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Abstract

The rising levels of homogeneity of modern cars in terms of price and functions has made exte-
rior styling increasingly vital for market success. Recently, researchers have attempted to apply
deep learning, especially deep generative models, to automotive exterior design, which has en-
abled machines to deliver diverse novel designs from large-scale data. In this thesis, we argue
that recent advancements in deep learning techniques, particularly in deep generation, can be
utilised to facilitate different aspects of automotive exterior design, including design generation,
evaluation, and market profit predicting. We conducted three independent studies, each provid-
ing tailored solutions to specific automotive design scenarios. These include: a study focused on
adapting the latest deep generative model to achieve regional modifications in existing designs,
and evaluating these adjustments in terms of design aesthetic and prospective profit changes;
another study dedicated to developing a predictive model to assess the modernity of existing
designs regarding the future fashion trends; and a final study aiming to incorporate the distinc-
tive shape characteristics of a cheetah into the side view designs of cars. This thesis has four
main contributions. First, the developed DVM-CAR dataset is the first large-scale automotive
dataset containing designs and marketing data over 10 years. It can be used for different types of
research needs from multiple disciplines. Second, given the inherent constraints in automotive
design, such as the need to maintain “family face”, and the fact that unconstrained design gen-
eration can be seen as a special form of regional modification, our research distinctively focuses
on the regional modifications to existing designs, a departure from existing studies. Third, our
studies are the first works that integrate the design modules with market profit optimisation. This
reforms the traditional product design optimisation frameworks by replacing the abridged design
profiles with graphical designs. Finally, the proposed data-driven measures offer effective ap-
proaches for automotive aesthetic evaluation and market forecasting, including approaches that
can make assessments from a dynamic perspective by examining the evolving fashion trends.
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Chapter 1

Introduction

With the development of the automotive industry, cars are becoming more homogeneous in
terms of price and functions. Consequently, the exterior styling and aesthetic design plays a
more determining role for market success. The exterior styling in particular has been reported as
the most important motivation in purchasing mainstream and luxury automotive brands (NADA,
2016).

In the past decades, marketing researchers have employed a number of quantitative meth-
ods to answer some key questions regarding product design: What are the visual attributes of
the product that determine sales success (Bloch, 1995; Creusen and Schoormans, 2005; Krishna
et al., 2016)? How can these design attributes influence consumer choice (Jia et al., 2015; Hung
and Chen, 2012)? Are there insights that can be used to design the appearance of a product or an
advertisement containing specific visual messages such as aesthetic or symbolic values (DiSalvo
and Gemperle, 2003; Jindal et al., 2016; Rubera, 2015)? How should one search for the opti-
mal market positions for new products that maximise profits (Rajeev and Krishnamurti, 1987;
Kaul and Rao, 1995; Shi et al., 2001)? Although the mainstream publications have focused on
statistical models, such models alone are incapable of dealing with large-scale unstructured data
such as images and video. Some of the major concerns around the existing works include the
definition of the visual aspects of products, the evaluation of presented designs, and the lack of
actual design plans in product design optimisation (Aggarwal and McGill, 2007; Heisley and
Levy, 1991; Landwehr et al., 2011b; Maeng and Aggarwal, 2017; Wedel and Pieters, 2008).

Motivated by the recent advancements of machine learning in visual content processing and
generation, a group of design researchers applied deep learning technologies to the exterior
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1.1. Motivations

design of products, with a primary focus on automotive styling during the conceptual design
phase (Burnap et al., 2016b; Pan et al., 2017; Burnap et al., 2021). This phase is the initial
stage of new car model development, typically without considering engineering constraints or
challenges (Burnap et al., 2016a).

The conventional methods rely heavily on human-defined features, which require time and
vast domain knowledge. Deep learning approaches work by quantifying digital images and
automatically learning valuable features from the data, and they are thus capable of generat-
ing realistic-looking images or reaching semantic understanding (LeCun et al., 2015). Studies
have affirmed that these learned feature detectors perform well on human subjective experience-
related tasks, such as aesthetic evaluation (Lu et al., 2015; Segalin et al., 2017), and can produce
highly realistic designs (Zhu et al., 2017; Karras et al., 2020).

Being greatly motivated by the advancements of deep learning on visual content understand-
ing and generation, in the present PhD thesis we focus on applying deep learning algorithms to
automotive exterior design and analytics. In particular, it provides upgraded designs where de-
sign constraints are considered and integrates deep generation into product design optimisation
frameworks.

1.1 Motivations
The automotive industry is a critical sector of the modern global economy and accounts for

3.65% of world GDP (Saberi, 2018). As a product that has emerged for over a hundred years,
cars are becoming more homogeneous in price and function, which makes their design, espe-
cially the exterior design, a more important determinant of market share (Jindal et al., 2016). The
exterior styling in particular has been identified as one of the determinative factors of consumer
choice in the automotive market (NADA, 2016).

Consumer purchase behaviours are widely recognised to be frequently driven by percep-
tual stimuli (Scott, 2000), and among various product marketing strategies, exterior design is
one of the most direct and effective. The importance of product appearance has long been ac-
knowledged by marketers and researchers (Sherman and Hoffer, 1971; Bloch, 1995). Numerous
examples illustrate how manufacturers have achieved market success through outstanding exte-
rior designs. For instance, Apple, as one of the most successful corporations globally, continues
to dominate the market by creating products with unique yet concise exterior styles (Shelley,
2015). Despite the critical role of exterior styling in marketing, the related research is surpris-
ingly scant in comparison to other influential factors. This research gap is largely due to the

2



1.1. Motivations

lack of automated techniques for processing unstructured data types such as images or videos,
which significantly hampers progress in the field. Traditionally, handling visual content has de-
manded the acquisition of task-relevant pattern detectors through feature engineering (LeCun
et al., 2015), while the creation of innovative exterior designs has often been seen as the exclu-
sive domain of human creativity (Sbai et al., 2019).

In recent years, however, a group of pioneering studies have employed the new deep learning
methods in automotive design (Burnap et al., 2016c; Pan et al., 2017; Burnap et al., 2021). Un-
like the traditional approach, predictive models based on convolutional neural networks (CNNs) (Le-
Cun et al., 2015) can, after being trained with appropriate data, make end-to-end evaluations of
exterior designs regarding different aesthetic attributes (Pan et al., 2016). Moreover, the deep
generative models can be employed to obtain various realistic-looking design images (Burnap
et al., 2016b).

However, these pioneering works have not taken into account the constraints of designs,
which require the developed designs to retain specific appearances (Burnap et al., 2016a). For
instance, modern automakers adopt similar visual design cues, called family face, to their mod-
els for branding purposes. Thus, the designs should preserve these family faces. Moreover, as
the complete redesign of an existing car model costs billions of dollars, automakers often adopt
mid-generational refreshes (i.e., facelifts) to reboot sales, where only regional changes are al-
lowed on existing designs (Blonigen et al., 2013; Greim, 2017). From the technical perspective,
such a regional modification is more challenging than a novel creation, since the latter can be
seen as a special case of the former in which all areas can be modified (Bertalmio et al., 2000,
2003). In other words, generative algorithms, which are capable of generating novel designs and
modifying designs regionally, are needed for automotive exterior design.

Furthermore, as existing studies have primarily been design-focused, none has connected
automotive aesthetic design with the concept of product design optimisation. Studies of product
design optimisation focus on developing algorithmic frameworks that can infer optimal design
profiles for maximising profit, but no real designs are offered (Rajeev and Krishnamurti, 1987;
Kaul and Rao, 1995; Nair et al., 1995; Shi et al., 2001). Consequently, the complexity of real
scenarios is underestimated. For example, evaluating the aesthetic attributes of a product is
considered straightforward and precise for design profiles. In real cases, however, the evaluation
of candidate designs, termed “theme clinics” (Pan et al., 2017), is a costly and lengthy process.
Moreover, these works assume that all ranges of aesthetic attributes are achievable when using
design profiles, and so no restrictions are assigned to the probable design space (Nair et al.,
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1.2. Research Hypothesis

1995; Shi et al., 2001). All these restrictions restrain the industrial impact of design optimisation
studies. It would therefore be innovative for a proposed product design optimisation framework
to provide vivid designs rather than design profiles.

Given this situation, we apply machine learning methods, particularly deep learning ap-
proaches, to regional design upgrading and apply predictive models, such as recurrent neural
networks (RNNs) (LeCun et al., 2015), to profit estimation. We aim to develop comprehen-
sive frameworks that deliver photographic upgrade designs while offering optimal marketing
solutions. This thesis is driven by four key questions: (i) Can effective generative models be
developed to upgrade existing car appearance designs regionally (e.g., headlamps, grills and
body curves), incorporating new visual features to improve market performance? (ii) Can ma-
chine learning be used effectively to automatically learn from image data (together with other
data formats) to determine which designs are superior in aesthetics and what visual attributes
are more influential to the design attractiveness? (iii) Can the design generation be incorpo-
rated into a profit optimisation framework that can assess novel designs in terms of the potential
market profit? (iv) Can methods be developed that incorporate nature-inspired elements (e.g.,
animal-inspired features) into new car styling to make their appearance more sporty?

1.2 Research Hypothesis
This thesis argues that the recent advancements in deep learning can be used to help solve a

series of decision-making problems in automotive styling upgrading and extend the traditional
product design optimisation frameworks with design modules. In particular, deep generative
models can be deployed to produce realistic-looking automotive designs, and CNNs can be
employed for automotive aesthetic evaluation. In addition, dynamic models such as RNNs,
supported by historical sales and price data, can predict the potential market gains or losses
from adopting a specific design.

1.3 Contributions
As this thesis lies in the overlap between computer science, marketing, and design studies,

We worked on some independent studies that develop different solutions for specific automotive
design scenarios. These studies are not intended as fundamental methodological contributions
to new machine learning algorithms, but rather as application contributions. Each indepen-
dent study has tailored methodological developments, including new computational frameworks,
evaluation metrics and scenario-specified algorithm modification. They contribute to both com-

4



1.3. Contributions

puter science (primarily) and marketing.

The developed DVM-CAR dataset is the first large-scale automotive dataset that contains
design data (images) and marketing data (e.g., car specifications and sales) over 10 years. It
has been shared via a specifically developed webpage in the hope of facilitating the studies
in relevant fields. As an interdisciplinary dataset, it can be used for different types of analytics,
ranging from descriptive to diagnostic, predictive and perspective, by researchers from computer
science, marketing and design communities.

These studies provide detailed explorations of practicable methods for regional design modi-
fications, which, within the context of this thesis, concern design upgrading. In contrast to previ-
ous works, which focus on generating novel designs without considering constraints, the design
upgrading methods allow users to make partial changes to designs while retaining the rest un-
changed. These methods tackle challenges in maintaining “family face” and executing “facelift”
changes for automotive design generation. Such approaches presents additional technical chal-
lenges, as unconstrained generation can be viewed as a subset of constrained generation when
no constraints are applied. In total, three generative adversarial networks (GAN) (Goodfellow
et al., 2014) based approaches have been proposed and demonstrated for the regional modifica-
tions needs. These approaches also offer valuable directions for future studies in product design
generation.

Unlike previous works (Kong et al., 2016; Ren et al., 2017; Pan et al., 2017), which have
primarily adopted subjective ratings as evaluation labels, our studies provide a group of data-
driven aesthetic-related measures. In particular, deep models that evaluate the aesthetic from the
dynamic perspective are developed by examining the concepts of fashion trends and modernness.
Developing such a time-dependent aesthetic measure is a novel approach.

From a marketing perspective, to the best of our knowledge, our studies are the first to in-
tegrate design generation, evaluation, and profit optimisation. Furthermore, ours are the initial
works to develop frameworks suggesting photographic design schemes instead of merely profil-
ing design attributes. The inclusion of new design modules has made the study framework more
complex and yet more practicable to design optimisation. Our works are clear demonstrations
of how to employ advanced deep learning algorithms as particular modules in comprehensive
frameworks for design optimisation. It is hoped that our studies can serve as groundwork for
prospective investigations that adopt deep generative methods in product design optimisation.
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Figure 1.4.1: Overview of the automotive design upgrading framework.

To develop machine learning-based methods that offer diverse upgraded automotive designs
and decision support (illustrated in Fig. 1.4.1), this thesis proposes a general product design
optimisation framework with five main components: market data, design data, design upgrader,
design evaluator and decision optimiser optimiser.

Design data refers to automotive exterior images, which are used for training generative
or evaluative models. There are two reasons for using static images as design data. First, as
most of the advancements in recent deep learning concern images, using static images as design
data means many probable computational models. Second, as we aim to provide alternative
choices to automakers for conceptual design selection, where sketches are still employed as the
mainstream medium, these images can fulfil the evaluation needs with realistic-looking cars.

Market data refers to a collection of variables, including new car price, historical sales and
model specifications. These variables are primarily used in decision optimisation settings or
sales estimation. As the two most critical variables for marketing or economic studies, over two
decades of new car prices and sales are collected, which is sufficient for typical studies. Other
factors that influence consumers purchase decisions, such as body type, engine power and gas
emissions, are also included.

As its name suggests, the design upgrader (or generator) specialises in offering various
upgraded schemes. We use the word “upgrading” because, as a refinement of the previous
studies, the design constraints are considered in our studies. Only the intended areas/regions of
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an existing car design will be modified, while the rest will be left untouched. It is worth noting
again that, upgrading is technically more challenging than merely generating, as an upgrading-
oriented algorithm can easily apply to novel design generation (i.e., take a large intended area),
but not vice versa. To achieve realistic-looking design images, we focus on applying the latest
deep generative models, especially the GAN. Functionally, the design upgrader module takes
two types of inputs: the candidate design image to upgrade and the corresponding binary mask
that indicates the intended areas. It then offers diverse upgraded designs.

The design evaluator module evaluates the car designs in terms of aesthetics. Automak-
ers commonly adopt the “theme clinics” periodically to collect subjective ratings for new de-
signs (Burnap et al., 2021). Whenever the design team want external opinions on their new
designs, they spend a few weeks hiring participants to collect aesthetic feedback. This is costly
in both time and finance. Thus, an automatic module that can provide subjective ratings would
be useful to the design team. Over the past decade, CNNs have achieved record-breaking perfor-
mance on visual discriminative and predictive tasks (LeCun et al., 2015). In particular, they have
achieved breaking results on aesthetic prediction tasks (Ren et al., 2017), which were believed
to be human endeavours. Hence, in this thesis, CNNs are employed as the end-to-end design
evaluator models, providing immediate aesthetic ratings regarding design images. Furthermore,
the evaluator is also used to spotlight the vulnerable design features for design upgrading. The
gradient-based saliency methods are employed to highlight visual cues that are influential to the
objective aesthetic attribute.

The decision optimiser is responsible for two objectives: first, estimating the mid- to long-
term profits (i.e., the market share shifts) yielded by the given design; second, choosing the
market decisions that bring the highest profits. In this thesis, the former is achieved by us-
ing the historical sales and evaluation results to train predictive models for estimating the mid-
to long-term market share changes. The latter involves exploring the possible action space to
specify optimal launch times for the new designs. These two functions are often simplified as
one in traditional product design optimisation studies, as designs are represented by design pro-
files (Green et al., 1981; Rajeev and Krishnamurti, 1987; Shi et al., 2001). As this proposed
framework involves more design modules than classical studies, it is overwhelming to include
complex settings for a single module; thus, we mainly adopt methods with straightforward set-
tings for decision optimisers.
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1.5 Source Publications
Most of the materials presented in chapters 3 to 6 are primarily based on the following

published or working studies.

• Chapter 3 DVM-CAR: An Automotive Database for Deep Visual Marketing
Jingming Huang, Bowei Chen, Lan Luo, Shigang Yue, and Iadh Ounis. (2022). "DVM-
CAR: A large-scale automotive dataset for visual marketing research and applications."
In Proceedings of IEEE International Conference on Big Data.

• Chapter 4 GEO: Integrate Deep Generation with Profit Optimisation
Jingming Huang, Bowei Chen, Zhi Yan, Iadh Ounis, and Jun Wang. (2023). "GEO: A
computational design framework for automotive exterior facelift." ACM Transactions on

Knowledge Discovery from Data.

• Chapter 5 Trendiness: Design for Upcoming Fashion
Jingming Huang, Hao Xu, and Bowei Chen. (2023). "Revamping automobile fronts for
trendiness." Working paper.

• Chapter 6 Animism: Design with Bio-Inspired Novelty
Bowei Chen, Jingming Huang, and Lan Luo. (2023). "Does that car want to give me a
ride? Bio-inspired automotive aesthetics design." Working paper.

1.6 Thesis Outline
The rest of this thesis is organised as follows:

• The first part of Chapter 2 (Background) reviews the marketing, psychology, design and
computer science literature regarding product appearance and car styling. In particular,
it (i) reviews how the contemporary market shapes automotive styling characteristics in
different eras; (ii) lists the functionalities of product appearance in the market sales; (iii)
discusses the psychological mechanism, namely anthropomorphism, involved in automo-
tive design perception; (iv) shows that automotive market success is largely determined
by the exterior design; (v) indicates that the increasingly intense competition has com-
pelled automakers to increase their expenditure on exterior design; and (vi) points out a
missing point of existing product design optimisation studies in which no graphic designs
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are delivered. The second part of the chapter introduces deep learning technologies by
explaining the fundamental concepts and classical models for different tasks. In partic-
ular, it details the common concepts of the neural network, the classical multilayer per-
ceptron, the convolutional neural network and the evolution of deep generative models.
Furthermore, the last part reviews the most relevant studies of the use of deep learning in
automotive exterior design.

• Chapter 3 (DVM-CAR Dataset) introduces the first large-scale automotive dataset, which
contains 1.4 million images from 899 car models and corresponding specification and
sales information from over 10 years in the UK market. The development of this dataset
fulfils the growing need for a comprehensive automotive dataset for visual-related mar-
keting research and applications. Moreover, it can be used for different types of analytics,
ranging from descriptive to diagnostic, predictive and perspective.

Serving as the groundwork for later studies, this chapter describes how we solve the data
difficulty by constructing our own dataset. The developed dataset offers a sound data base
for my PhD studies, enabling us to carry out various automotive styling-related studies
and reconsider the exterior design problem from the profit optimisation perspective.

• Chapter 4 (GEO) focuses on the facelift of front designs. It extends the automotive ex-
terior design framework to a product design optimisation problem. The proposed novel
computational framework provides an end-to-end decision-support solution for automo-
tive designers and manufacturers. With careful selection of the latent space and training
examples for the generator, innovative facelift designs for a car front can be generated
from its competitors, while maintaining the models branding characteristics. Further-
more, the decision optimiser ensures the selected designs have the maximum predicted
revenue before the redesign of the given car model.

This chapter plays a critical role in my PhD, as it divides automotive exterior design into
three tasks and embeds profit optimisation into the framework. It seeks to determine (i)
how to use deep generative models to obtain partially upgraded automotive designs, (ii)
how to assess the effectiveness of a generative model in exterior design upgrading, (iii)
how to use a data-driven model to evaluate car aesthetics, and (iv) how to estimate the
long-term profit changes caused by exterior design changes.

• Chapter 5 (Trendiness) investigates the deep learning-based automotive design from per-
spectives not considered in Chapter 4. In particular, it discusses the impacts of modernness
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in product styling and offers solutions to upgrade the cars front if it appears dated. The
main innovation is to have the system learn, define and score modernness from existing
car front images and, in turn, produce unpresented but highly scored modern designs.
Additionally, the chapter demonstrates that image-completion algorithms, which predict
missing content based on the global semantic content, can be applied as the design up-
grader with no feature entanglement problems.

This chapter addresses a number of questions not answered in Chapter 4. It outlines a
relatively straightforward framework mainly comprising the design upgrader and design
evaluator. Specifically, it has answered the following research questions: (i) How should
designed be upgraded regionally without incurring feature entanglement? (ii) Is it pos-
sible to compute the fashion trends in the automotive market and score car designs from
the fashion evolution perspective? (iii) How should design parts that are perceived as
antiquated be identified?

• Chapter 6 (Animism) presents the first study that develops a data-driven framework for
bio-inspired automotive exterior design. Building upon previous research on anthropo-
morphism and schema congruity as a basis for product evaluation, it examines whether
presenting a sports sedan as a cheetah (which can run fast) affects consumers perception
of the automobile. By integrating CNNs and GANs, we propose a novel computational
framework to incorporate body curves derived from a running cheetah into the exterior
design of sports sedans.

Unlike the previous chapters, this chapter focuses on upgrading the cars side designs,
demonstrating that automotive styling upgrading is not limited to particular viewpoints.
Moreover, as design originality is constrained in previous data-driven methods, this work
tries to create novel bio-inspired design features and incorporate them into automotive
styling. In summary, this chapter seeks to determine (i) how to obtain novel design fea-
tures that are not sourced from existing designs and whether it is possible to take inspira-
tion from the natural world, and (ii) how to provide upgrade solutions for the side design
of cars.

• Chapter 7 concludes the thesis and discusses possible future works.
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Chapter 2

Background

This chapter first reviews existing studies regarding automotive exterior styling in different dis-
ciplines and then introduces the essential concepts and models in deep learning. Moreover,
the most relevant studies, which recently applied deep learning to automotive styling, are also
reviewed. The rest of this chapter is organised as the following: Section 2.1 briefly reviews
existing literature in marketing and psychology regarding automotive styling. Section 2.2 in-
troduces the essential concepts and knowledge of the most applied deep models. Section 2.3
discuss the most relevant studies of utilising deep learning in automotive exterior design, and
Section 2.4 gives a short summary.

2.1 Automotive Exterior Styling
Since the appearance of the first car in human history in 1885, cars have become an essen-

tial component of modern life (Happian-Smith, 2001). The automotive industry has nowadays
become a crucial sector of the world economy. According to the International Organisation of
Motor Vehicle Manufacturers’ report, more than 71 million vehicles were produced in the year
2021.1 The general car industry occupies around 3.65% of the world’s GDP, approximately
2.75 trillion Euros (Saberi, 2018). The massive economic scale of the automotive industry un-
derscores the significance of researching automotive exterior designs. Through a review of rel-
evant literature, subsequent parts will explore the significance of automotive design, including
historical and functional perspectives.

1https://www.oica.net
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The Evolution of Automotive Appearance

To start, a brief historical examination of the evolution of automotive styling proposed by
Jaafarnia and Adele (2011) is introduced. This history helps illustrate the increasing importance
of a car’s design to its market success.

According to Jaafarnia and Adele (2011), the history of automotive development can be
assorted into the following seven eras based on the car’s exterior traits. (1) Invention era (1885

- 1896): this is the very first period that cars have just appeared. In this phase, cars appear
in irregular shapes not far from the unplanned combination of engine and wheels. Designers
obviously had not taken the exterior styling into consideration at this stage as cars are far from
the mature goods for sale. (2) Innovation era (1897 - 1907): compared with the previous era, cars
in this era were way more complex in structure. As novel creations under rapid transformation,
cars in this era had various looks. As they were still considered goods for the niche market (Wolf,
1996), aesthetics was still unconsidered for exterior design. (3) Manufacturing era (1908-1919):
thanks to Henry Ford’s invention of the assembly line for large-scale production, the prices of
cars in this era were much decreased. Therefore, making cars more affordable for fairly wealthy
families. The structure of cars became more unified in this phase, while it is hard to tell whether
this was due to the styling consideration or for the convenience of production. (4) Capsule

era (1920-1930): driven by market preference, the most significant characteristic of cars in
this era was the enclosing of the body, which separated the inside spaces from the externals.
This made the car design even more unified than the previous cars, although the general shapes
were still extremely boxy (O’connell, 1998). The aesthetic had obviously been considered in
exterior design. (5) Classic era (1931-1948): contrasted to the last era, the exterior design of
cars in this phase was intended to be more aerodynamic, thus containing more large curves
and big-sized arches. Furthermore, the entire car bodies were more unified as headlights were
mostly integrated into the body. (6) Integration era (1949-1967): the exterior styling had become
one of the automakers’ most critical considerations, and some automakers even incorporated
the exaggerated symbolic design features into the exterior design to achieve marketing success
(e.g., the missile design of Cadillac Cyclone). The majority of car bodies were made of the
one-piece component (Down, 2010). Motivated by the fashion trends, the entire shape of cars
had become very low and lengthy, which is fairly similar to modern car designs. (7) Modern

era (1968-present): the exterior styling is now becoming the most crucial factor for automakers
establishing new models. Automakers no longer build cars with exaggerated semantic features
but incorporate diverse design philosophies rooted in various sources (Dant and Martin, 2001),
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such as the natural world or wildlife. To sum up, the evolution of car styling shows due to the
increasing maturity of the market, modern cars are relatively homogeneous in terms of price and
functions, while factors such as exterior styling are becoming determinants for market success.

Why Product Appearance Matter

Although the evolution of automotive exterior design clearly demonstrates continuous indus-
try innovation based on market preferences, academia still lacks a comprehensive understanding
of the precise role product appearance plays for consumers. Despite the limited research, some
studies, notably Bloch (1995) and Creusen and Schoormans (2005), have attempted to categorise
and summarise the functionalities by which product appearance influences consumption. These
key functionalities will be outlined in this subsection.

