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Abstract

The healthcare industry, with its high demand and standards, has long been considered a
crucial area for technology-based innovation. However, the medical field often relies on
experience-based evaluation. Limited resources, overloading capacity, and a lack of acces-
sibility can hinder timely medical care and diagnosis delivery. In light of these challenges,
automated medical screening as a decision-making aid is highly recommended. With the in-
creasing availability of data and the need to explore the complementary effect among modal-
ities, multimodal machine learning has emerged as a potential area of technology. Its impact
has been witnessed across a wide range of domains, prompting the question of how far ma-
chine learning can be leveraged to automate processes in even more complex and high-risk
sectors.

This paper delves into the realm of multimodal machine learning in the field of automated
medical screening and evaluates the potential of this area of study in mental disorder detec-
tion, a highly important area of healthcare. First, we conduct a scoping review targeted at
high-impact papers to highlight the trends and directions of multimodal machine learning in
screening prevalent mental disorders such as depression, stress, and bipolar disorder. The
review provides a comprehensive list of popular datasets and extensively studied modalities.
The review also proposes an end-to-end pipeline for multimodal machine learning applica-
tions, covering essential steps from preprocessing, representation, and fusion, to modelling
and evaluation. While cross-modality interaction has been considered a promising factor to
leverage fusion among multimodalities, the number of existing multimodal fusion methods
employing this mechanism is rather limited. This study investigates multimodal fusion in
more detail through the proposal of Autofusion, an autoencoder-infused fusion technique
that harnesses the cross-modality interaction among different modalities. The technique is
evaluated on DementiaBank’s Pitt corpus to detect Alzheimer’s disease, leveraging the power
of cross-modality interaction. Autofusion achieves a promising performance of 79.89% in
accuracy, 83.85% in recall, 81.72% in precision, and 82.47% in F1. The technique consis-
tently outperforms all unimodal methods by an average of 5.24% across all metrics. Our
method consistently outperforms early fusion and late fusion. Especially against the late
fusion hard-voting technique, our method outperforms by an average of 20% across all met-



rics. Further, empirical results show that the cross-modality interaction term enhances the
model performance by 2-3% across metrics. This research highlights the promising impact
of cross-modality interaction in multimodal machine learning and calls for further research
to unlock its full potential.

Keywords: multimodal machine learning, automated medical screening, mental disorder
detection, Alzheimer’s disease detection
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Chapter 1

Introduction

1.1 Motivation

The past decades have seen tremendous expansion in technology and artificial intelligence in
particular. Almost all spheres of life now include intelligence in a revolutionary way thanks
to machine learning. Machine learning may boost the effectiveness and automation of the
process with each stream of sensory retrieval. Some real-world applications for computer
vision technologies include traffic management [1] and manufacturing defect detection [2].
Applications of natural language processing, another crucial field of machine learning, range
from smart assistants [3] to sentiment analysis [4]. Now that technology has a significant
impact across a variety of domains, we may raise the question of how far machine learning
might be used to automate processes in even more complicated and high-risk sectors.

The medical industry has long been perceived as a high-risk sector requiring the utmost pre-
cision for effective treatment. Most medical cases are handled individually as a case-by-case
evaluation based on the healthcare professional’s experience. However, the experience-based
and dependent-on-people aspect of the healthcare sector leads to capacity overload due to the
scarcity of medical personnel and prolonged diagnosis periods. Certain populations cannot
obtain appropriate and timely medical care in some circumstances due to poor accessibil-
ity and inadequate resources [5]. The lack of explainability and objectivity in screening also
questions the effectiveness and scalability of traditional diagnostic methods [6]. As the world
has observed the impact of technology-based solutions across numerous sectors in the past
decade, researchers are increasingly interested in applying machine learning to healthcare
challenges.

With the rise of technology-driven advancements in society, machine learning-based algo-
rithms have been applied in healthcare as a screening aid or a second opinion for medical
staff. Accumulating different sources of information, machine learning can leverage this in-
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formation, discover patterns, and offer an appropriate screening result. Automated medical
screenings can benefit both patients and healthcare professionals. For patients, the following
advantages exist or are significantly enhanced by healthcare automation:

• Receive a collaborative screening outcome from technological analysis and experts’
opinions; hence, face fewer chances of misdiagnosis [7]

• Obtain an objective outcome with plausible explainability [8]

• Bear potentially shorter wait time for patient sorting and screening [9]

• Experience better privacy, especially for persons with socially stigmatised conditions
or who have trouble communicating due to social anxiety or a fear of medical profes-
sionals and hospitals [10]

• Receive continuous medical attention despite geographical and temporal constraints
(i.e., increased engagement) [11]

Medical professionals gain access to technology’s comprehensive perspective on patients’
medical histories, symptoms, and other monitoring data as a helpful reference for the final
decision-making. Given the disproportionate specialist-to-patient ratio, automation can help
reduce burnout among healthcare workers [12].

Regarding machine learning-based methods for this task, multimodal machine learning is a
promising subset for utilising and harmonising multiple data streams for medical screenings
and decision-making aids. A modality is a data stream, with some of the most common
modalities being media input types such as audio, video, text, and image or tabular types
such as metadata and time series data. In healthcare applications, multimodal machine learn-
ing can incorporate data from various sources, such as medical imaging, electronic health
records, and patient-tracking data, to better comprehend the disease and its progression.
Multimodal fusion, or the process of integrating diverse data sources and exploiting their
complementary effects, is regarded as the most critical factor in the success of multimodal
machine learning in the medical field; among the challenges accompanying this machine
learning scheme.

Applied machine learning has been used to detect a wide range of medical problems ranging
from diabetic retinopathy [13], lung cancer [14], respiratory conditions such as COVID-19
[15], and various mental disorders such as depression [16] and bipolar disorder [17]. Among
these applications of automated medical screenings, the group of mental disorders remains
one of the most prevalent conditions and obtain suitable features for multimodal machine
learning.
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Our conversation will revolve around the crucial topic of mental health, which is a signif-
icant area of concern within the medical field. This is primarily because mental disorders
are highly prevalent, with a reported 10% of the population suffering from common mental
disorders [18]. However, despite their prevalence, mental disorders are often misdiagnosed
or go undetected due to their social stigma, hidden nature, and limited accessibility in certain
countries. For instance, a study on soldiers’ attitudes towards technology-based approaches
to mental health care indicates that one-third of those who were reluctant to engage in face-
to-face counselling were open to trying at least one technology-based approach for mental
health care [10]. These findings suggest that technology-based approaches can be a viable
solution to overcome obstacles to accessing mental health care. Furthermore, mental disor-
ders can lead to and worsen other health problems. For instance, chronic stress is a signif-
icant risk factor for hypertension and cardiovascular disease [19]. Lastly, mental disorders
possess distinctive characteristics, which make them particularly advantageous for machine
learning and multimodal machine learning studies. Studies have shown that individuals with
mental disorders process different modalities in unique ways, highlighting the potential use
of multimodal machine learning to harness this discriminatory information and evaluate the
complementary impact of multimodal data [20].

This thesis intends to validate the application of multimodal machine learning in mental
disorders and design an implementation centred on multimodal fusion for a type of mental
disease detection.

1.2 Thesis Statement

This thesis studies the application of multimodal machine learning in medical screenings,
validates this approach in mental disorder detection, and proposes the Autofusion technique,
a potential autoencoder-integrated fusion that embraces the cross-modality interaction for
multimodal machine learning.

1.3 Thesis Questions

This thesis seeks to answer the following research questions by investigating the background
of multimodal machine learning, automated medical screening, and the influence of multi-
modal fusion implementation:

• RQ1: What are the current methods and fusion techniques to integrate multimodalities
(e.g., video, audio, text) in medical screenings, specifically mental disorder detection?
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• RQ2: Considering the current state of multimodal fusion, early and late fusion tech-
niques are among the most popular. These fusion options, however, lack the con-
sideration of cross-modality interaction among different modalities. How to design
a neural network framework to efficiently fuse multimodal data representations with
cross-modality interactions?

– RQ2a: How effective is this framework compared to single-modality models?

– RQ2b: How effective is this framework compared to existing multimodal fusion
techniques?

– RQ2c: How does the cross-modality interaction impact the overall performance?

1.4 Contributions

This thesis contributes in three distinct ways. The thesis begins by providing the audience
with a background of the problems and potential of multimodal machine learning in the
context of automated medical screening.

Second, we provide a scoping overview of multimodal machine learning applications in a
specific area of healthcare that is mental disorder detection. This review analyses patterns
across articles from high-impact venues. To facilitate the use of multimodal machine learning
in the assessment of mental disorders, this research presents an end-to-end pipeline.

Finally, this thesis proposes a novel fusion mechanism with an emphasis on cross-modality
interaction to further enhance the performance of the classification network. Autofusion
consistently outperforms both existing fusion methods and single-modality models. This
enhancement is an exciting result of the thesis, with the potential to boost the effectiveness
of multimodal machine learning in other settings.

This thesis may serve as a resource for researchers looking to include a multimodal machine
learning model in their work on medical screening in general and mental disorder screening
specifically. Researchers may build their process using the end-to-end framework and use
autofusion as their multimodal fusion module to improve the performance of their model.

The thesis demonstrates to professionals the value of incorporating multimodal machine
learning and automated medical screening into user-friendly applications to address the lim-
itations of existing medical screening techniques. It is time for people with mental illness
to have some relief from the monetary, emotional burdens and the social stigma that come
with getting a proper diagnosis. While this automated approach is still being tested, it has
the potential to become a valuable resource that aids healthcare professionals in making
well-informed decisions quickly and efficiently.
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1.5 Thesis Structure

The remaining three chapters of the thesis outline a progression of learning from theoretical
multimodal machine learning in medical applications to the practical utilisation of multi-
modal fusion techniques to improve performance. The following are the chapters:

• Chapter 2: Background. The chapter provides an overview of automated medical
screening, especially in mental disorder detection, its effects, and an evaluation of
conventional diagnostic techniques. The background also sheds light on the develop-
ment of machine learning, the characteristics of multimodal machine learning, and the
opportunities and challenges associated with this topic.

• Chapter 3: Multimodal Machine Learning in Mental Disorder Detection - A
Scoping Review. The chapter examines influential papers on multimodal machine
learning for detecting three prevalent mental disorders, namely depression, stress, and
bipolar disorders. This chapter also presents an end-to-end multimodal pipeline for
multimodal machine learning implementation.

• Chapter 4: Autofusion - Multimodal Machine Learning in Dementia Detection.
Chapter 4 examines the use of multimodal machine learning in screening Alzheimer’s
disease, the most common cause of dementia cases globally. This chapter proposes
the Autofusion technique that leverages cross-modality interaction and autoencoder
incorporation as a viable alternative to unimodal and existing fusion methods.

• Chapter 5: Discussion. This chapter discusses significant observations and lessons
learned from prior sections. Chapter 5 provides a reflection on the proposed pipelines,
models, and their effectiveness. This chapter addresses the potential and ramifications
of multimodal machine learning in medical screening.

• Chapter 6: Conclusion and Future Direction. This chapter summarises the major
contributions of the thesis, emphasises significant experiment results, and addresses
the stated research questions. Finally, it concludes the thesis by discussing prospective
work opportunities and recommendations.
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Chapter 2

Background

This chapter provides fundamental background on two important subjects that are automated
medical screening and multimodal machine learning. We first discuss the feasibility of au-
tomated medical screening and the medical conditions relevant to the thesis. Subsequently,
the fundamentals of machine learning will be discussed, followed by the requirements, op-
portunities, and obstacles of multimodal machine learning.

2.1 Medical Screening

2.1.1 Automated Medical Screening

Healthcare has long been considered a high-risk industry that requires extreme accuracy for
optimal treatment. The vast majority of medical issues are treated individually based on the
professional’s experience. However, the shortage of medical professionals and requirements
for professional expertise result in capacity overflow and extended diagnosis wait time. In
the field of heavy experience reliance, it raises the question of objectivity and explainability
for fully-human diagnosis.

As technological advancements proliferate, machine learning-based algorithms have been
used in healthcare as a decision-making aid for medical professionals. Machine learning
may exploit information from many sources, detect trends, and provide meaningful explana-
tions. With the contribution of technology, patients can enjoy the following improvements
in healthcare processes:

• Receive a more objective and explainable diagnosis (i.e., lower the likelihood of mis-
diagnosis) with the collaboration between technical analysis and experts’ opinions
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• Experience shorter wait time for diagnosis thanks to the involvement of technology in
the pre-screening process

• Experience better privacy for people with mental or communication barriers

• Enhance engagement despite resource and accessibility limitations

As a result, automated medical screening is urgently necessary. To cater for this need, there
has been a growing body of literature on machine learning-based screening methods for
medical problems ranging from both chronic conditions such as lung cancer [14] to acute
ones such as COVID-19 [15].

Among the areas of the medical domain, we will focus the discussion on a crucial subset:
mental health. There are a few reasons for this selection. Firstly, mental disorders are highly
prevalent conditions. It is estimated that about one in every ten people worldwide suffers
from at least one type of mental disorder [21]. Depression is ranked by WHO as the single
most significant contributor to global disability (7.5% of all years lived with disability in
2015), while anxiety disorders are ranked 6th (3.4%) [22]. Despite their prevalence, mental
disorders are easily misdiagnosed or undetected due to their social stigma, hidden nature,
and limited accessibility in many countries. This point will be discussed further in the next
section. Moreover, mental disorders tend to create and worsen other health problems. For
instance, chronic stress is identified as a significant risk factor for hypertension and cardio-
vascular disease [19]. Last but not least, mental disorders possess traits that are particularly
useful for machine learning and multimodal machine learning studies. Some research re-
vealed the uniqueness of how mental disorder patients process different modalities, encour-
aging the use of multimodal machine learning to employ this discriminant information and
study the complementary impact of multimodal data [20]. A discussion of prevalent mental
disorders and automated screening in their detection will be provided in Chapter 3.

2.1.2 Automated Screening in Mental Disorders

According to WHO, there was a significant 25% spike in anxiety and depression cases glob-
ally in the first year of the Covid-19 pandemic, with the primarily affected groups being
young people and women [23]. Mass quarantine, emotional and financial losses are the main
attributes of this downfall in mental well-being [24]. With an escalated self-harming rate,
this was a wake-up call for the world to acknowledge the importance of mental health.

A worldwide conversation on mental health has just lately gained attention, but COVID-19 is
merely the tip of the iceberg. Mental disorders have been a silent but detrimental part of many
human lives. With mental illness, there is a higher chance of early school abandonment, a
lesser chance of finding full-time employment, and a worse quality of life overall [25].
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Despite the adverse effects of mental disorders, between 76 and 85% of the patients in devel-
oping countries are not being treated [21]. A few reasons contribute to this lack of treatment.
Firstly, the widespread misunderstanding and stigma surrounding the topic of mental ill-
nesses are among the top barriers that prevent help-seeking. While the concept of mental
illnesses has changed over time, the stigma toward their patients remains strong, especially
among low- and middle-income countries (LMICs) [26]. More concerned, stigma could neg-
atively affect care-seeking and treatment engagement. Secondly, since face-to-face exami-
nation remains the primary mode of diagnosis, the accessibility of mental disorder detection
is limited, especially in developing countries. This shows the scarcity, inequity, and inef-
ficiency of resource distribution and availability for mental health in developing countries.
Whilst the primary form of diagnosis remains through psychiatrist evaluation, the substan-
tial lack of mental health personnel in South Africa, for instance, at only 0.08 to 0.89 per
100,000 uninsured population is particularly alarming [27]. In the last few years, when the
peak of COVID-19, a high-impact prominent source of psychological distress, occurred,
many LMICs recognised the need to address the state of their people’s mental health and in-
troduce innovative means such as digital technology solutions to ease social stigma, identify
individuals at risk through social media footprint, and assist front line workers [28].

This thesis focuses on common conditions such as depression, bipolar-, stress disorder, and
Alzheimer’s disease. Table 2.1 summarises the key characteristics of each mental disorder.

(1) Depressive Disorders

Currently, the official definition of depression is still debated among psychiatrists. Within
the framework of this article, we refer to the depressive disorder as a disorder which can
be characterised by sadness, loss of interest or pleasure, feelings of guilt or low self-worth,
disturbed sleep or appetite, feelings of tiredness, and poor concentration [29].

Prevalence According to the World Health Organisation (WHO), depression is a common
illness, affecting an estimated 3.8% of the global population, including 5.0% of adults and
5.7% of adults over the age of 60 [30]. Although depression affects people of all ages, those
who are impoverished and unemployed or experiencing critical life events such as the death
of a loved one, a relationship break-up, physical illness, and substance-related issues are at a
higher risk of becoming depressed.

