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Abstrac 

In the human adrenal cortex, the genes CYP 11 BI and CYP 11 B2 lie in tandem on 

chromosome 8 and encode the steroidogenic enzymes, 11 P-hydroxylase and 

aldosterone synthase, respectively. Their steroidogenic capacities are markedly 
different despite their high degree of homology (93%). 11 P-Hydroxylase mainly 

catalyses the conversion of 11 -deoxycorticosterone (DOC) to corticosterone (B) and 
11-deoxycortisol (S) to cortisol (F) while aldosterone synthase catalyses the llp- 

hydroxylation, 18-hydroxylation and 18-oxidation necessary to convert DOC to 

aldosterone. 

Abnormalities in adrenal steroid production have been implicated in certain forms of 
hypertension. Mutations in the CYP 11 B1 gene which result in complete loss of 11 P- 

hydroxylase fimction cause 11 P-hydroxylase deficiency and hypertension due to 

abnormally high levels of the mineralocorticoid, DOC. Mutations have been identified 

which destroy aldosterone synthase 18-hydroxylase activity or 18-oxidase activity or 
both, resulting in lack of aldosterone. Structure-function studies have identified 

aldosterone synthase residues specifically involved in 18-hydroxylation and 18- 

oxidation. In the Dahl rat model of hypertension, mutations have been identified in 

the CYPHB2 and CYP11BI genes which result in increased aldosterone and 18- 

OHDOC production respectively. Analogous mutations in the human CYP 11 B2 gene 
in exons 3 and 4 which result in amino acid substitutions, E136D and K25IR have 

been shown to increase aldosterone production. In essential hypertension adrenal 

steroids have been implicated as a contributing factor in some cases and it is possible 
that mutations in aldosterone synthase and II P-hydroxylase may be responsible in 

part for abnormalities in steroid production. The studies reported in this thesis have 
investigated some of the residues which may be responsible for the special properties 
of these enzymes and also the effects of potential inhibitors on enzyme steroid 

production in vitro. 

In chapter 3 an attempt was made to identify which of the 7% of residues that differ 

contribute to the unique e! yymat: jcjactivities of aldosterone synthase and II P- 
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hydroxylase. Several residues in the I-helix, which lies in close proximity to the haem 

and forms part of the active site, are known to contribute to the 18-hydroxylase and 
18-oxidase activities of aldosterone synthase and cluster in regions encoded by exons 
6,7 and 8. This does not provide information on the importance of residues distal to 

the active site and encoded by the other exons. Residues D147 and 1248 in exons 3 

and 4 of aldosterone synthase which lie close to residues E136 and K251 were 

replaced with the llp-hydroxylase equivalent, E147 and T248. Substitutions of 

aldosterone synthase-specific residues, Q43 and T493 in exons I and 9, were also 

performed. Replacement of aldosterone synthase-specific residues Q43,1248 and 
T493 had no effect on DOC conversion to aldosterone. Substitution of D147 of 

aldosterone synthase to E147 caused a dramatic increase in corticosterone (B) 

production with a small concomitant increase in aldosterone production but had no 

effect on 11 -deoxycortisol conversion to cortisol. 
The converse mutation was also constructed where II P-hydroxylase-specific residue 
E147 was replaced with the aldosterone synthase equivalent. This mutation of E147D 

in 11 P-hydroxylase dramatically reduced corticosterone production but did not affect 
I 1-deoxycortisol conversion to cortisol. Krn values for DOC conversion to B for 

aldosterone synthase mutant B2-DI47E and wild type aldosterone synthase were 
1.4gmol/L and 5gmol/L respectively showing that the mutant had a higher affinity for 

DOC. Kni values for the Ilp-hydroxylase mutant BI-EI47D and wild-type llp- 

hydroxylase for B production from DOC were 7.5gmol/L and 2.5gmol/L respectively 

showing that mutant Bl-El47D had a much lower affinity for DOC. This shows that 

residue E147 of Ilp-hydroxylase contributes to the greater efficiency of llp- 

hydroxylation by II P-hydroxylase and is crucial for effective II P-hydroxylation of 
DOC. 

In chapter 4, an attempt was made to assign residues to a precise location in the 

protein molecule. The crystal structure of aldosterone synthase and II P-hydroxylase 
is not known but those of closely related bacterial cytochrome P450 enzymes have 
been determined. These enzymes, although sharing only a low degree of homology, 
have a similar overall structure. It is therefore possible to model aldosterone synthase 

and 11 P-hydroxylase on these simple enzymes. Using this approach, residue 147 in 
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both enzymes lies immediately flanking helix-G which forms part of the main 

framework surrounding the haem and the active site. It is possible that residue E147 

of 11 P-hydroxylase contributes to the positioning, of the helix holding it in a specific 

orientation which is highly favourable for DOC conversion to B. 

In chapter 5, screening of DNA'from a small group of hypertensive patients and 

normal subjects for nucleotide changes within the CYP11131 and CYPllB2 genes 

revealed a number of mutations which resulted in residue changes. In vitro mutation 

analysis was performed for aldosterone synthase mutant B2-K357N and 110- 

hydroxylase mutants Bl-H107Y'and BI-LI86V. On the basis of modelling (chapter 

4), residue 357 may form part of P sheet 3 or 4 and may possibly be involved in 

substrate interaction /adrenodoxin interaction. Residue 107 lies near a region shown 

previously to be important for hydroxylation efficiency. Residue 186 flanks a helix, 

the functional role of which is not known. These mutants did not affect enzyme 

activity in vitro. Other mutations which are polymorphic have been shown, by other 

authors, to be associated with hypertension and may find use as susceptibility markers 

for the disease. Association of these new mutations/polymorphisms with hypertension 

and their frequency within the hypertensive population were not assessed. 