Drawing from Bloch (1995) and Creusen and Schoormans (2005)’s work, five key aspects
could be outlined as to how product appearance impacts consumer behaviour. (1) Aesthetic:
aesthetic value is the most natural function of the product appearance, which refers to the
intuitive feeling when consumers see the appearance of products. In many purchase circum-
stances, the difference in aesthetic perception could determine consumers’ final selections be-
tween goods (Ahmed et al., 1450). In the long run, as consumers see the durable goods repeat-
edly, beautiful designs can continuously act as positive stimuli or rewards for consumers, while
ill-looking designs serve inversed (Hsu et al., 2018). These short and long-term effects illustrate
why aesthetic design is essential for modern marketing. (2) Attention grabbing: things with
flashy colours or unique forms naturally attract humans. Consumers tend to buy the products
that could grab their eyeballs when their involvement is low (Schoormans and Robben, 1997),
for instance, buying day-to-day goods such as bread. In such scenarios, attention-grabbing
becomes the most critical functionality of product appearance design, especially when the prod-
ucts are mainly sold in supermarkets where thousands of other products are also displayed. (3)
Symbolic value: being influenced by the public culture, product appearances are often associ-
ated with symbolic meanings (Simonson and Schmitt, 1997). For example, in modern design
language, flashy colours are associated with youthfulness, sharp-cornered shapes are tagged as
masculinity, and roundness designs are considered feminine. As consumers purchase goods
with symbolic values that match their self-images, manufacturers tend to develop products in
the shape that match target market segments. (4) Indicating functional traits: by learning from
experience, people are pretty gifted at inferring functional or ergonomic traits of products just by
examining the appearance of products (Dawar and Parker, 1994). A vacuum cleaner with a big
size in the market would be believed with large power, and toys with more unified designs are
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perceived as more solid. As online shopping is becoming extremely popular, the indication of
functional traits on appearance is increasingly vital for modern marketing. (5) Categorisation:
on the grounds that the human cognitive system relies on schema for object recognition, the
categorisation of goods is much based on the products’ visual cues. The term typicality refers
to the degree of similarity toward the most representative design (Veryzer Jr and Hutchinson,
1998). Previous studies show that consumers favour typical-looking goods that have some de-
sign novelties (Hekkert et al., 2003). That is, the appearance of products must be designed to
facilitate their visual categorisation. Based on these functionalities, exterior designing naturally
becomes the key competition for fashion products such as closes or shoes. As mentioned before,
exterior styling is, in particular, vital for the most expensive durable goods in daily use – cars.

Anthropomorphism in Automotive Aesthetic Perceiving

In academic circles, considerable research exists on "Anthropomorphism", a phenomenon
where consumers perceive the front end of a car as the face of a living creature. This perspective
provides an interesting perspective of how car exterior design influences consumer purchasing
decisions. A review of the related literature is provided in the following.

The early findings were from Aggarwal and McGill (2007), where they found when lab
participants were asked to read a description depicting the displayed car in the first person,
participants showed a clear preference for cars with smiling faces (i.e., with saucer shape grills)
than the frown faces. The authors interpreted this as a result of schema congruity, so when
people are induced to perceive the car alive, they become more sensitive to angry expressions. In
a similar study but without considering the schema part, Landwehr et al. (2011b) investigated the
emotional expressions that consumers perceived from different car designs. Their study revealed
that emotional expressions could be conveyed by a car’s grill and headlights as these parts are
semantically associated with the mouth and eyes. Moreover, the perception of friendliness is
limited to the grille, while aggressiveness can be communicated with both grille and headlights.
Interestingly, they found that consumers did not dislike but actually preferred cars with clear
aggressive expressions, which was later confirmed in other literature. As group living creatures,
humans are evolved to be extremely skilful for reading facial expressions or inferring from static
facial cues. Inspired by evolutionary psychology studies that show humans naturally rate the
faces with higher width-to-height ratios as more dominant and aggressive, Maeng and Aggarwal
(2017) surveyed people’s evaluations of car fronts that had been morphed wider. They also
reported that similar to face perceiving, car fronts with larger width-to-height ratios are rated as
more dominant and preferred by participants.
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Unlike the just mentioned studies that rely on survey or lab studies, Purucker et al. (2014)
employed the eye-tracking device to test whether people show eye gaze patterns similar to facial
perception when seeing car fronts. They found that consumers would spontaneously notice
the aggressive-looking parts and showed avoidance of these areas in the later gazing, which
is identical to the ocular moments when humans perceive angry faces. A piece of more robust
evidence was indicated by the blood-oxygen measure study on cortex activities. The well-known
fusiform face area (FFA) is named for its specification of human face perception. With the
fMRI device, Ku (2014) showed the FFA area of participants would also be activated when car
front images were displayed to the participants, but not the temporoparietal junction and medial
prefrontal areas. Their findings revealed that the anthropomorphism of car faces is a bottom-up
procedure that occurs unconsciously.

All the aforementioned studies show that the fronts of cars are perceived as their faces by
consumers. It could be an exciting question to know whether this is a market-driven result that
the face-like designs could have marketing benefits, but little literature has been found on this.

Automotive Styling for Marketing

Perhaps the most compelling evidence demonstrating the value of car exterior design comes
from market surveys, direct viewpoints from the automotive industry, and studies on the impact
of appearance on sales. In this subsection, a review of such content will be presented, serving as
the most direct evidence of the value of car exterior design.

According to a public talk delivered by the marketing CEO of Audi, the most successful Ger-
man luxury automobile brand, 60 per cent of its consumer’s purchasing decisions are ascribed
to the appearance/design of cars (Kreuzbauer and Malter, 2005). On the other hand, as one of
the most influential car media, J.D. Power keeps surveying the key factors affecting consumer
decisions. In recent years, the survey responses of tens of thousands of the US new vehicle buy-
ers suggest that exterior styling has counted 57 and 71 per cent as the most critical motivation in
purchasing mainstream and luxury auto brands, respectively (NADA, 2016).

Regarding the sales impact perspective, marketing researchers have a long history of investi-
gating the relationships between automotive aesthetics and market performance. By investigat-
ing the effects of style changes on the market shares of several brands in the US, Sherman and
Hoffer (1971) found that it is a key demand driver for the producers, and it can be more effective
in promoting the market share of smaller producers. Their study manually assigned the design
refreshment into four levels, from "trim changes" to "completely new", and operated the regres-
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sion analysis on the historical automotive sales from the year 1955 to 1966. They reported that
the change of exterior design is a key determinant for market performance shifting, especially
in the premium market. Later, in Hoffer and Reilly (1984)’s study, by similarly categorising the
degree of styling change into eight grades, the authors employed the paired-difference model on
the prior data (from the year 1954 to 1982) to test whether car sales shifted accordingly with
appearance changes. It was further confirmed that notable styling changes result in remarkable
sales shifts, and notably, the market has continuously become more responsive to design changes
in past decades.

As one of the most influential prior studies, Jindal et al. (2016) compared the market shares of
cars with a different design emphasis, namely, the form, functional and ergonomic dimensions.
They took car reviews from popular websites like J.D. Power to compute car models’ ratings on
these dimensions and analysed the models’ historical market performance. Their results showed
car models that have been launched for years but with superior styling could perform much better
in market sales than contemporary cars that emphasise functional or ergonomic advantages. It
is interpreted that, unlike the functional or ergonomic advantages that need regular updating,
the superiors on exterior styling could last for a long time, making the styling emphasised cars
succeed in the long competition.

Another stream of studies has attempted to identify and label the specific aesthetic genres
of design that determine their performance in the market. Talke et al. (2009) presented that cars
with innovative outfits are likely to occupy higher market shares, and the promotion brought
by the new designs often takes place very soon after launching. Meanwhile, Landwehr et al.
(2009) marked that two particular design factors, namely typicality and complexity, explain
42 per cent of the variation within six months of car sales records from the German Federal
Transport Authority. In their 2011 study, Landwehr et al. (2011a) incorporating the typicality
and complexity features extracted by computational algorithms into the car sales regression
model improved the model’s accuracy by 19%.

The Evolution of Fashion Change

As suggested by the history of automotive exterior development, the understanding of car
design’s aesthetic appeal should be tied to its respective era. With consumer preferences for
car appearances undergoing gradual but consistent evolution, no car model can thrive with an
unchanged look. This subsection will review the corresponding literature.

In the study by Blijlevens et al. (2009), it is observed that consumers often prefer products
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that convey a sense of modernity in their exterior design, as reflected by their frequent use of
modernity-related terms to describe product appearances. According to Moral and Jaumandreu
(2007), half of the newly launched cars would be dropped off within eight years. After reaching
peak market shares, sales volumes tend to decline as products become outdated and lose their
appeal. Moreover, Greim (2017) has argued that such a duration has been significantly shortened
over the past decade, averaging from eight years to six years.

The short life-cycles intensify the competition between automakers, as new strategies are
always needed to keep their market shares. Marketing research showed the superiority of exte-
rior design could slow the deterioration of demands. Talke et al. (2009) found that models with
innovative looking can have better sales through their whole life-cycles. Jindal et al. (2016) ob-
served in the long-term, cars with superior exterior designs do much better in terms of sales than
corresponding generation models either with better functions or ergonomics.

Hence, to maintain its market share, the development of a new product line or redesign of an
existing model is perceived as the main solution with major economic costs (Ernst et al., 2017).
Though these costs are closely guarded, Blonigen et al. (2013) concludes, on average, automak-
ers spend about $1.25 billion on a critical redesign, while developing a new model costs up to
$6 billion. Due to the cost constraints, automakers can hardly afford to redesign their models of-
tentimes, which results in the repeated adoption of mid-generational refreshes (that is, partially
design upgrading). These mid-generational refreshes allow automakers to upgrade exterior de-
signs while keeping the majority of existing production equipment. Motivated by the above
facts, our studies focus on developing design upgrading/regionally modification algorithms.

The Missing of “Designs” in Design Optimisation

In existing research on automotive exterior design, there exists an interesting branch, namely
product design optimisation. Within this subset, researchers do not focus on specific designs but
rather endeavour to discuss optimisation algorithms for product market positioning, including
exterior design. The aim is to enable manufacturers to use these algorithms to identify product
designs that yield maximum market profits. In this subsection, we will review a group of articles
from this field, as our subsequent study pertains to this domain.

Existing studies in the field of product design optimisation frequently treat design attributes
as controllable factors, looking at them from the standpoint of profit optimisation. This line
of research can be traced back to the 1980s when Rajeev and Krishnamurti (1987) suggested
approaching new product design positioning as a share-of-choice problem, proposing a heuristic
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dynamic programming-based algorithm in response. In their study, a developing product could
be perceived as a profile with a collection of design attributes, and each attribute has many
discrete levels. Consumers with heterogeneous needs would perceive the product with ideal
attribute levels as more valuable (higher utility) and thus more likely to buy.

Kaul and Rao (1995) took the lens model as the theoretical base, which considers the observ-
able design cues as critical indications of utilities and consumers making choices based on these
perceived attributes. To this end, they proposed a mathematical framework that tries to optimise
the potential market profit, taking consumers’ heterogeneous needs as a scattered distribution in
a high-dimensional space. Thus producers can infer the ideal positions for the product’s design
attributes that maximise the overall purchase likelihood. However, all these studies does not
involve the actual generating of graphic designs.

Despite the extensive investigation of product design optimisation, existing studies have
largely simplified the complexity by considering the attributes of design profiles as already-
known values. In other words, the prior product design optimisation studies can only tell the
best marketing positioning without offering actual graphic designs. Thus, challenging tasks
such as accessing the aesthetic attributes of styling or generating vivid designs for selection
were not concerns in these investigations.

Inspired by the recent works of applying deep learning to automotive styling (Pan et al.,
2017; Burnap et al., 2021), it has become a great opportunity to integrate deep generation meth-
ods with the existing product design optimisation frameworks, in other words, extend the con-
ventional framework with the ability to produce graphic designs.

2.2 Preliminaries of Deep Learning

Basics of Artificial Neural Network

From the historical perspective, deep learning can be seen as an inherited approach follow-
ing the idea of connectionism that tries to achieve artificial intelligence by organising artificial
neural units together as networks, termed artificial neural networks (ANN), to perform various
computational tasks (LeCun et al., 2015).

To start, a number of ANN terms should be introduced first. Neuron – the fundamental units
of an ANN, where each one represents a mathematical function. They produce outputs based
on the inputs from lower layers and pass values to the next layer. Layer – each layer comprises
many neurons, and the stacking of layers results in a complete network. A typical ANN model
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Figure 2.2.1: Structure of a two layer MLP.

consists of three types of layers, namely, the input, hidden and output layers. Weights – the term
weight presents the strength value of the connection between neurons. Input layer – the input
layer actually represents the input data. It means the dimension number of the input is also the
number of neurons in the input layer. Hidden layer – any layers between input and output layers
are termed as hidden layers. The hidden layer neurons would sum up the values from the lower
layers, process the value via the built-in activation functions, and pass it to the next layer. Output
layer – this type of layer is similar to hidden layers, but in many ANNs, its neurons would have
different (or without) activation functions (Goodfellow et al., 2016).

The emergence of early ANNs is much based on two findings. The first is Walter Pitts and
Warren McCulloch’s “logical neurons” (McCulloch and Pitts, 1943), which they design to imi-
tate the firing of biological neurons, as a biological neuron would not fire until they receive the
input stimuli exceed a certain threshold. The second is the “Hebb Rule" (Hebb, 1949), which
summarise the principles of how biological neurons connects, namely, “fire together, wire to-
gether". Based on these findings, the first well-known ANN model "Perceptron" is proposed
by Rosenblatt (1958). This algorithm can be applied for simple tasks such as binary classifica-
tion. However, it has been overly propagandised in its early stage, thus, the research community
soon lost interests in this algorithm in the 1970s when people realised this algorithm cannot
solve the problems such as XOR classification (Goodfellow et al., 2016). Since then, the de-
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Table 2.2.1: Notation list for MLP introduction.

D The number of neurons in the input layer
M The number of neurons in the hidden layer
J The number of neurons in the output layer
x The input layer is made up by {x1,x2...,xD}, which represents the D

dimension inputs. xxx is its vector form with a additional 1 (we will
explain why later). So xxx is {1,x1,x2...,xD}

t j The target (label) value of the j th output
w w(a)

bc is the connection weight between neuron a at hidden layer a−1

and the neuron c at hidden layer a. www(a)
c is the weight vector of neuron

c at hidden layer a, in which the bias b(a)c is included.
b b(a)c is the bias value of the neuron a at layer c. It can be recognised as

weight value which represent the w(a)
0c

σ σ (a)(·) is the activation function used in layer a
ϕ(·) The softmax function
z z(a)b is the total input to the neuron b at hidden layer a
y y(a)b is the output value of the neuron b at layer a

velopment of ANN was significantly hampered until the popularity of multilayer perceptrons
(MLP) and the backpropagation (Rumelhart et al., 1986) algorithm.

Before the recent rising of deep learning, MLPs were the most widely applied ANN models,
which have multiple layers. In theory, MLP models are considered as “universal approxima-
tors” (Hornik et al., 1989) – an MLP model can be trained to approximate any measurable
functions. However, the training of such hierarchical models remained unattainable until the
invention of the backpropagation algorithm. In early 60’s there exist prior works of backpropa-
gation (Kelley, 1960), these early methods were inefficient and could not obtain enough atten-
tion in communities. In the late 80’s, Rumelhart et al. (1986) demonstrated that by updating the
neural weights according to their “error” gradients, hierarchical models such as MLP could be
properly trained when sufficient data are given. As such algorithm is computed inversely to the
feedforward processing, it termed as backpropagation. It has been shown with the backpropa-
gation, MLPs could achieve reasonable performance on recognition and word prediction. The
following parts will introduce the computation details in an ANN with essential formulas.
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Feedforward Computing

First, detailed computing during the network feedforward phase needs to be introduced. In
Fig. 2.2.1, the inputs and outputs of the mth hidden neuron can be expressed as:

z(1)m = bm +
D

∑
d=1

w(1)
dmxd =

D

∑
d=0

w(1)
dmxd = www(1)⊺

m xxx,

y(1)m = σ (1)(z(1)m ).

(2.1)

When the network is applied for regression, the jth output neuron can be expressed as:

y(2)j = z(2)j =
M

∑
m=0

w(2)
m j y

(1)
m = www(2)⊺

j yyy(1). (2.2)

So there is no activation function for the output layer. This is because applying the activation
function in the output layer would constrain the value of the output. When this model is applied
for classification, the output of neuron j at the output layer can be expressed as:

y(2)j = ϕ(z(2)j ) = ϕ(
M

∑
m=0

w(2)
m j y

(1)
m ) = ϕ(www(2)⊺

j yyy(1)), (2.3)

where ϕ as the softmax function with:

ϕ(z(2)j ) =
ez(2)j

∑J
i=1 ez(2)i

. (2.4)

It turns the original outputs into “probability values”. Before the popularity of deep learning
algorithms, the sigmoid and tanh (hyperbolic tangent) functions were the most widely applied
activation functions, which have the following definitions:

sigmoid(y) =
1

1+ e−y ,

tanh(h) =
ey − e−y

ey + e−y = 2σ(2y)−1.
(2.5)

Loss Function and Backpropagation

The backpropagation (BP) (Rumelhart et al., 1986) algorithm is applied to update neural
weights during training. The main idea is to adjust the network weights according to the deriva-

21



2.2. Preliminaries of Deep Learning

tion from prediction errors. These error values are generated according to the loss function,
which measures how good the current prediction is.

Regression with Quadratic Loss

The quadratic function is the most widely applied loss function for regression tasks, which
has the following form:

E =
N

∑
n=1

en =
1
2

N

∑
n=1

J

∑
j=1

(t(n)j − y(n,2)j )2 =
1
2

N

∑
n=1

J

∑
j=1

{t(n)j −
M

∑
m=0

w(2)
m j σ

(1)(
D

∑
d=0

w(1)
dmx(n)d )}2, (2.6)

where en is the cost value for a single data point xxx(n). From such definition, we can have the
gradient:

δe

δ z(2)j

= z(2)j − t j = y(2)j − t j, (2.7)

which further indicates:

δ z(2)j

δw(2)
m j

= y(1)m ,
δ z(2)j

δy(2)m

= w(2)
m j ,

δy(1)m

δ z(1)m

=
e−z(1)m

(1+ e−z(1)m )2
. (2.8)

Hence, the gradients of weights in the 2nd layer are:

δe

δw(2)
m j

=
δe

δ z(2)j

·
δ z(2)j

δw(2)
m j

= y(1)m (z(2)j − t j) = y(1)m (y(2)j − t j). (2.9)

To calculate the gradients of the weight at 1st layer, as j is not given (which means all the y(2)

neurons are computed), so they are:

δe

δw(1)
dm

=
J

∑
j=1

δe

δ z(2)j

δ z(2)j

δy(1)m

δy(1)m

δ z(1)m

δ z(1)m

δw(1)
dm

=
J

∑
j=1

(y(2)j − t j) ·w(2)
m j ·

e−z(1)m

(1+ e−z(1)m )2
· xd. (2.10)

For Classification (Cross-Entropy)

For classification, it is common to use cross-entropy (negative log-likelihood) to represent
the loss value:

E =
N

∑
n=1

en =−
N

∑
n=1

J

∑
j=1

t(n)j log(y(n,2)j ), (2.11)
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where

en =−
J

∑
j=1

t(n)j log(y(n,2)j ). (2.12)

The application of cross-entropy requires the output y(2) to be probabilities, therefore the soft-
max function is applied. And the gradient function of z(2) can be expressed as:

δe

δ z(2)j

=
J

∑
i=1

δe

δy(2)i

δy(2)i

δ z(2)j

=−
J

∑
i=1

ti
yi
·

δy(2)i

δ z(2)j

. (2.13)

As {t1, t2, ..., tJ} is a one-hot vector, only tt = 1 (as t is the targeting class), the above equation
can be rewrite as:

δe

δ z(2)j

=− tt

y(2)t

· δy(2)t

δ z(2)j

=− tt

y(2)t

·
[

δ
ez(2)t

∑J
i ez(2)i

/δ z(2)j

]

=− tt

y(2)t

·
[

δez(2)t

δ z(2)j

· 1

∑J
i ez(2)i

− ez(2)t ez(2)j

(∑J
i ez(2)i )2

]
=− tt

y(2)t

·
[

y(2)t ·1( j=t)− y(2)t y(2)j

]
= tt · y(2)j − tt ·1( j=t)

= y(2)j − t j.

(2.14)

As the δe
δ z(2)j

in classification is the same as the δe
δ z(2)j

in regression, we have only one gradient

formula.

MLP with Deep Layers

When we consider the MLP model with more than one hidden layer, the feedforward com-
puting of Eq.2.2 can be generalised to:

y(c+1)
j = σ(z(c+1)

j ) = σ(www(c+1)⊺
j yyy(c)), (2.15)

where

z(c+1)
j =

M

∑
m=0

w(c+1)
m j y(c)m , y(c)m = σ(

D

∑
d=0

w(c)
dmy(c−1)

d ). (2.16)
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Specifically:
δ z(c+1)

j

δy(c)m

= w(c+1)
m j ,

δy(c)m

δw(c)
dm

= y(c−1)
d ,

δy(c)m

δ z(c)m

=
e−z(c)m

(1+ e−z(c)m )2
,

δ z(c+1)
j

δ z(c)m

= w(c+1)
m j · e−z(c)m

(1+ e−z(c)m )2
,

δ z(c+1)
j

δw(c)
dm

= w(c+1)
m j · y(c−1)

d .

(2.17)

Based on Eq.23, we have:

δe

δw(c+1)
m j

=
δe

δ z(c+1)
j

·
δ z(c+1)

j

δw(c+1)
m j

=
δe

δ z(c+1)
j

· y(c)m , (2.18)

δe

δ z(c)m

=
J

∑
j=1

δe

δ z(c+1)
j

·
δ z(c+1)

j

δ z(c)m

, (2.19)

δe

δw(c)
dm

=
δe

δ z(c)m

· y(c−1)
d . (2.20)

So we are able to calculate the δe
δ z(c)

values once the δe
δ z(c+1) values in the previous layer are

known.

Adopting ReLU

In modern convolutional neural networks, the ReLU is widely adopted as the activation
function, which has the following expression:

ReLU(y) = max(0,y) (2.21)

The new backpropagation equations are:

δy
δ z

= 1(z>0)

δe

δw(1)
dm

=
J

∑
j=1

(y(2)j − t j) ·1(z(2)j >0)
·w(2)

m j ·
e−z(1)m

(1+ e−z(1)m )2
·1

(z(1)m >0)
· xd

δe

δw(c)
ab

=
D

∑
d=1

δe

δ z(c+1)
d

·w(c+1)
bd ·1

(z(c)a >0)
· y(c−1)

a

(2.22)
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Convolutional Neural Networks (Being applied from chapters 3 to 6)

Due to the overly exaggerated future of Artificial Intelligence, ANN-related studies have
been treated as pseudoscience during the AI winter from 1985 to the 90s. Despite that, a group
of researchers (such as Geoffrey Hinton, Yann LeCun) continued to work on the ANN models
and achieved considerable advancements (Goodfellow et al., 2016) in this period.

Convolutional neural network (CNN), the most prevailing deep-learning algorithm currently,
can be recognised as a derivation of MLP. Its history can date back to the 80s when Fukushima
(1980) published the study regarding Neocognitron, an early version of convolutional neural
network architecture. It allows the model to perform visual pattern recognition tasks. Due to the
lack of proper training methods, the algorithms have not captured enough attention. The first
modern CNN was the LeNet-5 model proposed by Lecun et al. (1998), which has three types
of layers: the convolutional, pooling and dense layer. By trained with backpropagation, this
model achieves outstanding performance on handwritten number recognition, thus widely used
for handwritten check reading systems.

The recent boom of deep learning was started in 2012, by the achievements made by AlexNet
from Krizhevsky et al. (2012), this CNN architecture which wins the 2012 ImageNet (Deng
et al., 2009) competition with a 15.4% error rate on the Top-5 test (i.e., whether the answer
is within the top 5 predictions). The result was so incredible that the whole of the computer-
vision community had been attracted to the deep-learning approach. Since then, large amounts
of CNN models with diverse structures have developed. Among these newly developed models,
the models such VGG16 (Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015)
and ResNet (He et al., 2016) are the most representative deep models used for predictive tasks.

Table 2.2.2: Notation list for CNN introduction.

M(r) The width of the r th layer output.
N(r) The height of the r th layer output.
C(r,l) The output feature map (matrix) from the r th layer l th kernel. The

M and N represents the width and height of the output.
K(r,l) The l th kernel at layer r which has P × Q size. In modern CNN

models, the applied kernels always have the square shape. That is,
P = Q, and the P and Q are always odd numbers.
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Convolutional Layer

As its name suggests, convolutional neural networks are characterised by convolutional lay-
ers. A convolutional layer has multiple kernels, and for each kernel, the computation is to scan
the whole input matrix (or tensor) by shifting the kernel. Thus a feature map will be generated
correspondingly for each kernel. The convolution is a mathematical operation on two functions
to produce a third function, which can be written as ( f ∗ g)(t). It can be expressed in integral
form as:

( f ∗g)(t) =
∫ ∞

−∞
f (δ )g(t −δ )dδ , (2.23)

or in discrete form as
( f ∗g)(t) =

∞

∑
δ=−∞

f (δ )g(t −δ ). (2.24)

Say if there is only one feature map from the C(r−1) layer, then the convolution process in
the convolutional layer r can be expressed as:

C(r,l)
(m,n) = ( f ∗ k)(m,n) =

d

∑
a=−d

d

∑
b=−d

Ka,bC(r−1,1)
m−a,n−b, (2.25)

where d =
⌊P−1

2

⌋
. As the convolutional process would produce a size-shrunk (compared with

the input size) feature map, a specific method, namely padding, is used to maintain the map size.
This method adds the 0s to the surround of the C. So m, n are equal to the input sizes, in case
m−a < 0 or m−a > M, they will set to zeros.

Derivation Models from CNN

Besides the basic predictive tasks such as classification or regression, derivation models of
the convolutional neural network have also achieved massive record-breaking results in various
domains over the past decade (LeCun et al., 2015). Our studies have used and integrated different
deep learning algorithms from several fields. In the following, we will particularly introduce the
Mask R-CNN network, as it has been repeatedly used in our studies for image background
removal.

