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Abstract

This thesis develops a statistical methodology for an important area of social network mod-

elling, that of the effects that an individual’s social network can have on the individual’s

propensity to engage in an array of different acts, which has been a public health concern

in many societies and is increasingly becoming important in the commercial world as access

to such data is becoming increasingly available and can be used to maximise profits. The

majority of studies that investigate this phenomenon estimate the fixed effects of network

statistics on an individual’s propensity to engage in a certain behaviour and are based on

network health data. The process thought to generate this phenomenon is typically modelled

with a univariate Bernoulli generalised linear model, which simplifies the network component

present in the process by summarising it with statistics, a procedure which induces a loss of

information. Over the past 20 years, statistical methodology has been developed to remedy

this issue with the use of a Bernoulli generalised linear mixed model which explicitly accounts

for the network components by modelling them as random effects. The work presented in

this thesis provides several novel contributions to these approaches

• The first of which is the development of a multivariate model that extends the multiple

membership multiple classification model proposed by Browne et al. (2001).

• The second is the development of a multivariate model that considers a spatio-network

interaction involving the sets of spatial and network random effects, as it may be of

interest to study whether friendship effects differ depending on the areal unit in which
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an individual lives.

• The third concerns the development of a software package that will enable researchers

to implement the models developed in this thesis.

These novel contributions are achieved through the use of Bayesian hierarchical models

with estimation performed with Markov chain Monte Carlo simulation.
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Chapter 1

Introduction

The idea that a relationship exists between an individual’s social network and their be-

haviours dates back over 2000 years to the Classical period in Ancient Greece. Born in

Ancient Greece over 470 years before Christ, Socrates would go on to leave his impression on

the thinking of mankind and along the way state that, “everything desires its opposite and

not its like”. In contrast to Socrates’ line of thought, Plato would write in Phaedrus that,

“similarity begets friendship”, suggesting that an individual’s social network is largely made

up of people with similar behaviours. During the same period in Ancient Greece, Aristotle,

a student of Plato’s Academy, mused in Nichomachean Ethics that, “we love those who are

like ourselves”, a notion akin to that of Plato’s and widely accepted today. It was Aristotle’s

belief that friendship was the most important thing that a person could possess and that

friends are essential to one’s life, writing in Book VIII of Nicomachean Ethics that, “without

friends no one would choose to live, though he had all other goods; even rich men and those

in possession of office and of dominating power are thought to need friends most of all ” . The

importance of friendship is discussed by many other ancient philosophers. Plautus writes

that “nothing but heaven itself is better than a friend who is really a friend.”, where the use

of religious imagery is used to stress the importance of friendship. Similarly, Lucretius uses

religious and heavenly imagery to convey the importance of friendship, writing that, “we are

1
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each of us angels with only one wing, and we can only fly by embracing one another ”. Many

modern and contemporary philosophers also share the sentiment of ancient philosophers on

the topic of friendship. Similar to the way in which Aristotle suggests that friendship is

essential to one’s life, Francis Bacon implies that friendship is essential in a civil world, writ-

ing that, “without friends the world is but a wilderness”. In contrast to the ways in which

Plautus and Lucretius use religious imagery and poetic language to stress the importance

of friendship, William James takes a more grounded approach to convey how important he

thinks that friendships are, writing that, “human beings are born into this little span of life

of which the best thing is its friendship and intimacies”.

Ancient and modern philosophers both highlight the importance of friendship to one’s

self. However, there is also a massive interest in understanding how a friend may influence

one’s behaviour, whether it be in a positive, negative or neutral manner. Episodes of friends

impacting one’s behaviour are plentiful and are themes often explored in works English

literature. In Othello, William Shakespeare illustrates how a friend may influence one’s

behaviour in a negative manner, with the protagonist succumbing to the influence of friend

Iago which leads to him murdering Desdemona. However, in the 21st century a growing

interest in understanding how a friend may influence one’s behaviour in a more quantitative

way has occurred. The spreading of behaviour in social networks through edges that link

friends to one another can have a profound real-world impact in a wide array of contexts.

The spreading of behaviour within a social network has been studied in the context of voting

in an election, with Bond et al. (2012) using 61 million Facebook messages during the 2010

US congressional election to find that messages not only influenced the users who received

them but also the users’ friends, and friends of friends. The spreading of behaviour within

social networks has also been observed in the field of health, with a longitudinal study carried

out by Christakis and Fowler (2007) finding that a person’s observed chances of becoming

obese increased if they had a friend who became obese over the period.

The ways in which friends can impact one’s health behaviours are of major concern to
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policy makers around the world, particularly when the person in question is an adolescent.

The uptake of negative health behaviours often occurs during adolescence and can lead to

many disorders in adulthood, which represents a major public health problem. In addition

to this, the period of adolescence are formative years for many and is a stage in life in which

many may be susceptible to influence by friends. Many studies on this topic have found that

the susceptibility of peer influence peaks during the stages of early and middle adolescence.

These studies commonly present adolescents with questionnaires centred around a series of

hypothetical anti-social scenarios involving their peers and construct metrics to measure an

adolescents’ sensitivity to peer influence (Berndt, 1979; Krosnick and Judd, 1982). However,

there are studies that construct questionnaires that are less focused on anti-social behaviours

and seek to be more general. In a study by Steinberg and Monahan (2007), the authors

construct a metric called resistance to peer influence (RPI), whose values are derived from

a series of less anti-social focused items in a questionnaire. In this approach, which studied

3,600 individuals between the ages of 10-30 years old, the authors found there to be a linear

increase in the resistance to peer influence between the ages of 14-18 years old. Whereas,

between the ages of 10-14 years old, resistance to peer influence tended to be lowest and there

was little evidence of its growth throughout this period for the adolescents in the study.

The three adolescent health behaviours typically of concern in the UK are tobacco, alco-

hol, and drug consumption. Adolescent tobacco consumption, a negative health behaviour,

is associated with various ailments, such as mild airway obstruction and slowed growth of

lung function (Gold et al. (1996)). In England, there has been a steady decrease since 1996

in the percentage of 11-15 year-old pupils that have reported ever having smoked, from 49%

to 16% (NHS (2019)). This, in part, may be attributed to several key intervention programs.

In 2002, the Tobacco Advertising and Promotion Act 2002 placed controls on the advertis-

ing and promotion of tobacco products. In July 2007, as a consequence of the Health Act

2006, a ban on smoking in all public areas came into force in England. In October 2007,

the Children and Young Persons (Sale of Tobacco) Order 2007 came into force, raising the
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minimum purchase age from 16 to 18 years of age.

In comparison, different levels of adolescent alcohol consumption have been associated

with poorer cognitive functioning (Lees et al. (2020)), poor school performance (Balsa et al.

(2011)), antisocial behaviour (Hammerton et al. (2017)) and violence (Komro et al. (2000)).

Similarly to the trend in cigarette consumption, between 2003 and 2014 there has been a

decline in the percentage of 11-15 year-old pupils reporting ever having tried alcohol from

61% to 38% (Oldham et al. (2018)). There are a number of key intervention programs

that have been put into place across the UK. In 2009, the Chief Medical Officer of England

published the first official guidance on alcohol aimed specifically at children and young people

(Donaldson (2009)). In May 2018, as a result of The Alcohol (Minimum Price per Unit)

(Scotland) Order 2018, Scotland introduced a minimum unit price of 50p.

In this thesis, I build on the models used to estimate the effect that alters, which are

defined as individuals who are socially connected with a given individual, in a social network

have on the behaviour of the given individuals and compare these novel approaches to those

adopted by other researchers. These modelling advancements allow for more insightful infer-

ence to be carried out when compared to current methods and highlight some deficiencies in

the way in which network data is currently modelled to study its effect on an individual tak-

ing up specific behaviours. The research presented in this thesis is centered around several

aims, which incorporate covariate, spatial and networks structures in multivariate regression

models. The first aim focuses on extending the univariate generalized linear mixed model to

a multivariate one, focusing on modelling network effects jointly across more than one health

behaviour. The majority of authors who are studying the effect of peers on an individual

decision to engage in more than one health behaviour construct as many univariate models

as there are health behaviours in order to estimate these effects. The second aim is to modify

the way in which the effect of peers in a network is modelled, focusing on approaches that

do not use network statistics. On this point, the majority of authors currently use statis-

tics of a friendship network as proxies for concepts of peer influence. The third aim is to
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construct a modelling approach which allows for covariate, spatial and network structures

to be accounted for in a multivariate model, allowing for inference regarding the effects of

an individual’s personal covariates, place of residence and friendship network to be made.

In contrast, the majority of authors incorporate the friendship network into the personal

covariates of an individual and omit the facility for spatial structures within the data set

to be included in the model. The fourth aim is to create an R package which is free to use

and will allow for the adoption of models discussed in this thesis. In addition to this, the

software package will also include other models that are not exemplified in this thesis but

accommodate slightly different data structures that a researcher may encounter.

The remainder of this thesis is structured into eight chapters. Chapter 2 reviews the

statistical methods used in this thesis, focusing on Bayesian methods, generalized linear

models, network models and spatial models. The chapter begins by reviewing the Markov

chain Monte Carlo methods used for inference in Bayesian inference, as well as model selec-

tion and checking techniques used to assess the posterior distribution of parameters in the

model. The remainder of the chapter focuses on reviewing generalized linear models, spatial

modelling and multiple membership multiple classification models that form the basis for

modelling social network structures.

Chapter 3 reviews and critiques the literature on health behaviours and network studies,

starting with a focus on studies that are centered around analysing single and multiple health

behaviours. The chapter goes on to then review the ways in which the effects of peers on

an individual’s likelihood of taking up a specific health behaviour has been accounted for in

the past, with a focus on non-network, network statistic and random effects approaches.

Chapter 4 analyses multiple health behaviour data that contain a network component

with a multivariate multiple membership multiple classification model that extends the stan-

dard models that were reviewed in Chapter 2. The multiple health behaviours in the data set

can be modelled using multivariate methods, which is in contrast to the common approach
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of each health behaviour being modelled separately. This allows for the effects that peers

can have on an individual’s observed propensity to engage in a particular health behaviour

to be modelled jointly. This is appropriate as one would expect for there to potentially be

a relationship between how a peer affects an individual’s observed uptake of multiple health

behaviours. For example, if a peer negatively affects an individual’s observed use of alcohol,

we may expect them to negatively affect that same individual’s observed use of tobacco to a

similar degree. Chapter 5 focuses on studying the properties of a range of different prior dis-

tributions for univariate and multivariate models. Chapter 6 extends the models presented

in Chapter 4 by allowing for spatial structures to be incorporated into the modelling process,

allowing for spatial effects to be estimated.

Chapter 7 provides a brief review of the software that is currently available for researchers

to use in order to fit models that can be used to estimate the effects of peers in a network.

Chapter 8 details the creation of an R package and begins by discussing the motivation and

novel contributions that the software package makes to the work possible in the field of

peer influence and multiple health behaviours. A subsection that details the data likelihoods

available in the package, as well as the univariate and multivariate model structures that can

be implemented is provided. This is followed by details of how the package can be installed

and used. A large part of this chapter focuses on providing a worked example of a problem

that a researcher may come across and how the package can be used in their workflow of

analysing a data set. The chapter concludes with a general discussion of the package and

future work that can enhance the capabilities of the package.

Chapter 9 concludes the thesis with a discussion of the main results and how the novel

contributions made fit into the wider literature on the effects that peers can have on an

individual’s propensity to engage in particular health behaviours. The limitations of this

work are also discussed, highlighting ways in which methods could be extended and potential

areas for future work.



Chapter 2

Statistical methods

This chapter sets out the statistical frameworks used in this thesis, and provides the foun-

dation on which novel models are created from in Chapters 4 and 6. The remainder of the

chapter is structured as follows. Section 2.1 provides a description of what Bayesian methods

are and how they can be used to conduct inference for complex statistical models. Section

2.2 provides a description of Bayesian model selection and checking techniques. Section 2.3

presents a general outline of generalized linear models along with how different data likeli-

hoods can be used in this framework to model both continuous and discrete data. Section 2.4

introduces the concept of multiple membership multiple classification (MMMC) models and

the role that they play in modelling network data. Section 2.5 concludes with a presentation

of spatial conditional autoregressive (CAR) models, and how such models can be used on

areal processes.

2.1 Bayesian methods

The Bayesian approach to inference focuses on updating knowledge about unknowns, θ, in

a statistical model on the basis of observations y, with updated knowledge expressed in the

7
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posterior density, p(θ|y). In this approach, the sample of observations y being studied pro-

vides new information about the unknowns θ, while the prior density p(θ) of the unknowns

represents a prior belief about these unknowns before observing or analysing the observations

y.

In comparison to a frequentist approach, a Bayesian approach can offer a number of ad-

vantages in both the estimation and inferential stage of an analysis through the likelihood

function. Bayesian estimation allows complex data structures, such as hierarchical nesting,

cross classifications, and spatial domains, that often appear in modern research, to be mod-

eled which would otherwise be infeasible or unreliable with a frequentist approach. It also

offers a greater amount of flexibility in allowing for prior knowledge about parameters to

be included in an analysis. This results in informative priors that can be used to enable

evidence synthesis and conduct a sensitivity analysis. These priors can also be adapted to

be made uninformative, which is useful when there is prior ignorance about the unknowns θ

and/or a more objective inference is sought. From an inferential standpoint, in a Bayesian

approach we compute a posterior density p(θ|y) for the unknowns, with the posterior den-

sity probability statements can be made about the unknowns, that are not possible when a

frequentist approach is used.

Consider the joint density p(y,θ) = p(y|θ)p(θ), where p(y|θ) is the data likelihood and

p(θ) is the prior density imposed on the unknowns θ. The analysis updates knowledge about

the unknowns θ using the observed data y, and so interest lies in the posterior density p(θ|y).

Since it is also true that p(y,θ) = p(θ|y)p(y), where p(y) is the marginal likelihood, we can

obtain that

p(y,θ) = p(θ|y)p(y) = p(y|θ)p(θ). (2.1)

This can be rearranged to obtain the posterior density that is of interest
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p(θ|y) =
p(y|θ)p(θ)

p(y)
. (2.2)

The marginal likelihood p(y) can be obtained by
∑

θ p(y|θ)p(θ) if θ is discrete or∫
p(y|θ)p(θ)dθ if θ is continuous. Thus, in Equation 2.2, the term p(y) performs the role of

a normalising constant that ensures that p(θ|y) integrates or sums to one. So we may write

that

p(θ|y) ∝ p(y|θ)p(θ), (2.3)

where the posterior density p(θ|y) is proportional to the data likelihood p(y|θ) times the

prior p(θ), which encapsulates prior assumptions about the unknowns θ.

2.1.1 Markov chain Monte Carlo methods

Markov chain Monte Carlo sampling is almost as old as Monte Carlo methods themselves.

Informally, Anderson (1986) attributes the use of the first Monte Carlo algorithm to Fermi as

early as 1934, this instance was supposedly done by hand. One of the earliest computational

implementations of the method was carried out on one of the first computers, called ENIAC

(Electronic Numerical Integrator and Computer), by John Von Neumann. Von Neumann

was interested in applying Monte Carlo methods to thermonuclear and fisson problems as

early as 1947. Metropolis and Ulam (1949) then went on to publish the very first paper

regarding the Monte Carlo method.

Markov chain Monte Carlo techniques have evolved immensely, both in terms of their

computational feasibility and applicability, since what is considered to be their inception
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in the publication of Metropolis et al. (1953), which bred the Metropolis algorithm. The

computational implementation of this Markov chain Monte Carlo algorithm is closely related

to another one of the earliest computers, called MANIAC (Mathematical Analyzer, Numerical

Integrator and Computer), which was constructed under the watchful eye of Metropolis in

Los Alamos in 1952. In Metropolis et al. (1953), the Metropolis algorithm was used in

conjunction with MANIAC to compute a high-dimensional integral. As stated in the results

of the paper, it took between 4-5 hours for the Metropolis algorithm to produce 16 iterations

of burn-in and 48-64 subsequent iterations on the MANIAC. Since then, the processing

power of computers has increased at an exponential rate with the development of multi-core

processors. These advancements have helped to facilitate new MCMC algorithms which are

capable of more accurately solving problems science is faced with in this era.

Markov chain Monte Carlo methods are a class of iterative sampling methods that build

upon the class of Monte Carlo methods. Markov chain Monte Carlo simulation involves

generating a Markov chain {θ(1), θ(2), θ(3), ... } that is a sequence of correlated samples and

whose target distribution is that of the posterior density p(θ|y). The Markov chain is first

initialised by a starting value θ(0), with subsequent samples in the sequence being drawn, and

potentially accepted into the sequence, through a proposal distribution. Candidate values

of θ(t) (t = 1, 2, 3, ...) are generated from a proposal distribution,

g(θ(t)|θ(0), ...,θ(t−1)) = g(θ(t)|θ(t−1)), (2.4)

that is Markovian, as the distribution only depends on the current value of the sequence

θ(t−1) to generate it’s next value θ(t). The proposal distribution and acceptance rule for

candidate values of θ(t) are selected in a way that after a period of burn-in of length B,

samples in the Markov chain {θ(t) : t = B + 1, B + 2, ...} are considered samples from the

posterior density p(θ|y). The Markov chain Monte Carlo methods used throughout this
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thesis are either Metropolis-Hastings (Hastings (1970); Metropolis et al. (1953)) or Gibbs

(Geman and Geman (1984)) methods, so a brief review of the two are given below are given

below.

The Metropolis-Hastings algorithm is a member of the Markov chain Monte Carlo class

of algorithms that simulate a Markov chain whose target distribution is the posterior den-

sity p(θ|y) required to make inferences on the unknowns θ. The algorithm allows for the

partitioning of the parameters in the Markov chain into K sub-vectors, such that θ = (θ1,

..., θK). Algorithm 1 describes the Metropolis-Hastings procedure

Algorithm 1: Metropolis-Hastings

1. Initialize the Markov chain θ(0) , such that, when the posterior density is evaluated at

θ(0), p(θ(0)|y) > 0.

2. For each iteration of the sampler t = 1, 2, 3... repeat steps (a), (b), and (c) for each of

the K sub-vectors θk (k=1, ...,K).

(a) Generate a candidate sample θ∗k from the kth proposal distribution gk(·|θ(t−1)k ),

where θ(t−1)k is the current θk in the Markov chain.

(b) Generate an acceptance probability u from a uniform distribution with support on

[0, 1], U ∼ Uniform(0, 1).

(c) Accept θ∗k as the next iteration of the sub-vector in the Markov chain θ(t)k = θ∗k if

u ≤ p(θ∗|y)gk(θ
(t)
k |θ

∗
k)

p(θ(t−1)|y)gk(θ
∗
k|θ

(t−1)
k )

, (2.5)

otherwise set θ(t)k to the current value θ(t−1)k , θ(t)k = θ
(t−1)
k , where θ∗ is the par-

tially updated Markov chain (θ
(t)
1 , ...,θ

(t)
k−1,θ

∗
k,θ

(t−1)
k+1 , ...,θ

(t−1)
K ) and gk(θ∗k|θ

(t)
k ) is

the probability of θ∗ when the proposal distribution is parameterized by θ(t).
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The Gibbs sampler is a special case of the Metropolis-Hastings algorithm, where the

proposal distribution used to generate candidate sample θ∗k is the full conditional distribution,

and so it follows that the inequality in Equation 2.5 becomes u ≤ 1. Thus, the acceptance

steps (b) and (c) in Algorithm 1 are essentially removed. Markov chain simulation is a

complex method that has many components that can be altered in order to improve its

efficiency, such as the partitioning of θ and proposal density.

While it is possible to update the entire vector of parameters in the Markov chain at once,

partitioning θ into blocks or single components can enable better mixing of the parameter

space that the Markov chain explores and can lessen the computational expense associated

with the algorithm, as the full conditional distribution for some blocks of parameters may

allow for the use of a Gibbs step instead of the more computationally intense Metropolis-

Hastings step. This does away with the inequality in Equation 2.5 having to be evaluated,

which could prove to become very computationally costly if the functions are complex or the

number of iterations for the algorithm is set to be very large.

There are many ways in which a proposal density for generating candidate samples for

a block of parameters can be chosen. A standard approach is to choose a proposal density

with a support that is compatible with the block of parameters and approximates what one

thinks the posterior density for that block of parameters looks like. In the case of parameters

with infinite support, a Gaussian proposal distribution centred around the current value is

often used and has the benefit of symmetry, which means that the evaluation in Equation 2.5

becomes u ≤ p(θ∗|y)/p(θ(t−1)|y) as gk(θ
(t)
k |θ

∗
k) = gk(θ

∗
k|θ

(t−1)
k ). The proposal distribution

also plays a vital role in determining the acceptance rate of candidate samples θ∗k, as the

decision to accept or reject a candidate depends on how far θ∗k is from θ
(t−1)
k in the parameter

space. In the Metropolis-Hastings algorithm, a high acceptance rate is usually associated

with a proposal distribution whose variance is small and so tends to choose candidates close to

current values, which risks not fully exploring the parameter space. A remedy for this, which

allows for the parameter space to be better explored and a more moderate acceptance rate, is
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to employ a form of adaptive proposal distribution. Suppose that a proposal distribution has

a variance σ2
g , an adaptive proposal distribution works by scaling this variance after every

set amount of iterations in the Metropolis-Hastings algorithm; increasing and updating its

value if the acceptance rate is deemed too large or decreasing and updating its value if the

acceptance rate is deemed too small.

2.1.2 MCMC diagnostics

2.1.2.1 Trace plots

A common way to inspect sampling behaviour and and assess mixing across chains and

convergence is through plotting the trace plot of the Markov chain. Given a single Markov

chain for a parameter θi (i = 1, ..., N) of length N , we can plot this against the corresponding

iteration of the sampler to produce a trace plot for the parameter.

(a) (b)

Figure 2.1: Trace plots of θ for a well behaved chain (a) and a chain that exhibits poor
mixing (b).

Figure 2.1a shows a trace plot for the parameter θ that exhibits very good behaviour and
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mixing. In comparison, Figure 2.1b shows a trace plot of θ that demonstrates poor mixing.

Problems relating to convergence and mixing in MCMC sampling may reflect problems with

model identifiability or sub-optimal model parameterization. This method is used throughout

the thesis to inspect the mixing of parameter chains produced by models.

2.1.2.2 Autocorrelation

A common way to assess the convergence of a Markov chain is to evaluate the autocorrelation

between the elements of the Markov chain. This method is used in later chapters of the thesis

to evaluate the autocorrelation between the elements of the Markov chains produced by the

models presented. The lag k autocorrelation ρk is the correlation between every draw and

its kth lag. The autocorrelation, ρk, is defined as

ρk =

∑N−k
i=1 (θi − θ̄)(θi+k − θ̄)∑N

i=1(θi − θ̄)2
. (2.6)

As the value of k increase we would expect the kth lag autocorrelation to decrease, as the

elements of the Markov chain used in the calculation of ρk become more distant in time. For

example, within a generated Markov chain, the correlation between states 1 time unit apart

should be greater than those between elements 50 time units apart. If the autocorrelation is

relatively high for large values of k, this is indicative of a Markov chain which is characterized

as exploring the parameter space slowly (slow mixing). In such cases, it may be of interest

to re-parametrize the model or adjust the MCMC algorithm to alleviate the issue. The

consequence of high autocorrelation is that we would need to generate a Markov chain of

greater length to obtain a given level of precision for our MCMC estimate.
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2.1.2.3 Effective sample size

Given the presence of autocorrelation induced by a Markov chain, a method to define an

effective sample size (ESS) (Kass et al. (1998); Ripley (1987)) for an MCMC procedure can

be produced. The ESS has a natural interpretation as the number of effectively independent

draws from a Markov chain of the target distribution, and is given by

ESS =
N

1 + 2
∑∞

k=1 ρk
(2.7)

where N is the total number of Markov chain samples. This method is used in later chap-

ters of the thesis to evaluate the ESS of Markov chains produced by the models presented.

2.1.2.4 Geweke z

The Geweke z diagnostic (Geweke (1992)) is a method that uses spectral analysis and the

segmentation of the Markov chain to assess convergence. Given a single Markov chain for a

parameter θi (i = 1, ..., N) of length N , we can obtain two subsequences of this chain {θA}

and {θB}, where A = {i; 1 ≤ i ≤ NA}, B = {i; N∗ ≤ i ≤ N}, 1 ≤ NA ≤ N∗ ≤ N , |A| =

NA and |B| = NB. Let

θ̄A =
1

NA

∑
i∈A

θi and θ̄B =
1

NB

∑
i∈B

θi,

then the Geweke z statistic has an asymptotically standard normal distribution that is

given by

z =
θ̄A − θ̄B√

1
NA
ŜAθ (0) + 1

NB
ŜBθ (0)

→ N(0, 1), (2.8)

where Ŝθ(0) is a spectral density with no discontinuities at frequency 0 and 1
NA
ŜAθ (0) and
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1
NB
ŜBθ (0) are asymptotic variances. The null hypothesis of equal location in the parameter

space for θ, which indicates convergence, is rejected when z is large (i.e., |z| > 1.96). This

method is used in later chapters of the thesis to assess the convergence of Markov chains

produced by the models presented.

2.1.2.5 Gelman-Rubin statistic

Convergence for multiple Markov chains can be assessed using the Gelman-Rubin scale re-

duction factor (Gelman et al. (2013)), which evaluates mixing using the between- and within-

sequence variances for the simulated posterior distribution of a given parameter. We can

label these as θij(i = 1, ..., N ; j = 1, ...,M) where N is the length of the chain post-burn-in

and M > 1 is the number of chains. From this, we can compute the between- and within-

sequence variances, B and W :

B =
N

M − 1

M∑
j=1

(θ̄.j − θ̄..)2, where θ̄.j =
1

N

N∑
i=1

θij, θ̄.. =
1

M

M∑
j=1

θ.j

W =
1

M

M∑
j=1

s2j , where s
2
j =

1

N − 1

N∑
i=1

(θij − θ̄.j)2.

The marginal posterior variance of the parameter, var(θ|y) can be estimated using a

weighted sum of B and W , namely

v̂ar(θ|y) =
N − 1

N
W +

1

N
B.

The potential scale reduction factor R̂ is then estimated by
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R̂ =

√
v̂ar(θ|y)

W
,

which declines to 1 as N →∞. This potential scale reduction factor provides an estimate

of how much variance could be reduced by running chains longer. If the potential scale

reduction factor is high, then this provides reason to believe that running the simulation for

longer may improve inference about the target distribution of the associated parameter θ.

The Gelman-Rubin statistic is used in later chapters of the thesis to assess the convergence

of Markov chains produced by the models presented.

2.2 Bayesian model selection and checking

2.2.1 DIC

The deviance information criterion (DIC) (Spiegelhalter et al. (2002)) is particularly useful

in Bayesian model selection problems where the posterior distributions of the models have

been obtained by Markov chain Monte Carlo simulation and is used extensively throughout

this thesis.

The main idea behind this method is that models with smaller DIC should be preferred

to models with larger DIC. Models are penalized both by the value of D̄, which favors a good

fit, but also by the effective number of parameters pD. Since D̄ will decrease as the number of

parameters in a model increases, the pD term compensates for this effect by favoring models

with a smaller number of parameters. An advantage of DIC over other criteria in the case

of Bayesian model selection is that the DIC is easily calculated from the samples generated

by a Markov chain Monte Carlo simulation.

The formulation of the DIC is given as
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DIC = D(θ̄) + 2pD

= D̄ + pD

where θ is the parameter space and pD = D̄ −D(θ̄). pD is the effective number of inde-

pendent parameters. D̄ is the posterior mean deviance. D̄ = Eθ|y(−2 log(p(y|θ))). D(θ̄) is

the deviance of posterior means. D(θ̄) = −2 log(p(y|E[θ|y])). Algorithm 2 describes how the

DIC procedure would be computed, given simulated samples from the posterior distribution

for each parameter

Algorithm 2: DIC

1. Calculate D̄.

2. For each iteration of the sampler t = 1, 2, 3, ... (post burn-in and thinning), calculate

−2log(p(y|θt)).

3. Compute D̄, which is given by,

D̄ =

∑
t−2log(p(y|θt))

N
, (2.9)

where N is the number of iterations post burn-in and thinning.

4. Compute D(θ̄), which is given by,

D(θ̄) = −2log(p(y|E(θ|y))). (2.10)



CHAPTER 2. STATISTICAL METHODS 19

2.2.2 Posterior predictive checking

Posterior predictive checking is a Bayesian method used to generate replicated responses

yrep under the model and comparing the replicated data yrep to that of the observed data

y in order to determine whether it is plausible that the observed data is plausible under the

posterior predictive distribution. This method is used in Chapter 6 of the thesis to assess

the fit of a novel model presented. The posterior predictive distribution is given by

p(yrep|y) =

∫
θ

p(yrep|θ)p(θ|y)dθ, (2.11)

where y is the observed data and yrep is the replicated data from the model. The posterior

predictive distribution can be approximated by, sampling θ from the simulated posterior

distribution obtained through the sampling algorithm and generating yrep by parameterizing

the data likelihood p(y|θ) with the given sample of θ. The posterior predictive distribution

can assess model adequacy through the use of a discrepancy measure T (y|θ), which is a

scalar summary of parameters and data that is used to compare observed data to predicted

simulations. This discrepancy measure can be used to produce a Bayesian p-value that is

defined as the probability that the discrepancy measure evaluated with the replicated data

could be more extreme than with the observed data,

pB = P(T (yrep|θ) ≥ T (y|θ)|y). (2.12)
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2.2.3 Cross-validation

In Bayesian cross-validation, the data are repeatedly partitioned into a training set ytrain

and a holdout set yholdout, and then the model is fit to ytrain, yielding a posterior distri-

bution, p(θ|ytrain), with this fit evaluated using an estimate of the log predictive density

of the holdout data, log(ptrain(yholdout))= log
( ∫

ppred(yholdout|θ)ptrain(θ)dθ
)
. Assuming the

posterior distribution p(θ|ytrain) is summarized by S simulation draws θ, we calculate the

log predictive density as log
(
1
S

∑S
s=1 p(yholdout|θ

s)
)
.

Leave-one-out cross-validation (LOO-CV) is a special case with N partitions in which

each holdout set represents a single data point. Performing the analysis for each of theN data

points yields N different inferences ppost(−i), each summarized by S posterior simulations,

θis.

The Bayesian LOO-CV estimate of out-of-sample predictive fit is

lppdLOO-CV =
N∑
i=1

log(ppost(−i)(yi)), and calculated as
N∑
i=1

log
(

1

S

S∑
s=1

p(yi|θis)
)
. (2.13)

Each prediction is conditioned on N − 1 data points, which causes under-estimation of

the predictive fit but for large N the difference is negligible. In this thesis, although popular,

the cross-validation method is not used due to the computation complexity of the novel

models presented in Chapters 4 and 6. The Watanabe–Akaike information criterion (WAIC)

Watanabe (2010) is also explored in this thesis. However, it relies on a partition of the data

into N pieces, which can be limiting in some structured-data settings such as spatial and

network data, which are key components of models in this thesis.
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2.3 Generalized linear models

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn (1972) and

constitute a wide class of models encompassing stochastic representations used for the anal-

ysis of both quantitative (continuous or discrete) and qualitative response variables. They

can be regarded as the natural extension of normal linear regression models and are based

on the exponential family of distributions, which includes the most common distributions

such as the normal, binomial, and Poisson. Generalized linear models have become very

popular because of their generality and wide range of applications. They can be considered

one of the most prominent and important components of modern statistical theory. They

have provided not only a family of models that are widely used in practice but also a uni-

fied, general way of thinking concerning the formulation of statistical models. Chapter 4

utilises and builds upon the GLM framework to compare and contrast a class of univariate

and multivariate models for social network data. Chapter 5 uses parts of the GLM frame-

work to explore the properties of different priors. Chapter 6 uses and builds upon the GLM

framework to propose a novel multivariate spatio-network model. Chapter 8 introduces an

R package, netcmc, which contains the implementation of GLMs.

The generalized linear model is comprised of three main components:

1. Random component:

Yi ∼ exp
[
yiθi − b(θi) + c(yi)

]
for i = 1, ..., n, (2.14)

where exp
[
yiθi−b(θi)+c(yi)

]
denotes the exponential family distribution with location

parameters θi.

2. Systematic component:

Parametric case:
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ηi = x>i β for i = 1, ..., n. (2.15)

3. Link function, the link between the random and systematic components:

g(θi) = ηi for i = 1, ..., n. (2.16)

These three components form the foundation upon which many of the novel models in

this thesis are built.

2.3.1 The exponential family

A family of probability density functions which can be written in the form

f(yi; θi) = exp
[
yiθi − b(θi) + c(yi)

]
(2.17)

is called a natural exponential family of distributions. The function b(θi) is called the

cumulant generator. This representation is called the canonical parametrization of the family,

and the parameter θ is called the canonical parameter.

2.3.2 The exponential dispersion family

The exponential family can be generalized by including a dispersion parameter, say ξ, in the

distribution, such that

f(yi; θi, ξ) = exp
[
yiθi − b(θi)

ai(ξ)
+ c(yi, ξ)

]
, (2.18)

where θi is still the canonical parameter. A family of probability densities which can be

written in this form is called a natural exponential dispersion family of distributions. The
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mean and variance of Y with distribution in the exponential disperion family with parameters

θ and ξ are

E(Y ) =
db(θ)

dθ
= b

′
(θ) and Var(Y ) =

d2b(θ)

dθ2
a(ξ) = b

′′
(θ)a(ξ). (2.19)

2.3.3 Common exponential dispersion family distributions

The Gaussian distribution. The probability density function for the Gaussian distribu-

tion is given by

f(y;µ, σ2) =
1√
2πσ

exp
[
− 1

2σ2
(y − µ)2

]
= exp

[
1

σ2

(
yµ− µ2

2

)
− y2

2σ2
+ log

(
1√
2πσ

)]
.