A third gene exists in the rare, autosomal dominant disorder, glucocorticoid 

suppressible hyperaldosteronism (GSH), which comprises the 5' regulatory region of 
CYP IIBI fused to the 3' coding regions of CYP 11 B2. Consequently, aldosterone 

synthase activity is expressed ectopically in the adrenal zona fasciculata where it is 

subject to ACTH control. In addition to producing aldosterone, the chimeric enzyme 

also catalyses the metabolism of cortisol (F), which is unique to the zona fasciculata, 

to 18-hydroxycortisol (18-OBF) and 18-oxocortisol (18-OXOF). These are therefore 

secreted in large quantities and, it had been suggested, may be the cause of the 
impaired 11 P-hydroxylation observed in this condition. This study (chapter 6) has 

shown that high concentrations of 18-OXOF and 18-OHF do not affect llp- 

hydroxylation in vitro and are therefore unlikely to do so in vivo. It is possible that 

these steroids may be further metabolised and that the metabolites act as inhibitors in 

vivo. This may explain the in vitrolin vivo differences. However, another closely 
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related steroid, 18-OHDOC, did reduce both 11-deoxycortisol conversion to cortisol 

and DOC conversion to B of both 11 P-hydroxylase and aldosterone synthase in vitro. 
Another important finding was that aldosterone synthase, and to a much lesser extent 

11 P-hydroxylase, can use 18-OHDOC as an alternative substrate. The possibility 

therefore arose that 18-OHDOC conversion might contribute to the excessive 

aldosterone levels observed in GSH. Lineweaver-Burke analysis for DOC and 18- 

OHDOC conversion to aldosterone by aldosterone synthase produced Km values of 

1.73ptmol/L and 9.09gmol/L respectively. That is, aldosterone synthase has a much 

lower affinity for 18-OHDOC than for its preferred substrate, DOC. Thus, in vivo, 

18-OHDOC is unlikely to be a substrate of significant importance. 

In summary, this thesis presents new studies on the relationship between structure and 
function of aldosterone synthase and 11 P-hydroxylase. Artificially induced changes, 

some relatively conservative and distant from centres of known functional 

importance, have been shown to alter activity significantly. A number of variations 
from consensus sequences of these enzymes have been identified in subjects with 

essential hypertension; whether these affect enzyme activity in such a way as to 

explain the clinical observations of mild II P-hydroxylase deficiency or suppressed 

renin or whether they might be used as diagnostic markers remains to be evaluated. 

4 



Declaration 

I declare that unless specified otherwise in the text the work presented in this thesis is 

my own. 

P 

Angela Fisher. 

5 



Dedication 

I would like to dedicate this thesis to my parents and brother Stuart for their love, 

support and encouragement and also to the memory of my grandparents and Aunty 

Teen. 

Acknowledgements 

A special thanks to Mrs Elaine Friel and Miss Mary Ingram for their technical 

expertise, advice and invaluable practical help. 

I would like to thank Dr Eleanor Davies, Professor Robert Fraser and Professor John 

Connell for their guidance and supervision throughout the duration of this venture. A 

very special thanks to Eleanor, Elaine and Professor Fraser for their day-to-day 

support, advice, encouragement and friendship. 

Grateful thanks to Dr Adrian Lapthom for protein modelling expertise and advice and 

to Professor Perrin White and Dr Kathleen Curnow for providing cDNA constructs. 

Also special thanks to Professor Ian Mason for providing the adrenodoxin construct 

and Professor Rita Bernhardt for providing stably transfected cells used in this study. 

Also thankyou to Nick Brain for performing the automated sequencing. Thankyou 

also to Scott MacKenzie and Dr Wai Kwong Lee for invaluable computing expertise. 

Thankyou to Christine Holloway for practical help and advice. 

Finally, I would like to thank my colleges and friends in the department for making 

my time here an enjoyable one. 

This work was supported by the Medical Research Council (Programme Grant 
Number: 809 155) and the West Glasgow NHS Trust Research Grant. 

6 



Publications 

Fraser R, Davies E and Fisher . (1997) 18-Oxygenated corticosteroids and related 

compounds: chemistry, regulation and clinical significance. Invited review. Current 

Opinions in Endocrinology and Diabetes. 4: 199-203. 

Fisher A, Davies E, Fraser R and Connell JMC. (1998) Structure-function 

relationships of aldosterone synthase and II P-hydroxylase enzymes: Implications for 

human hypertension. Clinical and Experimental Pharmacology and Physiology. 

25: S42-S46. 

Abstractj 

Fisher A, Fraser R, Davies E and Connell JMC. (1997) Structure-function studies of 

the llp-hydroxylase (CYPllBl) and aldosterone synthase (CYP11132 ) genes. 

Journal of Endocrinology. 152 (Suppl. ) OC7. 

Fisher , Fraser R, White PC, Davies E and Connell JMC. A single point mutation of 

the aldosterone synthase gene increases 110-hydroxylase function. The Endocrine 

Society 79th Annual Meeting P1 -292. 
Fisher , Fraser R, Davies E and Connell JMC. (1998) Structure-fUnction studies of 

the llp-hydroxylase (CYP11BI) gene. Journal of Endocrinology. 156 (Suppl. ) P7. 

Fisher , Fraser R, Davies E and Connell JMC. (1998) A single point mutation of 

llp-hydroxylase decreases llp-hydroxylase function. The Endocrine Society 80th 

Annual Meeting P1 -27 1. 

Fisher A, Davies E, Fraser R, Ingram M, Benhardt R, Gomez Sanchez CE and 

Connell JMC. (1998) Inhibition of human Ilp-hydroxylation by 18- 

hydroxydeoxycorticosterone. Journal of Endocrinology. 159 (Suppl. ) OC27. 

Fisher A, Davies E, Fraser R, White PC and Connell JMC. Kinetic analysis of 

mutations of residue 147 of aldosterone synthase and II P-hydroxylase. Submitted to 

The Endocrine Society 81st Annual Meeting June 1999. 

7 



List of contents. 

