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Abstract 

Viruses are intracellular parasites that hijack their hosts’ cellular machinery to 

replicate themselves. This creates an evolutionary “arms race” between hosts and 

viruses, where the former develop mechanisms to restrict viral infection and the 

latter evolve ways to circumvent these molecular barriers. In this thesis, I explore 

examples of this virus-host molecular interplay, focusing on events in the 

evolutionary histories of both viruses and hosts. The thesis begins by examining 

how recombination, the exchange of genetic material between related viruses, 

expands the genomic diversity of the Sarbecovirus subgenus, which includes 

SARS-CoV responsible for the 2002 SARS epidemic and SARS-CoV-2 responsible 

for the COVID-19 pandemic. On the host side, I examine the evolutionary interaction 

between RNA viruses and two interferon-stimulated genes expressed in hosts. First, 

I show how the 2′-5′-oligoadenylate synthetase 1 (OAS1) gene of horseshoe bats 

(Rhinolophoidea), the reservoir host of sarbecoviruses, lost its anti-coronaviral 

activity at the base of this bat superfamily. By reconstructing the Rhinolophoidea 

common ancestor OAS1 protein, I first validate the loss of antiviral function and 

highlight the implications of this event in the virus-host association between 

sarbecoviruses and horseshoe bat hosts. Second, I focus on the evolution of the 

human butyrophilin subfamily 3 member A3 (BTN3A3) gene which restricts infection 

by avian influenza A viruses (IAV). The evolutionary analysis reveals that BTN3A3’s 

anti-IAV function was gained within the primates and that specific amino acid 

substitutions need to be acquired in IAVs’ NP protein to evade the human BTN3A3 

activity. Gain of BTN3A3-evasion-conferring substitutions correlate with all major 

human IAV pandemics and epidemics, making these NP residues key markers for 

IAV transmissibility potential to humans. In the final part of the thesis, I present a 

novel approach for evaluating dinucleotide compositional biases in virus genomes. 

An application of my metric on the Flaviviridae virus family uncovers how ancestral 

host shifts of these viruses correlate with adaptive shifts in their genomes’ 

dinucleotide representation. Collectively, the contents of this thesis extend our 

understanding of how viruses interact with their hosts along their intertangled 

evolution and provide insights into virus host switching and pandemic preparedness. 
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Cartoon model of adenine. 

PDB ligand entry: ADE, visualised with ChimeraX. 

 

 

“The affinities of all the beings of the same class have sometimes been 

represented by a great tree. I believe this simile largely speaks the truth.” 

Charles Darwin, On the Origins of Species (1859)  
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1.1 Virus phylogenetics 

Viruses are the group of the most diverse genetic entities in our planet, and although 

they depend on their hosts to replicate, they employ an immense range of 

mechanisms to interact with these hosts (Wasik and Turner, 2013; Harvey and 

Holmes, 2022). This unparalleled diversity bears the question of how viruses came 

to be, but also how they continue to evolve. Virus taxonomy is essential for 

understanding how these genetic entities relate to one another but also for 

predicting their phenotype and range of hosts they can infect. In the early years of 

virus taxonomy, isolates were characterised based on virion morphology, type of 

nucleic acid and other experimentally determined physical attributes (Simmonds et 

al., 2023). With the rapid expansion of sequencing technologies and the 

ubiquitousness of viruses in essentially every biological sample, the mass of known 

viruses (or at least their genome sequences) has increased exponentially in recent 

years. This requires new dynamic systems for classifying viruses whether that is 

broad scale classification or characterising the evolution of circulating viruses in 

action (Rambaut et al., 2020; Simmonds et al., 2023). Key to modern virus taxonomy 

and classification is the inference of how different viruses relate to one another 

based on their genetic sequence. 

A phylogeny (derived from the Greek: φῦλον [phûlon], meaning "tribe", and the suffix 

-γενής [-geny], meaning "producing"; Whitney and Smith, 1911) or phylogenetic tree 

is a structure representing how organisms or genes are related to one another. 

These tree-like structures have three key features: i) tips: representing known 

organisms or genes, ii) branches: representing evolutionary time, and iii) nodes: 

representing points in time when branches diverged from one another. By using 

techniques described later on in this chapter, one can infer the phylogeny of groups 

of viruses based on their genetic sequences. Exploring the evolutionary relatedness 

of viruses can provide unique insights into their biology and epidemiology. On the 

fine scale – looking at phylogenies of closely related viruses – we can observe these 

pathogens’ evolution in action, track their spread and monitor genomic changes that 

may impact their transmissibility and pathogenicity, perfectly exemplified by the 

molecular epidemiology effort conducted for the COVID-19 pandemic (Oude 

Munnink, Worp, et al., 2021). On the broader scale – looking at phylogenies of 

distantly related viruses – we can make inferences about the origins of virus groups 

and host switches they may have experienced in their past (Koonin, Dolja and 
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Krupovic, 2015). Throughout this thesis, virus phylogenetics will be used as a tool 

to explore virus origins, genetic diversity, and their tightly linked interactions with 

their hosts’ evolution. 

 

1.2 Arms-race evolution between viruses and hosts 

All kingdoms of life are infected by viruses in what is a truly ancient, entwined 

interaction between viruses and their hosts (Koonin et al., 2008; Aguado et al., 

2017). Throughout this evolutionary history, hosts have been continuously adapting 

to minimise the impact of viral infection and viruses have been adapting to persist 

and evade the hosts’ barriers. For example, it is estimated that viruses are one of 

the primary causes of adaptive protein evolution in mammalian genomes (Enard et 

al., 2016), consistent with the notion that parasitism is a key driver in hosts’ adaptive 

evolution. As a result, both hosts and viruses are constantly engaged in an arms 

race between their evolutionary landscapes and trajectories, i.e. the available paths 

they can take in their evolution (Tenthorey, Emerman and Malik, 2022). There are 

three main levels at which virus-host evolution can take place in: i) Cellular entry: 

viruses are intracellular parasites and require entry into host cells for their 

replication. This is normally facilitated by biophysical interactions between viral 

proteins on the outside of the virion and molecules (receptors) on the outside of the 

host cell. Both viral entry proteins and host receptors experience adaptive changes 

that determine which strains of a virus group can infect specific members of a host 

group (Guo et al., 2020; Fujita et al., 2023). Receptor binding is simply an example 

of how the viruses initially enter the cells, but certainly the most tangible, binary 

interaction of cellular entry. Mode of virus transmission and physical barriers of 

getting to the cells can also considered as part of this first interaction level. ii) 

Adaptive immunity: hosts can mount antiviral responses specific to the viruses that 

infect them and retain the memory of infection to fend off future infection by the 

same virus. For example, vertebrates possess antibody-mediated adaptive 

immunity where diverse antibodies that target the virus antigen can be produced by 

B cells undergoing somatic hypermutation (Litman, Rast and Fugmann, 2010; 

Victora and Nussenzweig, 2012). This adaptive development of immunity against 

specific viral antigens can match the pace of virus evolution and many well-studied 

human-circulating pathogens are known to be under constant antigenic evolution as 
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a response to adaptive immunity (Petrova and Russell, 2017; Eguia et al., 2021). iii) 

Innate immunity: apart from the more complex adaptive immunity, hosts possess 

antiviral mechanisms that restrict viral replication or transmission directly upon 

infection. In this case, innate immunity mechanisms cannot adapt or evolve within 

an individual, but instead need multiple generations and strong selection by the viral 

pathogens infecting a given host group (Tenthorey, Emerman and Malik, 2022). 

Hence, innate immunity usually acts as a barrier against viruses switching between 

diverse host groups.  

During my PhD, I have focused on studying the arms race evolution between viruses 

and their hosts’ innate immunity. More specific examples of such restriction factor 

interactions will be detailed within the following chapters, but a good illustrative 

example of such interactions for the purposes of this general introduction is the 

Apolipoprotein B editing complex 3 (APOBEC3) proteins (Sheehy et al., 2002). The 

APOBEC3 gene group has experienced a recent expansion through multiple 

duplication events – primates having seven members – and encode cytidine 

deaminases that lead to hypermutation in viral genomes (Stavrou and Ross, 2015). 

APOBEC3G can restrict HIV-1 by inactivating the virus through hypermutation 

(Armitage et al., 2012). However, HIV-1 and many related lentiviruses possess a 

gene encoding the virion infectivity factor (Vif) protein which directly counteracts 

APOBEC3G’s antiviral activity (Harris et al., 2003; Gifford, 2012).  Deleting Vif from 

HIV-1 largely decreases infectivity in the presence of human APOBEC3G, although 

mouse APOBEC3G restricts HIV-1 regardless of Vif being present (Mariani et al., 

2003). This suggests a close, host group-specific interaction between Vif and 

APOBEC3 restriction factors. Functional analysis of the APOBEC3G genes of old 

world monkeys shows signatures of adaptive variation in the proteins relating to 

antagonism by Vif (Compton and Emerman, 2013). Furthermore, the primate 

paralogue of APOBEC3G, APOBEC3F, can also restrict HIV-1 but Vif also 

counteracts this protein through a distinct mechanism to that of APOBEC3G evasion 

(Russell and Pathak, 2007). All these findings illustrate an ongoing arms race 

between primate hosts evolving new ways to restrict retrovirus infection, and 

retroviruses adapting host-specific mechanisms to evade these. 

APOBEC3 restriction factors are an interesting example of virus-host interactions 

because their hypermutation effect seems to not be completely deleterious for all 

viruses, as in the case of HIV-1 (Armitage et al., 2012). An outbreak of MPXV 
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(Monkeypox virus) was detected in early May 2022 in humans, signifying a recent 

introduction of the virus into humans from a currently unknown animal reservoir 

(Kraemer et al., 2022; World Health Organization, 2022b). Analysis of available 

genomes collected during and before the 2022 outbreak showed that the virus was 

likely introduced to humans around 2016, with this human-circulating clade 

possessing many more substitutions than would be expected from other MPXV 

lineages (O’Toole et al., 2023). Interestingly, the pattern of “excess” mutations in 

this human clade is fully consistent with APOBEC3 DNA deamination in terms of the 

type of substitutions and context of mutated sites (Forni et al., 2023; O’Toole et al., 

2023). Unlike HIV-1’s “all or nothing” interaction with these restriction factors, it 

seems that MPXV – a dsDNA virus with a much larger genome – can tolerate the 

mutational effect of APOBEC3 deaminases, and this host-specific effect is being 

“imprinted” onto the virus genome. In this thesis, I will explore examples of both “all 

or nothing” interactions, where virus adaptations are necessary to infect hosts with 

unique restriction factors, and tolerant interactions, where host-specific molecules 

imprint unique signatures on the virus genomes. 

 

1.3 Interferon-stimulated genes (ISG) against virus infection 

The interferon (IFN) response is an evolutionarily conserved mechanism of the 

vertebrate innate immune response, acting as the first, post-entry, defence against 

intracellular parasites including bacteria, viruses and other parasites (Schneider, 

Chevillotte and Rice, 2014). Briefly, interferons are secreted from an infected cell to 

neighbouring cells leading to activation of the Janus kinase signal transducer and 

activator of transcription (JAK-STAT) pathway and the cells changing their 

transcriptional state (Stark and Darnell, 2012). The genes that are upregulated 

through this process are referred to as interferon-stimulated genes (ISGs). These 

can differ between host species, although many orthologues have conserved ISG 

function across mammals or even vertebrates and are referred to as ‘core 

mammalian ISGs’ and ‘core vertebrate ISGs’ respectively (Shaw et al., 2017). ISGs 

can have diverse functions primarily relating to the mounted immune response. Most 

core ISGs linked to antiviral immunity have functions involving: i) pattern recognition 

such as RNA-sensing, ii) transcription factors for further gene activation and 

repression, iii) modulating antigen presentation, ubiquitination and protein 
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degradation (Shaw et al., 2017). ISG functions, however, can be rather modular 

depending on the host species or the viruses being targeted (Schneider, Chevillotte 

and Rice, 2014). Different ISGs can target any part of the virus lifecycle, but three 

most frequently targeted points are: i) inhibiting virus entry by preventing viral 

components from reaching their cellular destination, e.g. the IFN-inducible 

transmembrane (IFITM) gene family; ii) inhibiting virus replication and translation 

primarily by binding to RNA and degrading it or disrupting translation initiation, e.g., 

the zinc-finger antiviral protein (ZAP), the IFN-induced protein with tetratricopeptide 

repeats (IFIT) family and the OAS-RNaseL pathway; and iii) inhibiting viral egress 

by interfering with virus budding (mainly for enveloped viruses), e.g., tetherin (Stark 

and Darnell, 2012; Schneider, Chevillotte and Rice, 2014; Shaw et al., 2017). The 

large diversity of ISG functions is partly due to their rather loose definition as genes 

induced by any type of IFN molecules, as well as their elusive nature since they are 

transiently co-opted host genes (Schoggins, 2019). The subset of ISGs relevant to 

the content of this thesis, their interactions with specific viruses and relevance to 

virus host switching will be described in detail in the following chapters. 

 

1.4 Zoonotic coronaviruses in humans 

The coronaviruses are single-stranded, positive-sense RNA viruses with some of 

the longest RNA genomes of about 30,000 bases. The Coronaviridae family falls 

under the Nidovirales order with the four most important genera for agriculture and 

public health being the Alphacoronavirus, Betacoronavirus, Gammacoronavirus and 

Deltacoronavirus (Islam et al., 2021; Marchenko et al., 2022). Their genome 

organisation consists of a long polyprotein gene on the 5’ end of the genome 

encoding for the polymerase and other non-structural proteins, followed by the 

structural genes (Spike, Envelope, Matrix and Nucleoprotein) and a variable number 

of accessory genes on the 3’ end of the genome (Woo et al., 2023). Based on the 

wide genetic diversity within the group, coronaviruses are an ancient family sharing 

a common ancestor many millions of years in the past throughout which they have 

been interacting with and switching between their respective hosts (Wertheim et al., 

2013). Alpha and Betacoronaviruses are primarily found in bats, while Gamma and 

Deltacoronaviruses are found in birds, which are thought to be the ancestral host 
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groups of the genera respectively (Chan et al., 2013). Currently, members of all four 

genera are known to circulate across a wide range of vertebrate hosts. 

To date, there are at least ten coronaviruses known to have transmitted from an 

animal reservoir to humans, three of which have a putative rodent origin (HKU1) 

potentially through a cattle intermediate (OC43 and HECV-4408), five likely 

originating in bats (229E, NL63, MERS-CoV, SARS-CoV and SARS-CoV-2), one of 

a canine-feline origin (CCoV-HuPn-2018) and one of porcine origin (Hu-PDCoV) 

(Zhang et al., 1994; Forni et al., 2017; P. Zhou et al., 2020; Lednicky et al., 2021; 

Vlasova et al., 2022). These range from old spillovers, now endemic in humans, to 

recent epidemic and pandemic viruses, to one-off animal-to-human transmission 

chains. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had 

the greatest documented impact on global health, being responsible for the COVID-

19 pandemic, and it can be traced to horseshoe bats of the genus Rhinolophus (P. 

Zhou et al., 2020). Since the end of 2019 there have been more than 700 million 

confirmed cases of COVID-19 and almost 7 million deaths globally, although these 

are likely underestimates of the true burden this virus has had on global health 

(World Health Organization, 2023b). Chapters 2 and 3 of this thesis, will focus on 

the evolution of SARS-related coronaviruses through the process of recombination 

and how these viruses interact with their reservoir hosts, leading into what these 

insights mean for the evolution of SARS-CoV-2 in humans. 

 

1.5 Cross-species transmission of influenza A viruses 

Influenza A viruses are a genus of segmented, negative-sense, single-stranded 

RNA viruses that are part of the Orthomyxoviridae family (order Articulavirales). 

There are four genera of influenza viruses: Alphainfluenzavirus, Betainfluenzavirus, 

Gammainfluenzavirus and Deltainfluenzavirus their respective main species being 

Influenza A, B, C and D (abbreviated as IAV, IBV, ICV and IDV respectively). IAV is 

more closely related to IBV and ICV more closely related to IDV both in evolutionary 

relatedness and genome organisation (the former group having eight segments and 

the latter having seven) (Dou et al., 2018; McCauley et al., 2019). Members of all 

four genera are known to infect vertebrates, but recently, influenza-like viruses have 

also been sampled from amphibians, fish and jawless vertebrates (Parry et al., 
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2020). These viruses form sister lineages to each Influenza genus, suggesting a 

potential association of Influenza viruses with vertebrates since the host group’s 

emergence (Parry et al., 2020). All four genera contain viruses that have had great 

public health and economic impact. IBV causes seasonal disease in humans, with 

distinct clades globally circulating and evolving under antigenic pressure in the 

human population (Langat et al., 2017). Different strains also circulate in marine 

animals like seals, showing similar recurrent circulation and transmission dynamics 

(Bodewes et al., 2013). ICV is generally of lesser concern, known to infect humans 

in early childhood causing cold-like disease, also circulating in pigs, dogs and cattle 

(Sederdahl and Williams, 2020). IDV infection in cattle is of great agricultural 

concern, causing Bovine Respiratory Disease (Ruiz et al., 2022). The virus has 

never been sampled in humans although there is some serological evidence of 

potential zoonotic infections from cattle (White et al., 2016). 

The virus that has had by far the greatest impact on human health is IAV, being the 

cause of multiple human pandemics and epidemics in the last century (Kaye and 

Pringle, 2005; Paules and Subbarao, 2017). IAV strains are separated in serotypes 

based on the sequence similarity of segments four and six encoding for the two 

surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA) respectively. 

The first documented human IAV pandemic was in 1918 caused by a H1N1 strain 

which led to more than 50 million deaths (Centers for Disease Control and 

Prevention, 2019a). Then followed a H2N2 pandemic first detected in Southeast 

Asia in 1957 (Centers for Disease Control and Prevention, 2019b) and a H3N2 

pandemic in 1968 first detected in the United States (Centers for Disease Control 

and Prevention, 2019c), both of which led to about one million deaths each. The 

latter strain is the one globally circulating in the human population until today. All 

three of these pandemic serotypes had at least some of their segments derived from 

viruses circulating in wild aquatic birds which are the primary reservoir host of IAV 

(Smith, Bahl, et al., 2009). From their wild bird hosts IAVs frequently cross to other 

species, into many animals that interact with humans such as domestic poultry, 

horses, dogs and swine (Yoon, Webby and Webster, 2014). In fact, the latest IAV 

pandemic caused by a H1N1 strain in 2009 was transmitted from farmed pigs to 

humans, causing up to half a million deaths and still circulating in the population 

(Centers for Disease Control and Prevention, 2019d). Since these viruses are 

segmented, a lot of the diversity between strains accumulates through 

reassortment, the process of swapping segments between different strains following 
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co-infection of the same cell (Wille and Holmes, 2020). The host promiscuity of 

these viruses allows for frequent reassortment of their segments and constant 

transmission between host species. This is why understanding how diversity 

accumulates across IAVs’ evolution and how different strains interact with their 

potential hosts are key to preventing future Influenza pandemics. In Chapter 4, I 

explore how one primate-specific restriction factor interacts with IAV and how this 

restriction has shaped the evolution of IAV strains that have jumped into humans. 

 

1.6 The diverse hosts of the Flaviviridae 

The Flaviviridae is a diverse family of positive-sense, single-stranded RNA viruses 

in the order Amarillovirales, most of which have non-segmented genomes of about 

10kb and encode a single polyprotein that is proteolytically cleaved into individual 

peptides (Simmonds et al., 2017). The four genera currently classified by the 

International Committee on Taxonomy of Viruses (ICTV) are the Hepacivirus, 

Orthoflavivirus, Pegivirus, and Pestivirus groups, although metatranscriptomic 

studies have recently identified more diverse clades within the family (Mifsud et al., 

2023). The Pestiviruses infect mammalian hosts, but are not known to infect 

humans, being prevalent in cattle and ruminants and causing disease such as 

bovine viral diarrhoea (BVD) which has a substantial impact on global agriculture 

and economy (Riitho et al., 2020). The Pegiviruses are a sister group to the 

Hepaciviruses that also infect mammals, including humans, transmitting through 

blood, although they do not cause any known human disease and may even exhibit 

beneficial effects when infecting individuals with other chronic pathogens (Yu et al., 

2022). The best-known member of the Hepaciviruses is the hepatitis C virus (HCV) 

– from which the genus received its name – which establishes chronic infection in 

humans leading to viral hepatitis disease, with an estimated 58 million people 

affected globally (Manns and Maasoumy, 2022; World Health Organisation, 2022).  

However, the genus whose members have the greatest collective impact on human 

health is the Orthoflaviviruses. Unlike the aforementioned groups, most 

Orthoflaviviruses infect both vertebrate and insect hosts, with prevalent human 

pathogens being arthropod-borne (arboviruses), transmitting primarily through 

mosquito but also tick vectors (Conway, Colpitts and Fikrig, 2014). These include 
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Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), yellow fever virus 

(YFV), Japanese encephalitis virus (JEV) and tick-borne encephalitis virus (TBEV) 

all of which circulate in humans and cause neurotropic (e.g., encephalitis), visceral 

(e.g., hepatitis and haemorrhage) and congenital disease (e.g., infant microcephaly) 

(Pierson and Diamond, 2020). Other than the vector-borne flaviviruses, there are 

two distinct clades of flaviviruses exclusively infecting insects (the classical and 

dual-host insect-specific flaviviruses, cISF and dISF respectively) (Blitvich and Firth, 

2015), as well as flaviviruses with no known vectors (NKV) circulating only within 

their vertebrate hosts (Blitvich and Firth, 2017). The fact that viruses across the 

Flaviviridae family have switched between vertebrate and invertebrate hosts 

throughout their evolutionary history or can transmit between both distant host 

groups suggests that they can evade multiple layers of immune responses and 

replicate in distinct cellular environments (Conway, Colpitts and Fikrig, 2014). 

Phylogenetic evidence indicates that a potential invertebrate-specific ancestor of the 

Orthoflaviruses may have switched to also infecting vertebrates consistent with the 

evolution of hematophagy in ticks’ ancestors, subsequently passing onto mosquito 

vectors (Bamford et al., 2022). Extensive sampling of invertebrate viromes has 

recently revealed more diverse clades within the Flaviviridae family yet to be 

formally classified by the ICTV. Jigmenviruses are the only known segmented 

members of the family, circulating in ticks, with few known cases of infection in 

humans resulting in febrile disease (Qin et al., 2014; Wang et al., 2019). Finally, the 

“large genome flaviviruses” (LGF) are only known to infect invertebrate hosts and 

have surprisingly larger genome sizes compared to the rest of the family, of about 

25kb (Shi et al., 2016; Mifsud et al., 2023). In Chapter 5, I examine the genetic 

signatures imprinted on the Flaviviridae genomes across their evolutionary history 

– estimated to be almost 1 billion years old (Bamford et al., 2022) – and how these 

signatures correlate with switches between diverse host environments. 
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1.7 Phylogenetic inferences 

Modern methods for inferring the evolutionary histories of groups of organisms 

largely depend on comparing homologous genetic sequences. Sequence homology 

means that two sequences once shared a common ancestor, i.e. were the same 

sequence at some point in time, despite having diverged from that ancestral 

sequence through mutation accumulation. Homologous sequences can be aligned 

to infer possible homologous positions. A sequence alignment is essentially a 

hypothesis of homology between two (pairwise alignment) or more sequence 

(multiple sequence alignment or MSA). Aligning two sequences that show clear 

homology (e.g., only differ in few sequence positions) is a relatively easy task, but 

this gets progressively more complicated when the sequences have low similarity, 

insertions or deletions (indels) or when homology between multiple sequences is 

being inferred. Most commonly used MSA algorithms involve aligning pairs of the 

most similar sequences to one another first and progressively adding the other 

sequences in order of similarity, using heuristic approaches to speed up the process 

(Thompson, Higgins and Gibson, 1994; Edgar, 2004; Katoh and Standley, 2013). 

There is further distinction between aligning nucleotide sequences and aligning 

peptide sequences, since the latter contains many more informative characters (20 

possible amino acids). To facilitate alignment inference between peptide sequences 

most algorithms utilised predefined protein substitution matrices that give each 

potential amino acid to amino acid substitution a certain weight based on how similar 

their biochemical properties are (Dayhoff, Schwartz and Orcutt, 1978; Henikoff and 

Henikoff, 1992). 

Once an alignment has been constructed for a set of homologous sequences, a 

phylogenetic method can be used to infer how the sequences relate to one another 

based on the nucleotide or amino acid differences between them. Although genetic 

distance-based phylogenetic approaches exist, such as the neighbour-joining (NJ) 

method (Saitou and Nei, 1987), this section will focus on the two most sophisticated 

methods implemented throughout the thesis: maximum likelihood and Bayesian 

phylogenetics. Maximum likelihood (ML) approaches assess the probability that a 

given phylogeny produced the observed sequence alignment given a certain 

evolutionary model (Felsenstein, 1981). Hence, if every possible tree could be 

assessed for a given set of taxa, the true most likely tree explaining the sequence 

alignment could be determined. Unfortunately, with increasing sequence sets it 
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quickly becomes practically impossible to evaluate the likelihood of the entire tree 

space. Instead, most ML tools begin by constructing a starting tree using a fast 

distance-based approach (Saitou and Nei, 1987), so that the tree search begins 

from a representative point in the tree space rather than a random one. Then, 

different heuristics are used to infer tree topologies in tree space and evaluate the 

likelihood of different trees, mainly involving tree rearrangement operations 

(Collienne and Gavryushkin, 2021). Once sufficient tree space has been assessed, 

the topology with the highest probability for the sequence alignment will be the 

algorithm’s phylogenetic inference. All popular software for ML phylogenetics, such 

as RAxML, IQ-TREE and PhyML, utilise a combination of methods to optimise their 

heuristic search through possible tree topologies (Guindon et al., 2010; Kozlov et 

al., 2019; Minh et al., 2020). The likelihood of all possible topologies cannot be 

evaluated with these methods, so some pairings in the tree might not be confidently 

inferred. The “bootstrap” method, which involves resampling the alignment with 

replacement and seeing if clusters within the tree topology remains the same, is the 

most commonly used approach for assessing how confident we are for each node 

in a ML tree (Felsenstein, 1985). Bootstrapping is a fairly time-consuming method, 

while being sensitive to the lack of phylogenetic information, so faster, probabilistic 

alternatives have been recently developed (Guindon et al., 2010; Hoang et al., 

2018). With expanding sequencing efforts, for example the millions of SARS-CoV-

2 genomes that have become available throughout the COVID-19 pandemic, more 

likelihood-based approaches have been developed that incorporate multiple 

methods to substantially cut down computational time while improving accuracy 

(MAPLE, Fasttree) (Price, Dehal and Arkin, 2010; de Maio et al., 2023). 

The length of individual branches in a ML phylogeny will represent the genetic 

change between the tree nodes. This will reflect nucleotide or amino acid 

substitutions accumulated in the sequences - corrected for saturation with an 

appropriate substitution model - and not the actual time in which the substitutions 

took place. Zuckerkandl and Pauling (1965) proposed that if the rate at which 

sequence substitutions are accumulated is constant, then this rate can be used as 

a “molecular clock” to infer the units of time that the tree branches represent. Since, 

many methods have been developed for calibrating the branch lengths of a ML tree 

to units of time using a molecular clock. This is particularly useful in fast evolving 

sequences such as these of RNA virus genomes. The best-suited molecular clock 

of a given virus phylogeny can be inferred by considering the dates when each virus 
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representing a tip of the tree was sampled; a process referred to as tip-dating  

(Rambaut, 2000; Sagulenko, Puller and Neher, 2018). This tree transformation is 

done post-hoc of the ML inference and recent tip-dating software can perform 

additional functions based on a given tree and sequence alignment such as 

ancestral sequence reconstruction (Sagulenko, Puller and Neher, 2018); a method 

for inferring what the sequence was at each internal node of the tree (described in 

more detail in Chapter 3). Ancestral sequence reconstruction can also be performed 

in parallel with the ML inference with more advanced methods also assessing the 

confidence of each inferred nucleotide/residue at each node (Oliva et al., 2019). 

Another popular approach for inferring phylogenies from sequence data is Bayesian 

phylogenetics. Bayesian methods estimate the probability of a tree given the data 

(as dictated by the Bayes’ theorem) which depends on the likelihood of the data 

(similar to ML) and a prior distribution on the model parameters (i.e., the branch 

lengths, topology and substitution model) defined by the user (Rannala and Yang, 

1996; Nascimento, Reis and Yang, 2017). The interesting aspect of this approach 

is that if the user has some biological information about the model’s parameters 

(e.g., an approximate evolutionary rate, calibration points, or sampling dates for the 

sequences) this can be incorporated into the inference as informative prior 

distributions to aid the tree search. The priors can also be uninformative if an 

expectation for certain parameters is not known. After priors have been defined, the 

algorithm determines a posterior probability for the model and each of the 

parameters, representing the probability that the model is correct given the data 

(Ronquist, van der Mark and Huelsenbeck, 2009). In this way, Bayesian 

phylogenetic methods can determine posterior probabilities for topology, node 

support and many other parameters such as internal node date estimates or 

ancestral traits, all during the tree inference. The density of posterior distributions 

for each parameter is constructed by sampling progressive states of a Monte Carlo 

Markov Chain (MCMC) and combining the sampled estimates (Hastings, 1970; 

Drummond et al., 2002). MrBayes is one of the earlier tools for performing Bayesian 

phylogenetics (Huelsenbeck and Ronquist, 2001) but has now been largely 

superseded by BEAST (Bayesian Evolutionary Analysis Sampling Trees) and 

BEAST2 (Suchard et al., 2018; Bouckaert et al., 2019). The BEAST framework has 

had many extensions in recent years, and is generally considered to be more 

sophisticated and robust for examining complex data than ML approaches. Some 

examples relating to viruses include reconstructing virus geographic movement 
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(Dudas et al., 2017), performing continuous phylogeographic inference for pathogen 

evolution (Dellicour et al., 2021) and handling complex molecular epidemiology 

models (du Plessis et al., 2021). 

 

1.8 Recombination detection in virus genomes 

Genetic recombination in viruses refers to the process where two viruses contribute 

to the genetic information of new virus progeny, resulting in the progeny having a 

“mosaic” genome which contains genetic sequences of both parental strains when 

the parent viruses are divergent. This process can primarily take place through i) 

“copy-choice” error: where, during virus replication, the polymerase molecule 

switches between template strands of distinct genomes found in the same cell, or ii) 

reassortment: a process unique to segmented viruses where segments of two co-

infecting viruses are mixed during genome packaging (Simon-Loriere and Holmes, 

2011). Detection of reassortment events between divergent genomes is 

straightforward, since entire segments are being recombined. By calculating the 

genetic similarity between a putatively reassortant virus segment and the 

corresponding segment of potentially parental lineages, one can deduce that the 

reassorted segments will be more similar to sequences of one parent lineage (called 

the “minor parent” since it has contributed less genetic information to the mosaic 

genome) compared to the rest of the segments, which will be more similar to the 

other parent lineage (called the “major parent”). While sequence similarity is a 

simple proxy for detecting reassortant segments, inferring the phylogeny of each 

segment can more definitively identify reassortment and infer at which point in the 

parental strains’ evolution the reassortment event took place (Smith, Vijaykrishna, 

et al., 2009). 

In reassortment, by definition, the theoretical “breakpoints” of recombination – the 

boundaries between recombinant and non-recombinant sequence – will simply be 

the ends of the reassorted segment. Detection of copy-choice recombination is a 

much more nuanced process since the recombinant sequence is on the same 

genomic segment / genome as the non-recombinant backbone and the breakpoints 

of recombination in the continuous sequence need to be inferred. Breakpoints can 

be detected by comparing similarity along aligned sequences. Such methods 
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require comparison of at least three homologous sequences, one being the putative 

recombinant and the other two representing the major and minor parental lineages. 

Then, breakpoint inference is done either by comparing polymorphic sites across 

the sequences’ alignment or separating the alignment into blocks and comparing 

the pairwise similarity between them (Maynard Smith, 1992). Another commonly 

used similarity approach is the 3SEQ method which also compares triplets of 

sequences. The method is based on the concept that a hypothetical mosaic 

sequence between two parental genomes will have excess similarity to the third 

sequence if that latter is a recombinant of the two parent lineages. The benefit of 

the approach is that it is based on a nonparametric statistical framework and does 

not perform a sliding window comparison, making this one of the fastest approaches 

(Boni, Posada and Feldman, 2007). 

Instead of simply comparing similarity between sequences, phylogenetic 

information can also be incorporated in the process of recombination detection. 

Early approaches applied in HIV involved assessing phylogenetically informative 

sites across four related sequences, so that an outgroup sequence is ensured in 

addition to the two parental and one potentially recombinant sequences (Robertson, 

Hahn and Sharp, 1995). Additional mutations and indels will also introduce variation 

between the sequences being compared, so informative sites might not produce 

discrete phylogenetic signal across sequence regions. Later methods have tried to 

account for the variation of phylogenetic signals across alignments (Gibbs, 

Armstrong and Gibbs, 2000). An example of a popular phylogenetic approach is the 

recombination detection program (RDP) algorithm which compares the phylogenetic 

placement of three sequences at a time using a sliding window across the 

sequences (Martin and Rybicki, 2000). All these methods can be complementary to 

one another, since there is more confidence in breakpoints detected independently 

by multiple approaches. The current version of the RDP software (RDP5) 

incorporates a number of the aforementioned and other methods (Salminen et al., 

1995; Weiller, 1998; Holmes, Worobey and Rambaut, 1999; Posada and Crandall, 

2001; Posada, 2002; Lemey et al., 2009), including accessory function for 

combining results of different methods (Martin et al., 2021). These methods 

determine breakpoints on each sequence corresponding to inferred recombination 

events (Robertson, Hahn and Sharp, 1995; Salminen et al., 1995; Weiller, 1998; 

Holmes, Worobey and Rambaut, 1999; Gibbs, Armstrong and Gibbs, 2000; Martin 

and Rybicki, 2000; Posada and Crandall, 2001; Lemey et al., 2009; Martin et al., 
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2021). If multiple homologous sequences are being examined for breakpoints of 

recombination one can also assess clustering of independent breakpoints across 

the sequence (for example a virus genome) and determine whether there are 

regions where more or less recombination than expected takes place (i.e. genomic 

hotspots and coldspots of recombination) (Heath et al., 2006; Simon-Loriere et al., 

2009).  

Unlike most of the aforementioned methods that determine breakpoints unique to 

each sequence, a different approach is to split the entire alignment to reduce overall 

recombination signal among trees inferred by different alignment segments. This is 

especially useful when one needs to perform selection analyses on recombinant 

sequences, since recombinant segments will introduce excess diversity in these 

sequences. The Genetic Algorithm for Recombination Detection (GARD) 

progressively identifies recombination breakpoint across the entire alignment splits 

it into blocks and reconstructs separate phylogenetic trees for each non-

recombinant block. The goodness-of-fit for each model of non-recombinant 

phylogenies is evaluated each time until the best fit consecutive model is reached 

(Kosakovsky Pond et al., 2006). The distinction between recombination detection 

methods implemented in RDP and GARD will be covered in detail, applied on 

sequence data, in Chapter 2. 

 

1.9 Sequence homology search 

As sequencing technologies began to dominate the field of Biological Sciences, 

databases for depositing and retrieving genetic sequences became integral for 

comparative genetics and phylogenetics research. Two of the most commonly used 

are i) the National Center for Biotechnology Information (NCBI) Genbank database 

(https://www.ncbi.nlm.nih.gov/genbank/) containing the largest number of sequence 

information including nucleotide and protein sequences, raw reads and genome 

assemblies (Clark et al., 2016) and ii) the European Bioinformatics Institute (EBI) 

Ensembl database (https://www.ensembl.org) which focuses on annotated genome 

data (Cunningham et al., 2022). More databases containing different types of 

genetic information exist, but the aforementioned two are highlighted since they are 

repeatedly used in this thesis. The usefulness of sequence databases also depends 

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ensembl.org/
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on having tools to efficiently query them. Annotation of sequence entries can often 

be misleading (e.g., orthologous genes can have different names in different 

organisms) or non-existent. Rather, a more efficient way to query sequence 

databases is to search for similarity between database entries and an actual genetic 

sequence of interest. In this way one can: i) find what a novel sequence is, or ii) 

retrieve related homologous sequences to perform downstream analysis. The Basic 

Local Alignment Search Tool (BLAST) was developed by NCBI to complement the 

Genbank database in 1990 (Altschul et al., 1990) and is now heavily used for 

querying all sequence databases. BLAST can quickly search for similarity between 

a given query sequence and all entries of a database, providing pairwise alignments 

as well as “expect” values that statistically assess the likelihood of a true sequence 

match. The tool’s functionalities include searching nucleotide to nucleotide 

(BLASTn), protein to protein (BLASTp), translated nucleotide to protein (BLASTx) 

and protein to translated nucleotide (tBLASTn) (Camacho et al., 2009). 

Since BLAST’s development many additional tools utilising BLAST at the core of 

their function have been made. One example that has been used in the analysis 

presented in Chapter 3 is the Database-Integrated Genome Screening (DIGS) tool 

(http://giffordlabcvr.github.io/DIGS-tool/). DIGS is designed for specifically 

screening genome assemblies using a set of query sequences, while it retrieves a 

lot of information on the search results (hits) that can be explored in a local database 

setting (H. Zhu et al., 2018). The hits can then be easily used for performing 

downstream comparative genomics and phylogenetic analyses. Usage examples 

include searching for: i) previously unannotated homologous genes in any genomic 

assembly, or ii) specific genomic elements such as virus derived sequences in host 

genomes.  

The methods described above depend on pairwise alignment between sequences 

with detectable similarity. However, when examining very divergent sequences, 

homology might not be obvious, especially in the nucleotide level that might suffer 

from mutational saturation or simply high sequence divergence. Similarity at the 

amino acid level of protein sequences tends to be more conserved and, when trying 

to resolve the evolutionary history of really divergent genetic entities, protein 

alignments are more likely to be useful (Wolf et al., 2018). Even then, simple 

similarity based approaches may fail to detect homology. Proteins with remote 

homology can be detected using more sensitive similarity search approaches such 

http://giffordlabcvr.github.io/DIGS-tool/
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as profile hidden Markov models (profile-HMM). Instead of searching for discrete 

sequence-to-sequence homology, these probabilistic models implemented in 

software such as HMMER allow for search of a query sequence against a profile of 

residues with different likelihoods for each sequence position (Johnson, Eddy and 

Portugaly, 2010). This method substantially increases sensitivity especially when 

looking for functionally conserved protein domains, although they can lose accuracy 

when it comes to types of protein sequences with periodic compositional biases 

(Mistry et al., 2013). The functionality of profile-HMMs has been further extended to 

looking for remote DNA similarity, for example when it comes to distant repeat 

sequences such as transposable elements (Wheeler and Eddy, 2013). 

 

1.10 dN/dS based selection detection 

The high genetic diversity across all organisms has not come to be through random 

evolution alone. Instead, some mutations will lead to changes in an organism’s 

genome that will either increase or decrease the organism’s fitness, i.e. its ability to 

replicate/reproduce in a given environment. In this way, beneficial mutations are 

more likely to be selected for and become fixed in a population (positive selection) 

while deleterious mutations are more likely to be selected against and disappear 

from the population’s genetic diversity (negative/purifying selection) (Pybus and 

Shapiro, 2009). This is expected to be directly affected by the organism’s effective 

population size, selection being more efficient in larger populations, since random 

mutation will have a bigger effect in small populations (Lynch and Gabriel, 1990; 

Poon and Otto, 2000; Lynch et al., 2020). In the early days of studying the process 

of molecular evolution, Kimura (1968) proposed the neutral theory of molecular 

evolution, according to which the primary process of evolution is fixation of 

stochastic mutations with neutral or nearly neutral effects on the organisms’ fitness. 

Using the neutral theory as a basis, one can detect exceptions where excessive 

negative or positive selection is taking place in a gene, especially in virus genomes 

that have much larger population sizes and shorter generation times than 

multicellular eukaryotes (Gojobori, Moriyama and Kimura, 1990; Frost, Magalis and 

Kosakovsky Pond, 2018).  
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One of the most common ways to estimate non-neutral selective pressures in a set 

of homologous, coding genetic sequences is by comparing the number of 

synonymous and non-synonymous substitutions accumulated in the sequences 

(Nei and Gojobori, 1986; Ohta, 1995). Synonymous (or silent) substitutions are 

changes in the nucleotide level of a coding sequence that will not alter the peptide 

sequence of the encoded protein, while non-synonymous changes will. Many 

methods for detecting selection have been developed over the years which 

statistically compare the number of synonymous substitutions per synonymous site 

(dN) to that of synonymous substitutions per synonymous site (dS) under an 

evolutionary model (Goldman and Yang, 1994; Muse and Gaut, 1994). This ratio 

between dN and dS is also referred to as ω (Yang and Nielsen, 2000). The methods 

assume that if mutations were only stochastically accumulated in a genetic 

population then the rate at which synonymous and non-synonymous mutations are 

accumulated should be the same (ω=1). Assuming that only changes in the peptide 

sequence affect an organism’s fitness, ω values below 1 indicate negative selection 

acting to purify the deleterious non-synonymous substitutions, while ω values above 

1 indicate positive selection fixing beneficial non-synonymous substitutions. Many 

of the modern state-of-the-art selection detection methods based on dN/dS 

estimations are implemented in the HyPhy evolutionary hypothesis testing platform 

(Kosakovsky Pond et al., 2019) and can be used to detect gene-wide (Murrell et al., 

2015), site-specific (Kosakovsky Pond and Frost, 2005; Murrell et al., 2012, 2013) 

and branch-specific (Smith et al., 2015) selection pressures. The accuracy of dN/dS 

approaches will depend on the model of evolution assumed as well as the sequence 

alignment provided to calculate the substitution matrix. Recent advancements to 

improve the false-positive inferences of positive selection with such methods have 

focused on accounting for the now appreciated importance of variation in 

synonymous substitution rate among sites (Wisotsky et al., 2020) and 

accommodating for multi-nucleotide substitutions (Lucaci et al., 2021, 2023). 

