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Abstract

Semantic segmentation is a challenging high-level vision task and high segmentation accuracy
has been achieved with large quantities of well-annotated data. To reasonably reduce the de-
mands for extensive pixel-level annotations, researchers conduct experiments in both semi-
supervised learning (SSL) and unsupervised domain adaptation (UDA). They try to solve the
problem of training semantic segmentation models with scarce annotated data from the per-
spective of different data distributions. The former addresses the issue of limited labeled data
through knowledge transfer between data with independent and identical distributions, while
the latter focuses on reducing the gaps and transfering knowledge between data with different
distributions. Although both can alleviate the shortage of annotated data, they also face different
problems. First of all, existing SSL only considers the feedforward neural network structure and
ignores the crucial feedback mechanisms in the human visual system. This thesis investigates
whether we can introduce feedback mechanisms into current feed-forward segmentation net-
works to improve segmentation accuracy or reduce the annotation requirements. We introduce
two different feedback mechanisms and successfully depressing irrelevant background pixels by
feeding the output mask back to the input end in many cases. In terms of UDA, current self-
training-based UDA methods require a large-scale Graphics Processing Units (GPU) cluster for
training which makes it impossible to conduct experiments with a single GPU. This project takes
a multi-card state-of-the-art UDA framework as the baseline and modifies it as a single-card
framework. Meanwhile, we introduce a re-sampling strategy which focuses the model on rare
categories during training stage. Our proposed method gains similar segmentation accuracy to
state-of-the-art frameworks with less GPU RAM during training. What’s more, it significantly
outperforms other current frameworks given less computational budgets. Through the above
two aspects of research, this thesis provides a solution on how to train semantic segmentation

networks with scarce annotated data.
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Chapter 1

Introduction

1.1 Motivation

With the development of Convolutional Neural Networks (CNN), many high level computer vi-
sion tasks such as image classification, object detection and semantic segmentation have attained
high accuracy with fully supervised training approaches. Compared to image classification and
object detection, semantic segmentation is the most challenging task whose goal is to assign a
specific categorical label to each pixel in an image (i.e. classify all the pixels in the input image,
as shown in the right picture of Figure [I.1)). Given a raw image, semantic segmentation models
aim to generate a precise and reasonable pixel-wise semantic map covering both foreground and
background regions. Due to the dense scene information it gives, this task is an important com-
ponent for a wide range of applications including robotic manipulation, autonomous driving,
medical image analysis, and remote sensing image understanding. For the driving scenarios, the
pixel-wise predictions of semantics can provide autonomous vehicles with information about
driving areas (lane lines, roads) and obstacles (vehicles, pedestrians) to help them better com-
plete scene perception and path planning. Benefiting from the large-scale datasets [13}/16], many
CNN-based semantic segmentation frameworks [9,31,[39,52]] gain significant improvements on
accuracy. Given enough training data, state-of-the-art models are capable of producing high-
quality predictions. Although high segmentation performance can be achieved when large quan-
tities of annotated training data are available, labeling every pixel in images is time-consuming
and expensive. In practice, the unavailability of pixel-wise annotations of high resolution images
has been the largest and commonest bottleneck in fully supervised semantic segmentation. For
example, labeling an image with 1024 x2048 pixels in Cityscapes [13]] will take more than 90
minutes which makes it impractical to prepare large-scale and fine-grained annotations for ev-
ery semantic segmentation application. Therefore, extending the success of supervised semantic

segmentation to domains where labeled data are scarce is an important problem.

One solution to this problem is to train segmentation models with limited data annotations. In
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Figure 1.1: Illustration of pictures from the synthetic domain, real scenes domain, and
ground truth label for semantic segmentation.

semi-supervised learning (SSL), a small portion of the labeled data is used in conjunction with
large amounts of unlabeled data. Both labeled and unlabeled data are independent and identi-
cally distributed. Most recent SSL approaches are based on self-training techniques [10,[63].
These methods generate pseudo labels for unlabeled data in order to retrain the network with
more annotated data. Another solution is unsupervised domain adaptation (UDA). It aims to
adapt the model trained with a labeled source domain to an unlabeled target domain with accept-
able accuracy loss. Different from the manually annotated target datasets [I3}[16], the images
from the source domain are usually data collected from video game engines, simulation plat-
forms or rendering systems [38,/40]. These simulation tools significantly reduce the annotation
period leading to very little annotation time, about 7 seconds for a frame on average. As a result,
the challenges of UDA come from the huge domain gaps between the labeled source dataset
and the unlabeled target dataset. As shown in the left and middle pictures of Figure[I.1] the left
image comes from video game engines while the middle one is from the real scenes gathered by
sensors. They look quite different although both of them display urban road scenes. Motivated
by the development of semi-supervised techniques, self-training-based UDA methods have been
given more attention and gain improvements for segmentation [2,/58]]. These self-training-based
UDA methods achieve more significant improvements in segmentation accuracy by generating

pseudo labels for unlabeled target domain data.

There is evidence that the human visual system is not entirely feedforward but also makes use of
feedback loops between regions [17]]. The feedback mechanisms help human brains to acquire
knowledge with only a few samples. However, deep neural networks usually rely on large
amounts of data annotations. Only a few works focus on introducing feedback mechanisms to
feedforward deep neural networks in recognition tasks [6,/43]]. Most prevailing CNNs consist of
only feedforward structures without feedback mechanisms to transmit high-level information to
the low-level layers. Some works [34}/54] try to directly utilize feedback mechanisms to learn
knowledge in unsupervised manners and fail. To this end, we aim to investigate the influence of
feedback loops on fully supervised learning in order to bring their advantages to semi-supervised

learning.
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In terms of another solution to train models with scarce annotations, state-of-the-art UDA mod-
els have been widely studied and can reach high segmentation accuracy even if the real scene
data are all unlabeled. They can achieve nearly 70% of the segmentation scores that fully su-
pervised models gain. Although getting significant improvements, they require a huge number
of computational budgets during training. The long training duration and high requirements of
hardware significantly reduce the experimental efficiency and obstruct the development of UDA.
In order to solve the problem, we modify a state-of-the-art UDA framework and reduce the train-
ing requirements of computational budgets while keeping segmentation accuracy by introducing
are-sampling strategy. The proposed method also outperforms state-of-the-art frameworks given

same computational budgets during training.

1.2 Research Questions

This thesis aims to design a semantic segmentation framework that can gain high accuracy when
annotations are scarce. In order to comprehensively achieve this goal, we investigate two re-
search scenarios: whether or not the labeled and unlabeled data are in the same distribution.
The former corresponds to the field of semi-supervised learning (SSL), while the latter corre-
sponds to the research content of unsupervised domain adaptation (UDA). Through investigation
and combination of these two fields, researchers can effectively promote the learning and opti-
mization of semantic segmentation networks when data annotations are scarce. Specifically, we
propose RQ1 and RQ2 for SSL, and RQ3 and RQ4 for UDA. Here are four research questions

in this thesis.

* RQ1: Can recursive feedback mechanisms which feed mask prediction back to the origi-

nal image improve segmentation accuracy?

* RQ2: Whether the feedback mechanisms raised in RQ1 can work in semi-supervised

learning approaches where training data are relatively limited?

* RQ3: Can self-training-based UDA frameworks be trained with limited computational

resources?

* RQ4: Whether there is a significant drop in UDA accuracy when computational bud-
gets are reduced? Can we solve this problem without introducing extra requirements of

manpower and computational budgets?
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1.3

1.4

Achievements

We implement multiplicative feedback (MFB) and additional input channels feedback
(ACFB) mechanisms with feed-forward CNNs. Although the simple feedback pipelines
do not bring significant improvements to supervised learning, they can well suppress the

background pixels in most cases.

We introduce two different down-sampling methods of cropping windows into data aug-
mentation pre-processing of ProDA [58]]. Although the accuracy loss is relatively high,
these methods significantly reduce the required number of GPUs, 50%-75% of compu-
tational resources are saved compared to ProDA. Meanwhile, we analyze the reasons for

accuracy loss in order to get similar results to ProDA.

In order to reduce the decreased accuracy caused by the smaller cropping windows, we
introduce a pseudo-label-guided re-sampling strategy to focus the model on small and rare
categories. The experimental results show that this strategy can significantly improve the
segmentation accuracy on the hard categories which contributes a lot to the final segmen-

tation scores.

Finally, we come up with a UDA framework, ProDA-PLG, which requires only a single
GPU. With only 25% of the computational budgets of ProDA, it gains similar segmenta-
tion accuracy to state-of-the-art UDA frameworks, which significantly improves experi-

mental efficiency.

Overview

Chapter [1] introduces the problem and importance of this field. It also briefly points out

my motivation, research questions and achievements.
Chapter 2| presents the background of related works on research topics for this thesis.
Chapter [3| provides details about used datasets and evaluation metric.

Chapter [ introduces two different feedback mechanisms into the current segmentation

network and illustrates the experimental results.

