. The success of the trained model in each
time step was evaluated on all test sets to show the progress of the trained model.

5.4 Simulation Experiments

5.4.1 Data generation and split

A Universal Robot 5 equipped with a parallel gripper was placed in the PyBullet simulation
environment. To span the camera space from multiple viewpoints, a stereo pair of cameras was
positioned in 108 different configurations divided into six subsets of 18 camera configurations
each. For each subset, 14 camera configurations were used for training and four for testing.
The data split is depicted in Figure 5.1, which shows a three-dimensional Cartesian space with
each subset represented by a different colour. It should be noted that each subset is considered
a time step for the naive CL and reservoir buffer with a class balance approach. On the other
hand, for the reservoir buffer with a class balance and camera pose selection approach, the first
subset (blue) is considered the first time step, and subsequently, each camera pose is treated as a
separate time step. The overview of the adopted time step strategies is presented in Table 5.2.

The training and testing camera configurations for each subset are indicated by dots and

CHAPTER 5. CL-BASED HEC APPROACH 79

stars in Figure 5.1. This visualisation allows for a better understanding of the distribution of the
camera configurations and the data split across the different subsets.

For each camera pose, the end-effector was moved to 50 different configurations to capture
the robot’s movement in various configurations. For each end-effector and camera pose, RGB
and depth images and the pose of the reference point on the robot’s end-effector were collected.
This process was repeated for all 50 end-effector configurations for each camera pose. The
reference point on the robot’s end-effector served as a marker for tracking the robot’s movement
and was located at a specific point on the end-effector for consistency.

Table 5.2: An overview of the time step for Continual Learning-based approaches in the simu-
lated environment

Time steps/Sim
Approach Total Time step Camera poses each time step
Naive CL 6 14

The reservoir buffer
with class balance 6 14

The reservoir buffer
with class balance

and camera pose selection
72 1

Figure 5.1: This figure visualises the camera configurations used in the PyBullet simulation
environment. The 108 camera configurations are divided into six subsets, each represented by
a different colour. The dots and stars indicate the camera configurations used for training and
testing within each subset, respectively. The black star in the figure represents the robot’s base,
serving as a reference point for the camera configurations.

CHAPTER 5. CL-BASED HEC APPROACH 80

5.4.2 Experimental design

Naive CL

The naive Continual Learning approach starts with training the DL-based regression architecture
with the first subset (coloured blue), which consists of 14 training camera poses, in the first time
step. The learned weights are then updated using the new subsets (S2 to S5) in the subsequent
time steps. This approach encompasses six-time steps, each containing 14 and 4 camera poses
for training and testing, respectively (detailed in Table 5.2). The performance of the naive CL
approach is assessed on each test set across all time steps, thereby providing insights into the
model’s progress over time in both the observed and non-observed calibration spaces.

The reservoir buffer with class balance

The reservoir buffer with the class balance approach follows the same training procedure as
the naive approach for the first subset. However, for the second and subsequent subsets, the
training set of the current subset is augmented with a small sample of the previous subsets using
parameters c1 and c2. The c3 parameter uniformly selects samples from the current training set.
Then the learned weights in the first time step are updated by using the sampled training set and
the buffer set. This process is repeated until all time steps are visited. The model’s success is
evaluated on all test sets for each time step.

Table 5.3: The parameters analysis of the reservoir buffer with a class balance CL approach

c1 c2 Buffer Size c3 Training Data Total (RGB and depth images)
50 14 700 100% 700 1400
2 14 28 100% 700 728
3 14 28 100% 700 728
3 7 14 100% 700 714
4 7 14 100% 700 714
4 14 28 100% 700 728
4 14 28 50% 350 378
4 14 28 28% 200 228
4 14 28 14% 100 128

Table 5.3 presents the selected parameters and corresponding buffer and training data size
according to these parameters. The first row in this table shows if the dl-based regression ar-
chitecture is trained without Continual Learning each time step. This means each time step
considers the current dataset and all observed camera pose from past time steps. The following
row shows the buffer size according to the c1 and c2 parameters and the sampling of the current
training dataset using the c3 parameter. It should be noted that each camera pose consists of 50
RGB and depth images, and each time step has 14 camera poses (detailed in Table 5.2).

CHAPTER 5. CL-BASED HEC APPROACH 81

The reservoir buffer with class balance and camera pose selection

The reservoir buffer with class balance and camera pose selection approach is a new method
that incorporates the buffer system and camera pose elimination steps. Similar to the previous
approach, the DL-based regression architecture developed in Chapter 3 is initially trained with
the first subset (marked blue in Figure 5.2). However, each camera pose is considered a time step
in this approach (detailed in Table 5.2). When a new camera pose arrives, the elimination step is
triggered using Algorithm 4 to identify the camera poses marked as a novel. The novel camera
poses are combined with the buffer dataset obtained using Algorithm 3 and used to update the
model, while unmarked camera poses are excluded from the buffer system in the next time steps.
This process is repeated until all time steps (camera poses) are covered.

As mentioned in Section 5.3.2 and Chapter 3, the DL-based regression architecture consists
of two networks, one for estimating translation and the other for orientation components of the
calibration parameters. For each network, the novelty thresholds for the translation and orien-
tation are determined separately. The novelty thresholds for translation are 3 and 6 mm, while
those for orientation are 4 and 8 degrees, based on the experimental results in Chapter 5.3.2. The
small thresholds (3 mm and 4 degrees) are double the best result acquired by training networks
without CL, so they eliminate only unnecessary camera poses. The other threshold values (6
mm and 8 degrees) allow networks to eliminate more camera poses, reducing computational
complexity and forcing them to learn more distinctive features. Figure 5.2 shows the eliminated
camera configurations for the translation network with a threshold of 6 mm.

Figure 5.2: This figure illustrates the training stage of the reservoir buffer with class balance and
camera pose selection approach in a simulation environment. The testing camera configurations
for each subset are represented by colourful stars. The eliminated camera configurations, which
are marked as not novel through algorithm 4, are indicated by black crosses.

CHAPTER 5. CL-BASED HEC APPROACH 82

5.4.3 Experimental results

This section presents the individual results for Naive, the reservoir buffer with class balance, and
the reservoir buffer with class balance and camera pose selection approaches. Additionally, the
comparison of the success of these approaches is presented in this section.

Naive CL experimental results

Tables 5.4 and 5.5 show the results of the experiments conducted to evaluate the performance of
naive CL for each time step for translation and orientation components. To this end, the trained
model in each time step was tested on all test set across all calibration space (S1 to S6). Each
row in the tables represents a specific time step, while each column displays the error (testing)
for the sub-testing sets.

The results indicate that the naive CL approach suffers from catastrophic forgetting in trans-
lation and orientation components. Notably, the errors on the diagonal of both tables, where the
training and test sets belong to the same subset, are relatively low (only 1.5 times worse than the
baseline results), indicating that naive CL can only handle camera configurations within the cur-
rent spanned space. Therefore, this approach is limited in adapting to new camera configurations
outside this space.