Symptoms There are three criteria of physical symptoms for major depressive disorders listed
in the DSM-IV, which are sleep disturbance, appetite disturbance, and fatigue or loss of
energy [31]. About 50% of depressed patients report pain, and many types of pain occur
more frequently in people with depression than in those without [32]. A change in thinking is
a crucial aspect of depression. A person suffering from depression will likely have poor self-
perception and feel unlovable and worthless. Pessimism about themselves, the present, and
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Disorder Symptom Assessment scale

Depressive disorder

- Loss of interest or pleasure
- Feelings of guilt or low
self-worth
- Disturbed sleep or appetite
- Feelings of tiredness
- Poor concentration

- Hamilton Depression Rating Scale (HDRS)
- Montgomery and Åsberg Depression
Rating Scale (MADRS)
- Beck Depression Inventory (BDI or BDI-II)
- Patient Health Questionnaire (PHQ-9)

Bipolar disorder

- Fluctuation of energy
- Sudden mood swing
- Excessive impulsive behavior
- Greatly elevated mood
- Impatience
- Decreasing desire for sleep

- Hypomania Checklist 32 (HCL-32)
- Young Mania Rating Scale (YMRS)
- Altman Self-Rating Mania Scale (ASRM)

Stress disorder

- Emotional distress
- Muscular ache and tension
- Over arousal
- Elevated blood pressure

- Perceived Stress Scale (PSS)
- Depression, Anxiety, and Stress Scale (DASS)

Dementia

- Significant memory loss
- Poor judgement
- Loss of memory of recently
learned information
- Shortened attention span
- Hallucinations and delusions

- National Institute of Neurological Disorders and
Stroke - Alzheimer Disease and Related Disorders
(NINCDS – ADRDA) criteria
- Alzheimer’s Disease Assessment Scale (ADAS)

Table 2.1: List of concerned mental disorders

the future is the obvious manifestation of these people. People with the depressive disorder
frequently have difficulties concentrating and making simple decisions. When depression
is mild to severe, some people have suicidal thoughts. Amongst all types of depression
disorders, major depressive disorder is the most prevalent, affecting approximately 15–17%
of the population and showing a high suicide risk rate equivalent to around 15% [33].

Assessment Traditionally, psychiatrists can use a wide variety of depression disorders as-
sessment scales. These scales are divided into three categories: clinician-rated measures,
patient self-report scales, and scales that include both administrations.

Each clinician-rated scale has a unique collection of psychometric qualities, including items,
scales, and dimensionality. The most common is the Hamilton Depression Rating Scale
(HDRS) [34]. It is a multiple-item questionnaire addressing depression indicators to mea-
sure the severity of the condition. The result shall be divided into different categories like no
depression (HDRS 0-7), mild depression (HDRS 8-12), less than major depression (HDRS
13-17), major depression (HDRS 18-29) and more than major depression (30+). Another
scale is the Montgomery and Åsberg Depression Rating Scale (MADRS) [35], which con-
sists of a clinical interview and ten items covering major depressive symptoms. The MADRS
appears to be a uni-dimensional scale and is more oriented towards psychic than somatic as-
pects of depression [36].
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Some measurements method could be completed by the patients themselves, such as the
Beck Depression Inventory (BDI - with the updated version BDI-II) [37], and Patient Health
Questionnaire-9 (PHQ-9) [38]. PHQ-9 is a self-administered Primary Care Evaluation of
Mental Disorders (PRIME-MD) version. This scale contains nine questions about the pa-
tient’s experience within the last two weeks. The questions include the amount of interest
in daily activities, feelings of sadness or depression, sleep, energy levels, food choices, self-
perception, capacity to focus, function rapidity, and suicidal thoughts.

Although there are different scales of diagnosing depressive disorders, each method, when
used independently, does not cover all the depressive items. For example, the HDRS-17
version, the MADRS, and the BDI do not contain symptoms of atypical depression (e.g.,
hypersomnia, weight or hunger gain). The BDI does not include symptoms of motor retar-
dation or anxiety. Motor retardation is not assessed in the MADRS. The discrepancy among
evaluation scales further highlights the lack of objectivity in traditional diagnosis.

In the past decades, using the benefits of technology-based methods, the research community
has been intrigued by automated depression detection for more robust and explainable solu-
tions. Brain signals EEG-based approach is often used with convolutional neural networks
[39]. Another direction is to explore behavioural factors such as audiovisual cues from in-
terview speech and facial expressions [40]. The combination of different data streams has
shown promising results, which paves the way for multimodal machine learning in depres-
sion detection.

The Distress Analysis Interview Corpus of human and computer interviews (DAIC-WOZ)
[41] is one of the most prominent corpora in detecting depression with multiple data streams.
More studies have been released to encourage the collection of modern multimodal datasets
in detection, such as the Wellbeing dataset [42] and the depression dataset extracted from
social media [16]. A more in-depth review of multimodal machine learning in depression
detection will be included in Chapter 3.

(2) Bipolar Disorders

The Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) identifies
three distinct subtypes of the condition, as follows: bipolar disorder is a chronic mental
disorder that involves significant fluctuations in mood state and energy [43]. [44] defines
bipolar disorder as a manic-depressive illness or manic-depressive psychosis, characterised
by sudden swings in mood and a person’s ability to function without a seemingly justifying
cause. The classification is as follows:

• Type I Bipolar Disorder: It is diagnosed when (1) there is a mixed episode combination
of excitatory symptoms such as overconfidence, grandiosity, chattiness, excessive im-
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pulsive behaviour, impatience, decreased desire for sleep, and greatly elevated mood,
or (2) when there is at least one episode of depression followed by at least one sudden
manic episode.

• Type II Bipolar Disorder: It is identified when at least one severe depressive episode
is followed by at least one spontaneous hypomanic episode. This is incredibly chal-
lenging to appropriately diagnose since it is difficult to distinguish this condition from
recurrent unipolar depression in depressed people.

• Cyclothymic Disorder: It is diagnosed with hypomanic and depressed symptoms that
do not match depressive episode criteria.

Prevalence According to WHO, 40 million people experienced bipolar disorder in 2019 [45].
Often diagnosed in the employed population (i.e., young adulthood), bipolar disorder infers
substantial economic loss to society [46]. The life expectancy of bipolar patients decreases
substantially from 8 to 12 years [47], further demonstrating this disorder’s adverse impact.
Bipolar disorder requires both acute management (e.g., mood stabilisers and antipsychotics)
and chronic management, including a combination of pharmacological, psychological, and
lifestyle approaches [48]. This mental condition, therefore, poses a tremendous burden on
individuals’ lives.

Symptoms Bipolar disorder is defined by the alternation of a depressive state and a manic
state when there is a simultaneous presence of depressive and manic symptoms (i.e., one
is neither wholly depressed nor completely in mania) with the predominance of irritabil-
ity, anxiety, and restlessness [44]. DSM-5 mentions excitatory symptoms, including en-
ergy fluctuation, excessive impulsive behaviours, significantly elevated mood, and disturbed
sleep pattern [49]. While effective symptomatology is not the most visible manifestation,
behavioural repercussions are more objective and relevant for diagnostic purposes.

Assessment Like depressive disorder, clinical-based and self-reported assessment scales con-
tribute to the bipolar disorder diagnosis process. Some examples of these scales are the
Young Mania Rating Scale (YMRS), Altman Self-Rating Mania Scale (ASRM), and the
Hypomania Checklist (HCL-32).

YMRS is an 11-item diagnostic scale to assess manic symptoms, which is generally based
on the subject’s 48 hours report of their condition [50]. 4 of 11 questions are scored from 0-
8 (i.e., Irritability, Speech, Content, and Disruptive-Aggressive behaviours, while the other
seven are graded from 0-4. YMRS scores are used in the Turkish Audio-Visual Bipolar
Disorder Corpus as a source for labels [51].

ASRM is a 5-question scale that assesses an individual’s (1) mood, (2) self-confidence, (3)
sleep disturbance, (4) speech, and (5) activity over a week to detect bipolar disorder [52].
While this assessment is practical and quick to determine the existence of bipolar conditions,
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it is challenging to identify which type of bipolar disorder is associated with the case. ASRR
cutoff score at five has shown an optimal combination of sensitivity and specificity of 85.5%
and 87.3%, respectively.

HCL-32 targets identifying hypomanic traits within patients of major depressive disorder
to screen for bipolar disorder conditions [53]. The questionnaire helps discriminate against
individuals with bipolar and depressive disorder. There are 32 items listed in question 3 in
which the individual is asked to describe how they felt when they were in an up-mood state.

Despite their ease of use and popularity, phenomenology-based diagnosis methods such as
assessment scales are controversial for bipolar disorders. Substantial variations between
the DSM-5 and ICD-10 definitions of bipolar disorder imply that certain people will be
labelled with bipolar disorder under one system but not the other. Furthermore, the inability
to confirm a diagnosis of bipolar disorder may be unavoidable until a full-blown episode
of mania or hypomania has occurred, even though many patients will begin their disease
with a bout of depression and may have had another hypomanic episode that might not meet
criteria for the duration of symptoms. Bipolar disorder is misdiagnosed as a depressive
disorder in various cases. As a result, an inherent diagnostic delay could require 8 to 10
years to reach an accurate diagnosis and treatment [54]. To bridge this gap of delay and
ineffectiveness of bipolar condition detection, novel methods are highly demanded to track
the patients’ mental states consistently to avoid unobserved episodes and carefully consider
multiple factors around the patients before reaching a diagnosis.

Technology-based methods, therefore, are researched to add value to the traditional diagnosis
of bipolar disorders. One approach to automated bipolar detection focuses on investigating
the time-based social footprint and behaviours. For instance, [55] reports that automatic
smartphone sensing via Social Rhythm Metric (SRM) is a viable indicator for bipolar indi-
viduals as it tracks the continuity of social behaviours that could reveal the entire series of
the patient’s episodes. EEG-based machine learning methods also suggest promising results
for automated bipolar screening [56]. Regarding diagnosis via behavioural information, the
study of audiovisual cues [17] is receiving growing attention. Automated bipolar detection,
hence, is a potential area of study.

(3) Stress Disorders

A stress response is a natural reaction to threats and changing environments. Stress exists in
two forms which are acute and chronic stress. According to DSM-IV, a person suffers from
acute stress disorder if they have experienced or witnessed a life-threatening or traumatic
event that incurs extreme fear, helplessness, or terror [31]. A profound example of acute
stress disorder is a post-traumatic stress disorder. On the other hand, chronic stress is caused
by long-standing pressures and expectations. There can be a progression of acute stress
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becoming chronic if the stressors are repeated to a certain extent. This thesis covers this topic
as generalised stress-related disorders rather than investigating each condition individually.

Prevalence Stress disorder is among the most prevalent mental disorders worldwide. Ac-
cording to the World Health Organisation, chronic stress can trigger pre-existing health con-
ditions and encourage increased consumption of substances [57]. More alarmingly, it can
worsen other medical conditions, including hypertension, heart disease [19], anxiety and
depressive disorder [58].

Symptoms Stress, whether chronic or acute, has a mental and physical impact on its victims.
According to [59], common symptoms include emotional distress, headache, muscular sore-
ness, and elevated blood pressure. Patients may also develop sleep deprivation and altered
appetite due to stress disorder [57]. Stress symptoms, if they continue, can impose significant
difficulties and diversions on the patient’s everyday functioning.

Assessment Similar to most mental disorders, traditional stress disorder diagnosis mainly
relies on self-reported measures. Examples include the Perceived Stress Scale (PSS) and the
Depression, Anxiety, and Stress Scale (DASS).

PSS 10-item and 14-item scales are developed to assess the stress level of an individual
based on life events within the previous month. It is further reported that the 10-item version
demonstrated superior psychometric traits compared to the 14-item measure. [60].

DASS has two versions the original 42-item and the compressed 21-item. This self-reported
questionnaire is designed to measure the magnitude of three mental disorders with the DASS-
stress subcategory focusing on tension and irritability [61].

In addition to validated scales, technology-based methods employing biomarkers and phys-
iological metrics have also been explored to enhance the objectivity of the diagnosis. Corti-
sol levels, for example, are a prominent sign of stress disorder. Studies suggest that cortisol
sensing at point-of-care is gaining more attention, specifically the salivary cortisol test strips,
thanks to their portability, low cost, and fast analysis time [62]. Wearable technology im-
provements have increased the use of heart electrical activity (ECG) and brain activity (EEG)
in stress detection. [63] reports ECG improves the efficacy of stress detection when com-
bined with emotion identification using facial expressions. These promising applications
point to the potential and viability of automated medical screenings.

(4) Alzheimer’s Disease

Dementia is a general term for clinical memory loss and cognitive deterioration. Alzheimer’s
disease (AD) accounts for the majority of dementia cases. AD is a degenerative cognitive
disease that, when becomes prominent, leaves its patients dependent and requiring around-
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the-clock care [64]. There are three primary stages of AD which are preclinical AD, mild
cognitive impairment (MCI) and Alzheimer’s dementia [65].

Prevalence Currently, there are more than 55 million people who suffer from dementia, over
60% of whom live in low-and middle-income countries [66]. This number is expected to
increase by 10 million cases annually. [67] suggests that AD adversely affects its patients’
spirituality, religiosity, and quality of life. This means that patients with AD require spe-
cialised care and support to maintain their well-being. Caregivers of AD patients are also
impacted by the condition, and it is recommended that they seek counselling and support for
their physical health [68].

Symptoms Individuals with AD often exhibit both behavioural and psychological symptoms
that can vary in severity depending on the progression of the condition. The most notable
symptoms of AD are related to cognitive deficiencies, such as memory loss, poor judgement,
and a short attention span. What sets AD apart from natural ageing is that the cognitive
decline is more severe and interferes with the patient’s daily activities, work, or social inter-
action [69]. Other neuropsychiatric symptoms, including apathy, aggression, and psychosis,
are also commonly observed in AD [70]. Apathy-type symptoms are linked to cognitive
and motivational decline and can present as a loss of interest, unresponsiveness, and passiv-
ity [71]. Physical agitation and verbal aggression symptoms can also manifest in patients
with AD, and the severity of these symptoms is often correlated with the progression of the
disease. Late-stage AD patients may also experience psychosis symptoms, such as halluci-
nations and delusions.

Assessment Early AD assessments focus on clinical criteria for diagnosis. National Institute
of Neurological Disorders and Stroke – Alzheimer Disease and Related Disorders (NINCDS
– ADRDA) criteria is the prevailing diagnostic benchmark in research [72]. The criteria
outline different groups of clinical symptoms for each AD subcategory: (1) Probable AD de-
mentia, (2) Possible AD dementia, and (3) Probable or possible AD dementia with evidence
of the AD pathophysiological process.

A different approach to diagnosing AD involves the use of evaluation scales. One such
scale is the Alzheimer’s Disease Assessment Scale (ADAS), which is comprised of 21 items
categorised into three parts: (1) short neuropsychological tests for patients, (2) clinician’s
rating based on observations, and (3) an interview with the patient’s caregiver [73]. ADAS
focuses on a wide range of symptoms associated with AD, including cognitive issues such
as memory loss and language difficulties, as well as non-cognitive symptoms like agitation
and psychotic patterns.

The complex nature of electronic health records has led to the development of technology-
based solutions that utilise multimodal data to identify the underlying mechanisms of AD
dementia and aid in decision-making. Over the past decade, high-tech clinical support meth-
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ods have been extensively explored and have proven their potential in accurately predicting
and shortening the diagnosis of AD. Various methods have been studied and evaluated for
automated AD screening, including brain activity EEG-focused diagnosis [74], brain scans
MRI-based deep learning networks [75, 76], and multimodal machine learning techniques
[77, 78]. Technology such as machine learning also provides a confidence score for each pro-
jection and can explain the top contributing factors for the diagnosis, making it a valuable
tool.

From the previous discussion of prevalent mental disorders, there is a rise in the development
of mental health monitoring technologies. With the help of sensor technologies and connec-
tivity, data from various sources such as social networks, smartphones, wearable sensors,
and neuroimaging technology can be easily collected. Utilising this vast amount of data can
prove to be highly beneficial in detecting mental disorders. Chapter 3 will revisit the subject
of automated mental disorder diagnosis using multimodal machine learning, a mighty stream
of machine learning.
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2.2 Multimodal Machine Learning

2.2.1 Machine Learning

Machine learning is a branch of artificial intelligence (AI) that studies and implements sys-
tems that can learn and improve from data without being explicitly programmed. The study
of machine learning is believed to have emerged in the 1950s, with one of the first well-
known self-learning applications being Samuel’s game checkers; machine learning brings
great potential for a wide range of applications [79] including:

• Computer vision: Object recognition, object detection

• Speech recognition and generation

• Semantic analysis, natural language processing and information retrieval

• Prediction: Classification, analysis, diagnosis

The world has seen the footprints of machine learning in almost every aspect of life, from
daily activities with autonomous vehicles guided by the latest computer vision technologies
to high-expertise functions such as medical diagnosis. As the years go by, there has been
significant progress in popular machine learning algorithms.

Supervised machine learning. This scheme provides input-output pairs that train the model
to separate the data for classification problems or fit the data for regression ones [80]. Super-
vised machine learning is one of the most classic algorithm types; however, not all real-world
problems have definite labels (e.g., financial fraud).

Unsupervised machine learning. Data without labels is the fundamental feature that dis-
tinguishes unsupervised machine learning from the previous scheme. This algorithm type is
often used for clustering problems where the main objective is to group data points with the
same characteristics for dimension reduction purposes to concentrate the key features.

Semi-supervised machine learning. Being a hybrid of the two aforementioned machine
learning types, labelled and unlabeled data are provided. Since non-labelled data is widely
available, semi-supervised machine learning enhances flexibility and accuracy in fields where
labelled data is scarce.