Chapter 5| gives basic information about a state-of-the-art UDA framework and gives two
methods to reduce the requirements of computational resources. Meanwhile, we illustrate
the qualitative and quantitative analysis for these two approaches and give the reasons for

accuracy loss.
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* Chapter[6|raises a pseudo-label-guided method to mine the small and rare foreground in-

stances in order to reduce the accuracy loss caused by the reduced computational budgets.

* Chapter [/ summarizes the experiments of this dissertation and proposes future research

plan.



Chapter 2

Literature Review

This chapter shows the literature review of relevant fields of my thesis. It would gradually in-
troduce basic and state-of-the-art semantic segmentation algorithms, feedback mechanisms in
neural networks, semi-supervised learning and Unsupervised Domain Adaptation for segmenta-

tion.

2.1 Semantic Segmentation

Most currently prevailing deep neural networks for semantic segmentation are based on fully
convolutional network(FCN) [31] proposed in 2015. The high-dimensional feature maps gen-
erated by FCN don’t contain fine-grained details because of the low resolution. It is caused
by strided convolution and max pooling layers. Therefore, the accuracy of final predictions
is not sufficient. In order to keep the resolution of feature maps before the pixel-wise classi-
fier module, the encoder-decoder structures [3,39] are widely studied in which the encoder is
responsible for extracting features of images with down-sampling manners while the decoder
restores the resolution and lost information. It also contributes to aggregating the most discrim-
inative features also. Ronneberger et al. [39]] propose a simple yet efficient encoder-decoder
model, additionally using skip connections to pass information from low-level feature maps to
high-level feature maps of the decoder. U-Net++ [62] introduces deep supervision and flexi-
bly dense connections to U-Net [39]. Other remarkable works, DeepLab series [9,29], replace

the max pooling or strided convolutional layers with dilated convolutional layers in order to
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keep the resolution of deep feature maps while enlarging the receptive field. The Atrous Spa-
tial Pyramid Pooling structure allows the segmentation model to aggregate the features from
different scales which drastically expands the receptive field of models though bringing ex-
tra computation budgets. Combining the characteristics of dilated convolution [29], improved
ASPP [7, 8], encoder-decoder structure [39]] and powerful backbone [12]], DeepLabV3+ [9] has
been regarded as the most powerful and robust CNN-based model for fully-supervised semantic
segmentation task. Moreover, there are many methods gaining remarkable segmentation accu-
racy by keeping high resolution [46,52], incorporating spatial context [60] or including object
context [55,56]. Although those semantic segmentation models show powerful performance, the
pixel-wise annotation process of large-scale datasets is time-consuming and complicated. Hu-
mans can learn from only a few samples due to the sophisticated connections between neurons
in their brains [17]. In this thesis, feedback mechanisms are introduced to the fully-supervised

deep neural network.

2.2 Feedback Mechanisms for Image Classification and Se-

mantic Segmentation

Feedback connections are fundamental mechanisms in human brains and there have been sev-
eral works to introduce feedback mechanisms to computer vision tasks using RNN, LSTM or
top-down manners [|6,43,44,57]]. Feedback network [57] uses convLSTM [43] to update hidden
states with high-level features and provide feedback with input images. R2U-Net [1]] is com-
posed of a U-Net [39] where each convolutional layer is replaced by recurrent convolutional
layer [28]]. Feedback U-Net [44] is a U-Net [39] based segmentation model in which some of the
standard convolutional layers are replaced by convLSTM [43]]. Additionally, it introduces feed-
back from the segmentation predictions to the input end of the neural network. Different from
the RNN-based or LSTM-based methods, U-Net with feedback attention mechanism [49] is an
RNN-free framework utilizing standard convolutional layers to extract visual features. It uses a
feedback mechanism from the last convolutional blocks to the first convolutional blocks, feeding
the last convolutional layers back to the first ones as attention. Although those methods achieve
some accuracy improvements in a fully supervised manner, no works focus on unsupervised
learning based on feedback mechanisms. To this end, some researchers [34,54] try to directly
feed the predictions of CNNs back to the raw images in order to suppress irrelevant information.
These methods train the segmentation neural networks in an unsupervised manner and get trivial
results. Since feedback loops are proved to be useful in human visual learning, we assume that

it is more reasonable to go from fully supervised to semi-supervised experiments. For this rea-
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son, we investigate the impact of two different feedback mechanisms on semantic segmentation
models in supervised learning to verify whether feedback mechanisms can suppress background

information and explore the potential to utilize them in semi-supervised learning.

2.3 Semi-supervised Image Classification

Semi-supervised image classification has been widely studied before semi-supervised seman-
tic segmentation. Many methods, e.g., temporal ensembling [27] and mean teacher [47]], ensure
consistency over different kinds of distortions or augmentations letting the models generate sim-
ilar predictions or features with different views of the same image. By simultaneously updating
two classifier networks initialized differently, dual student [24]] imposes consistency between the
outputs from differently augmented images. These methods can be regarded as performing con-
sistency regularization. Moreover, there are many state-of-the-art methods combining consis-
tency regularization and entropy minimization together. These methods introduce perturbations
and generate artificial labels for unlabeled data, e.g., MixMatch [5]] simultaneously considering
different outputs on multiple kinds of augmented images, ReMixMatch [4]] introducing distri-
bution alignment and augmentation anchor to vanilla MixMatch [5]] and FixMatch [45]] utilizing
pseudo labels on weakly augmented images to guide the predictions on strongly augmented pic-
tures. Many of the improvements in semi-supervised image classification are then utilized in
semi-supervised or unsupervised domain adaptation semantic segmentation, which will be in-
troduced below. It is worth mentioning that the FixMatch [45] scheme has been utilized in our
baseline UDA method [58]].

2.4 Semi-supervised Semantic Segmentation

Benefiting from semi-supervised classification, consistency regularization and self-training tech-
niques are also widely studied for semi-supervised semantic segmentation. The application of
consistency regularization in semantic segmentation is to enforce the consistency of the pre-
dictions with different kinds of distortions at different levels such as input perturbations with
different augmentations [|18,25]], feature perturbations [37]] or network perturbations by train-
ing two different classifiers. Self-training techniques for semi-supervised semantic segmenta-
tion [10,/65] mainly generate pixel-level pseudo labels on unlabeled images by models trained

on labeled data after post-processing such as multi-sources fusion or filtering by threshold. The
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process can be regarded as an iterative procedure in which there are ‘generating pseudo labels’
and ‘retraining the model” in one training round. Some methods [23,|36] use the discriminator
of GAN [|19] learned for distinguishing the semantic predictions and labels to select predictions
on unlabeled data as pseudo labels instead of simply filtering by threshold. PseudoSeg [[65]]
also utilizes FixMatch [45] scheme using the pseudo predictions of weakly augmented images
to guide the strongly augmented images. Nevertheless, CPS [10] adopts two same but indepen-
dent networks, uses the predictions of each network to supervise another network and updates
them simultaneously. Although these methods gain state-of-the-art segmentation accuracy, they
only utilize feed-forward structures during training and inference. In this thesis, we explore the

possibility of using feedback mechanisms in semantic segmentation.

2.5 Unsupervised Domain Adaptation for Semantic Segmen-

tation

The predominant methods of UDA contribute to reducing the domain discrepancy by minimiz-
ing the divergence [32] or performing adversarial learning [19] at image levels [11,21], feature
levels [22,42] or output space levels [48]. Recently, some methods originating from semi-
supervised learning bring significant improvements for UDA. The entropy minimization [41},50]
and self-training [2, 58] have recently been regarded as simple yet powerful techniques for UDA
applications. To decrease the over-confident wrong predictions caused by simple entropy min-
imization, CBST [63]] utilizes an iterative pseudo labels generation scheme with a gradually
increased portion of selected pseudo labels for each category. Due to the noise introduced by
pseudo labels, CRST [64] additionally introduces regularization items at prediction and label
levels while Seg-Uncertainty [61]] explicitly generates the confidence maps of predictions to
reduce the side-effect of unstable pseudo labels. CAG-UDA [59] estimates pseudo labels ac-
cording to class centroids and performs feature alignment at the feature level. Nevertheless,
these methods are optimized in an alternative scheme in which pseudo labels are fixed in a sin-
gle training part. Recently, ProDA [58]] and SAC [2] is proposed where the pseudo labels are
updated on-the-fly. ProDA [58] incorporates prototypes to generate pseudo labels and performs
consistency regularization in latent space while SAC [2] gets pseudo labels by multi-sources
fusion of predictions from different augmentations of a single image. These state-of-the-art
methods are sensitive to batch size and image resolution, so their segmentation scores are heav-
ily dependent on the computational budgets. This leads to very bad results for training with a
single GPU. Our aim is to explore a reasonable method to reduce the requirements of computing

resources and use a method that does not introduce extra training time and computing power to
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improve the final accuracy.