As a result, the Gaussian distribution belongs to the exponential dispersion family, where

θ = µ, b(θ) = µ2/2 and a(ξ) = σ2. As expected, E(Y ) = b
′
(θ) = µ and Var(Y ) = b

′′
(θ)a(ξ) =

σ2.

The binomial distribution. The probability mass function for the binomial distribu-

tion Binomial(N , π) is given by

f(y;N, π) =

(
N

y

)
πy(1− π)N−y = exp

[
ylog

(
π

1− π

)
+N log(1− π) + log

(
N

y

)]
.

As a result, the binomial distribution belongs to the exponential dispersion family, where

θ = log(π/(1− π)) (note: π = exp(θ)/(1 + exp(θ))), b(θ) = N log(1 + exp(θ)) and a(ξ) = 1.

As expected, E(Y ) = b
′
(θ) = Nexp(θ)/(1 + exp(θ)) = Nπ and Var(Y ) = b

′′
(θ)a(ξ) =

Nexp(θ)/(1 + exp(θ))2 = Nπ(1− π).
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The Poisson distribution. The probability mass function for the Poisson distribution

Poisson(λ) is given by

f(y;λ) =
λye−λ

y!
= exp

[
ylog(λ)− λ+ log

(
1

y!

)]
.

As a result, the Poisson distribution belongs to the exponential dispersion family, where

θ = log(λ) (note: λ = exp(θ)), b(θ) = λ and a(ξ) = 1. As expected, E(Y ) = b
′
(θ) = exp(θ) =

λ and Var(Y ) = b
′′
(θ)a(ξ) = exp(θ) = λ.

These common exponential dispersion family of distributions are the main focus of the

netcmc software package presented and discussed in Chapter 8. The Bernoulli distribution,

which is a special case of the binomial distribution, is also used as the likelihood for models

presented in Chapters 4 and 6.

2.3.4 Link functions

The link function is a monotonic and differentiable function used to match the parameters

of the response variable with the systematic component, namely, the linear predictor and

the associated covariates. Usually no restriction lies on the definition of such variables, but

often we focus on the mean of the distribution because the measures of central location are

usually of main interest. GLM-based extensions in which dispersion or shape parameters are

linked with covariates also exist in statistical literature.

Usually the default choice of link function is provided by the canonical link, in which

we set the canonical parameter, as an expression of the mean or other parameters of the

distribution, equal to the linear predictor.

For certain exponential dispersion family distributions, a wide range of link functions

exist. The binomial model is able to utilize a wide variety of link function such as the logit

link, which, for a parametric systematic component, is specified to be
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g(πi) = log
(

πi
1− πi

)
= x>i β. (2.20)

The interpretation of this logit link function for the binomial model is quite straightfor-

ward to comprehend. In this parameterization, πi is the probability of success and 1−πi is the

probability of failure. Thus πi/(1−πi) are the odds and πi/(1−πi) = exp(xi1β1 + ...+xipβp).

As a result, holding all other covariates fixed, a unit increase in the pth covariate multiplies

the odds by a factor of eβp . If eβp is greater than 1, then these odds have increased. If eβp is

less than 1, then these odds have decreased. This logit link function is used in many of the

models presented in later chapters of this thesis.

One other very popular link function for the binomial model is the probit link, which is

given by

g(πi) = Φ−1(πi) = x>i β, (2.21)

where Φ(.) is the cumulative distribution function (CDF) of the standard normal distri-

bution and is given by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt. (2.22)

Another popular link function for the binomial model is the complementary log-log link,

which is given by

g(πi) = log(−log(1− πi)) = x>i β. (2.23)
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2.4 Multiple membership multiple classification models

Multiple membership multiple classification models build on multilevel models (see Goldstein

and Browne (2016)), which themselves are extensions of the GLM discussed in the previous

section. Consider a problem that has one response variable and assume that there is a

unique response in our dataset for each of N lowest level units. The lowest level units could

be individuals, time points, areas, etc. Browne et al. (2001) defines a classification as a

function, c, that maps from the set Θ of N lowest units to a set Φ of size M where M ≤

N, and we define the resulting set Φ of M objects as the classification units. So we have

c(ni) = Φi, where the lowest level unit ni ∈ Θ and Φi ⊂ Φ. Browne et al. (2001) considers

two types of classifications, single member classification and multiple member classification.

A single member classification (see Figure 2.2) is a function c from Θ to Φ that maps each

ni ∈ Θ to a unique mj ∈ Φ. A multiple membership classification (see Figure 2.3) is a map

c from Θ to Φ that maps each ni ∈ Θ to a subset (possibly of size 1) Φi of Φ.

Θ Φ

n1

n2

...

nN−1

nN

m1

m2

...

mM

Figure 2.2: An example of a single member
classification.

Θ Φ

n1

n2

...

nN−1

nN

m1

m2

...

mM

Figure 2.3: An example of a multiple mem-
ber classification.

We will still maintain that M ≤ N to avoid identifiability problems in estimation. Given

these definitions we will now see that all the sets of random effects that feature in multilevel
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models, cross-classified models, multiple membership models and MMMC models will have

an associated classification. 2-level multilevel models are made up of one single membership

classification. 2-level cross-classified models are made up of two or more single membership

classifications (see Figure 2.4).

Φ(1) Θ Φ(2)

l1

l2

...

lM(1)

n1

n2

...

nN−1

nN

m1

m2

...

mM(2)

Figure 2.4: An illustrative example of two single member classifications.

2-level multiple membership multiple classification models are made up of at least one

single membership classification and at least one multiple membership classification (see

Figure 2.5).

Φ(1) Θ Φ(2)

l1

l2

...

lM(1)

n1

n2

...

nN−1

nN

m1

m2

...

mM(2)

Figure 2.5: An illustrative example of a multiple membership multiple classification.
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2.4.1 Multilevel model specification

The multilevel model is described in Browne et al. (2001) and is primarily used to model

multilevel data. An example of a multilevel process would be whether or not an individual

(a level 1 unit) belonging to one rehab center (a level 2 unit) each experience a relapse.

Conducting inference with the multilevel model is typically done using a Bayesian approach.

The general multilevel model is given by:

Yi ∼ f(Yi; θi, ξ) for i = 1, ..., N,

g(θi) = x>i β + z>i vΦ(i),

β ∼ N(µβ,Σβ),

vΦ(i) ∼ N(0,Σv),

Σv ∼ Inverse-Wishart(ν,Ω),

where f(Yi; θi, ξ) is a natural exponential dispersion family of distributions, g(.) is an

invertible link function, yi is the response of the ith observation, Φ(i) is the element in Φ

that the ith individual is a member of in the single membership classification, β is a vector of

fixed effects parameter, vΦ(i) ∼ N(0,Σv) is a vector of random effects relating to the single

membership classification. xi and zi are vectors of predictors.

2.4.2 Multiple membership multiple classification model specifica-

tion

The multiple membership multiple classification model was introduced in Browne et al.

(2001) and is primarily used to model multilevel data in which individuals can belong to

more than one higher level unit consisting of at least one single membership classification
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and at least one multiple membership classification. An example of such a process would

be the grade of individuals (a level 1 unit) that has belonged to one nursery and multiple

secondary schools. Conducting inference with the MMMC model is typically done using a

Bayesian approach. The general MMMC model is given by:

Yi ∼ f(Yi; θi, ξ) for i = 1, ..., N,

g(θi) = x>i β + z>i vΦ(1)(i) +
∑

j∈Φ(2)(i)

wijg
>
i uj,

β ∼ N(µβ,Σβ),

vΦ(1)(i) ∼ N(0,Σv),

uj ∼ N(0,Σu),

Σv ∼ Inverse-Wishart(ν1,Ω1),

Σu ∼ Inverse-Wishart(ν2,Ω2),

where f(Yi; θi, ξ) is a natural exponential dispersion family of distributions, g(.) is an

invertible link function, yi is the response of the ith observation, Φ(1)(i) is the element

in Φ(1) that the ith individual is a member of through the single membership classification,

Φ(2)(i) is the element(s) in Φ(2) that the ith individual are a member of through the multiple

membership classification, β is a vector of fixed effects parameter, vΦ(1)(i) ∼ N(0,Σv) is a

vector of random effects relating to the single membership classification, uj ∼ N(0,Σu)

is a vector of random effects relating to the single membership classification, the random

variables vΦ(1)(i) and uj are mutually independent. xi, zi and gi are vectors of predictors.

wij is a scalar weight.
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2.5 Spatial modelling

Spatial models extend those previously described in Sections 2.3 and 2.4 of this chapter

by accounting for the spatial structure present in the data. Observed spatial data is the

realisation from an unknown stochastic process, which if estimated, would allow us to draw

inferences about the spatial data we are modelling. A stochastic process is a family of random

variables {Y (S): S ∈ D} indexed by locations S ∈ D, defined on a probability space, where

D is the spatial domain of the process and Y (S) is a random variable representing the

quantity that is measured at location S. Spatial data can be observed at a finite number of

points over a continuous region (geostatistical) or a set of finite discrete points / sub-regions

(areal process). The spatial regression models used in Chapter 6 apply to survey data from

adolescents belonging to Zip Codes and thus are spatial data observed at sub-regions, so

a brief review of areal spatial models is given below. For more general reviews of spatial

models see Cramb et al. (2017). For an areal process the spatial domain D is partitioned

into S non-overlapping areal units, which are denoted by

D = {S1, ...,SS},

where the set of areal units {S1, ...,SS} form a regular grid or are irregularly shaped

satisfying two conditions; (1) ∪Si=1Si = D and (2) Si ∩Sj 6= ∅ for all i 6= j. This partitioning

of the spatial domain results in the areal process having the following stochastic process

Y = {Y (S1), ..., Y (SS)},

which is only defined on the n areal units {S1, ...,SS}.
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2.5.1 Intrinsic CAR

Letting Y (Si) denote a spatial observation at the areal unit i, the simplest conditional

autoregressive model used for spatial data is the intrinsic conditional autoregressive (ICAR)

model, which has an improper multivariate Gaussian distribution given by

Y ∼ N(0, τ 2(diag(A1)−A)−1), (2.24)

where AS×S is a non-negative spatial adjacency matrix which defines how spatially close

the S areal units are to each other. The elements of AS×S can be binary or non-binary. In the

more common binary case, asl = 1 if a pair of areal units (Ss, Sl) share a common border or

are considered neighbours by some other measure, and asl = 0 otherwise. This is not a valid

data likelihood model, because the precision matrix Q = (diag(A1)−A)/τ 2 is singular and

hence the variance matrix does not exist. Thus, this model does not specify a proper joint

distribution for Y. In addition to this, the data model specified above is only appropriate

for continuous data with support y ∈ R, and so is not appropriate for discrete count data

or continuous data whose support is not y ∈ R, such as half-normal data with support

y ∈ [0,∞). Thus, it is common to specify the intrinsic CAR model as a prior distribution

for a set of random effects, rather than directly for the data likelihood model. This approach

resolves the two limitations previously mentioned, as in a Bayesian hierarchical model prior

distributions can be improper and the data likelihood can take the form of an appropriate

distribution for the data. Also, by allowing specifying the intrinsic CAR model as a prior

distribution for a set of random effects, this allows the response variable to be something

other than the stochastic process within the spatial domain, such as a response generated

by a process relating to individuals. A Bayesian hierarchical model approach that specifies

the intrinsic CAR model as a prior distribution for a set of random effects is given by
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Ys ∼ f(Ys; θs, ξ) for s = 1, . . . , S.

g (θs) = x>s β + φs,

β ∼ N(µβ,Σβ),

(φ1, . . . , φS) = φ ∼ N(0, τ 2(diag(A1)−A)−1),

τ 2 ∼ Inverse-Gamma(aτ , bτ ), (2.25)

where f(Ys; θs, ξ) is a natural exponential dispersion family of distributions, g(.) is an

invertible link function, ys is the response of the sth spatial unit. The covariates are included

in a p× 1 vector xs, and a corresponding p× 1 vector of fixed effect parameters are denoted

by β. The S × 1 vector of joint random effects for the S spatial units is denoted by φ =

(φ1, ..., φS)S×1 and has a joint Gaussian distribution. τ 2 is a measure of the variance relating

to the vector of spatial random effects φ. aτ and bτ are user-chosen hyperparameters for the

Inverse-Gamma distribution imposed on τ 2. Although the joint distribution of the ICAR

model is improper, the full conditional distributions φs|φ−s are proper. Specifically
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E(φs|φ−s) = µs −Q−1ss Qs,−s(φ−s − µ−s)

= 0−
(

(1/τ 2)
S∑
l=1

asl

)−1(
− (1/τ 2)

S∑
l 6=s

asl(φl − 0)

)

=

∑
l 6=s aslφl∑S
l=1 asl

=

∑S
l=1 aslφl∑S
l=1 asl

as ass = 0

Var(φs|φ−s) = Q−1ss

=

(
(1/τ 2)

S∑
l=1

asl

)−1
=

τ 2∑S
l=1 asl

.

Thus, the full conditional distribution of φs|φ−s is

φs|φ−s ∼ N
(∑S

l=1 aslφl∑S
l=1 asl

,
τ 2∑S
l=1 asl

)
.

Under this model, strong spatial correlation is assumed for the stochastic process of the

spatial domain, with the distribution of φs|φ−s parameterized by a mean that corresponds

to a weighted sum of neighbouring areal units within the spatial domain. The full condi-

tional distribution of φs|φ−s shows that Var(φs|φ−s) = τ 2/
∑S

l=1 asl, and so allows for the

conditional variance to differ from areal unit to areal unit, with areal units that have more

neighbours having a small level of uncertainty as they share from a pool of more information.

However, if the stochastic process of the spatial domain has no spatial correlation, this model

may be inappropriate, as we would want for the random effects associated with each areal

unit to be independent of one another.
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2.5.2 Leroux CAR

The issues that could possibly arise through modelling a stochastic proccess over a spatial

domain using an Intrinsic CAR model can be resolved through the introduction of a spatial

autocorrelation parameter ρ with support ρ ∈ [0, 1] and is estimated from the spatial data.

Allowing for such a spatial autocorrelation parameter can be done through the use of the

Leroux CAR model, which has an improper multivariate Gaussian distribution given by

φ ∼ N(0, τ 2(ρ(diag(A1)−A) + (1− ρ)I)−1), (2.26)

with the precision matrix Q = (ρ(diag(A1)−A)+(1−ρ)I)/τ 2 being invertible if ρ ∈ [0, 1).

Thus, for ρ ∈ [0, 1) this model specifies a proper multivariate Gaussian distribution. The

elements of Q are Qii = (ρ
∑n

j=1 aij+1−ρ)/τ 2 and Qij = −ρaij/τ 2. A Bayesian hierarchical

model approach that specifies the Leroux CAR model as a prior distribution for a set of

random effects is given by

Ys ∼ f(Ys; θs, ξ) for s = 1, . . . , S.

g (θs) = x>s β + φs,

β ∼ N(µβ,Σβ),

(φ1, . . . , φS) = φ ∼ N(0, τ 2(ρ(diag(A1)−A) + (1− ρ)I)−1),

τ 2 ∼ Inverse-Gamma(aτ , bτ ),

ρ ∼ Uniform(0, 1), (2.27)

where f(Ys; θs, ξ) is a natural exponential dispersion family of distributions, g(.) is an
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invertible link function, ys is the response in the sth spatial unit. The covariates are included

in a p× 1 vector xs, and a corresponding p× 1 vector of fixed effect parameters are denoted

by β. The S × 1 vector of joint random effects for the sth spatial unit is denoted by φ =

(φ1, ..., φS)S×1 and has a joint Gaussian distribution. τ 2 is a measure of the variance relating

to the vector of spatial random effects φ. ρ is the single level of spatial autocorrelation

everywhere relating to the vector of spatial random effects, with values close to one and zero

representing strong autocorrelation and independence respectively. aτ and bτ are user-chosen

hyper-parameters for the Inverse-Gamma distribution imposed on τ 2. The full conditional

distributions φs|φ−s are proper. Specifically,

E(φs|φ−s) = µs −Q−1ss Qs,−s(φ−s − µ−s)

= 0−
(
ρ
∑S

l=1 asl + 1− ρ
τ 2

)−1(
−
∑

l 6=s ρasl(φl − 0)

τ 2

)
=

ρ
∑

l 6=s aslφl

ρ
∑S

l=1 asl + 1− ρ

=
ρ
∑S

l=1 aslφl

ρ
∑S

l=1 asl + 1− ρ
as ass = 0

Var(φs|φ−s) = Q−1ss

=

(
ρ
∑S

l=1 asl + 1− ρ
τ 2

)−1
=

τ 2

ρ
∑S

l=1 asl + 1− ρ

Thus, the full conditional distribution of φs|φ−s is

φs|φ−s ∼ N
(

ρ
∑S

l=1 aslφl

ρ
∑S

l=1 asl + 1− ρ
,

τ 2

ρ
∑S

l=1 asl + 1− ρ

)
.
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Under this model, spatial correlation is estimated for the stochastic process of the spatial

domain, ρ = 0 corresponding to independence in space and ρ = 1 corresponding to strong

spatial dependence.

2.5.3 Localised autocorrelation model

So far, only spatial models for global spatial autocorrelation have been presented. However,

for certain contexts, it may be more appropriate to use a spatial model which allows for

local spatial autocorrelation. Local spatial autocorrelation focuses on deviations from the

global trend at much more focused levels than the entire map. Local measures of spatial

autocorrelation focus on the relationships between each observation and its surroundings,

rather than providing a single summary of these relationships across the map. One way to

achieve a local smoothing model is to augment the set of spatially smooth random effects

with a piecewise constant intercept or cluster model, thus allowing large jumps in the mean

surface between adjacent areal units in different clusters. Lee and Sarran (2015) partitions

the S areal units into a maximum of G clusters each with their own intercept term (λ1, ...,

λG). The model is given by

φs = ψs + λZs ,

ψs|ψ−s ∼ N
(∑S

l=1 aslψl∑S
l=1 asl

,
σ2∑S
l=1 asl

)
,

τ 2 ∼ Inverse-Gamma(aτ , bτ ),

λi ∼ Uniform(λi−1, λi+1) for i = 1, ..., G,

f(Zs) =
exp(−δ)(Zs −G∗)2∑G
r=1 exp(−δ)(r −G∗)2

,

δ ∼ Uniform(1,M), (2.28)

where spatial unit s is assigned to one of the G intercepts by Zs ∈ {1, ..., G}, and G is
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the maximum number of different intercept terms. Here we penalise Zs towards the middle

intercept value, so that the extreme intercept classes (e.g. 1 or G) may be empty. This is

achieved by the penalty term δ(Zs −G∗)2 in the prior for Zs, where G∗ = (G+ 1)/2 if G is

odd and G∗ = G/2 if G is even, and is the middle of the intercept terms.

asl is element sl of the non-negative spatial adjacency matrix AS×S, which defines how

spatially close the S areal units are to each other. The elements of AS×S can be binary or

non-binary. In the more common binary case, asl = 1 if a pair of areal units (Ss, Sl) share a

common border or are considered neighbours by some other measure, and asl = 0 otherwise.

τ 2 is a variance term relating to the vector of spatial random effects. aτ , bτ and M are

user-chosen hyperparameters.

There are a number of other options for spatial models for local spatial autocorrelation,

such as the locally adaptive model (Lee and Mitchell (2013)) and the CAR dissimilarity

model (Lee and Mitchell (2012)), which are local spatial autocorrelation models that estimate

the elements in the spatial adjacency matrix AS×S. In this thesis, although local spatial

autocorrelation models are becoming increasingly popular, the small number of spatial units

present in the data of Chapters 4 and 6 limit their use.

2.6 Discussion

chapter has set out a number of statistical methods that are to be used and or built upon

throughout the rest of this thesis. Section 2.1 provided a description of what Bayesian

methods are and how they can be used to conduct inference for complex statistical models,

which will be used in Chapters 4, 5, 6 and 8 of this thesis. Section 2.2 provided an overview

of Bayesian model selection and checking methods, some of which will be used in Chapters

4, 6 and 8. Section 2.3 presented a general outline of generalized linear models along with

how different data likelihoods can be used in this framework to model both continuous and
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discrete data, which will be used in Chapters 4, 5, 6 and 8 of this thesis. Section 2.4

introduced the concept of MMMC models and the role that they play in modelling network

data, which will be used in Chapters 4, 5, 6 and 8 of this thesis. Section 2.5 concluded with a

presentation of spatial conditional autoregressive models, and how such models can be used

on areal processes, which will be used in Chapters 6 and 8 of this thesis.



Chapter 3

Health behaviours and network studies

3.1 Health Behaviours

The survey studies that motivate the theoretical developments described in this thesis are

based on data relating to the self-reported negative health behaviours of adolescents. The

analyses presented in later chapters are based on data gathered from Los Angeles and the

United Kingdom. In order to answer key research questions, interest lies in modelling these

negative health behaviours, which are comprised of tobacco, alcohol, and marijuana use. In

the wider literature, these negative health behaviours have been treated in both a univariate

and multivariate fashion.

3.1.1 Single outcomes

In the literature on negative health behaviours outcomes can be treated singularly, in a

univariate manner. This practice is driven by several factors, such as the data available

to the researcher(s), the limitation of modelling frameworks available at the time and the

severity of the consequences linked with the negative health behaviour at the time.

39



CHAPTER 3. HEALTH BEHAVIOURS AND NETWORK STUDIES 40

The epidemiological literature on the negative effects of tobacco has an incredibly long

history, with major reports being published in the 1930’s, 40’s, and 50’s. Müller (1939)

was the first epidemiological study that sought to establish a link between smoking and

lung cancer in 86 patients. This research was further developed in the 40’s by other German

researchers (Schairer and Schöniger, 1943) in a more ambitious study, leading to a wide array

of studies in the 50’s. Doll and Hill (1950) found that for those above the age of 45, the risk

of developing the disease increases in simple proportion with the amount smoked, and that it

may be approximately 50 times as great among those who smoke 25 or more cigarettes a day

as among non-smokers. Four years later, Doll and Hill (1954) provided further evidence to

support these results. Wynder et al. (1953) sought to establish the relationship using animal

experimentation, showing that applying cigarette tar onto mice generated tumours. Future

studies such as these contributed greatly to the literature on the harms of smoking, leading to

the univariate modelling of tobacco use to better understand the underlying processes which

drive individuals to smoke in the hopes of intervening and preventing its uptake. Chassin

et al. (1984) is an early example of a longitudinal study which models the univariate outcome

of cigarette smoking. The results of the study suggested that smoking prevention schemes

might be more effective if targeted at high risk groups rather than at general adolescent

populations. In the literature on the single outcome of cigarette smoking, there are numerous

examples in which the outcome is treated as binary. Alexander et al. (2001) use a binary

outcome for their smoking measure, 1 for students who reported smoking cigarettes on one

or more days in the past 30 days and 0 otherwise. The study was based on 2525 adolescents

in Grades 7-12 and found that, in comparison to those whose best friend didn’t smoke, those

with best friends who smoked had greater observed odds of having smoked in the past 30

days (OR = 2.01, 95% CI: 1.66-2.42). Elder et al. (2000) initially had a categorical outcome

with five categories, but decided to convert the outcome to binary, 1 for those that reported

having ever smoked in the past 30 days and 0 otherwise. This outcome was dichotomized

due to most of the respondents (74%) reporting that they had never smoked. The study
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involved 600 Hispanic adolescents between the ages of 11-16 years and found that every

unit increase in communication with parents, a mean score based on six questions, lowered

the odds of smoking (OR = 0.52, 95% CI: 0.31-0.87). Similarly, Valente et al. (2013) and

Huang et al. (2014) chose to dichotomize their 5 level categorical outcome due to 69.6%

and 71.2% of respondents reporting never having smoked, respectively. In contrast to the

previous literature, Ling et al. (2019)) gain their binary outcome by asking “(1) During the

past 30 days, on how many days did you smoke cigarettes (Choice of responses: 0 days, 1-30

days)? (2) During the past 30 days, did you use traditional-hand-rolled cigarette (Choice of

responses: Yes or No)? (3) During the past 30 days, did you use roll-your-own cigarette

paper (Choice of responses: Yes or No)? Respondents who answered “1 to 30 days” for item

(1), and/or “Yes” to either item (2) or (3) were classified as current cigarette smokers”.

Recently, the literature on univariate smoking related outcomes has expanded and embraces

advancements in the field of machine learning to predict outcomes (see for example Nam

et al. (2019)).

There is a strong consensus in the scientific community that alcohol consumption can

cause various forms of cancer, with the National Toxicology Program of the US Depart-

ment of Health and Human Services listing the consumption of alcohol as a known human

carcinogen based on sufficient evidence from studies in humans (NTP, 2016). The epidemio-

logical literature has provided sufficient evidence for alcohol consumption causing oral cavity,

pharynx, larynx, oesophagus, liver, and colorectum cancer (Secretan et al., 2009). In a case-

control study of Indian men, Znaor et al. (2003) found that after adjusting for covariates, the

odds of oral cancer for those that drank alcohol was 98% (95% CI: 68%–133%) times higher

than the corresponding odds for those who did not drink. The study also found that the odds

of pharynx cancer for those that drank alcohol was 107% (95% CI: 67%–156%) times higher

than the corresponding odds for those who did not drink. In another case-control study, Ta-

lamini et al. (2002) define one drink as approximately 125 ml of wine/330 ml of beer/30 ml

of liquor, finding that, in comparison to abstainers, the risk of laryngeal cancers was greater
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for those that who consumed 22-56 drinks per week (OR = 2.6, 95% CI: 1.4–4.7) and more

than 56 drinks per week (OR = 5.9, 95% CI: 3.1–11.3). In a meta-analyis of 28 studies on

oesophagus cancer, 20 studies on liver cancer, and 22 studies on colorectum cancer conducted

by Bagnardi et al. (2001), significantly increased risks were found for ethanol intake of 100 g

per day, RR = 4.23 (95% CI: 3.91-4.59), RR = 1.86 (95% CI: 1.53-2.27), and RR = 1.38 (95%

CI: 1.29-1.49) respectively. As a result of the negative consequences of alcohol consumption,

much of the literature concerning the univariate modelling of this outcome seeks to better

understand what makes people drink. In the literature on the single outcome of alcohol

consumption, there are examples in which the outcome is treated as binary and categorical.

Fujimoto and Valente (2015) use a binary alcohol outcome, 1 for those who have ever drank

alcohol and 0 otherwise. The study was based on 1707 adolescents belonging to 5 schools in

Los Angeles, California. The study found that for every unit increase in the indegree based

on popularity, i.e. summing the total number of popularity nominations received, increased

the observed odds of drinking (OR = 1.35, which was statistically significant at the 0.1%

level). Jacobs et al. (2016a) initially had a categorical outcome with seven categories, but

decided to convert the outcome to binary, 1 for those that reported having ever consumed

alcohol in the past 30 days and 0 otherwise. This outcome was dichotomized due to most of

the respondents (64.5%) reporting that they had not had at least one drink of alcohol in the

past 30 days. The study was based on 1523 high school students in Los Angeles, California.

The authors found that, in comparison to those who had no parents that consumed alcohol,

those with both parents that consumed alcohol had a greater observed odds of drinking (OR

= 2.88, 95% CI: 1.82-4.55). Similarly, Jacobs et al. (2016b) and Jacobs et al. (2017) chose to

dichotomize their categorical outcome, 1 for those that reported having ever consumed alco-

hol in the past 30 days and 0 otherwise. Jacobs et al. (2016b) was based on 1523 10th Grade

students in Los Angeles, California. The authors found that, in comparison to those who

achieved mostly A’s and B’s last year, those who achieved mostly D’s and F’s had a greater

observed odds of drinking (OR = 4.496, 95% CI: 2.086-9.689). In contrast, Fujimoto et al.
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(2013) uses a five level categorical alcohol outcome to understand what drives adolescents

to use alcohol and be susceptible to using it.

In the epidemiological literature, one of the many adverse health effects that have been

studied in relation to marijuana is schizophrenia, a psychotic illness that causes a variety of

different psychological symptoms, such as delusions and hallucinations. Zammit et al. (2002)

use data from a 1969 historical cohort study over 50,000 subjects in Sweden to establish a

causal relation between cannabis use and developing schizophrenia. The analysis found that,

in comparison to those that didn’t use drugs, those that used cannabis over 50 times and

no other drug were more likely to develop schizophrenia (OR = 6.7, 95% CI: 2.1-21.7).

Fergusson et al. (2003) show that, in comparison to those without a cannabis dependence,

those with the dependence had increased psychotic symptoms (RR = 1.8, 95% CI: 1.2-2.6).

The epidemiological literature on the negative effects of marijuana is a very active field of

research. The modelling of the univariate use of marijuana is also of great importance to

understand the driving factors that may increase the likelihood of one consuming marijuana.

In the literature on the single outcome of marijuana consumption, there are examples in

which the outcome is treated as continuous and binary. In one of the earlier instance of

the literature, Dishion and Loeber (1985) uses a continuous response, which was derived

by asking subjects to recall the exact number of times they used marijuana over the past

year. The authors also opted to take the log of this continuous outcome to better meet the

assumption of the normal linear regression model. In contrast, Brook et al. (2001) use a

binary outcome in their study, a 0 indicates no marijuana use during the designated time

period, and a 1 indicated marijuana use. Schepis et al. (2011) extend this by using binary

outcomes for lifetime marijuana use and past 30-day marijuana use. The binary outcome

of past 30-day marijuana use was also utilized in Choo et al. (2014). Wilson et al. (2005)

and Lorant and Tranmer (2019) also shares the characteristic of using a binary outcome for

marijuana use.
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3.1.2 Multiple outcomes

The epidemiological literature on the negative effects of consuming alcohol, tobacco, and

marijuana also includes the consideration of their joint impact on health. Talamini et al.

(2002) show that, rather than being additive, the impact of both heavy cigarette smoking and

alcohol drinking leads to more of a multiplicative risk increase for laryngeal cancer, when

compared to those who don’t smoke or drink (OR = 177.2, 95% CI: 64.99-483.28). The

authors hypothesised that this may be due to some biological synergy. In a work published

7 years later, Hashibe et al. (2009) sought to examine the multiplicative joint effect of ever

using tobacco and alcohol on head and neck cancer risk. The authors use a multiplicative

interaction parameter ψ given by

ψ =
OR11

OR01 ×OR10

,

where OR11 is the OR for ever tobacco/ever alcohol use, OR01 is the OR for never

tobacco/ever alcohol use, and OR10 is the OR for ever tobacco/never alcohol use. ψ > 1

implies a joint effect that is greater than expected under the multiplicative model. The

authors showed that there was a greater than multiplicative joint effect between ever using

tobacco and alcohol for observed head and neck cancer (ψ = 2.15, 95% CI: 1.53-3.04). In

addition to personal risk of diseases, the literature on injury epidemiology contains instances

in which negative health behaviours are jointly used as risk factors for fatalities. Chihuri

et al. (2017) show that for fatal crash involvement, in comparison to drivers testing negative

for alcohol and marijuana, OR01 = 16.33 (95% CI: 14.23-18.75) for those testing positive

for alcohol and negative for marijuana, OR10 = 1.54 (95% CI: 1.16-2.03) for those testing

positive for marijuana and negative for alcohol, and OR11 = 25.09 (95% CI: 17.97-35.03) for

those testing positive for both alcohol and marijuana. This suggested that, when alcohol

and marijuana are used together, the observed fatal crash risk is not on the multiplicative
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scale. In the literature on negative health behaviours, the need to consider outcomes in a

multivariate manner is of increasing importance. This is due to a number of reasons, such as

the fact that these outcomes are typically correlated. Lesaffre and Molenberghs (1991) take

a bivariate outcome made up of cigarette smoking and drinking to illustrate the value of

a multivariate modelling approach over modelling a pair of correlated responses separately.

Azagba and Sharaf (2014) make use of a bivariate outcome constructed from two binary

outcomes, binge drinking and marijuana use. Binge drinking was defined as having five or

more drinks on one occasion at least once a month in the past year and marijuana use was

defined by students who reported using marijuana in the last 12 months. The study was

based on 4466 Canadian students in Grades 7-12. The authors found that menthol cigarette

smokers are 6% (marginal effect (ME) = 0.06, 95% CI: 0.03–0.09) more likely to binge drink

and 7% (ME = 0.07, 95% CI: 0.05–0.10) more likely to use marijuana. In the same model,

they also found that class skippers are 14% (ME = 0.14, 95% CI: 0.08–0.21) more likely

to binge drink and 10% (ME = 0.10, 95% CI: 0.04–0.17) more likely to use marijuana. As

marijuana is classified as an illegal drug in many places, there are examples in the literature

on multivariate negative health behaviours in which it is coupled with other illegal drugs,

such as heroin and cocaine to form a trivariate outcome (see for example Ramful and Zhao

(2009)).

The literature on single and multiple health behaviours is a vast and growing field of

research. There are a number of approaches that have been used to model the uptake of

single and multiple health behaviours. These approaches generally fall under one of two

categories, network-based approaches and non-network-based approaches.

3.2 Networks

The literature on network analysis spans a number of related disciplines, such as sociology,

psychology, and statistics. Some of the earliest and most prolific works in network literature
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relate to the works carried out by Milgram (1967) and Travers and Milgram (1969) in the

mid-20th century. A pioneering experimental study relating to the small worlds of social

networks, the hypothesis that any two people in the world can be linked through a small

number of intermediary acquaintances, was first conducted by Milgram (1967). Milgram set

out a framework for testing this hypothesis, which was based on chains of letter forwarding.