Mask RCNN (Being applied in Chapter 3, 4, 5, 6)

The Mask R-CNN is a CNN-based image segmentation method. It is the state-of-the-art
CNN proposed by (He et al., 2017), which aims to detect and segment object instances in
digital images. It has been widely used in autonomous driving (Huang et al., 2020; Xia and

26



2.2. Preliminaries of Deep Learning

Sattar, 2019), multi-person pose estimation (Dong et al., 2019), and neural stem cell differen-
tiation (Zhu et al., 2021). In this thesis, we often use it to detect car body in the given raw
car image and remove the background accordingly. The Mask R-CNN has two stages: (i) the
region proposal network (RPN) that creates the candidate object bounding boxes; and (ii) the
detection stage in which segmentation masks are predicted. As exhibited in Figure 2.2.2, we
use Mercedes C Class (2019 reg) to illustrate how does the Mask R-CNN work in our con-
text. In the first stage, the RPN proposes region candidates that contain car objects. Technically
speaking, each candidate is called the region of interest. The input image will first go through a
series of convolutional layers that are well-trained in existing CNNs such as ResNet (He et al.,
2016) and feature pyramid network (Lin et al., 2017). This will result in matrices called feature

maps (Goodfellow et al., 2016), and each feature map is a matrix that topographically indicates
the presence of a common feature in the input image. Feature maps are then converted into
patches called anchors, and then be used in training the model. Within our context, each patch
of the image refers to specific car shape regions. The RPN is often trained independently before
fitting into the entire Mask R-CNN framework and its loss function LRPN is defined as

LRPN = λCLSLCLS +λBOXLBOX, (2.26)

where LCLS is the classification loss, LBOX is the bounding-box loss, and λCLS and λBOX are
the corresponding coefficients.

The classification loss LCLS is specified by the cross-entropy

LCLS =−∑̃
i

[
pĩ log{p̂ĩ}+(1− pĩ) log{1− p̂ĩ}

]
, (2.27)

where ĩ is the index of anchors, p̂ĩ is the predicted probability that anchor ĩ is belong to an object
and pĩ is the corresponding ground truth label in {0,1}.

The bounding-box loss LBOX is defined by Girshick (2015) as follows

LBOX = ∑̃
i

∑̃
j

[
1
2

d2
(̃i, j̃)

]I|d
(̃i, j̃)

|<1
[
|d(̃i, j̃)|−

1
2

]1−I|d
(̃i, j̃)

|<1

, (2.28)

where d(̃i, j̃) is the difference between the predicted and ground-truth values of anchor ĩ’s coor-
dinate j̃.
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Figure 2.2.2: Schematic view of using the Mask R-CNN to segment car body from its
original image.

In the second stage of the Mask R-CNN, our primary goal is to cover the shape of detected
car objects. The detection stage then completes segmentation masks. The mask loss LMASK is
taken into account and can be specified by cross-entropy as follows

LMASK =−∑
l

∑
k

[
q(k)l log{q̂(k)l }+(1−q(k)l ) log{1− q̂(k)n }

]
, (2.29)

where l is the index of pixel in the RoI, q̂(k)l and q(k)l are the predicted probability and the ground
truth of pixel l for class k.

Deep Generative Models (Being applied in Chapter 3, 4, 5, 6)

In contrast to the CNN algorithm that has a long history, the deep-generative models were
not emerged until a few years ago, where Goodfellow et al. (2014) created the first generative
adversarial network (GAN). GANs are used to generate new samples to approximate the proba-
bility distribution of the true data, and they solve unsupervised tasks by using a supervised loss
as part of model training. As these algorithms are excellent at generating real-looking pictures,
the studies of deep-generative models have become remarkably popular since then.

As GANs can achieve tremendous success in generating highly realistic images, they have
been recently used for product appearance design. For example, Quan et al. (2018) developed a
framework that can incorporate the given colour and styling features into clothing design. Sbai
et al. (2019) investigated whether the addition of an explicit loss for creativity can drive GANs
to produce original and compelling fashion designs.
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The vanilla GAN network is mainly comprised of a generator (G) and a discriminator (D).
The generator is used to generate images based on the given input z (latent vector); while the
discriminator is applied to discriminate whether the input image is real or not. By learning the
true data distribution from the training sets, the generative models can generate new images
which resemble the real ones. The objective function of GAN is:

min
G

max
D

Ex∼Pdata [log(D(x))]+Ez∼Pz [log(1−D(G(z)))]. (2.30)

The intuition of the function is straightforward. The log(D(x)) and log(1−D(x)) represent the
log probability of correct discrimination. So the D(·) is trained to max the objective function as
it tries to identify whether the image is faked or not. Contrariwise, the G(·) is trained to max the
function by maximising the Ex∼PG [log(1−D(x))] part. Moreover, the vanilla GAN can easily
be extended to conditional GAN with the following modification:

min
G

max
D

Ex∼Pdata [log(D(x|y))]+Ez∼Pz [log(1−D(G(z|y)))]. (2.31)

In the first phase of model training, G(·) is fixed, where the optimal D∗
G(x) is:

D∗
G(x) =

Pdata(x)
Pdata(x)+PG(x)

. (2.32)

If we denote Pdata(x) as a, PG(x) as b, and D(x) as y, then:

d[a∗ log(y))+b∗ log(1− y)]
dy

= 0, when y =
a

a+b
. (2.33)

In the second phase, D(·) is fixed, and we have:

min
G

∫
Pdata

Pdata(x) log
(

Pdata(x)
Pdata(x)+PG(x)

)
dx+

∫
PG

PG(x) log
(

PG(x)
Pdata(x)+PG(x)

)
dx. (2.34)

Table 2.2.3: Notation list for GAN introduction.

Pdata The distribution of real image
Pz The distribution of the random variable z
x Real image sample
G(·) Generator
D(·) Discriminator
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Key Literature Year Description Design
Generating

Design
Evaluating

Positioning
Optimising

Rajeev and Krishnamurti (1987) 1987 Non-styling focus; marketing
positioning focus; no actual
designs

✓
Kaul and Rao (1995) 1995 ✓
Shi et al. (2001) 2001 ✓
Burnap et al. (2016c) 2016 Design studies; automotive

styling; deep learning; novel
design focusing

✓
Burnap et al. (2016b) 2016 ✓
Pan et al. (2017) 2017 ✓ ✓
Burnap et al. (2021) 2019 ✓ ✓

Table 2.3.1: The list of key literature for this thesis.

This objective function will achieve the minimum at Pdata(x) = PG(x).

2.3 Deep Learning for Automotive Styling
The research community has long time attempted to develop computational technologies

for generating automotive designs. Some studies rely on the manipulation of points and lines
in the 2D graph to generate uncomplicated car shapes and silhouettes and applied surveys to
collect aesthetic feedback (Reid et al., 2010). More up-to-date studies advance these methods
by creating designs in 3D spaces with more rich colour choices (Kókai et al., 2007; Orbay
et al., 2015). However, among the development of such traditional design methods, researchers
are often challenged by the difficulties of setting the increasing number of control variables
– in order to generate realistic designs, designers need to handle more additional parameter
setting problems. As Burnap et al. (2016b) concluded, there exists a clear trade-off between the
difficulties of manipulations and the design flexibility. Such challenges made the computational
methods unsuitable for the conceptual design stage.

Despite the wide use of computational technologies such as CAD in the late stages of au-
tomotive design, computers are seldom involved in the early conceptual design stage (Tovey
et al., 2000). Such conceptual design procedure is led by the aesthetic design team, indicating
the quality of the resulting designs is much determined by the expertise of team members. The
rough design ideas are presented in the form of sketches, which are more convenient for fast
modification and selection. Design evaluations are done through consumer surveys to decide
the designs for further investing, termed the theme clinics. Only the selected designs are then
digitised using computer-aided design programs (Coates, 2003).

With the popularity of deep learning in the CS community, a group of researchers, espe-
cially the design research team from the University of Michigan, tried to apply these state-of-art
methods to automotive aesthetic design. The first investigation that tried to deploy the deep
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generative model on the automotive aesthetic design was from Burnap et al. (2016a). The au-
thors used the variational autoencoders (VAEs) (Kingma and Welling, 2014) to map various car
design images into a design space controlled by variables drawn from uniform distributions. By
manipulating these input variables, the trained VAE is able to produce car designs from differ-
ent viewpoints with diverse looks. The authors suggest that the most substantial advantage of
using the deep generative model is the resolution of the design flexibility VS the realism trade-
off, where the unimportant details are automatically filled by the machine. In comparison, the
conventional methods generate realistic designs at the price of increasing the control difficulties
with more input variables. Although the early VAE model results are perceived as inferior to
modern methods, this prior attempt to apply the deep generative model is a clear milestone for
the computational assistant product appearance design.

In their later work, Pan et al. (2017) firstly proposed the generator + evaluator framework
for car exterior design automation. Different from their prior works, the conditional generative
adversarial network (cGAN) (Mirza and Osindero, 2014) was employed as the design generator
in this study to gain higher controllability of produced results. So the authors can specify the
desired characteristics of brand, colour or bodytype for generation, as these variables had been
conditioned during the GAN model training. On the other hand, the Siamese neural network
was used to predict consumers’ ratings from different market segments, as it is specified on
learning contrastive features between inputs with similar looks. Moreover, the authors applied
the gradient-based interpretation method to the evaluator network to highlight the influential
design parts for design attribute perceiving.

In their recent work, Burnap et al. (2021), more oriented toward marketing research, the
authors tried integrating three deep neural network models, VAE, GAN and CNN conceptually,
by jointly interplaying with the proposed embedding space. In particular, the VAE model was
responsible for mapping design images to embedding vectors with a significantly smaller num-
ber of dimensions (Kingma and Welling, 2014). The GAN model constructed design images
on the embedded vectors, and the predictive model forecasted the design’s appearance ratings.
Apart from that, this study examined the actual values of adopting deep learning technologies
in automotive design by interviewing real automotive designers from the general motors corpo-
ration. Unlike the periodic consumer research clinics, which are expensive, and time costly, the
machine-based design evaluator can be continually available with no extra costs. On the other
hand, the deep generative models can efficiently provide alternative choices for the design team
during the conceptual design stage, unaffected by the human designers’ aesthetic preferences.
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2.4 Summary
In this chapter, we first reviewed the historical literature from marketing, design and psychol-

ogy to further explain the background and motivation of this thesis. We particularly reviewed
product design optimisation studies that proposed diverse mathematical solutions, where no ac-
tual product designs were offered in these studies. The chapter then introduced the basics of
deep learning. In particular, it went through the classical artificial neural network models and
the fundamental concepts. It then introduced more advanced models, such as CNNs and deep
generative models. The last part presented the conventional computer science methods used in
automotive styling design and discussed the constraints. Then it came to the recent trend of
using deep learning technologies in automotive exterior design and went through the pioneer
works done by the University of Michigan design team, which clearly showed the advantages
of the recently advanced machine learning methods. The next chapter presents the proposed
general framework and discusses the key challenges of the proposed studies.
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Chapter 3

DVM-CAR: An Automotive Database for
Deep Visual Marketing

In this chapter, we present our multidisciplinary initiative and create a large-scale automotive
research dataset named DVM-CAR, which serves as a valuable database for my PhD studies
and has been shared via the following website:

https://deepvisualmarketing.github.io.

Section 3.1 presents the motivation for DVM-CAR. Section 3.2 describes how the raw data is
collected and processed. Section 3.3 gives an overview of the dataset. Section 3.4 explains how
the dataset is designed to be practical for research. Section 3.5 illustrates three research samples
that could be achieved with DVM-CAR, and Section 3.6 summarises the chapter.

3.1 Introduction
Over the past years, there has been a rising interest in applying data mining, machine learn-

ing and artificial intelligence to automotive research and applications, including autonomous
driving, intelligent manufacturing, car appearance design, consumer analytics and sales mod-
elling (Burnap et al., 2016c; Pan et al., 2016, 2017; Burnap et al., 2021). In the former two
areas, automotive manufacturers are working actively with robotics research experts, whom
they have been closely with over the decades in automobile engineering. The latter three areas
contain significant business ingredients such as product design, marketing, operational research
and economics. They have generated many interesting multidisciplinary research questions, and
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solving them can have positive social consequences for automotive manufacturers, consumers,
and other participants in the automotive ecosystem and even policy makers (Dant and Martin,
2001).

Despite the growing interest in car aesthetics analytics and design, the lack of applicable
datasets has greatly hampered the usage of machine learning technologies in automotive design
studies as data mining, machine learning and artificial intelligence are built upon data, in many
cases, massive data (Yang et al., 2015; LeCun et al., 2015; Huang et al., 2020). Before our
study, no publicly available datasets cover a wide range of car or other commercial product
information, such as product appearance, model specifications and sales data, are extensively
lacking. Meanwhile, data collection can often be a lengthy, difficult or expensive process for
many researchers, particularly, researchers in the business community whose primary focuses
are not programming or database management.

To this end, we develop a comprehensive car dataset, which researchers from different dis-
ciplines can use, by integrating different online product information. This chapter makes the
following four major contributions:

• Domain Application: Our dataset meets the growing need of a comprehensive auto-
motive dataset for visual-related marketing research and applications. For example, our
dataset can be used for automotive exterior design and consumer analytics, which will
benefit automotive manufacturers, help them better understand their targeted consumer
segment preferences behind the purchase decisions, and then use the obtained consumer
insights to generate new exterior designs powered by technologies. Our dataset can also be
used for car sales modelling which benefits all the participants in the automotive ecosys-
tem including car dealers, consumers, and marketers.

• Big Data: To the best of our knowledge, our dataset is the very first large-scale automotive
dataset. It contains 1.4 million images from 899 different car models and corresponding
specification and sales information from over ten years in the UK market. The four char-
acteristics of big data (i.e., volume, variety, velocity, and veracity) are satisfied, which
makes the dataset can be used for different types of analytics, ranging from descriptive
to diagnostic, predictive and perspective. The dataset can be used by multidisciplinary
researchers to solve different tasks. Many interesting insights, data-driven models and
applications can be derived.

• Database Design: We conduct a survey study with the researchers working in either
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business or computer science field. The data challenges these researchers meet can be
categorised into three major issues: coverage, accessibility and quality. We design the
proposed dataset by addressing these issues with the hope that our data can be researcher-
friendly and thus can have a large impact in research and practice. Therefore, we also
demonstrate a good practice of developing a dataset which can alleviate the common data
issues faced by researchers.

• Data Fusion: Car images, model specification and sales information are collected from
different online sources while they are merged and stored in a flexible and hierarchical
structure that allows it to be easily expanded with new data and used by researchers. We
also compare our dataset with several related existing publicly available datasets, indicat-
ing the differences and our improvements. Our work contributes to the multi-source data
fusion as it includes different data formats from different online sources.

3.2 Data Collection and Preparation
Nowadays researchers often collect online data and process them as new datasets for their

research. Datasets like ImageNet (Deng et al., 2009) and OpenImages (Kuznetsova et al., 2020)
are characterised by their enormous size and have achieved massive success in computer science
research and applications. The two existing car image datasets, Stanford-Car 1(Krause et al.,
2013) and CompCars 2(Yang et al., 2015), are also based on the web scraped contents. Moti-
vated by these existing works, we develop the dataset by collecting and integrating data from
different online sources. First, car images are collected from the popular automotive classified
advertising platforms. These platforms are popular online marketplaces in the UK for buying
and selling used cars, which host millions of car images and their selling prices for almost all
car models from different automotive manufacturers. Second, car sales data is collected from
the Driver and Vehicle Licensing Agency (DVLA), which is part of the Department for Trans-
port, holding over 49 million driver records and over 40 million vehicle records in the UK. The
DVLA publishes the statistics of newly registered vehicles in its seasonal reports. We extract
and add the sales appropriately for various car models. Third, new car prices are collected from
car review websites, which cover the selling prices of various car trims sold in past years.

In the preparation of data sharing, a number of data cleaning and fusion steps are performed.
Images with unexpected contents are dropped, and remaining images are cropped according to

1https://ai.stanford.edu/˜jkrause/cars/car_dataset.html
2http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
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Figure 3.2.1: Illustration of car images in our dataset: (a) angles of car image labelling;
(b) example of background removal for Audi A2 from angle 270 degree; (c) example of
background removal for Audi A2 from angle 45 degree.
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Figure 3.2.2: Schematic view of the DVM-CAR dataset, which consists of two parts: image
data and table data. Image and table data can be joined or connected via model, adv and
image IDs.

detected car positions. First, indicated by as Fig. 3.2.1 (a), a machine learning model is used to
filter out non-exterior-viewing images. An ImageNet pre-trained convolutional neural network
(CNN) (Lecun et al., 1998) is fine-tuned with manually prepared samples where pictures are
labelled according to their qualities and observation viewpoints. The trained CNN classifies im-
ages according to observation viewpoints, only images taken from the eight targeting viewpoints
are kept for later usage. This reduces the size of the raw image set from over six million to less
than 1.5 million. Second, as Fig. 3.2.1 (b) illustrates, to comply with the General Data Pro-
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Figure 3.2.3: Summary of image data in the DVM-CAR dataset: (a) the number of car
models across years and the average images for each model; (b) the annual percentage
composition of images by body type.
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Figure 3.2.4: Four categories of variables in our dataset.

tection Regulation (GDPR) (Voigt and Von dem Bussche, 2017), we utilise Mask R-CNN (He
et al., 2017) (trained on the COCO dataset (Lin et al., 2014)) to detect objects present in car im-
ages and to identify the positions of car bodies within these images. This approach enables the
removal of regions not pertaining to the car bodies, ensuring the absence of extraneous objects,
such as human figures, in the processed images. Figure 3.2.1 (c) exhibits the resulting images
after detecting number plates using the algorithm from (Silva and Jung, 2018), followed by blur-
ring the number plate regions. Beyond image processing, all non-visual content is transformed
into attributes and organised into data tables. Ambiguous observation values are corrected or
harmonised. Each car model is assigned a unique identifier (ID) to facilitate information in-
tegration. Information such as annual sales is compiled at a more abstract level. In the table,
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images are associated with their observation viewpoints and source advertisement IDs.

3.3 Dataset Description
As our primary motivation to facilitate visual marketing research and forecasting applica-

tions, we call the proposed dataset Deep Visual Marketing Car (in short DVM-CAR), which
is publicly available under the CC BY-NC license at:

https://deepvisualmarketing.github.io

As shown in Fig. 3.2.2, the DVM-CAR dataset consists of two parts: image data and table
data. The part of image data contains 1,451,784 car images (in JPEG format with resolution
300×300) which are compressed in a ZIP file (13.6 GB file size). These images have been
selected from eight observation viewpoints and stored under the categorisation “brand-model-
year-colour”. This structure allows researchers to locate target images easily. The backgrounds
of all car images are removed. A table is prepared for image indexing, so researchers can select
the images via this table. In total, our image data covers 899 car models that sold in the UK
market over the last 20 years. As Fig. 3.2.3 (a) shows, the automotive classified advertising
platforms have more data for newly-launched models than older car models. In spite of this, it
contains 138 car models sold in the year 2000, each with an average of 28 images. The wide
longitude of the dataset makes the observation of long-term trends easy, thus, is particularly
useful for economic and marketing analytics and forecasting. For instance, through Fig. 3.2.3
(b), it is shown that SUVs are becoming more popular and taking higher market shares over the
last two decades. The part of table data (i.e., non-visual part) comprises six tables in the CSV
format (156 MB file size), which are named the basic, sales, price, trim, ad and image tables.
Together, these tables cover various variables and form a relational database (Codd, 1983), as
each two of them can be joined via the primary or secondary keys. More details of these tables
can be found in Table 3.3.1.

3.4 Quality Control: Towards a Good Research Dataset
During the data preparation, we deploy a survey using Qualtrics (www.qualtrics.com) to

explore the most common data issues that people face in their research and practice. We collect
responses from 54 researchers, including 26 participants with a computer science background
and 28 with a business studies background, including economics, marketing and management.
As presented in Figure 3.4.1, the reported issues from our survey study can be broadly divided
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Table 3.3.1: Description of table data in the DVM-CAR dataset.

Name Table description Attribute name Attribute description

Basic It is mainly for indexing other tables.

Genmodel Generic model name
Genmodel ID Generic model ID
Automaker Automaker name
Automaker ID Automaker ID

Ad

It contains more than 0.27 million used car advertisements
information posted on the automotive classified advertising
platforms, including variables like advertisement’s creation
time, used car registration year, cumulative mileage, selling
price, etc.

Genmodel Generic model name
Genmodel ID Generic model ID
Maker Automaker name
Adv ID Advertisement ID
Adv year Advertisement’s creation year
Adv month Advertisement’s creation month
Colour This car’s colour
Reg year This car’s first registration/selling year
Bodytype This car’s body type
Runned Miles This car’s runned mileage
Engin size This car’s engin size
Gearbox This car’s gearbox
Fuel type This car’s fuel type
Price This car’s selling price
Seat num This car’s seats number
Door num This car’s doors number

Image
It contains image data related information like predicted
viewpoint and quality check result.

Genmodel ID Generic model ID
Image ID Image ID
Image name Image name
Predicted viewpoint This image’s predicted viewpoint
Quality check Manually check result

Price
It contains the entry-level new car prices. It is designed for
people who only need the basic price of car models.

Genmodel Generic model name
Genmodel ID Generic model ID
Maker Automaker name
Year Generic model’s selling year
Entry price Generic model’s entry-level price

Sales
It contains car sales data of the UK market (based on the
released statics from the DVLA).

Genmodel Generic model name
Genmodel ID Generic model ID
Maker Automaker name
Year 2001 to 2020 Generic model’s annual sales

Trim

It includes 0.33 million trim level information such as sell
-ing price, fuel type and engine size. It is designed
for people who are interested in the price of car model at
a specific trim level.

Genmodel Generic model name
Genmodel ID Generic model ID
Trim Trim name
Maker Automaker name
Year Trim’s selling year
Price Trim’s price at selling year
Gas emission Trim’s CO2 emission
Fuel type Trim’s fuel type
Engine size Trim’s engine size

into three categories: coverage, accessibility, and quality.

Coverage refers to the issue of a dataset not containing the needed information. This hap-
pens in two situations. First, the dataset is not comprehensive enough. It does not contain the
attributes or variables that a researcher is interested in for a specific study. Second, the dataset
does not cover enough records or samples. Our dataset is designed to have excellent coverage
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Variables/features Our Related work
dataset Kukova et al. Korenok et al. Jindal et al. Landwehr et al.

Sales/market share ✓ ✓ ✓ ✓
Price ✓ ✓ ✓ ✓ ✓
Brand ✓ ✓ ✓ ✓
Exterior features ✓ ✓ ✓ ✓ ✓
Fuel economy ✓ ✓ ✓
Horsepower ✓ ✓ ✓
Engine ✓ ✓ ✓
Transmission ✓ ✓ ✓
Equipment features ✓ ✓ ✓
Life-cycle/model year ✓ ✓ ✓ ✓
Advertising ✓ ✓
Reliability ✓ ✓
Safety ✓ ✓
Driving/handling ✓ ✓
Ergonomics/rooming ✓ ✓
Interior ✓

Table 3.3.2: Summary of car specification and sales variables included in the related mar-
keting studies and our proposed DVM-CAR dataset.

of both variables and observed samples. For the former, as presented in Table 3.3.2, we design
the dataset to contain many important car specifications and sales variables used in the related
marketing studies. In addition to these variables, as also demonstrated in Fig. 3.2.1, we provide
corresponding images for various car models in various angles over a long-term period. The ex-
isting public car image datasets, such as the Stanford-car and CompCars datasets, do not include
the mentioned car specification and sales variables as they are mainly designed for computer
vision tasks. In terms of volume, the dataset covers millions of registered cars in the UK market
in the past decades.

Accessibility refers to the difficulties regarding data usage caused by closed or proprietary
datasets or the underlying complex data structure. Our participants in the survey highlighted
that many datasets require license purchase, and in many cases, these datasets are sold at re-
markably high prices. Researchers find that it is difficult to secure funding to purchase their
needed datasets. On the other hand, the free shared datasets are often presented in a researcher-
unfriendly way. The developers of those datasets may either put too much trivial information
or leave data unprocessed. Even worse, many datasets are shared online without providing ba-
sic descriptions. A lot of efforts have been made to improve the accessibility of our dataset.
First, we create an easily accessible data webpage on GitHub where researchers can download
our dataset and find the needed description and usage instructions. Second, there are also no
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Figure 3.4.1: Categorisation of data issues reported by participating business and com-
puter science researchers.

specific restrictions on our data usage. Moreover, we hope our data can be easily used by re-
searchers from different backgrounds, so it is presented in a researcher-friendly manner. For
example, all non-visual contents are processed into tabular attributes and organised into separate
tables according to their categories. All the car models have been assigned a unique identifier
(ID), which can be used for information integration and future data fusion. In addition, we
remove the background of collected images, which can simplify the potential applications for
researchers interested in automotive exterior design.

Quality refers to missing data and error values. If problems exist in the original data, they
can hardly be resolved by researchers using the data. Therefore, a series of data cleaning proce-
dures are adopted to ensure the resulting data quality. First, the ambiguous or inconsistent values
are unified or corrected. For example, a car’s brand or name containing “Benz” is corrected into
“Mercedes”. Second, data values at different granularities are aggregated according to certain
groups. For instance, annual sales regarding various car trims, a trim level representing the
equipment levels in a specific car model, are aggregated to the model levels. Third, uncertain
contents are largely abandoned. The raw collected data has more than six million images, but
most of them are abandoned in later processes for the purpose of quality control.
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Besides the aspects above, ethics issues are thoughtfully reviewed throughout the data prepa-
ration. We carefully pre-process and reproduce image contents to strictly comply with the GDPR
(e.g., removing image background and covering plate numbers). It is worth noting that the UK
government has special laws to encourage research studies related to creating and using web
content based datasets3. Therefore, we do not have copyright concerns as long as people use
it for non-commercial purposes. As our dataset only contains car-related information (e.g., im-
ages, car model specification, sales), it seems unlikely it will generate negative societal impact.

3.5 Dataset Application Examples
This section briefly illustrates three application examples for demonstrating how the DVM-

CAR dataset could be applied to business research and applications.