10



Chapter 3

Evaluation Method

This chapter describes the used datasets and the evaluation metric in this thesis.

3.1 Datasets

3.1.1 Customized COCO2017

For the training and evaluation of U-Net with feedback mechanisms, a customized subset of MS
COCO [30] 1s utilized. The reason we use this dataset is that it contains many natural scenes
with many foreground objects and corresponding detailed annotations. The original dataset
involves 80 classes and a single image might contain multiple foreground instances belonging
to different categories. Our U-Net with feedback mechanisms framework is designed as a class-
agnostic semantic segmentation method. So we just consider 20 classes from the full dataset, re-
sample 340 images for each class and ensure all the selected images only contain one foreground
category as much as possible. The foreground categories include ’airplane’, *banana’, ’bear’,
“bicycle’, ’bird’, *boat’, ’bus’, ’cat’, ’cow’, ’dog’, ’donut’, ’elephant’, ’fire hydrant’, ’giraffe’,
“horse’, “motorcycle’, “sheep’, ’stop sign’, "train’ and ’zebra’. After selecting all the images, we
resize the raw images and ground truth labels to 224 x 224 resolution. Then we set all the pixels
belonging to the foreground category to 1 to generate binary masks for all the images. Among

those 340 images for each class, 300 of them extracted from the training set of COCO act as

11
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Figure 3.1: Illustration of images and annotations in customized COCO2017. The classes
in this figure are respectively *plane’ and ’bicycle’ in COCO2017.

training samples and 40 of them gathered from the validation set are regarded as validation sets.

Figure shows some examples of images and annotations from this dataset.

3.1.2 GTAS and Cityscapes

Our UDA for semantic segmentation framework adapts the semantic segmentation model from
synthetic source domain GTAS [38]] dataset to real scenes target domain Cityscapes [/13]] dataset.
The reason for choosing these two datasets is that they share 19 categories, which are very

common foreground and background objects in street scenes.

GTAS dataset rendered from video games engine contains 24966 training images with the size
of 1052 x 1914. We utilize 19 classes of GTAS compatible with Cityscapes, including ’road’,
’sideway’, ’building’, *wall’, *fence’, *pole’, ’light’, ’sign’, ’vegetation’, ’terrace’, ’sky’, ’per-

son’, 'rider’, *car’. ’truck’, *bus’, ’train’, 'motorcycle’ and ’bike’.

Cityscapes dataset gathered from real scenes of different cities contains 2975 training images
and 500 validation images with the resolution of 1024 x 2048. It has pixel-wise annotations
for 19 common categories same as GTAS in different European cities. We regard the training

images from Cityscapes as unlabeled data during training and evaluate our final model with
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Figure 3.2: Illustration of images and annotations in GTAS and Cityscapes. The first row
shows the images and ground truth labels in the synthetic domain (GTAS). The second row
illustrates the images and corresponding labels in the real scenes domain (Cityscapes).
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Figure 3.3: Illustration of ground truth distributions for pixels in Cityscapes. Obviously,
the class distributions in Cityscapes are pretty imbalanced. In particular, the number of pixels

belonging to motorcycle’ is especially small compared to other categories(a quarter of pixels
belonging to ’bicycle’).
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validation images from Cityscapes.

As shown in Figure the two datasets share the same categorical labeling space while data
distributions from them are not independent and identically distributed due to the illumination,
camera pose, weather and huge domain gaps between video games and real scenes. What’s
more, as shown in Figure the categories distributions of pixels in Cityscapes are extraordi-

narily imbalanced which makes it difficult to segment the pixels in UDA manner.

3.2 [Evaluation Metrics

3.2.1 Intersection over Union

Intersection over Union (IOU) is an important evaluation metric for semantic segmentation.
Similar to image classification, we can classify the predicted results of the segmentation model
into 4 different categories. True Positive (TP) means the prediction and the label for the pixel are
“positive’. True Negative (TN) represents the prediction and the label for the pixel are 'negative’.
False Positive (FP) is the wrong prediction for the 'negative’ ground truth. And False Negative
(FN) shows the label for the pixel is ’positive’ while the prediction is the wrong class. IOU can

be calculated by the equation below:

TP

I0U =
TP+FP+FN

(3.1)

In the evaluation stage, the prediction and ground truth of each pixel in each testing sample are
used to calculate the intersection and union. These results will be accumulated and used for the

calculation of the final IOU of each category.

3.2.2 Mean IOU and Frequency Weighted IOU

After getting IOU for each category, the overall segmentation accuracy of the model on the test

set can be evaluated by two metrics. Here we assume that there are K classes in the dataset. And



CHAPTER 3. EVALUATION METHOD 15

the IOU for each category can be denoted as IOUy.

One metric for the overall accuracy of the model is mean IOU (mIOU), which is the mean value
of all IOU; belonging to all categories. This metric treats each class fairly, regardless of their
proportion in the testing samples. It can be calculated as follow:

K 10U,

mlOU =
Lk

(3.2)

Another metric, named frequency weighted IOU (fwlOU), can also be used to evaluate the over-
all accuracy of the model. Different from mIOU, fwlOU uses the frequency of pixels belonging
to each category to appear in the testing samples to weigh the IOU;. Therefore, this general
metric will be biased towards those categories with a high proportion in the testing samples,

while ignoring some rare categories. It can be calculated as follow:

K
fwlOU = Y filOUy (3.3)
k=1

where f; indicates the frequency weight of category k, and ZkK:1 fi=1

For most semantic segmentation frameworks, mIOU is the main evaluation metric. But it treats
each category fairly, so when the model performs poorly on a very small number of categories,
the final mIOU will be greatly affected. For some tasks that care about the general segmentation
accuracy and do not pursue some rare categories, fwlOU will also be considered. In this thesis,

mlIOU will be calculated to evaluate the accuracy of our segmentation models.



Chapter 4

U-Net with Feedback Mechanisms

In order to efficiently utilize identically distributed annotated and unlabeled data to train seg-
mentation models, we try to introduce feedback mechanisms to the fully-supervised and semi-
supervised deep neural networks. In this chapter, we raise two research questions: 1) can re-
cursive feedback mechanisms which feed mask prediction back to the original image improve
segmentation accuracy? 2) whether the feedback mechanisms can work in semi-supervised
learning approaches where training data are relatively limited. This chapter introduces two
feedback mechanisms, multiplicative feedback (MFB) and additional input channels feedback
(ACFB) mechanisms, into a fully-supervised semantic segmentation framework. Although both
of them do not bring a significant improvement to the segmentation accuracy, they can succeed
in suppressing the background while keeping the foreground pixels in most cases. We analyze

the success and failure cases for future studies.

4.1 U-Net with Feedback Mechanisms

In order to answer the first research question, we propose a fully-supervised segmentation frame-
work combining U-Net [39], variational autoencoder [26] and two different schemes of feedback
mechanisms together. The reason we choose U-Net is that its structure is very simple and it is
not prone to overfitting. Feedback loops play a crucial role in the human visual system. If a
reasonable feedback loop framework can be established, the segmentation model will also have

the ability to learn more critical knowledge from a small number of samples. We hope to estab-

16
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multiplicative feedback
clamping the predicted
confidence to [Amyiply, 1]

UNet-Encoder bottleneck of

UNet-Decoder

Variational Auto-
Encoder branch

Figure 4.1: Illustration of U-Net with the multiplicative feedback mechanism (MFB). The
predicted hard confidence maps of the segmentation model would be clamped to [0.9, 1] before
the multiplication of original images and clamped predictions so that the irrelevant pixels are
gradually suppressed and tend to O after 7 = 10 steps.

(ResNet backbone) latent space

lish feedback mechanisms from the output end to the input end to tell the model the foreground
and background pixels it predicted in the previous step so that it can obtain better prediction
results and learning capabilities. The proposed feedback mechanisms, namely MFB and ACFB,
iteratively generate mask predictions and feed them back to the original images. Specifically,
the multiplicative feedback mechanism (MFB) directly suppresses the background pixels in the
original images while the additional input channels feedback mechanism (ACFB) regards the
generated masks as additional input channels. Back to the research question, if the proposed
feedback mechanisms can perform well in a fully-supervised manner. We can adapt the frame-
works to semi-supervised ones in order to answer the second research question. Unfortunately,
our proposed MFB and ACFB cannot improve the IOU scores in a fully-supervised manner. So

we analyze the failure reasons and the cases of generated masks in the feedback loops.