Travers and Milgram (1969) presented the first technical report on the method, in which

296 volunteers were recruited to start a chain of letter forwarding; 100 were solicited from

a Boston newspaper advertisement and 196 were Nebraska residents solicited by mail, with

100 of the 196 specifically chosen to be blue-chip stock holders. The target for the chains

of letters was unknown to the participants, a stock broker living in Massachusetts. The

study found that, of the 64 completed chains, each chain passed through a mean of 5.2

intermediaries before reaching the designated target. Although the study had a number

of limitations, such as recruiting blue-chip stock holders to start some of the chains of

letters to a target stock broker, which may bias estimates relating to the chain length,

the results were profound and illustrated how small the degrees of separation between two

people in a network can be. Network literature of this type has since been expanded with

much larger experiments that use the internet. Dodds et al. (2003) modernised Milgram’s

approach by conducting an email based study that focused on 18 targets from 13 different

countries. 98,847 individuals were registered from across the world, with approximately

24,163 providing their personal information and initiating message chains. The study found

that, of the 384 completed chains, each chain passed through a mean of 4.05 intermediaries

before reaching the designated target. This study has limitations, such as the hypothesis

that longer chains are less likely to be completed and included in the results, leading to the

underestimation of quantities relating to chain length, but gives an idea of how small the

degrees of separation in a network can be.

The network literature that illustrates and supports the small worlds notion of social net-

works is greatly complemented by the literature on how peers in networks can influence the
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negative behaviour of an actor in the network. There are numerous theories in the network

literature that seek to explain the role that social networks play in an individual consuming

alcohol, tobacco, and marijuana. Social learning theory is based on the concept that indi-

viduals learn new behaviours by observing and experiencing the behaviours of others and

mimicking them. The theory has been put forward as a theory to unify how influence can

permeate through a network. This unifying theory has attempted to have its validity as-

sessed (See Akers et al. (1979)). The social development model formulated by Hawkins and

Weis (1985) is grounded in criminology and theorizes that behaviour is sequentially influ-

enced by socialization, family, schools, peers, and community. This theoretical explanation

for how negative behaviours can be transmitted through a network has been investigated in

the network literature (See Catalano et al. (1996)). Oetting and Beauvais (1986) put forward

a peer cluster theory for drug use, which states that small, identifiable peer clusters deter-

mine where, when, and how drugs are used and that these clusters specifically help shape

attitudes and beliefs about drugs. The theory also considers the importance of psychosocial

characteristics that form the basis of drug use and the environment for peer clusters to work.

There are instances in the literature that seek to test the peer cluster theory (See Rose

(1999); Kim et al. (2002)). The psychology and sociology network literature illustrates how

the coupling of social network structures and influence can work in tandem to increase the

risk of an adolescent engaging in negative health behaviours.

Statistical network literature has a broad scope, experiencing major developments along-

side the developments in the psychology and sociology network literature during the 1970s

and 1980s. The statistical network literature relating to the consumption of alcohol, to-

bacco, and marijuana varies in the approaches taken, ignoring the network entirely, utilizing

descriptive network statistics and explicitly including the membership matrix of the network.
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3.2.1 Non-network approaches

In a study of 171 boys and 274 girls aged between 14-18 years old that had lived in Palma De

Mallorca for at least 2 years, Tur et al. (2003) model the alcohol consumption of adolescents

in an approach which did not contain peer network information, but instead focused on

parental information. The study found that, in comparison to boys with mothers that had

an educational level of no studies, boys with mothers that had a university educational level

had a lower observed odds of alcohol consumption (OR = 0.53, 95% CI: 0.40 - 0.69). In a

larger study of 9920 middle and high school students from Ontario, with a mean age of 15.1

(SD = 1.8), Sampasa-Kanyinga et al. (2018) investigates the use of cannabis in Canadian

schools. The study is inspired, in part, by the government of Canada’s commitment to

legalize the use, possession, purchase, and growth of recreational cannabis around the time

of the research. The modelling done in the study did not contain any network information

and instead placed a greater focus on the cigarette and alcohol use of adolescents to explain

marijuana use over the past 12 months. The study found that, in comparison to those who

did not use tobacco cigarettes over the past 12 months, those that did use tobacco cigarettes

had a higher observed odds of having used marijuana over the past 12 months (AOR =

10.10, 95% CI: 8.68 - 13.92). Also, in comparison to those who did not use or just sipped

alcohol over the past 12 months, those who reported drinking occasionally had a higher

observed odds of having used marijuana over the past 12 months (AOR = 5.35, 95% CI:

4.01 - 7.13). A limitation of this study was the self-reported nature of cannabis use, which

was considered an illegal substance during the time that the data was collected in 2015. In

a smaller study of 543 males and 532 females with a mean age of 16.2 (SD = 0.47) from

Kamianske,Ukraine, Hryhorczuk et al. (2019) model having ever used alcohol, having used

alcohol in the past 12 months, and having used alcohol in the past 30 days. The models

did not contain network information, but instead focused on covariates relating to leisure

activities engaged in by the individual, such as watching TV, socializing with friends, reading
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books, and using social media. In the sample of 1075 adolescents 886, 152, and 3 reported

socializing with friends frequently, sometimes, and never respectively, 34 had missing values.

The study found that, in comparison to those that did not use social media, those that did

use social media had higher observed odds of having ever used alcohol (OR = 2.11, 95%

CI: 1.40 - 3.19), having used alcohol in the past 12 months (OR = 2.60, 95% CI: 1.73 -

3.90), and having used alcohol in the past 30 days (OR = 2.35, 95% CI: 1.50 - 3.70). In

comparison, a larger study of 1,400 males and 1,039 females from El Salvador and 1,439

males and 1,762 females from Peru aged between 13-18 years old, Prieto-Damm et al. (2019)

model alcohol consumption using leisure activities, and not placing a great emphasis on

social network information. The study, however, does include how often an individual hangs

out with friends. Similarly to Hryhorczuk et al. (2019), covariates such as watching TV and

reading books are included in the modelling process. The alcohol consumption response was

generated by asking participants “how frequently they consumed alcoholic beverages”, with

the options being “never”, “almost never”, “sometimes”, “almost always”, and “always”, those

that have never consumed an alcoholic beverage were considered to be non-alcohol consuming

and the rest were considered alcohol consuming. The study found that, in comparison to

those who hung out with friends less than 1 day per month, those who hung out with friends

more than 1 day per month had higher observed odds of alcohol consumption (AOR = 1.28,

95% CI: 1.09 - 1.49). In addition, in comparison to those who read books less than 1 day

per month, those who read books more than 1 day per month had lower observed odds of

alcohol consumption (AOR = 0.82, 95% CI: 0.70 - 0.95). A potential limitation of this study

was the self-reported nature of the data.

3.2.2 Descriptive network statistics

In a manner that coincides with social learning theory, there are instances in the network

literature which focus on the behaviours of close/best friends as social network information
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to explain how an adolescent may engage in negative health behaviours. In this section, the

focus is on how descriptive network statistics can be used to model health behaviours. In

a study of 6,900 adolescents aged between 14-18 years old from across the United States of

America, Wang et al. (1995) model smoking status of adolescents using summaries of peer

network information. Each adolescent nominated four best male friends and four best female

friends. The dependent variable was dichotomized to classify adolescents as current smokers

and those that never smoked. The study found that for the observed males and females, the

same-gender best friends’ smoking status had the greatest effect on each group’s odds of being

a current smoker. In comparison to 18 year old males with 0 best male friends that smoke, 18

year old males with 1 - 2 best male friends that smoke had a higher observed odds of current

regular smoking (OR = 7.3), which was significant at the 5% level. Similarly, in comparison

to 18 year old females with 0 best male friends that smoke, 18 year old males with 1-2 best

female friends that smoke had a higher observed odds of current regular smoking (OR = 5.7),

which was significant at the 5% level. A limitation of the study is that the results presented

did not include 95% confidence intervals, but instead just reported whether or not an effect

was significant at the 5% level, which restricts the amount of inference that a reader can

make about a parameter. In a study of 1411 Latina individuals aged between 14-24 years

old who were clients at two federally funded family planning clinics in the United States

of America, Kaplan et al. (2001) investigate the ways in which socioeconomic factors and

network attributes can affect young Latinas propensity to smoke. The dependent variable in

the model was whether a respondent had ever tried a cigarette (triers/regular smokers) or

not (never smokers). Exposure of smoking behaviours of peers in the network was defined as

the total number of friends, brothers, sister, and/or significant other who smoke. The study

found that, in comparison to those with no peers who currently smoke, those with two or

more peers who currently smoke had a higher observed odds of being a trier/regular smoker

(OR = 2.49, 95% CI: 1.93 - 3.20). In comparison to those with no parents who currently

smoke, those with at least one parent who currently smoke had a higher observed odds of
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being a trier/regular smoker (OR = 1.65, 95% CI: 1.32 - 2.07). A major limitation of this

study was the fact that the data used were gathered from a sample of clinics, which may lead

to biased results and inferences which are in no way generalizable to the Latina population as

a whole. In a larger sample of 3146 males and 3128 females in grades 8 to 10 with a mean age

of 14.7 years old (SD = 0.98) from 14 rural communities in Minnesota, Eisenberg and Forster

(2003) investigate how social norms, personal characteristics and family/peer smoking habits

can affect their propensity to smoke. The study found that having friends that smoked was

significantly related to having smoked in the past month (OR = 3.05, 95% CI: 2.80 - 3.14)

and that the perceived adult disapproval of teen smoking was also significantly related to

having smoked in the past month (OR = 0.85, 95% CI: 0.73 - 0.99). However, due to the

fact that the data were gathered from small rural communities, these results may not easily

be generalizable to populations of adolescents who live in urban areas. Kuntsche and Jordan

(2006) study a cross-sectional sample of 3925 eighth and ninth grade students in Switzerland

with a mean age of 15.2 years old (SD = 0.9). The study showed that having substance

using peers increased the risk of both drunkenness and cannabis use. In a larger study,

Murnaghan et al. (2008) investigate a sample of 4709 students from Prince Edward Island,

Canada, investigate the school-based smoking policies and descriptive statistics of friendship

networks to model smoking behaviours of adolescents. The dependent variable was whether

an individual was a current non-smoker or occasional smoker. Current non-smokers were

defined as having never smoked or only tried a cigarette once. Occasional smokers were

defined as those who smoked less than weekly. The study found that, in comparison to those

with no close friends, those with 1 close friend that smokes had a higher observed odds of

being an occasional smoker (OR = 1.40, 95% CI: 1.14 - 1.70). Also, in comparison to those

belonging to schools with no smoking programs or policies, those belonging to schools with

a smoking program had a lower observed odds of being an occasional smoker (OR = 0.57,

95% CI: 0.44 - 0.75). However, a limitation of the study was the self-reported nature of

the study. Students reported on their friends’ smoking status, which may have generated
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incorrect data. In a study of 1065 males and 908 females aged between 11-19 years old from

25 senior high schools in Ghana, Oppong Asante and Kugbey (2019) model alcohol use,

lifetime drunkenness, and problem drinking. Alcohol use is defined as having drank in the

past 30 days. Lifetime drunkenness was defined as having been drunk at least one time in

the past. Problem drinking was defined as having at least being involved in one incident

as a result of drinking. The study included crude binary network information, namely, the

amount of close friends an individual has, 0 for zero friends and 1 for one or more close

friends. The study found that, in comparison to those with no close friends, those with

at least one close friend had a lower observed adjusted odds of current alcohol use only

(AOR = 0.52, 95% CI: 0.28 - 0.96). At the 5% level, the binary network variable was not

significant for lifetime drunkenness or problem drinking. A limitations of this study was the

low prevalence of alcohol use (12.6%), lifetime drunkenness (11.1%), and problem drinking

(6.8%) in the data. Including network information in such a manner may also be considered

another limitation.

In comparison to network literature that focus on using the behaviours of close/best

friends as social network information, some studies instead use measures of popularity, such

as indegree, and other network statistics to explain how an adolescent may engage in negative

health behaviours. In a national sample of 2525 adolescents from the United States of

America with a mean age of 15.47 (SD = 1.5), Alexander et al. (2001) model cigarette

smoking, placing a very strong emphasis on using descriptive statistics of the network as

covariates. Those who reported smoking cigarettes on at least one of the past 30 days were

considered current smokers and those that did not were considered non-current smokers. A

proxy covariate entitled popularity was created by calculating the indegree of an individual in

the friendship network. The study found that the popularity covariate was not a significant

predictor of cigarette smoking (OR = 1.02, 95% CI: 0.90 - 1.16). However, the risk of

cigarette smoking was increased with peer networks in which at least half smoked (OR =

1.91, 95% CI: 1.32 - 2.78). In a smaller sample of 1,486 sixth and seventh graders from 16
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middle schools in southern California, Valente et al. (2005) seek to investigate whether or

not popular adolescents in a network are more likely to smoke. The dependent variable,

having ever smoked, was a self-reported answer to whether an individual had ever taken

a puff, smoked a whole cigarette, or smoked any cigarette in the last 30 days at a 1-year

follow-up, coded as no = 0 and yes = 1. The popularity covariate was generated by asking

adolescents to name their 5 closest friends in the class and taking popularity to be the

number of times a person was named as a friend divided by class size. The study found

that in comparison to those who received no friend nominations, those that received friend

nominations from everyone in the class would be 5.09 times more likely to have ever smoked.

The popularity effect was significant at the 5% level. A potential limitation of the study was

that the popularity covariate was generated by friendship nominations in a single classroom.

An adolescent may belong to a class which they are not very popular in but in the school as

a whole they might be very popular. Thus the way that the network metric was generated

could potentially overestimate or underestimate a persons true popularity. In addition, it

is possible that instead of popularity increasing the risk of someone smoking, adolescents

may smoke to gain or maintain popularity. In a larger study of 2610 7th - 11th grade

students aged between 12-19 years old from the United States of America, Mundt (2011)

seek to investigate the impact of peer social networks on adolescent alcohol use. The study

focused on four descriptive network statistics; indegree, centrality, 3-step reach, and density.

Indegree was defined as the number of friendship nominations received by an adolescent.

Centrality was the relative number of connections that an individual’s friend has within

the friendship network. 3-step reach is the degree to which a member of the peer social

network can make contact with other members of the network through 3 steps of friendship

connections. Density is the number of edges in the total school peer network divided by

the number of possible network edges. The study found that for every additional 10 friends

within 3-step reach of a nominated friend, risk of alcohol initiation increased by 3% (95%

CI: 0.3% - 6%).
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3.2.3 Network random effects

In contrast to network literature that uses descriptive statistics of networks to explain why

an adolescent may engage in negative health behaviours, the matrix of network information

may also be used to incorporate random effects within the modelling process. In a sample

of 11,015 students with a mean age of 15.2 (SD = 1.0) from 50 schools across six European

cities, Lorant and Tranmer (2019) seek to investigate how peer networks affect the risk of

an individual using cigarettes, alcohol and marijuana. An adolescent was classified as a

daily smoker if they reported having smoked at least one cigarette a day in the last 30

days. Adolescents that reported having consumed alcohol at least once a month in the past

year were classified as alcohol users. An adolescent was classified as a monthly cannabis

user if they reported having used cannabis at least once a month in the past year. The

study combined the use of descriptive network statistics, such as indegree, closeness, and

betweenness, with the incorporation of peers as random effect within the modelling process.

The study found that, all else being held fixed, every unit increase in indegree increased

the observed odds of daily smoking (OR = 1.06, 95% CI: 1.02 - 1.11) and monthly alcohol

use (OR = 1.06, 95% CI: 1.03 - 1.09). The study also found that, after controlling for

the explanatory variables, the unexplained variation for the network random effect for daily

smoking, monthly alcohol use, and monthly cannabis use were σ̂2 = 14.08 (95% CI: 3.37-

17.19), σ̂2 = 9.16 (95% CI: 0.06-11.60), and σ̂2 = 12.31 (95% CI: 4.94-16.18) respectively.

A potential limitation of the study was that it treated daily cigarette use, monthly alcohol

use, and monthly marijuana use in a univariate manner instead of a trivariate manner.



Chapter 4

Univariate and multivariate MMMC

models

4.1 Introduction

The multivariate regression is a technique that takes into account potential dependence be-

tween more than one response variable. In contrast, performing univariate regressions on

each of the response variables separately does not take into account any potential depen-

dence. The literature on multiple health behaviours suggests that there may be a dependence

between an individual partaking in alcohol, cigarette, and marijuana use. Thus, a multi-

variate regression approach may be more appropriate than the use of multiple univariate

regressions on such data. The dependence between alcohol and tobacco use has been stud-

ied and observed in the population of adolescents (Koopmans et al. (1997); Jackson et al.

(2002)) and college students (Hines et al. (1998); Saules et al. (2004); McKee et al. (2004)).

Likewise, the dependence between alcohol and marijuana use has been studied and observed

in the United States population (Wechsler et al. (1995); Clapp and Shillington (2001); No-

vak et al. (2016)) and parts of Europe (DiGrande et al. (2000)). The relationship between

55
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tobacco and marijuana use has also been studied and observed in the United States (Rigotti

et al. (2000); Ford et al. (2002)). There are a number of theoretical frameworks that have

been put forward to explain why such observations may occur. Steele and Josephs (1990)

explore the idea of alcohol myopia, which is based on the notion that alcohol produces a

myopic effect that causes a user’s behaviour to be overly influenced by salient environmental

cues and limit their ability to consider future consequences. Thus salient environmental cues

that promote smoking such as other people smoking and the smell of cigarette smoke may

influence an individual to smoke. Kandel (2002) details the gateway hypothesis which builds

on the work of Kandel (1975) and suggests that alcohol and tobacco use may serve as a

gateway substance to cannabis use.

In this chapter I model multiple health behaviours of adolescents with the use of a univari-

ate MMMC model, whose framework is described in Browne et al. (2001), and a multivariate

MMMC model proposed here, comparing and contrasting each approach. The multivariate

MMMC model extends the univariate MMMC model, which is a form of generalised linear

mixed model, by allowing both the sets of random effects for the single membership and

multiple membership classifications to be jointly modelled across responses. The covariance

matrix assigned to the random effects can take on many structures that place various levels

of restrictiveness on the model. In contrast to restrictive structures, such as compound sym-

metry and Toeplitz, an unstructured covariance matrix is a completely general covariance

matrix and is the structure used in all applicable models in this chapter. The only known

instance of an MMMC model being applied to health network data is provided by Lorant and

Tranmer (2019), who model multiple health behaviours in a univariate way. These models

have also been applied to other research areas such as academic performance Tranmer et al.

(2014) and organizational performance Tranmer et al. (2016)

The remainder of the chapter is structured as follows. Section 4.1 sets out the motiva-

tion for this chapter and outlines the novel contributions. Section 4.2 provides a description

and exploration of the network data used, and acts as a form of guided inspiration for the
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multivariate MMMC model proposed in this chapter. Section 4.3 describes the multivari-

ate MMMC model used in this chapter. Section 4.4 details the Markov chain Monte Carlo

algorithm used for the aforementioned models in this chapter. Section 4.5 presents an appli-

cation of the models discussed in this chapter on network data of multiple health behaviours

of adolescents in Los Angeles, California. Section 4.6 concludes with a discussion.

4.1.1 Motivation

In the literature concerning network studies, one of the most common approaches is to employ

a generalised linear model. There are a number of reasons why this is the case. Three of

the most prominent reasons are the facts that generalised linear models are typically easy to

use, understand, and implement. It is common for network studies that are concerned with

binary outcomes to use a generalised linear model with a Bernoulli likelihood, and use the

network information in the data by way of computing summary statistics of the network for

an observation and feeding it into the model as a covariate. The general form of the model

used in such studies is given as follows, where prior distributions are given for the parameters

as inference will be performed in a Bayesian setting.

yik ∼ Bernoulli(πik) i = 1, ..., Nk, k = 1, ..., K,

logit(πik) = x>ikβ,

β ∼ N(µβ,Σβ). (4.1)

The vector of a binary health behaviour for all adolescents in all K schools studied is

denoted by y = (y11, . . . , yN11, . . . , y1K , . . . , yNKK)∑K
k=1Nk×1. The covariates for the ith ado-

lescent in the kth school are included in a p× 1 vector xik, and a corresponding p× 1 vector

of fixed effect parameters are denoted by β. Model (4.1) describes the Bayesian implemen-
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tation of the Bernoulli generalised linear model. However, the prior on β can be removed,

and a likelihood based approach to parameter estimation can be adopted, such as Fisher’s

scoring method. Fujimoto and Valente (2015) employed a likelihood based approach to net-

work data of 1707 adolescents in Los Angeles, California with model (4.1). The researchers

made use of a binary alcohol outcome and used two networks to construct covariates. One

of the networks used was a friendship network for which individuals were asked to nominate

friends resulting in a network. The other network used was a popularity network for which

individuals were asked to nominate other individuals who they perceived to be popular re-

sulting in a network. The two network covariates relate to the number of times an individual

was nominated in each network. For example, in the popularity network, if an individual

was nominated 5 times, they would have a value of 5 for the corresponding network covari-

ate. The researchers fitted 3 different models to the data and found the friendship network

covariate to be statistically significant at the 10% level and the popularity network covariate

to be statistically significant at the 0.1% level across all three models. These results help to

motivate the need to model the networks present in data.

MMMC models have been sparingly used in the literature on network studies, in part due

to the large number of random effects it can create and the response being binary which can

impact model fitting, with Lorant and Tranmer (2019) being the only known network study

to apply it to several health outcomes individually. The work made use of the univariate

MMMC model to estimate the relative share of variation in binary health behaviours of

adolescents at the school and friendship network level after accounting for the fixed effects

of covariates. The general form of the model used in the study is given as follows
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yik ∼ Bernoulli(πik) i = 1, ..., Nk, k = 1, ..., K,

logit(πik) = x>ikβ + vk +
∑

j∈net(ik)

wikjuj,

β ∼ N(µβ,Σβ),

vk ∼ N(0, σ2
v) k = 1, ..., K,

uj ∼ N(0, σ2
u) j = 1, ..., J,

σ2
v ∼ Inverse-Gamma(αv, ξv),

σ2
u ∼ Inverse-Gamma(αu, ξu). (4.2)

The vector of a binary health behaviour for all adolescents in all K schools studied is

again denoted by y = (y11, . . . , yN11, . . . , y1K , . . . , yNKK)∑K
k=1Nk×1. The covariates for the ith

adolescent in the kth school are included in a p × 1 vector xik, and a corresponding p × 1

vector of fixed effect parameters are denoted by β. The K × 1 vector of random effects

for the single membership school classifications are denoted by v = (v1, . . . , vK)K×1. There

are J alters, where an alter is a person who was nominated as a friend by an individual.

The J × 1 vector of alter random effects are denoted by u = (u1, . . . , uJ)J×1. net(ik) is

the set of alters that the ith adolescent in the kth school nominates as a friend such that

net(ik) ⊂ {1, . . . , J}. The weight of the jth multiple membership random effect for the ith

adolescent in the kth school is given as follows

wikj =
1

|net(ik)|
, (4.3)

with the restriction that |net(ik)| 6= 0, thus
∑J

j=1wikj = 1.

There are a number of reasons as to why this type of model is not widely used on network
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data: firstly, the sum of alter random effects in Model (4.2) can be very costly to compute

when implementing a Markov chain Monte Carlo algorithm, particularly when J and the

amount of times each uj appears in a likelihood is large. As the amount of times uj appears in

a likelihood gets large, the more likelihoods need to be evaluated to compute the acceptance

probability for uj. Specifically, the acceptance probability of a move from the current value

u
(t)
j to to the proposal value u∗j is given as follows

min
{

1,

∏
ik s.t. j∈net(ik) Bernoulli(yik|β

(t), v
(t)
k , u

∗
j ,u

(t)
−j)N(u∗j |σ

2(t)
u )∏

ik s.t. j∈net(ik) Bernoulli(yik|β
(t), v

(t)
k , u

(t)
j ,u

(t)
−j)N(u

(t)
j |σ

2(t)
u )

}
,

thus every unit increase in the amount of times uj appears in a likelihood results in an

extra two likelihoods needing to be evaluated. Thus suppose that J = 10, 000 and the user

requires the sampler to run for 1,000,000 iterations, every unit increase in the amount of

times all ujs appear in a likelihood would result in an additional 2× 10, 000× 1, 000, 000 =

20 billion likelihoods needing to be evaluated. Secondly, in comparison to network data

with a continuous or count responses, through experience, estimating the relative share of

variation in multivariate binary data of the single/multiple membership classification can lead

to convergence issues, as it is typically more challenging to fit both covariates and random

effects when the response is binary and doesn’t have as much variation as a continuous

response. Thirdly, in the conception of the MMMC Model (see Browne et al. (2001)), the

mapping of each of the
∑K

k=1Nk adolescents to the subset of J alters is assumed to result in

a mapping such that the subset of J alters that the ith adolescent in the kth school maps

to can not be empty. This means that something needs to be done about ith adolescents

in the kth school who have |net(ik)| = 0. This is a possibility in network data when the

ith adolescent in the kth school may not nominate anyone in the network and thus has

no alters. There isn’t much known formal guidance for what to do when this case arises.

This situation occurred in Tranmer et al. (2014). As there were only a few cases of this,
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Tranmer et al. (2014) included the adolescents in the analysis and set the weights of all their

multiple membership random effects to 0. In the analysis conducted in this chapter, when

this situation occurs, the individual will be assigned a special random effect which represents

the fact that they haven’t nominated a friend. This can be thought of as a random effect

for loners.

4.1.2 Novel contributions

The quality and amount of network data being generated in various disciplines is ever in-

creasing, with a strong emphasis on understanding the underlying process that generated the

data becoming ever more important. This chapter provides two distinct novel contributions

to the literature on network analysis and the statistical methodology of the MMMC model

of Browne et al. (2001) and are given as follows

1. A multivariate MMMC model. A critique of the publication of Lorant and Tran-

mer (2019) was that it did not offer the reader a multivariate model approach to

estimate the relative share of variation in multiple binary health behaviours, relating

to exercise, alcohol, marijuana, and tobacco use, at the school and friendship network

level. In examples, such as the one described, it is reasonable to imagine that alcohol

and tobacco use are often correlated. Thus, as a result, it may be wholly appropriate

to adopt a multivariate modelling approach. Section 4.3 describes the multivariate

MMMC model to be implemented in the first known analysis of network data, which

is presented in subsection 4.5.2.

2. A univariate and multivariate MMMC comparison. Given that it is not unusual

for the different health behaviours of an individual to be correlated, there is great

interest in applying a multivariate approach to the data and comparing how the results

of a multivariate approach may differ from a univariate approach. To my knowledge,



CHAPTER 4. UNIVARIATE AND MULTIVARIATE MMMC MODELS 62

subsection 4.5.2 is the only instance in which such a comparison has been conducted

for network data.

4.2 Data: Social Networking Survey

This section describes and explores the Social Networking Survey (SNS) network data from

Los Angeles, California (Valente (2010)). Subsection 4.2.1 provides a detailed description

as to how the network data have been gathered and generated, and also what it contains.

Subsection 4.2.2 goes on to provide an exploration of the network data.

4.2.1 Description of data

The network data used in this study relate to 555 male and 584 female 10th grade students

from 5 schools in Los Angeles, California in 2010. The network data were generated by

way of a survey provided to each of the students during regular school hours. The survey

questions given to the students can be partitioned into several sections, with the sections

of interest to us here being those that relate to the networks that individuals have formed

in the 10th grade, along with their household information, personal information, and health

behaviours. The binary health behaviours to be modelled are

1. Whether an individual has consumed at least one drink of alcohol in the past 30 days.

2. Whether an individual has smoked at least one cigarette in the past 30 days.

3. Whether an individual has ever tried marijuana.

In each of the 5 schools, a friendship network was derived for the adolescents. The

friendship networks were obtained by asking each individual to nominate up to 19 individuals

in the 10th grade. The friendship network for school 1 is shown in Figure 4.1 and shows how
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individuals with a specific health behaviour response value tend to nominate others with the

same health behaviour response value, i.e. individuals are typically joined to others of the

same response value (identified by colour). Across the five schools, a total of 1069 individuals

were nominated.

4.2.2 Data exploration

The exploration of the network data used in this study focuses largely on the network struc-

tures present, as these structures are what motivates the multivariate model described in

Model (4.4), and are designed to make use of these structures to estimate the share of

variation in the binary responses at the network level.

The summaries of the covariates in the data are shown in Table 4.1. The description

of the covariates are as follows. Gender is the sex of the individual. Rooms in house is

the number of rooms an individual has in their house or apartment, excluding the kitchen

and bathroom. Lunch eligible is whether an individual is eligible for a free or reduced price

lunch at school. Exam grades are the grades that an individual mainly achieved in school last

year. Father’s education is the highest level of education completed by an individual’s father.

Mother’s education is the highest level of education completed by an individual’s mother.

General health is a self-reported measure of what an individual considers their overall health

to be. Facebook use is a self-reported measure of how often an individual uses Facebook.

Never, rarely, occasionally, frequently, and very frequently are considered to be about once

a month or less, about once a week or less, about once every 2-3 days, and about once a day

or more respectively. Online gaming is a self-reported measure of how often an individual

uses online gaming services. Home ownership was derived by asking individuals “Does your

family own its home or rent from a landlord?”.

The joint distribution for alcohol use, cigarette use and having ever smoked marijuana in

each of the five schools and as a whole provide evidence to support the notion that knowing
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School 1 (n = 303) School 2 (n = 204) School 3 (n = 161) School 4 (n = 272) School 5 (n = 199) All schools (n = 1139)
Covariates
Gender

Female 166 (54.8%) 94 (46.1%) 86 (53.4%) 126 (46.3%) 112 (56.3%) 584 (51.3%)
Male 137 (45.2%) 110 (53.9%) 75 (46.6%) 146 (53.7%) 87 (43.7%) 555 (48.7%)

Lunch eligible
Yes 246 (81.2%) 193 (94.6%) 148 (91.9%) 213 (78.3%) 169 (84.9%) 969 (85.1%)
No 57 (18.8%) 11 (5.4%) 13 (8.1%) 59 (21.7%) 30 (15.1%) 170 (14.9%)

Ages
<= 14 years old 14 (4.6%) 9 (4.4%) 6 (3.7%) 16 (5.9%) 17 (8.6%) 62 (5.4%)
15 years old 236 (77.9%) 171 (83.8%) 149 (92.6%) 233 (85.7%) 174 (87.4%) 963 (84.6%)
>= 16 years old 53 (17.5%) 24 (11.8%) 6 (3.7%) 23 (8.5%) 8 (4%) 114 (10%)

Rooms in house
<= 2 rooms 76 (25.1%) 88 (43.1%) 71 (44.1%) 57 (21%) 60 (30.2%) 352 (30.9%)
3 rooms 98 (32.3%) 62 (30.4%) 44 (27.3%) 91 (33.5%) 71 (35.7%) 366 (32.1%)
4 rooms 63 (20.8%) 38 (18.6%) 29 (18%) 67 (24.6%) 40 (20.1%) 237 (20.8%)
>= 5 rooms 66 (21.8%) 16 (7.8%) 17 (10.6%) 57 (21%) 28 (14.07%) 184 (16.2%)

Exam grades
Mostly A’s 50 (16.5%) 17 (8.3%) 10 (6.2%) 39 (14.3%) 17 (8.5%) 133 (11.7%)
Mostly A’s and B’s 71 (23.4%) 40 (19.6%) 42 (26.1%) 80 (29.4%) 57 (28.6%) 290 (25.5%)
Mostly B’s 16 (5.3%) 15 (7.4%) 13 (8.1%) 19 (7%) 10 (5%) 73 (6.4%)
Mostly B’s and C’s 83 (27.4%) 59 (28.9%) 55 (34.1%) 67 (24.6%) 59 (29.7%) 323 (28.4%)
Mostly C’s or lower 83 (27.4%) 73 (35.8%) 41 (25.5%) 67 (24.6%) 56 (28.1%) 320 (28.1%)

Father’s education
8th grade or less 33 (10.9%) 55 (27%) 36 (22.4%) 34 (12.5%) 49 (24.6%) 207 (18.2%)
Some high school 64 (21.1%) 43 (21.1%) 30 (18.6%) 46 (16.9%) 35 (17.6%) 218 (19.1%)
High school graduate 46 (15.2%) 25 (12.3%) 28 (17.4%) 51 (18.8%) 36 (18.1%) 186 (16.3%)
Some college 37 (12.2%) 12 (5.9%) 13 (8.1%) 40 (14.7%) 18 (9.1%) 120 (10.5%)
College graduate 28 (9.2%) 2 (1%) 2 (1.2%) 27 (9.9) 8 (4%) 67 (5.9%)
Advanced graduate 13 (4.3%) 3 (1.5%) 3 (1.9%) 8 (2.9%) 2 (1%) 29 (2.6%)
I don’t know 82 (27.1%) 64 (31.4%) 49 (30.4%) 66 (24.3%) 51 (25.6%) 312 (27.4%)

Mother’s education
8th grade or less 40 (13.2%) 41 (20.1%) 38 (23.6%) 35 (12.9%) 42 (21.1%) 196 (17.2%)
Some high school 38 (12.5%) 47 (23%) 37 (23%) 45 (16.5%) 40 (20.1%) 207 (18.2%)
High school graduate 62 (20.5%) 33 (16.2%) 26 (16.2%) 63 (23.2%) 40 (20.1%) 224 (19.7%)
Some college 50 (16.5%) 16 (7.8%) 17 (10.6%) 35 (12.9%) 22 (11.1%) 140 (12.3%)
College graduate 35 (11.6%) 9 (4.4%) 5 (3.1%) 30 (11%) 12 (6%) 91 (8%)
Advanced graduate 11 (3.6%) 3 (1.5%) 3 (1.9%) 8 (2.9%) 2 (1%) 27 (2.4%)
I don’t know 67 (22.1%) 55 (27%) 35 (21.8%) 56 (20.6%) 41 (20.6%) 254 (22.3%)

General health
Excellent 42 (13.9%) 27 (13.2%) 38 (23.6%) 52 (19.1%) 37 (18.6%) 196 (17.2%)
Very good 106 (35%) 61 (30%) 39 (24.2%) 91 (33.5%) 62 (31.2%) 359 (31.6%)
Good 123 (40.6%) 81 (39.7%) 56 (34.8%) 93 (34.2%) 81 (40.7%) 434 (38.1%)
Fair or poor 32 (10.6%) 35 (17.2%) 28 (17.4%) 36 (13.2%) 19 (9.6%) 150 (13.2%)

Facebook use
Never or rarely 91 (30%) 100 (49%) 95 (59%) 64 (23.5%) 108 (54.27%) 458 (40.2%)
Occasionally 89 (29.4%) 49 (24%) 34 (21.1%) 92 (33.8%) 51 (25.63%) 315 (27.7%)
Frequent or very frequently 123 (40.6%) 55 (27%) 32 (19.9%) 116 (42.7%) 40 (20.1%) 366 (32.1%)

Online gaming
Never 160 (52.8%) 104 (51%) 96 (59.6%) 132 (48.5%) 118 (59.3%) 610 (53.6%)
Rarely 48 (15.8%) 22 (10.8%) 30 (18.6%) 38 (14%) 33 (16.6%) 171 (15%)
Occasionally 33 (10.9%) 26 (12.8%) 14 (8.7%) 48 (17.7%) 20 (10.1%) 141 (12.4%)
Frequent 23 (7.6%) 26 (12.8%) 8 (5%) 19 (7%) 12 (6%) 88 (7.7%)
Very frequently 39 (12.9%) 26 (12.8%) 13 (8.1%) 35 (12.9%) 16 (8%) 129 (11.3%)

Home ownership
Own 134 (44.2%) 58 (28.4%) 38 (23.6%) 117 (43%) 77 (38.7%) 424 (37.2%)
Rent 131 (43.2%) 126 (61.8%) 103 (64%) 130 (47.8%) 99 (49.8%) 589 (51.7%)
I don’t know 38 (12.5%) 20 (9.8%) 20 (12.4%) 25 (9.2%) 23 (12.6%) 126 (11.1%)

Table 4.1: Summaries of the number of individuals with given covariate values for each
school. Decimals are rounded to 1 decimal place.
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one or two health behaviours of an individual provides useful information that can be used

to determine what the values of the other binary health behaviours may take, and that the

distribution of these three behaviours are not independent.

