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Abstract

This thesis develops a series of statistical frameworks to control type I errors in pick-

ing out-performers. It consists of three independent essays which assess performance of

U.S. equity mutual funds, currency trading strategies and hedge funds.

The first essay introduces a novel multiple hypothesis testing method named the

functional False Discovery Rate “plus” (fFDR+). The method incorporates infor-

mative covariates in estimating the False Discovery Rate (FDR) of predictive models’

“conditional” performance. In simulations, the fFDR+ controls well the FDR and

gains considerable power over prior methods that do not account for extra information.

In empirical analyses, we construct portfolios based on several covariates and show that

they enhance the performance of mutual fund portfolios, highlighting the value of extra

information in the multiple hypothesis testing framework.

The second essay develops the multivariate functional false discovery rate (mfFDR)

method that accounts for multiple informative covariates to examine the conditional

performance of predictive models and gain a considerably higher power than prior

methods including the one in the first essay. The proposed method is then applied

to control luck in detecting profitable technical trading rules using 30 developed and

emerging market currencies. It selects more profitable rules than prior methods; more

importantly, these rules offer better out-of-sample performance.

The third essay introduces a new procedure to control for family error rate (FWER)

in picking out-performers. The method utilizes multiple side information to more pre-

cisely estimate the FWER and gains much higher power in detecting out-performers

compared to existing ones. In empirical analyses, the method allows investors picking

out-performing hedge funds with very low FWER. The portfolios of hedge funds se-

lected by the method beat passive benchmarks in various settings. Further analyses

show that the new method detects truly out-performing hedge fund managers who can

repeat their past performance over a long horizon.
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Introduction

Investors tend to select funds based on their past records but high past alphas

might be due to luck. In order to identify the truly skilled funds, namely, the funds

with genuine positive alphas due to, for instance, possession of superior information

or trading skill, the investors should rely on a multiple hypothesis testing framework.

They should devise an approach that controls the number of false discoveries, i.e., the

number of funds that seem skilled but are truly not. Similarly, traders pick genuinely

out-performing trading strategies for future use based on assessing past performance of

thousands of strategies. They should control for number of lucky strategies, i.e., those

are randomly buying and selling signals but turn out to be luckily outperforming in the

past.

Literature in finance have developed a number of procedures that aim to control for

such false discoveries. Those procedures include frameworks that control for probability

of having at least one false discovery among those called discoveries, i.e, the family wise

error rate (FWER), and those that control for a less stringent type I error, the expected

proportion of false discovery among the discoveries, i.e., the false discovery rate (FDR)

of Benjamini and Hochberg (1995). Notable contributions are the studies of White

(2000), Storey (2002), Barras et al. (2010), Romano and Wolf (2005), Hansen (2005),

Hsu et al. (2010) among others. While implementations of those procedures control

for the type I errors and tackle successfully for data-snooping bias (see White, 2000),

they are too conservative and can miss too many genuine discoveries (see Harvey and

Liu, 2020). As such, we need to develop new procedures that are more powerful in

detecting the genuine discoveries and, in particularly, the genuine out-performers while

controlling for the type I errors. The common ground of the mentioned approaches

is that they either use only p−value of the tests or bootstrapping procedures while

ignoring additional information that can be useful.

1



This thesis develops a series of statistical frameworks that utilize such additional

information to raise the power of testing procedures and to exploit the extra informa-

tiveness in decision-making. Put differently, the new methods allow us conduct tests

conditionally on the additional information. The new procedures gain much higher

power than the existing ones while controlling for the same type I error. We show that

these approaches are able to transform the informativeness of the additional informa-

tion to profit for investors in practice. The thesis develops three statistical frameworks

which are implemented on three different financial data, first to show the advantages

of the new procedures, and second, to gain economics insights. It is organised as three

chapters as follows.

The first chapter contributes to literature the introduction of the functional False

Discovery Rate “plus” (fFDR+). It develops the functional False Discovery Rate

framework (fFDR) of Chen et al. (2021a) (CRS) to control FDR in picking out-

performing mutual funds. Compared to the work of CRS, the fFDR+ has two distin-

guishing features. First, it allows us to focus on the right or left tail of the distribution

and detects the significant out- or under-performers, which is important for decision

makers. Second, it is robust to cross-sectional dependencies among predictive models,

which are common for most problems in economics and finance. Simulation experiments

show that the fFDR+ controls well for FDR while gain higher power than existing ap-

proach with a gap which can be up to about 30%. In empirical experiments, we use

the fFDR+ to detect out-performing mutual funds for investing purpose. We find that

the set of mutual funds selected as out-performers by fFDR+ is usually larger and

different from the one obtained by prior FDR methods. This suggests that, with more

information updating, there may exist more profitable mutual funds than researchers

would have expected. Based on the funds selected by fFDR+, we build portfolios that

consistently outperform the one generated by prior methods. The results thus highlight

the economic value of extra information. The profitability of the portfolios is persistent

in our sample and is even strengthened over the recent period, a finding that disagrees

with part of the recent literature which suggests otherwise (see Jones and Mo, 2021).

Often, we usually have more than one informative covariates that are available

and there might not be a way to efficiently combine them. The second chapter thus

2



proposes a new methodology that accounts for more information sources in forming the

rejection criterion, namely multivariate functional FDR (mfFDR), which enhances the

statistical power while controlling the FDR. In simulations, we show that our mfFDR

performs well in controlling for the FDR and beats the fFDR of CRS and FDR method

of Storey (2002) in terms of power with gaps of about 44% and 67%, respectively. This

advantage remains under weakly dependent tests and correlated or noised informative

covariates data. In empirical studies, we implement the mfFDR to detect genuinely

profitable trading rules in a set of 635,850 technical trading rules and invest following

the signals generated by the selected rules in monthly rolling fashion. For this purpose,

a derivative procedure, namely mfFDR+, and four covariates are introduced. We

find that the out-of-sample (OOS) performance of the mfFDR-based portfolio with

use of the four covariates is better than those based on prior methods and can gain a

Sharpe ratio of 1.06 and 0.95 before and after transaction costs, respectively. In terms

of empirical power, the more informative covariates that we use, the higher number of

truly profitable rules are detected. This suggests that the prior methods without using

covariates may underestimate technical trading rules’ truly predictive ability and profits

because their performance is not evaluated with comprehensive information sets. We

also see that, using all four covariates under the mfFDR framework offers higher profit

than using the first principal component of the four as the sole covariate. This suggests

that the mfFDR might effectively extract non-linear information among covariates

and that simple linear combinations of covariates are not effectively conveying the

informativeness of all underlying covariates. These facts highlight the importance of

the mfFDR development.

The mentioned functional FDR approaches are so powerful and be able to detect

many genuinely out-performing trading rules or funds. In some applications, such as

in picking out-performing hedge funds, this might not be desirable. The reason is that,

hedge funds require a significant investment, called minimum investment. When the

number of funds in the portfolio is large, the total minimum investment might be also

too large so that the investment becomes infeasible. In addition to this, hedge funds

usually have a lock-up period during which investors are not allowed to withdraw their

investment without a significant fee. The investors thus need to be more carefully in

making investment decision. Alongside the FDR, another popular multiple testing
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type I error is the family wise error rate (FWER), which accounts for probability

of having at least one false discovery. Controlling for the FWER is more stringent

than controlling for FDR and therefore is more appropriate to the hedge fund selection

problem. Nevertheless, the existing approaches in finance literature are too conservative

when applying to this particular problem. The reason lies on the fact that hedge fund

return series are typically short and thus the investors assess hedge fund performance

based on short past periods. The notable developments, such as the stepwise reality

check of Romano and Wolf (2005), struggle in detecting out-performing hedge funds and

thus generate empty portfolios for many years. The third chapter solves this problem.

More specifically, it introduces a new approach which incorporates side informative

covariates in estimating FWER in detecting out-performers, namely fwer+. The new

approach is based on statistical framework of Zhou et al. (2021), but deviates to control

for FWER among the discoveries in the right tail of distributions. The fwer+ is so

powerful that it outperforms the existing methods and allows the investors picking

out-performing hedge funds with a very low level of FWER. Empirically, portolios

of the hedge funds detected by the fwer+ perform persistently in long out-of-sample

(OOS) periods. They beat passive benchmarks with statistically significantly positive

alpha. The empirical results thus highlight the admixture of informative covariates and

controlling FWER and the highly potential applications of the method in real world

practices.

The remainders of the thesis are structured as follows. The first chapter presents the

fFDR+ framework and its use in mutual fund performance assessment. The second

chapter focuses on developments of the mfFDR and its application in profitablity

of technical trading rules in foreign exchange market. The third chapter introduces

the fwer+ and its implementation in the hedge fund portfolio selection. Finally, the

conclusion completes the thesis.
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Chapter 1

Functional false discovery rate in mutual fund

selection

1.1 Introduction

Aiming to identify models with genuine predictive power from a large set of potential

candidates, researchers have to resort to a multiple hypothesis testing framework to

appropriately address the “data-snooping” or “p-hacking” bias that is a major challenge

to social science (Sullivan et al., 1999, 2001; White, 2000; Hansen, 2005). To address

this challenge, researchers propose the concept of the False Discovery Rate (FDR) of

Benjamini and Hochberg (1995), Storey (2002), Storey (2003), and Romano and Wolf

(2005), i.e., the ratio of models that are mistakenly identified as having predictive power.

Testing methods based on FDR has gained considerable attention in the literature and

has been successfully applied to many areas of social science.1

One common feature of the methodologies in this framework is that the rejection

criterion only depends on information of raw data and predictive models’ performance

metrics. However, in economics and finance research, the economic agents use all avail-

able information in assessing models’ performance. Extra information sources can as-

sist researchers to more accurately estimate FDR. Recently, Chen et al. (2021a), CRS

henceforth, introduced the functional FDR method that embeds the role of informa-

tive covariates (i.e., variables that carry extra information) in forming null hypotheses.

This advancement is important in the sense that it enables us to test the “conditional”

1For instance, Fan and Fan (2011) employ FDR in testing and detecting jumps; Lan et al. (2016)
utilize such a framework to control FDR in testing coefficients in high-dimensional linear models; see
also Lan and Du (2019) for extensions and applications in mutual fund selection; or Barbaglia et al.
(2022) for applications in detecting significant sentiment variables in forecasting with economic news.
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performance of predictive models, which is more consistent with the rational expecta-

tion hypothesis. To illustrate the importance of extra information in multiple testing

problems, we can use mutual fund performance assessment as an example. If we use

prior testing methods that do not account for extra information, we are testing an un-

conditional zero hypothesis, which corresponds to investors not updating information,

for instance utilizing newly discovered predictors in literature, in assessing and picking

mutual funds. This approach appears inappropriate because mutual funds and their

managers are routinely reviewed by investors based on updated information and knowl-

edge. In other words, a more suitable null hypothesis for a mutual fund’s performance

should be zero conditional on the updated information set.

Incorporating additional information in testing and asset pricing has been discussed

extensively in econometrics and finance literature. For instance, Hansen (1995) intro-

duces covariate to better estimating confident interval and raising power of unit root

testing, Astill et al. (2023) utilize covariates to improve the power of testing for explo-

sive series, Kelly et al. (2019) and Gu et al. (2021) develop asset pricing models where

factor loadings are dynamics and estimated from asset characteristics. The combination

of an FDR framework and covariates in finance literature can be traced back to the

study of Barras et al. (2010) (hereafter BSW) where the authors introduce the FDR

framework of Storey (2002) to assessing mutual fund performance. They estimate the

distribution of mutual fund alphas conditionally on funds’ investment style which is a

covariate. However, the investigation simply relies on partitioning funds into groups

based on the covariate and estimating the fund alpha distribution in each group. The

studies of Storey (2002) and BSW have gained influence and popularity in economics

and finance as, for instance, researchers face multiple tests in almost every area of

empirical finance (see footnote 1). However, their FDR framework has been shown

to be too conservative by recent work of Andrikogiannopoulou and Papakonstantinou

(2019) (AP henceforth). Literature in mutual fund selection has two strands. One that

picks out-performing funds with control of luck, measured by a type I error such as

FDR. The other strand focuses on seeking new predictors that forecast funds’ future

return. A list of such predictors can be found in recent study of Jones and Mo (2021).

Consequently, funds are selected based on sorting their realization of the predictors and

past performance. Yet, there has not been a study that combines the two strands.
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The fFDR of CRS develops further the framework of Storey (2002) by incorpo-

rating an additional covariate in estimating FDR. CRS show that their new approach

estimates more precisely the FDR and gains significant higher power than that of not

only Storey (2002) but also other recent frameworks that incorporates additional infor-

mation in estimating FDR such as those of Ignatiadis et al. (2016) and Ignatiadis and

Huber (2021). In this study, we introduce the framework of CRS and develop it further

for applications in economics and finance. Our choice of methodology is stemmed

from the fact that the framework of CRS is more powerful than other developments in

statistics literature and it works well for relative smaller number of hypothesis tests.

The latter feature is important since in economics and finance topics we do not always

have several thousands of hypothesis tests - the required input of many other methods

such as Ignatiadis et al. (2016), Zhang et al. (2019) and Ignatiadis and Huber (2021).

Our main contribution is the introduction of the functional False Discovery Rate

“plus” (fFDR+). Compared to the work of CRS it has two distinguishing features.

First, it allows us to focus on the right or left tail of the distribution and detect the sig-

nificant out-performers/under-performers, which is important for decision makers (see

BSW). Second, it is robust to cross-sectional dependencies among predictive models,

which is common for most problems in economics and finance. For example, in mutual

funds, the alphas are likely dependent due to herding and correlated trading behaviour

(Wermers, 1999).

Compared to all earlier methods in the economics literature on control of the FDR,

our fFDR+ method incorporates extra information, has higher power, and controls for

noise. It is easy to implement, does not rely on any strong assumption and can handle

any continuous informative covariate. In examining our method, we use simulated

mutual fund performance similarly to BSW and AP. We show that, when an informative

covariate is available, our fFDR+ approach detects more true positive alpha funds

under different alpha distributions, balanced and unbalanced data, and both cross-

sectional independence and dependence in the error terms. The gap in power between

fFDR+ and prior FDR methods, depending on the distribution of the fund alpha

population, can be up to about 30%. Our approach is also robust to estimation errors

in the covariates.
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We then apply our method and construct portfolios in order to evaluate it empiri-

cally in selecting outperforming mutual funds. In particular, we explore nine informative

covariates: the first set contains five covariates that have been shown in prior studies to

convey information on mutual fund performance, and the second set contains four new

covariates that are inspired by asset pricing models. The first set includes the R-square

of the asset pricing model (e.g., Carhart four-factor model) as suggested by Amihud

and Goyenko (2013), the Return Gap of Kacperczyk et al. (2008), the Active Weight

of Doshi et al. (2015), the Fund Size of Harvey and Liu (2017), and the Fund Flow

suggested by Zheng (1999). The second set includes the Sharpe ratio, the Beta and

Treynor ratio based on the Capital Asset Pricing Model (CAPM), and the idiosyncratic

volatility of the Carhart four-factor model (Sigma).

We find that the set of mutual funds selected as out-performers by fFDR+ is usu-

ally larger and different from the one obtained by prior FDR methods. As already

discussed, earlier studies do not account for information other than mutual funds’

returns and performance metrics; thus, their null hypotheses are unconditional and

neglect investors’ time-varying expectation. The fact that our fFDR+ discovers more

outperforming funds suggests that, with more information updating, there may exist

more profitable mutual funds than researchers would have expected.

Based on the funds selected by fFDR+, we build portfolios that consistently out-

perform the one generated by prior methods. Our results highlight the economic value

of extra information. In particular, the fFDR+ portfolios with the R-square and Beta

covariates are found to be the best with annualized alphas of 1.7%, followed by the

fFDR+ portfolios with the Active Weight, Fund Flow, Sigma, Treynor ratio, Fund

Size, Sharpe Ratio and Return Gap covariates, separately achieving annualized alphas

of at least 0.77%. We note that this profitability is persistent in our sample and is

even strengthened over the recent period, a finding that disagrees with part of the

recent literature which suggests otherwise (see Jones and Mo, 2021). All our fFDR+

portfolios outperform the one generated by prior FDR methods and a set of portfolios

created by single- and double-sorting the covariates under study.

In additional analysis, we also consider the fFDR+ portfolio based on various

ways of combining the nine covariates, such as the first principal component of the nine
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covariates (PC 1), the ordinary least squares (OLS), the least absolute shrinkage and

selection operator (LASSO) of Tibshirani (1996), the ridge regression and the elastic

net of Zou et al. (2005). We find that the elastic net delivers the best performance with

an annualized alpha of 1.25%. The investors may also benefit from such combinations

as they result in lower volatility in portfolio performance. This is advantageous as, in

reality, investors do not know ex-ante what covariate is the best.

The chapter is organized as follows. In Section 1.2, we introduce and explain our

methodology. In Section 1.3, we provide a description of our data. Section 1.4 is devoted

to our simulation experiment descriptions, whereas in Section 1.5 we present in detail

our simulation results. Section 1.6 focuses on the empirical part of our analysis. Section

1.7 concludes the chapter.

1.2 Methods for controlling of luck with informative covariate

1.2.1 Functional false discovery rate (fFDR)

Throughout this chapter, we use mutual funds to represent predictive models. We

define funds’ performance based on their net return, that is, the return net of trading

cost, fees and other expenses except loads and taxes. A fund is deemed out-performing

if it distributes to investors a net return that generates a positive alpha (i.e., a part

of a return series that is unexplained by systematic risk). If the alpha is negative

(zero), the fund is said to be under-performing (zero-alpha). These definitions of out-

performing and under-performing funds coincide with skilled and unskilled funds in

BSW, respectively, and reflect the interest of investors.

Suppose that we are assessingm funds and each of them has a net return time series.

We also assume that there exists a covariate X, with observed values (x1, . . . , xm), that

conveys information about the alpha of each fund. Associated with X, we define Z

whose observed value for fund i is zi = rank(xi)/m, where rank(xi) is the ranking of

xi in the set of observed values (x1, . . . , xm). As X to Z is an one-one mapping and we

work based on Z, we call that the covariate from now on. We introduce our notation

by means of a single test, conditional on Z, for the alpha of a mutual fund:

H0 : α = 0, H1 : α ̸= 0. (1.1)
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We denote by h the status of the null hypothesis, that is, h = 0 if the hypothesis α = 0

is true and h = 1 if otherwise. In addition, P is the random variable representation

of the p-value of the test, Z, as mentioned above, is the covariate which is uniformly

distributed on [0, 1], and T = (P,Z). We suppose that (h|Z = z) ∼ Bernoulli(1−π0(z)),

that is, conditional on Z = z, the fund possesses a zero alpha with probability π0(z);

this can be constant if Z does not convey any information about the probability of the

fund’s alpha being zero. The estimation procedure for π0(z) will be discussed later on.

We require that under the true null, (P |h = 0, Z = z) is uniformly distributed on [0, 1]

regardless of the value of z; when the null hypothesis is false, the conditional density

function of (P |h = 1, Z = z) is f1(.|z).

To assess the performance of m funds in terms of α within our framework, we

consider m conditional hypothesis tests like (1.1):

H0,i : αi = 0, H1,i : αi ̸= 0, i = 1, . . . ,m, (1.2)

where αi is the alpha of fund i. For each i we have Ti = (Pi, Zi), and we assume that

all the pairs are independent and each of them has the same distribution as (T, h).2

Finally, we denote by f(p, z) the joint density function of (P,Z). We have that

P(h = 0|T = (p, z)) =
π0(z)

f(p, z)
=: r(p, z) (1.3)

is the posterior probability of the null hypothesis being true given that we observe

T = (p, z).3

To control the type I error, Storey (2003) introduces the “positive false discovery

rate”

pFDR = E
(
V

R

∣∣∣∣R > 0

)
, (1.4)

where R is the number of rejected hypotheses in m tests and V the wrongly rejected

ones. Chen et al. (2021a) show that, with a fixed set Γ in [0, 1]2, if we reject hypothesis

2In the Appendix A.2, we show that this requirement can be eased for a typically cross-sectional
dependence in mutual fund data.

3For more details about the role of Z ∼ Uniform(0, 1) and the derivation of (1.3), see Chen et al.
(2021a).
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H0,i whenever Ti ∈ Γ, then

pFDR(Γ) = P(h = 0|T ∈ Γ) =

∫
Γ

r(p, z)dpdz. (1.5)

To maximize the number of rejections, we reject the hypotheses with the smallest

statistic r(p, z). Thus, the significance region {Γθ : θ ∈ [0, 1]} is defined as

Γθ = {(p, z) ∈ [0, 1]2 : r(p, z) ≤ θ}, (1.6)

where a larger θ implies more rejected hypotheses. Finally, we recall from Storey (2003)

and CRS the definition of the q-value for the observed (p, z):

q(p, z) = inf
{Γτ |(p,z)∈Γτ}

pFDR(Γτ ) = pFDR(Γr(p,z)). (1.7)

Given a target τ ∈ [0, 1], a procedure that rejects a hypothesis if and only if its q-value

≤ τ guarantees that pFDR is controlled at τ .

Empirically, let π̂0(z) and f̂(p, z) be the estimated functions π0(z) and f(p, z),

respectively.4 We calculate r̂(p, z) = π̂0(z)/f̂(p, z) and estimate the q-value function as

q̂(pi, zi) =
1

#Si

∑
k∈Si

r̂(pk, zk), (1.8)

where #Si returns the number elements of the set Si = {j|r̂(pj, zj) ≤ r̂(pi, zi)} and pi

is the p-value of test i. Then, given a target pFDR level τ ∈ [0, 1], the null hypothesis

H0,i is rejected if and only if q̂(pi, zi) ≤ τ . CRS call this procedure Functional False

Discovery Rate (fFDR).

1.2.2 The fFDR+: application in selecting out-performing funds

By applying the fFDR methodology to mutual funds at a given target pFDR level

τ , we obtain a set that includes both significantly out-performing and under-performing

funds. To further improve mutual fund selection, we propose a fFDR-based method

that selects a group of significantly out-performing funds with control of luck. In the

following section, we introduce our fFDR+ and discuss its application in a mutual

4See Appendix A.1 for more details.
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fund context.

Consider a selection of R+ out-performing funds including V + wrongly selected

zero-alpha or under-performing funds. We define the positive false discovery rate in

those significantly out-performing funds as

pFDR+ = E
(
V +

R+

∣∣∣∣R+ > 0

)
. (1.9)

For m tests, let A+ be the set of hypotheses with positive estimated alpha, i.e., A+ =

{i|α̂i > 0}, where α̂i is the estimated alpha of fund i. At a given target τ of pFDR+,

by implementing the fFDR procedure to control pFDR at the target τ on the funds in

set A+, we obtain all the funds with positive estimated alphas (referred to as significant

alphas).5 Hence, the fFDR selects positive-alpha funds with control of pFDR at the

given target; we call this procedure the functional FDR “plus” (fFDR+).

Next, we highlight the differences between our and BSW’s approaches. The starting

point of both is the control of the type I error as in Benjamini and Hochberg (1995):

FDR = E
(

V

max{R, 1}

)
= E

(
V

R

∣∣∣∣R > 0

)
P(R > 0) = pFDR · P(R > 0), (1.10)

where the last equality follows from (1.4). This implies that controlling for pFDR at

a given target τ , also controls for FDR at the same target. Furthermore, for a large

number of tests, controlling for pFDR and FDR is equivalent (see Storey, 2002, 2003).

Consider the m tests (1.2) in the absence of the covariate Z and let ti be the

test statistic of test i. Storey (2002) assumes that t1, . . . , tm are independent and the

statuses of the null hypotheses h1, . . . , hm are independent Bernoulli random variables

with P(hi = 0) = π0. Additionally, across i, (ti|hi = 0) and (ti|hi = 1) are identically

distributed. When we reject based on the p-values, for some λ ∈ [0, 1), π0 can be

estimated by

π̂0(λ) =
#{pi|pi > λ, i = 1, . . . ,m}

(1− λ)m
(1.11)

5In doing so, we assume that the number of funds that are out-performing but exhibit a negative
estimated alpha is negligible. This is sensible as in practice we will not select those funds anyway. In
BSW, as discussed next, having a positive estimated alpha is a necessary condition for a fund to be
selected as out-performer.
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where # returns the number of elements in the set; this estimate is conservative biased.6

BSW choose λ = λ∗ on the grid {0.3, 0.35, . . . , 0.7} such that the mean square error

(MSE) of π̂0(λ) is minimal.7 We set π̂0 = π̂0(λ
∗).

To select out-performing funds with controlling for the FDR, BSW define the con-

cept FDR+ to measure the FDR in a group of funds selected as significant and positive

estimated alphas as

FDR+ = E
(

V +

max{R+, 1}

)
. (1.12)

With a significant threshold γ and a procedure which selects a fund with a positive

estimated alpha whenever its p-value ≤ γ, BSW estimate FDR+ by

F̂DR
+

γ =
π̂0γ/2

R̂+/m
, (1.13)

where R̂+ is the empirical number of funds selected as out-performers, i.e., R̂+ =

#{i|pi ≤ γ, α̂i > 0}. When using this approach to determine out-performing funds

with controlling for FDR+ at a given target τ , the threshold γ is raised gradually until

the F̂DR
+
estimate in (1.13) reaches the target τ . We refer to this procedure as FDR+.

To illustrate the differences between our and BSW’s procedures, we opt for a sub-

period of five years from the beginning of 2001 to the end of 2004, the five-year period

during which our sample reaches its highest number of funds, and implement the FDR+

and fFDR+ to detect positive alpha funds, with the alphas determined by the four-

factor model of Carhart (1997). In this case, the R-square of the model is used as the

covariate for fFDR+.8 In Figure 1.1, we demonstrate how the two procedures work.

Based on the p-values of all the considered funds, the FDR+ estimates the proportion

of zero-alpha funds in the whole sample, as a first step, giving π̂0 ≈ 0.83. It then selects

the positive estimated alpha funds with smallest p-values until the estimated F̂DR
+

γ

reaches a given FDR target. For illustration, we choose the FDR target τ = 35%,

6To have the estimate of π0, first, under independence, there are mπ0 funds with truly zero alpha
and their p-values have a uniform distribution in [0, 1]. Hence, we expect mπ0(1 − λ) p-values in the
set to fall in [λ, 1]. Second, this number can be conservatively approximated by #{pi|pi > λ}, thus we
have (1.11). With a larger λ, the estimate π̂0 is less conservative, as there are fewer p-values under the
alternative belonging to [λ, 1], but its variance is higher.

7In MSE = E(π̂0(λ)− π0)
2, the unknown π0 is replaced by minλ π̂0(λ) over the λ grid.

8The details of the funds and the calculation of the p-values are deferred to Section 1.6. Here, we
focus only on illustrating the differences.
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Figure 1.1: Comparison of FDR+ and fFDR+. The graphs show the differences between the
two procedures with respect to their null proportion estimations and their rejection rules. Panels A
and B show that π0 is estimated as a fixed number in FDR+ procedure (see (1.11)) but as a step
function in fFDR+ procedure (see Appendix A.1). Panel C shows the rejection rules of the FDR+

and fFDR+: the former selects all the funds corresponding to the points on the left of the vertical
green dashed line which consists of all funds with positive estimated alphas and p-values less than
0.0086, whereas the latter all the funds corresponding to the points below the horizontal red dashed
line which consists of all funds with estimated q-value (see (1.8)) less than 0.35. Panel D shows the
distribution of the selected funds in Panel C with respect to the p-value and the covariate z. In Panels
C and D, only funds with positive estimated alpha are shown as ultimately both methods select funds
from this set. The solid green points represent funds selected by the FDR+, whereas the red circles
the funds selected by the fFDR+; the green points with a red ring are the commonly selected funds.

so that both methods select a substantial number of funds.9 Here, all the funds with

p-values less than or equal to γ = 0.0086 are selected by the FDR+. The threshold

γ is depicted by the green dashed line in Panel C and all the funds corresponding

9If we choose any target τ ≤ 30%, the FDR+ selects no funds.
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to the points on the left of the vertical line are selected. By contrast, the fFDR+

considers only the set of positive estimated alpha funds and estimates the proportion

of zero-alpha funds in this set as a step function of z (the quantiles of R-square).

In this experiment, we split the sample into five bins based on the ranking of the

covariate z; thus, π̂0(z) is a function with five “steps”. The procedure continues with

the estimation of the density function f(p, z) and of the functional q-value q(p, z). The

fFDR+ selects all the funds with estimated q-value less than or equal to 0.35: those

funds correspond to the points below the red dashed line (the q-value = 0.35 line) in

Panel C. This clearly shows that, for the same target, the fFDR+ selects significantly

more funds than FDR+ (170 versus 19). More importantly, the funds selected by the

FDR+ are not merely a subset of those selected by fFDR+. Panel D displays the

distribution of the selected funds with respect to the p-value and z. We observe that

the fFDR+ assigns more weight to some funds with smaller z (thus, smaller R-square),

but the weight is not equally distributed across the funds with the same level of z. As

the rejection rule of fFDR+ is based on the functional q-value, which is based on the

estimates of π0(z) and f(p, z), it is not possible to explain this merely by the ranking

of the p-value and the covariate z, as evidenced in Panel D: the fFDR+ selects some

funds with p-values around 0.6 while skipping many funds with a smaller p-value at

roughly the same level of z.

As shown in AP, the FDR+ relies on an over-conservative estimate of the null

proportion and utilizes only p-values and the estimated alphas. On the other hand,

the fFDR+ additionally uses an informative covariate about the performance of the

funds and expresses the null proportion as a function of it, while accounting for the

joint distribution of the p-value and the covariate. This results in a more accurately

estimated FDR and, therefore, an increased power in detecting out-performing funds.

We are illustrating the prominent power of the fFDR+ via a set of simulation studies

in the next sections. In the empirical section, we will show the actual profitability that

the covariates can bring to investors while controlling for luck.
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1.3 Data

We use monthly mutual fund data from January 1975 to December 2019 collected

from the CRSP database.10 As CRSP reports funds at the share class level, we use

MFLINKS to acquire fund data at the portfolio level. For a fund at a given point in

time with multiple share classes, we average the share classes’ net return weighted by the

total net asset (TNA) value at the beginning of the month.11 The TNA at the fund level

is estimated by the sum of the share classes’ TNA. We omit the following month return

after a missed return observation as CRSP fills this with the accumulated returns since

the last non-missing month. To obtain the holdings data of the funds, which will be

used to calculate our covariates, we merge the CRSP and Thomson Financial Mutual

Fund Holdings databases by utilizing MFLINKS. The holdings database, which was

purchased from CDA Investment Technologies Inc. (see Wermers, 2000), provides us

with stock identifiers, which we use to link the funds’ position with the CRSP equity

files. From this equity database, we obtain information such as the price and number

of shares outstanding of the stocks that the funds hold on their reported portfolio date.

We use these to calculate the return gap and the active weight, which are described in

more detail later.

As in BSW, we consider only open-end, U.S. equity mutual funds which are classified

into three categories: Growth, Aggressive Growth and Growth & Income. We collect

those funds via using their investment objective. Both CRSP and CDA provide this

information; CDA is more consistent over time, hence we choose that. To obtain

a precise four-factor alpha estimate, we select only funds with at least 60 monthly

observations. Overall, we gather a sample of 2,224 funds which provides the empirical

metrics for our simulation study.

In the empirical part, when calculating the related covariates, we additionally re-

quire each fund to hold at least 10 stocks; this is consistent with Kacperczyk et al.

(2008) and Doshi et al. (2015) and is needed here as we use the return gap and active

weight from their studies as two of our covariates.

10We are aware of the possible biases in the CRSP mutual fund data before 1984 (Fama and French,
2010) and thus conduct a robustness check using a sample from 1984 to 2019 in Appendix A.3.

11Since 1991, we use the monthly TNA of the fund’s share classes. Before 1991, most of the funds
report their TNA on a quarterly basis. For this, we follow Amihud and Goyenko (2013) to fill in the
missing TNA of each fund (at the share class level) by its most recently available one.
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1.4 Simulation setup

In this section, we present the details of our simulation design consisting of the

choice of the model, the distributions of the alpha population, the data-generating

process and the metrics that we will use to gauge the performance of the methods.

1.4.1 The model

Following the majority of the existing literature on mutual fund performance, we

use the four-factor model of Carhart (1997) to compute the fund performance:

ri,t = αi + birm,t + sirsmb,t + hirhml,t +mirmom,t + εi,t, i = 1, . . . ,m, (1.14)

where ri,t is the excess net return of fund i over the risk-free rate (i.e., the one-month

Treasury bill rate), rm,t the market’s excess return on the CRSP NYSE/Amex/NASDAQ

value-weighted market portfolio, rsmb,t the Fama–French small minus big factor, rhml,t

the high minus low factor, rmom,t the momentum factor and εi,t the noise of fund i at

time t. All factors and the one-month Treasury bill rate are obtained from French’s

website.12

Our simulations are designed similarly to BSW and AP in terms of the data-

generating process accounting, in addition, for an informative covariate and considering

more distribution types of the fund alpha population. Whereas BSW and AP focus

on the estimated proportions of the out-performing, under-performing and zero-alpha

funds, we consider the performance of the FDR+ and fFDR+. More specifically, for

a given fund alpha distribution, we first generate in each iteration the true fund alpha

population and a covariate that conveys information about the alpha of each fund.

Second, we simulate the Fama–French factors (factors loadings) by drawing from a

normal distribution with parameters equal to their sample counterparts (obtained from

estimations of model (1.14)). Next, the noise is generated under both cross-sectional

independence and dependence. In the first case, the noise is drawn cross-sectionally

independent from a normal distribution, that is, εit ∼ N (0, σ2
ε) where, as in Barras

et al. (2020), σε is is set equal to the median of its real-data counterpart, that is,

12The data are obtained from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html in June 2020.
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approximately 0.0183 for our sample. The results under this assumption are reported

in the next section. In the dependent case, the noise is generated as in BSW and the

simulation results are deferred to Appendix A.2 . The simulated data are then used to

generate the net return for each fund. Subsequently, by carrying out regression (1.14)

of the generated net return on the simulated Fama–French factors, we estimate the

alpha and calculate the related p-values for the tests (1.2). Finally, based on these

estimated alphas, p-values and the covariate, we implement the fFDR+ and FDR+,

for a given FDR target, to obtain the significantly out-performing funds. We estimate

the actual false discoveries rate of the fFDR+ and check if it meets the given target.

We then compare the two methods in terms of power, defined as the expected ratio of

the number of true positive alpha funds detected to the total number of true positive

alpha funds in the population.

1.4.2 The distribution of fund alphas

We consider three different types for the distribution of fund alphas: a discrete,

a discrete-continuous mixture and a continuous. A covariate Z conveys information

about the alpha of each fund in the population; more specifically, a fund with Z = z

has a probability π0(z) of being zero-alpha. Also, without loss of generality, we assume

that, for non-zero alpha funds, their covariates and alphas are positively correlated.13

First, in the discrete type, we draw alphas from three mass points −α∗ < 0, 0 and

α∗ > 0 with probabilities π−, π0 and π+. Thus,

α ∼ π−δα=−α∗ + π0δα=0 + π+δα=α∗ . (1.15)

We consider five values for α∗ ∈ {1.5, 2, 2.5, 3, 3.5} (the values are annualized and

in %) together with six combinations of the proportions (π+, π0, π
−) based on π+ ∈

{0.1, 0.13}, π−/π+ ∈ {1.5, 3, 6} and π0 = 1− π− − π+, i.e., a total of thirty cases.14

In the mixed discrete-continuous distribution, we draw alphas from two components

13If the correlation is negative, we use instead −Z.
14The chosen π+ values are close to those used in the recent literature: π+ = 10.6% (see Harvey

and Liu, 2018) and π+ = 13% (see Andrikogiannopoulou and Papakonstantinou, 2016). The ratio
π−/π+ = 6 is studied in AP. Aiming to extend the range of our study, we consider also the ratios 1.5
and 3.
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including the mass point 0 and the normal distribution N (0, σ2) with, respectively,

probabilities π0 ∈ (0, 1) and 1− π0. We have, therefore, that

α ∼ π0δα=0 + (1− π0)N (0, σ2). (1.16)

We consider five values for σ ∈ {1, 2, 3, 4, 5} (the values are annualized and in %) and

the same six π0 values as in the discrete distribution earlier.

Finally, in the continuous case, we draw alphas from a mixture of two normal

distributions N (µ1, σ
2
1) and N (µ2, σ

2
2) with, respectively, probabilities π1 ∈ [0, 1] and

π2 = 1− π1, i.e.,

α ∼ π1N (µ1, σ
2
1) + π2N (µ2, σ

2
2). (1.17)

When π1 and π2 are positive, we have indeed a mixture; we adopt from Harvey and

Liu (2018) π1 = 0.3 and π2 = 0.7 and, to cover various scenarios of the mixture, we

consider fifteen combinations based on (µ1, µ2) ∈ {(−2.3,−0.7), (−2,−0.5), (−2.5, 0)}

and (σ1, σ2) ∈ {(1, 0.5), (1.5, 0.6), (2, 1), (2.5, 1.25), (3, 1.5)} (the values of the pairs are

annualized and in %).15

In (1.17) π0 = 0, whereas in (1.15) and (1.16) π0 > 0. When π0 > 0, we study an

up-and-down shape of π0(z). Specifically, to guarantee π0(z) ∈ [0, 1] for all z, we choose

π0(z) = min{1,max(f(z), 0)} ∈ [0, 1], where

f(z) = 3.5(z − 0.5)3 − 0.5(z − 0.5) + c (1.18)

and c is chosen to satisfy
∫ 1

0
π0(z)dz = π0. This way we are able to investigate the

effect of π0 on the power of the methods by varying c while keeping the shape of π0(z)

roughly unchanged.16

15Our choices are intended to be wide enough to encompass the cases of Harvey and Liu (2018):
(π1, π2) = (0.283, 0.717), (µ1, µ2) = (−2.277,−0.685) and (σ1, σ2) = (1.513, 0.586). In the Appendix
A.2, we additionally present results of the case π2 = 0, i.e., when the mixture becomes a single normal
distribution.

16The alternative choices of a decreasing function π0(z) with f(z) = −1.5(z−0.5)3+c, an increasing
function π0(z) with f(z) = 1.5(z−0.5)3+c or a constant function π0(z) = c result in some discrepancies,
without affecting, though, our main conclusions.
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1.4.3 Simulation execution

Suppose the distribution of alpha and the form of π0(z) are determined. As a first

step, we generate the covariate and alpha for each of the m funds. We generate the

covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform distribution

[0, 1] and assign them to the funds. For the cases (1.15) or (1.16), we determine c in

(1.18) such that
∫ 1

0
π0(z)dz = π0 for a given π0 > 0. For each fund i, we draw hi from

the Bernoulli distribution with success probability 1−π0(zi) and assign a zero alpha to

fund i with hi = 0. Finally, for the remaining funds, we draw true non-zero alphas from

the given distribution (1.15) or (1.16) and assign them such that a fund with a smaller

z has a smaller alpha. For the case (1.17), we draw alphas from the distribution and

then assign them to the funds; again, a fund with a smaller z has a smaller alpha.

In the second step, we simulate the return factors from a normal distribution with

parameters equal to their sample counterparts. The loadings of these factors are also

drawn from a normal distribution with parameters equal to their sample counterparts

obtained from the fund level estimation of equation (1.14). We consider balanced panel

data for 2, 000 funds with 274 time-series observations; the number of 2, 000 is chosen

to be close to our real sample of 2,224 funds, whereas the number of 274 periods is

the median of our sample funds’ observations. In unbalanced panel data, the number

of observations for each fund is drawn randomly with replacement from the set of the

number of observations of the funds in the real-data counterpart. Under cross-sectional

independence, the noise term εi,t is drawn from a normal distribution N (0, σ2
ε), where,

as in Barras et al. (2020), σε is set equal to the median of its real-data counterpart, that

is, approximately 0.0183 for our sample. Under cross-sectional dependence, we follow

BSW and assume that all fund residuals load on a common latent factor Gt, whereas

the out-performing and under-performing funds load on the specific factors G+
t and G−

t ,

respectively. Thus,

εi,t = γGt + γG+
t 1αi>0 + γG−

t 1αi<0 + ηi,t, (1.19)

where 1αi>0 and 1αi<0 are, respectively, out-performing and under-performing indi-

cators taking the value 1 if the fund i is out-performing or under-performing, and 0

otherwise. The three latent factors Gt, G
+
t and G−

t are assumed to be mutually orthog-
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onal and to the four risk factors and have a normal distribution N (0, σ2
G), where, from

BSW, σG is set equal to the average of the monthly standard deviations of the three

risk factors (size, book-to-market and momentum). The coefficient γ is set equal to the

average of the loading of the three risk factors of the 2,224 funds in our sample. Finally,

{ηi,t}i are uncorrelated and drawn from the normal distribution N (0, σ2
η), where ση is

chosen such that σε is equated to the median of its real-data counterpart, as in the

independent case.

In the last step, we implement the fFDR+ and FDR+ and compute their perfor-

mance metrics. More specifically, based on the simulated data from the previous step,

we calculate the Carhart four-factor model alpha and the corresponding p-value for each

fund. We use the resulting p-value, the estimated alpha and the covariate as inputs

to the fFDR+ and FDR+ procedures. At a given target of FDR, we calculate for

each method a proportion of falsely classified funds F̃DR
+

and a detected proportion

P̃ ower
+

:

F̃DR
+

=
Ṽ +

max
{
R̃+, 1

} and P̃ ower
+

=
C̃+

T̃+
, (1.20)

where R̃+ is the number of classified out-performing funds and, among them, Ṽ +

funds are truly zero-alpha or under-performing funds. T̃+ is the number of truly out-

performing funds in the population and, among them, C̃+ funds are classified correctly.

The previous three steps are repeated 1,000 times and we use the average F̃DR
+

and P̃ ower
+

as estimates for the actual FDR and power.

1.5 Analysis of fFDR+ and power

We set the number of funds for simulations at 2,000 which is close to our sample

of 2,224 funds. We demonstrate the ability of the fFDR+ to control the FDR for

balanced panel data, where the number of observations per fund is equal to 274, under

cross-sectional independence. In the interest of space, we refer to the Appendix A.2

for the results under cross-sectional dependence as well as the unbalanced panel data

cases. We then compare the powers of the fFDR+ and the FDR+ in controlling the

FDR at the 10% level; we extend to higher levels and highlight the differences between

the two procedures. In each simulation study, we analyze the relationship between the
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powers of the two methods and: i) the proportion of zero-alpha funds in the sample; ii)

the magnitude and proportion of positive alpha funds in the sample. We also study the

impact of the number of funds in the sample and the number of observations per fund

on the power. Finally, we examine the impact of estimation errors in the covariates, in

the power of our procedure.

In general, the results show that the fFDR+ controls well the FDR at any given

targets. When the FDR target is set at 10%, the fFDR+ detects more positive alpha

funds than the FDR+ with a difference in power up to 30%, depending on cases and

parameters of the distributions. When we raise the FDR target to higher levels, the

difference is even higher in favour of the fFDR+. The results are consistent regardless

of the number of funds in the sample, the structure of the panel data and the dependence

of the cross-sectional error terms.

In an empirical setting, the informative covariates are estimated quantities. This

is translated to an estimation noise that may affect the power of our procedure. Our

simulations reveal that our method is robust in terms of power up to moderate to high

estimation noise.

1.5.1 False discovery rate control of fFDR+

For varying targets of FDR ∈ {5%, 10%, . . . , 90%}, we implement the simulation

procedure in Section 1.4 with balanced panel data. Figures 1.2, 1.3 and 1.4 exhibit our

results for the generated data under cross-sectional independence.