4.1.1 Multiplicative Feedback Mechanism

Figure [.1] simply illustrates the U-Net with variational autoencoder and multiplicative feed-
back mechanism. In this setting, we would run the feedforward (blue lines in Figure 4.1) and
feedback (orange lines in Figure {.T)) loops for T = 10 times. For each loop, we multiply the
original images and the output maps where all the negative pixel-wise predictions are replaced
by Amuisipty = 0.9 to gradually suppress the background. We simply utilize direct multiplication

because of the assumption that the predicted confidence in a fully-supervised learning scheme
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UNet-Encoder bottleneck of UNet-Dacadar
(ResNet backbone) latent space
Variational Auto- ;
Encoder branch

Figure 4.2: Illustration of U-Net with feedback from output end to input end as additional
input channels. The new predictions from the model in each step would be concatenated to the
original images before the next step proceeds, letting the model learn how to feed the output
back to the original images.

is relatively accurate so that we do not need to adjust it like pseudo labels in self-training. In
this combined model, the variational autoencoder performs the image reconstruction task which
is supervised with pixel-wise mean-squared-error loss and KL loss. The back-propagation of
reconstruction and KL losses can improve the discriminative ability of the image encoder. The

details of the proposed MFB are as follow:

Algorithm 1 Proposed Multiplicative Feedback Mechanism (MFB)
Input: The input batch of images, I; The height and width of input images, (H,W); The con-
stant multiplicative factor, A,,1ip1y = 0.9; The number of feedback iterations 7' = 10.
Output: The generated mask predictions M and reconstructed images I’ for input images /.
1: M,I' + model(l),
2: fort < 2to T do
3: fori< 1to H do

4: for j < 1to W do

5: M;j < M;j * Mputziplys
6: end for

7: end for

8: I+ IxM,;

9:  M,I' + model(I);

10: end for

11: return M and I’;
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4.1.2 Additional Input Channels Feedback Mechanism

Figure [4.2] displays the U-Net with variational autoencoder and feedback from output to input
end. In this scheme, we would also run the feedforward (blue lines in Figure 4.2)) and feedback
(orange lines in Figure loops for T = 10 times. Instead of multiplying original images and
clamped hard confidence maps, we introduce the feedback from the output end as additional
information entered into the model by concatenation. The reason for directly using the hard
segmentation predictions is that we hypothesize that the predictions are accurate enough and
what we need to do is to feed them back to the input end in order to let the model learn how to
combine the original images and previous predictions. The details of the proposed ACFB are as

follow:

Algorithm 2 Proposed Additional Input Channels Feedback Mechanism (ACFB)
Input: The input batch of images, /; The single channel O tensor which has the same spatial
dimension as input images, Z; The number of feedback iterations 7" = 10.

Output: The generated mask predictions M and reconstructed images I’ for input images /.
1: I, < concatenate(l,Z);
2: M,I' < model(l,);
3: fort<-2toT do

4: I. < concatenate(I,M);

5

6

7

M,I' < model(l,);
. end for
- return M and I’;

4.2 Experiment

4.2.1 Implementations

As mentioned in Chapter E], the dataset we select is a customized subset of MSCOCO [30]. We
select 20 classes as the foreground objects. And 300 images for each category are sampled for
training while 40 images are selected for testing. This project is conducted on a Tesla V100
GPU whose memory is 16 GB with PyTorch 1.6 implementation. We utilize U-Net [39]] for the
semantic segmentation model with the backbone ResNet-18 [20]. All the images are resized
to 224 x 224. For both multiplicative and additional input channels feedback mechanisms, we

select Adam optimizer with initialized learning rate as 0.0005 which is decayed by 0.8 every 20
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Model mlIOU

U-Net 82.11
U-Net with MFB  79.64
U-Net with ACFB  82.14

Table 4.1: Comparison results of cus-
tomized MSCOCO segmentation in terms
of mIOU (U-Net, U-Net with MFB and U-
Net with ACFB). The best score of each
column is highlighted.

Model mIOU

DeepLabV2 83.19
DeepLabV2 with MFB  80.35
DeepLabV2 with ACFB 83.21

Table 4.2: Comparison results of cus-
tomized MSCOCO segmentation in terms
of mIOU (DeepLabV2, DeepLabV2 with
MFB and DeepLabV2 with ACFB). The
best score of each column is highlighted.

epochs. The weight decay is set to 0.0002.

4.2.2 Experiment Results

We conduct experiments on U-Net with multiplicative feedback (MFB) and additional input
channels feedback mechanisms (ACFB) compared to standard U-Net. As shown in Table[d.1] the
proposed MFB and ACFB cannot bring significant improvements in accuracy on segmentation.
What’s worse, the U-Net with multiplicative feedback (MFB) shows an IOU drop of 2.47 mIOU.
Compared to the standard U-Net getting 82.11 mIOU, the U-Net with multiplicative (MFB) and
additional input channels feedback(ACFB) mechanisms respectively get 79.64 and 82.14 mIOU.
The 10U drop of U-Net with MFB may result from directly suppressing the background pixels
in the input images. Some high-level visual features(e.g., global context, relations between the
foreground and background pixels) are lost because only foreground pixels remain. And in some
cases, these visual clues play an important role in the segmentation process. So for future studies
of the MFB, we can consider to suppress the background pixels in the feature space according
to the predicted masks. Since each point in the features maps have aggregated enough local
features, suppressing the background and highlighting the foreground pixels in the feature space
can eliminate irrelevant information while keeping the global context of the images. In terms
of the U-Net with ACFB, it shows similar IOU scores compared to the standard U-Net. And
the predicted masks in each iteration are nearly the same as each other, indicating that directly
concatenating the predicted masks and input images is not a proper feedback mechanism. In
addition to U-Net, we also integrate the two proposed feedback mechanisms into the DeepLabV?2
[7]. As shown in Table the impact of these two feedback mechanisms on DeepLabV2 is
overall consistent to their impact on U-Net.

In addition to the quantitative analysis on mIOU, we also show a lot of qualitative analysis on
U-Net with MFB. Figure 4.3 4.4 4.5 [.6] respectively illustrate the inference process of U-Net
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Figure 4.3: Illustration of good cases with multiplicative feedback. The first column contains
respectively original image and ground truth labels. The following columns represent images
and predictions in different time steps.

Figure 4.4: Illustration of normal cases with multiplicative feedback. The first column con-
tains respectively original image and ground truth labels. The following columns represent
images and predictions in different time steps.

with MFB on different testing images step-by-step. We can observe as the time step iterates,
what predictions the model will produce and how it will affect the input image of the next time

step.

Figure 4.3| shows a good case that MFB helps the model eliminate wrong predictions. The U-
Net model cannot distinguish the foreground pixels well at the first iteration. There are some
false positive (FP) pixels on the right of the polar bear. But with the iterative variation of the

original images, the background pixels are suppressed and only pixels belonging to the polar

bear are kept finally. The predictions are good in this kind of variation. However, in most cases,

Figure 4.5: Illustration of bad cases with multiplicative feedback. The first column contains
respectively original image and ground truth labels. The following columns represent images
and predictions in different time steps.
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Figure 4.6: Illustration of very bad cases with multiplicative feedback. The first column
contains respectively original image and ground truth labels. The following columns represent
images and predictions in different time steps.

Figure 4.7: Illustration of normal cases with additional input channels feedback. The first
column contains respectively original image and ground truth labels. The following columns
represent images and predictions in different time steps.

the iterative variations are similar to that shown in figure .4} in which the false positive pixels
are kept so that the pixels belonging to FP samples would be retained after the last iteration.
Moreover, Figure 4.5| and Figure show what happens in a few hard cases. Because of some
false negative predictions (FN) predictions, the information about the brown dog in Figure .5
is gradually missed as the iterative process proceeds. At the end of the iterations, the pixels con-
taining the dog disappear a lot so that the model cannot distinguish the dog at all. In Figure §.6]
the situation is much worse that the model cannot distinguish the foreground at the first iteration
so that the wrong pixels are retained and taken into consideration permanently. These bad cases
lead to the decreased 10U scores of U-Net with MFB.

We also show an example of the iterative predictions of U-Net with additional input channels
feedback (ACFB) mechanism, as shown in Figure The binary prediction at each iteration is
almost constant. In other words, the number of iterations of time steps in ACFB does not affect
the prediction of the model. And the final mIOU of U-Net with ACFB is nearly the same as that
of the standard U-Net (82.14 vs 82.11). It means that simply concatenating the images with the

mask predictions of the previous iteration cannot bring significant improvements.
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4.3 Conclusion

In order to answer the first research question, we introduce two different feedback mechanisms,
namely MFB and ACFB, into a fully supervised segmentation framework, U-Net. According
to the experiment results, U-Net with MFB can successfully suppress the predicted background
pixels with the iterations proceeding. However, in many cases, the false positive pixels remain
while only in a few images they are filtered in the iterations. Meanwhile, the lost global context
in some cases may lead to wrong mask predictions, which makes the final mIOU lower compared
to the standard U-Net. In terms of U-Net with ACFB, the mask predictions are the same as those
of U-Net. It proves that concatenating the segmentation maps from the previous iteration and
input images is not a proper feedback mechanism. The feedback mechanisms from the output
end to the input end do not work well in fully supervised segmentation. How to add a suitable
denoising strategy to the feedback mechanism is a topic worthy of study in the future. In the
remaining part of this thesis, we will introduce in detail how to use scarce annotated data to train

segmentation models through knowledge transfer between data with different distributions.