• Let the random variable X be whether an individual has smoked at least one cigarette

in the past 30 days.

• Let the random variable Y be whether an individual has ever tried marijuana.

• Let the random variable Z be whether an individual has consumed at least one drink

of alcohol in the past 30 days.

Considering all schools together, in comparison to those who have not smoked at least

one cigarette in the past 30 days (X = 0) and have never tried marijuana (Y = 0), the

conditional probability of having used alcohol given that you have have smoked at least one

cigarette in the past 30 days (X = 1) and have ever tried marijuana (Y = 1) is greater

P(Z = 1|X = 1, Y = 1) = P(Z = 1, X = 1, Y = 1)/P(X = 1, Y = 1) = 0.14/0.2 = 0.7 >

P(Z = 1|X = 0, Y = 0) = 0.13. Similarly, for all schools, the conditional probability of

having used cigarettes in the past 30 days is greater for those who consumed alcohol in the

past 30 days (Z = 1) and have ever used marijuana (Y = 1) when compared to those who

reported never having done either (Z = Y = 0), P(X = 1|Y = 1, Z = 1) = 0.78 > P(X =

1|Y = 0, Z = 0) = 0.1. The same is also true for the conditional distribution of having ever

used marijuana in all schools, P(Y = 1|X = 1, Z = 1) = 0.82 > P(Y = 1|X = 0, Z = 0) =

0.07.

The friendship network in school 1 is shown in Figure 4.1 and colour coded with respect

to the binary response value for each of the three health behaviours under investigation.

In comparison to individuals with a positive response (i.e. X = 1), those with a negative

response (i.e. X = 0) are more likely to nominate at least one other person with a negative
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(a) (b) (c)

Figure 4.1: The friendship network present in school 1. The individuals (vertices) are
coloured by their alcohol (a), cigarette (b), and marijuana (c) response. 1, shown in red, is
defined as yes and 0, shown in blue, is defined as no.

response. This helps to motivate the need to include the friendship network within each

school to help model the uptake of each of the three health behaviours.

The justification for a multivariate modelling approach can be further made by evaluating

the joint probability mass functions for having consumed alcohol in the past 30 days, having

smoked cigarettes in the past 30 days, and having ever used marijuana and noticing that

P(X = x, Y = y, Z = z) 6= P(X = x)P(Y = y)P(Z = z) for all possible combinations of

x, y, and z. For example, in school 1, P(X = 1, Y = 1, Z = 1) = 0.129 6= P(X = 1)P(Y =

1)P(Z = 1) = 0.264× 0.257× 0.280 = 0.019. Thus, the 3 outcomes are not independent and

their correlation should be modelled.

4.3 The multivariate uniplex MMMC model

This section describes a multivariate MMMC model to be used on network data. The

description of the model is compared and contrasted with the univariate model, to illustrate

appropriate settings for its use. In addition, the possible benefits of the multivariate MMMC

model over the univariate MMMC model are detailed in terms of the additional inference

that it allows for when applied to particular types of network data.
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The multivariate MMMC model described in this subsection is a multivariate extension

of Model (4.2), which is given by

Yikr ∼ Bernoulli(πikr) for i = 1, . . . , Nk, k = 1, . . . , K, r = 1, . . . , R,

ln

(
πikr

1− πikr

)
= x>ikβr + vkr +

∑
j∈net(ik)

wikjujr,

βr ∼ N(µβ,Σβ) for r = 1, . . . , R,

(vk1, . . . , vkR) = vk ∼ N(0,Σv) for k = 1, . . . , K,

(uj1, . . . , ujR) = uj ∼ N(0,Σu) for j = 1, . . . , J,

Σv ∼ Inverse-Wishart(φv +R− 1, 2φv∆v),

Σu ∼ Inverse-Wishart(φu +R− 1, 2φu∆u),

∆v = diag(λv1, . . . , λvR),

λvr ∼ Gamma
(
αvr,

1

ξ2vr

)
for r = 1, . . . , R,

∆u = diag(λu1, . . . , λuR),

λur ∼ Gamma
(
αur,

1

ξ2ur

)
for r = 1, . . . , R. (4.4)

Here yikr is the binary health behaviour of the rth response for the ith adolescent in

the kth school. The vector of a multivariate binary health behaviour for all adolescents in

all K schools studied is again denoted by y = (y111, . . . , y11R, . . . , yN111, . . . yN11R, . . . , y1K1

,. . . , y1KR, . . . , yNKK1, . . . , yNKKR)(R×∑K
k=1Nk)×1. The covariates for the ith adolescent in the

kth school are included in a p× 1 vector xik, and a corresponding p× 1 vector of fixed effect

parameters for the rth response are denoted by βr which vary by the R outcomes. The

R× 1 vector of joint random effects for the kth school is denoted by vk = (vk1, . . . , vkR)R×1

and has a joint Gaussian distribution. The unstructured covariance matrix Σv captures the

covariance between the R outcomes at the school level and is given by
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Σv =



σ2
1 γ12 . . . γ1R

γ21 σ2
2 . . . γ2R

...
... . . . ...

γR1 γR2 . . . σ2
R


,

where σ2
r is the variance of the K × 1 vector of school random effects relating to the

rth response vr = (v1r, . . . , vKr)K×1. The covariance terms γrr′ (r 6= r
′) are the covariances

between two different K × 1 vectors of school random effects vr and vr′ . The R × 1 vector

of joint random effects for the jth alter is denoted by uj = (uj1, . . . , ujR)R×1 and has a

joint Gaussian distribution. The unstructured covariance matrix Σu captures the covariance

between the R outcomes at the network level and is given by

Σu =



σ̃2
1 γ̃12 . . . γ̃1R

γ̃21 σ̃2
2 . . . γ̃2R

...
... . . . ...

γ̃R1 γ̃R2 . . . σ̃2
R


,

where σ̃2
r is the variance of the J × 1 vector of alter random effects relating to the rth

response ur = (u1r, . . . , uJr)J×1. The covariance terms γ̃rr′ (r 6= r
′) are the covariances

between two different J×1 vectors of alter random effects ur and ur′ . The weight of the jth

alter random effect for the ith adolescent in the kth school is identical to the one in Model

(4.2) and given in equation (4.3).

In Model (4.4) the log odds that the ith individual in the kth school has a positive

value for the rth response (yikr = 1) is denoted by ln
(

πikr
1−πikr

)
. The systematic component

of the model is comprised of three terms. x>ikβr is a term that accounts for the covariate
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values of an individual for the rth response. Whereas the two random effects terms vkr and∑
j∈net(ik)wikjujr are used to provide an estimate of the influence of the school and network

level after accounting for the covariate term in the model.

4.4 MCMC estimation algorithm

This section describes Markov chain Monte Carlo algorithms for Models (4.2) and (4.4). The

joint distribution of (β,v,u, σ2
u, σ

2
v) for Model (4.2) is given by

f(β,v,u, σ2
v , σ

2
u|y) ∝ f(y|β,v,u)f(β|µβ,Σβ)f(v|σ2

v)f(u|σ2
u)f(σ2

v)f(σ2
u)

=
K∏
k=1

Nk∏
i=1

Bernoulli(yik|β, vk,u)N(β|µβ,Σβ)

×
K∏
k=1

N(vk|µ0, σ
2
v)

J∏
j=1

N(uj|µ0, σ
2
u)

× Inverse-Gamma(σ2
v |av, bv)Inverse-Gamma(σ2

u|au, bu)

where µ0 = 0, and thus the prior distribution for all random effects have a mean of 0.

In comparison to Model (4.2), The joint distribution of (β,v,u,Σv,Σu,λv,λu) for Model

(4.4) is given by
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f(β,v,u,Σv,Σu,λv,λu|y) ∝ f(y|β,v,u)f(β|µβ,Σβ)f(v|Σv)f(u|Σu)f(Σv|λv)

f(Σu|λu)f(λv)f(λu)

=
K∏
k=1

Nk∏
i=1

R∏
r=1

Bernoulli(yikr|βr, vkr,ur)
R∏
r=1

N(βr|µβ,Σβ)

×
K∏
k=1

N(vk|µ0,Σv)
J∏
j=1

N(uj|µ0,Σu)

× Inverse-Wishart(Σv|φv,∆v)Inverse-Wishart(Σu|φu,∆u)

×
R∏
r=1

Gamma(λvr|αvr, ξ
2
vr)

R∏
r=1

Gamma(λur|αur, ξ
2
ur)

where µ0 = 0 and ur = (u1r, . . . , uJr)J×1 is the J×1 vector of alter random effects relating

to the rth response. The following subsections in this section detail the full conditionals

required for both Models (4.2) and (4.4).

There are many possible ways to apply Markov chain Monte Carlo estimation methods

to MMMC models. Browne et al. (2001) proposed the first of such methods in the same

publication that proposed the model. Browne et al. (2001) used single site Metropolis updates

for the set of fixed effects (β) and random effects (v, u). The proposal distributions for each

of the fixed and random effects were made to be Gaussian with a fixed variance parameter.

A Gibbs update was specified for the variance and covariance parameters, as the Inverse-

Gamma distribution is a conjugate prior for the univariate Gaussian distribution and the

Inverse-Wishart distribution is a conjugate prior for the multivariate Gaussian distribution.

In the case of covariance matrices with an Inverse-Wishart prior, the scale matrix can be

specified as an estimate of the covariance matrix obtained by using quasi-likelihood methods

(see Browne et al. (2009)).

Multilevel models that use Markov chain Monte Carlo estimation can sometimes produce

posterior chains that exhibit poor mixing (see Browne et al. (2009)). There are a number of
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different transformation techniques that have been used to address this problem, and a brief

review of such methods are given here. Hierarchical centering (see Gelfand et al. (1995)) is

a type of reparameterization that is designed to substitute the original parameters in the

model with a set of new parameters that are less correlated with each other in the joint

posterior distribution. Browne et al. (2009) makes use of this method and show with an

example how this reparameterization can increase the effective sample size (ESS) of fixed

effect parameters by a factor of over 100. However, it is also shown that for models with a

large number of random effects whose variance is small, the hierachical centering can have

a negative effect on the ESS of parameters. An orthogonal transform of covariates (see

Browne et al. (2009)) is a method designed to increase the ESS of fixed effects and has been

shown to work well in models that contain a large number of random effects and a binomial

likelihood. Parameter expansion (see Liu and Wu (1999)) has been used in Markov chain

Monte Carlo estimation to introduce additional parameters to a multilevel model that allow

for a set of random effects and its variance parameter to be updated jointly. Browne et al.

(2009) show that coupling a parameter expansion with an orthogonal reparameterization of

the covariates can lead to better mixing for the variance parameter of random effects. In

this section hierarchical centering is used for all models as it is the simplest to implement.

4.4.1 Sampling from f(βr|β−r,v,u,Σu,Σv,λv,λu,y)

The full conditional of βr for Model (4.4) is the product of
∑K

k=1Nk Bernoulli likelihoods

and a Gaussian prior, which is shown below

f(βr|β−r,v,u,Σv,Σu,λv,λu,y) ∝
K∏
k=1

Nk∏
i=1

Bernoulli(yikr|βr, vkr,ur)N(βr|µβ,Σβ),
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where β−r is the set of parameters in β without the set of parameters in βr. Similarly

to the full conditional of β for (4.2), the Gaussian prior is not conjugate to the Bernoulli

likelihood, which results in a full conditional distribution which is again not standard. A

Metropolis step is used to update βr, which is implemented in blocks. The proposal distri-

bution for the block of parameters to be updated is given by N(β(t)
r , σ

2(t)
βr

I), where β(t)
r is the

current value of the block of parameters and σ2(t)
βr

is the current value of the adaptive tuning

parameter for the block of parameters that is designed to keep the acceptance rate α(t)
βr

for

the block of parameters to be between 0.3 - 0.5. The adaptive tuning parameter flattens the

proposal distribution when the acceptance rate is less than 0.3 and compacts the proposal

distribution when the acceptance rate is greater than 0.5. In the literature on adaptive tun-

ing parameters, Gelman et al. (1997) found the asymptotically optimal acceptance rate for

the random walk Metropolis algorithm to be 0.234 under quite general conditions. Browne

and Draper (2000) recommend an acceptance rate of between 45%-60% for a wide variety

of models and parameters. The acceptance probability of updating the block of current

parameters β(t)
r to proposed parameters β∗r is given by

min
{

1,

∏K
k=1

∏Nk

i=1 Bernoulli(yikr|β
∗
r, v

(t)
kr ,u

(t)
r )N(β∗r|µβ,Σβ)∏K

k=1

∏Nk

i=1 Bernoulli(yikr|β
(t)
r , v

(t)
kr ,u

(t)
r )N(β(t)

r |µβ,Σβ)

}
.

4.4.2 Sampling from f(vk|β,v−k,u,Σv,Σu,λv,λu,y)

The full conditional of vk for Model (4.4) is the product of K Bernoulli likelihoods and a

Gaussian prior, which is shown below

f(vk|β,v−k,u,Σv,Σu,λv,λu,y) ∝
Nk∏
i=1

R∏
r=1

Bernoulli(yikr|βr, vkr,ur)N(vk|µ0,Σv).
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Similarly to the full conditional of vk for (4.2), the Gaussian prior is not conjugate

to the Bernoulli likelihood, which results in a full conditional distribution which is not

standard. A Metropolis step is used to update vk. The proposal distribution for vk is

given by N(v
(t)
k , σ

2(t)
vk I), where v

(t)
k is the current value of vk and σ2(t)

vk is the current value of

the adaptive tuning parameter for the proposal distribution. The acceptance probability of

updating the block of current parameters v
(t)
k to proposed parameters v∗k is given by

min
{

1,

∏Nk

i=1

∏R
r=1 Bernoulli(yikr|β

(t)
r , v

∗
kr,u

(t)
r )N(v∗k|µ0,Σ

(t)
v )∏Nk

i=1

∏R
r=1 Bernoulli(yikr|β

(t)
r , v

(t)
kr ,u

(t)
r )N(v

(t)
k |µ0,Σ

(t)
v )

}
.

4.4.3 Sampling from f(uj|β,v,u−j,Σv,Σu,λv,λu,y)

The full conditional of uj for Model (4.4) is the product of a Gaussian prior and Bernoulli

likelihoods equal to the number of times uj appears in a likelihood, which is shown below

f(uj|β,v,u−j,Σv,Σu,λv,λu,y) ∝
K∏
k=1

Nk∏
i=1

R∏
r=1

Bernoulli(yikr|βr, vkr,ur)N(uj|µ0,Σu)

∝
∏

ik s.t. j∈net(ik)

R∏
r=1

Bernoulli(yikr|βr, vkr,ur)N(uj|µ0,Σu).

Similarly to the full conditional of uj for (4.2), the Gaussian prior is not conjugate

to the Bernoulli likelihood, which results in a full conditional distribution which is not

standard. A Metropolis step is used to update uj. The proposal distribution for uj is

given by N(u
(t)
j , σ

2(t)
uj I), where u

(t)
j is the current value of uj and σ

2(t)
uj is the current value of

the adaptive tuning parameter for the proposal distribution. The acceptance probability of

updating the block of current parameters u
(t)
j to proposed parameters u∗j is given by
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min
{

1,

∏
ik s.t. j∈net(ik)

∏R
r=1 Bernoulli(yikr|β

(t)
r , v

(t)
kr , u

∗
jr,u

(t)
r )N(u

(t)
j |µ0,Σ

(t)
u )∏

ik s.t. j∈net(ik)
∏R

r=1 Bernoulli(yikr|β
(t)
r , v

(t)
kr , u

(t)
jr ,u

(t)
r )N(u

(t)
j |µ0,Σ

(t)
u )

}
.

4.4.4 Sampling from f(Σv|β,v,u,Σu,λv,λu,y)

The full conditional of Σv for Model (4.4) is the product of K Gaussian distributions and a

conjugate Inverse-Wishart(Σv|φv,∆v) prior, which is shown below

f(Σv|β,v,u,Σu,λv,λu,y) ∝
K∏
k=1

N(vk|µ0,Σv)Inverse-Wishart(Σv|αvr, ξ
2
vr).

This results in an

Inverse-Wishart
(
φv +R + 1 +K, 2φv∆v +

K∑
k=1

vkv
>
k

)

posterior distribution.

4.4.5 Sampling from f(Σu|β,v,u,Σv,λv,λu,y)

The full conditional of Σu for Model (4.4) is the product of J Gaussian distributions and a

conjugate Inverse-Wishart(Σu|φu,∆u) prior, which is shown below

f(Σu|β,v,u,Σv,λv,λu,y) ∝
J∏
j=1

N(uj|µ0,Σu)Inverse-Wishart(Σu|φu,∆u).
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This results in an

Inverse-Wishart
(
φu +R + 1 + J, 2φu∆u +

J∑
j=1

uju
>
j

)

posterior distribution.

4.4.6 Sampling from f(λvr|β,v,u,Σv,Σu,λv−r,λu,y)

The full conditional of λvr for Model (4.4) is the product of an Inverse-Wishart(Σv|φv,∆v)

and a Gamma(λvr|αvr, ξ
2
vr) prior, which is shown below

f(λvr|β,v,u,Σv,Σu,λv−r,λu,y) ∝ Inverse-Wishart(Σv|φv,∆v)Gamma(λvr|αvr, ξ
2
vr).

This results in a

Gamma
(
αvr, φv(Σ−1v )rr +

1

ξ2vr

)

posterior distribution.

4.4.7 Sampling from f(λur|β,v,u,Σv,Σu,λv,λu−r,y)

The full conditional of λur for Model (4.4) is the product of an Inverse-Wishart(Σu|φu,∆u)

and a Gamma(λur|αur, ξ
2
ur) prior, which is shown below
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f(λur|β,v,u,Σv,Σu,λv,λu−r,y) ∝ Inverse-Wishart(Σu|φu,∆u)Gamma(λur|αur, ξ
2
ur).

This results in a

Gamma
(
αur, φu(Σ−1u )rr +

1

ξ2ur

)

posterior distribution.

The univariate model described in (4.2) has a sampling procedure which is very similar

to the ones described in this subsection. The software used to implement these algorithms

are written in a mixture of C++ and R. The sampling steps are performed in C++ and the

manipulation of the user-specified arguments passed to the function are done in R.

4.5 Results: Social Networking Survey

This section presents an analysis of network data from Los Angeles, California to compare

and contrast the results of the different MMMC modelling approaches. Subsection 4.5.1

provides details on the methodology underpinning the selection of covariates to be used in

the modelling process. Subsection 4.5.2 presents the results generated by the analysis. The

aims of this section are given as follows

1. A univariate and multivariate MMMC comparison. The novel contribution

relating to a univariate and multivariate MMMC comparison stated in Section 4.1.2 is

carried out in this section.

2. An evaluation of the network component of the model. There are three main
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research questions relating to the network level of the model.

Q1 What effect does not having anyone that you consider to be a friend have on the

observed odds of engaging in alcohol, cigarette, and marijuana consumption?

Q2 How much variance is there at the network level of the model across the three

responses and how does this compare to that of the school level?

Q3 How much correlation is there between the alter random effects across responses

and which is greatest?

4.5.1 Variable selection

The variable selection process was conducted in this case study by applying a Bayesian model

averaging approach for the univariate logistic regression model which uses all the covariates

presented in Table 4.1. This is performed on all three univariate responses separately with

the same set of covariates and the covariates present in the models with the greatest posterior

probability are all used for the models fit in this section. The main advantage of this method

is that it provides a quick and easy form of variable selection. The variable selection process

in this study is seen as a means of enabling a comparison between the results generated

by the Model (4.2) and (4.4) on the network data, which was the third novel contribution

stated in subsection 4.1.2. The Bayesian model averaging procedure for the univariate lo-

gistic regression model in which whether an individual has consumed at least one drink of

alcohol in the past 30 days was the response, resulted in the model containing gender and

exam grade as covariates yielding the greatest posterior probability. The Bayesian model

averaging procedure for the univariate logistic regression model in which whether an indi-

vidual has smoked at least one cigarette in the past 30 days was the response, resulted in the

model containing exam grade as a covariate yielding the greatest posterior probability. The

Bayesian model averaging procedure for the univariate logistic regression model in which

whether an individual has ever tried marijuana was the response, resulted in the model con-
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taining exam grade as a covariate yielding the greatest posterior probability. Thus all models

in this section were fit with gender and exam grade as covariates.

4.5.2 Results

This subsection presents the results of fitting Models (4.2) and (4.4), whose Markov chain

Monte Carlo algorithm are described in Section 4.4. As there are three different responses

of interest the set of covariates are used to model each of the responses using the univariate

MMMC model, resulting in three univariate MMMC models. Similarly, the set of covari-

ates are used to model the responses jointly using the multivariate MMMC model. The

primary reason for this is to allow for a comparison between the results of the univariate and

multivariate MMMC model using the same set of covariates.

Model convergence was monitored using the potential scale reduction factor (Gelman

et al. (2003)). Each model in this section was run twice, simulating two sets of samples from

the posterior distribution of each parameter to compute the potential scale reduction factor.

For each run, 300,000 iterations were thinned by a factor of 20 after a burn-in period of

100,000 samples, resulting in 15,000 posterior samples for each run.

4.5.2.1 Multivariate model results

This section presents the results of fitting Model (4.4) with a hierarchical half-t prior on the

Social Network Survey data.
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Alcohol (r = 1) Cigarettes (r = 2) Marijuana (r = 3) Group size

OR 95% C.I. ESS PSRF OR 95% C.I. ESS PSRF OR 95% C.I. ESS PSRF

Intercept 0.09 (0.02, 0.46) 1668 1 0.05 (0.01, 0.27) 1850 1 0.03 (0, 0.21) 1487 1 -

Gender

Female - - - - - - - - - - - - 584 (51.3%)

Male 0.27 (0.13, 0.57) 7286 1 1.48 (0.68, 3.29) 6136 1 0.7 (0.28, 1.7) 5606 1 555 (48.7%)

Exam grades

Mostly A’s - - - - - - - - - - - - 133 (11.7%)

Mostly A’s and B’s 1.82 (0.43, 7.24) 1959 1 0.94 (0.21, 4.26) 2358 1 0.8 (0.14, 4.31) 1843 1 290 (25.5%)

Mostly B’s 1.78 (0.06, 46.99) 2059 1 0.02 (0, 0.93) 2171 1 0.19 (0, 9.78) 1934 1 73 (6.4%)

Mostly B’s and C’s 4.38 (1.17, 16.12) 1881 1 3.04 (0.76, 12.3) 2052 1 3.97 (0.84, 17.81) 1610 1 323 (28.4%)

Mostly C’s or lower 16.5 (4.35, 62.18) 1918 1 11.29 (2.86, 45.15) 2183 1 25.78 (5.75, 114.43) 1768 1 320 (28.1%)

Covariance components Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF

Σvrr 3.49 (0.06, 24.48) 30000 1.07 4.78 (0.03, 36.72) 30000 1.03 4.45 (0.04, 32.2) 29426 1.02

Σv12 0.05 (-1.98, 2.12) 30000 1.01 - - - - - - - -

Σv13 0.12 (-1.93, 2.25) 30000 1.19 - - - - - - - -

Σv23 0.08 (-2.12, 2.31) 30000 1.04 - - - - - - - -

Σurr 7.49 (4.25, 12.59) 658 1.01 11.85 (6.7, 20.14) 489 1 17.63 (9.82, 31.23) 469 1

Σu12 8.48 (5.24, 13.17) 504 1 - - - - - - - -

Σu13 10.47 (6.51, 16.63) 541 1 - - - - - - - -

Σu23 13.58 (8.28, 22.11) 431 1 - - - - - - - -

Correlation components Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF

ρ12 0.91 (0.78, 0.97) - - - - - - - - - -

ρ13 0.92 (0.80, 0.97) - - - - - - - - - -

ρ23 0.95 (0.87, 0.98) - - - - - - - - - -

DIC = 3112.071

Table 4.2: Results of the multivariate model for alcohol, cigarettes, and marijuana consump-
tion.

Table 4.2 presents the results of the multivariate model for whether an individual has

consumed at least one drink of alcohol in the past 30 days, whether an individual has smoked

at least one cigarette in the past 30 days, and whether an individual has ever tried marijuana.

The results from this multivariate model show that, in comparison to females, males had a

lower observed odds of consuming alcohol in the past 30 days (odds ratio (OR) = 0.27, 95%

CI: (0.13, 0.57)). In comparison to those who got mostly A’s in exams last year, those who

got mostly B’s and C’s in exams last year had a greater observed odds of having consumed

at least one drink of alcohol in the past 30 days (OR = 16.5, 95% CI: (4.35, 62.18)), smoking

at least one cigarette in the past 30 days (OR = 11.29, 95% CI: (2.86, 45.15)), and having

ever consumed marijuana (OR = 25.78, 95% CI: (5.75, 114.43)). The results also show that

for the covariance matrix relating to the random effects of the network, the largest variance
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(a) (b) (c)

Figure 4.2: Trace plots of the two chains (shown in red and blue) generated relating to
the isolation random effect u1070 in the multivariate MMMC model for responses relating to
alcohol (a), cigarettes (b), and marijuana (c). The posterior mean is denoted by the black
horizontal line.

is for the response relating to marijuana (Σ̂u33 = 17.63, 95% CI: (9.82, 31.23)).

Figures 4.2a, 4.2b, and 4.2c show the traces plots for the alter random effects u1070,1,

u1070,2, and u1070,3, which are the random effect of not nominating a friend, across each of the

responses. The results show that the posterior mean of u1070,1 is 0.90 (95% CI: (0.33, 1.48)),

and thus not nominating a friend increases the observed probability of having consumed

alcohol in the past 30 days, supporting the literature on loneliness increasing the propensity

for an individual to abuse alcohol (see Akerlind and Hörnquist (1992)). The posterior mean

of u1070,2 is 1.32 (95% CI: (0.74, 1.93)), and thus not nominating a friend also increases

the observed probability of having smoked at least one cigarette in the past 30 days. This

result supports previous work that has found that loneliness has a significant effect on an

individual’s observed probability of smoking (see Lauder et al. (2006)) The posterior mean

of u1070,3 is 1.87 (95% CI: (1.21, 2.58)), and thus not nominating a friend also increases the

observed probability of having ever tried marijuana. This answers Q1 and suggests that the

effect of not having a person you consider a friend in the network is to increase the observed

probability of partaking in negative health behaviours.
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In order to address how much variance there is at the network level of the model across

the three responses and how this compares to that of the school level (Q2), the weighting of

the alter random effects need to be considered (Fielding and Goldstein (2006)). Therefore,

in Model (4.4) when considering the contribution to the overall variance of rth response’s

log odds, the contribution of the network level for the ith adolescent in the kth school is

Var(
∑

j∈net(ik)wikjujr) =
∑

j∈net(ik)w
2
ikjVar(ujr) =

∑
j∈net(ik)w

2
ikjσ

2
r and not necessarily the

same for each adolescent. In an attempt to make a direct comparison between the variance

at the school and network levels, for each response, we average the network variance of

all individuals to obtain an average variance component for the network level, as proposed

in Tranmer et al. (2014). As a result, the average network variance contribution to the rth

response’s log odds is
∑K

k=1

∑Nk

i=1(
∑

j∈net(ik)w
2
ikjσ

2
r)/
∑K

k=1Nk. The average network variance

contribution to the log odds of whether an individual has consumed at least one drink of

alcohol in the past 30 days, whether an individual has smoked at least one cigarette in the

past 30 days, and whether an individual has ever tried marijuana are 3.07, 4.85, and 7.22

respectively. Thus, making a direct comparison with the school level variance contribution

with these quantities, the average network variance contribution to the log odds of whether

an individual has smoked at least one cigarette in the past 30 days and whether an individual

has ever tried marijuana is greater than that of the school.

Figures 4.3a, 4.3b, and 4.3c show the density plots of samples for the correlation param-

eters relating to the sets of alter random effects. The 95% credible intervals for all three

parameters do not contain the value of 0, providing evidence that there is significant correla-

tion between the sets of alter random effects across the 3 responses. The posterior means for

the correlation of the alter random effects ρ12, ρ13, and ρ23 are 0.91 (95% CI: (0.78, 0.97)),

0.92 (95% CI: (0.80, 0.97)), and 0.95 (95% CI: (0.87, 0.98)) respectively. Thus the poste-

rior mean correlation for the sets alter random effects is greatest between the cigarette and

marijuana related response and answers Q3. The 95% credible intervals for the correlation

parameters relating to the sets of school random effects contain the value of 0, providing ev-
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idence that there is no significant correlation between the sets of school level random effects

across the 3 responses.

(a) (b) (c)

Figure 4.3: Density plots of samples for the correlation parameters relating to the alter
random effects across responses ρ12 (a), ρ13 (b), and ρ23 (c). The posterior mean is denoted
by the black vertical line.

4.5.2.2 Univariate model results

This section presents the results of fitting the univariate model to the Social Network Survey

data. The univariate model in this section is fit by merging the 3 responses into 1 response

so that the response vector for the univariate and multivariate models are identical, and so

direct comparisons between the models can be made in terms of DIC, etc.
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Alcohol Cigarettes Marijuana

OR 95% C.I. ESS PSRF OR 95% C.I. ESS PSRF OR 95% C.I. ESS PSRF

Intercept 0.03 (0.01, 0.16) 1333 1 0.02 (0.01, 0.1) 1901 1 0.02 (0, 0.09) 1561 1.01

Gender

Female - - - - - - - - - - - -

Male 0.31 (0.16, 0.59) 10905 1 1.21 (0.64, 2.32) 9864 1 0.61 (0.3, 1.25) 10006 1

Exam grades

Mostly A’s - - - - - - - - - - - -

Mostly A’s and B’s 2.91 (0.79, 11.36) 1573 1 1.72 (0.48, 6.23) 2337 1 1.73 (0.39, 7.46) 1902 1

Mostly B’s 7.76 (0.31, 186.79) 1701 1 0.27 (0.01, 7.39) 2080 1 1.79 (0.04, 57.97) 1576 1

Mostly B’s and C’s 11.01 (3.19, 39.25) 1501 1 9.13 (2.8, 29.67) 2165 1 11.96 (3.03, 46.06) 1716 1.01

Mostly C’s or lower 48.57 (14.01, 174.16) 1527 1 37.32 (11.59, 120.3) 2132 1 76.36 (20.29, 284.29) 1886 1.01

Variance components Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF Post. Mean 95% C.I. ESS PSRF

σ2
v 2.93 (0.07, 19.6) 30000 1.01 5.64 (0.03, 39.36) 30000 1.05 4.16 (0.04, 30.51) 27129 1

σ2
u 2 (0.41, 6.53) 907 1 2.07 (0.42, 6.82) 886 1 3.88 (0.58, 11.73) 837 1

DIC = 3670.767

Table 4.3: Results of the univariate model for alcohol, cigarettes, and marijuana consump-
tion.