Another limitation of these methods is that they inherently only detect selective 

pressures on the protein level. In Chapter 5, I discuss how selection on the 

nucleotide level can also be detected, focusing on dinucleotide representation. 
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1.11 Thesis summary 

All chapters of the thesis will touch on how virus genomic diversity relates to the 

evolutionary arms race between viruses and their hosts’ populations and species. 

My PhD coincided with the start of the COVID-19 pandemic, which brought intense 

interest in the origins of the pandemic and how the SARS-related horseshoe bat 

coronaviruses jump into humans and other animal hosts. In Chapter 2, I examine 

the patterns of recombination in SARS-related coronaviruses, how this mechanism 

is employed to expand genomic diversity and how it relates to the viruses’ reservoir 

hosts’ geographical distributions and onwards evolution in humans. The work 

presented in Chapter 2 has been published as part of the following scientific papers: 

• Lytras et al. (2022). Exploring the natural origins of SARS-CoV-2 in the light 

of recombination. Genome Biology and Evolution. 14(2): evac018. 

• Tamura et al. (2023). Virological characteristics of the SARS-CoV-2 XBB 

variant derived from recombination of two Omicron subvariants. Nature 

Communications. 14(1): 2800. 

The next two chapters focus on specific host restriction factors and how these 

interferon-stimulated genes’ evolutionary histories relate to viruses’ ability to infect 

specific hosts.  

Chapter 3 follows on the theme of SARS-related coronaviruses and horseshoe bats, 

describing the ancestral loss of the anti-coronaviral form of the OAS1 gene in these 

bats, potentially explaining their tight-linked interaction with SARS-related 

coronaviruses. This chapter partly consists of unpublished work (under review at the 

time of this thesis’ submission) and one section of the chapter has been published 

as part of the following scientific paper: 

• Wickenhagen et al. (2021). A prenylated dsRNA sensor protects against 

severe COVID-19. Science. 374(6567): abj3624. 

Chapter 4 focuses on the human BTN3A3 gene’s ability to restrict avian-circulating, 

but not human-circulating Influenza A viruses. On the host side, I describe the 

evolutionary origins of this antiviral function and on the virus side I explore the 
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distribution of residue changes that can evade BTN3A3’s restriction across all 

influenza A viruses. The majority of the work in this chapter has been published as 

part of the following scientific paper: 

• Pinto et al. (2023). BTN3A3 evasion promotes the zoonotic potential of 

influenza A viruses. Nature. 619: 338. 

Chapter 5 takes a more methodological angle, focusing on adaptive changes on the 

nucleotide rather than the protein level which can be imposed on viral genomes by 

their respective host environments. I present a novel method for quantifying 

dinucleotide representation in viral coding sequences, accounting for the intertwined 

codon usage biases. This metric is then applied on members of the diverse 

Flaviviridae virus family showing how adaptive shifts in the representation of specific 

dinucleotides coincide with ancestral host switches of these viruses. The majority of 

the work presented in this chapter is unpublished, except for part of the chapter that 

has been published in the following scientific paper: 

• Lytras and Hughes, (2020). Synonymous dinucleotide usage: a codon-aware 

metric for quantifying dinucleotide representation in viruses. Viruses. 12(4): 

462. 

The final chapter of the thesis, Chapter 6, outlines three scientific themes 

overarching the content of all previous chapters, summarising the results’ 

contribution in our understanding of virus-host interactions. 
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PDB ligand entry: CYT, visualised with ChimeraX. 

 

 

“You can never put it back together like it was.” 

Haruki Murakami, Kafka on the Shore (2002)  
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Aim 

The Coronaviridae are known to frequently recombine, having complex evolutionary 

histories and genetic relations among themselves. In this chapter I explore the 

patterns of recombination in the evolution of SARS-related coronaviruses primarily 

circulating in Asian horseshoe bats and how these relate to SARS-CoV-2, which 

recently emerged in humans. I further describe the recombinant origins of the XBB 

SARS-CoV-2 variant, highlighting the demonstrable importance of recombination in 

these viruses both in their reservoir and human hosts. 

  

The majority of this chapter has been published in Genome Biology and 

Evolution under the title “Exploring the Natural Origins of SARS-CoV-2 in the 

Light of Recombination” (Lytras et al., [2022]. GBE, 14[2]: evac018). I conducted 

all the phylogenetic analysis and GARD recombination analysis in this work. Co-

authors Darren Martin, Phillip Swanepoel, Arné de Klerk and Rentia Lourens 

contributed to the RDP recombination analysis and recombination hotspot 

detection presented in Methods’ subsection 2.2.3 “Recombination hotspot 

analysis” and Results’ subsection 2.3.1 “Hotspots of Recombination”, and co-

authors Joseph Hughes, David L Robertson and Sergei L Kosakovsky Pond 

supervised the work. The subsection 2.3.4 “The importance of recombination in 

human-circulating SARS-CoV-2” contains my own work published in Tamura et 

al. (2023, Nature Communications, 14: 2800) entitled “Virological characteristics 

of the SARS-CoV-2 XBB variant derived from recombination of two Omicron 

subvariants”. All other co-authors performed other modelling and experimental 

analyses for the paper that is not presented in this chapter. The Discussion 

section has been extended in this chapter compared to the published work. 
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2.1 Introduction 

Almost four years since the emergence of SARS-CoV-2, the origins of this new 

pandemic human coronavirus remain uncertain. First detected in association with 

an unusual respiratory disease outbreak in December 2019 in Wuhan city, Hubei 

province, China (Q. Li et al., 2020) no definitive progenitor of animal origin has been 

identified. The first reports of the initial outbreak were linked to the Huanan animal 

and seafood market (World Health Organisation, 2021; Worobey, 2021; Worobey et 

al., 2022) and, while there are some cases with no identifiable association to this 

location, this is not so surprising given that so many cases are either mild or 

asymptomatic (Lytras et al., 2021), and it is very possible multiple spillover events 

at animal markets in Wuhan were involved (Holmes et al., 2021; World Health 

Organisation, 2021; Pekar et al., 2022). Since the 2020 coronavirus pandemic 

began, both metagenomic and focused sequencing efforts have uncovered a 

number of viruses related to SARS-CoV-2, retrieved from locations in China and 

Southeast Asia (D. Hu et al., 2018; H. Zhou et al., 2020, 2021; P. Zhou et al., 2020; 

Delaune et al., 2021; Li et al., 2021; Wacharapluesadee et al., 2021). Several of 

these sarbecoviruses are recombinants necessitating careful analysis as the 

presence of mosaic genomes violates the assumption of a single evolutionary 

history, key to reliable phylogenetic inference from mutation patterns in molecular 

data. 

SARS-CoV-2, responsible for COVID-19, and SARS-CoV, the causative agent of 

the SARS outbreak in 2002-3, are both members of the species Severe acute 

respiratory syndrome-related coronavirus (SARSr-CoV) that forms the sole member 

of the Sarbecovirus subgenus of Betacoronaviruses (Gorbalenya et al., 2020) –  a 

group of viruses which have been primarily found in horseshoe bats (family 

Rhinolophidae). Coronaviruses are known to recombine with one another during 

mixed infections (Graham and Baric, 2010; Boni et al., 2020). Here, we 

comprehensively characterise the recombinant nature of the SARS-CoV-2-like 

coronaviruses sampled so far, focusing specifically on the phylogenetic clade of 

sarbecoviruses that SARS-CoV-2 is a member of; hereafter referred to as the 

“nCoV” clade (Figure 2.1A) (MacLean et al., 2021). To maintain the focus on this 

clade from which SARS-CoV-2 emerged, we broadly refer to all other Sarbecovirus 

subclades as ‘non-nCoV’. We present evidence of recombination and several 

hotspot locations where inferred recombination breakpoints are over-represented. 
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By comparing the phylogenies inferred for putatively non-recombinant regions of the 

genome (i.e., best estimates of SARS-CoV-2 and related sarbecoviruses true 

evolutionary history) with the viruses’ sampling locations and their host’s geographic 

range locations, we provide a detailed understanding of the recent evolutionary 

histories of SARS-CoV-2’s closest known relatives including relative divergence 

times.  

In addition to recombination’s importance in the evolution of SARSr-CoVs in bats, 

this process has also recently manifested in SARS-CoV-2’s evolution in humans. At 

the start of the COVID-19 pandemic, SARS-CoV-2 was not under particular positive 

selection and had accumulated little genetic diversity (MacLean et al., 2021). Once 

enough antigenic pressure had built up, this was followed by accumulation of 

multiple adaptive mutations at once creating what was termed variants of concern 

(VOCs) (World Health Organisation, 2023), starting with the more transmissible 

Alpha variant, emerging in the autumn of 2020 (Hill et al., 2022). The subsequent 

evolution of SARS-CoV-2 in humans followed a wave-like pattern where a new VOC 

with higher relative fitness would quickly displace the previously circulating variant 

(Markov et al., 2023). For detectable recombination to occur between SARS-CoV-2 

variants, distinct genomes need to infect the same individual, similar to what seems 

to be the case with SARS-related coronaviruses in their reservoir bat populations. 

Despite the waves of infections where a single variant dominated local or global 

circulation at a time, some sparse examples of between variant recombination were 

documented in the first two years of human circulation (Jackson et al., 2021). A 

significant evolutionary step followed in November 2021, when the Omicron variants 

emerged harbouring a constellation of non-synonymous mutations not seen before 

in the virus (Martin et al., 2022; Viana et al., 2022).  Omicron’s emergence altered 

the evolutionary landscape of SARS-CoV-2 and, instead of single variant circulation, 

multiple distinct subvariants of Omicron co-circulated globally by the summer of 

2022 (Ito et al., 2023). Most of the prevalent Omicron lineages belong to the 

phylogenetic clade related to the early BA.2 PANGO lineage. Of these, certain 

highly diversified BA.2 subvariants, such as BA.2.75 and BJ.1, were first identified 

in South Asia and are referred to as second-generation BA.2 variants. On the 12th 

of September 2022 the XBB variant was identified, a recombinant lineage between 

the second-generation BA.2 variants BJ.1 (BA.2.10.1.1) and BM.1.1.1 

(BA.2.75.3.1.1.1; a descendant of BA.2.75) (Roemer, 2022). As I am writing this 

thesis, descendants of XBB are still the most widely circulating SARS-CoV-2 
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variants, highlighting the importance of recombination within SARS-CoV-2’s variant 

pool. The event giving rise to the XBB lineage will be investigated at the end of this 

chapter. 
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2.2 Methods 

2.2.1 Genome alignment 

The whole genome sequences of the 78 Sarbecovirus members used in this 

analysis (Appendix A Table A.1) were aligned and the open reading frames (ORF) 

of the major protein-coding genes were defined based on SARS-CoV-2 annotation 

(Wu et al., 2020). Codon-level alignments of the ORFs were created using MAFFT 

v7.453 (Katoh and Standley, 2013) and PAL2NAL (Suyama, Torrents and Bork, 

2006). The intergenic regions were also aligned separately using MAFFT and all 

alignments were pieced together into the final whole-genome alignment and visually 

inspected in Bioedit (Hall, 1999).  

 

2.2.2 Genome-specific recombination analysis 

We first performed an analysis for detecting unique recombination events specific 

to individual genome sequences using the RDP (Martin and Rybicki, 2000), 

GENECONV (Padidam, Sawyer and Fauquet, 1999), BOOTSCAN (Martin et al., 

2005), MAXCHI (Maynard Smith, 1992), CHIMAERA (Posada and Crandall, 2001), 

SISCAN (Gibbs, Armstrong and Gibbs, 2000), and 3SEQ (Boni, Posada and 

Feldman, 2007) methods implemented in the program RDP5 (Martin et al., 2021). 

Default settings were used throughout except: i) only potential recombination events 

detected by three or more of the above methods, coupled with phylogenetic 

evidence of recombination were considered significant and ii) sequences were 

treated as linear. We required supporting evidence from three or more of the 

recombination signal detection methods because none of the methods query the 

same recombination signals and all have varying power to detect recombination in 

datasets with different degrees of sequence diversity (Posada and Crandall, 2001; 

Posada, 2002). The recombinant sequence identification, recombination breakpoint 

verification and shared recombination event verification steps used are outlined in 

(Martin et al., 2017), the approximate breakpoint positions and recombinant 

sequence(s) inferred for every potential recombination event, were manually 

checked and adjusted where necessary using the phylogenetic and recombination 

signal analysis features available in RDP5. Breakpoint positions were classified as 

undetermined if the 95% confidence interval on their location overlapped: i) the 5′ 
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and 3′ ends of the alignment; or ii) the position of a second detected breakpoint 

within the same sequence that had a lower associated p-value (in such cases it 

could not be discounted that the actual breakpoint might not have simply been lost 

due to a more recent recombination event). All of the remaining breakpoint positions 

were manually checked and adjusted when necessary using the BURT method with 

the MAXCHI matrix and LARD two breakpoint scan methods (Holmes, Worobey and 

Rambaut, 1999) used to resolve ties. A putatively non-recombinant version of the 

original whole-genome alignment was reconstructed by excluding all minor parent 

sequence segments based on the supervised RDP5 analysis. 

 

2.2.3 Recombination hotspot analysis 

The distribution of 236 unambiguously detected breakpoint positions defining 160 

unique recombination events based on the RDP5 analysis described above were 

analysed for evidence of recombination hotspots and coldspots using the 

permutation-based “recombinant region test” (RRT) (Simon-Loriere et al., 2009) and 

“breakpoint distribution test” (BDT) (Heath et al., 2006). The RRT accounts for site-

to-site variations in the detectability of individual recombination events and 

examines the distribution of point estimates of pairs of breakpoint locations 

bounding each of the unique recombination events detected by RDP5. Rather than 

using point estimates of recombination breakpoint locations, the BDT accounts for 

underlying uncertainties in the estimation of individual breakpoint locations as 

determined from the state transition likelihoods yielded by the hidden Markov model-

based recombination breakpoint detection method, BURT (described in the RDP5 

program manual at http://web.cbio.uct.ac.za/~darren/rdp.html).  

The RRT and BDT methods for identifying coldspots and hotspots of recombination 

have not been previously validated to determine their potential false positivity rates. 

To verify whether the recombination breakpoint clusters detected with these tests 

were consistent with the presence of real recombination hotspots, we simulated 

recombination with SANTA-SIM (Jariani et al., 2019). Four datasets of 100 x 10Kb 

long sequences that had (i) approximately the same degree of genetic diversity as 

the analysed sarbecovirus alignment and (ii) approximately the same numbers of 

detectable recombination events and recombination breakpoints per nucleotide as 

http://web.cbio.uct.ac.za/~darren/rdp.html
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those detected in the analysed sarbecovirus alignment. These parameters were 

empirically chosen and are as follows: population size = 4500, inoculum = all, 

mutation rate = 3.5x10-5, rate bias matrix = (0.42, 2.49, 0.29, 1.73, 0.23, 4.73, 6.99, 

9.20, 0.60, 1.02, 2.56, 0.88), dual infection probability = 0.1, background 

recombination probability = 0.06, and generation number = 5000. RRT and BDT 

consider recombination events with up to two breakpoints between two potential 

parental sequences and the detected recombinant sequence. Hence, we used a 

slightly modified version of SANTA-SIM, simulating recombination events with a 

maximum of two breakpoints, that can be obtained from 

https://github.com/phillipswanepoel/santa-sim/tree/Recomb_and_align. Within our 

simulation, we specified that one of the four datasets had no simulated 

recombination hotspots, and the other three each had a single 100-nucleotide long 

hotspot between alignment positions 6000 and 6100 wherein recombination 

frequencies were 4x, 8x or 16x higher than the background level. In this way, we 

could compare the detected hotspots found by RRT and BDT to the simulated 

hotspot of the dataset at different frequencies of recombination. 

All simulated sequence datasets were analysed for recombination by RDP5 without 

any supervision and RRT and BDT plots were produced for each dataset (all with 

the same program settings used to analyse the actual sarbecovirus dataset). 

The true positive rate of the BDT was estimated as the proportion of 200-nucleotide 

windows centred on nucleotides between positions 6000 and 6100, i.e., within the 

simulated hotspot, that contained a number of breakpoints greater than the upper 

bound of the 99% confidence interval of the breakpoint clustering distribution 

expected under random recombination (for example indicated by the light grey areas 

of the plots in Figure 2.1C). Since a 200-nucleotide sliding window was used for 

both breakpoint clustering tests, all windows overlapping with the hotspot (positions 

5801 to positions 6299) were ignored when determining the BDT and RRT false 

positive rates. The false positive rate of BDT was calculated as the proportion 

(across all 100 simulated alignments of each of the four datasets) of the examined 

200-nucleotide windows centred on nucleotides outside region 5801 to 6299 that 

contained a number of breakpoints greater than the upper bound of the 99% 

confidence interval of the breakpoint clustering distribution expected under random 

recombination. Since the only true simulated hotspot is between positions 6000 and 

6100, any window with breakpoints of recombination above the 99% confidence 

https://github.com/phillipswanepoel/santa-sim/tree/Recomb_and_align
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interval of the random expectation that is not overlapping these positions would be 

a false positive hit. 

Similarly, the true positive rate of the RRT was estimated as the proportion, across 

all 100 simulated alignments in a dataset, of 200-nucleotide windows centred on 

nucleotides between positions 6000 and 6100, i.e., within the simulated hotspot, 

that had associated breakpoint clustering permutation p-values < 0.01 (for example, 

indicated by the upper bound of the light grey area of the plot in Figure 2.1B). The 

RRT false positive rate was calculated as the proportion, across all 100 simulated 

alignments in a dataset, of the examined 200 nucleotide windows centred on 

nucleotides outside region 5801 to 6399 that had associated permutation p-values 

< 0.01.  

The true and false positive rates for BDT and RRT with respect to identifying the 

presence of the simulated recombination hotspots are indicated in Appendix A Table 

A.2. Note that, due to the nature of the simulations, it was not guaranteed that even 

with perfect recombination detection power and accuracy (i) the recombination 

hotspot regions would contain any detectable excess of recombination breakpoints, 

and (ii) the “normal” genome regions would contain no breakpoint clusters. What 

these simulations capture is the power of the two clustering tests to indirectly infer 

the locations of actual recombination hotspot regions that, due to chance during the 

simulation process, might not even contain any detectable recombination 

breakpoints. Nevertheless, as expected, the hotspot detection power of both BDT 

and RRT increases substantially with the intensity of the simulated recombination 

hotspots: from ~10% for both tests with a 4x increase in simulated breakpoint 

probabilities within the 100-nucleotide hotspot region to ~60% for a 16x increase in 

breakpoint probabilities within the hotspot region. It is also noteworthy that the false 

positive rates for both tests are likely between 1.5 and 2x higher than the expected 

rate of 0.01 (which is expected given that the windows containing breakpoint 

clusters exceeding the 99% confidence interval were used to identify breakpoint 

hotspots). This false positive rate may not seem very high but, for a long alignment 

such as that examined for the sarbecoviruses that can be broken into ~150 non-

overlapping 200-nucleotide windows, it indicates that for such an alignment we 

might expect to find on average two to three significant clusters of breakpoints that 

are in fact not associated with any elevation in the underlying recombination rate. 
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2.2.4 Whole-genome alignment recombination analysis 

Next, I sought to conservatively examine the entire genome alignment for the subset 

of recombination breakpoints that had the largest impacts on the inferred 

evolutionary relationships between the analysed sarbecoviruses using the Genetic 

Algorithm for Recombination Detection (GARD) method (Kosakovsky Pond et al., 

2006) implemented in Hyphy v2.5.29 (Kosakovsky Pond et al., 2019). Model 

goodness of fit was evaluated using the small sample Akaike Inference Criterion (c-

AIC) (Akaike, 1998). To improve computational efficiency and statistical efficiency 

(as GARD requires more statistical evidence of recombination for larger 

phylogenies, and the minimal length of detectable non-recombinant fragments 

increases with the number of sequences)  and focus on the closest relatives of 

SARS-CoV-2, 22 of the 78 viruses that are closest to SARS-CoV-2 or had 

preliminary evidence of clustering near detected inter-clade recombinants were 

included in the GARD analysis (Appendix A Table A.1). Only breakpoints present in 

more than 2/3 of the 64 GARD consecutive step-up models were retained to 

produce a final set of 21 likely breakpoints (positions corresponding to the SARS-

CoV-2 reference genome Wuhan-Hu-1 in order: 1680, 3093, 3649, 4973, 8208, 

11445, 12622, 14401, 15954, 16923, 19965, 20518, 21198, 21411, 22460, 23396, 

24144, 24843, 26323, 27388, 27685). Based on these, the whole-genome 

alignment was split into 22 recombinant breakpoint partitioned (RBP) regions. The 

position of each region on the alignment and relative to the SARS-CoV-2 genome 

as well as their length are presented in Appendix A Table A.3. 

We further used the GARD recombination analysis to validate the RDP5 

recombination hotspot analysis. We performed a permutation test of breakpoint 

clustering by fixing the number of all inferred breakpoints (64) and the location of 

the 13,550 variable sites in the alignment. Then defined a sliding window so that 

each window would have an average of one breakpoint in it (alignment length / 64) 

producing 474 windows. N = 10,000 replicates were drawn where 64 variable sites 

were randomly chosen from one of the breakpoints. For each sliding window, we 

tabulated the distribution of randomly drawn breakpoints in the window. Two 

hotspots and 17 coldspot windows were identified, presented in Appendix A, Figure 

A.1. This analysis is not expected to produce results identical to the RDP5-based 
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hotspot analysis, since the GARD method does not distinguish between potential 

breakpoints in very near genomic proximity, so this post-hoc test is unlikely to 

identify clustering of unique breakpoints that are very close to one another (in 

contrast to the RDP5 approach). 

 

2.2.5 Sarbecoviruses phylogenetic reconstruction 

The phylogeny of each RBP alignment region based on the GARD analysis and the 

non-recombinant whole-genome based on the RDP5 analysis were reconstructed 

using IQ-TREE version 1.6.12 (Nguyen et al., 2015) under a general time reversible 

(GTR) substitution model assuming invariable sites and a 4 category Γ distribution. 

Tree node confidence was determined using 10,000 ultrafast bootstrap replicates 

(Hoang et al., 2018).  

Based on the non-recombinant whole-genome phylogeny, 20 viruses form a 

monophyletic nCoV clade (Figure 1A). To illustrate the distance of each virus from 

SARS-CoV-2 for each GARD determined genomic region, I defined the nCoV clade 

on each phylogeny as the subset of the aforementioned 20 nCoV viruses forming a 

monophyly with SARS-CoV-2 in each phylogeny. The rest of the viruses were 

classified as members of the non-nCoV clade for each RBP region. I then used an 

arbitrary tip distance scale normalised between all phylogenies so distances are 

comparable between regions. For each maximum likelihood tree, the patristic 

distance between each tip and SARS-CoV-2 is calculated using ETE 3 (Huerta-

Cepas, Serra and Bork, 2016) as d1 for members of the nCoV clade and d2 for 

members of the non-nCoV clade. The distances are then normalised so that for 

nCoV clade members range between 0.1 and 1.1 (1.1 being SARS-CoV-2 itself and 

0.1 being the most distant tip from SARS-CoV-2 within the nCoV clade) and 

between -0.1 and -1.1 for non-nCoV members (-0.1 being the closest non-nCoV 

virus to SARS-CoV-2 and -1.1 the most distant), as follows: 

𝑑′1 =  1.1 − 
𝑑1

𝑑1,𝑚𝑎𝑥
  (1:nCoV) 

𝑑′2 =  −0.1 − 
𝑑2 − 𝑑2,𝑚𝑖𝑛

𝑑2,𝑚𝑎𝑥 − 𝑑2,𝑚𝑖𝑛
  (2:non-nCoV) 
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With d’1 and d’2 being the normalised values for each clade, variables denoted with 

“min” being the smallest distance and variables denoted with “max” being the largest 

distance in each given set. 

 

Phylogenies were visualised using FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/) and ETE 3 (Huerta-Cepas, Serra and 

Bork, 2016). 

 

2.2.6 Molecular dating 

To provide temporal information to the phylogenetic history of the viruses, I 

performed a Bayesian phylogenetic analysis on RBP region 5, using BEAST v1.10.4 

(Suchard et al., 2018). This region was selected due to its length, being one of the 

two longest non-recombinant regions in the analysis (3,238 bp), and because all 20 

nCoV viruses form a monophyly in the respective tree. Based on the observation of 

an increased evolutionary rate specific to the deepest branch of the nCoV clade 

reported in MacLean et al. (2021), I adopted the same approach of fitting a separate 

local clock model to all branches of that clade from the rest of the phylogeny. A 

normal rate distribution with mean 5x10-4 and standard deviation 2x10-4 was used 

as an informative prior on all other branches. The lineage containing the BtKY72 

and BM48-31 bat viruses was constrained as the outgroup to maintain overall 

topology. Codon positions were partitioned and a GTR+Γ substitution model was 

specified independently for each partition. The maximum likelihood phylogeny 

reconstructed previously for RBP region 5 was used as a starting tree (rooted at the 

BtKY72 and BM48-31 clade). A constant size coalescent model was used for the 

tree prior and a lognormal prior with a mean of 6 and standard deviation of 0.5 was 

specified on the population size. Two independent MCMC runs were performed for 

500 million states for the dataset. The two chains were inspected for convergence 

and combined using LogCombiner (Drummond and Rambaut, 2007) using a 10% 

burn-in for each chain. The effective sample size for all estimated parameters was 

above 200. 

 

http://tree.bio.ed.ac.uk/software/figtree/
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2.2.7 Host range data 

All host ranges presented in Figure 4B were retrieved from the IUCN Red List of 

Threatened Species (https://www.iucnredlist.org/) and the Mammals of China 

Princeton Pocket Guide (Hoffmann et al., 2013). Geographic visualisation was 

performed using D3 and JavaScript in Observable (https://observablehq.com/).  

 

2.2.8 XBB recombination analysis 

As of October 3, 2022, I retrieved a total of 562 sequences using the following 

criteria from the GISAID database (https://gisaid.org/): i) human hosts, ii) collected 

after 2022, iii) with length greater than 28,000 base pairs, and iv) with PANGO 

lineage designation BJ.1, BM.1, XBB and all their descendants. To ensure that 

PANGO lineage definitions in the dataset’s metadata included the latest circulating 

lineages, the GISAID metadata were downloaded again on October 15, 2022, and 

the PANGO lineages of our sequences were updated accordingly. Sequences were 

aligned to the reference Wuhan-Hu-1 genome (GenBank accession: NC_045512.2) 

and then converted to a multiple sequence alignment using the 

“global_profile_alignment.sh” script from the SARS-CoV-2 global phylogeny 

pipeline (Lanfear, 2020), utilizing MAFFT (Katoh and Standley, 2013). A number of 

recombination detection methods were performed on the resulting alignment using 

the Recombination Detection Program (RDP) v.5.21 (Martin et al., 2021), 

specifically: RDP (Martin and Rybicki, 2000), GENECONV (Padidam, Sawyer and 

Fauquet, 1999), BOOTSCAN (Martin et al., 2005), MAXCHI (Maynard Smith, 1992), 

CHIMAERA (Posada and Crandall, 2001), SISCAN (Gibbs, Armstrong and Gibbs, 

2000), and 3SEQ (Boni, Posada and Feldman, 2007). Sequences were assumed to 

be linear in the RDP5 parameters, only recombination events detected consistently 

by more than 3 independent methods were retrieved and potential false positives 

were excluded from the final output of RDP5. GISAID acknowledgments for all 

analysed sequences are available as provided as supplementary information in the 

published version of this work in Tamura et al. (2023). 

 

https://www.iucnredlist.org/
https://observablehq.com/
https://gisaid.org/
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2.2.9 XBB phylogenetic analysis 

For inferring the phylogenies of each non-recombinant segment of the XBB variant, 

I first split the alignment used for the recombination analysis above at genome 

position 22,920 (the breakpoint inferred by RDP5). Due to the lack of many 

informative sites of the 3’ end shorter non-recombinant alignment, two quality 

filtering steps were implemented: i) the 3’ end of the alignment was trimmed up to 

the position where none of the sequences had 3’ end gaps and ii) all sequences 

with Ns were removed, leading to a reduced alignment of 370 sequences. BA.2 

sequence EPI_ISL_10926749 was added to the alignments as an outgroup. IQ-

TREE v2.1.3 (Minh et al., 2020) was used for making a phylogeny for each non-

recombinant alignment. The TIM2+F+I substitution model was used for both trees 

as selected by the ‘-m TEST’ (Kalyaanamoorthy et al., 2017) and node support was 

assessed by performing 1000 ultrafast bootstrap replicates (Hoang et al., 2018). 

Both phylogenies were inspected for the presence of temporal signal using TempEst 

v1.5.3 (Rambaut et al., 2016). The 3’ end non-recombinant segment’s phylogeny 

did not have enough substitutions for a root-to-tip regression to be inferred, hence I 

proceeded with tip-dating analysis only for the 5’ end, longer segment. I used 

BEAST v1.10.4 (Suchard et al., 2018) to infer a time-calibrated Bayesian phylogeny 

of this genome segment. To avoid missing information affecting the inference I also 

removed all sequences containing Ns from the alignment, leading to a reduced 

dataset of 247 sequences. I used a strict molecular clock model with an exponential 

growth coalescent prior (Griffiths and Tavare, 1994). The HKY substitution model 

was used, accounting for site heterogeneity with an invariant site and four category 

Γ distribution model. A clock rate prior with mean of 1×10-3 and standard deviation 

of 1×10-4 was provided – consistent with the accepted rate for SARS-CoV-2 

(Duchene et al., 2020) – and all XBB sequences were assumed to be monophyletic. 

Duplicate MCMC chains were run for 100,000,000 states each, sampling every 

10,000 states. Convergence was assessed using Tracer v1.7.1 (Rambaut et al., 

2018) and maximum clade credibility (MCC) trees were summarized by combining 

the two chains after removing a 10% burn-in using LogCombiner 

(https://beast.community/logcombiner) and TreeAnnotator 

(https://beast.community/treeannotator). 

 

https://beast.community/logcombiner
https://beast.community/treeannotator
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2.2.10 Data availability 

The whole-genome alignment and raw phylogenetic tree files associated with this 

work can be found in the following online repositories:  

https://github.com/spyros-lytras/SC2_origins_rec, 

https://github.com/TheSatoLab/XBB/tree/main/Phylogenetic_analysis.   

https://github.com/spyros-lytras/SC2_origins_rec
https://github.com/TheSatoLab/XBB/tree/main/Phylogenetic_analysis
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2.3 Results 

2.3.1 Hotspots of recombination 

For a whole-genome alignment of the set of known complete genomes from 78 

members of the Sarbecovirus subgenus (including a single representative of SARS-

CoV and SARS-CoV-2; Appendix A Table A.1) we performed an initial 

recombination breakpoint analysis with RDP5 (see Methods subsection 2.2.2) and 

identified 160 unique recombination events in all the bat and pangolin-derived virus 

genomes. To infer a reliable phylogeny of the sarbecoviruses, we removed all 

regions with evidence for a recombination history from the genome alignment. This 

reconstructed non-recombinant phylogeny (Figure 2.1A) includes a total of 19 non-

human viruses that comprise the nCoV clade that SARS-CoV-2 is a member of, a 

sister lineage to the non-nCoV clade SARS-CoV is part of, first emerged from in 

2002.  

Using the set of breakpoints inferred by RDP5, we tested for significant clustering 

of recombination events at specific regions of the genome, suggestive of 

recombination hot- or coldspots. Two permutation-based recombination breakpoint 

clustering tests were performed: (i) a “breakpoint distribution test” (BDT) that 

explicitly accounts for the underlying uncertainties in the positions of identified 

breakpoint positions (Heath et al., 2006) and (ii) a “recombinant region test” (RRT) 

that focuses on point estimates of recombination breakpoint pairs that define 

recombination events and explicitly accounts for region-to-region variations in the 

detectability of recombination events (Simon-Loriere et al., 2009). Both tests 

provided support for the presence of several recombination hotspots: seven in the 

BDT and nine in the RRT analysis, assuming close locations are giving rise to the 

same peak (Figure 2.1B,C), and recombination refractory regions in the NTD and 

RBD domains of the Spike gene and within ORF8 (Figure 2.1C). 

It is possible that all genomic regions where these breakpoint clusters are detected 

have elevated recombination rates, linked to the molecular mechanisms likely 

responsible for recombination (Sola et al., 2015). However, simulations of 

recombination patterns – in genomes with similar degrees of diversity and numbers 

of detectable recombination events to the genomes analysed here – indicate that 

within such a dataset we might expect to find, on average, two to three such clusters 
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even in the absence of any recombination hotspots (see Methods subsection 2.2.4, 

Appendix A Table A.2). Therefore, none of the identified breakpoint clusters can be 

definitively attributed to underlying variations in recombination rates at the genome 

sites where the clusters are identified. Nonetheless, the distribution of recombination 

breakpoints is clearly non-uniform across the Sarbecovirus genomes, and this non-

uniformity is consistent with the presence of recombination hotspots. To 

independently validate the results of this analysis we also performed a simple 

permutation test for clustering in the recombination breakpoints inferred by the 

GARD analysis (see below, Appendix A Figure A.1). Even though this test would 

not identify potential hotspots in proximal genomic locations (due to the nature of 

the GARD method which is expected to identify focused recombination hotspots as 

a single recombination breakpoint), it confirms the recombination hotspots within the 

Spike ORF (alignment positions 24174 – 24648, Figure A.1- consistent with the BDT 

results, Figure 2.1C) and at the start of the N ORF (alignment positions 29388 – 

29862, Figure A.1, consistent with both RRT and BDT results, Figure 2.1C).  

Figure 2.1. Recombination-minimised phylogeny and recombination hot-/coldspots. Maximum 
likelihood phylogeny inferred from a recombination-free whole genome alignment of the 78 
Sarbecoviruses (A), see Methods. The non-nCoV/SARS-CoV clade is collapsed for clarity. All nodes 
presented have bootstrap confidence values above 90%. Distribution of recombination hot- and 
coldspots across the alignment based on the RRT (B) and the BDT (C) methods. For both plots light 
and dark grey represent 95% and 99% confidence intervals of expected recombination breakpoint 
clustering under random recombination. Peaks above the shaded area represent recombination 
hotspots and drops below represent coldspots, annotated on the corresponding ORF genome 
schematic above each plot by vertical red and blue lines respectively. All ORF names and the NTD 
and RBD encoding regions of Spike are also annotated on the schematics.  
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Interestingly the pattern of potential hotspots near the Spike ORF has also been 

noted in previous research (Bobay, O’Donnell and Ochman, 2020). Although 

selective pressure underlying recombinant regions cannot be assessed in this 

analysis, antigenic selection – for immune escape – and/or selection associated with 

switches in host receptor specificity and efficiency - i.e., antigenic shift - are two 

probable candidate drivers of the observed recombination patterns, consistent with 

the known immunodominance of the Spike NTD and RBD regions (Walls et al., 

2020). It is clearly important to account for these complex recombination patterns 

when examining the evolutionary history of these pathogens, since multiple 

evolutionary histories can be inferred from the single whole-genome alignment. As 

SARS-CoV-2 continues circulating in humans and mutations increase its sequence 

diversity, identifying SARS-CoV-2 recombination events will become easier and 

increasingly more important to monitor (Jackson et al., 2021). 
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2.3.2 Recombination patterns between SARS-CoV-2 relatives 

To reconstruct a reliable phylogeny for a set of viruses, sufficient information needs 

to be present in the underlying sequence alignment. Thus, even though a whole-

genome alignment can be split into shorter sub-alignments with the aim of getting 

rid of all independent recombination events, it is unlikely that all sub-alignments can 

produce reliable phylogenies. To overcome this trade-off I performed a secondary, 

more conservative, recombination analysis using GARD and identified the locations 

of 21 recombination breakpoints that strongly impact the inferred phylogenetic 

relationships of the analysed sequences when mosaic patterns are ignored 

(Appendix A Table A.3). In contrast to the RDP5 method used above for assessing 

breakpoint clustering, the GARD method focuses on extracting recombination signal 

for the entire alignment, and so is better suited for producing putatively non-

recombinant phylogenies. I then determined the phylogenetic relationships of the 

viral sequences in each of the 22 putatively non-recombinant genome regions 

bounded by each identifiable breakpoint (Figure 2.3A). The 20 nCoV viruses 

identified in the non-recombinant whole-genome phylogeny above (Figure 2.1A) 

were used to inform the clade annotation for the 22 new non-recombinant 

phylogenies. 

The two genetically closest relatives of SARS-CoV-2 that were identified shortly 

after its emergence were the bat sarbecoviruses, RaTG13 and subsequently 

RmYN02, both from samples collected in Yunnan (H. Zhou et al., 2020; P. Zhou et 

al., 2020). We find that RmYN02 shares a common ancestor with SARS-CoV-2 

about 40 years ago and RaTG13 – about 50 years ago (Figure 2.4A) consistent with 

previous estimates (Boni et al., 2020; MacLean et al., 2021; Wang, Pipes and 

Nielsen, 2021). Although SARS-CoV-2 is most similar to RmYN02 across most of 

its genome, the region corresponding to the first half of the RmYN02 Spike ORF 

appears to have been derived through recombination from a parental sequence 

residing outside the nCoV clade (Figure 2.1A). Two more viruses very recently 

identified in Yunnan, RpYN06 and PrC31 are most closely related to RmYN02 for 

part of their genomes (H. Zhou et al., 2021; Li et al., 2021). In the portion of the 

genome corresponding to recombination breakpoint partitioned (RBP) regions 2 to 

5, the three Yunnan viruses (RmYN02, RpYN06 and PrC31) cluster with strong 

support in a sister clade to SARS-CoV-2 (Figure 2.2A, https://github.com/spyros-

lytras/SC2_origins_rec/blob/main/78sarbeco_alltree_fn.json). This pattern 

https://github.com/spyros-lytras/SC2_origins_rec/blob/main/78sarbeco_alltree_fn.json
https://github.com/spyros-lytras/SC2_origins_rec/blob/main/78sarbeco_alltree_fn.json
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suggests that bat sampling efforts in Yunnan have uncovered a related viral 

population that has relatively recently shared a common ancestor with SARS-CoV-

2’s proximal ancestor. Molecular dating of the RBP region 5 phylogeny 

(corresponding to the C-terminal part of nsp3; Figure 2.4A) indicates that this 

“Yunnan cluster” shared a common ancestor with SARS-CoV-2 around 1982 (95% 

HPD: 1970-1994). This analysis further allows us to date the node between PrC31 

and RmYN02 to 2005 (95% HPD: 1998-2010), which is one of the most recent 

nodes in the phylogeny (Figure 2.4A).  

The recombination analysis, however, reveals a much more complex evolutionary 

history for the rest of the PrC31 genome (Li et al., 2021). As seen in the consensus 

whole-genome phylogeny (Figure 2.1A), most of its genome clusters with viruses 

CoVZC45 and CoVZXC21 sampled in Zhejiang, a coastal province in East China 

(Lin et al., 2017; D. Hu et al., 2018). Across the majority of their genomes (excluding 

segments of Orf1ab and Spike) these viruses are members of the nCoV clade and 

share a common ancestor with SARS-CoV-2 that existed before 1934 (95% HPD: 

1907-1957) according to molecular dating of RBP region 5 (Figure 2.4A). However, 

in RBP regions 8-12 the sequences of these viruses cluster outside the nCoV clade, 

and are most closely related to Zhejiang virus Longquan_140 and the HKU3 set of 

closely related bat sarbecoviruses sampled in Hong Kong (bordering Guangdong 

province) (Figure 2.2A, see online data Section 2.2.10). The link between SARS-

CoV-2’s closest relatives and viral populations in the southeast of South China 

becomes even more apparent in the phylogeny of RBP region 2 where 

Longquan_140 clusters within the nCoV clade along with CoVZC45 and CoVZXC21 

(Figure 2.2A, see online data Methods subsection 2.2.10 - RBP region 2 tree). 

These relationships indicate ancestral movement of the nCoV viruses across large 

geographic ranges in China, spanning Yunnan in southwest China and Zhejiang on 

the east coast (Figure 2.3B). 
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Figure 2.2. Non-recombinant topologies of SARS-CoV-2 relatives. Zoomed in regions of selected 
RBP region maximum likelihood phylogenies (A). Branches within the nCoV clade are coloured in 
red and outside the nCoV clade in green. Genome schematics of close SARS-CoV-2 relatives with 
recombinant Spike regions (B). RBP regions 15 and 16 are highlighted and the non-nCoV subclades 
of the maximum likelihood phylogenies containing the relevant viruses are presented. The colouring 
of non-recombinant segments indicate patristic distance to SARS-CoV-2 (see Figure 2.3 legend). 
Nodes with bootstrap confidence values below 80% have been collapsed. 