In Figure 1.2, we show our results for the discrete distribution (1.15) for varying

α∗. The upper three subplots correspond to π+ = 0.1, whereas the lower three subplots

to π+ = 0.13. From left to right, the ratio π−/π+ increases from 1.5 to 6 (with the

null proportion π0 decreasing accordingly). For example, the top-left subplot exhibits

the actual FDR (vertical axis) and the given targets of FDR (horizontal axis) with the

alphas drawn from a discrete population of which 75%, 10% and 15% are, respectively,

zero-, positive- and negative-alpha funds. A point on or below the 45◦-line indicates

that the fFDR+ controls FDR well for the given level; this is the case for α∗ = 1.5 at

all the FDR targets. For α∗ = 3.5, the FDR is slightly not met for targets in the interval

(0.1, 0.8). In general, we witness slight failure of the fFDR+ to control for FDR when
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Figure 1.2: Performance of fFDR+ for discrete distribution of α. The graphs show the per-
formance of the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution.
The simulated data are balanced panels with cross-sectional independence.

Figure 1.3: Performance of fFDR+ for discrete and normal distribution mixture of α.
The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from a mixture of discrete and normal distributions. The simulated data are balanced panels with
cross-sectional independence.

α∗ is abnormally high. In the last case with smallest π0, the FDR is controlled well.
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In Figure 1.3, we study the case of the fund alpha population described by the mixed

discrete-continuous distribution (1.16). We organize our results based on the same null

proportions π0 as in Figure 1.2 and present these for varying σ. We observe that the

FDR target is slightly unmet only for extreme values of σ when the null proportion is

very high and this effect is also milder compared to the discrete distribution cases.

Finally, in Figure 1.4, we report the results for the continuous distribution (1.17)

for varying µ or (µ1, µ2) and σ or (σ1, σ2). We find that the fFDR+ controls FDR well

at all targets.

Figure 1.4: Performance of fFDR+ for continuous distribution of α. The graphs show
the performance of the fFDR+ in terms of FDR control when alphas are drawn from a continuous
distribution which is a mixture of two normals. The simulated data are balanced panels with cross-
sectional independence.

In summary, our simulations are based on proposed fund alpha distributions from

the recent literature, from the least realistic cases, with all the out-performing and

under-performing funds assumed to have the same mass alpha value, to the more real-

istic ones, where the alpha is drawn from a continuous distribution, in which no fund

has exact zero but rather mostly negative alpha. Our results suggest that, for the

continuous distribution, the proposed fFDR+ approach controls well for FDR at any

given target.

In the Appendix A.2 we repeat the exercise for balanced data under cross-sectional

dependence and unbalanced data under both cross-sectional independence and depen-

dence. Our findings remain robust.
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1.5.2 Power analysis

Next, we study the power of our fFDR+ approach in detecting truly positive alpha

funds, calculated as described in Section 1.4, and compare it with the FDR+ of BSW

for FDR control at 10%. Although the magnitude of our results varies with different

targets of FDR, our main conclusion of the power superiority of the fFDR+ remains.

In Panel A of Table 1.1, we report for the discrete distribution (1.15). For (π+, π0, π
−) =

(10, 75, 15)% with highest π0 and smallest α∗ = 1.5, both the fFDR+ and FDR+

achieve similar powers, i.e., 0.3% and 0.4%, respectively. This is expected in this par-

ticular case as the number and magnitude of the true positive alphas are small, while we

are controlling for FDR at 10%.17 The superiority of the fFDR+ is more perceptible

and stabler for larger α∗. This discrepancy depends not only on the magnitude and

proportion of positive alphas, but also on the proportion of zero alphas. This is because

both procedures use the null proportion (π0 in FDR+ and π0(z) in fFDR+) to esti-

mate the FDR. With the same magnitude and proportion of positive alphas, the small

proportion of zero alphas implies the higher power of both the fFDR+ and FDR+.

The effect of the null proportion on the gap of fFDR+ over FDR+ is stronger when

the magnitude of positive alphas is not too high. The gap varies by case and may even

exceed 30% (when π+ = 10%, π0 = 30% and α∗ = 2.5).18

Panel B exhibits the power upshots for the case of the fund alpha population de-

scribed by the distribution mixture (1.16). This implies the dependence of the propor-

tion and magnitude of positive alphas on the proportion of the zero-alpha funds and the

σ value for non-zero alphas. We expect a higher power for both methods for a smaller

zero-alpha proportion and/or a higher value of σ. We find that the fFDR+ is more

powerful than FDR+. More specifically, for the balanced data under cross-sectional

independence and π0 = 75%, the power of the fFDR+ (FDR+) increases from 0.3% to

60.8% (0.2% to 52.2%) with increasing σ from 1 to 5. For given, say, σ = 2, the power

of the fFDR+ (FDR+) increases from 15.4% to 38% (8.2% and 22%) with reducing

17As will be shown later, with a higher FDR target (such as 30%), the power of the fFDR+ exceeds
that of FDR+ by 6%. Considering a higher target than 10% is sensible for trading and diversification
purposes as otherwise very few or no out-performing funds are selected. In the study of BSW, the
estimated FDR in the empirical application is about 41.5% on average (depending on portfolio).

18As shown in the Appendix A.2, the relevant reports vary slightly when the simulated data are
generated with alternative forms of π0(z) mentioned in footnote 16, with unbalanced panel or with
cross-sectional dependence, however the overall picture remains the same.

25



π0. The gap is generally evident for σ > 1 with power differences around 10% but which

can also reach up to 16%.

Finally, in Panel C, we study the outcome from using the mixture of normals (1.17)

Table 1.1: Performance comparison in terms of power (%). The table compares the power
of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a
discrete distribution, i.e. α ∼ π+δα=α∗ +π0δα=0+π−δα=−α∗ (Panel A), a discrete-normal distribution
mixture, i.e. α ∼ π0δα=0 +(1− π0)N (0, σ2) (Panel B), and a mixture of two normal distributions, i.e.
α ∼ 0.3N (µ1, σ

2
1)+0.7N (µ2, σ

2
2) (Panel C) with various setting of parameters. The simulated data are

a balanced panel with 274 observations per fund and are generated with cross-sectional independence.

Panel A: discrete distribution.
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.3 5.1 21.8 45.7 67.3
FDR+ 0.4 2.1 12.1 32.3 53.5

(10, 60, 30)%
fFDR+ 1.1 10.3 33.1 58.5 77.5
FDR+ 0.4 2.3 13.8 35.9 57.4

(10, 30, 60)%
fFDR+ 3.5 22.9 52.9 76.6 89.7
FDR+ 0.4 3.3 21.4 47.8 69.6

(13, 67.5, 19.5)%
fFDR+ 0.8 8.8 30.1 55.1 75.1
FDR+ 0.4 3.1 17.6 39.7 60.9

(13, 48, 39)%
fFDR+ 2.3 16.4 43 68.1 84.3
FDR+ 0.5 4 21.8 46.1 66.8

(13, 9, 78)%
fFDR+ 6.4 34 67.6 89.2 97.5
FDR+ 0.5 6.9 37.2 69.2 88

Panel B: discrete-normal distribution mixture.
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.3 15.4 36.1 51.1 60.8
FDR+ 0.2 8.2 26.7 41.7 52.4

60%
fFDR+ 1.2 21.6 42.8 57.1 66.1
FDR+ 0.2 11.4 31.5 46.6 56.9

30%
fFDR+ 4 31.6 54 67.2 74.8
FDR+ 0.4 17.5 40.5 55.6 65.4

67.5%
fFDR+ 0.8 18.9 40 54.5 63.7
FDR+ 0.2 9.9 29.6 44.5 55

48%
fFDR+ 2.3 25.9 47.8 61.6 70.4
FDR+ 0.3 13.9 35.4 50.5 60.5

9%
fFDR+ 6 37.9 60.6 73.6 80.9
FDR+ 0.5 22 47.1 62.7 72.2

Panel C: mixture of two normal distributions.
(σ1, σ2)

(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0 0.3 4.5 12.9 22.5
FDR+ 0 0 0.3 1.9 7.1

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0 0.4 5.9 15.1 24.8
FDR+ 0 0.1 0.4 2.9 9

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0.1 0.6 8.3 17.8 27.6
FDR+ 0 0 0.6 4.2 11.4
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with π1 = 0.3, π2 = 0.7 and non-positive means (µ1, µ2) to limit the likelihood of a

positive alpha. The proportion of positive alphas ranges from 6% to 41.1%. For small

(σ1, σ2) values, the positive alphas are also small in magnitude and, consequently, the

power is negligible. When (σ1, σ2) are higher than (2, 1), the power of both methods as

well as their discrepancy increase significantly and favourably for fFDR+ reaching up

to 16%.

Our analysis has shown that, when controlling for FDR at an as low level as 10%,

both the fFDR+ and FDR+ have good power for large (in magnitude) alphas. When

this happens, the gain in power of the fFDR+ over FDR+ can vary depending on

the underlying fund alpha distribution: 10% to 16% (continuous distribution) and 20%

to 30% (discrete distribution). On the other hand, when the zero-alpha proportion is

high and the proportion and magnitude of positive alphas is small, the power of both

methods reduces.

Finally, as we demonstrate in the Appendix A.2 that our conclusions are not affected

by the data structure (balanced versus unbalanced panel) or dependencies.

1.5.3 Power and FDR trade-off

In what follows, we study the impact on power when controlling for FDR at different

(higher than 10% level) targets. Our results show clear differences between the fFDR+

and FDR+ and, in support of the former, even for cases of negligible power for a 10%

target. Constructing mutual fund portfolios at higher FDR levels is sensible as otherwise

we may end up with empty portfolios. Investors have to face a trade-off between the

power in detecting out-performing funds and the FDR threshold, which we discuss next.

We focus on cases of very low power when the FDR is controlled at 10%. For

brevity, we present in Table 1.2 our results for only balanced data under cross-sectional

independence and FDR targets up to 90%, noting that these are largely unchanged for

unbalanced data. In particular, for the underlying discrete fund alpha distribution, the

fFDR+ gains rapidly power with increasing FDR targets, peaking at 40% in excess of

the FDR+ when the target is set at 70%. For the continuous distribution, the power of

the FDR+ changes very slowly and is persistently negligible (mixture of normals) even

for FDR controlled at 90%. On the other hand, the fFDR+ detects abundant positive
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Table 1.2: Power comparison (in %) for varying FDR targets (%). The table presents
some selected cases of low powers of the fFDR+ and FDR+ at FDR target of 10%. We consider
a discrete distribution: α ∼ 0.75δα=0 + 0.1δα=1.5 + 0.15δα=−1.5; a discrete-normal mixture: α ∼
0.75δα=0 + 0.2N (0, 1.52); and a two-normal mixture: α ∼ 0.3N (−2.3, 12) + 0.7N (−0.7, 0.52). The
simulated data are balanced panels with cross-sectional independence.

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.3 2.5 8 18.1 32.3 48.5 64.3 76.3 85
FDR+ 0.4 0.9 2 3.9 7.4 14 24.7 41.5 65.1

Mixture of discrete fFDR+ 0.3 1.3 3.2 6.5 11.8 19.8 31.3 46.3 64.1
and normal FDR+ 0.2 0.4 0.7 1.1 1.7 2.7 4.9 10.4 26.5

Mixture of normals
fFDR+ 0 0.1 0.4 1.2 2.7 5.9 11.7 21.3 35.3
FDR+ 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1

alpha funds with a power that can reach up to 46% in excess of the FDR+ (mixture

of two normal distributions with 90% target).

1.5.4 Varying the number of observations and funds

Hitherto, we have assumed a sample with m = 2,000 funds, which reflects our

actual dataset for the whole period from 1975 to 2019. When constructing a portfolio,

we usually use sub-periods of five years and the number of alive funds in these sub-

periods naturally varies. In this section, we investigate the impact of varying number

of observations T per fund and the number of funds m on the power.

In Table 1.3, we present the outcomes for different underlying distributions of fund

alphas, when we control FDR at a 10% target and use balanced panel data with cross-

sectional independence. We vary m from 500 to 3,000 and T from 120 months (i.e., 10

years) to 420 months (i.e., 35 years). It is evident from the reports that the power of the

fFDR+ increases at a much faster pace with increasing T . With rising m, the power

of the fFDR+ slightly decreases, whereas such is observed for the FDR+ mainly in

Panel C. This is not a substantial concern though, as in reality we do not have a very

large number of alive funds in a given sub-period. Overall, the power of the fFDR+

in excess of the FDR+ can reach 30%.

Apparently for T = 120, both procedures have low power. Empirically, when

constructing a portfolio of mutual funds, we usually use in-sample sub-periods of 5

years. In these cases, the investors may have to raise the FDR target to a higher level
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Table 1.3: Power comparison (in %) for varying sample size and observation length. The
table compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of
observations per fund (T ) and number of funds (m). We present three cases where alphas of m funds
are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2 (Panel A); ii) discrete-
normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two normal distributions:
α ∼ 0.3N (−2, 22) + 0.7N (−0.5, 1) (Panel C). The simulated data are balanced panels with cross-
sectional independence.

Number of observations per fund
m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 2.7 8.5 19.6 31.8 44.6 54.8
FDR+ 0.6 1.4 3 5.3 10.6 18.4

1000
fFDR+ 1.5 6 16.3 29.4 42.4 52.9
FDR+ 0.4 0.8 2.1 4.9 10.6 19.1

2000
fFDR+ 1.2 5.7 15.4 28 40.6 51.4
FDR+ 0.2 0.6 1.5 4.8 11.2 20.4

3000
fFDR+ 1.1 5.4 15 27.6 39.3 50.8
FDR+ 0.2 0.5 1.6 4.9 11.8 20.7

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 12.4 21.3 29.1 35.2 40.5 44.9
FDR+ 2.4 7.5 14.1 20 25.3 29.8

1000
fFDR+ 11.7 21 28.1 34.7 40 44.5
FDR+ 2.1 7.8 14.1 20.1 25.2 29.7

2000
fFDR+ 11.4 20.5 28.1 34.1 39.3 43.7
FDR+ 2.2 7.9 14.2 19.9 25.1 29.7

3000
fFDR+ 11.2 20.4 27.8 33.9 39 43.6
FDR+ 2.3 8 14.1 20 25.2 29.7

Panel C: Mixture of Normal distributions

500
fFDR+ 1.3 3 5.3 8 10.9 13.4
FDR+ 0.2 0.3 0.5 0.8 1.3 1.8

1000
fFDR+ 0.9 2.4 4.8 7.6 10.1 12.8
FDR+ 0.1 0.2 0.4 0.6 1.1 1.6

2000
fFDR+ 0.7 2.2 4.5 6.9 9.6 12
FDR+ 0.1 0.1 0.3 0.5 1 1.6

3000
fFDR+ 0.7 2.2 4.3 6.8 9.3 11.9
FDR+ 0 0.1 0.2 0.4 0.9 1.5

as explained in the previous section.19 In Table 1.4, we focus the spotlight on (small)

m = 500 and T = 60 (i.e., 5 years). It is shown there that both methods yield even lower

power at the FDR target of 10%. By increasing the target, the power of the fFDR+ in

detecting out-performing funds rises faster than that of the FDR+, especially for the

discrete and mixed normal distributions.

19In fact, in order to construct non-empty FDR+ portfolios based on five-year in-samples, BSW
introduce a procedure where they allow the estimate of FDR+ to be above 70% for several years.
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Table 1.4: Power comparison (in %) for varying FDR targets for sample with small size
and small number of observations. In this table, we consider three distributions as in Table 1.3 for
samples consisting of m = 500 funds (balanced panels with cross-sectional independence) with T = 60
observations per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.5 2.2 5.8 12.2 20.9 30.8 41.5 53.5 66.3
FDR+ 0.2 0.5 0.7 0.9 1.3 1.7 2.1 2.6 3.6

Mixture of discrete fFDR+ 2.4 7.4 14.4 23 32.7 42.9 53.2 63.5 68.4
and normal FDR+ 0.4 0.9 1.6 3 5.6 10.4 18.9 32.2 47.3

Mixture of normals
fFDR+ 0.2 1 2.9 6.2 11.1 18 26.7 37.5 51
FDR+ 0.1 0.1 0.2 0.3 0.4 0.5 0.8 1 1.5

1.5.5 Estimation errors in the covariate

In the main settings of simulations, we consider a simple covariate where in the

set of non-zero alpha funds, the ranking of funds’ alpha is the same as that of funds’

covariate. This does not hold in the whole population. Put differently, one cannot

simply rank the funds based on a covariate to distinguish the out-performing ones from

the zero-alpha and the under-performing ones. In this section, we further study the

behaviour of our fFDR+ approach by adding to the original covariate a noise reflecting

potential estimation biases, as all covariates in the real data are calculated based on

a certain sample period. More specifically, instead of using the covariate Z as in our

previous simulations, we use Z ′ = (z′1, . . . , z
′
m) given by

z′i = zi + ηi, (1.21)

where ηi denotes the noise and is generated independently from a normal distribution

N(0, σ2
η). Alternatively Z ′ can be viewed as a realization of some informative covariate

which aims to capture Z. Depending on the scale of the estimation error, the realized

covariate could have different levels of information. We do not know actual estimation

errors in covariates in reality. Thus, we simulate low to high noise in our covariates.

More specifically, we consider two different values of ση including σ1 = 0.5/
√
12 and

σ2 = 1/
√
12. These values are based on the fact that the covariate Z ∼ U [0, 1], which

has a standard deviation of 1/
√
12. We confirm that the fFDR+ controls well for the

FDR in this setting and the figures are virtually the same as those presented in the

previous sections in the original setting. This is the most important characteristic of
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fFDR+ we should expect, that is, ability to control well for the risk even when the

new information contains noise.

In Table 1.5 we provide further information by presenting the power (at FDR tar-

get of 10%) of the fFDR+. Comparing with Table 1.1, the power is lower but still

remarkably higher than that of the FDR+ with a varying gap across cases of the alpha

distribution and the choice of ση. As will be shown in our empirical analysis, the

fFDR+ with use of each covariate gains significant power over the FDR+. Therefore,

we could assume that covariates in our application have relatively less noise than ones

in this simulation.

Table 1.5: Power (in %) of fFDR+ under noised covariates. The data are generated as
in tables 1–3 except the use of a new covariate containing a noise: Z ′ = Z + η instead of Z. The
noise is drawn independently form normal distribution η ∼ N(0, σ2

η) where ση taking value in {σ1 =

0.5/
√
12, σ2 = 1/

√
12}.

Panel A: Discrete distribution.
α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(π+, π0, π
−) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

(10,75,15)% 0.3 0.3 4.7 3.9 19.6 16.9 41.9 37.5 63.7 59.3
(10,60,30)% 1 0.7 8.7 6.5 28 23.1 52 45.7 71.8 66.3
(10,30,60)% 2.6 1.5 16.4 12 43.7 36.1 69.8 61.8 85.7 79.9
(13,67.5,19.5)% 0.7 0.6 8.2 6.7 27.5 23.6 50.8 45.9 71.2 66.6
(13,48,39)% 1.9 1.3 14 10.7 38.2 32.1 62.8 56 80.6 75.2
(13,9,78)% 5.1 3.3 27.8 21.7 62.3 55.2 87.6 82.4 96.6 94.2

Panel B: Mixture of a discrete and a normal distributions.
σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

π0 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

75% 0.2 0.1 14 11.9 33.9 31.7 48.3 46.4 58.1 56.4
60% 0.6 0.3 19.3 16.4 39.6 36.9 53.8 51.3 62.5 60.5
30% 2.2 1.2 28.2 23.9 49.2 45.4 62 59 70.5 68
67.5% 0.4 0.2 16.8 14.3 36.8 34.4 51.2 49 60.7 58.7
48% 1.2 0.7 22.9 19.4 43.6 40.3 57.1 54.4 65.6 63.3
9% 3.6 2.1 34 29 56.1 51.7 68.5 65.4 75.9 73.8

Panel C: Mixture of two normal distributions.
(σ1, σ2)

(1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)
(µ1, µ2) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

(-2.3,-0.7) 0 0 0 0 1.2 0.6 6.5 4.2 15 11.2
(-2,-0.5) 0 0 0 0 2.1 1.1 8.9 6 18.2 13.9
(-2.5,0) 0 0 0.1 0.1 4.3 2.4 12.2 8.3 22.1 17.1

Concluding this section, we recollect that the simulated power of fFDR+ in detect-

ing out-performing funds is found to be larger than FDR+’s. This persists for different

fund alpha distributions, balanced and unbalanced data, cross-sectional dependence of
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error terms accounted for or not. This power advantage depends on the magnitude

and proportion of positive alphas as well as the proportion of zero alpha in the popu-

lation, the number of funds in the sample, estimation errors in the covariates, and the

average number of observations per fund. When the last factor is small, leading to a

diminished power for both procedures, we can uplift the FDR to a reasonable level so

that the fFDR+ detects remarkable number of out-performing funds. In our empirical

application of the next section, we show how the investors can benefit from this.

1.6 Empirical results

1.6.1 Five covariates proposed in the literature

We start our empirical investigation of the fFDR+ approach by considering five

covariates that may convey information about the performance of mutual funds. They

are shown to be persistent and, therefore, can predict the performance of mutual funds.

We also propose four new covariates based on asset pricing models.

First, we study the R-square of Amihud and Goyenko (2013), which is estimated

from the Carhart four-factor model and measures the activeness of a fund. If a fund

replicates the market, the R-square will be close to one; if, instead, it is more active,

it will have a small R-square and in this case, according to the authors, funds tend to

perform better.

The second covariate is the Fund Size of Harvey and Liu (2017). This takes into

account both the fund size, which is the total net assets under management (TNA) of

a fund, and the industry size, which is the total assets under management of all active

mutual funds in the sample (sum of TNA). More specifically, for fund i at time t, it is

defined as

Fund Sizei,t = ln
TNAi,t

IndustrySizet
− ln

TNAi,0∗

IndustrySize0∗
, (1.22)

where t = 0∗ corresponds to the time of the first TNA observation in our sample. The

Fund Size reflects the growth in scale of a fund relative to the whole active mutual fund

market. Harvey and Liu (2017) show a significant negative relationship between Fund

Size and funds’ performance.20

20Pastor et al. (2015) and Chen et al. (2004) as well as Zhu (2018), respectively, argue that the
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The third covariate is the Return Gap of Kacperczyk et al. (2008), which is intended

to reflect the unobserved actions of the funds. Mutual funds usually disclose their port-

folio holdings and return periodically, e.g., quarterly or semi-annually. The investors

are unaware of the funds’ trading activities in the period of consecutive reports. The

Return Gap of a fund is defined as the difference between the return that is disclosed

by the fund and the return that the fund would have based on disclosure of its last

portfolio holdings. Kacperczyk et al. (2008) show that the funds’ performance can be

predicted by their past return gaps; mutual funds with higher past return gap tend to

perform better in the future.

Our fourth covariate is the Active Weight of Doshi et al. (2015), which aims to

gauge the fund’s activeness level and is given by the sum of the absolute differences

of the stock value weights and the actual weights that the fund assigns to the stocks

in its portfolio holdings. In their research, they show that funds with higher active

weight tend to perform better. To obtain meaningful values for the active weight and

the return gap, as in Kacperczyk et al. (2008) and Doshi et al. (2015), we require each

mutual fund to hold at least 10 stocks in its portfolio at any time.

The fifth covariate is the Fund Flow. The interaction of fund flow and funds’

performance has been studied quite extensively such as in Sirri and Tufano (1998), Berk

and Green (2004), Harvey and Liu (2017) and Capponi et al. (2020), among others.

Zheng (1999), in particular, discovers that funds receiving money perform better than

those that lose money. The author also shows that investors can earn abnormal returns

by using small funds’ flow information. Here, we follow Bris et al. (2007) and define

Fund Flow at time t as

Fund Flowt =
TNAt − (1 + rt)TNAt−1

(1 + rt)TNAt−1

, (1.23)

where rt is the return of the fund in the period t− 1 to t.

In addition to the aforementioned well-known covariates, we propose four new co-

industry size and the fund size (approximated by the logarithm of the fund’s TNA) have a negative
impact on the funds’ performance. We use the Fund Size of Harvey and Liu (2017) as it incorporates
information of both covariates. Other studies on the relationship between fund size and performance
and funds’ holding liquidity (e.g., Yan, 2008) or funds’ merger (i.e., McLemore, 2019) document the
same conclusion.
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variates that are based on asset pricing models and are available for all funds in our

sample. These are the Sharpe ratio, the Beta and Treynor ratio obtained from the

Capital Asset Pricing Model, and the idiosyncratic volatility (Sigma) of the Carhart

four-factor model. The Sharpe and Treynor ratios are risk-adjusted performance mea-

sures of funds, whereas the Beta and Sigma reflect systematic and idiosyncratic risk,

respectively. These metrics reveal aspects of the past mutual funds’ performance and,

thus, may assist in identifying out-performing and under-performing funds. Asset pric-

ing metrics are regularly used by wealth managers and academics in the fields of trading,

asset pricing and investors’ performance, but are overlooked in the mutual funds liter-

ature.21

1.6.2 The FDR+ and fFDR+ portfolios

In this section, we illustrate how fFDR+ helps to identify out-performing mutual

funds using a portfolio approach following BSW. More specifically, at the end of year t,

we select a group of funds to invest in year t + 1 based on historical information from

the last five years (t− 4 to t). In order to implement fFDF+ and FDR+, we require

the observed values of the covariates of each fund, the estimated alpha and the p-value

of each test. We execute, first, the Carhart four-factor model over the 5-year period to

estimate the alpha.

The informative value of the Return Gap, Active Weight, Fund Flow and Fund Size

on funds’ performance is persistent, i.e., the choice between using the most recent (final-

year) observations for these covariates or their average values over the whole in-sample

(five years) is of less importance, as demonstrated by our robustness check in Appendix

A.9.22 Although the predictability of the covariates may last for a long horizon of up

to five years, we expect their informative values to decrease with time; hence, forming

portfolios based on their recent realizations is preferred to their average values of the

whole last five years’ time. Because of this, Return Gap, Active Weight, Fund Flow and

Fund Size are calculated based on data in the final year of the in-sample (i.e., we use

21For instance, Clifford et al. (2021) study the relation between idiosyncratic volatility and mutual
funds flows but they do not focus on using this informative covariate as a factor for funds selection.

22Readers may refer to Kacperczyk et al. (2008), Doshi et al. (2015), Zheng (1999) and Harvey and
Liu (2017) for the studies of the persistence of the Return Gap, Active Weight, Fund Flow and Fund
Size, respectively. It should also be noted, that in our fFDR framework, all covariates are transformed
to uniform with only the ranking of the covariates across the funds counting.
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the exposure of the fund flow in year t for the Fund Flow, the value at the end of year

t for the Fund Size, whereas for the Active Weight and the Return Gap we use their

average exposures in year t). The R-square, Sharpe Ratio, Beta, Sigma and Treynor

ratio are based on the whole five years. We calculate our p-values in a similar fashion to

BSW. For the funds that suffer from heteroskedasticity or autocorrelation, we calculate

the t-statistics based on the heteroskedasticity and autocorrelation-consistent standard

deviation estimator of Newey and West (1987).23 For each fund, we implement 10,000

bootstrap replications to estimate the distribution of the t-statistic and subsequently

calculate the bootstrapped p-value for the fund.24

As required by our method, the p-values of any truly zero-alpha funds, given a

covariate value, should be uniformly distributed. Although it is difficult for us to

validate this requirement in reality as we never know which funds are truly zero-alpha,

it appears intuitive for us to assume that this condition is satisfied. Consider, for

example, the R-square. We expect the truly zero-alpha funds to invest randomly in

the stock market, thus they should possess an R-square value of roughly equal to one.

Conditional on a specific R-square value that a truly zero-alpha fund could have, i.e.,

close to one, if the fund is truly zero-alpha then its p-value should follow a uniform

distribution like any usual true null hypothesis test.25

Next, we describe the selection process of out-performing funds to invest in year

t + 1 given an FDR target τ in (0, 1). First, we recall the relevant selection process

for BSW’s “FDRτ” portfolio. For each γ on the grid {0.01, 0.02, ..., 0.6}, we calculate

the F̂DR
+

γ given by (1.13). Then, we find γ∗ such that F̂DR
+

γ∗ is closest to τ ; this

is the significant threshold for BSW’s portfolio, that is, all the positively estimated

alpha funds in the in-sample window with p-values ≤ γ∗ will be included in the FDRτ

portfolio. This guarantees the non-empty property of the portfolio but does not always

meet the FDR target τ , thereby F̂DR
+

γ∗ may be much higher than τ .

23We check heteroskedasticity, autocorrelation and ARCH effect by using White, Ljung-box and
Engle tests, respectively. We see that a half of funds in our sample suffer from at least one of the
mentioned effects.

24The bootstrapping procedure may result in duplicated bootstrapped p-values. For this, we use an
adequate number of replications to reduce that effect and obtain good estimates of π0(z) and f(p, z).

25Indeed, the p-value of each test i is defined as pi = 1−F (|ti|), where F (|ti|) = P(|Ti| < |ti||αi = 0)
and Ti is the conventional t statistic of test i and ti its estimated value. If hypothesis αi = 0 is true,
conditional on a specific covariate value, the p-value of test i is uniformly distributed since P(Pi <
pi) = P(1−F (|Ti|) < pi) = P(|Ti| > F−1(1−pi)) = 1−P(|Ti| < F−1(1−pi)) = 1−F (F−1(1−pi)) = pi.
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Second, we select out-performing funds for a fFDR-based portfolio, namely, “fFDRτ”.

To establish comparable fFDRτ and FDRτ portfolios, we implement the fFDR+

(with a particular covariate) to control pFDR+ at a target τ ∗ that reflects the FDR

level controlled by the FDRτ portfolio but has to be less than one.26 As the FDR of

the FDRτ portfolio is controlled at level F̂DR
+

γ∗ which may be greater than one or

less than τ , we set: τ ∗ = τ if F̂DR
+

γ∗ ≤ τ < 1; τ ∗ = F̂DR
+

γ∗ if τ < F̂DR
+

γ∗ < 1.27 If

F̂DR
+

γ∗ ≥ 1, we just select all the funds in the FDRτ portfolio.

For both the fFDRτ and FDRτ portfolios, we invest equally in the selected funds

in the following year. If a selected fund does not survive for a month during the year,

then its weights are redistributed to the remaining (surviving) funds.

As aforementioned, at the beginning of each year we select funds in to a portfolio

by using the previous five consecutive years as in-sample. To be eligible for this, a fund

needs to have 60 observations in the in-sample. We start constructing our portfolios

from December 1981.28

1.6.3 Performance comparison

In this section, we assess the portfolios’ performance based on their alphas. We

demonstrate the advantage of the fFDR+ in picking out-performing funds and the

efficient use of the covariates’ information. We estimate the alpha evolution and the

average alphas of our fFDRτ portfolios based on the nine covariates and compare with

those of the FDRτ portfolio. We also explore the performance of fFDRτ portfolios

after linearly combining the nine covariates and using their first principal component,

an ordinary least squares regression, a least absolute shrinkage and selection operator,

26If we implement the fFDR+ and FDR+ to strictly control FDR at a target, say, τ = 10% or
τ = 20%, both result in empty portfolios for many years. With BSW’s FDRτ portfolios, the problem

is solved. In BSW’s study, for the FDR10% portfolio, the empirical F̂DR
+

γ∗ is always greater than
10% with an average of 41.5%. For our data, among the thirty eight times of portfolio construction,

with target τ = 20% (10%) the F̂DR
+

γ∗ is less than τ on eight (zero) occasions and greater than one
on five occasions for both targets.

27We could have set τ∗ = F̂DR
+

γ∗ for both cases. However, it seems fairer to set τ∗ = τ if

F̂DR
+

γ∗ ≤ τ since both portfolios initially aim to control FDR at τ .
28As Fama and French (2010) point out possible biases in the CRSP mutual fund data before 1984,

we conduct a robustness check using a sample from 1984 to 2019; based on our results, presented in
Appendix A.3, our conclusions remain unchanged.
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a ridge regression and an elastic net.29

We focus on portfolios with small FDR targets of τ = 10%. We repeat all estima-

tions with τ = 20% in Appendix A.8. Our results remain unchanged for all exercises.

1.6.3.1 The alpha evolution

For each portfolio, we obtain its alpha evolution by calculating the Carhart four-

factor alpha using its returns from January 1982 up to the end of each month from

December 1991 onwards. In addition to the aforementioned portfolios, we construct

two naive benchmark equally weighted portfolios, without control for the FDR: one

that simply includes all the mutual funds in the in-sample window to be invested in the

following year; and, another that contains only those with positive estimated alphas.

We name these two portfolios Equal Weight and Equal Weight Plus.

We present all the alpha evolution in Figure 1.5. It is obvious from it that the

FDR10% portfolio gains higher alphas than the equally weighted portfolio and all

the fFDR10% portfolios outperform the FDR10%. Ultimately, at the end of 2019,

the fFDR10% portfolios with the R-square and Beta covariates are found to be the

best with annualized alphas of about 1.7%, followed by the fFDR10% portfolios with

Figure 1.5: Alpha evolution of fFDR10% and FDR10% portfolios over time. The graph
presents the evolution of annualized alphas (in %) of the nine fFDR10% portfolios corresponding to
the nine covariates, the portfolio FDR10% of BSW and the two equally weighted portfolios.

29In Appendix A.4 we provide a detailed comparison of all the fFDRτ portfolios in regard to several
trading metrics, whereas in Appendix A.7 the performance in terms of wealth evolution is presented.
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the Active Weight, Fund Flow, Sigma, Treynor ratio, Fund Size, Sharpe ratio and

Return Gap covariates achieving annualized alphas of at least 0.77%. By contrast, the

FDR10%, without the use of covariate information, winds up with a small positive

alpha of 0.36%. It is noteworthy that all fFDR10% and the FDR10% portfolios seem

to rebounce in terms of performance over the last two years of our sample.

1.6.3.2 The average alpha

The alpha evolution in the previous section is calculated based on the portfolio

returns from the start of 1982 up to a time point of interest. This may represent

limited information in the case of investors with a different investment period of, say,

five or ten years. For this, in Table 1.6, we report the average alpha that the investors

will gain if they invest for n ∈ {5, 10, 15, 20, 30, 35, 38} consecutive years: for each

portfolio, we calculate its “n-year”alpha based on the portfolio returns over a period

of 12n consecutive months, we repeat by shifting every time one month forward, and

eventually present the average alpha. We report the fFDR10% for each covariate and

the FDR10%. We note that the last case, n = 38, corresponds to the alphas for the

whole period from January 1982 to December 2019 and are the last points in the plots

in Figure 1.5.

Table 1.6: Comparison of portfolios’ performances for varying time lengths of investing.
In this table, we consider 10 portfolios including nine fFDR10% portfolios corresponding to the nine
covariates and the FDR10% portfolio of BSW. We compare the average alphas of the portfolios that
are kept in periods of exactly n consecutive years. For example, consider n = 5. For each portfolio, we
calculate the alpha for the first 5 years based on the portfolios’ returns from January 1982 to December
1986. Then, we roll forward by a month and calculate the second alpha. The process is repeated and
the last alpha is estimated based on the portfolios’ returns from January 2015 to December 2019. The
average of these alphas is presented in the first rows of the table.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
5 1.49 0.87 1.24 0.56 0.92 0.57 0.73 1.09 1.19 0.12
10 1.48 0.85 1.18 0.51 0.93 0.65 0.76 1.2 1.06 0.05
15 1.7 0.94 1.4 0.72 1.06 0.79 0.88 1.2 1.09 0.14
20 1.84 1.05 1.59 0.91 1.15 0.91 0.96 1.31 1.17 0.26
25 1.61 0.9 1.36 0.67 0.99 0.8 0.86 1.24 1.09 0.13
30 1.41 0.78 1.23 0.54 0.95 0.78 0.86 1.2 1.01 0.01
38 1.69 1.14 1.38 0.77 1.3 1.04 1.15 1.67 1.27 0.36

We find that the fFDR10% portfolios outperform the FDR10% for all considered

covariates and for all n. Although these results should be interpreted with caution (some

covariates were not well known in the literature at the start of our sample, such as the
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Active Weight and the Fund Size which were published in 2015 and 2017, respectively),

they do indicate the stability of our approach for different investment horizons.

1.6.3.3 Sub-period performance

In the alpha evolution in Figure 1.5, we note that the performance of our portfolios

varies over time. By construction, this figure contain returns which start from January

1982 and are not representative of the recent mutual fund performance. In order to

investigate the contribution of the returns in different periods to the performance of the

portfolios, we split the whole period into four non-overlapping sub-periods: 1982–1991

(P1), 1992–2001 (P2), 2002–2011 (P3) and 2012–2019 (P4). We repeat the exercise

for each sub-period and present in Table 1.7 the average 5-year alpha and alpha of

portfolios (with an FDR target τ = 10%) in the sub-period.

In terms of alphas and average 5-year alphas, it is clear that all the portfolios

perform well in the first two sub-periods before suffering a decline in the third sub-

period. On P3, we observe negative average 5-year alphas for the FDR10% portfolio

and the fFDR10% portfolios with Active Weight and Return Gap covariates. On

the last sub-period, this decrease continues for FDR10%, whilst all of the fFDR10%

portfolios witness rebounds. We note that all the fFDR10%, except the ones with

Return Gap and Active Weight covariates, achieve both positive alpha and average

5-year alpha in all the sub-periods. The t-statistic columns for the whole sub-period

alpha, show that most portfolios have significantly positive alphas in the first sub-

period. Interestingly, for the Sharpe ratio, we witness the highest reports in the last

sub-period (which is also slightly shorter), whereas the lowest ones appear in the third

sub-period which covers the global financial crisis of 2007–2008. From the realizations

of the equally weighted portfolio, that is, the portfolio that selects all the eligible funds

in the in-sample windows and invests them equally in the following year, we infer that

the high Sharpe ratio in the final sub-period partially comes from the whole mutual

fund market. The Equal Weight Plus portfolio, which invests in all funds with positive

estimated alphas in the previous five years, is always better than the Equal Weight one.

This simple screening portfolio even outperforms the FDR10% in the last two sub-

periods. The alphas of the fFDR10% portfolios, by contrast, are nuanced depending
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on the covariate used; most of them beat the equally weighted one in all the sub-periods

and for all the metrics (with notable exceptions of the Active Weight and Return Gap

covariates in the third sub-period).

The implications of these results are as follows. First, we note that the R-square,

Return Gap, Active Weight, Fund Flow and Fund Size retain their predictive abilities

for mutual fund performance in recent years. From the five traditional covariates,

the R-square, Fund Size and Fund Flow still have predictive abilities even after their

respective publication dates.30 Our results disagree partly with the findings of Jones

and Mo (2021) who argue that published predictors are losing value in the recent period

due to increases in arbitrage activities. Second, we note that our four new covariates

contain valuable information on mutual funds’ performance that in recent years can

surpass the conventional covariates in some cases (see, for example, the performance

of the fFDR10% portfolios in P4 with the Sigma and the Return Gap). Third, they

further verify that our approach can resolve the identification issues in mutual funds

due to noise/luck where other approaches (such as BSW) fail to.

To further support the aforementioned argument on identification issues, we com-

pare the performance of the portfolios formed in the fFDR framework with a tradi-

tional sorting portfolio formation. If a covariate has a highly linear relation with the

performance of mutual funds, then forming a portfolio based on sorting the funds on

the covariate should be sufficient. We construct single- and double-sorting portfolios

similarly to Kacperczyk et al. (2008) and Doshi et al. (2015), and Amihud and Goyenko

(2013), respectively.31

The performance in terms of alpha of those portfolios from 1982 to 2019 is presented

in Table 1.8. Our results show that most of the sorting portfolios, except the Active

Weight and Sharpe ratio, have negative or negligible positive alphas at the end of 2019,

which contrasts to the assumption of a linear relationship between the covariate and

the funds’ performance. Obviously, sorted portfolios perform better if they are based

on the correct sign of the correlation between the underlying covariate and the funds’

future performance.

30Appendix A.5 shows that three out of the five covariates still gain significant alphas in the post-
published period.

31For further details on the construction of these portfolios we refer the reader to Appendix A.6.
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Table 1.7: Performance of portfolios in sub-periods. The table displays the performance of the nine fFDR10% portfolios corresponding to the nine
covariates, the FDR10% and equally weighted portfolios in sub-periods (P1: 1982–1991, P2: 1992–2001, P3: 2002–2011 and P4: 2012–2019) in terms of
the average 5-year alpha (annualized, in %), the annualized alpha (in %) of the whole sub-period, the corresponding t-statistic (with use of Newey–West
heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha Whole sub-period t-statistic Annual Sharpe Ratio
Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

R-square 3.18 2.37 1.29 1.97 2.74 2.74 2.14 3.21 2.81 1.64 0.71 1.59 0.65 0.7 0.26 1.37
Fund Size 2.01 1.74 0.23 1.44 1.86 2.27 0.53 3.07 2.18 1.18 -0.29 1.56 0.62 0.61 0.2 1.37

Active Weight 3.01 3.1 -0.48 1.19 2.87 3.11 -0.01 0.56 2.47 1.85 -0.54 0.53 0.65 0.74 0.19 1.17
Return Gap 2.29 0.91 -0.43 0.55 2.11 1.78 0.17 0.09 2.3 1.04 -0.3 0.09 0.6 0.61 0.2 1.12
Fund Flow 2.65 0.73 0.06 1.82 2.73 1.32 0.54 3.44 2.22 0.74 -0.06 1.77 0.66 0.62 0.22 1.42
Sharpe 1.45 0.7 0.57 1.11 1.83 0.87 0.94 2.99 1.97 0.59 0.25 1.46 0.64 0.72 0.25 1.37
Treynor 1.77 0.73 0.62 1.37 2.12 0.98 0.93 3.19 2.03 0.63 0.19 1.61 0.64 0.69 0.24 1.38
Beta 3.52 0.72 0.45 2.02 3.92 1.58 1.33 3.65 2.15 0.64 0.06 1.94 0.65 0.45 0.21 1.43
Sigma 2.19 1.66 1.6 2.36 2.07 1.66 2.03 3.63 1.88 0.91 0.84 1.93 0.59 0.64 0.29 1.38

FDR10% 2.7 0.6 -0.47 -0.35 2.23 1.2 0.09 1.63 2.01 0.83 -0.33 0.69 0.6 0.65 0.19 1.09
Equal Weight -0.45 -1.65 0.29 -1.56 -0.48 -1.28 0.2 -1.34 -1.11 -1.53 -0.36 -2.65 0.48 0.54 0.23 1.01

Equal Weight Plus 0.76 -0.96 0.26 -0.65 0.84 -1.01 0.4 -0.38 1.17 -1.12 -0.36 -0.62 0.55 0.54 0.21 1.11
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Table 1.8: Performance comparison of fFDRτ portfolios and portfolios based on sorting
on covariates (single-sorting) as well as based on both covariates and past alpha (double-
sorting). The table shows the portfolios’ annual Carhart four-factor alpha (in %) for the period
January 1982 to December 2019. At the end of each year, for the single-sorting 10% portfolio, funds
are sorted by the covariate. Depending on whether the relationship of the covariate and the fund
performance is positive or negative, the funds in the top or bottom 10% are chosen to invest in the
following year. For the double-sorting 10% portfolio, the funds chosen in the single-sorting 10% are
ranked based on the past five-year alpha and then only 10% of the funds in the top are selected.
Note. As documented in the literature, the R-square and Fund Size (Fund flow, Return Gap and
Active Weight) have a negative (positive) effect on the mutual funds’ performance. The single- and
double-sorting portfolios constructed based on this assumption appear italicized.