Table 4.3 presents the results of the univariate model for whether an individual has

consumed at least one drink of alcohol in the past 30 days, whether an individual has

smoked at least one cigarette in the past 30 days, and whether an individual has ever tried

marijuana. Similarly to the results of the multivariate model presented in Table 4.2, in

comparison to females, males had a lower observed odds of consuming alcohol in the past

30 days (OR = 0.31, 95% CI: (0.16, 0.59)). In contrast to the results of the multivariate

model presented in Table 4.2, the estimates of the ORs for those who got mostly C’s or lower

in exams last year, in comparison to those who got mostly A’s, is much greater, i.e for the

cigarette related response in the multivariate model the estimate is OR = 11.29 (95% CI:

(2.86, 45.15)) whereas it is OR = 37.32 (95% CI: (11.59, 120.3)) in the univariate model.

The results also show that for the variances of the alter random effects, the largest variance

is for the response relating to marijuana (σ̂2
3 = 3.88, 95% CI: (0.58, 11.73)). This result is

similar to that of the multivariate model.

Figures 4.4a, 4.4b, and 4.4c show the traces plots for the alter random effects u1070,1,

u1070,2, and u1070,3, which are the random effect of not nominating a friend, across each of
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(a) (b) (c)

Figure 4.4: Trace plots of the two chains (shown in red and blue) generated relating to the
isolation random effect u1070 in the univariate MMMC model for responses relating to alcohol
(a), cigarettes (b), and marijuana (c). The posterior mean is denoted by the black horizontal
line.

the responses. The results show that the posterior mean of u1070,1 is 0.51 (95% CI: (-0.06,

1.11)). The posterior mean of u1070,2 is 0.82 (95% CI: (0.25, 1.43)), and thus not nominating

a friend increases the observed probability of having smoked at least one cigarette in the

past 30 days. The posterior mean of u1070,3 is 1.26 (95% CI: (0.62, 1.98)), and thus not

nominating a friend also increases the observed probability of having ever tried marijuana.

4.5.2.3 Univariate and multivarate model comparison

This section directly compares results relating to the univariate and multivariate models,

and seeks to address which model is preferred in this study. The two main reasons for the

multivariate model being preferred are as follows

1. The multivariate MMMC model results in a lower DIC. The DIC for the mul-

tivariate model across the two runs is 3112.071, whereas the DIC for the univariate

model across the two runs is 3670.767. As the multivariate model has a smaller esti-

mated DIC, the multivariate model would best predict a replicate data set which has

the same structure as that currently observed in the Social Networking Survey.



CHAPTER 4. UNIVARIATE AND MULTIVARIATE MMMC MODELS 85

2. The multivariate MMMC model allows for inference of the correlation be-

tween alter random effects across responses. In addition to having a smaller

DIC, unlike the univariate model, the multivariate model allows for inference of the

correlation between alter random effects across responses. The multivariate model re-

sults show that the 95% credible interval for the correlation between the alter random

effects for the cigarette and marijuana responses has a larger start and end point than

for the alcohol and marijuana responses. This inference could be valuable to a policy

maker who aims to prevent an adolescent from ever trying marijuana by making an

intervention between an adolescent and their alters.

All computation in this section was performed on a desktop computer with Intel(R)

Core(TM) i7-9700 CPU @ 3.00GHz with 32GB of RAM. The time taken to implement the

model presented in Table 4.3 took approximately 23 hours to generate 2 runs of 300,000

iterations thinned by a factor of 20 after a burn-in period of 100,000 samples. Whereas the

time taken to implement the models presented in Table 4.2 took approximately 27.5 hours

to generate 2 runs of 300,000 iterations thinned by a factor of 20 after a burn-in period of

100,000 samples.

4.6 Discussion and conclusions

This chapter has investigated the use of univariate and multivariate MMMC models on a

set of network data, comparing and contrasting the results for both types of model. The

results show that, across the univariate and multivariate models, the covariate with the

largest impact on whether an individual has consumed at least one drink of alcohol in the

past 30 days, whether an individual has smoked at least one cigarette in the past 30 days,

and whether an individual has ever tried marijuana was the exam grades an individual

achieved last year. In particular, holding all other covariates fixed, in comparison to those
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that achieved mostly A’s in exams last year, those that achieved mostly C’s or lower had

much higher odds of a positive value for all responses.

The results in this section also reveal how the social network component of a data set can

impact the behaviour of an individual. It also supports the idea that the alter random effects

may be correlated across different responses, and thus possessing positive alter influences on

one behaviour may carry over to other behaviours. For example, the results in this section

show that there is a strong positive linear relationship between the alter random effects

relating to the cigarette and marijuana responses, ρ23 = 0.95 (95% CI: (0.87, 0.98)). Thus

an individual having alters that positively influence whether they have smoked at least one

cigarette in the past 30 days, may carry over to impacting their marijuana consumption.

There are a number of potential limitations and areas for further work in regards to certain

parts of the case study. One of the first limitations is the use of 5 schools as random effects,

which may not be wholly sensible. In the univariate model the estimate of the variance

parameter for the school level random effects are based on 5 random effects, which may not

be ideal. In the multivariate model, correlation estimates at the school level will be based

on 2 vectors containing 5 elements, which may be viewed as not ideal. In addition to this, a

further area of work would involve studying the effects of different types of reparamterizations

(see Browne et al. (2009)) on the fixed effects, random effects, variance parameters, and

covariance parameters in the MMMC models described in this chapter. There is also scope

to extend the models described in this section by allowing for multiple networks.



Chapter 5

Prior specifications

5.1 Introduction

In this chapter, I investigate the use of different priors across a range of different models to

see how a change in prior for the variance-components and covariance components in models

previously presented in earlier chapters of this thesis may induce different properties for the

parameters in the model. Bayesian models are known for being sensitive to the choice of

prior distributions for variance and covariance parameters. The univariate and multivariate

MMMC models presented in this thesis contain a number of variance and covariance param-

eters in their specification, and so it is of great importance to better understand how the

change in priors for these parameters affect the simulated posterior distributions that the

models yield. This chapter also provides an exploration of how changes in the grouping size

and structure of random effects impact the results of these models.

In the Bayesian analysis of statistical models, there are two types of prior distributions

that can be imposed on a parameter. The first is a diffuse prior and the second is an

informative prior. In the case of the diffuse prior, little may be known about the parameter

of interest or the researcher may want to minimise the effect of the prior distribution on the

87
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resultant posterior distribution. In the case of the informative prior, prior information may

be available for the parameter of interest, such as similar previous studies or comments from

an expert within the field of research. In this section, the focus is on exploring different

types of diffuse priors, which are compared and contrasted using bias and credible interval

estimates produced by the models on simulated data for which we know the true value of

parameters.

The literature pertaining to the specification of diffuse priors is vast and comprehensive

for a variety of models (see Arnold and Villasenor (1997), Browne and Draper (2006), Gelman

et al. (2013), McElreath (2016), Pateras et al. (2021)). In the literature on priors for vari-

ance parameters, one of the most common approaches is to impose a diffuse inverse-gamma

distribution on variance parameters, as random effects are typically modelled using a normal

distribution and the inverse-gamma distribution is conjugate to this, making it convenient

to use. Similarly, in the literature on priors for covariance parameters, one of the most

common approaches is to impose an inverse-Wishart distribution on covariance parameters,

as the random effects in multivariate models are often modeled using a multivariate normal

distribution and the inverse-Wishart distribution is conjugate to this, making it convenient

to use.

The remainder of the chapter is structured as follows. Subsection 5.1.1 outlines the

novel contributions for this chapter. Section 5.2 provides an exploration of different priors

for variance components for a univariate MMMC model. The section also explores how

changing the grouping size and structure of random effects impacts the results of these

models. Section 5.3 presents a simulation study for the multivariate MMMC model. The

section also explores the use of different prior specifications for covariance structures in the

multivariate model. Section 5.4 concludes with a discussion.
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5.1.1 Novel contributions

This section presents a simulation study to illustrate how the structure of the multiple

classification random effects and choice of priors can impact the estimation of parameters

in the model. It also illustrates the workings of the Bernoulli multivariate MMMC model

with three different priors imposed on the covariance matrices, the Inverse-Wishart, scaled

Inverse-Wishart, and hierarchical half-t priors. This simulation study has two aims and are

given as follows

A1 Parameter correctness. The main purpose of this simulation study is to illustrate

the correctness of the code written to implement each model using different priors.

A2 An exploration of the properties of different priors. A change in the prior for

the variance parameter/covariance matrices in a model may induce different properties

for the parameters in the model, such as different effective sample sizes (ESS), etc.

Thus it is of interest to compare and contrast the different priors in this respect.

5.2 Variance-components prior models

There are a number of potential issues with using the Inverse-Gamma distribution as a prior

for variance parameters in Bayesian hierarchical modelling. This subsection discusses a few of

these issues and puts forward two alternative priors that can be used for variance parameters

in Bayesian hierarchical models. The two alternatives are the uniform prior and the half-

normal prior (see Pateras et al. (2021)). This subsection also addresses and investigates how

the number of multiple membership random effects and how the distribution of observations

assigned to those multiple membership groups can affect the simulated posterior distributions

of parameters in the model.
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5.2.1 Simulation study

Each simulation was performed using 100 data sets. The data sets are such that they differ

for each scenario that is explored. There are 8 different scenarios under which the data has

been generated, which are presented in Table 5.1. The scenarios are as follows: (i) There

are 120 individuals assigned to possibly more than one of 10 multiple membership groups

so that the number of individuals in each group is “unbalanced" (10 UB). (ii) There are 120

individuals assigned to possibly more than one of 10 multiple membership groups so that

the number of individuals in each group is balanced (10 B). (iii) There are 300 individuals

assigned to possibly more than one of 25 multiple membership groups so that the number of

individuals in each group is “unbalanced" (25 UB). (iv) There are 300 individuals assigned to

possibly more than one of 25 multiple membership groups so that the number of individuals

in each group is balanced (25 B). (v) There are 480 individuals assigned to possibly more

than one of 40 multiple membership groups so that the number of individuals in each group

is “unbalanced" (40 UB). (vi) There are 480 individuals assigned to possibly more than one of

40 multiple membership groups so that the number of individuals in each group is balanced

(40 B). (vii) There are 1100 individuals assigned to possibly more than one of 55 multiple

membership groups so that the number of individuals in each group is “unbalanced" (55

UB). (viii) There are 1100 individuals assigned to possibly more than one of 55 multiple

membership groups so that the number of individuals in each group is balanced (55 B).

Each model was fit for a total of 20,000 iterations, with a burn-in period of 20,000 and

thinning of 1. The model used in this subsection is that of Equation 4.2 in Chapter 4,

with the exclusion of the random effects for the single membership classification v and its

corresponding variance σ2
v and the use of a Poisson likelihood. 8 different priors are imposed

on σ2
u, namely, σ2

u ∼ IG(0.001, 0.001), σ2
u ∼ IG(0.01, 0.01), σ2

u ∼ IG(1, 1), σ2
u ∼ IG(1, 0.01),

σ2
u ∼ Uniform(0, 1000) and σ2

u ∼ HN(10000). The true value of parameters is held constant

across the study design and selected to be β0 = 0.444, β1 = 0.477, β2 = 0.656 and σ2
u = 0.5.
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Table 5.1: Summary of the study design.

Design # of individuals # of individuals in each multiple classification group

10 UB 120 10 10 13 15 9 14 14 16 8 11

10 B 120 20 for all groups

25 UB 300 12 9 14 7 18 10 16 11 11 8 8 15 14 20 13

17 9 11 19 9 8 9 15 7 10

25 B 300 20 for all groups

40 UB 480 6 17 7 9 13 13 14 14 10 19 20 15 13 8 16 13

13 11 11 13 5 7 8 14 12 15 8 17 18 12 8

10 9 10 12 12 10 14 11 9 17

40 B 480 20 for all groups

55 UB 1100 6 8 11 13 10 10 12 18 12 14 13 9 12 10 9

8 15 9 13 16 13 13 17 10 6 12 10 19 10 8

16 15 13 11 11 10 20 9 16 14 15 14 9 14 6

13 17 11 13 8 8 13 17 11 10

55 B 1100 20 for all groups

Figure 5.1 focuses on comparing the 95% credible intervals produced by the Inverse-

Gamma(0.001, 0.001) prior for the variance parameter σ2
u, when there are 10, 25, 40 and 55

multiple membership groups that are balanced and unbalanced. The set of figures {5.1a,

5.1c, 5.1e, 5.1g} shows that, holding the prior and balancing fixed, the coverage for the

parameter tends to improve, the more multiple membership groups there are. The coverage

in Figures 5.1a, 5.1c, 5.1e and 5.1g are 0.9, 0.91, 0.95 and 0.96 respectively. In contrast, the

set of Figure {5.1b, 5.1d, 5.1f, 5.1h} shows that holding the prior and balancing fixed, when

there is balance, in groups the coverage is fairly good. The coverage in Figures 5.1b, 5.1d,
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5.1f and 5.1h are 0.95, 0.92, 0.96 and 0.94 respectively. However, it is worth noting that the

average width of the 95% credible interval does shrink, the more groups that there are. This

pattern also appears for all of the priors explored.

(a) IG(0.001, 0.001), 10 groups, unbalanced. (b) IG(0.001, 0.001), 10 groups, balanced.

(c) IG(0.001, 0.001), 25 groups, unbalanced. (d) IG(0.001, 0.001), 25 groups, balanced.

(e) IG(0.001, 0.001), 40 groups, unbalanced. (f) IG(0.001, 0.001), 40 groups, balanced.
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(g) IG(0.001, 0.001), 55 groups, unbalanced. (h) IG(0.001, 0.001), 55 groups, balanced.

Figure 5.1: 95% credible intervals for the 100 simulations for the parameter σ2
u for the

IG(0.001, 0.001) prior across for the balanced/unbalanced scenarios and all multiple mem-
bership group sizes.

Figure 5.2 focuses on comparing the 95% credible intervals produced by four Inverse-

Gamma priors for the variance parameter σ2
u, when there are 55 multiple membership groups

that are balanced and unbalanced. The coverage in Figures 5.2a, 5.2b, 5.2c, 5.2d, 5.2e, 5.2f,

5.2g and 5.2h are 0.96, 0.95, 0.96, 0.94, 0.96, 0.96, 0.92 and 0.94 respectively. In terms of

coverage, the Inverse-Gamma(1, 0.01) prior with an unbalanced number of individuals across

the 55 groups performed the worst with a coverage of 0.92.

(a) IG(0.001, 0.001), 55 groups, unbalanced. (b) IG(0.001, 0.001), 55 groups, balanced.
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(c) IG(0.01, 0.01), 55 groups, unbalanced. (d) IG(0.01, 0.01), 55 groups, balanced.

(e) IG(1, 1), 55 groups, unbalanced. (f) IG(1, 1), 55 groups, balanced.

(g) IG(1, 0.01), 55 groups, unbalanced. (h) IG(1, 0.01), 55 groups, balanced.

Figure 5.2: 95% credible intervals for the 100 simulations for the parameter σ2
u across the four

Inverse-Gamma priors for the balanced/unbalanced scenario with 55 multiple membership
groups.

Figures 5.3, 5.4, 5.5 and 5.6 show the bias of the model parameters β0, β1, β2 and σ2
u as

a function of the unbalanced study design across the 6 different priors for σ2
u. Here the focus

is on the unbalanced study design across the 6 different priors for σ2
u, as this is the structure
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that a researcher is more likely to come across in their work. As shown in Figures 5.4 and 5.5,

each of the 6 priors for σ2
u, have similar bias values across the unbalanced study design. As

shown in Figures 5.3 and 5.6, the significant differences in the 6 different priors for σ2
u across

the study design start to show. Figure 5.6 shows that the uniform and Inverse-Gamma(1, 1)

prior imposed on σ2
u induce relatively large absolute biases for the corresponding parameters

when the number of groups is small but settles down when the number of groups gets larger.

Figure 5.3: Bias of β0 as a function of the unbalanced study design across the 6 priors.

Figure 5.4: Bias of β1 as a function of the unbalanced study design across the 6 priors.
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Figure 5.5: Bias of β2 as a function of the unbalanced study design across the 6 priors.

Figure 5.6: Bias of σ2
u as a function of the unbalanced study design across the 6 priors.

5.3 Covariance-components prior models

There are a number of potential issues with using the Inverse-Wishart distribution as a prior

for covariance matrices in Bayesian hierarchical modelling. This subsection discusses a few of

these issues and puts forward two alternative priors that can be used for covariance matrices
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in Bayesian hierarchical models, such as the multivariate MMMC model described in model

(4.4). The two alternatives are the scaled Inverse-Wishart prior and the hierarchical half-t

prior and have been discussed in Alvarez et al. (2016). The scaled Inverse-Wishart prior for

an R×R covariance matrix is given by

Σ = diag(δ1, . . . , δR) Q diag(δ1, . . . , δR)

δr ∼ Lognormal(αr, ω2
r) for r = 1, . . . , R

Q ∼ Inverse-Wishart(ξ,Ω), (5.1)

where αr = 0 ∀r, ω2
r = 100 ∀r, ξ = R + 1,Ω = IR×R. These choices are based on

guidance from Alvarez et al. (2016). This prior employs a separation strategy to construct the

covariance matrix Σ = diag(δ1, . . . , δR) Q diag(δ1, . . . , δR), where Q is a covariance matrix

whose diagonal entries are independently scaled by a squared lognormal random variable δ2r

and the off-diagonals entries are scaled by a product of lognormal random variables δrδr′

(r 6= r
′). The purpose of these scaling procedures is to provide greater flexibility in the

resultant elements of the covariance matrix which would otherwise be Q. Alternatively, the

hierarchical half-t prior for an R×R covariance matrix is given by

Σ ∼ Inverse-Wishart(φ+R− 1, 2φ∆)

∆ = diag(λ1, . . . , λR)

λr ∼ Gamma
(

1

2
,

1

ξ2r

)
for r = 1, . . . , R, (5.2)

where ξ2r = 1 ∀r and φ = 2. This prior implies a half-t distribution on the standard

deviations, which is based on a result given in Wand et al. (2011) (Result 5) that states
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that the half-t distribution can be written as a hierarchy of Inverse-Gamma distributions.

Namely that

if σ2|λ ∼ Inverse-Gamma(φ/2, φ/λ) and λ ∼ Inverse-Gamma(1/2, 1/ξ2),

then σ ∼ Half-t(ξ, φ). (5.3)

This results in σr ∼ Half-t(1, 2) ∀r for the prior in (5.2). This is clear to see by noting that

in (5.2) σ2
r |λr ∼ Inverse-Gamma(φ/2, 2φλr/2) and λr ∼ Gamma(1/2, 1/ξ2r ) ∀r, so σ2

r |λr ∼

Inverse-Gamma(φ/2, φ/λr) and λr ∼ Inverse-Gamma(1/2, 1/ξ2r ) ∀r. The use of half-t priors

on standard deviation parameters is recommended in Gelman (2006) to achieve a weakly

informative prior.

5.3.1 Simulation study

Each simulation was performed using 100 data sets. The data sets are such that N = 1000,

R = 3, K = 20, and J = 20. The actual design matrix, allocation of individuals in schools

matrix, and weight matrices are the same for all data sets and were specified to be similar

to the real data. Each model was fit for a total of 20,000 iterations, with a burn-in period of

20,000 and thinning of 1. Summaries of the 95% coverage probability, effective sample size

(ESS), bias for the posterior mean estimates, and RMSE for the posterior mean estimates are

presented in Table 5.2. The summaries regarding v and u are averaged over all R, K and J

elements for each response respectively. The variance components for each of the covariance

matrices were chosen to take the value 1.5, with the purpose being to highlight the issue that

the unscaled Inverse-Wishart prior could theoretically produce and was previously discussed.

Table 5.2 gives the summaries of the simulations. Table 5.2 shows that the biases of the

posterior mean estimates for each parameter is relatively small over the 100 simulations and
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Inverse-Wishart Prior Scaled Inverse-Wishart Prior Hierarchical Half-t Prior
Posterior mean Posterior mean Posterior mean

Parameter Bias RMSE Coverage ESS Bias RMSE Coverage ESS Bias RMSE Coverage ESS
β11 0.03 0.08 0.92 1378 0.03 0.08 0.92 1404 0.03 0.08 0.92 1418
β12 0.01 0.07 0.95 1495 0.01 0.08 0.95 1510 0.01 0.08 0.94 1524
β13 −0.05 0.09 0.92 1163 −0.04 0.09 0.94 1180 −0.04 0.09 0.93 1187
β21 0.02 0.10 0.91 1451 0.02 0.10 0.91 1453 0.02 0.10 0.91 1453
β22 0.00 0.08 0.93 1537 0.00 0.08 0.92 1523 0.00 0.08 0.92 1552
β23 −0.05 0.10 0.91 1149 −0.04 0.10 0.94 1141 −0.04 0.10 0.95 1168
β31 −0.02 0.09 0.91 1401 −0.01 0.09 0.91 1406 −0.01 0.09 0.91 1396
β32 0.04 0.09 0.93 1261 0.03 0.09 0.94 1270 0.03 0.09 0.94 1272
β33 0.00 0.07 0.97 1362 0.00 0.07 0.98 1374 0.00 0.07 0.98 1352
Σv11 −0.12 0.50 0.90 6147 0.14 0.61 0.94 3111 0.07 0.40 0.99 13410
Σv12 0.00 0.38 0.93 9217 0.00 0.39 0.94 10636 −0.05 0.35 0.94 10999
Σv13 0.05 0.35 0.94 9528 0.06 0.35 0.99 10942 0.00 0.31 0.99 11269
Σv22 −0.07 0.57 0.94 6289 0.20 0.70 0.93 3110 0.11 0.47 1.00 13320
Σv23 0.03 0.39 0.91 9606 0.04 0.40 0.94 11035 −0.02 0.36 0.94 11279
Σv33 0.00 0.50 0.93 6522 0.28 0.67 0.96 3283 0.16 0.43 1.00 12822
Σu11 −0.10 0.54 0.91 5648 0.17 0.65 0.96 3035 0.03 0.45 0.98 8712
Σu12 −0.03 0.41 0.88 8315 −0.03 0.41 0.94 9805 −0.08 0.38 0.92 10064
Σu13 0.00 0.39 0.91 8142 0.00 0.39 0.94 9534 −0.05 0.35 0.95 9953
Σu22 −0.12 0.49 0.90 5611 0.16 0.61 0.96 2965 0.06 0.39 0.99 12089
Σu23 −0.03 0.37 0.92 8206 −0.03 0.37 0.97 9663 −0.08 0.34 0.97 10115
Σu33 −0.12 0.55 0.88 5470 0.14 0.67 0.94 3025 0.07 0.43 0.99 12574
v 0.00 0.35 0.94 3904 0.00 0.35 0.94 3954 0.00 0.35 0.94 4082
u 0.00 0.38 0.93 3857 0.00 0.38 0.94 3914 0.00 0.38 0.94 4088

20,000 burn-in, thin = 1, and 20,000 post burn-in samples.

Table 5.2: Summary results from the simulation study.

each prior (A1). In addition to this, for each prior, the 95% coverage probability for each

parameter is roughly 0.95 (A1). The boxplots of the ESS for the set of parameters in the

covariance matrix for the school random effects under the three priors are shown in Figures

5.7a, 5.7b, 5.7c, 5.7d, 5.7e, and 5.7f. They show that, for variance components shown in

Figures 5.7a, 5.7d, and 5.7f, the hierarchical half-t distribution resulted in larger ESSs when

compared to the Inverse-Wishart and the scaled Inverse-Wishart priors (A2). It is also worth

pointing out that the hierarchical half-t prior achieves this while also producing similar biases

to the Inverse-Wishart and the scaled Inverse-Wishart priors for each parameter.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Boxplots of the ESSs for the 100 simulations for the parameters in Σv across the
three different priors, Σv11 (a), Σv12 (b), Σv13 (c), Σv22 (d), Σv23 (e), and Σv33 (f).

The Inverse-Wishart distribution is a family of distributions that are parameterised by

a scale matrix Ω and a degrees of freedom ξ, which are selected to be ξ = R + 1 and

Ω = IR×R. A potential issue with using the Inverse-Wishart prior is that it results in all

variance parameters being controlled by the single degree of freedom parameter. The Inverse-

Wishart prior has the drawback that it implies a scaled inverse chi-squared prior for each

variance σ2
r ∼ inv-χ2(ξ − R + 1, Ωrr

ξ−R+1
). Thus the implied scaled inverse chi-squared prior

provides a prior on variance components that have very low mass for values close to 0. As

a result, the posterior summaries, such as the posterior mean, of the variance parameters

may be overestimated when their true values are small. In addition to this, using the

Inverse-Wishart distribution as a prior on the covariance matrix in a hierarchical model

induces a prior dependency on the variance and correlation parameters (A2). As shown
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in Figure 5.8a, there is a distinct prior relationship between log(σ2
1) and ρ12 induced by

the Inverse-Wishart(4, IR×R), with larger values of log(σ2
1) appearing to induce correlations

with large absolute values. This behaviour also persisted for the Inverse-Wishart(4, 3IR×R)

prior distribution, where the scale matrix is not the identity matrix. On further inspection,

defining a large variance as a variance that is greater than or equal to 1.5 and a small

variance being less than 1.5, Figures 5.9a and 5.9d show that large variances are associated

with correlations that have large absolute values and smaller variance are associated with

correlations that have small absolute values.

(a) (b) (c)

Figure 5.8: Scatter plots of ρ12 against log(σ2
1) from 100,000 samples of Inverse-Wishart(4,

IR×R) (a), the scaled Inverse-Wishart described in (5.1) (b), and the hierarchical half-t
described in (5.2) (c).

In comparison, as shown in Figure 5.8b, the scaled Inverse-Wishart given above does

not appear to associate a distinct relationship between log(σ2
1) and ρ12. In contrast, to the

Inverse-Wishart, Figures 5.9b and 5.9d show that large and small variances are associated

with correlations that evenly span the range [-1, 1]. Similarly, as shown in Figure 5.8c, the

hierarchical half-t given above does not appear to associate a distinct relationship between

log(σ2
1) and ρ12. Figures 5.9c and 5.9f show that large and small variances are associated

with correlations that unimodal about 0, with neither greatly favouring correlations with a

value of -1 or 1.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Histograms of 100,000 samples presented in Figures 5.8a, 5.8b, and 5.8c parti-
tioned by whether σ2

1 ≥ 1.5 or σ2
1 < 1.5. Inverse-Wishart(4, IR×R) when σ2

1 ≥ 1.5 (a) and
σ2
1 < 1.5 (d). The scaled Inverse-Wishart described in (5.1) when σ2

1 ≥ 1.5 (b) and σ2
1 < 1.5

(e). The hierarchical half-t described in (5.2) when σ2
1 ≥ 1.5 (c) and σ2

1 < 1.5 (f).

Figure 5.10a, 5.10b, and 5.10c show the density plot of posterior samples for ρ13 under

the Inverse-Wishart, scaled Inverse-Wishart, and hierarchical half-t prior for one of the 100

simulations. Unsurprisingly, Figure 5.10a shows that the Inverse-Wishart prior leads to an

overestimation for the absolute value of ρ13 when the true value of Σv11 = 1.5 and Σv33 = 1.5,

which may be classified as large. In comparison, as to be expected, the scaled Inverse-Wishart

and hierarchical half-t priors do not overestimate the absolute value of ρ13. As the correlation

is a normalized form of covariance and not affected by scale, it is usually the parameter of
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interest when it comes to measuring the linear relationship between variables (A2). Thus,

the hierarchical half-t prior may be preferred to the Inverse-Wishart and scaled Inverse-

Wishart priors when modelling covariance structures in a multivariate Bayesian hierarchical

MMMC model due its desirable properties and the increased ESSs that it results in for

variance parameters.

(a) (b) (c)

Figure 5.10: Density plot of samples of ρ13 under the Inverse-Wishart (a), scaled Inverse-
Wishart (b), and hierarchical half-t (c) prior for one of the 100 simulations. The green
vertical line represents the true value of ρ13 = 1/3.

5.4 Discussion and conclusions

This chapter has investigated the use of different priors across a range of different models

to see how a change in prior for the variance-components and covariance components in

models previously presented in earlier chapters of this thesis may induce different properties

for the parameters in the model. The results show that under certain conditions, the choice

of prior distributions for variance and covariance parameters can have a massive impact on

the estimation of model parameters. Thus, it is of great importance for a user to carefully

consider the choice of prior that they plan to use in their Bayesian models. In addition to

this, this chapter has also shown how the structure of data pertaining to random effects in
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the model can play a significant part in how the estimates of a parameter behave.



Chapter 6

Multivariate spatial MMMC models

6.1 Introduction

Bayesian spatial modelling is a technique that seeks to account for the underlying spatial

trend created by an underlying process which may otherwise be ignored by non-spatial

modelling approaches. The literature on multiple health behaviours suggests that there may

be a dependence between an individual’s behaviours and where they live. Thus, multivariate

spatial models may be more appropriate to use than non-spatial models in such settings. The

spatial effect that living in certain areas has on an individual’s alcohol consumption has been

observed across the regions of England (Shelton and Savell (2011); Castillo et al. (2017)).

Shelton and Savell (2011) found that, in comparison to males living in London, males living

in the North East had a larger observed odds of binge drinking in the past week (OR = 2.85,

95% CI: (1.72, 4.73)). Similarly, Castillo et al. (2017) found that, in comparison to males

living in the North East, males living in London had a lower observed odds of binge drinking

(OR = 0.418, 95% CI: (0.313, 0.557)). The spatial effect that living in certain areas has on

an individual’s smoking habits has also been observed across the regions of England. Beard

et al. (2017) found that, in comparison to individuals living in the South West, individuals

105
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living in the East Midlands had a lower observed relative risk of being a smoker (RR = 0.86,

95% CI: (0.79, 0.94)).

In this chapter, I build on Chapter 4 by modelling the multiple health behaviours of

adolescents with the use of a proposed multivariate spatial MMMC model. The multivariate

spatial MMMC model extends the multivariate MMMC model proposed in Chapter 4 by

modelling spatial information through the use of conditional autoregressive random effects.

The remainder of the chapter is structured as follows. Subsection 6.1.1 outlines the

novel contributions made. Section 6.2 provides an exploration of the spatial component

of the network data used, and acts as a form of guided inspiration for the multivariate

spatial MMMC models proposed in this chapter. Section 6.3 describes the multivariate

spatial MMMC models proposed in this chapter. Section 6.4 details the Markov chain Monte

Carlo algorithm used for the aforementioned models in this chapter. Section 6.5 presents

an application of the models discussed in this chapter on network data of multiple health

behaviours of adolescents in Los Angeles, California. Section 6.6 concludes with a discussion.

6.1.1 Novel Contributions

There is a great interest in understanding the underlying process of data with both a network

and spatial component. This chapter provides a distinct novel contribution to the literature

on spatial and network analysis which is given as follows

1. Multivariate spatial MMMC models. A potential limitation of the multivariate

MMMC model proposed in Chapter 4 is that it does not model the potential spatial

trend in data. In instances such as the one being dealt with in this chapter, the data

may contain a spatial component that we wish to model. As a result, it may be

reasonable to propose a multivariate MMMC models that takes account of the spatial

and network component of the data. Section 6.3 describes the multivariate model that
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is to be implemented in Section 6.5.

6.2 Data: Social Networking Survey

This section builds on the data description provided in the previous section and explores

the spatial aspect of the Social Networking Survey (SNS) network data from Los Angeles,

California.

6.2.1 Spatial data exploration

The adolescents surveyed collectively reside in S = 33 non-overlapping administrative areas

known as Zip Codes, which contain very unequal numbers of survey responders. For example,

the two Zip Codes with the largest number of adolescents surveyed are El Monte (91732 -

378 individuals) and South El Monte (91733 - 271 individuals), while there are 19 instances

in which only 1 adolescent surveyed resides in the Zip Code. The spatial configuration of

the S = 33 Zip Codes is displayed in the right panel of Figure 6.1, which shows that while

most of the Zip Codes are grouped together in the middle of the region, there are a small

number of isolated Zip Codes that are not close to the remaining ones.

The spatial closeness between each pair of Zip Codes is encoded in the model described in

the next section by a binary neighbourhood matrix denoted A33×33, where the ijth element

aij = 1 if Zip Codes (i, j) share a common border and aij = 0 otherwise (and aii = 0 for all i).

This border sharing specification is the most commonly used neighbourhood matrix in spatial

areal unit modelling (see for example Bivand et al., 2013 and Jack et al., 2019), because of

its sparsity and simplicity of construction (e.g. it does not have a tuning parameter as the

k-nearest neighbours rule does). However, Zip Codes that are isolated share no neighbours

under this definition, which means the conditional autoregressive prior outlined in the next

section for capturing the spatial correlation has improper full conditional distributions for
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these Zip Codes. Thus we make the commonly used adjustment to A for each isolated Zip

Code i to rectify this problem, which is to make them a neighbour of the Zip Code j that is

geographically closest (e.g. set aij = aji = 1). The final neighbourhood structure assumed

when fitting the model is displayed by the connecting lines in the right panel of Figure 6.1,

which shows that under this specification the Zip Codes comprise a single connected graph.