Reinforcement learning. Establishing itself as a central pillar of machine learning, rein-
forcement learning focuses on an environment-based approach. Reinforcement learning al-
lows the agent and the machine to efficiently interact through rewards and penalties to guide
the algorithm [81].
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As society evolves and data flows through multiple channels, the enormous amount of data
from various streams provides an excellent opportunity for further analysis to support the
machine learning goal. Multimodal machine learning, therefore, was introduced to utilise
the unprecedented stream of diverse inputs.

2.2.2 Multimodal Machine Learning: Opportunities and
Challenges

The world is designed for humans to experience with different senses. Seeing, hearing,
touching, smelling, and tasting contribute to our perception of life. Fascinatingly, while
these senses are often connected to generate a complete understanding of something, even
its fragmented pieces can infer the whole picture. For instance, we know a rose when we
see one, but the smell of a rose can also distinguish it from other flowers; when we hear the
sound “meow”, we know it is a cat without even looking, as well as when we touch its fur or
claws. Different ways of experiencing are forms of modalities. The concept of integrating
multiple facets of a subject transcends human natural senses. This idea has been investigated
and adopted in machine learning, now known as multimodal machine learning.

Multimodal machine learning is a machine learning stream involving multiple data streams
with unique features. While information from a single modality can be minor or discreet,
it can be valuable in a multimodal setting where we could study the complementary effects
of each modality and obtain a robust final decision. Multimodal machine learning aims to
build models to process and combine information from multiple modalities. Each modal-
ity in the multimodal model will handle a different kind of data, such as tabular data (e.g.,
demographic) and multimedia data (e.g., text, audio, and image). Although multimodal ma-
chine learning is not a traditional concept, it has been strongly researched and applied in the
field due to its potential. With multimodal machine learning advancements in autonomous
vehicles [82] and multi-sensory healthcare monitoring [83], this stream of study has shown
its potential.

Multimodal machine learning has the advantage of simultaneously processing data coming
from multiple sources in different formats to combine useful information for making final
predictions. That can shorten the prediction time and increase the robustness of the model.
As this scheme works with multi-structure and multi-source data, it provides opportunities
for studying and incorporating the correlations among modalities, which could highlight an
enriched connection among the data points and reveal meaningful insights.

In its primary nature, multimodal machine learning involves combining different data sources
in varied formats. Due to the heterogeneity of multiple data streams, however, there remain
major challenges for any projects that take on this machine learning camp. [84] identified
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Figure 2.1: Multimodal machine learning core challenges
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five main challenges of multimodal machine learning: representation, fusion, alignment,
translation, and co-learning. Figure 2.1 summarises the core challenges of multimodal ma-
chine learning.

(1) Representation

As data for machine learning problems could come from various sources in various formats,
representation for multimodal learning is a crucial task in enabling the utilisation of ubiq-
uitous multimodal data. Often, visual modality is formatted as pixels, audio modality is
represented as signals and linguistic modality is symbolic with texts and meanings. Rep-
resentation in multimodal machine learning is the first task to transform modalities into an
informative and workable representation to later be combined with other modalities. The
area of unimodal representation has received enormous attention for decades with the rise
of high-impact AI/ML conferences for representation learning such as NIPS 1, ICML 2, and
ICLR 3. To determine what characterises a good representation, [85] identifies 10 traits,
which include smoothness, sparsity, and coherence (i.e., temporal and spatial), among other
qualities.

In terms of modality-specific representations, a great body of literature has been built to
reflect the contemporary movements within this field of study. With the advances in the
computer vision field, most images are represented as the learned output of convolutional
neural networks (CNN) [86]. For audio input, recently, Mel Frequency Cepstral Coefficients
(MFCCs) have been used in many studies to represent audio samples [87]. For the text
domain, apart from the traditional bag-of-words, n-grammes, and count vectorisers, trans-
former feature families such as Bidirectional Encoder Representations from Transformers
(BERTs) are well utilised to represent textual data [88].

The field of multimodal representation, however, is underexplored. [84] attempts to classify
representations for multimodalities into two groups. Figure 2.2 illustrates these types of
multimodal representation.

Joint representations are achieved by applying one or more functions to unimodal repre-
sentations to project them on a shared space. Equation 2.1 explains joint representations in
mathematical terms. The function or collection of functions for joining representations is
flexible; they can range from concatenation to deep neural networks, probabilistic models,
and recurrent neural networks.

xm = f(m1,m2, . . . ,mn) (2.1)

1Neural Information Processing Systems
2International Conference on Machine Learning
3International Conference on Learning Representations
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(a) (b)

constraint

Figure 2.2: Overview of multimodal representation: (a) Joint representation and (b) Coordi-
nated representation

where:

• xm: Multimodal representation

• m1,m1, . . . ,mn: Single representations from n modalities

• f(): Function that uses unimodal representations as inputs to produce a multimodal
representation

One popular example of constructing joint multimodal representations is using neural net-
works. Since neural networks are hypothesised to generate abstract features from inputs [85],
they are commonly employed as an intermediate or final layer of the data representation pro-
cess. Unimodal data are fed through layers of neural networks before being used for the final
objective function (e.g., classification and regression), which indicates a close relationship
between multimodal representation and fusion. Joint representations are suitable for cases
where all modalities must be present for the process as they are projected in a common space.
This type of representation also allows researchers to work with two or more data streams
simultaneously.

Coordinated representations are independent projections of each unimodal on their own
space. Equation 2.2 expressed this concept mathematically in an example of two modalities.

f(m1) ∼ g(m2) (2.2)

where:

• m1,m1, . . . ,mn: Single representations from n modalities

• f() and g(): Projection functions for each modality
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The main difference between coordinated and joint representations is the composition of
the working space. While joint representations combine single representations onto a uni-
fied space, coordinated representations maintain each modality in its own independent but
coordinated space via some constraints [89]. Based on the constraint types, coordinated rep-
resentations can be grouped into cross-modal similarity and cross-modal correlation-based.
Cross-modal similarity methods minimise the distance between similar semantics and max-
imise that between dissimilar semantics or objects. For instance, the goal would be for the
representation of the word “dog” to have closer proximity to an image of a dog compared
to that of a non-animal image. Several widely used constraints for similarity models include
Euclidean distance [90], cross-modal ranking, and the visual-semantic embedding model
(DeViSe) [91]. While cross-modal similarity models focus on the inter-modality similar-
ity distance, cross-modal correlation-based models aim to maximise the correlation among
modalities via learning.

(2) Translation

Translation in a multimodal machine learning context means translating data from one modal-
ity to another or finding the equivalent (i.e., coordinated) form of an entity across modalities.
For example, provided an image of an object or event is provided, a parallel version of this
in the linguistic domain, such as image captioning, could be helpful for various applications.
Although all multimodal machine learning problems require translation among modalities,
multimodal translation is the core idea of image captioning, video description, and speech
synthesis. Generally, multimodal translation is categorised into example-based and genera-
tive models [84]. Figure 2.3 demonstrates these types of multimodal translation.

(a) (b)

Example dictionary

... ...

Translation

retrieval

Example dictionary

... ...

Translation

Model

Figure 2.3: Overview of multimodal translation: (a) Example-based translation, and (b)
Generative translation
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Example-based translation generates its output via a dictionary. While this method is
straightforward to implement and has been the foundation of early multimodal translation
works in visual speech synthesis [92] and image-to-text description [93], it is inherently lim-
ited due to the dictionary size. The example-based translation is often one-sided because
only the unimodal representation from the side of the translation input is required. To im-
prove the performance of this method, some studies promote the concept of coordinated
semantic space, where there are representations of both sides of the translation [94]. The
bi-directional quality of the semantic space allows translation to be more accurate compared
to models using direct retrieval.

Generative translation constructs models that learn to produce the translation without direct
data retrieval. This technique does not require preparation for a dictionary; therefore, it is
less restricted and potentially produces a more flexible output than its counterpart, which
is an example-based method. However, evaluating generative models is challenging due
to the sheer number of acceptable possibilities. Distinctive camps of generative transla-
tion are template-based, continuous, and machine translation-influenced. Template-based

approaches predetermine a set of template structures for the models to fill in the blanks
with corresponding information and return an output in the desired format of the destination
modality. For linguistic-related translation, this technique is also referred to as “grammar-
based” translation since the input and output involve sentence formation. Generative models
have been seen in a variety of translations, such as visual abstraction (i.e., text-to-image
synthesis) [95]. While template-based models provide a formula for the model to adapt to,
the creativity of these models is substantially limited. Continuous translation learns from
existing examples to continue the translation. More commonly, this method is utilised in
temporal translation [96].

(3) Alignment

Multimodal alignment concerns the cross-modal correlation among modalities to align the
content of one modality with another. Specifically, alignment is the task of matching corre-
sponding elements of the same event in all modalities. The demand for alignment problems
emerges from synchronising instruction video captions step-by-step, aligning the movie to
the original script, and retrieving video segments based on text cues. Multimodal alignment
requires models to recognise similarities between modalities while maintaining long-range
dependencies. The likelihood of multiple optimal outputs poses a challenge for data an-
notation and ground truth selection. Based on the two main groups of tasks, multimodal
alignment can be classified into explicit and implicit alignment. Figure 2.4 illustrates the
two alignment types.
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Figure 2.4: Overview of multimodal alignment: (a) Explicit alignment and (b) Implicit align-
ment

Explicit alignment refers to the direct mapping of elements from at least two modalities re-
garding the same instance. Both supervised and unsupervised algorithms could be applied
for explicit alignment. The early days of explicit alignment featured mostly unsupervised

techniques using graphical models and dynamic programming [97]. Under supervised learn-

ing, given the increasing availability of predefined aligned datasets, deep learning methods
are deployed widely to align modalities. For instance, in the previous example, [98] used
aligned movie scenes with their original books. [99] applied a combination of CNN and
long-short-term memory (LSTM) to generate a detailed description (i.e., referring expres-
sion) that applies to a section of the photo.

Implicit alignment serves as the intermediate step for other downstream tasks. This pre-
cursor learns a latent representation of the alignment during initial training steps to improve
performance in image captioning, transcription matching, and speech recognition. [84] sug-
gests that applying implicit alignment before multimodal translation could benefit generative
autoencoder models. The attention mechanism is incorporated into many models as it targets
local areas that are useful for tasks such as visual-textual question answering using images
[100] and videos [101].

In general, while multimodal alignment is facing a lack of specialised datasets due to diffi-
culties in dataset annotation and ground truth selection, this area of study could solve cross-
modality alignment and facilitate other multimodal processes as an intermediate step.
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(4) Fusion

Joining information from two or more modalities to predict an outcome measure has been
one of the original focuses of multimodal machine learning. Fusion is one of the most
studied areas within multimodal machine learning in various applications, including affective
computing [102], and semantic image segmentation [103].

We suggest a few aspects that require thorough consideration to address multimodal fusion,
including the fusion elements, level of fusion, and fusion methods.

• What to fuse? For multimodal fusion to accomplish complementary effects, it often
requires some treatments with single modalities. Due to the heterogeneity of multiple
data streams, investigating the suitable feature sets for each modality and determining
the optimal number of modality-specific features are some of the key issues for the
pre-fusion stage. Representation, therefore, is tightly related to fusion. Also, since
different modalities are captured in different formats and at different rates, multimodal
alignment is often considered to synchronise corresponding elements of the modalities
before single modalities are ready for multimodal fusion [104].

• When to fuse? A critical strategy for multimodal fusion is the level of fusion we
must decide. Conventionally, there are (1) feature-level fusion (i.e., early fusion) that
fuses information prior to model training, (2) decision-level fusion (i.e., late fusion)
that combines the outputs from different modalities, and (3) hybrid fusion, which is a
hybrid of the two methods. Each technique has its own advantages and disadvantages,
depending on the application.

• How to fuse? Given the level of fusion, a variety of techniques can be used at the
fusion stage. The following paragraphs will discuss these techniques in detail.

While there are various ways to form a multimodal discussion, we will follow the categori-
sation by model relation. Two types of multimodal fusion are (1) Model-agnostic fusion (in-
cluding early and late fusion) and (2) Model-based fusion. The following section describes
multimodal fusion techniques.

Model-agnostic approaches do not directly rely on the architecture of a specific machine
learning model. This group of strategies includes early fusion (i.e., feature-level) and late
fusion (i.e., decision-level) because they both concern non-model aspects of fusion. Figure
2.5 illustrates the mechanism of multimodal model-agnostic fusion techniques.

Early fusion. The most frequently adapted model-free fusion is early fusion. Early fusion
methods gained popularity for a few reasons. Firstly, fusion at an initial stage gives an
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Figure 2.5: Overview of multimodal model-based fusion: (a) Early fusion, (b) Late fusion

opportunity for low-level features from modalities to interact and potentially provide cross-
modality correlation. Secondly, since the fusion is performed prior to model training, only
one model is required for fine-tuning. However, modality-specific features need to be rep-
resented in a similar format prior to fusion, which could put a toll on the multimodal repre-
sentation step [104]. In terms of techniques, concatenation and weighted linear network [84]
are frequently-visited techniques in early fusion.

Late fusion. On the contrary, late fusion integrates the outcomes of modality-wise predic-
tions after model training. Late fusion allows for more flexibility and impacts training each
modality separately. Also, it is suggested that decision-level fusion offers scalability regard-
ing the number of modalities involved [84]. There are, however, some disadvantages to late
fusion. Since this approach requires more than one model to be trained, the learning process
of multiple models could be computationally expensive and time-consuming. Another draw-
back of late fusion is the possible missed opportunity for feature-level correlation among
single modalities. Widely used techniques to fuse different output streams include soft- and
hard-voting and learnt models. Specifically, soft voting refers to the weighted sum of pre-
dicted probabilities from single modality models, while hard voting often refers to majority
voting.

Model-based. In terms of the fusion level, this group of methods is model-level. In con-
trast to model-agnostic approaches, model-based fusion incorporates the fusing step into the
architecture of the models, which allows for more involvement during the fusion process.
In the next paragraphs, we discuss popular models used in hybrid fusion, which are classic
methods, graphical models, and neural networks. Figure 2.6 depicts the general mechanism
of multimodal model-based fusion techniques.
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Figure 2.6: Overview of multimodal model-based fusion

Classic methods such as Support Vector Machine (SVM), have been widely used in a vari-
ety of problems, including multimodal affective computing [105], human activity recogni-
tion [106], artwork recognition [107], and medical screenings such as Alzheimer’s detection
[108]. These classic methods are variations of multiple kernel learning (MKL). Benefits of
MKL include flexible kernel choice and ease of implementation thanks to the rise of ad-
vanced libraries.

Graphical models have received more attention for multimodal fusion in recent years. In
the healthcare domain, [109] reports promising results on depression detection using graph
attention fusion. [110] recognises speech emotion via audio and text using a hierarchical
model. Graphical models are suitable for temporal data modelling tasks [84]. Further, the
connection of entities within graph-based fusion offers possibilities for better cross-modality
correlation and interpretability.

Neural networks, both shallow and deep, are deployed in the fusion stage of multimodal
machine learning. The approach has been seen in news detection [111], audio-speech recog-
nition for emotion recognition [112], medical condition diagnosis [113], and surveillance
tracking [114] among other topics. Given its learning ability, the neural network fusion
approach could learn a large amount of data and unveil complex patterns. Building an end-
to-end model is another benefit of selecting neural network-based fusion over other options.
This approach, however, struggles with interpretability and explainability due to its abstract
nodes and layers. Another point to consider when adopting this technique is the multimodal
corpus size since this data-hungry method could pose a challenge in the data collection and
preparation.
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(5) Co-learning

Co-learning is the challenge of knowledge transferring from one modality to another. Data
availability and quality could be issues for multimodal machine learning, which inevitably
leads to cases where the data is missing or noisy. To enhance the performance of multi-
modal models, co-learning is crucial for modalities to complement one another in such lim-
ited circumstances. This issue, however, can only be compensated during the training stage
and is not relevant for the testing phase. Empirical evidence has shown that models with
multimodal co-learning perform better than those without [115]. [116] proposes a holistic
taxonomy on multimodal co-learning that discusses aspects ranging from the presence of
modality, noisy modality, interpretability, and fairness. This section discusses co-learning in
terms of data parallelism - a major slice of the topic. Figure 2.7 demonstrates different types
of multimodal co-learning based on the data parallelism objective.
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Figure 2.7: Overview of multimodal co-learning: (a) Parallel, (b) Non-parallel, and (c) Hy-
brid co-learning

Parallel co-learning are for strongly paired data, such as aligned audio, video, and tran-
scripts. [84] introduces co-training and transfer learning for coordinated data. Co-training
mainly refers to label management to generate labelled data and remove unreliable sam-
ples. For instance, [117] applies co-training to leverage learned information for proactive
human-robot assembly. [118] uses visual modality (i.e., lip sync visual data and expression)
to support audio modality. A second method for paired co-learning is transfer learning. In
this method, the knowledge from a source domain is transferred to a target domain that is
different but related [119]. Transfer learning has been adopted to share information across
modalities for Covid-19 detection [120] and mental condition diagnosis [121]. The core idea
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of transfer learning is for the model to successfully capture the transferable feature to fa-
cilitate learning in the second domain. One risk of this method is negative transfer, where
signals from the source domain negatively affect learning in the target modality.