Table 5.4: Naive CL experimental results for the translation

Naive CL
Mean / Std (mm)

Time
Step S1 S2 S3 S4 S5 S6 Average

T1 6.41±3.66 36.95±5.25 57.29±2.96 69.02±3.88 52.76±3.27 40.13±2.39 43.76±3.57
T2 24.72±3.74 3.21±0.72 28.4±3.98 54.18±2.64 62.85±3.51 54.54±4.15 37.98±3.12
T3 55.04±3.48 19.9±4.39 2.19±0.75 18.54±2.28 59.39±4.14 65.14±4.11 36.7±3.19
T4 63.12±1.32 54.9±5.96 24.93±4.48 1.0±0.01 26.54±0.24 47.31±1.13 36.3±2.19
T5 48.93±2.37 55.47±1.14 41.53±2.7 23.62±0.76 1.42±0.16 18.58±3.27 31.59±1.73
T6 24.22±5.6 46.39±3.35 48.08±5.74 46.58±7.05 17.97±5.79 2.2±1.05 30.91±4.76

Table 5.5: Naive CL experimental results for the orientation

Naive CL
Mean / Std (degree)

Time
Step S1 S2 S3 S4 S5 S6 Average

T1 2.03±0.26 43.85±0.31 111.67±1.68 160.08±2.09 88.62±1.45 55.72±1.97 77±1.29
T2 26.85±4.08 1.37±0.34 40.36±0.39 102.57±7.35 153.48±5.04 126.62±3.45 75.21±3.44
T3 102.84±0.19 23.04±0.28 2.3±0.39 47.86±1.5 143.21±0.6 175.52±0.52 82.46±0.58
T4 165.16±0.37 98.07±4.71 40.06±0.73 2.13±0.75 47.68±1.0 95.7±2.15 74.8±1.62
T5 89.63±3.63 139.87±8.58 133.93±5.05 53.91±6.06 2.5±0.11 30.46±1.12 75.05±4.09
T6 45.61±3.88 116.79±5.96 157.5±1.48 127.62±7.56 29.78±2.85 2.85±0.41 77±1.29

CHAPTER 5. CL-BASED HEC APPROACH 83

Experimental results of the reservoir buffer with class balance

Figure 5.3: This figure shows the performance of the parameter for c1, c2, and c3 for the trans-
lation with the reservoir buffer with the class balance approach.

The experiment evaluated the performance of the reservoir buffer with the class balance ap-
proach by computing the error for each subtest set (S1 to S6) at every time step (T1 to T6).
An ablation study was conducted to find the best values for the c1, c2, and c3 parameters, as
mentioned in Section 5.4.2 . Figures 5.3 and 5.4 show the results of the ablation study, which
examined the influence of different parameterisations of c1, c2, and c3 on translation and orien-
tation estimation, respectively. The figures display the average error for each time step in the
estimation process.

The study found that there was no significant difference in performance for translation esti-
mation between the various parameterisations of c1, c2, and c3. This suggests that the network
can converge to good results regardless of the values used. Furthermore, the study suggests that
estimating the translation component with a reduced amount of data may be possible.

In contrast, for orientation estimation, the parameterisation of c1=4, c2=14, and c3=100%
yielded the most accurate results. Decreasing the value of c3 resulted in slower convergence and
an increase in average error in the final step. Additionally, reducing the buffer sample size led to
a corresponding increase in error. However, the error for a parameterisation of c1=4, c2=14, and
c3=50% was still relatively low, suggesting that some data can be omitted during the training
stage.

Tables 5.6 and 5.7 show the experimental translation and orientation parameter estimation
results for each time step and sub-testing set using the reservoir buffer with the class balance

CHAPTER 5. CL-BASED HEC APPROACH 84

Figure 5.4: This figure shows the performance of the parameter for c1, c2, and c3 for the orien-
tation with the reservoir buffer with the class balance approach.

approach. The values of c1, c2, and c3 are set to four, 14, and 100% of the training set in the
current time step, respectively, and these parameter settings yielded the best performance based
on the ablation study.

The model’s error was computed for the unseen sub-test sets across the entire calibration
space (S1 to S6) at each time step. The error for a given time step indicated how well the model
had performed on the sub-test sets that spanned the space covered by observed training sets.
The final row (T6) showed the best performance for each sub-test set because the model had
spanned all the calibration space in the class balance CL manner. This suggests that the model
had learned to generalise well to new data by incorporating class balance during training.

Experimental results of the reservoir buffer with class balance and camera pose selection

Tables 5.8 and 5.9 show the experimental results of the final time step for each testing set (S1
to S6) by employing the reservoir buffer with class balance and came pose estimation approach
with two different thresholds. The results in Table 5.8 indicate that the translation error was
lower for the 3 mm threshold for each sub-testing set when compared to the 6 mm threshold,
implying that a smaller threshold led to increased accuracy. However, the difference in error
between the two thresholds was found to be minimal, with a difference of less than 1 mm.
Additionally, it was observed that the 6 mm threshold was able to eliminate 29 camera poses,
whereas the 3 mm threshold could only eliminate 17 camera poses. These findings suggest that
the 6 mm threshold processed fewer data points while performing with similar levels of error.

CHAPTER 5. CL-BASED HEC APPROACH 85

Table 5.6: Experimental results of the reservoir buffer with class balance approach for the trans-
lation, where c1, c2, and c3 are four, 14 and 100%, respectively.

Random Buffer CL with 4 samples
Mean / Std (mm)

Time
Step S1 S2 S3 S4 S5 S6 Average

T1 2.21±4.47 36.04±1.0 53.24±3.34 65.0±1.99 51.79±4.17 40.36±0.24 41.44±2.54
T2 3.04±0.0 2.94±0.66 23.2±1.99 51.08±5.06 55.4±5.73 44.07±0.7 29.96±2.36
T3 2.4±0.21 1.8±0.13 3.1±0.06 28.82±6.44 52.63±6.24 40.06±1.9 21.47±2.5
T4 2.1±0.24 2.0±0.43 3.35±0.23 1.85±0.41 41.11±0.61 34.55±4.67 14.16±1.1
T5 3.76±0.82 1.68±0.05 4.48±0.21 2.16±0.15 2.12±0.09 20.73±3.62 5.82±0.82
T6 2.49±0.34 1.99±0.4 3.74±0.76 2.73±1.0 2.61±0.1 2.16±1.04 3.12±0.61

Table 5.7: Experimental results of the reservoir buffer with class balance approach for the ori-
entation, where c1, c2, and c3 are four, 14 and 100%, respectively.

Random Buffer CL with 4 samples
Mean / Std (degrees)

Time
Step S1 S2 S3 S4 S5 S6 Average

T1 1.77±0.2 41.84±0.04 110.46±0.33 163.78±3.04 89.2±2.02 57.74±2.72 77.47±1.39
T2 2.15±0.29 1.41±0.08 53.06±1.62 131.3±8.16 104.83±1.19 81.58±3.63 62.39±2.5
T3 3.6±1.52 1.94±0.75 3.86±0.7 84.62±24.93 114.77±2.53 92.49±4.84 50.21±5.88
T4 3.33±0.41 1.41±0.2 3.75±0.2 1.48±0.26 60.39±15.71 82.58±12.67 25.49±4.91
T5 4.71±1.45 1.67±0.32 3.4±0.38 1.81±0.36 1.5±0.27 21.7±0.99 5.8±0.63
T6 2.45±0.34 1.45±0.1 3.13±0.67 2.09±0.33 1.68±0.15 1.15±0.24 2.33±0.31

As indicated in Table 5.9, the final time step orientation error for each testing set was eval-
uated using both 8 degrees and 4 degrees thresholds. The results showed that a higher error
threshold (8 degrees) led to better performance. However, the lower threshold results were still
relatively strong, with an average of only 18% or 0.6 degrees worse than the higher threshold. It
should be noted that the 8 degrees threshold eliminated 42 camera poses (60%). In comparison,
the 4 degrees threshold eliminated 32 camera poses (45%).

Comparison of the CL approaches

Figures 5.5 and 5.6 illustrate the performance of the CL approaches for each testing set in terms
of the translation and orientation components with the baseline approach, which is DL-based
regression architecture (detailed in Chapter 3) trained with all training sets building from the
ground up without CL.

The results demonstrate that the naive CL approach has the poorest performance for transla-
tion and orientation error, primarily due to forgetting previously learned knowledge over time.
The naive CL approach has competitive results with the final testing subset (S6) because this
sub-test set is in the final training subset, where the naive CL last updates the model.

In contrast, the buffer-based approaches, including the class balance approach, did not suf-
fer from the catastrophic forgetting problem. Figures 5.5 and 5.6 show no significant perfor-

CHAPTER 5. CL-BASED HEC APPROACH 86

Table 5.8: Experimental results of the reservoir buffer with class balance and pose estimation
approach for the translation error (mm) in the final time step.