We assessed in an exploratory manner whether there are likely to be spatial effects in the

data, i.e. whether adolescents in different Zip Codes have differing propensities for partaking

in adverse health behaviours. We do this by computing the empirical probability of engaging

in a specific health behaviour given that the individual is from a certain Zip Code. However,

as previously discussed the distribution of individuals to the 33 Zip Codes is highly skewed,

with a minimum, 1st quartile, median, 3rd quartile, and maximum of 1, 1, 1, 6, and 378

individuals respectively. Thus for a meaningful comparison we only consider the 5 Zip Codes

containing the most individuals, which are Temple City (91780 - 31 individuals), El Monte

(91731 - 154 individuals), Rosemead (91770 - 167 individuals), South El Monte (91733 -

271 individuals), and El Monte, (91732 - 378 individuals). For these Zip Codes the observed

probabilities of consuming at least one drink of alcohol in the past 30 days are 0.16, 0.27, 0.15,

0.33, and 0.28 respectively. The corresponding probabilities of smoking at least one cigarette

in the past 30 days are 0.13, 0.36, 0.17, 0.33, and 0.29 respectively, while for marijuana the

probabilities are 0.16, 0.27, 0.15, 0.33, and 0.28. As these empirical probabilities show some

variation by Zip Code, spatial effects are a plausible component to include in the model.
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(a) (b)

Figure 6.1: Maps of California (a) and the spatial configuration of the Zip Codes (b). In the
latter the lines denote the neighbour relationships between two Zip Codes assumed when
fitting the model.

Figure 6.2 displays the percentages of adolescents who responded “yes” to whether they

consumed at least one drink of alcohol in the past 30 days (Figure 6.2a), had smoked at least

one cigarette in the past 30 days (Figure 6.2b), and had ever tried marijuana (Figure 6.2c)

in each areal unit.
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(a)

(b)
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(c)

Figure 6.2: Map displaying the percentage of adolescents who responded “yes” to the alcohol
(a), cigarette (b), and marijuana (c) related responses.

6.3 Multivariate spatial uniplex MMMC models

This section describes the multivariate spatial MMMC model to be used on network data

with a spatial aspect.
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6.3.1 The multivariate Leroux CAR uniplex MMMC model

As the adverse health behaviours are binary no/yes outcomes, the data likelihood model has

a Bernoulli logistic regression form and is given by

Yisr ∼ Bernoulli(θisr) for i = 1, . . . , Ns, s = 1, . . . , S, r = 1, . . . , R,

ln

(
θisr

1− θisr

)
= x>isβr + φsr +

∑
j∈net(is)

wisjujr + w∗isu
∗
r. (6.1)

Here Yisr denotes the binary (Yisr = 1 - yes; Yisr = 0 - no) adverse health behaviour for the

rth response for the ith individual who lives in the sth spatial unit, where r = 1, . . . , R(= 3),

s = 1, . . . , S(= 33) and i = 1, . . . , Ns. The probability that individual i from spatial unit

s partakes in adverse health behaviour r is denoted by θisr, which is modelled on the logit

scale by three separate components. The first is a p × 1 vector of covariates xis , which is

accompanied by a p × 1 vector of fixed effect regression parameters βr that vary by health

behaviour r. The prior for these fixed effect parameters is given by βr ∼ N(0, 100000I)

independently for each outcome r, where I is the p × p identity matrix. This specification

is chosen to be weakly informative, thus allowing the parameter estimates to be largely

informed by the data. The other two components in the systematic part of the model

are a friendship network effect and a spatial effect, and these two different levels in the

model are described below. The friendship network effect captures correlations between the

three health behaviours and between individuals (friends), while the spatial effect capture

correlations between neighbouring Zip Codes.
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6.3.2 Friendship network effects

Friendship network effects are accounted for in the model by the
∑

j∈net(is)wisjujr + w∗isu
∗
r

component in Equation (6.1), where net(is) denotes the set of individuals that the ith indi-

vidual in the sth spatial unit nominates as friends. The latter part u∗r is an isolation effect

for health behaviour r, which is an effect for individuals who don’t nominate any friends.

This is achieved by setting w∗is = 1 if individual is nominates no friends and w∗is = 0 oth-

erwise, and if w∗is = 1 then clearly
∑

j∈net(is)wisjujr = 0 as net(is) is the empty set. The∑
j∈net(is)wisjujr component is known as a multiple membership model, and was proposed

by Browne et al. (2001). The friendship network structure for each individual is discussed

in Section 4.2.2 and displayed visually in Figure 4.1, but for the purposes of the model is

encoded into an n × n friendship network matrix W = (wisj), where n =
∑S

s=1Ns denotes

the number of individuals in the survey. The values of the entries in this friendship network

matrix are given by

wisj =

 1/|net(is)| if individual i in spatial unit s nominates individual j as a friend

0 Otherwise
,

(6.2)

where |net(is)| is the cardinality of the set net(is). Thus, the only non-zero entries in

this matrix relate to friendships that one individual has with another individual. Note, this

matrix is not necessarily symmetric because it represents a directed rather than an undirected

graph. The values of the non-zero elements in this matrix are the reciprocal of the number of

friends each individual nominates, which ensures that the matrix is row standardised (each

row sums to 1).

Then for individual i in spatial unit s the friendship network component of the model

contributes the term
∑

j∈net(is)wisjujr to the linear predictor. Here ujr is a random effect
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representing the peer effect that person j has on their friends in terms of partaking in health

behaviour r. Thus
∑

j∈net(is)wisjujr simply represents the average (mean) effect that the

friends of individual i in spatial unit s have on that individual in terms of partaking in

health behaviour r. We allow these friendship random effects uj = (u1j, . . . , uRj)R×1 to be

correlated across the different responses because we believe that if an individual encourages

others to drink alcohol for example then they may also encourage others to smoke cigarettes

or marijuana as well. Thus we specify the following multivariate normal prior distribution

for each individual’s friendship random effects uj:

uj ∼ N(0,Σ),

u∗ ∼ N(0,Σ),

Σ ∼ Inverse-Wishart(4, I). (6.3)

Between health behaviour correlation is allowed for each uj and u∗ via the R×R covari-

ance matrix Σ, which is assigned a weakly informative Inverse-Wishart prior distribution,

which allows the estimation to mainly be informed by the data. We assume that uj and u∗

share the same covariance matrix Σ for convenience.

6.3.3 Spatial effects

The underlying process of the data suggests there may be spatial effects in the data, which

we model using spatially correlated random effects. These random effects are assigned a

conditional autoregressive (CAR) prior distribution, which is the most common approach

to modelling spatial correlation in areal unit data (see for example Banerjee et al., 2004).

As our adverse health behaviour response is multivariate, a multivariate CAR model could

be adopted to model both spatial and between health behaviour correlations. Multivariate
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CAR type models are an active research area, and numerous different approaches have been

proposed including Gelfand and Vounatsou (2003), Jin et al. (2007), Martinez-Beneito (2013)

and MacNab (2016). However, in this paper we model the correlations between the 3 adverse

health behaviours via the friendship network component of the model as described above,

and thus modelling these correlations a second time may cause parameter identifiability

issues in the model. In fact, as we show in the next section, the friendship network effects

are a much more important driver of adverse health behaviours than the spatial effect, so

the between behaviour correlations are more prominently captured in that component of the

model.

Therefore instead we specify independent CAR models for each adverse health behaviour

r, which are specified as a prior distribution for a vector of spatial random effects φr =

(φ1r, . . . , φSr) for the S = 33 Zip Codes. Spatial correlation is induced into these random

effects through the spatial neighbourhood matrix A described in Section 2.4, which is defined

by the commonly used border sharing rule. We note here that as the spatial correlation

structure is defined by A, all inferences about this part of the model are conditional on the

choice of A. Following a comparative study of different CAR priors by Lee (2011), we use

the CAR prior proposed by Leroux et al. (2000) due to its consistent superior performance.

This prior has the joint distribution φr ∼ N(0, τ 2r [γr(diag(A1)−A) + (1− γr)I]−1) for each

response r, where 1 is an S×1 vectors of ones, I is the S×S identity matrix and diag(A1) is

a diagonal matrix with diagonal elements obtained by the matrix product A1. Thus the joint

distribution of the spatial random effects for all three health behaviours φ = (φ1,φ2,φ3)3S×1

is a zero-mean multivariate normal distribution, whose covariance matrix is block diagonal

with three S × S blocks given by τ 2r [γr(diag(A1)−A) + (1− γr)I]−1 for r = 1, 2, 3.

The precision matrix for the spatial random effects relating to health behaviour r is given

by γr(diag(A1)−A) + (1− γr)I and is a weighted average of correlated (diag(A1)−A) and

independent (I) components, where the amount of spatial dependence is controlled by γr.

However, the fact that this prior captures spatial correlation is much easier to see from its
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univariate full conditional form, which is given, together with the hyperpriors, for response

r by

φsr|φ−sr ∼ N

(
γr
∑

j 6=s asjφjr

γr
∑

j 6=s asj + 1− γr
,

τ 2r
γr
∑

j 6=s asj + 1− γr

)
,

τr ∼ Half-Normal(10000),

γr ∼ Uniform(0, 1). (6.4)

Here φ−sr denotes the vector of S − 1 spatial random effects for outcome r excluding

φsr. In this prior the spatial dependence parameter γr is assigned a non-informative prior

on the unit interval, and if γr = 1 the model simplifies to the intrinsic CAR prior for strong

spatial correlation proposed by Besag et al. (1991) because the conditional expectation is the

mean of the random effects in neighbouring areas. In contrast, if γr = 0 it is trivial to see

that the random effects are independent. Finally, a weakly informative (large variance) half

normal prior centred on zero is specified for the spatial standard deviation τr as suggested

by Gelman (2006), which again lets the data play the dominant role in the estimation of its

value.

6.4 MCMC estimation algorithm

This section describes Markov chain Monte Carlo algorithms for Model (6.1). The joint

distribution of (β,u, Σu, φ, τ 2, ρ) for Model (6.1) is given by
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f(β,u,Σu,λu,φ, τ
2,ρ|Y) ∝ f(y|β,φ,u)f(β|µβ,Σβ)f(φ|τ 2,ρ)f(u|Σu)f(τ 2)f(ρ)

=
S∏
s=1

Ns∏
i=1

R∏
r=1

Bernoulli(yisr|βr, φsr,ur)
R∏
r=1

N(βr|µβ,Σβ)

×
R∏
r=1

N(φr|τr, ρr)
J∏
j=1

N(uj|Σu)

×
R∏
r=1

Half-Normal(τr|aτ )Inverse-Wishart(Σu|u)

where µ0 = µβ = 0, Σβ = 105I, and ur = (u1r, . . . , uJr)J×1 is the J × 1 vector of alter

random effects relating to the rth response. The following subsections in this section detail

the full conditionals required for Model (6.1).

6.4.1 Sampling from f(βr|φr,ur,y)

The full conditional of βr for model (6.1) is the product of
∑S

s=1Ns Bernoulli likelihoods

and a Gaussian prior, which is shown below

f(βr|φr,ur,y) ∝
S∏
s=1

Ns∏
i=1

Bernoulli(yisr|βr, φsr,ur)N(βr|µβ,Σβ).

The Gaussian prior is not conjugate to the Bernoulli likelihood, which results in a full

conditional distribution which is not standard. A Metropolis step is used to update βr,

which is implemented in blocks. The proposal distribution for the block of parameters to be

updated is given by N(β(t)
r , σ

2(t)
βr

I), where β(t)
r is the current value of the block of parameters

and σ2(t)
βr

is the current value of the adaptive tuning parameter for the block of parameters
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that is designed to keep the acceptance rate α(t)
βr

for the block of parameters to be between 0.3

- 0.5. The adaptive tuning parameter flattens the proposal distribution when the acceptance

rate is less than 0.3 and compacts the proposal distribution when the acceptance rate is

greater than 0.5. The acceptance probability of updating the block of current parameters

β(t)
r to proposed parameters β∗r is given by

min
{

1,

∏S
s=1

∏Ns

i=1 Bernoulli(yikr|β
∗
r, φ

(t)
sr ,u

(t)
r )N(β∗r|µβ,Σβ)∏S

s=1

∏Ns

i=1 Bernoulli(yikr|β
(t)
r , φ

(t)
sr ,u

(t)
r )N(β(t)

r |µβ,Σβ)

}
.

6.4.2 Sampling from f(φr|βr,ur, τr, ρr,y)

The full conditional of φr for model (6.1) is the product of
∑S

s=1Ns Bernoulli likelihoods

and a Gaussian prior, which is shown below

f(φr|βr,ur, τr, ρr,y) ∝
S∏
s=1

Ns∏
i=1

Bernoulli(yisr|βr, φsr,ur)N(φr|τr, ρr).

In this instance, the Gaussian prior is not conjugate to the Bernoulli likelihood, which

results in a full conditional distribution which is not standard. A Metropolis step is used

to update φr. The proposal distribution for φr is given by N(φ(t)
r , σ

2(t)
φr

I), where φ(t)
r is

the current value of φr and σ
2(t)
φr

is the current value of the adaptive tuning parameter

for the proposal distribution. The acceptance probability of updating the block of current

parameters φ(t)
r to proposed parameters φ∗r is given by
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min
{

1,

∏S
s=1

∏Ns

i=1 Bernoulli(yisr|β
(t)
r , φ

∗
sr,u

(t)
r )N(φ∗r|, τ

(t)
r , ρ

(t)
r )∏S

s=1

∏Ns

i=1 Bernoulli(yisr|β
(t)
r , φ

(t)
sr ,u

(t)
r )N(φ(t)

r |τ
(t)
r , ρ

(t)
r )

}
.

6.4.3 Sampling from f(uj|β,φ,u−j,Σu,y)

The full conditional of uj = (u1j, ..., uRj) for model (6.1) is the product of a Gaussian prior

and Bernoulli likelihoods equal to the number of times uj appears in a likelihood, which is

shown below

f(uj|β,φ,u−j,Σu,y) ∝
S∏
s=1

Ns∏
i=1

R∏
r=1

Bernoulli(yisr|βr, φsr,ur)N(uj|Σu)

∝
∏

is s.t. j∈net(is)

R∏
r=1

Bernoulli(yisr|βr, φsr,ur)N(uj|Σu).

Similarly to the full conditional of uj for (6.1), the Gaussian prior is not conjugate

to the Bernoulli likelihood, which results in a full conditional distribution which is not

standard. A Metropolis step is used to update uj. The proposal distribution for uj is

given by N(u
(t)
j , σ

2(t)
uj I), where u

(t)
j is the current value of uj and σ

2(t)
uj is the current value of

the adaptive tuning parameter for the proposal distribution. The acceptance probability of

updating the block of current parameters u
(t)
j to proposed parameters u∗j is given by

min
{

1,

∏
is s.t. j∈net(is)

∏R
r=1 Bernoulli(yisr|β

(t)
r , φ

(t)
sr , u∗jr,u

(t)
r )N(u∗j |Σ(t)

u )∏
is s.t. j∈net(is)

∏R
r=1 Bernoulli(yisr|β

(t)
r , φ

(t)
sr , u

(t)
jr ,u

(t)
r )N(u

(t)
j |Σ(t)

u )

}
.
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6.4.4 Sampling from f(τr|φr, ρr,y)

The full conditional of τr for model (6.1) is the product of a Gaussian prior and a Half-

Normal(aτ ). A Metropolis-Hastings step is used. As the proposal distribution to be used is

a truncated normal distribution which is not symmetric and ensures that τ ∈ [0,∞). The

truncated normal distribution is given by TN(τ
(t)
r , σ

2(t)
τr , 0,∞), where τ (t)r is the current value

of τr, σ
2(t)
τr is the current value of the adaptive tuning parameter for the proposal distribution,

0 is the minimum value of τr that can be drawn. The acceptance probability of updating

τ
(t)
r to proposed parameters τ ∗r is given by

min
{

1,
N(0, τ 2∗r (ρ

(t)
r (diag(A1)−A) + (1− ρ(t)r )I)−1) Half-Normal(τ ∗r |aτ ) TN(τ

(t)
r |τ ∗r , σ

2(t)

τ2r
, 0,∞)

N(0, τ
2(t)
r (ρ

(t)
r (diag(A1)−A) + (1− ρ(t)r )I)−1) Half-Normal(τ (t)r |aτ ) TN(τ ∗r |τ

(t)
r , σ

2(t)

τ2r
, 0,∞)

}
.

6.4.5 Sampling from f(ρr|φr, τr,y)

The full conditional of ρr for model (6.1) is N(0, τ 2r (ρr(diag(A1) −A) + (1 − ρr)I)−1), this

results in a full conditional distribution which is not standard A Metropolis-Hastings step is

used to update ρr, as the proposal distribution to be used is a truncated normal distribution

which is not symmetric and ensures that ρ ∈ [0, 1). The truncated normal distribution is

given by TN(ρ
(t)
r , σ

2(t)
ρr , 0, 1), where ρ(t)r is the current value of ρr, σ

2(t)
ρr is the current value of

the adaptive tuning parameter for the proposal distribution, 0 is the minimum value of ρr

that can be drawn, and 1 is the maximum value of ρr that can be drawn. The acceptance

probability of updating ρ(t)r to proposed parameters ρ∗r is given by

min
{

1,
N(0, τ

2(t)
r (ρ∗r(diag(A1)−A) + (1− ρ∗r)I)−1) TN(ρ

(t)
r |ρ∗r, σ

2(t)
ρr , 0, 1)

N(0, τ
2(t)
r (ρ

(t)
r (diag(A1)−A) + (1− ρ(t)r )I)−1) TN(ρ∗r|ρ

(t)
r , σ

2(t)
ρr , 0, 1)

}
.
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6.4.6 Sampling from f(Σu|u,y)

The full conditional of Σu for Model (6.1) is the product of J Gaussian distributions and a

conjugate Inverse-Wishart(R + 1, I) prior, which is shown below

f(Σu|u,y) ∝
J∏
j=1

N(uj|Σu)Inverse-Wishart(Σu|u).

This results in an

Inverse-Wishart
(
R + 1 + J, I +

J∑
j=1

uju
>
j

)

posterior distribution.

The sampling steps are performed in C++ and the manipulation of the user-specified

arguments passed to the function are done in R.

6.5 Results: Social Networking Survey

This section presents the results of the multivariate MMMC model with a spatial component

on the Social Networking Survey data set. Subsection 6.5.1 presents the results generated

by the analysis. The aims of this section are given as follows

1. A multivariate MMMC model with a spatial component. The novel contri-

bution relating to the multivariate MMMC model with a spatial component stated in

Subsection 6.1.1 is carried out in this section.

2. An evaluation of the spatial and network component of the model. There
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are two main research questions relating to the network level of the model.

Q1 Howmuch global spatial autocorrelation is there in the odds of engaging in alcohol,

cigarette, and marijuana consumption when the network is taken into account?

Q2 How much variance is there in the network level and how does this compare to

the amount of variation in the spatial random effects?

6.5.1 Results

This subsection presents the results of fitting Model (6.1), whose Markov chain Monte Carlo

algorithm are described in Section 6.4. The model in this section was run twice, simulating

two sets of samples from the posterior distribution of each parameter to compute the potential

scale reduction factor. For each run, 200,000 iterations were thinned by a factor of 20 after

a burn-in period of 200,000 samples, resulting in 10,000 posterior samples for each run.

6.5.1.1 Multivariate model results

We fit 8 different models to the survey data, which allows us to examine the relative im-

portance of covariate effects, friendship network effects and spatial effects in explaining an

adolescents’ propensity to partake in adverse health behaviours. These 8 models are denoted

M1 toM8 and contain all possible combinations of the three different model components,

ranging from M1 which only contains an intercept term through to M8 which is the full

model given by (6.1). A summary of the components included in each model is given in

Table 6.1 for ease of reference. The covariates used in these models include the categorical

variables gender, exam grades and school, which are summarised in Section 2.2.
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Table 6.1: Summary and overall fit of the 8 models.

Model Covariates Space Network DIC pD
M1 - - - 3,821 3.0
M2 X - - 3,463 30.1
M3 - X - 3,798 22.1
M4 - - X 2,904 427.5
M5 X X - 3,463 29.9
M6 X - X 2,891 408.6
M7 - X X 2,907 417.7
M8 X X X 2,883 413.1

6.5.2 Model comparison

The overall fit of each model is summarised in Table 6.1, which displays the Deviance Infor-

mation Criterion (DIC, Spiegelhalter et al., 2002) and the effective number of independent

parameters (pD). A comparison of the single component modelsM2,M3, andM4 to the

null (intercept only) model shows that the inclusion of the friendship network component

leads to the greatest reduction in DIC compared to the intercept only model, as the DIC

goes from 3,821 to 2,904, a reduction of 917. The sole inclusion of covariates has just under

half this impact with a DIC reduction of 358, while the sole inclusion of a spatial component

leads to a DIC reduction of just 23. Adding in the covariates (M6) and then additionally

the spatial component (M8) to the friendship network model improves the fit to the data

but only marginally, with the DIC reductions compared to the network only model (M4)

being only 13 and 21 respectively. Thus, while the full model with all three components has

the lowest DIC value, the impact of adding in the covariates and the spatial components are

small once the friendship network effects are included.

The results in Table 6.1 show that the effective number of independent parameters pD

went down for M8 compared to M4 and M7, despite the former model being the most

complex in terms of its parameterisation. The reason for this is that in the full modelM8

the variation in the data is jointly modelled by all three components, where as in M4 for
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example only the network component is included. Thus in M8 the network component is

having to model less of the variation in the data compared to inM4, due to the covariates

and to a much lesser degree the spatial effect modelling some of this variation. This results

in a reduction in the effective number of independent parameters for the network component

in model M8 compared to M4 due to a reduction in the variation in the random effects

{uj}, which thus causes the reduced pD. The remainder of this section present the results

relating to the full modelM8, so that the effects of all three components can be observed.

6.5.3 Model fit

In order to confirm that the model fits the data adequately we simulate 1,000 trivariate

samples {ỹ(1), · · · , ỹ(1000)} from the posterior predictive distribution f(ỹ|y), where y denotes

the observed data. As both (ỹ(j),y) are binary this posterior predictive check involves

computing the probability that the observed data matches the simulated data generated

from the posterior predictive distribution. Averaging over all individuals i, spatial units s,

health behaviour r and posterior predictive samples j, the posterior predictive probability

P(ỹisr = yisr) = 0.68, suggesting that the model fits the data relatively well as it generates

simulated data that are similar to the real data. The corresponding health behaviour specific

values are P(ỹis1 = yis1) = 0.67, P(ỹis2 = yis2) = 0.67, and P(ỹis3 = yis3) = 0.70, suggesting

that the model fits the marijuana response slightly better than the other two.

Additionally, Table 6.2 provides the posterior means and 95% credible intervals for the

between health behaviour correlations from the friendship network component of the model,

which allows us to examine the appropriateness of modelling all three health behaviours

jointly. These correlations are captured in Σ, and for example the correlation between alcohol

and cigarettes is computed by ρ12 = Σ12/
√

Σ11Σ22. The table shows that the correlations

are very high and close to one for each pair of adverse health behaviours, with posterior

means ranging between 0.955 (alcohol and marijuana) and 0.975 (cigarettes and marijuana).
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Table 6.2: Estimates and 95% credible intervals for the between health behaviour correla-
tions.

Adverse health behaviours Estimated correlation
ρ12 = Σ12/

√
Σ11Σ22 - alcohol and cigarettes 0.956 (0.808, 0.996)

ρ13 = Σ13/
√

Σ11Σ33 - alcohol and marijuana 0.955 (0.792, 0.997)
ρ23 = Σ23/

√
Σ22Σ33 - cigarettes and marijuana 0.975 (0.890, 0.998)

These strong correlations thus support the use of a joint modelling approach for our adverse

health behaviours. Finally, the posterior samples of these network correlation parameters

yield P(ρ23 > ρ12 ∩ ρ23 > ρ13) = 0.629, suggesting that the correlation between the cigarette

and marijuana responses is likely to be greater than both the correlations between the alcohol

and cigarette responses and the alcohol and marijuana responses.

6.5.4 Covariate effects

Table 6.3 displays the estimated covariate effects (posterior means) and 95% credible intervals

for each adverse health behaviour, and all results are presented as odds ratios relative to the

baseline level of the factor (the first one in the table denoted by a “-"). The table shows

that in comparison to females, the baseline level, males had a significantly reduced odds of

consuming alcohol in the past 30 days, with an estimated odds ratio of 0.57. In contrast,

the 95% credible intervals for the male covariate relating to the cigarette and marijuana

responses show no statistically significant gender effect.

In contrast, the effect of exam performance is much more consistent than that of gen-

der, with decreasing exam performance being significantly associated with higher odds of

partaking in each adverse health behaviour. Here the baseline level is mostly A’s, and de-

creasing the grade category almost always exhibits an increased and significant odds ratio.

For example, adolescents who score mostly C’s or below have significant odds ratios of 8.05

(alcohol), 5.46 (cigarettes) and 14.66 (marijuana), when compared to the baseline mostly
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Table 6.3: Summary of the covariate effects as odds ratios and selected other parameters
from modelM8.

Alcohol Cigarettes Marijuana
Covariates
Female - - -
Male 0.57 (0.39, 0.83) 1.31 (0.86, 1.99) 0.91 (0.56, 1.46)
A’s - - -
A’s and B’s 2.49 (1.10, 6.12) 1.41 (0.61, 3.34) 2.48 (0.86, 7.82)
B’s 2.66 (0.91, 7.85) 0.68 (0.19, 2.21) 2.35 (0.59, 9.55)
B’s and C’s 4.16 (1.86, 10.01) 2.60 (1.16, 6.07) 5.73 (2.09, 17.04)
C’s or lower 8.05 (3.61, 19.74) 5.46 (2.47, 12.46) 14.66 (5.47, 45.05)
School 1 - - -
School 2 0.96 (0.35, 2.41) 1.12 (0.35, 3.38) 1.07 (0.28, 3.79)
School 3 1.42 (0.48, 3.85) 1.02 (0.27, 3.33) 1.09 (0.24, 4.40)
School 4 0.38 (0.12, 1.05) 0.78 (0.20, 2.76) 0.47 (0.10, 2.05)
School 5 1.07 (0.29, 3.56) 0.79 (0.15, 3.49) 0.80 (0.11, 4.79)
Space
τr 0 (0, 6.6× 10−53) 0 (0, 1.4× 10−60) 0 (0, 2.3× 10−62)
γr 0.419 (0.02, 0.92) 0.415 (0.02, 0.92) 0.417 ( 0.02, 0.92)
Network
Σrr 6.21 (3.29, 11.01) 10.32 (5.49, 19.59) 14.92 (7.12, 27.76)

A’s category. Finally, the table shows that after accounting for all the other components in

the model, there are no statistically significant school effects for schools 2, 3, 4 and 5 when

compared to the reference level school 1, with all 95% credible intervals across the three

responses containing the null odds ratio of 1.

6.5.5 Peer network effects

Table 6.3 provides the posterior means and 95% credible intervals for the variances relating

to the network random effects in the model, which quantify the variation among the indi-

vidual friendship network effects. The posterior means for alcohol, cigarettes and marijuana

are respectively 6.21, 10.32 and 14.92, suggesting that the greatest level of variation is for

marijuana. This finding is confirmed by the posterior probability that P(Σ33 > Σ11 ∩ Σ33 >
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Σ22) = 0.892, suggesting a very clear size ordering among these variances with the variance

relating to the marijuana response being the largest.

The isolation random effects for not nominating a friend are denoted by u∗1, u∗2, and

u∗3, and on the odds ratio scale their estimates and 95% credible intervals are given by:

Alcohol - 2.31 (1.34, 4.06); Cigarettes - 3.32 (1.88, 6.11); and Marijuana - 4.57 (2.39, 9.39).

All these estimates and 95% credible intervals are greater than one, suggesting that being

isolated from others (i.e. not nominating a friend) increases the likelihood of drinking alcohol,

smoking cigarettes, and having used marijuana. The posterior mean marijuana isolation

effect is the largest of the three but not significantly so, as all three 95% credible intervals

overlap. However, that said there is relatively strong evidence of a clear size ordering in

these isolation effects, because the model produced the following posterior probabilities:

P(u∗3 > u∗1 ∩ u∗3 > u∗2) = 0.793, P(u∗3 > u∗1) = 0.962, and P(u∗3 > u∗2) = 0.806. Thus it appears

that isolation has the largest effect on the marijuana response.

Figure 6.3 displays the 95% credible intervals for the individual friendship random ef-

fects and the isolation effect relating to each response, namely {u1, u
∗
1} (alcohol), {u2, u

∗
2}

(cigarettes), and {u3, u
∗
3} (marijuana). The effects are ordered by posterior mean on the

horizontal axis, and those in black are not significantly different from zero at the 5% level.

The instances in green are significantly different from zero at the 5% level and contain only

negative values. There was only one case of this for each of the three responses, all at-

tributable to the same individual. Thus, holding everything else equal, having nominated

this individual as a friend was observed to have decreased the likelihood of drinking alcohol,

smoking cigarettes, and having used marijuana. Those in red are significantly different from

zero at the 5% level and contain only positive values. There were 38, 41, and 43 instances of

this relating to the alcohol, cigarette, and marijuana response respectively, and nominating

these individuals as friends increases ones propensity to smoke, drink, and use marijuana.



CHAPTER 6. MULTIVARIATE SPATIAL MMMC MODELS 128

Figure 6.3: The 95% credible intervals for the network effects relating to each response,
{u1, u

∗
1} (alcohol - top), {u2, u

∗
2} (cigarettes - middle), and {u3, u

∗
3} (marijuana - bottom).

These effects are ordered by size, and those non-significant effects with 95% credible intervals
that contain 0 are shown in black, those that contain values strictly less than 0 are shown
in green, and those that contain values strictly greater than 0 are shown in red.
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6.5.6 Spatial effects

The spatial standard deviation (τr) and dependence (γr) parameters are displayed in Table

6.3. The table shows that the spatial effect is essentially non-existent, as the posterior

means for the conditional standard deviations τr are almost zero for all three adverse health

behaviours, and the upper limit of the 95% credible interval is also very close to zero. This is

further emphasised by the posterior means for the sets of spatial random effects (φ1,φ2,φ3),

which range between −3.69 × 10−53 and 5.51 × 10−53. This lack of a spatial effect after

covariate and friendship network effects have been accounted for confirms the overall model

fit results from Table 6.1, which shows that the DIC values for models M6 and M8 are

almost identical.

6.6 Discussion and limitations

This section has proposed a novel spatio-network model for binary multiple health behaviour

data, which jointly captures the potential effects of covariate factors, spatial location, friend-

ship network effects and within-individual correlations between outcomes. The main advan-

tage of our model over existing alternatives is its flexibility in being able to capture this wide

range of drivers of adolescent health behaviours, whereas existing models only account for a

subset of them. This has allowed us to examine which of these drivers are the most important

for explaining an adolescent’s propensity to drink alcohol or smoke cigarettes or marijuana,

and in our California-based study, we have obtained a number of interesting findings.

Our main finding is that peer effects play a large role in determining whether adoles-

cents partake in adverse health behaviours, as their addition to the null model leads to the

greatest reduction in DIC when compared to just adding either the covariates or spatial

component. Furthermore, once friendship effects are included in the model, there is only a

small improvement in model fit when incorporating the covariates and/ r spatial component.
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In future work, it would be interesting to see whether the relative importances of the three

components are mirrored in terms of their out-of-sample predictive ability, for example using

a cross-validation type approach. For the covariates, the only consistently significant effect

on the participation in adverse health behaviours was school exam performance, with stu-

dents having poorer exam results observed to be more likely to partake in these behaviours.

In contrast, the spatial effect was essentially non-existent.

Our second main finding is that the effect that a friend has on an adolescent is strongly

correlated across the three binary responses, with estimated pairwise correlations ranging

between 0.956 and 0.975. These correlations support the notion of co-occurrence of risky

behaviours in adolescents found by Hale and Viner (2016). Among the three pairs of jointly

modelled friendship random effects, the results show that the pair relating to the cigarette

and marijuana responses are the most correlated, although the correlations for the remaining

pairs are only slightly smaller.



Chapter 7

Review: Multilevel statistical software

In this chapter, I provide an overview of some popular statistical software programs that allow

users to fit multilevel models and or multiple membership multiple classification (MMMC)

models. The remainder of this chapter is structured as follows. Section 7.1 reviews various

statistical software programs that can be used to fit multilevel and MMMC models. Section

7.2 outlines the novel contributions that the software I propose will make to the landscape

of multilevel and MMMC software.

7.1 Multilevel software

SPSS

SPSS is a statistical software program that uses a likelihood-based approach to allow

for the fitting of hierarchical or multilevel models. The software was originally released in

1968 and has seen regular updates throughout its life, with Version 11.0 introducing the

capability to fit hierarchical or multilevel models in 2001. The software is offered to users

through paid subscriptions and perpetual/term licenses but also offers a free trial. SPSS is

very user-friendly and easy for a novice to use due to its point-and-click GUI that allows the

131
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user to perform complex tasks with minimal coding. The software package also offers SPSS

syntax, which is a programming language unique to SPSS that can be used as an alternative

to the drop-down menus for data manipulation and statistical analyses.

Mplus

Mplus (Muthén and Muthén (1998-2017)) is a statistical software program that can use

Markov chain Monte Carlo methods to allow for the fitting of multilevel models. The first

version of the software, Mplus Version 1, was released on 19th November 1998 and has

undergone several major version updates with a few minor updates for each major version.

Mplus Version 6, which was released in April 2010, introduced the capability to fit multilevel

models in a Bayesian paradigm. The software is offered to users through paid subscriptions

but offers a demo version that limits the number of variables that can be used in an analysis.

Mplus is fairly user-friendly and uses an Mplus syntax to specify models, which the user is

required to learn. Mplus is a very well documented piece of software that provides the user

with an in-depth guide of the software. However, as Mplus is not open-source, it lacks the

open-source community that is a feature of many other statistical software packages.