Non-parallel co-learning. Non-parallel data is weakly paired, often less expensive to col-
lect and prepare than strongly paired data. Non-parallel data could also benefit from transfer
learning. Conceptual grounding and zero-shot learning (ZSL) are unique techniques applied
when it requires co-learning for non-parallel data. Conceptual grounding refers to forming
semantic concepts based on other modalities apart from textual data [122]. This method is
usually achieved with coordinated representation in the multimodal representation section.
Several studies have used this method for non-parallel data [123] and reported good perfor-
mance. ZSL is the task in which the model is required to classify non-observed concepts in
prior training. In multimodal ZSL, the two modalities can support each other when the idea
is seen in either. For instance, [124] introduces a ZSL model that recognises unseen classes
in visual modality through information from unsupervised text corpora.

Hybrid co-learning constructs a shared modality to bridge between the original modalities.
Bridging modalities offer more flexible co-learning where annotated data is limited or un-
available. This approach has been practised in domains such as machine translation [125]
and bridged transliteration systems [126] where a shared language space is available.

Like its umbrella research topic, machine learning, multimodal machine learning has devel-
oped to a level where researchers are testing this concept for more high-risk applications.
Given the myriad patient-related data, multimodal machine learning approaches have been
used for various medical fields, including mental disorders [127] and cognitive impairments
[128]. Despite the increasing popularity of multimodal machine learning techniques in the
medical context, the overview picture of an end-to-end pipeline for multimodal machine
learning approaches is rarely discussed, mainly when integrated datasets are involved. The
following section will discuss the states of automated medical screening and examples of
multimodal machine learning in this application.
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2.3 Autoencoders

The concept of autoencoders was initially introduced in the 1980s as a multilayer network
with a hidden layer [129]. These artificial neural networks use nonlinear transformations
to reconstruct input data. Unlike supervised learning methods, autoencoders are unsuper-
vised and not trained on labels. They use input data as the target output, making them an
effective unsupervised learning method. The primary goal of autoencoders is to encode in-
put into a meaningful latent representation and then decode that representation to accurately
reconstruct the input data. The minimal example of an autoencoder is illustrated in Figure
2.8.

Original
Input

Reconstructed
Output

Encoder Decoder

Latent
Representation

Figure 2.8: Simplified architecture of Autoencoder

2.3.1 Components of Autoencoders

Autoencoders consist of three primary components. The encoder learns the characteristics of
the input data and compresses it into a latent representation using non-linear mapping. This
latent representation, also known as the hidden layer, is the result of the encoder. Autoen-
coders generally come in two types, determined by the size of their latent representation:
overcomplete and undercomplete autoencoders. Overcomplete autoencoders have hidden
layers with more nodes than the input size, and they are used to generate new features from
the input data. In contrast, undercomplete autoencoders have a hidden layer that is typically
smaller than the input size. They are popular in the literature because of their dimensional
reduction property. The decoder rebuilds the input from the latent representation to create a
reconstructed input that closely resembles the original input. Figures 2.10 and 2.9 illustrate
example architectures of overcomplete and undercomplete autoencoders, respectively.

When implementing autoencoders, the decoder is always present in the model. However, in
representation learning, the focus is not on the output of the decoder but rather on its latent
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Figure 2.10: Overcomplete Autoencoder

representation. Typically, both the encoder and decoder are neural networks. Autoencoders
can be trained end-to-end or gradually by adding layers; in the latter case, it makes them
deep autoencoders.

2.3.2 Applications of Autoencoders

Historically, autoencoders were developed for nonlinear dimensionality reduction, e.g., an
extension of principal component analysis (PCA) [130]. As time goes by, autoencoders are
implemented to serve multiple purposes wherein various models of autoencoders emerge.
Further, autoencoders have been employed to pre-train neural networks to provide better
initialisation of parameters, hence, improving the main training process [131]. Starting as
a form of representation learning, the role of autoencoders has expanded over time. This
section discusses some applications of autoencoders.
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(1) Dimensionality Reduction

One common use of autoencoders is to reduce the dimensionality of input data. The goal of
dimensionality reduction is to learn a lower dimension manifold or the intrinsic dimension-

ality space. Dimensionality reduction, in general, can be divided into linear and non-linear
types. For linear techniques, PCA and Linear Discriminant Analysis (LDA) are some promi-
nent methods.

When handling complex data sources, however, non-linear techniques such as autoencoders
may often achieve superior results. Undercomplete autoencoders are often used for this
purpose, where the latent layer is designed to compress the input data into a smaller format
while retaining important features. By limiting the number of nodes in the hidden layer to
be smaller than the input layer, we can achieve this compression effect. [132] reports that
autoencoder-based dimensionality reduction differs from its alternatives. Autoencoders can
even detect repetitive structures in data, which can be useful in various applications.

(2) Denoising Data

Autoencoders have a valuable application in denoising input data. Although standard au-
toencoders also possess some denoising capabilities due to their selective extraction impact,
denoising autoencoders exhibit a more pronounced effect. These autoencoders are a reg-
ularisation option that reconstructs a clean input version [133]. During the operation of a
denoising autoencoder, the input data is partially corrupted by noises to encourage the au-
toencoder to learn important features of the input data.

Researchers have developed a novel technique to handle missing data using a specialized
denoising autoencoder [134]. According to the study, the proposed autoencoder is more suc-
cessful in predicting missing data than other reconstruction methods, such as PCA. Speech
enhancement is another example of the application of denoising autoencoders. A study eval-
uated the use of denoising autoencoders based on noise reduction, speech distortion, and
perceptual evaluation of speech quality (PESQ) and confirmed that increasing the depth of
the autoencoder improves its performance [135]. Besides speech, the deep autoencoder ap-
proach has been used for image enhancement. For instance, [136] tailors a stacked-sparse
denoising autoencoder to enhance images in natural low-light settings and using hardware-
degraded equipment. Figure 2.11 illustrates the structure of a denoising autoencoder.

(3) Multimodal Machine Learning.

In the field of multimodal machine learning, autoencoders are utilised for various purposes,
such as representation, fusion, and co-learning. Due to the limited availability of labelled
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Figure 2.11: Example of a denoising autoencoder

multimodal data, autoencoders are often employed for pre-training representations [84]. Pre-
training representations are considered one of the fundamental applications of autoencoders
in multimodal machine learning.

Furthermore, it has been found that autoencoders are capable of capturing correlations be-
tween different modalities. This discovery has greatly benefited multimodal learning in vari-
ous ways. For instance, some researchers have integrated autoencoders into their networks to
reconstruct all modalities based on one modality. In fact, [137] have gone even further and
used stacked denoising autoencoders to reconstruct both video and audio modalities even
when only audio data is available. This study highlights two key advantages of using au-
toencoders for multimodal data. Firstly, they can identify the correlations between different
modalities. Secondly, they provide a robust model for reconstructing missing data.

In the realm of co-learning with parallel data, transfer learning can be a useful method,
according to a study by [84]. Another promising solution is using multimodal autoencoders
to transfer information between modalities. However, despite their potential, autoencoders
are not yet widely utilised in the field of multimodal machine learning. This area of study
has the potential to bridge cross-modality gaps and improve collaborative learning among
multimodal data.

In short, an autoencoder comprises an encoder and a decoder in which the former learns
characteristics of the input data and compresses it into a latent representation via a non-
linear mapping while the latter reconstructs the input only using that compact code through
another transformation. Autoencoder is a widely-interested research topic and has shown
effectiveness in various applications, such as denoising, multimodal fusion, and co-learning.
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Chapter 3

Multimodal Machine Learning in
Mental Disorder Detection: A
Scoping Review

3.1 Introduction

It is estimated that one in ten people is vulnerable to mental health problems, with depression,
anxiety, and bipolar disorders being the most common [18]. Unfortunately, many cases
of mental illness remain undetected due to social stigma and limited access to resources.
Given the ongoing and high-risk nature of these disorders, it is crucial to develop accessible
methods that can be easily integrated into patients’ daily routines for regular attention and
monitoring.

There has been extensive research on the use of technology in healthcare decision-making,
including the role of artificial intelligence (AI). With the advancement of mobile technolo-
gies, unobtrusive sensors, and the ability to collect data from unconventional sources such
as social media behaviour, phone calls, and wearable sensors, AI is becoming increasingly
useful in detecting symptoms of mental disorders [16]. This has the potential to address
issues of conventional mental disorder diagnostic methods, which are often subjective and
have a high rate of false diagnoses [138]. By using AI-based measures, this process can
become more objective and explainable. Furthermore, integrating mobile applications with
AI mental disorder detection solutions can provide rapid screening to overcome the delayed
diagnosis caused by the shortage of healthcare clinics [139].

Over the past ten years, there has been a rise in the literature pertaining to automated men-
tal disorder detection. Research has unveiled the ways in which patients interact in various
senses and how certain visual factors, like reduced emotional expressivity and fidgety eye
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movements, can be indicative of depression [140]. Additionally, auditory modality features
such as shortened speech and longer pauses have been used successfully to identify those
with depression [141]. The uniqueness of how mental disorder patients process different
modalities sparks interest in information integration to possibly obtain a holistic view of
complementary symptoms and the compounding impact of multimodal data [20]. Fortu-
nately, recent advancements in multi-aspect sensing technologies pave the way for multi-
modal mental disorder recognition that could overcome limitations of the unimodal-based
prediction and enhance the joint analysis of multimodalities.

In this study, we take a systematic approach to examine the potential of multimodal machine
learning (MMML) for detecting mental disorders. We focus on prevalent mental disorders
such as depression, stress, and bipolar disorders. Additionally, we aim to identify current
trends and future directions in the field.

3.2 Background

Mental disorders are leading contributors to the global health-related burden, especially in
the context of the COVID-19 epidemic. The consequences of mental illness were becoming
even more serious [142]. In efforts to reduce the harmful effects of mental illness, early
detection and diagnosis play a vital role, which will help patients start an early and better
treatment based on the symptoms [143]. With great progress in recent years, machine learn-
ing shows great potential in enabling speedy and scalable analysis of complex data, thereby
opening up opportunities to aid in the diagnosis and treatment of mental disorders. This
section provides some background on mental disorders and MMML.

Mental disorders are conditions that may cause significant disruption in an individual’s cog-
nition, emotion regulation, or behaviour, indicating a dysfunction in the psychological, bi-
ological, or developmental processes underlying mental functions [144]. These disorders
are a major contributor to the global health burden, particularly in light of the COVID-19
pandemic, which has exacerbated the consequences of mental illness [142]. Depression,
stress, and bipolar disorders are among the most common categories of mental disorders.
Early detection and diagnosis are critical in mitigating the harmful effects of mental illness,
as they enable patients to receive prompt and effective treatment based on their symptoms
[143]. Machine learning has made significant progress in recent years, offering promising
possibilities for fast and scalable analysis of complex data and providing opportunities to aid
in the diagnosis and treatment of mental disorders.

Mental health monitoring technologies are increasingly developed. Data from social net-
works, smartphones, wearables, and neuroimaging can be easily collected thanks to the de-
velopment of sensor technologies, connectivity, etc. Mining this large amount of data will
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be extremely helpful in detecting mental disorders.

The potential of AI in healthcare is vast, with applications in speech recognition, computer
vision, and natural language processing [145]. Multimodal machine learning is an exciting
area of research that aims to combine information from multiple sources, including text,
audio, and image, to make more accurate predictions. This approach has already shown
great promise in the field of mental health, where early detection and diagnosis are critical
for effective treatment. By analysing data from multiple modalities, multimodal machine
learning can provide a more comprehensive understanding of an individual’s mental health,
leading to better outcomes and improved quality of life [84]. This paper explores the latest
research in multimodal approaches for the intelligent detection of mental disorders.

3.3 Methodology

This section describes the search strategy of our survey paper.

3.3.1 Search Strategy

This work focuses on reviewing and outlining trends of high-impact papers in MMML for
mental disorders detection. Hence, we define our search around several high-quality machine
learning and AI venues, namely JCAI, AAAI, IEEE, and ACM Multimedia. The list of
keywords used for the search query is as follows:

• Multimodal machine learning: Multimodal* OR cross-modal* or cross-domain OR
audiovisual OR fusi* OR ((text* OR lingu* OR semantic*) AND (audio OR vocal)
AND (video OR vis* OR fac*))

• Mental disorders: depress* OR stress* OR bipolar* OR mental*

• Detection (optional): detect* OR identif* OR predict* OR classif* OR recogn* OR
tackl*

3.3.2 Exclusion Criteria

To narrow down the list of literature, we apply several exclusion criteria as follows: (i) the
paper was published earlier than 2015; (ii) the paper is not related to a mental disorder or a
type of distress (i.e., depression, stress and bipolar disorders); (iii) the paper does not propose
an MMML solution; (iv) the paper does not use public datasets; (v) the paper does not belong
to the top 3 performing papers for each identified dataset. A summary of search results will
be provided in the next section.
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Figure 3.1: Search results

3.4 Results

After the search, we identified 16 papers that match the scope of this paper. Figure 3.1 sum-
marises the filter process and its results. This section analyses the search results regarding
datasets, performance and MMML approaches.

3.4.1 Datasets and Performance

Dataset and performance summaries are included in Table 3.1 and 3.2, respectively. Of
the common mental disorders covered by this survey, depression had the largest number of
articles and datasets used in experiments and evaluation.

Depression. In 12 articles related to depression, 4 datasets were used, including DAIC-WOZ
[41], E-DAIC [146], Twitter Depression Dataset [16], and Well-being [147]. DAIC-WOZ is
a multimodal dataset containing audio-video recordings of interviews conducted by virtual
interviewer Ellie for psychological distress conditions, and E-DAIC is an extension of DAIC-
WOZ. Well-being is a non-clinical dataset containing facial expressions, body motion infor-
mation, gestures, and audio recordings for mental distress recognition. Self-evaluation ques-



3.4. Results 37

Mental
disorders Dataset

Modality Train
(size)

Dev
(size)

Test
(size)

Imbalance
rate in train (%)Classic Others

Depression E-DAIC
[146] A V T 163

≈ 60%
56
≈ 20%

56
≈ 20%

22.70

DAIC-WOZ
[41] A V T physiological

data
107
≈ 55%

35
≈ 20%

47
≈ 25%

28.04

Twitter depression
[16] T I 2243

≈ 80%
561
≈ 20%

- 50

Well-being
[147] A V T 24

≈ 70%
11
≈ 30%

- 50

Stress disorders MuSE
[148] A V T I physiological

data
27
≈ 95%

1
≈ 5%

- -

Ulm-TSST
[149] A V T ECG, RESP

and BPM signals
41
≈ 60%

14
≈ 20%

14
≈ 20%

-

Bipolar disorders BDC
[150] A V 104

≈ 50%
60
≈ 25%

54
≈ 25%

39.42

Table 3.1: Summary of mental disorders datasets. A, V, T, and I denote the use of audio,
video, text, and image modality respectively.

tionnaires were employed in these datasets. Twitter Depression Dataset contains collected
tweets (both images and text) and their label based on text patterns (e.g., diagnosed depres-
sion) from Twitter users. Regarding means of the diagnosis, DAIC, E-DAIC and Well-being,
ground truths were assigned using self-evaluation questionnaires. In the Twitter depression
dataset, users were assigned as depressed based on the strict text pattern “(I’m/I was/ I am/
I’ve been) diagnosed depression” in their posts. Performance-wise, [151] and [109] show the
best performance on the E-DAIC and DAIC-WOZ, respectively, for regression task, while
[152] achieves the highest F1-score on Twitter depression dataset for classification.

Stress Disorders. Regarding stress disorder detection, three articles have been published.
Two of these, [153] and [154], utilised the MuSE dataset [148], which was specifically de-
signed for stress detection and its relationship to human emotion. The labels in the MuSE
dataset were assigned as self-report annotations by the participants. The third article con-
ducted experiments on the Ulm-TSST dataset (Muse-Stress sub-challenge of MuSe 2021)
[149], which were labelled by three annotators using the RAWW method. In terms of stress
disorders, [154] achieved the state-of-the-art result with an F1-score of 89.3% on the MuSE
dataset.

Bipolar Disorders. In the AVEC2018, four articles were identified that utilized the Bipolar
Disorder Corpus (BDC) [150] to detect bipolar disorder states and Young Mania Rating Scale
(YMRS) scores. The annotations were performed by psychiatrists. According to [17], their
approach showed the best results in terms of Unweighted Average Recall (UAR) on the BDC
dataset, outperforming the others.
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Dataset Disease Paper Performance

E-DAIC Depression [113] RMSE: 5.22†
[155] RMSE: 4.48†
[151] RMSE 4.28†

DAIC-WOZ Depression [156] RMSE: 4.99†
[157] RMSE: 4.81†
[158] RMSE: 4.27†
[109] RMSE: 3.28†

Twitter Depression [153] F1: 84.2%§
Depression [16] F1: 85.0%§

[159] F1: 90.0%§
[152] F1: 91.2%§

Well-being Depression [17] F1: 87%§

Ulm-TSST
Stress
disorders [86] CCC: 0.66†

MuSE
Stress
disorders [153] F1: 84.9%§

[154] F1: 89.3%§

BDC
Bipolar
disorders [160] UAR: 61.65%§

[155] UAR: 70.90%§
[161] UAR: 72.09%§
[17] UAR: 88.36%§

Table 3.2: Summary of performance on datasets. Because the results reported in the articles
are inconsistent, this table only aggregates the results on the most commonly used metrics
for each dataset. The † symbol denotes regression tasks; whereas, The § symbol denotes
classification tasks.