Camera Pose Selection and Random Buffer CL with 4 samples
Mean / Std (mm)

Treshold S1 S2 S3 S4 S5 S6 Average
6 mm 2.44±0.27 2.8±0.4 4.4±0.9 1.61±0.44 1.92±0.31 2.52±0.59 2.62±0.49
3 mm 1.91±0.22 2.08±0.33 3.11±0.91 1.29±0.15 1.47±0.14 2.0±0.5 1.98±0.38

Table 5.9: Experimental results of the reservoir buffer with class balance and pose estimation
approach for the orientation error (degrees) in the final time step.

Camera Pose Selection and Random Buffer CL with 4 samples
Mean / Std (degrees)

Treshold S1 S2 S3 S4 S5 S6 Average
8 degree 4.2±0.37 3.42±1.11 4.22±0.48 2.22±0.38 1.96±0.31 2.11±0.59 3.02±0.54
4 degree 4.95±0.69 2.01±0.26 3.05±0.35 1.54±0.2 1.81±0.08 1.55±0.14 2.49±0.29

mance differences among these approaches for both components. However, the buffer-based ap-
proaches with camera pose selection allowed for the elimination of unnecessary camera poses,
resulting in reduced computational time over time. This makes them more adaptable for process-
ing stream (online) data. It should be noted that the best parameters for the reservoir buffer with
the class balance approach were only included in the plots for simplicity. Except for the naive
approach, CL-based approaches have competitive results with the baseline for both translation
and orientation.

Based on the comparison of CL approaches with the baseline approach, it can be concluded
that CL approaches improve the model’s translation and orientation estimation performance.
The buffer-based approaches, including the class balance approach, performed better than the
naive approach, which suffered from the catastrophic forgetting problem. Moreover, the buffer-
based approaches with camera pose selection allowed for eliminating unnecessary camera poses,
reducing computational time and making them more suitable for processing stream (online) data.
The reservoir with the class balance approach has 1.5 mm and 0.5 degrees higher errors for the
translation and orientation compared to the baseline (developed in Chapter 3). The reservoir with
the class balance and camera pose selection approach has 0.3 mm and 1.1 degrees higher errors
than the baseline. Overall, these results suggest that CL approaches, particularly buffer-based
approaches, can improve the accuracy and efficiency of camera pose estimation models.

5.5 Real-world Experiments

5.5.1 Data collection and split

A Universal Robot 3 with a three-finger grasper (detailed in section 2.2.1) was placed on the
table. To span camera space from different viewpoints, a stereo pair of cameras (The StereoLabs

CHAPTER 5. CL-BASED HEC APPROACH 87

Figure 5.5: This figure compares each testing set’s translation errors for adopted CL approaches
with the baseline approach in the final time step. The baseline approach is dl-based regression
architecture trained by all training sets building from the ground up without CL.

Figure 5.6: This figure compares each testing set’s orientation errors for adopted CL approaches
with the baseline approach in the final time step. The baseline approach is dl-based regression
architecture trained by all training sets building from the ground up without CL.

CHAPTER 5. CL-BASED HEC APPROACH 88

camera (ZED) presented in section 2.2.3) was positioned in 24 locations, illustrated in figure 5.7.
These camera configurations cover three sides of the table where the robot is mounted, which
enables us to consider 90 and 180 degrees rotations which contain the challenging perpendicular
and reflection configurations. These rotations cause a significant change in the appearance of
the robot and the environment. To span the robot workspace space, the end-effector of the robot
was moved to 100 configurations for each camera pose.

Figure 5.7 shows the camera configurations, where red and blue dots represent the train (19
camera poses) and test (5 camera poses) sets. For data partition, three subsets (S1-S3) were used,
where each side was composed of the one-time step. Table 5.10 shows the time step selection
strategy used in real-world experiments.

Table 5.10: An overview of the time step for Continual Learning-based approaches in the real-
world environment

Time steps/Real-world
Approach Total Time step Camera pose each time step
Naive CL 3 6

The reservoir buffer
with class balance 3 6

The reservoir buffer
with class balance

and camera pose selection
14 1

Figure 5.7: This figure shows the camera configurations used in the real-world environment.
The 24 camera configurations are divided into three subsets. The red and blue colours represent
the training and testing sets, respectively.

CHAPTER 5. CL-BASED HEC APPROACH 89

5.5.2 Experimental design

Naive CL

The naive CL approach processes the data separately for translation and orientation components
by employing the network detailed in Chapter 3. It starts to train the network using the first
subset and then update the trained model until all subsets are covered.

The reservoir buffer with class balance

This approach, similar to the naive CL approach, processes the data separately for the translation
and orientation components using the network described in Chapter 3. The training process
starts with the first subset, and the model is updated until all subsets are covered. However,
unlike the naive approach, this approach utilises algorithm 3 to augment the training set with
past observations. The parameters c1, c2, and c3 are chosen for the real-world experiments as
four, all observed camera poses in the previous time step, and 100% based on the simulation
results discussed in section 5.5.3.

The reservoir buffer with class balance and camera pose selection

The reservoir buffer with class balance and camera pose selection approach follows a training
procedure different from the buffer and naive CL approaches. Initially, the translation and ori-
entation networks are trained using the first subset, which includes six camera poses. In contrast
to the previous approaches, the other 13 camera poses are considered independent time steps, a
more realistic representation of camera pose changes in real-world applications, which resem-
bles a stream (online) hand-eye calibration.

At the end of the first time step, Algorithm 4 is used to test whether the new camera pose
includes novelty. If so, the camera poses with novelty at any time step are used to update the last
model using the reservoir buffer with the class balance approach. Specifically, four samples are
taken from past novel camera observations to augment the current training set.

To determine the presence of novelty, a threshold is used for the translation and orientation
components. Based on experimental results obtained from simulations, the thresholds for the
translation and orientation components are set to 3 mm and 4 degrees, respectively.

5.5.3 Experimental results

This section presents individual and comparison results of each CL approach for the translation
and orientation components in the real-world environment.

CHAPTER 5. CL-BASED HEC APPROACH 90

Naive CL experimental results in the real-world environment

Tables 5.11 and 5.12 present the experimental results of the Naive CL approach for the transla-
tion and orientation error at each time step and the unseen test set in the real-world environment.
The results indicate that there is a good performance for the test set at the current time step, but
catastrophic forgetting occurs for the previous time steps. Specifically, the average translation
errors (as shown in Table 5.11) for the S2 and S3 test sets in the final step are 4.14 and 3.49 mm,
respectively, while the error for the S1 test set is 31.51 mm.

Table 5.11: Naive CL experimental results for the translation in the real-world

UR3 Naive CL
Mean / Std (mm)

Time
Step S1 S2 S3 Average

T1 1.53±0.02 20.86±0.04 38.09±0.05 20.16±0.04
T2 25.96±0.63 5.78±0.85 17.75±0.88 16.5±0.79
T3 31.51±1.32 4.14±1.84 3.49±1.24 13.05±1.49

Table 5.12: Naive CL experimental results for the orientation in the real-world

UR3 Naive CL
Mean / Std (degree)

Time
Step S1 S2 S3 Average

T1 4.62±0.05 77.13±0.03 167.53±0.06 83.09±0.05
T2 111.27±0.19 10.13±0.37 60.6±1.69 60.67±0.75
T3 159.89±4.54 9.51±0.5 9.59±0.88 59.66±1.97

Experimental results of the reservoir buffer with class balance in the real-world environ-
ment

Tables 5.13 and 5.14 present the translation and orientation error results for each time step and
sub-testing set when using the reservoir buffer with the class balance approach, with parameters
four, all observed camera poses in the previous time step, and 100% chosen based on the ablation
study results in the simulation environment.

Table 5.13 indicates a decrease in translation error as camera poses are processed over time
for both the current and previous test sets. Moreover, the average error for each test set in
the final step is competitive with the deep learning-based HEC described in Chapter3, and the
catastrophic forgetting problem observed in the Naive CL approach is resolved.