As more countries initiate wildlife-infecting coronavirus sampling and sequencing 

efforts, the geographic range of the nCoV clade linked to bat host species will be 

further refined, evident from the recent reporting of bat sarbecoviruses closely 

related to SARS-CoV-2 from: (i) two samples collected in Cambodia from R. shameli 

(RShSTT182 and RShSTT200) confirmed by whole-genome analysis (Delaune et 

al., 2021), and (ii) five bat samples from R. acuminatus collected in Thailand with 

one fully sequenced genome of virus RacCS203 (Wacharapluesadee et al., 2021). 

These viruses are, after the China sampled CoVs mentioned above, the next closest 

relatives to SARS-CoV-2 with common ancestor age estimates (using RBP region 

5) around 1907 (95% HPD: 1873-1938) and 1883 (95% HPD: 1841-1921), 
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respectively (Figure 2.4A). Similar to the other nCoV viruses, the recombination 

analysis uncovers more intricate phylogenetic relations for some parts of the 

genome. Notably, RShSTT182 and RShSTT200, despite being sampled in 

Cambodia, cluster with RaTG13 for RBP regions 8 and 9 (Figure 2.2A, see online 

data subsection 2.2.10), while in RBP region 4 of the genome RacCS203, from 

Thailand, clusters together with SARS-CoV-2 within the Yunnan clade (Figure 2.2A). 

This indicates that co-circulation and recombination between these viruses in the 

last few centuries is responsible for the observed patterns in their inferred 

evolutionary history, despite their current geographic ranges being at least 2,500km 

apart. This wide distribution of related viruses, including shared recombination 

breakpoints, highlights an important feature of bat species: their frequently 

overlapping/sympatric ranges will provide ample opportunities for transmissions of 

viral variants from one bat species (or sub-species) to another. 

Consistent with the Spike S1 recombination hotspots revealed in the initial analysis 

(Figure 2.1B,C), the closest relatives of SARS-CoV-2 presented here have non-

nCoV derived recombinant sequences at the start of the Spike gene (Figure 2.2B). 

Despite one collected from Yunnan, China and the other from Thailand, viruses 

RmYN02 and RacCS203 share a closely related non-nCoV sequence in RBP 

regions 15 and 16 (encompassing the Spike NTD and RBD respectively; Figure 

2.2B) having a distinct RBD compared to that of SARS-CoV-2. On the other hand, 

viruses RpYN06, PrC31, CoVZC45 and CoVZXC21 cluster within the nCoV clade 

for region 15 but, similar to the RmYN02 and RacCS203, form a distinct cluster in 

the non-nCoV clade for region 16 (Figure 2.2B; Wells et al., 2021). We speculate 

that some of the apparent patterns of recombination-mediated exchange between 

nCoV and non-nCoV viruses can be partly explained by sequential recombination, 

i.e., “overprinting” of recombination events involving different ancestral parental 

viruses. This will occur when an nCoV virus acquires a non-nCoV genomic 

sequence through ancestral recombination but its progenitors co-circulating with 

other nCoV viruses incur subsequent recombination events that overlap portions of 

the original non-nCoV recombinant sequence, producing the more complex “patchy” 

patterns we see in the currently sampled viruses. Note, overprinting of 

recombination regions will result in reduced confidence in the breakpoints at deeper 

nodes in the phylogeny. 
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The finding that Sunda (also known as Malayan) pangolins, Manis javanica, non-

native to China, are another mammal species from which nCoV sarbecoviruses 

have been sampled in Guangxi and Guangdong provinces in South China (Lam et 

al., 2020; Xiao et al., 2020), indicates these animals are likely being infected in this 

part of the country (Figure 2.3B). Pangolins are one of the most frequently trafficked 

animals with multiple smuggling routes leading to southern China (Xu et al., 2016). 

The most common routes involve moving the animals from Southeast Asia 

(Myanmar, Malaysia, Laos, Indonesia, Vietnam) to Guangxi, Guangdong, and 

Yunnan. The most likely scenario that is consistent with both the reported respiratory 

distress that the sampled pangolins exhibited (Liu, Chen and Chen, 2019; Xiao et 

al., 2020) and the lack of confirmed CoV infections among Sunda pangolins in 

Malaysia (Lee et al., 2020), is that the viruses obtained from these animals infected 

them (presumably from bat sources) after they were trafficked into southern China. 

Still, serological data of trafficked Sunda pangolins could suggest potential 

circulation of sarbecoviruses in the animals’ wild populations (Wacharapluesadee 

et al., 2021). 

 

Figure 2.3. Recombination analysis and geographic distribution of Sarbecoviruses. Maximum 
clade credibility (MCC) dated phylogeny of RBP region 5 of 78 Sarbecoviruses (A). All tips are 
annotated with the geographic region the viruses have been sampled in and notable viruses are 
annotated with genome schematics separated into the 22 inferred RBP regions, each coloured based 
on phylogenetic distance from SARS-CoV-2 (see scale and Methods). RBP region 21 has been 
removed from the schematic due to limited phylogenetic information in the alignment. The GX cluster 
annotated with an asterisk contains the 5 pangolin coronaviruses collected in Guangxi.  
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Figure 2.3 (cont). Map of East Asia with geographic regions (provinces within China, countries 
outside China) coloured based on Sarbecoviruses sampling (B): blue for regions with only non-nCoV 
clade samples, pink for regions where nCoV viruses have been sampled. Shading in the nCoV 
regions corresponds to phylogenetic distance from SARS-CoV-2 (see scale). Notable nCoV viruses 
and pangolin trafficking routes - adapted from Xu et al. (2016) - are annotated onto the map. 

Although the recombination patterns inferred in the pangolin-derived virus genomes 

seem to be less complex than those of the bat nCoV genomes, the Guangdong 

Pangolin-CoV has a Spike receptor binding domain that is most similar to that of 

SARS-CoV-2. This finding was highlighted by (X. Li et al., 2020) and attributed to 

recombination between the SARS-CoV-2 and Pangolin-CoV proximal ancestors. 

However, based on the nucleotide divergence between the two viruses in this short 

Spike segment, the most likely explanation is recombination in RaTG13, making it 

more divergent than Pangolin-CoV compared to SARS-CoV-2 (Boni et al., 2020) 

(reflected in region 17 - see online data Methods subsection 2.2.10, Figure 2.2A). 

The susceptibility of pangolins to an apparently new human coronavirus is not 

surprising given the well-documented generalist nature of SARS-CoV-2 (Conceicao 

et al., 2020), which has been found to readily transmit to multiple mammals with 

similar ACE2 receptors, most notably, on mink farms (Oude Munnink, Sikkema, et 

al., 2021).  
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2.3.3 Overlapping horseshoe bat ranges 

Considering that almost all sarbecoviruses have been sampled in related horseshoe 

bat host species, with ranges that span different regions where nCoV clade viruses 

have been collected (Figure 2.4B), these bat populations should be prioritized for 

sampling. For example, the least horseshoe bat species, R. pusillus, is sufficiently 

dispersed across China to account for the geographical spread of i) bat sarbecovirus 

recombinants in the West and East of China, ii) infected imported pangolins in the 

South, iii) bat sarbecovirus recombinant links to southwest of China, and iv) SARS-

CoV-2 emergence towards Hubei in Central China (Figure 2.3B). Strikingly, the 

ranges of multiple species including R. affinis, R. sinicus and R. pusillus overlap all 

the regions in China where nCoV members have been collected (Figure 2.4B). 

Other species known to harbour nCoV viruses have more restricted ranges such as 

R. malayanus found predominantly in the western part of China and countries to the 

Southwest of China (Myanmar, Thailand, Cambodia, Laos, Viet Nam, and 

Peninsular Malaysia) (Piraccini, 2016; Bates et al., 2019). On the contrary, the 

greater horseshoe bat species, R. ferrumequinum, is not known to harbour any 

nCoV viruses and is absent from large parts of South Central China (Figure 2.4B). 
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Figure 2.4. Molecular dating and Rhinolophus host geographic distributions. Tip-dated 
Bayesian phylogeny of RBP region 5 showing the 9 closest relatives to SARS-CoV-2 (A). Tree nodes 
have been adjusted to the mean age estimates and posterior distributions are shown for each node 
with mean age estimate and 95% HPD confidence intervals presented to their left. Tips are annotated 
with the host species they were sampled from, bat silhouette colours correspond to panel B. 
Geographic ranges of Rhinolophus species the SARS-CoV-2 closest relatives have been sampled 
in (B). Maps are restricted to East Asia and separated into province-level within China and country-
level outside China. 

The wide geographic ranges of R. pusillus and R. affinis and the fact that two of the 

closest known relatives of SARS-CoV-2, RpYN06 and RaTG13, have been sampled 

in these species flags them as prime suspects for the source of the SARS-CoV-2’s 

progenitor in China. Additionally, these two bat species are found in shared roosts 

with R. sinicus and R. ferrumequinum in Yunnan and with R. sinicus in Guangxi (Luo 
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et al., 2013), providing opportunities for host switches, co-infections and thus 

recombination between the sarbecoviruses that these bat species carry. R. pusillus 

and R. affinis also link more regions of China with bat species such as R. shameli, 

R. malayanus and R. acuminatus which are only found in Southeast Asia and 

southwest of China (Figure 2.4B). Latinne et al. (2020) published a large-scale 

sampling expedition of coronaviruses across bats in China. Despite there only being 

short RdRp sequence fragments available, the phylogeny for the novel viruses 

revealed a cluster of seven identical sarbecovirus sequences sampled from R. 

affinis within the nCoV clade (Appends A, Figure A.2). Still, the fact that viruses in 

the Yunnan clade (consisting of RmYN02, RpYN06 and PrC31) were sampled from 

three different Rhinolophus species supports the hypothesis that these viruses 

readily infect multiple different horseshoe bat species with overlapping geographical 

ranges. 

Based on the analysis of the sarbecovirus and host data presented here, we 

propose that to locate the SARS-CoV-2 progenitor sampling should focus on the 

ranges of horseshoe bat host populations known to harbour nCoV viruses. 

Specifically, samples should be collected in roosting environments spread across 

China with care taken both to avoid a further spillover (or reverse zoonosis) and to 

protect the bat populations (Luo et al., 2013). Sampling strategies will also need to 

consider the distinct subspecies of Rhinolophus as the delineators of genetically 

meaningful host populations for coronaviruses, for example, there are two R. affinis 

sub-species on mainland China: himalayanus and macrurus (Mao et al., 2010). 

Future sampling should also encompass a range of indigenous mammals other than 

bats that we now know can be infected by these coronaviruses. Although highly 

endangered, Chinese pangolins, given their susceptibility to infection and their 

geographical range across southern China (Challender et al., 2019), could be one 

of the possible candidates for the “missing” intermediate host of the SARS-CoV-2 

proximal ancestor (World Health Organisation, 2021).  

 

2.3.4 The importance of recombination in human-circulating 
SARS-CoV-2 

Recombination is a key process in the evolution of SARSr-CoVs, however the 

sparse sampling of these bat viruses only provides snapshots of the true 
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recombination events that led to these mosaic genomes. The immense effort of 

SARS-CoV-2 sequencing during the COVID-19 pandemic allows us to observe 

recombination in action between variants of the virus, for example in the case of the 

globally circulating XBB lineage. To trace the recombination event that led to the 

emergence of the XBB variant, I retrieved all SARS-CoV-2 sequences deposited to 

GISAID (as of October 3, 2022) with PANGO lineage designation matching BJ.1, 

BM.1, XBB, and all their descendant lineages (including BM.1.1, BM.1.1.1, and 

XBB.1). Recombination analysis on the aligned set of sequences, using a number 

of independent recombination detection methods implemented in RDP5 (Martin et 

al., 2021) robustly identified a single recombination breakpoint unique to all XBB 

sequences at genomic position 22,920 (matching the Wuhan-Hu-1 reference 

genome) (Figure 2.5). No evidence of recombination was found in the BJ.1 and 

BM.1 sequences in the dataset. Consistent with the result of the RDP5 analysis, 

visual inspection of the nucleotide differences between the consensus sequences 

of XBB, BJ.1, and BM.1 (including BM.1.1 and BM.1.1.1) clearly illustrated that the 

identity of XBB to BJ.1 ends at genome position 22,942, and the identity of XBB to 

BM.1 starts after position 22,896 (Figure 2.5). Together, the analysis suggests that 

the recombination breakpoint is between positions 22,897 and 22,941, within the 

receptor binding domain (RBD) of the Spike protein (corresponding to amino acid 

positions 445-460) (Figure 2.5). 

 

Figure 2.5. Recombination event leading to the SARS-CoV-2 XBB variant. Top: Nucleotide 
differences between the consensus sequences of the BJ.1, BM.1 (including BM.1.1/BM.1.1.1) 
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Figure 2.5 (cont). lineages and the XBB (including XBB.1) lineage, visualized with snipit 
(https://github.com/aineniamh/snipit). Bottom: Maximum clade credibility time-calibrated phylogeny 
of the 5’ non-recombinant segment (1–22,920) of the XBB variant (left) and non-calibrated maximum 
likelihood phylogeny of the 3’ non-recombinant segment (22,920–29,903) (right). The right hand-side 
tree is rooted on a BA.2 outgroup (not shown). 

I then split the sequence alignment at position 22,920 to determine the evolutionary 

history of each nonrecombinant segment of the XBB genomes. The phylogenetic 

reconstructions recapitulate the recombination results, with the 5’ end major 

parental sequence being derived from the BJ.1 clade and the 3’ end minor parental 

sequence from the BM.1.1.1 clade (Figure 2.5). Using the longer 5’ end non-

recombinant part of these genomes, I estimated the emergence date of XBB using 

Bayesian tip-dated phylogenetic inference (Figure 2.5). The analysis suggests that 

the XBB clade’s most recent common ancestor (MRCA) existed at the start of July 

2022 (median posterior date: July 7, 2022; 95% HPD confidence intervals: from 

June 10, 2022, to July 29, 2022). Furthermore, the MRCA between the XBB and 

BJ.1 lineages existed at the start of June 2022 (median posterior date: June 11, 

2022; 95% HPD intervals: from May 22, 2022, to June 26, 2022) (Figure 2.5). 

Together, our analyses suggest that XBB emerged through the recombination of 

two cocirculating lineages, BJ.1 and BM.1.1.1, during the summer of 2022. 

  

https://github.com/aineniamh/snipit
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2.4 Discussion 

The currently available data illustrate a complex reticulate evolutionary history in the 

lineage of sarbecoviruses SARS-CoV-2 emerged from. This history is influenced by 

co-circulation of related coronaviruses, over at least the last 100 years, across the 

bat populations in southern China, and into Southeast Asia with multiple 

recombination events imprinted on the genomes of these viruses. Considering the 

high frequency of recombination, it is expected that selection could preferentially 

favour exchanges of specific genomic regions, in line with our detection of hotspots 

near the Spike gene (Figure 2.1B,C). The functional implications of selective Spike 

recombination has recently been corroborated by multiple independent studies, 

suggesting this might be a mechanism for antigenic shift utilised by the 

sarbecoviruses or, more broadly, by all coronavirus groups (Bobay, O’Donnell and 

Ochman, 2020; Nikolaidis et al., 2021; Yang et al., 2021; de Klerk et al., 2022; 

Goldstein et al., 2022). The analysis further illustrates the importance of accounting 

for recombination rather than using whole-genome pairwise similarity to determine 

the shared evolutionary history of these viruses. This is exemplified by RaTG13 

which is often described as the “on average” closest sarbecovirus to SARS-CoV-2 

despite not being the phylogenetically closest virus once recombination history is 

accounted for in the other nCoV sarbecoviruses (Figures 2.1A, 2.3A).  

The evidence of recombination events between members of the Sarbecovirus 

subgenus sampled in different geographical regions and from different bat hosts, 

indicates recent extensive movement of the viruses between different regions and 

species (and sub-species) as a result of the contacts between different bat 

populations that carry them. Although the closest known relatives of SARS-CoV-2 

were sampled in Yunnan, the location of the proximal viral population SARS-CoV-2 

emerged from remains unknown. The recombination patterns detected within the 

nCoV genomes imply the existence of one or several primary reservoir hosts with a 

geographical range spanning Thailand from the Southwest and Zhejiang to the East, 

a distribution that is consistent with specific Chinese horseshoe bats acting as the 

primary reservoir hosts. Our observations are further confirmed by recent report of 

more bat coronaviruses very closely related to SARS-CoV-2 sampled from R. 

pusillus and R. malayanus in Laos (Temmam et al., 2022). Both the sampling 

location and host species are consistent with expectations based on our analysis, 

essentially filling in the geographic gap between previous nCoV sampling locations. 
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The recombination patterns reported in these newly discovered genomes are also 

consistent with the extensive recombination reported here (Temmam et al., 2022). 

Having presented evidence in support of R. affinis and R. pusillus’s potential 

significance as the reservoir species, it would be remiss not to note that at least 20 

different Rhinolophus species are distributed across China (four of which are 

endemic to China), many of which have not yet been found hosting nCoVs. The 

generalist nature of Sarbecoviruses also means multiple wild or farmed animals 

(e.g., American mink (Neovison vison) both farmed for fur and used as a food 

source) (World Health Organisation, 2021; Xia et al., 2021; Xiao et al., 2021) could 

have facilitated transmission of SARS-CoV-2 from bats to humans.  

While SARS-like antibodies detected in people from rural communities in China 

(Wang et al., 2018; Li et al., 2019) indicates an intermediate animal species is 

potentially not required for transmission to humans, it does seem that emergence in 

a populated area is required for significant outbreaks to occur. The association of 

both SARS-CoV and SARS-CoV-2 with animal markets suggests animal trafficking 

is a key part of this transmission to humans. Human-mediated animal movement 

increases contact with sarbecovirus infected animals (whether they are susceptible 

species that have been trapped or farmed in rural locations; (Xia et al., 2021) and 

subsequently introduces them into city markets (Lytras et al., 2021; World Health 

Organisation, 2021; Worobey, 2021). An urgent question relating to the prevention 

of another emergence, is: i) where in China or Southeast Asia is the SARS-CoV-2 

progenitor located (our analysis shows this is not necessarily Yunnan); ii) which bat 

or other animal species are harbouring nCoV sarbecoviruses and iii) what is the risk 

of future spillover events? There is undoubtedly a virus highly related to SARS-CoV-

2 still present somewhere in the wild. The best we can do is maximize the probability 

that future sampling efforts will uncover that host species or sub-species.  

The observation of extensive recombination among SARS-CoV-2’s closest known 

relatives foreshadowed that this process would be eventually involved in SARS-

CoV-2’s evolution in humans, given enough co-circulating diversity. Indeed, the 

emergence of XBB confirmed this prediction, with the dominant lineage circulating 

for almost a year now being a result of recombination. Analysis of the Sarbecovirus 

genomes indicates that recombination takes place around the Spike open reading 

frame, likely selectively swapping this gene between strains. However, the XBB 

event seems slightly different, with the breakpoint being within the Spike S1 subunit 
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encoding region of the genome (Figure 2.5). Experimental work indicates that by 

combining the Spike genes of its parental strains, XBB acquired an advantageous 

constellation of Spike substitutions making it more immune evasive and better at 

ACE2 binding than its progenitors (Tamura et al., 2023; Wang et al., 2023; Yue et 

al., 2023). Hence, in the case of XBB, recombination acted as a way to quickly 

accumulate a set of advantageous substitutions, more efficiently than through 

stepwise mutation. This mechanism is distinct to antigenic shift through entire Spike 

swapping that likely happens in the horseshoe bat hosts, and probably comes down 

to the amount of co-circulating diversity of the viruses. The SARSr-CoVs co-

circulating in the same bat hosts are much more diverse than SARS-CoV-2 variants 

co-circulating in the human population. The Delta and Omicron variants of concern 

did co-circulate for a brief period of time leading to a few detected inter-VOC 

recombinants (Arora et al., 2022; Colson et al., 2022; Lacek et al., 2022; Wang et 

al., 2022), but none of these exhibited any observable fitness advantage and 

became dominant in the population. This suggests that compatibility between co-

circulating viruses – the polymerase of one virus being physically capable of 

replicating the co-infecting virus’s genome, or the recombinant genome being viable 

for further replication – is also key to recombination having an impact in the future 

evolution of SARS-CoV-2. Given enough diversity, recombination-mediated 

antigenic shift may play a role in SARS-CoV-2’s future evolution whether that is 

between SARS-CoV-2 variants, or between SARS-CoV-2 and a potential novel 

zoonotic Sarbecovirus introduced to humans. This is why it is necessary to maintain 

genomic monitoring of the circulating SARS-CoV-2 diversity, tracking future 

recombination events in this virus’s evolution. 
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Chapter 3. Resurrecting the 
antiviral activity of the ancient 
horseshoe bat OAS1 protein 

 

 

Cartoon model of guanine. 

PDB ligand entry: GUN, visualised with ChimeraX. 

 

 

 

“A totally blind process can by definition lead to anything.” 

Jacques Monod, Chance and Necessity (1970)  
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Aim 

The human 2′-5′-oligoadenylate synthetase 1 (OAS1) protein has been shown to 

protect individuals infected with SARS-CoV-2 from severe disease. In this section, I 

explore the evolutionary history of the horseshoe bat OAS1 orthologue and how an 

ancient change in this gene might have played a role in enabling the interaction 

between SARS-related coronaviruses’ with horseshoe bat hosts. 

 

  

The Results subsections 3.3.1 “An ancient retrotransposition event ablated 

OAS1 prenylation in horseshoe bats” and 3.3.2 “No known Rhinolophoidea-

infecting CoVs encode PDEs” (Figure 3.1) in this chapter are my own work and 

have been published in Wickenhagen et al. (2021, Science, 374[6567]: abj3624). 

The published paper includes work conducted by co-authors which is referenced 

in the text to provide essential context for my own work. The remaining Results 

subsections of this chapter are currently under review as a separate manuscript. 

All experimental work presented in subsection 3.3.4 “Restored anti-SARS-CoV-

2 activity in the ancestral OAS1 protein” and Figure 3.3A,B (cell line 

modifications, SARS-CoV-2 infections, plaque assays and CPE assays) have 

been performed by Arthur Wickenhagen, Elena Sugrue and Emma L Davies. The 

methods for this work can be found in Appendix B Text B.1.  
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3.1 Introduction 

3.1.1 Human OAS1 is an antiviral factor against SARS-CoV-2 

Multiple barriers prevent viruses from infecting new species and these barriers can 

also hamper the ability of a virus to thrive in an unfamiliar host. Alternatively, 

changes in the host genes responsible for these barriers may enable some viruses 

to diversify in these host lineages. Functional engagement of dependency factors 

(such as viral receptors) is required for successful spillover, but viruses must also 

navigate a myriad of host-specific immune defences to sustain infection and 

transmission in a new host. The main prenylated form of the human 2′-5′-

oligoadenylate synthetase 1 (OAS1, isoform p46) protein has been shown to have 

potent antiviral activity against SARS-CoV-2 and its expression correlates with less 

severe disease in humans (Soveg et al., 2021; S. Zhou et al., 2021; Wickenhagen 

et al., 2021; Zeberg and Pääbo, 2021; Huffman et al., 2022). The OASs are 

interferon-stimulated genes (ISGs) and their expression levels are commonly 

increased during interferon (IFN) mediated antiviral responses. Most OASs sense 

double-stranded viral RNA, and this frequently activates the synthesis of 2′-5′-linked 

oligoadenylates (2-5A). 2-5A induces the dimerization of inactive RNase L, which 

upon activation mediates the indiscriminate cleavage of viral and host RNAs, 

leading to inhibition of viral replication (Sadler and Williams, 2008; Hornung et al., 

2014). The mammalian OAS family includes three catalytically active members 

(OAS1, OAS2 and OAS3) (J. Hu et al., 2018) that seem to be under co-adaptive 

evolutionary pressure with its interacting proteins (e.g., RNase L) in both primates 

and chiroptera (Mozzi et al., 2015).  

For the OAS1 protein to recognise the virus and initiate its inhibition, it needs to be 

in contact with the viral RNA. Coronaviruses hijack the endoplasmic reticulum of 

infected cells, creating double-membrane vesicles (DMVs) in which virus replication 

takes place (Knoops et al., 2008; V’kovski et al., 2020). Similar replication 

mechanisms are deployed by the majority of positive-sense single-stranded RNA 

(+ssRNA) viruses (Wolff et al., 2020). This intracellular compartmentalisation of the 

viral genetic material may be a form of immune evasion and suggests that host 

antiviral proteins also need to be localised in (or near) the DMVs to target the virus. 

The p46 isoform of human OAS1 contains a CAAX-box motif at its C-terminal end 

which acts as a prenylation signal for the protein. The prenylation post-translational 
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modification targets the protein to membranes in close proximity to where SARS-

CoV-2 replicates thereby enabling antiviral activity. In contrast, the non-prenylated 

p42 isoform does not restrict SARS-CoV-2 replication (Soveg et al., 2021; 

Wickenhagen et al., 2021). Similar post-translational modification signals seem to 

be required by other RNA-binding ISG proteins for sensing RNA viruses replicating 

in cytoplasmic compartments and inhibiting their replication (Kmiec et al., 2021).  

 

3.1.2 Phosphodiesterase-encoding genes in coronaviruses 

Phosphodiesterases (PDEs) are a superfamily of enzymes that primarily cleave 

second messenger molecules bound by phosphodiester bonds, e.g. cyclical 

adenosine monophosphate (cAMP) (Jeon et al., 2005). As mentioned above, the 

OAS-Rnase L pathway involves the synthesis of 2-5A molecules which are also 

bound by phosphodiester bonds between their 2’ and 5’ carbon atoms. Murine 

hepatitis virus (MHV), a coronavirus widely used as a model system, was the first 

coronavirus found to encode a 2’-5’ PDE enzyme that can antagonise the OAS 

system by degrading the 2-5A molecules required for RNase L activation and 

subsequent virus inhibition (Zhao et al., 2012). This PDE-encoding gene, called 

NS2, is also found in a number of lineage A Betacoronaviruses, including the human 

seasonal coronavirus OC43 (Goldstein et al., 2017) which is also not inhibited by 

human OAS1 (Wickenhagen et al., 2021). Functional homology of the coronavirus 

NS2 2’,5’ PDE domain has also been found in the group A rotavirus VP3 protein 

and the murine A kinase anchoring protein 7 (AKAP7), presence of either seems to 

facilitate MHV replication in vitro (Zhang et al., 2013; Gusho et al., 2014). This 

observation suggests that lineage A Betacoronaviruses likely acquired their PDE-

encoding gene from their host genome through an ancestral insertion, allowing them 

to antagonise the OAS – RNAse L antiviral pathway. The human coronavirus OC43 

likely originated in a murine host (Lau et al., 2015) and entered human populations 

through a cross-species transmission from cattle (Vijgen et al., 2005). At least one 

paralogue of both mouse and cow OAS1 orthologues (murine OAS1a and bovine 

OAS1Y) are prenylated and confer potent anti–SARS-CoV-2 activity (Wickenhagen 

et al., 2021), confirming that the NS2 gene likely evolved in these viruses in the 

presence an active antiviral OAS, possibly OAS1. 
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Interestingly, the Middle East respiratory syndrome-related coronavirus (MERS-

CoV), a lineage C Betacoronavirus that emerged in humans in 2012 (Zaki et al., 

2012), also encodes a PDE (NS4b) capable of antagonising the OAS-RNase L 

system (Thornbrough et al., 2016). However, the origin of NS4b seems to be 

independent of the lineage A NS2 gene, despite both coronavirus proteins having a 

similar role in antagonising host immunity. MERS-CoV entered human populations 

after transmission from dromedary camels (Camelus dromedarius) (Reusken et al., 

2013; Briese et al., 2014). The NS4b gene is also found in only a handful of known 

MERS-CoV-related lineage C Betacoronaviruses, including HKU4, HKU5, NeoCoV 

and PDF-2180, all sampled in bats of the Vespertilionoidea superfamily 

(Tylonycteris pachypus, Pipistrellus abramus, Neoromicia capensis and Pipistrellus 

cf. hesperidus respectively) (Woo et al., 2006; Corman et al., 2014; Anthony et al., 

2017). Accordingly, OAS1 from Pipistrellus kuhlii (a Vespertilionoidea bat species) 

and C. dromedarius have CAAX-box motifs and block SARS-CoV-2 replication in 

vitro (Wickenhagen et al., 2021). Hence, it seems that at least two Betacoronavirus 

lineages have independently acquired PDE genes that antagonise the antiviral 

function of OAS1 through 2-5A degradation. The reservoir hosts of both virus 

lineages have active OAS–RNAse L pathways that target coronavirus replications, 

suggesting that PDE acquisition is a means for these viruses to counteract OAS1-

dependent antiviral activity.  
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3.2 Methods 

3.2.1 Synteny analysis 

The Ensembl web database was used for assessing the OAS1 locus genome 

synteny between the human genome (GRCh38.p13) and the available Rhinolophus 

species, R. ferrumequinum, genome (mRhiFer1_v1.p). The syntenic region 

between the human OAS1 exon 7 (ENSE00003913305) and the horseshoe bat 

genome was examined to identify a region in the latter genome sequence starting 

at position 7,833,728 of scaffold 25 of the mRhiFer1_v1.p primary assembly that 

lacked synteny to the human genome. Incidentally, the non-syntenic region started 

in-frame where the p46 “CTIL” encoding human sequence would have been. I 

extracted the 580 bp R. ferrumequinum sequence span up to where synteny 

resumes to the human genome and used hmmscan (HMMER 3.2.1) (Eddy, 2009) 

to search against the Dfam database (Hubley et al., 2016) for transposable elements 

present in the sequence. Two confident matches were identified, one to a partial 

MER74A-like LTR element at the very start of the non-syntenic sequence and one 

to a L1-like retrotransposon element at the 3′-end of the sequence.  

 

3.2.2 In silico genome screening 

To explore how far back in time this LTR insertion at the OAS1 locus took place, I 

used the Database-Integrated Genome-Screening (DIGS) software (H. Zhu et al., 

2018). DIGS uses a nucleotide or amino acid sequence probe to perform a BLAST 

similarity search through genome assemblies. I collected a set of 44 Chiroptera 

species genome assemblies to perform three in silico screens. 

I first used the nucleotide sequence of the syntenic region of R. ferrumequinum to 

human exon 7 (Ensembl) and the adjacent 580 bp region with the detected LTR 

insertion until homology resumes to the human genome as a probe. The DIGS 

screen was conducted using a minimum blastn bitscore of 30 and minimum 

sequence length of 30 nucleotides. Matches were aligned using MAFFT v7.453 

(Katoh and Standley, 2013) and inspected for covering all regions of the probe. The 

second screen used the CAAX terminal amino acid sequence homologous to that 

encoded by the human exon 7 of 5 previously annotated bat OAS1 proteins holding 
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a CAAX-box terminus. The minimum tblastn bitscore was set to 60 and the minimum 

sequence length to 40 nucleotides. The translated sequences of hits were aligned, 

and only hits with a CAAX domain present were retained. Finally, to cross-validate 

that sequence hits of the CAAX domain search are part of the OAS1 locus, a screen 

using the R. ferrumequinum OAS1 C-terminal domain amino acid sequence as a 

probe was performed, with a minimum tblastn bitscore of 100 and minimum 

sequence length of 100 nucleotides. Only hits of the CAAX search found on 

scaffolds with a detected OAS1 locus in the third search were maintained in the 

analysis. It is worth noting that the lack of an OAS1 domain detected on the same 

scaffold as hits in the CAAX sequence search is most likely a result of low genome 

assembly quality. Regardless, the hits were excluded for clarity.  

 

3.2.3 PDE analysis 

To examine the diversity of PDE proteins encoded by coronaviruses, I first 

constructed an HMMER protein profile. Two seemingly independently acquired 

PDEs are encoded by the NS2 of Embecoviruses (Zhao et al., 2012) and NS4b of 

MERS-like coronaviruses (Thornbrough et al., 2016), respectively. Group A 

rotavirus (RVA) has also been described to encode a protein with a homologous 

PDE domain and similar biological function (Zhang et al., 2013). Finally, the AKAP7 

mammalian protein holds a PDE domain that has been experimentally shown to 

complement the function of murine coronaviruses’ NS2 activity (Gusho et al., 2014). 

I aligned the amino acid sequence of the PDE domains of the OC43 NS2 

(AAT84352.1), the MERS NS4b (AIA22866.1), and the NS4b proteins of two more 

bat Merbecoviruses HKU5 (YP_001039965.1) and SC2013 (AHY61340.1), the 

AKAP7 proteins of Rattus norvegicus (NP_001001801.1), Mus musculus 

(NP_001366167.1), and humans (NP_057461.2) (as their homology to CoV PDEs 

has been previously characterized) and the Rotavirus A VP3 protein (AKD32168.1). 

The alignment was then manually curated using Bioedit on the basis of the 

homology described in the literature. The final alignment was used to produce a 

hidden Markov model (HMM) profile using the HMMER suite (v3.2.1) (Eddy, 2009). 

All complete Coronaviridae sequences were downloaded from the NCBI virus online 

database as of the 15th of April 2021 (Hatcher et al., 2017). Only sequences with an 
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annotated host and length above 25,000 bp were retained and viruses of “severe 

acute respiratory syndrome-related coronavirus” species with a human host were 

excluded, producing a dataset of 2042 complete or near-complete coronavirus 

genomes. The EMBOSS getorf program was used to extract the translated 

sequences of all methionine starting ORFs with length >100 nucleotides from the 

filtered virus genome dataset. All putative ORFs were then screened against our 

custom PDE HMM profile using hmmscan (Eddy, 2009).  

 

3.2.4 Retrieval of bat OAS1 proteins 

To find annotated bat OAS1 sequences protein BLAST (Camacho et al., 2009) was 

used with the R. ferrumequinum OAS1 protein (XP_032953023.1) as the query 

sequence. The search was restricted to the Chiroptera order and after manual 

examination of the pairwise alignments, the OAS1 protein sequences of 16 bat 

species (including R. ferrumequinum) were retrieved.  

From the Rhinolophoidea superfamily, only R. ferrumequinum and Hipposideros 

armiger have annotated OAS1 protein sequences available in NCBI Genbank. To 

increase the phylogenetic resolution of this clade, I retrieved the contigs from the 

Megaderma lyra and R. sinicus genomic assemblies (PVJL010007185.1, 

NW_017739019.1) that are syntenic to the R. ferrumequinum OAS1 locus as 

identified by the DIGS search described in subsection 3.2.2 and used AUGUSTUS 

(Stanke et al., 2008) to predict the respective OAS1 coding sequences (human 

version with default transition matrix). Sequence predictions were aligned to the R. 

ferrumequinum OAS1 sequence using MAFFT v7.453 (Katoh and Standley, 2013) 

and one sequence was selected for each species, based on highest transcript 

similarity to the R. ferrumequinum OAS1 protein (XP_032953023.1).  

 

3.2.5 Ancestral sequence reconstruction 

The resulting 18 bat OAS1 protein sequences were aligned with MAFFT (--genafpair 

option) (Katoh and Standley, 2013) and, in order to avoid low-information sites in 

the alignment biasing the phylogenetic reconstruction, N- and C-terminal ends not 

shared by the majority of sequences were trimmed off.  
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IQ-TREE (version 1.6.1) (Nguyen et al., 2015) was used for the ancestral sequence 

reconstruction (-asr) of the final protein alignment under a LG+I+G4 model, selected 

by ModelFinder (Kalyaanamoorthy et al., 2017). The reconstructed phylogeny’s 

topology was informed by the species tree of the corresponding bat species 

retrieved from TimeTree (Kumar et al., 2017), using iqtree’s -te option.  

The IQ-TREE output was used to reconstruct the OAS1 sequence preceding the 

LTR insertion in the Rhinolophoidea common ancestor, i.e. the node of the 

phylogeny connecting the Rhinolophoidea and the Pteropodoidea superfamilies. 

The Rhinolophoidea common ancestor (RhinoCA) sequence was reconstructed 

using the residue with the highest posterior probability for each site. A second 

version of the sequence, RhinoCA-T70, was reconstructed by replacing all sites 

where no residue state had a posterior probability above 0.7 with the corresponding 

P. alecto residue. Since gaps in the alignment provide no information for the site-

by-site ancestral reconstruction, the variable indel region corresponding to R. 

ferrumequinum OAS1 positions 159 to 163 was replaced with the P. alecto insertion 

in this region (P. alecto OAS1 positions 159-173 – PRSYYSDSQIHEDYR) for both 

RhinoCA and RhinoCA-T70. Similarly, the P. alecto C-terminal end was appended 

at the C-terminal end of both reconstructed sequences (P. alecto OAS1 positions 

357-372 – PYDTPHVEEDQWCAIL). Positions in the alignment where residues 

(rather than gaps) were present in only one out of the 18 bat OAS1 sequences were 

removed from the reconstructions. 

The entropy value for each site in the Chiroptera OAS1 protein alignment shown in 

Figure 1A was calculated using Shannon’s entropy formula with a natural log as 

implemented in Bioedit (Hall, 1999) (H(l) = -Σf(a,l)ln(f(a,l)); f(a,l) being the frequency 

of amino acid a at position l). 

 

3.2.6 Selection analysis 

The trimmed amino acid alignment of the 18 bat OAS1 proteins was converted to 

its corresponding coding sequence alignment using PAL2NAL (Suyama, Torrents 

and Bork, 2006). To exclude potentially non-homologous sites before performing 

selection analysis, the variable indel region (highlighted in Figure 3.2A) was 

removed from the alignment. The final codon alignment contained 351 out of the 
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366 codon sites in the original alignment. The phylogeny was reconstructed again 

using the gap-free codon alignment in the same way described above (-asr -te) 

under a GTR+I+F+G4 substitution model using IQ-TREE (Nguyen et al., 2015). The 

resulting phylogeny and alignment were used for performing a number of selection 

detection methods of the Hyphy package (v2.5.33) (Kosakovsky Pond et al., 2019). 

RELAX (Wertheim et al., 2015) was performed to detect potential signals of 

selection relaxation specific to all branches of the Rhinolophoidea clade and branch 

leading up to it. The adaptive Branch-Site Random Effects Likelihood (aBSREL) 

method (Smith et al., 2015) was used to detect branch-specific episodic selection 

across all branches of the tree. To examine site-specific selection, the Fixed Effects 

Likelihood (FEL) and Mixed Effects Model of Evolution (MEME) methods 

(Kosakovsky Pond and Frost, 2005; Murrell et al., 2012) were performed, each with 

100 permutations of parametric bootstrapping, separately for the branches of the 

Rhinolophoidea clade and branch leading up to it and all other branches of the tree. 

Contrast-FEL (Kosakovsky Pond et al., 2021) was performed to detect sites under 

different selective pressures in the Rhinolophoidea using the aforementioned 

branches as test and reference respectively.  

 

3.2.7 Protein structure predictions 

ColabFold 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFo

ld2.ipynb) (Mirdita et al., 2022), implementing MMseq2 (Steinegger and Söding, 

2017) and AlphaFold2 (Jumper et al., 2021), was used to predict the tertiary 

structure of the R. ferrumequinum, P. alecto and RhinoCA OAS1 proteins. 

ColabFold was performed under default parameters and the best ranked prediction 

was selected for each protein. The structures were visualised and superimposed 

onto the RNA-bound human OAS1 crystal structure (pdb: 4IG8) using ChimeraX 

(version 1.4) (Pettersen et al., 2021). 

 

 

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
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3.2.8 Data availability 

The data and code used for this Chapter are publicly available at the following 

GitHub repositories: 

https://github.com/spyros-lytras/bat_OAS1, 

https://github.com/spyros-lytras/ancient_bat_OAS1.   

https://github.com/spyros-lytras/bat_OAS1
https://github.com/spyros-lytras/ancient_bat_OAS1
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3.3 Results 

3.3.1 An ancient retrotransposition event ablated OAS1 prenylation 
in horseshoe bats 

Given the evidence that the prenylated OAS1 protein of humans and other 

mammals potently inhibits the replication of SARS-CoV-2 in vitro (Soveg et al., 

2021; Wickenhagen et al., 2021), it is of interest to examine the OAS1 orthologue 

of horseshoe bats, the primary host of SARS-related coronaviruses. The only 

horseshoe bat species with an annotated genome in the Ensembl database is that 

of the greater horseshoe bat, Rhinolophus ferrumequinum. Even though there is an 

annotated OAS1 gene for this species, no transcript or exon encodes the prenylated 

form of the protein. Indeed, all Ensembl and NCBI database entries specified non-

prenylated polypeptides. The prenylation signal (CAAX-box motif) of human OAS1 

is encoded by the gene’s exon 7. Thus, I examined the genome synteny between 

human exon 7 and the corresponding region of the R. ferrumequinum genome. 

Interestingly, the CAAX-box encoding region was completely absent from the 

horseshoe bat genome. Analysis of the syntenic region showed that a long terminal 

repeat (LTR) retrotransposon sequence was present in this part of the genome 

instead (Figure 3.1A). LTRs are mobile genetic elements that can integrate in 

different parts of the genome, similar to retrovirus integration (Bourque et al., 2018). 

Hence, this LTR-dependent deletion of the CAAX-box encoding region of the R. 

ferrumequinum OAS1 gene should render this OAS1 protein unable to become 

prenylated. 

Experimental work has shown that no R. ferrumequinum OAS1 encoded by 

annotated transcripts restricts SARS-CoV-2 replication when overexpressed in vitro, 

consistent with the hypothesis that prenylation is essential for the antiviral activity 

(Wickenhagen et al., 2021). To examine how many bat species share this LTR-

dependent deletion of the OAS1 prenylation motif, I performed an in silico genomic 

screen of 44 available bat genome sequences, searching for i) the LTR insertion, ii) 

the CAAX-box encoding sequence and iii) the core OAS1 sequence to ensure 

synteny. The LTR sequence was identified only in members of the Rhinolophoidea 

superfamily (including Rhinolophus, Hipposideros, and Megaderma species), 

indicating that this ancient retrotransposition insertion occurred ~58 to 52 million 

years ago at the base of this bat superfamily. By contrast, CAAX-box encoding 



Chapter 3  76 

syntenic sequences could be detected in members of all other bat taxa (Figure 

3.1B). 