Bambi

Bambi (Capretto et al. (2022)) is a statistical software package that uses Markov chain

Monte Carlo methods to allow for the fitting of hierarchical and multilevel models. The

package is written in Python, working with the probabilistic programming framework PyMC,

and is designed to make it extremely easy to fit Bayesian mixed-effects models common in

biology, social sciences and other disciplines. The software is open-source, free to use and

under an MIT license. Bambi uses a syntax very similar to lme4 formula syntax in R, which

many packages in R emulate. This makes it very user-friendly for users who are familiar with

specifying models in R. Bambi is a very well documented piece of software that provides the

user with an in-depth guide of the software and online worked examples for the models in

the package.
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Stata

Stata is a statistical software program that can use Markov chain Monte Carlo methods to

fit multilevel models through bayesmh. Stata introduced Bayesian analysis through bayesmh

in its release of Stata 14 in April 2015. The software is offered to users through a variety

of paid annual and perpetual licenses. Stata is very user-friendly due to its point-and-click

GUI that allows the user to perform complex tasks with minimal coding. The software also

offers scripting, which allows users to use Stata’s programming language as an alternative to

the drop-down menus for data manipulation and statistical modelling. Stata is a very well

documented and provides the user with an in-depth guide of the software along with other

online resources.

R

R is a programming language and free software environment designed for statistical com-

puting and graphics. The language heavily supports the creation of packages by developers

to expand the language and increase its functionality. These packages are hosted on the

Comprehensive R Archive Network (CRAN), the main repository for R packages.

R package: MCMCglmm

MCMCglmm (Hadfield (2010)) is an R package that uses Markov chain Monte Carlo

methods to fit generalized linear mixed-effects models in a Bayesian setting. The software

is written in C, C++, and R. MCMCglmm was initially released in 2010 and created by

Jarrod Hadfield. The software has been used in various research fields, such as behavioural

research (Dean et al. (2017)), marketing (Chandrasekaran et al. (2019)), and global warming

(Mostafa (2016)). MCMCglmm relies on various sampling procedures to produce simulations

from the posterior distribution of a parameter. MCMCglmm is relatively simple to use for

those with limited knowledge of Bayesian statistics. The software also has an accompanying

course to provide the user with a deeper understanding of the software (see Hadfield (2019)).

Furthermore, as MCMCglmm is a package in R, users have access to a number of other R
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packages that can be used for data cleaning and visualisation, making the entire analysis a

more seamless experience. However, in contrast to software such as WinBUGS (see below),

the types of models that can be fit is more restrictive.

R package: bayesm

bayesm (Rossi (2022)) is an R package that uses Markov chain Monte Carlo methods

to fit multilevel models in a Bayesian paradigm. The software is tailored to cover many

important models used in marketing and micro-econometrics applications. The software was

initially released in 2005 and is written in a mixture of C++ and R. The software is open

source and under a GPL ≥ 2 license. bayesm is fairly simple to use, with access to a variety

of supplementary online resources and the availability of an accompanying book (Rossi et al.

(2012)) which accompany it that users can study.

R package: lme4

lme4 is an R package that is used to fit linear and generalized linear mixed-effects models.

lme4 uses likelihood approaches to fit its models. The software is written in both C++ and R.

lme4 was initially released in 2010 and created by Ben Bolker but has had many contributors.

The software has been used in various research fields, such as language (Nixon et al. (2015)),

agriculture (Wilson et al. (2010)), and medicine (Munoz-Zanzi et al. (2016)). lme4 is a very

popular model fitting package and has very detailed documentation.

R package: brms

brms (Bürkner (2017)) is an R package that uses Markov chain Monte Carlo methods

to fit generalized (non-)linear multivariate multilevel/MMMC models using Stan (Stan De-

velopment Team (2022)) for full Bayesian inference. brms was initially released in 2015 to

address the hesitancy in researchers using Stan directly, as every model has to be written,

debugged and possibly also optimized which may be time-consuming and error-prone process

even for researchers familiar with Bayesian inference by allowing the user to benefit from

the merits of Stan only by using simple, lme4-like formula syntax. The software is open
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source and under a GPL ≥ 2 license. brms is fairly simple to use, with access to a variety of

supplementary online resources that users can study.

WinBUGS

WinBUGS (Lunn et al. (2000)) is a statistical software program that uses Markov chain

Monte Carlo methods to fit Bayesian models. The software was initially released in 1997 and

is an upgraded and rewritten version of classic BUGS, a piece of statistical software written

in Modular-2. WinBUGS was developed by a team of academics at the Medical research

Council Biostatistics Research Unit in Cambridge and is written in Component Pascal, a

successor of the Pascal programming language. The final release of WinBUGS is version

1.4.3 and was published on 6th August 2007. The software is under a Freeware license and

has been used in a wide array of research areas, such as accident research (Islam and El-

Basyouny (2015)), social science (Wong et al. (2009)), and infectious diseases (Yang et al.

(2015)). WinBUGS does allow for the specification of arbitrary distributions through the

use of syntactical tricks. Markov chain Monte Carlo estimation in WinBUGS is conducted

using Gibbs sampling, the random walk Metropolis algorithm (Metropolis et al. (1953)),

adaptive rejection sampling (Gilks et al. (1995)), and the slice sampling algorithm (Neal

(1997)). WinBUGS is a very flexible piece of statistical software and has very detailed

documentation. However, it requires the user to have a good grasp of Bayesian statistics in

order to correctly specify an intended model. Additionally, for beginners, error messages in

WinBUGS can be a source of frustration, as they can be difficult to understand. WinBUGS

can also struggle to handle large data sets and can take a long time to perform a large

number of Markov chain Monte Carlo iterations for complex models.

MLwiN

MLwiN (Charlton et al. (2019)) is a statistical software program that, similarly to Win-

BUGS, uses Markov chain Monte Carlo methods to fit multilevel and MMMC models in a

Bayesian setting. MLwiN was initially released in 1998 and is a successor to MLn. MLwiN
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was developed by the Centre for Multilevel Modelling at the University of Bristol. The

software is under a proprietary license and has been used in various research fields, such

as education (Durrant et al. (2018)), health (Barker et al. (2019)), and veterinary medicine

(Aunsmo et al. (2009)). Markov chain Monte Carlo estimation for multilevel and MMMC

models in MLwiN are carried out using Gibbs sampling and Metropolis-Hastings sampling.

MLwiN is a very well documented piece of software that provides the user with an in-depth

guide of the software. Another very valuable aspect of MLwiN is the equation window that

it provides to users, which makes clear the model being fit by the user. However, MLwiN

is not as flexible as a statistical program such as WinBUGS which allows users to specify a

very wide array of models.

7.2 Novel contributions

As discussed above, there are a number of different statistical software programs that allow

users to fit multilevel and or MMMC models. In this section I provide the contributions that

my software, described in Chapter 8, makes for multilevel and MMMC statistical software.

In contrast to SPSS and lme4, which do not allow the user to perform Bayesian data

analysis, the software I propose will use Markov chain Monte Carlo methods to fit multilevel

and MMMC models in a Bayesian setting. Conversely to MCMCglmm, which does not allow

users to fit MMMC models, the software proposed will allow MMMC models to be fit. In

comparison to MLwiN, which does allow users to fit MMMC models, the software proposed

will be open-source. Although WinBUGS allows users to fit almost all types of statistical

models, WinBUGS is not dedicated to fitting MMMC models which results can result in the

software forfeiting some efficiency and being difficult to use. Conversely to MLwiN, which

requires most user to purchase a license, the software proposed will be free for all.



Chapter 8

netcmc: An R package for social network

modeling

8.1 Introduction

Social network structures are a prominent feature in many different fields of research, such

as sexual disease transmission networks (Neaigus et al., 1996) and the impact of friendship

networks on adolescent health behaviours (Alexander et al., 2001; Lorant and Tranmer,

2019; Tranmer et al., 2014). The social network structures that are present in a data set can

be gathered in many different ways, with one of the most popular ways in the adolescent

health behaviours literature being through surveys. In such surveys, adolescents are asked

to nominate a given amount of alters (individuals) as peers, using a particular criteria (i.e.

friend, romantic relationship, etc.), resulting in a social network structure. Data sets with

social network structures typically exhibit social network autocorrelation, with adolescents

tending to have similar behaviours to their peers. However, there aren’t many resources to

help a user to model such data.

In this chapter, we describe work completed where we seek to make modeling social net-

137
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work structures in data more accessible by creating an R package titled netcmc, which will

allow a user to fit a wide range of social network models in a Bayesian paradigm. This chapter

pulls together many of the concepts and developments of methods provided in earlier chap-

ters, such as the Bayesian methods presented in Chapter 2 and the univariate and multivari-

ate models presented across Chapters 4 and 6. netcmc can be downloaded from The Compre-

hensive RArchive Network (CRAN) at https://cran.r-project.org/web/packages/netcmc/index.html

and GitHub at https://github.com/GNG3/netcmc for macOS, Linux, and Windows plat-

forms.

The remainder of the chapter is structured as follows. Subsection 8.1.1 outlines the main

motivations behind the creation of the netcmc package. Subsection 8.1.2 outlines the novel

contributions made. Section 8.2 describes the variety of models that can be implemented

in the netcmc package. Section 8.3 describes how the software can be installed and used.

Section 8.4 presents a simulation study for the package. Section 8.5 presents an application

of a model implemented in the netcmc package on network data of delinquent behaviours of

adolescents in the Netherlands. Section 8.6 concludes with a discussion.

8.1.1 Motivation

The models outlined above are usually implemented in a Bayesian paradigm, with inference

based on Markov chain Monte Carlo (MCMC) simulation. The most commonly used soft-

ware to fit the models previously described are WinBUGS and MLwiN. WinBUGS (Lunn et al.

(2000)) is a statistical software program that uses Markov chain Monte Carlo methods to

fit Bayesian models. The software is under a Freeware license. Markov chain Monte Carlo

estimation in WinBUGS is conducted using Gibbs sampling, the random walk Metropolis al-

gorithm (Metropolis et al. (1953)), adaptive rejection sampling (Gilks et al. (1995)), and

the slice sampling algorithm (Neal (1997)). MLwiN (Charlton et al. (2019)) is a statistical

software program that, similarly to WinBUGS, uses Markov chain Monte Carlo methods to fit

https://cran.r-project.org/web/packages/netcmc/index.html
https://github.com/GNG3/netcmc
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multilevel and multiple membership multiple classification (MMMC) models in a Bayesian

setting. MLwiN was initially released in 1998 and is a successor to MLn. MLwiN was developed

by the Centre for Multilevel Modelling at the University of Bristol. The software is under a

proprietary license.

However, each of the software packages mentioned above are limited in a number of ways.

MLwiN has 2 main limitations: (1) MLwiN requires the purchase of a license for those who

are not UK-academics; (2) it is not open-source, and so users aren’t able to view the source

code. WinBUGS’ main limitation is it’s non-ease of use when it comes to specifying a desired

model.

8.1.2 Novel contributions

This chapter provides three distinct novel contributions of netcmc to the literature on social

network modeling in a Bayesian paradigm, and are given as follows

1. An R package which is free to use for all. As MLwiN requires the purchase of a

license for those who are not UK-academics, the software may limit the adoption of

social network modeling for those who are not UK-academics. Thus, as a result, the

netcmc package in R is made free to use for all.

2. An open-source R package for social network modeling. netcmc it is open-

source package for social network modeling, and so allows users to view the source

code, and even contribute to the project. This point should also contribute to the

reproducibility of research in the field of social network modeling.

3. An easy to use, single call software package. The main advantage netcmc has

over WinBUGS is ease of use, because (1) the network adjacency matrix is easy to specify

as a binary neighbourhood matrix; and (2) given the required argument inputs, the

models can be implemented by a single call in R.
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8.2 Available models

This section describes the set of Bayesian hierarchical models that can be implemented in

the netcmc software, which broaden the univariate and multivariate models presented across

Chapters 4 and 6, making the software useable for a wider array of problems.

8.2.1 Data likelihoods

The general univariate model that can be implemented in netcmc is a variant of a generalized

linear model which incorporates covariates, spatial, and network structure and is given by

Yis|µis ∼ f(yis|µis, ν2) i = 1, . . . , Ns, s = 1, . . . , S, (8.1)

g(µis) = x>isβ + ψis,

β ∼ N(µβ,Σβ).

The covariates for the ith individual in the sth spatial unit or other grouping are included

in a p×1 vector xis. The corresponding p×1 vector of fixed effect parameters are denoted by

β, which has an assumed multivariate Gaussian prior with mean µβ and diagonal covariance

matrix Σβ that can be chosen by the user. Additional random effects relating to the spatial

unit or other grouping and the network structure in the data are denoted by ψis, and can take

many different forms. The response for the ith individual in the sth spatial unit Yis come

from an exponential family of distributions f(yis|µis, ν2). The netcmc package can implement

Equation (8.1) for Binomial, Gaussian, and Poisson data and the exact specification of each

are given below:

• Binomial: Yis ∼ Binomial(nis, θis) and ln(θis/(1− θis)) = x>isβ + ψis.
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• Gaussian: Yis ∼ N(µis, ν
2) and µis = x>isβ + ψis.

• Poisson: Yis ∼ Poisson(µis) and ln(µis) = x>isβ + ψis.

Additionally, netcmc can also model an extension of (8.1) for multivariate data (for

outcomes r = 1, · · · , R) which is given by

Yisr|µisr ∼ f(yisr|µisr, ν2) i = 1, . . . , Ns, s = 1, . . . , S, r = 1, . . . , R, (8.2)

g(µisr) = x>isβr + ψisr,

βr ∼ N(µβ,Σβ).

In this model the p × 1 vector of fixed effect parameters relating to the rth response

are denoted by βr which has an assumed multivariate Gaussian prior with mean µβ and

diagonal covariance matrix Σβ that can be chosen by the user. Additional random effects

allow for correlation between outcome r, the spatial unit or other grouping and the network

are denoted by ψisr, and can take many different forms. As with the univariate model, the

response Yisr come from an exponential family of distributions f(yisr|µisr, ν2). The netcmc

package can implement Equation 8.2 for Binomial, Gaussian, and Poisson data and are

simple extensions to those outlined above. Table 8.1 provides a summary of models that can

be implemented in netcmc.

8.2.2 Univariate models

This subsection describes the set of univariate Bayesian hierarchical models that can be

implemented in the netcmc software.

uni() is similar to that proposed by Nelder and Wedderburn (1972), and is a standard

univariate generalized linear model which is called by the uni() function. The model takes



CHAPTER 8. NETCMC: AN R PACKAGE FOR SOCIAL NETWORK MODELING 142

Model Eq. Data Description
uni() (8.3) Covariate. This model is similar to that proposed

by Nelder and Wedderburn (1972), and
is a standard univariate generalized linear
model.

uniNet() (8.4) Covariate,
Network.

This model is similar to that proposed by
Browne et al. (2001), and represents the so-
cial network pattern in the mean response
with a single set of weighted random effects.

uniNetRand() (-) Covariate,
Network.

This model is similar to that proposed by
Browne et al. (2001), and has the same
network random effects structure as the
uniNet() model. Additionally, this model
allows for a set of independent random ef-
fects to be incorporated into the modeled.

uniNetLeroux() (8.5) Covariate,
Network,
Spatial.

This model represents the spatio-network
pattern in the mean response with a set
of spatial random effects and weighted ran-
dom effects. The spatial effect is modeled
by the conditional autoregressive prior pro-
posed by Leroux et al. (2000).

multiNet() (8.6) Covariate,
Network.

This model is an extension to that proposed
by Browne et al. (2001), and is a multivari-
ate extension of the uniNet() model. In
this extension, the prior structure of the
network random effects is jointly modeled
across the multiple responses.

multiNetRand() (8.7) Covariate,
Network.

This model is an extension to that pro-
posed by Browne et al. (2001), and is a
multivariate extension of the uniNetRand()
model. In this extension, the prior structure
of these random effects is jointly modeled
across the multiple responses.

multiNetLeroux() (-) Covariate,
Network
Spatial.

This model is a multivariate extension of the
uniNetLeroux() model. In this extension,
the prior structure of the network random
effects is jointly modeled across the multi-
ple responses. However, the spatial random
effects are modeled independently.

Table 8.1: Overview of various models available in the netcmc package together with the
equation numbers (Eq.) defining them mathematically and what data structures they are
designed for.
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the form given in Equation (8.1) and is given by

ψis = 0. (8.3)

Thus there are no spatial or network random effects included in the model.

uniNet() is similar to that proposed by Browne et al. (2001), and represents the social

network pattern in the mean response with a single set of weighted random effects. This

model has the same prior structure as that presented in Equation (4.2) of Chapter 4 with

the exclusion of single membership random effects. This model is a univariate multiple

classification model which takes the form given in Equation (8.1) and is given by

ψis =
∑

j∈net(is)

wisjuj, (8.4)

uj ∼ N(0, σ2
u),

σ2
u ∼ Inverse-Gamma(αu, ξu),

wisj =
1

|net(is)|
.

There are J alters, where an alter is a person who was nominated as a friend by an

individual. The J × 1 vector of alter random effects are denoted by u = (u1, . . . , uJ)J×1.

net(is) is the set of alters that the ith individual in the sth spatial unit nominates as a

friend such that net(is) ⊂ {1, . . . , J}. The weight of the jth multiple membership random

effect for the ith individual in the sth spatial unit is given as follows wisj = 1
|net(is)| with

the restriction that |net(is)| 6= 0, thus
∑J

j=1wisj = 1. Conjugate Inverse-Gamma priors are

specified for the random effects variance σ2
u. The corresponding hyperparamaterers (αu, ξu)

can be chosen by the user, and the default values in the software are (αu = 1, ξu = 0.001).
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uniNetRand() has the same prior structure to that presented in Equation (4.2) of Chapter

4.

uniNetLeroux() represents the spatio-network pattern in the mean response with a set

of spatial random effects and weighted random effects. The spatial effect that an individual

experiences is modeled by the conditional autoregressive prior proposed by Leroux et al.

(2000). This model builds on the prior structure of the model presented in Equation (4.2)

of Chapter 4 with the inclusion of a conditional autoregressive prior. This is a univariate

model which takes the form given in Equation (8.1) and is given by

ψis = φs +
∑

j∈net(is)

wisjuj, (8.5)

φs|φ−s ∼ N
(

ρ
∑S

l=1 aslφl

ρ
∑S

l=1 asl + 1− ρ
,

τ 2

ρ
∑S

l=1 asl + 1− ρ

)
,

uj ∼ N(0, σ2
u),

τ 2 ∼ Inverse-Gamma(aτ , bτ ),

ρ ∼ Uniform(0, 1),

σ2
u ∼ Inverse-Gamma(αu, ξu),

wisj =
1

|net(is)|
.

The random effect for the sth spatial unit is denoted by φs and has a conditional autore-

gressive prior. In Equation (8.5), the study region where the individuals live is partitioned

into S non-overlapping areal units G = {G1, . . . , GS}. A = (asl)S×S is a non-negative

spatial adjacency matrix in Equation (8.5) which defines how spatially close the S areal

units are to each other. The elements of AS×S can be binary or non-binary. In the more

common binary case, asl = 1 if a pair of areal units (Gs, Gl) share a common border or are

considered neighbours by some other measure, and asl = 0 otherwise. τ 2 is a measure of
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the variance relating to the spatial random effects φ. The parameter ρ controls the level of

spatial autocorrelation, with values close to one and zero representing strong autocorrela-

tion and independence respectively. A non-conjugate uniform prior on the unit interval is

specified for the single level of spatial autocorrelation ρ. Conjugate Inverse-Gamma priors

are specified for the random effects variances (τ 2, σ2
u). The corresponding hyperparamater-

ers (ατ , ξτ , αu, ξu) can be chosen by the user, and the default values in the software are

(ατ = 1, ξτ = 0.001, αu = 1, ξu = 0.001).

8.2.3 Multivariate models

This subsection describes the set of multivariate Bayesian hierarchical models that can be

implemented in the netcmc software.

multiNet() is an extension to that proposed by Browne et al. (2001), and is a multivariate

extension of the uniNet() model. In this extension, the prior structure of these network

random effects is jointly modeled across the multiple responses. This model has a similar

prior structure as the multivariate model presented in Chapter 6 with the exclusion of the

spatial random effects term, making it suitable for data without this component. This is a

multivariate multiple classification model which takes the form given in Equation (8.2) and

is given by

ψisr =
∑

j∈net(is)
wisjujr, (8.6)

uj = (uj1, . . . , ujR) ∼ N(0,Σu),

Σu ∼ Inverse-Wishart(ξu,Ωu),

wisj =
1

|net(is)|
.
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TheR×1 vector of joint random effects for the jth alter is denoted by uj = (uj1, . . . , ujR)R×1

and has a joint Gaussian distribution. The unstructured covariance matrix Σu captures the

covariance between the R outcomes at the network level. A conjugate Inverse-Wishart prior

is specified for the random effects covariance matrix Σu. The corresponding hyperpara-

materers (ξu,Ωu) can be chosen by the user, and the default values in the software are

(ξu = R + 1,Ωu = I).

multiNetRand() is an extension to that proposed by Browne et al. (2001), and is a

multivariate extension of the uniNetRand() model. In this extension, the prior structure

of these random effects is jointly modelled across the multiple responses. This model has a

similar prior structure as the multivariate model presented in Chapter 6 with the exclusion of

the spatial random effects term for the addition of a multivariate single classification term.

This is a multivariate multiple membership multiple classification model which takes the

form given in Equation (8.2) and is given by

ψisr = vsr +
∑

j∈net(is)
wisjujr, (8.7)

vs = (vs1, . . . , vsR) ∼ N(0,Σv),

uj = (uj1, . . . , ujR) ∼ N(0,Σu),

Σv ∼ Inverse-Wishart(ξv,Ωv),

Σu ∼ Inverse-Wishart(ξu,Ωu),

wisj =
1

|net(is)|
,

where the group random effects are independent across the r responses. The R × 1

vector of joint random effects for the sth single membership classification is denoted by

vs = (vs1, . . . , vsR)R×1 and has a joint Gaussian distribution. The unstructured covariance

matrix Σv captures the covariance between the R outcomes at the single membership level.
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Conjugate Inverse-Wishart priors are specified for the random effects covariance matrices

(Σv, Σu). The corresponding hyperparameters (ξv,Ωv, ξu,Ωu) can be chosen by the user,

and the default values in the software are (ξv = R + 1,Ωv = I, ξu = R + 1,Ωu = I).

multiNetLeroux() has a similar prior structure as the multivariate model presented in

Chapter 6 but differs in that instead of τr following a half-normal distribution, τ 2r follows an

Inverse-Gamma distribution.

8.2.4 Inference

The models in this package are fitted using the Bayesian paradigm, with inference being

based on Markov chain Monte Carlo simulation. All parameters whose full conditional

distributions are of a closed form are sampled using a Gibbs step, which includes the fixed

effects regression parameters β and the random effects (φ, u, etc.) when the data are

Gaussian, and the variance (σ2
v , σ2

u, etc.) and covariance parameters (Σφ, Σu, etc.) for all

data likelihoods. The remaining parameters are updated using Metropolis and Metropolis-

Hastings steps, which are automatically tuned to have acceptance rates of between 30%-50%.

The functions used to implement the Markov chain Monte Carlo algorithms are written in R,

with the computationally intense updating steps written in more computationally efficient

C++ using the R package Rcpp. In addition, the sparsity of adjacency matrices A and W

relating to the spatial and social network structures present in the data are converted into

triplet form when updating of random effects, which increases the efficiency of the software.

The validity of inference based on Markov chain Monte Carlo simulations are subject to

samples being accurately drawn from the target posterior distribution. Thus determining

if a Markov chain has converged to its target distribution is of major importance. netcmc

provides a number of visual diagnostic checks to assess convergence of the simulated posterior

distributions of parameters using trace, density, and ACF plots through the plot() function.
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8.3 Installing and using the software

8.3.1 Installing the software

netcmc is a package for the statistical computing environment R (R Core Team, 2013) and can

be downloaded from CRAN (Gerogiannis, 2022) and GitHub (https://github.com/GNG3/netcmc)

for macOS, Linux, and Windows platforms. The package requires R (≥ 3.6.1) and depends

on packages Rcpp (Eddelbuettel and François, 2011), RcppArmadillo (Eddelbuettel and

Sanderson, 2014), RcppProgress. Additionally, the package imports functionality from coda

(Plummer et al., 2006), ggplot2 (Wickham, 2016) and mvtnorm (Genz et al., 2020). Once

the package has been installed, it can be loaded using the command library("netcmc").

8.3.2 Using the software

The software can be used to fit 4 different types of univariate models: uni(), uniNet(),

uniNetRand() and uniLeroux(), and 3 different types of multivariate models: multiNet(),

multiNetRand() and multiNetLeroux(), which are variations of the models for in Chapters

4 and 6. The availability of these easy-to-use models will help to strengthen the amount of

research that can be conducted in this area, allowing researchers to conduct studies similar

to the studies presented in Chapters 4 and 6 of this thesis for a range of likelihoods. Full

details of the arguments available for each function are provided in the help files, but the

main arguments required for an analysis using default priors are as follows.

• formula: A formula for the covariate part of the model using a similar syntax to that

used in the lm() function. For the multivariate model the response is read in as a

matrix with R columns.

• family: The data likelihood model that must be "binomial", "gaussian" or "pois-
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son".

• trials: This is only required if family = "binomial", and is a vector of the same

length and in the same order as the response containing the total number of trials for

each data point.

• A: This is only required for the spatial models, and is an S × S symmetric and non-

negative neighbourhood matrix whose row sums must all be positive. Typically a

binary specification is used, where the slth element asl equals one if areas (Gs, Gs) are

spatially close (e.g. share a common border) and is zero otherwise.

• spatialAssignment: The
∑S

s=1Ns × S binary matrix of individual’s assignment to

spatial areas used in the model fitting process. This output is only applicable for models

that have a spatial/grouping component, namely uniNetRand(), uniNetLeroux(),

multiNetRand() and multiNetLeroux().

• W: A
∑S

s=1Ns × J matrix that encodes the social network structure and whose rows

sum to 1. Note, the order of the rows in this matrix must correspond to the order

of the data points in the formula argument. Also, this matrix is not required in the

uni() model.

• numberOfSamples: The number of MCMC samples to generate in total before thinning

of the Markov chain or removing of the burn-in period.

• burn-in: The number of MCMC samples to discard as the burn-in period.

• thin: The value by which to thin the MCMC samples.

When a model is run within the package the user is updated on its progress via a progress

bar in the R console. Then when the model has finished the netcmc functions summary()

and plot() can be applied to elements of the model object to summarize the results.
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• summary(): Returns summaries and diagnostics for the posterior distribution of each

parameter in the model excluding the random effects.

• plot(): Returns trace, kernel density, and autocorrelation function (ACF) plots for

the samples of a parameter(s) from its posterior distribution.

Once the model has finished running the model object returned is a list with the following

components.

• call: A text string containing the function call including the arguments input by the

user.

• y: The (R
∑S

s=1Ns)× 1 response vector used in the model fitting process.

• X: The
∑S

s=1Ns × p design matrix of covariates used in the model fitting process.

• squareSpatialNeighbourhoodMatrix: The S × S binary spatial neighbourhood ma-

trix A used in the model fitting process. This output is only applicable for models

that have a spatial component, namely uniNetLeroux() and multiNetLeroux().

• spatialAssignment: The
∑S

s=1Ns × S binary matrix of individual’s assignment to

spatial areas used in the model fitting process. This output is only applicable for models

that have a spatial/grouping component, namely uniNetRand(), uniNetLeroux(),

multiNetRand() and multiNetLeroux().

• W: The
∑S

s=1Ns×J social network matrix used in the model fitting process. This out-

put is only applicable for models that have a network component, namely uniNet(),

uniNetRand(), uniNetLeroux(), multiNet(), multiNetRand() and multiNetLer-

oux().

• samples: The matrix of MCMC samples generated from the posterior distribution of

each parameter in the model excluding the random effects.
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• spatialRandomEffectsSamples: The matrix of MCMC samples generated from the

posterior distribution of the spatial/grouping random effects in the model. This out-

put is only applicable for models that have a spatial/grouping component, namely

uniNetRand(), uniNetLeroux(), multiNetRand() and multiNetLeroux().

• uRandomEffectsSamples: The matrix of MCMC samples generated from the posterior

distribution of the network random effects in the model. This output is only appli-

cable for models that have a network component, namely uniNet(), uniNetRand(),

uniNetLeroux(), multiNet(), multiNetRand() and multiNetLeroux().

• acceptanceRates: The acceptance rates of the model parameters from the MCMC

run excluding the random effects.

• spatialRandomEffectsAcceptanceRate: The acceptance rates of the spatial/group-

ing random effects from the MCMC run. This output is only applicable for models that

have a spatial/grouping component, namely uniNetRand(), uniNetLeroux(), multi-

NetRand() and multiNetLeroux().

• uRandomEffectsAcceptanceRate: The acceptance rates of the network random effects

from the MCMC run. This output is only applicable for models that have a network

component, namely uniNet(), uniNetRand(), uniNetLeroux(), multiNet(), multi-

NetRand() and multiNetLeroux().

• timeTaken: The time taken to fit the model.

The remainder of this chapter illustrates the netcmc package via a small simulation study

to illustrate the correctness of the MCMC algorithms, as well as a worked example.
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8.4 Simulation study

This section illustrates the correctness of the netcmc implementation of the uniNet() model

with a Poisson data likelihood, through generating 100 simulated data sets with known

parameters and summarizing the bias, 95% coverage probabilities, and average effective

sample size (ESS, approximate number of independent samples) of the estimated model

parameters. In this study netcmc is compared to the equivalent model available in R2MLwiN,

which is the most commonly used software for fitting this type of model.

8.4.1 Data generation

In what follows all 100 simulated data sets have 1 response (R = 1) for N = 500 individuals, 3

covariates including an intercept term, and 50 alters (J = 50). This information is specified

by

R> N = 500

R> J = 50

R> p = 3

The true value of the p × 1 vector of fixed effects β has each of its elements drawn

independently from a Gaussian distribution with mean 0.5 and standard deviation 0.1, while

the covariates (excluding the intercept term) are drawn independently from a Gaussian

distribution with mean 0 and standard deviation 1. This is all specified by

R> beta = rnorm(p, mean = 0.5, sd = 0.1)

R> Covariates = matrix(rnorm(2*N, 0, 1), ncol = (p - 1), nrow = N)

R> X = cbind(1, Covariates)
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The social network random effects variance is fixed at σ2
u = 0.5, and the corresponding

random effects u can be created and mean centred using the following R code.

R> sigmaSquaredU = 0.5

R> u = rnorm(J, 0, sqrt(sigmaSquaredU))

R> u = u - mean(u)

The network structure encoded in the matrix WN×J can be created using the R code

below, which consists of 4 lines of code followed by a loop and a final line of code. The 1st

line of code creates an N× J matrix with entries of ones and zeros with probability 0.05 and

0.95 respectively, which assigns the N individuals to a subset of the J alters. As the ones and

zeros were randomly sampled to create W, there is a possibility that some individuals may

not have an alter. Thus the 2nd and 3rd lines identify which (and how many) individuals

do not have alters. Then the 4th line randomly samples alters for these individuals to have,

and the W matrix is updated in the for loop. In the final line of code, the matrix is row

normalized to produce the final WN×J. Note, in this example every individual has at least

one alter (peer in the network), and thus isolation effects are not required.

R> W = matrix(rbinom(N * J, 1, 0.05), ncol = J)

R> numberOfIndividualsWithNoAlters = sum(apply(W, 1, function(x) { sum(x) == 0 }))

R> individualsWithNoAlters = which(apply(W, 1, function(x) { sum(x) == 0 }))

R> peers = sample(1:J, numberOfIndividualsWithNoAlters, TRUE)

R> for(i in 1:numberOfIndividualsWithNoAlters)

+ {

+ W[individualsWithNoAlters[i], peers[i]] = 1

+ }

R> W = t(apply(W, 1, function(x) { x / sum(x) }))

Finally, the response vector Y is generated by first calculating the corresponding vector



CHAPTER 8. NETCMC: AN R PACKAGE FOR SOCIAL NETWORK MODELING 154

of Poisson means µ = exp(XN×pβp×1+WN×JuJ×1), and then drawing samples from a Poisson

distribution with these means. This can be specified using the following R code.

R> logTheta = X %*% beta + W %*% u

R> y = rpois(n = N, lambda = exp(logTheta))

8.4.2 Results

netcmc and R2MLwiN were used to fit model (8.1) and (8.4) to each of the 100 simulated data

sets generated as outlined above. In each case the models were run for 400,000 iterations

with a burn-in period of 200,000 and a thinning value of 1, resulting in 200,000 samples for

inference. The results from the study are presented in Table 8.2, which displays the bias,

95% coverage probabilities, and average ESS for β0, β1, β2, σ2
u and u averaged over all 100

simulated data sets.