3.5.1 Understanding Automotive Exterior Aesthetics Design
Product aesthetics design is a determinant of consumer acceptance and product success (Hof-

fer and Reilly, 1984; Bloch, 1995; Schoormans and Robben, 1997; Jindal et al., 2016). Market-
ing scholars have discussed aesthetics from various aspects, including the influence of aesthetics
on product differentiation and new product development, and specific determinants of consumer
responses to aesthetics. For example, morphing techniques were used to quantify and incor-
porate aesthetics design into empirical car sales models (Landwehr et al., 2011a; Tseng et al.,
2013). This is an important step in modelling the effect of aesthetics design on sales. However,
the used method is still limited in its ability to process image data. Car visual attributes are
only extracted by pre-defined feature extractors, which are coarse-grained, and their respective
implications for sales analysis and car appearance design are limited.

The recent advancement of machine learning technologies has provided marketing researchers
with new tools to investigate product aesthetics. Several studies applied deep neural networks
such CNNs to interpret the perceived design features (Pan et al., 2016; Burnap et al., 2016c).
Compared with the traditional quantitative methods used in marketing research, deep learning
algorithms can automatically learn high-level representations of visual features from car image
data. Thus, the deep models can be used end-to-end, which solely requires raw images and tag-
ging data as labels. Such advantages of deep models make them widely applied for visual based
predictive studies (LeCun et al., 2015).

The DVM-CAR dataset provides an excellent base for researchers to apply deep learning

3https://www.gov.uk/guidance/exceptions-to-copyright
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to extract visual attributes from car images. For instance, Fig. 3.5.1 (b) shows the sample us-
ing car images to infer the modernity score (i.e., labels computed from car registration years).
By fine-tuning the ImageNet pre-trained VGG’16 (Simonyan and Zisserman, 2015), the results
show deep learning models are capable of predicting the design fashion for family cars. Besides,
we can further recognise the design language or patterns from the inside gradients. Fig. 3.5.1
(a) displays the predicted scores for Land Rovers. Although all these models are from the same
automaker and were sold in the same year, the trained deep model rates them with entirely dif-
ferent modernity scores. The second row of Fig. 3.5.1 (a) presents, with the help of visualisation
methods such as guided back-propagation (Springenberg et al., 2014), researchers can identify
specific designs (i.e., highlighted in blue colour) that make the appearance outdated.

Based on the car models’ modernity predictions, we can further investigate the associations
between cars’ modernity of appearance and their market performance by using the sales records
in the DVM-CAR dataset. As Table 3.5.1 illustrates, we find the models’ future withdrawn
chances are correlated to their modernity scores (Note: the numbers in brackets of Table 3.5.1 are
the sample sizes of the groups). The car group with low modernity scores have a higher chance
of being withdrawn from the market, while the high modernity group tend to survive longer.
As essential marketing variables such as new car prices and sales are all covered by the dataset,
users can investigate the association between cars’ exterior styling and market performance from
diverse perspectives.

3.5.2 AI-Powered Automotive Exterior Design
Anthropomorphism (Miesler et al., 2011; Waytz et al., 2014; Ku, 2014) refers to the attribu-

tion of human or animal characteristics to non-living objectives. As a common phenomenon in
consumption environments, anthropomorphism has drawn wide attention from both social psy-
chology and marketing researchers. Psychological studies (Purucker et al., 2014) reveal that our
brain is highly specified for face perception, which is so evolved that we often perceive faces
from non-living objects. A group of marketing studies extensively investigate how products with
human-like or animal characteristics lead to face perception. Typically, in car related studies, ex-
isting investigations (Aggarwal and McGill, 2007; Landwehr et al., 2011b; Miesler et al., 2011)
show consumers have a strong tendency to anthropomorphise the car front. However, in these
studies, human or animal characteristics are predefined and only used in user surveys. They
cannot be further deployed for facial feature recognition for unseen images. Thus, providing
limited insights on car front appearance design for car manufacturers.

As a group of generative models with neural network structures, deep generative models can
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Figure 3.5.1: Illustration of application examples: (a) modernity scores of Land Rover
models registered in 2015; (b) distribution of the predicted modernity scores of car models
from 2000 to 2015; (c) new BMW front designs generated by CycleGAN according to given
facial shapes; (d) automobile design sketches generated by CycleGAN.
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Table 3.5.1: Withdrawn chances within the next three years of car groups with different
modernity scores.

Year
Modernity score

[0,1) [1,2) [2,3) [3,4) [4,5]

2000 12.0%(25) 2.8% (36) 0.0% (10) -(2) -(0)
2003 23.1%(13) 10.7%(56) 0.0%(28) 0.0%(10) -(0)
2006 -(4) 13.9%(36) 8.3%(60) 7.4%(27) -(1)
2009 -(1) 33.3%(9) 16.1%(62) 3.3%(61) 15.8%(19)
2012 -(0) -(1) 17.9%(28) 9.1%(88) 5.4%(56)
2015 -(0) -(0) 18.2%(11) 9.0%(67) 7.3%(109)

learn to generate highly realistic representations from data, thus making them a hotspot in ma-
chine learning and statistics in past years (Goodfellow et al., 2014). These models have become
extremely successful in the applications such as image translation and fake data generation.
The 1.4 million car images of the DVM-CAR dataset make it extremely useful for generative
model training. Two examples are provided in Fig. 3.5.1 (c) and (d). The former shows new
BMW 3 Series front designs generated by cycle-consistent adversarial networks (in short Cycle-
GAN) (Zhu et al., 2017) based on the fed semantic views. The latter presents sketches generated
from real car images via the CycleGAN. These are from our working topics where we try to
obtain bio-inspired designs by morphing the cars’ layouts after cheetah faces.

3.5.3 Visual-Based Used Car Pricing
According to the Society of Motor Manufacturers and Traders (SMMT), around 8 million

used cars are sold in the UK market each year.4 As these used cars have different specifica-
tion such as mileage and maintenance conditions, their residual value prediction (or pricing) has
become a challenging task (Englmaier et al., 2018; Huang et al., 2019). For example, the dis-
continuity nature of the used car prices was investigated (Englmaier et al., 2018) and the demand
uncertainties have also been included in the item-specified pricing model (Huang et al., 2019).
Fig. 3.5.2 displays the summed depletion surface for the 0.27 million collected used car records
in DVM-CAR. As it reveals, our proposed DVM-CAR dataset allows business researchers to
develop predictive models which take the used car’s specification information to estimate its
residual value.

Exterior aesthetics can be an important factor in used car pricing but aesthetics attributes
(such as visual complexity or sporty) are predefined in the existing studies (Huang et al., 2019;

4https://www.smmt.co.uk
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Figure 3.5.2: Simulated depletion surface of residual values.

Englmaier et al., 2018) since researchers lack comprehensive datasets which contain both image
data and used car specification and sales data.

With the aid of the DVM-CAR dataset, the investigation of used car pricing becomes straight-
forward if appropriate visual features can be extracted and used as independent variables. We
find metric learning algorithms, such as Siamese neural network (Chopra et al., 1997) and
SphereFace (Liu et al., 2017) can be deployed for such tasks. Practical experience shows that
the plain CNNs can be ineffective when trained on images sourced from numerous classes with
similar layouts (such as faces or cars). In contrast, metric learning algorithms can learn the
discriminative information for similar-looking object recognition by minimising the intra-class
distance while maximising the inter-class separability. Previous studies have successfully ex-
tended these models on the photo and automotive aesthetics ranking and obtained promising
results (Kong et al., 2016; Pan et al., 2017) with large-scale data. Therefore, the scale advantage
of the DVM-CAR can become a solid base to apply machine learning models to build predictive
models for visual-based used car pricing, incorporating the exterior facts into the prediction.
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3.6. Summary

3.6 Summary
This chapter demonstrates the design and development of a large-scale dataset for business

research with online sources. On the one hand, this dataset, which is large and comprehensive
in terms of product information, is a sound database for my later PhD studies. On the other
hand, the development and sharing of this dataset have meaningful contributions to the research
community, especially those interested in using artificial intelligence technologies. The targeted
users of our dataset are business researchers and computer scientists who work in visual-related
research and applications, particularly on (but not limited to) the topics of automotive exterior
design, consumer analytics and sales prediction. It is worth noting that we would like to maintain
and keep updating the dataset in the long term.
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Chapter 4

GEO: Integrate Deep Generation with
Profit Optimisation

This chapter proposes a unified computational framework – Generator, Evaluator, Optimiser
(GEO) for the automotive exterior facelift to provide intelligent decision support to manufactur-
ers and designers with the following three questions: (i) How to evaluate automotive designs in
terms of aesthetics? (ii) How to perform regionally directed modifications on car image while
leaving the unintended areas unchanged? (iii) How to estimate the long-term profit changes
caused by design modifications? The rest of this chapter is organised as follows. Section 4.1
introduces the background and motivation for the GEO framework. Section 4.2 presents the
technical details of each module in the framework. The first two parts of Section 4.3 describe
the data and settings used in the study. Section 4.3’s rest parts display the obtained experimental
results and give discussions accordingly. Section 4.4 summarises this chapter.

4.1 Introduction
As mentioned in the literature review, a few existing studies have attempted to apply deep

generative models to automotive design (Burnap et al., 2016c; Pan et al., 2017; Burnap et al.,
2021). However, these existing studies deployed generative models to produce novel designs, in
which design freedom constraints have not been considered. As Burnap et al. (2016a) pointed
out, in real automotive markets, designers need to achieve a balance between design freedom
and brand recognition.

Most automakers launch a new generation of a given car model every six to eight years.
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4.1. Introduction

Audi A3 2015 Audi A3 2016 facelift

Lexus NX 2017 Lexus NX 2018 facelift

Figure 4.1.1: Examples of car front facelifts (designs before and after the facelifts) for Audi
A3 and Lexus NX.

This is a very long lifespan for a consumer good. Before the arrival of the next generation,
automakers typically introduce some minor changes to an existing car model, which are known
as facelift (or mid-generational refresh) (Blonigen et al., 2013). When consumers search for
a new car, they may prefer to consider “the facelifted VW Golf" or “the facelifted BMW 3
Series”. Facelifts include upgrades to exterior styling, interior equipment, accessories, engine
and safety options. For example, if a car model has a facelift, it may have a newly-designed
front or rear bumper, LED lights or wheels, and the infotainment system may be upgraded with
a bigger screen. Most of the time, a facelifted car will have a noticeably different look from
the previous year’s model. Fig. 4.1.1 illustrates two real facelift samples from the market in the
past. Facelifts have become an effective method of boosting a consumer’s interest in an existing
car model before it is redesigned.

Thus, regional design upgrading, known as design facelift, is much needed in automotive
exterior design. From the technical perspective, this is more challenging due to the feature
entanglement problem (Locatello et al., 2019; Lomonaco et al., 2022). That is, the change of a
single latent value can cause global changes in the resulting design. Furthermore, a theoretical
analysis (Locatello et al., 2019) has indicated that the disentangled representations cannot be
resolved through the unsupervised learning approach if no inductive biases are provided.

Building on the work from Pan et al. (2017) and Burnap et al. (2021), which apply deep
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learning algorithms to assist the automotive exterior design, this paper proposes a computa-
tional framework for automotive exterior facelift, which provides intelligent decision support to
automakers and designers. Our study aims to address the following research questions: Can a
generative model be trained to present a design space for various automotive designs? How can
such a model upgrade existing designs regionally with innovative design patterns? How can an
upgraded design be evaluated? How can the profit shift caused by a given design change be
estimated?

The newly developed style-based generators, namely StyleGAN (Karras et al., 2018) and
StyleGAN2 (Karras et al., 2020), have performed outstandingly on the controllability of gener-
ation, while easing the entanglement problem. From the automaker’s perspective, the ultimate
goal of the facelift is to maximise the overall profit of the car models that have been launched,
which could be seen as an optimisation problem. Despite the extensive study of optimisation
problems in economics, game theory, and marketing studies, only a few existing studies have
attempted to investigate product design from the optimisation perspective (Rajeev and Krish-
namurti, 1987; Kaul and Rao, 1995; Shi et al., 2001). In these studies, simulation is based on
high-level aesthetic attributes. Due to the lack of proper design generation methods, no realistic
designs were provided as vivid samples. In our present study, we try instead to solve design
optimisation directly on the various designs proposed by the generator.

To estimate the profit/utility caused by the design change, the evaluation of designs from the
aesthetic perspective is required. Aesthetics, traditionally viewed as subjective, relate to the ap-
preciation of beauty and artistry. This concept is intricate, influenced by individual preferences,
cultural nuances, and historical contexts. The complexity of this makes predicting aesthetic sen-
sations a challenge. Recently, with the advancements in deep learning technologies, researchers
have tackled these challenges using data-driven approaches. By gathering crowd-sourced sub-
jective ratings from individuals, machine learning models have been trained to predict the an-
ticipated human response to specific visual stimuli (Kong et al., 2016; Ren et al., 2017; Pan
et al., 2017). These days, it is common to apply convolutional neural networks (CNNs) (Lecun
et al., 1998) for aesthetic evaluation tasks. CNNs are well-known for their end-to-end predic-
tion power, which has achieved impressive record-breaking results on several computer vision
tasks (Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016). Several exist-
ing studies (Teuwen and Moriakov, 2020; Madulid and Mayol, 2019; Seo and shik Shin, 2019)
attempted to apply the CNN model to the categorisation of fashion products, achieving a re-
markable accuracy. Researchers found that with sufficient images of cars and subjective labels,
the CNN model could learn to make aesthetic ratings on diverse aspects such as sporty, appeal-
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ing and innovative cars. Inspired by these studies, the development of an automotive aesthetic
evaluator becomes relatively straightforward.

Motivated by the aforementioned advances, this chapter aims to develop a three-stage frame-
work that can generate, evaluate and estimate profit changes of facelifted designs for various
existing designs. Compared with the most relevant works, namely Pan et al. (2017) and Burnap
et al. (2021), this proposed framework differs in two major aspects. First, this study focuses on
offering regional design upgrades rather than new designs, where the primary shape of existing
car models is untouched. Second, profit maximisation is incorporated into the pipeline, which
attempts to locate the upgrades that lead to the highest profit. This makes our current study a
product design optimisation investigation.

From a broader perspective, our study adds to the recent applications of machine learning
and data mining in marketing and design studies. Different from previous studies, which have
employed deep generative models for automotive exterior design (Pan et al., 2017; Burnap et al.,
2021, 2016c), our study is the first to investigate automotive facelift that focuses on regional
design upgrades and considers the design selection from a revenue maximisation perspective. In
terms of technology, the proposed computational framework provides an end-to-end decision-
support solution for automakers and automotive designers. First, the design generator adopts
a style-based generative adversarial network (GAN) (Goodfellow et al., 2014) architecture. By
carefully selecting the latent space and training examples, innovative facelift designs for a car
front can be generated while maintaining the car model’s family characteristics. Second, new
aesthetic evaluation metrics are proposed to assess the car’s design analogous to the subjective
human preferences. Last but not least, the decision optimiser tries to recognise the designs that
can maximise mid-term revenues before the redesign of the target model.

4.2 The GEO Framework

4.2.1 Task Definition and Framework Overview
As shown in Fig. 4.2.1, our proposed framework is organised into three primary tasks, each

representing a core challenge encountered by designers in the car’s conceptual phase.

Design generator–upgrading an existing car design: The goal is to enhance a current design
while preserving most of its original elements. The design generator proposes various upgrading
schemes for automotive exterior facelift. The applied model is based on the state-of-the-art
StyleGAN2 (Karras et al., 2018, 2020) where we reform the mapping network and the projection
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4.2. The GEO Framework

method to generate new facelift designs. Therefore, the design generator can generate many
innovative designs on the targeted car front areas but keeps the “family” face of a given car
model. For instance, a facelifted BMW 3 Series can have a more aggressive front bumper and
LED headlights while still possessing the well-known BMW “kidney” grille.

Design evaluator–estimating the aesthetics of a car exterior design: While aesthetics is tra-
ditionally a subjective term associated with sensations of beauty and artistry, in our study we
define “aesthetic” as a score indicating the visual appeal of a car’s appearance, derived from a
data-driven approach that employs user reviews focused on the car’s exterior. The design evalu-
ator is responsible for rating the designs from the aesthetic perspective. As modern car designs
have similar shapes and layouts, it is difficult for the regular deep models, with limited sam-
ples, to learn discriminating features for aesthetic ratings. Inspired by previous studies (Kong
et al., 2016; Pan et al., 2017) that solve the problem through the metric learning approach, a
double-task training frame is proposed in this paper, incorporating an angular loss-based clas-
sification (Liu et al., 2017; Wang et al., 2018; Deng et al., 2019) to facilitate the learning of
discriminating features.

Design evaluator–estimating profit changes from design modifications: Predicting the po-
tential financial implications of various design changes is essential. However, few studies have
ventured into this territory. In our study, the decision optimiser is tailored to choose the most
effective facelift plans, aiming to maximise profits over time. We utilise a recurrent neural
network (RNN) (Cho et al., 2014) to assess market share shifts associated with facelift adjust-
ments. By analysing historical data linking car facelift aesthetic alterations to corresponding
sales shifts, the model is trained to anticipate market share changes triggered by different aes-
thetic variations. The optimiser subsequently assesses the prospective advantages of different
facelift plans, opting for those yielding the greatest potential returns.

4.2.2 The Design Generator
Our generator is based on the StyleGAN2 model (Karras et al., 2020) as it is the state-of-

the-art deep generative model that has performed extremely well in synthesising high-resolution
images. Meanwhile, compared with other GAN models, it has a flexible and enriching architec-
ture that allows automotive designers to control design types, which results in more innovative
designs.

As Fig. 4.2.2 shows, a StyleGAN2-based generator has two parts: a mapping network and a
synthesis network. The mapping network, denoted by fMAP(·), is implemented through l fully-
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Deep generator

RNN

Design generator

Decision optimizer

CNN

Design evaluator

… …

Upgraded designs

Aesthetic prediction

Facelift

Producing

…

Target model 

historical sales

Target model 

image

Predicted aesthetic 

change

Corresponding 

latent codes

Upgrade 

scheme

Projection

Market share 

changes

Predicted mid-term 

profit gains

Modified latent codes

Figure 4.2.1: Schematic view of the GEO framework.

connected layers, responsible for mapping an input latent code z(0) to an intermediate code
z(l). The superscript indicates the position of the latent code within the mapping network. For
instance, the intermediate latent code z(l) is the output from the lth layer. The synthesis network,
denoted by GST(·), comprises K generation blocks. As blocks or convolutional layers can take
different intermediate latent codes to produce images, we denote all the fed latent codes by a
matrix Z. This is different from the original StyleGAN2 study (Karras et al., 2020), since the
fed intermediate latent vectors in our design framework are not required to be the same across
the generation blocks or convolutional layers.

Also illustrated by Fig. 4.2.2, each generation block (excepting the first one) in StyleGAN2
consists of two convolutional layers and one upsampling layer. To simplify, the computation
of a single block is formulated as Ok = gST

(
Ok−1,Z[k]

)
, where Ok represents the output feature

maps from the kth generation block, gST(·) denotes the computation of the entire generation
block, and Z[k] represents the latent code fed to the kth generation block. As the right part of
the synthesis network in Fig. 4.2.2 shows, unlike the original StyleGAN model, StyleGAN2
replaces the progressive growing strategy with “skip connections", then the final output image
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images/designs according to the given intermediate latent codes.

is the sum of all the generation block results:

GST(Z) =
K

∑
k=1

fUP

(
fRGB(Ok), K − k

)
, (4.1)

where fRGB(·) represents the “To RGB” module that converts feature maps to images, each
feature map has the size of 2k+1 ×2k+1, fUP(·) is the upsampling function, and K − k indicates
the times needed to double the size, ensuring output channels from different blocks are all sized
in 2K+1 ×2K+1.

After a proper training, the resulting StyleGAN2 can be perceived as a design space for
various automotive images. By searching for the latent codes that produce the most similar
results, a given car design Ca can be represented by a distinct Za through the inverse of the
generation process G−1(·), namely the projection method:

G−1
ST (Ca) = argmin

Z
DPER (GST(Z),Ca) , (4.2)

where DPER(·) is the distance measure between images. It should be noted that for the projec-
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tion, the obtained Z can consist of latent codes from arbitrary layers of the mapping network.
With regard to measuring the distance between images, we adopt learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018), which is a CNN-based score that measures the percep-
tual difference between two images.

To indicate the generator model’s ability to produce novel and realistic designs, we propose
two new metrics related to the concept of design space, namely domain size and domain quality.
The former evaluates the generator’s ability to generate innovative designs, and a larger-sized
design space would contain more unseen designs. In the study, we apply the calculation of
projection accuracy to measure the domain size, which is formulated as follows:

EC∼XtestDPER

[
GST

(
G−1

ST (C)
)
−C
]
, (4.3)

where C is an unseen design drawn from the test set Xtest, and GST(G−1
ST (C)) is the reconstruc-

tion of C in the given design space. The projection accuracy measures how accurately an unseen
design is represented in the learned generative system. Intuitively, if a generative system has a
large design space for cars, it should be able to precisely represent unseen designs.

The domain quality metric indicates the quality of design generations. The quality problems
have been extensively studied in deep generative models, where the Fréchet inception distance
(FID) (Heusel et al., 2017) metric is widely used. We adopt a modified FID, namely FID of

random mixing, to sample the overall generation quality since our proposed facelift tries to shift
an existing latent code partially to another. It is formulated as follows:

Ezi,z j∼Pz fFID

(
GST(Zzi,z j

),Xtrain

)
, (4.4)

where fFID(·) denotes the FID measure, Xtrain is the training set, and Zzi,z j
consists of vectors

that result from the random mixing of zi and z j.

Inspired by the architecture of StyleGAN2, it is expected that regional design upgrades could
be achieved by revising the corresponding Z. Given a candidate design Ca and an intended
upgrading scheme Ba (which is a binary matrix that indicates the image area to modify, it can
have an arbitrary size and shape in the given image), our design generation objective can be
formulated as follows:

max
Z

[SAE (GST(Z))−DPER (Ba ⊙Ca,Ba ⊙GST(Z))] , (4.5)
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where SAE(·) is the aesthetic evaluation carried out by the evaluator, and ⊙ represents the
Hadamard product. Then, we look for a latent matrix Z that can maximise design aesthetics
while mitigating the modifications of the unintended areas. The latter can be the areas related to
the family signature of a given car model such as the BMW kidney grille. For convenience, in
the rest of the paper we will refer to these unintended areas as the fixed region.

It is worth pointing out that, from the automotive facelift perspective, Eq. (4.5) is not a proper
objective function. First, automotive designers would prefer to have more candidate designs
rather than a single “best” suggestion (Burnap et al., 2021). Second, high-level modifications
(e.g., shape) are preferred over fine-feature changes (e.g., colour, texture). If we do not specify
further constraints, the upgrades will end up with changes to the fine-features rather than to the
overall structure.

To obtain more candidate designs, Eq. (4.5) can be reformulated as a two-stage optimisation
problem. In the first stage, we look for designs inspired by other latent codes while minimising
the changes in the fixed region. Given a candidate design Ca and an inspiration latent matrix Zi

from the set {Z1, ...,ZN}, we look for a design that satisfies the following objective:

min
Z

∣∣∣Z[:k]−Zi[:k]

∣∣∣+DPER

(
Ba ⊙Ca,Ba ⊙GST(Z)

)
, (4.6)

where k indicates the target latent code places, Z[:k] are the intermediate codes given to the
first k blocks, and |Z[:k] − Zi[:k]| is the L1 distance between the design latent matrix and the
ith inspiration latent matrix. We adopt the L1 norm since in our trials it achieves more stable
results than the Euclidean distance (Isola et al., 2017). Previous studies have shown that early
generation blocks control general-features and later ones regulate the fine-features (Karras et al.,
2018, 2020). Therefore, constraining the latent codes allows us to decide what types of design
features to modify. Let Z denote the set of designs from solving Eq. (4.6), we then rank the
designs obtained according to their aesthetic scores and select the best candidates accordingly:

argmax
i

SAE (GST(Zi)) , for Zi ∈ Z . (4.7)

4.2.3 The Design Evaluator
As modern car designs share similar layouts and forms, the design evaluator needs to learn

discriminating features to distinguish between the proposed designs and facelifts. Inspired by
the existing metric learning studies (Chopra et al., 1997; Kong et al., 2016; Pan et al., 2017) and
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facial recognition/prediction studies (Eisenthal et al., 2006; Leyvand et al., 2008; Gray et al.,
2010; Liang et al., 2018), where similar data challenges are faced, the double-task training
strategy is adopted. The evaluator is trained simultaneously for aesthetic estimation and car
model recognition to facilitate the learning of contrasting features between designs:

min Ea∼Xtrain

[
ℓ
(a)
aes + ℓ

(a)
rec

]
, (4.8)

where ℓ
(a)
aes and ℓ

(a)
rec are the aesthetics estimation and class recognition loss, and the ℓ

(a)
aes is ex-

pressed as
(
s(a)−s(a)

)2, representing the Mean Squared Error (MSE) between the predicted and
ground truth aesthetic score. Unlike the traditional softmax, the ℓ(a)rec adopts the angular loss (Liu
et al., 2017; Wang et al., 2018; Deng et al., 2019) setting, further enhancing the learning of
discriminating features in classification. Given the design Ca under car model ya, and xa as its
corresponding feature vector extracted from the convolutional backbone network, the jth classi-
fication values before softmax can be expressed as h(a, j)rec = w⊺

j xa +b j, where w and b represent
the output weight vector and bias values, respectively. These variables are constrained in the
angular loss setting: ||w j||= 1, b j = 0, and ||xa||= α , where α is a given constant. This makes
each h(a, j)rec only depends on the angle size between w j and xa, and converts the whole softmax
computing into the following formula:

ℓ
(a)
rec =− log

{
exp(α cos(θya,a +β ))

exp(α cos(θya,a +β ))+∑ j ̸=ya exp
(
α cosθ j,a

)} . (4.9)

Here we adopt Deng et al. (2019)’s setting, which incorporates a constant margin penalty β in the
target class’s angle, making h(a,ya)

rec = α cos(θya,a +β ), thereby facilitating further discriminative
feature learning by making the negative log-likelihood more sensitive to the angular distances.
These settings force the model to use the vectors’ directional differences rather than scale the
differences to distinguish between classes, thus representing the class centres in the angular
space. The use of angular loss has been empirically validated to maximise intra-class distance
and minimise inter-class distance on tasks with comparable inputs (Liu et al., 2017; Wang et al.,
2018).