Chapter 5

ProDA with Limited Computational
Budgets

Unlike semi-supervised learning (SSL), which pays attention on knowledge transfer between an-
notated and unlabeled data with the same distribution, unsupervised domain adaptation (UDA)
focuses on knowledge transfer between labeled and unlabeled data with different distributions. It
addresses the challenge of limited annotations when training semantic segmentation models by
mitigating discrepancies among various image domains. Therefore, the second half of this the-
sis focuses on the study of UDA methods to reduce the heavy reliance of segmentation models
on data annotations. In this research field, self-training-based methods have achieved signif-
icant improvements in segmentation accuracy by generating pseudo labels for unlabeled data
and denoising them. However, the segmentation accuracy of self-training-based UDA frame-
works highly depends on the computational budgets. This raises the bar for experimentation
and limits efficiency. So in this chapter, a research question is raised: Can self-training-based
UDA frameworks be trained with limited computational resources? This chapter introduces ba-
sic knowledge of a state-of-the-art self-training-based UDA framework, ProDA [58]. To answer
the research question, we introduce two strategies into the original data augmentation pipeline
in ProDA to reduce the huge requirements of computing resources during training. The pro-
posed ProDA-HR and ProDA-LR succeed in reducing the computational budgets but exhibit

some problems which will be solved in Chapter [6]

24
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5.1 Preliminaries of ProDA

5.1.1 Self-training Based UDA Segmentation

In section[5.1] ProDA [58]] is introduced since it is a state-of-the-art UDA framework and we uti-
lize it as a basic model of our work. In order to unify the mathematics symbols of this thesis, we
uniformly use x; to denote labeled data or data from source domain, and x; to represent unlabeled
data or data from target domain. Given labeled dataset .25 = {xs} * ; with corresponding ground
truth labels %; = {yS}J 1>

perform well on the unlabeled dataset Z; = {x,};f’zl without accessing target ground truth labels

we aim to train a semantic segmentation model learned from 2 and

%, in which % and % share the same K categories. Typically, the semantic segmentation model

h = go f can be regarded as the combination of a backbone f and a classification module g.

Generally, the source network we get cannot generalize to unlabeled target data because of the
domain discrepancy. To transfer the learned knowledge from labeled data to unlabeled data,
conventional self-training-based methods CBST [63]] and CRST [[64]] train the models with a

standard cross-entropy loss under the supervision of pseudo labels y;:

—Hi‘,i" 1og( )) (5.1)
(i)

where p, = h(x;) and p,”" denotes the activated soft-max probability of pixel x/ belonging to
the kth category. Generally, we use the class with the highest confidence prediction for each

pixel as pseudo labels:

1, if k=argmaxy pt(i’k,)

A(ik) 59
Y {0, otherwise 62

Here this transform can be denoted by §; = & (p;). Intuitively, directly leveraging the pseudo
labels cannot gain good sgementation results because the pseudo labels are noisy. So researchers
tend to select the pixels whose predicted confidence is higher than a threshold to retrain the
models. Following this setting, the networks in target domain can learn from well-classified
pixels, and then the updated pseudo labels with new predictions and thresholds can be used for

the next stage.
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5.1.2 Pseudo Labels Denoising Scheme

In our baseline, ProDA [58]], the pseudo labels are updated online because updating pseudo la-
bels after one training round are too late as the model has already over-fitted the noisy labels,
while simultaneously updating the network parameters and pseudo labels is easy to get trivial
solutions. So ProDA [58] freezes the initial pseudo labels generated by source model and grad-
ually weights them by category-wise probabilities @; which are calculated before each iteration
in conjunction with newly updated knowledge. So the weighted pseudo labels on the fly can be

calculated as:

yt(i,k) —¢ ( t(zpk) P,(fbk)> (5.3)
(i.k)

where @, " represents the weight for modifying frozen pseudo labels and pi’](‘) is the fixed pseudo

labels generated by source model.

Let f (xt)(i) denote the feature of x; at index i, f (x;)(i) represent the feature of x; at index i
generated by an exponentially weighted moving average (EMWA) model referred to momentum
encoder of feature extractor f, n(k) are the prototypes which represent categorical centroids in

feature space.

o ([F@ -] /)
L e (—||F @)Y @) /1)

where 7 is the softmax temperature usually set to T = 1. The assumption is that the momen-

(5.4)

tum feature extractor f can generate more stable and independent predictions rather than the
learnable model f. By calculating the distances between prototypes and features generated by a
momentum feature extractor, we can use the distances to weight the fixed pseudo labels on-the-
fly instead of directly retraining the network with noisy pseudo labels. The denoising process of
pseudo labels is shown in Fig
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Figure 5.1: Visualization of pseudo labels denoising process.

5.1.3 Prototypes Calculation and Updating

Here comes the strategy for initializing and updating prototypes. According to the proposed
label updating scheme [58]], we require to compute the prototypes online. At the beginning of
training, the prototypes n(¥) are initialized as the average of features filtered by the pseudo labels

v for all the images from target domain:

| Teen Bif ()51 (5% =1)
C Eeenmia (M ==1)

where 1 is indicator function. In practice, the calculation is time-consuming during training

n® (5.5)

which makes it impossible to update the prototypes on the whole target dataset. To solve the
problem, the prototypes are evaluated as the moving average of class centroids in mini-batches.

And in each iteration, the prototypes are updated by:

n® an®+ (1 -a)n'® (5.6)

where )/ (k) denotes the mean features of specific category k calculated with the current batch
from momentum encoder. The momentum coefficient is set to 0.9999. And the shape of pro-
totypes is [Mejasses 1 features]| WhEre M fequres is set to 256. So the prototype for each category is
a 256-d vector which corresponds to the depth of output feature maps from feature extractor f

and momentum feature extractor f.
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5.1.4 Loss Function

After getting predictions and weighted pseudo labels, ProDA [58]] uses symmetric cross-entropy
loss [53] instead of standard cross-entropy loss to further enhance the noise tolerance to stabilize

the early training phase:

Eéce = agce (ptayAt) + ﬁgce ()%Pt) (57)

where a and 3 are balancing coefficients and set to 0.1 and 1 respectively [53].

Besides the cross-entropy loss on source images and symmetric cross-entropy loss on target
images, there are 2 items involved in the final objective function. Because of the domain gap,
the target distribution generated by feature extractor is more likely to be dispersed so that the
prototypes cannot succeed in rectifying the labels of pixels whose features lie at far end of cluster
centroids even if the general target features can be well classified by source model. ProDA
[S8] aims to learn the underlying structure of target domain and obtain a more compact latent
space that is friendly to the pseudo labels refinement. It utilizes generated features under weak
augmentation to guide the learning for the strong augmented view of x;. Concretely, let .7 (x;)
and .7'(x;) denote weakly and strongly augmented view for x; respectively. We can compute

the weak prototypical assignments 7 and strong prototypical assignments z 5 by:

o (=77 @»®—n®] /z) 58

zwexp (| 7(7 ()" =0 /2)

/7)
/7)

Since z# is more stable and the input x; suffers from fewer perturbations, we use it to guide

z(i’k) B exp <_ Hf(gl (Xt)>(i) _ n(k)‘
7 L ([ -

(5.9

learnable feature extractor f to generate consistent assignments for strongly augmented images:

Uy =KL(z7|]z77) (5.10)
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This equation can help the model make consistent prototypical labeling leading to more compact

latent space in target domain.

Since Equation [5.10| may result in compact feature space, some minor categories might become
empty. A regularization term is introduced letting the predictions of the models be smoothly
distributed:

HxW K (i)
lreg = — Zl leogpt’ (5.11)
=1 j=

Finally, We can retrain the model with the final objective function:

Ciotal = Loe+ Lice + Y14y + V2l (5.12)

where the y; and 9 are set to 10, 0.1 respectively.

5.2 ProDA Trained with Limited Computational Budgets

As mentioned in Chapter |1} self-training-based UDA models for semantic segmentation need
a huge number of computational resources and a large amount of time to train. For example,
the duration of each training stage of ProDA [58] is more than 40 hours with 4 Tesla V100
whose memories are no less than 16GB in total while SAC [2] also needs 4 TitanX to train
the models whose backbone is ResNet-101 [20]. Our goal is to train the self-training-based
segmentation network with fewer computing resources such as training the network with only a
single GPU whose memory is 16GB without a significant drop in IOU scores. To adapt to the
limited computational budgets, we attempt to use two modified pre-processing methods to make

the training stage executed with only one card.