The majority of the datasets have a relatively limited number of samples, with only one
dataset containing over 1000 samples in the training set. Apart from the datasets employed
in the Audio/Visual Emotion Challenge and Workshop (AVEC), such as E-DAIC, DAIC-
WOZ, BDC and Ulm-TSST, the other datasets are assessed through the implementation of
cross-validation methods, namely k-fold cross-validation or leave-one-out cross-validation.
Therefore, there is no actual test set for those datasets, and the size of the training and
development sets is estimated.

3.4.2 Comparative Analysis of Unimodal and Multimodal
Approaches

In order to capture the performance gap resulting from the use of additional modalities, we
shall select the top-performing model of a single modality as the unimodal baseline. This
will be compared against the proposed multimodal approach in each paper. If available, an
average shall be applied to the performance of the development and test sets.
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Figure 3.2: Multimodal machine learning pipeline for detection of mental disorders

Of the 16 papers we reviewed, 15 papers compared their multimodal approach to an uni-
modal method. The results indicate that in all 15 papers, the multimodal approach enhances
performance. On average, there is an improvement of 7.9% in F1 (8 out of 15 papers) and
5% in UAR (3 out of 15 papers). Notably, on the BDC dataset, multimodal solutions con-
sistently outperform unimodal base models by a significant 19.7% (F1) [155] and 12.17%
(UAR) [161]. In the depression recognition task, a hierarchical recall model that uses au-
dio, text, and video achieves a 12% increase in F1 compared to its textual method [156]
on DAIC-WOZ. In general, multimodal approaches have shown that they can significantly
improve outcomes compared to methods using individual modalities.

3.5 Discussion

We propose an end-to-end multimodal pipeline for mental disorder detection in Figure 3.2.
The following sections will provide a detailed discussion of each of the five stages.

3.5.1 Multimodal Data Preprocessing

Data collection. When it comes to data collection, it’s worth noting that while it’s not always
necessary, data mining can be a viable option if there is suitable secondary data available.
That said, primary data collection is generally required to build feature sets from scratch.

Data labelling. To collect ground truths, the most widely adopted options are: (1) clinical
assessment in [150], (2) self-assessment in [146, 41] and (3) self-interpreted (e.g., social
behaviour data mining) in [16].
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When selecting a label source, it’s important to note that while clinical assessment labels are
the most reliable, the other methods are more popular due to their convenience. Resources
and desired sample size should be considered when making this decision. Additionally, it’s
recommended to define the primary task clearly, as different objectives can limit the choice
of suitable model architectures. In some cases, conversion from regression to classification is
possible when labels are given thresholds to become categorical data. This approach allows
some studies to report their performance in both tasks [155, 156]. For instance, in DAIC-
WOZ, a threshold of 10 is used to classify depressed individuals, in addition to the original
PHQ-8 scores ranging from 0 to 24.

Modality extraction. Some popular methods for modality data preprocessing include:

• Audio: OpenSMILE and COVAREP are mainstream toolkits in most studies for ex-
tracting auditory features such as MFCC, GeMAPs, pitch and voice segmentation
[162, 161]

• Text: a variety of extraction methods are in place for textual modality, including au-
dio transcription using speech recognition [161, 155] and topic-related, semantic or
handcrafted data [16]

• Vision: To extract facial expressions and eye movements from video and images using
toolkits, such as OpenFace [156, 158] and Face++ [161].

3.5.2 Representation

Representation for multimodal learning is a crucial task in enabling the utilization of ubiq-
uitous multimodal data. Here we review different methods for representing multimodal data
for the later process of detecting mental disorders.

Multimodal data are composed of multiple modes, in which each mode possesses a differ-
ent form of information. Typically, there are three ways to represent multimodal data: (1)
feature-level concatenation, (2) joint feature learning, and (3) graph-based representation.

Feature-level concatenation is a popular method for representing multimodal data in the
task (such as in [160]). This approach involves extracting features from each unimodal data
and then combining them into a single feature vector. The main advantage of this method
is that each mode can operate independently to uncover significant information. However,
there are a few drawbacks to this approach. First, the fused feature vector may be too large
for certain machine learning algorithms to handle. Second, the fused feature vector may not
be distinctive enough to differentiate between different modes.

Joint feature learning method concurrently learns features from all unimodal data. Using
the feature-level concatenation method for representing multimodal data is a highly effective
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approach as it allows for features to be learned jointly from all modes, which can then exploit
the unique information present in each mode. Many deep learning-based methods utilise this
approach, such as those discussed in [151]. However, it can be more challenging to optimise
the model due to the higher number of trained parameters and greater data requirements
associated with this approach.

Graph-based representation is getting more attention recently. When constructing multi-
modal data, a multimodal graph can be used where each unimodal data is represented by a
node and their interactions by edges. This approach is advantageous in terms of learning
capabilities as shown in [109], which demonstrated its ability to model interplay between
modalities by learning meta-paths across them. However, it is worth noting that this ap-
proach can be computationally expensive for graph construction and also requires a lot of
data.

3.5.3 Knowledge Integration

The modelling of multiple modalities only manifests the local knowledge, which is strongly
dependent on the training data. To reveal underlying patterns in a more generic way, it
would be informative to integrate global knowledge. This becomes even more significant
when investigating mental health problems, as experts or prior knowledge can play a crucial
role. Generally, there are several trends in integrating such knowledge, including:

Pre-trained embeddings. Exploiting the semantic relationship of textual modalities, such
as words or tokens, is the primary purpose. A prominent selection is the BERT model,
which is based on Transformers. For instance, the BERT-Base variant with 768-dimensional
hidden states is used as the shared text encoder in [153] and [162], while the BERT-large
model is considered in [88] to extract contextual information from transcribed transcripts
in the E-DAIC corpus. Recently, [155] applied doc2vec to infer the document fixed-length
representation of transcribed text. Several pre-trained models, including BERT, RoBERTa,
and XLNet, are investigated in [152], along with the BART summarisation model [163],
to summarise a large number of tweets associated with each user. However, pre-trained
embeddings must be fine-tuned to cover more textual features in the complex nature of data,
such as social posts.

Domain-specific knowledge. Extracting informative signals that aid in the detection of men-
tal disorders is crucial, and the BERT model provides a reliable foundation for this purpose.
In the case of depression detection, features specific to the domain, such as depression symp-
toms and antidepressants, have been explored to identify users who may be suffering from
this condition. For example, studies like [152] and [155] have analysed Twitter tweets, us-
ing nine depression symptoms from the DSM-IV criteria and antidepressant medicine names
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from Wikipedia to diagnose depression. Although this approach carries meaningful factors,
it is dependent on the domain and can be costly to build respective vocabularies.

Multimodal knowledge graph. There is an interesting trend to exploit knowledge graph
[109]. Instead of building from an existing corpus, it is constructed via leveraging the relat-
edness among multimodal entities. Although this approach may have a remarkable compu-
tational cost, it enhances the exploration of cross-modality patterns.

3.5.4 Modality Fusion

Owing to the heterogeneity of many input streams, one of the primary focuses of multi-
modal machine learning was merging information from two or more modalities to predict an
outcome measure.

Model-agnostic Fusion

Model-agnostic or model-free techniques, which may be divided into early (feature-level)
and late (decision-level) fusion, are those that do not directly depend on the architecture of a
particular machine learning model.

Early fusion. The vast majority of identified papers employ early fusion. The most basic
form of early fusion, concatenation, is employed widely across different mental disorders,
including stress detection task [162], and bipolar disorders classification [155, 160]. A vari-
ation of concatenation in early fusion is weighted average [113].

Taking a different approach to feature-level fusion, researchers have found that incorporat-
ing the correlation among modalities can enhance the overall performance of the architec-
ture. For example, [164] employs multidimensional projection fusion using group sparse
canonical correlation analysis on EEG and eye movement. This approach maximizes the
cross-correlation between two input streams and achieves the highest accuracy in anxiety
detection. [151] proposes a multi-layer attention fusion technique that captures the focus of
input features and achieves the winning performance on Extended DAIC.

Late fusion. On the other hand, decision-based fusion or late fusion integrates the outcomes
of modality-wise predictions. Late fusion is commonly employed in numerous kinds of re-
search through various fusing mechanisms, including simple voting [154] that allows a dras-
tic improvement of 33.9% accuracy compared to early fusion technique in the same study,
winner-take-all voting [157], as well as learned classifiers such as LSTM fusion classifier
[86] and simple feed-forward neural network [17].



3.5. Discussion 43

Model-based Fusion

A recent and innovative approach to depression diagnosis combines deep learning tech-
niques, specifically TCN and Knowledge graph. This method has achieved state-of-the-art
performance with an F1 score of 95.4% for the classification task, as well as RMSE and
MAE values of 3.28 and 2.62, respectively, for the regression task [109].

Researchers have attempted to classify different levels of bipolar disorders using a tree-
based method that involves layer-by-layer fusion through a hierarchical fusion structure,
as described in [161]. Although this approach resulted in a 7.4% improvement in the UAR
compared to the audiovisual baseline with an ordinary fusion method on the development set,
the model, unfortunately, suffers from overfitting, causing a significant drop in performance
on the test set.

Depression detection has been shown to be more effective using model-based fusion with
LSTM, which resulted in an 11% improvement in F1 [156]. This approach allows for the
training of multimodal representation and fusion simultaneously and is thought to be the
reason for its success. However, despite its promising results, this technique is not widely
used compared to other model-independent methods, indicating the potential for further ex-
ploration in this area.

3.5.5 Modeling & Optimization

In order to achieve the main goal, which is the classification or regression that has been
predetermined during the preparation stage, different backbone models are utilised to assist
with the learning of multimodal data representations. Depending on the primary task (i.e.,
classification or regression), there are two main streams of modelling & optimisation, which
are traditional machine learning and deep learning.

Traditional machine learning. During the exploration phase of detecting mental disorders,
various tree-based methods have been proposed. For instance, in [157, 17], three random
forest models were introduced for the three different modalities, which are audio, video, and
text. Additionally, in [161], a hierarchical recall model was created based on a gradient-
boosting decision tree (GBDT). Furthermore, in [158], several regression models were con-
sidered, including random forest (RF), stochastic gradient descent (SGD), and support vector
regression (SVR).

Deep learning. These methods effectively leverage underlying latent relationships among
different modalities for the mental problem detection task. They provide flexible support for
various fusion strategies. Deep neural networks are employed for early fusion in [159, 155],
while [162] propose a Transformer-based model architecture. Convolutional neural net-
works are exploited in [160], and recurrent neural networks (RNNs) are used in [113, 153].
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Attention-based models in [151, 109] enable cross-modality exploration via model-based fu-
sion. For late fusion, RNN-based methods are overwhelmingly used in [154, 86]. Overall,
using deep learning methods provides a promising approach to modelling multimodal data
for detecting mental disorders.

When optimising models for a particular task, it’s important to consider the appropriate
parameter settings. In the case of regression, minimising mean square errors is typically
preferred, as noted in [157]. Conversely, for classification tasks, the cross-entropy objective
function is often the go-to choice, as pointed out in [109].

3.5.6 Evaluation Metrics

Evaluation methods play a crucial role in summarizing a system’s performance across var-
ious tasks and comparing different systems on the same task. In the field of mental disor-
der detection, different evaluation metrics are utilised depending on the corresponding task.
For regression tasks, most studies employ root-mean-square-error (RMSE) and Concordance
Correlation Coefficient (CCC) [113, 155, 109]. Notably, CCC is frequently used in emotion
recognition tasks as it quantifies the degree of similarity between the predicted emotion and
the genuine emotion. On the other hand, F1 and Unweighted Average Recall (UAR) are
typically used in classification tasks. For instance, [155, 17] utilize UAR due to the highly
imbalanced sample class ratio of the BDC dataset, which is 39.42%, as shown in Table 3.1.

We have discussed common evaluation metrics across all surveyed papers. Although there
are no perfect evaluation metrics, we observed some important insights regarding this prob-
lem as follows. First, despite applying ML methods in medical domains, there was not any
study that tried to follow medical-related metrics to report the performance. Second, the eval-
uation metrics used in the studies were mainly focused on the predictions, which might not
be the best criterion to measure the performance of the proposed methods. Third, most of the
work does not employ statistical tests in their reported performances. These shortcomings
are important to be addressed in future work.

3.6 Conclusion and Future Directions

Our scoping review delves into the diverse range of multimodal machine learning approaches
to detect mental disorders from high-impact venues. To further promote the advancement of
multimodal artificial intelligence for mental health, we propose an end-to-end pipeline for
multimodal machine learning tasks. Our review includes a comprehensive list of popular
datasets and modalities, and we outline a roadmap for implementing an end-to-end multi-
modal pipeline for the investigated task.
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Although the use of multiple modalities is promising, there is still much to be explored in
this field. Based on our review, we suggest that future research should focus on harmonising
different input modalities, which remains one of the most challenging tasks in multimodal
machine learning. Looking ahead, we believe that developments in this area could lead to
significant breakthroughs in the detection and treatment of mental health disorders. Future
directions would be:

1. Multidimensional fusion is the next focus of the fusion technique. With the increased
complexity in representation and the number of modalities involved, high-dimensional
fusion is expected to be a part of an enhanced information integration process. Ad-
ditionally, it is desirable to capture the correlation among modalities to better assist
classifiers instead of relying solely on simple concatenation.

2. Co-learning. It is anticipated that this area of study will become more popular in
future studies, particularly in mental health datasets with small sample sizes that often
involve self-reported metrics. This technique is especially suitable when resources are
limited, and there is a high chance of incomplete data. By transferring knowledge from
one domain to another, this technique can potentially enhance all modalities.

As the evolution of technologies for human interaction continues, we can capture more
modalities and gain a clearer understanding of the mechanisms behind mental disorders.
This can help alleviate the burden of these conditions at an earlier stage.
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Chapter 4

Autofusion - Multimodal Machine
Learning in Dementia Detection

4.1 Introduction

On a worldwide scale, around 55 million people suffer from dementia, which is increasing
by 10% annually [66]. Accounting for 60-80% of dementia cases, Alzheimer’s disease (AD)
is a degenerative cognitive condition that not only interferes with the patient’s daily activ-
ities, work routine, and social interaction, but it can result in immobility and organ failure
in later stages [64]. Since AD becomes more prevalent with age, prompt identification is
critical [165]. Many AD instances, however, have not been recognised until later stages. For
starters, early indicators of Alzheimer’s disease may be misconstrued as the natural ageing
process. Second, the diagnostic process entails multiple clinical tests that need substantial
knowledge, making the operation more costly [64]. Due to the adverse impact of AD on its
patients’ memory, mental cognition, and daily routine, timely detection is crucial to appropri-
ate treatment and intervention. As a result, there is an urgent need for alternative approaches
to supplement established diagnostic procedures.

Artificial Intelligence (AI) has been used for a variety of medicinal reasons. Various AI-
based studies have successfully attempted to identify mental diseases such as depression
[17] and bipolar disorders [160]. Similarly, earlier research has reported on the efficacy
of AI and machine learning approaches in the identification of Alzheimer’s disease using
speech [166], and medical visual data such as brain scans [78]. Because Alzheimer’s disease
patients interpret information differently than healthy people, there is increased interest in
information integration to examine the compounding influence of multimodalities. Further-
more, provided the availability of continuous multi-aspect monitoring, current advancements
in non-invasive sensor technologies have opened the road for multimodal machine learning
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for AD identification. Multimodal machine learning has the potential to give AD patients
increased accessibility and functionality.

In recent years, there has been a growing interest in the early detection of Alzheimer’s dis-
ease (AD) due to the realisation that it may be necessary to detect AD pathology decades
before a clinical diagnosis of dementia is made. While certain biomarkers are accurate diag-
nostic methods for AD, there is a need for alternative tools that are less invasive and more
cost-effective for AD screening and diagnostics. With the proliferation of technologies that
enable personal health monitoring in daily life, there is a possibility of developing tools to
predict AD based on the processing of behavioural signals. This active research area has been
applied to medical screening to provide a rapid and effective diagnosis method [77, 167].
Due to the heterogeneity of data streams, the multimodal data fusion mechanism has been
one of the main issues with multimodal machine learning. Existing approaches, however,
often opt for traditional multimodal fusion techniques that neglect the inter- and intra-modal
interactions among modalities.

To address this issue, this paper proposes Autofusion, a multimodal machine learning net-
work to detect AD based on text and audio data by incorporating an autoencoder-based fusion
technique. The first element of the network is an autoencoder that captures the reconstruc-
tion of crucial information on one dimension. In contrast, the second aspect is motivated by
the tensor fusion technique to highlight the inter-relationship aspect of multimodal fusion.
Extensive experiments conducted on DementiaBank’s Pitt Corpus have shown the potential
of our proposed method.

4.2 Background

4.2.1 Alzheimer’s Disease

Dementia is a mental disorder with the primary characteristics of progressive deterioration
of cognitive functions. According to the World Health Organisation, dementia is the seventh
leading cause of death for people and one of the primary reasons for disability and depen-
dency among the elderly [168]. The number of dementia patients is growing rapidly and is
projected to be 135 million people by 2050 [169]. While dementia is not the same as normal
biological ageing, the risk of dementia for people aged 85 years old or older can reach 30%
[170].