 

Figure 3.1. Retrotransposition at the OAS1 locus has ablated the CAAX-box prenylation signal 
in Rhinolophoidea. (A) Schematic of genome synteny between the human OAS1 exon 7 locus 
(yellow) and the R. ferrumequinum genome. The exact syntenic sequence coordinates are annotated 
for the start of OAS1 exon 7, the start of the CAAX box encoding sequence, and the start of the 
upstream gene locus, OAS3 (blue). Transposable element hits on the 580 bp non-syntenic region in 
the R. ferrumequinum genome are shown in the enlarged inset. Noncoding regions are shown in 
black. Note that the schematic is not to scale. (B) Dated phylogeny (retrieved from TimeTree; 
www.timetree.org) (Kumar et al., 2017) of bat species with a confirmed LTR insertion in the OAS1 
locus or a CAAX box–encoding sequence present in the same scaffold as their OAS1 locus. Clades 
are labelled by superfamily, species names, and CAAX sequence (or LTR) are annotated next to the 
tree tips. The approximate time period during which the LTR insertion took place is annotated in red. 
(C) Proportion of bat CoV genomes with (top) and without (bottom) PDE-encoding genes, grouped 
by their host superfamily.  

  

http://www.timetree.org/
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3.3.2 No known Rhinolophoidea-infecting CoVs encode PDEs 

Considering the lack of prenylated OAS1 in the Rhinolophoidea and the ability of 

coronavirus phosphodiesterases to antagonise this pattern recognition pathway, I 

investigated whether PDE-encoding coronaviruses infect horseshoe bats. Given the 

variability in coronavirus-encoded PDEs [NS4b in Merbecoviruses and NS2 in 

Embecoviruses (Zhao et al., 2012; Thornbrough et al., 2016)], I developed a custom 

HMM protein profile using NS4b, NS2, the mammalian PDE AKAP7 (Gusho et al., 

2014), and rotavirus A VP3 (Zhang et al., 2013). I screened for PDEs through all 

putative open reading frames (ORFs) of all published Coronaviridae genomes. This 

method should capture previously unannotated or undescribed PDEs. Although the 

available sequence data set is likely biased by sampling, no PDEs could be 

identified in any known coronaviruses sampled in Rhinolophoidea hosts (Figure 

3.1C). In fact, all the bat coronaviruses identified as encoding PDEs were infecting 

members of the Vespertilionoidea superfamily (in which prenylated OAS1 is intact, 

Figure 3.1B). It should be mentioned that the majority of virus genomes in this 

analysis were sampled in Vespertilionoidea hosts, followed by Rhinolophoidea and 

then Pteropodoidea, with very few sequences from Noctilionoidea-infecting viruses 

(Figure 3.1C). Although there is an appreciable absence of PDEs in coronaviruses 

that circulate in horseshoe bats, an absence of PDEs does not necessarily imply an 

absence of anti–CoV OAS proteins in the relevant host. Many potential strategies 

exist to evade or antagonize the OAS system (Drappier and Michiels, 2015), and no 

PDEs were identified in coronaviruses sampled from Pteropodoidea and 

Noctilionoidea bats. 
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3.3.3 The Rhinolophoidea common ancestor OAS1 protein 

Our current understanding of the deeper phylogenetic relation of bats (order 

Chiroptera) splits them into two major suborders: the Yinpterochiroptera (including 

superfamilies Rhinolophoidea and Pteropodoidea) and the Yangochiroptera 

(including superfamilies Noctilionoidea and Verspertilionoidea) (Teeling et al., 

2005). The LTR insertion deleting the OAS1 prenylation signal is shared between 

all Rhinolophoidea members with available genome sequences. This means that 

the deletion and putative loss of OAS1 anti-SARS-CoV-2 function took place after 

the split between the Rhinolophoidea and Pteropodoidea superfamilies and prior to 

the diversification of the extant Rhinolophoidea species (Figure 3.2A). In addition to 

OAS1 of all other bat taxa having retained the prenylation signal, SARS-CoV-2 

restriction has been confirmed in vitro using OAS1 from members of the 

Pteropodoidea (Pteropus alecto) and the Yangochiroptera (Pipistrellus kuhlii) as 

well as humans, camels, cows and mice (Wickenhagen et al., 2021). Hence, the 

antiviral sensing of CoV dsRNA mediated by prenylated OAS1 is likely the ancestral 

phenotype, also shared by the deep ancestor of all Rhinolophoidea (Figure 3.2A), 

prior to the LTR insertion.  

I retrieved a set of 18 Chiroptera OAS1 protein sequences – available from NCBI 

Genbank or reconstructed from whole genome assemblies in this study – and used 

a phylogenetic approach, informed by the Chiroptera species tree, to predict the 

sequence of the aforementioned Rhinolophoidea pre-insertion ancestor (RhinoCA) 

OAS1 protein. This approach requires annotated peptide products instead of 

genome assemblies, explaining the discrepancy in the number of bat species used 

here compared to the in silico genome screening described above. The method 

used here provides a posterior probability for each site, indicative of the confidence 

on the reconstructed state. The majority of sites were confidently predicted with a 

posterior probability above 0.95. As expected, sites with lower posteriors 

corresponded to variable positions on the Chiroptera alignment (Figure 3.2A).  
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Figure 3.2. Ancestral state reconstruction of the RhinoCA OAS1 sequence. (A) Protein 
alignment of the RhinoCA (ASR), R. ferrumequinum (R. ferr) and P. alecto (P. alec) OAS1 
sequences. RhinoCA sites are coloured by each predicted state’s posterior probability. The bars on 
the bottom row indicate the Shannon’s entropy of each site in the alignment of all 18 Chiroptera 
OAS1 proteins. Secondary structure alpha helices (zigzag) and beta sheets (arrows) involved in the 
protein/RNA interface and the active site triad residues D74/D75/D147 are annotated underneath 
the entropy row as described for the human OAS1 protein in Donovan, Dufner and Korennykh (2013). 
(B) Maximum likelihood phylogeny of the Chiroptera OAS1 proteins informed by their species tree 
topology. The ancestrally reconstructed (RhinoCA) node, the branch where the prenylation signal 
was deleted and the clades of each superfamily are annotated on the tree. The variable indel region 
sequence of OAS1 is shown on the right of each tip. Residues are coloured according to potential 
homology between the proteins.  

 

Although most ancestral sequence reconstruction (ASR) methods are useful for 

predicting the state of single informative sites of internal nodes, indel variation in 

alignments can prove problematic in sequence reconstruction (Vialle, Tamuri and 

Goldman, 2018). By examining the OAS1 protein alignment a short region with 

distinct indel variation between bat taxa was identified, corresponding to R. 
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ferrumequinum OAS1 amino acid positions 159 to 163 (Figure 3.2A). Members of 

the Pteropodoidea and the Noctilionoidea have the longest variable region sharing 

clear homology, despite the two superfamilies not being monophyletic. This 

indicates that the longest genotype is likely the ancestral state of all bats, with the 

Vespirtilionoidea having undergone short deletions in the region (with the exception 

of the Molossus molossus OAS1) while Rhinolophoidea have lost most of this region 

(Figure 3.2B). To account for this region in the RhinoCA reconstruction I removed 

the site-by-site predicted segment and replaced it with the corresponding sequence 

of the P. alecto OAS1. This choice was based on: i) the longest region genotype 

likely being ancestral to all bats, ii) Pteropodoidea being the clade most closely 

related to the Rhinolophoidea and iii) having confirmed that the P. alecto OAS1 

restricts SARS-CoV-2 in vitro (suggesting this region was unlikely to negatively 

impact reconstructed OAS1 antiviral activity). 

Similarly, the C-terminal end of the RhinoCA OAS1 could not be reconstructed, 

since most of the region is deleted in the Rhinolophoidea species and there is high 

indel variation between the rest of the bat OAS1s. To match the variable indel region 

insertion, the C-terminal end of the P. alecto OAS1 (known to initiate a block to 

SARS-CoV-2) was appended to the reconstructed sequence to complete the 

RhinoCA OAS1 sequence. Since some sites of the RhinoCA ASR were not 

confidently predicted (low state posterior), I also implemented an alternative strategy 

where all sites with a posterior below 0.7 were replaced with the corresponding 

residues of the P. alecto OAS1 sequence. This alternative ancestral sequence 

reconstruction is referred to as RhinoCA-T70.  
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3.3.4 Restored anti-SARS-CoV-2 activity in the ancestral OAS1 
protein 

After reconstructing the RhinoCA and RhinoCA-T70 OAS1 sequences we tested 

whether exogenous expression of these proteins could initiate a block to SARS-

CoV-2 replication. Expression of the ancestral RhinoCA OAS1 in A549-ACE2-

TMPRSS2 cells (Rihn et al., 2021) potently inhibited SARS-CoV-2, resulting in more 

than a 4-log reduction in virus titre (Figure 3.3A) and a 90% reduction of cytopathic-

effect-(CPE)-induced well clearance (Rihn et al., 2021) (Figure 3.3B) compared to 

cells expressing an RFP control. This antiviral phenotype is equivalent to that of the 

P. alecto OAS1 (Figure 3.3A,B) as well as of P. kuhlii and human p46 OAS1 proteins 

(Wickenhagen et al., 2021). On the contrary, overexpressing the R. ferrumequinum 

OAS1 sequence had no effect on virus replication (Wickenhagen et al., 2021). 

Similarly, ablating the prenylation signal of the RhinoCA OAS1 protein with a single 

amino acid change (CAAX to AAAX) effectively ablates antiviral activity and rescued 

virus replication, confirming that prenylation is essential for the antiviral activity 

(Figure 3.3A,B). 

Figure 3.3. RhinoCA restricts SARS-CoV-2 replication. (A) Infectious titers of SARS-CoV-2 
(PFU/ml) determined on AAT cells (A549-ACE2-TMPRSS2) modified to expressing bat OAS1 
proteins (P. alecto, R. ferrumequinum), their specified derivatives and the ancestrally reconstructed 
RhinoCA and RhinoCA-T70 sequences. Controls for the ASR genes include identical sequences 
with ablated prenylation motifs (CAAX terminal end changed to AAAX). OAS1 expression was 
monitored in parallel by Western blot. (B) SARS-CoV-2 infection on AAT cells expressing exogenous 
OAS1 constructs as in A (based on well clearance caused by cytopathic effects of virus-replication). 
Infection normalized to RFP control and a typical picture of virus-induced CPE is shown below each 
graph. (C) Illustration of bat OAS1 recombinant constructs tested in this study. 
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I questioned whether recapitulation of the antiviral phenotype was simply due to the 

addition of the P. alecto prenylated C-terminal end or the insertion at the gene’s 

internal variable region, rather than the ancestral site reconstruction. To test this, 

recombinant OAS1 sequences of the R. ferrumequinum protein with i) only the 

prenylated P. alecto C-terminal end, ii) only the P. alecto variable region insertion 

or iii) both the insertion and C-terminal end were created (Figure 3.3C). None of the 

recombinant genotypes restored virus inhibition in the R. ferrumequinum protein 

(Figure 3.3A,B), consistent with the hypothesis that the ancestral loss of the 

prenylation site was followed by divergence of function over the past 60 million years 

of Rhinolophoidea diversification. It should be noted that when the CAAX-box 

sequence is appended to the human p42 OAS1 isoform there is partial rescue of 

the SARS-CoV-2 restriction phenotype (Wickenhagen et al., 2021). In contrast, 

none of the R. ferrumequinum recombinant proteins initiated a block to SARS-CoV-

2 replication, supporting the notion that OAS1 function has changed in the 

Rhinolophoidea, in a way that is not functionally analogous to the human p42 

protein. 

Interestingly, RhinoCA-T70 did not restrict SARS-CoV-2 replication (Figure 3.3A,B). 

This further demonstrates that the anti-coronaviral activity of bat OAS1 proteins is 

not solely dependent on the presence of a prenylation signal. Instead, amino acid 

variation also defines the presence or absence of anti-SARS-CoV-2 activity. The 

RhinoCA and RhinoCA-T70 differ in 16 sites that do not cluster in any specific part 

of the protein (see online data, Methods subsection 3.2.8).  
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3.3.5 Unique evolutionary signatures following prenylation loss 

Following the loss of OAS1 prenylation at the basal branch of the Rhinolophoidea, I 

hypothesised that this OAS1 lineage might have taken an evolutionary path distinct 

from other bat OAS1s; such as lack of conservation of residues needed for the anti-

CoV function, or selection for a different function entirely. To assess differences in 

selective pressures of individual branches across the entire Chiroptera OAS1 

phylogeny, I first used the aBSREL method (Smith et al., 2015). Three branches in 

the tree show evidence of significant episodic diversifying selection: i) the ancestral 

branch leading to the Yangochiroptera clade (p = 0.024) which – considering that 

both P. alecto and P. kuhlii OAS1 proteins restrict SARS-CoV-2 replication – is 

unlikely to have selective changes related to gain or loss of anti-coronaviral function, 

ii) the terminal branch leading to M. molossus (p = 0.0099), associated with changes 

unique to this distant species, and iii) the branch leading to the Rhinolophus clade 

(consisting of R. ferrumequinum and R. sinicus; p = 0.018). Diversification on the 

latter branch could be associated with divergence of protein function in this non-

prenylated group. Still, no episodic selection was detected on the branch where 

prenylation loss took place, suggesting no major advantageous substitutions 

happened immediately after the loss of membrane targeting. 

Since the R. ferrumequinum OAS1 antiviral function cannot be restored simply by 

appending a prenylation signal at its C-terminal end, subsequent changes to the 

genome likely occurred that removed this potential function. Similarly, RhinoCA-T70 

only has 16 amino acids different to RhinoCA which collectively disrupt anti-SARS-

CoV-2 function. Hence, the branches of the Rhinolophoidea clade might have 

undergone relaxation of potential purifying selection acting on sites required for anti-

coronaviral activity in all other bat clades. The RELAX method (Wertheim et al., 

2015) showed no evidence of selection relaxation specific to this clade (K = 0.92, p 

= 0.38, LR = 0.77) compared to the rest of the tree. Consistent with this finding, the 

Contrast-FEL method (Kosakovsky Pond et al., 2021) found no sites in the 

alignment to be evolving under a unique selective environment specific to the 

Rhinolophoidea clade (q value threshold of 0.2). Relaxation or change of selective 

pressures on this clade could have indicated a lack of significant function of the 

Rhinolophoidea OAS1s (or progressive pseudogenisation), however that does not 

seem to be the case. Rather, the nature of selection on the Rhinolophoidea OAS1 

genes has not changed substantially following the putative loss of anti-CoV function. 
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I then sought to understand if the sites under selection are different between the 

Rhinolophoidea and the other Chiroptera clades. Only testing Rhinolophoidea 

branches reveals 31 sites under purifying selection using the FEL method 

(Kosakovsky Pond and Frost, 2005) and 25 sites under diversifying selection using 

the MEME method (Murrell et al., 2012) (14 of which are also picked up by FEL; p 

value threshold of 0.1) (see online data, Methods subsection 3.2.8). Testing the 

remaining branches shows a total of 99 sites under purifying selection (FEL) and 32 

sites under diversifying selection (detected with MEME, 8 of which are also picked 

up by FEL; p value threshold of 0.1). It is notable that although about the same 

number of positively selected sites are picked up in both sets of branches, only about 

a third has signal of purifying selection in the Rhinolophoidea branches compared 

to the rest of the tree. This is not a direct comparison because of differences in the 

number of branches tested and the amount of diversity between the two sets but 

could indicate that site-specific purifying selection is weaker in the Rhinolophoidea 

clade, hence less likely to be detected.  

Comparing the identified sites between the two sets revealed 15 sites under 

diversifying selection unique to the Rhinolophoidea clade (see online data, Methods 

subsection 3.2.8). These did not seem to cluster in any obvious way on the 

secondary structure of the protein. To examine potential clustering on the tertiary 

protein structure I used AlphaFold (Jumper et al., 2021) for predicting structural 

models of the R. ferrumequinum, P. alecto and RhinoCA OAS1 sequences. When 

super-imposed with the human OAS1 protein structure (pdb: 4IG8) there are very 

few differences between the four structures. The two key distinctions of the P. alecto 

and RhinoCA OAS1s are also obvious in the sequence alignment (Figure 3.2A), 

namely: i) the variable indel region and ii) the prenylated C-terminal end. The former 

insertion creates an unresolved loop structure that likely interacts with the dsRNA 

molecule (Figure 3.4A). Since both OAS1s carrying the insertion restrict SARS-CoV-

2 replication, it is unlikely to disrupt RNA-binding, but might modulate binding 

sensitivity or stability. The latter insertion is also unresolved on the structure, but 

found on one end of the protein, away from the RNA-binding surface and seems to 

be easily accessible by enzymes for acquiring post-translational modifications 

(Figure 3.4B). Finally, I mapped the 15 sites under positive selection unique to the 

Rhinolophoidea clade onto the tertiary structure of the R. ferrumequinum OAS1. 

Five of these sites (16, 18, 23, 68 and 202) potentially directly interact with the 

dsRNA helix (Figure 3.4C), suggesting that RNA binding specificity could be under 
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diversifying selection unique to the Rhinolophoidea. Another six of the sites under 

selection (264, 292, 296, 297, 329 and 338) cluster on the C-terminal end of the 

protein (Figure 3.4D). These all seem to face outwards of the core of the protein, 

exactly where the CAAX box prenylation signal would have been. Deletion of the 

CAAX end could have resulted in selective changes in sites located structurally near 

this part of the protein. No apparent function could be speculated for the remaining 

four positively selected sites (88, 116, 175 and 187). 

 

 

Figure 3.4. Structural comparison and sites under selection unique to the Rhinolophoidea 
clade. Structural models of the R. ferrumequinum, P. alecto and RhinoCA protein sequences super-
imposed onto the human OAS1 structure, highlighting the variable indel region loop (A) and the 
prenylated C-terminal end (B). R. ferrumequinum OAS1 structure bound to a dsRNA helix 
highlighting sites under Rhinolophoidea-specific diversifying selection in red near the RNA molecule 
(C) and near the C-terminal end (D).  
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3.4 Discussion 

The prenylated form of OAS1 is an important defence against SARS-CoV-2 in 

humans, the virus’s novel host. In this chapter, I described the ancient loss of this 

post-translational modification and subsequent loss of the antiviral activity of the 

OAS1 orthologue in horseshoe bats (superfamily Rhinolophoidea), the reservoir 

hosts of SARS-related coronaviruses (SARSr-CoVs). I provide evidence that the 

loss of antiviral function is unique to this group of bats, only known to be infected by 

coronaviruses without PDE genes (which would antagonise a functional OAS-

RNase L pathway). To look closer into this ancestral change in OAS1 function, I 

reconstructed the likely sequence of the ancient OAS1 protein found in the 

Rhinolophoidea common ancestor, before its prenylation signal was lost. The in vitro 

expression of the ancient Rhinolophoidea OAS1 protein in human cells potently 

inhibits SARS-CoV-2 replication. This anti-CoV function cannot be restored simply 

by appending the prenylation signal to an extant Rhinolophoidea species’ OAS1 

protein, suggesting that the ancestral sequence reconstruction based on the bat 

OAS1 phylogeny, in addition to prenylation, is responsible for restoring this function. 

This is one of very few examples where antiviral function, lost millions of years ago, 

is empirically restored by reconstructing the extinct form of a gene (Moraes et al., 

2022). 

A number of +ssRNA viruses employ cellular compartmentalisation into DMVs most 

likely as a strategy to avoid targeting from host defences (Roingeard et al., 2022). 

Viruses are in constant arms race evolution with their hosts, so it is only natural that 

the adoption of this virus strategy is followed by host defences also localising in the 

cellular compartments that virus replicates in. The endomembrane targeting of 

prenylated OAS1 enables the potential sensing of a diverse spectrum of viruses. 

For example, multiple viruses that use replicative organelles, including hepatitis C 

virus (Kwon et al., 2013), equine arterivirus (EAV) (Schoggins et al., 2013), and 

Betaarterivirus suid 1 (PRRSV) (Zhao et al., 2016), are inhibited by OAS1. 

Membrane localisation of one antiviral gene isoform, in this case human OAS1 p46 

instead of the non-prenylated p42 isoform, is not unique to this gene. The Zinc-finger 

antiviral protein (ZAP) has recently been shown to deploy a similar mechanism, 

where the longer, ZAP-L, isoform encodes a C-terminal CAAX box that facilitates S-

farnesylation and subsequent protein localisation in intracellular compartments 

(Kmiec et al., 2021). Similar to human OAS1 p46, ZAP-L requires this post-
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translational modification signal to potently restrict HIV-1 and SARS-CoV-2 

replication, whereas the unmodified ZAP-S protein does not restrict the virus (Kmiec 

et al., 2021). Thus, it seems that encoding for post-translation signals through gene 

isoform diversity is a flexible and efficient way for hosts to expand their antiviral 

targeting while maintaining the genes’ core domains, presumably required for 

foreign RNA recognition. 

At least four different human OAS1 isoforms are known (p42, p46, p48, p52), 

suggesting that there could be unexplored isoform diversity of the bat orthologues. 

One interesting feature of the bat OAS1 proteins is the variable indel region, that 

has differing lengths in divergent bat clades (Figure 3.2B). This region forms an 

unresolved loop in close proximity to the dsRNA molecule bound by OAS1 (Figure 

3.4A). Since binding to the viral RNA is required for virus recognition and 

subsequent restriction of its replication through the RNase L pathway, the elongated 

variable indel region shared by P. alecto and the RhinoCA OAS1 is unlikely to 

perturb binding. The most likely functional explanation based on the structural 

predictions is that length variation in this region could modulate RNA binding 

specificity and potentially allow OAS1 to interact with a different spectrum of dsRNA 

targets (different viral RNAs or host transcripts). This is also consistent with the 

Rhinolophoidea losing the elongated genotype along with their prenylated C-

terminal end. The start of the bat variable indel region corresponds to the start of 

exon 3 of the human OAS1 gene. Recently, Banday et al. (2022) showed that 

another SNP in exon 3 of the human OAS1 gene associated with increased 

hospitalisation of COVID-19 patients produces isoforms with a shortened exon 3 

start. This splicing variation seems to decrease OAS1 expression through 

nonsense-mediated decay of shorter isoforms, likely explaining its association with 

more severe disease. If the variable indel region is also near a splicing site in the 

bat genes, then the length variation we observe across the bats could simply 

represent modulation of the dominant isoform in each species, most or all producing 

both long and short isoforms that have not yet been identified. On the same grounds, 

instead of affecting structural functionality (e.g. RNA binding specificity), the indel 

variation could affect OAS1 expression in each bat species, although these 

hypotheses are non-exclusive.  

The inability of one of the two versions of RhinoCA to restrict SARS-CoV-2 

replication (RhinoCA-T70) can provide some insights into the core OAS1 sites 
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important for the antiviral activity. The ambiguously predicted sites of RhinoCA-T70 

were replaced by P. alecto OAS1 residues, hence these residues might not follow 

the true evolutionary tree expectation. Since the P. alecto OAS1 does restrict SARS-

CoV-2, its corresponding residues only disrupt antiviral function when placed in the 

ancestrally predicted backbone, suggestive of epistatic interactions between 

multiple sites controlling function. The two reconstructions differ at 16 amino acid 

sites distributed across the length of the protein (Appendix B Figure B.1). Out of 

these, site 34 seems to directly interact with the dsRNA molecule, being part of a 

long alpha helix next to the binding site (Appendix B Figure B.1, Figure 3.1A). 

Residue changes on the nearby site 28 of the human OAS1 protein (site 27 on the 

RhinoCA protein) are known to be detrimental for RNA binding activity (Donovan, 

Dufner and Korennykh, 2013). RhinoCA has an asparagine (N) on site 34, which 

has an uncharged chain, while RhinoCA-T70 has a negatively charged glutamic acid 

(E) instead (Appendix B Figure B.1). Given that RNA is negatively charged, 

changing the charge of this site could disrupt RNA binding, making site 34 the most 

likely single change culprit for RhinoCA-T70’s lack of antiviral function.  

Showing that OAS1 anti-CoV activity is restored at the base of the Rhinolophoidea 

superfamily clade, supports loss of this function being due to the ancestral LTR 

insertion and can provide new insights on the arms race evolution between SARSr-

CoVs and these bats. At least two distinct Betacoronavirus lineages have 

independently acquired PDE-encoding genes that counteract OAS1-dependent 

antiviral activity. Both viral lineages are thought to have ancestrally infected species 

expressing prenylated OAS1 proteins previously shown to restrict SARS-CoV-2 

(Wickenhagen et al., 2021): rodents or cattle for Betacoronaviruses in lineage A 

(Forni et al., 2017) and bats of the Vespertilionidea family for MERS coronaviruses 

in lineage C (Corman et al., 2014; Yang et al., 2014; Anthony et al., 2017). This 

suggests that PDE gene acquisition was likely selected for in their distant reservoir 

hosts. Having lost their OAS1 defence against coronaviruses, the early 

Rhinolophoidea species would have been an easily accessible niche for non-PDE 

expressing CoVs, such as the SARSr-CoVs, to establish as their long-term hosts. 

Thus, OAS1 prenylation loss due to a stochastic LTR insertion about 60 million 

years ago could be one of the key reasons why SARSr-CoVs circulate in present 

day horseshoe bats. Previous research has demonstrated how unique evolution of 

other immune genes in bats has likely led to enhanced ‘innate immune tolerance’ 

for these animals (Ahn et al., 2019). This could also be an outcome of OAS1’s 
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evolution in horseshoe bat, explaining the large diversity of SARSr-CoVs that they 

carry (Wu et al., 2022). 

In hosts other than horseshoe bats there likely is firm arms race evolution between 

host OAS1 antiviral function and virus PDE acquisition. One interesting, previously 

documented, result of the coronavirus PDE search presented in this chapter is that 

the Lucheng Rn rat coronavirus is the only example of an Alphacoronavirus with a 

PDE gene. In fact, it seems that this virus has acquired its PDE gene through a 

recombination event with a lineage A Betacoronavirus, acquiring a full coding region 

resembling the OC43 NS2 gene (Wang et al., 2015). Acquisition of a long insertion 

between the Orf1b and Spike genes should in principle be deleterious for a 

coronavirus, however, given that the prenylated rodent OAS1 orthologue restricts 

SARS-CoV-2 replication (Wickenhagen et al., 2021), it is possible that gain of an 

NS2-like PDE was largely advantageous for this rat virus instead. The PDE search 

performed here is sequence based and, given the dissimilarity between NS2 and 

NS4b PDE genes, unidentified accessory virus genes with PDE function could have 

been missed. Functional characterisation of more coronavirus accessory genes 

could improve this search, although other ways to counteract the OAS-RNase L 

system should be possible, for example changing the dsRNA structure recognised 

by OAS1.  

Although OAS1 prenylation is shared across a number of vertebrate hosts, the 

Rhinolophoidea might not be the only group where this function has been lost. The 

Molossidae is a family of bats under the Vespertilionoidea superfamily (Teeling et 

al., 2005). The only species with an annotated OAS1 protein sequence and 

complete genome assembly used in the presented analyses is M. molossus. The 

NCBI entry of the M. molossus OAS1 protein does not have a C-terminal prenylation 

signal, while the CAAX sequence presence in the M. molossus genome assembly 

could also not be confirmed in the DIGS analysis. Interestingly, the variable indel 

region of the M. molossus OAS1 is shorter than that of the other Vespertilionoidea 

proteins analysed, being more similar to the Rhinolophoidea version of the region 

(Figure 3.2B). This suggests that another loss of the OAS1 prenylation signal could 

have taken place within the Molossidae family, independent of that in the 

Rhinolophoidea. Such a putative loss could also be associated with a diversification 

in OAS1 function, since the terminal branch leading to M. molossus is one of the 

only three branches with significant evidence of branch-specific positive selection 
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based on the aBSREL results. A final speculative piece of evidence for a Molossidae 

OAS1 prenylation loss similar to that of the Rhinolophoidea is that Chaerophon 

plicatus (a member of the Molossidae family) is the only non-Rhinolophoidea bat 

species from which a SARSr-CoV has been sampled (Yang et al., 2013); the OAS1 

status of this particular species however is not known. The available sequences of 

these bat species is still very sparse and more data and experimental validation are 

required to confirm this hypothesis. This observation further raises the question 

whether OAS1 prenylation could be used as a marker of hosts’ susceptibility to 

SARSr-CoV infection. Although this chapter focuses specifically on bats, being the 

reservoir hosts of many coronaviruses, independent losses of OAS1 prenylation 

might have taken place in other animal species.  

If the non-prenylated OAS1 isoform has a different function unrelated to innate 

immunity, it might be advantageous for a host to lose the prenylated form so that 

more non-prenylated OAS1 is expressed. Despite the ancestral loss of anti-CoV 

activity, I show that selective pressures have not substantially relaxed on the 

Rhinolophoidea OAS1 clade. This indicates that the gene is not pseudogenising and 

probably has biological function(s) that remains conserved within the superfamily. 

The sites under Rhinolophoidea-specific diversifying selection clustering near the 

RNA binding surface and C-terminal region (Figure 3.4C,D) considered alongside 

the Rhinolophus branch selection signal, suggest that the horseshoe bat OAS1 has 

developed a novel function. This could be restricting viruses (where post-

translational modification of OAS1 for membrane localisation is not required) or 

could be a function unrelated to innate immunity. Considering the lack of knowledge 

of other potential isoforms produced by the bat OAS1 genes, the shift in evolutionary 

signatures might not be indicative of true novel function, rather changing the 

evolutionary focus on an existing function performed by a different isoform. The 

OASs are ancient proteins with extensive retention of duplications in their 

evolutionary histories (J. Hu et al., 2018) and homology dating back to the animal-

insect split (Holleufer et al., 2021; Slavik et al., 2021), so although most research 

has focused on their immune properties, they could be involved in other cellular 

functions requiring RNA sensing. Lastly, very few Rhinolophoidea bat genomes 

have been sequenced so far. Sequencing the OAS1 locus of more species or even 

acquiring population-level resolution of allele frequencies for these bats would 

largely enhance our understanding of this functional change in the Rhinolophoidea 

OAS1.  
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Chapter 4. Evasion of the human 
BTN3A3 restriction defines the 
evolution of zoonotic influenza 
viruses 

 

 

Cartoon model of thymine. 

PDB ligand entry: TDR, visualised with ChimeraX. 

 

 

“Among the infinite diversity of singular phenomena  

science can only look for invariants.” 

Jacques Monod, Chance and Necessity (1970)  
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Aim 

Members of the human BTN3 proteins restrict the replication of avian-adapted but 

not human-adapted influenza A viruses. In this chapter, I characterise the 

evolutionary timing of the gain of antiviral activity in the BTN3 gene group. The BTN3 

restriction of influenza A viruses is dependent on the residues in two sites of the NP 

protein. I further describe the evolution of the virus NP focussing on these two sites 

and explore how they can be used as markers for predicting zoonotic potential of 

influenza A viruses. 

 

 

  

The work presented in this chapter is part of the paper entitled “Zoonotic avian 

influenza viruses evade human BTN3A3 restriction” published in Nature (Pinto 

et al., 2023. Nature, 619: 338). I have conducted all the genomic, phylogenetic 

and computational work presented in this chapter. The experimental work 

performed by co-authors additionally presented in the paper is described in the 

introduction of this chapter and referenced accordingly across the chapter to 

provide necessary context.  
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4.1 Introduction 

4.1.1 Restriction factors against influenza A viruses 

Hosts possess multiple barriers against infection by all types of viruses, but 

restriction factors specifically against influenza A viruses (IAV) have been heavily 

studied by virologists due to the virus’s immense burden on global health. IAVs 

infect both mammalian and avian hosts and as a result there are distinct barriers 

specific to the two divergent host environments that the viruses need to overcome 

for cross-species transmission (Long et al., 2018). The first barrier to infection is 

entry into the cell, dictated by host cell receptor specificity. The hemagglutinin (HA) 

protein of IAVs is responsible for cell entry by binding to terminal sialic acid residues 

at the end of surface glycoconjugates on the surface of vertebrate cells (Dou et al., 

2018). Avian IAV tends to favour α(2,3)-linked sialic acid, while human IAVs favour 

the α(2,6)-linked conformation and, by changing this conformation specificity, 

different strains can expand their host range (Shinya et al., 2006). Apart from direct 

receptor specificity, cell entry and onwards transmission also depends on the pH 

stability required for HA activation (Di Lella, Herrmann and Mair, 2016) as well as 

the stalk length of the neuraminidase (NA) protein also found in the envelope of the 

virion along with HA (Blumenkrantz et al., 2013). Both HA and NA are found on the 

surface of the virion, the first being essential for entry and the latter for virion release, 

while biochemical balance between the two is important for virus fitness (Wagner, 

Matrosovich and Klenk, 2002). 

Although cell entry and virion release are required for enabling virus transmission, 

the ability of a virus to infect a host will also depend on other host-imposed 

mechanisms directly blocking or facilitating virus replication. Focusing on innate 

immunity, there are many examples of interferon-stimulated genes (ISGs; described 

in Chapter 1 Section 1.3) known to restrict IAVs. For example, human IFITM3 

inhibits IAV by stopping viral fusion of late endosomes and preventing egress of the 

virus into the cytosol (Feeley et al., 2011; Everitt et al., 2012). Since this antiviral 

mechanism targets the entry mechanism thought to be employed by all IAVs (and 

most enveloped viruses), IFITM3 is capable of restricting both mammalian and avian 

IAV strains. On the contrary, other human barriers to infection seem to only target 

avian-adapted viruses. This is because many mammalian adaptations on the virus 

genome relate to evasion of said antiviral mechanisms, especially when virus 
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restriction requires physical interaction between host proteins and viral RNA or 

proteins. IAV transcription and replication take place in the nucleus of the infected 

cell and viral RNA is packaged in the vRNP complex made up of the nucleoprotein 

(NP) and the three polymerase proteins: PB1, PB2 and PA (Dou et al., 2018). The 

Acidic Nuclear Phosphoprotein 32 Family Member A (ANP32A) protein has been 

shown to be essential for viral replication in the nucleus by interacting with the vRNP, 

specifically PB2 (Long et al., 2016). However, avian ANP32A has a 33 amino acid 

insertion compared to its mammalian orthologues (ANP32A and ANP32B) which 

alter how the proteins interact with the virus PB2 (Carrique et al., 2020). As a result, 

IAVs with avian-adapted PB2 sequences cannot replicate in mammalian cells (Long 

et al., 2016). The protein interaction can change drastically by a single substitution 

on PB2 site 627 from the avian glutamic acid (E) to the mammalian lysine (K), 

enabling efficient replication with mammalian ANP32A. This PB2 adaptation takes 

place immediately after host switching and is a key factor for bypassing the ANP32A 

host barrier (Subbarao, London and Murphy, 1993; Long et al., 2018). 

While ANP32A can be thought of as having a positive effect for viral replication when 

the virus strain is compatible with the host version of the protein, other barriers to 

IAV infection actively restrict specific strains of the virus. Human Mx1 is an ISG that 

restricts avian IAV but is much less restrictive of human-adapted strains  (Dittmann 

et al., 2008). This effect seems to be dependent on the NP of the virus (Zimmermann 

et al., 2011). Multiple specific residues in the NP have been proposed to be 

responsible for Mx1 evasion in human adapted viruses but these differ between the 

two NP lineages circulating in humans, 1918 pandemic and 2009 swine flu derived 

strains. The full effect of NP-dependent Mx1 evasion was acquired only when 

substitutions away from avian strain NPs were made in combination (Mänz et al., 

2013). These are few well-studied examples of host barriers against IAV infection 

which can restrict all strains of IAV (IFITM3) or pose a host species specific 

restriction that can be efficiently evaded by one (ANP32A) or multiple (Mx1) residue 

adaptations on the virus proteins. This chapter will focus on a novel host restriction 

factor and the evolutionary dynamics between this host gene and IAVs’ ability to 

infect different hosts.  
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4.1.2 Human BTN3A1 and BTN3A3 genes restrict avian IAV 

The butyrophilins are a family of proteins first identified to be involved in the 

stabilisation and production of milk lipid globules in many mammalian species (Heid 

et al., 1983). It was later revealed that most of the gene family members are primarily 

involved in adaptive immunity cell differentiation and cellular signalling (Smith et al., 

2010; Arnett and Viney, 2014). The butyrophilin proteins have a transmembrane 

domain and at least one immunoglobulin domain (IgC or IgV). Most members also 

have a B30.2 or PRYSPRY domain, although there are many cases of duplications 

and deletions with the family having a complex evolutionary history (Afrache et al., 

2012). This particular protein domain comprised of the evolutionary ancient SPRY 

sub-domain and the more recently incorporated PRY subdomain is found in many 

gene families involved in immune function (Rhodes, De Bono and Trowsdale, 2005). 

In humans there are three main subfamilies of butyrophilins genes: BTN1-3 with 

varying numbers of paralogues under each group (BTN1A1, BTN2A1, BTN2A2, 

BTN2A3, BTN3A1, BTN3A2, BTN3A3) (Afrache et al., 2012). The human and 

mouse BTN3 group of the butyrophilins is known to be important for the activation 

of a specific class of γδ T cells (Vγ9Vδ2 T cells) (Blazquez et al., 2018), proposed 

to have anti-tumour activity among other functions (Rigau, Uldrich and Behren, 

2021).  

Apart from their role in T cell activation, the human BTN3 genes have also been 

shown to be stimulated by interferon, making them ISGs that are likely also involved 

in innate immunity (Shaw et al., 2017). Following on from this finding, a 

comprehensive arrayed expression screen of more than 800 in vitro overexpressed 

ISGs against a number of viruses showed that human BTN3A1 and BTN3A3 

potently inhibited replication of avian IAV, but not the mammalian lab-adapted or 

human circulating strains (Pinto et al., 2023). BTN3A3 has a stronger restrictive 

effect than BTN3A1 and virus growth could be restored by knocking down the 

constitutive expression of BTN3A3 in primary human cells. BTN3A3 was further 

shown to be constitutively expressed in the upper and lower respiratory tract of 

healthy individuals, indicating that this is likely a functional restriction factor against 

infection by avian IAVs. This inhibitory effect was specific to the Mallard IAV strain 

out of 24 different viruses tested. A number of BTN3 orthologues and paralogues of 

humans and other related species were also tested to understand how evolutionarily 

conserved this anti-avian IAV function is. Interestingly, only old world monkey and 
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ape butyrophilins restricted avian IAV replication, while none of the genes had any 

effect on human-adapted IAV. Instead the closest orthologues of species regularly 

infected by IAVs, chickens, ducks, dogs, horses and pigs had no antiviral effect 

against any IAV strain. In this chapter, I will explore the evolutionary relations of 

these genes and determine at which point in their evolutionary history they gained 

this antiviral function. 

 

4.1.3 Changes in two NP sites independently evade BTN3 
restriction 

The specificity of the BTN3 antiviral function against only avian IAV infection, 

suggests that the mammalian-adapted changes in the virus are likely responsible 

for the evasion of the human restriction factor. Flu reassortment experiments where 

each of the 8 genome segments were individually swapped between an avian-

adapted and a mammalian-adapted strain showed that only the avian segment 5, 

encoding for the NP, was responsible for the restriction by the BTN3s (Pinto et al., 

2023). Conversely, introducing a mammalian-adapted segment 5 into an avian IAV 

strain was sufficient to evade BTN3 restriction. This means that certain substitutions 

in the viral NP that are unique to mammalian IAVs are capable of bypassing the 

antiviral activity. Mutagenesis experiments targeting NP sites that differ between 

avian and mammalian IAVs showed that a single substitution in either NP site 313 

or site 52 independently altered the restriction phenotype. More specifically, 

changing the avian phenylalanine (F) at site 313 to the human IAV residues, either 

a tyrosine (Y; present in the 1918 H1N1, 1957 H2N2 and 1968 H3N2 pandemic 

viruses) or a valine (V; present in the 2009 H1N1 pandemic virus) evades restriction 

by the BTN3s (Pinto et al., 2023). Virus with a leucine (L) at site 313, found in few 

avian strains, is susceptible against BTN3, similar to 313F. The F313Y substitution, 

in combination with other mammalian-adapted NP changes, has been proposed to 

overcome restriction by Mx1 (described in subsection 4.1.1) (Mänz et al., 2013). 

However, loss of function experiments have shown that restriction of NP 313F IAVs 

by BTN3A3 is independent of Mx1’s antiviral function (Pinto et al., 2023). The 

second NP site of interest was uncovered after observing that the H7N9 avian IAV 

strain that has caused multiple independent bird-to-human epidemics in Southeast 

Asia in the last decade (W. Zhu et al., 2018) also evades BTN3A3 in vitro, despite 
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having a 313F NP. Further mutagenesis experiments highlighted that substitutions 

at NP site 52 on a 313F background can independently lead to BTN3A3 evasion.  