Chapter 1. Introduction. 20 

1.1 The adrenal gland 21 
1.2 Products and function of the adrenal cortex. 23 
1.2.1 Androgens 23 
1.2.2 Corticosteroids 24 
1.3 Mechanism of action. 26 
1.4 Biosynthesis 31 
1.4.1 Steroidogenesis 31 
1.4.2 Cholesterol transport 32 
1.4.3 Electron sources for hydroxylation 34 
1.4.4 Biosynthetic pathways 35 
1.4.4a Cortisol and corticosterone 35 
1.4.4b Aldosterone 37 
1.5 Control of corticosteroid biosynthesis and secretion. 40 
1.5.1 Adrenocorticotrophic hormone (ACTH) 40 
1.5.2 Angiotensin (ANG-11) 43 
1.5.3 Potassium 45 
1.5.4 Ký activates C2+ channels 45 
1.5.5 Other factors controlling aldosterone secretion. 46 
1.5.6 Effects of cAMP 47 
1.5.7 Effects of Ca2+ as an intracellular messenger. 50 
1.5.8 Transcription factors and zone-specific expression 51 
1.5.9 Summary 53 
1.6 Gene structure and control of expression. 54 
1.6.1 CYP 11 BI promoter 55 
1.6.2 CYP 11 B2 promoter 56 
1.6.3 Polymorphisms in control regions 60 
1.7 Protein structure 62 
1.7.1 Bacterial/microsomal P450 structure 62 
1.7.2 Protein topography: appearance 62 
1.7.3 Regions of Conservation 64 
1.7.3 a Haem-binding region 64 
1.7.3b Substrate binding region 65 
1.7.3c Binding and cleavage of molecular oxygen and proton delivery 67 
1.7.3d Redox partner interaction 68 
1.7.4 Modelling based on crystallised structures 68 
1.7.5 Summary 70 
1.8 Molecular biology of adrenal diseases. 71 
1.8.1 Disorders of corticosteroid biosynthesis 72 
1.8.2 Congenital adrenal hyperplasia 72 
1.8.3 11 P-Hydroxylase deficiency 72 
1.8.4 Mutations in the CYPI 1BI gene causing II P-hydroxylase deficiency 74 
1.8.5 Aldosterone synthase deficiency 78 
1.8.6 Mutations causing CMO-I deficiency 80 
1.8.7 CMO-II deficiency 82 



1.8.8 Glucocorticoid-suppressible hyperaldosteronism (GSH) 85 
1.8.9 Molecular genetics of GSH 87 
1.8.10 Animal models of hypertension 89 
1.8.11 Summary 91 
1.9 Structure function studies-Site directed mutagenesis. 93 
1.9.1 Residues important for 11 P-hydroxylation of 11 -deoxycortisol 95 
1.9.2 Residues of aldosterone synthase which are important for aldosterone 
synthesising capacity 96 
1.9.3 Summary 99 
1.9.4 Aims of this study 99 

Chapter 2 Methods 100 
2.1.1 Plasmids 101 
2.1.2 Preparation of competent cells 101 
2.1.3 Transformation of bacterial cells 101 
2.1.4 Screening transformed colonies 102 
2.1.5 Small scale DNA purification 102 
2.1.6a Large scale DNA purification 102 
2.1.6b Caesium chloride-ethidium bromide density grad ient centrifugation 103 
2.1.6c Ethanol precipitation 103 
2.1.7 Determination of DNA/RNA concentration 104 
2.1.8. Restriction enzyme digestion of plasmid DNA 104 
2.1.9 Preparation of agarose gels for electrophoresis 104 
2.2. Direct DNA sequencing from PCR products 105 
2.2.1 Sequencing protocol 105 
2.2.2 Preparation of the label reaction 106 
2.2.3 Polyacrylamide gel preparation 107 
2.2.4 Polyacrylamide gel electrophoresis 107 
2.2.5 Preparation and autoradiography of sequencing gels 107 
2.2.6 Determination of DNA sequence from polyacrylamide gels 107 
2.2.7 Automated cycle sequencing 108 

2.3 Screening of the CYP IIBI and CYP II B2 genes for mutations in normal and 
hypertensive populations 109 
2.3.1 Blood samples 109 
2.3.2 Genornic DNA extraction from blood 109 
2.3.3 PCR amplification of genomic DNA 109 
2.3.4 Polymerase chain reaction amplification 109 
2.3.5 A typical amplification protocol 110 
2.3.6 Single-stranded conformational polymorphism. (SSCP) III 
2.3.7 SSCP PCR III 
2.3.8 Digestion of PCR fragments 112 
2.3.9 Stopping reactions 112 
2.3.10 Preparation of the non-denaturing gel for SSCP 112 
2.3.11 SSCP gel electrophoresis 113 
2.3.12 Preparation and autoradiography of SSCP gels 113 
2.3.13 Determination of band shifts from SSCP gels 113 



2.3.14 Sub-cloning into T-vector 113 
2.2.15 T-vector ligation 114 

2.4 Site-directed mutagenesis 114 
2.4.1 PCR reaction 115 
2.4.2 PCR protocol 115 
2.4.3 Digestion of parental strand 115 
2.4.4 Transformation of bacterial cells with mutant plasmid 115 

2.5 Transient transfection system 116 
2.5.1 COS-7 cell maintenance 116 
2.5.2 Sub-culturing 116 
2.5.3 Storage and revival of frozen stocks 116 
2.5.4 COS cell transfection 117 
2.5.5 Steroid incubation 118 

2.6 Measurement of transfection efficiency 118 
2.6.1 Preparation of cell lysates 118 
2.6.2 Promega P-galactosidase assay 119 
2.6.3 Biorad protein assay 119 

2.7 Semi-quantitative RT-PCR 119 
2.7.1 RNA isolation 120 
2.7.2 Agarose gel electrophoresis of RNA 120 
2.7.3 Reverse transcription 121 
2.7.4 PCR of first strand cDNA 122 

2.8 Enzyme activity and steroid production 123 
2.8.1 Steroid extraction 124 
2.8.2 Measurement of tritiated products 124 
2.8.3 Radioimmunoassay 124 

2.9 Pseudosubstrate inhibition studies 125 
2.9.1 Cell culture techniques 125 
2.9.2 Cell culture conditions 125 
2.9.3 Subculturing cell lines 125 
2.9.4 Steroid incubation in presence and absence of potential steroid inhibitors 125 
2.9.5 Preparation of cell lysates 126 
2.9.6 Radioimmunoassay 126 