Portfolio R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
Panel A: Performance of fFDR10% and fFDR20% portfolios

fFDR10% 1.69 1.14 1.38 0.77 1.30 1.04 1.15 1.67 1.27
fFDR20% 1.84 1.16 1.45 0.82 1.28 1.02 1.10 1.77 1.61

Panel B: Assuming a positive effect of the covariate on performance of the fund
Single sort 10% -1.07 -0.64 -0.63 -1.46 -1.02 0.13 -0.07 -2.11 -2.40
Double sort 10% -1.03 0.03 1.43 -0.40 0.33 0.18 0.44 0.30 0.97
Single sort 20% -1.17 -0.75 -0.67 -1.15 -0.75 -0.17 -0.28 -1.80 -1.69
Double sort 20% -0.60 -0.18 1.15 -0.07 0.11 0.01 -0.10 -0.64 -0.53

Panel C: Assuming a negative effect of the covariate on performance of the fund
Single sort 10% -0.89 -0.83 -1.40 -1.45 -1.00 -1.96 -2.28 0.49 -0.50
Double sort 10% -1.72 0.30 -1.39 -0.37 0.31 1.86 0.80 0.18 0.47
Single sort 20% -0.86 -1.01 -1.14 -1.34 -1.04 -1.49 -1.49 0.21 -0.67
Double sort 20% -0.34 0.25 -1.20 0.04 -0.01 0.47 0.16 0.19 -0.03

The portfolios based on fFDR gain significant positive alphas and beat the corre-

sponding sorted portfolios. These results further validate the advantage of our method

in exploiting the non-linear relationship of the covariates, luck and funds’ performance.

The inability of the traditional sorted portfolios, that dominate the related literature,

to reflect the predictive value of the covariates under study is thus noteworthy.

In Appendix A.10, we implement an exercise to combine the covariates to a new one

via linear regression and shrinkage method. We see that these simple linear combina-

tions of the covariates does not improve the performance of the fFDR based portfolios.

This result further supports the assumption of the non-linear relationship between the

considered covariates and the performance of mutual funds. As further robustness

checks, in Appendix A.11, we demonstrate that our findings are robust with respect

to a data subset where we require a minimum of $15 million in TNA for a fund to be

considered.

1.7 Concluding remarks

In this chapter, we introduce the fFDR+, a novel multiple hypothesis testing

framework, that incorporates informative covariates to raise the power of detecting
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outperformers, and apply it to mutual fund investing. First, we conduct simulation

experiments to assess how well our method performs in controlling FDR and raising

power compared to the FDR+ method of BSW. We then construct empirical portfolios

based on our new method and nine covariates. We study five covariates, which, based on

earlier contributions, convey information about mutual funds’ performance and propose

four new ones based on asset pricing models. We show how the admixture of control for

FDR and incorporated covariates advances the generation of more positive and higher

alphas than a portfolio that controls FDR only or a portfolio based on sorting on the

covariate and the past funds’ performance.

The implications of our study are both methodological and empirical. The method-

ological literature in the field of selecting out-performing mutual funds is rich and

expanding. In addition to the influential and well-cited study of BSW, other notable

contributions are due to Kosowski et al. (2006), Andrikogiannopoulou and Papakon-

stantinou (2016), Harvey and Liu (2020) and Grønborg et al. (2021). All these have

their merits and the authors present several promising empirical findings. In our study

we focus on the FDR, whilst we defer an examination of their power relative to ours to

future research. Nevertheless, we ought to note three main distinguishing features of

our method. First, it allows the use of more data in the form of informative covariates,

whilst the vast majority of others are limited to funds’ past returns and their cross de-

pendencies. Second, it is simple to implement and computationally less intensive than

some of the most recent ones (e.g., the double bootstrap of Harvey and Liu, 2020).

Third, our work can be extended to other problems in which statistical power weighs

more than conservatism (i.e., the FDR threshold is higher), such as in the selection of

hedge funds and bond funds or the assessment of trading strategies.

The empirical implications of our study are also of interest to academics and prac-

titioners. We demonstrate that the five traditional mutual fund covariates can offer

substantial profits in more recent periods. However, the relationship between these

covariates, luck and funds’ performance is non-linear. To fully exploit them, one should

rely on powerful methods that control luck and noise. Our method ensures that. We

also introduce four new covariates and find that their performance in our context is

strong and surpasses that of traditional covariates; a finding that is expected to be
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of interest to investment managers who are constantly looking for valuable covariates

in portfolio selection. From practical point of view, the five new covariates alongside

the R-square provide investors a set of informative covariates that are easily calculated

from funds’ return and freely available risk factors.

As with any methodological approach, there are caveats with our fFDR procedure.

In particular, this requires large datasets and gains higher power as the FDR threshold

increases (see Sections 1.5.3 and 1.5.4). This implies that our approach should not

be applied in problems which require a small FDR target (i.e., when the risk of a

false discovery can lead to disastrous outcomes). As in our context of mutual funds’

performance, it is difficult to explore covariates that seem promising (see, for example,

the list of covariates studied in Jones and Mo, 2021) but with limited data availability.

We aspire that the fFDR and fFDR+ methods will become essential tools for peo-

ple confronted by multiple competing factors, funds or models. The fields of finance and

economics are extending towards big datasets and the literature is filled with predictors

that may have value in economic variables of interest. Our approach can contribute

to the evaluation of all these predictors and be a valuable arrow in the quiver of both

academics and practitioners.
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Chapter 2

Controlling for luck in picking trading strategies

2.1 Introduction

Technical analysis and trading rules are widely used in foreign exchange (FX) trad-

ing (Allen and Taylor, 1990; Taylor and Allen, 1992; Menkhoff and Taylor, 2007). Meese

and Rogoff (1983) and Chinn and Meese (1995) document that major exchange rates

follow a random walk. In contrast, Levich and Thomas (1993) and Neely et al. (2009)

argue that the profitability of technical trading rules existed in the 1970s and 1980s but

declined in the early 1990s, and Neely et al. (1997) and Neely (2002) provide evidence

showing that such profitability cannot be attributed to systematic risk or government

interventions.

However, given that (i) technical trading rules are not theoretically motivated and

that (ii) there exists an enormous number of such rules, the profitability of technical

analysis in FX markets is likely subject to data snooping issues.1 Among all tools to

mitigate data snooping bias in social sciences, the multiple testing frameworks based

on Romano and Wolf (2005), and Bajgrowicz and Scaillet (2012) offer computationally

feasible solutions and has thus been widely applied to research questions involving

a large number of predictive models.2 One common feature of the methodologies in

this framework is that the rejection criterion only depends on information created by

predictive models and does not account for external information.

1Data-snooping is a statistical bias that appears when a dataset is used more than once, for
inference and model selection. It can lead to results that seem statistically significant but are due to
luck and misuse of data analysis.

2Aiming to control for data-snooping in assessing trading rules, numerous multiple testing pro-
cedures have been proposed such as the contributions of Sullivan et al. (1999, 2001), White (2000),
Hansen (2005), Barras et al. (2010), Bajgrowicz and Scaillet (2012) and Hsu et al. (2010) among others.
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Using the aforementioned multiple testing methods, some recent studies show that

technical trading rules’ profitability has declined since the 1990s (Qi and Wu, 2006; Hsu

et al., 2016). Nevertheless, such a decline pattern is based on null hypotheses being

unconditional zero, which corresponds to investors not acquiring external information

in assessing technical rules’ profitability. Despite its prevalence and convenience, such

unconditional testing may not be ideal because currency traders are assessing and pick-

ing trading rules based on multiple performance metrics. Thus, the value of technical

analysis for FX traders may not be appropriately estimated in an unconditional testing

framework as has been done in literature.

In this chapter, we propose a new methodology that accounts for more information

sources (which can be captured by “informative covariates”) in forming the rejection

criterion, which enhances the statistical power given the same false discovery rate (FDR)

defined by Benjamini and Hochberg (1995) (BH henceforth). We name our method as

multivariate functional FDR (mfFDR). Conceptually speaking, embedding informa-

tive covariates (and new information they carry) in multiple testing enables us to form

conditional null hypotheses, in which predictive models’ profits are zeros conditional

on updated information. Such a conditional setting is more consistent with the ra-

tional expectation hypothesis and better captures market participants’ time-varying

standards.

Via simulations, we show that our mfFDR method performs well in controlling

for the FDR under various settings. Its performance in terms of power is impressive

and beats that of prior methods with gaps of about 67% and 44%, respectively.3 In

addition, the proposed procedure performs well under weak signal-to-noise data, i.e.

the data where the true alternative hypothesis tests have high p−values due to high

noise. It is also robust under weakly dependent data and when informative covariates

are correlated or contain estimation errors.

We implement the mfFDR method to detect genuinely profitable trading rules in

a set of more than 21,000 technical trading rules. Using daily data over a maximum

3As benchmarks, prior methods include the FDR approach of Storey (2002) and the functional
FDR (fFDR) in Chen et al. (2021a) (CRS henceforth) that allows only one informative covariate.
These two methods have been applied to stock index and mutual fund performance by Barras et al.
(2010), Bajgrowicz and Scaillet (2012), and Chapter 1.
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of 50 years for 30 U.S. dollar exchange rates, we use our mfFDR method to select

rules that outperform zero in a rolling 12-month window. The informative covariates

we consider include (i) the auto-correlation of a trading rule’s excess return; and (ii)

the estimates of the alpha, beta, and R-square from a regression of the trading rule’s

excess return on the excess return of a passive buy-and-hold strategy or a currency

market factor.

We then collect outperforming rules to construct a monthly portfolio for a currency

or a basket of currencies and track the performance of these portfolios with and with-

out transaction costs. We find that it gains positive profits in 28 over 30 considered

currencies for an extended period from 1973 to 2020 after transaction costs, and 16

among them are statistically significant.

To examine the advantage of the mfFDR method, the number of rules selected

by the mfFDR is larger than those based on prior methods (fFDR and FDR).

More importantly, we find that the out-of-sample (OOS) performance of the mfFDR-

based portfolio is better than those based on prior methods in two aspects. First, the

mfFDR-based portfolio with the use of four covariates beats all fFDR-based with the

use of every single covariate. Second, using a linear combination of the four covariates,

such as the first principal component (PC1) does not improve the performance of the

fFDR-based approach compared to using individual underlying covariates. Finally,

when we construct a larger portfolio, which is based on a pool of all trading rules

applied on all 30 currencies (about 635,850 trading rules = 21,195 × 30), we find that

it gains a Sharpe ratio of 1.06 and 0.95 before and after transaction costs, respectively.

These empirical results highlight the value of directly incorporating more infor-

mation in multiple testing and offer the following insights. First, considering more

covariates in the mfFDR enhances the OOS performance of detected out-performing

trading rules. Second, the mfFDR outperforms the fFDR with linear combinations

of multiple covariates, suggesting that the mfFDR might effectively extract non-linear

information among covariates. Third, prior methods based on the unconditional null

hypothesis, such as FDR, may underestimate technical trading rules’ true predictive

ability and profits because their performance is not evaluated with comprehensive in-

formation sets.
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Our further empirical analyses aim to present the evolution of the profitability of

technical analysis. We split our sample into five decades (1973-1980, 1981-1990, 1991-

2000, 2001-2010, and 2011-2020) and examine the performance of technical trading rules

using the mfFDR in each decade. We find a decent proportion of profitable technical

trading rules in the most recent three decades. Those detected out-performing rules

are still profitable OOS for the most recent decade. Cross-currency analyses show that

the profitable rules distribute significantly across currencies become less commonly in

developed currencies since 1990. Cross-category analyses further show that categories

of rules perform differently. First, the moving average category is most profitable group

overtime both in-sample and OOS. Second, they generate trading signals with different

frequency from which we imply useful guidance for traders.

This study contributes to the finance and econometrics literature as follows. From

a methodological perspective, we add an important dimension – the conditioning infor-

mation – to the correction for data snooping biases.4 Under the rational expectation hy-

pothesis, the performance of predictive models (and associated null hypotheses) should

reflect researchers’ and industry practitioners’ time-varying expectations. ThemfFDR

methodology we propose allows researchers to utilize comprehensive information from

multiple covariates to test conditional null hypotheses that appear to be more realistic

to both academia and industry. By designing and implementing suitable Monte Carlo

simulations, we illustrate that our mfFDR approach actually controls for FDR under

various settings of signal strength. This is robust under weakly dependent data, cor-

related covariates, and even those covariates with estimation errors. In addition, our

simulations suggest that the mfFDR method has higher power than prior methods

(FDR and fFDR) that do not update for sufficient information.

From an empirical perspective, we perform the most comprehensive study of techni-

cal trading rules in FX markets to timely assess the predictability of such rules and pro-

vide further insights on FX traders’ “obstinate passion” in technical analysis (Menkhoff

and Taylor, 2007). Our analyses are based on constructing 635,850 trading rules, using

4Some prior literature highlights the data snooping issues, which leads to the development of some
methodologies to guard against such biases. While several multiple testing procedures have been
proposed in the past (White, 2000; Hansen, 2005; Barras et al., 2010; Bajgrowicz and Scaillet, 2012;
Hsu et al., 2010), they only consider unconditional null hypotheses and use information from predictive
models’ performance metrics.
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FX data of all 30 currencies for a long period (some are as long as almost five decades),

and implementing large-scale multiple testing for the profitability of technical analysis.

As a matter of fact, we find that the number of outperforming technical rules is compa-

rable in the 2001-2010 and 2011-2020 periods. This novel evidence thus challenges the

following two prior beliefs or common perceptions in the literature: (i) the profits of

technical analysis are illusive and driven by data snooping biases; and (ii) such profits

are a short-term phenomenon and only exist in relatively immature markets (e.g., Lo,

2004; Neely et al., 2009).

The chapter is organized as follows. The next section develops the mfFDR frame-

work and designs simulations to show its performance. Section 2.3 presents descriptions

of the data and trading rule universe and Section 2.4 is devoted to the trading rule’s

performance measure. In Section 2.5, we present the empirical results where mfFDR-

based portfolios are constructed on individual currencies and a basket of 30 currencies.

Finally, Section 2.6 concludes the chapter.

2.2 The use of covariates in FDR framework

In this section, we introduce themfFDR that estimates the false discovery rate as a

function of more than one informative covariate. Our approach develops the frameworks

in Chapter 1 on the fFDR with a single covariate. First, we present the setting of our

method and its implementation in the context of data snooping and FX trading. Second,

we conduct simulations demonstrating the value of multiple informative covariates in

controlling the false discovery rate and the superior power of the mfFDR compared

to the related existing approaches. Third, we validate the performance of our method

under certain dependence structures of data which are typical in finance. We confirm

that our approach retains its power and control of the false discovery rate when the

statistics are weakly dependent and when informative covariates are correlated and

contain estimation errors - all these features are common in most financial data and

topics.
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2.2.1 The multivariate functional false discovery rate (mfFDR)

Suppose we have n trading rules, each producing an excess return. Assume that

there are covariates that convey information about the performance of each trading rule,

which is measured by a metric ϕ. As detailed in the following sections, in this study, we

use the Sharpe ratio (SR) as our main performance metric. To assess the performance of

each strategy, conditional on the realization of the covariates, we conduct a hypothesis

test

H0 : ϕ = 0, H1 : ϕ ̸= 0. (2.1)

The n trading rules produce n conditional tests as in test (2.1). Our aim is to detect a

maximal number of strategies having significant none-zero ϕ while controlling for FDR,

the expected proportion of false discoveries among the hypothesis tests called significant

as introduced in BH.

For the convenience of notation, let us consider the single test (2.1). To formulate

the assumptions, we assume there are d covariates, represented by random variables

Z1, . . . , Zd, conveying information about the probability of a hypothesis being true null

as well as the distribution of the p−value of the false null hypothesis. Let us denote

by P the random variable representing the p−value of the test and Z = (Z1, . . . , Zd).

Also, let h be the true status of the hypothesis, that is, h = 0 if the null hypothesis is

true and h = 1 if the null hypothesis is false. To indicate a particular test corresponding

to a trading rule i, we add the subscript i to all mentioned notations, i.e. pi, hi and Zi.

To control the FDR at a level τ ∈ (0, 1), the conventional decision rule is a null

hypothesis i is rejected if and only if pi ≤ Θ̂ where Θ̂ is a common threshold for all

hypotheses, determined via a data-driven manner depending on particular procedures.5

In contrast, in this study, the threshold depends on realized values of covariates Z and

varies across hypotheses, i.e. the rejection condition becomes pi ≤ Θ̂(zi) and will be

expressed in an implicit formula as presented below.

For each j (j = 1, . . . , d), we transform the observed value of the covariate Zj
i

to a form so that Zj
i uniformly distributed on [0, 1], via using zji = rji /n where rji

5For instance, the procedure of BH ranks the hypotheses based on p−values from smallest to
highest. Denote by p̃js the p−values after ranking, the BH procedure seeks for j∗ = max{j|p̃j ≤
j × τ/N} where N = n, then sets Θ = p̃j∗ . Storey (2002) uses the same procedure with N =
(number of pi > λ)/(1− λ) for some λ ∈ (0, 1).
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is the rank of the observed value of Zj
i in the set of observed values of Zj

1 , . . . , Z
j
n,

j = 1, . . . , d. In the followings, Zjs are the ones in the transformed forms. We assume

that, conditional on Z = z, the hypothesis is a priori true null with probability π0(z),

i.e. (h|Z = z) ∼ Bernoulli(1 − π0(z)). Its estimation procedure will be discussed in

below.

To formulate the theoretical framework, we require Z and P satisfying: i) Zjs are

mutually independent, j = 1, . . . , d; ii) Conditional on Z = z, when the null hypothesis

is true, P is uniformly distributed on the interval [0, 1] and when the null hypothesis is

false, P has a distribution determined by some density function falt(p|z). To develop

the theoretical framework, we assume that the aforementioned n tests are independent

replications of the test (2.1), i.e., the triple h, p−value and covariates of the tests are

independent, and each of them has the same distribution as the triple (h, P,Z). In the

next Sections, we show that our method can also be applied to scenarios when there is

a dependence among test statistics and covariates.

The gist of our method is as follows. Given a target τ of FDR, we do not decide

to reject the null hypotheses based on their p−values solely. We instead reject a null

hypothesis by a rule based on both the p−value and the covariates. Thereby, we define

each hypothesis with an observed (p, z), a posterior probability of being null denoted by

r(p, z). If there are any significant hypotheses, the hypothesis with the smallest r(p, z)

will be selected first, then the second smallest one and so on. Each time a hypothesis is

added to the significant set, the FDR is raised. We stop the procedure when the FDR

target is reached. More specifically, the posterior probability of being true null is

r(p, z) = P(h = 0|(P,Z) = (p, z)) (2.2)

which can be developed further as

r(p, z) =
P(h = 0|Z = z)

P((P,Z) = (p, z))
=

π0(z)

f(p, z)
(2.3)

where f(p, z) is the joint density function of the p−value and covariates.6

6The equation (2.3) is obtained by using the fact that P(h = 0, P = p,Z = z) = P(P = p|(h =
0,Z = z)).P(h = 0|Z = z).P(Z = z) = P(h = 0|Z = z) where the first and last factors equal one as
they are density functions of uniform distributions.
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Empirically, r(p, z) is estimated by r̂(p, z) = π̂0(z)/f̂(p, z) where π̂0(z) and f̂(p, z)

are estimators of π0(z) and f(p, z), respectively. For the sake of space, we refer to the

details of the estimation procedures in Appendix B.1.

Consequently, the rejection region has a form Γ(θ) = {(p, z)|r̂(p, z) ≤ θ} where

θ ∈ (0, 1) is satisfying

∫
Γ(θ)

r̂(p, z)dpdz ≤ τ. (2.4)

The left side of the equation (2.4) is the estimate of the FDR corresponding with the re-

jection region Γ(θ). Hence, we choose a maximal threshold θ = θ∗ such as the condition

(2.4) holds. Thus, a hypothesis is significant if and only if its observed (p, z) belongs

to the set Γ(θ∗). This rejection rule implicitly stands for the mentioned condition

pi ≤ Θ̂(zi).
7 To make this procedure more intuitive and efficient, the rejection rule is

implemented via the “functional q−value” introduced in CRS. For each hypothesis i

with observed (p, z) = (pi, zi), we determine its q−value as the estimate of the FDR

when we reject the null of all hypotheses j having r̂(pj, zj) ≤ r̂(pi, zi). Thus, at the

given target τ of FDR, a null hypothesis is rejected if and only if its corresponding

q−value ≤ τ .

We name the proposed procedure, where the z is a vector of more than one covariate,

as mfFDR. When d = 1, the mfFDR is the fFDR of CRS. In the followings, we

present an intuitive illustration of the value of informative covariates in the mFDR

framework, and we compare the performance of the proposed method to others in

terms of FDR control and power.

2.2.2 Simulation studies

We consider the simplest case where we have two informative covariates Z = (U, V ).

We simulate n = 10, 000 hypotheses where the proportion of the null hypotheses is

approximately 0.8.8 Suppose that the two covariates convey information about the

hypotheses. We will demonstrate that by using mfFDR, which utilizes both covariates

7That is, the null hypothesis i is rejected if and only if r̂(pi, zi) ≤ θ∗ - an implicit form of pi ≤ Θ̂(zi).
8This setting of π0 is chosen similar to studies in statistics literature such as Storey (2003) and

CRS. Our conclusions on the superior power of the mfFDR over other methods under studying remain
unchanged under different choices of π0.
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as inputs, we obtain a higher power in detecting false null hypotheses than the fFDR,

which uses only one of the two covariates.

The data-generating process in our mfFDR simulations is as follows. In each

iteration, we independently draw the elements of the covariates U = (u1, . . . , un) and

V = (v1, . . . , vn) from the uniform distribution U(0, 1). For each hypothesis i we draw

its null status hi from a Bernoulli distribution with a probability of being null P[hi =

0|(u, v) = (ui, vi)] = π0(ui, vi), i.e. hi ∼ Bernoulli(1 − π0(ui, vi)), where π0(u, v) has

one of the two following forms

• π0(u, v) = sin[π(u+ v)/2], i.e. a sine function;

• π0(u, v) = 1− (u4 + v4)/2, i.e. a monotonic function (concerning each covariate).

We obtain two bundles of (U, V,H) that correspond to the two forms of the π0(u, v),

where H = (h1, . . . , hn).

Next, for each triple (U, V,H), we generate p−values for tests such that for each

true null hypothesis, i.e. the one with hi = 0, its p−value is drawn from the uniform

distribution U [0, 1], whereas the p−value of a false null hypothesis the distribution with

density function falt(p|(u, v)). We specify falt(p|(u, v)) by using a Beta distribution

Beta(α, β), i.e. falt(p|(u, v)) ∝ pα−1(1 − p)β−1 where the α and β are positive real

parameters determining the shape of the distribution. Here, similar to CRS, we set

the β as a function of the covariates, specifically as β = 3 + 1.5(u + v). Aiming to

study the method’s performance in various circumstances, we consider three cases of

α ∈ {0.5, 1, 1.5} which we name as strong, weak and very weak signal, respectively

(thus, we have three specifications of a Beta distribution). In the strong signal case,

the false null hypotheses are more easily distinguished from the true null ones than

those in the weak and very weak signal cases.

To illustrate clearer how different the three cases are, Figure 2.1 depicts in Panel A

(Panel B and C) the distribution of p−values of the false null hypotheses drawn from

the strong (weak and very weak) signal case on the left, and of the whole population

on the right of the panel. In these panels, the probability of being null each hypothesis

is generated from the same sine form of π0(u, v) and the p−values of the true null

hypotheses are drawn from the uniform distribution [0, 1]. In the strong signal case

53



(α = 0.5), the p−values of the false null ones are mostly concentrated near the zero

point. In contrast, those p−values under the weak signal setting are less condensed at

the zero point and dispersed remarkably up to 0.6. In the very weak case, the peak

departs from the zero point. The false null hypotheses in the weak and the very weak

cases are more difficult to be detected. For example, if we reject a null hypothesis

whenever its p−value is less than 0.05, then we detect half of the false null hypotheses

in the strong signal case while in the very weak signal case, the detected portion is

much smaller.9 In the context of the technical trading rule, a weak signal means that

the truly out/under-performing rules have small absolute Sharpe ratios, and thus they

have large p−values, which make them more difficult to be detected from a random

walk.

The task is to detect the false null hypotheses from the simulated sample with

control of the FDR at given targets by using only the p−value and the covariates. In

our first experiment, we illustrate the role of informative covariates in detecting false

null hypotheses. Then we benchmark our procedure, the mfFDR with both U and V

as covariates, against the fFDR with only U as a covariate, the FDR of Storey (2002)

which we notate as standard FDR (StdFDR), and the FDR of BH. By comparing

the obtained results with the null status of the hypotheses (i.e., the H) we calculate

a false discovery proportion, which is the ratio of the number of true null hypotheses

falsely rejected over the number of the discoveries, and a correct detection proportion,

which is the ratio of the number of false null hypotheses detected over the number of

false null ones in the population.

2.2.2.1 The role of informative covariates in detecting false nulls

We analyse a simulated sample to show the usefulness of informative covariates

and how they work in the FDR framework. Particularly, we select the one depicted in

Panel A of Figure 2.1. This sample is generated under the strong signal setting with

the sine form of the π0(u, v). To see how the covariates convey the information of the

hypotheses, we partition the sample into nine groups based on dividing each of the u

9We also note that the same number of true null hypotheses will be wrongly rejected at this
threshold for all cases. Consequently, the false discovery proportion is much higher in the very weak
signal case.
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Figure 2.1: Distribution of p−values. The figure shows the distribution of p−values of false null
hypotheses component and of the whole population in three scenarios: the p−values of the false null
hypotheses are drawn from a strong signal case (Panel A), a weak signal case (Panel B) and a very
weak signal case (Panel C).

Panel A: Distribution of p−value under the strong signal case (α = 0.5).

Panel B: Distribution of p−value under the weak signal case (α = 1).

Panel C: Distribution of p−value under the very weak signal case (α = 1.5).

and v into three equal segments. For convenience, the groups are named from 1 to 9,

corresponding to the nine areas of (u, v). In doing so, each group contains roughly the

same number of hypotheses. The p−value distributions of the groups are depicted in

Figure 2.2.

To control the FDR at a target τ , which is τ = 0.2 in this particular example, the

BH and StdFDR reject null hypotheses based on the p−values by seeking a threshold

at which all null hypotheses with smaller p−value are rejected. Thus, this threshold is
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Figure 2.2: Distributions of p−values partitioned into nine groups. The figure shows the
distributions of p−values of nine groups which are partitioned from the sample in Panel A of the Figure
2.1 based on the value of the covariates u and v. Each sub-figure represents a group of hypotheses
corresponding to the values of (u, v) shown in its title.

fixed for all groups. However, as shown in Figure 2.2, groups 1, 2, 4, 6, 8 and 9 contain

much more false null hypotheses than others.10 More specifically, as the p−values of the

true null hypotheses are uniformly distributed, a p−value histogram such as the one of

group 3 indicates that most of the hypotheses in this group are true null. In other words,

the true null proportion in this group is very high. In contrast, the null proportion in

group 1, for instance, is much lower. Hence, when the purpose is to maximize the

number of discoveries (while controlling for the FDR at the given target), instead of

rejecting all null hypotheses up to a single threshold as in a traditional approach, say

0.05, we could simply use a threshold of 0.2 in group 1 and 0.01 for group 3. This is

reflected clearer in Figure 2.3.

In Panel A of Figure 2.3, each line represents the proportion of null hypotheses

rejected by the four procedures across groups 1 to 9. Here, the rejected proportion is

the ratio of the number of null hypotheses rejected in a group over the number of null

hypotheses in the group. It is clear that all procedures reject more null hypotheses

10Since the p−values of the tests are independent, the ones of true null hypotheses are uniformly
distributed and therefore producing a flat histogram. Consequently, a group with a more skewed
histogram contains more true alternatives.
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Figure 2.3: Comparison of the procedures across groups. Panel A of the figure presents the
proportion of rejections of each procedure, whereas Panel B the corresponding maximal p−value of
those null hypotheses rejected in each group. Panel C, in contrast, shows the minimal p−value of
those hypotheses whose nulls are not rejected. The partition of hypotheses into groups is described in
Figure 2.2.

in groups 1 and 9 than they do in groups 3, 5 and 7. Especially, we witness that the

rejected proportions of the mfFDR and fFDR are much higher than those of the BH

and StdFDR in groups 1 and 9, while the figures of the former are slightly less than

that of the StdFDR in group 5. In Panel B, we show the maximal p−value of those

null hypotheses rejected by each procedure. As discussed, a null hypothesis is rejected

by the BH and StdFDR if its p−value is less than some threshold (these thresholds

are 0.01 for the BH and 0.018 for the StdFDR, which virtually coincide with the green

and brown lines in Panel B, respectively). Hence, the maximal p−values of the null

hypotheses rejected in the nine groups for BH and StdFDR are roughly the same. In

contrast, mfFDR rejects some null hypotheses having p−value up to more than 0.8 in

group 1, while in group 5 it does not reject any null hypotheses having p−value more

than 0.011, which is less than the significant threshold of the StdFDR. Thus, a few null

hypotheses are rejected by the StdFDR but not by the mfFDR. Also, as Panels B

and C noted, it is not uncommon in a group that a null hypothesis with a high p−value

is rejected while another with a lower p−value is not. For instance, in group 1, there

is a null hypothesis with a p−value of 0.03 that is not rejected by the mfFDR, while

in the same group, there are null hypotheses with p−values of more than 0.8 that are

rejected.

In summary, our experiments indicate that the mfFDR rejects more null hypothe-
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ses in groups where the false null ones are rich. It is worth mentioning that, while

partitioning the hypotheses into several groups as presented above illustrates the role

of informative covariates in the mfFDR framework, the mfFDR method does not rely

on grouping hypotheses into just a few groups.11 Loosely, it can be understood that,

the mfFDR method treats each hypothesis as a group and establishes a particular

rejection threshold for each group, i.e., a rejection threshold for each hypothesis. This

is implementable using the q−value concept presented in Appendix B.1.

2.2.2.2 Performance of the mfFDR: FDR control and power comparison

In this section, we assess the two most important criteria of an FDR procedure:

the control of the FDR and the power. To do so, we implement the mfFDR and

benchmark procedures at FDR targets τ ∈ {0.05, 0.1, . . . , 0.95} over 1000 iterations and

average the false discovery proportions and the correct detection proportions to have

estimates of the actual FDR and the power, i.e. the expectation of the mentioned correct

detection proportion, respectively. In total, we are studying six cases corresponding to

the combinations of the two forms of the function π0(u, v) and the three aforementioned

specifications of the Beta distribution. We also demonstrate that our method retains its

power when the covariates are correlated with each other and are subject to estimation

errors. Finally, we illustrate the FDR control and the power of the mfFDR when

the p−values are weakly dependent which will be the case when each hypothesis test

represents a technical trading rule that stands for a specific combination of parameters.

To assess the first criterion, we compare the estimated actual FDR of the mfFDR to

the given FDR targets, while for the second one, we compare the power of the mfFDR

against that of the fFDR, StdFDR, and BH approaches.

In Figure 2.4, we show the estimate of the actual FDR and the power of all proce-

dures under the sine (Panel A) and monotonic (Panel B) form of π0(z). In each panel,

the top three sub-figures exhibit the estimated actual FDR corresponding to the three

cases of the signal (strong, weak and very weak). In each of those sub-figures, each line

presents the estimated actual FDR of a procedure at the given FDR targets. Ideally, a

11Ignatiadis et al. (2016) and Ignatiadis and Huber (2021) recently introduce a group weighting
approach where they partition hypotheses to groups based on a single covariate and determine the
rejection threshold (of p−value) in each group. This approach, however, is less powerful than the
fFDR of CRS.
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procedure perfectly (strictly) controls the FDR at a target if its estimated actual FDR

at that target lies on (below) the 45◦ dotted line. For instance, in the top left sub-figure,

Figure 2.4: Performance comparison of FDR methods. The figure exhibits the performance
comparison of the mfFDR, the fFDR, the Standard FDR of Storey (SdtFDR) and the FDR
procedure in BH. Panel A shows the performance when the π0(u, v) has a sine form, whereas Panel B
is the monotonic one. In each panel, the top three sub-figures exhibit the estimated actual FDR and
three bottom sub-figures present the power.

Panel A: π0(u, v) is a sine function.

Panel B: π0(u, v) is a monotonic function.
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all procedures either perfectly or strictly, control for FDR at target 20%. As controlling

FDR is a sample property, it is acceptable to observe a point positioning slightly above

the dotted line since we estimate the actual FDR over only 1000 iterations. In general,

from the sub-figures, we see that all procedures control well for the FDR at any given

targets and in all considered cases.

In terms of power, it makes sense to focus on only the FDR targets less than 0.5

(i.e. up to 0.45 in our simulation). Hence, the three bottom sub-figures in each panel

present the power of the four methods for only those targets. In all cases, the lines

representing the power of the mfFDR are always at the top regardless of the form of

π0(u, v) as well as the strength of the signal. In other words, the mfFDR beats its

benchmarks in terms of power. Apparently, all procedures have higher power when the

signal is strong. In this case, the mfFDR has gaps up to about 21%, 29% and 37%

compared with the fFDR, StdFDR and BH procedures, respectively. Those figures

are 44%, 67% and 76% (57%, 62% and 62%) for the weak (very weak) signal case. At

the FDR target of 20%, which will be used later in our main analysis, the gap of the

mfFDR over fFDR varies from 10% to 20%. Finally, the weak and the very weak

signal cases highlight the benefit of using the mfFDR when the data has a low signal-

to-noise ratio. While the fFDR, StdFDR, and BH procedures can hardly detect a

single false null hypothesis even at the FDR target of 20% (see the very weak signal

case), the mfFDR quickly gains a significant power of more than 10%.

To sum up, we have developed mfFDR, which enables multiple informative covari-

ates to detect false null hypotheses and compare our method to the FDR procedures of

Storey (2002) and BH, which do not use covariates. We have shown that the power of

the former largely surpasses that of the latter ones while controlling well for the FDR

at any given target. In other words, we can detect more outperforming technical rules

under a testing framework that is conditional on multiple information (i.e., mfFDR)

than the ones that are unconditional or use less information. On the other hand, we also

show that when more than one informative covariate that are mutually independent,

the mfFDR gains remarkably higher power than the fFDR, which is the mfFDR

with d = 1, especially when the signal of the false null hypothesis is weak.
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2.2.3 Correlation and estimation errors of covariates

Hitherto, we have studied the performance of the mfFDR where the covariates are

independently drawn from a uniform distribution. In financial data, this is unlikely the

case. To consider this issue, in this section, we design a simple model where the covari-

ates are positively correlated.12 Given a correlation coefficient of r, the two covariates

studied in the previous section are transformed (with the use of Cholesky factoriza-

tion) into two new covariates having a correlation coefficient of approximately r. The

simulated data are then generated similarly to the previous section. For the interest of

space, we present the results for only the sine form of the null proportion function.13

Aiming to study the impact of the correlation in covariates on the performance of the

mfFDR, we consider varying values of r from 0.1 to 0.8.

Figure 2.5 depicts the performance of the mfFDR in terms of FDR control (Panel

A) and its power compared to others (Panels B and C). For the former aspect, the FDR

is well controlled when r < 0.7 regardless of signal level. This coefficient range covers

most cases in our real data in which, as shown in Section 2.5, more than 95% of the

empirical coefficients have an absolute value less than 0.7. When r ≥ 0.7, the FDR is

controlled well under the weak and very weak signals and asymptotically controlled in

the strong case.

It is noted that the powers of the mfFDR under different correlation coefficients

are incomparable due to the differences in the level of signals. That is, the signal in

higher correlation settings might be stronger due to the transformed covariates as the

p−values of tests are generated based on them. Consequently, to assess the performance

in terms of power, we calculate the gaps in the power of the mfFDR over the fFDR

and StdFDR under each case of r and depict them in Panels B and C, respectively. In

the sub-figures of these panels, a line above zero indicates a higher power of themfFDR

compared to its benchmarks. This is the case for all of the considered settings, with the

peak varying across cases and could reach about 70% or 30%, under the FDR target of

20%, when the benchmark is the StdFDR or fFDR, respectively.

Alongside the concern in the correlation of covariates, the estimation errors of co-

12The performances of the procedures under negatively correlated covariates are similar.
13These two new covariates are not uniformly distributed on [0, 1], thus, the null proportion function

is slightly modified, π0(u, v) = min{1,max{0, sin(π(u+ v)/2)}}, so that its values are in [0, 1].
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Figure 2.5: Performance of the mfFDR under correlated covariates. Panel A exhibits the
performance of the procedures in terms of FDR control whereas Panels B and C present the power
differences of the mfFDR over the fFDR and the FDR procedure of Storey (2002) (StdFDR),
respectively.

Panel A: FDR control of the mfFDR under correlated covariates

Panel B: Gap in power of the mfFDR over fFDR under correlated covariates

Panel C: Gap in power of the mfFDR over StdFDR under correlated covariates

variates (i.e., the noise in the estimating covariates) also potentially affect the perfor-

mance of the mfFDR. In empirical finance, the covariates will be estimated quantities

and are thus subject to estimation errors. To address this concern, we additionally

conduct simulations where the covariates used as input contain noise. For the interest

of space, we defer the results of this experiment to Appendix B.2. Generally, we find

that mfFDR still controls FDR well. Perhaps not surprisingly, its power is lower

than the prior case with uncorrelated covariates, as presented in the previous section.
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Nevertheless, the power of the mfFDR is still remarkably higher than that of other

methods. The mfFDR method is robust to correlation and estimation biases.

2.2.4 Weak dependence in p-values

In developing a theoretical mfFDR framework, we assume that the tests are inde-

pendent replications of the test (2.1). In financial applications, this scenario is unlikely

to be the case. In this particular study, we will consider hypothesis tests comparing the

Sharpe ratios of technical trading rules against zero. In a particular category of trading

rules, the rules with close parameters tend to have highly correlated returns. This leads

to a weak dependency among the testing statistics or p−values of the corresponding

hypotheses. This section shows that our method is robust under this type of depen-

dence. Specifically, we are generating data such that the hypotheses are partitioned

into groups with the same size k. In each group, the p−values of testing hypotheses are

mutually dependent at the same level, which is characterized by a covariance matrix Σ.

The p−values corresponding to the hypotheses from different groups are independent.

The data-generating process is as follows. The simulated covariates π0(u, v) and

true status of null hypotheses H are as described in Section 2.2.2. For the sake of

space, we present only the results for the sine form of π0(u, v) and with a strong signal

setting of p−values. To account for the dependence in hypotheses, we first partition the

true null hypotheses into groups of size k. Secondly, we generate the z−scores for the

null hypotheses of each group from the multivariate normal distribution N (0,Σ). We

process similarly for the false null ones, but the z−scores of each group are drawn from

N (2,Σ). To simplify, the matrix Σ = (Σij)k×k is set as Σii = 1 and Σij = c for i ̸= j =

1, . . . , k for some c. By considering various values of the parameters k and c, we reveal

the impact of the dependence at different levels on the performance of the mfFDR.

Here, we choose c ∈ {0, 0.25, 0.5, 0.75} where the case c = 0 indicates the absence of

the dependence among p−values and will be used as a benchmark for a comparison

purpose, and k ∈ {10, 100, 500}. The parameter k represents the dependence scale.

A larger k indicates the presence of more hypotheses that are mutually dependent.14

Finally, the p−value of each (two-sided) test is calculated from its z−score by using

14This type of weak, dependent setting is also studied in Storey (2003) with k = 10. Here we extend
the cases of k to study its impact on the method’s performance.
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the cumulative distribution function of the standard normal distribution. Note that,

in this setting, the covariates convey only the information on the probability of being

true null of the hypotheses (i.e. via π0(u, v)) and not on the p−values (i.e. we do not

generate p−values via falt(p|(u, v)), but via the dependent z−scores, which does not

depend on the covariates) as in the simulations conducted in the previous sections.

Figure 2.6 presents the performance of the mfFDR under the settings of c and k.

Panel A of the figure shows that the dependence does not affect the FDR control of

the method. In terms of power in Panel B, when k is small, the first two sub-figures

show an insignificant difference between the power of the mfFDR with different levels

of dependence among z−scores in each group. Therefore, the lines corresponding to

different values of c are virtually identical and covered by a purple line. Their powers

are only distinguishable in the third sub-figure, where k is large and for high targets

of FDR. In this case, the power is decreasing concerning c, i.e. the level of dependence

level among the z−scores.

Figure 2.6: Performance of the mfFDR under correlated p−values. Panel A (B) presents
the FDR control (power) of the mfFDR under different level of dependencies among p−value of the
tests.

Panel A: FDR control of the mfFDR under correlated p−values

Panel B: Power of the mfFDR under correlated p−values

In this section, our simulations cover most concerns about applying our mfFDR
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method to economic and financial data. We find that the mfFDR performs well in

terms of FDR control and power with correlated covariates, under correlated p−values,

and with estimation errors in covariates.

2.3 Data and strategy universe

2.3.1 Data

We collect daily spot and 1-month forward exchange rates data against the U.S.

dollar for 30 countries, including nine developed markets (Australian dollar, Cana-

dian dollar, German mark/euro, Japanese yen, New Zealand dollar, Norwegian krone,

Swedish krona, Swiss franc, and U.K. pound) and 21 emerging markets (Argentine

peso, Brazilian real, Chilean peso, Colombian peso, Czech koruna, Hungarian forint,

Indian rupee, Indonesian rupiah, Israeli shekel, Korean won, Mexican peso, Philippine

peso, Polish zloty, Romanian new leu, Russian ruble, Singaporean dollar, Slovak koruna,

South African rand, Taiwanese dollar, Thai baht, and Turkish lira). The sample periods

for developed market currencies start on January 4, 1971, and end on December 31,

2020. The sample periods for emerging market countries start from various dates due to

data available on exchange and short-term interest rates. Israel has the earliest starting

date among emerging market currencies (January 1978) and is followed by South Africa

(January 1981), Singapore (January 1982) and Taiwan (October 1983); all emerging

market data end in December 2020. Our data on exchange rates and short-term interest

rates were kindly supplied by the London branch of the asset manager BlackRock and

are based on midday quotations in the London market.

Table 2.1 presents summary statistics of gross currency returns and short-term

interest rates of developed and emerging economies. We define the gross currency

return that is the return from buying a foreign currency unit and holding it for one day,

rt = ln(st/st−1), where st represents the spot exchange rate on the day t. We define

the spot exchange rate as units of U.S. dollars per foreign currency, so an increase

of s is associated with an appreciation of the foreign currency. We report the mean,

the standard deviation, the minimum and the maximum and the corresponding sample

period. We find that gross returns tend to be more volatile for emerging economies

offering higher minimum and maximum values.
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Table 2.1: Summary Statistics. The table presents summary statistics of gross returns on foreign currencies and short-term interest rates. We report the
mean, the volatility, the minimum and the maximum. We also report the sample period for each currency in our sample. We show results for developed and
emerging economies.