Dementia is an umbrella term for the clinical syndrome of memory loss and cognitive de-
cline. Alzheimer’s disease is the most common cause of dementia [171]. AD is a neu-
rodegenerative disorder involving gradual brain damage. Clinical symptoms of AD include
progressive dementia, confusion, motor skill, and memory loss [172], which could result in
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patients being bed-bound, dependent and requiring around-the-clock assistance. The pro-
gression of AD can be characterised by three main phases that correspond to their acceler-
ating burden: preclinical AD, mild cognitive impairment (MCI) and Alzheimer’s dementia
[65]. While there is no current cure for AD, early detection is crucial for effective medical
support and timely intervention.

The diagnostic process for AD has become less invasive with the use of diagnostic imaging
[173]. Other blood test-related methods have been explored and have shown promising re-
sults in small-scale testing environments [174]. Therefore, innovations for AD detection are
needed to be highly accurate, less invasive, more accessible, and reasonably priced. High-
tech clinical support methods have been experimented with extensively in the past decade
and have shown their potential in high-accuracy prediction and shortened diagnosis without
being invasive [78]. Machine learning has also proven to be useful in providing a confi-
dence score for each prediction and explaining the top contributing factors for the diagnosis.
With the multi-aspect nature of electronic health records, multimodal data can be a useful
tool to identify the underlying mechanisms of AD dementia and leverage large-scale data for
decision-making.

4.2.2 Multimodal Machine Learning in Dementia Detection

Thanks to recent advancements in medical devices, the collection of medical processes and
electronic health records (EHR) has become more extensive and accessible. By leveraging
EHR data, it is now possible to identify people at risk of dementia [175]. For example,
laboratory tests can measure levels of cognitive decline, vital signs can track changes in
overall health, and medications can identify potential side effects of dementia. Longitudinal
clinical EHR data can track the progression of AD over time, leading to more timely and
accurate diagnosis and treatment for patients.

In recent years, machine learning and deep learning techniques have been utilized to develop
automated diagnostic systems for various diseases. These technologies have proven reliable
in predicting degenerative conditions [176]. As scientists continue to explore the potential
of multimodal machine learning, it is clear that this area of study can play a crucial role in
healthcare innovation. By analysing data from multiple streams and medical data, it can help
identify patterns and aid in clinical decision-making. Utilising automated detection schemes
to analyse EHR data has the potential to improve the quality of life for those with demen-
tia and their families. Multimodal machine learning may be the key to bringing together
seemingly disparate perspectives and creating a comprehensive approach to detecting AD.
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Dataset Samples Variables
Modality

Media Demographic Health

Pit Corpus 550 17 A T age, gender, education
disease diagnosed, mms,
cdr, hamilton

ADDReSS 156 - A T age, gender
disease diagnosed, mms,
cdr, hamilton

Carolina
Collection 600 - A T V

age range, gender,
occupation, education disease diagnosed

Table 4.1: Summary of Alzheimer’s disease multimodal datasets. A, T, V denote the use of
audio, text, and video modality respectively.

(1) Alzheimer’s Disease Datasets

Prior to creating any machine learning models, it is necessary to collect and explore data
thoroughly. To help with this, Table 4.1 provides a summary of AD datasets with multiple
modalities. The table includes the name of each dataset, as well as the number of samples
and variables in each one.

DementiaBank’s Pitt Corpus

The Pitt corpus from DementiaBank was created as part of a 5-year study for the Alzheimer
Research program at the University of Pittsburgh in the 1980s [177]. The corpus contains
551 recorded interviews and transcripts from 292 patients who were evaluated for probable
Alzheimer’s disease. Its purpose was to investigate the interaction patterns exhibited by
patients with dementia and Alzheimer’s disease. The study was conducted by the School of
Medicine at the University of Pittsburgh.

The study involved three different groups of participants, including an elderly control group,
individuals with probable or possible Alzheimer’s disease, and individuals diagnosed with
other types of dementia. Data collection took place on an annual basis, and participants had
to be at least 44 years old with no history of nervous system disorders. Additionally, all par-
ticipants had to score at least 10 on the initial Mini-Mental State Exam (MMSE) in order to
provide consent to join the study. The Pitt corpus captures a range of demographic data such
as age, sex, and education status, as well as medical records like neuropsychological exam
results and diagnosis. The corpus also includes audio and transcript data from interviews
where participants described the Cookie Theft image. Due to its large sample size and longi-
tudinal nature, the Pitt corpus is considered one of the most valuable datasets for multimodal
machine learning used in early Alzheimer’s disease detection. However, it is important to
note that while the size of the corpus is commendable, the data is imbalanced with 309 audio
samples from 193 patients with probable Alzheimer’s disease and 242 recorded interviews
from 99 control individuals.
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ADReSS Dataset The ADReSS Dataset (Alzheimer’s Disease Recognition through Spon-
taneous Speech) was introduced in the ADReSS challenge of INTERSPEECH 2020 [178].
This dataset is a balanced subset of DementiaBank’s Pitt Corpus and consists of 156 speech
samples, each with accompanying metadata such as age, sex, and MMSE score. The chal-
lenge baseline is established over a stratified train-test split of around 70-30. The ADReSS
Challenge defines two prediction tasks: (1) AD prediction, which involves binary classifica-
tion of AD and non-AD individuals, and (2) MMSE prediction, which targets a regression
problem to predict MMSE score. The dataset’s balanced nature and availability of metadata
make it a well-suited resource for machine learning model training and evaluation.

Corolina Collection Corpus The Carolinas Conversation Collection (CCC) was collected in
the early 2000s as a digital corpus of audio and video recordings of natural conversations
between healthcare professionals and patients with chronic diseases, including Alzheimer’s
disease (AD) [179]. The CCC corpus contains 200 conversations with the non-AD group
of patients and 400 conversations for the AD group, each with accompanying demographic
and clinical information such as age, sex, occupation, disease, and level of education. The
patients, all aged over 65, were interviewed by gerontology and linguistics students or re-
searchers at least twice a year and assigned a unique alias to protect their identity.

There are potential areas of study that can be explored through the CCC, including the effects
of AD on communication, how healthcare providers can better support their patients’ com-
munication needs, and the creation of new interventions to help those with chronic illnesses
improve their communication skills.

(2) Alzheimer’s Disease Multimodal Machine Learning Performance

In this section, we summarise the performance of multimodal machine learning on the dis-
cussed AD datasets. Table 4.2 provides the performance evaluation of machine learning-
based models using the identified datasets for automated AD screening tasks.

Despite multimodal machine learning achieving great performance across datasets: 88%
F1 for Pitt Corpus and 92% accuracy for ADReSS dataset [167], and 90% F1 for Carolina
Collection Corpus, this group of techniques is still under-explored for AD detection. Even
for those multimodal papers whose performances are promising, their fusion techniques are
limited at hard voting (i.e., late fusion) [167] and simple concatenation early fusion [185].
Achieving a potential result using model-based fusion, [182] explores joint fusion using a
simple feed-forward neural network combining text and image modalities.

In terms of classification/regression models, the majority of papers focus on traditional ma-
chine learning techniques, including Support Vector Machine (SVM) [180, 181, 183], Deci-
sion Tree [178, 184], linear regression [185]. [167, 182] opt for a designed neural network
to classify AD patients.
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Dataset Paper Modality Fusion Model Performance

Pitt Corpus
[167] A T Late NN

ACC: 88.0% §
F1: 88.0% §

[180] A - SVM ACC: 77.0% §
[181] A - SVM ACC: 86.04% §

ADDReSS

[167] A T Late NN ACC: 92.0% §

[178] T - LDA, DT
ACC: 77.0% §

F1: 77.0% §
RMSE: 4.38 †

[182] T I Join NN
ACC: 81.0% §

F1: 80.0% §

[183] T - SVM
ACC: 85.4% §
RMSE: 4.56 †

Carolina
Collection

[184] A - DT ACC: 86.5% §

[185] A Early LR
ACC: 90.0% §

F1: 90.0% §

Table 4.2: Performance evaluation of machine learning-based models for Alzheimer’s dis-
ease detection. Because the results reported in the articles are inconsistent, this table only
aggregates the results on the most commonly used metrics for each dataset. The † symbol
denotes regression tasks, whereas, The § symbol denotes classification tasks. A, T, and I
denote the use of audio, text, and image modality respectively.
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Based on the analysis of performance evaluation for AD detection, it is apparent that there is
a significant need for automated detection models. The initial results indicate ample oppor-
tunities for growth and improvement in this area.

4.3 Approach

This section describes the benchmarking dataset, proposed pipeline, and the multimodal
machine learning architecture employed to detect AD through audio and text modalities.

4.3.1 Dataset: DementiaBank’s Pitt Dataset

We select DementiaBank’s Pitt corpus [177] as our benchmarking dataset. The dataset has
audio recordings and text transcripts of an image description task in which the participants
are required to describe the activities in the Cookie Theft image. The Pitt corpus is selected
for benchmarking since it is one of the largest corpus there is for AD detection tasks. Addi-
tionally, due to the gradual degradation of AD, longitudinal studies are impactful; hence, the
Pitt corpus is our dataset choice.

To identify labels for the experiment, we selected individuals with a primary diagnosis code
of 800 as the control group and those with a diagnostic code of 100 as patients with AD
dementia. Diagnostic codes were assigned via clinical assessment. For our experiments, in
total, we use 552 samples which include 243 speech samples from 99 control healthy subjects
and 309 speech samples from 194 AD subjects. Table 4.3 provides essential statistics of the
data.

Sample Individual
Sex Entry age

male (1) female (0) (45, 55] (55, 70] (70, 85] (85, 100]

Control 243 99 41 58 15 64 20 0
Dementia 309 194 68 126 8 81 100 5

Total 552 293 109 184 23 145 120 5

Table 4.3: Dataset statistics

Of the 293 individuals included in the dataset, their entry age range varies between 46 and
88 years old. It is noteworthy that age data is approximate because (1) the study only records
the age upon entry of an individual but not updated age for each participating year, and (2)
no date of birth is given. On average, the mean age is 67.4 years old. In terms of participants’
genders, 37.2% (109 out of 293) of the participants are male, while 62.8% (184 out of 293)
are female.
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4.3.2 Benchmarking Baselines

We compare the results of our approach to the benchmarks set out in [167]. This paper
was submitted for the INTERSPEECH ADReSS Challenge 2020. Three factors led to the
selection of this paper. First, the experiment’s source code is made public, allowing for
the potential reproducibility of the findings. Second, this article compares results using the
DementiaBank Pitt Corpus. Finally, this paper has the highest reported performance on
DementiaBank’s Pitt Corpus among those meeting the above requirements.

The source code of the paper is accessible on Github 1. While the article is also assessed
using the ADReSS Dataset and DementiaBank’s Pitt Corpus, the Pitt corpus is our primary
focus. [167] presents a baseline employing late fusion (hard voting) with accuracy, recall,
precision, and F1 scores of 0.88, 0.82, 0.92, and 0.88, respectively.

We made an effort to replicate the experiments using the source code; however, the outcome
is different from what was originally published. There are a few theories as to why this
occurs. Firstly, the random elements used in the experiments, such as the random seed
number, are not specified in the source code. Secondly, although both papers perform 10-fold
cross-validation on the dataset, there is no provided information on fold index (i.e., sample
indexes in each fold), which implies different fold splits and contributes to the performance
disparity. Last but not least, while all experiments in the benchmarking study are trained and
assessed on the ADReSS Dataset before being retrained on DementiaBank’s Pitt Corpus,
only the Pitt corpus is used in our paper for training and evaluation. Consequently, this
enhances the possibility of a data leak.

4.3.3 Framework

This section describes the proposed framework to detect dementia using audio and tran-
scripts. Regarding model features, the proposed framework employs those engineered by
[167] to be valid for benchmarking. The framework is inspired by the potential cross-
modality interaction and denoising effects of autoencoders in multimodal machine learning;
thus, the input features will be compressed using an autoencoder, and its bottleneck will
be used for the primary classification. Figure 4.1 illustrates the detailed architecture of the
network.

1https://github.com/ wazeerzulfikar/alzheimers-dementia



4.3. Approach 54

Concatenate

Outer product

6373

96 (32x 3)

11

16 256

128

sigmoid -> 
Prediction

1

Replace upper triangle 
and diagonal line with 0

64

tanh

Autoencoder

128

32

tanh

64

tanh

tanh flatten

bn

ReLU

12 bn do
0.2

acoustic intervention disfluency

fla
tt

en

139 139

112

16

Figure 4.1: Autofusion architecture

Feature Engineering

The processing of the audio and transcript files from the DementiaBank Pitt dataset results
in three distinct feature types. This approach is similar to the methodology used in [167] that
explored multimodal analysis. Table 4.4 presents general statistics on the generated feature
sets. Specifically, the features are as follows:

• Acoustic: We applied ComParE 2013 feature set [186] using the OpenSMILE toolkit
to extract 6,373 features from audio files. These features include MFCC, low-level
descriptors (LLDs), and other statistical features. We apply a linear network to reduce
the dimensionalities of acoustic data.

• Disfluency: Disfluency is a set of 11 hand-crafted features from the transcript, includ-
ing word rate and pause rates, to reflect any discontinuity in the speech.

• Intervention: The intervention feature set provides more context for the transcript by
extracting a sequence of speakers to identify whether it is the interviewer or the par-
ticipant speaking. The intervention feature set is padded or truncated to a fixed length
of 32 with 3 channels of one-hot values (i.e., 1 or 0).



4.3. Approach 55

Feature Transformation

As different feature sets have different value ranges, some normalisation operation is con-
ducted to ensure homogeneity in the input scale. Hence, a standard scaler is applied to
address the varied ranges. Specifically, we implemented the StandardScaler function from
the scikit-learn library to achieve this transformation, which standardises features by remov-
ing the mean and scaling to unit variance. The formula for the standard scaler is summarised
in Equation 4.1.

xstandardised =
(x− x̄)

s
(4.1)

where:

• xstandardised: Standardised score

• x̄: Mean of training samples

• s: Standard deviation of training samples

The mean and standard deviation of the training data are stored to transform the validation
set.

Autofusion Mechanism

Autoencoders have been studied for their reconstructive and denoising qualities. Their usage
has been practised in the field of multimodal machine learning. The addition of autoen-
coders can encourage interactions among modalities [84, 137]. We use a modified version
of the bottleneck’s outer product with itself as the input of the classification network. This
component shall be referred to as the cross-modality interaction or the interaction term inter-
changeably in the subsequent sections. For a detailed discussion on the use of autoencoders
in multimodal machine learning, refer to Section 2.3.2.

After feature transformations, three feature sets become inputs of the autofusion network for
multimodal fusion. Different from traditional early and late fusion, the autofusion mecha-
nism focuses on studying the interactions among modalities.

First, three feature sets are concatenated and fed through an autoencoder with an undercom-
plete architecture. The bottleneck of the autofusion network is computed as follows:
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Feature Source Extraction Dimension

Acoustic Audio
ComParE 2013 feature set using
OpenSmile toolkit [1, 6373]

Disfluency Transcript
Handcrafted features including
word rate, pause rates of various kinds,
and intervention rate

[1, 11]

Intervention Transcript
One-hot encoded sequence to
indicate the speaker
(i.e., interviewer or participant)

[1, 32, 3]

Table 4.4: Statistics of generated features

h0 = xa ⊕ xd ⊕ xi (4.2)

h1 = σ (W0h0) (4.3)

xbottleneck = σ (Wihi) (4.4)

where:

• xa, xd, xi: Input feature acoustic, disfluency, and intervention respectively

• ⊕: Concatenation

• h: Input

• W : Weight

• σ: Activation function

• xbottleneck: Bottleneck vector

Classification Network

The classification network comprises two main components: the autofusion bottleneck and
its linearly transformed version. The two inputs are combined using the outer product func-
tion, creating the interaction term. The calculation of the interaction term can be found in
Equation 4.5.

hinteraction = xbottleneck ⊗ xbottleneck (4.5)
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Equation 4.6 and 4.7 describe the calculation of the network inputs of the first layer h0 and
the following layers hl.

h0 = hinteraction + xbottleneck (4.6)

hl = σ (W(l−1) h(l−1)) (4.7)

where:

• xbottleneck: Bottleneck vector from autofusion

• hinteraction: Interaction term among feature sets

• ⊗: Outer product

• h: Input

• W : Weight

• σ: Activation function

• l: Layer number [0, number of layers]

Objective Function and Evaluation

We used Mean Square Error (MSE) loss to monitor the autoencoder training process and
Binary Cross Entropy (BCE) loss for classification. The formulas of MSE and BCE losses
are summarised in Equation 4.8 and 4.9, respectively.

LMSE =
1

N

N∑
i=1

(yi − ŷi)2 (4.8)

where:

• LMSE: Mean Square Error (MSE) loss

• N : Total number of samples

• y: Label

• ŷ: Prediction
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LBCE = −(y log(ŷ) + (1− y) log(1− ŷ)) (4.9)

where:

• LBCE: Binary Cross Entropy (BCE) loss

• y: Label

• ŷ: Prediction

To calculate the total loss of the network, we applied the loss formula in Equation 4.10 with
a 0.1 loss factor for autoencoder loss and a 0.9 loss factor for classification loss.