Regarding the orientation component (detailed in Table 5.14), a similar trend is seen in the
translation regarding model success over time, and the impact of the catastrophic forgetting

CHAPTER 5. CL-BASED HEC APPROACH 91

Table 5.13: Experimental results of the reservoir buffer with class balance approach for the
translation in the real-world environment, where c1, c2, and c3 are four, all observed camera
poses in the previous time step and 100%, respectively.

UR3 Random Buffer CL with 4 samples
Mean / Std (mm)

Time
Step S1 S2 S3 Average

T1 1.83±0.06 10.06±0.19 34.59±0.11 15.49±0.12
T2 3.83±0.4 1.59±0.17 24.32±1.66 9.91±0.74
T3 4.17±0.47 2.88±1.16 3.46±0.41 3.5±0.68

Table 5.14: Experimental results of the reservoir buffer with class balance approach for the
orientation in the real-world environment, where c1, c2, and c3 are four, all observed camera
poses in the previous time step and 100%, respectively.

UR3 Random Buffer CL with 4 samples
Mean / Std (degree)

Time
Step S1 S2 S3 Average

T1 4.42±0.14 35.17±0.44 158.94±0.19 66.18±0.26
T2 6.32±1.52 2.89±0.29 110.92±3.58 40.04±1.8
T3 7.38±0.87 5.32±0.53 16.23±1.16 9.64±0.85

problem is reduced. However, the average results in the final time step are above the baseline
detailed in Chapter 3, which are 1.4 mm and 2.8 degrees for translation and orientation, respec-
tively.

Experimental results of the reservoir buffer with class balance and camera pose selection
in the real-world environment

Tables 5.15 and 5.16 display experimental results for the translation and orientation components,
respectively, in a real-world environment using the reservoir buffer with the class balance and
camera pose selection approach. This approach considers each camera pose in the subsets as a
time step, except for the first subset, resulting in 14 time steps. Parameters used include four, all
observed novel camera poses in the previous time step, and 100% for the buffer approach, while
3mm and 4 degrees thresholds for the camera pose selection for translation and orientation,
respectively. It should be noted that each experiment was repeated three times to mitigate the
effects of stochasticity.

Table 5.15 demonstrates that the translation error for the first subset marginally increases
after the first time step (T1) when new camera poses are considered. However, this increase
is only 1mm and can be tolerated. For S2 and S3, the errors decrease over time. Addition-
ally, the threshold eliminates six camera poses, excluding novelty, which reduces computational
complexity.

CHAPTER 5. CL-BASED HEC APPROACH 92

Table 5.15: Experimental results of the reservoir buffer with class balance and pose estimation
approach for the translation in the real-world environment, where c1, c2, c3, and threshold are
four, all observed novel camera poses in the previous time step, 100% and 3 mm, respectively.

UR3 Camera Pose Selection and Random Buffer CL with 4 samples
Mean / Std (mm)

Time
Step S1 S2 S3 Average

T1 1.83±0.01 10.14±0.42 34.59±0.06 15.52±0.16
T2 2.08±0.13 3.49±0.15 30.33±0.71 11.97±0.33
T3 2.04±0.14 2.86±0.35 25.1±4.29 10±1.59
T4 2.16±0.27 3.26±0.44 20.5±0.25 8.64±0.32
T5 2.16±0.27 3.26±0.44 20.5±0.25 8.64±0.32
T6 2.16±0.27 3.26±0.44 20.5±0.25 8.64±0.32
T7 2.16±0.27 3.26±0.44 20.5±0.25 8.64±0.32
T8 2.45±0.49 2.75±0.08 15.25±2.66 6.82±1.08
T9 2.94±1.07 3.2±0.7 10.77±0.56 5.64±0.78
T10 2.94±1.07 3.2±0.7 10.77±0.56 5.64±0.78
T11 2.54±0.53 2.99±0.24 4.16±0.77 3.23±0.51
T12 2.54±0.53 2.99±0.24 4.16±0.77 3.23±0.51
T13 2.6±0.29 3.02±0.33 3.78±0.92 3.13±0.51
T14 2.34±0.3 2.48±0.38 4.77±0.6 3.2±0.43

Table 5.16 shows that the orientation trend is similar to the translation for S1, S2, and S3.
Although the error in the S3 test set decreases over time, it is still high compared to S1 and S2.
Increasing camera pose in that region may address this performance gap.

Comparison of the CL approaches in the real-world environment

Figures 5.8 and 5.9 present a comparison of different CL approaches with the baseline (de-
tailed in Chapter 3) for the translation and orientation components, respectively. The naive CL
approach exhibits the worst performance for both translation and orientation components. In
comparison to the baseline, it is 14 and 31 times worse for translation and orientation compo-
nents in the S1 test set in the final time step. Figure 5.8 demonstrates that the buffer-based CL
approaches have results that are competitive with the baseline for the translation error. On the
other hand, Figure 5.9 shows that the buffer-based approaches perform comparably to the base-
line for the first two test sets, but there is a performance gap in the final test set. This difference
may be due to the camera pose in this set representing the reflection (180-degree rotation), which
is a challenging scenario because it causes a significant change in the appearance of the robot
and the environment. The experimental result in the simulation (detailed in the section 5.4.3)
shows that CL-based approaches have the potential to produce the same success. The gap in the
final test set can be eliminated by increasing the number of camera poses in that region.

CHAPTER 5. CL-BASED HEC APPROACH 93

Table 5.16: Experimental results of the reservoir buffer with class balance and pose estimation
approach for the orientation in the real-world environment, where c1, c2, c3, and threshold are
four, all observed novel camera poses in the previous time step, 100% and 4 degrees, respec-
tively.

UR3 Camera Pose Selection and Random Buffer CL with 4 samples
Mean / Std (degrees)

Time
Step S1 S2 S3 Average

T1 4.4±0.18 34.89±0.19 158.74±0.42 66.01±0.26
T2 5.09±0.55 8.36±0.26 142.33±2.09 51.93±0.97
T3 6.72±1.1 5.6±0.28 105.84±8.1 39.39±3.16
T4 6.72±1.1 5.6±0.28 105.84±8.1 39.39±3.16
T5 6.74±1.08 5.04±1.06 103.53±4.91 38.44±2.35
T6 6.39±1.38 4.15±1.13 109.87±9.1 40.14±3.87
T7 6.39±1.38 4.15±1.13 109.87±9.1 40.14±3.87
T8 7.22±1.32 4.87±0.92 67.58±10.84 26.56±4.36
T9 5.57±0.7 5.7±0.49 56.12±2.55 22.46±1.25
T10 5.05±0.95 6.42±2.99 41.86±1.39 17.78±1.78
T11 5.95±0.8 4.35±0.54 20.09±3.29 10.13±1.54
T12 6.19±1.35 3.85±0.86 13.02±0.75 7.69±0.99
T13 6.17±1.37 4.6±0.49 14.48±2.0 8.42±1.29
T14 7.07±2.2 3.87±0.43 12.0±0.88 7.65±1.17

5.6 Conclusion

This chapter has verified the following hypothesis:
A Continual Learning-based hand-eye calibration system can extend the learned hand-eye

calibration space through new observations over time.

This chapter presents a Continual Learning-based approach for hand-eye calibration, which
allows for the extension of a previously learned calibration space with new observations over
time. Three different Continual Learning-based methods are proposed: a naive approach, a
reservoir buffer with class balance, and a camera pose selection approach with the buffer. Ex-
perimental results on both simulated and real-world environments show that the CL-based ap-
proaches, except for the naive one, achieve competitive performance with the batch learning-
based approach. This suggests that the hand-eye calibration problem can be effectively treated
as a time sequence problem, and the learned space can be extended without retraining the net-
work building from the ground up with all the camera poses. The ability to extend the learned
space also makes the hand-eye calibration system more adaptable to changes in camera pose
over time.