Countries Gross returns on foreign currencies Short-term interest rates Sample Period
mean(%) vol min max mean(%) vol(%) min(%) max(%)

Developed
Australia -0.0028 0.0068 -0.1925 0.1073 0.0191 0.0119 0.0001 0.1709 1/4/1971-12/31/2020
Canada -0.0018 0.0041 -0.0434 0.0505 0.0172 0.0125 0.0005 0.0596 1/4/1971-12/31/2020
Germany/E.U. -0.0017 0.0058 -0.0421 0.0462 0.0092 0.0078 -0.0020 0.0344 1/4/1971-12/31/2020
Japan 0.0095 0.0063 -0.0626 0.0950 0.0108 0.0124 -0.0006 0.0406 1/4/1971-12/31/2020
New Zealand -0.0033 0.0073 -0.2050 0.0995 0.0194 0.0111 -0.0007 0.1286 1/4/1971-12/31/2020
Norway -0.0014 0.0066 -0.0814 0.0646 0.0163 0.0106 0.0023 0.1372 1/4/1971-12/31/2020
Sweden -0.0036 0.0065 -0.1507 0.0555 0.0171 0.0139 -0.0011 0.2090 1/4/1971-12/31/2020
Switzerland 0.0122 0.0073 -0.0892 0.1267 0.0045 0.0098 -0.0086 0.2276 1/4/1971-12/31/2020
U.K. -0.0044 0.0058 -0.0848 0.0467 0.0160 0.0112 0.0004 0.0460 1/4/1971-12/31/2020
U.S. - - - - 0.0128 0.0097 -0.0000 0.0466 1/4/1971-12/31/2020

Emerging
Argentina -0.0579 0.0098 -0.3418 0.1712 0.0343 0.0368 0.0035 0.4144 4/1/1991-12/31/2020
Brazil -0.0238 0.0097 -0.1080 0.1178 0.0428 0.0283 0.0051 0.2792 1/6/1992-12/31/2020
Chile -0.0070 0.0064 -0.1160 0.1114 0.0014 0.0016 0.0000 0.0214 1/1/1991-12/31/2020
Colombia -0.0224 0.0062 -0.0593 0.0562 0.0315 0.0240 0.0052 0.0908 1/3/1986-12/31/2020
Czech 0.0040 0.0073 -0.0707 0.0522 0.0104 0.0133 0.0002 0.2628 1/4/1978-12/31/2020
Hungary -0.0177 0.0080 -0.0842 0.0520 0.0297 0.0227 0.0021 0.0834 1/2/1987-12/31/2020
India -0.0178 0.0046 -0.1281 0.0376 0.0254 0.0149 0.0002 0.1944 9/1/1994-12/31/2020
Indonesia -0.0276 0.0130 -0.3576 0.2361 0.0296 0.0242 0.0000 0.2054 1/2/1997-12/31/2020
Israel -0.0683 0.0059 -0.1725 0.0645 0.0555 0.0962 0.0002 0.6309 4/27/1993-12/31/2020
South Korea -0.0047 0.0078 -0.1809 0.2012 0.0154 0.0138 0.0012 0.0676 7/4/1994-12/31/2020
Mexico -0.0349 0.0114 -0.2231 0.2231 0.0403 0.0416 0.0077 0.3387 1/3/1994-12/31/2020
Philippines -0.0096 0.0044 -0.0860 0.1015 0.0198 0.0165 0.0014 0.1962 4/22/1992-12/31/2020
Poland -0.0117 0.0079 -0.0715 0.0670 0.0212 0.0198 -0.0004 0.0792 6/4/1991-12/31/2020
Romania -0.0368 0.0091 -0.3887 0.0953 0.0407 0.0518 0.0006 0.3667 1/3/1992-12/31/2020
Russia -0.0515 0.0132 -0.3863 0.2779 0.0288 0.0391 0.0022 0.3208 1/1/1987-12/31/2020
South Africa -0.0286 0.0097 -0.1030 0.1440 0.0289 0.0115 0.0000 0.0588 6/4/1993-12/31/2020
Singapore 0.0043 0.0033 -0.0276 0.0414 0.0053 0.0050 0.0000 0.0181 1/2/1981-12/31/2020
Slovakia 0.0021 0.0063 -0.1097 0.0462 0.0130 0.0164 0.0001 0.2068 1/4/1982-12/31/2020
Taiwan 0.0035 0.0029 -0.0420 0.0430 0.0082 0.0067 0.0004 0.0483 10/4/1983-12/31/2020
Thailand -0.0022 0.0055 -0.2077 0.0635 0.0102 0.0107 0.0004 0.0664 1/2/1991-12/31/2020
Turkey -0.1002 0.0109 -0.3348 0.1256 0.0833 0.0643 0.0130 1.0328 2/1/1990-12/31/2020
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Another important aspect of our analysis is the short-term interest rate as it affects

the overall return of the trading strategies even though technical analysis focuses more

on exchange rate fluctuations. We convert our annualized short-term interest rate (ia),

which is the overnight rate, into daily data it = ln(1 + ia)/360. In Table 2.1, we report

the mean, standard deviation, minimum and maximum values of short-term interest

rates for both developed and emerging countries. We find that short-term interest rates

for developed countries range between 0.45 to 1.94 basis points on average. We also

find that short-term interest rates are higher for most of the currencies of the emerging

markets category and they exhibit a particular variation. The highest interest rate in

this group is for Turkey which is 8.33 basis points and the lowest is for Chile which

offers 0.14 basis points.

2.3.2 Trading rule universe

Based on past daily spot exchange rates, a trading rule determines positions (long,

short or neutral) that traders should take in the next day. In this study, we assess the

universe of trading rules used in Hsu et al. (2016), which consists of the following five

category trading rules widely used by traders.

The filter trading rules : The rules generate a long (short) position whenever the

closing exchange spot rate has risen (fallen) by a given percentage above (below) its

most recent high (low). This family rule is generally based on the momentum of the

exchange rate where traders believe the rising (falling) rate continues rise (or fall). The

threshold percentages are set so that the traders are not misled by the small fluctuations.

Moving average trading rules : These rules generate long or short positions based

on comparing the closing spot exchange rate to one or three simple moving averages

of given different lengths or comparing the moving averages of two different lengths.

For example, the simplest moving average rule generates a long (short) position when

the spot exchange rate moves up (down) at least a certain per cent above (below) the

moving average of a specific length.

Relative strength indicators : A relative strength indicator is a popular form of an

oscillator, which aims to identify imminent market corrections after rapid exchange rate

movements. Generally, the indicator of a given length has values from 0 to 100 and
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generates an oversold or overbought signal when it crosses a predetermined lower or

upper extremity, respectively.

Support-resistance rules : These rules rely on determining a support or resistance

level for which the exchange rate appears to have difficulty in penetrating in a previously

given number of days and a premise that when the closing exchange rate breaches the

level, it will trigger further movement in the same direction.

Channel breakouts : The rules establish time-varying support and resistance levels,

forming a trading channel with upper and lower bounds. Once a bound is breached, a

long or short position is initiated in a similar way as the support-resistance rules.

Given the described family rules, a number of their variants are generated by varying

plausible parameters, the delay time and the position’s holding time. Ultimately, we

obtain 2,835 filter rules, 12,870 moving average rules, 600 relative strength indicators,

1,890 support-resistance rules and 3,000 channel breakout rules, making up 21,195

trading rules in total. Readers are referred to Appendix A in Hsu et al. (2016) for the

detailed specifications of our technical rules.

2.4 Measures of predictive ability and profitability

In this study, we distinguish the excess return and net excess return gained by a

trading strategy before and after counting for transaction cost, respectively. The excess

return from buying one unit of foreign currency (against the U.S. dollar) and holding it

for one day is calculated as the summation of returns due to appreciation/depreciation

of the foreign currency and the return obtained from lending the money in foreign

currency, minus the benchmark return which is the return would gain if the money is

deposited in the U.S., that is

rt = ln(st/st−1) + ln(1 + i∗t−1)− ln(1 + it−1) (2.5)

where st and st−1 are spot rates at the midday of the days t and t − 1, respectively,

and it−1 and i∗t−1 are daily interest rates on U.S. dollar deposits and foreign currency

deposits on the day t− 1, respectively.

The daily excess return of the trading rule j, earned from day t− 1 to day t, Rj,t,
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is determined as

Rj,t = Sj,t−1.rt (2.6)

where Sj,t−1 is a position guided by the trading rule based on past data up to day t− 1

and taking value in the interval [−1, 1]. For most of the trading rules in our universe,

Sj,t−1 takes value +1 for the long, (−1) for the short and 0 for the neutral position on

the foreign currency. For some moving average trading rules, where the signal guides

for positioning one-third of funds on a long position while the rest is kept in U.S. dollar

or on a short position while the rest is kept in foreign currency, Sj,t−1 takes value +1/3

or −1/3, respectively.15

In this study, we assess the performance of a trading rule j based on its Sharpe

ratio. From day T1 to day T2, it is defined as

SRj =
Rj

σj

, (2.7)

where Rj and σj are the mean and standard deviation of excess returns of the trading

rule over the mentioned period, that isRj =
∑T2

t=T1
Rt/N , σj =

√∑T2

t=T1
(Rj,t −Rj)2/(N − 1)

where N = T2 − T1 + 1, respectively.

When a trading rule changes its guiding signal, a new or existing position is triggered

or closed and transaction costs occur consequently. The net excess return on a daily

basis, therefore, is the daily excess return less the cost caused by the transactions and

the net excess return and Sharpe ratio after transaction costs of a trading rule are

calculated accordingly. As in Neely and Weller (2013), we use one-third of the quoted

one-month forward rate bid-ask spread in each currency as an estimate of the one-way

transaction costs on any particular day. For periods before the forward data is available,

we set fixed transaction costs for each period in the same way as in Neely and Weller

(2013): for developed country currencies we set the transaction cost at a flat 5 basis

points in the 1970s, 4 basis points in the 1980s and 3 basis points in the 1990s, and for

emerging market currencies we set the daily cost at one-third of the average of the first

500 bid-ask observations.

15Generally, with 1 dollar fund, the excess return for a position guided by a signal St−1 ∈ [−1, 1] is
St−1.rt. When St−1 > 0, we invest St−1 U.S. dollar on the foreign currency and the remaining 1−St−1

on U.S. bond. When St−1 < 0, we borrow an amount equivalent to |St−1| U.S. dollar in the foreign
currency and convert it to U.S. dollar, then we invest the total of |St−1|+ 1 dollar on U.S. bond.
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Table 2.2 captures important features of trading rules in terms of performance cor-

responding to each exchange rate, after transaction costs. It is noted that the number

of significant rules in this particular table is merely based on a conventional p−value

of 5%. If all rules are independent random walks, one should expect there are roughly

530 significantly out-performing rules for each exchange rate.16 With both performance

Table 2.2: Summary performance of trading rules in the whole sample period. The
table shows the number of significant rules, which are those having bootstrap p-value < 0.05 (under
conventional individual tests) and positive estimated performance, the highest performing rule in each
currency with its performance. The column ”Best rule” presents the class with the technical rules that
provide the highest performance metric among all trading rules in a currency in the sample period.
See Appendix A of Hsu et al. (2016) for the details of the various trading rules and corresponding
class codes (F3, MA4, etc). We report two performance metrics - the Sharpe ratio and the mean of
net excess return (both are annualized) which is the excess return after transaction cost.“∗”, “∗∗” and
“∗∗∗” respectively indicate statistical significance at levels of 10%, 5% and 1%.

Mean net return Sharpe ratio
Number of Highest Best Number of Highest Best

significant rules return (%) rule significant rules ratio rule
Australia 900 5.73∗∗∗ F3 1155 0.54∗∗∗ F3
Canada 196 2.67∗∗∗ MA4 217 0.41∗∗∗ MA4
Germany/E.U. 8585 5.33∗∗∗ F3 8536 0.66∗∗∗ MA5
Japan 7862 6.13∗∗∗ MA4 7954 0.61∗∗∗ MA4
New Zealand 6204 6.14∗∗∗ MA1 6747 0.56∗∗∗ MA1
Norway 443 4.24∗∗∗ SR1 449 0.41∗∗∗ SR1
Sweden 6827 5.99∗∗∗ MA4 7038 0.59∗∗∗ MA5
Switzerland 601 5.05∗∗∗ F3 599 0.48∗∗∗ CB1
U.K. 2161 4.58∗∗∗ MA2 2217 0.54∗∗∗ CB1
Argentina 9254 11.22∗∗∗ SR1 10973 0.77∗∗∗ MA5
Columbia 3915 11.04∗∗∗ MA1 4025 1.17∗∗∗ MA5
India 1844 4.44∗∗∗ F3 2287 0.67∗∗∗ F3
Indonesia 1744 10.71∗∗∗ MA4 2401 0.56∗∗∗ MA5
Israel 15271 9.26∗∗∗ MA1 15452 1.22∗∗∗ MA5
Philippines 6401 4.74∗∗∗ SR1 6444 0.69∗∗∗ MA5
Romania 67 5.53∗∗∗ F3 118 0.52∗∗∗ MA5
Russia 3897 15.63∗∗ F1 6246 0.83∗∗∗ MA5
Slovak 1331 5.69∗∗∗ MA4 1348 0.58∗∗∗ MA4
Brazil 4938 10.97∗∗∗ SR1 6623 0.77∗∗∗ MA5
Chile 1545 7.16∗∗∗ SR1 1431 0.85∗∗∗ MA5
Czech 107 5.87∗∗∗ MA4 114 0.52∗∗∗ MA5
Hungary 34 5.39∗∗∗ SR1 80 0.45∗∗∗ RSI
Korea 200 8.71∗∗∗ F3 456 0.7∗∗∗ F3
Mexico 8 4.66∗∗ SR1 190 0.38∗∗∗ CB1
Poland 39 6.3∗∗∗ F3 74 0.51∗∗∗ F3
Singapore 739 2.45∗∗∗ CB1 673 0.56∗∗∗ MA5
South Africa 914 7.82∗∗∗ CB1 1013 0.53∗∗∗ CB1
Taiwan 9782 4.3∗∗∗ MA3 9827 1∗∗∗ MA5
Thailand 3850 6.85∗∗∗ MA1 3842 0.87∗∗∗ MA5
Turkey 13516 16.07∗∗∗ F3 14568 1.1∗∗∗ MA5

16That is, as the p−values of true null hypotheses have a uniform distribution, there are approximate
21195× 0.05/2 ≈ 530 significantly out-performing rules.

70



measures under study, there are 22 over 30 exchange rates having more than 530 sig-

nificant rules. This fact suggests that there could indeed exist a portion of technical

trading rules that are truly profitable. All the best rules of the 30 exchange rates are

significant with five of them gaining more than 10% per annum and four with a Sharpe

ratio of at least one. However, we do not know if these rules are truly profitable or just

lucky before we implement formal tests to correct data snooping biases.

2.5 Empirical results

In this section, we discuss our covariates in technical trading rules and the informa-

tion they potentially convey. Based on the mfFDR test incorporating these covariates,

we select outperforming rules in each currency separately and in all currencies combined.

We then construct rolling portfolios by the selected rules and show their in-sample and

OOS performance. If the performance of technical trading rules in the foreign currency

market is predictable to some degree, investing in technical rules that are truly prof-

itable in an in-sample period is expected to generate an OOS profit. In particular, we

demonstrate the OOS performance of the mfFDR in detecting profitable rules using

the following procedure: we implement the mfFDR on the group of positive estimated

SR trading rules to control for FDR at the given target. We name this procedure the

multivariate functional false discovery rate “plus” (mfFDR+). Similarly, we consider

fFDR+ of Chapter 1 as a benchmark that accommodates one covariate and focuses

on positive performance. For the interest of space, we present the results with control

of FDR at a target of 20% in the main text. In Appendix B.4, we show that our

conclusions are robust for other FDR targets.

2.5.1 Covariates

We apply within our mfFDR framework a set of informative continuous variables

that are derived from technical rules’ return series. These covariates reflect the perfor-

mance persistence, financial risk, activeness and out-performance compared to a passive

strategy of the trading rules under study. The first covariate we consider is the auto-

correlation of a trading rule’s return (ρ) that reflects its performance persistence. For

the remaining covariates, we estimate the following equation for each trading rule in a
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particular currency using a rolling window

ri,t = αi,bh + βi,bhrbh,t + εbh,t (2.8)

where the ri,t is the excess return of the trading rule i, rbh,t is the excess return of the

buy-and-hold strategy in a currency and ϵbh,t is the noise at day t. The αi,bh, βi,bh and

the R–squared of the regression (2.8), respectively, represent the alpha, the riskiness

level, and the variation of the trading rule i compared to the buy-and-hold strategy.

We denote the three covariates as αbh, βbh and R2
bh in the following context.

When the target is to select outperforming trading rules from the universe of all

trading rules of all currencies (or else, when we examine all currencies together), which

consists of 21195 × 30 = 635850 rules, we compare a particular trading rule to the

average currency excess return factor of Lustig et al. (2011), denoted by RX. That is

the return of a strategy that invests equally weighted on all 30 currencies in our sample

(henceforth, currency market factor). In these cases, instead of using regression (2.8),

the latter three covariates are obtained from the regression model

ri,t = αi,mk + βi,mkRXt + εmk,t (2.9)

where the RXt is the currency market factor on the day t. Analogously, we denote the

three new covariates as αmk, βmk and R2
mk, respectively.

While the mentioned covariates have been studied in asset pricing literature such as

Amihud and Goyenko (2013) use the R–square a predictor in mutual fund performance

and Frazzini and Pedersen (2014) use the beta as a factor in various financial assets,

this is the first time in FX literature the informativeness of those covariates in decision

making is studied, especially in context of technical trading rule. In the following

analyses, the informativeness of the covariates will be examined and the benefit of

using multiple covariates under the mfFDR framework will be discussed. We first

focus on constructing a portfolio on each currency and use ρ, αbh, βbh and R2
bh. Then,

we examine all currencies together and consider ρ, αmk, βmk, and R2
mk. Finally, we

investigate how profitable trading rules vary across currencies.
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2.5.2 Individual Currencies

As a first exercise, we examine each currency individually. Therefore, the covariates

of mfFDR+ are R2
bh, αbh, βbh and ρ as described in Section 2.5.1. We use daily data and

construct portfolios in a monthly frequency as follows: for each currency at the end of

each month, we utilize the daily data in the most recent 12 months data as the in-sample

period to calculate the p−value and covariates of the trading rules. We then implement

the mfFDR+ (as explained at the beginning of Section 2.5) to detect outperforming

strategies in the in-sample period at the FDR target of 20%. We combine the signals

of these outperforming rules to determine the position of that day by neutralizing the

opposite ones. For instance, suppose there are 100 trading rules selected as profitable

right before a day. Among them, 20 of them indicate a buy signal with a weight +1, 30

of them indicate sell signals with a weight −1/3, and the remaining 50 provide neutral

signals. After combining, we have 10(= 20 × (+1) + 30 × (−1/3)) long signals out

of 100 profitable rules. Thus, the trader takes a long 1/10(= 10/100) position in the

foreign currency.17 We follow the signals of these portfolios to determine the position of

each trading day in the following month (i.e., the OOS period). We then compare the

performance metrics of these portfolios to those based on rules selected by FDR+ and

fFDR+ with one covariate. The truly profitable rules are detected based on the use of

the excess return (before transaction costs) and we mainly assess the OOS performance

of the portfolio’s net excess return (after transaction costs).18

Table 2.3 provides the quantiles of pairwise correlation coefficients of input covari-

ates and those after combining all coefficients of the pairs as a pool. Those numbers

capture an overview of the dependencies among the input covariates. The final row

indicates that a majority of 98% coefficients are in [−0.69, 0.59] for which the mfFDR

17This approach is based on the idea of the 1/N portfolio strategy, where we invest equally funds into
each of the selected rules. We choose this method for three reasons; First, DeMiguel et al. (2007) show
that such an approach is hard to be beaten by more sophisticated approaches (e.g. approaches weight
funds differently on selected rules). Second, it reflects directly the performance of its components
(e.g., the selected rules). Lastly, the funds allocated to opposite signals should be neutralized to avoid
transaction costs. In a different context, Burnside et al. (2011) follow a similar approach to construct
carry trade and momentum portfolios and Filippou et al. (2018) build an equally-weighted portfolio
of a trading rule that is based on political risk.

18We assess the rules before transaction cost in in-sample period since the selected rules will be
combined to have a single trading signal in a particular day in OOS period. As such, the frequency of
the combined rule will be reduced. Thus, a rule that generates high transaction cost might not does
so after combining.
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controls very well for any FDR targets as shown in simulations in Section 2.2.3. We

emphasize that there are only 1% of the coefficients having an absolute value from or

above 0.7.

Table 2.3: The pairwise correlation of covariates. The table presents the quantiles of the
correlation coefficients (calculated monthly with the use of one-year in-sample data) of six covariate
pairs which are combinations of the four covariates: R2

bh, αbh, βbh and ρ. The final row shows the
numbers for the set of all correlated pairs.

Covariate pairs min 1% 5% 25% 50% 75% 95% 99% max
R2

bh, αbh -0.73 -0.44 -0.32 -0.12 0.05 0.21 0.40 0.54 0.70
R2

bh, βbh -0.82 -0.75 -0.68 -0.51 -0.25 0.18 0.59 0.70 0.81
R2

bh, ρ -0.92 -0.68 -0.40 -0.09 0.02 0.12 0.28 0.47 0.91
αbh, βbh -0.81 -0.54 -0.39 -0.20 -0.06 0.09 0.30 0.45 0.72
αbh, ρ -0.86 -0.45 -0.22 -0.10 -0.04 0.02 0.12 0.21 0.72
βbh, ρ -0.52 -0.32 -0.19 -0.06 0.01 0.08 0.22 0.34 0.58
All pairs -0.92 -0.69 -0.51 -0.15 -0.02 0.10 0.36 0.59 0.91

In Table 2.4, we present the average number of trading rules selected by FDR+

and mfFDR+, controlling for FDR at 20%, at the end of each month in different

sample periods. As mentioned earlier, we measure technical trading rules’ in-sample

performance using the Sharpe ratio based on the portfolios’ excess returns. We find

that controlling at the same level of FDR, the mfFDR+ detects more outperforming

rules than FDR+ does. This finding strongly holds for all currencies both in the whole

period and in the sub-periods.

In Table 2.5, we present the OOS performance of the portfolios including the FDR+,

fFDR+ and mfFDR+ in terms of Sharpe ratio based on the portfolios’ excess return

before transaction costs. We also study the performance of fFDR+ having as covariate

the first principal component (PC1) of the four aforementioned covariates. We find that

most portfolios are able to produce positive Sharpe ratios. It is noteworthy that the

mfFDR+ surpasses the other two methods. On the other hand, the performance of the

fFDR+ portfolio with PC1 as a covariate does not surpass that of all fFDR+-based

portfolios with the original individual covariates. On average, it beats βbh and ρ but

not the other two. This combines with fact that the mfFDR+ portfolio based on four

covariates outperforms the fFDR+ portfolio based on PC1 suggest that the former is

effective in extracting useful information, which might not be effectively incorporated

via linear combinations, from different covariates in detecting outperforming rules. This

is possible because the mfFDR+ accounts for the interactions of covariates via the

multivariate null proportion and joint density functions.
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Table 2.4: Empirical power comparison. The table presents the average number of trading rules in portfolios based on the FDR+ and mfFDR+ at
beginning of each month, controlling for FDR at 20%. The first five columns report the numbers in five sub-periods while the last column shows those numbers
across the months from the first time forming portfolios till December 2020.

Period
1973-1980 1981-1990 1991-2000 2001-2010 2011-2020 1973-2020

Currency FDR+ mfFDR+ FDR+ mfFDR+ FDR+ mfFDR+ FDR+ mfFDR+ FDR+ mfFDR+ FDR+ mfFDR+

Australia 4138 8710 2451 8804 359 6615 1104 8095 114 6191 1530 7636
Canada 4603 8089 1349 6810 335 5826 370 6497 1099 5751 1433 6533
Germany/E.U. 2835 8244 3865 10832 496 7225 655 7707 864 6012 1697 7984
Japan 6121 11179 3453 9309 1173 8791 25 6211 724 6499 2145 8282
New Zealand 3227 10921 4483 10066 1141 8163 2232 8298 137 5047 2195 8388
Norway 2218 7348 3914 10194 127 6278 1243 6592 990 5615 1675 7192
Sweden 2485 9306 3050 10704 2142 8036 688 8146 1288 6079 1906 8410
Switzerland 3255 9296 1531 8960 1053 6513 259 6299 353 4684 1210 7056
U.K. 6303 10826 2889 9646 321 4828 22 6389 349 5413 1803 7280
Argentina 1674 2132 1565 3390 8213 10230 4011 5524
Columbia 3711 9102 3723 9918 1821 6589 3010 8463
India 1305 9112 3399 9262 387 5249 1716 7774
Indonesia 20 3936 988 5291 2801 9641 3084 8593 2090 7493
Israel 15551 3570 9365 5464 1882 8918 1542 7876 620 6223 3658 7021
Philippines 10529 13022 4671 9466 3644 8230 357 6962 3348 8509
Romania 11420 14408 1915 5954 896 6175 2312 6823
Russia 6787 11236 3806 9383 2597 8139 3836 9198
Slovak 345 5616 1643 8526 890 5813 1061 6818
Brazil 4185 5536 1350 10093 650 8451 1583 8580
Chile 5425 10570 3694 8572 210 6692 2635 8214
Czech 16 5919 2646 8221 1670 5788 1619 6726
Hungary 331 6843 473 6934 133 4711 310 6096
Korea 3098 9697 1899 8850 124 5346 1547 7761
Mexico 63 1388 628 5454 905 5326 147 6579 526 5518
Poland 2427 7506 1617 6950 359 5365 1298 6447
Singapore 1060 6313 2422 6740 1014 6655 1068 5400 1415 6268
South Africa 2045 9723 2817 8579 1661 8192 187 6635 1649 8199
Taiwan 8678 9708 4078 9220 2860 8490 116 6551 3278 8317
Thailand 1247 7120 2917 9792 2483 7851 2284 8330
Turkey 13393 11654 1477 8028 1935 9302 5334 9596
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Table 2.5: Sharpe ratios of portfolios before transaction costs. The table presents the annualized Sharpe ratios before transaction costs of seven
portfolios based on the FDR+, the fFDR+ and mfFDR+ controlling FDR at 20%. For the fFDR+, we first consider four covariates: αbh, βbh, R

2
bh, ρ and

the first principal component of the four mentioned covariates. For the mfFDR+ we study d = 4 with all four covariates. The last row is the average Sharpe
ratio across currencies. The numbers in parentheses are the corresponding p−values. “∗”, “∗∗” and “∗∗∗” respectively indicate statistical significance at levels
of 10%, 5% and 1%.

Currency FDR+ fFDR+ mfFDR+

αbh βbh R2
bh ρ PC1

Australia 0.16 (0.15) 0.07 (0.60) 0.14 (0.30) 0.14 (0.30) 0.14 (0.30) 0.12 (0.34) 0.18 (0.17)
Canada 0.09 (0.53) 0.00 (0.94) 0.11 (0.44) 0.10 (0.52) 0.09 (0.59) 0.11 (0.46) 0.17 (0.23)
Germany/E.U. 0.24 (0.06)∗ 0.24 (0.11) 0.35 (0.01)∗∗∗ 0.34 (0.01)∗∗∗ 0.23 (0.13) 0.31 (0.03)∗∗ 0.49 (0.00)∗∗∗

Japan 0.49 (0.00)∗∗∗ 0.37 (0.01)∗∗∗ 0.27 (0.07)∗ 0.31 (0.03)∗∗ 0.15 (0.29) 0.30 (0.03)∗∗ 0.45 (0.00)∗∗∗

New Zealand 0.27 (0.00)∗∗∗ 0.22 (0.08)∗ 0.21 (0.07)∗ 0.29 (0.01)∗∗∗ 0.27 (0.02)∗∗ 0.34 (0.00)∗∗∗ 0.34 (0.00)∗∗∗

Norway 0.11 (0.44) 0.17 (0.22) 0.07 (0.61) 0.25 (0.08)∗ 0.02 (0.87) 0.02 (0.90) 0.18 (0.17)
Sweden 0.34 (0.00)∗∗∗ 0.46 (0.00)∗∗∗ 0.32 (0.02)∗∗ 0.30 (0.02)∗∗ 0.28 (0.03)∗∗ 0.32 (0.02)∗∗ 0.40 (0.00)∗∗∗

Switzerland 0.02 (0.89) 0.22 (0.13) 0.13 (0.35) 0.15 (0.27) 0.05 (0.70) 0.16 (0.28) 0.26 (0.06)∗

U.K. 0.24 (0.09)∗ 0.09 (0.52) 0.22 (0.13) 0.19 (0.20) 0.20 (0.17) 0.12 (0.37) 0.29 (0.05)∗∗

Argentina 0.39 (0.12) 0.42 (0.01)∗∗∗ 0.42 (0.01)∗∗∗ 0.41 (0.02)∗∗ 0.47 (0.01)∗∗∗ 0.41 (0.02)∗∗ 0.35 (0.06)∗

Columbia 1.02 (0.00)∗∗∗ 0.59 (0.00)∗∗∗ 0.51 (0.02)∗∗ 0.64 (0.00)∗∗∗ 0.75 (0.00)∗∗∗ 0.52 (0.02)∗∗ 0.60 (0.00)∗∗∗

India 0.37 (0.01)∗∗∗ 0.25 (0.15) 0.17 (0.32) 0.29 (0.08)∗ 0.28 (0.09)∗ 0.35 (0.04)∗∗ 0.34 (0.03)∗∗

Indonesia 0.40 (0.04)∗∗ 0.34 (0.02)∗∗ 0.21 (0.17) 0.25 (0.08)∗ 0.22 (0.16) 0.30 (0.03)∗∗ 0.34 (0.02)∗∗

Israel 1.10 (0.00)∗∗∗ 0.94 (0.00)∗∗∗ 0.78 (0.00)∗∗∗ 0.75 (0.00)∗∗∗ 0.81 (0.00)∗∗∗ 0.81 (0.00)∗∗∗ 0.54 (0.00)∗∗∗

Philippines 0.51 (0.00)∗∗∗ 0.61 (0.00)∗∗∗ 0.59 (0.00)∗∗∗ 0.56 (0.00)∗∗∗ 0.60 (0.00)∗∗∗ 0.63 (0.00)∗∗∗ 0.62 (0.00)∗∗∗

Romania 0.07 (0.72) 0.08 (0.65) 0.09 (0.62) 0.10 (0.58) -0.03 (0.94) 0.03 (0.88) 0.23 (0.19)
Russia 0.44 (0.08)∗ 0.41 (0.06)∗ 0.39 (0.06)∗ 0.42 (0.05)∗∗ 0.42 (0.06)∗ 0.43 (0.05)∗∗ 0.51 (0.01)∗∗∗

Slovak 0.04 (0.77) -0.01 (0.98) 0.20 (0.31) 0.12 (0.51) 0.08 (0.67) 0.14 (0.46) 0.18 (0.35)
Brazil 0.08 (0.65) 0.24 (0.20) 0.02 (0.91) 0.10 (0.63) 0.06 (0.72) 0.11 (0.60) 0.36 (0.07)∗

Chile 0.56 (0.01)∗∗∗ 0.65 (0.00)∗∗∗ 0.44 (0.02)∗∗ 0.46 (0.01)∗∗∗ 0.61 (0.01)∗∗∗ 0.56 (0.01)∗∗∗ 0.46 (0.02)∗∗

Czech 0.11 (0.51) -0.01 (0.98) 0.05 (0.72) 0.27 (0.11) -0.08 (0.68) 0.00 (0.93) 0.12 (0.46)
Hungary 0.01 (0.89) -0.01 (1.00) -0.03 (0.89) 0.03 (0.85) -0.04 (0.90) -0.06 (0.76) -0.11 (0.60)
Korea 0.41 (0.07)∗ 0.33 (0.09)∗ 0.23 (0.22) 0.22 (0.23) 0.18 (0.34) 0.27 (0.16) 0.29 (0.16)
Mexico 0.17 (0.20) 0.17 (0.25) -0.05 (0.76) 0.04 (0.75) 0.06 (0.65) 0.10 (0.52) 0.10 (0.49)
Poland -0.07 (0.70) 0.07 (0.67) 0.05 (0.76) 0.00 (0.98) 0.10 (0.60) 0.15 (0.45) 0.02 (0.92)
Singapore 0.14 (0.38) 0.14 (0.40) 0.12 (0.53) 0.21 (0.20) 0.13 (0.45) 0.03 (0.88) 0.32 (0.02)∗∗

South Africa 0.16 (0.33) 0.21 (0.18) 0.09 (0.53) 0.12 (0.41) 0.22 (0.14) 0.28 (0.07)∗ 0.23 (0.14)
Taiwan 0.77 (0.00)∗∗∗ 0.70 (0.00)∗∗∗ 0.55 (0.00)∗∗∗ 0.69 (0.00)∗∗∗ 0.52 (0.00)∗∗∗ 0.70 (0.00)∗∗∗ 0.73 (0.00)∗∗∗

Thailand 0.34 (0.07)∗ 0.51 (0.01)∗∗∗ 0.27 (0.13) 0.29 (0.12) 0.37 (0.04)∗∗ 0.23 (0.22) 0.47 (0.02)∗∗

Turkey 0.60 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.61 (0.00)∗∗∗ 0.60 (0.00)∗∗∗ 0.64 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.51 (0.00)∗∗∗

Average 0.32 0.30 0.25 0.29 0.26 0.28 0.33
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Table 2.6: Net Sharpe ratios of portfolios. The table presents the annualized Sharpe ratio after transaction cost of seven portfolios based on the FDR+,
the fFDR+ and mfFDR+ controlling FDR at 20%. For the fFDR+, we first consider four covariates: αbh, βbh, R

2
bh, ρ and the first principal component

of the four mentioned covariates. For the mfFDR+ we study d = 4 with all four covariates. The second last row is the average of the Sharpe ratio across
currencies. The last row is the t−statistic of the test comparing the (paired) means of the portfolios fFDR+/mfFDR+ to the portfolios FDR+. The numbers
in parentheses are the corresponding p−values. “∗”, “∗∗” and “∗∗∗” respectively indicate statistical significance at levels of 10%, 5% and 1%.

Currency FDR+ fFDR+ mfFDR+

αbh βbh R2
bh ρ PC1

Australia -0.02 (0.42) -0.01 (0.97) 0.11 (0.42) 0.11 (0.42) 0.11 (0.42) 0.06 (0.63) 0.14 (0.29)
Canada -0.25 (0.80) -0.10 (0.50) 0.06 (0.69) 0.05 (0.80) 0.03 (0.89) 0.00 (0.98) 0.11 (0.46)
Germany/E.U. 0.13 (0.02)∗∗ 0.20 (0.17) 0.32 (0.02)∗∗ 0.31 (0.02)∗∗ 0.19 (0.19) 0.27 (0.07)∗ 0.46 (0.00)∗∗∗

Japan 0.38 (0.06)∗ 0.31 (0.02)∗∗ 0.24 (0.11) 0.28 (0.06)∗ 0.11 (0.43) 0.25 (0.09)∗ 0.41 (0.00)∗∗∗

New Zealand 0.00 (0.05)∗∗ 0.10 (0.43) 0.15 (0.24) 0.24 (0.05)∗∗ 0.19 (0.11) 0.24 (0.05)∗∗ 0.28 (0.02)∗∗

Norway -0.08 (0.14) 0.07 (0.64) 0.03 (0.88) 0.21 (0.14) -0.04 (0.78) -0.06 (0.64) 0.13 (0.36)
Sweden 0.17 (0.04)∗∗ 0.39 (0.01)∗∗∗ 0.28 (0.05)∗∗ 0.25 (0.04)∗∗ 0.24 (0.07)∗ 0.26 (0.05)∗∗ 0.36 (0.01)∗∗∗

Switzerland -0.12 (0.41) 0.16 (0.26) 0.10 (0.44) 0.11 (0.41) 0.01 (0.91) 0.10 (0.47) 0.22 (0.12)
U.K. 0.09 (0.30) 0.02 (0.87) 0.18 (0.22) 0.15 (0.30) 0.15 (0.29) 0.06 (0.64) 0.25 (0.08)∗

Argentina 0.27 (0.03)∗∗ 0.36 (0.04)∗∗ 0.38 (0.02)∗∗ 0.37 (0.03)∗∗ 0.43 (0.01)∗∗∗ 0.35 (0.04)∗∗ 0.31 (0.11)
Columbia 0.71 (0.01)∗∗∗ 0.44 (0.04)∗∗ 0.40 (0.07)∗ 0.51 (0.01)∗∗∗ 0.59 (0.00)∗∗∗ 0.35 (0.10)∗ 0.53 (0.01)∗∗∗

India 0.25 (0.12) 0.18 (0.29) 0.13 (0.45) 0.25 (0.12) 0.24 (0.15) 0.30 (0.07)∗ 0.30 (0.07)∗

Indonesia -0.09 (0.29) 0.23 (0.12) 0.12 (0.40) 0.15 (0.29) 0.11 (0.47) 0.19 (0.18) 0.24 (0.09)∗

Israel 0.73 (0.00)∗∗∗ 0.75 (0.00)∗∗∗ 0.68 (0.00)∗∗∗ 0.63 (0.00)∗∗∗ 0.68 (0.00)∗∗∗ 0.65 (0.00)∗∗∗ 0.39 (0.01)∗∗∗

Philippines -0.42 (0.05)∗∗ 0.36 (0.05)∗∗ 0.40 (0.03)∗∗ 0.35 (0.05)∗∗ 0.39 (0.03)∗∗ 0.35 (0.07)∗ 0.46 (0.01)∗∗∗

Romania -0.31 (0.81) -0.13 (0.53) 0.03 (0.86) 0.04 (0.81) -0.13 (0.58) -0.11 (0.60) 0.12 (0.51)
Russia 0.39 (0.07)∗ 0.38 (0.07)∗ 0.37 (0.07)∗ 0.40 (0.07)∗ 0.40 (0.07)∗ 0.40 (0.05)∗∗ 0.48 (0.01)∗∗∗

Slovak -0.12 (0.62) -0.09 (0.68) 0.17 (0.38) 0.10 (0.62) 0.05 (0.76) 0.08 (0.63) 0.13 (0.48)
Brazil -0.05 (0.71) 0.20 (0.29) 0.00 (0.98) 0.07 (0.71) 0.02 (0.94) 0.06 (0.78) 0.33 (0.10)∗

Chile 0.22 (0.07)∗ 0.52 (0.01)∗∗∗ 0.35 (0.07)∗ 0.36 (0.07)∗ 0.47 (0.03)∗∗ 0.43 (0.05)∗∗ 0.38 (0.06)∗

Czech -0.11 (0.17) -0.12 (0.55) 0.01 (0.89) 0.23 (0.17) -0.14 (0.42) -0.08 (0.70) 0.06 (0.65)
Hungary -0.23 (0.97) -0.09 (0.67) -0.06 (0.75) 0.00 (0.97) -0.08 (0.67) -0.11 (0.55) -0.17 (0.41)
Korea 0.15 (0.41) 0.18 (0.33) 0.15 (0.39) 0.14 (0.41) 0.09 (0.62) 0.14 (0.42) 0.23 (0.25)
Mexico 0.04 (0.97) 0.10 (0.49) -0.09 (0.58) 0.00 (0.97) 0.02 (0.86) 0.03 (0.85) 0.04 (0.73)
Poland -0.23 (0.89) -0.01 (0.98) 0.03 (0.87) -0.03 (0.89) 0.06 (0.77) 0.09 (0.64) -0.03 (0.89)
Singapore -0.38 (0.67) -0.19 (0.25) -0.02 (0.93) 0.08 (0.67) -0.03 (0.87) -0.20 (0.21) 0.15 (0.32)
South Africa -0.27 (0.99) 0.01 (0.93) -0.02 (0.93) 0.00 (0.99) 0.08 (0.62) 0.10 (0.54) 0.10 (0.49)
Taiwan 0.44 (0.00)∗∗∗ 0.56 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.59 (0.00)∗∗∗ 0.42 (0.01)∗∗∗ 0.57 (0.00)∗∗∗ 0.66 (0.00)∗∗∗

Thailand 0.11 (0.30) 0.37 (0.05)∗∗ 0.18 (0.35) 0.19 (0.30) 0.27 (0.13) 0.07 (0.75) 0.38 (0.04)∗∗

Turkey 0.36 (0.00)∗∗∗ 0.54 (0.00)∗∗∗ 0.53 (0.00)∗∗∗ 0.52 (0.00)∗∗∗ 0.56 (0.00)∗∗∗ 0.54 (0.00)∗∗∗ 0.45 (0.00)∗∗∗

Average 0.06 0.19 0.19 0.22 0.18 0.18 0.26
t-statistic 3.9 3.5 4.8 3.6 3.4 5.1
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Table 2.6 presents the portfolios’ excess returns after transaction costs and shows

a similar pattern. On average, the Sharpe ratio of the FDR+ portfolio now is indistin-

guishable from zero. The final row of the table presents the t−statistic comparing the

mean of Sharpe ratios of the fFDR+ and mfFDR+ portfolios across currencies to that

of the FDR+. All covariate-augmented portfolios statistically significantly outperform

the FDR+. The mfFDR+ using all four covariates performs the best. This portfolio

gains positive a Sharpe ratio for all currencies except the Hungarian forint and Polish

zloty. 16 of these positive Sharpe ratios are statistically significant.

The implications from Tables 2.5 and 2.6 are threefold. First, the covariates are

informative in a way that they help us to discover more out-performing rules that

are able to deliver profits after trading costs are accounted for. Second, consider-

ing more covariates indeed enhances the OOS performance of technical trading rules

portfolio, which justifies the advantage of mfFDR+ and the importance of conditional

hypotheses. Third, the fact that our method outperforms the fFDR+ suggests that the

information contents of four covariates may be non-linear and cannot be summarized

by principal components, which again supports the strength of mfFDR+.

2.5.3 Baskets of Currencies

In the prior section, we select out-performing trading rules separately in each cur-

rency. The profitability of technical trading rules is found to vary by currency and

time period. It, therefore, might be beneficial for a trader to assess the performance

of trading rules across currencies simultaneously. In doing so, the trader will be able

to diversify and/or switch her/his funds across currencies. Thus, we assume that the

trader can trade all currencies and select, with control of luck, out-performing rules in

a pool of technical trading rules across currencies. Depending on the availability of the

data, the pool consists of 190,755 (= 9 × 21, 195) to 635,850 (= 30 × 21, 195) trading

rules. We construct a monthly rolling portfolio as in the previous section with the use

of the new trading rule set. The four input covariates of the mfFDR+ now are ρ, αmk,

βmk and R2
mk as described in Section 2.5.1. The quantiles of correlation coefficients of

covariate pairs are shown in Table 2.7. Here, again a majority of about 98% of the

coefficients are in [−0.73, 0.53].
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Table 2.7: Summary of correlation coefficients of covariate pairs: the case of all curren-
cies. The table presents the quantiles of the correlated coefficient of six covariate pairs which are
combinations of the four covariates: R2

mk, αmk, βmk and ρ. The final row shows the numbers for the
set of all correlated pairs.

Covariate pairs min 1% 5% 25% 50% 75% 95% 99% max
R2

mk, αmk -0.44 -0.38 -0.27 -0.08 0.02 0.10 0.37 0.67 0.71
R2

mk, βmk -0.81 -0.76 -0.70 -0.52 -0.23 0.12 0.50 0.54 0.55
R2

mk, ρ -0.26 -0.24 -0.18 -0.08 -0.02 0.07 0.25 0.30 0.36
αmk, βmk -0.93 -0.90 -0.68 -0.31 -0.16 -0.03 0.31 0.53 0.63
αmkρ -0.20 -0.15 -0.11 -0.03 0.04 0.12 0.26 0.33 0.36
βmk, ρ -0.40 -0.36 -0.27 -0.11 -0.03 0.05 0.15 0.20 0.21
All pairs -0.93 -0.73 -0.55 -0.16 -0.03 0.07 0.32 0.52 0.71

At beginning of each month, the trading rules selected by the mfFDR+ procedure

(control for FDR at 20%) are pooled together based on currency. For instance, suppose

the mfFDR+ identifies a set of out-performing rules which contains only rules from

two currencies namely A and B. The numbers of these out-performing rules in the two

currencies are kA and kB, respectively. The wealth is then split into k (= kA + kB)

portions and kA (kB) of them are invested on the corresponding rules in currency A

(B). We then calculate the performance of this portfolio for each month.