Changes from 52Y (found in most avian strains) to an asparagine (N; present in the 

H7N9 virus), histidine (H) or glutamine (Q) all lead to bypassing the BTN3A3-

dependent barrier (Pinto et al., 2023). This chapter showcases a comprehensive 

phylogenetic analysis of how these human-adapted NP residues are distributed 

across IAV diversity and how substitutions from the avian to the human-adapted 

residues are associated with virtually all recent IAV transmissions into humans. 
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4.2 Methods 

4.2.1 In silico identification of BTN3 homologs 

To identify proteins expressed by other species, homologous to the human BTN3 

genes, I first performed a blastp search (v.2.8.1) against all available members of 

the Haplorrhini suborder in the NCBI blast protein refseq database version 5 (e value 

cutoff 1e-60, as of the 6th of April 2021) (Camacho et al., 2009). The human BTN3A3 

protein sequence (NP_008925.1) was used as a probe for the BLAST search. The 

isoform with the longest sequence was kept for each protein product annotated with 

the same name. Similarly, blastp with human BTN3A3 was used for identifying 

proteins expressed by non-primate species susceptible to IAVs infection: Gallus 

gallus, Anas platyrhynchos, Equus caballus, and Sus scrofa and more distant 

human paralogues (Appendix C Table C.1). 

Protein members of the butyrophilin 3 subfamily retrieved from the BLAST search 

were manually cross-checked with proteins in the Ensembl database (Cunningham 

et al., 2022) and if the protein sequences were not identical between the two 

databases the sequence with highest similarity to the human BTN3A3 protein 

sequence was retained. A total of 30 proteins were retrieved from the following 

species: Pan troglodytes, Cebus imitator, Equus caballus, Homo sapiens, Gorilla 

gorilla gorilla, Chlorocebus sabaeus, Macaca mulatta, Pongo abelii, Carlito syrichta, 

Mandrillus leucophaeus, Callithrix jacchus, Nomascus leucogenys, Rhinopithecus 

roxellana. 

A custom set of Pfam hmm profiles were used for identifying the conserved domains 

in the proteins, comprising the immunoglobulin V-set domain (PF07686), CD80-like 

C2-set immunoglobulin domain (PF08205), PRY (PF13765) and SPRY (PF00622) 

domains. All protein sequences were scanned with the profile set using hmmscan 

(HMMER 3.3) (Mistry et al., 2013). The best hit for each identified domain was 

extracted from the protein sequence aligned with the respective domain segments 

using MAFFT (v7.453, --maxiterate 1000 --localpair) (Katoh and Standley, 2013). 

Protein alignments were converted to codon alignments using PAL2NAL (Suyama, 

Torrents and Bork, 2006). Phylogenies for each separate domain alignment and 

concatenated domain sequences were reconstructed using IQ-TREE (version 

1.6.12) (Nguyen et al., 2015) with the best suited substitution model selected by the 
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IQ-TREE ‘-m TEST’ option (Kalyaanamoorthy et al., 2017) and 10,000 ultrafast 

bootstrap replicates (Hoang et al., 2018). Node support was further assessed using 

1,000 nonparametric bootstrap replicates and 10,000 SH-like approximate 

likelihood ratio test replicates (Guindon et al., 2010) for the individual protein domain 

phylogenies. 

 

4.2.2 IAVs phylogenetic analysis 

A total of 35,477 full-length NP coding sequences unique on the nucleotide level 

(identical sequences collapsed) were retrieved from the NCBI Flu database 

(https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-

select.cgi?go=database, as of the 8th of June 2021, sampled until the end of 2020), 

only including type A influenza sequences annotated to have been isolated from 

avian, canine, equine, human and swine hosts. Sequences with ambiguous 

nucleotides and internal stop codons were removed, resulting in a dataset of 34,079 

sequences. The corresponding protein sequences were aligned using MAFFT 

(v7.453, --maxiterate 1000 --localpair) (Katoh and Standley, 2013) and then 

converted to a codon alignment with PAL2NAL (Suyama, Torrents and Bork, 2006). 

Metadata associated with each sequence accession were retrieved and tabulated. 

Numbering of NP amino acid residues was assigned based on the PR8 sequence 

[A/Puerto Rico/8/1934(H1N1), GenBank accession: NP_040982.1]. Therefore, the 

6 amino acid N-terminal extension of 2009 pH1N1 viruses were not considered for 

the residue numbering (i.e. amino acid residue M6 was considered M1). 

To reduce oversampling of related sequences the dataset was clustered with a 

minimum sequence identity of 0.99 using MMseqs2 (--min-seq-id 0.99 --cov-mode 

0) (Steinegger and Söding, 2017). One representative was kept from each cluster 

leading to a filtered dataset of 14,665 sequences. The codon alignment of the 

filtered set was used to reconstruct a phylogeny with iqtree under a GTR+I+G4 

model (selected as the most appropriate model with the ‘-m TEST’ option) (Nguyen 

et al., 2015). The resulting phylogeny was then time-calibrated using TreeTime 

(Sagulenko, Puller and Neher, 2018). Eleven sequences with annotated dates 

inconsistent with the root-to-tip regression were subsequently excluded from the 

analysis.  

https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
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To explore the H7N9 epidemic NP clade in more detail, representative sequences 

from this broader avian NP clade as well as the unfiltered sequences from each 

representative’s corresponding cluster were retrieved (3,150 sequences). The 

codon alignment of these NP sequences was used to infer a more detailed 

maximum likelihood phylogenetic reconstruction of this particular clade (IQ-TREE 

under a GTR+I+F+G4 model with 10,000 Ultrafast bootstrap replicates) (Nguyen et 

al., 2015; Hoang et al., 2018) and time-calibrated using TreeTime as described 

above (Sagulenko, Puller and Neher, 2018). All phylogenies were visualized using 

the ggtree R package (Yu, 2020), unless stated otherwise. Tree statistics were 

analysed using the ete3 Python package (Huerta-Cepas, Serra and Bork, 2016). 

 

4.2.3 Molecular dating of the NP F313V H1N1 pdm09 change 

Based on the tree topology of the MMseqs2 filtered dataset including sequences 

from all IAV NP clades, representative sequences from the classical swine H1N1 

clade as well as the unfiltered sequences from each representative’s corresponding 

cluster were retrieved (9,426 sequences). The codon alignment of all swine clade 

NP sequences was used to infer a more detailed maximum likelihood phylogenetic 

reconstruction of this particular clade (IQ-TREE under a GTR+I+F+G4 model with 

10,000 Ultrafast bootstrap replicates) (Nguyen et al., 2015; Hoang et al., 2018). The 

phylogeny was time-calibrated using TreeTime (Sagulenko, Puller and Neher, 

2018). 

To validate the inferred topology I used an independent Bayesian phylogenetic 

approach on a subset of the full dataset. From the original dataset (9,426 

sequences), the sequences outwith the distinct 313F and 313V subclades and 

sequences topologically close to the F313V change branch - based on the maximum 

likelihood phylogeny (for example the swine 313V subclade) - were kept in the 

subset (263 sequences, see online data Methods subsection 4.2.6). To remove 

sampling biases from the two remaining subclades I used a subsampling approach 

where up to 200 sequences were retrieved from each subclade but a maximum of 

200 divided by the number of sampling years were kept for each sampling year. For 

example, if a subclade had sequences from sampling years 2008, 2009, 2010 and 

2011 with sequence counts 35, 1000, 800 and 1200 respectively, then all 35 
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sequences from 2008 would be kept and only 50 (200/4) from each of the other 

three years. This approach yielded a total of 380 subsampled sequences from the 

two 313F/V subclades and combined with the 263 non-subsampled isolates 

produced a total of 643 NP sequences to be analysed using Bayesian 

phylogenetics.  

These sequences were retrieved from the full dataset codon NP alignment and used 

to infer a BEAST (v1.10.4) phylogeny under a HKY model, accounting for site 

heterogeneity with a 4 category Γ distribution (Suchard et al., 2018). Codon 

positions were evaluated separately by the model and sampling years were used 

for tip-dating. Two independent MCMC chains, 150,000,000 states long each, were 

performed, sampling every 150,000 states. LogCombiner was used to combine the 

two independent chains after removing 20% burn-in states from each chain, 

ensuring chain convergence and an effective sample size >200 for the joint 

parameters.  

 

4.2.4 Geographical distribution of non-52Y NP sequences 

The tips of the filtered dataset phylogeny representing all IAV clades was annotated 

based on sampling location and NP 52 residue using the ete3 python package 

(Huerta-Cepas, Serra and Bork, 2016). To determine the number of independent 

lineages with members predicted to be BTN3A3-resistant based on NP site 52 I 

retrieved all monophyletic subclades with at least two members, all of which have 

52 residues N, H and Q. All countries where IAVs with 52N/H/Q NP sequences have 

been sampled were annotated by the number of unique BTN3A3-resistant 

subclades including members sampled in each country. The geographic distribution 

of the lineages was plotted using JavaScript D3 in an ObservableHQ 

(https://observablehq.com/) notebook. 

 

4.2.5 GISAID sequence analysis 

Protein sequences from atypical, avian-only serotypes (H4-H18) were retrieved 

from the GISAID database (http://gisaid.org/) for avian, swine and human hosts. 

https://observablehq.com/
http://gisaid.org/
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Isolates were filtered for having all 8 segments and having been sampled until the 

1st of January 2023. The NP, HA and PB2 proteins were downloaded for each isolate 

and aligned using MAFFT (v7.453, --maxiterate 1000 --localpair) (Katoh and 

Standley, 2013). NP and PB2 residues at sites of interest and HA polybasic 

cleavage site presence (identified as having 3 or more K/R residues at the 

corresponding region) were summarised along with sequence metadata using 

Python3. GISAID acknowledgments for all analysed sequences are available as 

provided as supplementary information in the published version of this work in Pinto 

et al. (2023). 

 

4.2.6 Data availability 

Alignments and raw phylogenetic data related to this Chapter can be found in the 

following GitHub repository: https://github.com/spyros-lytras/BTN3A3_IAV. 

 

 

  

https://github.com/spyros-lytras/BTN3A3_IAV
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4.3 Results 

4.3.1 BTN3 antiviral activity likely evolved after the split between 
old and new world monkeys 

To examine the origin of anti-avian IAV activity in the butyrophilin subfamily 3 

(BTN3) gene group, I retrieved the annotated sequences of close orthologues and 

paralogues of the human BTN3A3 gene. Since the only animals whose BTN3 genes 

restricted avian IAV in vitro were members of the old world monkeys and apes (Pinto 

et al., 2023), I focused the phylogenetic analysis on the Haplorrhini sub-order which 

encompasses apes, humans, old and new world monkeys as well as the tarsier as 

the outgroup clade. The phylogeny reconstructed based on all concatenated 

domains of the proteins indicates that BTN3A1-3 originated through two successive 

duplications after the split between the new world monkeys lineage (Platyrrhini) and 

the old world monkeys and apes lineage (Catarrhini) around 40-44 million years ago 

(Figure 4.1) (Kumar et al., 2017). Mapping the experimental results of which genes 

successfully restrict avian IAV onto the phylogeny clearly highlights how this function 

seems to be specific to the Catarrhini lineage and only the BTN3A1 and BTN3A3 

gene clades of this group of species. The Platyrrhini (Callithrix jacchus and Cebus 

imitator) and tarsier (Carlito syrichta) orthologues outside the two key gene 

duplications did not show any antiviral activity. This collectively suggests that the 

antiviral phenotype of BTN3s was gained after the Platyrrhini-Catarrhini split, 

consistent with the two duplication events. Domain detection analysis showed that 

the majority of BTN3A1 and BTN3A3 genes have a consistent domain organisation 

with one set of N-terminal IgV and IgC domains followed by a PRYSPRY domain 

(Figure 4.1). The BTN3A2 Catarrhini genes with known restriction status (human 

and macaque) showed no antiviral activity (Pinto et al., 2023). This could be 

explained by the lack of a PRYSPRY domain in this gene group which likely lost the 

domain during the duplication that produced the group. The only apparent exception 

is the BTN3A2 of Nomascus leucogenys which surprisingly contains a PRYSPRY 

domain, having the same organisation as BTN3A1 and BTN3A3 (Figure 4.1).  



Chapter 4  104 

 

Figure 4.1. Evolution of antiviral activity of BTNs. Maximum likelihood phylogeny of concatenated 
protein domain coding sequences the Haplorrhini BTN3 genes (K2P+G4 substitution model). Nodes 
with bootstrap support below 60 have been collapsed. Branches confirmed to have or not have anti-
avian IAV activity are highlighted in yellow and blue, respectively. Branches with no available 
experimental data are shown in black. Relationship to more distant tested homologues and 
orthologous/paralogous gene families are shown as a schematic in grey. IgV homogenisation events, 
major gene duplications and gene subfamilies are annotated on the phylogeny. Presence of each of 
the four protein domains (IgV, IgC, PRY and SPRY) is annotated on the right of each tree tip and 
coloured by pairwise amino acid similarity to the respective domain of the human BTN3A3. Species 
names and taxonomic classification is annotated on the right. The median divergence time between 
Catarrhini and Platyrrhini was retrieved from TimeTree (Kumar et al., 2017). 
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Although antiviral function seems to have evolved only in the Catarrhini BTN3A1 

and BTN3A3 gene groups, not all genes within these groups restrict avian IAV 

replication, suggesting that the function was not ubiquitously conserved after the 

initial gain or there were multiple gains of the function within the group. In fact, it has 

been previously documented that there is a lot of domain diversity within the gene 

groups, primarily due to reassortment and homogenisation of domains between the 

paralogues (Afrache et al., 2017). To confirm this, I examined the phylogenetic 

relatedness of each functional domain (IgV, IgC, PRY and SPRY) independently for 

the present dataset of Haplorrhini BTN3 proteins. The analysis confirms that the IgV 

domain of the BTN3A2 gene has homogenised in the other two paralogues, within 

the apes (Figure 4.1). This is evident as the IgV sequences of the old world monkey 

(R. roxellana, M. mulatta and M. leucophaeus) form distinct clades for BTN3A1 and 

BTN3A3, but all ape genes (H. sapiens, P. troglodytes, G. gorilla gorilla, P. abelii 

and N. leucogenys) cluster together along with the old world monkey BTN3A2 

genes, having almost identical sequences to their paralogues (Figure 4.2A). The 

only exception to this pattern is the C. sabaeus IgV domains. Even though this is a 

species of old world monkeys, the C. sabaeus BTN3A3 and BTN3A2 domains are 

identical in sequence and both cluster within the overall BTN3A2 clade (Figure 

4.2A). This suggests that homogenisation of the BTN3A2 IgV domain into its 

BTN3A3 paralogue took place independently in this species. It should also be noted 

that there is no known BTN3A1 gene in C. sabaeus, suggesting further genetic 

reorganisation of the BTN3 locus unique to this species, or genus. 

The IgC-derived phylogeny is the most consistent one with the overall concatenated 

domain topology (Figures 4.1 and 4.2B). In this tree the BTN3A3 and BTN3A1 

Catarrhini groups cluster closer together, unlike the concatenated domain tree 

where BTN3A3 and BTN3A2 are closer. It should be noted that this difference could 

simply be due to insufficient information in the short IgC alignment. The internal 

branch separating the BTN3A2 group from the BTN3A1/3 groups is very short, 

suggesting that few IgC-specific mutations may alter the inferred domain tree 

topology compared to the true gene tree (Figure 4.2B). Similarly, the old world 

monkey BTN3A3 clade clusters closer to the BTN3A1 clade than to the ape BTN3A3 

one, but the corresponding node has relatively low support with all confidence 

assessment methods (node support: 59/67.4/44). 
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Figure 4.2. Maximum likelihood Haplorrhini BTN3 gene coding sequence phylogenies of 
separate domains: IgV (A), IgC (B), PRY (C), SPRY (D) under a K2P+G4 substitution model. Trees 
are rooted at the C. syrichta branch and node confidence values are annotated on each node 
(presented as: nonparametric bootstraps / SH-like approximate likelihood ratio test / ultrafast 
bootstraps). Tip shapes are coloured based on known anti-IAV activity (yellow: restrictive, blue: non-
restrictive; as in Figure 4.1) and tips and clades referred to in the text are further annotated. 
Phylogenies were visualised using FigTree.  
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Both PRY and SPRY domain phylogenies separate BTN3A1 and BTN3A3 genes in 

distinct clades, noting that the BTN3A2 genes have lost these domains (Figure 

4.2C,D). The only exception, the N. leucogenys BTN3A2 PRYSPRY sequences, 

cluster with the BTN3A3 group for both domains. Based on the PRY domain 

phylogeny N. leucogenys BTN3A2 sits outside all Catarrhini BTN3A3 which might 

mean that, unlike the rest of Catarrhini, this species’ BTN3A2 PRYSPRY domain 

was never lost, now forming the sole member of its gene group. On the other hand, 

the N. leucogenys BTN3A2 SPRY domain fairly confidently clusters closer to the old 

world monkey BTN3A3 gene group (node support: 77/73.8/77). This rather puzzling 

pattern could be a result of introgression between a N. leucogenys ancestor and a 

now extinct lineage that did not lose the BTN3A2 PRYSPRY domain. Hence, the 

information in the coding sequences of these genes is not sufficient to delineate the 

origin of the N. leucogenys BTN3A2 PRYSPRY domain, each PRY and SPRY 

phylogenies supporting an alternate hypothesis. 

The phylogenetic placement of the new world monkey genes using the PRY and 

SPRY domains is also incongruent to that of the other domain trees and the species 

tree. The C. imitator BTN3A1 lacks the IgC domain and clearly clusters with the 

other two new world monkey genes for the concatenated domain topology and the 

IgV domain, but consistently clusters closer to the Catarrhini BTN3A1 clades for the 

PRY and SPRY trees (node supports: 82/60.5/56 and 100/99.8/100). The placement 

of the two BTN3A3 new world monkey (C. jacchus and C. imitator) genes’ PRY and 

SPRY domains is also incongruent to the other trees and between each other 

(Figure 4.2C,D). It should be stressed that these are short, conserved domains and 

it is unlikely that there is sufficient phylogenetic information in the sequences to 

confidently delineate the evolutionary relationship. Hence, in addition to the 

duplication and domain homogenisation events that are evident in this gene group, 

lack of phylogenetic information could also explain some of the tree incongruencies. 

Finally, examining how the ability to restrict IAV is distributed across the different 

domain trees does not provide any conclusive patterns as to which domain might 

be responsible for the antiviral activity. In all four domain sets, there is at  least one 

pair of identical (or almost identical) sequences, where one of the two genes restricts 

avian IAV but the other does not (Figure 4.2). Thus, gain of anti-IAV activity in the 

Catarrhini BTN3 genes can likely be acquired through a number of substitution 

combinations in the coding sequence. Another possibility is that changes in the short 

inter-domain peptide sequences may control the anti-IAV activity, although this is 



Chapter 4  108 

not clearly apparent from the full protein sequence alignment and the two 

possibilities are not exclusive e of one another.   

4.3.2 Changes at NP residue 313 are key determinants of all 
known human IAV pandemics 

Now focusing on the virus, it has been shown experimentally that the mammalian-

adapted residues Y and V at NP site 313 are capable of evading human BTN3A3’s 

antiviral activity (contrary to avian viruses with 313F and L) (Pinto et al., 2023). 

Hence, it is of interest to examine the distribution of 313 residues across both avian 

and mammalian IAV strains and infer F313Y and F313V changes across these 

viruses’ evolution, which should lead to viruses better at replicating in humans. I 

retrieved more than 30,000 IAV NP sequences from the NCBI Flu database and 

reconstructed a comprehensive time-calibrated maximum likelihood phylogeny for 

this genome segment (Figure 4.3). Human NP sequences almost exclusively have 

313Y or 313V residues while all NP clades circulating in avian hosts, as well as the 

Eurasian avian-like H1N1 swine clade, are dominated by strains with the conserved 

313F residue. Less than 1% of the analysed avian IAV NP sequences contain 313L. 

Occurrence of the BTN3A3-resistant 313Y is specific to a human NP clade, derived 

from the H1N1 1918 pandemic, subsequently reassorted into the 1957 and 1968 

pandemics and currently circulating as seasonal H3N2. Precise dating of the original 

F313Y change is difficult due to the small number of 1918 IAV genomes available. 

However, recently sequenced early pandemic genomes all have a 313Y in NP 

(Patrono et al., 2022), suggesting that F313Y took place prior to or soon after human 

emergence of the 1918 H1N1 human strain.  
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Figure 4.3. Phylogeny of the IAV NP and distribution of site 313 residues. Tip-dated maximum 
likelihood phylogeny of the filtered IAV NP coding sequence dataset. Tip shapes are annotated by 
host (left) and 313 residue (right, only residues occurring in more than 5% of the sequences are 
shown in the legend). Key clades and pandemic isolates are highlighted on the phylogeny. 

 

On the other hand, 313V is specific to the classical swine H1N1 NP subclade, which 

entered the human population as a result of the 2009 IAV pandemic. A lot more 

sequences isolated from humans and pigs associated with this IAV introduction to 

humans are available. To further examine the timing of this F313V NP change, I 

retrieved all NP sequences that are part of the classical swine H1N1 clade based 

on the filtered phylogenetic analysis (Figure 4.3, see Methods subsection 4.2.3) and 

re-inferred the phylogeny for this clade. This tree reveals a clear split between the 

313F and 313V clades with a relatively long branch consistent with the F313V 

change (Figure 4.4A). The divergence date between the two major 313F/V clades 

is estimated to be July 1997 (1997.52). Upon closer inspection, two isolates: 
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A/swine/Korea/CY03-12/2012(H3N1) and A/swine/Kansas/12-156064/2012(H1N2) 

(GenBank accessions: AGE83887 and AHN19642) sampled in South Korea and the 

US respectively (Noriel et al., 2013; Duff, 2014), are the most basal within the 313V 

clade. Interestingly, the NP of the latter isolate has a 313F residue. Assuming that 

this topology is true, the most parsimonious explanation would be that the major 

F313V change took place after the split between this two-isolate clade and the 313V 

clade, while an independent F313V change occurred in the A/swine/Korea/CY03-

12/2012 lineage. The alternative explanation would require a reversion back to 313F 

unique to the A/swine/Kansas/12-156064/2012 lineage. This means that we can 

narrow down the window of time when the F313V change occurred to start from an 

estimated date of November 2002 (2002.91; Figure 4.4B). Within the 313V clade a 

distinct subclade consisting of isolates sampled in swine hosts primarily from Mexico 

between 2011 and 2015 sits as outgroup to the H1N1 swine 2009 pandemic 

(pdm09) NP sequences. All isolates in this subclade have a 313V residue, 

supporting a F313V change responsible for human butyrophilin antiviral evasion 

taking place in the swine host reservoir, prior to human emergence (Figure 4.4B). 

Furthermore, the 313 residue change should have happened prior to the date of the 

split between the swine subclade and the pdm09 lineage, estimated to be January 

2007 (2007.00).  

Inferring phylogenies for large datasets such as this can sometimes lead to 

erroneous topologies, especially if sampling biases exist between different clades 

in the tree (for example there are many more sequences from the H1N1 pdm09 

lineage compared to any other clade in the tree). Hence, I also performed a 

Bayesian phylogenetic inference on a targeted subset of the classical H1N1 clade 

NP sequences aimed to reduce sampling bias that may affect the analysis (Figure 

4.4C). Despite low support clustering of a few more 313F sequences within the 313V 

clade, the aforementioned South Korea and US isolate clade is consistently found 

within the 313V clade (node posterior = 0.79, Figure 4.4C). The topology of the 

swine 313V clade from Mexico is also congruent with the maximum likelihood 

phylogeny. This independent validation of the topology inference strongly supports 

the above assessment of the F313V change taking place in swine hosts prior to 

human emergence. The BEAST phylogeny can also provide us with more accurate 

node dating estimates, placing the earliest date for the F313V change in August 

2004 (median: 2004.61, 95% HPD: 2002.57 – 2006.18) and latest date in October 

2005 (median: 2005.80, 95% HPD: 2004.68 – 2006.87). These estimates are largely 
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consistent with the time-calibrated maximum likelihood phylogeny and support that 

F313V very likely occurred between mid-2002 and the end of 2006.  

 
Figure 4.4. Molecular dating of the F313V NP substitution on the classical swine H1N1 lineage. 
(A) Tip-dated maximum likelihood phylogeny of all classical H1N1 lineage NP sequences annotated 
by position 313 residue (left) and isolation host (mirrored tree, right). (B) Zoomed in snippet of the 
part of the ML phylogeny shown in A where the F313V change has occurred. Tip shapes are coloured 
by 313 residue, estimated dates for key nodes are annotated, and strain names are shown on the 
right of the tips. (C) Zoomed in snippet of the part of the BEAST maximum clade credibility phylogeny 
where the F313V change has occurred. Tip shapes are coloured by 313 residue, median node age 
and 95% highest posterior density confidence intervals are annotated for key nodes, posterior 
probability values are shown for each node, and strain names are shown on the right of the tips. The 
branch where F313V is believed to have taken place on is annotated in colour (pink and green). 
Phylogenies were visualised using FigTree.  
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4.3.3 NP residue 52 is a key determinant of BTN3A3 resistance 
associated with avian IAV spillovers into humans 

Although all major human-circulating IAV lineages have NPs with residues 313Y or 

313V, evading human BTN3A3, a number of bird-to-human spillover viruses have a 

313F residue, predicted to be susceptible to BTN3A3. A prime example of this is the 

H7N9 IAVs that have repeatedly transmitted from birds to humans, causing major 

outbreaks in Southeast Asia (Liu et al., 2013; Yang et al., 2016; W. Zhu et al., 2018). 

The H7N9s have a different NP change at site 52, having residue N instead of Y, 

which bypasses BTN3A3’s antiviral activity independent of changes in site 313 

(Pinto et al., 2023). Using the filtered dataset NP phylogeny (Figure 4.3), I retrieved 

all NP sequences matching to the broader avian NP clade where the H7N9 spillover 

viruses emerged from and re-inferred a time-calibrated phylogeny of the clade to 

examine the timing of the Y52N change in these viruses. Interestingly, the 

phylogenetic analysis shows that site 52 changed from Y to N only once in this clade, 

becoming the dominant residue in the part of the clade where most human infections 

have come from (Figure 4.5). The change is estimated to have taken place between 

August 1999 and October 2001 (1999.62 – 2001.81), a bit more than 10 years 

before members of this clade started emerging in humans, in March 2013 (Gao et 

al., 2013). It is worth noting that the NPs of this relatively recent 52N clade are 

primarily found in H9N2 strains based on the analysed sequences (Figure 4.5). 

Spillovers of H9N2 viruses in humans have been documented, but these are usually 

linked to close contact with susceptible poultry animals and rarely lead to onward 

human to human transmission (Zhang et al., 2022). Instead, constellations of 

mutations that might contribute to transmissibility in humans have been identified in 

at least five genome segments other than the NP in the re-emerging H7N9 viruses 

(W. Zhu et al., 2018). Hence, the presented analysis illustrates that the Y52N 

change stochastically happened in an H9N2 bird virus, creating a pool of BTN3A3 

evasion conferring NPs that have been continuously gained by the more “human 

transmission ready” H7N9 viruses through reassortment in both viruses’ reservoir 

avian hosts.  
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Figure 4.5. Tip-dated maximum likelihood phylogenies of the filtered IAV NP coding sequence 
dataset (left) and of all sequences clustering within the highlighted avian IAV clade (right). Tip 
shapes are coloured by site 52 residues (only residues present in more than 1% of the sequences 
are shown in the legend). Right: human isolates are annotated with circles and non-human isolates 
with transparent crosses to highlight human transmission. The branch where the Y52N change took 
place is annotated on the tree. Serotypes present in more than 10% of the sequences in each 
subclade are shown on the right of each subclade. 

 

The sister NP clade to the 52N clade mainly consists of high pathogenicity H5N1 

viruses. Most of these NPs have a 52Y, consistent with the majority of avian strains, 

however, another change at site 52 this time from Y to H has occurred in this 

subclade (Figure 4.5). Looking at the comprehensive IAV NP phylogeny annotated 

by site 52 residues, one can see that there are multiple independent subclades that 
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have non-52Y residues. The three amino acids that are most prevalent after Y are 

N, H and Q all of which enable evasion of human BTN3A3, even at the presence of 

313F (Pinto et al., 2023). IAV NPs with these three 52 residues are of concern to 

global health since they can bypass the BTN3A3 restriction factor, likely facilitating 

transmission to and between humans. To explore whether there is geographical 

clustering of the non-52Y NP clades I calculated changes from 52Y to N, H or Q 

across the NP phylogeny that led to clades of at least two sampled members and 

determined the countries where these viruses were sampled. Among the ~ 13,000 

avian IAV NP sequences available in the present filtered dataset, I found a striking 

151 independent avian NP lineages which already have a BTN3A3 resistant 

genotype. Members of these lineages have been sampled across the globe, with 

hotspots in China and North America correlating with sampling efforts (Figure 4.6). 

Concerningly, this geographic picture suggests that it is likely impossible to predict 

where the next BTN3A3 resistant lineage will occur. 

 

Figure 4.6. Geographical distribution of BTN3A3 resistant avian clade IAV NP independent 
lineages. Independent changes from the avian BTN3A3 susceptible 52Y genotype to N, H, or Q 
leading to a clade of at least two members identified in the avian clade of the IAV NP phylogeny. 
Map shading corresponds to the number of these lineages that each country has sampled at least 
one isolate from. 
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4.3.4 Highly pathogenic IAV does not require BTN3A3 evasion for 
transmission to humans 

As shown in the above sections, virtually all IAV strains circulating or having 

transmitted to humans have changes in their NP site 52 or 313 that confers 

resistance to human BTN3A3-dependent restriction. There are, however, some 

groups of viruses isolated in humans that lack any of the known changes required 

to evade BTN3A3. These are primarily highly pathogenic avian influenza A (HPAI) 

viruses of the H5N1 serotype (Figure 4.5). The key determinant of the high 

pathogenicity for these strains is a polybasic cleavage site in the HA protein which 

expands the viruses’ tissue specificity (Luczo et al., 2015). To examine how the 

presence of this HPAI cleavage site compares to NP-dependent BTN3A3 resistance 

in non-canonical serotypes (H4-H10) that have spilled into humans, I retrieved a 

separate, larger dataset of NP and HA proteins from the Global Initiative on Sharing 

All Influenza Data (GISAID) database. For comparative purposes, I also analysed 

the composition of PB2 amino acid 627, as viruses harbouring the 627K (or 627V) 

mammalian adaptation are compatible with the mammalian Acidic Nuclear 

Phosphoprotein 32 Family Member A  (ANP32A), facilitating replication, compared 

to viruses with the avian 627E (Taft et al., 2015; Long et al., 2016). 

Non-canonical serotype genomes (H4-H10) were separated by the host they were 

isolated in (avian, swine and human) and the proportions of BTN3A3-

sensitive/resistant and avian/mammalian ANP32A preference were compared 

between low (LPAI) and high (HPAI) pathogenicity viruses. Assignment of genomes 

into LPAI and HPAI was done based on the presence of the high-pathogenicity 

polybasic cleavage site on the viruses’ HA proteins. The vast majority of avian 

isolates have an avian-like PB2 627 residue, consistent with the PB2-ANP32A 

compatibility required for efficient replication in each host (Long et al., 2018) (Figure 

4.7). On the contrary, avian viruses seem to tolerate the human BTN3A3-evading 

substitutions, although more than half of the avian isolates have the BTN3A3-

resistant NPs, consistent with the phylogenetic reconstruction of the NPs (Figures 

4.5 and 4.7). Despite having much fewer sequenced non-canonical serotype 

isolates from pigs, the proportions of both BTN3A3-resistance and ANP32A 

compatibility in LPAI and HPAI viruses mirror those of the avian isolates (Figure 

4.7). This suggests that the potential barriers between bird-to-swine transmission of 

these serotypes are independent of all three variables. Hence, the proportions of 
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PB2 and NP haplotypes in viruses that have infrequently spilled over from birds to 

pigs simply reflect those in the avian reservoir hosts. 

Interestingly, the proportions in the human isolates are strikingly different from these 

of avian and swine viruses. Starting with ANP32A compatibility, more than 70% of 

the LPAI genomes have a human-adapted PB2 protein (Figure 4.7). This proportion 

is much smaller in the HPAI genomes (33%), but still substantially larger than in 

avian and swine viruses (3% and 5% respectively). The PB2 adaptation to 

mammalian ANP32A is not crucial for the initial host switch and has been observed 

to occur once transmission has been established in the new host to improve 

replication efficiency. Most HPAI virus transmissions into humans are dead-end 

spillovers, suggesting that the viruses do not have enough time to acquire this PB2 

adaptation. This would explain the unique pattern observed in human isolates, 

where avian PB2 viruses can transmit to humans, and onward transmission or 

prolonged replications quickly leads to the acquisition of the human ANP32A 

compatible substitutions. The proportions of human BTN3A3-resistant and 

BTN3A3-sensitive sequences, however, show a notably different pattern. In HPAI 

bird-to-human spillovers BTN3A3-resistance proportions seems to match those 

seen in avian isolates (avian: 31%, human: 26%). On the contrary, only four LPAI 

bird-to-human spillovers have ever been recorded and sequenced, representing a 

mere 0.3% of the dataset. This confirms that NP-dependent BTN3A3-resistance is 

virtually essential for transmission of an LPAI virus into humans. Instead, presence 

of an HA polybasic cleavage site seems to completely bypass this requirement. In 

fact, it is of interest to individually inspect the four BTN3A3-sensitive LPAI human 

isolates. One case is a multi-reassortant H7N4 virus, documented to have acquired 

human adaptations in its PB2, PB1, HA, NA and M2 proteins, the infected patient 

being a poultry farm worker who was in close contact with the farmed birds (isolate: 

A/Jiangsu/1/2018, GISAID accession: EPI_ISL_376123) (Qu et al., 2020). Two of 

the cases are members of an H7N2 lineage with unique HA adaptations identified 

to be circulating in domestic cats (Marinova-Petkova et al., 2017). The earlier case 

sampled in 2003 did not have an identified source (A/New_York/107/2003, GISAID 

accession: EPI_ISL_16424), but the second case sampled in 2016 was confirmed 

to have transmitted from a domestic cat (A/New_York/108/2016, GISAID accession: 

EPI_ISL_253575) (CDC: Morbidity and Mortality Weekly Report, 2004; Marinova-

Petkova et al., 2017). Finally, the last case is an H5N1 virus sampled in Vietnam in 

2004 which surprisingly lacks the polybasic cleavage site in its HA 
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(A/Viet_Nam/1203/2004, GISAID accession: EPI_ISL_4156). However, three more 

H5N1 viruses with almost identical genomes sampled in Vietnam during the same 

year are all HPAIs (A/Viet_Nam/3062/2004, EPI_ISL_4158; 

A/Viet_Nam/3046/2004, EPI_ISL_4157; A/Viet_Nam/1194/2004, EPI_ISL_4155), 

suggesting that this particular genome may have lost the cleavage site after 

transmission into humans, during culture (it is unclear if the virus had been cultured 

before sequencing) or might simply be a sequencing error (Hien et al., 2004). 

 

 

Figure 4.7. Distribution of BTN3A3 and ANP32A human-adapted residues and HA 
pathogenicity across H4-H10 IAV viruses. BTN3A3 NP-dependent status proportions is shown on 
the left and ANP32A PB2-dependent proportions shown on the right. Genomes are separated by 
isolation host (avian, swine and human from top to bottom). Absolute values of genomes for each 
category are shown on the right of the corresponding proportion bar.  

 

  



Chapter 4  118 

4.4 Discussion 

The comprehensive phylogenetic analysis of the Haplorrhini BTN3 genes and the 

IAV NP sequences presented in this chapter, in complement with the experimental 

results presented in (Pinto et al., 2023), highlight the importance of human BTN3A3 

as a restriction factor against avian IAVs. Many genes relating to antiviral immunity 

experience strong selective pressures and frequently undergo duplications (Duggal 

and Emerman, 2012). Similarly, all BTN3 paralogues are located on the same locus 

in the primate genomes which opens up opportunity for further duplications, domain 

swapping and subsequent diversification of function. Based on the available data, 

BTN3A3 is the primary human paralogue that confers anti-IAV activity, with BTN3A1 

having a more subtle antiviral effect in vitro and BTN3A2 missing the PRYSPRY 

domain and lacking antiviral function altogether. The butyrophilins are known to 

have many diverse functions (Smith et al., 2010; Afrache et al., 2012; Arnett and 

Viney, 2014; Rigau, Uldrich and Behren, 2021), this being the first detailed example 

of an innate antiviral immunity function for the genes. Another recently published 

ISG screen suggests that the human BTN3A3 gene might have some antiviral 

activity against Ebola virus (Kuroda et al., 2020), although a potential mechanism 

for that restriction is still untapped and similar experiments have not shown any 

specific antiviral activity of BTN3A3 against a large array of other human viruses 

(Pinto et al., 2023).  

Regarding the BTN3 Catarrhini genes’ restriction of avian IAV, it is intriguing how 

the topology of no single protein domain can explain the gain of the antiviral activity 

(Figure 4.2). This means that multiple combinations of substitutions between 

different domains can independently lead to the function within the specific 

evolutionary context of the Catarrhini BTN3 gene clade. Although it may be tempting 

to propose that ancestral evolutionary pressures by avian IAV-like viruses have led 

to the independent gain events of antiviral function across the different BTN3 clades 

(Figure 4.2), no primates outside of humans are known to host IAVs. Taken together 

with the knowledge that BTN3 genes have many more unrelated functions that likely 

impose separate pressures on the genes, I propose that the BTN3 anti-avian IAV 

activity may be an “accidental” product of sequence changes relating to the genes’ 

other functions. This scenario would be consistent with an initial “accidental” gain of 

antiviral function specific to the BTN3A1 and BTN3A3 Catarrhini clades after their 

original duplication event and subsequent occasional loss of this function across 
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different subclades (Figure 4.1). An alternative scenario where gain of antiviral 

function was selected for through an ancient avian IAV-like virus epidemic in early 

Catarrhini populations 40 million years ago is less likely, in my interpretation of the 

currently available data, but certainly warrants further investigation. For example, 

Souilmi et al. (2021) present evidence of a 20,000 year old human coronavirus 

epidemic specific to ancient East Asian populations, detected by examining 

ancestral selection in genes known to interact with coronavirus infection. Given 

enough resolution of primate genomes, a similar approach could potentially be 

implemented in the future to test if other genes known to interact with IAV infection 

may have been under unique adaptive selection at the base of the Catarrhini. Lastly, 

an interesting point about the butyrophilin genes is that the chicken one-to-one 

orthologue of the primate BTN3 genes, BTN1A1 or also referred to as Tvc, acts as 

the entry receptor of the unrelated Subgroup C Avian Sarcoma and Leukosis 

Viruses, ASLV(C) (Elleder et al., 2005). This highlights the widely diverse functions 

of these genes and the convergent interactions of the butyrophilin family with diverse 

viruses, whether that is restricting virus replication or facilitating virus cellular entry.  

Focusing on the virus side, the firm association between BTN3A3-evading NP 

adaptations and all major IAV human spillovers suggests that the ability to bypass 

BTN3A3 through this mechanism is a requirement for avian IAVs transmitting to 

humans. Interestingly, substitutions to the NP site 313 BTN3A3-evading residues 

313Y and V, present in the vast majority of human-circulating IAVs (stemming from 

the 1918 flu pandemic and 2009 swine flu pandemic respectively) is largely 

infrequent in bird-circulating viruses (Figure 4.3). The strong conservation of NP 

residue 313F in avian IAVs is suggestive of purifying selection on this site during 

replication and transmission within avian hosts. Conversely, strains with both 313F 

and V genotypes circulate in pigs. This indicates relaxed selection for 313F on the 

virus when in swine hosts, potentially allowing for more frequent changes to 

BTN3A3-resistant 313 residues. Although there are no sequences from the exact 

swine population where the F313V substitution took place (estimated to have 

existed between 2006 and 2009), the phylogenetic analysis of the available 

sequences confidently supports that the residue change happened in pigs (Figure 

4.4). The exact origins of the 1918 pandemic H1N1 virus to the human population 

remain much more elusive. Current virus sequence data suggest that different 

segments may have come together through reassortment between multiple co-

circulating strains (Smith, Bahl, et al., 2009), while it is believed that all segments 
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apart from the HA – thought to have come from IAV strains already circulating in 

humans – likely came from avian IAVs (Worobey, Han and Rambaut, 2014). 

Furthermore, the earliest available archival H1N1 sequences from 1918 have 313Y 

NP proteins (Patrono et al., 2022). The data presented in this chapter could have 

some informative implications regarding the origin of at least the NP segment of the 

1918 pandemic H1N1 virus. If 313F is highly conserved across avian-circulating 

virus, but 313Y or V is required for initial transmission into humans, then one could 

speculate that the NP of 1918 virus acquired the F313Y substitution while circulating 

in a non-avian intermediate host (swine or other).  A better understanding of what 

avian mechanism leads to the conservation of NP 313F in these hosts may provide 

more clues as to potential host environments where the F313Y substitution 

happened before reassorting with the other 1918 virus segments and spilling into 

humans. 

In contrast to the conserved site 313 residues, changes in site 52 of the NP seem 

to be less constrained during avian circulation of the viruses. Given the global 

distribution of multiple independent NP clades with BTN3A3-evading site 52 

residues (Figures 4.5 and 4.6), viruses with these changes may be expected to be 

of greater concern to human health. Still, all four recent influenza pandemics (1918 

H1N1, 1957 H2N2, 1968 H3N2 and 2009 H1N1) had site 313 BTN3A3-evading 

residues instead. Although counteracting restriction by BTN3A3 is likely a 

requirement for bird-to-human transmission, other segments (or other NP changes) 

could be responsible for how efficient onward human-to-human spread is. The H7N9 

52N viruses have caused multiple epidemics in human populations, however the 

H9N2 viruses that share essentially the same pool of NP segments have only 

circumstantially spilled into humans without any documented onwards transmission. 