Chapter 3.127 
3.1 Structure- function studies of human 11 P-hydroxylase and aldosterone synthase 
3.2 Methods 128 
3.3 Results 129 
3.3.1 Restriction digests of plasmids 129 
3.3.2 Confirmation of mutant sequences 129 
3.3.3 Transient transfection system 137 
3.4.1 Steroid conversion ratios of aldosterone synthase mutants 137 

to 



3.4.2 Comparison of aldosterone synthase mutant B2-D 147E with wild-type II P- 
hydroxylase 140 
3.4.3 Effect of B2-D147E on overall steroid production 140 
3.4.4 Conversion of II -deoxycortisol to cortisol by aldosterone synthase mutant 
B2-DI47E 140 
3.5.1 Effect of 11 P-hydroxylase mutant BI -E 147D on B: DOC steroid ratio 144 
3.5.2 Cortisol production by B1 -E 147D 144 
3.6 Semi-quantitative RT-PCR of transfected cell RNA 144 
3.7 Kinetic analysis of mutants B2-D147E and Bl-E147D 149 
3.7.1 Kinetic analysis of aldosterone synthase mutant B2-DI47E compared to 
wild-type aldosterone synthase 150 
3.8 Kinetic analysis of 11 P-hydroxylase mutant BI -E I 47D compared to wild-type 
II P-hydroxylase 150 
3.9 Discussion. 159 

Chapter 4.179 
4.1. Modelling of human aldosterone synthase and Ilp-hydroxyalse protein 
structures. 
4.2 Methods. 
4.3 Results 
4.3.1 Sequence alignment. 
4.3.2 Secondary structure prediction. 
4.3.3 Modelling. 
4.4 Discussion. 

Chapter 5. 
5.1 Screening of coding regions of human CYP11BI 
mutations in normotensives and essential hypertensives 
5.2 Methods 
5.3 Results 
5.3.1 PCR optimisation 

181 
181 
170 
171 
172 
176 

179 
and CYPllB2 genes for 

5.3.2 SSCP analysis showing no electrophoretic mobility changes 
5.3.3 SSCP analysis of exon 2 of the CYPI. IBI and CYPI IB2 genes 
5.3.4 SSCP analysis of exon 3 of the CYPI IBI and CYP1 IB2 genes 
5.3.5 SSCP analysis of exon 6 of the CYP 11 B2 gene 
5.3.6 S SCP analysis of exon 9 of the CYP II B2 gene 
5.4 Analysis of electrophoretic mobility variants 
5.4.1 Sequence analysis of exon 6 of CYP II B2 
5.4.2 Sequence analysis of exon 9 of CYP 11 B2 
5.4.3 T-vector subcloning and subsequent sequence analysis of exon 2 
5.4.4 T-vector subcloning and subsequent sequence analysis of exon 3 
5.4.5 Screening by restriction enzyme digestion 
5.5 Functional studies 

181 
181 
181 
183 
183 
183 
183 
188 
188 
188 
191 
191 
191 
195 
195 

5.5.1 Sequence analysis of wild-type plasmid pCMV4 B2 and mutant construct 
B2-K357N 195 
5.5.2 Sequence analysis of mutant constructs BI-HI07Y and Bl-L186V 195 
5.5.3 B production from DOC by mutant B2-K357N 195 
5.5.4 18-OHB and aldosterone production from DOC by mutant B2-K357N 199 

11 



5.5.5 F production from S by mutant B2-K357N 199 
5.6 F production from S by II P-hydroxylase mutant BI-H107Y. 199 
5.7 Discussion 200 

Chapter 6 209 
6.1 Effects of 18-OXOF, 18-OHF and 18-OHDOC on 11 P-hydroxylation of 11 - 
deoxycortisol and 11 -deoxycorticosterone by human aldosterone synthase and 11 P- 
hydroxylase in vitro in stably transfected V79 cells. 
6.2 Methods 210 
6.3 Results 211 
Effects of 18-OHF and 18-OXOF on B and F production from DOC and S in 
CYP 11 BI and CYP 11 B2 stably trmsfected cells 
6.4 Effects of 18-hydroxydeoxycorticosterone (18-OHDOC) on B and F 
production from DOC and S in CYP IIBI stably transfected cells 219 
6.5 Effects of 18-OHDOC on B and F production from DOC and S in CYP II B2 
stably transfected cells 219 
6.6 18-OHDOC as a substrate for aldosterone biosynthesis in CYP11B2 stably 
transfected cells 224 
6.7 18-OHDOC as a substrate for 18-OHB production in CYPIIBI stably 
transfected cells 229 
6.8 Discussion 232 

Chapter 7 
7. General discussion 

237 
238 

Appendices 242 
Appendix 1. Nucleotide sequences of CYP 11 BI and CYP II B2. 

Amino acid names, abbreviations and symbols. 
Amino acid codons. 

Appendix 2. Primers 
Table 1. Primers for site-directed muatagenesis 
Table 2. Sequencing primers 
Table 3. Primer pairs for SSCP, amlpicon sizes and digests 
Table 4. SSCP primer sequences 
Table 5. Primers for RT-PCR 

Appendix 3. Reagents 
Appendix 4. Enzymes 

References 262 

12 



List of flgures 

Figure 1.1 Microscopic anatomy of the adrenal cortex. After Gray's Anatomy, 36 Ed. 

22 

Figure 1.2 Steroid structures and common names 25 

Figure 1.3a Ligand mediated activation of the glucocorticoid receptor 28 

Figure 1.3b Schemmatic representation of human GR and MR 28 

Figure 1.4a Steroidogenic electron transfer system in (a) mitochondria and (b) 

microsomes 33 

Figure 1.4b The sequence of reaction involved in P450 catalysed hydroxylation 35 

Figure 1.4c Biosynthetic pathway 39 

Figure 1.5a The hypothalamic-pituitary-adrenal (HPA) system 41 
Figure 1.5b Diagram of ACTH and ANG-II receptors and intracellular mechanisms 42 