The robotic system’s calibration may be updated in real-time using CL-based hand-eye cal-
ibration approaches, essential for preserving accuracy over time. This is particularly crucial in
production environments since the robotic system may encounter changes to the environment

CHAPTER 5. CL-BASED HEC APPROACH 94

Figure 5.8: This figure compares each testing set’s translation errors for adopted CL approaches
with the baseline in the final time step.

or the products it is manipulating, which would cause adjustments to the calibration parame-
ters. The system can retain accuracy and precision throughout the operation by updating the
calibration parameters in real time, resulting in higher-quality output and greater efficiency.

CHAPTER 5. CL-BASED HEC APPROACH 95

Figure 5.9: This figure compares each testing set’s orientation errors for adopted CL approaches
with the baseline in the final time step.

Chapter 6

Conclusion

The main goal of this thesis was to develop a flexible and autonomous hand-eye calibration
approach based on deep learning, which has the following characteristics:

• It continuously updates the calibration parameters in the learned calibration space while
eliminating data recollection and retraining as well as remaining competitive metric accu-
racy for the classic hand-eye calibration approaches, which could not address the camera
pose changes over time. Furthermore, the developed deep learning-based hand-eye cali-
bration approach has a better repeatability score (precision) than the classic and other deep
learning-based approaches (Chapter 3).

• The developed approach has competitive results for performing a real-robotic task (a pick-
and-place) with a classic hand-eye calibration approach while reducing the computational
complexity, unlike classic metric error (Chapter 4).

• The developed approach extends its learned calibration space through new observations
over time while preserving metric accuracy compared to training the network with all data
building from the ground up (batch-learning) (Chapter 5).

6.1 Main Research Findings

In Chapter 3, a deep learning-based regression architecture was developed to handle the dy-
namic hand-eye calibration problem, which requires addressing camera pose changes over time
without data recollection. To this end, a camera was positioned in n different configurations to
span the camera space, and the robot end-effector was run m different configurations for each
camera pose to span the robot space. Meanwhile, RGB and depth images and the poses of a sin-
gle reference point selected on the robot’s end-effector with respect to the robot bases through
the robot kinematic chain were collected in a simulation environment and two real robotic envi-
ronments. Using a single reference point simplifies data collection and reduces the dependence

96

CHAPTER 6. CONCLUSION 97

on external factors like specific calibration targets or image-based inference, leading to a more
straightforward and reliable hand-eye calibration process. Additionally, extending a single ref-
erence point for hand-eye calibration to multiple robot models offers consistency, efficiency,
and standardisation benefits, making the calibration process more streamlined and accessible
across various industrial robotic applications. The deep learning-based regression architecture
estimates calibration parameters continuously within the learned calibration space. The results
showed that the developed approach has competitive results (1.69 mm and 1.91 degrees for the
translation and orientation components, respectively) with the classic approaches in the simu-
lation environment. A direct comparison of the developed approach with the classic approaches
in real-world environments is difficult because the ground-truth calibration parameters could
not be precisely estimated in the real world. However, the repeatability score, which shows the
precision of the developed approaches, was used to compare with the classic and other deep
learning-based hand-eye calibration approaches [18, 19]. These results showed that the devel-
oped hand-eye calibration approach has 96 times better than the Tsai approach [8]. Overall, the
developed hand-eye calibration approach has the ability to update calibration parameters within
the learned calibration space.

Chapter 4 presented a comprehensive analysis of a deep learning-based hand-eye calibration
approach in a real-world robotic manipulation task, specifically pick-and-place. The primary
objective was to demonstrate the method’s effectiveness on task performance, unlike metric
error. Furthermore, the results were compared with a classic hand-eye calibration approach
[8] with respect to performing a real robotic manipulation task, computational complexity and
precision. The results indicated that the developed hand-eye calibration approach had 76.25%
and 62.5% success in picking and placing the object without data collection after training, while
the classic approach had 74.33% and 65% for these operations requiring data recollection for
each camera poses. Moreover, the average time consumption was 83 minutes for the classic
approach, whereas the developed approach required 0.06 minutes for the calibration updating
operation. Finally, 3.9 mm and 328 mm were the developed and classic hand-eye calibration
approaches’ precision errors, respectively. Overall, the results showed that the developed hand-
eye calibration approach has competitive results for performing a real robotic manipulation task
while decreasing the computational complexity and precision error.

Chapter 5 of the study focuses on Continual Learning, which aims to extend the learned
calibration space of the developed hand-eye calibration approach over time. Three different
Continual Learning-based approaches were developed and tested in simulated and real-world
environments. The first approach updated the weights of the deep learning-based regression
architecture developed in Chapter 3, considering only new observations outside of the previ-
ously learned calibration space over time. However, this approach encountered the problem of
catastrophic forgetting, which involves losing previous knowledge. To overcome this issue, a
reservoir buffer with the class balance approach was used for the dynamic hand-eye calibration

CHAPTER 6. CONCLUSION 98

problem. Moreover, a camera pose selection algorithm was included in the approach to elimi-
nate unnecessary observations that had already been learned in the previous stages and reduce
the computational complexity. The results demonstrated that the last two approaches effectively
extended the learned calibration space of the developed hand-eye calibration approach by using
new observations while maintaining metric accuracy in both simulated and real-world environ-
ments. The metric accuracy gaps for translation and orientation components in the simulation
are 0.28 mm and 0.5 degrees, while they are 1.03 mm and 2.5 degrees in the real-world environ-
ment.

6.2 Implications of the Knowledge

The findings of Chapters 3 and 4 suggested that the developed approach in this thesis can re-
duce the computational complexity of hand-eye calibration in real-world environments, leading
to more efficient and effective robot manipulation tasks. This approach can also handle the
dynamic changes of the camera poses within the learned relative camera and the robot con-
figurations without requiring data recollection, which is crucial for many real-world applica-
tions. Additionally, the continual learning-based approaches developed in Chapter 5 can ex-
tend the learned relative calibration space over time and preserve metric accuracy, an essential
step towards evolving manufacturing processes and the long-term autonomy of robotic systems.
Overall, this study contributes to the advancement of robotic systems and has the potential to
significantly impact many industries that use automation and robotics technology.

6.3 Significance of Findings

The developed deep learning-based regression architecture for hand-eye calibration (HEC) in
Chapter 3 represents a significant advancement in robotics. By utilising a 3D vision system to
automatically detect a single reference point defined by the robot’s kinematic chain, the archi-
tecture can estimate the camera pose and calibration parameters within seconds in the learned
calibration space without data recollection. This approach outperforms classic HEC techniques
that require data recollection for each camera pose, demonstrating competitive metric accuracy
and superior precision. The ability to quickly and accurately calibrate a robotic system in real-
time has implications for a wide range of applications, particularly in dynamic environments
where frequent recalibration is necessary to maintain accuracy. Overall, the findings highlight
the potential for deep learning-based HEC to enhance the performance of robotic systems and
enable more efficient and effective automation in various fields, such as manufacturing pro-
cesses, assembly lines, quality control, material handling, and inspection applications.

The experimental results in Chapter 4 suggest that the developed deep learning-based hand-
eye calibration (HEC) approach performs comparably to the classic approach in a real-world

CHAPTER 6. CONCLUSION 99

robotic manipulation task. In addition, the developed approach exhibits a significant reduction
in computational complexity, as shown by the decreased number of attempts required to obtain
calibration parameters and the reduced calibration time compared to the classic HEC approach.
These findings are significant because they present the potential of the developed approach to
improve the efficiency and accuracy of robotic manipulation tasks. The reduced computational
complexity and time needed for calibration can also lead to cost savings and improved produc-
tivity in various industries that rely on robotic automation.

The findings in Chapter 5 suggest that the hand-eye calibration problem can be solved effec-
tively by treating it as a time-series problem and updating calibration parameters continuously
with changing camera poses. The proposed continual learning-based HEC approach uses a
buffer system to incorporate new observations and extend the learned calibration space with-
out requiring complete retraining. This enhances the flexibility and autonomy of the calibration
process, allowing the calibration parameters to adapt and improve over time. These results offer
a promising solution to the hand-eye calibration problem with potential applications in various
fields. For example, accurate hand-eye calibration is essential for improving the performance of
robot manipulators, which are widely used in manufacturing and assembly tasks.