4.2.4 The Decision Optimiser
The decision optimiser is proposed to select designs that maximise the expected mid-term

revenues for the automaker before the redesign of the given car model. We use market share
changes to measure and approximate revenue changes. Like other durable products, car models
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have a typical life-cycle: a new car’s sales increase in the early years when a new generation
is launched and then deteriorate over the rest of its lifespan until the facelift or redesign oc-
curs (Moral and Jaumandreu, 2007). Based on this knowledge, we treat sales deterioration as
a time-series process and thus rely on the RNN model to estimate how the future market share
would evolve according to different facelift plans.

Given an existing design Ca and its historical market share records {d(a)
0 , ...,d(a)

T }, we com-
pute its market share change vector v(a)T := {v(a)1 , ...,v(a)T } according to the formula: v(a)t =

d(a)
t /d(a)

t−1. The predicted share change ṽ(a)t at year t can be expressed as fMS
(
v(a)t−1, ∆s(a)t

)
,

where fMS(·) represents the predictive RNN model and ∆s(a)t indicates the aesthetic change due
to the design modification at year t. The model is simply trained to minimise the perdition er-
ror Ea,t∼Xtrain

[
v(a)t − ṽ(a)t

]2. After training, to estimate the market share changes driven by a
suggested facelift Câ that launches at year η , the estimation setting becomes as follows:

ṽ(â)t =

 fMS

(
ṽ(a)t−1, ∆s(â)

)
, if t = η

fMS

(
ṽ(a)t−1, 0

)
, otherwise

, (4.10)

where ∆s(â) represents the aesthetic scores change of the facelift design, and 0 means no de-
sign/aesthetic changes. It is worth noting that here we use ṽ(a)t−1, not v(a)t−1, to denote the input
vector since here inputs are also simulated results (except for t = 1 where v(a)0 is based on actual
records).

Considering that the model will be redesigned at T +1, we can adopt the baseline ṽ(a)T , which
represents the actual facelift to infer the overall profit change:

m(â)
η = d(a)

0 ·
T

∑
r=1

[
r

∏
t=1

ṽ(â)t −
r

∏
t=1

ṽ(a)t

]
, (4.11)

where m(â)
η represents the overall share difference when adopting facelift Câ at year η , and

d(a)
0 ·∏r

t=1 ṽ(â)t represents the predicted market share at year r.

4.3 Experiments
In this section, we introduce the datasets used, present the experimental settings for model

training and testing, and discuss the analysis of the results.
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Table 4.3.1: Summary of the used datasets.

Dataset DVM-CAR† Edmunds‡

Period 2001-2020 2000-2019
Main content 1,451,784 images, 773 model sales 299,045 reviews
Number of automakers 60 46
Number of car models 899 905
† https://deepvisualmarketing.github.io
‡ https://www.kaggle.com/shreemunpranav/edmunds-car-review

4.3.1 Datasets
Fig. 4.2.3 presents our targeted car models for facelift exterior design. We deliberately se-

lect car models of three popular types (i.e., hatchback, SUV and saloon), which have received
criticism for their exterior styling1. The aim of the experiments is to improve the market perfor-
mance of the targeted models by suggesting good exterior designs in the facelift. For simplicity,
the given scheme samples (indicated by the yellow masks in Fig. 4.2.3) focus on modifying the
design of the headlights since they are the most frequently upgraded features in automotive re-
freshments. As shown in Table 4.3.1, two publicly available datasets are used in the experiments.
The DVM-CAR dataset contains 1.4 million images from 8 different viewing angles of 899 car
models as well as the corresponding model specification and sales information over more than
ten years in the UK (Huang et al., 2022). For the generator training, 42,130 car front images are
sampled from the DVM-CAR dataset to develop the design generator, evaluator and optimiser in
the proposed GEO framework. The Edmunds dataset contains 299,045 car reviews of various
automotive brands from edmunds.com between 2000 and 2019. Unlike many previous studies,
which rely on surveys or lab experiments to collect subjective ratings, we estimate the car design
aesthetic ratings by text mining the available consumer reviews. The aesthetic ratings obtained
in this manner, together with the DVM-CAR dataset, are used to develop the design evaluator.
For the aesthetic ratings extraction, the car reviews on models sold between 2007 and 2017 are
extracted. After pairing the extracted aesthetic ratings with the car images from the DVM-CAR
dataset, 15,213 images from 118 car models are used to train the evaluator.

4.3.2 Experimental Settings
We use the StyleGAN2 model for the facelift design generation (Karras et al., 2020). The

generator is set with 7 generation blocks for 256× 256 resolutions as well as 90% mixing reg-
ularisation. 2,000 out of 42,130 images are used for testing and the rest are used for model

1E.g. see www.parkers.co.uk/audi/a4 regarding Audi A4
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training. To enhance the generator’s upgrading ability on the target designs, each image of the
targeted models is also augmented by rotating and flipping it with 20 replications. During the
training procedure, we track the model’s performance using the FID and the Perceptual Path
Length (PPL) (Karras et al., 2018) metrics. When there are no significant gains on the FID
score, the training is stopped. The images in the test set and the twelve targeted designs are em-
bedded into the latent space through the projection method, where both the MSE and the LPIPS
metrics are included in the reconstruction loss part. We remove the optimisation of random
noises during the projection since they would overplay their roles in latent spaces with small
sizes. The facelift is implemented as a variation of the projection method, where the starting
latent code is the one that represents the original design.

To prevent the overfitting problem, we adopt a 5-fold cross-validation in the evaluator train-
ing. Specifically, images are grouped according to their car models. This protects the trained
evaluator from the bias of their model recognition. For the decision optimiser, we take each
car model’s annual share in the segmented market (by body type) to indicate the market perfor-
mance over time. The car models’ historical market shares and the aesthetic shifts over the years
are used as inputs for RNN training, where the gated recurrent unit (GRU) (Cho et al., 2014) is
used.

4.3.3 Analysis of Results
As shown in Fig. 4.3.1, the projection accuracy and the FID scores of random mixing are

calculated across different latent space settings. We compare two different mapping network
architectures: (i) 512 dimensions and 8 layers (Karras et al., 2018); and (ii) 2048 dimensions
and 3 layers. In the “global unique z” setting, all the generation blocks use one latent code. In
the “block specified z” setting, each generation block has a specific latent code, hence there are
7 different latent codes in total. In the “module specified z” setting, each modulation has a latent
code. Since the first block has only one modulation and the “To RGB” module shares the same
latent code with the second CNN module in the block, there are 13 different latent codes in total.

Compared with the default latent space (Karras et al., 2018, 2020), different intermediate
codes offer various choices for design subspaces characterised with different domain sizes and
qualities. There is a clear trade-off between the projection accuracy and the FID score of ran-
dom mixing when adopting different intermediate codes exists. Latent codes from an earlier
layer (e.g., z(0)) would have better FID scores but lower projection accuracy than a later layer
(e.g., z(7)). We interpret this trade-off with the concept of design space. The output space cor-
responding to z(8) (the intermediate latent codes) can be seen as a design space with a large
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Figure 4.3.1: Comparison of candidate latent spaces, where the superscript indicates the
latent layer position among the mapping network.

size. The stacking of additional mapping network layers (such as z(7), z(6)) can reduce the space
size, thereby resulting in denser subspaces for the car designs that increase the quality of the
generated designs (i.e., with lower FIDs). On the other hand, Fig. 4.3.1 also shows that the use
of incongruous z (i.e., the “block specified z” and “module specified z”) results in an increased
projection accuracy and decreased FID scores. In particular, we suggest that the “disassociation
of latent codes” (i.e., using different latent codes in different generation blocks) allows more
novel designs that were not seen in the training set to appear in the test set, even though such
novelty comes at the price of reduced quality. For example, if there are no white SUVs in the
training set, then white SUVs would barely appear when using the global unique z setting, but
the incongruous z would generate SUVs with various colours.

As Fig. 4.3.1 shows, a new setting of the mapping network (2048 dim, 3 layers) can improve
the domain size as measured by the projection accuracy while retaining a similar domain quality
measured by the FID score of random mixing. This new setting is inspired by the universal
approximation theorem where a shallower network with more neurons in the hidden layer can
also have a high approximate power. Hence, the new mapping network has fewer layers but
reserves more space for novel designs. Overall, the results of our experiment confirm that a
broader but shallower mapping network allows the synthesis network to generate further novel
designs with higher qualities.

62



4.3. Experiments

Table 4.3.2: Comparison of our design upgrading algorithm with existing methods.

Method Mapping setting Projection accuracy FID of random mixing
Style-based (Liu et al., 2020) 8 × 512 0.120 60.60

Our intermediate-based† 8 × 512 0.190 23.66
Style-based (Liu et al., 2020) 3 × 2048 0.119 91.57

Our intermediate-based 3 × 2048 0.151 18.76
† Here the module specified z(0) is used for comparison

In Table 4.3.2, we further compare our design upgrading algorithm with the method pro-
posed by Liu et al. (2020), as their study also develops a regional modification algorithm using
StyleGAN. Unlike our intermediate latent-based method, their method directly manipulates style
variables in StyleGAN. The reported results show that random modifications in style variables
lead to distortions (indicated by the high FID scores) in the outputs, while our intermediate
latent-based method can retain the design quality. This suggests that our method has better ca-
pabilities for generating unseen designs when exploring the design space, and hence is more
suitable for the needs of the automotive facelift.

Fig. 4.3.2 provides an empirical example of an image matrix that compares the latent mixing
results at different generation layers. When the inspiration latent codes are fed to the 1st-4th
blocks (illustrated by the top four rows), the car’s overall design structure would be changed.
When the 5th-7th blocks are fed with the inspiration codes (illustrated by the bottom three
rows), the changes mainly happen to the texture and colours. Since a structural change is more
preferred for automotive facelifts, our implemented facelift method would focus on modifying
the first four generation blocks while leaving the rest unchanged.

As mentioned earlier, car front design aesthetics are evaluated by the design evaluator in
terms of aesthetic scores. Fig. 4.3.3 provides several empirical examples of car front images
with the predicted aesthetic scores, in which three car models receive low aesthetic scores (i.e.,
Toyota Aygo, Hyundai ix20, Fiat Punto) while the other three receive high scores (i.e., Volvo
S90, BMW M2, and Jaguar XF). These results are consistent with the users’ aesthetics reviews
collected in the Edmunds dataset. To illustrate this, we list a few examples of reviews as follows:

“...can’t disguise its dated design, and the Punto looks bland ...making Fiat’s Punto look
really rather old..." 2

2URL:www.autoexpress.co.uk/fiat/punto/interior
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Figure 4.3.2: Comparison of car front designs of replacing different generation block latent
codes, where a column is the replacement starting block and a row is the replacement end
block.

“...the ix20 rather blends into the crowd compared to its more stylish rivals..." 3

“...the BMW M2 is a car that’s huge fun from behind the wheel, stupendously quick and
relatively low-key in its subtle appearance..."4

“The Jaguar XF...that car pulled Jaguar into the 21st century, rejecting the classic design
language that had characterised the brand’s models since the fifties by replacing round
headlights with sleek fastback looks and an aggressive new grille..."5

The first plot of Fig. 4.3.4 shows the average aesthetic score of the cars sold over the years.
We find that the cars on the market are steadily becoming more aesthetic. It should be noted that
the average rise of the aesthetic score is 0.008 per year, which is used in our decision optimiser’s
hyper-parameter setting. We carry a simple linear regression analysis to investigate how the car
models’ aesthetic levels are associated to their market performance (see the right-hand plot of
Fig. 4.3.4). In particular, the second plot of Fig. 4.3.4 shows that the car models’ market share

3URL:heycar.co.uk/hyundai/ix20
4URL:www.autoexpress.co.uk/bmw/2-series/105480/used-bmw-m2-review
5URL:www.carbuyer.co.uk/jaguar/xf
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Peugeot 308 Volvo S90 BMW M2 Jaguar XF
(1.53) (1.65) (1.86) (2.40)

Ford C-Max Toyota Aygo Hyundai ix20 Fiat Punto
(0.773) (0.96) (1.13) (1.18)

Figure 4.3.3: Empirical examples of car front aesthetic scores predicted by the trained
evaluator.
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Figure 4.3.4: Analysis of the aesthetic scores: (left) Time series plot of the average aesthetic
score and the sales of the targeted car models from 2008 to 2017; (right) Aesthetic score
VS market shares. By comparing the model’s market shares and their aesthetic scores in
recent years, we find that the market share is correlated to their aesthetic levels, where the
Pearson test results are as follows: ρ = 0.39 with a p-value=0.009.

is significantly correlated to their aesthetic levels. Interestingly, car models with higher prices
do not appear to be more aesthetic, which is not in line with our expectations.

Table 4.3.3 presents several design examples from three target models (i.e., Audi A4, Ford
EcoSport, Vauxhall Astra) as well as the summarised statistics for all the targeted models. In or-
der to perceive the variation caused by the design difference, for each model, two novel facelift
designs (i.e., an inferior design and a superior design) are presented together with their original
looks, and compared with their predicted market shares before the redesign (first row in the ta-
ble). The original A4, EcoSport and Astra facelift designs are rated as 1.394, 1.330 and 1.208,
respectively. Overall, the compact segment benefits the most from the proposed facelift designs,
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Table 4.3.4: Number of facelifts released in ten years.

Number of facelifts 10 5 3 2
Total profit 94.61% 94.49% 94.35% 94.22%

The profit is calculated by Estimated 10 year sales
10×Starting year sales .

with a 0.126 aesthetic rise, resulting in an average 36.757% increase in market share. However,
the variance between the individual models is huge – most of the increment is contributed by
Astra, which has an expected market gain of 209.555%. Based on the proposed facelift de-
signs, SUVs have a significant aesthetic rise (0.141) but a moderate market increase (14.139%).
Compared to the ground truth, the increase is not as significant as the aesthetic rise since the
real facelift designs are remarkable – for instance, the Ford EcoSport has upgraded from 1.186
to 1.330. When comparing years for a suggested facelift for superior and inferior designs, the
optimiser tends to delay the facelift for the weak designs. For instance, the new design 1 of A4
(i.e., scored 1.382) is suggested for a facelift in 2014, but its new design 2 (i.e., scored 1.439) is
suggested to be facelifted in 2010.

Fig. 4.3.5 investigates the effects of the facelift interval and aesthetic change on the car model
market share in the mid-term. The first plot of Fig. 4.3.5 shows that for facelifts with identical
rising aesthetic scores, higher market shares can be expected if the facelifts are performed earlier,
but such strategies can backfire, with a steeper market share deterioration in the long term. On
the other hand, as demonstrated in the second plot of Fig. 4.3.5, according to our simulation of
various facelifts, the stronger facelift will always result in higher mid-term gains, while lower
aesthetic scores will lead to a mid-term loss.

Benchmarked with the expected annual aesthetic rise of 0.008, Table 4.3.4 investigates the
optimal facelift frequency without cost constraints. Consistent with the observation that most
automakers in the market release facelifted models annually or biennially, the optimal strategy
is to have more frequent facelifts before the redesign of a given car model.

4.4 Summary
In this chapter, we have developed a new machine learning-based framework (i.e., GEO),

which can assist automakers when it comes to the cars’ exterior design. Unlike the existing
works, this study focused on the scenario of automotive facelifts, which delivers regional up-
grades for launched car models and views the design selection from a profit optimisation per-
spective. The proposed generator and facelift algorithm can incorporate novel styling features
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Figure 4.3.5: Effects of facelift: (left) mid-term market share evolution when adopting
different facelift years. (right) market share simulation according to aesthetic changes.

into existing designs while maintaining the primary look of the car model. The metric learning-
based evaluator can ease the challenge of evaluating the aesthetics of objects when they look
similar, as the angular-loss guides the algorithm to focus on more discriminating features. For
profit optimisation, based on the proposed aesthetic changes, the RNN-based optimiser simu-
lates mid-term profit changes as a result of the released facelifts, hence providing automakers
with intuitionistic support for decision making. In addition to the proposed GEO framework, we
showed that the most desirable properties for design spaces are the domain size and quality. The
former relates to the generator’s ability to generate novel designs, while the latter determines the
quality of the generation. We proposed two corresponding metrics to these perspectives, which
can be used as benchmarks for future product aesthetic studies. Finally, we explored how to
improve the design space size and quality based on the StyleGAN2 model. We found that the
rearrangement of mapping networks or the selection of different latent spaces can improve the
StyleGAN2 generator’s performance in terms of both domain size and domain quality. Overall,
our proposed framework provides automakers with a technology allowing them to better manage
their facelift design process.

However, this study does naturally have some limitations, which can be addressed in later
chapters. First, our study does not discuss how to achieve spatial disentanglement. However,
deep generative-based design upgrading is strongly related to the feature disentanglement prob-
lem. In fact, product exterior design upgrading can be perceived as a crucial application scenario
for the disentanglement problem. Second, we consider the market’s preference for car aesthet-
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ics as static in this study, while in the real market, such preference keeps evolving with time.
The study in the coming chapter will try to address these limitations by offering a solution for
predicting future fashion trends in the automotive market, making our investigations to be more
comprehensive in research.
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Chapter 5

Trendiness: Design for Upcoming Fashion

This chapter introduces a four stage machine-learning system to revamp the outdated front views
of cars. A main innovation is to have the system learn, define and score trendiness from thou-
sands of historical car front images, which in turn produces massive unpresented but highly
scored modern designs. The rest of this chapter is organised as follows. Section 5.1 introduces
the motivation for this chapter’s study. Section 5.2 defines the concept of trendiness score within
this study. Section 5.3 explains the new four-staged framework for automotive design upgrading.
Section 5.4 describes the used data and experimental settings. Section 5.5 discuss the results and
findings, and Section 5.6 summarise the chapter.

5.1 Introduction
As costly durable goods, cars are apparently under the influences of fashion trends, which

indicates a life cycle of aesthetics and thus sales volume for the designs in the markets. Com-
pared with quarterly and even monthly design updates of non-durable goods such as clothes, the
adjustment speed of fashion or trendiness of motorcars is perceived to be much slower. Accord-
ing to Reynolds (1968), the establishment of lower and lengthy augments of cars took nearly
three decades from the 1930s to the 1960s. And to the recent two decades, the aggressive ap-
pearance such as slant headlights are slowly adapted by the mainstream outfit designer of cars.
The modernity/trendiness related terms are frequently used by consumers to describe product
appearance (Blijlevens et al., 2009). The consequence of a rigid design would be losing market
share and even die out in a short span of time. In fact, half of the newly launched cars were ex-
pected to be dropped off at most eight years according to Moral and Jaumandreu (2007), while
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the most recent update such as Greim (2017) suggests that this product lifespan has been signif-
icantly shortened to an average of six years in the past decade. A classical life cycle of the sale
volume of cars always consists of a peaked market shares and the afterward trough when getting
outmoded and unattractive.

To catch up with fashion changes, upgrading an existing model or adopting a new suc-
cessor product line are the most prevalent choices for automakers when facing outmoded car
designs (Ernst et al., 2017). Through mid-generational refreshes, the exterior styling of ex-
tant designs could be upgraded while maintaining the general shapes and reserving existing
production equipment. Even though the refreshes provide automakers additional chances for
remedy, the aesthetic design for cars remains challenging. A failed judgement or estimation of
future style trends not only brings actual economic cost and associated financial risks but will
also harm the goodwill of the brand in the market for a non-trivial duration. Therefore, it is a
real-world economic and business decision to predict aesthetic trends in the vehicle market and
update designs with the evolution of fashion trends. However, conventional approaches that rely
on surveys have the major limitation that the intuitive judgments or subjective predictions from
participants are much biased by their personal experiences and perspectives. The historical un-
successful models criticised for their weird designs have evidenced the limitations of individual
predictions (Hekkert et al., 2003; Cadavid et al., 2016), though many of these came from the
most experienced and talented professionals.

Motivated by the aforementioned facts, the study presented in this chapter has two main
objectives. The first goal is to develop a metric that indicates how closely a design aligns with
future car fashion trends. Recent studies indicate that deep models, when trained with aesthetic
feedback from human participants, can effectively predict human aesthetic responses to visual
stimuli (Lu et al., 2015; Kong et al., 2016; Ren et al., 2017; Pan et al., 2017). Although individ-
ual participants may have varying preferences and habits on a micro-level, the overall market
assessment of modernity or trendiness is more macro and aggregate in nature. Given this, we
aim to develop an efficient data-driven method that uses longitudinal observations of car designs
to score a design’s alignment with upcoming fashion trends."

Another critical goal of this chapter is to propose an alternative deep generative method for
design upgrading with no feature entanglement issues. Different from the previous chapter, this
study uses a novel design upgrading approach that employs the image completion algorithm.
Image completion or image inpainting refers to the task of predicting the omitted content in
an image based on the remaining information Bertalmio et al. (2000, 2003). It is widely used
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for scenarios such as photo editing or de-captioning. Before the rise of deep learning models,
image completion mainly relied on diffusion or patch-based methods, which usually assumed
the missing content shares significant similarities with the surrounding areas (Bertalmio et al.,
2003; Ballester et al., 2003; Barnes et al., 2009). Thus fill the missing area with similar colour
and texture. The rise of deep learning models enables the models to generate more conceivable
content in terms of semantics (Ren et al., 2015; Zheng et al., 2019; Zhao et al., 2020). By
learning the content distribution from similar images, the data-driven completion models can
fill the missing area with appropriate content that is very different in colour or texture from the
surrounding. It matches our needs for design upgrading, which can replace outdated designs
with more stylish looking.

In contrast to previous chapters, this chapter has several key contributions to the overall
thesis. First, it introduces a dynamic approach for assessing car aesthetic ratings. The aes-
thetic measurement in Chapter 4 treated market preference for car exteriors as a static, time-
independent factor. However, this doesn’t reflect the real world, where aesthetic preferences
constantly evolve. To address this, we developed an ordinal regression CNN model that can
index designs according to their alignment with future aesthetic trends. This model can learn
and predict the trendiness of car front visuals, helping identify outdated car models.

Second, this chapter presents a design upgrading method free from feature entanglement
issues. The GAN-based design upgrading method proposed in Chapter 4 is limited by fea-
ture entanglement problems, where changes in certain regions can inadvertently cause changes
in unintended areas. To overcome this, the design upgrader in this chapter utilises an image
completion technique, generating a variety of images of the renovated designs. This assists
automakers in their decision-making process.

Third, in contrast to the GEO framework, which estimates potential profit gains resulting
from design upgrades, this chapter introduces a new module that aims to rank candidate up-
graded designs focusing solely on the exterior perspective, but through a multi-objective aspect.
Specifically, we transform the selection process into a Pareto problem, wherein we try to identify
designs that are situated on the Pareto fronts for both aesthetic and trendiness dimensions. This
approach could be regarded as a complementary approach to the profit estimation module, as it
enables the sorting of designs based on pure exterior styling considerations.
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5.2 Problem Statement
For clarity and precision, it is essential to have well-founded definitions of key concepts

utilised in this study. This section introduces the definitions of a few crucial concepts relevant
to “trendiness”.

Traditional approaches to describing the appearance of objects often begin by breaking down
the overall impression of a product into various attributes, resulting in a mix of both physical
and abstract aspects of its appearance. The term aesthetic attribute refers to a description or
measurement of a specific visual trait that results from the combination of physical properties,
as commonly adopted by previous research (Veryzer Jr, 1995; Hsiao et al., 2008; Blijlevens
et al., 2009). Examples of aesthetic attributes include symmetry, colorfulness, and modernity,
which have been frequently referenced in existing literature as indicators of a product’s visual
characteristics. However, there is no guarantee that aesthetic attributes need to be independent
of each other. In fact, many of them might be correlated. For instance, the attribute “sporty”
could be similar to “dynamics”. From another aspect, the possible number of aesthetic attributes
is likely to be vast, as it could include any arbitrary combination of basic physical traits.

Given the limitations of “aesthetic attribute”, dimension reduction methods, like Principal
Component Analysis (PCA)1, naturally emerge as potential solutions. The principal compo-
nents in PCA encapsulate most of the variance in the original high-dimensional space while
being orthogonal to each other. Essentially, these components represent a fusion and transfor-
mation of the original dimensions. Thus, if a significant volume of car aesthetic ratings across
diverse aesthetic attributes is accumulated, then the most valuable aesthetic dimensions (prin-
cipal components) could be obtained. Various car designs can then be represented as unique
coordinates within an aesthetic space crafted from such aesthetic dimensions.

Fig. 5.2.1 visualises an imagined aesthetic space for car exterior designs, composed of three
principal components. In this visualised aesthetic space, colours represent the production years
of car designs. Those from the same year cluster closely due to the highly matured modern
car market, where automakers, influenced by similar fashion ideologies during the same time
period, adopt different but aesthetically similar styles for their products. Moreover, the central
point of the car design distribution does not undergo dramatic or arbitrary changes; rather, it

1PCA is a widely used dimensionality-reduction method to capture the major variance of high dimension data.
As dimensional features in such data are highly covaried, where the PCA algorithm can use much fewer transformed
features to capture the majority of variances (i.e., the information). The transformed features are termed principal
components that rank in the order of the variance that they presented.
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PC1 PC2

PC
3

True fashion trend
A predicted trendiness
Year 1990 design
Year 1996 design

Year 2002 design
Year 2008 design
Year 2014 design
Year 2020 design

Figure 5.2.1: Illustrations of aesthetic space, fashion evolution and the proposed trendiness
measure. Dots represent the sold car designs in the market. The three dimensions are
named PCs 1-3 to analogise the principal components of the principal component analysis.

demonstrates a propensity to shift in a direction over a more prolonged duration. The concept of
trendiness direction, as used in this study, refers to the direction in which the design distribution
shifts at a particular point in time. Additionally, the trendiness represents the projection of a car
design onto the trendiness direction. A higher trendiness degree indicates that the design aligns
more closely with the prevailing trend.