The performance of the mfFDR+-based portfolios in terms of annualized Sharpe

ratios and mean returns before and after transaction costs are exhibited in Table 2.8.

The first row of each table reveals the performances over the whole sample period,

from 1973 to the end of 2020. We find impressive Sharpe ratios with values of about

1.06 and 0.95 before and after transaction costs, respectively. The one-way break-even

point (reported in the rightmost column), which is a fixed transaction cost at which the

Sharpe ratio of the mfFDR+ portfolio is set to zero, is as high as 60 basis points. The

net Sharpe ratio indicates that in the whole sample period, the mfFDR+ portfolio that

consists of all currencies performs much better than any considered FDR+-, fFDR+-,

and mfFDR+-based portfolios that are traded on a single currency. The next rows of

the table break down the performance of the portfolio into sub-periods of roughly ten

years. While we find deterioration in Sharpe ratios over time, the mfFDR+ portfolio

is still fairly profitable even in the most recent decade (2011-2020). For instance, the

net Sharpe ratio is 0.21 with a break-even cost of 14 basis points.

To better understand the evolution of time-series variation of technical profitability

we conduct the following two analyses. The first one examines the proportion of techni-
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Table 2.8: Performance of the mfFDR+ portfolios. The table shows the annualized Sharpe
ratios (SR) and mean returns (before and after transaction cost) of implementing the mfFDR+ on
all strategies in all currencies to control the FDR at 20%. The last column is the related break-even
point.

Period Excess SR Net SR Excess Return (%) Net Return (%) Break-even (bps)
Whole Period 1.06 0.95 3.80 3.40 60
1973-1980 1.45 1.35 4.47 4.18 69
1981-1990 2.08 1.97 7.30 6.93 128
1991-2000 0.92 0.81 4.15 3.64 72
2001-2010 0.69 0.53 2.37 1.82 34
2011-2020 0.29 0.21 0.88 0.63 14

cal rules being selected as profitable by the mfFDR+ in each sub-period. The second

one examines the portion of technical rules being selected as truly profitable by the

mfFDR+ in each currency in each sub-period, i.e., how prevalent the out-performing

rules are in each category. 19

For the first purpose, we calculate the ratio of the numbers of trading rules selected

as profitable by mfFDR+ in each month divided by the overall number of the input

technical rules which varies from 190,755 (= 9×21,195) at the beginning of the sample

period, when only nine currencies are considered, to 635,850 (= 30×21,195) at the end

of the sample. These ratios are averaged so we have a selected ratio per month. We

report the results for both the whole sample period and sub-periods in the first column

of Table 2.9. We observe that overall, there are 27% of rules are profitable. This

number is 36% in the first decade, then reduced overtime to 18% in the most recent

decade (2011-2020).

Table 2.9 also provides the selected ratio in each category of trading rules. This

measure shows how rich each technical rule category is in terms of containing outper-

forming rules and thus being useful for practitioners. We observe that, in the whole

sample period, the moving average is the most profitable category with 34% of the

set to be outperforming, followed by filter rule, support-resistance, RSI and channel

breakout categories with 21%, 19%, 13% and only 8%, respectively. When breaking

down the rates into sub-periods, more useful facts are revealed. Although the portions

vary across periods, the cross-category distribution of the ratios appears consistent over

19We note that, the two analyses reflect how prevalent the out-performing rules (in in-sample of one-
year periods) are under our framework, they do not reflect how well those rules perform individually
in OOS. In our study, the OOS performance is checked after the selected rules are combined so that
the transaction cost will be reduced by neutralizing the opposite trading signals.
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Table 2.9: Out-performing rate by category. The table shows ratios of selected technical rules
in each category selected by the mfFDR+ under controlling for FDR at 20%. It exhibits the average
of the ratios of technical rules (in %) in each category (Channel breakout (CB), Filter rule (FR),
Moving average (MA), Relative strength relative (RSI) and Support-resistance (SR)) and in a whole
pool of strategies (All) have been selected to invest each month over the whole period (first row) and
sub-periods (remaining rows).

Selected strategy rate
Period All CB FR MA RSI SR

Whole period 27 8 21 34 13 19
1973-1980 36 11 30 45 19 26
1981-1990 36 10 27 46 15 26
1991-2000 23 7 18 29 12 16
2001-2010 23 7 19 29 11 16
2011-2020 18 6 13 23 11 13

time.

Tables 2.8 and 2.9 collectively offer three important insights: first, a substantial

part of technical trading rules are still able to predict FX rates in recent years. Second,

we still find substantial profits from technical rules in the most recent decade (2011-

2020). And third, the moving average category is the richest source of out-performing

rules.

2.5.3.1 Cross-currency distribution of the out-performing rules

It is well-known that technical profitability could decline over time with the im-

provement of efficiency in foreign exchange markets (especially in developed curren-

cies). As documented in prior studies, the profitability of technical trading rules seems

to vanish in developed currencies in the recent decades (Qi and Wu, 2006; Neely et al.,

2009); nevertheless, it still exists in several emerging currencies (Hsu et al., 2016). It is

therefore important for us to examine the evolution of the ratio of selected profitable

trading rules (based on Sharpe ratios) across currencies over time. Table 2.10 presents

the share of profitable rules selected by the mfFDR+ among currencies in each decade.

In the period from 1973 to 1980, when only developed currencies (and a short period of

Israeli shekel) are considered, the most profitable currency is the Japanese yen. From

1981 to 1990, the Israeli shekel is the most profitable. And in the most recent decade,

it is Argentine Peso. It is also clear that from 1990 the contribution of the selected

profitable rules in developed currencies to the whole out-performing portfolios slowly

decline. Overall, consistent with the literature, profitable technical rules are more

81



Table 2.10: Distribution by currency of trading rules selected by the mfFDR+ (control
for FDR at 20%) in sub-periods. The table displays the average proportion (%) of trading rules
selected by the mfFDR+ in each sub-period. For instance, the average number of outperforming rules
selected at the end of each month in the last sub-period, 2011-2020, by the mfFDR+ is 112,647 rules
(the bottom number of the final column) and, on average, 3.1% of those rules are applied on Australian
dollar (the top number of the final column). The bold numbers are the highest ones in a sub-period.

Period
Countries 1973-1980 1981-1990 1991-2000 2001-2010 2011-2020

Australia 9.6 6.7 3.0 3.5 3.1
Canada 9.3 4.2 2.5 2.4 2.3
Germany/E.U. 9.0 9.3 3.9 3.3 3.0
Japan 14.8 7.9 4.8 2.2 3.2
New Zealand 12.1 8.4 3.7 3.9 2.3
Norway 7.7 8.1 3.5 2.9 2.8
Sweden 9.8 9.1 4.4 3.5 3.1
Switzerland 11.4 7.9 4.0 2.6 2.3
U.K. 12.9 7.7 2.7 2.4 2.5
Argentina 1.1 2.8 10.1
Columbia 2.8 4.8 3.2
India 3.7 3.4 2.6
Indonesia 1.7 2.8 4.1 3.7
Israel 3.2 10.9 4.4 2.7 2.3
Philippines 2.9 6.1 3.2 3.1
Romania 1.5 3.4 3.2
Russia 2.9 4.0 4.5
Slovak 1.1 4.0 2.9
Brazil 1.2 4.9 5.0
Chile 2.2 3.5 3.0
Czech 1.7 3.9 3.2
Hungary 2.5 3.4 2.6
Korea 3.1 3.7 2.2
Mexico 0.2 3.0 1.9 3.3
Poland 1.6 3.2 2.9
Singapore 2.9 3.2 2.1 2.2
South Africa 6.2 4.3 4.1 4.1
Taiwan 5.9 4.7 2.6 2.5
Thailand 1.9 3.8 3.2
Turkey 11.6 3.8 5.4

Average number of
selected rules (per month) 69,028 93,317 122,476 146,532 113,160

popularly found in emerging currencies and are less commonly in developed ones since

1990, likely due to market efficiency (Neely et al., 2009).

2.5.3.2 Portfolios of rules conditional on category

Table 2.9 clearly show that the performance of rules are different across category.

Put differently, the category is itself an informative covariate. It is therefore interesting
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to see how mfFDR performs conditionally on the category. However, this covariate

is not continuous and thus cannot be an input of the mfFDR. To study its informa-

tiveness, we therefore repeat the experiment with basket of currencies but on each of

the category. In doing so, we are able to answer two questions: first, which category

is most profitable OOS; and second, which categories traders should consider or avoid

when constructing a portfolio. More specifically, for each category of trading rules we

pool the rules across currencies belonging to the category to form a new set of rules.

Thus, we have five new sets: the largest set is that of the Moving Average category with

number of rules varying from 9×2,870 =25,830 to 30×2,870 = 86,100 rules while the

smallest set is that of RSI category containing from 9×600 = 54,000 to 30×600 =18,000

rules. We construct five mfFDR-based portfolios which control FDR at 20%, each for

one of the new sets.

In Table 2.11, we present the OOS performance of those selected rules. We learn

several facts from the results. First, generally the portfolio conditional on filter rules

is the most profitable OOS before transaction cost and remains so alongside with mov-

ing average after transaction cost. Second, the fact that the break-even points corre-

sponding with filter and support-resistance categories are lower than those of channel

breakout and moving average ones implies that the former ones are trading in higher

frequencies, and thus generate more trading cost. The implication is that, in the time

when transaction cost is high, the traders should avoid using or containing the filter

and support-resistance rules in the portfolio. Third, the RSI category performs worst

with negative profit for all sub-samples and thus for whole sample period. This implies

that the performance of the selected out-performing RSI rules is not persistent. Thus,

if traders construct a mfFDR portfolio based on all rules, they should exclude the RSI

rules from the pool.

As a robustness check, we repeat the exercises with the use of mean excess return

as the performance metric in hypothesis testing. We find a consistent pattern, which is

presented in Appendix B.5 due to the interest in space.

As final remarks, we observe from Table 2.9 that the proportion of profitable rules

detected by the mfFDR+ are significant across decades though slightly decreasing.

From Table 2.8, we see that the profit that the selected rules generate also decline though
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Table 2.11: Performance of the mfFDR+ portfolios implemented on each category. The
table shows the annualized Sharpe ratios (SR) and mean returns (before and after transaction cost) of
portfolios generated by implementing the mfFDR+ on each category of trading rule (on all currencies)
to control the FDR at 20%. The last column is the related break-even point. In each panel, we present
the mentioned metrics for the portfolio implemented on a category in whole sample period (first row)
and sub-samples (next five rows).

Period Excess SR Net SR Excess Return (%) Net Return (%) Break-even (bps)
Panel A: Channel Breakout Rule

Whole Period 0.88 0.80 2.64 2.40 72
1973-1980 0.82 0.76 2.05 1.88 62
1981-1990 2.03 1.95 5.81 5.57 184
1991-2000 0.98 0.89 3.45 3.14 99
2001-2010 0.47 0.36 1.43 1.11 37
2011-2020 0.12 0.06 0.33 0.18 7

Panel B: Filter Rule
Whole Period 1.26 0.91 4.41 3.19 23
1973-1980 1.77 1.53 5.62 4.86 36
1981-1990 2.17 1.81 7.14 5.97 41
1991-2000 0.98 0.66 4.90 3.27 27
2001-2010 1.02 0.44 2.95 1.28 14
2011-2020 0.67 0.37 1.71 0.95 7

Panel C: Moving Average
Whole Period 1.01 0.92 3.80 3.47 71
1973-1980 1.39 1.32 4.49 4.24 89
1981-1990 1.99 1.91 7.42 7.12 156
1991-2000 0.92 0.83 4.23 3.82 89
2001-2010 0.65 0.53 2.43 1.97 41
2011-2020 0.18 0.11 0.57 0.37 9

Panel D: RSI
Whole Period -0.46 -0.96 -0.50 -1.04 -
1973-1980 -0.73 -1.16 -0.63 -0.99 -
1981-1990 -0.20 -0.70 -0.25 -0.84 -
1991-2000 -1.04 -1.67 -1.05 -1.70 -
2001-2010 -0.15 -0.73 -0.19 -0.90 -
2011-2020 -0.40 -0.74 -0.40 -0.74 -

Panel E: Support-resistance
Whole Period 1.00 0.80 3.13 2.48 32
1973-1980 1.37 1.20 3.64 3.18 41
1981-1990 2.06 1.83 6.02 5.34 64
1991-2000 0.87 0.68 3.68 2.87 41
2001-2010 0.55 0.24 1.54 0.67 15
2011-2020 0.34 0.19 0.87 0.49 8

still profitable in recent decade. There are several potential reasons for these facts.

First, the introduction of high frequency trading with the involvement of complicated

trading algorithm implemented by high performance computer. It is worth to remark

that the trading frequency of rules under studying is daily through beginning to the end

of the sample. Experiments with use of hourly data to generate a set of hourly rules can

improve the performance of the portfolios. This is devoted for the future study. Second,
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alongside with the high frequency trading, the introduction of machine learning and in

particular deep learning might explain the mentioned pattern of the profit generated by

the portfolios. Technical analysis can be divided into two types that are quantitative and

qualitative. This study focuses on only the former type. The latter type aims to detect

profitable price pattern. The improvements of computer power and developments of

deep learning allow the qualitative technical analysis being computationally conducted.

For instance, Jiang et al. (forthcoming) show that the convolutional neural network, a

deep leaning model, can detect profitable candlestick chart patterns across global stock

markets. Such technique might have been implemented by investment institutions such

as hedge funds during recent decades across financial markets including FX.

2.6 Concluding remarks

We introduce the mfFDR testing method, which estimates the FDR as a function

of multiple covariates, for detecting the false null hypotheses with control of FDR for

large-scale multiple testing problems. We show that the method works well in control-

ling FDR and gains a considerably higher power than existing methods in detecting

false null hypotheses. Our use of multiple informative covariates helps us examine pre-

dictors’ conditional performance by incorporating a comprehensive set of information

and is applicable to important finance research questions.

Empirically, we apply the mfFDR method to a large universe of technical trading

rules to detect truly profitable ones with control of data snooping biases. We first study

the trading rules of each currency individually. With the use of multiple informative

covariates, the results show that the mfFDR-based portfolio is much more powerful

than the existing methods that are not using covariates. More importantly, this method

quantifies the conditional performance of technical rules, which is more realistic because

currency traders and portfolio managers review and select trading strategies based

not only on a single performance metric but on a set of comprehensively updated

information.

We find that the mfFDR-based portfolio of selected rules generates positive profits

higher than those based on prior data snooping control methods with and without using

a sole covariate. We then study 30 currencies together where more than 600 thousand
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trading rules are generated. We implement the mfFDR method on this set of rules to

construct a portfolio that generates a Sharpe ratio of roughly one for roughly 50 years.

Moreover, this portfolio generates out-of-sample profits even over the recent decades.

The development of the mfFDR framework will contribute to complex problems

in Finance, Economics and other fields of Social Sciences that are plagued by multiple

competing models and hypotheses. It is a powerful framework that is easy to implement

and robust to noise, making our method a promising tool in decision-making in the era

of big data.
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Chapter 3

Picking hedge fund with high confidence

3.1 Introduction

The literature on hedge fund performance has extensively focused on understanding

the risk-return characteristics of hedge funds. Those studies cover the persistent perfor-

mance of hedge fund managers (see, e.g., Agarwal and Naik, 2000; Baquero et al., 2005;

Kosowski et al., 2007; Sun et al., 2018), and the relationship between characteristics of

the funds and their performance. Based on these findings, investors can create portfolios

by sorting hedge funds based on their characteristics and past performance. However,

forming portfolios in this manner has several caveats that make them impractical in

practice. Firstly, due to the large number of funds available, sorting portfolios, such

as those created through quintile partition, can become large in size. Each hedge fund

typically requires a significant minimum investment, which implies a huge investment

requirement. Second, if only a few funds is chosen, via the rankings of the charac-

teristics and other potential predictors, it is likely that some lucky funds are selected

without proper control. Third, existing approaches in fund performance literature that

controls for lucky funds focus on false discovery rate (FDR), which is expected pro-

portion of non-outperforming funds among those selected as out-performers. In hedge

fund application, controlling for this type I error is too loose as there exist many out-

performing hedge funds (see, e.g., Chen et al., 2017). Consequently, portfolios of hedge

funds are again too large in size and more importantly, there are virtually some non-

outperforming funds in portfolio at all time. To have high confidence in hedge fund

portfolio selection, investors require a tool to control for a more stringent error. For

this purpose, controlling for the family wise error rate (FWER), which is probability
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of selecting at least one non-outperforming fund in forming the portfolio, provides a

well-suited solution. To explain this, suppose the investors control for FDR at 5% when

forming their portfolio. Then they would expect there are always about 5% of funds

in the portfolio are non-outperforming. In contrast, if they control for FWER at 5%,

the chance of having non-outperforming funds in the portfolio is 5%. Loosely speaking,

if they form such portfolios yearly over 100 years, they should expect only about 5

years where their portfolio containing some non-outperforming funds. Thus, when the

investors opt to control the FWER instead of the FDR, they gain a much higher level of

confidence in their investment decision, especially when substantial amounts of capital

is involved, as is often the case in hedge fund investments.

Literature in controlling for FWER in detecting out-performers is rich with notable

contributions of White (2000), Romano and Wolf (2005), Hansen (2005) and Hsu et al.

(2010). The main focuses are developing testing procedures that control for FWER

while enhancing the performance in terms of power. All of the mentioned works rely

on bootstrapping procedures and exploit only raw information such as return of funds

or trading strategies. Investors’ flows chase for funds that are truly out-performing,

i.e., the ones that generate positive alpha - the excess return adjusted for some passive

benchmark. However, hedge fund return series are usually short. Consequently, the

investors assess funds based on a short periods of time, typically 24 or 36 months

(see, e.g., Kosowski et al., 2007; Cumming et al., 2012; Chen et al., 2017). Given the

small number of observations, the mentioned existing FWER methods are struggling

in detecting even a small number of the out-performing hedge funds. A more powerful

procedure is therefore in high demand.

This chapter fills the gap by introducing a new approach to control for FWER. The

new approach is based on statistical framework of Zhou et al. (2021), which estimates

the FWER as a function of multiple informative covariates. The new approach deviates

from the framework of Zhou et al. (2021) by specifically aiming to control the FWER

among the discoveries in the right tail. It is well-suited to controlling for luck in the

hedge fund portfolio selection. First, it has a high power in detecting out-performing

hedge funds, which allows investors picking fund with a very low FWER. Secondly,

while effectively controlling for such a low error rate the approach is able to select a
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reasonable number of funds, thereby making the investment size more feasible. Third,

and more importantly, the hedge funds identified by the new approach, though based on

assessment over a short period, perform persistently in some long out-of-sample (OOS)

periods. This makes the method a high potential in real world practice.

Distinguished from existing methods that solely rely on funds’ adjusted returns or

alpha, our approach harnesses additional information to enhance the detection power.

More specifically, we assess performance of a fund via testing its alpha against zero. We

implement the framework of Zhou et al. (2021) with use of the additional information

to detect all funds that having significant non-zero alpha. As we are focusing on the

right tail of the alpha distribution, we select as out-performing funds the subset of those

detected non-zero alpha funds having positive estimated alpha. We name this procedure

the FWER “plus” (fwer+). We show that the procedure controls well for FWER at

any given targets, and when an informative covariate is available, it gains an impressive

power in detecting truly positive alpha funds. Controlling for FWER at 5% target, our

procedure outperforms the stepwise approaches of Romano and Wolf (2005) and Hsu

et al. (2010), the two most powerful ones in recent finance and economics applications,

with gaps that varies from 1% to 15% depending on the number of observations per

fund and the informativeness level of the covariates.

In empirical experiments, we first construct yearly rolling portfolios of out-performing

hedge funds with control for FWER at small targets spanning from 0.1% to 5%. This

choice of rolling window is to overcome the lockup period which might create restrictions

on trading or incur additional cost. We use 20 covariates that are available and easily

calculated from the hedge funds return. The fwer+ with use of single or multiple

covariates always detects non-empty group of out-performing funds despite of the small

targets of FWER and the choice of short in-sample (IS) periods such as 24, 36 or

48 months. We then invest in the selected funds in the following year as OOS and

roll forward till the end of 2021. The portfolios gain statistically significant positive

alphas which spans from 4% to more than 5% per annum. We see that, the portfolios

controlling for smaller target of FWER tend to gain higher alphas, which transform

to Sharpe ratio of more than 2. These results are robust to the choice of IS periods

and asset pricing models. To further examine the persistence in the performance of

89



the funds detected by the fwer+, we consider the choices of longer OOS periods. We

see that even with OOS of four years, the fwer+ portfolios still gain roughly as high

alpha as the choice OOS of one year. This suggests that the fwer+ helps the investors

selecting truly out-performing funds based on assessing funds over a relative short past

performance. We then enhance the informativeness of the covariates via using machine

learning techniques to forecast future funds’ return and use them as new covariates.1

The fwer+ portfolios with use of those new covariates are be able to generate Sharpe

ratio of more than 2.5. Finally, we construct portfolios of only a single fund who per-

forms best among those selected by the fwer+ in in-sample period. These portfolios

gain slightly lower alpha than those in previous exercise but perform impressively in

terms of Sharpe ratio which can reach 5.3.

This chapter thus contributes to literature in both econometrics and economics

aspects. First, it provides a powerful approach to detecting out-performers, which is in

demand not only in hedge funds context but also in many other topics in economics and

finance. Second, it shows that the performance of the genuine hedge funds detected by

the new procedure persists. By using the new method, the investors can detect skilled

hedge fund managers who are able to repeat their performance for long future horizons.

The chapter is organised as follows. Section 3.2 introduces our fwer+ procedure.

Section 3.3 describes our hedge fund dataset while Section 3.4 discusses on our choice of

funds’ performance measure. Section 3.5 provides simulations to show the performance

of the fwer+. Section 3.6 is devoted for empirical analyses while Section 3.7 concludes

our chapter.

3.2 FWER and informative covariates

Suppose that we are assessing n hedge funds based on a performance metric ϕ. We

test for each fund i a hypothesis

H0 : ϕi = 0 against H1 : ϕi ̸= 0. (3.1)

1The idea of enhancing the forecasting power via combining predictors has a long history of de-
velopments. Wang et al. (2023) provide a comprehensive review on this topic. In this chapter, we
are studying the machine learning methods that have been recently gained attention in asset pricing
literature such as Gu et al. (2020) and Wu et al. (2021).
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where ϕi is the true but unknown value ϕ of the fund i, i = 1, . . . , n.

This study focuses on detecting out-performing hedge funds based on their alpha,

i.e., the metric ϕi is alpha of the fund i, i = 1, . . . , n. We aim to detect the funds

having positive ϕ, with controlling for the probability of selecting at least one non-

outperforming fund at a predetermined target τ ∈ (0, 1). Formally, let R be number of

funds selected as out-performing funds and among them F funds actually having ϕ ≤ 0.

We are attempting to control a type I error which is defined as FWER = P(F ≥ 1) at

the target τ .

Literature in detecting out-performers with controlling for FWER focuses on one-

sided test with a composite null, and numerous testing procedures have been developed.

Most recent contributions are the procedures of Romano and Wolf (2005), Hansen

(2005) and Hsu et al. (2010). The common ground of those procedures are based on

bootstrapping with use of funds’ returns (or more generally, some relative performance

variable). These procedures suffer from the computational burden and are not using

additional information, which are informative and available alongside the tests. In

picking out-performing funds, which typically assesses funds’ performance based on

short time series of return, these approaches appear to be lack of power.

The low power issue of multiple testing procedures has been gained attention across

areas of science. Recent developments in statistics attempt to incorporate additional

information to raise the power of detecting false nulls, such as the contributions of

Ignatiadis and Huber (2021) and Zhou et al. (2021). Nevertheless, the implementation

of those innovative approaches in the selecting out-performers has not been addressed.

In this study we are proposing a simple procedure to further develop the framework of

Zhou et al. (2021) to solving the low power problem of the existing approaches.2 In the

follows, we summarise the framework and subsequently propose our procedure.

3.2.1 The use of informative covariates in controlling FWER

Suppose we set a target of FWER at τ ∈ (0, 1) and there is a set of d informative

covariates Z1, . . . , Zd carrying the information on probability that the null of tests (3.1)

2The framework of Zhou et al. (2021) is more sufficient in terms of computation and has been
shown to be more powerful than that of Ignatiadis and Huber (2021).
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being true. Each Zk is a column vector (Zk
1 , . . . , Z

k
n)

′, k = 1, . . . , d. For convenience,

we denote Z = (Z1, . . . , Zd) and thus Zi means (Z1
i , . . . , Z

d
i ). For each i = 1, . . . , n,

let Pi be the random variable representing the p−value of the test (3.1) corresponding

to the fund i and pi be its realization. Conditional on Zi = zi, we denote the prior

probability of the null hypothesis i being true by π0(zi). We model the distribution of

Pi as a mixture of two groups in which the weights of the first and the second group is

π0(zi) and 1− π0(zi), respectively. Let f0 and falt be the density functions of the first

and second group, respectively. Formally, we have

Pi|(Zi = zi) ∼ π0(zi)f0(·) + (1− π0(zi))falt(·) (3.2)

Thus, the covariates Z carry their information through the π0(zi) which takes value

differently across the tests. In contrast, the f0 and falt respectively are the density

functions of those p−values under true nulls and false nulls, and they are in the same

form for all tests, i.e., not depending on i. In this model, the two density functions do

not depend on Z neither. We assume the p−value of a true null is uniformly distributed,

i.e., f0(p) = 1 ∀p.

In conventional approaches, the rejection region is determined by a common thresh-

old T which is fixed for all tests, i.e, a hypothesis i is rejected if and only if pi ≤ Θ.

The idea now is to determine for each hypothesis i a threshold which is a function of zi

denoted by Θ(zi), i.e., the null of hypothesis i is rejected if and only if pi ≤ Θ(zi). For

this purpose, we assume the falt(p) to be a strictly decreasing function of p and follow

the developments of Zhou et al. (2021), the mentioned threshold is defined as

Θ(zi) = f−1
alt

(
π0(zi)θ

∗

1− π0(zi)

)
(3.3)

where θ∗ = min
{
θ > 0 :

∑n
i=1 π0(zi)f

−1
alt

(
π0(zi)θ
1−π0(zi)

)
≤ τ

}
and f−1

alt is the inverse func-

tion of falt.

In practice, the π0(z) is modelled as a logit function which has a form of π0(zi) =

1/(1 + e−b0−b′zi), where b = (b1, . . . , bd) is the column vector of the coefficients of the d

covariates, while falt(p) is modelled as a beta distribution falt(p) = kpk−1 for k ∈ (0, 1).

The parameters b0, . . . , bd and k are estimated via an expectation and maximization
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algorithm.3

3.2.2 Application in picking outperforming funds

As we aim to picking truly positive alpha funds, we actually need to controlling for

FWER in the group of the selected out-performing funds. In this section, we propose

a simple procedure to applying the framework of Zhou et al. (2021) to the problem.

Given a target τ ∈ (0, 1) of FWER, our procedure, namely fwer+, consists of two

steps. First, we implement FWER procedure of Zhou et al. (2021) on the population

of funds with controlling FWER at the target τ . The procedure will detect a set of

abnormal funds, say A, which includes both under- and out-performing funds. Second,

we pick from this set only a subset consisting of those funds having positive estimated

alpha, say A+. Since the probability of having at least one zero-alpha funds in A is less

than τ , this also conservatively holds for the set A+ as it is a subset of A. Assuming

that there are no truly under-performing funds in A that are very lucky and selected

into A+, then the set A+ consists of out-performing funds with FWER being controlled

at the target τ . As controlling for FWER is stringent, this assumption is likely to be

valid.

As will be shown in Section 3.5, the fwer+ controls well for FWER at any given

targets and, when informative covariates are available, it is more powerful than existing

methods.

3.3 Data

Our hedge fund data is collected from Lipper TASS database. Following previous

research, we impose screenings to deal with common sample biases (see, Fung and

Hsieh (2001); Bali et al. (2012); Chen et al. (2021b)). We include only US dollar-based

hedge funds in our sample to avoid duplicate funds listed in different currencies. We

do not consider funds that have not reported any data during the study period as well

as we include both “live” and “graveyard” funds from January 1994 to account for

survivorship bias. To address the back-fill bias issue, we exclude the first 12 months of

returns for each fund. To control for multi-period sampling bias, we require all funds

3For the details of developments and algorithms, readers are referred to Zhou et al. (2021).
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have at least 36 months of return history. For each fund, we consider only months where

the fund’s net-of-fee return and asset under management data are available. After the

above restrictions, we end up with a sample of 5,314 funds covering the period January

1994 to December 2021.4

3.4 Performance measure

Following majority of the existing literature on hedge fund performance, we use

the seven-factor model alpha of Fung and Hsieh (2004) as our baseline performance

measure of a fund.5 For each fund i we regress

ri,t = αi + Ftβi + εi,t (3.4)

where ri,t is the excess return, Ft = [F 1
t , F

2
t , . . . , F

7
t ] is the 1×7 matrix of the seven risk

factors, βi = [β1
i , β

2
i , . . . , β

7
i ]

′ is the 7 × 1 matrix of coefficients, and εi,t is the noise of

the fund i at month t. The seven factors include an equity market factor which is the

S&P500 return minus risk-free rate; the Wilshire small cap minus large cap return; the

change in the constant maturity yield of the 10-year Treasury (∆10Y ); the change in the

spread between Moody’s Baa yield and the 10-year Treasury (∆CredSpr); and 3 trend-

following factors for bonds (BDTF ), currency (FXTF ), and commodities (CMTF ).

Later, we additionally conduct robustness check for our analyses under the use of

different models in measuring the fund’s alpha. They include the four-factor model

of Carhart (1997), a six-factor model where we add the two risk factors ∆10Y and

∆CredSpr into the four-factor model, and a nine-factor model where three more risk

factors including BDTF , FXTF and CMTF are added into the six-factor model.

The four risk factors in the four-factor model consist of the market’s excess return on

the CRSP NYSE/Amex/NASDAQ value-weighted market portfolio, the Fama–French

small minus big factor, the high minus low factor, the momentum factor.6

4Following hedge fund literature (see Chen et al. (2023)) we exclude monthly net-of-fee returns
that are below -90% or excess 300%.

5See, e.g., Kosowski et al. (2007) and Chen et al. (2017).
6We follow Hsieh’s and French’s websites to collect the seven risk factors of the Fung and Hsieh

(2004) seven-factor model, the one-month Treasury bill rate and four risk factors of the Carhart (1997)
four-factor model.
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Figure 3.1 depicts the distributions of hedge fund alphas under the use of the

mentioned four models via estimating their kernel density curves. We see that all

curves have a peak at some positive alpha point. This is similar to reports in hedge

fund literature such as those of Chen et al. (2023). It indicates the presence of a

majority positive alpha hedge funds under the considering factor models.

Figure 3.1: Distribution of hedge fund alphas. The figure shows the kernel density estimates of
funds’ alpha with use of different factor models including four-, six-, seven-, and nine-factor models.
We require at least 36 observations per fund and for each model we regress excess return of each
individual fund on the model’s risk factors to obtain its alpha and then estimate the kernel density of
the alpha population.

3.5 Simulation studies

In this section, we conduct a set of simulations to show: i) our proposed approach

works well in terms of controlling FWER and outperforms the existing methods in

terms of power; ii) the excellent performance of the fwer+ under variants of important

factors.

As presented in Section 3.2.1, the FWER is estimated based on a mixture model

assumption in which the informativeness of the covariates is conveyed via the null

proportion π0(z). Thus, the relationship between Z and the non-zero alpha is not be

reflected in the model.7 This implies that, in simulation design, the non-zero alpha

7This differs from other models, such as Chen et al. (2021a), where they take into count the joint
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component can be freely generated and not depending on the value Z. Thus, the value

of Z will be generated in the first step. Based on these values and assumption on π0(z)

we assign the true nulls, i.e., determine which funds have zero-alpha. The remaining

funds will be assigned with non-zero alpha values from a predetermined distribution.

Remark that, the signals of being false null, i.e. the magnitude of the non-zero alphas,

are transformed to rejection rule via the estimated falt.

To estimate necessary parameters for data generating process, we use data of all

the 5,314 funds in our sample and the risk factors of our baseline model. Specifically,

we utilize the seven risk factors data which start from January 1995 to December 2021

and estimate their mean and matrix of correlation coefficients. We calculate the factor

loadings (βi) for the funds by regressing each of the 5,131 funds on the risk factors. We

design simulations to cover different scenarios in applications. We generate balanced

panel data of n funds with T observations per fund. As hedge fund literature focuses on

constructing portfolio with use of 24-, 36- and 48- month IS periods, we first consider

T ∈ {24, 36, 48}.

In each iteration, we conduct 7 steps as followings.

1. We generate two covariates Z = (U, V ) from a bivariate normal distribution with

mean 0 and standard deviation of 1 and with specific correlation coefficient ρ of

U and V . We consider two cases of ρ ∈ {0, 0.5}.

2. The π0(u, v) has a logit form 1/(1 + e−b0−b1u−b2v) where the triple (b0, b1, b2) is one

of the three cases (0.5, 1, 1), (0.5, 1.5, 1.5) and (0.5, 2, 2). These three cases cover

a weak, moderate and strong relationship between covariates and the probability

of a fund being zero alpha, respectively. The choice of b0 = 0.5 is to generate a

set of simulated hypotheses with a null proportion, denoted by π0, of 60%. For

non-zero alpha funds, we generate data sets such that a half of them have positive

alpha.8

Given a specific choice of π0(u, v), we determine funds having zero-alpha funds

distribution of alternative hypothesis’ p−value and covariates. This way, the link between the non-zero
alpha and value of covariates is reflected in the models.

8By using procedures of Storey (2002) and Barras et al. (2010) we find the estimated proportions
of zero-alpha (π0) and out- and under-performing funds (π+ and π−) are 59%, 41% and 0%. To cover
general scenarios in applications we consider π0 = 60% and π+ = π− = 20%. We conduct robustness
check for alternative choice of the proportions, see footnote 10.
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as follows. For each fund i, we draw a random value from Bernoulli distribution

which takes value 0 with probability of π0(ui, vi). Funds with drawn values of

0 are assigned as zero-alpha funds. We assign randomly a half of the remaining

funds with alpha of α > 0 and the rests with alpha of −α where the monthly

alpha α ∈ {0.5%, 1%, 1.5%}. The choice of 0.5% is close to the third quantile

of the estimated alphas in our data sample while other values are chosen under

assumption that the true α is some value in between the third quantile and the

maximum of the estimated alphas.

3. We generate the risk factors, F s and their loadings βs from normal distributions

such that their parameters are the same as those of the real sample counterpart

in whole sample period (i.e., from January 1995 to December 2021).

4. We generate the simulated excess return of each fund via the following formula

Ri,t = αs
i + F s

tβ
s
i + εi,t (3.5)

where the noise ϵi,t is drawn independently from a normal distribution N(0, σ2)

with σ to be set at 2.2% as the median of standard deviation of error terms

estimated from the real sample fund-by-fund regressions.

5. For each fund, we then regress its simulated returns on the seven simulated factors,

F s
t , to obtain its estimated α̂ and the p−value of testing its alpha against 0.

6. We implement the stepwise reality check (StepM) of Romano and Wolf (2005),

stepwise superior predictive ability (Stepwise-SPA) of Hsu et al. (2010) and fwer+

procedures, controlling for FWER at predetermined targets τ ∈ (0, 1), to detect

truly positive alpha funds with use of the α̂s, calculated p−values and simulated

covariates.9 We consider τ ∈ {0.1%, 1%, 2%, . . . , 20%}.

7. By comparing the simulated αs and the selected out-performing funds, we record

the family wise error (FWE) which takes value 1 if there is at least one of the

funds in the negative or zero αs groups classified as out-performers. We also

calculate the detected proportion which is the ratio of truly out-performing funds

9The detail of the StepM and StepSPA procedures under our framework is presented in Appendix
C.1.
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detected by each procedure.

We repeat the steps 1 to 7 across 1000 iterations and calculate estimates of the actual

FWER as the ratio of number of times we observe FWE = 1 over 1000, i.e. the frequency

of error, and the power as average of the detected proportion recorded in the step 7

above.

3.5.1 A comparison to existing methods

In order to compare the performance of the fwer+ to existing procedures, the

StepM of and StepSPA, we opt a specific simulated data setting with n = 1000 funds

and alpha magnitude of non-zero alpha fund α = 1.

The performance of the procedures are presented in Figure 3.2 where all numbers

are in percentage. In each of the top three sub-figures, we depict the estimated actual

FWER given the targets where each curve represents a procedure. At a specific target,

Figure 3.2: Performance comparison. The figure compares the fwer+ and existing procedures
including StepM of Romano and Wolf (2005) and StepSPA of Hsu et al. (2010) in terms of FWER
control (top three sub-figures) and power (bottom three sub-figures). The simulated data are balanced
panels of 1000 funds with T observations per fund. From the left to the right, T takes values 24, 36
and 48. The input covariates U, V of the fwer+ are independent.
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a procedure controls well for FWER if the corresponding represented point on the curve

at that target is lying below or on the dashed 45◦ line. We see that the fwer+ and

StepM procedures control well for considering FWER targets regardless the number of

observations per fund whereas the StepSPA starts to lose its controlling of FWER when

the target is higher than 15%, 10% and 5% in T = 24, 36 and 48 settings, respectively.

In terms of power, provided that the FWER is controlled well, the fwer+ always

performs better than the other two with gaps depending on the FWER target and

number of observations per fund T . For instance, at target τ = 5% and T = 36, the

gaps in power of the fwer+ compared to the StepM and StepSPA are 7.5% and 3.5%,

respectively. Those numbers are larger (smaller) for T = 48 (T = 24) case which are

about 15% and 5% (1.5% and 1%), respectively.

3.5.2 Performance of the fwer+ under varying signals

In applications, the parameters of the input data are varying. For instance, in our

portfolio construction, which will be presented in Section 3.6, we need to assess funds’

performance based on a short window of 36 months. The magnitude of alpha of non-

zero alpha funds and the informativeness level of covariates are varying across different

periods. To study impacts of these factors on performance of the fwer+, in this section

we vary the alpha of the non-zero alpha funds and the informativeness of the covariate.

As such, we fix number of funds n = 1000 and T = 36, which are close to the

representative IS sample in our baseline empirical experiment, while α is varying from

0.5% to 1.5% and the relationship between the covariates and the prior null are weak,

moderate and strong.

We report in Figure 3.3 the performance of the fwer+ procedure under both in-

dependent and correlated covariates settings.10 The top three sub-figures show the

estimated actual FWER at the given targets whereas the bottom three sub-figures the

power. From left to right, each sub-figure represents for a setting of non-zero alpha

magnitude including 0.5%, 1% and 1.5%. In each of the top three sub-figures, the red-

(green- and blue-) solid curves present for the estimated actual FWER of the fwer+

10We additionally conduct simulations with π+ = 40%, π− = 0% and present the results in Section
Appendix C.2 and the results are roughy the same.
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Figure 3.3: Performance of the fwer+ under various setting of signals. The figure shows
impact of signals, i.e., the magnitude of true non-zero alpha and informativeness of covariates, on the
performance of the fwer+ in terms of FWER control (top three sub-figuers) and power (bottom three
figures). The simulated data are balanced panels of n = 1000 funds where each of them has T = 36
observations. The funds population consists of around 60%, 20% and 20% zero-alpha, under- and
out-performing funds, respectively. The out-performing (under-performing) funds in population have
alpha of α (−α) which varies in {0.5%, 1.0%, 1.5%}. We consider three settings of the two covariates
Z = (u, v) including weakly, moderately and strongly informative. The covariates can be independent
(solid curves) or correlated with a correlation coefficient of 0.5 (dotted curves).

under a setting of the weakly (moderately and strongly) informative and independent

covariates (i.e., ρ = 0). The dotted curve of the same color as the solid one is the es-

timated actual FWER of the corresponding informativeness level under the correlated

covariates setting (i.e., ρ = 0.5). It is clear that the fwer+ controls well for FWER at

any given targets, regardless the dependence of covariates, as all points of the curves

are below or on the 45◦ line.

The presentations in the bottom three sub-figures are similar but representing for

the power. We observe that the stronger the informativeness of the covariates the

higher power the fwer+ gains. Moving from the left to the right sub-figures, the alpha

magnitude of the out-performing funds is increasing and the fwer+ gains higher power.

This is unsurprising as the out-performing funds are being easier to be detected. When
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the two covariates are correlated, the power might be slightly lower (e.g., α = 0.5

case), or higher (e.g., α = 1 and 1.5 cases). This indicates that the dependence among

covariates does not significantly effect the performance of the fwer+.

3.5.3 Performance of the fwer+ under insufficient, noisy and uninforma-

tive covariates

We have investigated performance of the fwer+ under the use of two covariates Z =

(U, V ). Often, in real applications we do not know how many covariates actually convey

information on the performance of funds. Consequently, it happens the case we use less

covariates than we should, or we might use the covariates that are estimated with noise

or, even worse, unrelated to the funds’ performance (i.e, uninformative covariates).

For the first scenario, we implement the fwer+ with use of only one of the two

covariates Z1 = U . For the covariates estimated with noise case, we generate two new

covariates Z∗ = (U +η, V + ζ) where η and ζ are noise drawn from normal distribution

N(0, σ2). We investigate different levels of the noise via varying the σ ∈ {0.5, 1.0, 1.5}.

Finally, for the uninformative covariate case, i.e., a covariate that is totally noise drawn

from N(0, 1) is used as a single input covariate. The performance of the fwer+ for all

mentioned scenarios are depicted in Figure 3.4. In this figure, we add the performance

of the fwer+ with use of the informative covariates Z for comparison purpose.

We see that in all scenarios, the FWER is controlled well at all considering targets.

This is an excellent property of the fwer+. The uninformative case implies that it

is safe, in terms of controlling FWER, to implement the fwer+ even if we wrongly

include an unrelated covariate. Unsurprisingly, in terms of power, the fwer+ performs

best when we use the truly and sufficiently information while it is least powerful in case

the covariate is irrelevant or uninformative. The power of the fwer+ with use of the

covariates estimated with noise lies in between the two extreme cases and decreases

with respect to the level of the noise, i.e., the magnitude of σ. This also implies that,

adding into a given informative covariates set an uninformative one might damage the

power of the fwer+.
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Figure 3.4: Performance of the fwer+ under use of insufficient information. The figure
shows impact of using insufficient covariates, covariates containing different levels of noise and uninfor-
mative covariate on the performance of the fwer+ in terms of FWER control (top three sub-figuers)
and power (bottom three figures). The simulated data are balanced panels of n = 1000 funds where
each of them has T = 36 observations. The funds population consists of around 60%, 20% and 20%
zero-alpha, under- and out-performing funds, respectively. The out-performing (under-performing)
funds in population have alpha of 1%. We consider three settings of the two covariates Z = (U, V )
including weakly, moderately and strongly informative. The simulated data are generated based on Z
via π0(Z). In noisy covariates cases, instead of using Z, the fwer+ uses Z∗ = (U + η, V + ζ) where
η, ζ ∼ N(0, σ2) and σ ∈ {0.5, 1.0, 1.5}. In insufficient covariates case, the fwer+ uses only Z1 = U
while in the uninformative case it uses only one covariate which is a noise drawn from N(0, 1) without
any connection to π0(Z). We include performance of the fwer+ with use of Z for comparison purpose.