6.4 Limitations

These developed hand-eye calibration approaches consider external camera configuration where
the camera is placed in an external location. They are not valid for the eye-in-hand configuration
in which a camera is attached to one of the robot joints, generally end-effector.

Tsai’s [8] hand-eye calibration method is a reference for evaluating the devised hand-eye
calibration approaches without introducing absolute errors. This particular approach yields
favourable outcomes following multiple data collection iterations. The utilisation of projec-
tion error enables assessing the accuracy of the calibration parameters estimated through Tsai’s
method Tsai’s [8], a practical consideration since obtaining absolute calibration parameters in
real-world contexts entails the utilisation of costly calibration equipment.

The repeatability score is employed as a comparison method developed approaches with the
state-of-the-art deep learning-based and the classic HEC approaches in the real world without
absolute error.

Obtaining accurate camera poses with respect to the robot base can be particularly chal-
lenging in real-world scenarios. The proposed approach relies on labelled data in the training
phase, which can be a challenging and time-consuming task in some application areas. Further-
more, the success of the approach is highly dependent on the accuracy and reliability of the data
labelling operation.

Another important assumption of the current approach is that the 3D vision system is ac-
curately calibrated. However, in practice, this system may be prone to errors or malfunctions,

CHAPTER 6. CONCLUSION 100

which can affect the performance of the proposed approach. The proposed approach has been
tested on a limited set of simulated and real-world environments. Therefore, its generalisability
and performance in other settings remain to be evaluated.

6.5 Future Works

This section presents potential future works to address the developed approaches’ limitations,
which are detailed in section 6.4.

6.5.1 Integration with manufacturing robotic systems

The developed deep learning-based hand-eye calibration approach provides a flexible and au-
tonomous calibration paradigm for dynamic robotic manufacturing environments. It enables
calibration updates in the learned space and extension of the learned space over time for camera
pose changes. Moreover, the developed approach can be used for calibration transfer between
the robots. For example, the calibration model of the Universal Robot 3 can be transferred to the
Universal Robot 5 by just using a few samples, eliminating the data collection from the begin-
ning. Furthermore, the developed approach can extend the robot’s kinematic chain by adding a

tool without specifying the model. For example, a robot’s arm can be extended by holding a ham-
mer, which would enable the robot to manipulate the environment with an extended workspace.

6.5.2 Integration with other robotic systems

The suggested method may be deployed with other robotic systems, such as self-driving cars,
drones, or mobile robots, to allow them to carry out tasks in dynamic situations with precise and
adaptable hand-eye calibration.

The developed hand-eye calibration approaches can be applied to self-driving, which uses
cameras to perceive the environment for making decisions. The position and orientation of the
cameras with respect to the car’s base can change over time due to factors such as vibrations,
wear and tear, or accidental impacts. Thus, the flexible and autonomous hand-eye calibration
must be frequently updated to maintain accurate perception and prevent accidents.

The developed deep learning-based hand-eye calibration approach can also be modified for
drones, in which the calibration of the camera with respect to its base can be broken because of
the temperature or wind when they are operating.

6.5.3 Investigation of different learning paradigms

The developed approach was currently trained in a supervised manner. However, the hand-eye
calibration problem can be reformulated using other learning paradigms, such as reinforcement

CHAPTER 6. CONCLUSION 101

learning and self-supervised learning. The hand-eye calibration problem can be approached
using Reinforcement Learning, where the robot acts as an agent, and the environment is defined
as the camera space (images) and object space. The agent’s goal is to maximise a reward function
by taking actions to manipulate an object detected in the camera space using the current hand-eye
calibration parameters. The agent controls the robot arm and adjusts the calibration parameters
over time to achieve this objective, using feedback from the environment to guide its actions.
By formulating the hand-eye calibration problem as a Reinforcement Learning problem, we can
develop more flexible and adaptive calibration approaches that can be applied to a wider range
of robotic systems and environments.

The variational autoencoder [102] can also be used to learn the distribution of the robot and
camera parameter spaces in the encoder part. Then, the decoder part can be used to construct
images using encoded features, and the difference between the constructed and real images can
be used as a learning signal. This approach could lead to more efficient and flexible calibration
methods that adapt to changing environments and hardware configurations.

6.5.4 Exploration of other deep learning architectures

The developed approach employs deep learning-based regression architecture, but other deeply
learning architectures can be used to formulate the problem, such as recurrent neural networks.
NARX (Nonlinear Autoregressive with exogenous inputs) [103, 104] networks can address the
hand-eye calibration problem by learning the relationship between the camera and robot poses
and adjusting the calibration parameters in a closed-loop manner. NARX networks are similar
to the Multi-Layer Perceptron (MLP) in training, but they are the type of recurrent networks
whose outputs are used as inputs through direct connections. It has a prominent performance on
nonlinear systems [103]. A feedback mechanism can enable the network to control its outputs,
allowing the calibration parameters to be continuously updated as the camera and robot positions
change. Furthermore, the ability of NARX networks to remember past observations over time
can make them compatible with the continual learning-based approach, eliminating the need for
a buffer system. This can lead to a more efficient and adaptable calibration approach in dynamic
environments.

Bibliography

[1] X. Fan, X. Wang, and Y. Xiao, “A combined 2d-3d vision system for automatic robot
picking,” in Proceedings of the 2014 International Conference on Advanced Mechatronic

Systems. IEEE, 2014, pp. 513–516.

[2] M. Pena, R. Osorio et al., “Robot vision methodology for assembly manufacturing tasks,”
in Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007). IEEE,
2007, pp. 289–294.

[3] N. Herakovic, Robot vision in industrial assembly and quality control processes. IN-
TECH Open Access Publisher London, UK, 2010.

[4] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vision
metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on Robotics and

Automation, vol. 3, no. 4, pp. 323–344, 1987.

[5] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pat-

tern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[6] H. Zhang, C. Zhang, W. Yang, and C.-Y. Chen, “Localization and navigation using qr
code for mobile robot in indoor environment,” in 2015 IEEE international conference on

robotics and biomimetics (ROBIO). IEEE, 2015, pp. 2501–2506.

[7] J. Abdullah and K. Martinez, “Camera self-calibration for the artoolkit,” in The First

IEEE International Workshop Agumented Reality Toolkit,. IEEE, 2002, pp. 5–pp.

[8] R. Y. Tsai, R. K. Lenz et al., “A new technique for fully autonomous and efficient 3 d
robotics hand/eye calibration,” IEEE Transactions on robotics and automation, vol. 5,
no. 3, pp. 345–358, 1989.

[9] J. C. Chou and M. Kamel, “Finding the position and orientation of a sensor on a robot
manipulator using quaternions,” The international journal of robotics research, vol. 10,
no. 3, pp. 240–254, 1991.

102

BIBLIOGRAPHY 103

[10] N. Andreff, R. Horaud, and B. Espiau, “Robot hand-eye calibration using structure-from-
motion,” The International Journal of Robotics Research, vol. 20, no. 3, pp. 228–248,
2001.

[11] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international journal of robotics

research, vol. 14, no. 3, pp. 195–210, 1995.

[12] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The International Journal

of Robotics Research, vol. 18, no. 3, pp. 286–298, 1999.

[13] H. Zhuang, Z. S. Roth, and R. Sudhakar, “Simultaneous robot/world and tool/flange cal-
ibration by solving homogeneous transformation equations of the form ax= yb,” IEEE

Transactions on Robotics and Automation, vol. 10, no. 4, pp. 549–554, 1994.

[14] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration,” IEEE

transactions on Robotics and Automation, vol. 14, no. 4, pp. 617–622, 1998.

[15] M. Shah, “Solving the robot-world/hand-eye calibration problem using the kronecker
product,” Journal of Mechanisms and Robotics, vol. 5, no. 3, p. 031007, 2013.