The assumption that car design distribution would progress in a specific direction over an
extended period is supported by existing studies, which affirm that motorcar fashion undergoes a
gradual yet steadfast evolution. For instance, the gradual shift documented by Reynolds (1968)
reveals that it took over thirty years for the market to self-perpetuate and transition towards
lengthier and lower vehicles, a transformation that occurred between the 1930s and the 1960s.
Extant studies (Zajonc, 1968; Reynolds, 1968; Hekkert et al., 2003) tend to describe the devel-
opment of such a trend as a mutually reinforcing cycle where the designers attempt to meet the
perceptions of their targeted consumers by adjusting the aesthetic attributes, while the launched
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products will further reinforce consumers’ preference towards the shifted/updated attributes.

With the defined concept of trendiness in car exterior design, this study is focused on four
interrelated tasks. Initially, the development of a predictive model is targeted, which can indicate
the degree of alignment of a particular car with the trendiness direction. Subsequently, the
objective is to create a model that can pinpoint the areas of the exterior design contributing to
a low trendiness rating. The third task involves the development of a deep generative model
capable of regionally upgrading existing designs, thus, generating novel designs with a more
contemporary appearance. Lastly, the goal is to formulate a selection method that identifies the
candidate designs with the most appealing exterior styling.

5.3 Proposed Methods for Design Evaluation and Design As-
sistant

Fig. 5.3.1 presents a schematic view of the whole proposed approach. It is comprised of four
main modules: (i) the first module access the trendiness of the designs by learning from car front
images over the decade so that the outmoded car models can be identified; (ii) the second module
decomposes image via neural network visual features, recognises and highlights the antiquated
design regions that need to be renovated; (iii) the third module produces a range of renovated
designs where the identified antiquated regions are upgraded; (iv) the last module is responsible
of ranking the produced upgrades from aesthetics, quality and trendiness perspectives.

We first develop a prediction model that can discern the trendiness of designs across periods.
The issue can be addressed by using the cars’ production years as an index for trendiness. It is
easily motivated by the linguistic definition of trendiness as the longer interval that the design
was made from the present, the higher probability the design is likely to be outdated. The designs
produced more recently are likely to carry more modern exterior features.

5.3.1 Stage I: Trendiness Evaluator
Over an extended period, a car’s production year inherently reflects its design’s trendiness;

it is unlikely for the design of a car manufactured a decade ago to be more fashionable than a
recently produced one. Hence, when a large collection of car images from various eras is avail-
able, the production years naturally serve as appropriate labels to denote trendiness. However,
the “trendiness” intervals between any two consecutive years are not always constant and equiv-
alent. Hence product years should not be directly used as the dependent variable for regression
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Metrics 
for
ranking

III. Regional-directed upgrading
I. Trendiness prediction IV. Design selection

II. Weak design identification

Trendiness scores

Historical designs

CNN-based
trendiness
evaluator

Upgraded designs

Gradient-based attribution

Aesthetics

Trendiness

Quality
GAN-based upgrader

Figure 5.3.1: Schematic view of the proposed design assistant approach - (i) Trendiness
Evaluator: a CNN-based ordinal regression for trendiness prediction; and (ii) Design Up-
grader: image completion-based region-directed design upgrading.

models. Moreover, employing the years of production as categorical variables in classification
will be based on an unrealistic strong assumption that largely dismiss the ordinal information.
To overcome these issues, we then predict the trendiness score based on an ordinal regression
model, which the yearly intervals are treated as proxies of contemporaneity differences that are
not necessary numerically equivalent.

The core set-up of the ordered probit model, which assumes the existence of a “latent de-
pendent variable”, is consistent with our defined trendiness. That is, there exists an unobserved
function fTREND(·) denoting the trendiness, and “determines” which production year a design
should be assigned to. A higher score of fTREND(·) indicates that the processed design has higher
degrees of matching to the predicted trendiness for the year. In standard applications, such la-
tent variable is just a tool for constructing the probabilities with the desired correlations without
requiring actual meanings. While in this study, the trendiness score is an averaged estimation
across images, expressed as:

fTREND(da) =Exn∈da

[
βββTvn + εn

]
, (5.1)

where da is the a-th target design (∀a ∈ [1,A]), here xn represents an image of da, εn is the
corresponding residual variance, vn denotes the vector of aesthetic attributes extracted from xn.
In our study, vn is extracted from a pre-trained CNN that with parameters θθθ CNN. In a nutshell,
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Eq.5.1 states that the trendiness score of the a-th target design is a fitted value of linear ordinal
regression based on a vector of aesthetic attributes extracted from the set of images of the design
(as the mean of the error term (εn) is expected as zero).

Two assumptions are made. First, we assume the error term ε follows a standard normal
distribution for the designs introduced at the same year. Second, we assume the trendiness of
designs is monotonically increasing across the periods around t. That means, given Ut1 and Ut2

represent two sets of car model designs produced at times t1 and t2 (Note: t2 > t1), for dt1 ∈ Ut1

and dt2 ∈ Ut2 , it is expected that E[ fTREND(dt2)]> E[ fTREND(dt1)].

Assuming that the car front designs from a set of J ordered but noncontinuous years can
be characterised by J levels of trendiness, we have J − 1 threshold values, determined during
training, given by λλλ := λ1, ...,λJ−1 to distinguish the J levels of trendiness.2 Given a trendiness
score fTREND(da), it will be assigned to the j-th trendiness level if λ j−1 < fTREND(da)≤ λ j. For
an uncategorised design da, the probability that it belongs to j-th level can be expressed as:

Pr(da ∈ U j) = F
(
λ j − fTREND(da)

)
−F

(
λ j−1 − fTREND(da)

)
, (5.2)

where F(·) is the standard cumulative density function, and the training objective of the CNN
is:

max
βββ ,λλλ ,θθθ CNN

Eda∈U j

[
Pr(λ j ≥ fTREND(da)≥ λ j−1)

]
. (5.3)

Training and using of the trendiness evaluator. During model fitting, the optimal fTREND

and threshold values λλλ are determined based on their ability to best replicate the observed out-
comes in the training data. Given specific fTREND parameters, the λλλ values influence the like-
lihood of observing a particular ordinal category. By fine-tuning these parameters, the model
adjusts the associated probabilities. The optimisation process then identifies parameter values
that maximise the likelihood of reproducing the observed data. The specific settings used for
training and testing are detailed in Section 5.4.

After obtaining the trendiness evaluator, we can label the designs with trendiness scores.
Specifically, we assort the same year designs into three groups according to their trendiness
scores, denoted as Ut,l , Ut,m, and Ut,h, which represent designs sold in year t with low, medium,
and high trendiness scores.

2λ0 =−∞ and λJ =+∞.
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.3.2: An example of antiquated design recognition: (a) the original image; (b) the
recognised semantic area; (c) the saliency map from the Guided Backpropagation; (d) the
saliency map after thresholding and blur; (e) the balanced saliency map; (f) the image with
covering mask.

Properties of fTREND as a trendiness score. As the latent variable from the ordinal pro-
bit model, the fTREND represents the market’s “true” unobserved response regarding trendi-
ness/modernity. This response is indirectly inferred from the shifts in market design styles over
the years. Being a continuous ordinal variable, the intervals between its values are not uniform,
which means there are no inherent meanings for 0 (i.e., no true zero point) and negative values.
The range of the obtained fTREND is unrestricted and can span any real number, depending on
the model’s training duration. Theoretically, it can range from −∞ to +∞, but in practice, due
to the limited number of epochs used to train the model, most of the design scores is centred
around zero, with values typically ranging from single-digit negative to single-digit positive.
Only a handful of designs exhibit very large or small values; however, this simply indicates that
the presented designs have very high probabilities of belonging to the most modern or outdated
groups.

5.3.2 Stage II: Antiquated Design Analytics
The primary task when upgrading extant designs is to identify the vulnerable regions that

lower the trendiness score. Hence, a method that integrates the instance segmentation and
gradient-based saliency map is proposed to locate these antiquated areas. First, the instance
segmentation is applied to mask the critical design features. Due to the anthropomorphism phe-
nomenon, historical studies show that the way consumers perceive certain design parts of car
front designs is analogous to the perception of actual facial features of human faces, such as
the headlights to the eyes (Welsh, 2006; Aggarwal and McGill, 2007; Windhager et al., 2008).
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Modifying such semantically significant parts could substantially affect the perception of de-
signs (Landwehr et al., 2011b). For this purpose, the instance method the Mask R-CNN (He
et al., 2017) is applied to mark K non-overlapped semantic areas from each front image, de-
noted as:

{Bn,1, ...,Bn,K}= fMRCNN(xn), (5.4)

where each Bn,k is a binary matrix that indicates the k-th corresponding semantic areas in xn.
Fig. 5.3.2 (b) illustrates an obtained semantic view.

Second, a saliency map is generated for each image of a vehicle to inform the importance of
each semantic area. The resulted map is filled with gradient values between the final prediction
and individual pixels. The SmoothGrad (Smilkov et al., 2017) and the Guided Gackpropaga-
tion (Springenberg et al., 2014) are combined to generate saliency maps. The Guided Back-
propagation omits the negative values during the backpropagation, thus highlighting areas most
influential to the trendiness score. While the SmoothGrad method works by having multiple
samplings that add random noises to the input image, therefore minimising the error caused by
local gradient variance. The entire backpropagation process is formulated as:

J̃(n) =Eε∼N (0,σ2)[−∂ fTREND(xn + ε)/∂ (xn + ε)], (5.5)

where J̃(n) denotes the raw saliency map obtained from the n-th car image, and ε here is a
random error following the standard normal distribution. It is worth noting that the negative
sign of Eq. 5.5 indicates that the weight and bias parameters in the trendiness predictor’s last
layer are inverted since we are looking for parts that contribute negatively to the trendiness.
Fig. 5.3.2 (c) represents an obtained raw saliency map.

Following that, several image process methods are applied to further rinse the obtained
saliency maps. Fig. 5.3.2 (d) and (e) perform the further rinsed saliency map after thresholding,
blurring and balancing. These operations reduce the “noises” (i.e., random low value gradi-
ents) on the raw saliency map. As the obtained saliency maps could be imbalanced in many
cases, a SIFT-based symmetry line detection method (Loy and Eklundh, 2006) is applied, which
can produce two reflected saliency maps. The Hadamard product of these two saliency maps,
J(n) := J(n)left ⊙ J(n)right, is used for later computation.

The final step in this stage is to combine the semantic and gradient results to determine
the most vulnerable parts. For design da that has Na images available, the following selection
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equation is used:

argmax
i

∑Na
n exp

(
ϕ(J(n)⊙Bn,i)

)
∑Na

n ∑K
k exp

(
ϕ(J(n)⊙Bn,k)

) , (5.6)

where ϕ(·) presents the grand sum of the matrix. The whole equation is a softmax operation,
which converts the problem as probability dependent decision. Thus, we simply choose the
design part with the largest probability. Fig. 5.3.2 (f) demonstrates that the headlights are com-
puted as the most vulnerable design parts for the target model. Each target design image xn will
be split into the masked part x−n = xn ⊙Bn,i∗ and the unmasked regions x+n = xn ⊙ (111−Bn,i∗),
here 111 indicate the matrix of ones.

5.3.3 Stage III: Image Completion-Based Design Upgrading
The study adopts the image completion approach to upgrade the previously identified out-

moded parts. This approach will predict the omitted parts based on the perceived contents. With
the given images xh ∈Ut,h and xl ∈Ut,l representing the ones drawn from the t-th year high and
low trendiness groups, the scraped parts in antiquated designs x−l will be replaced with design
features drawn from xh. We formulate this objective function as a maximisation problem of the
probability of p(x+h |x

−
l ), which aims to optimise the probability of filling modern designs with

the given x−l .

Inspired by the recent image completion studies (Wan et al., 2021; Yu et al., 2021; Zheng
et al., 2021), the study divides the maximisation issue into dual tasks:

p(x+h |x
−
l )

≈ p(x+h |x̃
+
h ) · p(x̃+h |x̃

−
l ) · p(x̃−l |x

−
l )

= p(x+h |x̃
+
h ) · p(x̃+h |x̃

−
l )

≈ p(x+h |x̃
+
h ) · p(x̃+h |x̃

−
h ).

(5.7)

where x̃−n is the thumbnail of x−n . The p(x̃−n |x−n ) is omitted for two reasons. First, it is well stan-
dardised to adopt the resizing of an image to its thumbnail during image processing. Meanwhile,
the conditional entropy between the image and its thumbnail H(x̃−n |x−n ) = 0, and p(x̃−n |x−n ) = 1.
For implementation, the simulation of p(x̃+h |x̃

−
h ) uses the transformer network, while p(x+h |x̃

+
h )

adopts the deconvolutional network.

Transformer for inference. The transformer network (in our case, the GTP-2 algorithm) is
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applied to infer the missing parts, due to its superior performance in dealing with inter-dependent
information. The transformer network was initially designed for the NLP tasks, the model has
shown outstanding abilities for image processing, even though it mandates images in 1-d vectors
(so 2-D images have to be flattened to 1D vectors for processing).

Via the attention mechanism, the model can compute attention scores to identify the critical
dependencies among inputs. A transfer model is comprised of multiple blocks, given X (l) ∈
R

Ci×n (Ci and n represent the input’s dimension and object/length number) as the input to l-th
block, the computation of the block is:

X (l) = fBLOCK

(
fSA(X (l−1))+X (l−1)

)
, (5.8)

where fBLOCK(·) presents a series of operations, including the LayerNorm and fully connected
layers, to process the attention score. fSA(·) presents the key computation of the self-attention
score, denoted as:

fSA(X (l−1)) =Wo[ f
(1)
ATTE(X

(l−1))⌢...⌢ f (M)
ATTE(X

(l−1))], (5.9)

where “⌢" denotes the concatenate operation, Wo ∈RCi×MCk represent the learnable matrix that
merge the scores from M “heads”. The computation of each “head” can be expressed as:

f (m)
ATTE(X) =W (m)

v X

(
fSOFTMAX

(
(W (m)

q X)⊺(W (m)
k X)

√
dk

))
, (5.10)

where Wq,Wk,Wv ∈RCk×Ci are algorithm learnable matrices, WqX , WkX and WvX represent the
query, key and value matrices. Such an unique self-attention mechanism permits the wide ap-
plications of the transformer models these days.

Deconvolutional network for rescale. The deconvolutional network is used to rescale the
generated thumbnails to original sizes to fulfil the function of p(x+h |x̃

+
h ). The deconvolutional

network is titled due to the deconvolution layers, more formally known as transposed convolu-
tional layers, which possess the same computation power of a vanilla convolutional layer but
enlarges the inputs differently. They add padding between matrix entries rather than the sur-
roundings. A transposed convolutional layer can generate output feature maps with larger sizes
than input feature maps, thus commonly used to upsample the inputs. By following Wan et al.
(2021)’s work, we train the deconvolutional network under the the generative adversarial net-
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work (GAN) (Goodfellow et al., 2014) frame, which has the following objective:

min
G

max
D

Exi∼Pdata [log(D(xi))] +

Exn,x̃n,x+n ∼Pdata

[
log
(
1−D

(
G(x̃n,x+n )

))
+ ||xn −G(x̃n,x+n )||1

]
,

(5.11)

where D(·) is the discriminator network, G(·) is the generator network and || · ||1 indicates the
L1 norm. Specifically, the L1 distance is added to enhance the reconstruction of the original
image. Meanwhile, the x̃n and x+n are fed as the input to the generator network rather than the
random latent variable.

5.3.4 Stage IV: Ranking of Candidate Designs
Applying deep generative models for an existing car model could deliver almost unlimited

upgrade designs, which are diverse in image quality and design trendiness. This leads to a
new challenge: how should we pick out the most suitable designs from such a large number
of possibilities? A simple yet effective solution is to use a few criteria to rank the candidate
designs. The trendiness score from the trained evaluator can be applied directly as one of the
criteria. Meanwhile, two criteria are chosen to rank the generated upgrades: design aesthetics
and image quality.

Although this study primarily focuses on promoting design trendiness, the general aesthetic
level of the updates also needs to be guaranteed. Here we follow the approach used in Chapter 4
, that estimates a car’s aesthetic level based on car owners’ reviews. Specifically, the sentiment
method is employed to explore the positive and negative comments in reviews regarding cars’
exterior styling, and the overall opinions are augmented as aesthetic scores from 0 to 1. Then
a dual-task objective function, denoted Laes and Lrec, is used for CNN training to enhance the
learning of discriminative features for aesthetic inferring. The Laes for aesthetic regression uses
the standard Mean Squared Error (MSE) to compute the error between truth and predicted aes-
thetic scores. Lrec represents the angular loss for classification, by which the distances between
categories are presented by cosine similarities cosθ j (here j indicates the class ID). Specifically,
the variables in output neurons are all normalised, where input vectors’ lengths are unified to
α , weight vectors’ lengths are unified to 1, and biases are set to 0. This loss function can be
expressed as follows:

Lrec =−
N

∑
i=1

log

{
exp(α cos(θyi +β ))

exp(α cos(θyi +β ))+∑ j ̸=yi exp
(
α cosθ j

)} , (5.12)
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where N is the number of classes, yi is the ground truth class for ith sample, and β is a constant
margin penalty in the target class’s angle. Such a setting makes the distance only depends on
the angle between the input image and neuron weight vectors. Existing studies (Liu et al., 2017;
Wang et al., 2018; Deng et al., 2019) show the use of angular loss can minimise the intra-class
distance and maximise the inter-class distances in angular space for classification.

The image quality, formally known as fidelity, indicates how realistic a produced car design
is. Studies of adversarial perturbation show convolutional neural networks are not robust to
noises. It is possible for a noisy-looking (i.e., low-quality) image to be labelled highly modern
by the trendiness evaluator. Therefore, a measure that can assess the quality of an image is nec-
essary to filter out poor generations. The widely used GAN generation criteria, such as Fréchet
inception distance (FID) (Heusel et al., 2017) or Inception Score (IS) (Salimans et al., 2016), are
not applicable in our scenario as they are designed for multiple images, while our study needs
to assess individual design images. Therefore, a no-reference image quality assessment crite-
rion is employed, which can make quality assessments without demanding the reference images.
Specifically, the classical blind/referenceless image spatial quality evaluator (BRISQUE) (Sun
et al., 2015) is used. It is a simple yet effective measure that infers image quality based on the
distribution of locally normalised luminance coefficients.

5.4 Data and Experiment Settings

We use the DVM-CAR3 dataset (Huang et al., 2022) to validate the proposed approach. It
contains 1,451,784 car images of 899 car models manufactured in the period from 2000 to
2019. Besides, the dataset includes all car models’ corresponding sale figures in the UK during
the two decades. In experiments, we adopt the 61,827 car front images been 2000 to 2018 (i.e.,
19 years).

For the trendiness prediction, four trendiness evaluators are trained accordingly for the four
largest sub-markets: MPV, Saloon, Hatchback, and SUV. In total, 10,925 images from four
discrete years (i.e., 2003, 2006, 2009, and 2012) are used, including 9,000 for training and
1,925 for testing. During ordinal model training, the images are labelled with four ordinal
integers from 0 to 3 according to the cars’ production years from oldest to the most recent. The
convolutional parts (no fully-connected layers) of VGG16 (Simonyan and Zisserman, 2015),
which are pretrained by the ImageNet dataset (Deng et al., 2009), are adopted as the backbone
for the evaluator, so the model can extract high-level visual features from input images. The

3https://deepvisualmarketing.github.io
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ordinal regression layer takes these extracted visual features to make predictions of trendiness.

To obtain semantic views for the training of Mask R-CNN, 126 semantic view images from
various brands are manually prepared. In each semantic image, the headlights, main and low
grills are marked. The Mask R-CNN is fed with the original and semantic images to predict
the positions of headlights, main and low grills. The trained Mask R-CNN processes all design
images to obtain corresponding semantic views. Meanwhile, the gradient procedure is applied
to car images for upgrading. For design scarping, masks larger than the semantic area are used
to vacate the target parts. Thus, the whole antiquated parts are highlighted for upgrading. This
allows the image completion algorithm to incorporate new design features with larger sizes.

To produce high trendiness designs in scraped areas, we used 26,899 car images from 2015
to 2017 with trendiness scores at the higher 50% rank compared to other designs in evaluator
training. Meanwhile, 138 contemporary car models with the lowest 25% trendiness scores are
chosen as the candidates for upgrading. We also include the setting of colour clustering to reduce
the dimension size of inputs, which each pixel of an RGB image is converted from 256×256×3
values to 1024 new values. During the training of the upgrader, the checkpoints’ scoring on
FID are tracked, which is widely used for generation quality indexing. The covered areas are
chosen from the three semantic areas (i.e., the headlights, main and low grills). In our study, the
rectangle masks are used as they only indicate the position of target semantic areas, while the
similarly shaped masks could disclose the shape of the original missing parts. Furthermore, for
data augmentation purposes, the training masks are randomly generated.

5.5 Results and Discussion
This section will present the designed experiments, results and corresponding discussions.

5.5.1 Validation of Trendiness Measure
First, a series of data-based analyses were performed to validate if the obtained trendiness

score is representative of the fashion trends. Analyses were based on four sub-markets, the
MPV, Saloon, Hatchback and SUV markets, as they are the largest sub-markets for family cars.
In some analyses, instead of the trendiness scores, we use the trendiness rank, the design’s
trendiness percentile among the same-year designs of the sub-market. E.g., if Audi A4 2016 has
a trendiness score ranked as the top 10% of all 2016 Saloon cars, then its trendiness rank value
is 10. Such rank can directly indicate the relative positioning of the designs on the “fashion
distribution” of each period.
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Trendiness score VS Time. As the trendiness score represents the design’s projection po-
sition on the hypothetical trend of fashion, the average trendiness of the market is supposed to
increase monotonically over the years. To verify this inference, as the first row of figures of
Table 5.5.1 display, we compute the average trendiness score of all models over the observing
periods, where error bars indicate the spans between the scores’ first and third quartiles. Despite
the evaluators being trained with the designs released before 2012, they can score the later de-
signs (up to 2018) with higher trendiness ratings, which suggests that the trained evaluators can
remained valid over six years. In general, the evaluator models give higher ratings to the actual
designs that only appear after the training designs. The capability of predicting future fashion
is a critical intention for the proposing of trendiness scoring. Due to the data limitation, the
exact span of the prediction validation period has not been thoroughly examined in this study.
Nevertheless, the implied predictive power of the evaluators is established. In rest analyses, the
trendiness predictions obtained from the evaluators are used.

Trendiness rank VS Model length. As the developed trendiness measure indicates the
evaluation of fashion, it is expected the designs labelled with relatively low trendiness scores of
the year will disappear from the market over time, and the ones with high trendiness scores will
occupy the market. The second row of Table 5.5.1 displays the distribution of car models ac-
cording to their trendiness levels from 2007 to 2017. Here the year before 2007 or after 2017 is
excluded as insufficient car models are included. The colour bar indicates the car models’ trendi-
ness levels among all designs. As the four subplots show, the cars with low trendiness scores
only appear in the early years regardless of the sub-markets. It is noticed that the 2012 designs
received unexpected high trendiness scores. We interpret this is a consequence of overfitting,
where the ordinal regression model gives extremely high ratings to the 2012 designs, which is
the last year in training data. Moreover, we conclude to see whether the trendiness is highly
correlated to the car models’ survival rate (i.e., the model is withdrawn or replaced) in the five
coming years. In the third row of Table 5.5.1, the three trendiness levels are calculated based on
the cars’ trendiness ranking among the designs in the same year. The purple, green, and brown
curves represent the survival rate of designs with the trendiness scores that are among the lowest
33.33%, medium 33.33% to 66.67%, and the highest 33.33% groups. All market drop-outs of
the car models were marked with the lowest trendiness scores.

Trendiness rank VS Market performance. Besides, we also analyse whether the trendi-
ness scores associate with the car models’ market performance. Cars with higher scores shall
perform better in the market sales. As it is also driven by other significant factors such as
price, brand and functionalities, we expect moderate correlations between trendiness and mar-
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Table 5.5.1: Trendiness VS market share changes.
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MPV Saloon Hatchback SUV
MS line slope (βMS in e-4) -3.2 4.15 0.84 1.70
MS line intercept (C in e-2) 7.51 1.10 2.38 1.13
MS correlation (ρ)† -0.15 0.26∗ -0.13 0.22∗

MS p-value
§

0.48 0.02 0.13 0.01
MSC† line slope (βMSC in e-3) 1.40 2.05 -0.83 1.21
MSC line intercept (C in e-2) 9.89 5.10 6.73 3.41
MSC correlation (ρ) 0.30 0.19 -0.18∗ 0.14
MSC p-value 0.15 0.08 0.03 0.08
† The market share change is computed as log previous year market share

this year market share
§ p-value from Pearson correlation
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Headlights

Main grill

Low grill

Figure 5.5.1: Illustration of identified antiquated regions. The green masks indicated the
semantic areas that are highlighted by the saliency methods. Note that the demonstrated
semantic areas are shaped by the Mask R-CNN.

ket shares. As the fourth row of Table 5.5.1 shows, a few significant results are found when
comparing market shares with trendiness scores and ranks. As an alternative, it is rational to ex-
amine that cars with higher trendiness scores are more likely to gain higher market shares. We
examine such a hypothesis by regressing the trendiness rank of designs with their corresponding
changes in the market share. The four plots of the fifth row of Table 5.5.1 present the historical
market share variances of models in the sub-markets according to their trendiness scores. The
bottom parts of the table provide the supplementary statistics. As demonstrated, there exist only
one negative significant correlation between trendiness and the cars’ sales growth among the
Hatchback market.