Figure 1.5c The renin-angiotensin system (RAS) 44 

Figure 1.5d Calcium channels and sources of calcium 46 

Figure 1.5e CREB/CRE activation 49 

Figure 1.6a Exonic-intronic arrangement of CYPI, IBI/CYP1 IB2 genes 54 

Figure 1.6b Promoter regions of the CYP IIB1 and CYP 11 B2 genes 55 

Figure 1.6c CYP 11 BI promoter constructs 56 

Figure 1.6d CYP II B2 promoter constructs (Kawamoto et al. 1992) 57 

Figure 1.6e CYPI IB2 promoter constructs (Clyne et al. 1997) 58 

Figure 1.7 P450cam structure 63 

Figure 1.8a 11 P-hydroxylase deficiency 73 

Figure 1.8b Aldosterone synthase deficiency 79 

Figure 1.8c 18-oxocortisol and 18-hydoxycortisol 86 

Figure 1.8d Aldosterone synthase activity of chimeric CYPllBl/CYP llB2 cDNA 

constructs in vitro 88 

Figure 1.9 Differences in amino acids between human 11 P-hydroxylase (CYP IIB 1) 

and aldosterone synthase (CYP 11 B2). 94 

Figure 3.3a. Spe I digests of wild-type plasmids pCMV4-B I and pCMV4-B2.130 

13 



Figure 3.3b. Sequence analysis of wild-type plasmid PCMV4-B2 and mutant 

constructs B2-Q43R and B2-T493M. 131 

Figure 3.3c. Sequence analysis of wild-type plasmid pCMV4-B2 and mutant 

constructs B2-DI47E and B2-1248T. 132 

Figure 3.3 d. Sequence analysis of wild-type plasmid pCMV4-B I and mutant construct 
BI-EI47D. 133 

Figure 3.3e. The effect of increasing transfected pSV-Pgal concentration on cell lysate 

P-galactosidase activity expressed as milli-units per mg of protein. 134 

Figure 3.3f. The effect of varying pCD-Adx concentration in transfected cells on 

substrate conversion. 135 

Figure 3.3g. Effect of Optimem-I on transfection efficiency 136 

Figure 3.4a. Steroid conversion ratios of aldosterone synthase mutants B2-Q43R and 

B2-T493M. 138 

Figure 3.4b. Steroid conversion ratios of aldosterone synthase mutants B2-DI47E and 
B2-1248T. 139 

Figure 3.4c. B: DOC ratios of aldosterone, synthase mutant B2-D147E. 141 

Figure 3.4d. Effect of alodsterone synthase mutant B2-DI47E on overall steroid 

production compared to wild-type aldosterone synthase. 142 

Figure 3.4e. F: S ratios of aldosterone synthase mutants B2-D 147E and B24248T. 143 

Figure 3.5a. B: DOC ratio of II P-hydroxylase mutant Bl-E147D. 145 

Figure 3.5b. Cortisol production from Ilp-hydroxylase mutant BI-EI47D. 146 

Figure 3.6a. Optimisation of cycle number for RT-PCR 147 

Figure 3.6b. RT-PCR of RNA from cells tranfected with wild-type aldosterone 

synthase or aldosterone synthase mutant B2-DI47E 148 

Figure 3.7a. Time-course of B production from COS-7 cells transiently expressing 

wild-type aldosterone synthase (CYPlIB2) or wild-type Ilp-hydroxylase 

(CYP IIB 1). 151 

Figure 3.7b. B production from varying concentrations of DOC from mutant B2- 

D147E compared to wild-type aldosterone synthase (CYP1 I B2). 152 

Figure 3.7c. 18-OHB production from varying concentrations of DOC from 

aldosterone synthase mutant B2-Dl47E compared to wild-type aldosterone synthase 
(CYP 11 B2). 153 

14 



Figure 3.7d. Aldosterone production from varying concentrations of DOC from 

aldosterone synthase mutant B2-Dl47E compared to wild-type aldosterone synthase 
(CYPlIB2). 154 

Figure 3.7e. Lineweaver-Burke plot of B production from B2-D 147E. 155 

Figure 3.8a. B production from varying concentrations of DOC from II P-hydroxylasc 

mutant B I-EI47D compared to wild-typc 11 P-hydroxylase (CYP I IB 1). 156 

Figure 3.8b. 18-OHB production from varying concentrations of DOC from II 

hydroxylase mutant BI-EI47D compared to wild-typc wild-type Ilp-hydroxylasc 

(CYP 11 B 1). 157 

Figure 3.8c. Lineweaver-Burke plot of B production from Bl-E147D. 158 

Figure 4.3a. Sequence aligriment of human aldosterone synthase and II P-hydroxylase 

with bacterial cytochrome P450 enzymes which have been crystallised. 173 

Figure 4.3b. Sequence alignment of aldosterone synthase, 11 P-hydroxylase and side- 

chain cleavage enzymes from humans, rat, and bovine species. 174 

Figure 4.3c. 3-Dimensional model of human aldosterone synthase and 11 P- 

hydroxylase enzymes 175 

Figure 5.3a. Optimised PCR reaction for exons 5 and 6 of CYPI IB2.182 

Figure 5.3b. CYP 11 BI exon I SSCP. 184 

Figure 5.3c. CYP 11 BI and CYP 11 B2 exon 2 SSCP. 185 
Figure 5.3d. CYP 11 BI and CYP I IB2 exon 3 SSCP. 186 
Figure 5.3e. CYPI IB2 "on 6 SSCP 

Figure 5.3f. CYPI IB2 exon 9 SSCP. 

187 

189 

Figure 5.4a. CYP 11 B2 exon 6 DNA sequence. 190 
Figure 5.4b. CYP 11 B2 exon 9 DNA sequence. 192 

Figure 5.4c. CYP 11 BI exon 2 DNA sequence. 193 

Figure 5.4d. CYP 11 BI exon 3 DNA sequence. 194 

Figure 5.5a. Sequence analysis of wild-type plasmid pCMV4-B2 and aldosterone 

synthase mutant B2-K357N. 196 

Figure 5.5b. Sequence analysis of llp-hydroxylase mutants Bl-HI07Y and Bl- 

L186V. 197 

15 



Figure 5.5c. B production from DOC from aldosterone synthase mutant B2-K357N. 