In Section[5.1] we concretely describe the training process and objective function of ProDA [58].
And in this section, we will introduce two modified pre-processing methods to decrease the
required number and memories of GPU cards. The data pre-processing method of ProDA [58]]

is composed of random scaling, cropping and horizontal flipping. We propose two variants
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Method Cropping Size Resolution | Receptive Field

ProDA [Hcropping7 Wcropping] RProDA F ProDA
ProDA-HR [Hcropping / 27 Wcropping/ 2] RpropaA Fpropa / 4
ProDA-LR [Hcropping/ 27 Wcropping/ 2] RProDA / 4 F ProDA

Table 5.1: Comparison of the different pre-processing methods.

of the original setting to save the memory usage of the GPU. The first method, ProDA-HR
(high resolution) is to fix the scale of the original images and directly decrease the cropped
windows’ size by a factor of 0.5. Intuitively, that would make the memory requirement of the
GPU decrease to a quarter of the original one so that we can train the model with only one card.
The fine-grained details in raw images are kept while the smaller cropped patches would not
cover large spatial areas as the original ones. Therefore, we can automatically think of another
method. The second method, ProDA-LR (low resolution), is to down-sample the original images
by a factor of 0.5 before generating the smaller cropped training samples with the same size as
those from ProDA-HR. Different from ProDA-HR, it can keep the general spatial information,
but lose fine-grained details because of the down-sampling process of original images. Those
two methods can generate training samples with a size of [Hcmppmg / 2, Weropping/ 2] so that we
can optimize the model with one single GPU instead of 4 cards. And the cropped windows
sampled by these two methods represent two different aspects compared to the original ProDA,
receptive fields and fine-grained details. Table illustrates the difference between cropped

windows under different pre-processing strategies.

5.3 Experiment

5.3.1 Implementations

GTAS [38]] and Cityscapes [13]] are separately selected as the annotated source and unlabeled
target datasets. The purpose of this experiment is to adapt the knowledge learned from GTAS
to Cityscapes without accessing the ground truth. We use DeepLabV?2 [7]] for the semantic seg-
mentation model with the backbone ResNet-101 [20]. Before self-training proceeds, we utilize
single-level AdaptSegNet [48]] to perform adversarial learning at the output space level as the
warm-up stage. During self-training-based optimization, we choose SGD optimizer with initial-

ized learning rate as 0.0001 which is decayed by 0.9 every epoch. The total epochs are 84 while
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75.8 16.8 77.2 125 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 264 49.9 17.2 259 6.5 253 36.0| 36.6 +0.0
86.5 259 79.8 22.1 20.0 23.6 33.1 21.8 81.8 259 759 57.3 262 76.3 29.8 32.1 7.2 295 32.5| 41.4 +48
86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 279 73.6 649 19.0 65.0 12.0 28.6 4.5 31.1 42.0| 42.7 +6.1
87.0 27.1 79.6 27.3 23.3 283 35.5 24.2 83.6 27.4 742 58.6 28.0 76.2 33.1 36.7 6.7 319 31.4| 432 +6.6
89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 385 44.5 1.7 31.6 32.4| 455 +89
91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 852 31.6 46.1 6.5 254 37.1| 50.1 +13.5
91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 839 342 80.9 53.1 24.0 82.7 30.3 359 16.0 259 42.8| 459 +9.3
MRKLD 91.0 55.4 80.0 33.7 21.4 37.3 329 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3| 47.1 +10.5
CAG_UDA 90.4 51.6 83.8 34.2 27.8 38.4 253 484 854 382 78.1 58.6 34.6 84.7 21.9 42.7 41.1 293 37.2| 50.2 +13.6

Source -
1
1
1
1
4
1
1
1
Seg-Uncertainty | 1 |90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 349 522 1.7 29.0 44.6| 50.3 +13.7
2
4
4
1
1

AdaptSegNet
CyCADA
CLAN

ADVENT
FADA
CBST

IAST 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 849 32.9 88.0 62.6 29.0 87.3 39.2 49.6 232 34.7 39.6| 515 +149
SAC 90.4 539 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3| 53.8 +17.2
ProDA 91.6 51.8 83.1 41.8 35.7 40.1 44.1 43.4 87.1 43.3 79.6 66.5 31.6 86.8 40.8 532 0.0 45.6 52.8| 53.6 +17.0
ProDA-HR 90.5 57.3 80.6 43.0 32.6 41.3 43.4 474 864 364 814 66.7 27.4 86.7 355 48.6 0.0 8.1 50.1| 50.7 +14.1
ProDA-LR 92.1 543 81.8 32.5 25.7 45.2 34.2 40.8 84.9 30.3 76.7 68.2 22.1 87.6 31.9 393 0.0 24.5 53.3| 48.7 +12.1

Table 5.2: Comparison results of GTAS5— Cityscapes adaptation in terms of mloU. These
quantitative results of other UDA frameworks are taken from papers of ProDA [58]] and SAC [2].
The number of GPUs for different methods is collected via GitHub. If the same method presents
different scores in these two papers, we show it with the higher score. The best score for each
column is highlighted.

the weight decay is set to 0.0002. Before training, the soft pseudo labels and initialized pro-
totypes are pre-generated. In terms of the strong augmentation for consistency regularization,
we select RandAugment [14] and CutOut [15]. For the weak data augmentation, the original
based scaling size is 2200 with random factor from 0.5 to 1.5, and the original cropping size is
512 x 896. In order to save computational resources, ProDA-HR and ProDA-LR vary the crop-
ping size directly to 256 x 448. Different from ProDA-HR, ProDA-LR sets the based resolution

of raw images as 1100 in order to gain a bigger receptive field though losing fine-grained details.

5.3.2 [Experiment Results

We compare the official ProDA [58]] ProDA-LR and ProDA-HR with multiple famous and state-
of-the-art methods. They can be divided into two types: 1) GAN-based methods which uti-
lize adversarial learning to align the distribution, including AdaptSegNet [48]], CycADA [21]],
CLAN [33]], ADVENT [50], FADA [51]; 2) self-training based methods, including CBST [|63]],
MRKLD [64], CAG_UDA [59], Seg-Uncertainty [61], IAST [35], SAC [2].

As shown in Table [5.2] the official ProDA method reaches state-of-the-art accuracy, 53.6 mIOU
(without the knowledge distillation which can gain 4.0 mIOU additionally), outperforming all
the methods on UDA from GTAS to Cityscapes task except SAC [2]. In terms of the categorical
10U, the official ProDA, ProDA-HR and ProDA-LR achieve the best IOU in 6 categories among

19 classes in Cityscapes. And especially they gain the highest score on some small categories
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such as ’fence’, ’pole’, ’person’, 'motor’, and ’bike’. Moreover, the high scores also occur on
important and dynamic categories for autonomous driving such as ’person’, ’car’, ’truck’, ’bus’,
’motor’, and "bike’. According to the table, we can find that even if the computational resources
are reduced, our ProDA-HR and ProDA-LR can gain outstanding IOU scores compared to other

state-of-the-art methods given the same GPU.

However, the models trained with smaller cropped windows cannot recognize a few specific cat-
egories well. For instance, the ProDA-HR gets similarly fine-grained input images with smaller
receptive fields corresponding to the original images compared to official ProDA settings. It
cannot perfectly distinguish the ’terrace’, ’rider’, ’truck’, bus’ and motor’ compared to the
original setting. What’s worse, the *'motor’ category is ignored completely by the ProDA-HR.
In another word, the *'motor’ category vanishes in the latent space. It results from the fact that
the “motor’ category is rare in the target domain. And the ProDA-HR samples a much smaller
cropped window than the original ProDA which makes it much harder to let the model ’see’ the
’motor’ category. That’s why the IOU score of the "'motor’ class is low while testing, leading to

lower overall segmentation accuracy and higher risk when guiding an autonomous vehicle.

The issues about the discriminant ability of the “motor’ category still exist in ProDA-LR but
are much better than in ProDA-HR. Although ProDA-LR cannot get as high IOU score on the
’motor’ as the original ProDA, it can gain similar one compared to other state-of-the-art models.
What’s more, it can gain high IOU scores on more than half categories (e.g. ‘road’, ’sideway’,
“building’, ’pole’, ’vegetation’, *person’, 'car’ and ’bike’) which are even better than original
ProDA. This phenomenon proves that the training results of half of the classes in Cityscapes do
not rely on high resolutions of raw images. Unfortunately, for some of the categories (e.g. "wall’,
“fence’, traffic light’, ’sign’, ’truck’ and ’bus’), the lost fine-grained details during training

would lead to significant accuracy drop which lowers the final IOU scores.