Ltotal = (λMSE × LMSE) + (λBCE × LBCE) (4.10)

where:

• Ltotal: Total loss function

• λMSE: Loss factor of autofusion network ranged [0.0, 1.0]

• λBCE: Loss factor of classification network ranged [0.0, 1.0]

• LMSE: MSE loss from autoencoder network

• LBCE: BCE loss from classification network

4.4 Experiments

This section discusses experiment settings and results. The first part provides information
on computational resources, frameworks, running parameters, and evaluation metrics. The
second half of the section presents the results of key experiments and additional ablation
study.

4.4.1 Experiment Settings

This section describes the experiment settings, resources and evaluation metrics of the ex-
periments.
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Figure 4.2: Example of k-fold cross-validation

Cross Validation

Cross-validation is a resampling method used to ensure the generalisation of models [187].
In classification problems, overfitting the training data is a major concern, as it can affect
the model’s ability to make accurate predictions on unseen data. The use of cross-validation
addresses this issue by evaluating the model on a test dataset that is drawn from the same
population as the training dataset. In our experiments, we utilised k-fold cross-validation,
where k denotes the number of splits on the dataset. For each k, the dataset is randomly
divided into k subsets, with the model being trained on all but one subset, which is used for
validation. This approach ensures that no two test sets have overlapping elements, which
minimises the risk of data leakage. Figure 4.2 illustrates the case of k-fold cross-validation
with k = 10. This technique is particularly effective for datasets with limited samples. We
applied stratified 10-fold cross-validation to all of our experiments. This technique provides
that the validation set reflects the class ratio of the dataset, maintaining a consistent balance
between positive and negative samples. Stratified k-fold is a variation of the k-fold technique
that reflects the class ratio of the dataset, ensuring fair classification.

Resources

This section describes the computational power used for the experiments and the framework
for the experiment setup. Our proposed model is implemented using PyTorch. The detailed
settings are as follows:

• Computational Power:

– Linux Ubuntu 22.04
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– CPU: Intel Core i9 10900X 10 Cores

– RAM: 256 GB

– GPU: Nvidia 3090 24 GB VRam

• Framework: PyTorch version 1.13.1

Running Parameters

In our experiments, we ran 300 epochs and utilised the Adam optimizer for all networks. The
autoencoder training network was implemented with a tanh activation, while the classifica-
tion network used ReLU. Additionally, we applied a learning rate decay mechanism with an
initial learning rate of lrinit = 5 × 10−4 that decreases by 20% every 100 epochs, as shown
in Equation 4.11, to fine-tune training and prevent local minima. This approach has been
proven effective in other studies and allowed us to achieve accurate results while avoiding
common machine learning issues, like overfitting.

lre = lrinit × 0.2
e

100 (4.11)

where:

• lrinit: Initial learning rate (= 5× 10−4)

• e: Current epoch

• e
100

: Integer quotient of current epoch number divide by 100

Details of experiment running parameters are as follows:

• Number of epochs: 300

• Optimizer: Adam

• Number of folds: 10

• Activation: tanh (for autoencoder), ReLU (for classification)

• Learning rate: Initial learning rate 5× 10−4, decay 20% every 100 epochs

• Loss factors: 0.1 for MSE loss, 0.9 for classification loss
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Evaluation Metrics

To ensure a fair comparison with other papers, we decided on a few evaluation metrics, which
are: accuracy, recall, precision, and F1 score.

Accuracy is one of the most popular metrics that have been used in various papers. Equation
4.12 describes the formula for accuracy.

Accuracy =
TP + TN

N
(4.12)

where:

• TP : Number of true positive samples

• TN : Number of true negative samples

• N : Total number of samples

When evaluating the performance of a model, accuracy is a commonly used metric that
calculates the percentage of correct predictions over the total number of samples. While this
measure is easy to understand, it can be problematic when dealing with imbalanced data. If
one class dominates the dataset, accuracy can create a bias towards that class, which does not
reflect the minority class’s true performance. Additionally, accuracy does not account for the
certainty or confidence of each prediction, which can be important in certain scenarios.

Recall measures how well the model accurately predicts a positive sample among all positive
samples. The formula for recall is summarised in Equation 4.13.

Recall =
TP

TP + FN
(4.13)

where:

• TP : Number of true positive samples

• FN : Number of false negative samples

Recall is often used in situations in which spotting positives is the main goal. For example,
this metric is useful for fraud detection models since the frequency of successfully identify-
ing fraud is important.

Precision measures the probability that the positive samples are predicted correctly. The
formula for precision can be seen in Equation 4.14.

Precision =
TP

TP + FP
(4.14)
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where:

• TP : Number of true positive samples

• FP : Number of false positive samples

Precision provides insight into positive class; hence, the ratio of true positives and true neg-
atives is highly concerned.

F1 Score is the weighted average of precision and recall. Equation 4.15 calculates F1 score,
as follows:

F1 = 2× precision× recall
precision+ recall

(4.15)

where:

• precision: Precision score

• recall: Recall score

The advantage of using the F1 score is that it takes into account the distribution of the data
since it is the harmony between precision and recall. However, since it is a combined metric,
the F1 score could be difficult to interpret. Often F1 score is used in cases where predicting
false negatives has a significant impact. For medical screening, falsely identifying that the
individuals do not carry the disease when they actually do could cause serious problems due
to the possibility of late treatment or disease transmission.

4.4.2 Results

We evaluate unimodal methods and different fusion alternatives on DementiaBank’s Pitt
dataset. From the beginning of the paper, we aim to investigate and answer the research
questions as follows:

• RQ2a: How effective is this framework compared to single-modality models?

• RQ2b: How effective is this framework compared to existing multimodal fusion tech-
niques?

• RQ2c: How does the cross-modality interaction impact the overall performance?

In this section, we answer these research questions using experiment outcomes. Table 4.5
summarises the results of both unimodal and multimodal experiments. These results are
reported as the average performance of 10-fold cross-validation.
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Type Experiment Accuracy Recall Precision F1

Unimodal
Acoustic 72.01 (±0.07) 76.61 (±0.08) 74.33 (±0.06) 75.35 (±0.06)
Intervention 70.82 (±0.07) 82.26 (±0.15) 74.08 (±0.12) 75.92 (±0.04)
Disfluency 77.70 (±0.07) 80.58 (±0.07) 80.93 (±0.09) 80.30 (±0.05)

Multimodal

Late fusion 56.87 (±0.03) 60.84 (±0.06) 61.56 (±0.02) 61.09 (±0.04)
Early fusion 78.07 (±0.06) 81.22 (±0.07) 80.19 (±0.06) 80.53 (±0.05)
Autofusion 79.89 (±0.08) 83.85 (±0.07) 81.72 (±0.09) 82.47 (±0.06)
Autofusion
(no interaction) 77.91 (±0.08) 84.15 (±0.06) 78.62 (±0.08) 81.12 (±0.06)

Table 4.5: Experiment results

(1) Comparison with unimodal baselines

We conducted experiments to compare our proposed technique against three single-input
models, including acoustic, intervention, and disfluency models. These experiments were
carried out using the same network settings as those of unimodal baselines described in
[167]. Autofusion achieved a performance of 79.89% in accuracy, 83.85% in recall, 81.72%
in precision, and 82.47% in F1. It consistently outperformed all unimodal methods by an
average of 5.24%. Specifically, our proposed method surpassed acoustic, intervention, and
disfluency unimodal baselines with an average improvement of 7.4%, 6.2%, and 2.1% across
all metrics, respectively.

In terms of accuracy, autofusion achieves a higher accuracy of 79.9% compared to the ac-
curacy of 72%, 70.8%, and 77.7% achieved by the acoustic, intervention, and disfluency
models correspondingly. Regarding F1 performance, autofusion achieves an F1 score of
82.5%, surpassing the acoustic model by 7.1%, intervention model by 6.6%, and disfluency
model by 2.2%. Given the imbalanced nature of the Pitt corpus with 309 AD and 243 control
samples, F1 is a more robust and reasonable metric compared to other evaluation metrics in
this case.

In addition to the evaluation metrics, the stability of the models is another noteworthy factor.
Stability refers to the consistency of a model’s performance across different fold splits (i.e.,
standard deviation across folds). Most experiments report a variation of 0.03 - 0.09% across
10 folds, except for intervention models, which have a variation of 0.15% in recall and 0.12%
in precision. Autofusion shows relative robustness compared to other single-input models as
it deviates marginally from the unimodal averages.

Given the model performance and stability, this conclusion responds to RQ2a and confirms
that our proposed autofusion technique outperforms unimodal baselines in all metrics and re-
tains comparable robustness. The result corresponds to our findings in Section 3.4.2, where
multimodal machine learning models consistently surpass single-input models in detecting
other mental disorders, including depression, stress, and bipolar disorders. This demon-
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strates that multimodal machine learning models are a highly effective method for automated
medical screenings.

(2) Comparison with other fusion baselines

We contrast the autofusion method against the other fusion alternative methods, which are
early and late fusion. For the early fusion technique, three input streams are concatenated and
fed into the same classification network architecture as the autofusion technique. Autofusion
outperforms early fusion with an average of 2% improvement overall metrics. Specifically,
the performance increases from 78.07% to 79.89% in accuracy, from 81.22 to 83.85% in
recall, from 80.19% to 81.72% in precision, and from 80.63% to 82.47% in F1 with the
addition of autofusion mechanism prior to classification. Regarding the stability of the two
fusion models, autofusion shows a greater standard deviation of 0.02% in accuracy, 0.03%
in precision, and 0.01% in F1 compared to early fusion. As early fusion and autofusion
share a similar classification architecture, the main difference lies in the fusion mechanism
of concatenation versus autoencoder-incorporated fusion to capture the interaction effect.

As per the guidelines in [167], we opt for the hard-voting late fusion technique. This mech-
anism ensembles the mode of base predictions from discreet models. Compared to the late
fusion technique, we observe a notable improvement of 20% average across all metrics. Al-
though the three single-input models perform well independently, their combination through
late fusion does not work as effectively. This could be due to the fact that late fusion ignores
the relationships between modalities and their representations in earlier stages, resulting in
a potential disconnect between predictions. In cases where the models are unstable, non-
overlapping predictions may occur, resulting in a lower-performing majority vote outcome.
Regarding the stability of the two models, the late fusion model establishes a smaller varia-
tion across folds than the autofusion model. The standard deviations of the late fusion model
vary from 0.02 to 0.06%, while those of autofusion range from 0.06 to 0.09%.

Based on the experiment results, it is evident that the proposed autofusion method outper-
forms other fusion alternatives, including early and late fusion. This finding responds to
RQ2b and highlights the promise of Autofusion technique that offers significant improve-
ments compared to conventional fusion methods.

(3) Additional ablation studies

In this part, we discuss additional experiments to confirm the impact of certain components.
The inputs of the classification network comprise two elements: (1) the autoencoder latent
representation (i.e., bottleneck) and (2) an interaction term which is a form of outer product
between the bottleneck and itself. The use of the outer product is inspired by Tensor Fusion
Network in which the outer product contributes to the model acquiring both intra-modality
and inter-modality dynamics [188]. This section of the thesis aims to address RQ2c to
understand the impact of the cross-modality interaction term.
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When we omit the interaction term, the results reduce by roughly 2% from 79.89% to 77.91%
in accuracy, 3% from 81.72% to 78.62% in precision, and 1.4% from 82.47% to 81.12% in
F1. One exception is that by removing the interaction term, the model presents a 0.03% in-
crease from 83.85% to 84.15% in recall. In terms of stability, as there is a minimal difference
of 0.01% in recall and precision standard deviations between experiments across 10 folds,
the two models are similarly stable. While the improvement provided by the interaction term
remains modest, it shows potential in assisting the autofusion technique. With further ex-
ploration and fine-tuning in this direction, the interaction term may be a breakthrough for
autofusion specifically and multimodal fusion in general.

(4) Explainability of results

The disfluency model, one of the three single-modality models employed in detecting Alzheimer’s
Disease (AD), has been found to demonstrate the highest accuracy and F1 scores, with the
former being 77.7% and the latter being 80.3%. This performance is indeed noteworthy,
given that it surpasses the performance of the acoustic and intervention models by 3-5%.

The disfluency model is particularly intriguing due to its reliance on a set of 11 handcrafted
features derived from the transcript. As elucidated in section 4.3.3, the purpose of this fea-
ture set is to reflect any speech discontinuity that may be indicative of AD. These features
have been designed to capture speech impediments, such as stuttering and slurring, through
attributes such as varying word rates and pause rates.

The empirical results indicate that the disfluency model outperforms the other two models
by a considerable margin, suggesting that speech discontinuity has the potential to serve as a
valuable predictor of AD. Semantic characteristics have been proved to be potential indica-
tors of other disorders. For instance, research has shown that individuals with schizophrenia
exhibit less cohesive speech than healthy individuals [189]. Similarly, speech disfluency
has been identified as a promising indicator for identifying individuals with social anxiety
disorder, particularly in terms of speech duration, jitter, and shimmer [190], in line with
observations made by psychologists.

This finding from the study not only highlights the effectiveness of the disfluency model in
detecting AD, but also provides a basis for further research into the relationship between
speech patterns and other disorders.
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Chapter 5

Discussion

The work investigates the impact of multimodal machine learning on automated medical
screenings and introduces a novel multimodal fusion method for identifying mental disor-
ders. To achieve this goal, we conducted a scoping review of high-impact articles on mul-
timodal machine learning in the detection of mental disorders, which is a crucial aspect of
automated medical screening. Further, we propose Autofusion, a novel multimodal fusion
approach that utilises the cross-modality interaction between audio and transcript data to
identify Alzheimer’s disease. Autofusion was evaluated and compared against other uni-
modal models and fusion alternatives. This chapter offers an overview of the previous chap-
ters’ discoveries and presents insights into how the findings could propel the field forward.

5.1 The States of Multimodal Machine Learning in Au-

tomated Medical Screenings

As we delve into the world of medical screenings, it becomes clear that relying solely on
healthcare professionals’ judgment is no longer the most efficient approach. With limited
human resources and overwhelming demand, patients often wait for extended periods for
a diagnosis. This creates an unbridged gap that can be filled with innovative technologies
such as machine learning. By utilising these tools, we can enhance the traditional diag-
nostic methods and provide more effective, time-saving, and cost-efficient diagnoses. The
application of technology in general and machine learning in particular in the medical field
has yielded remarkable results in identifying a diverse range of medical conditions. From
diabetic retinopathy [13], various types of breast cancers [191, 14], respiratory-related con-
ditions [15] to various chronic mental disorders such as depression [192] and stress disorder
[86], machine learning has shown significant potential in improving screening accuracy. The
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advancements in this technology have proven beneficial in improving patient care and treat-
ment plans, leading to more favourable health outcomes.

In the field of medical diagnosis and treatment, utilising multiple sources of data to gain a
deeper understanding of diseases and their progression is becoming increasingly important.
By integrating data from various sources, such as medical imaging, electronic health records,
and patient-tracking data, multimodal machine learning is a promising approach to providing
a more comprehensive and accurate diagnosis. One of the key challenges of this approach is
the process of integrating diverse data sources and exploiting their complementary effects,
known as multimodal fusion. However, through this approach, with the potential to save
time and costs, multimodal machine learning can be employed for better overall outcomes
for patients and the medical field.

Mental health is a crucial aspect of healthcare that requires special attention. Mental disor-
ders are highly prevalent conditions that affect a significant portion of the population [18].
Unfortunately, social stigma, limited accessibility, and the hidden nature of mental conditions
often lead to misdiagnosis or underdiagnosis. Moreover, mental disorders can contribute to
and exacerbate other health issues, such as hypertension and cardiovascular disease [19].
Multimodal machine learning is especially suitable for mental disorder screening, as re-
cent research has revealed the uniqueness of how mental disorder patients process different
modalities [20]. This indicates the urgency and potential of multimodal machine learning
in mental disorder detection. To understand the states of multimodal machine learning in
mental disorder detection, we conduct a scoping review to study articles from high-impact
venues for trends and techniques in detecting depression, stress, and bipolar disorder. From
the identified papers, we pinpoint several key findings to address RQ1: “What are the cur-
rent methods and fusion techniques to integrate multimodalities (e.g., video, audio, text)
in medical screenings, specifically mental disorder detection?”.

Multimodal datasets for mental disorders. The availability of datasets pertaining to the
diagnosis of mental health disorders is significantly constrained, with the vast majority of
datasets containing fewer than 300 samples. This can be attributed to the considerable diffi-
culties associated with the diagnosis of mental disorders, as well as the costs incurred in the
management, collection, and cleaning of data. Fortunately, there is a positive trend emerg-
ing with respect to the use of diverse modalities in datasets apart from classic media input
(i.e., audio, video, text, and image) to improve data availability. Specifically, 30% of the
identified datasets offer the addition of either medical-related data or behavioural patterns.
Furthermore, the increasing use of wearable and tracking devices is an optimistic sign to
enhance data collection and facilitate progress in multimodal machine learning for medical
screenings.
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Impact of the multimodal approach. Multimodal machine learning has emerged as a robust
and effective approach in the realm of medical research. Our review is proof of multimodal
machine learning potential and its effectiveness in handling medical-related problems. Our
review of 16 papers found that multimodal approaches outperformed unimodal methods in 15
cases, with performance differences ranging from 7.9 to 19.7%. Overall, using multimodal
approaches significantly improves outcomes compared to individual modalities. With the
increasing availability of medical data, this exciting development is certain to lead to more
effective multimodal machine learning technology in medical-related problems.