198 

Figure 5.5d. 18-OHB and aldosterone production from DOC from aldosterone 

synthase mutant B2-K357N. 200 

Figure 5.5e. Cortisol production from aldosterone synthase mutant B2-K357N. 201 

Figure 5.6. Cortisol production form Ilp-hydroxylase mutant BI-H107Y. 202 

Figure 6.3a Time course of corticosterone (B) production and cortisol (F) production 
from CYP 11 B1 and CYP 11 B2 stably transfected cells. 212 

Figure 6.3b. B production from DOC +/- 18-OXOF or 18-OBF in cells stably 

transfected with CYP IIB1.213 

Figure 6.3c. F production from S +/- 18-OXOF or 18-OBF in cells stably transfected 

with CYP 11 B 1.214 

Figure 6.3d. B production from DOC +/- 18-OXOF or 18-OHF in cells stably 
transfected with CYP II B2.215 

Figure 6.3e. F production from S +/- 18-OXOF or 18-OHF in cells stably transfected 

withCYPlIB2.216 
Figure 6.3f. 18-OHB production from DOC +/- 18-OXOF or 18-OHF in cells stably 
transfected with CYP 11 B2.217 

Figure 6.3g. Aldosterone production from DOC +/- 18-OXOF or 18-OHF in cells 

stably transfected with CYP 11 B2.218 

Figure 6.4a. B production from DOC +/- 10ýtM 18-OHDOC in cells stably transfected 

withCYP11BI. 220 

Figure 6.4b. F production from S +/- lOgM 18-OHDOC in cells stably transfected 

with CYP IIB1.221 

Figure 6.5a. B production from DOC +/- lOgM 18-OHDOC in cells stably 
transfected with CYPI 1B2.222 

Figure 6.5b. F production from S +/- lOgM 18-OHDOC in cells stably transfected 

with CYP I 1B2.223 

Figure 6.5c. 18-OHB production from DOC +/- lOgM 18-OHDOC in cells stably 
transfected with CYP 11 B2.225 

16 



Figure 6.5d. Aldosterone production from DOC +/- 10ýLM 18-OHDOC in cells stably 
transfected with CYP 11 B2.226 

Figure 6.6a 18-OHB and aldosterone, production from 18-OHDOC in cells stably 
transfected with CYPI IB2. 227 

Figure 6.6b. Aldosterone production from DOC and 18-OHDOC in cells stably 
transfected with CYPI 1B2. 228 

Figure 6.6c. Lineweaver-Burke analysis for aldosterone formation from DOC and 18- 

OHDOC for human aldosterone synthase. 230 

Figure 6.7 18-OHB production from DOC and 18-OHDOC in cells stably transfected 

with CYP IIB1.231 

17 



List of tables 

Table 1.2 Common and systematic names of adrenal steroids and dexamethasone 27 

Table 1.5 Table showing effects of several control factors on aldosterone secretion 47 

Table 1.7a Conserved secondary structure of side chain cleavage enzyme compared to 

P450cam 69 

Table 1.7b Haem propionate bonds of cytochrome P450cam compared to side chain 

cleavage enzyme 70 

Table 1.8a Complex mutations in the CYPlIBI gene causing II P-hydroxylase 

deficiency. 75 

Table 1.8bMissense mutations in the CYPllBI gene causing lI P-hydroxylase 

deficiency. 76 

Table 1.8c Effects of missense mutations of CYPl1B1 on I lp-hydroxylase activity in 

vitro. 77 

Table 1.8d Complex mutations in the CYPI. IB2 gene found in patients with 

aldosterone synthase deficiencies I and IL 81 

Table 1.8e Effects of missense mutations of CYP II B2 on aldosterone synthase 

activity in vitro. 83 

Table 1.9a Effects of replacing aldosterone synthase-specific residues with the II P- 

hydroxylase equivalents on S to F conversion in vitro. 97 

Table 1.9b Amino acid substitutions conferring aldosterone synthesising capacity on 

II P-hydroxylase. 98 

Table 3.6 CYPI lBl/B2: GAPDH ratios for RT-PCR 149 

Table 5.4 Summary of nucleotide differences and resulting amino acid changes 188 

Table 5.4.5 Screening by restriction enzymes 195 

18 



Abbreviations 

18-OHF 18-hydroxycortisol 

18-OHB 18-hydroxycorticosterone 

18-OHDOC 18-hydroxydeoxycorticosterone 

18-OXOF 18-oxocortisol 

ANG-I angiotensin I 

ANG-Il angiotensin II 

ACE angiotensin-I converting enzyme 

ACTH adrenocorticotropin 

cAMP adenosine 3,5'-cyclic monophosphate 

B corticosterone 
CaM Calmodulin 

CREB cAMP response element binding protein 
CYP11B1 gene encoding cytochrome P450 II P-hydroxylase 

CYP11B2 gene encoding cytochrome P450 aldosterone synthase 
DNA deoxyribonucleic acid 
DOC II -deoxycorticosterone 
DTT dithiothreitol 

EDTA ethylene diamine tetracetate 

F cortisol 
GSH glucocorticoid-suppressible hyperaldosteronism 

PCR polymerase chain reaction 
RNA ribonucleic acid 
S II -deoxycortisol 
SDS sodium dodecyl sulphate 
SF-1 Steroidogenic factor-I 

StAR Steroidogenic acute regulatory protein 
SSCP single-stranded conformational. polymorphism 
TE Tris-HCI/EDTA buffer 

TEMED NNN, N'-tetramethylethylenediamine 

19 



20 



1. Introduction 

In developed societies, the principal causes of morbidity and mortality are 

cardiovascular and cerebrovascular disease. These in turn are frequently the result of 

the so-called triple syndrome which is associated with obesity, glucose intolerance 

and hypertension. While it is clear that a major proportion of the risk of developing 

these conditions is due to aspects of life style such as diet, smoking and exercise, 

genetic predisposition is also important. Thus, offspring of hypertensive parents have 

a significantly enhanced risk of themselves becoming hypertensive (Watt et al. 1992). 

Understanding the mechanism of this inherited predisposition is a pre-requisite of 
developing strategies of prevention and treatment. 

Hormones are key factors in the control of metabolism and blood pressure; many have 

been studied in connection with the aetiology of primary or essential hypertension. It 

is, however, striking that most of the rare monogenic hypertensive syndromes relate to 

aberrations of corticosteroid biosynthesis and metabolism and, moreover, that 

corticosteroids are key factors in the control of glucose metabolism and of blood 

pressure. Whether or how they contribute to the genetic component of essential 
hypertension has not, however, been established. To obtain a fuller understanding, the 

structure of the genes involved in corticosteroid synthesis must be understood and, in 

particular, how small changes in this structure alter biosynthesis and therefore risk of 
disease. In this introductory review, the structure and function of the adrenal cortex 

are described with particular attention to the genes, enzymes and biochemical 

processes controlling the secretion of corticosteroids in normal subjects and in 

adrenocortical disorders in hypertensive animal and human patients. 