These problems above are what we should solve in Chapter[6] In the rest part of this chapter, we
will do qualitative research for ProDA-HR which will be used in Chapter [6]

As shown in Figure [5.2) and Figure [5.3] we can find that even though the pre-generated fixed
pseudo labels would contain noises, the occurrence of prototypes can correctly denoise the
pseudo labels generated by the source model. And after long-term training, the trainable model
exceeds the slowly updated momentum moving average model. In conjunction with the IOU of
the trained model, we can get the conclusion that ProDA can be successfully trained with limited
computational budgets, getting high IOU scores except few categories compared to that trained
with 4 Tesla V100 cards.
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original

stagel prediction:0.87

fixed Ipsoft:0.83 weighted 1p:0.88

B road 0.98 0.97 sign 0.40 0.33 B cor 0.94 0.96
B sideway 0.27 0.19 B vege 0.910.90 El truck 0.000.00
I building 0.91 0.89 terra  0.00 0.00 I bus nan nan
Bl wall nan nan B sky 0.86 0.82 Il train nan nan
fence nan 0.00 B person 0.56 0.56 Bl motor 0.15 0.55
pole 0.190.10 I rider 0.000.00 I bike 0.330.49

light nan nan

Figure 5.2: Illustration of predictions, fixed pseudo labels, weighted pseudo labels. From top
left to bottom right, each image represents the original image, ground truth labels, predictions
of the model, pre-generated fixed pseudo labels, and weighted pseudo labels after denoising. In
the legends, the columns respectively represent the color of each category, the name of each cat-
egory, the IOU of each category from the moving average model, and the IOU of each category
from the trainable model.

Figure 5.3: Illustration of the weights for denoising the fixed noisy pseudo labels. From
the top left to the bottom right, each heat map represents the weight of a specific category for
denoising the pre-generated fixed pseudo labels.
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Figure 5.4: Illustration of training curves of original ProDA and ProDA-HR. The orange
curves represent the original ProDA, and the blue curves represent ProDA-HR. The y-axis of
the second picture is the overall loss of ProDA while those of other pictures are the absolute

10U values.

Finally, we will illustrate the training curves of the original ProDA and ProDA-HR. As shown
in Figure [5.4] the mIOU of ProDA-HR is lower than the original ProDA because of the much

smaller cropping size, but the curves also show that ProDA-HR can converge well except in the

‘motor’ category. It results from the bad recognition ability of motorcycles caused by missing

pixels belonging to the motor’ during training. With training proceeding, ProDA-HR gains

higher IOU scores on "wall’, ’sideway’ and ’pole’ compared to the original ProDA. Meanwhile,

it can keep a similar ability to recognize many categories.
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5.4 Conclusion

In this chapter, we propose two different strategies to decrease the requirements of computational
budgets of state-of-the-art ProDA [38]]. These two methods are proven to be efficient and ProDA-
HR can gain higher accuracy than that of state-of-the-art frameworks when given the same
GPU. The problem of missing the 'motor’ class in the proposed ProDA-HR results from the
fact that 'motor’ is scarce and small in the imbalanced target dataset. Although PorDA-HR
confronts the problem of losing 'motor’ category, it answers the research question raised in
the introduction. By introducing a proper sampling strategy, we can save three-quarters of the
required computational budgets of self-training-based UDA frameworks with an acceptable IOU

drop. And the long-tail recognition problem is solved in the next chapter.



Chapter 6

ProDA with Pseudo-Label-Guided
Re-sampling Strategy

In the previous chapter, we introduce ProDA-HR and ProDA-LR to decrease the requirements of
computational budgets during training. The experimental results show that the proposed ProDA-
HR saves 75% computational budgets during training and outweighs state-of-the-art UDA seg-
mentation models given the same GPU. Since the target dataset is imbalanced and some objects
are scarce and small in size, a few categories vanish in the latent space when the training process
proceeds. So we raise a research question here: can we solve the problem of vanishing categories
when computational budgets are reduced without introducing extra requirements of manpower
and computational budgets? In order to solve the long-tail recognition problem, this chapter
introduces a pseudo-label-guided (PLG) re-sampling strategy into ProDA-HR. Without extra
manpower and computational resources, our ProDA-PLG trained with limited GPUs can get a
similar segmentation accuracy to ProDA trained with 4 GPUs. With 25%-50% computational
resources, the ProDA-PLG solves the problem of low accuracy on rare and small categories by a
wiser hard-sample mining algorithm, leading to significant improvements in saving GPU RAM

and increasing IOU scores over state-of-the-art methods given the same GPU.

36
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raw image ground truth

ProDA without PLG ProDA with PLG

Figure 6.1: Illustration of evaluation results of ProDA-HR with random cropping strategy
and ProDA-HR trained with our pseudo-label-guided re-sampling strategy. The orange
boxes highlight the confusing area containing overlapped motor’, ’bike’ and ’rider’ classes.
The ProDA-HR cannot distinguish the difference between 'motor’ and ’bike’ while the ProDA-
PLG can generate more accurate predictions compared to the former one.

6.1 ProDA with Pseudo-Label-Guided Re-sampling Strategy

As described in the previous chapter, both of these two down-sampling strategies have disadvan-
tages. For the ProDA-HR, we can keep the fine-grained details in raw images during training.
But the down-sampled cropped windows are too small so it is difficult to cover some small and
rare foreground instances such as 'motor’. With the iterations proceeding, some small and rare
categories disappear in the latent space, leading to extremely low IOU scores while evaluation
(as the bottom left picture shown in Fig[6.T). As for the ProDA-LR, the training samples cropped
on the down-sampled raw images can cover larger receptive fields which makes it possible to
mine the hard samples and objects compared to the ProDA-HR. However, the lost fine-grained
information caused by the down-sampling strategy would lead to a significant accuracy drop on

many categories which rely on the fine-grained details in high-resolution raw images.

Actually, it is hard to make a trade-off between hard sample mining and image resolution by
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simply altering the resolution of raw images and cropped windows. Since image resolution and
high-frequency information are crucial to semantic segmentation models, this chapter will focus
on how to mine difficult sample information that disappears due to the use of smaller crop-
ping window in ProDA-HR. Therefore, we propose a pseudo-label-guided re-sampling strategy
namely PLG in order to force the data loader of the CNNs framework to focus on the hard and
rare patches of pixels. Because lacking the annotations in target domains, we do not train an ob-
ject detector for real scenarios as sampling priors. The proposed method of re-sampling strategy
is to utilize the warm-up model in ProDA [58]] which is responsible to generate fixed pseudo-
labels during training. The generated fixed pseudo-labels can find the approximate positions of
every category in images although the details are not precise enough. We will use them as prior
information to guide the re-sampling strategy to mine the hard and rare samples in the target

domain during training.

In the following sections, the pseudo-label-guided (PLG) re-sampling strategy is introduced in
both text and algorithm.

Algorithm 3 Proposed PLG Re-sampling Strategy
Input: The selected priority queue for rare categories in target domain, Q,; The number of
selected rare categories, Ni; The set of unlabelled target images (full size) for the current
batch, X;; The set of soft pseudo labels (full size) for the current batch, F;;
Output: The set of pairs including cropping windows containing rare categories and corre-
sponding pseudo labels for training, B, = (X,,P;);
X < |]
P+
for each image and pseudo label (x;, p;) € (X, F;) do
Find the rarest pixel p,qress € pr according to Q) and regard it as the center point;
Crop the image patch around the pygpes in (x;, p;) with random offsets to generate a
cropping window x, and its corresponding pseudo label p,;
X, < concatenate(Xy,x,);
P, < concatenate(P,, p;);
end for
B, + (X, P,)
10: return B,;

DA

R N

Before training, we regard N, categories to be the hard classes with sequential priority in a
priority queue Q,. In this setting, Nj is a hyperparameter representing the length of priority
queue Q,. The selected classes and the order in Q) can be decided in two ways. A) One way
is based on manual selection. For example, we can manually select N, categories belonging to
dynamic foreground objects which are important in autonomous driving scenes and set the order
of these classes in Q,, according to the importance of different classes for self-driving vehicles.
B) Another solution is to choose Ny categories and the order in Q), by prior information such as

the fixed pseudo labels generated by the source warm-up model in ProDA [58]]. Since the target
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Cropped Windows without PLG Guidance Cropped Windows with PLG Guidance

Figure 6.2: Illustration of training windows to be cropped without/with our re-sampling
strategy. The red boxes represent the cropped windows for training. The green boxes highlight
the position of defined rare classes. The comparison of the cropped windows with/without our
proposed PLG method shows that the PLG method can solve the long-tail recognition problem
for the imbalanced dataset by focusing more on specific categories during training.

dataset is imbalanced in 19 categories. We can run the warm-up model on the unlabeled target
dataset to generate pseudo-labels and count the number of pixels belonging to different classes
in all generated target semantic maps. Assuming that we take N, categories as rare categories,
the categories’ priority in Q, can be determined according to the number of predicted pixels
belonging to specific rare categories. The fewer pixels that are predicted to belong to a rare
class, the higher the priority of that class in the queue Q). Because a smaller number of pixels
in output space means that the class is less numerous in the target domain or the warm-up model
cannot recognize it well. In this way, we can leverage the prior information of the unlabeled
target domain to tackle the long-tail recognition problem without accessing the labels. And the
rest of the classes not belonging to the O, share the equally lowest priority because they are

categories not important in the target domain or easy to learn by UDA methods.