3.5.4 Performance of the fwer+ under varying of sample size and obser-

vations

Hitherto, we have investigated the performance of the fwer+ under different sce-

narios of the informative covariates as well as the strength of the signals of the out-

performing funds. In this section, we further investigate the impact of sample size, i.e.,

number of funds in sample, and number of observations per fund on the performance

of the procedure.

As such, we consider balanced panel data with varying the number of funds n and

the number of observations per fund T . As the IS horizons for portfolio selection in
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hedge fund literature are typically 24 or 36 months we consider T = 24, and 36. We

additionally experiment with much longer time series of T = 90, which is also the

median number of observations per fund in our whole sample data. The n is also

varying to cover all cases of our application in empirical experiments which spreads

from around 500 to 2000. We also add a case n = 5000 which is close to our whole

sample size. For the interest of space, in this set of simulations, we present results

for data generated under the independent and weakly informative covariates and with

α = 1 setting.11 The results are depicted in Figure 3.5.

Figure 3.5: Varying sample size and number of observations. The figure presents the per-
formance of the fwer+ under varying sample size (n) and number of observations per fund (T ).
The simulation data are balanced panels with T observations per fund under weakly informative and
independent covariates.

In sub-figures of the Figure 3.5, the number of observations per fund is increasing

from left to right. In each sub-figure, we present the results corresponding to different

setting in number of funds, n = 500, 1000, 2000 and 5000. From the top three sub-

figures, we again witness the excellent performance of the fwer+ in terms of FWER

control. It is clear from the bottom three sub-figures that, the power gains are higher

11Our conclusions are robust to other settings such as dependent and moderately and strongly
informative covariates and the results are available upon request.
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for the data with longer time series (i.e., larger T ). This is consistent with the fact

that the out-performing funds are easier to be detected if they outperform in a longer

period. When the sample size is larger, the number of out-performing funds detected

by fwer+ is higher. For instance, in the case T = 90, at target 5%, the fwer+ detects

about 400 and 200 for the case sample size n = 5000 and n = 2000, respectively.

Those numbers transform to roughly 40% and 50% in terms of power, respectively.

These observations imply that the number of out-performing funds detected by the

fwer+ is not increasing proportionately to the number of truly out-performing funds

in the population. Consequently, the fwer+ is more powerful when the sample size is

smaller. We note that this property is also found throughout developments of FWER

frameworks, from the Bonferroni correction to other recent proposals (see simulations

of Hansen, 2005).12 This is a good property since the procedure can be applied in a

wider problem both with small and large number of hypotheses.

In conclusion, the simulations show the excellent performance of the fwer+ in terms

of controlling for the FWER in various scenarios of data. We witness the higher power

of the proposed procedure when we have one of the followings: i) the stronger the

relationship between the covariates and the prior null; ii) the larger magnitude of out-

performing funds’ alpha; iii) the more sufficient set of informative covariates; iv) the

out-performing funds do well in a longer period (larger T ); and v) the smaller number

of funds in the population. In Appendix C.2, we show that our conclusions are robust

to alternative setting of the out-performing funds proportion.

3.6 Empirical analysis

In this section, we use the fwer+ procedure to detect out-performing funds based

on past short IS performance and invest in those detected funds in a rolling forward

fashion. We describe the covariates that we are studying, the formation of our fwer+-

based portfolios and show their performance in various choice of IS horizons and models

that we use to assessing the performance of funds.

12We recall that Bonferroni correction simply rejects all null hypotheses having p−value ≤ τ/n.
When n is increasing, the threshold τ/n becomes smaller and the power declines rapidly.
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3.6.1 Covariates

As hedge fund data reveal little information on funds’ holdings, we focus on the

covariates that are calculated based on excess return of the funds. Since we are assess-

ing the performance of a fund via testing its adjusted return - the alpha, we include

covariates that are potentially adding information alongside the alpha itself. There

exists a number of such additional information that have been shown to be linked with

the performance of hedge funds.

First, Titman and Tiu (2011) regress individual hedge fund returns on a group of

risk factors and find that funds with low R-squares gain higher alpha. The authors

further document that those low R-square funds charge higher incentive and manage-

ment fees. Thus, the R-square of the funds is not only conveying the fund’s managerial

skill but also some other fund’s characteristics. We use the R-square of the considering

factor model as a covariate.

Second, as documented in Boyson (2008), funds’ performance is more consistent

among the younger and smaller funds. As investors’ flows chase funds outperforming

in the past, funds become larger and more passive. Thus, the size, i.e., the asset under

management (AUM) of funds have a link with the funds’ performance, and is chosen

as one of our covariates.13

Third, Khandani and Lo (2011) argue that fund’s excess return auto-correlation

can measure the illiquidity in hedge funds and find a significant link between the auto-

correlation of a fund and its expected return. Thus we consider as our covariates the

first, second and third degrees of auto-correlation coefficients, which are denoted by

ACF1, ACF2 and ACF3 respectively, of the fund’s past 12-, 24- and 36-month excess

return. These make up nine covariates and constitute our “persistent covariates” group.

Last, we study the risk measures based on fund’s excess return as they are poten-

tially informative. For example, Liang and Park (2007) document that downside risk

measures incorporating higher moments help explain the cross-sectional variation of

hedge fund performance and have predictive power. Wu et al. (2021) also find that the

kurtosis of the excess return is an important variable in forecasting future hedge fund

13In our experiment, we follow literature to use the logarithm of fund’s AUM instead of the AUM
itself.
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return. Thereby, we study risk metrics that consist of the variance (total volatility),

kurtosis and skewness the fund’s excess return over the past 12-, 24- and 36-month

periods. These make up nine covariates and form our “moment covariates” group.

3.6.2 Portfolios of out-performing funds

In this section, we use the fwer+ to construct portfolios of hedge funds based

on assessing their short-term performance over a past period. We investigate OOS

performance of the fwer+ portfolios under various FWER target τ ∈ (0, 1).

We first describe our baseline portfolios. At the end of each year from 1997, we

use most recent three years data up to that point of time as the IS period to calculate

needed information. Specifically, we assess funds based on alpha of the 7-factor model

and conduct for each fund the test of its alpha against zero, calculate p−value and

estimate the mentioned covariates with use of only the data in IS period. A fund

is eligible if it has returns data for all months of the IS period and the data of all

considering covariates at the portfolio constructing time.14 We implement the fwer+

to picking out-performing funds with control for FWER at the given target τ . We then

invest equally weighted in those selected funds in the following year. The performance

of the portfolio in this OOS year is recorded. If there are no funds selected, we invest

on bond to earn a return at the interest rate. When a selected fund stops reporting

its returns during the OOS year, we redistribute fund equally into the remaining funds

in the portfolio.15 Our portfolios are rolling forward yearly. The first OOS period is

the year 1998, which we invest in the funds selected based on the data in the IS period

from January 1995 to December 1997. The final OOS period is the year 2021, which we

invest in the funds selected based on using data from January 2018 to December 2020.

Thus, each of our portfolios has OOS returns spanning over 24 years, from January

1998 to December 2021.

14We additionally conduct exercises where we restrict to consider only the funds that have at least
5 million USD in AUM and find that our empirical conclusions remain unchanged. For the interest of
space, the results are presented in Appendix C.3.

15The IS horizon, which is used to estimate alpha (and covariates), could be 24 months as in Chen
et al. (2017) and Kosowski et al. (2007) or 36 months as in Cumming et al. (2012). The OOS period
is also varying in literature, Chen et al. (2017) use 3, 6, 9, 12, 24 and 36 months while Kosowski et al.
(2007) use 12 months. Practically, hedge fund is a long-term investment vehicle and there is usually
a lock-up period which is varying up to one year depending on funds. Thus, in this study we use the
holding period of at least one year.
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To further study the empirical performance of the fwer+, we construct portfolios

that control for FWER at different targets τ ∈ {0.01%, 1%, 5%}. The input p−value

is calculated with use of heteroskedasticity and auto-correlation consistent (HAC) cor-

rection of Newey and West (1987).16

As benchmarks, we conduct two equally weighted portfolios as followings. At the

end of each year from 1997, the first (second) equally weighted portfolio, denoted by

EW (EW+), simply selects all funds that are eligible (eligible and having positive

estimated alpha) in the IS period to invest with equal weights in the following year.

We repeat yearly until the end of 2020 to have a set of funds to invest in the year 2021.

As the numbers of covariates in the persistent and moment groups are large, we

construct representative covariates that are the first principal component (PC1) of

each group.17 We thus have four covariates and construct our fwer+ portfolios with

use each of the four. Their OOS performance metrics are reported in panels A to

D of Table 3.1. The metrics include annualized alpha as well as its HAC correction

t−statistics and p−value, annualized excess return and Sharpe ratio. As a measurement

of empirical power, we report the average, minimum, maximum and standard deviation

of the number of out-performing funds detected by the fwer+.

As our first observation, the fwer+ detects non-empty group of out-performing

funds in all 24 times of portfolio constructions even when controlling for FWER at

0.01%, which is very low target. This reflects the superior power of the fwer+ proce-

dure and thus it allows investors picking funds with high confidence, i.e., with very low

error. More importantly, all portfolios with use one of the considering covariates gain

positive abnormal alpha from around 4.2% to 5.3% in OOS period which are statisti-

cally significant with t−statistics varying from around 6 to 8. Of the four considering

16For the purpose of selecting out-perorming funds with low FWER targets, bootstrapped p−value
has a limitation since the p−value is lower bounded at 1/(B + 1) where B is number of bootstrapped
iterations. Consequently, the highly out-performing funds with truly smaller p−value lose their ad-
vantage to be selected and empty portfolios are generated as a result. We therefore use p−value
calculated from t−score with HAC standard error correction. In small sample size time series, the
HAC correction might be biased as documented in Boudoukh et al. (2022) and Muller (2014). We
further conduct experiments based on p−value calculated without using HAC correction and report
the results in Appendix C.6. We see that the performances of portfolios are better and our main
conclusions are even stronger.

17We report comprehensively the OOS performance of the fwer+ portfolios with use of each of
individual covariates Appendix C.4. We see that portfolios with use of individual covariates in the
same group perform similarly. This suggests the use of PC1s as the representative covariates.
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covariates, the PC1 of the persistent group performs best followed by others which are

somewhat similar. It is clear that portfolios which control for a lower FWER target

tend to perform better and can gain a Sharpe ratio of more than 2.

Next, we construct our fwer+ portfolios with use of multiple covariates. As such,

we use the R-square, AUM and the two PC1s of the persistent and moment groups as

the four input covariates. As shown in Panel E of Table 3.1, those portfolios gain higher

power than those with use of a sole underlying covariate. This is consistent with the

fact shown in our simulation, that is, the more input informative covariates we use the

higher power the fwer+. The OOS performance of these portfolios is roughly at the

average performance of the portfolios based on each of the four underlying covariates.

The results suggest that using more covariates does not necessarily imply a higher alpha.

This is not implausible because the fwer+ is more powerful with more covariates and

Table 3.1: OOS performance of fwer+ portfolios. Panels A to D of the table report OOS
performance metrics of the fwer+ portfolios with use each of R-square, AUM, and PC1s of moment
and persistent group as the sole input covariate. The performance metrics include annualized alpha
as well as its t−statistic and p−value, excess return and Sharpe ratio and summary on number of out-
performing funds detected by the fwer+. Panel E reports these metrics of the fwer+ portfolio with
use of all four mentioned covariates whereas panel F the performance metrics of the equally weighted
(EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.98 7.5 0.00 5.42 2.17 16 4 25 6
1.00 4.44 7.2 0.00 4.94 1.59 33 10 55 13
5.00 4.45 6.8 0.00 4.95 1.58 47 14 88 20
Panel B: fwer+ with AUM as the covariate
0.01 4.87 7.2 0.00 5.33 2.09 16 4 25 7
1.00 4.33 6.9 0.00 4.82 1.55 35 8 64 15
5.00 4.25 6.6 0.00 4.80 1.48 49 14 95 23
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.85 7.0 0.00 5.26 2.03 16 4 29 7
1.00 4.48 7.4 0.00 4.99 1.63 34 10 65 15
5.00 4.21 6.5 0.00 4.75 1.53 49 14 97 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.27 8.4 0.00 5.64 2.38 15 4 24 6
1.00 4.60 7.5 0.00 5.10 1.69 33 10 56 13
5.00 4.41 6.9 0.00 4.88 1.59 46 15 84 19
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.12 8.2 0.00 5.47 2.32 17 4 31 7
1.00 4.47 7.2 0.00 4.97 1.62 37 10 69 16
5.00 4.10 6.1 0.00 4.66 1.44 52 14 104 25
Panel F: equally weighted portfolios
EW 2.58 2.9 0.00 4.65 0.72 1067 350 1570 361
EW+ 3.00 3.7 0.00 4.77 0.80 761 273 1418 324
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it might select some more smaller truly positive alpha funds.

As benchmarks, we report the performance of the equally weighted portfolios in

panel F of the same table. We see that all the considering fwer+ portfolios outperform

the equally weighted ones. It is also noted that, the equally weighted portfolio does not

select all funds but ones that pass the screening based on the number of observations,

and the equally weighted plus one further requires funds having positive estimated alpha

in the IS period. Thus it is not surprised that those portfolios also gain significantly

positive alpha.

Overall, the fwer+ portfolios perform well with all of the considering covariates.

The fwer+ shows its power in detecting outperforming funds even when we control

for a very small error. The selected funds perform persistently in the OOS period and

those selected with lower FWER targets tend to perform better on average.

3.6.3 Persistent analysis

As documented in Section 3.6.2, the performance of the funds selected by fwer+

is persistent at least over the rolling OOS of one year. In this section, we provide

further evidence on this advantage of the fwer+ portfolios. Thereby, we examine

the performance of those funds selected by the fwer+ over longer OOS horizons. As

such, we implement the fwer+ every m years and we hold the detected funds over

m years where m = 2, 3 and 4. For the interest of space, we report in Table 3.2

the performance of only the fwer+ portfolios with use of R-square, AUM, and PC1s of

moment and persistent group as the four input covariates. In long horizons, the attrition

rate becomes important since the selected funds might not survive throughout the

holding periods, leading to potential empty portfolios. We thus report the summary of

monthly portfolio size rather than that of the number of funds selected by the fwer+ as

in previous discussions. We see that all considering portfolios are non-empty throughout

the holding periods even with the holding horizon of four years.

In terms of alpha and Sharpe ratio, we see that the fwer+ portfolios with 2- and

4-year holding horizons perform as well as those with one year holding whereas those

of 3-year holding horizon are slightly worse. Given the use of only 3-year IS periods,

the persistence in performance of the 4-year holding horizon portfolios is impressive.
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Table 3.2: Performance of fwer+ in various OOS horizons. The table reports performance
metrics of the fwer+ portfolios with use of R-square, AUM, and PC1s of moment and persistent group
as the four input covariate with different OOS holding horizons. In OOS horizon of 2 (3 and 4) years,
outperforming funds are selected by the fwer+ every 2 (3 and 4) years and invested in the following
2 (3 and 4) years. The performance metrics include annualized alpha as well as its t−statistic and
p−value, excess return, Sharpe ratio and summary on monthly portfolio size. Panels A, B, and C
report these metrics for portfolios with holding horizons of 2, 3, and 4 years, respectively.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: 2-year OOS horizon
0.01 5.36 8.0 0.00 5.71 2.13 17 3 31 7
1.00 4.60 6.9 0.00 5.22 1.66 36 9 69 16
5.00 4.55 6.8 0.00 5.32 1.52 52 17 104 24
Panel B: 3-year OOS horizon
0.01 4.95 7.8 0.00 5.40 2.03 16 2 31 7
1.00 3.55 5.3 0.00 4.30 1.24 39 7 60 17
5.00 3.38 5.4 0.00 4.16 1.19 55 15 98 25
Panel C: 4-year OOS horizon
0.01 4.99 8.2 0.00 5.27 2.07 17 1 31 9
1.00 4.31 7.2 0.00 4.85 1.63 33 3 69 19
5.00 4.27 6.9 0.00 4.96 1.50 45 9 104 28

Holding for a longer period also implies a less re-balanced cost. However, investors

also face a risk of funds’ attrition which might lead to a low diverse portfolio. As

shown in summary of portfolio size columns, the minimum portfolio size is reducing

with respect to the holding horizon. Nevertheless, in this particular case, the investors

will not face any diversification problem if they set a target of FWER at 5%.

3.6.4 Sub-sample analysis

In this section, we further investigate the performance of the fwer+ portfolios in

sub-periods. We partition the whole OOS period, which spans from 1998 to 2021, into

five non-overlapping sub-periods: 1998–2001, 2002–2006, 2007–2011, 2012–2016, and

2017–2021. Of those sub-periods, only the first one lasts for four years, others are five-

year periods. We calculate the performance metrics of the portfolios in each sub-period

and report them in each panel of Table 3.3.

The table shows that the fwer+ portfolios gain positive alpha and Sharpe ratio in

all sub-periods. Except the period 2007–2011, which covers the global financial crisis

2007–2008, the portfolios’ alphas are statistically significant at all considering FWER

targets. Compared to equally weighted portfolios, the fwer+ portfolios gain higher

alpha for four over five sub-periods. In only the first sub-period, the fwer+ portfolios
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Table 3.3: OOS performance of fwer+ portfolios in sub-samples. Table report OOS per-
formance metrics of the fwer+ portfolios with use of R-square, AUM, and PC1s of moment and
persistent group as the four input covariate in five non-overlapping sub-periods. For each sub-period
we construct the equally weighted (EW ) and equally weighted plus (EW+) portfolios as benchmarks.
The performance metrics include annualized alpha as well as its t−statistic and p−value, excess return,
Sharpe ratio and summary on monthly portfolio size. We report in each panel the performance of the
portfolios in the sub-period shown in its title.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio size

Average Min Max Std
Panel A: Period 1998–2001
0.01 4.96 3.9 0.00 3.75 0.97 22 18 30 4
1.00 5.01 4.1 0.00 3.81 1.00 50 40 60 8
5.00 5.10 4.3 0.00 3.95 0.96 67 55 84 11
EW 6.01 2.9 0.01 4.63 0.59 526 333 724 133
EW+ 5.54 3.3 0.00 4.24 0.61 401 258 571 111
Panel B: Period 2002–2006
0.01 4.83 5.6 0.00 6.59 3.65 18 8 27 7
1.00 4.81 6.6 0.00 6.73 3.99 48 31 69 14
5.00 5.17 6.7 0.00 6.96 4.07 72 46 106 24
EW 3.90 3.2 0.00 7.25 1.49 1056 766 1364 188
EW+ 3.99 3.0 0.00 7.57 1.56 824 676 977 110
Panel C: Period 2007–2011
0.01 2.86 1.9 0.06 2.70 1.10 10 2 22 7
1.00 2.63 1.7 0.10 1.87 0.44 26 7 61 18
5.00 2.44 1.6 0.12 1.60 0.35 41 10 87 27
EW 1.82 1.0 0.32 0.39 0.09 1393 1191 1544 78
EW+ 2.20 1.2 0.24 0.72 0.13 1125 927 1399 115
Panel D: Period 2012–2016
0.01 7.07 6.3 0.00 8.18 4.06 14 7 20 4
1.00 6.58 7.7 0.00 7.99 4.86 35 27 41 4
5.00 6.81 7.9 0.00 8.40 4.95 51 35 61 9
EW 0.46 0.4 0.67 5.18 1.23 1135 924 1422 126
EW+ 1.84 1.7 0.09 5.49 1.56 774 616 1028 117
Panel E: Period 2017–2021
0.01 4.69 6.0 0.00 5.17 3.30 18 7 27 6
1.00 3.29 3.3 0.00 4.12 1.33 24 10 36 6
5.00 3.08 2.9 0.01 3.88 1.35 28 12 42 8
EW -0.52 -0.4 0.70 5.95 0.82 763 540 962 120
EW+ 0.83 0.7 0.48 5.87 1.04 410 267 561 96

gain lower alpha but their t−statistic are higher.18 Also, the fwer+ portfolios always

have a higher Sharpe ratio than the equally weighted portfolios regardless the considered

FWER targets and sub-periods.

The fwer+ portfolios perform best during the period 2012–2016 with alphas roughly

7% and Sharpe ratios spanning from 4 to roughly 5. The most recent sub-period of

our sample, the fwer+ portfolios perform as well as the average of the whole sample

reported in previous section and the Sharpe ratio can reach 3.3.

18It is worth to note that, the fwer+ aims to select highly significant alpha funds, which are reflected
via the significant of the tests, i.e., the t−statistics.
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3.6.5 Boosting the informativeness of covariates

Hitherto, we have utilized only the informativeness of the covariates’ variation. Yet,

the covariates are likely containing noise and thus their informativeness is affected. In

this section, we show that the performance of the fwer+ portfolios can be improved

via boosting the informativeness of the covariates. The main idea is to generating new

covariates that target for future funds’ expected returns. Thereby, we first use machine

learning models to predict future return of funds and then we use the predicted returns

as covariates. More specifically, we are considering four well-known machine learning

models including the least absolute shrinkage and selection operator (LASSO, see Tib-

shirani 1996), random forest (RF, see Breiman 2001 ), stochastic gradient boosting

(GB, see Friedman 2002) and deep neural network (DNN, see LeCun et al. 2015).

Formally, the relationship of the funds’ cumulative future return during period

t+1, . . . , t+h and the information of covariates at the end of month t can be modelled

as

R̃i,t→t+h = ft(Xi,t) + ϵ̃i,t (3.6)

where R̃i,t→t+h is cumulative return of fund i from month t+1 to t+h, Xi,t is the realized

covariates of the fund i measured at the end of month t, the function ft describes the

relationship of the Xi,t and the future accumulated return over h months R̃i,t→t+h

whereas ϵ̃i,t is the noise.

Consistent with the choice of our IS horizon and rolling window, to predict the

return of year corresponding to period from month t + 1 to t + 12 for some t, we use

data at the end of each previous three years until the end of month t to train the model

(3.6) and use it to predict future return. That is, we train the model by using target

variable R̃i,k→k+12 and features Xi,k with k = t − 36, t − 24 and t − 12 across funds

considered in the IS period. We fit into training model the data of features Xi,t at the

end of month t to acquire the predicting accumulated future return for period t+ 1 to

t+12.19 As our AUM is available from December 1997, our first predicted returns is for

the year 1999. This predicted return is calculated from data up to December 1998 and

used as the input covariates of the fwer+ to select funds invested in the year 1999. We

rolling forward and re-balance the portfolios yearly in the same fashion as the fwer+

19We follow Wu et al. (2021) in tuning the hyperparameters of the models.
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portfolios described in previous section.

Table 3.4 reports the OOS performance of the fwer+ portfolios with use of the

predicted return of each considering machine learning model as a covariate. We see

that the performances of the portfolios are generally better than the portfolios with

four covariates presented in previous section. The portfolios’ alpha range from 4.4%

to 5.4% and Sharpe ratio from 1.31 to 2.79. On average across the considering FWER

targets, the DNN model seems to be the best with an annualized alpha varying from

4.54% to 5.37% and an annualized Sharpe ratio that can reach 2.7. These numbers

are generally higher than those of the fwer+ portfolio with use of the four covariates

reported in Table 3.1. This supports for benefit of using advanced machine learning

techniques in forecasting hedge funds’ return.

Table 3.4: OOS performance of fwer+ portfolios with use of new covariates. Panel A (B,
C and D) reports OOS annualized alpha as well as its t−statistic and p−value, excess return, Sharpe
ratios and summary on number of out-performing funds selected by the fwer+ with use of funds’
future return predicted by LASSO (GB, RF and DNN) model at given FWER targets τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of future return predicted by the LASSO model as the sole covariate
0.01 5.42 9.3 0.00 5.83 2.79 15 4 25 7
1.00 4.50 7.6 0.00 5.04 1.73 33 10 59 14
5.00 4.40 7.0 0.00 4.96 1.69 46 14 86 20
Panel B: fwer+ with use of future return predicted by the GB model as the sole covariate
0.01 5.18 8.6 0.00 5.56 2.64 14 0 25 7
1.00 4.68 8.4 0.00 5.21 1.85 30 1 56 15
5.00 4.35 7.1 0.00 4.88 1.70 42 1 87 23
Panel C: fwer+ with use of future return predicted by the RF model as the sole covariate
0.01 5.42 9.4 0.00 5.87 2.52 15 4 25 7
1.00 4.87 7.0 0.00 5.66 1.38 30 5 56 14
5.00 4.52 6.2 0.00 5.28 1.31 43 7 89 21
Panel D: fwer+ with use of future return predicted by the DNN model as the sole covariate
0.01 5.37 9.3 0.00 5.78 2.72 15 4 24 6
1.00 4.84 9.2 0.00 5.39 1.96 32 10 55 14
5.00 4.54 7.4 0.00 5.12 1.76 45 14 87 20

3.6.6 Alternative choices of benchmarks

In this section, we show that the performance of the fwer+ portfolios is robust to

alternative benchmarks used in fund performance literature. More specifically, we are

considering three alternative factor models including the four-factor model of Carhart

(1997), the six-factor and nine-factor models described in Section 3.4. Those factor

models are also considered in hedge fund performance (see, e.g., Bali et al., 2012)
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Table 3.5: Performance under alternative benchmarks. The table reports the OOS performance
of the fwer+ portfolios constructed by selecting truly positive alpha under alternative benchmarks.
The fwer+ uses all of the considering four covariates (the R-square, AUM, and two PC1s of the per-
sistent and moment groups) as inputs. Panel A (B and C) presents annualized alpha of corresponding
factor model as well as its t−statistic and p−value, excess return, Sharpe ratios and summary on the
number of funds selected by the fwer+ under the use of the four- (six- and nine-) factor model as the
benchmark.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds
Average Min Max Std

Panel A: four-factor model
0.01 5.26 7.7 0.00 5.75 2.61 14 4 28 7
1.00 5.16 7.1 0.00 6.07 2.26 28 7 60 13
5.00 4.61 5.4 0.00 5.58 1.81 37 12 81 18
Panel B: six-factor model
0.01 5.43 8.5 0.00 5.85 2.62 16 4 32 7
1.00 4.73 6.4 0.00 5.42 1.84 31 9 57 13
5.00 4.62 6.5 0.00 5.34 1.73 41 13 75 17
Panel C: nine-factor models
0.01 5.26 7.9 0.00 5.63 2.23 14 3 27 7
1.00 4.88 8.2 0.00 5.42 2.01 30 8 61 13
5.00 4.15 6.4 0.00 4.83 1.54 42 12 79 18

though less common compared to our baseline, i.e., the seven-factor model.

For each of the alternative benchmarks, we repeat the exercises presented in previ-

ous sections. For the interest of space, we present in Table 3.5 the performance of the

fwer+ portfolios with use of the R-square of the considering model, AUM, and two PC1s

of the moment and consistent groups. Overall, the OOS alphas of the fwer+ portfolios

are varying across the benchmark but all are statistically significantly positive. We see

that, the fwer+ portfolios under the four- and six-factor models gain highest annualized

alpha which varie from 4.61% to 5.43%. However, as the alphas are of different factor

models, it is not appropriate to compare the portfolios based on different models on

this metric. Interestingly, comparing all considered models, including the seven-factor

presented in Panel E of the Table 3.1, the highest Sharpe ratio is gained under the use

of the four-factor model. Overall, all of our conclusions on the power of the fwer+ as

well as the ability in detecting truly out-performing hedge funds remain.

3.6.7 Portfolios of the best out-performing hedge fund

We have conducted portfolios of hedge funds with control for FWER at certain

targets under consideration of various performance assessments. We have witnessed

the ability of the fwer+ in detecting out-performing funds based on utilizing short IS
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data windows. In this section, we further construct the portfolios consisting of only

a single fund selected by the fwer+. Given an FWER target τ , as the FWER of the

group of funds detected by the fwer+ is controlled at the target τ , it is held so for

any subgroup of the detected funds. Instead of investing on all funds selected by the

fwer+, our new single-fund portfolio is established by investing only the fund selected

by the fwer+ that performs best in the IS period, i.e., one that has highest t−score

among those selected by the fwer+. As our fwer+ portfolios are non-empty all the time

regardless the considering FWER targets, and the portfolio with higher FWER target

contains portfolios with lower targets, the choices of the considering FWER targets

(0.1%,1% and 5%) will not effect on the best fund. We see that, the best funds are

also unchanged under the choices of the considering covariates. In contrast, different

choices of the factor model result on different best funds. We thus report in Table

3.6 the performance of the portfolio without showing the FWER target and covariates.

We report results for all considering factor models. We see that all portfolios performs

impressive, especially in terms of Sharpe ratio with the best reaching 5.3. In terms of

alpha, the single-fund portfolios do not perform slightly worse those fwer+ portfolios

with use of all four covariates at FWER target 0.1% reported in tables 3.1 and 3.5. On

the downside, as presented in the rightmost column, the portfolios are empty for 4 to

11 months over 288 months of the investing period.

Table 3.6: Performance of the single-fund portfolios. The table reports the OOS performance
of the portfolio that consists of the fund performed best in IS period among those selected by the
fwer+.

Model Alpha (%) t−statistic p−value Return (%) Sharpe Ratio Empty rate (%)
4 factors 5.16 14.8 0.00 5.36 4.86 11/288
6 factors 5.08 15.2 0.00 5.27 5.33 7/288
7 factors 5.01 10.6 0.00 5.32 3.50 4/288
9 factors 5.16 15.0 0.00 5.37 5.31 7/288

We have assessed the performance of hedge funds based on past 36-month IS peri-

ods. As robustness checks of for this choice of the IS horizon, we additionally conduct

experiments with use of 24- and 48-month IS periods. For the interest of space, the

results are presented in Appendix C.5. Generally, with use of 24-month IS periods, the

alphas of the fwer+ portfolios are slightly higher than those reported for 36-month IS

case though the Sharpe ratios are slightly lower. In contrast, the Sharpe ratios of the

48-month case are comparable to the baseline while the alphas are slightly lower.
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Overall, all proposed portfolios beat passive benchmarks. From investors’ perspec-

tive, the higher performing portfolios the better. For that purpose, using four factor

model seems to be the best. We also see that controlling for a lower FWER target

virtually results on a higher Shape ratio. At the extremely low FWER target, the

portfolio that contains the fund performs best in IS among the detected out-performing

funds performs best among the considered FWER targets. Our analyses on the persis-

tent performance also point out that holding over a reasonably long horizon is not a

bad idea. In fact, Tables 3.1 and 3.2 show that the portfolios constructed by assessing

funds based on past three years and holding those selected out-performing ones over the

following two years turn out to be the best. The choice of investors apparently depends

on their risk averse level as the lower FWER target or the longer holding period tends

to produce the less diverse portfolios. The performance of the portfolios might be

improved if the covariates are more informative and thus the choice of covariates as

well as the methods to boost their informativeness level are also of the investors. With

the aim to point out the benefit of controlling FWER admixture with covariates, this

study does not seek for the best covariates neither the best method to combine them.

3.7 Concluding remarks

We have introduced the fwer+ to control FWER in picking out-performers. The

procedure utilizes additional information in estimating the FWER. Via simulations we

show that when informative covariates are available the method gains significant higher

power than existing methods which are not using the covariates.

Empirical experiments in hedge funds context show that the method is so powerful

that it can detect out-performing funds even with a very low target of FWER. The

portfolios of the detected funds are able to generate statistically significantly positive

alpha and the performance of those funds are persistent for a long period. This is robust

to various choices of IS horizons and asset pricing models. All experiments suggest a

powerful and promising tool for investors who desire to picking hedge funds with high

confidence.

From practical point of view, investors need to consider further other aspects in

order to implement the proposed portfolios in reality. First, they are constructed with
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the assumption that there are no restrictions in investing in the hedge funds selected

by the fwer+. This might not always be the case since the selected hedge funds might

close to new investors. Second, the portfolios generate significant positive alphas with

a high Sharpe ratio but relatively low annual excess return. Thus, the proposed yearly

rolling portfolios will be appropriate to investment portion that favor low risk with

stable adjusted return. To improve the excess return, investors can construct portfolios

with higher frequency, for instance, by using a rolling forward quarterly instead of

yearly, on a new set funds excluding those that require a lockup period of more than

three months.

The new method has highly potential applications in problems where multiple test-

ing is adopted, especially for the context that require a low level of error. In similar

applications to our study, the method can be used in picking out-performing mutual

fund, bond fund and trading strategies. It can be also used to guard the data snooping

in predictive model and factor selection.
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Conclusion

The thesis has developed methods to control for data-snooping bias in detecting out-

performers, particularly, in assessing out-performing mutual funds, trading strategies

and hedge funds. The methods incorporate multiple information in controlling two type

I errors in multiple hypothesis testings, the FDR and the FWER, and contribute to

solving the low power issue of existing methods. They have been shown to be working

well under typical dependence in financial data and gain considerably higher power than

existing approaches in literature. We have explored the benefits of using the methods

in the mentioned financial topics.

In the first chapter, we introduce a framework, the fFDR+, that incorporates

a single informative covariate to estimates more precisely the FDR in detecting out-

performing mutual funds. The method performs better than existing approaches in

both simulations and empirical experiments. It provides a powerful tool for investors in

assessing fund performance and for researchers in tackling with in conducting multiple

testings. The method selects successfully out-performing mutual fund managers whose

persistently outperform passive benchmarks in OOS period of 38 years. We witness

that the portfolios constructed by the fFDR+ generate positive and higher alphas than

those established by an FDR method that does not account for additional information,

or by sorting on the informative covariate and past performance of funds. The findings

show the economics value of the covariates under studying even for recent decade, which

is different from recent findings in mutual fund literature.

However, as we usually have more than one informative covariates available and

in most cases, it is inefficient to combine them into only a single one. Thus, it is on

demand to develop the fFDR+ to a framework that further utilizes directly multiple

information. Motivated by this, the second chapter develops the fFDRmethod of Chen
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et al. (2021a) to a framework which is named multivariate functional false discovery

rate (mfFDR+). The new framework adapts more than one informative covariates

and gains much higher power than the fFDR and other existing approaches. This

advantage is robust to various settings of dependence structures such as correlated

covariates, weak dependence among tests and even when the covariates are estimated

with noise. In order to use themfFDR to picking out-performers with control for FDR,

a procedure named mfFDR+ is introduced. The implementation of this procedure in

detecting out-performing technical trading rules in foreign exchange rates shows the

prevalence of profitable rules and the mfFDR+ can form portfolios of rules that gain

Sharpe ratio of about one during an OOS period of roughly 50 years. The empirical

results highlight the importance of testing the performance of technical rules conditional

on a set of comprehensively updated information.

In line with the developments of the two methods in chapters 1 and 2, the third

chapter introduces a procedure, namely fwer+, which incorporates multiple informative

covariates in estimating the FWER in picking out-performers. The procedure gains

significant higher power than existing methods which control for the same type I error

but are not using the informative covariates. The implementation of the new procedure

in picking out-performing hedge funds shows the benefits of using additional information

in two aspects. First, it is powerful enough to detect non-empty group of out-performing

funds though using short in-sample windows. Second, the portfolio of funds selected

by the new procedure beats passive benchmark by generating statistically significant

positive alpha, which transforms to Sharpe ratios of about 3.

The new methods have their limitations and there are still space for further im-

provements. First the mfFDR as well as its derivative the mfFDR+ and the special

case fFDR+ need a sufficient number of tests in order to control FDR perfectly. Thus

they are most suitable for applications where the number of tests are large, usually

more than 1000. The fwer+ performs well with even less number of tests as it does

not need to estimate multivariate density functions as the mentioned functional FDR

methods. The present fwer+ framework estimates the FWER via a null proportion,

which is function of the covariates, and the density function of p−value under alterna-

tive. It is possible to improve the power of the fwer+ via another statistical framework
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which estimates the density function of the p−value conditional on the covariates. This

direction is beyond the scope of this thesis and is intended for future study.

The developments of the fFDR+, mfFDR, mfFDR+ and fwer+ contribute to

literature in multiple testing in Finance, Economics and other fields of Social Sciences.

Although this thesis focuses on applications in picking out-performing funds and trad-

ing rules, the methods are highly promising in many other areas where researchers

tackle with multiple testing problems such as selecting predictive models and detecting

predictors which explain the cross-sectional stock returns.
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Appendix A

Appendix for chapter 1

A.1 Estimating π0(z) and f(p, z)

Let {(pi, zi)}mi=1 be the collection of p-value and covariate realizations of the different

funds under consideration, with {zi}mi=1 transformed in uniform distribution [0, 1] (see

Section 1.2.1). We create fund bins {Kb}nb=1, where Kb contains a fund i if zi ∈ ((b −

1)/n, b/n] and for each bin Kb we estimate a common π0(z) for all the funds i in the

bin. For some common λ ∈ (0, 1), we estimate the π0(z) in each bin b by

π̂0,b(λ) =
#{pi > λ, zi ∈ Kb}

(1− λ)#Kb

, b = 1, 2, . . . , n. (A.1)

We determine λ by minimizing the mean integrated square error (MISE):

MISE(λ) = bias2+variance =

(∫ 1

0

ϕ(z, λ)dz − π0

)2

+

∫ 1

0

[π̂0(z, λ)−ϕ(z, λ)]2dz (A.2)

We estimate π0 using the smoothing spline method of Storey and Tibshirani (2003,

Remark B).1 Similarly to CRS, we calculate π̂0(zi, λ) = π̂0,b(λ) for each grid value

λ ∈ Λ = {0.4, 0.5, . . . , 0.9}, i = 1, . . . ,m and b = 1, 2, . . . , n, the π̂0(zi, λ) and, sub-

sequently,
∫ 1

0
π̂0(z, λ)dz =

∑m
i=1 π̂0(zi, λ)/m. The unknown ϕ(z, λ) is estimated by

ϕ̂(λ, z) = π̂0(z,Λmin)− cλ(1− π̂0(z,Λmin)), where cλ is chosen such that
∫ 1

0
ϕ̂(λ, z)dz =∫ 1

0
π̂0(λ, z)dz. We then obtain the optimal λ∗ = argminλ MISE(λ).

To estimate the joint density function f(p, z), CRS use a local likelihood ker-

nel density estimation (KDE) method with a probit transformation (Geenens, 2014).

1On rare occasions when the sample size m is small, the smoothing spline method does not work
adequately. In these cases, we use the bootstrap method of Barras et al. (2010, Appendix A.1).
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Specifically, let Φ(t) = 1√
2π

∫ t

−∞ e−x2/2dx and Φ−1 its inverse. Using z′i = Φ−1(zi) and

p′i = Φ−1(pi), we obtain a “pseudo-sample” {(p′i, z′i)}ni=1, i.e., we transform the variables

(p, z) to (p′, z′); we denote by f̃(p′, z′) the joint density function of (p′, z′), which CRS

estimate using the local likelihood KDE method. The bandwidth of the KDE is chosen

locally via a k-Nearest-Neighbor approach using generalized cross-validation; this step

can be implemented easily via the freely available R package locfit. The desired

density function is then estimated as f̂(p, z) = f̃(p′,z′)
ϕ(p′)ϕ(z′)

where ϕ(x) = 1√
2π
e−x2/2.

Additionally, f(p, z) may be non-increasing in p for each fixed z. CRS implement

one more step which modifies the f̂(p, z) so that monotonicity is ensured. In our simula-

tions, we use all the aforementioned techniques. In the empirical part, the monotonicity

is switched off as this property is unknown in our data. For more details, readers are

referred to CRS and their R package fFDR, Geenens (2014) as well as to the references

therein.

A.2 Additional simulation results

To complement Section 1.5 of Chapter 1, we show here the performance of the

fFDR+ in terms of FDR control and power under several settings. We first show

the results corresponding to the balanced panel data under cross-sectional dependence.

Next, we present results for unbalanced panel data under both cross-sectional indepen-

dence and dependence. Finally, to cover all distributions studied in the literature, we

exhibit simulation results for the case where alphas are drawn from a single normal

distribution.

A.2.1 Results for balanced panel data under cross-sectional dependence

We start by presenting in Figures A.1–A.3 the cases where the data are generated

as balanced panels under cross-sectional dependent errors. The comparisons in terms

of power between fFDR+ and FDR+ are shown in Tables A.1–A.5.
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Figure A.1: Performance of fFDR+ for discrete distribution of α. The graphs show the per-
formance of the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution.
The simulated data are balanced panels with cross-sectional dependence.

Figure A.2: Performance of fFDR+ for continuous distribution of α. The graphs show
the performance of the fFDR+ in terms of FDR control when alphas are drawn from a continuous
distribution which is a mixture of two normals. The simulated data are balanced panels with cross-
sectional dependence.
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Figure A.3: Performance of fFDR+ for discrete and normal distribution mixture of α.
The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from a mixture of discrete and normal distributions. The simulated data are balanced panels with
cross-sectional dependence.

Table A.1: Power comparison (in %) for discrete distribution. The table compares the power
of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from
a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %) and
proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and
generated with cross-sectional dependence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.8 6.1 21.3 43.6 65.5
FDR+ 0.5 2.6 12.1 30.5 51.9

(10, 60, 30)%
fFDR+ 1.9 11.2 32.3 56.6 76
FDR+ 0.5 3 14.1 34.3 56

(10, 30, 60)%
fFDR+ 4.6 23.1 51.5 75.4 89.1
FDR+ 0.5 4 20.7 46.6 68.8

(13, 67.5, 19.5)%
fFDR+ 1.5 9.7 29 53.1 73.7
FDR+ 0.7 4.1 17 38 59.2

(13, 48, 39)%
fFDR+ 3.4 17.1 41.3 66.3 83.3
FDR+ 0.6 4.6 20.7 44.4 65.3

(13, 9, 78)%
fFDR+ 8.5 34.2 67.9 89 97.2
FDR+ 0.7 8.2 37.1 69.1 87.9
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Table A.2: Power comparison (in %) for discrete-normal distribution mixture. The table
compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds
are drawn from a discrete-normal distribution mixture: α ∼ π0δα=0 + (1 − π0)N (0, σ2) with varying
σ (annualized, in %) and null proportion π0. The simulated data are a balanced panel with 274
observations per fund and generated with cross-sectional dependence.

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.5 15.7 36.2 51.2 60.8
FDR+ 0.2 8.4 26.6 41.7 52.3

60%
fFDR+ 1.6 21.5 42.8 57.1 66.3
FDR+ 0.3 11.4 31.3 46.5 56.8

30%
fFDR+ 4.7 32.4 54.5 67.6 75
FDR+ 0.6 17.9 40.8 55.8 65.4

67.5%
fFDR+ 1 18.7 39.4 54 63.3
FDR+ 0.2 9.8 29 44 54.5

48%
fFDR+ 2.5 25.5 47.3 61.3 70.2
FDR+ 0.3 13.5 34.6 49.8 59.9

9%
fFDR+ 6.7 38 60.7 73.6 80.7
FDR+ 0.7 22 46.9 62.5 72

Table A.3: Power comparison (in %) for mixture of two normal distributions. The table
compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds
are drawn from a mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying

standard deviation pairs (σ1, σ2) and mean pairs (µ1, µ2) (both parameters’ pairs are annualized and
in %). The simulated data are a balanced panel with 274 observations per fund and generated with
cross-sectional dependence.