1.1. The adrenal gland 

An adrenal gland can be found at the superior pole of each kidney in mammals. The 

glands differ in shape between species, being for example, roughly triangular in cross 

section in man and round in the rat. They comprise the adrenal medulla, which 

secretes catecholamines such as adrenaline, surrounded by the cortex, the source of a 

number of steroid hormones (see below). The cortex consists of distinct zones with 
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different steroidogenic capability and capacity (see figure Ma. ). Adjacent to the 

medulla is the zona reticularis. The middle zone, the zona fasciculata is usually the 

widest and consists of large lipid-laden cells with mitochondria which have tubo- 

vesicular critsae. The zona glomerulosa is thinner and often incomplete. Its cells are 

smaller and more compact with no lipid deposits and fewer mitochondria. The gland 
is enclosed in an outer capsule composed of loose fibrous connective tissues. 

The adrenal cortex is highly vascularised (Flint 1990). Arterial blood enters the gland 

via a series of small arteries originating from the dorsal aorta with additional supplies 
from branches of the renal and the inferior phrenic arteries. An extensive network of 

arterioles from these arteries pervade the capsule. Venous blood drains via the left 

adrenal vein into the renal vein and via the right adrenal vein into the vena cava. 
A dense network of nerves supplies the gland. Cholinergic innervation and also 

vasoactive intestinal peptide (VIP) immunoreactive nerve fibres have been identified 

(Kleitman et al. 1985, Holzwarth 1984). In addition to interacting with adrenocytes, 

these nerves may assist in the control of adrenal blood flow, a factor important in 

hormone secretion rate (L'age et al. 1970). 

1.2. Products and function of the adrenal cortex. 

The adrenal cortex synthesises and secretes a greater variety of steroid hormones than 

any other steroidogenic organ. The steroid hormones are derived from cholesterol 

which is progressively modified by a series of locus- and orientation-specific enzyme- 

catalysed reactions which progressively shorten the side chain and add substituents 

such as hydroxyl groups (see below). They may be classified as C19 compounds, the 

adrenal androgens, and C21 compounds, the corticosteroids. 
1.2.1. Androgens 

, 
The principal adrenal androgens are androstenedione and 

dehydroepiandrosterone (DHEA) and its sulphate (DHEAS). They are synthesised in 

the zona fasciculata, and reticularis (Figure 1.1a). Their function in normal subjects is 

unclear but they may contribute to virilisation in some forms of adrenal disease and in 

post-menopausal women. Reduced levels of DHEA and DHEAS are associated with 

the aging process (Verineulen 1995). Increased levels of DHEA are also associated 
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with reduced cancer rates. Studies in mice showed that direct injection of DHEAS 

into the brain improved long term memory (Roberts et al. 1987). A recent study has 

shown an association of cognitive impairment in the elderly with a high ratio of 

cortisol (see below) over DHEAS (Kahnijn et al. 1998). This suggests that high 

cortisol and low DHEAS levels are associated with the aging process. The subject 

remains controversial. 
1.2.2. Corticosteroids In man, the functionally most important C21 products are 

cortisol and aldosterone (Figure 1.2a). Cortisol is synthesised mainly in the zona 
fasciculata while aldosterone is a product of zona glomcrulosa and exists in solution 

mainly in the hemiacetal form. (The rat adrenal cortex is unable to synthesise l7oc- 

hydroxylated steroids; its principal zona fasciculata product is corticosterone). In 

addition, a large number of other corticosteroids have been isolated and characterised 

(Figure 1.2a, Table 1.2). These are frequently intermediates in the biosynthesis of 

the corticosteroid end products and their importance will become evident later in this 

review. 
The corticosteroids may be subdivided on the basis of their metabolic effects. 
Aldosterone acts on the distal nephron to promote sodium reabsorption in exchange 
for potassium and hydrogen ions. The large intestine and the salivary glands are also 
target organs as is the amphibian bladder. Aldosterone is thus a mineralocorticoid. 
DOC has much lower potency but may become important in some adrenal diseases 

(see section 1.8). Mineralocorticoids influence blood pressure partly by modulating 
intravascular volume and partly because extracellular sodium (and potassium) 

concentrations determine vascular smooth muscle sensitivity to pressor agonists such 

as angiotensin II. Recently, it has been shown that aldosterone may affect the 

function of tissues not usually associated with electrolyte transport e. g in the heart 

where it is thought to be associated with cardiac fibrosis and arrhythmias (Rahman 

1992) and also in the central nervous system and vascular smooth muscle where it 

may affect blood pressure (Gomez-Sanchez. 1997, Takeda et al. 1995). Thus, high 

levels of aldosterone promote cardiac remodelling and stimulate collagen synthesis in 

cardiac fibrocytes, resulting in cardiac fibrosis (Brilla ct al. 1992). The aldosterone 

antagonist, spironolactone, inhibits this process (Brilla et al. 1993). Aldosterone at 

very 
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low concentrations also stimulates Na+/H+ exchange in leucocytes (Wehling. 1997), 

possibly by activating a novel membrane receptor (see below). 