5.5.2 Interpretation of Upgrading Results
Antiquated parts recognition

To examine the importance of each semantic area in trendiness design, the recognised out-
moded parts from the selected 138 car models are summarised. The three major design com-
ponents, the headlights, main grill, and low grill, account for 52.89%, 32.56% and 14.56%,
respectively. It suggests that the main grill determines the trendiness perception the most when
component sizes are now considered (i.e., the main grills are much larger than other components
in size). Fig. 5.5.1 demonstrates practical design samples with identified outdated parts. These
highlighted areas are automatically segmented by the Mask R-CNN and identified as the most

87



5.5. Results and Discussion

Table 5.5.2: Comparison of upgrading on semantic/non-semantic areas.

Non-semantic Headlights Main grill Low grill
FID of upgradings 4.921 10.57 33.07 14.41

% of trendiness rise > 0.5 21.3% 44.8% 43.8% 53.1%
Avg. Trendiness rise 0.224 0.317 0.355 0.360

vulnerable part by Eq. 5.6 in gradient.

To further investigate the identified antiquated regions’ influence, trendiness changes caused
by these semantic and non-semantic areas are compared. Specifically, for each semantic area, it
is counted how likely an upgrading on the component can lead to a rise larger than 0.25 (defined
as significant in this study) in trendiness. The upgrades on non-semantic areas, which have
no overlap with semantic areas, are included for comparison. As the second and third rows of
Table 5.5.2 show, compared with upgrades on non-semantic areas, the upgrades on headlights,
main and low grills are more likely to bump up trendiness significantly. Moreover, as numbers
of average trendiness rise show, the upgrades in semantic areas cause a considerably higher rise
than in non-semantic areas, where the upgrades in low grills achieve the largest rise.

Upgrading Results

Fig. 5.5.2 gives multiple upgraded directions of the first three candidates in Fig. 5.5.1, where
the antiquated parts are morphed. The general image quality deterioration caused by the design
morphing can be indicated by the FID indices in Table 5.5.2, which are computed between
upgrades on different semantic/non-semantic areas and the training images. The FID measures
the average activation dissimilarity of CNN-extracted features between two image collections.
Thus a high FID score shows the generation is remarkably different from the benchmark set,
which indicates generations with poor quality. Apparently, the upgrades on the non-semantic
areas have rarely affected image quality, which has the lowest FID score. However, the FID
scores on semantic areas have large variances. The FID of headlights is 10.57, which is way
lower than 33.07 of the main grills’ FID. The large FID of the main grill upgrades indicates the
morphing on the main grills has quality issues – indicating the refilled content is unnatural.

5.5.3 Discussion
In general, our study indexes the aesthetic trendiness of cars in the automotive market, and

upgrades the detected low trendiness designs using the machine learning approach with large-
scale data. On the one hand, this study demonstrates that automotive trendiness could be char-
acterised as a continuous scale that discriminates designs in different years. The simulated scale
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OriginalMask Sample 1 Sample 2 Sample 3 Sample 4

Figure 5.5.2: Empirical examples of three updated car models: Lexus IS 2016, Land Rover
Range Rover 2017, SEAT Toledo 2017. As the changes on Lexus IS demonstrate, the
changes on the main grill would alter the brand’s family faces, which is problematic for
real application. Nevertheless, these samples demonstrate the modifications achieved via
the image completion algorithm.

is applicable for a considerable length of duration and has noticeable associations with criti-
cal market performances, such as changes in its future market share and survival rates. On the
other hand, we show that advanced image completion algorithms can be deployed to produce
design solutions which upgrade antiquated designs regionally. This approach can adjust the per-
ceived trendiness while maintaining the most current designs without being bothered by feature
entanglement issues.

Regarding the analyses on the trendiness evaluator, first, in line with our expectations, the
more recently launched models receive higher trendiness ratings from the trained evaluator. This
indicates the existence of contemporaneity-related appearance features of cars, which allow the
CNN models to infer their years of design. Second, the experimental results suggest the effec-
tiveness of the proposed trendiness measure is not a side effect of overfitting, as later designs
receive higher scores even though they did not appear in training samples. Considering the ex-
pected lifespan of car models is less than eight years, the mainstream designs in 2018 are very
different from training samples selected from 2012. Such findings support the self-perpetuating
characteristic of the automotive fashion evolution, concluded by (Reynolds, 1968). That is, de-
spite the frequent turning over of car models, the direction of fashion evolution in the automobile
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industry remains relatively stable, making it possible to predict future fashion trends.

Further analyses showed that the trendiness rise over the years due to the model replacement,
and cars with low trendiness scores suffer from lower survival rates over time. In all sub-markets,
designs with low trendiness scores would be gradually withdrawn and replaced by new models.
As no statistical correlations are found between market sales and trendiness, the low survival
rates of lowly scored cars are unlikely caused by the low marker sales. Instead, the low survival
rates attract the attention of the automakers who are keen to redesign or replace an existing
design if the models look outdated and start to lose market shares, regardless of their temporary
market shares. Noteworthy, no significant correlation is detected for the Hatchback market. A
possible explanation for this finding would be due to the price differences of four main types
of vehicles. Compared with others, hatchbacks are mostly cheaper so that the consumers focus
more on its performance price ratio instead of appearance.

From the design upgrader perspective, the proposed semantic and gradient method can mark
out front design parts that semantically associate with facial features and then determine the
areas with the largest gradients. As predicted, morphing these semantic areas can result in
larger improvements in trendiness scores rather than other areas, implying that the highlighted
areas have more influence on trendiness perception. We interpret this as the result of anthropo-
morphism (Aggarwal and McGill, 2007; Landwehr et al., 2011b; Welsh, 2006) – as consumers
tend to perceive car fronts as “car faces” and are sensitive to these semantic areas, automakers
learned to signal the morphing of these parts when bringing new designs to the market. Future
investigations can be done to justify this suppose.

Another key contribution of the design upgrader is to present the practicability of apply-
ing image completion algorithms to design upgrading. By removing the intended areas for
upgrading, the state-of-the-art image completion algorithms can refill these scraped areas with
natural-looking content while leaving the unintended areas untouched, thus achieving regional
upgrading purposes. Results also displayed that via regional modifications, we can obtain mor-
phed designs with higher trendiness, from which automakers can select candidate upgrades for
facelift needs.

Admittedly, the study has its limitations. First of all, as a prior data-driven investigation
for trendiness, no theoretical discussions regarding the underlying mechanism are provided in
this study, which leaves many questions unclear. For example, does the observed trendiness
result from the automakers’ collective market decisions? Does the evolution of trendiness source
from the typicality, mere exposure effects or joint effects of both? Future studies can focus on
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the theoretical parts of trendiness findings while being supported by results from practical data
analysis. For antiquated design recognition, the branding designs (e.g., brand logo) are often
included in the main grills for upgrading. This is problematic as such designs are cues for
branding, which automakers avoid changing. Although the mistaken recognition can easily be
addressed by manual effort (i.e., remove these family face parts manually), a better solution
is needed to identify these family face cues automatically. In addition, the FID measure on
different semantic areas shows the applied generative model performs poorly on specific parts
(i.e., the main grills) – this also occurs in other extant studies. Similar results are obtained
in other studies that use different deep generative models. This seems a general challenge for
modern deep generative models to generate content with rigid structures or shapes such as a
long straight line. This is interpreted as a limitation inherent in the mechanism of transposed
convolutional layers, which can hardly arrange content in rigid forms globally.

5.6 Summary
This chapter proposed a data-driven approach that can learn, define and score the trendiness

of car designs, meanwhile, identify the most antiquated design regions for upgrading. Besides,
the generative modules offer numerous upgraded designs without changing the unintended de-
sign parts and choose the upgrades with more modern looks. The 2000 to 2018 UK automotive
data were employed to develop and verify the developed measures and upgrades. Experimental
results showed that the proposed trendiness ratings signify the model’s future chances of being
withdrawn. Also, image completion algorithms, which have no feature entanglement issues, can
be applied as the regional design upgrader.

This study has addressed a number of questions that remained from Chapter 4. These two
chapters jointly demonstrate the effectiveness of applying deep generation for automotive front
design upgrading. However, the question whether deep generative methods can effectively ad-
just car side-view designs remains unconvinced. Moreover, marketers might challenge whether
original creativity exists in these upgrading methods, as data-driven models can only have inspi-
ration from other existing car designs. To this end, a side-view focus study is proposed in the
next chapter with cheetah-inspired design features.
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Chapter 6

Animism: Design with Bio-Inspired
Novelty

In this chapter, we propose a CycleGAN-based framework of bio-inspired automotive design
for sports saloons. We tailor the deep learning methods such as HED (Xie and Tu, 2017) model
to detect representative lines and curves of side-view images from the targeted saloons and the
running cheetah, and integrate them to obtain upgraded novel designs. Specifically, Section 6.1
refers to the motivation for this bio-inspired study. Section 6.2 introduces the three-staged design
process incorporating the cheetah feature into car design. Section 6.3 list the technical details
for experiments. Section 6.4 presents the results we find through two user studies and gives
discussions accordingly, and Section 6.5 summarises this chapter.

6.1 Introduction
Automotive anthropomorphism, in particular, the human tendency to see faces in car fronts,

has been discussed considerably in prior research. Landwehr et al. (2011b) revealed that emo-
tional expressions can be conveyed by a cars grill and headlights because they look like mouth
and eyes. Purucker et al. (2014) evidenced that the way human perceive car fronts is similar
to the way human perceive facial expression. Ku (2014) discovered that the anthropomorphism
of a car’s face is a bottom-up procedure as the fusiform face area in human brain is associated
with seeing human features in car fronts. Based on the premise that car fronts are perceived
in much the same way as human faces, Maeng and Aggarwal (2017) showed that with high
face width-to-height ratio are perceived as more dominant, which in turn receive more positive
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Figure 6.1.1: Side-view design comparison for Audi A4 2018 (left) vs 2019 (right) facelift.

evaluations.

Built upon this stream of research, we hypothesise that animals such as cheetah might ac-
tivate the speedy schema if we were to draw design inspirations from it. As such, we adopt
schema congruity (Aggarwal and McGill, 2007) as the theoretical foundation for examining the
effectiveness and consequences of bio-inspired design. Our pretest in Section 6.4.1 shows that
displaying a fast animal image alongside car side-view images without any alterations on the ac-
tually design indeed increase consumer’s evaluations on how sporty the automobile looks. The
results are consistent with research on schema congruity for product evaluation (Fiske, 1982;
Meyers-levy and Tybout, 1989; Aggarwal and McGill, 2007).

This chapter carries out the first empirical attempt to improve the mid-generational refresh
on the side-view facelift design for the following two reasons. First, despite its importance in
practice, enhancing the side-view of an automobile has rarely been discussed in the existing lit-
erature. To date, researchers have emphasised either the car front design (Aggarwal and McGill,
2007; Landwehr et al., 2011a,b) or redesigned the car holistically (Pan et al., 2016; Burnap et al.,
2021). Second, if we were to capture the running cheetah’s swift and consecutive movements
and integrate these formed inspirations into the aesthetic design, a side-view design would be
the most relevant initial attempt.

When it comes to side-view facelift design, one particularly important feature is the exterior
styling of shoulder and waist curves. Figure 6.1.1 provides an example of comparing the side-
view designs of Audi A4 2019 facelift vs 2018.1 We observe the following line changes in the
2019 facelift. First, the shoulder curve (or bone line2) – the line that starts from low on the front
bumper and continues along the side through the fuel filler cap door – becomes shorter, which
makes the facelift look more sporty and dynamic. Second, the waist curve – the character line
on the door panel across the centre of the car – becomes curvier and with a larger slope, which
enhances the sporty style. Our study aims to use deep generative models to modify shoulder

1URL: https://www.youtube.com/watch?v=_uR1ldkPkC0.
2URL: https://www.youtube.com/watch?v=haiMna8NBQs.
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and waist curves of existing sports saloons from the inspirations learned from running cheetah.
Both curves are perfectly suitable for our goal of facelift design because they do not change
the overall shape and would allow our design framework retain the basic exterior styling and
platform chassis of the car with aesthetic alterations.

The proposed design framework consists of three modules. The first module analyses a
cheetah’s movement and identifies the curves which can represent its body dynamics. The sec-
ond module processes saloon side-view images, detects and extracts shoulder and waist curves
for each car model in our study. The third module morphs the pre-processed lines from sa-
loon and cheetah, and then generates the new exterior designs. Three deep learning algorithms
– the mask region-based convolutional neural network (Mask R-CNN) (He et al., 2017), the
holistically-nested edge detection (HED) algorithm (Xie and Tu, 2017), and the cycle consis-
tency generative adversarial network (CycleGAN) (Zhu et al., 2017) – are used, tailored, and
integrated into these three modules.

Specifically, the Mask R-CNN is used to locate the running cheetah in the video frames and
to remove the background of sports saloons in their original side-view images. It is a state-of-
the-art CNN proposed by He et al. (2017), which aims to detect and segment object instances
in digital images. It has been widely used in autonomous driving (Huang et al., 2020; Xia and
Sattar, 2019), multi-person pose estimation (Dong et al., 2019), and neural stem cell differen-
tiation (Zhu et al., 2021). The HED is used to extract body curves from images of the running
cheetah. It is a CNN-based algorithm that has been used in applications like semantic image
segmentation (Chen et al., 2016; Yu et al., 2017) and salient object detection (Li and Yu, 2016;
Li et al., 2017). Compared to traditional edge detection algorithms, the HED is more robust in
edge detection that can effectively eliminate cheetah print. As the CycleGAN excels in image-
to-image translation tasks like image style transfer and photo enhancement, its application in
our design framework is two-fold: (i) generating sketches from real side-view images of saloon
models; and (ii) generating new car designs in terms of near-realistic look images from sketches.

This research makes the following contributions to the extant literature. First, To the best
of our knowledge, this is the very first study which develops a data-driven framework for bio-
inspired automotive aesthetic design. As the proposed framework can also be extended to other
design applications, the study contributes methodologically to developing a general bio-design
framework of integrating various data-driven algorithms and frontier technologies. Second, un-
like Pan et al. (2017) and Burnap et al. (2021) which also use deep learning for automotive
aesthetics design, our design application have three specific focuses: bio-inspired, side-view,
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Figure 6.2.1: Schematic view of the proposed bio-inspired design framework.

and facelift. Last, compared with marketing studies in automotive aesthetics, our study employs
the frontier deep learning techniques, and also fills the gap and contributes to the developing
literature on automotive anthropomorphism and bio-inspired design.

6.2 Methodology
As presented in Figure 6.2.1, the proposed bio-inspired design framework contains three

modules. In the first two modules, real-world side-view images of the running cheetah and
car models are converted into sketches, respectively. The representative body curves of the
cheetah and car models are extracted in the corresponding modules separately and in parallel.
Sketches are widely used in the automotive design process to aid in the progression of a design
solution and play an essential part in knowledge acquisition and representation (Bar-Eli, 2013).
They can provide near-realistic look of car exterior with details, highlight the salient curves or
lines, and avoid the influence of colour themes and light reflection. Then, in the third module,
the bio-inspired new design sketches are generated and are then converted into the real-world
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Figure 6.2.2: Schematic view of the running cheetah image processing module.

images which can accurately reflect reality and can help persuade consumers on production-
ready viewing.3

6.2.1 Running Cheetah Image Processing
The first module aims to use deep learning to automatically learn the representative body

curves from the world’s fastest animal cheetah, and the key steps in the module are presented in
Figure 6.2.2.

To form inspirations from the running cheetah, we need to capture its swift and consecutive

3URL: https://www.creativebloq.com/inspiration/illustration-vs-photography
-how-do-you-decide
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Figure 6.2.3: Illustration of HED architecture for the running cheetah edge detection.

movements. National Geographic magazine filmed the running cheetah with Phantom cameras
in June 2012 (Smith, 2012). The mission of the project was to track alongside a cheetah run at
full speed. As cheetah runs too fast for the eye to follow, they built a 410-feet dolly track for
high-speed cameras so that there would be no wobbles. The process was to line everything up
so that they would ensure that when the cheetah came out from the gate, everything was in place
and they can capitalise on their opportunities. The video “Cheetahs on the Edge - Director’s
Cut” was released by National Geographic magazine on YouTube to show cheetah’s movement.
We download this video from YouTube and extract 8,222 frames containing the running cheetah
using a moving window over a period of 4 minutes and 28 seconds.4 We then select the first
frame in five consecutive frames so 1,645 images are sampled.

For a given image frame, the Mask-RCNN (He et al., 2017) is applied to detect the running
cheetah. The algorithm takes the raw image as the input and its output includes the detected
objects with bounding boxes, the classification results for the detected objects and the corre-
sponding masks that cover the shape of the objects. As highlighted in Figure 6.2.2, the red
rectangle is the bounding-box (in red colour) that shows the position of the detected running
cheetah, then a segmented cheetah image is obtained.

Mathematically, the Mask R-CNN has the following joint loss function

LMASK R-CNN = λCLSLCLS +λBOXLBOX +λMASKLMASK, (6.1)

where LCLS is the classification loss that predicts the classes of the detected objects, LBOX is
the bounding-box loss that produces the bounding boxes for the objects, LMASK is the mask loss
that gives the mask labelling for the objects, and λCLS, λBOX, λMASK are the corresponding loss

4URL: https://youtu.be/THA_5cqAfCQ
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coefficients, respectively. Technical details of these loss functions is introduced in Section 2.2.

Next, we extract the holistic body curves of the running cheetah into a sketch using the
HED (Xie and Tu, 2017). This algorithm can effectively capture the general shape of the run-
ning cheetah while in the meantime can remove cheetah print in sketch generation. As shown
in Figure 6.2.3, the HED is essentially a CNN but it unitises the features learned in differ-
ent network layers by creating segmentation maps. These maps are called the side outputs (or
side-output layers). They are network layer samples and do not change the original network ar-
chitecture. Using side outputs in neural networks has proven to be useful in achieving desirable
results in image processing (Farabet et al., 2013; Simonyan and Zisserman, 2015). The HED
has a joint loss function which is a combination of side-outputs from distinct layers, which can
be expressed as follows

LHED = LFUSE +∑
m

L
(m)

SIDE, (6.2)

where m = 1, . . . ,M, is the mth side output, L
(m)

SIDE is the image-level loss function for side
output m, and LFUSE is the loss function at the fusion layer that learns the fusion weights of side
outputs. The side-output loss L

(m)
SIDE is defined as the class-balanced cross-entropy

L
(m)

SIDE =−
[[

1− 1
N ∑

n
zn

][
∑
n

zn · log{ẑn}
]
+

1
N ∑

n
zn ∑

n
(1− zn) log{1− ẑn}

]
, (6.3)

where n = 1, . . . ,N, is the nth pixel of the given image, zn ∈ {0,1} tells whether the nth pixel
is an edge pixel, ẑn is the model’s prediction probability. Therefore, ∑N

n zn is the number of
edge pixels in the image, and the fractions 1

N ∑n zn and (1− 1
N ∑n zn) are used to deal with the

imbalance between edge and non-edge pixel numbers. The fusion loss LFUSE is specified by the
cross-entropy

LFUSE =−
[

ς log
{

α
(
∑
m

δmγ(m)
SIDE

)}
+(1− ς) log

{
1−α

(
∑
m

δmγ(m)
SIDE

)}]
, (6.4)

where ς is the corresponding ground truth binary edge map for the given image, α(·) is the
sigmoid function, γ(m)

SIDE is the activation out of side output m and δm is the corresponding fusion
weight.

The top and bottom body curves are the most distinctive curves of the running cheetah, which
also match with the sports saloon’s bone line and character line from the side view. Different
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Figure 6.2.4: The most representative motions of the running cheetah.

cheetah curves of consecutive movements can be aggregated by a set of frame images, generat-
ing a heatmap of salient region, in which more common values are shown in brighter colours.
We detect the most remarkable curves from all image frames to represent the cheetah’s sporty
motions. The minimum Euclidean distance is used as the true distance between two frames,
and the large frame distances (i.e., the highest 20%) are used as the split threshold to cluster
frames. We call each frame cluster the stable motion moment (SMM), which contains roughly
10-20 frame images. Frames of the running cheetah in our collected data can be clustered into
14 SMMs. For the illustration purpose, 6 SMM examples are selected to present in Figure 6.2.4
and the first plot of each subfigure is the SMM.

The selected SMM undergoes further processing to extract the smooth body curves of the
running cheetah. More specifically, it is divided into 32 columns based on its coordinates. The
centres at the top and bottom are calculated for each column’s upper and lower curves. As
depicted in the second plot of each subfigure in Figure 6.2.4, mass points for both the upper and
lower curves can be obtained from each column. These points can then be used to fit the smooth
body curves of the cheetah.

6.2.2 Car Side-View Image Processing
As shown in Figure 6.2.5, the second module processes the side-view images of different car

models to identify the representative body lines. We deliberately use online publicly available
car images rather than “cleaned” blueprints or advertising images from automakers so more
variations can be learnt by the CycleGAN. As the Mercedes C Class shown in Figure 6.2.5,
the original image contains the background that is irrelevant to aesthetics design. Therefore,
in the first step, we segment the saloon from its background by using the Mask R-CNN (He
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Figure 6.2.5: Schematic view of the car image processing module.

et al., 2017). Its mask output is a binary image (i.e., matrix) that indicates whether the car
body presents in each pixel so that the position of the car can be identified. The element-wise
product (or the Hadamard product) between the original image and the mask binary image can
be computed, and then the car side-view image without background can be obtained. Intuitively,
it assigns the pixels that lie outside the car to the white colour.

After removing the background, images from different car models are normalised into the
same size. saloon’s shape and colour texture are much simpler than cheetah so we can use the
SED algorithm (Pratt, 1978) to generate the corresponding sketch image. Unlike the HED which
has a lengthy training process, the SED can be trained quickly and can achieve a comparable
excellent performance for saloon sketches generation. The input RGB image will be firstly
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converted into grayscale by using the ITU-R 601-2 luma transform.5 Let R, G, and B denote the
red, green and blue channel matrices of the input car side-view image without background, then
the output grayscale image Θ can be obtained,

Θ =
1

λR +λG +λB

[
λRR+λGG+λBB

]
, (6.5)

where λR, λG, λB are constant coefficients. The Sobel operators are the kernels that are con-
volved with the grayscale image. Let Φ1 denote the Sobel operator that responsible for horizon-
tal edge detection and let Φ2 denote Sobel operator that responsible for vertical edge detection.
Then pixel (i, j) of the sketch image Θ̃ can be obtained as below

Θ̃(i, j) =

√√√√[ χ

∑
i′=−χ

χ

∑
j′=−χ

Φ1(i, j)Θ(i− i′, j− j′)
]2

+

[ χ

∑
i′=−χ

χ

∑
j′=−χ

Φ2(i, j)Θ(i− i′, j− j′)
]2

,

(6.6)

where χ =
⌊ν−1

2

⌋
, ⌊·⌋ is the floor function, and ν is the size of Sobel operator.

As we focus on morphing the shoulder and waist curves, each sketch can be decomposed
into three images (or layers): a car side sketch image without body curves, a shoulder curve
sketch image, and a waist curve sketch image. To reduce the image data “noise” and obtain
salient body curves with less shades, the bit depth of sketch images is then reduced from 8 bits
to 3 bits in the decomposition.6 To illustrate the possible places for curve incorporation, for each
car model, the candidate areas are highlighted in colour, which results in the heatmap looking on
the sketch image. The probability is computed according to the actual appearance frequencies
of body curves in that area. The body curve sketches of different car models are combined and
incorporated into the side-view mask image of the selected car model. An illustration example
of Mercedes C Class (2019 reg) is presented in Figure 6.2.5. To obtain a more averaged dis-
tribution, the Gaussian smoothing process is applied to smooth the resulting image in order to
obtain a heatmap.

5URL: https://pillow.readthedocs.io/en/stable/reference/Image.html
6The bit depth is an image processing measure for the level of precision, which quantifies how many unique

colours are available in an image’s colour palette in terms of the number of bits. Images with a higher bit depth can
encode more colours or shades – the 8-bit sketch image contains 28 = 256 shades while the 3-bit sketch image only
contains 23 = 8 shades.
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Figure 6.2.6: Schematic view of the new car side design generation module.

6.2.3 Bio-Inspired Car Side-View Design Generation
Figure 6.2.6 presents a schematic view of the final module. It generates a new car side-view

aesthetics design by incorporating the body curves of running cheetah.

To morph selected saloon body curves with cheetah curves, they are firstly converted into
vectors with the same length. Specifically, U points are sampled with a fixed step from the
corresponding sketch images of body curves.7 For each vector, a point’s value is its row index

7In experiments, we set U = 10.
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of the sampled body curve in the sketch image. The converted body curve points are scaled using
the z-score standardisation (Bishop, 2006) and are then morphed using linear interpolation. Let
cS and cW denote the vectors of the standardised shoulder and waist curve points for the car,
and let c̃S and c̃W denote the vectors of the standardised shoulder and waist curve points for the
running cheetah. The vectors of the morphed body points for the shoulder and waist curves,
denoted by rS and rW , respectively, can be obtained as follows:

rS =
(
1−βS

)
cS +βSc̃S, (6.7)

rW =
(
1−βW

)
cW +βW c̃W , (6.8)

where βS and βW are the coefficients that control the morphing degrees of the shoulder and waist
curves, respectively. They subject to the constraints: 0 ≤ βS ≤ 1, 0 ≤ βW ≤ 1.

Smoothing body curves can be obtained by applying polynomial fitting (Bishop, 2006) to
the morphed body curve points. A polynomial function can be expressed as ∑h δhuh, where
u = 1, . . . ,U , is the index of input data points, h = 1, . . . ,H, is the hth degree of polynomial
fitting, and δh is the coefficient of the hth degree.8 Minimising the following regression loss can
obtain the coefficient estimates of the polynomial function that approximates the targeted body
curve:

LPOLYFIT = ∑
u

[
∑
h

δhuh − r(u)
]2

, (6.9)

where r(u) can be rS(u) or rW (u).