Multimodal machine learning trends. While reviewing high-impact articles, we identify
outstanding trends in multimodal machine learning. Regarding the modelling and optimi-
sation step, besides the use of traditional methods such as SVM, and random forest, deep
learning techniques are gaining popularity in detecting mental disorders. Convolutional neu-
ral networks are exploited in [160], and recurrent neural networks (RNNs) are employed in
[154, 153]. Several studies utilise attention-based models to explore cross-modality relation-
ships [151, 109]. While the modelling stage witnesses a wide variety of techniques, it has
been observed that traditional fusion methodologies continue to be heavily favoured for mul-
timodal fusion. In fact, more than 75% of existing studies incorporate early and late fusion,
which are recognised as model-agnostic techniques. Though these methods can be conve-
niently implemented, they often fall short of effectively capturing the intricate relationships
present between diverse modalities [84]. As such, it may be beneficial to consider exploring
novel fusion approaches to achieve more optimal outcomes.

Potential impact of cross-modality interaction. Among challenges regarding multimodal
machine learning, cross-modality interaction is an area of study about the inter- and intra-
interactions among modalities. Empirical evidence indicates that models with multimodal
interactions perform better than those without [115]. Cross-modality interaction is partic-
ularly relevant in the realm of mental health research, where data may be incomplete or
limited. Despite its potential benefits, this topic has yet to be widely adopted, as none of
the identified papers applies cross-modality interaction techniques in their studies. However,
as medical-related data is expensive to collect and the data sample size is limited, meth-
ods of capturing multimodal interactions, including parallel learning, transfer learning, and
autoencoders, are expected to play an influential role.

Implications. The review presents the audience with a scoping review to explore mental dis-
order detection as a potential area for multimodal machine learning. This scoping review is
designed to be an effective first glance into popular multimodal datasets, current state-of-the-
art performances, and current states and trends of a subset of automated medical screening,
mental disorder detection specifically. This paper, as an entry point, can equip practitioners
with the necessary understanding of the field, follow the end-to-end multimodal framework
for experiments and motivate them to further investigate.
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5.2 Autofusion: A Cross-Modality Interaction Focused

Multimodal Fusion Approach

As the world continues to evolve with more data being collected, multimodal machine learn-
ing is becoming increasingly popular. However, there are still five main challenges in this
area of research, including representation, translation, alignment, co-learning, and fusion.
Multimodal fusion is particularly important for combining different modalities, extracting
valuable compounding effects, and capturing the correlation among modalities. This infor-
mation is essential for unlocking the potential of multimodal machine learning and setting it
apart from traditional single-modality methods.

Multimodal fusion can be classified into two distinct approaches: model-free and model-
based. The former, which includes early and late fusion techniques, is model-agnostic and
pertains to non-model aspects of fusion. Early fusion is often preferred due to its ability to
enable interaction between low-level features from different modalities, potentially leading
to cross-modality correlation. Late fusion integrates the predictions of different modalities
after model training, allowing for more flexibility and the capacity to impact the training of
each modality separately. However, the implementation of late fusion necessitates training
more than one model, which can be computationally expensive and time-consuming. Model-
based techniques, in contrast to model-agnostic ones, involve integrating the fusion step into
the model’s architecture, thereby affording greater control during the fusion process.

Despite its importance, the range of multimodal fusion techniques is highly limited. This
research proposes Autofusion, a novel autoencoder-integrated approach to multimodal fu-
sion. Autoencoders have been employed in studies, and in some studies, autoencoders have
been used for cross-modality interaction as their selective compressing nature can poten-
tially extract key information and correlation of modalities. This work applies Autofusion in
detecting Alzheimer’s disease (AD), one of the most prevalent degenerative cognitive disor-
ders. We evaluate the model on DementiaBank’s Pittsburgh corpus, which is among some
largest multimodal AD datasets that offer audio and transcript samples. Our proposed frame-
work achieves a promising performance of 79.89% in accuracy, 83.85% in recall, 81.72% in
precision, and 82.47% in F1. We will discuss key observations and implications of the study
in the following sections.

Comparative analysis of unimodal and multimodal approaches. To address RQ2a: “How
effective is this framework compared to single-modality models?”, extensive research has
demonstrated that multimodal approaches tend to outperform unimodal models. This re-
search confirms that the combination of modalities consistently produces superior results,
as evidenced by the superior performance of both early fusion benchmark and Autofusion
methods compared to single-modality techniques. Specifically, the Autofusion model can
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improve performance by a significant margin of 2.2 to 7.1% relative to various unimodal
approaches. Given the vast potential of multimodal machine learning in the domain of au-
tomated medical screening, it is probable that this field will witness an increase in research
activities in the coming years.

Impact of cross-modality interaction in multimodal fusion. To address RQ2b: “How ef-
fective is this framework compared to existing multimodal fusion techniques”, compared to
other fusion alternatives, Autofusion outperforms early and late fusion considerably across
all evaluation metrics. This finding corresponds to the effectiveness of previous literature
on model-based fusion techniques. The interaction effect generated from the autoencoder-
infused component of its model is a major contributor to its success. Previous studies have
suggested the use of autoencoders portrays the potential impact of cross-modality interac-
tion terms. When used in conjunction with multimodal fusion, autoencoders can further
enhance the correlation among participating modalities. To respond to RQ2c: “How does
the cross-modality interaction impact the overall performance?”, empirical results show
that the interaction term improves the overall performance by 2-3% of the model. Although
modest, the improvement provided by the interaction term has the potential to further assist
the Autofusion technique in this research. Therefore, continued exploration and refinement
in this area could lead to significant advancements in multimodal fusion techniques. One
observation on the infusion of autoencoders, however, is that the Autofusion model stability
can be improved as the standard deviations across folds exhibit a slight increase compared
to early and late fusion.

Implications. The recent research study has substantial implications for machine learning
and medical research. The study introduces a new approach to multimodal fusion by incor-
porating autoencoders, which can be further explored to improve the current state-of-the-art.
The network architecture proposed in this study can serve as a valuable reference and bench-
mark for developing solutions for DementiaBanks’s Pitt corpus. Furthermore, the study
confirms that automated medical screening using multimodal machine learning can effec-
tively leverage the complementary effect of different data streams. This has the potential to
revolutionise chronic disease detection, as the condition is notoriously difficult to diagnose
and often takes years to identify. Healthcare professionals may find periodic tracking and
task-directed voice recording to be useful decision-making aids, and this research may pave
the way for more efficient and effective medical screening in the future.

In summary, this section discusses the findings and implications in key chapters of this work.
The following conclusion section will provide a summary of the overall research and its
contributions. We will also address the limitations of the research and discuss directions for
further study.
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Chapter 6

Conclusion

This thesis investigates multimodal machine learning, examines the current state of auto-
mated medical screening, and designs an implementation centred on multimodal fusion for
mental disorder detection, a critical area of medical screening.

6.1 Summary of Contributions

This thesis contributes in several distinct ways.

Firstly, this thesis presents a scoping review comprised of papers from high-impact venues,
including AAAI, IEEE, ACM Multimedia, and JCAI, to study the current states of mul-
timodal machine learning in mental disorder detection and fusion techniques to integrate
multimodalities. The scoping review highlights the potential of the multimodal machine
learning approach in mental disorder detection specifically and automated medical screen-
ing in general. The review includes a comprehensive list of popular datasets and frequently
visited modalities for depression, anxiety, and bipolar disorder. We then propose an end-to-
end pipeline for multimodal machine learning applications that cover recommendations over
essential steps from multimodal data collection and representation to multimodal fusion,
modelling, and evaluation. The scoping review highlights the potential yet under-explored
use of cross-modality interaction, which is a novel direction for multimodal fusion, one of
the core problems of multimodal machine learning.

Secondly, this thesis studies the use of cross-modality interaction in multimodal fusion and
validates the concept in the area of mental disorder detection. We study multimodal fusion
in more detail by proposing the Autofusion mechanism and evaluating the framework on
DementiaBank’s Pitt corpus to detect Alzheimer’s disease. Autofusion achieves a promising
performance of 79.89% in accuracy, 83.85% in recall, 81.72% in precision, and 82.47% in
F1. The technique consistently outperforms all unimodal methods by an average of 5.24%
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across all metrics. Compared to other fusion alternatives, Autofusion is recorded to perform
better than existing fusion methods (i.e., early fusion and late fusion). Especially against
the late fusion hard-voting technique, our method shows a significant difference of 20% on
average across metrics. Further, we capture the impact of the cross-modality interaction term
as its incorporation enhances the model performance by 2-3% across metrics. The proposed
approach harnesses the power of the interaction effect as a leveraging element to achieve
superior results over unimodal baselines and common fusion alternatives. This research
highlights the potential of autoencoder usage in multimodal machine learning and calls for
further research to unlock its full potential.

6.2 Limitations and Future Study

Due to resource limitations, several aspects of this thesis require further exploration. Specif-
ically, concerning the scoping review, there are opportunities to expand the scope in various
ways.

1. While the proposed pipeline is based on consistent trends identified in previous re-
search papers, it is crucial to validate this framework with empirical results. To achieve
this, we intend to conduct further experimental analyses in future studies, where the
pipeline can be utilised and benchmarked across different datasets to ensure its validity.

2. There is immense potential in broadening the review to encompass other medical con-
ditions. For example, anxiety-, substance-related, and mood disorders can be included
in an extended version. In general, the development of multimodal machine learning
has the potential to improve diagnosis times and employ under-utilised medical data
in the domain of chronic conditions.

3. The scoping review can serve as a starting point for a systematic review that cov-
ers a broader range of papers in addition to existing high-impact venues. The papers
can be sourced by query search from reliable corpora such as PubMed and Scorpus,
while the selection process will adhere to systematic review standards. Alternatively,
incorporating research from psychology and healthcare journals could be a valuable
addition to the existing body of research, providing insights into the practical applica-
tions of machine learning and technology as observed by healthcare professionals and
psychologists.

Further study can also be pursued in various directions with regards to the Autofusion tech-
nique.
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1. One aspect that could be explored is benchmarking the technique on other datasets to
validate it further and gain a better understanding of its behaviours. Potential candi-
dates for this include the ADreSS dataset from INTERSPEECH in 2020 [178] and the
ADreSSo dataset from 2021 [193], as they are balanced and cleaned versions of the
Pitt corpus, which despite its generous sample size, is imbalanced.

2. Apart from dataset choice, another possible approach for further study is experiment-
ing with a broader selection of modalities. Currently, the Autofusion model uses clas-
sic media input streams such as audio and transcript samples. However, medical data
such as physiology features and tracking data could also be incorporated into the model
to widen the range of processing methods used. This could involve more advanced
model architecture, including handling signals and scan visualisation.

In conclusion, this study emphasizes the potential application of multimodal machine learn-
ing in the automated medical screening process. With the goal of achieving a resource-
efficient and comprehensible healthcare-related diagnosis system, multimodal machine learn-
ing, in particular, and technology, in general, would become a promising component to sup-
port decision-making in medical screening.
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[150] E. Ciftçi, H. Kaya, H. Güleç, and A. A. Salah, “The turkish audio-visual bipolar
disorder corpus,” ACII Asia, pp. 1–6, 2018.

[151] A. Ray, S. Kumar, R. Reddy, P. Mukherjee, and R. Garg, “Multi-level attention net-
work using text, audio and video for depression prediction,” in AVEC, 2019, pp. 81–
88.

[152] H. Zogan, I. Razzak, S. Jameel, and G. Xu, “Depressionnet: learning multi-modalities
with user post summarization for depression detection on social media,” in ACM SI-

GIR, 2021, pp. 133–142.

[153] M. An, J. Wang, S. Li, and G. Zhou, “Multimodal topic-enriched auxiliary learning
for depression detection,” in COLING, 2020, pp. 1078–1089.

[154] C.-P. Bara, M. Papakostas, and R. Mihalcea, “A deep learning approach towards mul-
timodal stress detection.” in AffCon@ AAAI, 2020, pp. 67–81.

[155] Z. Zhang, W. Lin, M. Liu, and M. Mahmoud, “Multimodal deep learning framework
for mental disorder recognition,” in FG. IEEE, 2020, pp. 344–350.

[156] M. Rohanian, J. Hough, M. Purver et al., “Detecting depression with word-level mul-
timodal fusion.” in INTERSPEECH, 2019, pp. 1443–1447.

[157] A. Samareh, Y. Jin, Z. Wang, X. Chang, and S. Huang, “Predicting depression severity
by multi-modal feature engineering and fusion,” in AAAI, vol. 32, no. 1, 2018.

[158] Y. Gong and C. Poellabauer, “Topic modeling based multi-modal depression detec-
tion,” in AVEC, 2017, pp. 69–76.

[159] T. Gui, L. Zhu, Q. Zhang, M. Peng, X. Zhou, K. Ding, and Z. Chen, “Cooperative
multimodal approach to depression detection in twitter,” in AAAI, vol. 33, no. 01,
2019, pp. 110–117.

[160] N. Abaeikoupaei and H. Al Osman, “A multi-modal stacked ensemble model for bipo-
lar disorder classification,” IEEE TAC, 2020.



Bibliography 88

[161] X. Xing, B. Cai, Y. Zhao, S. Li, Z. He, and W. Fan, “Multi-modality hierarchical recall
based on gbdts for bipolar disorder classification,” in AVEC, 2018, pp. 31–37.

[162] Y. Yao, M. Papakostas, M. Burzo, M. Abouelenien, and R. Mihalcea, “Muser: Multi-
modal stress detection using emotion recognition as an auxiliary task,” arXiv preprint

arXiv:2105.08146, 2021.

[163] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,
and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension,” in COLING, 2020, pp. 7871–
7880.

[164] X. Zhang, J. Pan, J. Shen, Z. U. Din, J. Li, D. Lu, M. Wu, and B. Hu, “Fusing of elec-
troencephalogram and eye movement with group sparse canonical correlation analysis
for anxiety detection,” IEEE TAC, 2020.

[165] S. A. Dhedhi, D. Swinglehurst, and J. Russell, “‘timely’diagnosis of dementia: what
does it mean? a narrative analysis of gps’ accounts,” BMJ open, vol. 4, no. 3, p.
e004439, 2014.

[166] F. Haider, S. De La Fuente, and S. Luz, “An assessment of paralinguistic acoustic
features for detection of alzheimer’s dementia in spontaneous speech,” IEEE Journal

of Selected Topics in Signal Processing, vol. 14, no. 2, pp. 272–281, 2019.

[167] U. Sarawgi, W. Zulfikar, N. Soliman, and P. Maes, “Multimodal inductive trans-
fer learning for detection of alzheimer’s dementia and its severity,” arXiv preprint

arXiv:2009.00700, 2020.

[168] W. H. Organization et al., “World health organization fact sheet—dementia,” 2021.

[169] J. Vrijsen, T. Matulessij, T. Joxhorst, S. E. de Rooij, and N. Smidt, “Knowledge,
health beliefs and attitudes towards dementia and dementia risk reduction among the
dutch general population: a cross-sectional study,” BMC public health, vol. 21, no. 1,
pp. 1–11, 2021.

[170] T. A. Widiger, P. T. Costa, A. P. Association et al., Personality disorders and the

five-factor model of personality. JSTOR, 2013.

[171] J. Garre-Olmo, “Epidemiology of alzheimer’s disease and other dementias,” Revista

de neurologia, vol. 66, no. 11, pp. 377–386, 2018.

[172] Z. S. Khachaturian, “Diagnosis of alzheimer’s disease,” Archives of neurology, vol. 42,
no. 11, pp. 1097–1105, 1985.



Bibliography 89

[173] J. Weller and A. Budson, “Current understanding of alzheimer’s disease diagnosis and
treatment,” F1000Research, vol. 7, 2018.

[174] H. Dong, J. Li, L. Huang, X. Chen, D. Li, T. Wang, C. Hu, J. Xu, C. Zhang,
K. Zen et al., “Serum microrna profiles serve as novel biomarkers for the diagnosis of
alzheimer’s disease,” Disease markers, vol. 2015, 2015.

[175] A. Javeed, A. L. Dallora, J. S. Berglund, A. Ali, L. Ali, and P. Anderberg, “Machine
learning for dementia prediction: A systematic review and future research directions,”
Journal of medical systems, vol. 47, no. 1, p. 17, 2023.

[176] W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der
Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system
for gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet

Oncology, vol. 21, no. 2, pp. 233–241, 2020.

[177] J. T. Becker, F. Boiler, O. L. Lopez, J. Saxton, and K. L. McGonigle, “The natural
history of alzheimer’s disease: description of study cohort and accuracy of diagnosis,”
Archives of neurology, vol. 51, no. 6, pp. 585–594, 1994.

[178] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney, “Alzheimer’s
dementia recognition through spontaneous speech: The adress challenge,” arXiv

preprint arXiv:2004.06833, 2020.

[179] C. Pope and B. H. Davis, “Finding a balance: The carolinas conversation collection,”
2011.

[180] Y. Santander-Cruz, S. Salazar-Colores, W. J. Paredes-Garcı́a, H. Guendulain-Arenas,
and S. Tovar-Arriaga, “Semantic feature extraction using sbert for dementia detec-
tion,” Brain Sciences, vol. 12, no. 2, p. 270, 2022.

[181] K. Lopez-de Ipiña, J. B. Alonso, J. Solé-Casals, N. Barroso, P. Henriquez,
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