[16] A. Tabb and K. M. Ahmad Yousef, “Solving the robot-world hand-eye (s) calibration
problem with iterative methods,” Machine Vision and Applications, vol. 28, no. 5-6, pp.
569–590, 2017.

[17] Z. Zhao, “Simultaneous robot-world and hand-eye calibration by the alternative linear
programming,” Pattern Recognition Letters, vol. 127, pp. 174–180, 2019.

[18] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and S. Birchfield,
“Camera-to-robot pose estimation from a single image,” in 2020 IEEE International Con-

ference on Robotics and Automation (ICRA). IEEE, 2020, pp. 9426–9432.

[19] E. Valassakis, K. Dreczkowski, and E. Johns, “Learning eye-in-hand camera calibration
from a single image,” in Conference on Robot Learning. PMLR, 2022, pp. 1336–1346.

[20] J. Jiang, X. Luo, Q. Luo, L. Qiao, and M. Li, “An overview of hand-eye calibration,” The

International Journal of Advanced Manufacturing Technology, pp. 1–21, 2021.

[21] C. Fitzgerald, “Developing baxter,” in 2013 IEEE conference on technologies for practi-

cal robot applications (TePRA). IEEE, 2013, pp. 1–6.

[22] R. Bloss, “Collaborative robots are rapidly providing major improvements in productivity,
safety, programing ease, portability and cost while addressing many new applications,”
Industrial Robot: An International Journal, vol. 43, no. 5, pp. 463–468, 2016.

BIBLIOGRAPHY 104

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng
et al., “Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[24] UR Polyscope. [Online]. Available: https://www.universal-robots.com/

[25] J. W. Eaton, D. Bateman, and S. Hauberg, “Gnu octave,” GNU Octave, 2013.

[26] P. H. Winston and B. K. Horn, “Lisp,” 1986.

[27] A.-M. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera, and N. O. Salscheider, “Robot oper-
ating system: A modular software framework for automated driving,” in 2016 IEEE 19th

International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp.
1564–1570.

[28] S. Inc., “Zed,” https://www.stereolabs.com/zed, 2022, last accessed 10 February 2022.

[29] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[30] P. Flores, Euler Angles, Bryant Angles and Euler Parameters. Cham: Springer
International Publishing, 2015, pp. 15–22. [Online]. Available: https://doi.org/10.1007/
978-3-319-16190-7_4

[31] Y.-B. Jia, “Quaternions and rotations,” Com S, vol. 477, no. 577, p. 15, 2008.

[32] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation represen-
tations in neural networks,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 5745–5753.

[33] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy, and J. Kelly, “A
smooth representation of belief over so (3) for deep rotation learning with uncertainty,”
arXiv preprint arXiv:2006.01031, 2020.

[34] T. Luhmann, C. Fraser, and H.-G. Maas, “Sensor modelling and camera calibration for
close-range photogrammetry,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 115, pp. 37–46, 2016.

[35] I. Sobel, “On calibrating computer controlled cameras for perceiving 3-d scenes,” Artifi-

cial intelligence, vol. 5, no. 2, pp. 185–198, 1974.

[36] K. M. Dawson-Howe and D. Vernon, “Simple pinhole camera calibration,” International

Journal of Imaging Systems and Technology, vol. 5, no. 1, pp. 1–6, 1994.

https://www.universal-robots.com/
https://www.stereolabs.com/zed
https://doi.org/10.1007/978-3-319-16190-7_4
https://doi.org/10.1007/978-3-319-16190-7_4

BIBLIOGRAPHY 105

[37] L. Huang, Q. Zhang, and A. Asundi, “Flexible camera calibration using not-measured
imperfect target,” Applied optics, vol. 52, no. 25, pp. 6278–6286, 2013.

[38] W. Qi, F. Li, and L. Zhenzhong, “Review on camera calibration,” in 2010 Chinese Control

and Decision Conference. IEEE, 2010, pp. 3354–3358.

[39] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE interna-

tional conference on robotics and automation. IEEE, 2011, pp. 3400–3407.

[40] S. J. Maybank and O. D. Faugeras, “A theory of self-calibration of a moving camera,”
International journal of computer vision, vol. 8, no. 2, pp. 123–151, 1992.

[41] F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and
A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional recon-
struction and projection mapping,” IEEE Transactions on Computational Imaging, vol. 3,
no. 1, pp. 74–83, 2017.

[42] L. S. Ginani and J. M. S. Motta, “Theoretical and practical aspects of robot calibration
with experimental verification,” Journal of the Brazilian Society of Mechanical Sciences

and Engineering, vol. 33, no. 1, pp. 15–21, 2011.

[43] K. Okamura and F. C. Park, “Kinematic calibration using the product of exponentials
formula,” Robotica, vol. 14, no. 4, pp. 415–421, 1996.

[44] G. Li, F. Zhang, Y. Fu, and S. Wang, “Kinematic calibration of serial robot using dual
quaternions,” Industrial Robot: the international journal of robotics research and appli-

cation, 2019.

[45] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based
on matrices,” 1955.

[46] S. Hayati, K. Tso, and G. Roston, “Robot geometry calibration,” in Proceedings. 1988

IEEE International Conference on Robotics and Automation. IEEE, 1988, pp. 947–951.

[47] A. Nubiola and I. A. Bonev, “Absolute calibration of an abb irb 1600 robot using a laser
tracker,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 1, pp. 236–245,
2013.

[48] M. Ikits and J. M. Hollerbach, “Kinematic calibration using a plane constraint,” in Pro-

ceedings of International Conference on Robotics and Automation, vol. 4. IEEE, 1997,
pp. 3191–3196.

[49] H. Zhuang, S. H. Motaghedi, and Z. S. Roth, “Robot calibration with planar constraints,”
in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.

No. 99CH36288C), vol. 1. IEEE, 1999, pp. 805–810.

BIBLIOGRAPHY 106

[50] M. Švaco, B. Šekoranja, F. Šuligoj, and B. Jerbić, “Calibration of an industrial robot using
a stereo vision system,” Procedia Engineering, vol. 69, pp. 459–463, 2014.

[51] A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic kinematic chain cali-
bration using artificial skin: self-touch in the icub humanoid robot,” in 2014 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE, 2014, pp. 2305–2312.

[52] M. Hersch, E. Sauser, and A. Billard, “Online learning of the body schema,” International

Journal of Humanoid Robotics, vol. 5, no. 02, pp. 161–181, 2008.

[53] K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot self-calibration using multiple kine-
matic chains—a simulation study on the icub humanoid robot,” IEEE Robotics and Au-

tomation Letters, vol. 4, no. 2, pp. 1900–1907, 2019.

[54] K. Stepanova, J. Rozlivek, F. Puciow, P. Krsek, T. Pajdla, and M. Hoffmann, “Automatic
self-contained calibration of an industrial dual-arm robot with cameras using self-contact,
planar constraints, and self-observation,” Robotics and Computer-Integrated Manufactur-

ing, vol. 73, p. 102250, 2022.

[55] Z. Zhao, “Hand-eye calibration using convex optimization,” in 2011 IEEE International

Conference on Robotics and Automation. IEEE, 2011, pp. 2947–2952.

[56] A. Li, L. Wang, and D. Wu, “Simultaneous robot-world and hand-eye calibration us-
ing dual-quaternions and kronecker product,” International Journal of Physical Sciences,
vol. 5, no. 10, pp. 1530–1536, 2010.

[57] X. Zhi and S. Schwertfeger, “Simultaneous hand-eye calibration and reconstruction,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1470–1477.

[58] I. Ali, O. Suominen, A. Gotchev, and E. R. Morales, “Methods for simultaneous robot-
world-hand–eye calibration: A comparative study,” Sensors, vol. 19, no. 12, p. 2837,
2019.

[59] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Communications

of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[60] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment—a
modern synthesis,” in Vision Algorithms: Theory and Practice: International Workshop

on Vision Algorithms Corfu, Greece, September 21–22, 1999 Proceedings. Springer,
2000, pp. 298–372.