After deciding the Q) and Ny, the proposed PLG method directly affects the data loader during
training. The data loader of ProDA-PLG tends to sample "hard’ areas with priority according
to the O, and generated pseudo labels. And it can perform hard-sample mining to tackle the
long-tail recognition problems by cropping windows covering rarer categories compared to the

uniformly random cropping strategy. Even though sometimes the "hard’ cropped windows sam-
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pled by this PLG re-sampling strategy do not actually contain the small and rare categories, it
would not do harm to the final training results compared to random cropping sampling. What’s
more, the model and data are calculated on GPU while the proposed PLG method only affects
the training data loader which utilizes CPU only, so the proposed method does not introduce
extra running time also and can significantly mine the hard samples. Algorithm [3| provides a

brief overview of how PLG works during training.

6.2 Experiment

6.2.1 Implementations

The task and used datasets of ProDA-PLG (ProDA-HR with pseudo-label-guided strategy) are
the same as those of ProDA-HR and ProDA-LR. GTAS [38] and Cityscapes [13] are separately
selected as the annotated source and the unlabeled target datasets. The purpose of this experi-
ment is to adapt the knowledge learned from GTAS to Cityscapes without accessing the ground
truth. In terms of the re-sampling method, we manually set the number of mining categories Ny
to 2 and only select 'motorcycle’ and "bike’ to be the rare categories with first and second high-
est priority because the number of pixels belonging to *'motor’ in pseudo labels are much more
limited rather than other categories, which means that the pseudo labels are incorrect on *motor’
class or the target dataset contains few pixels belonging to this category. In either case, it means
that the category is difficult to recognize and deserves special attention. Before the data loader
samples a training sample in target domains, the method would scan the pseudo labels to check
whether there 'might’ be hard samples in this raw image. If so, the data loader would select a
proper patch covering the hard samples according to the priority queue. By this method, we can
keep the high resolution of raw images and at the same time mine the hard samples as much as
possible. Figure[6.2]demonstrates the effect of our re-sampling strategy. We can observe that the
data loader seldom focuses on the hard samples containing rare pixels with a random cropping
strategy. And with the proposed PLG re-sampling strategy, the model with a smaller cropping
size can be trained with proper samples which contain the small and rare categories according

to the priority queue.
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Table 6.1: Comparison results of GTAS—Cityscapes adaptation in terms of mloU. The best
score for each column is highlighted.
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Figure 6.3: Illustration of training curves of ProDA-PLG and ProDA-HR. The brown curves
represent the ProDA-PLG, and the blue curves represent ProDA-HR. The y-axis of the second
picture is the overall loss of ProDA while those of other pictures are the absolute IOU values.
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ProDA without PLG ProDA with PLG

Figure 6.4: Illustration of evaluation results of ProDA-HR with random cropping strategy
and ProDA-HR trained with our pseudo-label-guided re-sampling strategy. The orange
boxes highlight the confusing area containing overlapped motor’, ’bike’ and ’rider’ classes.
The ProDA-HR cannot distinguish the difference between 'motor’ and ’bike’ while the ProDA-
PLG can generate more accurate predictions compared to the former one. This figure is the same

as Fig[6.1]

6.2.2 Experiment Results

In this section, we compare ProDA [58]], ProDA-HR and ProDA-PLG. As shown in Table @
ProDA-PLG can gain 15.3 mIOU improvement, 1.2 higher than that of ProDA-HR which does
not utilize PLG re-sampling strategy. In terms of per-class IOU, ProDA gets the highest IOU in
9 categories. ProDA-HR and ProDA-PLG respectively gain the highest IOU on 4 and 6 classes.
What’s more, the PLG re-sampling method’s ability to mine hard samples makes ProDA-PLG
gain 28.9 IOU improvement in the "'motor’ category compared to ProDA-HR. The improvements
of per-class IOU and mIOU of the proposed PLG re-sampling strategy show that it can make the
UDA model more powerful and robust compared to the random cropping strategy. Meanwhile,
the training curves in Figure[6.3] show that the ProDA-PLG can also converge well and the final
results of ProDA-PLG overweigh that of ProDA-HR.

In terms of qualitative analysis, this re-sampling strategy brings ProDA-PLG brilliant ability to
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Table 6.2: Comparison results of GTAS—Cityscapes adaptation in terms of mloU (ProDA-PLG
with different batch size 4 and 8). The best score for each column is highlighted.
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Figure 6.5: Visualization of IOU scores and computational budgets for the proposed
ProDA-PLG and other state-of-the-art methods. The x-axis represents the number of used
GPUs during training. The difference between the highlighted *proposed ProDA-PLG’ is the
total batch size during training.

distinguish motorcycle and bicycle. As shown in Figure [6.4] the proposed re-sampling strategy
solves the problem that ProDA-HR cannot distinguish the motorcycle from the bicycle, caused
by the imbalanced distribution of *motor’ in the Cityscapes [13] dataset. In the predictions
of ProDA-HR without PLG strategy, the pixels belonging to the *'motor’ are misclassified as
’bike’, and as for ProDA-PLG, the predictions are much more similar to the ground truth labels
annotated by humans even if we cannot access them during training. This results from the wise

sampling strategy compared to random cropping.

The mentioned ProDA-HR and ProDA-PLG can save three-quarters of computational budgets
compared to the original ProDA while respectively getting only 2.9 and 1.7 mIOU drop. In
order to prove proposed ProDA-PLG is robust and powerful, we conduct experiments when
keeping 50% computational budgets compared to state-of-the-art IAST [35]], FADA [51], SAC
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[2], ProDA [58]. With more computational resources, ProDA-PLG can gain 52.5 mIOU in
total which successfully decrease the IOU gap between ProDA trained with full computational
budgets to only 1.1 mIOU while using half of GPUs to train (as shown in Table[6.2]and Fig[6.5).

6.3 Conclusion

In this chapter, we propose a pseudo-label-guided (PLG) re-sampling strategy to mine the small
and rare objects in target domain. According to the quantitative and qualitative analysis of
experiments, the proposed ProDA-PLG solves the problem of vanishing rare classes on target
domain in Chapter [5| The IOU drops are restricted to 1.7 and 1.1 when given 25% and 50%
computing resources and the ProDA-PLG significantly outweighs other state-of-the-art UDA
methods when given the same computational budgets. By utilizing the ProDA-PLG to conduct
experiments, researchers can get 200% or 400% of experimental efficiency compared to using

the original ProDA [58]. It well answers the research question posed in this chapter.



Chapter 7

Conclusion

In this thesis, the aim is to train segmentation neural networks when the annotations are lim-
ited. We first raise research questions of whether the feedback mechanisms can improve the
segmentation accuracy in full-supervised learning and semi-supervised learning. In Chapter @]
we introduce two different feedback mechanisms (MFB and ACFB) into the fully-supervised
U-Net. We expect that iteratively feeding the generated masks to the input images can help
the model suppress the background pixels and highlight the foreground ones. The experimental
results show that simply concatenating the predicted masks and input images is meaningless.
U-Net trained and evaluated with ACFB generate nearly the same masks as those predicted by
the standard U-Net. And the multiplicative feedback mechanism can help the model suppress ir-
relevant background information and increase the IOU scores in some cases. But sometimes the
partially wrong predictions at an earlier stage will lead to completely wrong masks at the final
iteration. What’s more, it is not a proper way to directly suppress the background pixels in the in-
put images because global context might be lost in this manner. According to our experiments,
directly feeding the output masks back to the input images cannot improve the segmentation
accuracy in the fully-supervised approaches and of course, is not suitable for semi-supervised
ones. In the future, the study of feedback mechanisms should focus on the feature level instead
of the image level. Because in the feature space, the pixels belonging to the foreground objects
in the feature maps have aggregated enough local and global context, which is helpful to the

segmentation.

Then we focus on a similar research field to train the deep neural network with limited anno-
tated data and unlabeled data in different distributions, unsupervised domain adaptation (UDA).

It transfers the knowledge learned from a well-annotated synthetic domain to an unlabeled tar-
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get domain. Although current self-training-based UDA frameworks gain significant accuracy,
they require large computational budgets. So we raise the research question of whether self-
training-based UDA frameworks can be trained with limited computational budgets, we suc-
cessfully modify a state-of-the-art UDA method in Chapter [5] The proposed ProDA-HR saves
75% computational resources while keeping acceptable IOU scores. However, some rare and

small categories vanish in the latent space of ProDA-HR.

In order to tackle the problem in Chapter [5| we raise a new research question of whether the
vanishing classes can be recovered without extra computing resources and manpower. We an-
swer this question in Chapter [} By introducing a pseudo-label guided re-sampling strategy, our
ProDA-PLG trained with 1 or 2 Tesla V100 can gain similar IOU scores to the original ProDA
trained with 4 Tesla V100. In the future, we can introduce a dynamic updating scheme that
updates the rare target categories in each iteration automatically instead of fixed ones which are

determined before the training starts. This can make the proposed PLG strategy more flexible.
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