Table 8.2 shows that both netcmc and R2MLwiN produce largely unbiased parameter

estimates in all cases, while the corresponding coverage probabilities are all close to their

nominal 0.95 level, suggesting that the 95% credible intervals have the correct width. Figure

8.1 displays the 95% credible intervals over the 100 simulated data sets for β0, β1, β2, and

σ2
u produced by netcmc and R2MLwiN. The plots show that over the 100 simulated data sets

the 95% credible intervals produced for the fixed effects and network variance have similar

widths for both netcmc and R2MLwiN. Thus we have illustrated that for the uniNet() model

that can be fitted by both software packages, the results are similar and show negligible

bias and appropriate uncertainty quantification, suggesting that it has been appropriately

implemented in netcmc. The average time taken for netcmc and R2MLwiN to fit the model

to the data were 359.57 and 19.40 seconds respectively.
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Bias Coverage probability ESS

Parameter True value netcmc R2MLwiN netcmc R2MLwiN netcmc R2MLwiN

β0 0.444 0.001 -0.001 0.95 1 8479 2125

β1 0.477 0.001 0.001 0.99 0.99 13052 24858

β2 0.656 -0.005 -0.002 0.99 0.97 10500 21576

σ2
u 0.5 0.003 0.014 0.94 0.93 30827 36480

u - 1.44× 10−18 1.81× 10−4 0.956 0.9644 46293 16690

Table 8.2: Summary of the simulation study to assess the bias, ESS, and 95% coverage
probabilities of the parameter estimates from the uniNet() model with a Poisson likelihood
for netcmc and R2MLwiN. All results are based on 100 simulated data sets generated as
outlined above.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: 95% credible intervals over the 100 simulated data sets for β0 (8.1a, 8.1e), β1 (8.1b,
8.1f), β2 (8.1c, 8.1g), and σ2

u (8.1d, 8.1h) produced by netcmc and R2MLwiN respectively.
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8.5 Illustrative example: Adolescent delinquent behaviour

in the Netherlands

We illustrate the netcmc software by modeling the effects of a social network on the preva-

lence of delinquent behaviour amongst 151 adolescents belonging to one of 4 schools in the

Netherlands from 1994. Our analysis has three main aims:

A1 Which factors significantly affect delinquent behaviour in adolescents?

A2 How much variation in the delinquent behaviour can be explained by the social network

component of the model?

A3 Does a network based modelling approach perform better than a non-network based

approach for modelling the delinquent behaviour in these adolescents?

8.5.1 Data and exploratory analysis

The data come from the social behavior study conducted by Houtzager and Baerveldt (1999),

and are available from https://www.stats.ox.ac.uk/ snijders/siena/BaerveldtData.html. The

data come in 8 separate parts (N34_1.DAT, CBE1.DAT, N34_3.DAT, CBE3.DAT, N34_4.DAT,

CBE4.DAT, N34_6.DAT, CBE6.DAT), which are described in Table 8.3. Note, each of the 4

schools contributes 2 of these files.

https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html
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Data file Description

N34_h.DAT This file contains data on the individual adolescents from the hth

school, and contains the following variables.

Variable Description

gender A binary variable indicating the gender of the adoles-

cent, where 1 = girls and 2 = boys.

importance A factor variable denoting the importance of school

friends, which varies from 1 = very important to 4 =

unimportant. Note, no adolescent had a value of 4 for

this variable, so in practice this variable has 3 levels

{1, 2, 3}.

delinquencyA continuous measure of delinquent behaviour, specifi-

cally the number of minor offences that the respondent

states to have committed transformed by the formula

ln(1-x). This transformation is to be undone to turn

the continuous measure back to a count.

CBEh.DAT This file is a social network matrix for the adolescents in the hth

school. Specifically, peers are defined as giving and receiving emo-

tional support, i.e. there is a connections from adolescent i to

adolescent j if i says that they receive and/or give support to j.

Table 8.3: Description of data files.

After having downloaded the data from the online repository, the 8 files can be read into

R using the following lines of code.

R> CB01.w1=as.matrix(read.table("N34_1.DAT"))
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R> CB01.m=as.matrix(read.table("CBE1.DAT"))

R> CB03.w1=as.matrix(read.table("N34_3.DAT"))

R> CB03.m=as.matrix(read.table("CBE3.DAT"))

R> CB04.w1=as.matrix(read.table("N34_4.DAT"))

R> CB04.m=as.matrix(read.table("CBE4.DAT"))

R> CB06.w1=as.matrix(read.table("N34_6.DAT"))

R> CB06.m=as.matrix(read.table("CBE6.DAT"))

Once the 8 files have been loaded into the R workspace, the response and covariate data

for the 4 schools can be combined and formatted using the following R code

R> school = c(rep(1, nrow(CB01.m)), rep(2, nrow(CB03.m)),

rep(3, nrow(CB04.m)), rep(4, nrow(CB06.m)))

R> data = as.data.frame(rbind(CB01.m, CB03.m, CB04.m, CB06.m))

R> data = as.data.frame(cbind(data, school))

R> colnames(data) = c("gender", "delinquency", "importance", "school")

R> data = ifelse(data == 1, "girls", "boys")

where the final line recodes the gender covariate. Then the continuous delinquency

variable can be transformed back into a count of the number of offences which the respondent

states to have committed using the following R code.

R> data$delinquency = round(exp(data$delinquency) - 1)

In order to illustrate the social network connections within the 4 schools we employ the

igraph package. For example, the social network structure within school 1 is shown in

Figure 8.2a and can be created using the following R code. Analogous plots for the other

three schools are also shown in the same figure and the R code is not shown for brevity.
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R> library(igraph)

R> graph = igraph::graph.adjacency(CB01.w1, mode = "directed")

R> layout = igraph::layout.fruchterman.reingold(graph)

R> plot(graph, layout = layout, vertex.size = 7, vertex.label=NA)

Then the adjacency matrices corresponding to these social network graphs for the 4

schools can be combined using the following R code.

R> networkData = as.data.frame(adiag(CB01.w1, CB03.w1, CB04.w1, CB06.w1))

(a) (b) (c) (d)

Figure 8.2: The network within school 1 (8.2a), school 2 (8.2b), school 3 (8.2c), and school
4 (8.2d).

As shown in Figure 8.2 there are instances of isolates in each of the 4 schools, which are

individuals who have not nominated any alters (friends) as providing emotional support in

the survey. To handle these isolate adolescents we assign them an isolate column in the

social network matrix contained in networkData, which can be done using the following R

code.

R> networkData$isolate = ifelse(rowSums(networkData) == 0, 1, 0)

Finally, this social network structure encoded in networkData is row normalized to pro-

duce the final matrix W using the following R code.

R> W = networkData/rowSums(networkData)
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8.5.2 Non-network modeling

In order to assess whether a social network model fits the data better than a simpler non-

network model (A3), we first fit the following simple Poisson generalized linear model to the

data.

delinquencyis ∼ Poisson(µis) i = 1, . . . , Ns, s = 1, . . . , S, (8.8)

log(µis) = β0 + genderisβ1 + importance2isβ2 + importance3isβ3 + school2isβ4

+ school3isβ5 + school4isβ6,

β ∼ N(0, 105I).

Here delinquencyis is the count version of the delinquency measure of the ith adolescent

in the sth school, while β1 denotes the effect of being a girl (boy is the baseline). Additionally,

(β2, β3) denote the effects of being in levels 2 and 3 of the importance variable, while level

1 is the baseline. (β4, β5, β6) denote the effects of being in levels 2, 3 and 4 of the school

variable, while school 1 is the baseline. Model (8.8) is an example of (8.3) with a Poisson

data likelihood, and thus can be implemented in netcmc using the following R code.

R> model = uni(formula = delinquency ~ factor(gender) + factor(importance) +

+ factor(school),

+ data = data,

+ family = "poisson",

+ numberOfSamples = 200000,

+ burnin = 200000,

+ thin = 10,

+ seed = 1)
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Inference for this model is based on 20,000 MCMC samples, which were obtained by

running the chain for 400,000 iterations, with 200,000 being discarded as the burn-in period

and the remaining 200,000 being thinned by 10 to reduce the autocorrelation and size of

output that is stored in the computer’s memory. When the results from the model are

printed using the summary() function, the output displayed below is produced.

R> summary(model)

Call:

uni(formula = delinquency ~ factor(gender) + factor(importance) +

factor(school), data = data, family = "poisson", numberOfSamples = 2e+05,

burnin = 2e+05, thin = 10, seed = 1)

MCMC Coefficients:

Mean Variance 2.5% Median 97.5% ESS Accept. %

(Intercept) 3.134 0.003 3.024 3.135 3.240 8315 39.99

factor(gender)girls -1.164 0.005 -1.296 -1.164 -1.034 4549 39.99

factor(importance)2 -0.236 0.004 -0.354 -0.235 -0.116 6149 39.99

factor(importance)3 -0.619 0.011 -0.833 -0.617 -0.415 4545 39.99

factor(school)2 -0.591 0.006 -0.745 -0.592 -0.438 5118 39.99

factor(school)3 -0.290 0.005 -0.431 -0.289 -0.149 5957 39.99

factor(school)4 -0.727 0.006 -0.883 -0.727 -0.571 4624 39.99

MCMC Diagnostics:

Geweke Z

(Intercept) -0.790

factor(gender)girls 0.691
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factor(importance)2 1.035

factor(importance)3 0.151

factor(school)2 0.243

factor(school)3 0.329

factor(school)4 -1.401

MCMC Model Information:

Number of observations: 151

DIC: 1252.931, D.bar: 1245.928

pd: 7.003, log likelihood: -619.463

MCMC Information:

Number of samples: 20000, Burn-in: 2e+05

Thin: 10, Time Taken: 15.58 Secs

This model summary is partitioned into 5 parts. The first part prints the user specified

function that was used to run the model and falls under the section Call:. The second part

falls under the MCMC Coefficients:, and includes the posterior mean (Mean), posterior

variance (Variance), posterior median (Median), and 95% credible intervals (2.5%, 97.5%)

for all parameters excluding the random effects. In addition to this, the effective sample sizes

(ESS) and acceptance rate (Accept.%) for each parameter is provided. The third part falls

under the MCMC Diagnostics:, and includes output of the convergence diagnostic proposed

by Geweke (1991) (Geweke Z). The fourth part falls under the MCMC Model Information:,

and includes output relating to the number of observations and overall model fit including

the deviance information criteria (DIC, Spiegelhalter et al., 2002) and the effective number

of independent parameters in the model (pd). The fifth and final part falls under the MCMC

Information:, and includes information regarding the number of samples used for inference
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(Number of samples), the length of burn-in (Burn-in), the amount of thinning (Thin), and

the time taken to run the model (Time Taken).

Convergence of the MCMC samples from this model was assessed by examining trace

plots for the posterior samples for each parameter. Traceplots are produced using the plot()

function and are not shown for brevity, but this function is illustrated for the network model

fitted in the next section.

The output from Model (8.8) shows that the effect of gender is statistically significant, as

the 95% credible interval for its effect does not contain 0. Holding everything else constant,

in comparison to boys the relative rate of delinquency for girls is around a third (exp(β1) =

0.31, 95% C.I.: (0.27, 0.36)). The effects of both importance2 and importance3 are also

statistically significantly different from that of importance1, as the 95% credible intervals for

each of these parameters do not contain 0. Holding everything else constant, in comparison

to adolescents with a value of importance1, adolescents with a value of importance2 had

a lower observed rate of delinquency (exp(β2) = 0.79, 95% C.I.: (0.70, 0.89)), around a 21%

reduction.

The validity of the parameter estimates from netcmc were assessed by fitting the same

model in the R2MLwiN software. The results of this comparison are displayed in Table 8.4,

which shows the posterior means from the two software packages as well as the percentage

absolute difference relative to the larger of the two estimates. Overall, the table shows good

agreement between the two sets of point estimates, with percentage differences equal to or

less than 0.69% for each parameter.
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Parameter netcmc 95% C.I. R2MLwiN 95% C.I. % difference

(Intercept) 3.134 (3.024, 3.240) 3.133 (3.023, 3.240) 0.03

gender -1.164 (-1.296, -1.034) -1.162 (-1.294, -1.032) 0.17

importance2 -0.236 (-0.354, -0.116) -0.236 (-0.355, -0.117) 0

importance3 -0.619 (-0.833, -0.415) -0.621 (-0.834, -0.414) 0.32

school2 -0.591 (-0.745, -0.438) -0.589 (-0.746, -0.438) 0.34

school3 -0.290 (-0.431, -0.149) -0.288 (-0.428, -0.147) 0.69

school4 -0.727 (-0.883, -0.571) -0.725 (-0.878, -0.572) 0.28

Table 8.4: Comparison of the parameter estimates (posterior means) and 95% credible
intervals from the netcmc and the R2MLwiN software packages. The final column displays the
percentage difference in the estimates relative to the larger of the two estimates.

8.5.3 Network modeling

The residual social network effects that are likely to be present in the data can be estimated

by Model (8.4) via the uniNet() function within netcmc. The specific model fitted is given

by

delinquencyis ∼ Poisson(µis) i = 1, . . . , Ns, s = 1, . . . , S, (8.9)

log(µis) = β0 + genderisβ1 + importance2isβ2 + importance3isβ3 + school2isβ4

+ school3isβ5 + school4isβ6 +
∑

j∈net(is)

wisjuj + w∗isu
∗,

β ∼ N(0, 105I),

uj ∼ N(0, σ2
u) j = 1, ..., J,

u∗ ∼ N(0, σ2
u),

σ2
u ∼ Inverse-Gamma(0.001, 0.001),
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and is an example of Model (8.4) with a Poisson data likelihood. It can be implemented

in netcmc using the following R code.

R> modelNetwork = uniNet(formula = delinquency ~ factor(gender) + factor(importance) +

+ factor(school),

+ data = data,

+ W = W,

+ family = "poisson",

+ numberOfSamples = 200000,

+ burnin = 200000,

+ thin = 10,

+ a2 = 0.001,

+ b2 = 0.001,

+ seed = 1)

The results of this model can again be printed using the summary() function as follows:

R> summary(modelNetwork)

Call:

uniNet(formula = delinquency ~ factor(gender) + factor(importance) +

factor(school), data = data, family = "poisson", W = as.matrix(W),

numberOfSamples = 2e+05, burnin = 2e+05, thin = 10, seed = 1,

a2 = 0.001, b2 = 0.001)

MCMC Coefficients:

Mean Variance 2.5% Median 97.5% ESS Accept. %
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(Intercept) 3.070 0.014 2.834 3.069 3.305 2672 39.51

factor(gender)girls -1.185 0.018 -1.462 -1.183 -0.925 1810 39.51

factor(importance)2 -0.173 0.008 -0.353 -0.173 0.009 3041 39.51

factor(importance)3 -0.784 0.029 -1.125 -0.780 -0.460 2244 39.51

factor(school)2 -0.622 0.016 -0.872 -0.623 -0.372 2309 39.51

factor(school)3 -0.339 0.015 -0.581 -0.339 -0.098 2535 39.51

factor(school)4 -0.763 0.018 -1.023 -0.763 -0.505 2213 39.51

sigmaSquaredU 1.118 0.085 0.653 1.082 1.790 5832 100.00

MCMC Diagnostics:

Geweke Z

(Intercept) -1.475

factor(gender)girls 1.066

factor(importance)2 -0.979

factor(importance)3 -0.245

factor(school)2 1.407

factor(school)3 2.136

factor(school)4 0.846

sigmaSquaredU -2.241

MCMC Model Information:

Number of observations: 151

Number of network random effects: 152

DIC: 1053.537, D.bar: 978.783

pd: 74.754, log likelihood: -452.014
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MCMC Information:

Number of samples: 20000, Burn-in: 2e+05

Thin: 10, Time Taken: 350.83 Sec

This time we illustrate MCMC convergence checking via traceplots, which is achieved

using the plot() function to produce Figures 8.3a, 8.3b, 8.3c, 8.3d, 8.3e, 8.3f, 8.3g, and 8.3h

via the following code.

R> plot(modelOnePoissonNetwork)



CHAPTER 8. NETCMC: AN R PACKAGE FOR SOCIAL NETWORK MODELING 168

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.3: Trace, density, and ACF plots from the plot() function for β0 (8.3a), β1 (8.3b),
β2 (8.3c), β3 (8.3d), β4 (8.3e), β5 (8.3f), β6 (8.3g), σ2

u (8.3h).

In all cases the trace plots suggest the MCMC samples have converged, which allows

us to now interpret our findings. The output from Model (8.9) shows that the effect of

gender is still statistically significant, as the 95% credible interval for the effect does not

contain 0. Holding everything else constant, in comparison to boys, girls have a lower

relative rate of delinquency by exp(β1) = 0.31, 95% C.I.: (0.23, 0.40), which is a slightly

larger effect size compared to that obtained from the non-network model in the previous
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section. The effect of importance3, relative to the baseline level importance1, also remains

statistically significant, as the 95% credible intervals for the regression parameter does not

include 0. Holding everything else constant, in comparison to adolescents with a value

of importance1, adolescents with a value of importance3 have a lower relative rate of

delinquency of exp(β3) = 0.46, 95% C.I.: (0.32, 0.63).

The output from Model (8.9) also shows that the posterior mean of the network random

effects variance is σ2
u = 1.118 with a 95% credible interval of (0.65, 1.79). As this variance

is not close to zero it suggests that there are substantial network effects present in the data

that this model is capturing. This is confirmed by comparing the DIC values from models

(8.8) and (8.9), which quantify the overall fit to the data of each model. The model including

the social network component has a value that is lower by 15.9% compared to the covariate

only model, with DIC values of 1,252.931 and 1,053.537 respectively. The model outputs

also show that the effective number of independent parameters rises from 7.00 to 74.75 when

incorporating the social network component into the model, again suggesting that it plays a

sizeable role in explaining adolescents propensity to delinquency.

Figure 8.4 shows the 95% credible intervals for the network alter random effects u from the

model, ordered by posterior medians. There are 8 adolescents whose 95% credible intervals

are strictly positive and thus have the effect of increasing the rate of minor offences that

adolescents that they are connected with commit. These 8 adolescents have themselves have

committed 1, 40, 40, 13, 9, 2, 3, and 12 minor offenses, while only two other adolescents in

the data have committed more than 40 minor offences, with values of 43 and 44. In contrast,

there were 7 adolescents whose 95% credible intervals are strictly negative and thus have

the effect of decreasing the rate of minor offences that adolescents that they are connected

with commit. These 7 adolescents have themselves committed 1, 2, 2, 3, 13, 2, and 0 minor

offenses.



CHAPTER 8. NETCMC: AN R PACKAGE FOR SOCIAL NETWORK MODELING 170

Figure 8.4: 95% credible intervals for the 151 random effects (excluding the isolation random
effect), ordered by posterior medians. Those whose interval is entire positive are shown in
red and those whose interval is entirely negative are shown in green.

Finally, a comparison of the parameter estimates and 95% credible intervals for this model

when fitted in netcmc and R2MLwiN, with the same choice of priors, is given in Table 8.5,

which again shows good agreement between the estimates from the two software packages.

The times taken to run the model were 350.83 seconds and 12.63 seconds for netcmc and

R2MLwiN respectively.
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Parameter netcmc 95% C.I. R2MLwiN 95% C.I. % difference

(Intercept) 3.070 (2.834, 3.305) 3.071 (2.775, 3.351) 0.03

gender -1.185 (-1.462, -0.925) -1.184 (-1.399, -0.973) 0.08

importance2 -0.173 (-0.353, 0.009) -0.172 (-0.327, -0.018) 0.58

importance3 -0.784 (-1.125, -0.460) -0.781 (-1.059, -0.507) 0.38

school2 -0.622 (-0.872, -0.372) -0.626 (-0.838, -0.416) 0.64

school3 -0.339 (-0.581, -0.098) -0.341 (-0.549, -0.140) 0.59

school4 -0.763 (-1.023, -0.505) -0.769 (-0.993, -0.551) 0.79

sigmaSquaredU 1.118 (0.653, 1.790) 1.139 (0.670, 1.813) 1.88

Table 8.5: Comparison of the parameter estimates (posterior means) and 95% credible
intervals from the netcmc and the R2MLwiN software packages. The final column displays the
percentage difference in the estimates relative to the larger of the two estimates.

8.6 Discussion

This chapter has presented the netcmc package, which is the first R package dedicated to fit-

ting network models, and the first software package that specialises in fitting spatio-network

models. This chapter has outlined the library of models that can be implemented in the

software along with the with the types of sampling schemes used to fit these models. It

then illustrated the correctness of the MCMC estimation algorithms with a small simulation

study, before applying the models to a worked exemplar. In comparison to R2MLwiN, the

main advantage of this software is the fact that it is free for all, open-source, and has the

ability to extend network models to include a spatial component.

Plans to further develop the software will be along two major lines. The first is to increase

the number of data likelihood models that can be implemented in the software, which will

allow users to perform a wider array of analysis in this single software environment and

allow for a wider range of responses to be modeled. Secondly, as the user may have multiple
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social network structures available in their data, such as a friendship network and a separate

romantic relationship network, we aim to extend the software by developing models that can

account for multiple network structures within the same model.



Chapter 9

General discussion and conclusion

The main focus of this thesis was to study the relationship between an individual’s social

network and their uptake of specific, correlated, multiple health behaviours, which have

become an increasing public health concern. Most of the literature on the association of social

networks and health behaviours takes the following approach. Descriptive network statistics

are obtained from the raw network to estimate the observed effect on a health outcome of

an arbitrary concept, such as an individual’s popularity in the network. In contrast, in this

thesis, methods and models have been developed and applied to estimate the observed effect

on health behaviours that each individual has on others in their network, whilst also assessing

variations in health behaviours by place of residence, and taking into account individual-level

factors. Data with these type of structures are increasingly becoming available for researchers

to study, having taken the appropriate confidentiality measures, and pose various statistical

challenges when being modeled. Chapter 2 provides a review of statistical methods that

form the basis of the novel statistical models that are formulated in Chapters 4 and 6.

Chapter 3 provides a review that outlines some of the many challenges that researchers face

when seeking to model the role that exists between social networks and health behaviours

in both formulating a statistical model and implementing them in software. This review

compares and contrasts various approaches and highlights their shortcomings in modelling

173
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the role that exists between social networks and health behaviours. Chapters 4, 6 and 8

provide novel contributions to the literature on social network modelling, with Chapters 4

and 6 focusing on the formulation of novel statistical models and Chapter 8 focusing on their

implementation in an R software package, netcmc. The motivation behind the construction

of these three novel chapters is outlined below.

Chapter 4 models the role that exists between social networks and health behaviours with

various multivariate extensions of the multiple membership multiple classification model.

The multivariate multiple membership multiple classification model extends the univariate

model, which is a form of generalised linear mixed model, by allowing both the sets of ran-

dom effects for the single membership and multiple membership classifications to be jointly

modeled across responses. In real world examples, in which a researcher seeks to model the

effect that a social network has on multiple health behaviours, it is reasonable to imagine that

the effects of the social network across the multiple health behaviours are often correlated.

Thus, as a result, it may be wholly appropriate to adopt a multivariate modelling approach.

In furtherance of studying the multivariate extension of the model, a comparison of priors for

covariance structures in the multivariate multiple membership multiple classification model

is conducted in Chapter 5 through a simulation study to compare and contrast the effects of

using an Inverse-Wishart, scaled Inverse-Wishart, or hierarchical half-t prior for covariance

matrices. Chapter 6 proposes a multivariate spatial multiple membership multiple classifica-

tion model, which examines the relationship that a spatial structure may play in modelling

multiple health behaviours. This model extends the model presented in Chapter 4 by mod-

elling the spatial configuration of areal units through multivariate random effects that are

assigned a conditional autoregressive prior distribution. There are a number of avenues of

future work that naturally result from this chapter, such as extending the spatial model.

Such extensions could be to examine the effects of changing the specification of the neigh-

bourhood matrix to see what impact this has on the results, as well as allowing for between

outcome correlations via a multivariate CAR type model. Also, a spatio-network interaction
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involving the sets of spatial and friendship network random effects could be explored, as it

may be of interest to study whether friendship effects differ depending on the Zip Code in

which an individual lives. Chapter 8 seeks to make modelling social network and spatial

structures in data more accessible by creating an R package titled netcmc, which will allow

a user to fit a wide range of social network models in a Bayesian paradigm. This chapter

and the creation of netcmc provides three novel contributions to the software landscape of

social network modelling. Firstly, netcmc is an R package which is free to use for all. In

contrast to other software that requires the purchase of a license for those who are not UK-

academics, netcmc seeks to increase the adoption of social network modelling for those who

are not UK-academics and so is made free to use for all. Secondly, in contrast to much of

the software in this space, netcmc is an open-source package that allows users to view the

source code and even contribute to the project. This point should also contribute to the

reproducibility of research in the field of social network modelling. Thirdly, netcmc is an

easy to use, single-call software package. In contrast to competing software packages, netcmc

allows the network adjacency matrix to be specified as a binary neighbourhood matrix and

given the required argument inputs, the models can be implemented by a single call in R.

The novel contributions in this thesis are centered around three main areas, which seek

to enrich the literature on social network modelling. The first of these areas focuses on

how to model multiple health behaviours, which are often present in health data, and how

to go about doing so with the use of a social network structure also present in the data.

The second area focuses on how to model the presence of spatial effects on an individual’s

propensity to engage in a particular health behaviours, and more specifically multiple health

behaviours that may be correlated. The third area focuses on the dissemination of the novel

ideas proposed in this thesis. Each of these three areas is discussed below in greater detail.
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9.1 Multivariate random effects

The multiple health behaviour survey data used through out this thesis contains covariate

information on the individual as well as a social network structure, which had been in-

duced by the survey through asking each individual to nominate up to 19 individuals in the

10th grade that they considered to be their friend. Many of the covariates in the data are

proxy measures for the financial background from which the adolescent comes from, such

as their father’s education, mother’s education, rooms in house, free lunch eligibility, general

health and family’s home ownership. Other covariates seek to understand how the adoles-

cent chooses to use their spare time, through covariates such as Facebook use, online gaming

habits and last year’s exam grades. The remaining covariates focus on the adolescent’s gen-

der and age. Many of the studies in the literature have selected a subset of covariates from a

similar pool of covariates and included descriptive network statistics as covariates (Valente

et al., 2005) or univariate random effects (Lorant and Tranmer, 2019) to account for the

network structure in the data. In Chapter 4 multiple health behaviour data are studied in

a an approach which allows for multivariate random effects to be used in the modelling of

multiple health behaviours. This approach offers several advantages over the two approaches

previously mentioned. Firstly, modelling random effects in a multivariate fashion allows for

the researcher to compute the correlation between sets of random effect relating to pairs of

health behaviours, allowing the research to make statements about how the social network

random effects are or are not correlated for a given pair of health behaviours. Secondly,

in contrast to the approach of using descriptive network statistics, the multivariate random

effects approach allows the researcher to identify the effects that each individual in the net-

work has on their peers, which is a very powerful tool that allows for positive and negative

influencers to be identified in a social network.

The application of the multivariate multiple membership multiple classification model

described in Chapter 4 to the survey network data revealed how the social network structure
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in data can impact the health behaviour of an individual. It provided evidence of the way

in which social network random effects may be correlated across different health behaviour

responses. Thus, possessing positive/negative alter influences on one’s behaviour may carry

over to other health behaviours. For example, the results in Chapter 4 showed that there

was a strong positive linear relationship observed between the alter random effects relating

to the cigarette and marijuana responses. Thus an individual having alters that positively

influence whether they have smoked at least one cigarette in the past 30 days, may carry over

to impacting their marijuana consumption. Chapter 4 also compares the results of fitting

a multivariate multiple membership multiple classification model to that of its univariate

counter-part. The results showed that the estimated DIC of the multivariate model was lower

than that of the multivariate model that induced independence across the three responses,

suggesting that the multivariate extension of the model would best predict a replicate data

set which has the same structure as that being observed. This result further highlights the

advantages that a multivariate extension of the univariate multiple membership multiple

classification model may have in being applied to health behaviour data that has multiple

responses and a social network structure.

Focusing on covariate effects, the results of Chapter 4 show that, across the univariate

and multivariate models, the covariate with the largest impact on whether an individual

has consumed at least one drink of alcohol in the past 30 days, whether an individual has

smoked at least one cigarette in the past 30 days, and whether an individual has ever tried

marijuana was the exam grades an individual achieved last year. In particular, holding all

other covariates fixed, in comparison to those that achieved mostly A’s in exams last year,

those that achieved mostly C’s or lower had much higher odds of a positive value for all

responses.
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9.2 Spatio-network models

Chapter 6 investigates whether a multivariate relationship exists between the non-overlapping

areal units (Zip Codes) that each individual belongs to and one of the multiple health be-

haviours that they self-report. The spatial closeness between each pair of Zip Codes is

encoded in the model described in the next section by a binary neighbourhood matrix de-

noted A33×33, where the ijth element aij = 1 if Zip Codes (i, j) share a common border

and aij = 0 otherwise (and aii = 0 for all i). The border sharing specification is the neigh-

bourhood matrix used in the spatial modelling because of its sparsity and simplicity of

construction. However, Zip Codes that are isolated share no neighbours under this defini-

tion, which means the conditional autoregressive prior outlined in the model for capturing

the spatial correlation has improper full conditional distributions for these Zip Codes. Thus

a commonly used adjustment to A for each isolated Zip Code i was used to rectify this prob-

lem, which is to make them a neighbour of the Zip Code j that is geographically closest (e.g.

set aij = aji = 1). In order to provide a comprehensive examination of the effects that co-

variates, spatial and social network structures have on the set of multiple health behaviours,

each permutation of possible model was fit to the data. This led to 8 models being fit to the

data, ranging from the null model to the full, saturated model, which contained covariates,

a multivariate random effects structure for spatial units and a multivariate random effects

structure for the social network structure.

The results showed that peer effects play a large role in determining whether adolescents

partake in a given health behaviour, as their addition to the null model leads to the greatest

reduction in DIC when compared to just adding either the covariates or spatial component.

Also, once network random effects are included in the model, there is only a small improve-

ment in model fit when incorporating the covariates and or a spatial component. For the

covariates, the only consistently significant effect on the participation in adverse health be-

haviours was school exam performance, with students having poorer exam results observed
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to be more likely to partake in these behaviours. In contrast, the spatial effect was essentially

non-existent.

The results also showed that the effect that a friend has on an adolescent is strongly

correlated across the three binary responses, with estimated pairwise correlations ranging

between 0.956 and 0.975. These correlations support the notion of co-occurrence of risky

behaviours in adolescents. Among the three pairs of jointly modeled friendship random

effects, the results show that the pair relating to the cigarette and marijuana responses

are the most correlated, although the correlations for the remaining pairs are only slightly

smaller.

9.3 Dissemination - netcmc

Chapter 8 focuses on the dissemination of the novel concepts presented in this thesis through

the creation of the netcmc package in R. This statistical software package is a free to use, open-

source, single call software package. netcmc extends the novel work presented in Chapters 4

and 6 in two major ways, which are described below.

Firstly, whereas Chapters 4 and 5 use a Bernoulli likelihood to model the multiple binary

health behaviours in the data that they are applied to, netcmc allows the user to fit models

to Binomial, Gaussian and Poisson data. This is done to allow a user to fit the models

described in Chapters 4 and 5 to continuous, count and binomial data, which is commonly

found in the work of researchers.

Secondly, netcmc allows the user to fit a class of 4 univariate models and 3 multivari-

ate models that can be used when only covariates or covariates and network structure or

covariates, network structure and spatial structure is present in the data. The call uni()

implements a covariate only univariate model that is similar to that proposed by Nelder

and Wedderburn (1972), which is a standard univariate generalized linear model. The call
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uniNet() implements a covariate and network univariate model that is similar to that pro-

posed by Browne et al. (2001), and represents the social network pattern in the mean response

with a single set of weighted random effects. The call uniNetRand() implements a covari-

ate, network and random effect univariate model that is similar to that proposed by Browne

et al. (2001), and has the same network random effects structure as the uniNet() model.

Additionally, this model allows for a set of independent random effects to be incorporated

into the modeled. The call uniNetLeroux() implements a covariate, network and spatial

univariate model that is similar to that represents the spatio-network pattern in the mean

response with a set of spatial random effects and weighted random effects. The spatial effect

is modeled by the conditional autoregressive prior proposed by Leroux et al. (2000). The

call multiNet() implements a covariate and network multivariate model that is an extension

to that proposed by Browne et al. (2001), and is a multivariate extension of the uniNet()

model. In this extension, the prior structure of the network random effects is jointly modeled

across the multiple responses. The call multiNetRand() implements a covariate, network

and random effect multivariate model that is similar to that is an extension to that proposed

by Browne et al. (2001), and is a multivariate extension of the uniNetRand() model. In

this extension, the prior structure of these random effects is jointly modeled across the mul-

tiple responses. The call multiNetLeroux() implements a covariate, network and spatial

multivariate model that is a multivariate extension of the uniNetLeroux() model. In this

extension, the prior structure of the network random effects is jointly modeled across the

multiple responses. However, the spatial random effects are modeled independently.

9.4 Summary

In summary, the novel models developed and the results derived from the models should

expand the literature on social network modelling and allow for alternative approaches to

modelling the effects that a social network is observed to have on an individual’s propensity
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to partake in a given health behaviour. In addition to this, in the multivariate modelling

approach, it should also provide researchers with a greater understanding of the underlying

process between the effects that individuals in a social network have on each other across

multiple health behaviours. A major limitation of this thesis and the literature on network

modelling is the availability of data to study. Network data often contains very sensitive

information on individual people and so is often subject to strict regulation when it comes to

data sharing. This can make it difficult for researchers to obtain and subsequently develop

novel approaches for, which limits the way in which the literature on network modelling

develops. There are a number of avenues of future work that naturally result from this

thesis. The first of which is the development of a multivariate model that considers a spatio-

network interaction involving the sets of spatial and network random effects, as it may be

of interest to study whether friendship effects differ depending on the areal unit in which

an individual lives. The second is to extend the methods to allow for longitudinal data to

modeled with these techniques, as it may be of interest to study whether friendship effects

differ through time. The third concerns the further development of the netcmc software

package. Plans to further develop the software will be along two major lines. The first is to

increase the number of data likelihood models that can be implemented in the software, which

will allow users to perform a wider array of analysis in this single software environment and

allow for a wider range of responses to be modeled. Secondly, as the user may have multiple

social network structures available in their data, such as a friendship network and a separate

romantic relationship network, we aim to extend the software by developing models that can

account for multiple network structures within the same model.
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