Hence, perhaps unsurprisingly, a combination of human-adapted changes across 

all segments of the virus genome control its potential to both cross to and transmit 

between humans. The substitutions in NP residues, like these at sites 52 and 313, 

must not simply interact with host proteins, but also the other virus proteins 

constituting the vRNP complex. An interesting follow up from the data presented 

here is to investigate whether certain serotypes or segment combinations are more 

likely to endure (or even prefer) the BTN3A3-evasive residues at sites 52 and 313.  

The last important observation is how although virtually all LPAI viruses required a 

human-adapted NP to transmit to humans, that does not seem to be a requirement 
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at all for HPAI viruses (Figure 4.7). The defining feature of HPAIs is the polybasic 

cleavage site in the HA protein relating to more efficient cell entry, while BTN3A3 

restricts virus replication post-entry (Pinto et al., 2023); so it is unlikely that the same 

mechanism is at play allowing HPAIs to transmit to humans. Still, the exact 

mechanism through which human-adapted NPs counteract BTN3A3 restriction 

remains unclear and a potential direct or indirect intracellular interaction between 

HPAI HA peptides and BTN3A3 is not entirely out of the question. So far, 

documented HPAI human infections (primarily H5N1s) have high mortality rates, but 

are usually dead-end spillovers, rarely leading to any human-to-human transmission 

(Krammer and Schultz-Cherry, 2023). The world is currently facing an immense 

resurgence of H5N1 viruses globally circulating in birds, reassorting their internal 

segments (Xie et al., 2022) and transmitting to wild mammals, causing mass 

mortality (Gamarra-Toledo et al., 2023). A recent human infection by these H5N1 

viruses was recorded in England in 2022 (Oliver et al., 2022) and, interestingly the 

virus’s NP had a BTN3A3-evasive residue (52H). Also, an outbreak of HPAI H5N1s 

in mink farms in Spain recorded in 2022 had the NP 52N residue, having acquired 

this segment from a distant gull H13 clade with 52N NPs (Agüero et al., 2023). It 

remains unknown whether BTN3A3-evading NP adaptations and HPAI HAs could 

have an additive effect to the viruses’ mortality and transmissibility within humans. 

What is certain is that BTN3A3-evasive HPAI viruses are encountered more 

frequently in the animal-to-human interface – either through contact with wild birds 

or farmed poultry and mammals – and this area warrants monitoring and further 

research into the molecular mechanisms underlying these effects. Early monitoring 

of avian IAVs focused on only sequencing the HA and NA segments, responsible 

for cell entry. It now becomes all the more apparent that robust mutational markers 

of the viruses’ ability to transmit into humans can be found in internal segments, 

such as the NP. The new approach to monitoring IAVs should be built on a model 

where combinations and interactions of markers between all segments predict the 

viruses’ potential for human spillover and spread. On a final note, three independent 

bird-to-human transmissions of H3N8 viruses have been recently documented in 

China: i) in April 2022 Henan province (A/Henan/4-10CNIC/2022 – 

EPI_ISL_12322556) (World Health Organization, 2022a), ii) in May 2022 in Hunan 

province (A/Changsha/1000/2022 - EPI_ISL_12703722) (Centre for Health 

Protection, 2022), iii) in March 2023 in Guangdong province (A/Guangdong/ZS-

23SF005/2023 - EPI_ISL_17464053) (World Health Organization, 2023a) all of 
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which have residue 52N in their NPs. Based on the data presented in this chapter 

these H3N8 viruses could be a prime candidate for a future IAV outbreak in humans. 
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“Never underestimate the ability of the human animal to adapt to its environment.” 

Neon Genesis Evangelion (1995)  
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Aim 

Most virus genomes have compositional biases manifesting in the dinucleotide level. 

In this chapter I describe a novel approach for quantifying dinucleotide biases in 

coding sequences and explore how different nucleotide composition expectations 

affect the mathematical framework of the method. I apply the approach to genomes 

of the Flaviviridae and Rhabdoviridae virus families to investigate the effect that the 

host environment a virus replicates in has on the genomic dinucleotide composition.  

The original version of the Synonymous Dinucleotide Usage metric has been 

published in Lytras & Hughes (2020, Viruses, 12[4]:462), under the title 

“Synonymous Dinucleotide Usage: A Codon-Aware Metric for Quantifying 

Dinucleotide Representation in Viruses”. I performed all the analysis presented 

in the paper and co-author Joseph Hughes supervised the work. All other work 

presented in this chapter, including the extended versions of the metrics and 

applications on the Flaviviridae family, is my own and currently unpublished. 
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5.1 Introduction 

5.1.1 Biases in codon usage 

The building blocks of all DNA sequences consist of four nucleotides: guanine (G), 

cytosine (C), adenine (A) and thymine (T) (or uracil – U – in the case of RNA 

genomes). The composition of nucleotides is largely non-uniform across genomes. 

In coding sequences, this is partly due to constraints by the peptide sequence being 

encoded by the gene. Each amino acid is encoded by specific sets of codons, so 

conservation on the protein sequence will affect the coding sequence’s nucleotide 

composition. However, the genetic code is degenerate, meaning that some amino 

acids can be encoded by more than one synonymous codon, allowing some leeway 

to the nucleotide composition of a coding sequence underlying a conserved protein. 

We predominantly think of selective pressures acting on the amino acid level, i.e. 

since the proteins encoded by the genetic code largely control the phenotype, non-

synonymous changes in coding sequences (changing the encoded protein 

sequence) will be under selection. For this reason, the majority of methods used 

routinely to assess selection on genes are based on comparing the proportion of 

non-synonymous to synonymous mutations on a given coding sequence (Goldman 

and Yang, 1994; Muse and Gaut, 1994) (see Chapter 1 Section 1.10). It is now 

accepted that, other than protein-level selection, changes on the nucleotide 

sequence (either synonymous changes on coding regions or mutations on non-

coding sequences) can also confer phenotypic effects and subsequently be under 

selective pressure. Focusing on coding sequences, one widely studied area of 

synonymous selection is on codon usage bias. Selective pressures on codon usage 

are difficult to assess because of the underlying genetic signatures that could also 

be biased, either due to selective or mutational pressures. 

One of the first approaches developed for studying the non-uniformity of codon 

usage is the relative synonymous codon usage (RSCU) metric (Sharp, Tuohy and 

Mosurski, 1986). The RSCU provides a numerical representation for whether 

specific synonymous codons are more or less abundant than one would expect 

under equal synonymous codon usage in a sequence. The earliest finding regarding 

the factors that might influence biases in codon usage is that codon usage correlates 

with the abundance of tRNA expressing the respective codons (Sharp, Tuohy and 

Mosurski, 1986). The availability of tRNA molecules present in the cell will affect the 
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speed and efficiency of mRNA translation. Hence, genes that need to be expressed 

faster will be selected to have codons corresponding to the tRNAs most abundant 

in the cell at the time of expression. Similarly, one can predict how highly expressed 

a gene is based on its codon usage by comparing it to that of reference genes of 

the organism (Sharp and Li, 1987). In fact, it is now apparent that codon usage 

selection is much more complex than simply consistently preferring one 

synonymous codon; instead distinct codon usage patterns can be selected for 

across different regions of a gene sequence. This relates to improving translational 

efficiency, but also pacing protein elongation for correct folding of the peptide 

product (Plotkin and Kudla, 2010; Tuller et al., 2010; Hanson and Coller, 2018). 

Although selection for translation efficiency and protein folding is an important factor 

explaining codon usage biases, mutational pressures or even selection on 

underlying nucleotide patterns (single nucleotide or dinucleotide representation) can 

also contribute to shaping compositional biases in coding and non-coding 

sequences (Sharp et al., 1995). 

 

5.1.2 Biases in dinucleotide representation 

Other than the biases in the codon usage of genetic entities, distinct patterns have 

also been extensively described on the underlying dinucleotide composition 

signatures of genomes. Dinucleotides, two nucleotides adjacent in a sequence 

bound by a phosphodiester bond, are known to be over- or under-represented 

across the genomes of living organisms and viruses, creating distinct compositional 

patterns (Beutler et al., 1989). Shortly after genetic sequencing technologies 

emerged, researchers observed that distinct dinucleotide patterns - particularly 

depletion of the CpG dinucleotide - is shared between different vertebrates and 

across coding and non-coding regions (Russell et al., 1976; Burge, Campbell and 

Karlin, 1992). The fact that under-representation of CpG dinucleotides was shared 

between vertebrate and plant genomes, which are methylated, but not methylase-

absent organisms like invertebrates, bacteria and fungi, pointed to methylation being 

potentially relevant to this pattern (Bird, 1980; Karlin and Mrázek, 1997). Indeed, 

further experimental evidence illustrated that the primary cause for reduced CpG 

abundance in vertebrate and plant genomes is DNA methyltransferases acting on 

the nucleotides, frequently converting cytosine to thymine through deamination 
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following the methylation (Cooper and Krawczak, 1989). Another dinucleotide 

known to be slightly under-represented across the tree of life, including prokaryotes, 

is TpA/UpA (Burge, Campbell and Karlin, 1992; Karlin and Burge, 1995). Early 

speculations for the mechanism behind this compositional bias have suggested that 

UpA-rich mRNA might be unstable and more prone to degradation by cytoplasmic 

RNAses, most of which preferentially bind UpA and UpU-rich molecules (Shaw and 

Kamen, 1986; Beutler et al., 1989; Duan and Antezana, 2003). However, the fact 

that intronic regions in some organisms also share the TpA under-representation 

suggests that this might not be the definitive mechanism behind this almost 

universal dinucleotide signature (Burge, Campbell and Karlin, 1992). These 

dinucleotide-level biases are likely responsible for overlapping compositional biases 

in codon usage as well as codon pair usage (Kunec and Osterrieder, 2016). 

Interestingly, the dinucleotide signatures observed in eukaryotes and prokaryotes 

seem to also be shared by virus genomes, often matching their respective hosts’ 

signatures (Subak-Sharpe et al., 1966; Morrison et al., 1967; Russell et al., 1976). 

Early studies observed that CpG suppression and the weaker UpA suppression was 

present in small genome vertebrate viruses, but not in these with larger genomes 

(Karlin, Doerfler and Cardon, 1994). Further analyses of more virus groups 

confirmed that CpG suppression in both RNA and DNA small genome viruses 

matches that of their vertebrate hosts, suggesting that these signatures may  be 

caused by host immune pressures that do not affect larger genome viruses 

(Shackelton, Parrish and Holmes, 2006). Analysis of dinucleotide signatures in all 

RNA viruses, including retroviruses, suggested that host had a major effect on the 

viruses’ CpG biases (Cheng et al., 2013). More comprehensive modelling of 

mutational processes showed that CpG and UpA suppression in mammalian viruses 

are due to selective pressures imposed by the host rather than mutational processes 

(Simmonds et al., 2013). This led to the speculation that an innate immunity CpG 

sensor is present in vertebrates or mammals, selecting against virus genomes with 

this dinucleotide and, as a consequence, producing this mimicry between virus and 

host CpG levels (Belalov and Lukashev, 2013). These findings were followed by a 

number of experimental studies validating this prediction, where increasing UpA and 

CpG levels in RNA viruses led to a decrease in replication and subsequent viral 

attenuation, while decreasing their abundance has the opposite effect (Atkinson et 

al., 2014; Tulloch et al., 2014; Gaunt et al., 2016; Witteveldt, Martin-Gans and 

Simmonds, 2016; Klitting et al., 2018). The likely culprit at least for the CpG 
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suppression in viral genomes was recently elucidated to be the Zinc-finger Antiviral 

Protein (ZAP). Takata et al. (2017) demonstrated that ZAP selectively binds to CpG-

rich viral RNA, inhibiting virion production of CpG-rich HIV-1 genomes but not of low 

CpG virus genomes. The discovery of ZAP’s selective effect on virus CpG 

representation has been a breakthrough in our understanding of what causes 

dinucleotide biases in host and virus genomes. Still, other undiscovered 

mechanisms likely act on genomic dinucleotide representation, leading to the 

signatures that will be extensively described in this chapter. 

 

5.1.3 The Zinc-finger Antiviral Protein selects for CpG depletion in 
virus genomes 

The Zinc-finger Antiviral Protein (ZAP) contains a CCCH-type zinc-finger motif and 

was first described by Gao, Guo and Goff (2002) as an antiviral factor acting through 

binding of foreign RNA and initiating subsequent viral mRNA degradation (Odon et 

al., 2019). There are two distinct isoforms of human ZAP, a long form (ZAP-L) that 

is constitutively expressed in the cell, and a short form (ZAP-S) that is induced by 

the interferon signalling pathway as an ISG (Schwerk et al., 2019; Kmiec et al., 

2021). The ZAP-S isoform seems to be more closely involved to the innate 

immunity, potentially regulating the RIG-I pathway (Hayakawa et al., 2010). Even 

prior to the discovery that ZAP proteins preferentially bind to CpG-rich viral RNA 

(Huang, Wang and Gao, 2010; Takata et al., 2017; Luo et al., 2020), many studies 

had described its antiviral activity against diverse viruses such as murine leukemia 

virus (MLV), Semliki virus (Kerns, Emerman and Malik, 2008), HIV-1 (Zhu et al., 

2011), hepatitis B virus (HBV) (Mao et al., 2013) and more recently against the 

model RNA virus Echovirus 7 (Odon et al., 2019), SARS-CoV-2 (Nchioua et al., 

2020) and even DNA viruses such as human cytomegalovirus (HCMV) (Lin et al., 

2020). On top of ZAP’s antiviral activity through RNA binding, a few studies have 

described direct interactions between ZAP and viral proteins. For example, the 

H5N1 IAV PA-PB1 complex seems to directly associate with human ZAP-S during 

infection (Bradel-Tretheway et al., 2011), while the Nsp4 protein of Porcine 

reproductive and respiratory syndrome virus (PRRSV) specifically cleaves ZAP in 

what seems to be a virus adaptation to counteract ZAP’s activity (Zhao et al., 2020). 
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The distinction between the long and short ZAP isoforms is not fully understood yet, 

since both proteins have shown antiviral activity against different viruses. However, 

ZAP-L has an additional post-translational modification signal at its C-terminal end 

which mediates S-farnesylation of the protein – the addition of a hydrophobic S-

farnesyl group at the protein’s end – and subsequent localisation to intracellular 

membranes (Charron et al., 2013; Kmiec et al., 2021). This means that ZAP-L could 

target viruses that replicate in intracellular compartments and double-membrane 

vesicles, such as the Flaviviridae and the Coronaviridae. Gonçalves-Carneiro et al. 

(2021) recently explored how ZAP’s antiviral function compares between its 

vertebrate orthologues, showing that the CpG-targeting specificity of ZAP matured 

in mammals, while bird ZAP does not preferentially bind to a specific nucleotide 

context. ZAP does not act on its own, with at least two co-factors critical for the 

antiviral activity having been identified so far: i) TRIM25: which enhances the virus 

translation inhibition (Li et al., 2017) and has co-evolved with ZAP so that only 

presence of conspecific TRIM25 can recapitulate the enhancement (Gonçalves-

Carneiro et al., 2021), and ii) KHNYN: which provides enzymatic activity along with 

TRIM25 to complement ZAP’s RNA-binding activity and subsequent viral RNA 

degradation (Ficarelli et al., 2019). Artificially increasing the CpGs in human viruses 

leads to their attenuation in human cells due to ZAP’s antiviral effect (Sharp et al., 

2023). A few studies have suggested that synonymously increasing the UpA content 

of RNA viruses can also lead to – albeit weaker - viral restriction in human cells 

(Fros et al., 2017; Ibrahim et al., 2019) and this effect could also be due to ZAP 

recognition (Odon et al., 2019). Although ZAP selectively binding to UpA-containing 

RNA motifs could explain the consistent under-representation of this dinucleotide in 

mammalian viruses, the same UpA suppression pattern is seen in non-mammalian 

viruses, while the known optimal binding motif of ZAP does not contain UpA (Luo et 

al., 2020). Hence, viral genome UpA suppression is likely caused through an 

alternative, but potentially related, mechanism. Later in this chapter, I will explore 

the differences between CpG and UpA signatures in Flaviviridae genomes, 

investigating potential insights about their causes. 

 

5.1.4 Methods for quantifying dinucleotide representation 

In addition to exploring and interpreting dinucleotide signatures in viral genomes, 

this chapter will focus on the development of novel methods for quantifying 
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dinucleotide representation. One of the earliest approaches for examining 

dinucleotide signatures in genetic sequences involved estimating equilibrium 

nucleotide frequencies under mutation rates given by a simple mutation model, then 

comparing the observed occurrence of each dinucleotide to its expected equilibrium 

frequency (Sved and Bird, 1990). A simpler method that has been used routinely in 

the field is comparing the presence of a dinucleotide to that expected based on the 

frequency of each single nucleotide comprising the sequence (Karlin and Burge, 

1995). This metric will be referred to as the relative dinucleotide abundance (RDA) 

later in the chapter. A later approach developed by Greenbaum et al. (2008) 

implements a Monte Carlo framework for fixing the amino acid structure and codon 

usage in a given coding sequence, so these effects are not reflected on the 

assessment of the dinucleotides’ representation. More studies have extended the 

same approach, focusing on how virus dinucleotide signatures evolve following host 

switching (Gu et al., 2019). This method is conceptually similar to the synonymous 

dinucleotide usage framework described in this chapter in that they both account for 

amino acid abundance and codon usage, as well as provide a statistical assessment 

of under- or over-representation. More complex, entropy-based approaches have 

also been developed, borrowing concepts from theoretical physics to estimate the 

extent of selection acting on the dinucleotide signatures of evolving viral sequences 

(Greenbaum et al., 2014). The novel approach described in this chapter aims to 

statistically assess the presence of bias in dinucleotide representation and quantify 

the extent of the biases. Even though it does not formally examine the selective 

forces acting on the biases, it can be paired up with existing comparative 

phylogenetics methods to explore dinucleotide adaptations across phylogenies, 

which is presented later in the chapter (Results subsection 5.3.9). 
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5.2 Methods 

5.2.1 DinuQ development 

The Dinucleotide Quantification (DinuQ) Python3 package is a distributed package 

I have developed containing functions for calculating the Synonymous Dinucleotide 

Usage (SDU) and its associated metrics quantifying codon and dinucleotide 

representation in coding sequences (https://github.com/spyros-lytras/dinuq). The 

Results section of this chapter contains extensive descriptions of the SDU 

framework, metrics and the DinuQ package itself.  

 

5.2.2 Testing RDA, SDUc and RSDUc on Flavivirus genomes 

To test and compare the RDA, SDUc and RSDUc metrics described in this chapter, 

I retrieved the polyprotein coding sequences of vertebrate- and invertebrate-specific 

flaviviruses previously analysed in Simón et al. (2017). The analysis focuses on two 

representatives of the dataset: The insect-specific Aedes flavivirus (AEFV, 

GenBank accession: AB488408.1) that primarily infects Aedes mosquitoes (Blitvich 

and Firth, 2015), and the Apoi virus (APOIV, GenBank accession: AF160193.1) that 

has no known insect vector and infects rodents of the Apodemus genus (Billoir et 

al., 2000). To extend the analysis, I retrieved a second dataset of coding sequences 

from all members of the Rhabdoviridae family included in the ICTV Virus Metadata 

Resource (version November 27, 2019; MSL34) (International Committee on 

Taxonomy of Viruses, 2019), being labelled as having a vertebrate or invertebrate 

host. The SDUc, RSDUc, RDA and RSCU values were calculated using the DinuQ 

Python package. General Linear Models (GLM) for statistical comparisons were 

performed using the R coding language (R Core Team, 2022). 

 

5.2.3 Detecting adaptive shifts in dinucleotide representation 

The set of representative Flaviviridae genomes were compiled by combining 

representative genomes that are part of the Flavi-GLUE database (“237 reference 

genome sequences each representing a distinct flavivirid species and linked to 

https://github.com/spyros-lytras/dinuq
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isolate-associated data”) by Bamford et al. (2022) with the recently published 

diverse genomes from Mifsud et al. (2023). All genomes were aligned and 

duplicated representatives of the same viruses from the two combined sets were 

manually excluded from the final set based on the labelled taxonomy and sequence 

identity. Further filtering involved excluding all sequences without a full RNA 

dependent RNA polymerase (RdRp or NS5) coding sequence available. First, the 

coordinates of annotated RdRp/NS5 genes were retrieved from the sequences’ 

NCBI GenBank annotations. To capture potentially unannotated RdRp genes, I 

proceeded to align the full genomes of each subfamily separately using MAFFT 

v7.453 (Katoh and Standley, 2013) and manually retrieved the RdRp genes of 

unannotated genomes based on sequence similarity to the related sequences 

RdRp. The final set consisted of 350 Flaviviridae genomes that should represent all 

sampled diversity of the virus family (see online data, subsection 5.2.4). The 

annotated RdRp coding sequences were translated and all 350 amino acid 

sequences were aligned using MAFFT (--localpair option) (Katoh and Standley, 

2013). The resulting alignment was used to reconstruct a phylogeny of these viruses 

using IQ-TREE v.2.1.3 (Minh et al., 2020) under a Q.pfam+F+I+G4 substitution 

model selected by ModelFinder (iqtree -m TEST option) (Kalyaanamoorthy et al., 

2017). Node confidence was assessed with 1000 replicates of ultrafast 

bootstrapping implemented in IQ-TREE (Hoang et al., 2018). The full or partial 

polyprotein coding sequences of all 350 genomes were extracted and SDUc and 

RSDUc values were calculated for all dinucleotides and all frame positions, 

assessing the error distribution with 100 replicates per sequence, using the DinuQ 

python package (described in this chapter, Results subsection 5.3.6).  

To infer potential adaptive shifts in the representation of different dinucleotide 

signatures across the Flaviviridae phylogeny I used the PhylogeneticEM R package 

v.1.6.0 (Bastide, Mariadassou and Robin, 2017; Bastide et al., 2018). This method 

can identify nodes in a tree representing adaptive shifts of a given multivariate 

quantitative trait by implementing a modified Ornstein–Uhlenbeck (OU) model of the 

trait changing across the tree. The RSDUc value of every informative frame position 

for each polyprotein was used as the quantitative trait representing each 

dinucleotide’s presence. PhylogeneticEM requires a rooted ultrametric tree, hence 

the maximum likelihood RdRp phylogeny of the 350 Flaviviridae was midpoint 

rooted (separating the Hepaci-Pegi clade from the other Flaviviridae subgroups) and 

transformed using the chronos function of the ape R package v.5.7.1 (Paradis, 
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Claude and Strimmer, 2004; Paradis, 2013). The relaxed model was used for the 

transformation (having the largest log-likelihood value) with a lambda value of 1. 

The resulting ultrametric tree was then used for running PhylogeneticEM under the 

scalar OU (scOU) model. This method also requires defining a matrix A of values 

representing the selection strength used in the analysis (Bastide et al., 2018). Matrix 

A can be calculated based on the length of the given tree using the find_alpha_grid 

function which, by default, calculates 10 A values. Smaller A values are expected to 

increase phylogenetic correlation in the model and this can result in mainly detecting 

shifts on the terminal branches of the tree (personal observation; Paul Bastide, 

personal communication). Since I am interested in detecting adaptive shifts on the 

deeper nodes of the Flaviviridae tree, I selected the five largest values in the 

automatically computed matrix A. In this way terminal branches are allowed to have 

relatively more different trait values, increasing shift detection sensitivity in the 

deeper nodes of the phylogeny. Finally, the K value, representing the maximum 

number of adaptive shifts that can be detected by the process was set to 10. 

Subclades of the original maximum likelihood tree were separated by node labels 

using the phytools R package (Revell, 2012) and were transformed to ultrametric 

and tested with PhylogeneticEM using the exact parameters described above. 

 

5.2.4 Data availability 

 All code and data relating to this chapter are available in the following GitHub 

repositories: https://github.com/spyros-lytras/dinuq,  

https://github.com/spyros-lytras/flaviviridae_dn.    

https://github.com/spyros-lytras/dinuq
https://github.com/spyros-lytras/flaviviridae_dn
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5.3 Results 

5.3.1 The Synonymous Dinucleotide Usage framework 

The Relative Dinucleotide Abundance (RDA) is the metric used routinely for 

quantifying biases in sequence dinucleotide representation. This involves 

comparing dinucleotide frequencies to those expected based on the single 

nucleotide composition of the sequence (Karlin and Burge, 1995). Although the RDA 

is a fitting approach for examining non-coding sequences, the nucleotide 

composition of protein encoding genes can be constrained by selective pressures 

for maintaining or removing specific encoded amino acids, especially if these have 

few synonymous codons (e.g. tryptophan and methionine can only be encoded by 

a single codon – UGG and AUG respectively). The Synonymous Dinucleotide 

Usage (SDU) is a novel framework for quantifying dinucleotide representation in 

coding sequences, while accounting for the potential effects of peptide composition 

on dinucleotide frequencies. It is based, in principle, on the relative synonymous 

codon usage (RSCU) metric (Sharp, Tuohy and Mosurski, 1986). In this section, I 

will describe the calculations behind the SDU and its extensions. Since most of the 

chapter focuses on coding sequences of RNA genomes, uracil (U) will be used 

instead of thymine (T) in the sequence notation throughout the chapter. 

A coding sequence can have three distinct dinucleotide frame positions. We define 

the dinucleotide frame position 1 as the first and second nucleotide position of a 

codon, dinucleotide frame position 2 as the second and third nucleotide position of 

a codon, and dinucleotide bridge position as the third nucleotide position of a codon 

and the first position of the downstream codon. Each one of these positions can take 

a set of different dinucleotides without changing the amino acid (positions 1 and 2) 

or amino acid pair (bridge position) in the protein sequence, we define these as a 

set of synonymous dinucleotides. For example, threonine has four synonymous 

codons ACU, ACC, ACA, ACG. In dinucleotide position 2 of a codon encoding for 

threonine, there are four synonymous dinucleotides, CpU, CpC, CpA, and CpG. As 

such, the expected proportion of CpU occurring in position 2 coding for threonine 

under a null hypothesis of equal synonymous codon usage is: ei = 0.25. The SDU 

(Table 5.1) compares the observed proportion of a synonymous dinucleotide of 

interest (oi) to that expected under equal synonymous codon usage (ei) for a given 

dinucleotide frame position. The ratio between oi and ei is calculated for each 



Chapter 5  135 

different amino acid or amino acid pair (for the bridge position) and the SDU is 

defined as the weighted arithmetic mean of the ratios, weighted by the abundance 

of each amino acid in the sequence (Equation 5.1). 

 

Table 5.1. Notation used to define SDU and RSDU. 

Symbol Description 

i Amino acid or amino acid pair 

j Dinucleotide 

h Dinucleotide frame position 

ni Number of occurrences of amino acid or amino acid pair i in the sequence 

k Set of informative amino acids or amino acid pairs present in the sequence 

oi,j,h Proportion of synonymous dinucleotide j in frame position h for amino acid or amino 

acid pair i observed in the sequence 

ei,j,h Proportion of synonymous dinucleotide j in frame position h for amino acid or amino 

acid pair i expected under equal synonymous codon usage 

N Total number of amino acids or amino acid pairs present in the sequence 

 

𝑆𝐷𝑈𝑗,ℎ =  

∑ 𝑛𝑖 ×
𝑜𝑖,𝑗,ℎ

𝑒𝑖,𝑗,ℎ

𝑘
𝑖=1

𝑁
 

(Equation 5.1) 

The set j includes 16 possible dinucleotide combinations. With three frame positions 

h, the matrix of SDUj,h has 48 possible combinations. Only 3 amino acids can be 

encoded by different position 1 dinucleotides (arginine, serine, and leucine), 
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meaning that 11 out of 16 dinucleotides in frame position 1 are non-informative, 

leaving 37 informative combinations.  

The result of the SDU metric directly reflects the overall synonymous dinucleotide 

representation in each frame position of a given sequence: 

• an SDU value of 1 indicates that the representation of the dinucleotide of 

interest in the given frame position is equal to that expected under the null 

hypothesis of equal synonymous codon usage; 

• an SDU value of 0 indicates that the dinucleotide of interest is completely 

absent in the given frame position across the sequence; 

• an SDU value greater than 1 indicates that the dinucleotide of interest is over-

represented in the given frame position, compared to the representation expected 

under the null hypothesis; 

• an SDU value between 0 and 1 indicates that the dinucleotide of interest is 

under-represented in the given frame position, compared to the representation 

expected under the null hypothesis. 

The number of amino acids or amino acid pairs that can be synonymously encoded 

by a certain dinucleotide varies between dinucleotides and frame positions. This 

means that SDU measurements for different positions and dinucleotides can reach 

different maximum values. Under- (SDU < 1) and over-representation (SDU > 1) 

can still be consistently interpreted between positions and dinucleotides, since an 

SDU of 1 always reflects complete agreement with the null hypothesis.  

 

5.3.2 The corrected Synonymous Dinucleotide Usage (SDUc) 

In the first iteration of the SDU metric, the expected codon usage was assumed to 

be equal for all synonymous codons. This assumption facilitates calculations, since 

a precompiled set of ei,j,h values can be used, corresponding to each combination 

of dinucleotide, frame position and amino acid or amino acid pair. However, under 

this assumption, the metric likely misrepresents the true bias in dinucleotide 
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frequencies for sequences that experience biased synonymous codon usage. The 

first extension of SDU aims to account for this problem by varying the null hypothesis 

of expected codon usage. The corrected Synonymous Dinucleotide Usage (SDUc) 

requires an additional step for calculating expected codon frequencies based on the 

single nucleotide composition of the sequence of interest. First, nucleotide 

frequencies are calculated simply as the number of occurrences of each nucleotide 

over the sequence length (Equation 5.2). Then, the expected frequency for three 

consecutive nucleotides will be the product of their individual frequencies (Equation 

5.3). Since only 61 out of the 64 triplet combinations are coding, we also need to 

correct the frequency calculations to exclude the 3 stop codons (UAA, UAG and 

UGA). This can be done by multiplying each codon frequency with the inverse of the 

sum of calculated frequencies, excluding the stop codons (Equation 5.4). After all 

corrected expected codon frequencies have been calculated, they can be used for 

inferring the corrected expected synonymous proportion of a dinucleotide j in frame 

position h for amino acid or amino acid pair i: e’i,j,h. This is shown in Equation 5.5, 

where set a is the set of synonymous codons (or codon pairs) that encode for the 

informative amino acids (k) and contain the dinucleotide of interest in the relevant 

coding position and b is set of all synonymous codons (or codon pairs) that encode 

for the informative amino acids (k) regardless of dinucleotide content. To clarify, the 

expected proportions of bridge position dinucleotides will be the product of the 

expected proportions for each of the two amino acids in the pair. Other than the 

ability to vary the null expectation of synonymous dinucleotide proportions, the 

results of the SDUc (Equation 5.6) can be interpreted in the same way as the SDU.  

 

𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓𝑁) =  
𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑐𝑜𝑢𝑛𝑡

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

(Equation 5.2) 

 

𝑐𝑜𝑑𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓𝐶𝑜𝑑) =  ∏ 𝑓𝑁

3

𝑛=1
 

(Equation 5.3) 
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𝑓′𝐶𝑜𝑑 =  𝑓𝐶𝑜𝑑 ×
1

1 −  (𝑓𝑈𝐴𝐴 + 𝑓𝑈𝐴𝐺 + 𝑓𝑈𝐺𝐴)
 

(Equation 5.4) 

𝑒′𝑖,𝑗,ℎ =  
∑ 𝑓′𝐶𝑜𝑑𝑛

𝑎
𝑛=1

∑ 𝑓′𝐶𝑜𝑑𝑛

𝑏
𝑛=1

 

(Equation 5.5) 

𝑆𝐷𝑈𝑐𝑗,ℎ =  

∑ 𝑛𝑖 ×
𝑜𝑖,𝑗,ℎ

𝑒′𝑖,𝑗,ℎ

𝑘
𝑖=1

𝑁
 

(Equation 5.6) 

 

5.3.3 The corrected Relative Synonymous Dinucleotide Usage 
(RSDUc) 

Contrary to the SDU metric, the SDUc metric now accounts for appropriate 

synonymous codon usage expectations based on each sequence’s single 

nucleotide frequencies. However, similar to SDU, the magnitude of over-

representation cannot be compared between different positions and dinucleotides. 

This is because maximum SDUc values will vary between frame positions and 

dinucleotides due to amino acids being encoded by different numbers of codons. In 

order to make this comparison, the SDUc metric can be extended into the corrected 

Relative Synonymous Dinucleotide Usage (RSDUc). This is simply the calculated 

SDUc value, normalised by the maximum SDUc for this position and dinucleotide 

(Equation 5.7). This extension to the metric does not have a consistent scale for 

comparison to the null hypothesis, and instead allows for comparing relative 

dinucleotide representation on the same scale for all possible dinucleotide, frame 

position and sequence parameters. 

𝑅𝑆𝐷𝑈𝑐𝑗,ℎ =  

∑ 𝑛𝑖 ×
𝑜𝑖,𝑗,ℎ

𝑒′𝑖,𝑗,ℎ

𝑘
𝑖=1

∑ 𝑛𝑖 ×
1

𝑒′𝑖,𝑗,ℎ

𝑘
𝑖=1

 

(Equation 5.7) 
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The results of the RSDUc are as follows: 

• an RSDUc of 1 indicates that only the dinucleotide of interest is being used 

in the sequence, all the other synonymous dinucleotides being absent for the 

given position; 

• an RSDUc of 0, similar to the SDU, indicates that the dinucleotide of interest 

is completely absent in the given frame position. 

With this extension, the magnitude of synonymous dinucleotide representation can 

be directly compared between dinucleotides, frame positions and codon usage 

expectations. 

 

5.3.4 SDUc maxima reflect the genetic code’s complexity 

Since RSDUc values are scaled by the maximum value of the corresponding SDUc 

calculation, it is of interest to explore how maximum SDUc values can vary 

depending on different parameters. In this section I will showcase calculations 

behind the relationship between SDUc maxima and expected single nucleotide 

frequencies for different dinucleotide-position combinations. This will also hopefully 

further highlight the mathematical framework of the SDU.  

For the purposes of this section, I will make a few assumptions to facilitate the 

illustration of the metric. First, we can assume equal occurrence of all informative 

amino acids. Hence, there is no need to weigh the average for the SDU calculation 

(ni = 1 for every i in set k), and the maximum SDU value is defined as shown in 

Equation 5.8, where the proportion of synonymous dinucleotides, oi,j,h, is always 

equal to 1. 

𝑆𝐷𝑈𝑗,ℎ
𝑀𝐴𝑋 =  

∑
1

𝑒𝑖,𝑗,ℎ

𝑘
𝑖=1

𝑁
 

(Equation 5.8) 
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Given the set of expected synonymous dinucleotide proportions under equal 

synonymous codon usage (ei,j,h), the maxima of all SDU values can be calculated. 

Dinucleotide-position combinations corresponding to fewer codons / codon pairs 

tend to have lower maximum SDU values (Figure 5.1), for example position 1 values 

(with the exception of ApGpos1 – since it corresponds to two out of six codons 

encoding for arginine). Maximum SDU values will be directly related to the expected 

single nucleotide frequencies and, intuitively, this relation should be more complex 

as the set of informative amino acids or amino acid pairs (k) increases. Bridge 

position calculations have larger sets of k, since there are more pair combinations 

than single amino acids, and generally have maximum SDU values larger than those 

of frame position 1 and 2 combinations (Figure 5.1).  

 

 

Figure 5.1. SDU maxima. Maximum values of SDU for every informative dinucleotide-position 
combination, assuming equal synonymous codon usage. 

 

The relation between expected single nucleotide frequencies and SDU can be 

explored when calculating the SDUc, where the corrected expected proportion of 

synonymous dinucleotides (e’I,j,h) can vary accordingly. Maximum SDUc will be 

inversely proportional to e’I,j,h (Equation 5.9), hence also to the frequency of 
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nucleotides contained in the dinucleotide of interest. The exact relation, however, 

will depend on which amino acids or amino acid pairs can be synonymously 

encoded by codons containing the relevant dinucleotide. 

  

𝑆𝐷𝑈𝑗,ℎ
𝑀𝐴𝑋  ∝  ∑

1

𝑒′𝑖,𝑗,ℎ

𝑘

𝑖=1

 

(Equation 5.9) 

The second assumption we will make to test the relation between SDUc maxima 

and expected single nucleotide composition is that when the frequency of one 

nucleotide is changed, the frequencies of the other three nucleotides are kept equal 

to one another. Given these assumptions, I calculated e’i,j,h and maximum SDUc 

values for every dinucleotide-position combination, varying the frequency of each 

nucleotide independently (Figure 5.2). The relation between single nucleotide 

frequency and SDUc maxima for different dinucleotides-positions proved to be non-

intuitive, with relation shapes ranging from linear to positive and negative 

exponential and U-shaped trends. These trends essentially reflect the genetic 

code’s complexity and how single nucleotide composition biases affect expectations 

for synonymous dinucleotide proportions at different frame positions. To highlight 

how these relations come to be, I include three examples of explicitly calculating 

maximum SDUc values below. 

 

Example 1 

ApN position 2 SDUc maximum values (N standing for any of the four nucleotides) 

were always unaffected by changing two out of the four nucleotide frequencies (ApA 

and ApG when changing frequencies of C and U, ApC and ApU when changing 

frequencies of A and G, Figure 5.2). This is because all codons containing ApN 

dinucleotides in their second frame position always only have one other 

synonymous codon. For example, ApGpos2: 

𝑆𝐷𝑈𝑐𝐴𝑝𝐺,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

∑
1

𝑒𝑖,𝑗,ℎ

𝑘
𝑖=1

𝑁
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(Equation 5.10.1) 

In this case k will be the set of three amino acids: glutamine (Q), lysine (K) and 

glutamate (E). We can hence expand the sum in the equation: 

𝑆𝐷𝑈𝑐𝐴𝑝𝐺,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

1
𝑒′𝑄,𝐴𝑝𝐺,𝑝𝑜𝑠2

+ 
1

𝑒′𝐾,𝐴𝑝𝐺,𝑝𝑜𝑠2
+  

1
𝑒′𝐸,𝐴𝑝𝐺,𝑝𝑜𝑠2

3
 

(Equation 5.10.2) 

The formula of the e’ factor is defined in Equation 5.5. Using this and inversing the 

fractions in the numerator we get: 

𝑆𝐷𝑈𝑐𝐴𝑝𝐺,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

𝑓′𝐶𝐴𝐴 + 𝑓′𝐶𝐴𝐺

𝑓′𝐶𝐴𝐺
+  

𝑓′𝐴𝐴𝐴 + 𝑓′𝐴𝐴𝐺

𝑓′𝐴𝐴𝐺
+

𝑓′𝐺𝐴𝐴 + 𝑓′𝐺𝐴𝐺

𝑓′𝐺𝐴𝐺

3
 

(Equation 5.10.3) 

Simply looking at Equation 5.10.3 explains why the maximum SDUc value for 

ApGpos2 might be unaffected by the frequency of Us, since no informative amino 

acids are encoded by synonymous codons that contain U. Expected codon 

frequencies are defined as the product of their respective nucleotide frequencies 

(Equation 5.3), hence the codon frequency terms can be simplified to nucleotide 

frequencies, some of which cancel out in the fractions: 

𝑆𝐷𝑈𝑐𝐴𝑝𝐺,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

𝑓′𝐴 + 𝑓′𝐺

𝑓′𝐺
+  

𝑓′𝐴 + 𝑓′𝐺

𝑓′𝐺
+

𝑓′𝐴 + 𝑓′𝐺

𝑓′𝐺

3
 

(Equation 5.10.4) 

Assuming equal frequencies of non-varying nucleotides for the purposes of this test 

means that f’A is equal to f’G when varying the frequencies of C and U. In that case: 

𝑆𝐷𝑈𝑐𝐴𝑝𝐺,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

2 +  2 + 2

3
= 2 

(Equation 5.10.5) 
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This explains why the maximum SDUc for this dinucleotide-position combination 

remains constant (value of 2) when varying U and C frequencies, as long as A and 

G frequencies remain equal to one another (Figure 5.2). 