(σ1, σ2)
(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0.1 0.4 5 13.6 23.3
FDR+ 0 0 0.3 2.2 7.4

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0.1 0.6 6.5 15.8 25.5
FDR+ 0 0.1 0.5 3.2 9.1

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0.4 1 9.2 18.6 28.3
FDR+ 0 0.1 1 4.7 11.7
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Table A.4: Power comparison (in %) for varying sample size and observation length. The
table compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of
observations per fund (T ) and number of funds (m). We present three cases where alphas of m funds
are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2 (Panel A); ii) discrete-
normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two normal distributions:
α ∼ 0.3N (−2, 22) + 0.7N (−0.5, 1) (Panel C). For each alpha population, we generate data with cross-
sectional dependence.

Number of observations per fund
m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 3.7 9.4 19.9 31 43.5 54.5
FDR+ 0.7 1.4 3.2 6.2 12 18.9

1000
fFDR+ 2.2 8.3 17.1 29.8 40.4 52.9
FDR+ 0.4 1.1 2.6 5.9 11.3 19.9

2000
fFDR+ 2.1 7.3 16.5 26.8 40.6 50.6
FDR+ 0.2 0.9 2.5 5.5 11.9 19.9

3000
fFDR+ 1.9 7 16 27.8 39.5 48.9
FDR+ 0.2 0.7 2.2 5.9 12.3 19.6

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 13 22 29.2 35.8 40.6 45.5
FDR+ 3 8.1 13.8 20 25.3 29.9

1000
fFDR+ 12.5 21.2 29.1 35.1 39.8 44.2
FDR+ 2.9 8.2 14.6 20.3 24.9 29.6

2000
fFDR+ 12.1 20.9 28.4 34.9 39.4 44.3
FDR+ 2.7 8.2 14.4 20.4 25 29.8

3000
fFDR+ 11.8 20.8 28.3 34.4 39.9 43.7
FDR+ 2.7 8.3 14.4 20.1 25.6 29.6

Panel C: Mixture of Normal distributions

500
fFDR+ 1.7 3.5 6.4 8.2 11.2 14.2
FDR+ 0.2 0.3 0.6 0.9 1.4 2

1000
fFDR+ 1.2 3.2 5.6 8.6 10.8 13.3
FDR+ 0.1 0.2 0.4 0.9 1.2 1.9

2000
fFDR+ 1.1 2.8 4.9 7.6 10.1 12.8
FDR+ 0.1 0.2 0.3 0.7 1.1 2

3000
fFDR+ 1.1 2.8 5 7.6 10.3 12.6
FDR+ 0.1 0 0.3 0.6 1.2 1.9
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Table A.5: Power comparison (in %) for varying FDR targets (in %) for sample with small
size and small number of observations under cross-sectional dependence. In this table, we
consider three distributions as in Table A.4 for samples consisting of m = 500 funds (balanced panels)
with T = 60 observations per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.8 3 7.3 13.6 21.9 31.4 41 51.3 63.3
FDR+ 0.3 0.5 0.8 1 1.4 1.9 2.8 4 5.9

Mixture of discrete fFDR+ 3.1 8.5 15.4 23.5 32.3 41.4 50.8 60.9 67.2
and normal FDR+ 0.4 1.2 2.7 5.2 8.6 14.5 22.3 32.5 41.3

Mixture of normals
fFDR+ 0.4 1.8 4.3 8.1 13.4 29.8 27.7 37.6 50.7
FDR+ 0.1 0.1 0.3 0.4 0.5 0.8 1.4 2.5 4.1

A.2.2 Results for unbalanced panel data

In this section, we present the performance of the fFDR+ under both cross-

sectional independence and dependence. Figures A.4–A.6 depict the FDR control of

the fFDR+, while the power comparisons are given in Tables A.6–A.8.
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Figure A.4: Performance of fFDR+ under unbalanced panel data. Figure shows the per-
formance of fFDR+ in terms of FDR control when alphas are drawn from the discrete distribution
with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure A.5: Performance of fFDR+ under discrete-normal distribution with unbalanced
panel data. The figure shows the performance of fFDR+ in terms of FDR control when alphas are
drawn from the discrete-normal distribution mixture with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure A.6: Performance of fFDR+ under mixture of two normals with unbalanced
panel data. The figure shows the performance of fFDR+ in terms of FDR control when alphas are
drawn from the mixture of two normals with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Table A.6: Power comparison (in %) for discrete distribution. The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when
the alphas of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %) and proportions
(π+, π0, π

−). The simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data
counterpart. We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5 α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.4 5.5 21.1 41.3 58.9 0.6 5.9 20.6 40.3 57.8
FDR+ 0.4 2.6 12.7 29.9 46.7 0.4 2.9 13 29.3 45.9

(10, 60, 30)%
fFDR+ 1.1 10.3 30.6 51.8 68 1.5 10.5 29.8 50.7 66.9
FDR+ 0.5 2.9 14.6 32.6 49.9 0.5 3.2 14.3 31.9 49

(10, 30, 60)%
fFDR+ 3.2 19.8 46.6 66.8 79.8 3.9 19.8 45.6 66 79.4
FDR+ 0.5 3.6 19.1 40 58.1 0.5 4 18.9 39.5 57.6

(13, 67.5, 19.5)%
fFDR+ 0.9 8.9 27.7 48.5 65.1 1.2 9.2 27.1 47.5 64.1
FDR+ 0.5 3.9 17.4 35.6 52.3 0.6 4.2 17 34.9 51.5

(13, 48, 39)%
fFDR+ 2.2 15.5 37.8 58.8 73.7 2.9 15.5 37.1 57.8 73
FDR+ 0.5 4.5 20.3 39.8 56.9 0.7 4.8 19.5 39 56

(13, 9, 78)%
fFDR+ 6.2 27.5 60.2 78.1 88.7 7.5 29.2 60 78.4 88.9
FDR+ 0.6 6.8 29.5 54.2 72.5 0.8 7.7 30 54.7 72.8

140



Table A.7: Power comparison (in %) for discrete-normal distribution mixture. The table
compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds
are drawn from a discrete-normal distribution mixture: α ∼ π0δα=0 + (1 − π0)N (0, σ2) with varying
σ (annualized, in %) and null proportion π0. The simulated data are an unbalanced panel with the
number of observations of each fund drawn randomly with replacement from the real-data counterpart.
We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional
dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.3 13.9 31.9 45.9 55.7 0.4 13.9 31.7 45.7 55.5
FDR+ 0.2 7.8 23.5 37.1 47.5 0.3 7.9 23.3 36.9 47.2

60%
fFDR+ 1.3 19.2 38 51.8 60.9 1.3 19 37.8 51.7 60.9
FDR+ 0.3 10.4 27.8 41.9 52.2 0.3 10.3 27.6 41.7 52

30%
fFDR+ 3.5 27.6 48.3 61.9 70.3 3.6 27.4 48 61.4 70.1
FDR+ 0.4 15.4 35.7 50.5 60.6 0.5 15.2 35.4 50.2 60.3

67.5%
fFDR+ 0.8 16.8 35.2 48.9 58.4 0.9 16.9 35.1 49 58.5
FDR+ 0.3 9.2 25.9 39.6 49.8 0.3 9.2 25.7 39.6 49.9

48%
fFDR+ 2.1 22.9 42.5 56.1 65.2 2.3 22.9 42.4 56 65.1
FDR+ 0.3 12.4 31.2 45.6 55.7 0.4 12.5 31.1 45.4 55.4

9%
fFDR+ 5.3 33.3 54.9 68.2 76.7 5.6 33.5 55 68.2 76.7
FDR+ 0.6 19.1 41.6 57 67.2 0.7 19.1 41.5 57 67.2

Table A.8: Power comparison (in %) for mixture of two normal distributions. The table
compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds
are drawn from a mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying

standard deviation pairs (σ1, σ2) and mean pairs (µ1, µ2) (both parameters’ pairs are annualized and
in %). The simulated data are an unbalanced panel with the number of observations of each fund
drawn randomly with replacement from the real-data counterpart. We study the simulated data with
both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(µ1, µ2) Procedure σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

(−2.3,−0.7)
fFDR+ 0 0.2 3.8 11.3 19.5 0 0.3 4.2 11.7 20.1
FDR+ 0 0 0.3 1.8 6.3 0 0 0.3 2 6.4

(−2,−0.5)
fFDR+ 0 0.4 5 13 21.7 0.1 0.5 5.5 13.7 22.2
FDR+ 0 0.1 0.4 2.7 7.8 0 0.1 0.5 2.9 8.1

(−2.5, 0)
fFDR+ 0.1 0.5 7.3 15.4 24 0.3 0.8 7.8 16 24.6
FDR+ 0 0.1 0.6 3.9 9.9 0 0.1 0.9 4.2 10.3

where σ1 = (1, 0.5), σ2 = (1.5, 0.6), σ3 = (2, 1), σ4 = (2.5, 1.25), σ5 = (3, 1.5).

A.2.3 Simulation results for single normal distribution

In this section, we present the simulation results for a special case of continuous

distribution where the mixture (1.17) has only one component. Specifically, we consider

the case π2 = 0, α ∼ N (µ, σ2) and, based on Jones and Shanken (2005) and Fama and

French (2010), we use µ ∈ {−0.8,−0.5, 0} and σ ∈ {1, 1.5, 2, 2.5, 3} (the presented
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values of both parameters are annualized and in %).2

Figures A.7 and A.8 present the performance of the fFDR+ procedure when the

alphas are drawn from balanced and unbalanced panel data, respectively. It is shown

that the FDR is controlled at any given target.

Figure A.7: Performance of the fFDR+ under single normal distribution with balanced
panel data. The figure shows the performance of the fFDR+ in terms of FDR control when alphas
are drawn from the single normal distribution with balanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

2Jones and Shanken (2005) assume that the fund alphas are drawn from a normal distribution and
their estimates for the mean and standard deviation are based on prior beliefs. They find that the
mean is 1.3%-1.4% per annum before expenses (about 2%) and the standard deviation is 1.5%-1.8%.
In addition, Fama and French (2010) assume that the fund (gross) alpha population has a normal
distribution centered at 0.
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Figure A.8: Performance of the fFDR+ under single normal distributions with unbal-
anced panel data. The figure shows the performance of the fFDR+ in terms of FDR control when
alphas are drawn from the single normal distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

In Table A.9, we focus on comparing the performance of fFDR+ and FDR+ in

terms of power. As π+ depends on both the mean µ and variance σ2 of the distribution,

we need to distinguish the value of π+ from the pairs (µ, σ). We provide in Panel A

additional information about π+, which helps us assess the impact of the magnitude

of positive alphas on the power. For instance, for π+ ≈ 40%, the power of the two

procedures for (µ, σ) = (−0.8, 3) is significantly higher than for (µ, σ) = (−0.5, 2). We

observe a boost in power for both methods with increasing σ (for given non-positive

µ), resulting in larger proportion and magnitude of positive alphas. In all the cases

under consideration, the fFDR+ dominates FDR+ in terms of power and this gap

soon becomes omnipresent for σ ≥ 1.5 reaching up to 18%.
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Table A.9: Power comparison (in %) for single normal distribution. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from
a normal distribution: α ∼ N (µ, σ2) with varying standard deviation σ and mean µ (both parameters
are annualized and in %). In Panel A the simulated data are a balanced panel with 274 observations
per fund, whereas in Panel B an unbalanced panel with the number of observations of each fund drawn
randomly with replacement from the real-data counterpart. For each type of panel data, we generate
data cross-sectional independence (left-hand side) and with cross-sectional dependence (right-hand
side).

Cross-sectional Independence Cross-sectional Dependence
σ σ

µ Procedure 1 1.5 2 2.5 3 1 1.5 2 2.5 3

Panel A: Balanced Data

−0.8
π+ 21.2 29.7 34.5 37.4 39.5 21.2 29.7 34.5 37.4 39.5

fFDR+ 1.6 14.1 30.5 44.4 55.1 2.1 14.9 30.9 44.7 55.4
FDR+ 0.1 1.7 12.6 27.2 40.6 0.1 2.1 12.8 27.4 40.7

−0.5
π+ 30.9 36.9 40.1 42.1 43.4 30.9 36.9 40.1 42.1 43.4

fFDR+ 3 17.6 33.8 47.3 57.7 3.8 18.3 34.5 47.8 58.1
FDR+ 0.1 3.6 16.5 31.3 44.1 0.2 4 16.7 31.5 44.3

0
π+ 50 50 50 50 50 50 50 50 50 50

fFDR+ 7.9 24.8 40.7 52.8 62.4 8.9 25.7 41.3 53.3 62.7
FDR+ 0.6 9.1 24.2 38.7 50.3 1 9.5 24.6 38.9 50.5

Panel B: Unbalanced Data

−0.8
fFDR+ 1.4 12.1 26.5 39.5 50.1 1.7 12.7 27.1 39.8 50.2
FDR+ 0.1 1.7 10.8 23.2 35.2 0.1 2 11.2 23.5 35.4

−0.5
fFDR+ 2.6 15.2 29.8 42.5 52.6 3.1 15.8 30.2 42.8 52.7
FDR+ 0.2 3.4 14.1 26.8 38.6 0.2 3.7 14.5 27.2 38.8

0
fFDR+ 6.8 21.6 36 47.8 56.9 7.4 22.4 36.4 48 57.1
FDR+ 0.6 8.1 20.8 33.6 44.5 0.9 8.5 21.2 33.9 44.6

A.3 Results for data sample period from 1984

Given potential biases in the mutual fund data for the period before 1984, we

construct portfolios using a data sample from 1984 as a robustness check. We start

by using the first five years’ data, spanning from January 1984 to December 1988, to

calculate the inputs of the procedures. The detected out-performing funds are equally

invested in 1989. Then, the five years of data from January 1985 to December 1989

are used for the recalculation of the inputs of the procedures to detect out-performing

funds invested in 1990, and so on. The process is yearly rolled over until the end of the

sample. Thus, the OOS returns of the portfolios start from January 1989 to December

2019. At the end of each month from December 1998, i.e. when the portfolios’ return

series reach a length of at least ten years, we calculate the portfolios’ alpha based on

the returns from January 1989 to that month and present that in Figure A.9. We also
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report the average n-year alpha with the length of investing n from 5 to 31 years in

Table A.10.

Figure A.9: Alpha evolution of fFDR10% and FDR10% portfolios over time with use of
data from 1984. The graph presents the evolution of annualized alphas (in %) of the nine fFDR10%
portfolios corresponding to the nine covariates, the portfolio FDR10% of BSW and the two equally
weighted portfolios.

Table A.10: Comparison of portfolios’ performances for varying time lengths of investing:
results for sample data from 1984 to 2019. In this table, we consider 10 portfolios including nine
fFDR10% portfolios corresponding to the nine covariates and the FDR10% portfolio of BSW. We
compare the average alphas of the portfolios that are kept in periods of exactly n consecutive years.
For example, consider n = 5. For each portfolio, we calculate the alpha for the first 5 years based
on the portfolios’ returns from January 1989 to December 1993. Then, we roll forward by a month
and calculate the second alpha. The process is repeated and the last alpha is estimated based on the
portfolios’ returns from January 2015 to December 2019. The average of these alphas is presented in
the first rows of the table.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
5 1.17 0.62 0.88 0.22 0.5 0.35 0.47 0.53 1.02 -0.45
10 1.43 0.61 0.99 0.46 0.58 0.5 0.51 0.91 1.04 -0.37
15 1.64 0.6 1.09 0.65 0.69 0.65 0.63 0.96 1.03 -0.17
20 1.61 0.65 1.29 0.7 0.77 0.79 0.75 1.07 1.17 -0.12
25 1.28 0.53 1.12 0.43 0.61 0.59 0.57 0.9 0.93 -0.33
30 1.45 0.93 1.07 0.43 1.02 1.05 1.05 1.13 1.21 0.03
31 1.5 0.96 1.11 0.49 1.02 1.04 1.06 1.16 1.23 0.1

A.4 A comparison of portfolios’ trading metrics

Next, we evaluate our portfolios in regard to a set of trading metrics, including the

annualized estimated alpha α̂ of the Carhart four-factor model, its bootstrap p-value

and t-statistic (with use of heteroskedasticity and autocorrelation-consistent standard
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error), the annual standard deviation of the four-factor model residuals (σ̂ε), the ge-

ometric mean return in excess of the one-month T-bill rate, the annual Sharpe ratio

and the annual Information Ratio α̂/σ̂ε. All metrics are presented in Table A.11. We

find that the fFDR10% portfolio based on the R-square covariate is the best for all

considered metrics.

Table A.11: Comparison of performance statistics of all considered portfolios (τ = 10%).
The table compares the portfolios with regard to metrics including the annual Carhart four-factor
alpha (α̂, in %) with its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity
and autocorrelation-consistent standard error), the annual standard deviation of the four-factor model
residuals (σ̂ε, in %), the mean return in excess of the one-month T-bill rate (in %), the annual Sharpe
ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR

R-square 1.69 (0.06) 1.85 4.42 7.93 0.61 0.38
Fund Size 1.14 (0.2) 1.32 4.02 7.34 0.56 0.28

Active Weight 1.38 (0.1) 1.72 3.79 8 0.6 0.36
Return Gap 0.77 (0.34) 0.99 3.81 7.38 0.55 0.2
Fund flow 1.3 (0.14) 1.56 3.78 7.75 0.6 0.34
Sharpe 1.04 (0.2) 1.33 3.37 7.77 0.62 0.31
Treynor 1.15 (0.15) 1.45 3.49 7.65 0.6 0.33
Beta 1.67 (0.07) 1.78 4.92 7.28 0.55 0.34
Sigma 1.27 (0.26) 1.16 5.01 7.69 0.57 0.25

FDR10% 0.36 (0.72) 0.37 4.75 6.5 0.52 0.08
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

A.5 Performance of fFDR10% in various periods

In this section, we present the alpha of the fFDR10% portfolios in periods before

and after the covariates were published. The first line of Table A.12 shows that all

covariates gain positive alpha for the period January 1982 to the end of the prior-

published year. The last line of the table indicates that three of the five previously

known covariates still gain significant alpha in the post-published period.
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Table A.12: Performance of fFDR10% portfolios in various periods prior- and post-
published year of the covariates. The table shows the annualized alpha (in %) of the fFDR10%
portfolio corresponding to each covariate in specific periods, with [a, b] denoting a period extending
from the beginning of year a over to the end of year b. For instance, the first value in the R-square
column, that is, 1.75, is the alpha of the fFDR10% with R-square covariate for the period from the
beginning of 1982 to the end of 2012 (i.e., n− 1 = 2012, where n = 2013 is the published year of the
covariate). The middle value in the column is the Carhart four-factor alpha of the portfolio for year
n, which contains only 12 months corresponding to 12 data points of returns.

fFDR10%
R-square Fund Size Active Weight Return Gap Fund flow

Period n = 2013 n = 2017 n = 2015 n = 2008 n = 1999
[1982, n− 1] 1.75 0.82 1.46 1.53 1.6
[n− 10, n− 1] 1.20 -2.04 -1.27 3.00 0.35
[n− 5, n− 1] -2.11 0.11 -1.54 1.71 -0.65
[n− 4, n− 1] -1.81 -0.12 -0.76 0.62 -1.01
[n− 3, n− 1] -2.50 0.22 2.79 0.20 -1.44
[n− 2, n− 1] -2.44 0.50 3.09 0.82 -1.83
[n− 1, n− 1] -0.92 -2.1 8.00 -0.04 -0.87

[n, n] -4.77 -2.39 -3.22 2.67 -0.40
[n+ 1, n+ 1] 4.27 1.33 -1.81 2.70 20.76
[n+ 1, n+ 2] -0.21 5.45 -0.91 -0.95 6.85
[n+ 1, n+ 3] 1.45 - -0.53 -1.73 4.33
[n+ 1, n+ 4] 1.82 - -0.05 -0.81 2.36
[n+ 1, n+ 5] 3.03 - - -2.13 1.90
[n+ 1, n+ 10] - - - -0.59 2.47
[n+ 1, 2019] 3.73 5.45 -0.05 -0.3 1.31

A.6 The construction of sorting portfolios

Here, we describe the constructions of the single- and double-sorting portfolios

which are traditionally conducted in the literature. Specifically, the single-sorting port-

folios based on a covariate are as in Kacperczyk et al. (2008) and Doshi et al. (2015),

and the double-sorting based on a covariate and the past alpha are as in Amihud and

Goyenko (2013).

To construct the single-sorting portfolio for each covariate, at the end of each year

from 1981, all the mutual funds are sorted into deciles (quintiles) according to the

given covariate. For the covariate that has a negative/positive relationship with the

performance of the funds, the funds in the bottom/top decile (quintile) are selected.

These form a portfolio to be invested in the following year. To form the double-sorting

portfolio, the funds selected in the single-sorting portfolio are again sorted into decile

(quintile) according to the past alpha. The funds in the top decile (quintile) form the
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portfolio to be invested in the following year. This process is rolled forward until the

end of the sample period.

For consistency with the fFDR portfolios, we use the same type of 5-year rolling

window, i.e., each time we use the aforementioned observed covariates and the alpha

and covariates calculated based on the last five years.

A.7 Wealth evolution

In Figure 1.5 in Chapter 1, we study the alpha evolution of the portfolios over time.

However, an investor may be interested in the gain in value. Figure A.10 shows the

growth of 1 dollar that the investor invests in each portfolio at the beginning of 1982.

Ultimately, at the end of 2019, this amount grows to about 74 dollars if she chooses

the fFDR10% portfolio with R-square as the covariate, as opposed to just 45, 47 and

41 dollars with the FDR10%, the equal weight plus and equally weighted portfolios,

respectively. This exercise reveals the potential profitability of an investor who had the

perfect oracle in 1982 on the methods and the covariate that would be presented over

the next 30 years.

Figure A.10: Evolution of wealth. The graph plots the evolution of 1 dollar invested at the
beginning of 1982 in the nine FDR10% portfolios corresponding to the nine covariates, the fFDR10%,
the Equal Weight and Equal Weight Plus portfolios.

148



A.8 Results for alternative targets of FDR

In this section, we repeat the exercise with the FDR target of 20%. Figure A.11

presents the alpha evolution of the individual covariates and Table A.13 shows the

average n-year alpha of those portfolios.

Figure A.11: Alpha evolution of fFDR20% and FDR20% portfolios over time. The graph
presents the evolution of annualized alpha of the nine fFDR20% portfolios corresponding to the nine
covariates, the FDR20% of BSW and the two equally weighted portfolios.

Table A.13: Comparison of portfolios’ performances for varying time lengths of investing.
In this table, we consider 10 portfolios including nine fFDR20% portfolios corresponding to the nine
covariates and the FDR20% portfolio of BSW. We compare the average alphas (annualized and in %)
of the portfolios that are kept in periods of exactly n consecutive years. For example, consider n = 5.
For each portfolio, we calculate the alpha for the first 5 years based on the portfolios’ returns from
January 1982 to December 1986. Then, we roll forward by a month and calculate the second alpha.
The process is repeated and the last alpha is estimated based on the portfolios’ returns from January
2015 to December 2019. The average of these alphas is presented in the first row in the table.

fFDR20%
FDR20%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
5 1.6 0.8 1.23 0.61 0.89 0.58 0.65 1.15 1.4 0.41
10 1.63 0.82 1.21 0.61 0.93 0.65 0.7 1.33 1.2 0.34
15 1.84 0.92 1.46 0.82 1.06 0.79 0.83 1.34 1.22 0.41
20 1.97 1.05 1.66 1.03 1.15 0.9 0.92 1.44 1.28 0.53
25 1.75 0.9 1.42 0.78 0.99 0.79 0.82 1.37 1.18 0.42
30 1.55 0.81 1.28 0.67 0.95 0.76 0.8 1.35 1.16 0.31
38 1.84 1.16 1.45 0.82 1.28 1.02 1.1 1.77 1.61 0.67

A.9 Results from using an alternative proxy of covariates

In this section, we present in Figure A.12 the alpha evolution of fFDR10% port-

folios and in Table A.14 their average n−year alpha where the proxy for each covariate
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is based on whole data in the in-sample period instead of the data in final year as in

Chapter 1. We see that the performance of the portfolios does not vary significantly.

Figure A.12: Alpha evolution of fFDR10% portfolios with use of an alternative covariate
proxy. The graph presents the evolution of annualized alpha (in %) of the nine fFDR10% portfolios
(corresponding to the nine covariates), the portfolio FDR10% of BSW and the two equally weighted
portfolios. The proxy for each covariate (except the R-square and the four covariates obtained from
the asset pricing models) is its average realizations in the five years in-sample period.

Table A.14: Comparison of portfolios’ performances for varying time lengths of investing:
alternative proxy of covariates. We consider 10 portfolios including nine fFDR10% portfolios
(corresponding to the nine covariates) and the FDR10% portfolio of BSW. We compare the average
alphas (annualized, in %) of the portfolios that are kept for periods of exactly n consecutive years. The
proxy for each covariate (except the R-square and the four covariates obtained from the asset pricing
models) is its average realizations in the five years in-sample period.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
5 1.49 0.87 1.28 0.69 0.92 0.57 0.73 1.09 1.19 0.12
10 1.48 0.85 1.25 0.63 0.93 0.65 0.76 1.2 1.06 0.05
15 1.7 0.94 1.42 0.72 1.06 0.79 0.88 1.2 1.09 0.14
20 1.84 1.05 1.53 0.79 1.15 0.91 0.96 1.31 1.17 0.26
25 1.61 0.9 1.29 0.61 0.99 0.8 0.86 1.24 1.09 0.13
30 1.41 0.78 1.11 0.5 0.95 0.78 0.86 1.2 1.01 0.01
38 1.69 1.14 1.19 0.67 1.3 1.04 1.15 1.67 1.27 0.36

A.10 Covariate combinations

So far, we have considered the effect from the information brought in by each

single covariate. In what follows, we explore the effect from combining the information

from the different covariates and potential consequent performance improvement. More

specifically, we create a new covariate given by the linear combination of the underlying
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covariates. More specifically, for each fund i at time t, we have

New Covariatet,i = c1tR-squaret,i + c2tActive Weightt,i + c3tReturn Gapt,i

+c4tFund Sizet,i + c5tFund Flowt,i + c6tSharpe Ratiot,i

+c7tTreynor Ratiot,i + c8tSigmat,i + c9tBetat,i. (A.3)

We consider two approaches to estimating the coefficients c1t, . . . , c9t in (A.3). First,

we use as our new covariate the first principal component of all nine (standardized)

covariates. By transforming the covariates to their principal components, their infor-

mation about the performance of a fund is preserved and conveyed. We use the first

principal component as it captures most of the variation of the covariates. Second, we

use a linear model that regresses the fund returns for year k on the observed value of

the covariates in year k − 1, where k ∈ {t, t − 1, t − 2, t − 3}. Then, we predict the

return for year t+1 based on the estimated regression model and the covariates in year

t. This is equivalent to using equation (A.3) with the regression’s estimated coefficients

as the c1t, . . . , c9t. We use ordinary least squares (OLS), the least absolute shrinkage

and selection operator (LASSO) of Tibshirani (1996) , ridge regression and the elastic

net of Zou et al. (2005).3

Figure A.13 exhibits the performance of the fFDRτ portfolios with the newly

created covariates in terms the alpha evolution.4 We find that the portfolio based

on the covariate obtained from the elastic net performs best amongst the combined

covariates at τ = 10%.

3For each method (except OLS), the covariates are standardized before being used in the estimation.
We use cross-validation to determine the parameters in the LASSO, ridge and elastic net methods.

4There are a few years where LASSO (two years) and the elastic net (three years) shrink all the
regression coefficients to zero. In these cases, the new covariate is equal to zero for all funds and, to
avoid an empty portfolio, we simply select all the funds in the FDRτ portfolio.

151



Figure A.13: Alpha evolution of fFDR10% portfolios with combined covariates. The
graph shows the alpha evolution of the fFDR10% portfolios with each using a covariate obtained
from either the principal component method or regression method; for the former, the covariate is the
first principal component (PC 1) of the five covariates, whereas for the latter the new covariate is a
linear combination of the five underlying covariates with the weights obtained based on one of the
OLS, LASSO, Ridge and elastic net regressions.

Aiming to acquire a more complete portrayal of the various covariates combinations,

we study also the portfolios’ alphas for various time lengths of investing. Table A.15

shows the average n-year alphas of the fFDR10% portfolios.

Table A.15: Performance of fFDR10% portfolios with combined covariates for varying
time lengths of investing. The table displays the average n-year alpha (annualized and in %) of
the fFDR10% portfolios which use covariates obtained by the first principal component (PC 1), the
OLS, LASSO, Ridge and elastic net (see descriptions in Figure ??). The average n-year alpha of each
portfolio is calculated as per the description in Table 1.6.

n OLS Ridge LASSO Elastic Net PC 1

5 0.78 1.02 0.8 1.2 0.76
10 0.81 1.03 0.81 1.36 0.94
15 0.91 1.07 0.89 1.5 1.17
20 1.06 1.15 1 1.67 1.31
25 0.96 1.07 0.9 1.44 1.13
30 0.94 1.05 0.89 1.32 1.02
38 0.93 1.04 0.91 1.25 1

The elastic net performs also better for all time lengths. However, this best com-

bined covariate does not beat the R-square and Beta under the fFDR framework.

A.11 Restricted data

As supplementary to our empirical study of Section 1.6, we repeat here our ex-

periments for a data subset where a mutual fund enters the sample when its TNA
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reaches $15 million (adjusted for inflation as of January 2019). This choice of threshold

is consistent with Pastor et al. (2015) and Zhu (2018). Figure A.14 shows the alpha

evolution of the fFDR10% portfolios based on each individual covariate and Table

A.16 reports their average n-year alpha.

Figure A.14: Alpha evolution of fFDR10% portfolios with data restricted. The graph
presents the evolution of annualized alpha (in %) of the nine fFDR10% portfolios (corresponding to
the nine covariates), the portfolio FDR10% of BSW and the two equally weighted portfolios. The
portfolios are constructed based on the data that contains only funds’ returns from when their TNA
reaching at least $15 million.

Table A.16: Comparison of portfolios’ performances for varying time lengths of investing:
restricted data. We consider 10 portfolios including nine fFDR10% portfolios (corresponding to
the nine covariates) and the FDR10% portfolio of BSW. We compare the average alphas (annualized,
in %) of the portfolios that are kept for periods of exactly n consecutive years. The portfolios are
constructed based on the data that contains only funds’ returns from when their TNA reaching at
least $15 million.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
5 1.5 0.81 1.39 0.62 0.93 0.57 0.73 1.09 1.19 0.13
10 1.48 0.68 1.36 0.63 0.93 0.65 0.75 1.2 1.06 0.06
15 1.7 0.73 1.6 0.85 1.06 0.8 0.87 1.2 1.1 0.15
20 1.84 0.82 1.79 1.07 1.14 0.91 0.96 1.31 1.18 0.27
25 1.62 0.71 1.56 0.82 0.98 0.81 0.86 1.24 1.09 0.14
30 1.42 0.63 1.41 0.69 0.95 0.79 0.86 1.2 1.01 0.02
38 1.69 1.01 1.52 0.94 1.3 1.04 1.14 1.68 1.27 0.37
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Appendix B

Appendix for chapter 2

B.1 The multivariate functional false discovery rate

To complement Section 2.2.1 of the manuscript, we present the procedures for

estimating the π0(z), f(p, z) and q−value.

To estimate π0(z) one can extend the “bin” approach presented in HKMS, where

we partition m tests into some groups based on covariates and estimate π0(z) as a

constant in each group. In this study, we additionally utilize another approach which

is based on density estimation as follows. Firstly, for some λ ∈ [0, 1) we define:

π0(z, λ) =
P(P > λ|Z = z)

1− λ
. (B.1)

Conditional on Z = z, P(P > λ) ≥ P(P > λ|h = 0).P(h = 0). Thus, we have

P(P > λ|Z = z) ≥ P(P > λ|Z = z, h = 0).P(h = 0|Z = z)

= (1− λ)P(h = 0|Z = z)

= (1− λ)π0(z)

(B.2)

where the second step comes from the uniform distribution of P |(Z = z, h = 0). This

turns out π0(z, λ) ≥ π0(z), i.e. π0(z, λ) is an conservative estimate of π0(z). If we

express π0(z, λ) as

π0(z, λ) = P(Z = z|P > λ).
P(P > λ)

1− λ
(B.3)

then, the first term P(P>λ)
1−λ

is conservatively estimated by π̂0(λ) = #{pi>λ}
n(1−λ)

, here #

returns the number of elements in the set, as in Storey (2002). The remain P(Z =
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z|P > λ), which is the density function of Z conditional on p−value > λ, will be

estimated as a function ĥλ(z) such that

π̂0(z, λ) = ĥλ(z).π̂0(λ) (B.4)

is a conservative estimate of π0(z).

Next, to estimate the density functions ĥλ(z) and f(p, z) we use a local likelihood

kernel density estimation (KDE) approach in which a probit transformation in Geenens

(2014) is adopted. More specifically, let Φ(t) = 1√
2π

∫ t

−∞ e−x2/2dx and Φ−1 its inverse.

We transform the variables (p, z) to (p̃, z̃) by using p̃i = Φ−1(pi) and z̃ki = Φ−1(zki ),

k = 1, . . . , d. We denote by f̃(p̃, z̃) and h̃λ(z̃), respectively, the joint density function of

(p̃, z̃) and the conditional density function of z̃ on the group of null hypotheses having

p−value < λ, {i|Pi > λ}. We estimate them by using the local likelihood KDE method

in Loader (1999). When the number of variables in the estimating function is greater

than two (i.e., d ≥ 3 for ĥλ(z̃) and d ≥ 2 for f(p, z̃)), we drop the cross-product

terms from the local model. This allows us to overcome the curse of dimensionality

as we are working with one-dimensional integrals instead of a multivariate one. The

estimation can be implemented easily via the freely available R package locfit. When

the dimension is less than three, the bandwidth of the KDE is chosen locally via a

k-Nearest-Neighbor approach using generalized cross-validation similar to CRS.

The desired density functions ĥλ(z) and f(p, z), respectively, are then estimated,

as ĥλ(z) =
h̃λ(z̃)

Πd
k=1ϕ(z̃

k)
and f̂(p, z) = f̃(p̃,z̃)

ϕ(p̃)Πd
k=1ϕ(z̃

k)
where ϕ(x) = 1√

2π
e−x2/2.

For each λ, the ĥλ(z) is plugged to (B.4) to acquire the estimate π̂0(z, λ). The λ is

chosen in the set {0.4, . . . , 0.8} such that the mean integrated squared error defined as

in CRS is minimal.

As argued in CRS, if the f(p, z) is non-increasing with respect to p for each fixed

z, then we should adjust the f̂(p, z) so that it carries this property. In practice, this

can be acquired by resetting the value of f̂(pi, zi)

f̂(pi, zi) := min
{
f̂(pi, zi),min

{
f̂(pl, zl)|pl < pi, ∥zi − zl∥≤ ϵ

}}
where ∥.∥ is the Euclid distance and ϵ is a small positive number which is set at 0.01
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in this study.

Finally, we calculate r̂(p, z) = π̂0(z)/f̂(p, z) and estimate the so-called q−value

function (see CRS) as

q̂(pi, zi) =
1

#Si

∑
k∈Si

r̂(pk, zk), (B.5)

where Si = {k|r̂(pk, zk) ≤ r̂(pi, zi)}, pi is the p−value of test i and zi = (z1i , . . . , z
d
i ) is

the covariate bundle of strategy i.1

We recall here the “positive false discovery rate”, a type I error introduced in Storey

(2003), pFDR = E
(
V
R

∣∣R > 0
)
where R is the number of rejected null hypotheses in n

tests and V the wrongly rejected ones. For a given target τ ∈ [0, 1] of pFDR, a null

hypothesis H0,i is rejected if and only if q̂(pi, zi) ≤ τ . One can replicate the arguments

in CRS to show that the mfFDR procedure controls at the target τ of pFDR. We

emphasize that control for pFDR is equivalent to control for the FDR at the same level

when n is large which is the case in this study.

B.2 Performance of mfFDR under noisy covariates

As mentioned in Section 2.2.3, the covariates are estimated quantities and thus,

have inherited some noise that might affect the power of our method. In this section,

we address this concern by considering a simple setting where the input covariates

contain noise. More specifically, we use the covariates u = (u1, . . . , un), v = (v1, . . . , vn)

as in our previous simulations in Section 2.2.2 to generate the simulated data, but now

we use inputs of mfFDR the observed u′ = (u′
1, . . . , u

′
n) and v′ = (v′1, . . . , v

′
n) defined

as

u′
i = ui + ηi (B.6)

and

v′i = vi + ϵi (B.7)

where ηi and ϵi are noise generated independently from a normal distribution N(0, σ2),

i = 1, . . . , n. To study the performance of the mfFDR, we consider three different

values of σ including σ1 = 0.5/
√
12, σ2 = 1.0/

√
12 and σ3 = 1.5/

√
12. The determina-

1This estimation is proposed by Newton et al. (2004) and Storey et al. (2005) and subsequently
adopted in CRS.
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tion of those values are based on the fact that the covariates u, v ∼ U [0, 1], which has

a standard deviation of 1/
√
12.

The magnitude of the noise in this setting reflects the level of informativeness of

the covariates (the higher variation of the noise is, the less informative the covariates

are) or the strength of the relationship between the observed covariates and the true

status of hypotheses (the higher variation of the noise is, the weaker the relationship

is).

In Figure B.1, we present the performance of mfFDR in terms of FDR control

and its power (at FDR target up to 0.45). We see that the FDR is controlled well at

any given target from 0.05 to 0.95. To have a complete picture on the impact of the

noise on the power of the covariate augmented methods, we add the performance of the

fFDR when its covariate is u′ and compare it to the mfFDR using original (u, v) and

the StdFDR. Evidently, the power of the mfFDR with noise in covariates is lower

than the case with original ones but still remarkably higher than that of the fFDR

(with noised covariate u′) and StdFDR.
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Figure B.1: Performance comparison under noisy covariates. The figure compares the perfor-
mance of the mfFDR and fFDR with noisy covariates and the Standard FDR of Storey (SdtFDR)
procedures. Here the the input covariates for the mfFDR are u′ = u + ε, v′ = v + η, where
ε, η ∼ N(0, σ2) and σ ∈ {0.5/

√
12, 1.0/

√
12, 1.5/

√
12}, whereas the fFDR the u′. Panel A shows

the performance when the π0(u, v) has a sine form whereas Panel B is the monotonic one.

Panel A: π0(u, v) is a sine function.

Panel B: π0(u, v) is a monotonic function.
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B.3 Performance of mfFDR under varying number of tests

In the main manuscript, we conduct simulation studies with population of n =10,000

tests. This number is chosen since it is close to that of the actual input of mfFDR

in the empirical experiments. Aiming for a wider range in application of the mfFDR

framework, we additionally conduct a robustness check with use of smaller numbers of

tests. Particularly, we repeat the simulation with: n = 500, 1000 and 5000 tests.

In Figure B.2, we present the performance of the mfFDR against its benchmark,

the StdFDR, in terms of FDR control and power. First, under the weak and very weak

signal cases, the mfFDR controls well for any given FDR targets. Second, for strong

signal data, the mfFDR slightly violates the FDR control at high targets, especially

when the number of tests is small. More specifically, when n = 500, the mfFDR

strictly controls well for FDR at targets up to 0.2. When n = 3000 and n = 5000,

these numbers are 0.3 and 0.4. Thus, if the number of considering tests is smaller than

500 and the aim is controlling for a FDR target higher than 0.2, the method should be

used on weak or very weak signal rather than strong signal data. Although, it should

be noted that controlling FDR at a high target with a small number of tests, has no

practical value in finance, economics and most fields of science. Last, in terms of power,

the mfFDR is superior to that of the StdFDR in all cases regardless the number of

tests.
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Figure B.2: Performance comparison under varying sample size. The figure compares the
performance of the mfFDR against the Standard FDR of Storey (SdtFDR) with varying population
size (n). Panel A shows the performance when the π0(u, v) has a sine form whereas in Panel B is the
monotonic one.

Panel A: π0(u, v) is a sine function.

Panel B: π0(u, v) is monotonic with respect to each covariate.
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B.4 Performance of mfFDR+ portfolios with various FDR

targets

In this section, we present the performance of the mfFDR+ based portfolios both

when it is applied on individual currency as well as on all currencies on various FDR

targets. More specifically, we repeat the experiment in the main manuscript with FDR

target τ varying from 10% to 40%. The results for the former portfolios are presented

in Table B.1 while those of all currencies together one are exhibited in Table B.2. The

results corresponding to τ = 0.2 is represented for conveniences in comparison. Overall,

the performance of the portfolios are stable across the considered targets. When all

currencies are examined together, we observe higher Sharpe ratio and smaller annual

return for higher target. This observation implicitly indicates that the volatility of the

portfolio’s daily return is higher when we control FDR at small target.
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Table B.1: Performance of mfFDR based portfolios on individual currency with varying FDR target. The table shows annualized Sharpe
ratios of the mfFDR based portfolio with FDR target τ = {0.1, 0.2, 0.3, 0.4} based on portfolios’ returns before (left side) and after transaction cost (right
side). The final row shows the average Sharpe ratio across 30 portfolios corresponding to the 30 currencies. The numbers in parentheses are the corresponding
p−values. “∗”, “∗∗” and “∗∗∗” respectively indicate statistical significance at levels of 10%, 5% and 1%.