BIBLIOGRAPHY 107

[61] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image understanding,
vol. 68, no. 2, pp. 146–157, 1997.

[62] J. Lambrecht, “Robust few-shot pose estimation of articulated robots using monocular
cameras and deep-learning-based keypoint detection,” in 2019 7th International Con-

ference on Robot Intelligence Technology and Applications (RiTA). IEEE, 2019, pp.
136–141.

[63] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on com-

puter vision, 2015, pp. 1440–1448.

[64] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to the pnp
problem,” International journal of computer vision, vol. 81, no. 2, p. 155, 2009.

[65] Z. Zhang, “Iterative point matching for registration of free-form curves and surfaces,”
International journal of computer vision, vol. 13, no. 2, pp. 119–152, 1994.

[66] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp.
1140–1144, 2018.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015.

[68] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and
T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3366–
3385, 2021.

[69] S. T. Grossberg, Studies of mind and brain: Neural principles of learning, perception,

development, cognition, and motor control. Springer Science & Business Media, 2012,
vol. 70.

[70] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias, “Three types of incremental learning,”
Nature Machine Intelligence, pp. 1–13, 2022.

[71] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint

arXiv:1606.04671, 2016.

BIBLIOGRAPHY 108

[72] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with a
network of experts,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 3366–3375.

[73] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and
D. Wierstra, “Pathnet: Evolution channels gradient descent in super neural networks,”
arXiv preprint arXiv:1701.08734, 2017.

[74] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by
iterative pruning,” in Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, 2018, pp. 7765–7773.

[75] T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience replay for stream-
ing learning,” in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 9769–9776.

[76] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier
and representation learning,” in Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition, 2017, pp. 2001–2010.

[77] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience replay for
continual learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[78] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catastrophic forgetting
in neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13,
pp. 3521–3526, 2017.

[79] X. Liu, M. Masana, L. Herranz, J. Van de Weijer, A. M. Lopez, and A. D. Bagdanov,
“Rotate your networks: Better weight consolidation and less catastrophic forgetting,” in
2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018, pp.
2262–2268.

[80] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware
synapses: Learning what (not) to forget,” in Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 139–154.

[81] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-C. J. Kuo, “Class-
incremental learning via deep model consolidation,” in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, 2020, pp. 1131–1140.

[82] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

BIBLIOGRAPHY 109

[83] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv

preprint arXiv:1503.02531, 2015.

[84] S. Wang, Z. Laskar, I. Melekhov, X. Li, and J. Kannala, “Continual learning for image-
based camera localization,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2021, pp. 3252–3262.

[85] A. Chrysakis and M.-F. Moens, “Online continual learning from imbalanced
data,” in Proceedings of the 37th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, H. D. III and A. Singh,
Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 1952–1961. [Online]. Available:
https://proceedings.mlr.press/v119/chrysakis20a.html

[86] K. Pauwels and D. Kragic, “Integrated on-line robot-camera calibration and object pose
estimation,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 2332–2339.

[87] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018.

[88] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[89] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-
cal image segmentation,” in International Conference on Medical image computing and

computer-assisted intervention. Springer, 2015, pp. 234–241.

[90] S. R. Company, “Modular grasper,” https://modular-grasper.readthedocs.io/en/latest/
user_guide/1_introduction/, 2022, last accessed 10 February 2022.

[91] T. Foote, “tf: The transform library,” in 2013 IEEE Conference on Technologies for Prac-

tical Robot Applications (TePRA). IEEE, 2013, pp. 1–6.

[92] K. S. Chen, “Application of the iso 9283 standard to test repeatability of the baxter robot,”
2015.

[93] O. Saha and P. Dasgupta, “A comprehensive survey of recent trends in cloud robotics
architectures and applications,” Robotics, vol. 7, no. 3, p. 47, 2018.

[94] O. Bahadir, J. P. Siebert, and G. Aragon-Camarasa, “A deep learning-based hand-eye
calibration approach using a single reference point on a robot manipulator,” in 2022 IEEE

International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2022, pp. 1109–
1114.

https://proceedings.mlr.press/v119/chrysakis20a.html
https://modular-grasper.readthedocs.io/en/latest/user_guide/1_introduction/
https://modular-grasper.readthedocs.io/en/latest/user_guide/1_introduction/

BIBLIOGRAPHY 110

[95] I. A. Sucan and S. Chitta, “Moveit!” 2013.

[96] A. Mordvintsev and K. Abid, “Opencv-python tutorials documentation,” Obtenido

de https://media. readthedocs. org/pdf/opencv-python-tutroals/latest/opencv-python-

tutroals. pdf, 2014.

[97] K. Koide and E. Menegatti, “General hand–eye calibration based on reprojection error
minimization,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1021–1028,
2019.

[98] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library.
" O’Reilly Media, Inc.", 2008.

[99] “ZED Stereo Camera.” [Online]. Available: https://www.stereolabs.com/zed/

[100] Stanford Artificial Intelligence Laboratory et al., “Robotic operating system.” [Online].
Available: https://www.ros.org

[101] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning
with neural networks: A review,” Neural networks, vol. 113, pp. 54–71, 2019.

[102] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[103] T. Lin, B. G. Horne, P. Tino, and C. L. Giles, “Learning long-term dependencies in narx
recurrent neural networks,” IEEE Transactions on Neural Networks, vol. 7, no. 6, pp.
1329–1338, 1996.

[104] H. Xie, H. Tang, and Y.-H. Liao, “Time series prediction based on narx neural networks:
An advanced approach,” in 2009 International conference on machine learning and cy-

bernetics, vol. 3. IEEE, 2009, pp. 1275–1279.

https://www.stereolabs.com/zed/
https://www.ros.org

	Thesis cover sheet
	2023BahadirPhD (1)
	Abstract
	Nomenclature
	Acknowledgements
	Declaration
	Introduction
	A Brief Introduction to the Hand-eye Calibration
	The importance

	Current Literature and Challenges
	Current Literature
	Challenges

	Aims and Objectives
	Aim of the study
	The hypotheses and research questions

	A Brief Overview of the Proposed Approaches
	The Significance of the Proposed Approaches
	Contributions
	List of publications

	The Outline of the Thesis

	Background and Literature Review
	An Overview of Hand-eye Calibration Problem
	Hardware and Software
	Robotic environments
	Robot operating system (ROS)
	The StereoLabs camera (ZED)

	Background
	Representation of position and orientation in 3D Space (R3)
	Image Formation

	Camera Calibration
	Marker-based approaches
	Self-calibration approaches

	Robot Calibration
	Classic Hand-eye Calibration
	AX=XB Formulations
	AX=YB Formulations
	Reprojection error-based approaches

	Deep Learning-based Hand-eye Calibration
	Continual Learning
	Discussion

	Deep Learning-Based Hand-eye Calibration Approach
	Introduction
	Motivation and Objectives
	Methodology
	Simulation Experiments
	Data Generation
	Network Architectures
	Loss Function and Metric
	Experimental Results
	Ablation Study

	Real-world Experiments
	Data Generation
	Network Architecture
	Real-world Results

	Conclusion

	Pick-and-Place Pipeline
	Introduction
	Motivation and Objectives
	Methodology
	Hand-eye Calibration Methods
	Object Detection

	Experimental setup
	Results
	Conclusions

	Continual Learning for Hand-Eye Calibration
	Introduction
	Motivation and Objectives
	Methodology
	The formulation of the HEC problem as Continual Learning problem
	Deep Learning-based Hand-eye Calibration
	Naive approach
	The reservoir buffer with class balance
	The reservoir buffer with class balance and camera pose selection

	Simulation Experiments
	Data generation and split
	Experimental design
	Experimental results

	Real-world Experiments
	Data collection and split
	Experimental design
	Experimental results

	Conclusion

	Conclusion
	Main Research Findings
	Implications of the Knowledge
	Significance of Findings
	Limitations
	Future Works
	Integration with manufacturing robotic systems
	Integration with other robotic systems
	Investigation of different learning paradigms
	Exploration of other deep learning architectures