 

Example 2 

The maximum SDUc value for CpUpos1 maintains a linear positive relation with 

nucleotide frequencies of A, G and U when keeping the other frequencies equal 

(Figure 5.2). Since this is a first frame position dinucleotide measure, set of k 

includes a single informative amino acid which is leucine (L): 

𝑆𝐷𝑈𝑐𝐶𝑝𝑈,𝑝𝑜𝑠1
𝑀𝐴𝑋 =  

1
𝑒′𝐿,𝐶𝑝𝑈,𝑝𝑜𝑠1

1
 

(Equation 5.11.1) 

Leucine can be encoded by six synonymous codons, four of which contain CpU at 

frame position 1, hence: 

𝑆𝐷𝑈𝑐𝐶𝑝𝑈,𝑝𝑜𝑠1
𝑀𝐴𝑋 =  

𝑓′𝐶𝑈𝑈 + 𝑓′𝐶𝑈𝐶 + 𝑓′𝐶𝑈𝐴 + 𝑓′𝐶𝑈𝐺 + 𝑓′𝑈𝑈𝐴 + 𝑓′𝑈𝑈𝐺

𝑓′𝐶𝑈𝑈 + 𝑓′𝐶𝑈𝐶 + 𝑓′𝐶𝑈𝐴 + 𝑓′𝐶𝑈𝐺
 

(Equation 5.11.2) 

This can be simplified to:  

𝑆𝐷𝑈𝑐𝐶𝑝𝑈,𝑝𝑜𝑠1
𝑀𝐴𝑋 = 1 +  

𝑓′𝑈𝐴 + 𝑓′𝑈𝐺

𝑓′𝐶𝑈 + 𝑓′𝐶𝐶 + 𝑓′𝐶𝐴 + 𝑓′𝐶𝐺
 

(Equation 5.11.3) 

Now we can vary the frequency of U while maintaining the other three frequencies 

equal to one another, defined as a value fe (f’e in its corrected form): 

𝑆𝐷𝑈𝑐𝐶𝑝𝑈,𝑝𝑜𝑠1
𝑀𝐴𝑋 = 1 +  

𝑓′𝑈 × 2𝑓′𝑒

𝑓′𝑒 × (𝑓′
𝑈

+ 3𝑓′
𝑒

)
= 1 + 

2𝑓′𝑈

𝑓′
𝑈

+ 3𝑓′
𝑒

 

(Equation 5.11.4) 
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Given that the four nucleotide frequencies should sum up to 1, the denominator can 

be modified as follows: 

𝑆𝐷𝑈𝑐𝐶𝑝𝑈,𝑝𝑜𝑠1
𝑀𝐴𝑋 = 1 +  

2

1 − 3𝑓′
𝑒

+ 3𝑓′
𝑒

𝑓′𝑈 = 1 + 2𝑓′𝑈 

(Equation 5.11.5) 

Only when varying the frequency of C while keeping the other three nucleotide 

frequencies equal the relation is exponential instead of linear. This is because fC is 

the only frequency not in the numerator. 

 

Example 3 

Looking at a more complex relation, GpUpos2 has a U shape trend between the 0 

and 1 boundaries when varying each of the four nucleotide frequencies (Figure 5.2). 

The set k for this dinucleotide-position contains four amino acids: cysteine (C), 

arginine (R), serine (S) and glycine (G) (Equation 5.12.1).   

 

𝑆𝐷𝑈𝑐𝐺𝑝𝑈,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

1
𝑒′𝐶,𝐺𝑝𝑈,𝑝𝑜𝑠2

+  
1

𝑒′𝑅,𝐺𝑝𝑈,𝑝𝑜𝑠2
+  

1
𝑒′𝑆,𝐺𝑝𝑈,𝑝𝑜𝑠2

+  
1

𝑒′𝐺,𝐺𝑝𝑈,𝑝𝑜𝑠2

4
 

(Equation 5.12.1) 

For clarity, we can simplify each part of the numerator’s sum separately, in all cases 

assuming that fU is varied while fA = fG = fC are all equal with a value fe (as in Example 

2):  

1

𝑒′𝐶,𝐺𝑝𝑈,𝑝𝑜𝑠2
=  

𝑓′𝑈𝐺𝑈 + 𝑓′𝑈𝐺𝐶

𝑓′𝑈𝐺𝑈
= 1 +

𝑓′𝑒
𝑓′𝑈

 

(Equation 5.12.2) 
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1

𝑒′
𝑅,𝐺𝑝𝑈,𝑝𝑜𝑠2

=
𝑓′

𝐶𝐺𝑈
+ 𝑓′

𝐶𝐺𝐶
+ 𝑓′

𝐶𝐺𝐴
+ 𝑓′

𝐶𝐺𝐺
+ 𝑓′

𝐴𝐺𝐴
+ 𝑓′

𝐴𝐺𝐺

𝑓′
𝐶𝐺𝑈

= 1 +
𝑓′

𝐶𝐶
+ 𝑓′

𝐶𝐴
+ 𝑓′

𝐶𝐺
+ 𝑓′

𝐴𝐴
+ 𝑓′

𝐴𝐺

𝑓′
𝐶𝑈

= 1 + 5
𝑓′

𝑒

𝑓′
𝑈

 

(Equation 5.12.3) 

1

𝑒′𝑆,𝐺𝑝𝑈,𝑝𝑜𝑠2
=

𝑓′
𝑈𝐶𝑈

+ 𝑓′
𝑈𝐶𝐶

+ 𝑓′
𝑈𝐶𝐴

+ 𝑓′
𝑈𝐶𝐺

+ 𝑓′
𝐴𝐺𝑈

+ 𝑓′
𝐴𝐺𝐶

𝑓′
𝐴𝐺𝑈

= 1 +
𝑓′

𝑈𝐶𝑈
+ 𝑓′

𝑈𝐶𝐶
+ 𝑓′

𝑈𝐶𝐴
+ 𝑓′

𝑈𝐶𝐺
+ 𝑓′

𝐴𝐺𝐶

𝑓′
𝐴𝐺𝑈

= 1 +
𝑓′

𝑈
2

+ 3𝑓′
𝑈

𝑓′
𝑒

+ 𝑓′
𝑒

2

𝑓′
𝑈

𝑓′
𝑒

= 4 +
𝑓′

𝑈
2

+ 𝑓′
𝑒

2

𝑓′
𝑈

𝑓′
𝑒

  

(Equation 5.12.4) 

1

𝑒′𝐺,𝐺𝑝𝑈,𝑝𝑜𝑠2
=

𝑓′
𝐺𝐺𝑈

+ 𝑓′
𝐺𝐺𝐶

+ 𝑓′
𝐺𝐺𝐴

+ 𝑓′
𝐺𝐺𝐺

𝑓′
𝐺𝐺𝑈

= 1 + 3
𝑓′𝑒

𝑓′𝑈
 

(Equation 5.12.5) 

If we put the simplified terms back in Equation’s 5.12.1 numerator, then: 

𝑆𝐷𝑈𝑐𝐺𝑝𝑈,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

(1 +
𝑓′

𝑒
𝑓′

𝑈
) + (1 + 5

𝑓′
𝑒

𝑓′
𝑈

) + ( 4 +
𝑓′

𝑈
2

+ 𝑓′
𝑒

2

𝑓′
𝑈

𝑓′
𝑒

) + (1 + 3
𝑓′

𝑒
𝑓′

𝑈
)

4
 

(Equation 5.12.6) 

And simplify as follows: 

𝑆𝐷𝑈𝑐𝐺𝑝𝑈,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

7 +  9
𝑓′

𝑒
𝑓′

𝑈
+

𝑓′
𝑈

2
+ 𝑓′

𝑒
2

𝑓′
𝑈

𝑓′
𝑒

4
 

(Equation 5.12.7) 

Given that the four nucleotide frequencies should sum up to 1, we can replace all f’e 

terms with the corresponding f’U expression: 
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𝑆𝐷𝑈𝑐𝐺𝑝𝑈,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

7 +  9

1 − 𝑓′
𝑈

3
𝑓′

𝑈
+

𝑓′
𝑈

2
+

(1 − 𝑓′
𝑈

)2

9

𝑓′
𝑈

1 − 𝑓′
𝑈

3
4

 

(Equation 5.12.8) 

Which can then be simplified as: 

𝑆𝐷𝑈𝑐𝐺𝑝𝑈,𝑝𝑜𝑠2
𝑀𝐴𝑋 =  

7 +  3
1 − 𝑓′

𝑈
𝑓′

𝑈
+

3𝑓′
𝑈

2
+

1
3

(1 − 2𝑓′
𝑈

+ 𝑓′
𝑈

2
)

𝑓′
𝑈

− 𝑓′
𝑈

2

4

=
7

4
+

3

4
 
1 − 𝑓′

𝑈

𝑓′
𝑈

+
1

12

1 − 2𝑓′
𝑈

+ 10𝑓′
𝑈

2

𝑓′
𝑈

− 𝑓′
𝑈

2  

(Equation 5.12.9) 

This much more complex relation between maximum SDUc values and single 

nucleotide frequency shown in Equation 5.12.9 (for the limits 0<f’U<1) has an 

asymmetrical U shape, just as calculated for individual datapoints in Figure 5.2. 

Overall, the relations between the expected single nucleotide composition of a 

sequence and the maximum SDUc value that can be calculated for that given 

sequence vary largely between dinucleotide-position combinations and overall 

nucleotide composition. As highlighted by the examples above, this variation is 

explained by the degeneracy of the genetic code, since the expected proportion of 

synonymous dinucleotides depends on the synonymous codons that contain these 

dinucleotides in the relevant frame position. To illustrate the metric, equal 

occurrence of informative amino acids and equal frequencies of three nucleotide 

frequencies were assumed. The relations between maximum SDUc and nucleotide 

frequencies presented in Figure 5.2 will change once these assumptions are 

dropped. Generally, SDUc maxima are similar to these expected by equal 

synonymous codon usage (Figure 5.1), and only extreme nucleotide composition 

biases will exponentially inflate the values (Figure 5.2). These extreme compositions 

(nucleotide frequencies <0.1 or >0.9) are unlikely to be relevant to real (or 

biologically relevant) coding sequences.  
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Figure 5.2. Relation between maximum SDUc values and uracil/thymine frequency. Datapoints 
correspond to varying nucleotide frequency values when the frequency of the other three nucleotides 
(which is kept equal between them) is a value with less than five nonzero decimals. Relations for all 
37 possible dinucleotide-position combinations are presented. 
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5.3.5 Quantifying error around the null expectation 

The SDUc metric equals to exactly 1 when all observed synonymous dinucleotide 

proportions (o’) equal to these expected based on the sequence’s single nucleotide 

composition (e’). However, sequences can theoretically abide to the null expectation 

of synonymous dinucleotide usage without all o’ values being exactly equal to their 

corresponding e’ values. This is simply due to shorter sequences having too limited 

information to have o’i,j,h being equal to e’i,j,h for every informative amino acid / amino 

acid pair i. Hence, it is possible to quantify the variability around the SDUc metric’s 

null expectation by calculating the metric for a number of different coding sequences 

that have codons at the same frequencies as the null expectation and all encode 

the same protein sequence of equal length. 

Given an existing coding sequence for which the SDUc metric has been calculated, 

the sequence can be translated to protein and then, for each amino acid in the 

sequence, synonymous codons can be resampled based on their corrected 

expected codon frequencies (f’Cod, Equation 5.4). In this way, the resampled coding 

sequence should abide to the null expectation of synonymous dinucleotide 

representation, given the synonymous codon usage expectation. This can be done 

for any number of iterations to produce a normal distribution representing the 

random error of the metric for the given sequence abiding to the null hypothesis. 

The same process can be done for estimating the null expectation distribution of 

RSDUc values, where, instead of 1, the distribution’s mean is expected to be 1 over 

the maximum SDUc value for the dinucleotide-position combination and the 

sequence it is calculated for.  

Because the SDU framework splits up the sequence information into many 

categories (i.e. independent proportions of the dinucleotide of interest for each 

amino acid or amino acid pair), if the given sequence is short there will be less 

information in each category and subsequently more variability/error in the 

calculated value. Therefore, the null distribution’s error is expected to vary primarily 

depending on the length of the sequence that the metric is calculated for. To test 

this, I randomly simulated 10 amino acid sequences of different lengths sequentially 

increasing by 10% of the longest sequence’s length (from 700 to 7000 amino acids 

long). The codon resampling approach was then implemented on the amino acid 

sequences, assuming equal synonymous codon usage, and SDU was calculated 
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for each random sample. As expected, error inversely correlates with sequence 

length in a logarithmic fashion (Figure 5.3), with shorter coding sequences (2,100 

bp) having a standard deviation of about 0.15, but this sharply drops with increasing 

length (Figure 5.3). By principle, the standard deviation of the distribution should 

approach 0 as the sequence length increases. Based on the simulation experiment 

presented here, the magnitude of error is consistently very low for sequences longer 

than about 17,000 bp (standard deviation < 0.05). 

 

Figure 5.3. Relation of SDU error and sequence length. Comparison of error for the 
SDUCpGbridge of 10 simulated amino acid sequences of different lengths with 1000 random samples 
of nucleotide sequences for each amino acid sequence: (A) Standard deviation of the mean of the 
SDU error distributions; (B) Violin plots of the error distribution for each simulated sequence. 
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5.3.6 The DinuQ python package 

To implement the SDU framework and allow for other researchers to readily use it, 

I have developed a Python3 package called DinuQ (Dinucleotide Quantification 

package). DinuQ is distributed through the python package repository PyPI 

(https://pypi.org/) and all code for local installation can be found at the relevant 

GitHub repository (https://github.com/spyros-lytras/dinuq). All sets of changes are 

monitored with versioned releases (current release is v.1.2.0). The majority of 

modules performed by DinuQ utilise core python functions, although biopython 

(https://biopython.org/) (Cock et al., 2009) is an existing package dependency, used 

to parse sequence files and translate coding sequences to amino acids. 

Primary modules calculate the SDUc and RSDUc metrics given three required 

arguments: i) a set of sequences in FASTA file format, ii) a list of dinucleotides of 

interest, iii) a list of frame positions of interest. Without any additional arguments 

only the SDUc/RSDUc values will be calculated for the dinucleotides and frame 

positions specified. Additionally, the user can provide a number of iterations for the 

coding sequence simulations that can optionally be performed for estimating the 

error around the null expectation distribution for each given sequence (as described 

in Results subsection 5.3.5).  

By default, the single nucleotide composition used for calculating the corrected 

expected proportion of synonymous dinucleotides (e’) will be inferred from each 

sequence for which the metric is being calculated. The SDUc() and RSDUc() 

modules include an alternative optional argument for specifying a custom nucleotide 

composition for the calculations. This could be of use if, for example, the 

dinucleotide frequencies across all genes in a genome are being compared to the 

null expectation defined by the overall nucleotide composition of the entire genome.  

The package further includes modules for calculating the relative dinucleotide 

abundance (RDA) – for all positions or separately for frame positions – and the 

relative synonymous codon usage (RSCU) of coding sequences, so that the user 

can make comparisons between metrics. All modules include checks and detailed 

error messages for ensuring that provided sequences are coding (length is multiple 

of 3) and do not contain internal stop codons. Ambiguous nucleotides are excluded 

from all calculations as being non-informative, however the user is notified that 

https://pypi.org/
https://github.com/spyros-lytras/dinuq
https://biopython.org/
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multiple ambiguous nucleotides might affect the calculations of bridge dinucleotide 

representation. Gaps are removed from sequences before initiating calculations, so 

sequence alignments in FASTA format can also be provided as input files. 

Calculated values from all modules are outputted as python objects (dictionaries) to 

facilitate analysis of results directly in the python environment. Accessory modules 

are also provided for exporting the result objects into delimiter-separated tables files 

(comma separated as default). In the output python dictionary, all values of 

individual simulated sequences for estimating the error around the null expectation 

are provided. When exporting the results, the user can specify the summary statistic 

for the null expectation distribution of values to be summarised as. The summary 

options are: i) minimum and maximum values of the sampled distribution, ii) single 

standard deviation intervals around the distribution’s mean, iii) 95% confidence 

intervals around the distribution’s mean (calculated as 1.96 of the standard 

deviation, assuming a normal distribution).  

An additional accessory module for advanced users with the function name 

eprimeall() can calculate: i) corrected expected dinucleotide proportion for any set 

of dinucleotide-position combinations (Equation 5.5), ii) corrected expected codon 

frequencies (Equation 5.4) and iii) the stop codon correction factor (Equation 5.4), 

all given either a FASTA file with coding sequences, or a set of single nucleotide 

compositions.  

Full documentation and code are available for users online at 

https://github.com/spyros-lytras/dinuq. To facilitate visualisation of results I have 

further developed an interactive online ObservableHQ notebook 

(https://observablehq.com/@spyros-lytras/dinuq-viz) where users can load their 

DinuQ output for SDUc, RSDUc and RDA values in the table format exported by the 

python package to create plots of the results.  

 

  

https://github.com/spyros-lytras/dinuq
https://observablehq.com/@spyros-lytras/dinuq-viz
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5.3.7 Applying the SDUc framework on insect- and vertebrate-
specific flaviviruses 

Previous research (Blitvich and Firth, 2015; Simón et al., 2017) has shown that host 

environment – mammal-specific, insect-specific, or vector-borne – differently affects 

the nucleotide, codon and dinucleotide composition in members of the Flaviviridae 

virus family. For example, the Apoi virus (APOIV) and other flaviviruses with no 

known insect vector show an under-representation of the CpG dinucleotide, while 

the Aedes flavivirus (AEFV) and other insect-specific flaviviruses do not exhibit this 

bias. This group of viruses is a fitting example for testing the SDUc framework, since 

subclades of the Flaviviridae are known to show distinct genome composition 

patterns. The majority of Flaviviridae also possess a single polyprotein-encoding 

coding sequence, facilitating the calculation of SDU framework metrics. RDA, SDUc 

and RSDUc values for the APOIV and the AEFV polyprotein genes are presented 

in Figures 5.4 and 5.5 to illustrate their usage. Looking at the SDUc values for the 

CpG dinucleotide, the clearest difference between the viruses’ dinucleotide 

compositions, the AEFV genome has very little CpG bias. The frame position 1 and 

2 values are only marginally above and below the 95% confidence intervals of the 

null expectation respectively (SDUcCpGpos1 = 1.11, 95% CIs: 0.90-1.10; SDUcCpGpos2 

= 0.84, 95% CIs: 0.88-1.12). Marginal dinucleotide biases in the first two coding 

positions could simply reflect slight codon preference rather than a specific bias in 

dinucleotide signatures. A true dinucleotide bias signature should be consistent 

across all three frame positions, and AEFV’s bridge position composition is exactly 

1.00 (95% CIs: 0.89-1.12), indicative of no CpG bias in this virus (Figure 5.5). On 

the contrary, SDUc values for APOIV, the rodent infecting virus, are well below the 

null expectation confidence intervals consistently for all three frame positions 

(SDUcCpGpos1 = 0.64, 95% CIs: 0.88-1.12; SDUcCpGpos2 = 0.28, 95% CIs: 0.87-1.13; 

SDUcCpGbridge = 0.49, 95% CIs: 0.88-1.13), indicating significant under-

representation of CpG in the polyprotein-encoding sequence (Figure 5.4). These 

observations are in agreement with previous research and the hypothesis of a CpG-

targeting antiviral mechanism present in vertebrates and absent in insects. 



Chapter 5  153 

 

Figure 5.4. Dinucleotide composition of APOIV. RDA (top), SDUc (middle) and RSDUc (bottom) 
values for all informative dinucleotides and frame positions plotted for the APOIV coding sequence. 
Dot points indicate observed values and violin plots indicate SDUc/RSDUc error distributions around 
the null hypothesis (1000 random samples for each value). The grey horizontal line indicates an RDA 
of 1. Position 1 of dinucleotides CpC, CpA, GpC, GpG, GpU, GpA, UpG, UpA, ApC, ApU, ApA are 
excluded because they can only produce one amino acid (non-informative). 

 

  



Chapter 5  154 

In contrast to the SDUc, RDA values cannot be compared to a null distribution, so 

there is no statistical evaluation of over- and under-representation of dinucleotides. 

For example, AEFV has a CpU frame position 2 RDA value of 0.77, which would be 

considered as weak under-representation of this dinucleotide (Figure 5.5). The 

corresponding SDUc value is also below 1 (SDUcCpUpos2 = 0.94) but falls well within 

the null expectation distribution (95% CIs: 0.87-1.13). Thus, by using the SDU 

framework one can assess how confidently a value reflects true bias or the deviation 

from 1 is simply due to chance. Another example of differences between using the 

RDA and SDUc metrics is the evaluation of frame position 2 and bridge for 

dinucleotides GpU and UpA in the AEFV genome. Based on their RDA values, both 

dinucleotides are weakly under-represented in both of their informative frame 

positions (RDAGpUbridge = 0.86, RDAGpUpos2 = 0.78, RDAUpAbridge = 0.86, RDAUpApos2 = 

0.71). Once accounting for the codon table and estimating the error around the 

unbiased representation expectation with SDUc, the assessment changes for the 

two dinucleotides, with both GpU values being closer to 1, meeting the null 

expectation (SDUcGpUpos2 = 0.96, 95% CIs: 0.86-1.14; SDUcGpUbridge = 0.98, 95% 

CIs: 0.83-1.17), and both UpA values falling well below the null distribution’s CIs 

(SDUcUpApos2 = 0.66, 95% CIs: 0.89-1.11; SDUcUpAbridge = 0.74, 95% CIs: 0.86-1.14) 

(Figure 5.5). 
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Figure 5.5. Dinucleotide composition of AEFV. RDA (top), SDUc (middle) and RSDUc (bottom) 
values for all informative dinucleotides and frame positions plotted for the AEFV coding sequence. 
Dot points indicate observed values and violin plots indicate SDUc/RSDUc error distributions around 
the null hypothesis (1000 random samples for each value). The grey horizontal line indicates an RDA 
of 1. Position 1 of dinucleotides CpC, CpA, GpC, GpG, GpU, GpA, UpG, UpA, ApC, ApU, ApA are 
excluded because they can only produce one amino acid (non-informative). 

 

The RSDUc plots (Figures 5.4 and 5.5) showcase how the relative expected number 

of occurrences differs between dinucleotides and frame positions. For example, in 

both genomes UpC representation in frame positions 1 and bridge fall within the null 
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distribution, however, the expected RSDUc value under the null hypothesis is much 

larger for UpC position 1 (Figures 5.4 and 5.5). This simply depends on the expected 

occurrences of codons (or codon pairs for bridge position) that contain this 

dinucleotide at that frame position under the expected synonymous codon usage, 

making up the respective SDUc maximum value, discussed above (Results 

subsection 5.3.4). The RSDUc can be useful when comparing the level of over-

representation between two dinucleotide-position combinations. CpU is over-

represented in all frame positions of the APOIV coding sequence, but the frame 

position 1 SDUc value is smaller, and closer to its null expectation, than the position 

2 value (SDUcCpUpos1 = 1.15, 95% CIs: 0.91-1.08; SDUcCpUpos2 = 1.35, 95% CIs: 

0.86-1.14) (Figure 5.4). However, the RSDUc value for position 1 is substantially 

larger than that of position 2, despite both values still being over their null 

expectation confidence intervals (RSDUcCpUpos1 = 0.71, 95% CIs: 0.56-0.66; 

RSDUcCpUpos2 = 0.27, 95% CIs: 0.17-0.23). This discrepancy depends directly on 

the maximum SDUc values used to normalize the true SDUc values for calculating 

RSDUc. For this particular example, the maximum values are SDUcMAXCpUpos1 = 

1.64 and SDUcMAXCpUpos2 = 4.95, meaning that, given the synonymous codon 

usage bias expected by the coding sequence’s single nucleotide composition, the 

expected proportion of CpUs in frame position 1 (corresponding to leucine encoding 

codons) is much larger than that of CpUs in frame position 2 (corresponding to 

codons encoding for serine, proline, threonine and alanine). This is because 

maximum SDUc values are inversely correlated with proportion of expected 

synonymous dinucleotides (Equation 5.9).  

The SDUc of a given dinucleotide should directly reflect the RSCU of the codons 

that contain it (or in case of the bridge position: the first nucleotide in the third codon 

position and second nucleotide in the first codon position of the downstream amino 

acid). To illustrate this relation between the two metrics, the RSCU values for all 

codons of AEFV and APOIV, calculated using DinuQ, are presented in Table 5.2. 

ApG in position 1 seems to be over-represented in APOIV (SDUcApGpos1 = 1.21, 95% 

CIs: 0.89-1.11), which is not the case in AEFV (SDUApGpos1 = 0.90, 95% CIs: 0.87-

1.13). This is clearly depicted in the RSCU values of all AG-starting codons being 

higher in APOIV (Table 5.2), with AGA in particular being highly over-represented 

in the APOIV genome exclusively (APOIV: RSCU = 2.19; AEFV: RSCU = 1.00). This 

is also one of the few dinucleotide-position combinations where RDA gives the 

opposite answer to SDUc (RDAApGpos1 = 0.74). The discrepancy between the two 
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metrics highlights their different uses, RDA comparing the occurrence of 

dinucleotides to their single nucleotides’ frequencies, while SDUc compares the in-

frame occurrence of dinucleotides to that expected by the sequence’s synonymous 

codon usage bias expectation. 

Table 5.2. Codon usage bias of APOIV and AEFV. RSCU values for each codon, calculated for 
the APOIV and AEFV coding sequences. Highlighted in bold are the values mentioned in the text. 
No values have been calculated for stop codons (UAA, UAG, UGA), since only one coding 
sequence was used for each virus. 

 
APOIV AEFV 

 
APOIV AEFV 

 
APOIV AEFV 

 
APOIV AEFV 

UUU 1.11 1.08 UCU 1.01 0.75 UAU 0.98 1.00 UGU 0.95 1.04 

UUC 0.89 0.92 UCC 0.73 1.13 UAC 1.02 1.00 UGC 1.05 0.96 

UUA 0.38 0.56 UCA 1.57 0.96 UAA STOP STOP UGA STOP STOP 

UUG 1.39 1.23 UCG 0.34 1.06 UAG STOP STOP UGG 1.00 1.00 

CUU 1.08 0.83 CCU 1.19 0.89 CAU 1.25 1.05 CGU 0.48 1.19 

CUC 1.00 1.42 CCC 0.86 1.00 CAC 0.75 0.95 CGC 0.39 1.19 

CUA 0.67 0.79 CCA 1.69 1.32 CAA 0.91 1.23 CGA 0.68 1.05 

CUG 1.48 1.17 CCG 0.25 0.79 CAG 1.09 0.77 CGG 0.68 0.88 

AUU 1.10 1.22 ACU 1.13 0.98 AAU 0.91 0.84 AGU 1.04 0.96 

AUC 1.15 1.05 ACC 1.27 1.07 AAC 1.09 1.16 AGC 1.32 1.13 

AUA 0.75 0.73 ACA 1.29 1.00 AAA 1.01 1.23 AGA 2.19 1.00 

AUG 1.00 1.00 ACG 0.32 0.95 AAG 0.99 0.77 AGG 1.58 0.69 

GUU 1.08 1.29 GCU 1.65 1.07 GAU 0.97 0.67 GGU 0.73 0.74 

GUC 1.00 0.98 GCC 1.03 1.62 GAC 1.03 1.33 GGC 0.73 0.73 

GUA 0.29 0.62 GCA 1.05 0.68 GAA 1.09 1.07 GGA 1.75 1.57 

GUG 1.63 1.11 GCG 0.27 0.63 GAG 0.91 0.93 GGG 0.80 0.96 
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5.3.8 SDUc Shows Consistent CpG Differences between Insect- 
and Vertebrate-Specific Viruses 

Since there is evidence for a vertebrate-specific immune response selecting against 

CpG dinucleotides in viral genomes, I decided to further explore this trend between 

members of the Flaviviridae family specific to and absent in vertebrate hosts using 

the SDU framework. First, the RSDUc of CpG for all frame positions was calculated 

for the two sets of insect-specific and vertebrate-specific (no known insect vector) 

viruses used by Simón et al. (2017). The genes’ overall GC content is intuitively 

expected to positively correlate with CpG representation, so I fitted a generalised 

linear model (GLM) with GC content and host group as explanatory factors for CpG 

RSDUc values (RSDUcCpG ~ GC + Host). Both explanatory variables were 

significant for all frame positions (p < 0.05) with all overall models explaining more 

than 90% of the variance in dinucleotide representation (RSDUcCpGpos1: F2,17 = 

220.6, p < 0.001, R2 = 0.96; RSDUcCpGpos2: F2,17 = 94.9, p <0.001, R2 = 0.91; 

RSDUcCpGbridge: F2,17 = 212.4, p <0.001, R2 = 0.96) (Figure 5.6). Host group had the 

largest effect on frame position 1 CpGs, vertebrate-specific viruses having RSDUc 

values that are overall lower by 0.28 compared to the invertebrate-specific viruses 

(lower by 0.11 for position 2 and 0.08 for bridge position). GC content had the 

smallest effect on frame position 2 CpG representation (slope of 0.61) and largest 

effect on frame position 1 (slope of 3.29) with bridge position dinucleotide 

representation having an intermediate effect (slope of 1.47).  

To examine whether this effect is specific to the Flaviviridae virus family or can be 

generalised for other groups, the GLM analysis was replicated for a set of viruses 

of the Rhabdoviridae family (Figure 5.6). Similar to the Flaviviridae, both GC content 

and host group are significant explanatory factors (p < 0.05) for CpG representation 

at all three frame positions, however a lot less variance is explained by the model 

for the Rhabdoviridae set (RSDUcCpGpos1: F2,65 = 18.7, p < 0.001, R2 = 0.36; 

RSDUcCpGpos2: F2,65 = 51.5, p < 0.001, R2 = 0.60; RSDUcCpGbridge: F2,65 = 101.6, p < 

0.001, R2 = 0.75). GC content and host group explain the largest amount of variance 

(R2 = 0.75) for the bridge position RSDUc values, suggesting that this group of 

viruses might be under stronger codon usage biases (reflected in frame position 1 

and 2 dinucleotide representation) that reduce the relative effect of host and GC 

content on CpG representation for positions 1 and 2. Vertebrate-specific 

Rhabdoviridae genomes had CpG position 1 RSDUc values that were overall lower 
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by 0.10 compared to invertebrate-specific viruses of the same family. Host group 

had the largest effect on this frame position, also the case in the Flaviviridae 

(vertebrate-specific RSDUc values were lower by 0.02 for position 2 and by 0.03 for 

bridge). The relative effect of GC content on CpG representation of different frame 

positions followed the same trend as in the Flaviviridae, with position 2 having the 

smallest effect (slope of 0.50), followed by bridge position (slope of 0.96) and 

position 1 (slope of 1.51). 

 

Figure 5.6. Comparison of RSDUcCpG values for each frame position between invertebrate- 
and vertebrate-specific Flaviviridae (left) and Rhabdoviridae (right). RSDUc values are plotted 
against the overall GC content of the coding sequences. The line of the linear regression and 95% 
confidence intervals of the model are shown along with the datapoints.  
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5.3.9 Adaptive shifts in CpG and UpA biases across the 
Flaviviridae tree 

In addition to simply assessing whether there is dinucleotide bias in each individual 

coding sequence or genome, the metrics described above can also be implemented 

in a comparative phylogenetic framework. The RSDUc metric provides a 

normalised, numerical representation of each dinucleotide’s abundance which can 

be compared between sequences. By using RSDUc values of each sequence in a 

phylogeny as a quantitative trait and then modelling the expected change in any 

quantitative trait based on the length of each branch, one can detect nodes in the 

tree where dinucleotide representation has changed more than expected by chance, 

i.e. an adaptive shift in dinucleotide representation. This type of analysis can be 

conducted using the PhylogeneticEM algorithm (Bastide, Mariadassou and Robin, 

2017; Bastide et al., 2018) with RSDUc being the quantitative trait being tested. 

Following on from the above sections, I chose the Flaviviridae virus family as an 

example for applying this approach due to the frequent host switches across their 

evolution (Bamford et al., 2022) and their long polyprotein genomes that produce 

SDUc and RSDUc values with narrow error intervals. I collated a comprehensive 

set of 350 coding sequences including recently published representatives of the 

entire known Flaviviridae family (Mifsud et al., 2023) and used the conserved RNA-

dependent RNA polymerase (RdRp) sequences for reconstructing the viruses’ 

phylogeny. The PhylogeneticEM analysis can be performed for all possible 

dinucleotides, however I will focus on the results for CpG and UpA, the two 

dinucleotides that have biased representations in most Flaviviridae polyproteins 

(216/350 and 174/350 respectively, Appendix D Figure D.1) and are known to be 

affected by potential host-driven mechanisms (Simmonds et al., 2013; Takata et al., 

2017; Odon et al., 2019). 

Firstly, the RdRp phylogeny presented here is consistent with Mifsud et al.’s (2023) 

reconstruction with Hepaciviruses and Pegiviruses clustering together in a clade 

more distant from the other groups. Long Genome Flaviviruses (LGF) and 

Pestiviruses form sister clades which in turn relate to the clade containing 

Jingmenviruses and Flaviviruses (Figure 5.7). The Tamanavirus group (Bamford et 

al., 2022) does not form a monophyly in this tree, instead tamana-like viruses form 

polyphyletic clades that sit as direct outgroups to the Flaviviruses. For this reason, 

the Tamanavirus group will not be described further in this section. Starting with 
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CpG representation, inferring adaptive shifts on the entire Flaviviridae phylogeny 

reveals an adaptive increase in CpG at the base of all Pegiviruses, consistent across 

all three informative frame positions (Figure 5.7). To further inspect shifts that may 

be missed when testing across the whole family, I also performed the same analysis 

for subclades in the tree. The shift at the base of the Pegiviruses is robustly inferred 

when only testing the Hepaci-Pegi clade (Figure 5.7). This group of viruses has been 

sampled from both birds and mammals, indicating that this adaptive increase in 

CpGs is unlikely due to a host switch at the base of the Pegiviruses. Instead, it may 

be a result of a virus-specific adaptation unique to this group (whether that relates 

to antagonism of host factors targeting CpGs or the viruses’ replication machinery). 

Another adaptive shift, this time representing a marked decrease in CpGs across all 

frame positions, can be seen in the Pestiviruses. Interestingly, this shift is not at the 

very base of the group, but the CpG decrease took place after this subclade 

diverged from the distant pesti-like viruses sampled in fish and ray hosts (Glass 

knifefish pestivirus, GenBank accession: OX394178; Xiamen fanray pesti-like virus 

GenBank accession: MG599985; Nanhai dogfish shark pesti-like virus, GenBank 

accession: MG599984; Wenzhou pesti-like virus, GenBank accession: MG599982). 

The inner low CpG Pestivirus subclade does not include any fish viruses, suggesting 

that this adaptive shift could be a result of adaptation to non-fish vertebrate hosts. 

Other than mammalian viruses, the low CpG clade includes reptile and amphibian 

viruses (Frog pestivirus, GenBank accession: OX394182; Transcaucasian sand 

viper pestivirus, GenBank accession: OX394184; Cayenne caecilian pestivirus, 

GenBank accession: OX394172). If this shift is in fact driven by changes in host 

environment, this finding would indicate that the immune mechanism responsible 

for reducing CpGs in Pestiviruses evolved in tetrapods after the split from the fish, 

and is shared between amphibians, reptiles and mammals. When only testing the 

Pestivirus clade, the method detects an additional adaptive increase in CpGs unique 

to the outgroup fish Pestivirus clade, although this is likely due to the lack of CpG 

representation context outside this virus group. 
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Figure 5.7. Adaptive shifts in CpG representation across the Flaviviridae virus family. Left: 
Ultrametric RdRp phylogeny of 350 representatives of the Flaviviridae family. Nodes with adaptive 
shifts in the genomic CpG representation are denoted with dots on the tree. CpG RSDUc values for 
all three frame positions are presented on the right of each tip in the tree. Right: Subclades of the 
full phylogeny representing the: i) Flavivirus, ii) Pestivirus and iii) Hepaci-Pegivirus groups. Dots in 
these trees denote CpG adaptive shifts detected by testing each individual subclade. 

 

Looking at CpG representation within the Flaviviruses, no adaptive shifts were 

detected in internal branches when testing the full Flaviviridae phylogeny. Instead, 

two terminal branch shifts were picked up within the Flaviviruses, namely branches 

leading to the Ntaya virus (GenBank accession: NC_018705) and the Menghai 

flavivirus (GenBank accession: NC_034204). Shifts in terminal branches are more 

difficult to interpret while neither of these viruses represent any surprising host 

change. It should also be noted that the CpG changes for these tips are not 

consistent across frame positions, suggesting that the detection of these shifts may 

be due to a change in synonymous codon usage rather than the dinucleotide 

signatures themselves. The height of the Flaviviruses clade is quite shallow in the 
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full Flaviviridae tree which could explain the lack of signal. Only testing the Flavivirus 

clade improves the detection resolution with two distinct adaptive increases in CpG 

representation corresponding to internal branches being picked up (Figure 5.7). The 

first shift is at the base of the classical insect-specific flaviviruses (cISF) and the 

second at the base of the dual insect-specific flaviviruses (dISF). This is an 

interesting result since both these clades represent unique switches from a vector-

borne to an insect-specific lifestyle for these viruses (Blitvich and Firth, 2015). The 

CpG levels of both ISF clades have previously been shown to be higher than these 

of vector-borne flaviviruses (Simón et al., 2017), but recapitulating this finding in the 

current comparative phylogenetic approach validates its usefulness. By detecting at 

which exact node in the tree the CpG shift has taken place we can make further 

predictions about the viruses’ host environment. For example, although the shift 

encapsulates the entire known dISF clade, there are two outer terminal branches in 

the cISF clade that sit outside the detected CpG shift. These represent the 

Hangzhou flavivirus 3, sampled from a non-biting midge species (GenBank 

accession: MZ209680) and the Tabanus rufidens flavivirus, sampled in the 

Japanese horsefly (GenBank accession: LC540441). The two viruses directly 

related to the main cISF clade have substantially lower CpG levels, comparable to 

these of vector-borne flaviviruses. Hence, the analysis presented here suggests that 

these two viruses, despite having no currently known mammalian host, could 

potentially be vector-borne and the original change from vector-borne to insect-

specific took place after the main cISF clade diverged from the Tabanus rufidens 

flavivirus.  

Moving on to shifts in UpA representation, there seems to be less overall signal than 

with CpGs, while the few shifts identified encompass broader virus groups. Testing 

the full phylogeny only detects two shifts in very deep nodes of the tree: i) one at 

the base of all Hepaci-Pegiviruses representing a further reduction in UpA 

representation and ii) one within Pestiviruses, excluding the clade of three shark 

pesti-like viruses, this time representing a consistent increase in relative UpA 

representation (Figure 5.8). The latter shift is consistent with the Pestivirus-specific 

drop in CpGs discussed above, validating that the evolutionary environment of 

Pestiviruses likely changed notably after the split from their fish-infecting closest 

relatives. Similar to the CpG analysis, more signal is detected when testing 

individual groups for shifts. Testing the Flaviviruses first reveals an interesting shift 

unique to the tick-borne flavivirus (TBFV) clade, denoting further decrease in UpA 
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levels (Figure 5.8). This could either be a mutational pressure unique to the viruses’ 

replication mechanisms or an adaptation to their tick hosts. Another adaptive shift, 

towards an increase in UpA, is detected on the Dengue virus (DENV) clade, 

encompassing all four serotypes (Figure 5.8). These viruses are globally circulating 

in the human population with transmission mediated by mosquito vectors (Guzman 

et al., 2010), suggesting that this shift may be specific to human replication. 

However, looking closer at the UpA representation of the DENV clade, it seems that 

most of the signal is driven by an increase only in frame position 2 UpAs, suggesting 

that this could be an adaptation of DENV to human codon usage biases rather than 

a dinucleotide adaptation. The branch directly outside of the DENV clade leads to 

Kedougou virus (KEDV; GenBank accession: NC_012533) which has not 

experienced the UpA shift and does not circulate in humans (Jansen van Vuren et 

al., 2021). 

 

Figure 5.8. Adaptive shifts in UpA representation across the Flaviviridae virus family. Left: 
Ultrametric RdRp phylogeny of 350 representatives of the Flaviviridae family. Nodes with adaptive 
shifts in the genomic UpA representation are denoted with dots on the tree. UpA RSDUc values for 
the two informative frame positions are presented on the right of each tip in the tree.  
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Figure 5.8 (cont). Right: Subclades of the full phylogeny representing the: i) Flavivirus, ii) Pestivirus 
and iii) Hepaci-Pegivirus groups. Dots in these trees denote UpA adaptive shifts detected by testing 
each individual subclade. 

Another UpA increase shift, this time consistent across both frame position 2 and 

bridge counts, is detected at the base of a group of three crustacean flaviviruses 

(Photeros flavivirus, GenBank: OX394156; Sea-firefly flavivirus, GenBank: 

OX394161; Crangon crangon, GenBank: MK473878). However, this subclade sits 

within a wider clade of crustacean-infecting flaviviruses, suggesting that this may 

not be a host-specific adaptation. Little is known about the antiviral mechanisms of 

crustacean hosts, so it is challenging to speculate about the biological importance 

of this UpA increase. The final UpA shift detected within the Flaviviruses leads to 

the terminal branch of the Hangzhou flavivirus 3 (sampled from a non-biting midge 

species, GenBank: MZ209680). Although terminal branch shifts are more difficult to 

interpret, the dinucleotide composition of this particular virus is interesting based on 

both the UpA and CpG results. Hangzhou flavivirus 3 has not experienced the CpG 

increase associated with its sister cISF clade’s switch to insect host specificity, 

despite not having a known non-insect host. The additional skew in UpA biases 

specific to this virus implies that it has evolved in a unique host environment and 

warrants further investigation into the biology of these viruses as well as the ecology 

of their non-biting midge insect host (Silva and Stur, 2019). 