Then morphed smoothing shoulder and waist curves can be incorporated into the car sketch
image based on the heatmap of the car model’s salient region. In order to find the best positions
for the new curve, we adopt a grid search method. Each pair of morphed curves are re-scaled into
ten different sizes and then rotated further to have ten different degrees. Therefore, we obtain
100 different re-scaled and rotated pairs of body curves. The overlaps between these body curves
and the heatmap are computed, which conceptually represent the total joint probability of curve
pixel allocation. The “best” positions of the body curves in the given car sketch image is the
pairs with the maximum total sum of the probabilities from the overlap on the heatmap. As
illustrated in Figure 6.2.6, the pairs are highlighted in the red colour. Once the “best” positions
are determined, the car side sketch image of bio-inspired design can be generated.

8In experiments, we set H = 6.
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Figure 6.2.7: Illustration of CycleGAN structure.

Based on the output sketch image, the real-world car image can be generated using the
CycleGAN (Zhu et al., 2017), which is specifically good for image-to-image translation tasks.
In our framework, we aim to translate new car design from the domain of sketch images into the
domain of real-world images. We use A to denote the domain of the real-world images of car
models and B to denote the domain of corresponding sketches. Simply, CycleGAN contains
two GANs (Goodfellow et al., 2014): one for the real-world images and one for the sketches.
Each GAN has a generator and a discriminator. The former generates fake images while the
latter detect if the generated images are fake or not. The two generators ensure the translation
cycle between the real-world images and the sketches. The structure of CycleGAN is illustrated
in Figure 6.2.7.

Specifically, we denote GA for the generator that maps from B to A , GB for the generator
that maps from A to B, DA for the discriminator that detects if a generated image from GA is
faked or not, and DB for the discriminator that detects if a generated image from GB. Cycle-
GAN adopts the basic idea of GANs by constructing a minmax game between discriminator(s)
and generator(s). Therefore, the training of CycleGAN is equivalent to solving the following
optimisation problem

min
GA,GB

max
DA,DB

LGAN-A +LGAN-B +LCYCLE, (6.10)

where LGAN-A is the loss function for GAN that generates and detects real-world images,
LGAN-B is the loss function for GAN that generates and detects sketches, and LCYCLE is the
loss function that ensures the cycle consistency of image translation between two domains. We
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adopt the specifications used by Zhu et al. (2017) for these loss functions as follows:

LGAN-A = EA∈A

[
log{DA(A)}

]
+EB∈B

[
log{1−DA(GA(B))}

]
, (6.11)

LGAN-B = EB∈B

[
log{DB(B)}

]
+EA∈A

[
log{1−DB(GS(A))}

]
, (6.12)

LCYCLE = EA∈A

[
∥GA(GB(A))−A∥1

]
+EB∈B

[
∥GB(GA(B))−B∥1

]
, (6.13)

where ∥ · ∥1 is the L1 norm.

6.3 Experimental Settings

6.3.1 Key Steps of the Targeted Saloon Models
As discussed in Section 6.2.2, the car image processing module identifies the representative

body lines from side-view images of various car models. Fig. 6.3.1 displays the original side-
view images of the ten targeted saloon models and their intermediate processing results from
each step.

6.3.2 Using of Sobel Edge Detection
As described in Section 6.2, the SED takes raw car images as the input and generates sketch

images. In our experiments, we follow Pratt (1978) and Gonzalez et al. (2004), and adopt the
following settings:

λR = 299, λG = 587, λB = 114,

Φ1 =

−1 0 1
−2 0 2
−1 0 1

 , Φ2 =

−1 −2 −1
0 0 0
1 2 1

 .
The SED with the above settings works very well in our context. It captures lines and

shapes of the car in the given raw image, and converts them into sketches accordingly. Other
more advanced edge detection algorithms (e.g., the HED) can also be used in our framework to
replace the SED. However, according to Occam’s razor (Schaffer, 2015), the simpler algorithm
or method (i.e., the one with fewer parameters) is to be preferred. In our study, compared to the
HED, the SED can achieve comparable performance for car sketch generation while it is simpler
and computationally faster.
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Figure 6.3.1: Summary of the key steps of the proposed design framework.

6.3.3 Optimal SMM Selection
As described earlier in Section 6.2.1, 1,645 frames of the running cheetah can be obtained

from our collected video data, and they can be clustered into 14 SMMs. Each SMM can be
represented or visualised as a heatmap image by stacking consecutive curve images.

Three metrics are used to evaluate different aspects of SMMs. First, the noise metric can
capture the appearance of noise. Within our context, the noise refers to the discontinuity of
cheetah body curves. In some images, the curves might be regionally discontinued due to the
blueness of the cheetah body shape in the original images, when there is no clear colour contrast
between the background and the cheetah body. We use the noise metric to measure the cleanness
of the stacked curves because it is pixel sensitive so the metric signs the SMM with discontinuous
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Table 6.3.1: Selection of the SMM.

SMM Noise Rank Density Rank Straightness Rank Total rank
Frames 1360 to 1400 0.303 11 0.24 12 1.669 10 12
Frames 1410 to 1440 0.164 2 0.16 2 1.56 5 1
Frames 1445 to 1475 0.271 8 0.171 3 1.529 3 4
Frames 1860 to 1905 0.23 3 0.2 6 1.349 1 2
Frames 1910 to 1955 0.33 14 0.24 11 1.456 2 10
Frames 2385 to 2440 0.248 6 0.216 9 1.672 11 8
Frames 3590 to 3630 0.263 7 0.202 7 1.676 12 9
Frames 3760 to 3810 0.245 5 0.216 8 1.532 4 6
Frames 3815 to 3870 0.319 12 0.256 13 1.604 7 11
Frames 5580 to 5615 0.152 1 0.118 1 1.657 9 3
Frames 5885 to 5920 0.287 10 0.189 5 1.586 6 7
Frames 5925 to 5985 0.231 4 0.178 4 1.643 8 5
Frames 6735 to 6790 0.28 9 0.239 10 1.725 14 13
Frames 6795 to 6850 0.329 13 0.263 14 1.72 13 14

curves. Mathematically, it can be computed as follows:

noise =

√
π/2

6(W −2)(H −2)∑
w,h

(ϒ∗X), (6.14)

where X is the input image (single channel), W and H are the width and height of the input
image, π is the mathematical constant, ∗ represents the convolution operation, and ϒ is the
kernel matrix, given by

ϒ =

 1 −2 1
−2 4 2
1 −2 1

 .
Second, the density metric can measure the degree of concentration, that is, how compact a

cheetah body curve point shown in specific positions. A higher density score here indicates the
cheetah has held the corresponding body posture for a longer period during the motion, therefore
resulting in more curves stacked on the same positions. The density metric can be computed as

density =
∑w,h IX(w,h)>ε

W ·H
, (6.15)

where ε is a threshold constant, IX(w,h)>ε indicates whether the pixel X(w,h) is larger than ε .

Last, the straightness metric can measure the average Euclidean distance between curve
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Figure 6.3.2: Robustness check of the ranking for frames in “1410 to 1440”.

points. It indicates how relatively straight an extracted curve is and whether it contains discon-
tinued parts. We design this measure because our analysis shows many existing car body curves
are relatively straight, compared to cheetah. The straightness metric can be computed as

straightness =
1

Ñ

Ñ

∑̃
n=2

[
(xñ − xñ−1)

2 +(yñ − yñ−1)
2
]1/2

, (6.16)

where x and y are the point coordinate for Ñ curve points sorted according to their x position.

Table 6.3.1 presents the computed three metrics for clustered 14 SMMs of our cheetah data,
their corresponding rankings, and the final ranking. Here the final ranking is calculated based
on the equal weights of three metrics so frames in “1410 to 1440” are selected as the best SMM.
We also check the robustness of this selection by investigating different weight combinations of
metrics. Figure 6.3.2 shows that frames in “1410 to 1440” rank in the first position more than
80% of cases, which verifies our SMM selection.

6.4 Empirical Investigation
This section presents the results of our empirical investigation. We start with a pretest to

examine whether activating the cheetah schema indeed prompts schema congruity of sports sa-
loons as we hypothesised in Section 6.2.1. We then run another study to establish observational
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evidence for the proposed design framework by automatically generating different aesthetics
designs of sports saloons and to evaluate consumer’s preference.

6.4.1 Pretest of Schema Activation
We test the hypothesis if consumers would rate the same automobile more sporty or more

dynamic looking when we activate the cheetah schema. A total of 220 survey participants were
recruited via the Amazon Mechanical Turk (in short MTurk). To ensure quality of our responses,
all the participants met the following criteria: (i) resides in the United States; and (ii) has more
than 500 tasks completed and approved on the MTurk, with approval rate no less than 99%.

Pretest Design

Our pretest has a two by one between-subject design. Participants were asked to evaluate
the design of a new car, and they were randomly assigned to the cheetah and control conditions.
In both conditions, we display an identical car image to the participants and tell them that the
engineers have worked to improve the overall appearance of the car (see Figures 6.4.1-6.4.2).
The only difference between the two conditions is that in the cheetah condition, as shown in
Figure 6.4.2, participants were displayed with both car and cheetah images, and they were told
that the overall appearance of the car has been inspired and modelled after cheetah, the fastest
land animal on earth. Next, participants in both conditions evaluated the appearance of the car
on four 9-point Likert scale (i.e., 1 = "Strongly Disagree" and 9 = "Strongly Agree") questions
regarding whether: “(i) this car can accelerate very fast; (ii) this car is exotic; (iii) this car is fast;
and (iv) this car is powerful”. On average, participants took 118 seconds to complete the survey.
Responses from eight participants were dropped because the duration of their response time was

Figure 6.4.1: Example of the control condition in the survey.
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Figure 6.4.2: Example of the cheetah condition in the survey.
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Figure 6.4.3: Users’ responses to aesthetics design, where ∗∗ represents the p value less
than 0.01.

either less than a half minute or more than an hour.

Results

Figure 6.4.3 presents the results of our pretest. We discover that, although the exactly same
car image was shown in both conditions, participants in the cheetah condition perceived the car
to accelerate faster (Mean(cheetah)

acceleration = 6.80 vs Mean(control)
acceleration = 6.09 and p= 0.002), more exotic

(Mean(cheetah)
exotic = 4.81 vs Mean(control)

exotic = 4.02 and p = 0.010), faster (Mean(cheetah)
fast = 6.72 vs

Mean(control)
fast = 6.00 and p = 0.004) and more powerful (Mean(cheetah)

powerful = 6.48 vs Mean(control)
powerful =
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5.84 and p = 0.009). Overall, the pretest provides support for our conjecture that activating the
cheetah schema enhances consumers’ perception about the sportiness of car image, even when
the appearance of the car was kept constant. Such encouraging results from our pretest lead us to
continue our investigation into whether consumers indeed prefer the aesthetics of sports saloon
more when we employ a bio-inspired automobile design as detailed in Section 6.2.

6.4.2 Bio-Inspired Aesthetics Design
We then conduct a proof of concept study in which we ask participants to select their most

preferred aesthetics design for ten popular sports saloons. For each car model, we provide
a spectrum of aesthetic designs ranging from its original look to low/moderate/considerable
changes in shoulder and waist curves generated from the deep generative model as described in
Section 6.2.

We selected ten popular sports saloons (five luxury and five economy models) based on the
2019 automobile rankings from U.S. News and JD Power.9 Specifically, our empirical investi-
gation includes Mercedes C Class, BMW 3 Series, Audi A4, Cadillac CT4, and Lexus IS for
luxury sports saloons; and VW Passat, Ford Fusion, Toyota Camry, Honda Accord and Mazda
6 for economy sports saloons.

Our proposed design framework mainly uses the CycleGAN for design generation. Differ-
ent to conventional supervised learning problems where there is a metric to evaluate the model’s
performance for the in-sample and out-of-sample data, training the CycleGAN that can gener-
alise well in design generation is a challenging task. Thus, we perform two operations in model
training to avoid the situation that the CycleGAN only learns the design patterns from the tar-
geted models (i.e., over-fitting). First, we collect car side-view images of 50 different saloon
models from 36 automakers from autotrader.com. For each model, 20 side-view images are
sampled from the cars registered between 2010 and 2019. Second, to further incorporate more
design patterns and variations, the collected images are augmented with random cropping which
results in 280,000 car images in total (i.e., 20x14 possible positions per each image). For the
reader’s reference, the key processing steps of the proposed design framework for the targeted
saloon models are provided in Figure 6.3.1.

Next, we generated 20 morphed images for each of the ten car models in our focal study, with
the morphing parameter β ranging from 0 and 0.7. Figure 6.4.4 provides three cheetah-inspired

9URL: https://cars.usnews.com/cars-trucks/rankings/used/2019-luxury-small
-cars (U.S.News); and https://www.jdpower.com/cars/saloons/10-most-popular-midsi
ze-cars (J.D.Power).
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𝛽 = 0 𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1

Figure 6.4.4: Illustration of new designs of BMW 3 Series generated by the proposed
framework.

design examples for BMW 3 series, including the design when β = 1. One can easily describe
the differences of modifications between the designs when the value of morphing parameter
β increases. When more cheetah features are incorporated (i.e., increasing β ), the shoulder
and waist curves of the car become shorter and curvier like the running cheetah. Therefore,
Figure 6.4.4 shows that by adjusting the morphing parameter, our framework can quantify the
design generation and can support the decision-making in the automotive design process for
designers by offering a number of new designs inspired by cheetah. Also, although 100% mor-
phing is achievable (i.e., β = 1), it is very unlikely that automotive manufacturers would use the
exact same shape of curves from the running cheetah in automotive design. We further created
a survey that contains ten pages, with each page corresponding to one of the sports car models
in our study. In each page, we present a drag bar in which the survey participant can move the
bar on the slider back and forth to different locations to view different aesthetic designs of the
car model. Each participant is shown 21 different designs of the focal car model, with 0 being
the car’s current look and 20 being the most significant change in this look as generated based
on the approach outlined in Section 6.2 above.

Study Design

We carry out a survey study to explore whether consumers prefer the cheetah-inspired auto-
mobile designs more than their original look. A total of 212 participants were recruited via the
MTurk. To ensure high quality responses to our survey, only participants satisfying the follow-
ing criteria were allowed to take part in our study: (i) the participants are located in the United
States; and (ii) they have more than 500 approved tasks on MTurk, with approval rates not less
than 99%. Our survey included a video-based instruction and two attention check questions
to ensure that the participants understood and paid attention to our survey questions. The par-
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Figure 6.4.5: Example of design selection for BMW 3 Series in the user survey study.

ticipants would be disqualified to take part in the study if they provided wrong answers to the
attention check questions. During the survey, participants were displayed with our targeted ten
saloon models and were told to identify the most appealing designs to them for each of the ten
sports saloons in our study. For each model, they were instructed to drag the scroll bar back
and forth until they found the most appealing look to them.10 The participants took 313.66 sec-
onds on average to complete the survey. The survey duration of all participants appeared to be
reasonable, with no one providing the same responses to all ten sports saloons in our study.

Figure 6.4.5 presents an example of design selection for BMW 3 Series. Participants can
choose their preferred design using the scroll bar, where 0 represents the current design (i.e.,
β = 0) and 20 represents the most significant change in design (i.e., β = 0.7). Thus, we set the
upper bound 0.7 for β in the empirical study to allow a certain level of cheetah features can be
incorporated as well as to have a finer scale of survey questions in exploring consumer response.

Results

We compare the original design and the new design preferred by the participants, which
is measured by taking the average of their morphing responses. In order to better quantify
and compare the original and the new designs, we detect the shoulder and waist curves using

10URL: https://youtu.be/-DJls9uy-oA
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Original design New design

Figure 6.4.6: Comparison of original and new designs for BMW 3 Series, where the blue
box highlights the shoulder curve and the red box highlights the waist curve; the width
(W), the height (H) and the central position (C) of each box in the car side-view image are
presented.

rectangular boxes, and report their position related measures such as width (W), height (H) and
central position (C). It should be noted that the central position contains both horizontal and
vertical values of the box’s centroid. Figure 6.4.6 presents an illustration example of BMW 3
Series. Notable changes can be seen in the new design, where waist and shoulder curves have
a smaller width and a shorter height. The central position of the waist curve moves towards the
front of the car while the waist curve moves a little backward. It is our belief that such changes
have made the car appear to be more aesthetically.

In Figures 6.4.7 and 6.4.8, we compare the preferred new designs with the original designs
for our target premium and mainstream sedans, respectively. To more clearly highlight the
differences, the rectangle boxes are omitted in these figures. However, the measurements for the
waist and shoulder curves, including width, height, and central position, are still displayed.

Saloon models can be broadly categorised into three types based on their original shoul-
der curve design: Short Shoulder Curves: This category encompasses the BMW 3 Series and
Mazda 6, which have shoulder curves that situate near the front wheel. The redesigned curves
for both are even shorter and have more pronounced curvature. Specifically, the curve shifts
slightly forward for the BMW 3 Series and moves backward for the Mazda 6. Medium-Length
Shoulder Curves: The Mercedes C Class and Toyota Camry belong to this group. Their shoul-
der curves are moderately long, positioned around the centre of the car body. The redesigned
versions of these models see a significant reduction in both the length and height of these curves,
imbuing the cars with a sportier appearance. Long Shoulder Curves: Saloons in this category,
particularly the Audi A4, VW Passat, and Ford Fusion, have extensive shoulder curves, account-
ing for more than 70% of the car body’s length. These curves span from the car’s front to its
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Original design New design

Mercedes C Class

BMW 3 Series

Audi A4

Cadillac CT4

Lexus IS

Figure 6.4.7: Original and new designs of the targeted premium saloons.

rear. Redesigns for these models experience a considerable length reduction of around 25%.
Such categorisation provides a framework to understand design modifications in relation to the
original shoulder curve structure.

Regarding the waist curve, the target sedan models can also be grouped into three categories:
Short and Low Waist Curves: Lexus IS fall into this category. They feature waist curves that
are shorter in length and situated lower. The redesigned models see reductions in both the widths
and heights of these waist curves, with their positions shifting upwards. Moderate-Length but
High Waist Curves: Toyota Camry represents this group. Its waist curve is moderately long
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Original design New design

VW Passat

Ford Fusion

Toyota Camry

Honda Accord

Mazda 6

Figure 6.4.8: Original and new designs of the targeted mainstream saloons.

but occupies the highest position among the models. The redesign leads to reductions in both
its waist curve’s width and height, while the position descends. Various-Length Waist Curves:
The remaining sedan models make up this category. In their new designs, the width of the waist
curves generally reduces. However, the height of these waist curves either increases or remains
unchangedwith the exception of the BMW 3 Series, which sees a height reduction. Overall,
participants’ preferred designs consistently lean towards shorter and curvier shoulder and waist
curves, combined with a more distinct slope.

In comparison to the original models, some sedans in our study exhibit more pronounced
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modifications based on consumer preference, while others display subtler, yet discernible changes.
Intriguingly, participants preferred a slightly greater morphing intensity for premium sedans
than mainstream ones (Meanpremium = 0.311 vs. Meanmainstream = 0.297, p = 0.087). This indi-
cates a stronger inclination towards the cheetah curve design for luxury vehicles. Moreover, the
sportier sedan models, characterized by more pronounced shoulder and waist curves, registered
even higher morphing preferences (Meansporty = 0.327 vs. Meanregular = 0.304, p = 0.014),
signifying the versatility of our design approach across sedan categories.

6.5 Summary
As the last piece of my PhD works, this chapter proposes a bio-inspired automotive aesthet-

ics design upgrading using CycleGAN. We provide a proof-of-concept design process using the
example of sports saloon facelifts as inspired by the fastest land animal on earth, cheetah. Results
show that consumers indeed find the cheetah-inspired new automobile design to be more aes-
thetically appealing. This study has two main contributions. First, unlike the previous chapters,
this chapter focuses on upgrading the side-view designs, showing deep learning-based design
upgrading is not confined to particular viewpoints. Second, as the originality is restricted in
data-driven models, our developed approach offers a method of acquiring novel design features
that are not sourced from existing designs.
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Chapter 7

Conclusions and Future Work

This chapter will summarise the key findings from my PhD and the primary contributions of this
thesis. Meanwhile, it discusses a few future research directions.

7.1 Conclusion and Contributions
As mentioned in Chapter 1, the present PhD thesis aims to apply deep learning algorithms

to automotive aesthetic design and analytics by developing frameworks that can both deliver
graphic upgraded designs and offer optimal marketing decision suggestions. In particular, four
research questions are proposed to address: (i) How to use generative models to upgrade extant
car appearance designs regionally? (ii) How to develop data-driven models that can automat-
ically evaluate car designs in aesthetics? (iii) How to incorporate the design generating into a
profit optimisation framework, which can assess unseen designs in terms of the potential market
profit? (iv) How to incorporate visual cues such as animal-inspired features into the automo-
tive design to have novel designs? Through Chapters 3 to 6, four of studies have been done to
address these research questions. In particular:

• In Chapter 3 (DVM-CAR Dataset), we developed the very first large-scale automotive
dataset that contains 1.4 million images from other car specifications. On the one hand,
the developed dataset offers a sound data base for my PhD, which supports various auto-
motive styling-related studies. On the other hand, the development of DVM-CAR dataset
meets the growing need for a comprehensive automotive dataset for applying machine
learning to product design, which can be used for different types of analytics, ranging
from descriptive to diagnostic, predictive and perspective.
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• In Chapter 4 (GEO), we developed a three-module framework that contains a design
generator, design evaluator and decision optimiser, which provides end-to-end decision-
support solutions for automotive designers and manufacturers. Different from previous
studies that employed deep generative models for automotive design generating, our study
focuses on offering regional design upgrades rather than new designs, where the primary
shape of existing car models is untouched. Meanwhile, this study is the first work incor-
porating design generating into a profit optimisation framework.

• Chapter 5 (Trendiness) added to the discussion of the impacts of trendiness/modernness
in product styling and offered solutions to upgrade the car’s front when it is outmoded.
Different from Chapter 4, the image completion model is adopted for design upgrading,
which is not affected by the feature entanglement problem. The main innovation is to
have the system learn, define and score trendiness from existing car front images, which
in turn produces massive unpresented but highly scored modern designs.

• In Chapter 6 (Animism), we proposed an approach that can identify noteworthy curves
from the cheetah body and incorporate them into the automotive side’s design. It is the
first study that developed a data-driven computational method for bio-inspired automotive
aesthetic design. As a complementary investigation to the previous two studies, it focuses
on upgrading the car’s side designs, showing that automotive design upgrading is not
limited to particular viewpoints. Moreover, this study demonstrates a practical way of
having originality in design that is not constrained by the used training samples.

7.2 Directions for Future Work
• Tailored Optimisation Algorithms for Variant Settings

Although we have developed an optimisation algorithm for design selection, the proposed
algorithm is rather straightforward regarding the problem’s complex nature. It is foresee-
able that with a few prior works that integrate deep generation into product design opti-
misation, more researchers will be attracted and interested in joining the relevant studies.
Therefore, developing more sophisticated algorithms for the decision-making of automo-
tive facelifts is a promising direction with many possible topics. For example, we can alter
the optimisation problem to a constraint one by estimating the achievable design space.
That is, researchers can use the trained GAN model to compute the facelift’s market posi-
tioning range in the aesthetic space for optimal solution searching. Or have the multiplayer
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games setting by clustering cars in market subgroups, where each group member is the
contender for others within the same submarket. In short, the integration of generative
methods could make product optimisation problems more tangible and exciting.

• In Chapter 5, we try to predict the future aesthetic preference shift in the automotive mar-
ket without discussing the underline reasons or mechanisms for fashion changes. Psycho-
logical studies regarding typicality, such as Hekkert et al. (2003), show consumers have
a strong tendency to prefer products with highly representative looks. Landwehr et al.
(2009) marked that typicality, together with complexity, explains 42 per cent of the varia-
tion within six months of car sales records from the German Federal Transport Authority.
It is likely that the evolution of fashion changes in the automotive market is driven by
the shiting of typicality – as time pass, the newly launched cars would gradually change
consumers’ images of cars in various submarkets. To this end, researchers can apply deep
models to construct prototypical designs in different years and then investigate whether
such changes could explain the shifts in automotive sales.

• Aesthetics in Used Car Valuation
My PhD studies show that deep neural network models can successfully identify the crit-
ical aesthetic factors for new car sales when large-scale data is available. However, little
is known to what extent aesthetic factors determine the depreciation of cars. Existing
studies (Englmaier et al., 2018; Huang et al., 2019) found the depreciation of car values
is affected by multiple aspects, such as the discontinuity in prices and the fluctuating de-
mands. Particularly, investigations can be done to verify the widely held arguments that
whether design with more complex styles makes a car more vulnerable to value deprecia-
tion and do the showy colours make cars unattractive in the used market.

7.3 Potential Impact and Transferability
From a research standpoint, our study can be viewed as extending traditional product design

optimisation by creating a graphical design space using deep generation techniques for optimal
design searches. In contrast to our approach, traditional research methods use attribute profiles
to represent designs, using scores to highlight design characteristics like sportiness and moder-
nity. As this approach simplifies the task by bypassing the need for graphical designs, it is less
appealing to practitioners. Automakers typically prefer tangible design solutions that can inform
their decision-making processes. Given these factors, we anticipate that our approach, which in-
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tegrates deep generative models with the product design optimisation framework, will garner
significant interest from the broader research community.

Regarding transferability, our application of deep learning to car exterior design generation
and evaluation provides a model that can be replicated across different commodities. While in-
terest in machine learning has grown within business academia, substantial research and tangible
applications are still sparse. Our approach exemplifies both rigorous research and the practical
use of advanced machine learning technologies in the product design domain. The performance
of deep learning models often depends on the amount of data available. Our methods used for
studying car exterior design can easily be adapted to other products, with the main challenge be-
ing data collection and preparation. From this viewpoint, the limited use of machine learning in
business often stems from reluctance to share valuable research datasets. Our work in collecting,
processing, and structuring automotive data could set a precedent for analogous research.
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