Countries Before transaction cost After transaction cost
τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4

Australia 0.17 (0.21) 0.18 (0.17) 0.18 (0.17) 0.18 (0.17) 0.13 (0.34) 0.14 (0.29) 0.14 (0.30) 0.14 (0.31)
Canada 0.19 (0.17) 0.17 (0.23) 0.17 (0.25) 0.17 (0.24) 0.13 (0.37) 0.11 (0.46) 0.11 (0.47) 0.11 (0.46)
Germany/E.U. 0.48 (0.00)∗∗∗ 0.49 (0.00)∗∗∗ 0.48 (0.00)∗∗∗ 0.48 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.46 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗

Japan 0.46 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.44 (0.00)∗∗∗ 0.43 (0.00)∗∗∗ 0.41 (0.00)∗∗∗ 0.41 (0.00)∗∗∗ 0.41 (0.00)∗∗∗

New Zealand 0.32 (0.01)∗∗∗ 0.34 (0.00)∗∗∗ 0.35 (0.00)∗∗∗ 0.35 (0.00)∗∗∗ 0.27 (0.02)∗∗ 0.28 (0.02)∗∗ 0.29 (0.01)∗∗∗ 0.29 (0.01)∗∗∗

Norway 0.20 (0.15) 0.18 (0.17) 0.18 (0.19) 0.18 (0.18) 0.15 (0.29) 0.13 (0.36) 0.13 (0.38) 0.13 (0.37)
Sweden 0.37 (0.00)∗∗∗ 0.40 (0.00)∗∗∗ 0.40 (0.00)∗∗∗ 0.40 (0.00)∗∗∗ 0.33 (0.02)∗∗ 0.36 (0.01)∗∗∗ 0.36 (0.00)∗∗∗ 0.36 (0.00)∗∗∗

Switzerland 0.26 (0.06)∗ 0.26 (0.06)∗ 0.25 (0.07)∗ 0.25 (0.07)∗ 0.22 (0.11) 0.22 (0.12) 0.22 (0.12) 0.21 (0.13)
U.K. 0.29 (0.05)∗∗ 0.29 (0.05)∗∗ 0.28 (0.05)∗∗ 0.28 (0.06)∗ 0.26 (0.07)∗ 0.25 (0.08)∗ 0.24 (0.10)∗ 0.24 (0.10)∗

Argentina 0.35 (0.06)∗ 0.35 (0.06)∗ 0.34 (0.06)∗ 0.35 (0.06)∗ 0.32 (0.10)∗ 0.31 (0.11) 0.29 (0.11) 0.30 (0.12)
Columbia 0.56 (0.00)∗∗∗ 0.60 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.61 (0.00)∗∗∗ 0.48 (0.01)∗∗∗ 0.53 (0.01)∗∗∗ 0.55 (0.00)∗∗∗ 0.54 (0.01)∗∗∗

India 0.35 (0.03)∗∗ 0.34 (0.03)∗∗ 0.34 (0.03)∗∗ 0.34 (0.04)∗∗ 0.31 (0.06)∗ 0.30 (0.07)∗ 0.30 (0.07)∗ 0.30 (0.07)∗

Indonesia 0.33 (0.02)∗∗ 0.34 (0.02)∗∗ 0.33 (0.02)∗∗ 0.33 (0.02)∗∗ 0.23 (0.10)∗ 0.24 (0.09)∗ 0.24 (0.09)∗ 0.24 (0.10)∗

Israel 0.52 (0.00)∗∗∗ 0.54 (0.00)∗∗∗ 0.54 (0.00)∗∗∗ 0.54 (0.00)∗∗∗ 0.37 (0.02)∗∗ 0.39 (0.01)∗∗∗ 0.39 (0.01)∗∗∗ 0.39 (0.01)∗∗∗

Philippines 0.64 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.62 (0.00)∗∗∗ 0.48 (0.01)∗∗∗ 0.46 (0.01)∗∗∗ 0.46 (0.01)∗∗∗ 0.46 (0.01)∗∗∗

Romania 0.19 (0.31) 0.23 (0.19) 0.24 (0.16) 0.25 (0.15) 0.09 (0.65) 0.12 (0.51) 0.13 (0.47) 0.13 (0.46)
Russia 0.47 (0.01)∗∗∗ 0.51 (0.01)∗∗∗ 0.52 (0.01)∗∗∗ 0.52 (0.01)∗∗∗ 0.44 (0.02)∗∗ 0.48 (0.01)∗∗∗ 0.49 (0.01)∗∗∗ 0.49 (0.01)∗∗∗

Slovak 0.16 (0.40) 0.18 (0.35) 0.19 (0.33) 0.19 (0.31) 0.11 (0.51) 0.13 (0.48) 0.13 (0.46) 0.14 (0.43)
Brazil 0.36 (0.07)∗ 0.36 (0.07)∗ 0.35 (0.08)∗ 0.35 (0.08)∗ 0.33 (0.10)∗ 0.33 (0.10)∗ 0.32 (0.10)∗ 0.32 (0.10)∗

Chile 0.49 (0.01)∗∗∗ 0.46 (0.02)∗∗ 0.45 (0.02)∗∗ 0.45 (0.02)∗∗ 0.41 (0.04)∗∗ 0.38 (0.06)∗ 0.37 (0.06)∗ 0.37 (0.06)∗

Czech 0.07 (0.64) 0.12 (0.46) 0.13 (0.43) 0.14 (0.41) 0.01 (0.85) 0.06 (0.65) 0.07 (0.61) 0.08 (0.60)
Hungary -0.12 (0.56) -0.11 (0.60) -0.11 (0.60) -0.11 (0.62) -0.17 (0.39) -0.17 (0.41) -0.16 (0.41) -0.16 (0.43)
Korea 0.30 (0.15) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16) 0.24 (0.23) 0.23 (0.25) 0.23 (0.26) 0.23 (0.26)
Mexico 0.10 (0.48) 0.10 (0.49) 0.09 (0.50) 0.10 (0.49) 0.05 (0.71) 0.04 (0.73) 0.04 (0.74) 0.04 (0.73)
Poland -0.02 (0.90) 0.02 (0.92) 0.02 (0.88) 0.03 (0.85) -0.07 (0.73) -0.03 (0.89) -0.03 (0.91) -0.02 (0.93)
Singapore 0.28 (0.05)∗∗ 0.32 (0.02)∗∗ 0.32 (0.02)∗∗ 0.32 (0.02)∗∗ 0.11 (0.52) 0.15 (0.32) 0.15 (0.32) 0.15 (0.33)
South Africa 0.19 (0.19) 0.23 (0.14) 0.25 (0.10)∗ 0.25 (0.09)∗ 0.07 (0.61) 0.10 (0.49) 0.12 (0.43) 0.12 (0.43)
Taiwan 0.73 (0.00)∗∗∗ 0.73 (0.00)∗∗∗ 0.73 (0.00)∗∗∗ 0.73 (0.00)∗∗∗ 0.66 (0.00)∗∗∗ 0.66 (0.00)∗∗∗ 0.65 (0.00)∗∗∗ 0.65 (0.00)∗∗∗

Thailand 0.46 (0.02)∗∗ 0.47 (0.02)∗∗ 0.46 (0.02)∗∗ 0.46 (0.02)∗∗ 0.37 (0.05)∗∗ 0.38 (0.04)∗∗ 0.38 (0.04)∗∗ 0.38 (0.04)∗∗

Turkey 0.51 (0.00)∗∗∗ 0.51 (0.00)∗∗∗ 0.51 (0.00)∗∗∗ 0.50 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.44 (0.00)∗∗∗

Average 0.32 0.33 0.33 0.33 0.25 0.26 0.26 0.26
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Table B.2: Performance of mfFDR+ portfolios on basket of currencies. The table shows
the annualized Sharpe ratios and mean returns (before and after transaction cost) and break-even
point (bps) by implementing the mfFDR+ on all strategies in all currencies to control the FDR
at 10% (Panel A), 20% (Panel B), 30% (Panel C) and 40% (Panel D). The selected out-performing
strategies then are combined by currency. The fund is allocated to trade on each of currencies having
out-performing strategies with weighted by size of the selected out-performing trading rules. The first
row presents the numbers of whole sample period while the rests are those of sub-periods.

Period Excess Sharpe Ratio Net Sharpe Ratio Excess Return Net Return Break-even
Panel A: FDR target of 10%

Whole Period 0.98 0.88 4.36 3.91 63
1973-1980 1.40 1.31 4.89 4.58 76
1981-1990 2.11 2.01 8.28 7.89 141
1991-2000 0.81 0.72 4.93 4.38 84
2001-2010 0.62 0.47 2.53 1.89 34
2011-2020 0.33 0.25 1.28 0.99 10

Panel B: FDR target of 20%
Whole Period 1.06 0.95 3.80 3.40 60
1973-1980 1.45 1.35 4.47 4.18 69
1981-1990 2.08 1.97 7.30 6.93 128
1991-2000 0.92 0.81 4.15 3.64 72
2001-2010 0.69 0.53 2.37 1.82 34
2011-2020 0.29 0.21 0.88 0.63 14

Panel C: FDR target of 30%
Whole Period 1.11 0.99 3.54 3.15 57
1973-1980 1.49 1.39 4.29 4.01 76
1981-1990 2.02 1.91 6.69 6.33 118
1991-2000 1.00 0.87 3.77 3.28 66
2001-2010 0.72 0.56 2.28 1.75 34
2011-2020 0.32 0.23 0.83 0.60 8

Panel D: FDR target of 40%
Whole Period 1.12 1.00 3.34 2.97 54
1973-1980 1.47 1.37 4.11 3.84 75
1981-1990 1.98 1.87 6.30 5.94 112
1991-2000 1.06 0.92 3.57 3.10 63
2001-2010 0.73 0.57 2.20 1.70 34
2011-2020 0.29 0.20 0.72 0.50 7

B.5 Performance of mfFDR+ portfolios with use of mean

excess return as the testing performance metric

As a robustness check, we repeat all experiments presented in main manuscript with

use of mean excess return as performance metric in hypothesis testing (ϕ). Table B.3

present the OOS performance of the mfFDR-based portfolios, both before and after

transaction cost, when implementing the method on individual currencies to control

FDR at targets of 10%, 20%, 30% and 40%.
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Table B.3: Performance of mfFDR based portfolios on individual currency with varying FDR target when mean return is used as the
testing performance metric. The table shows annualized Sharpe ratios of the mfFDR based portfolio with FDR target τ = {0.1, 0.2, 0.3, 0.4} based on
portfolios’ returns before (left side) and after transaction cost (right side). The final row shows the average Sharpe ratio across 30 portfolios corresponding
to the 30 currencies. The numbers in parentheses are the corresponding p−values. “∗”, “∗∗” and “∗∗∗” respectively indicate statistical significance at levels of
10%, 5% and 1%.

Countries Before transaction cost After transaction cost
τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4

Australia 0.20 (0.11) 0.20 (0.10)∗ 0.20 (0.11) 0.19 (0.11) 0.16 (0.19) 0.16 (0.20) 0.15 (0.21) 0.15 (0.22)
Canada 0.19 (0.15) 0.18 (0.17) 0.18 (0.17) 0.18 (0.17) 0.13 (0.31) 0.12 (0.39) 0.12 (0.41) 0.12 (0.38)
Germany/E.U. 0.45 (0.00)∗∗∗ 0.46 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.41 (0.01)∗∗∗

Japan 0.46 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.45 (0.00)∗∗∗ 0.43 (0.00)∗∗∗ 0.41 (0.01)∗∗∗ 0.42 (0.01)∗∗∗ 0.41 (0.01)∗∗∗

New Zealand 0.33 (0.01)∗∗∗ 0.35 (0.00)∗∗∗ 0.35 (0.00)∗∗∗ 0.36 (0.00)∗∗∗ 0.27 (0.03)∗∗ 0.29 (0.02)∗∗ 0.30 (0.02)∗∗ 0.30 (0.02)∗∗

Norway 0.21 (0.09)∗ 0.19 (0.14) 0.18 (0.14) 0.18 (0.14) 0.16 (0.20) 0.14 (0.27) 0.13 (0.29) 0.13 (0.29)
Sweden 0.37 (0.01)∗∗∗ 0.40 (0.01)∗∗∗ 0.40 (0.01)∗∗∗ 0.40 (0.01)∗∗∗ 0.32 (0.01)∗∗∗ 0.35 (0.01)∗∗∗ 0.35 (0.01)∗∗∗ 0.35 (0.01)∗∗∗

Switzerland 0.30 (0.04)∗∗ 0.30 (0.02)∗∗ 0.30 (0.03)∗∗ 0.29 (0.03)∗∗ 0.26 (0.06)∗ 0.26 (0.06)∗ 0.26 (0.07)∗ 0.26 (0.07)∗

U.K. 0.32 (0.02)∗∗ 0.30 (0.04)∗∗ 0.30 (0.05)∗∗ 0.30 (0.05)∗∗ 0.28 (0.05)∗∗ 0.27 (0.06)∗ 0.26 (0.07)∗ 0.26 (0.07)∗

Argentina 0.22 (0.29) 0.24 (0.25) 0.24 (0.23) 0.24 (0.23) 0.18 (0.37) 0.19 (0.33) 0.20 (0.31) 0.20 (0.31)
Columbia 0.52 (0.01)∗∗∗ 0.57 (0.00)∗∗∗ 0.57 (0.00)∗∗∗ 0.57 (0.00)∗∗∗ 0.45 (0.03)∗∗ 0.50 (0.01)∗∗∗ 0.51 (0.01)∗∗∗ 0.50 (0.01)∗∗∗

India 0.37 (0.02)∗∗ 0.35 (0.03)∗∗ 0.35 (0.03)∗∗ 0.35 (0.03)∗∗ 0.33 (0.05)∗∗ 0.31 (0.06)∗ 0.31 (0.06)∗ 0.30 (0.06)∗

Indonesia 0.33 (0.02)∗∗ 0.34 (0.02)∗∗ 0.33 (0.02)∗∗ 0.33 (0.02)∗∗ 0.24 (0.10)∗ 0.24 (0.10)∗ 0.24 (0.10)∗ 0.24 (0.10)∗

Israel 0.30 (0.04)∗∗ 0.31 (0.03)∗∗ 0.31 (0.03)∗∗ 0.31 (0.03)∗∗ 0.12 (0.38) 0.13 (0.32) 0.13 (0.33) 0.13 (0.33)
Philippines 0.66 (0.00)∗∗∗ 0.64 (0.00)∗∗∗ 0.63 (0.00)∗∗∗ 0.63 (0.00)∗∗∗ 0.49 (0.01)∗∗∗ 0.47 (0.01)∗∗∗ 0.46 (0.02)∗∗ 0.47 (0.02)∗∗

Romania 0.16 (0.39) 0.20 (0.28) 0.20 (0.25) 0.20 (0.26) 0.05 (0.78) 0.08 (0.65) 0.09 (0.62) 0.09 (0.62)
Russia 0.40 (0.09)∗ 0.41 (0.08)∗ 0.42 (0.08)∗ 0.42 (0.08)∗ 0.38 (0.10)∗ 0.39 (0.08)∗ 0.40 (0.08)∗ 0.40 (0.08)∗

Slovak 0.14 (0.42) 0.15 (0.40) 0.16 (0.37) 0.17 (0.36) 0.10 (0.58) 0.10 (0.56) 0.11 (0.54) 0.12 (0.50)
Brazil 0.35 (0.08)∗ 0.35 (0.09)∗ 0.34 (0.09)∗ 0.34 (0.09)∗ 0.32 (0.11) 0.31 (0.11) 0.31 (0.11) 0.31 (0.11)
Chile 0.44 (0.03)∗∗ 0.40 (0.04)∗∗ 0.40 (0.05)∗∗ 0.40 (0.05)∗∗ 0.36 (0.08)∗ 0.32 (0.11) 0.31 (0.12) 0.31 (0.12)
Czech 0.07 (0.64) 0.11 (0.51) 0.12 (0.47) 0.12 (0.46) 0.01 (0.88) 0.05 (0.71) 0.06 (0.67) 0.06 (0.64)
Hungary -0.13 (0.49) -0.12 (0.54) -0.12 (0.55) -0.12 (0.57) -0.18 (0.35) -0.18 (0.36) -0.17 (0.37) -0.17 (0.38)
Korea 0.32 (0.12) 0.30 (0.14) 0.29 (0.15) 0.29 (0.15) 0.26 (0.19) 0.24 (0.21) 0.24 (0.21) 0.24 (0.21)
Mexico 0.08 (0.55) 0.08 (0.55) 0.08 (0.57) 0.08 (0.56) 0.03 (0.78) 0.03 (0.80) 0.03 (0.81) 0.03 (0.80)
Poland -0.05 (0.78) -0.01 (0.98) -0.01 (0.98) 0.00 (0.98) -0.10 (0.59) -0.05 (0.78) -0.06 (0.78) -0.05 (0.81)
Singapore 0.27 (0.05)∗∗ 0.32 (0.03)∗∗ 0.32 (0.03)∗∗ 0.32 (0.03)∗∗ 0.11 (0.54) 0.15 (0.35) 0.14 (0.37) 0.14 (0.37)
South Africa 0.17 (0.24) 0.21 (0.16) 0.23 (0.12) 0.24 (0.11) 0.05 (0.71) 0.09 (0.53) 0.11 (0.46) 0.11 (0.45)
Taiwan 0.78 (0.00)∗∗∗ 0.77 (0.00)∗∗∗ 0.77 (0.00)∗∗∗ 0.77 (0.00)∗∗∗ 0.70 (0.00)∗∗∗ 0.70 (0.00)∗∗∗ 0.69 (0.00)∗∗∗ 0.69 (0.00)∗∗∗

Thailand 0.46 (0.02)∗∗ 0.47 (0.01)∗∗∗ 0.47 (0.01)∗∗∗ 0.47 (0.01)∗∗∗ 0.37 (0.05)∗∗ 0.39 (0.04)∗∗ 0.39 (0.04)∗∗ 0.38 (0.04)∗∗

Turkey 0.48 (0.00)∗∗∗ 0.48 (0.00)∗∗∗ 0.48 (0.00)∗∗∗ 0.48 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.42 (0.00)∗∗∗ 0.42 (0.00)∗∗∗

Average 0.31 0.31 0.31 0.31 0.24 0.24 0.24 0.24
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Table B.4 exhibits the results when implementing the method on all currencies

together.

Table B.4: Performance of mfFDR+ portfolios with use of mean return as the testing
performance metric. The table shows the annualized Sharpe ratios and mean returns (before and
after transaction cost) and break-even point (bps) by implementing the mfFDR+ on all strategies in
all currencies to control the FDR at 10% (Panel A), 20% (Panel B), 30% (Panel C) and 40% (Panel
D). The selected out-performing strategies then are combined by currency. The fund is allocated to
trade on each of currencies having out-performing strategies with weighted by size of the selected out-
performing trading rules. The first row presents the numbers of whole sample period while the rests
are those of sub-periods.

Period Excess Sharpe Ratio Net Sharpe Ratio Excess Return Net Return Break-even
Panel A: FDR target of 10%

Whole Period 1.00 0.90 4.48 4.04 65
1973-1980 1.43 1.34 5.01 4.69 78
1981-1990 2.09 1.99 8.36 7.96 141
1991-2000 0.85 0.76 5.27 4.71 89
2001-2010 0.63 0.47 2.51 1.89 34
2011-2020 0.35 0.28 1.37 1.08 11

Panel B: FDR target of 20%
Whole Period 1.08 0.97 3.87 3.47 60
1973-1980 1.45 1.36 4.47 4.18 75
1981-1990 2.07 1.97 7.33 6.95 128
1991-2000 0.95 0.84 4.31 3.80 75
2001-2010 0.69 0.53 2.35 1.80 34
2011-2020 0.34 0.26 1.03 0.78 10

Panel C: FDR target of 30%
Whole Period 1.12 1 3.55 3.17 57
1973-1980 1.47 1.38 4.24 3.97 75
1981-1990 2.02 1.91 6.71 6.34 119
1991-2000 1.02 0.89 3.85 3.37 68
2001-2010 0.72 0.55 2.24 1.73 34
2011-2020 0.34 0.25 0.88 0.65 9

Panel D: FDR target of 40%
Whole Period 1.13 1 3.36 2.99 55
1973-1980 1.46 1.36 4.06 3.80 75
1981-1990 1.99 1.87 6.33 5.97 113
1991-2000 1.08 0.94 3.62 3.16 65
2001-2010 0.73 0.56 2.18 1.68 33
2011-2020 0.31 0.22 0.76 0.54 8
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Appendix C

Appendix for chapter 3

C.1 The implementation of the StepM and StepSPA proce-

dures

In this section we present the StepM and StepSPA procedures for multiple tests

where the testing metric is the alpha of an asset pricing model. In line with frameworks

of Romano and Wolf (2005) and Hansen (2005), Hsu et al. (2010) we first consider

performance of n funds and conduct for each fund i a hypothesis test:

H0 : µi ≤ 0 H1 : µi > 0 (C.1)

where µi is the expectation of a time-varying metric di,t which represents for the per-

formance of the fund i relative to a benchmark at time t, i = 1, . . . , n. The relative

performance can be expressed in a form of di,t = L0,t−Li,t where L0,t and Li,t are values

of a loss function measured at time t of the benchmark and fund i, respectively. The

choice of the loss function is flexible and depends on the goal of researchers.

For instance, in the framework of Hsu et al. (2010), where they assess the perfor-

mance of trading rules, the Li,t is set to be −1 multiplied by the return of a trading

rule i in excess of interest rate in day t. The benchmark strategy is one that earns the

interest rate, whose L0,t = 0 which is −1 multiplied by 0 (the benchmark return excess

of the interest rate). The di,t turns out to be the excess return of the strategy i and µi

is its expected return.

In our framework, the testing performance is the alpha of a fund, the choice of the

loss function will be different. Suppose we are testing the alpha of the model (3.4). We
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consider funds surviving through periods t from 1 to T and assess their performances

in this period. As the adjusted return of a fund i is ri,t−F tβ̂i where β̂i is the estimate

of βi, we define a loss function as Li,t = −[ri,t − Ftβ̂i]. This is a natural setting as

the smaller the loss Li,t, the better the performance of the fund. The benchmark is the

portfolio that invests on the considering risk factors and thus the adjusted return is 0

and its loss is L0,t = 0. We have that the expectation of L0,t − Li,t = ri,t − Ftβ̂i is the

alpha of the fund i. Thus, in our framework

di,t = ri,t − Ftβ̂i = α̂i + ε̂i,t (C.2)

The StepM and StepSPA procedures rely on a bootstrapped resampling where the

stationary bootstrap procedure of Politis and Romano (1994), with average length 1/q

where q ∈ (0, 1), is adopted.

First we estimate the variance ω̂2
i of di,t as in Hansen (2005). More specifically, let

d̄i be the average of di,1, . . . , di,T . Then,

ω̂2
i = γ̂i,0 + 2

T−1∑
t=1

κ(T, t)γ̂i,t (C.3)

where γ̂i,t = 1/T.
∑T−t

k=1(di,k − d̄i)(di,k+t − d̄i), t = 0, . . . , T − 1 and κ(T, t) = T−t
T

(1 −

q)t + t
T
(1− q)T−t.

For each bootstrapped iteration b, a cross-sectionally and jointly bootstrapped re-

turn of each fund i and risk factors are generated. We calculate d̄i,b =
∑T

t=1 di,t,b/T

where di,t,b is the relative performance obtained by implementing (C.2) on the boot-

strapped return of the fund i.1

For the (studentized) StepM procedure, we calculate the variance ω̂2
i,b for the boot-

strapped differential di,t,b via using (C.3) where di,t and d̄i are replaced by di,t,b and d̄i,b,

respectively.

After B iterations, we establish a bootstrapped critical point for StepM, c∗τ,StepM , as

the (1−τ)th quantile of the bootstrapped population max
i

[(d̄i,b− d̄i)/ω̂i,b], b = 1, . . . , B.2

1We bootstrap from fund returns and risk factors as adjusted return of a fund i is changing via
both its return and the estimated βi calculated with use of the return.

2Our implementation of the StepM procedure is similar to Hsu et al. (2010) which differs from
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In the (studentized) StepSPA, we define µ̂i = d̄i.1{
√
T d̄i≤−ω̂i

√
2 log log T} where 1{·}

denotes the indicator function, i = 1, . . . , n. and the bootstrapped critical point is

defined as c∗τ = max{cτ , 0} where cτ is the (1 − τ)th quantile of the bootstrapped

population
√
Tmax

i
[(d̄i,b − d̄i + µ̂i)/ω̂i], b = 1, . . . , B.

Both the StepM and StepSPA are processed with the same steps but different in

the statistics and bootstrapped critical point. In particular, the StepSPA procedure is

as followings:

• Sort
√
T d̄i/ω̂i in a descending order.

• Select the top k funds if
√
T d̄k/ω̂k > c∗τ . If there is no hypothesis rejected then

stop the procedure. Otherwise,

1. Remove the selected funds to obtain a sub-sample. Recalculate the critical

c∗τ with use of the sub-sample, denoted by csτ .

2. The top k′ funds in the sub-sample with
√
T d̄k′/ω̂k′ > csτ are selected. If

there is no hypothesis rejected then stop the procedure. Otherwise go to

step 3.

3. Repeat the steps 1 and 2 above until there is no hypothesis that can be

rejected.

In the StepM procedure, the statistics
√
T d̄k/ω̂k and bootstrapped critical point c∗τ

are replaced by d̄k/ω̂k and c∗τ,StepM , both in the whole sample and sub-sample, respec-

tively.

the original procedure of Romano and Wolf (2005) in three aspects. First, they use a circular block
bootstrap while we use the stationary bootstrap. Second, they adopt data-driven algorithm in deter-
mining the block size of bootstrap, while we use a fixed value q = 0.9 following literature. Third, they
use bootstrapped standard errors whereas we adopt HAC estimators as described in C.3. These differ-
ences might affect the finite sample performance of the StepM performance reported in our simulations
results.
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C.2 Additional simulation studies

To complement our simulation studies presented in Section 3.5 of Chapter 3, this

section presents simulation results for a different setting of the triple (π+, π0, π
−). More

specifically, we additionally consider the case π+ = 40%, π0 = 60% and π− = 0%.

Generally, the results are very similar to the case π+ = 20%, π0 = 60% and π− = 20%

and for the interest of space, we present the main results in Figure C.1 where 18

variant settings are considered. These variants cover various signal settings in terms of

α magnitude, the covariate signal strength and the correlation among the covariates.

Figure C.1: Performance of the fwer+ under the alternative setting of out-performing
funds proportion. The figure shows impact of signals, i.e., the magnitude of true non-zero alpha and
informativeness of covariates, on the performance of the fwer+ in terms of FWER control (top three
sub-figuers) and power (bottom three figures). The simulated data are balanced panel of n = 1000
funds where each of them has T = 36 observations. The funds population consists of around 60%,
0% and 40% zero-alpha, under- and out-performing funds, respectively. The out-performing (under-
performing) funds in population have alpha of α (−α) which varies in {0.5%, 1.0%, 1.5%}. We consider
three settings of the two covariates Z = (u, v) including weakly, moderately and strongly informative.
The covariates can be independent (solid curves) or correlated with a coefficient of 0.5 (dotted curves).
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C.3 Empirical results with restriction on AUM

In this section we present the performance of the fwer+ portfolios when we restrict

to considering only funds having at least 5 millions of AUM at the time we construct

the portfolios. Table C.1 reports OOS performance of the fwer+ portfolios with use of

the R-square, AUM, and two PC1s of the moment and persistent groups as solely input

covariate (Panels A to D) and four input covariates (Panel E). As benchmarks, we also

report in Panel F the performance of the equally weighted portfolios which simply select

all eligible funds in IS period (EW ) and subset of those additionally having positive

estimated IS alpha (EW+). Generally, the performances of the portfolios remain similar

to those with only requirement on the availability of the AUM reported in the Table

3.1 of Chapter 3.

Table C.1: OOS performance of fwer+ portfolios under restrictions on AUM. Panels
A to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-
square, AUM, and PC1s of moment and persistent group as the sole input covariate. The performance
metrics include annualized alpha as well as its t−statistic and p−value, excess return, Sharpe ratio
and summary on number of out-performing funds detected by the fwer+ procedure. Panel E reports
these metrics of the fwer+ portfolio with use of all four mentioned covariates whereas panel F the
performance metrics of the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.94 7.2 0.00 5.35 2.09 16 4 26 7
1.00 4.39 7.3 0.00 4.88 1.58 34 9 54 13
5.00 4.38 6.8 0.00 4.90 1.56 47 15 85 19
Panel B: fwer+ with AUM as the covariate
0.01 4.80 6.8 0.00 5.23 2.00 16 4 26 7
1.00 4.37 7.1 0.00 4.86 1.55 35 9 61 15
5.00 4.19 6.5 0.00 4.75 1.46 49 15 94 23
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.78 6.7 0.00 5.15 1.96 17 4 30 7
1.00 4.54 7.7 0.00 5.03 1.66 35 9 66 15
5.00 4.30 6.7 0.00 4.86 1.53 49 15 98 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.21 8.1 0.00 5.56 2.29 15 4 25 6
1.00 4.54 7.3 0.00 5.03 1.65 33 9 53 13
5.00 4.37 6.9 0.00 4.83 1.57 46 14 82 19
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.00 7.6 0.00 5.32 2.16 17 4 30 7
1.00 4.43 7.0 0.00 4.93 1.55 38 10 69 16
5.00 4.38 6.5 0.00 4.97 1.48 53 14 106 25
Panel F: equally weighted portfolios
EW 2.50 2.8 0.01 4.58 0.70 1018 336 1533 353
EW+ 2.91 3.5 0.00 4.68 0.78 739 266 1389 319
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C.4 fwer+ portfolios with use of individual covariates

In this section, we present the OOS performance metrics of the fwer+ portfolios

with use of underlying individual covariates. Particularly, we present in Table C.2 and

C.3 the metrics corresponding to individual covariates in the persistent and moment

groups, respectively.

Table C.2: OOS performance of the fwer+ portfolios with use of persistent covariates.
The table reports the OOS performance of the fwer+ portfolios with use of individual covariates in
persistent group. Panels A to I report OOS annualized alpha as well as its t−statistic and p−value,
excess return and Sharpe ratios and summary on size of the fwer+ portfolios with use of the sole
covariate at various given FWER target τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: fwer+ with use as the covariate the ACF1 of past 12-month excess returns
0.01 5.38 8.1 0.00 5.81 2.31 15 4 25 6
1.00 4.77 7.6 0.00 5.34 1.73 33 10 56 13
5.00 4.54 6.9 0.00 5.09 1.63 46 11 84 19
Panel B: fwer+ with use as the covariate the ACF1 of past 24-month excess returns
0.01 5.18 8.0 0.00 5.59 2.26 15 4 25 6
1.00 4.33 6.9 0.00 4.84 1.55 33 10 56 14
5.00 4.37 6.9 0.00 4.83 1.60 46 15 82 19
Panel C: fwer+ with use as the covariate the ACF1 of past 36-month excess returns
0.01 5.24 8.1 0.00 5.64 2.26 15 4 25 6
1.00 4.44 7.2 0.00 4.94 1.59 34 10 56 13
5.00 4.45 7.0 0.00 4.91 1.61 46 15 87 19
Panel D: fwer+ with use as the covariate the ACF2 of past 12-month excess returns
0.01 4.89 7.0 0.00 5.36 2.07 15 4 26 6
1.00 4.40 7.3 0.00 4.90 1.60 33 8 54 14
5.00 4.43 6.9 0.00 4.94 1.60 46 14 88 19
Panel E: fwer+ with use as the covariate the ACF2 of past 24-month excess returns
0.01 4.91 7.2 0.00 5.38 2.11 15 4 25 6
1.00 4.48 7.3 0.00 5.01 1.62 33 10 55 14
5.00 4.41 6.8 0.00 4.94 1.58 46 14 87 20
Panel F: fwer+ with use as the covariate the ACF2 of past 36-month excess returns
0.01 4.93 7.2 0.00 5.37 2.06 15 3 25 6
1.00 4.33 6.6 0.00 4.87 1.53 34 10 55 13
5.00 4.22 6.4 0.00 4.73 1.50 47 14 88 19
Panel G: fwer+ with use as the covariate the ACF3 of past 24-month excess returns
0.01 5.26 8.3 0.00 5.64 2.35 15 4 23 6
1.00 4.59 7.4 0.00 5.09 1.66 33 10 54 13
5.00 4.28 6.7 0.00 4.76 1.52 46 15 87 20
Panel H: fwer+ with use as the covariate the ACF3 of past 12-month excess returns
0.01 5.24 8.4 0.00 5.62 2.39 15 4 25 6
1.00 4.42 7.1 0.00 4.93 1.61 33 10 55 13
5.00 4.15 6.6 0.00 4.60 1.47 46 15 83 19
Panel I: fwer+ with use as the covariate the ACF3 of past 36-month excess returns
0.01 4.96 7.4 0.00 5.42 2.15 15 4 25 7
1.00 4.56 7.5 0.00 5.07 1.65 33 10 55 13
5.00 4.22 6.6 0.00 4.68 1.51 46 14 87 20
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Table C.3: OOS performance of the fwer+ portfolios with use of moment covariates.
The table reports the OOS performance of the fwer+ portfolios with use of individual covariates in
moment group. Panels A to I report OOS annualized alpha as well as its t−statistic and p−value,
excess return, Sharpe ratio and a summary on the size of the fwer+ portfolios with use of the each
covariate in moment group.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: fwer+ with use as the covariate the kurtosis of past 12-month excess returns
0.01 4.94 7.2 0.00 5.38 2.11 16 4 25 6
1.00 4.37 7.2 0.00 4.87 1.63 32 9 55 14
5.00 4.39 7.0 0.00 4.88 1.58 45 13 86 20
Panel B: fwer+ with use as the covariate the kurtosis of past 24-month excess returns
0.01 4.89 7.0 0.00 5.35 2.06 15 4 26 6
1.00 4.50 7.8 0.00 5.00 1.68 33 9 55 13
5.00 4.18 6.4 0.00 4.70 1.48 45 14 86 20
Panel C: fwer+ with use as the covariate the kurtosis of past 36-month excess returns
0.01 4.94 7.2 0.00 5.40 2.10 15 4 25 6
1.00 4.35 7.3 0.00 4.85 1.60 33 10 55 13
5.00 4.17 6.5 0.00 4.67 1.48 45 13 87 20
Panel D: fwer+ with use as the covariate the skewness of past 12-month excess returns
0.01 4.84 6.9 0.00 5.26 2.05 15 4 25 7
1.00 4.38 7.2 0.00 4.87 1.58 33 9 57 13
5.00 4.30 6.8 0.00 4.78 1.56 45 13 86 20
Panel E: fwer+ with use as the covariate the skewness of past 24-month excess returns
0.01 5.17 7.6 0.00 5.57 2.26 15 4 26 7
1.00 4.25 6.9 0.00 4.69 1.56 34 10 56 13
5.00 4.33 6.7 0.00 4.83 1.56 46 14 88 20
Panel F: fwer+ with use as the covariate the skewness of past 36-month excess returns
0.01 5.43 7.9 0.00 5.85 2.35 15 3 26 7
1.00 4.29 7.1 0.00 4.75 1.57 32 10 55 14
5.00 4.25 6.3 0.00 4.75 1.49 46 14 87 21
Panel G: fwer+ with use as the covariate the variance of past 12-month excess returns
0.01 4.90 7.0 0.00 5.31 2.03 16 4 29 7
1.00 4.51 7.5 0.00 5.01 1.65 34 10 64 15
5.00 4.15 6.2 0.00 4.68 1.49 48 13 90 22
Panel H: fwer+ with use as the covariate the variance of past 24-month excess returns
0.01 4.86 7.1 0.00 5.26 2.04 16 4 30 7
1.00 4.49 7.4 0.00 4.99 1.63 34 10 65 15
5.00 4.24 6.5 0.00 4.79 1.51 49 14 92 22
Panel I: fwer+ with use as the covariate the variance of past 36-month excess returns
0.01 4.91 7.3 0.00 5.34 2.12 16 4 27 7
1.00 4.45 7.2 0.00 4.96 1.60 35 10 65 15
5.00 4.36 6.8 0.00 4.90 1.58 49 14 97 23

Generally, we see that the performances of the fwer+ portfolios with use of different

individual covariates of the same sub-groups but differing in estimation windows tend

to be similar. This supports the use of a representative covariate such as PC1 for each

group as presented in Chapter 3.
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C.5 Alternative choices of in-sample horizons

Literature in hedge fund performance construct portfolios based on assessing funds’

performance over a short past performance, i.e, a short IS horizon. The most common

choices are 24 and 36 months. Beside, a choice of 48 month is also considered. As

robustness checks, we repeat the discussed experiments with the choices of 24- and 48-

month IS horizons and present the OOS performance in Tables C.4 and C.5, respectively.

In both cases, our conclusions on both power and performance remain as in the

36-month IS case. On average, the fwer+ gain higher power for a longer IS period.

We also observe that the fwer+ portfolios with a longer IS period tend to gain higher

Sharpe ratio but lower alpha. Nevertheless, the differences are small.

Table C.4: OOS performance of the fwer+ portfolios with use of 24-month IS periods.
Panels A to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-
square, AUM, and PC1s of moment and persistent group as the sole input covariate. The performance
metrics include annualized alpha as well as its t−statistic and p−value, excess return and Sharpe ratio
of the portfolios and summary on number of funds selected by the fwer+. Panel E reports these
metrics of the fwer+ portfolio with use of all four mentioned covariates as inputs whereas panel F the
performance metrics of the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 5.15 6.4 0.00 5.40 1.70 9 1 18 5
1.00 4.67 5.7 0.00 5.12 1.56 21 7 47 10
5.00 3.80 4.8 0.00 4.32 1.24 30 11 72 15
Panel B: fwer+ with AUM as the covariate
0.01 5.67 6.1 0.00 5.99 1.68 10 1 20 5
1.00 4.40 5.1 0.00 4.85 1.44 22 7 52 11
5.00 3.78 4.5 0.00 4.31 1.22 31 12 79 17
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 6.03 7.0 0.00 6.39 1.91 10 1 18 5
1.00 4.82 6.1 0.00 5.34 1.68 22 7 52 11
5.00 3.92 4.9 0.00 4.46 1.33 31 10 75 17
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.71 6.2 0.00 6.04 1.66 9 1 18 5
1.00 4.68 5.6 0.00 5.10 1.54 21 7 47 10
5.00 4.06 5.1 0.00 4.53 1.39 30 11 72 15
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.57 7.2 0.00 5.84 1.95 10 2 20 5
1.00 4.59 5.6 0.00 5.08 1.56 24 7 56 12
5.00 3.85 4.9 0.00 4.40 1.28 34 12 79 17
Panel F: equally weighted portfolios
EW 2.85 3.2 0.00 5.00 0.78 1098 500 1570 335
EW+ 3.24 4.0 0.00 5.13 0.87 783 323 1418 313
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Table C.5: OOS performance of fwer+ portfolios with use of 48-month IS periods. Panels
A to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-square,
AUM, and PC1s of moment and persistent group as the sole covariate. The performance metrics include
annualized alpha as well as its t−statistic and p−value, excess return and Sharpe ratio of the portfolios
and summary on number of funds selected by the fwer+. Panel E reports these metrics of the fwer+

portfolio with use of all four mentioned covariates as inputs whereas panel F the performance metrics
of the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.82 7.3 0.00 5.18 2.34 18 3 33 8
1.00 4.19 6.2 0.00 4.69 1.72 38 13 74 19
5.00 3.85 4.9 0.00 4.44 1.46 52 18 100 27
Panel B: fwer+ with AUM as the covariate
0.01 4.76 8.2 0.00 5.13 2.48 19 3 35 8
1.00 4.18 6.2 0.00 4.70 1.69 41 12 80 21
5.00 3.84 5.0 0.00 4.45 1.40 56 17 111 31
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.73 7.0 0.00 5.09 2.12 19 2 34 8
1.00 4.34 6.0 0.00 4.86 1.68 38 4 77 20
5.00 4.11 5.4 0.00 4.73 1.56 54 8 105 30
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 4.92 7.6 0.00 5.29 2.38 18 3 34 8
1.00 4.20 6.1 0.00 4.71 1.70 37 13 70 19
5.00 3.99 5.1 0.00 4.59 1.50 52 15 100 27
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 4.55 7.3 0.00 4.86 2.10 20 1 37 9
1.00 4.43 6.7 0.00 4.98 1.81 43 2 82 23
5.00 4.04 5.0 0.00 4.70 1.46 59 2 118 34
Panel F: equally weighted portfolios
EW 2.77 3.1 0.00 4.94 0.76 898 337 1271 283
EW+ 3.09 3.7 0.00 5.00 0.84 672 263 1153 263

C.6 Performance of fwer+ portfolios with use of simple p−values

As mentioned in Chapter 3, there might be concern in use of p−values with HAC

correction given the short IS time series. In this section, we present OOS performance of

the fwer+ portfolios with use of simple p−values, i.e., the p-values calculated without

using the HAC correction. The results are shown in Table C.6. The performance

metrics gained by the portfolios tend to be higher than those gained by the portfolios

constructed with use of HAC correction. As also shown in Table C.7, when the new

covariates obtained by the four famous machine learning techniques are used, the fwer+

portfolios perform impressively with Sharpe ratio of more than 2 at all considering

FWER targets and more than 3 at the lowest considering FWER target. In Table C.8

we report the performance of the single-fund portfolio under different factor models. We

see that there are many more months where the portfolios are empty and performance
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are lower than those observed with use of the HAC correction.

Table C.6: OOS performance of fwer+ portfolios with use of simple p−values. Panels
A to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-
square, AUM, and PC1s of moment and persistent group as the sole covariate. The performance
metrics include annualized alpha as well as its t−statistic and p−value, excess return and Sharpe
ratio and summary on number of out-performing funds detected by the fwer+. Panel E reports these
metrics of the fwer+ portfolio with use of all four mentioned covariates as inputs whereas panel F the
performance metrics of the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 5.45 9.2 0.00 5.71 2.60 13 2 24 6
1.00 4.90 7.7 0.00 5.40 2.09 28 9 57 11
5.00 4.56 7.0 0.00 5.11 1.74 39 13 84 18
Panel B: fwer+ with AUM as the covariate
0.01 5.32 8.3 0.00 5.56 2.29 14 2 26 7
1.00 4.70 7.5 0.00 5.20 1.98 29 9 60 13
5.00 4.40 6.2 0.00 5.03 1.59 41 10 97 22
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 5.37 8.7 0.00 5.62 2.45 14 2 30 7
1.00 4.51 6.6 0.00 4.99 1.91 29 9 69 13
5.00 4.81 6.8 0.00 5.45 1.65 41 11 108 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.39 8.6 0.00 5.63 2.42 13 2 23 6
1.00 4.78 7.2 0.00 5.28 1.96 27 9 59 12
5.00 4.69 7.0 0.00 5.26 1.83 37 10 83 17
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.55 8.7 0.00 5.84 2.48 15 3 30 7
1.00 5.10 7.6 0.00 5.70 1.81 32 10 72 15
5.00 4.99 8.0 0.00 5.69 1.62 47 13 115 25
Panel F: equally weighted portfolios
EW 2.58 2.9 0.00 4.65 0.72 1067 350 1570 361
EW+ 3.00 3.7 0.00 4.77 0.80 761 273 1418 324
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Table C.7: OOS performance of fwer+ portfolios with use of machine learning based
covariates and simple p−values. Panel A (B, C and D) reports OOS annualized alpha as well as
its t−statistic and p−value, excess return and Sharpe ratios and summary on the size of the fwer+

portfolios with use of funds’ future return predicted by LASSO (GB, RF and DNN) model at given
FWER targets τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of future return predicted by the LASSO model as the sole covariate
0.01 5.96 11.8 0.00 6.18 3.33 13 2 22 6
1.00 5.49 9.8 0.00 5.98 2.58 25 8 49 10
5.00 5.16 8.6 0.00 5.76 2.24 35 10 81 16
Panel B: fwer+ with use of future return predicted by the GB model as the sole covariate
0.01 5.75 11.4 0.00 6.01 3.22 13 2 23 7
1.00 5.01 7.9 0.00 5.54 2.39 26 9 56 12
5.00 4.93 7.6 0.00 5.55 2.13 36 10 80 19
Panel C: fwer+ with use of future return predicted by the RF model as the sole covariate
0.01 6.61 9.0 0.00 6.81 2.46 12 2 22 6
1.00 5.23 8.2 0.00 5.75 2.38 25 9 50 10
5.00 5.12 7.8 0.00 5.82 2.01 35 10 81 17
Panel D: fwer+ with use of future return predicted by the DNN model as the sole covariate
0.01 5.91 11.7 0.00 6.20 3.28 13 2 23 7
1.00 5.08 8.3 0.00 5.61 2.39 26 5 56 12
5.00 5.16 8.2 0.00 5.80 2.20 36 9 77 18

Table C.8: Performance of the single-fund portfolios with use of simple p-value. The table
reports the OOS performance of the portfolio that consists of the fund performed best in IS period
among those selected by the fwer+.

Model Alpha (%) t−statistic p−value Return (%) Sharpe Ratio Empty rate (%)
Panel A: any underlying covariates
4 factors 4.90 8.8 0.00 5.12 2.69 6/288
6 factors 4.81 9.4 0.00 4.89 2.57 17/288
7 factors 4.90 9.9 0.00 4.92 2.59 17/288
9 factors 4.81 9.2 0.00 4.92 2.59 17/288
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