Looking within the Hepaci-Pegivirus group, the adaptive shift at the base of the 

group detected when testing the full tree is followed by a further adaptive reduction 

in UpA specific to the Pegiviruses (Figure 5.8). This group seems to have the lowest 

overall UpA representation across the Flaviviridae which seems to be a result of 

stepwise adaptations across the viruses’ deep evolution. Another clade within the 

Hepaciviruses experiencing a UpA reduction consists of viruses sampled in African 

cichlids. The outgroups of this group that have not experienced the shift have been 

sampled in different fish species, making it difficult to interpret the biological 

relevance of this shift. Similarly, three more shifts detected on terminal branches 

within the Hepaci-Pegivirus clade cannot be interpreted in terms of biological 

function. A single UpA shift is detected within the Pestivirus group, denoting a 

decrease in UpAs at the node leading to the Xiamen fanray pesti-like virus and the 

Nanhai dogfish shark pesti-like virus (Figure 5.8). Again, this shift may be associated 

with the viruses’ unique host environment, although the decrease is primarily seen 

in the frame position 2 representation, indicating this could be a codon usage bias 
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adaptation. Finally, no adaptive shifts were detected in the Jingmenvirus and LGF 

groups for either CpG or UpA representation, when testing the full Flaviviridae 

phylogeny or their individual groups’ trees. Neither of these groups are known to 

infect vertebrates (or chordates), and likely have not experienced switches between 

very distant hosts in their recent evolution. This could explain the lack of adaptive 

signal in the dinucleotide representation of these viral genomes, since the groups 

have not had recent, substantial changes in their host environments.  
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5.4 Discussion 

Compositional biases in virus genomes can reveal intricate clues about virus biology 

and complex interactions with the host environments they replicate in. In this 

chapter, I present a novel framework for assessing biases in the dinucleotide 

representation of coding sequences. Specifically, the SDUc and RSDUc metrics 

provide a numerical depiction of whether a dinucleotide is over- or under-

represented in a coding sequence while taking into account the codon usage and 

amino acid abundance of the sequence. Unlike routinely used metrics such as the 

RDA, by using the SDU framework one can statistically assess the extent to which 

a dinucleotide’s abundance diverges from an unbiased expectation. Previously 

developed approaches for quantifying coding sequences’ dinucleotide 

representation based on similar principles as the SDU, e.g., accounting for codon 

usage and amino acid presence  (Greenbaum et al., 2008, 2014; Gu et al., 2019), 

were implemented on standalone scripts and not readily usable software. The SDU 

metrics can be easily computed using the DinuQ python package which allows for 

accessible parameterisation of the modules (e.g. changing the nucleotide 

composition for the null expectation), as well as providing further modules for 

investigating the genetic composition of any sequence (RSCU, RDA, single 

nucleotide composition). DinuQ also comes with detailed documentation and a web-

based application for visualising results. One of the main caveats of the SDU 

methods is that they can only be calculated for coding sequences. This is not 

necessarily a problem when analysing the genomes of RNA viruses where most of 

the genome is encoding for proteins, as in the applications presented in this chapter. 

However, a large proportion of most organisms’ genomes, including most 

eukaryotes, is non-coding. There is plenty of potential for using the SDU framework 

to explore dinucleotide compositions of non-viral genomes, for example comparing 

the host’s gene signatures to those of the infecting virus genomes. Still, these would 

need to be paired with approaches for examining non-coding sequence biases (such 

as the RDA) to investigate biases across the entire genome.  

Applying these methods to the genomes of the Flaviviridae and Rhabdoviridae virus 

families, infecting both vertebrate and invertebrate hosts, shows that the host 

environment explains a significant amount of the variation in CpG levels of these 

genomes (Figure 5.6). In fact, machine learning approaches aiming to predict hosts 

based on features of the virus genomes draw most of their signal from dinucleotide 
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representation, especially CpG abundance (Babayan, Orton and Streicker, 2018; 

Young, Rogers and Robertson, 2020; Brierley and Fowler, 2021; Mollentze, 

Babayan and Streicker, 2021). Although there is an observable effect of the host 

intra-cellular environment viruses replicate in on their genomes’ dinucleotide 

composition, the exact mechanisms causing these effects are still largely not well 

understood. The recent discovery of ZAP and its role in restriction of viruses with 

high CpG levels (Takata et al., 2017) is certainly a major culprit for the pronounced 

distinction between the CpG representation of vertebrate- and invertebrate-infecting 

viruses. Still, it is unlikely that ZAP is the sole mechanism affecting CpG biases in 

viruses, let alone biases in all other dinucleotide combinations. For example, 

Ficarelli et al. (2020) recently showed that increasing the CpG abundance in the 

HIV-1 genome also leads to virus inhibition through disruption of pre-mRNA splicing, 

completely independent of ZAP activity. Unfortunately, simply quantifying 

compositional biases in the virus genomes cannot fully illuminate the mechanisms 

underlying these biases and experimental studies are needed to complement the 

computational approaches. One idea for detecting host factors that interact with 

viruses’ dinucleotide composition is to infect cell lines overexpressing or lacking 

expression of a panel of known RNA-binding host proteins with strains of the same 

virus that have synonymously recoded their dinucleotide compositions. Restriction 

of one strain but not the other in a cell line expressing a specific factor would indicate 

that this host protein could select against virus with the respective dinucleotide 

composition in real infection. Other than selection against or for a certain 

dinucleotide, mutational pressures could also be responsible for the observed 

biases, the APOBEC proteins being a prime example (Bishop et al., 2004; Milewska 

et al., 2018; O’Toole et al., 2023) (Chapter 1 Section 1.2). Identifying mutational 

factors may require long-term passaging of recoded viruses in cells expressing the 

candidate proteins to properly observe the effects in virus composition. Although 

these experiments can be very resource- and time-consuming, computational 

analyses of the virus signatures like the ones presented here could efficiently guide 

the experimental design both in terms of which dinucleotides are under host 

pressures and which candidate factors are absent in different hosts.    

Interpreting the adaptive dinucleotide shifts on the Flaviviridae tree presented in this 

chapter can also provide some insights into the nature of the mechanisms 

underlying dinucleotide biases. Odon et al. (2019) suggested that ZAP could be 

responsible for the under-representation of both CpG and UpA dinucleotides in at 
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least some RNA virus genomes. Based on my analysis, this is very unlikely to be 

the case for the Flaviviridae, since a common mechanism would also imply 

congruence between CpG and UpA adaptive shift events across the viruses’ 

evolutionary history, which is certainly not the case (Figures 5.7 and 5.8). The two 

clades that experience adaptive shifts in both CpG and UpA representation at 

virtually identical points in the tree are the Pestiviruses and the Pegiviruses. If a 

common ZAP-dependent mechanism inhibited replication of high CpG and high UpA 

virus genomes then one would expect ancestral changes in host environments to 

lead to consistent shifts in both dinucleotide’s representation (either increase or 

decrease). However, in both congruent shifts, the two dinucleotides shift in opposite 

directions; Pestiviruses experience an adaptive reduction in CpGs but an adaptive 

increase in UpAs, while the inverse is observed for the Pegiviruses (Figures 5.7 and 

5.8). Another hypothesis for the UpA under-representation in virus and other 

organisms’ genomes is that UpA-rich mRNA might be unstable and more prone to 

degradation by host RNAses (Beutler et al., 1989; Duan and Antezana, 2003). 

However, RNAses preferentially degrade AU-rich motifs including stretches of 

uracils (Shaw and Kamen, 1986) implying that, if RNAse targeting is responsible for 

shifts in UpA representation, these should also be consistent with UpU shifts. This 

is not the case in the Flaviviridae, since performing the same adaptive shift analysis 

with UpU detects no shifts at all, while UpU is one of the least biased dinucleotides 

across the Flaviviridae genomes used here (RSDUc values being outwith the null 

expectation in 37 out of 350 genomes; Appendix D Figure D.1). Hence, the 

mechanism behind the weak UpA under-representation in most viral genomes 

remains enigmatic, although the fact that UpA shifts in the Flaviviridae encompass 

large groups infecting diverse hosts may indicate that this signature depends more 

on the virus itself rather than the environment it replicates in (Figure 5.8).  

In this chapter, I only present the adaptive shift results for CpG and UpA, but the 

same analysis can be performed for all dinucleotides. Other than CpG and UpA, the 

UpG and CpA dinucleotides are also significantly biased for the majority of the 

Flaviviridae (205/350 and 199/350 genomes under bias respectively; Appendix D 

Figure D.1). In fact, UpG and CpA are almost always over-represented if biased, 

mirroring the CpG and UpA under-representation. Gu et al. (2019) showed that 

synonymous C-U transitions was the primary cause of these biases during the 

recent evolution of influenza A virus in humans (CpGs changing to UpGs and UpAs 

to CpAs). This pattern has been observed in more studies looking across more virus 
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groups, although the mirroring biases of these dinucleotides are not consistent in all 

virus families (di Giallonardo et al., 2017). The current human-circulating IAV strains 

have only moved to humans from avian hosts up to a century ago or so and the 

gradual suppression of CpGs can seemingly be observed over the time the viruses 

have been adapting to the human host environment (Greenbaum et al., 2008). It is 

important to consider the timing of the host switches that could influence the 

nucleotide composition of viral genomes. If a virus moves to a new environment 

where CpGs are selected against and the most efficient way to remove these host 

recognition motifs is by C to U transition substitutions, then UpG abundance will 

increase. No true selective force is acting on UpG representation, rather the 

potential over-representation of this dinucleotide is a biproduct of reducing CpGs. 

This effect should be observable in the short-term window after the host switch, but 

maintaining the UpG over-representation is not necessary in the long-term and the 

bias could wane given enough time in the same host environment. Hence, the 

presence of mirroring biases that are produced through selection on one 

dinucleotide is expected to depend on how recently the host environment changed. 

Given an example of a virus with well-documented host switch events in their 

evolutionary history this conjecture could be formally tested in the future. 

Many of the dinucleotide adaptive host switches detected here coincide with major 

ancestral host switches (especially for CpGs; Figure 5.7), making it tempting to 

assume a tight link between the two processes. However, great care should be 

taken when interpreting these patterns. The deeper the nodes with detected shifts 

are, the more likely that future sampling of viruses within these clades could change 

the picture. Discovery of related viruses infecting different hosts may lead to re-

evaluating when the host switches took place, while discovery of viruses with 

divergent dinucleotide signatures could yield different results by the adaptive shift 

analysis. Furthermore, host switches may not be the only factor that can lead to an 

adaptive shift in dinucleotide representation. Using the same approach of combining 

the SDUc framework with PhylogeneticEM in MacLean et al. (2021), we showed 

that the clade of viruses most closely related to SARS-CoV-2 experienced an 

adaptive decrease in CpGs after splitting from its sister SARS-CoV-like clade. This 

could be a result of an ancestral host switch, however the vast majority of known 

viruses in both clades infect horseshoe bats, while there are recombinant viruses of 

both CpG backgrounds suggesting that low and high-CpG SARS-related 

coronaviruses can co-infect the same hosts (MacLean et al., 2021). What could 
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explain this pattern is a change in the ancestral virus’s tissue specificity rather than 

host. Expression of host factors can drastically differ between tissues, so a change 

in the tissue where the virus replicates could alter its evolutionary environment – 

and potentially its dinucleotide composition – without any host change. Finally, virus 

dinucleotide biases could theoretically be affected by changes in the virus replication 

machinery itself instead of the environment it replicates in. Most RNA viruses, for 

example, have an inherent mutational bias towards uracil (Kustin and Stern, 2021; 

Rice et al., 2021). Adaptations in the polymerase, proofreading mechanisms or 

mutation-inducing accessory genes may introduce host-independent pressures on 

the dinucleotide composition of the virus genomes. The intricacies of dinucleotide 

biases in virus genomes are far from being fully understood and pressures on 

overlapping signatures such as single nucleotide or codon composition may obstruct 

these genomic patterns. Further characterisation of the actual molecular 

mechanisms underlying the compositional biases can greatly help in interpreting the 

patterns detected through computational analyses like the ones presented in this 

chapter.



Chapter 6  172 

 

 

 

 

Chapter 6. Concluding remarks 

 

 

 

Cartoon model of the SARS-CoV-2 RNA-dependent RNA polymerase. 

PDB protein entry: 6m71, visualised with ChimeraX. 

 

 

 

“Endless forms most beautiful, most wonderful” 

Charles Darwin, On the Origins of Species (1859)  
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The findings presented in this thesis showcase the long-standing and complex 

interplay between viruses and their hosts. Better understanding these molecular 

interactions can translate into lowering the impact of pathogens to global health for 

humans and animals. In this final chapter of the thesis, I will discuss three 

overarching themes relating to the work presented across all previous chapters, and 

touch on future directions of research on virus-host evolution based on the findings.  

The first theme is how viruses can generate novel variants by reshuffling genetic 

diversity through copy-choice recombination or reassortment. In Chapter 2, I present 

evidence of extensive recombination between SARS-related coronaviruses 

circulating in horseshoe bats. The distinct hotspots of recombination around the 

Spike gene and coldspots of recombination within the gene suggest that the 

antigenically important domains of Spike are likely swapped as a whole between 

virus populations conferring antigenic shifts (Figure 2.1). These results point to a 

model where divergent Spike genes can be introduced into a virus population 

through recombination. We could think of a host population with a relatively 

homogeneous sarbecovirus population circulating in it. Given infection of enough 

individuals, we would expect the host population to have some level of immunity 

against the viruses, primarily driven by antibodies recognising the Spike protein of 

the circulating virus population. If a distinct sarbecovirus is introduced in this host 

population by a different individual entering the group (e.g., a bat migrating to a new 

roost), this new virus could recombine with a virus in the existing sarbecovirus 

population creating a novel variant better able to transmit in this host population. 

Consistent with the recombination hotspot analysis (Figure 2.1), a recombinant with 

the existing population’s backbone and the Spike gene of the introduced virus will 

have a selective advantage compared to other recombinant genomes, since it will 

evade the host population’s existing antigenic immunity. The increased circulation 

of the recombinant Spike virus will keep recombining with the co-circulating non-

recombinant viruses, leading to secondary recombination events. The breakpoints 

of these subsequent recombination events will not be identical to the original event 

introducing the new Spike in the existing backbone, resulting in the “overprinting” 

effect described in Chapter 2 (Figure 2.2). This model is supported by analysing 

genomes sampled from various locations and by different research groups, 

providing “snapshots” of how these viruses evolve in their reservoir hosts. 

Longitudinal studies aiming to systematically sequence the genetic diversity of 

sarbecoviruses circulating in bat colonies, paired with monitoring of host movement 



Chapter 6  174 

in and out of these colonies would allow us to confirm this process in action 

(Cappelle et al., 2021; Giles et al., 2021; Chidoti et al., 2022). 

Even though Chapter 2 explicitly focuses on recombination, the results of Chapter 

4 also relate to a form of intergenic recombination, reassortment. Reassortment 

permits efficient swapping of genetic segments in co-infected host cells. IAV is a 

segmented virus that frequently swaps segments, producing novel variants when 

this is between strains. Segment 5, encoding the viral NP is the sole known 

determinant of BTN3A3 evasion, a key requirement for IAV transmission to humans. 

The substitutions that lead to BTN3A3 evasion occur occasionally in the reservoir 

hosts of the virus (but much less frequently in NP site 313, Figure 4.3), however 

reassortment of these BTN3A3 evasive segments – unlocking human infection – 

has been crucial in the evolution of human-transmissible IAV strains. The current 

evidence suggests that the 1918 strain had the BTN3A3 evasive 313Y residue 

before jumping into humans. This same segment 5 lineage – maintaining this 

residue – reassorted into the antigenically distinct 1957 H2N2 pandemic and 1968 

H3N2 pandemic strains, still circulating in the human population (Figure 4.3). This 

suggests that the virus maintained internal segments essential for human infection, 

while swapping the glycoprotein segments and evading the existing antigenic 

immunity – reminiscent of the sarbecovirus Spike recombination described above. 

On the other hand, Figure 4.5 shows how the Y52N NP substitution in the NP 

lineage responsible for all recent avian H7N9 human epidemics happened in an 

H9N2 virus. H9N2 strains have had little to no success in causing onward human-

to-human transmission, despite occasional bird-to-human spillovers. This means 

that other segments encode more factors determining transmissibility and 

infectiousness in humans, and reassortment is the primary mechanism for bringing 

these together to create a human transmissible strain. The current situation with 

high pathogenicity H5 viruses transmitting in birds and mammals highlights the 

importance of reassortment and how mixing with diverse host populations – and 

subsequently virus populations – expands the potential reassortant combinations 

(Xie et al., 2022). Geographic movement, either through roost migration in 

horseshoe bats transmitting sarbecoviruses (Figure 2.4) or intercontinental 

migration of wild birds transmitting IAVs (Figure 4.6) can aid the effectiveness of the 

mechanisms of recombination and reassortment (Breed et al., 2010; Gass et al., 

2023). This bares the question whether host generalism of a virus, i.e. the ability to 

readily infect and transmit in different host species, as well as preference for 
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infecting hosts that can migrate through long distances, correlates with the ability of 

certain virus groups to recombine. These conjectures could be formally tested for 

virus groups where mechanisms of recombination are well understood, sampling 

across hosts is consistent, and metadata are well annotated.  

The second theme is the co-evolutionary dynamics between viruses and host ISG 

evolutionary pressures. There are multiple levels at which viruses interact with their 

host defences, outlined in Chapter 1 (Section 1.2). One of the most important of 

these is innate immunity, comprising primarily of the interferon response. Chapters 

3 and 4 describe the interaction between two virus groups and two ISGs expressed 

by the virus’s vertebrate hosts. First, the prenylated form of OAS1 restricts SARS-

CoV-2  but this isoform is absent in horseshoe bats, the reservoir host of SARS-

related coronaviruses (Wickenhagen et al., 2021), and second, the human BTN3A3 

restricts avian IAV strains preventing transmission to humans without the necessary 

evasive substitutions in the virus genomes (Pinto et al., 2023). Additionally, Chapter 

5 describes adaptive shifts in the CpG dinucleotide representation of Flaviviridae 

genomes, which are likely a result of another ISG, the mammalian ZAP protein 

(Takata et al., 2017). In order for viruses to jump species, they need to traverse a 

complex evolutionary landscape where certain genomic adaptations can bypass 

these host-specific antiviral mechanisms. The way the hosts gain or lose these 

mechanisms, however, may be more stochastic than one would intuitively think with 

a fair amount of turnover of ISGs on different host lineages (Shaw et al., 2017). 

OAS1 in horseshoe bats seems to have lost its antiviral function by chance through 

a random LTR insertion (Figure 3.1). Similarly, BTN3 antiviral function in primates 

seems to have appeared “accidentally”, with no apparent evidence of selection for 

restricting flu-like viruses at the likely time of the function’s appearance (Figure 4.1). 

Hence, at least based on the examples presented in this thesis, and as expected 

from the “blind” nature of evolution, hosts will gain and lose genes with potential ISG 

functions with retention/fixation in a population biased towards genes that are helpful 

for counteracting specific virus groups. The antiviral property can then be selected 

for in the host population if a restricted virus infects the host. Following the stochastic 

loss of potential antiviral activity, a virus could initiate an association with this host 

species or population, readily spreading in the now “vulnerable” population. Most 

ISGs are co-opted host genes so have multiple functions (with the prime example 

of butyrophilins genes; Chapter 4 subsection 4.1.2), exemplifying how small 

changes in the genes’ coding sequences could easily control pleiotropy. Another 
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example of the evolutionary flexibility of these functions is the frequent utilisation of 

isoform diversity for readily evolving novel functions of these host genes. Both 

human OAS1 and ZAP have at least one alternative isoform each (OAS1 p46 and 

ZAP-L) that are post-translationally modified to allow cellular compartmentalisation 

and subsequent targeting of specific viruses (Chapters 3 and 5 subsections 3.1.1 

and 5.1.3). Both coronaviruses and flaviviruses replicate in membrane-associated 

replication complexes, away from cytosolic proteins, while influenza viruses 

replicate in the cell’s nucleus. The compartmentalisation of virus presence within the 

cell – presumably evolved by viruses to evade host immunity – has likely resulted in 

this flexibility of function for ISGs. The stochastic readiness of a host group to restrict 

(or sustain) infection by specific viruses is expected to shape its virome, as well as 

the landscape of potential zoonotic pathogens that can spill into the host group. A 

comprehensive understanding of more of these host species specific antiviral 

mechanisms could ultimately guide predictions of which viruses can spill over into 

humans and inform pandemic preparedness or yield novel intervention strategies.  

The third and final theme is how viruses can switch host species and start circulating 

in a new host, in the context of host-specific ISG defences and vertebrate RNA 

viruses. This theme is of direct relevance to human health, with examples of two 

major viral threats to humans outlined in Chapters 2 and 4: the recent COVID-19 

pandemic, and the multiple IAV pandemics in the past century. There is a myriad of 

factors affecting the ability of a virus to switch to a new host species. Part – if not 

most – of these will relate to the ecological and epidemiological opportunity of the 

viruses to come into contact with a different host population. This side of virus-host 

interactions is essential for our complete understanding of viral infection and 

transmission, however it falls outside the scope of this thesis. Instead, my PhD work 

focused on the molecular barriers against virus infection. For this final theme I would 

like to present a simplified model of virus cross-species transmission, directly 

relating to the work presented in this thesis. There is genomic diversity within virus 

groups circulating in a host reservoir and only some of these virus haplotypes can 

successfully transmit to a new host. The diversity within the virus population is built 

up through mutations and, in the case of viruses like the sarbecoviruses (Chapter 

2) and influenza viruses (Chapter 4), genetic recombination/reassortment. Even if 

there is an interface for transmission between the reservoir host species and a 

different, unrelated host, much of the haplotypes in the virus population will not be 

able to infect the latter host. Two key host-specific barriers to infection that the virus 
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will need to circumvent in order to establish infection in the new host are: gaining 

cell entry and evading intracellular immunity. In the case of the SARS-related 

coronaviruses, described in Chapter 2, the vast majority of bat SARSr-CoVs 

sampled so far cannot bind human ACE2 and infect human cells (Starr et al., 2022). 

Only the, relatively under-sampled, viruses with SARS-CoV-like and SARS-CoV-2-

like Spike genes are expected to be able to bind human ACE2. In fact, many of 

these viruses have diverse genomes to one another outside of the Spike gene, 

again highlighting the importance of recombination in increasing within virus 

population diversity. Hence, at least part of the virus population should be able to 

bind cellular receptors of both the reservoir and the secondary host species for 

cross-species transmission to occur.  

Similarly with immune evasion, genomic adaptations that bypass host-specific 

immune mechanisms will usually need to be present in the virus before it crosses to 

a new host species. This seems to be the case with BTN3A3-evading NP 

substitutions for the 1918 pandemic derived NP lineage (Figure 4.3), the 2009 swine 

pandemic NP (Figure 4.4) and the H7N9 epidemics in Asia (Figure 4.5). Avoiding 

host immunity can also come from the host rather than the virus. In Chapter 3 I show 

how the reconstructed Rhinolophoidea common ancestor OAS1 protein restricts 

SARS-CoV-2 replication in vitro, unlike its extant Rhinolophoidea OAS1 proteins. 

This means that OAS1 anti-coronaviral function was ablated before the expansion 

of the Rhinolophoidea, allowing infection by these viruses and potentially explaining 

why horseshoe bats are the dominant reservoir host for these viruses.  

Based on these examples, virus or host genomic changes are required to “unlock” 

the ability of a virus to switch host species and these changes will be expected to 

take place prior to the host switch. The interaction between virus and host does not 

stop there. Following the jump to a new host, the virus population is expected to be 

under evolutionary pressure for gradual adaptation to its new evolutionary 

environment, particularly as that environment becomes less naïve to the new 

infections. One example of this is the dinucleotide shifts described in Chapter 5. 

Representation of the CpG dinucleotide has experienced multiple detectable 

adaptive shifts across the evolutionary history of the Flaviviridae, correlating with 

ancestral host switches (Figure 5.7). These changes in the virus may represent 

gradual evasion of less detrimental antiviral mechanisms, such as ZAP, or 

adaptation to the new host’s unique codon usage and replication machinery. All in 
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all, virus host switches are governed by a complex interplay between viral genetic 

diversity, unique changes in the hosts’ immune systems and further viral adaptation 

to novel host evolutionary environments.  

In the closing sentence of his book On the Origin of Species (1859), Charles Darwin 

finishes with the phrase “Endless forms most beautiful and most wonderful”, 

referring to the vast diversity of living organisms that evolved from what once was a 

single common ancestor. Even though the words “beautiful” and “wonderful” have a 

contradictory connotation when referring to pathogenic viruses, I think Darwin’s 

phrase is still quite fitting for describing the everchanging, “endless forms” of 

interactions between viruses and their hosts.
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Table A.1. Accessions, metadata and GISAID acknowledgments for all 78 sarbecovirus genomes 
used in this analysis. 

Virus name Host Location Accession GARD 
analysis 

Longquan_140 Rhinolophus_monoceros Zhejiang KF294457 Y 

LYRa11 Rhinolophus_affinis Yunnan KF569996 Y 

Rs3367 Rhinolophus_sinicus Yunnan KC881006 

WIV1 Rhinolophus_sinicus Yunnan KF367457 

279_2005 Rhinolophus_macrotis Hubei DQ648857 

Pangolin-CoV* Manis_javanica Guangdong EPI_ISL_410721 Y 

SARS-CoV-2 Homo_sapiens Hubei MN908947 Y 

RmYN02** Rhinolophus_malayanus Yunnan EPI_ISL_412977 Y 

RaTG13 Rhinolophus_affinis Yunnan MN996532 Y 

CoVZC45 Rhinolophus_pusillus Zhejiang MG772933 

CoVZXC21 Rhinolophus_pusillus Zhejiang MG772934 Y 

P4L Manis_javanica Guangxi MT040333 

P1E Manis_javanica Guangxi MT040334 Y 

P5L Manis_javanica Guangxi MT040335 

P5E Manis_javanica Guangxi MT040336 

P2V Manis_javanica Guangxi MT072864 

BM48-31 Rhinolophus_blasii Bulgaria NC_014470 

BtKY72 Rhinolophus_spp Kenya KY352407 
 

RpShaanxi2011 Rhinolophus_pusillus Shaanxi JX993987 Y 

F46 Rhinolophus_pusillus Yunnan KU973692 Y 

Yunnan2011 Chaerephon_plicata Yunnan JX993988 Y 

Rp3 Rhinolophus_pearsoni Guangxi DQ071615 

Rs672 Rhinolophus_sinicus Guizhou FJ588686 

HSZ-Cc|SC1 Homo_sapiens Guangdong AY394995 

Rs4237 Rhinolophus_sinicus Yunnan KY417147 Y 

YN2013 Rhinolophus_sinicus Yunnan KJ473816 
 

YN2018D Rhinolophus_affinis Yunnan MK211378 

YN2018A Rhinolophus_affinis Yunnan MK211375 

YN2018B Rhinolophus_affinis Yunnan MK211376 

Rs4874 Rhinolophus_sinicus Yunnan KY417150 

WIV16 Rhinolophus_sinicus Yunnan KT444582 

Rs4081 Rhinolophus_sinicus Yunnan KY417143 

RsSHC014 Rhinolophus_sinicus Yunnan KC881005 

Anlong-103 Rhinolophus_sinicus Guizhou KY770858 

Anlong-112 Rhinolophus_sinicus Guizhou KY770859 

Rs4247 Rhinolophus_sinicus Yunnan KY417148 

Rs4231 Rhinolophus_sinicus Yunnan KY417146 

Rs4255 Rhinolophus_sinicus Yunnan KY417149 

Rs7327 Rhinolophus_sinicus Yunnan KY417151 

As6526 Aselliscus_stoliczkanus Yunnan KY417142 

Rs4084 Rhinolophus_sinicus Yunnan KY417144 

Rs9401 Rhinolophus_sinicus Yunnan KY417152 

Rf4092 Rhinolophus_ferrumequinum Yunnan KY417145 Y 

YN2018C Rhinolophus_affinis Yunnan MK211377 
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Table A.1. (continued). 

Virus name Host Location Accession GARD 
analysis 

HKU3-9 Rhinolophus_sinicus Guangdong GQ153544 

HKU3-10 Rhinolophus_sinicus Guangdong GQ153545 

HKU3-13 Rhinolophus_sinicus Guangdong GQ153548 

HKU3-11 Rhinolophus_sinicus Guangdong GQ153546 

HKU3-5 Rhinolophus_sinicus Guangdong GQ153540 

HKU3-7 Rhinolophus_sinicus Guangdong GQ153542 

HKU3-2 Rhinolophus_sinicus Guangdong DQ084199 

HKU3-12 Rhinolophus_sinicus Guangdong GQ153547 

HKU3-4 Rhinolophus_sinicus Guangdong GQ153539 

HKU3-6 Rhinolophus_sinicus Guangdong GQ153541 

HKU3-1 Rhinolophus_sinicus Guangdong DQ022305 Y 

HKU3-3 Rhinolophus_sinicus Guangdong DQ084200 

HKU3-8 Rhinolophus_sinicus Guangdong GQ153543 

YNLF_31C Rhinolophus_ferrumequinum Yunnan KP886808 

HuB2013 Rhinolophus_sinicus Hubei KJ473814 

GX2013 Rhinolophus_sinicus Guangxi KJ473815 

SC2018 Rhinolophus_spp Sichuan MK211374 

HeB2013 Rhinolophus_ferrumequinum Hebei KJ473812 

SX2013 Rhinolophus_ferrumequinum Shanxi KJ473813 

Rf1 Rhinolophus_ferrumequinum Hubei DQ412042 

Jiyuan-84 Rhinolophus_ferrumequinum Henan KY770860 

YNLF_34C Rhinolophus_ferrumequinum Yunnan KP886809 

JTMC15 Rhinolophus_ferrumequinum Jilin KU182964 Y 

Rm1 Rhinolophus_macrotis Hubei DQ412043 

JL2012 Rhinolophus_ferrumequinum Jilin KJ473811 Y 

RshSTT182*** Rhinolophus_shameli Cambodia EPI_ISL_852604 Y 

RshSTT200*** Rhinolophus_shameli Cambodia EPI_ISL_852605 

RacCS203 Rhinolophus_acuminatus Thailand MW251308 Y 

Rc-o319 Rhinolophus_cornutus Japan LC556375 Y 

RsYN04 Rhinolophus_sinicus Yunnan MZ081380 Y 

RmYN08 Rhinolophus_malayanus Yunnan MZ081378 

RmYN05 Rhinolophus_malayanus Yunnan MZ081376 

RpYN06 Rhinolophus_pusillus Yunnan MZ081381 Y 

PrC31 Rhinolophus_spp Yunnan MW703458 Y 

 

*GISAID acknowledgment: Yongyi Shen; Lihua Xiao; Wu Chen. 

**GISAID acknowledgment: Weifeng Shi; Tao Hu; Hong Zhou; Juan Li; Xing Chen; Alice Catherine 

Hughes; Yuhai Bi. 

***GISAID acknowledgment: Vibol Hul; Deborah Delaune; Erik A Karlsson; Ou Tey Putita; 

Alexandre Hassanin; Artem Baidaliuk; Fabiana Gambaro; Vuong Tan Tu; Lucy Keatts; Jonna Mazet; 

Christine Johnson; Philippe Buchy; Philippe Dussart; Tracey Goldstein; Etienne Simon-Loriere; 

Veasna Duong. 
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Table A.2. False and true positivity rates of the hotspot detection methods BDT and RRT based on 
simulated datasets. 

 

Hotspot 
intensity 

BDT true 
positive rate 

BDT false 
positive rate 

RRT true 
positive rate 

RRT false 
positive rate 

None - 0.021 - 0.019 

4x 0.097 0.016 0.104 0.015 

8x 0.29 0.018 0.254 0.017 

16x 0.59 0.014 0.576 0.014 
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Table A.3. Sequence length and start and end nucleotide positions of each RBP region on the 
whole-genome alignment and in relation to the reference SARS-CoV-2 genome. 

RBP_region al_start al_end length SC2_start SC2_end 

1 1 1732 1732 1 1680 

2 1733 3154 1421 1681 3093 

3 3155 3761 606 3094 3649 

4 3762 5193 1431 3650 4973 

5 5194 8431 3237 4974 8208 

6 8432 11671 3239 8209 11445 

7 11672 12854 1182 11446 12622 

8 12855 14633 1778 12623 14401 

9 14634 16186 1552 14402 15954 

10 16187 17155 968 15955 16923 

11 17156 20197 3041 16924 19965 

12 20198 20750 552 19966 20518 

13 20751 21430 679 20519 21198 

14 21431 21643 212 21199 21411 

15 21644 22747 1103 21412 22460 

16 22748 23692 944 22461 23396 

17 23693 24452 759 23397 24144 

18 24453 25151 698 24145 24843 

19 25152 26638 1486 24844 26323 

20 26639 28165 1526 26324 27388 

21 28166 28571 405 27389 27685 

22 28572 30956 2384 27686 29903 
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Figure A.1. Permutation test for assessing potential clustering of the recombination 
breakpoints inferred by GARD. The blue line represents the mean of the number of breakpoints in 
the window (proportional to the density of variable sites). Grey shading shows the 2.5% - 97.5% 
intervals of breakpoints in each window. The number of inferred breakpoints in each window is shown 
in dots, in red if they fall within the permutation intervals (N/A), blue if they represent recombination 
coldspots (in the left tail of the permutation distribution) and orange if they represent recombination 
hotspots (in the right tail of the distribution.  
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Figure A.2. Maximum likelihood phylogeny reconstructed using IQ-TREE (GTR+I+Γ4) of all 78 
sarbecoviruses used throughout the analysis, including the short RdRp fragments of related 
sarbecoviruses reported in (Latinne et al., 2020). The genomic region used for the alignment 
corresponds to the SARS-CoV-2 reference genome’s Wuhan-Hu-1 coordinates 15280 - 16282. 
Nodes with bootstrap support (10,000 replicates) below 80 have been collapsed. The nCoV clade is 
annotated in pink and the non-nCoV clade in blue. SARS-CoV-2 and SARS-CoV are highlighted in 
pink and blue respectively. Viruses from Latinne et al. are highlighted in grey, apart from the 7 
sequences that cluster within the nCoV clade which are highlighted in green. Out of this cluster of 
sequences MN312634.1 has been collected from a confirmed R. affinis bat species.
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Text B.1 Virus infections and titrations 

A549-ACE2-TMPRSS2 (‘AAT’) cells [described before in Wickenhagen et al. (2021) 

and Rihn et al. (2021)] were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 9% fetal calf serum (FCS) and 10 µg/ml gentamicin. 

The SARS-CoV-2 isolate CVR-GLA-1 was used for all SARS-CoV-2 infections 

under appropriate biosafety conditions and has been described previously (Rihn et 

al., 2021). 

Overexpression of genes corresponding to the cDNA of open reading frames for: P. 

alecto OAS1 (NP_001277091.1), R. ferrumequinum OAS1 (XP_032953023.1) and 

the ancestrally reconstructed constructs shown in Figure 2 (online supplementary) 

were synthesised as gene blocks with flanking SfiI sites (IDT DNA) and subcloned 

into the lentiviral vector pLV-EF1a-IRES-Puro-SfiI-TagRFP (Wickenhagen et al. 

2021). Successful expression of the gene products in AAT cells was confirmed by 

Western blot analysis. Briefly, cells were seeded at 106 cells/well in six-well plates 

the day before harvest. Cells were washed once with PBS, harvested in SDS 

sample buffer [12.5% glycerol, 175 mM Tris-HCl (pH 8.5), 2.5% SDS, 70 mM 2-

mercaptoethanol, and 0.5% bromophenol blue] and then heated for 10 min at 70°C 

and sonicated. After protein separation on NuPage 4-12% Bis-Tris polyacrylamide 

gels and transfer onto nitrocellulose membranes, proteins were detected using 

OAS1 (rabbit polyclonal 14955-1-AP, Proteintech) or GAPDH (mouse monoclonal 

60004-1-Ig, Proteintech) antibodies. Goat anti-rabbit IgG (Thermo Fisher Scientific, 

35568) and goat anti-mouse IgG (Thermo Fisher Scientific, SA5-10176) 

fluorescently labelled secondary antibodies were used for detection on a LiCor 

Odyssey scanner. 

Infection assays with SARS-CoV-2 (plaque assay and CPE induced well-clearance 

assays) have been described before (Rihn et al., 2021; Wickenhagen et al., 2021). 

For plaque assays, 12-well plates were seeded with 3x105 cells/well of AAT 

derivative cells overnight. The next day cells were inoculated with 10-fold logarithmic 

dilutions of virus stock and absorbed for 1 hour at 37C. Cells were subsequently 

overlaid with 0.6% Avicel in MEM and incubated for 72 hours. Followed by fixation 

in 8% formaldehyde and stained with a Coomassie blue solution for plaque 

visualization. Well-clearance assays were seeded in 96-well plates at 1.25x104 

cells/well and infected the following day with titrated threefold dilutions. After 72 
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hours cells were fixed in 8% formaldehyde and cell monolayers were stained with 

Coomassie blue. The assay quantifies transmitted light (Celigo, Nexcelom) that 

penetrates stained cell monolayers with CPE cleared wells transmitting more light 

than intact monolayers of protected or uninfected cells. 
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Figure B.1. Amino acid differences between the RhinoCA and RhinoCA-T70 sequence 
reconstructions. (A) Schematic of amino acid differences between RhinoCA and RhinoCA-T70 on 
the secondary sequence structure. Site 34 is highlighted in yellow. Electrostatic potential prediction 
calculated with ChimeraX (Pettersen et al., 2021) on the RhinoCA structural protein model with an 
asparagine residue (B) and a glutamic acid residue (C) on site 34. 
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Table C.1. NCBI accessions of all BTN3 homologues presented in Chapter 4. 

accession gene species taxonomy 

XP_005248890.1 BTN3A1 Homo sapiens Catarrhini 

XP_006715042.1 BTN3A2 Homo sapiens Catarrhini 

NP_008925.1 BTN3A3 Homo sapiens Catarrhini 

ENSCSAT00000005954.1 BTN3A2 Chlorocebus sabaeus Catarrhini 

XP_037861528.1 BTN3A3 Chlorocebus sabaeus Catarrhini 

ENSGGOT00000053672.1 BTN3A1 Gorilla gorilla gorilla Catarrhini 

ENSGGOT00000064133.1 BTN3A2 Gorilla gorilla gorilla Catarrhini 

ENSGGOT00000012801.3 BTN3A3 Gorilla gorilla gorilla Catarrhini 

XP_014991222.2 BTN3A1 Macaca mulatta Catarrhini 

XP_014991234.2 BTN3A2 Macaca mulatta Catarrhini 

XP_001091527.2 BTN3A3 Macaca mulatta Catarrhini 

XP_011821812.1 BTN3A1l Mandrillus 
leucophaeus 

Catarrhini 

XP_011821809.1 BTN3A2 Mandrillus 
leucophaeus 

Catarrhini 

XP_011821814.1 BTN3A3 Mandrillus 
leucophaeus 

Catarrhini 

XP_030673288.1 BTN3A1l Nomascus 
leucogenys 

Catarrhini 

XP_030674240.1 BTN3A2 Nomascus 
leucogenys 

Catarrhini 

ENSNLET00000004096.2 BTN3A3 Nomascus 
leucogenys 

Catarrhini 

ENSPTRT00000032930.4 BTN3A1 Pan troglodytes Catarrhini 

XP_016810535.1 BTN3A2 Pan troglodytes Catarrhini 

ENSPTRT00000032935.4 BTN3A3 Pan troglodytes Catarrhini 

XP_024103851.1 BTN3A1 Pongo abelii Catarrhini 

ENSPPYT00000018987.1 BTN3A3 Pongo abelii Catarrhini 

ENSRROT00000058440.1 BTN3A1 Rhinopithecus 
roxellana 

Catarrhini 

XP_030784330.1 BTN3A2 Rhinopithecus 
roxellana 

Catarrhini 

XP_030784311.1 BTN3A3 Rhinopithecus 
roxellana 

Catarrhini 

XP_017827069.1 BTN3A3 Callithrix jacchus Platyrrhini 

XP_037591290.1 BTN3A1 Cebus imitator Platyrrhini 

XP_037591286.1 BTN3A3 Cebus imitator Platyrrhini 

XP_021567778.1 BTN3A1l Carlito syrichta Tarsiiformes 

XP_021567779.1 BTN3A3 Carlito syrichta Tarsiiformes 

NP_001723.2 BTN1A1 Homo sapiens Catarrhini 

NP_008980.1 BTN2A1 Homo sapiens Catarrhini 

NP_001184166.1 BTN2A2 Homo sapiens Catarrhini 

NP_001291490.1 BTNL2 Homo sapiens Catarrhini 

NP_932079.1 BTNL3 Homo sapiens Catarrhini 

NP_001035552.1 BTNL8 Homo sapiens Catarrhini 

XP_024310148.1 BTNL9 Homo sapiens Catarrhini 

XP_011542317.1 BTNL10 Homo sapiens Catarrhini 

NP_001017922.1 ERMAP Homo sapiens Catarrhini 

NP_001350539.1 MOG Homo sapiens Catarrhini 

NP_001316557.1 CD276 Homo sapiens Catarrhini 
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Table C.1. (continued). 

accession gene species taxonomy 

XP_023480325.1 BTN3A1 Equus caballus Equine 

XP_014589734.1 BTN3A3 Equus caballus Equine 

XP_020940718.1 BTNL10 Sus scrofa Porcine 

XP_021133907.2 BTN1A1l Anas platyrhynchos Anatine 

XP_027326214.1 BTN3A1 Anas platyrhynchos Anatine 

XP_027326300.1 BTN3A3 Anas platyrhynchos Anatine 

XP_027326231.1 BTN3A2 Anas platyrhynchos Anatine 

NP_001029989.1 BTN1A1 Gallus gallus Galline 

XP_015156030.1 BTN2A1 Gallus gallus Galline 

XP_004949822.2 BTN3A2 Gallus gallus Galline 

XP_022282885.1 BTNL10 Canis lupus familiaris Canine 
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Figure D.1. Dinucleotide biases across the Flaviviridae. Stacked bar plot showing the number of 
the 350 Flaviviridae genomes with RSDUc values falling above (over-represented) or below (under-
represented) of the null expectation’s 95% confidence intervals across all informative frame positions 
for all dinucleotides. 
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