Cortisol (corticosterone in the rat) is defined as a glucocorticoid. It has profound 

effects on intermediary metabolism, stimulating gluconeogenesis, enhancing protein 

catabolism and, in excess, increasing fat deposition of characteristic central 
distribution. Glucocorticoids are important as inhibitory factors of the immune 

response and inflammatory processes and are used as immunosuppressants, for 

example, in organ transplantation. However, it is important to emphasise that 

glucocorticoids also have profound effects on blood pressure. Although the precise 

mechanism of these effects is not understood, glucocorticoids affect renal function 

(GFR, tubular flow, Na+/H+ exchange) and also control the rate of synthesis of many 

other hormones and factors which alter vascular and peripheral nerve function (see 

review Fraser and Blackhurst in press). A much used and potent synthetic 

glucocorticoid is dexamethasone (Figure 1.2a, Table 1.2) 

1.3 Mechanism of action 
Steroid hormones are lipophilic and thus are readily able to penetrate the cell 

membrane. In common with thyroid hormones and retinoids, they act by binding to 
intracellular receptors (in the case of corticosteroids, in the cytoplasm) to form a 

steroid-receptor complex which binds to chromatin and induces the synthesis of new 
proteins. For this reason, in contrast to hormones acting on cell membrane receptors, 
there is significant delay - 'latent period' - between steroid binding and hormone 

effects. The glucocorticoid (type2; GR) and mineralocorticoid (typel; MR) receptors 
belong to this large nuclear receptor super family and are distinguished by their 
different ligand affinities. However, their basic mechanisms of action are similar. The 

cDNAs for all the major receptors have been cloned and much is known about their 

cytoplasmic state, alteration on binding to the ligand and the processes which 
subsequently lead to altered rates of gene transcription. While the GR has been more 
intensively studied, it is likely that the MR acts in a similar manner. 
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COMMON NAME SYSTEMATIC NAME 

II -Deoxycortisol (S) 17,21-dihydroxy-pregn-4-ene-3,20-dione 

Cortisol (F) 11 P, 1 7a, 21 -trihydroxy-pregn-4ene-3,20- 
dione 

11 -Deoxycorticosterone 
(DOC) 

21-hydroxypregn-4-ene-3,20-dione 

Corticosterone (B) I121 -dihydroxy-4-ene-3,20-dione 
18-Hydroxycorticosterone 

(I 8-OHB) 

11 18,2 1 -trihydroxy-4-ene-3,20-dione 

Aldosterone (Aldo) 11 21-dihydroxy-pregn-4-en-18al-3, 

20-dione 

18-OHDOC 18,21-dihydroxy-4-ene-3,20-dione 

Dexamethasone (DEX) 9a-fluoro-16(x-methyl, 1-dehydrocortisol 

Table 1.2 Common and sytematic names of adrenal steroids and Dexamethasone. 

In the ligand-free state , the GR exists as a31 Okda complex. It was first cloned and 

expressed in 1985 (Hollenberg et al. 1985). Two isoforms have been identified GRcc 

and GRP. The latter form does not bind active glucocorticoids but is involved in 

ligand independent negative regulation of glucocorticoid action (Bamberger et al. 
1995). The activated receptor is much smaller (90KDa) indicating a dissociation of a 

multicomponent complex (Figure 1.3a). Further research has shown that the free 

receptor complex consists of a single receptor molecule associated with two 90KI)a 

heat shock protein 90 (Hsp90) molecules as well as one each of Hsp56 and Hsp70 
(for review see Panarelli and Fraser 1994). Another smaller peptide constituent, p53, 

has also been identified. Finally, several heat stable molecules such as 

polyunsaturated fatty acids and mninoether phosphoglycerides have been isolated 

from the complex. Hsp90 is a crucial component of the complex, acting as a structure 

-stabilising chaperone protein. Its loss by heat inactivation or mutation decreases 

ligand binding affinity to about 1% and increases turnover rate (Werner ct 
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1992). It is thought to protect the DNA-binding domain (see below) of the ligand -free 

receptor. The receptor protein consists of domains responsible for the specific 

functions (Figure 1.3b), principally a DNA-binding domian and C-terminal figand- 

binding domain. The immunogenic region occupies the N-terminus. 
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Binding of the ligand decreases the receptor affinity for the chaperones proteins which 
dissociate and the hormone-receptor complex enters the nucleus as a homodimer 

where it binds to a specific, hormone -responsive element (HRE) by means of a highly 

conserved zinc finger motif in the DNA-binding domain (Figure 1.3a) to institute or 
inhibit RNA-polymerase activity. A large number of other transcription factors are 

also involved such as activation-protein I (AP-1), cAMP-response element binding 

protein and nuclear factor KB (NF-KB); GR binds NF-rB to inhibit transcriptional 

activation of NF-Y. B-dependent genes. It is known that GR, but not MR, can inhibit 

induction of of AP-1-dependent genes by interaction of fos/jun heterodimers (Pearce 

et al. 1993) but on the other hand, jun/jun homodimers and the GR mutually synergise 

each others activity (Teurich 1995). 

The GR binds cortisol, corticosterone and dexamethasone. It is widely, almost 

ubiquitously expressed in tissues and has great importance in the liver, brain, vascular 
tissue, kidney and the immune system. Glucocortiocoids, for example, modulate the 

activities of several neurotransmitter systems such as the adrcnergic and cholinergic- 

muscarinic systems (Torres et al. 1991). Moreover, they exert an important influence 

on vascular tone, assisting in the control of sensitivity to pressor agents such as 
ANGII and noradrenaline (Kornel 1993, Scott et al. 1987). Independently of this, 

they affect the transcription of the genes encoding angiotensinogen, renin, the AT-1 

receptor, the endothelin (ET-1) receptor, endothelin, the metabolism of noradrenalin, 

prostaglandin and nitric oxide (for review see Fraser and Blackhurst , In press). 
Their effects on intermediary metabolism have already been mentioned. The GR can 
have either inhibitory action, as is the case in the immune sytem where it has an 
immuno-supressant effect, or stimulatory effects as seen in the liver. 

The MR is less specific. It binds cortisol and aldosterone with equal affinity (Funder 

1997). Since cortisol circulates in normal subjects at concentrations up to 1000 times 

those of aldosterone, it should (a) prevent aldosterone binding to the MR and (b) exert 

potent mineralocorticoid effects itself. That it does not is due to the action of II P- 

hydroxysteroid dchydrogenase type 2, the 'cortisol-cortisone shuttle' (Stewart et al. 
1991). This microsomal enzyme is present in mincralocorticoid-responsive tissues and 

oxidises cortisol to cortisone which does not bind to the MR. 
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The major site of aldosterone action in the nephron of the kidney is in the distal 

convoluted tubule and the cortical collecting tubules where there is a dense population 

of MR (Schwartz et al. 1978, Horisberger et al. 1983). However, these receptors are 

also expressed in the liver, hippocampus pituitary, peripheral blood leucocytes , colon 

and the salivary glands (Orth et al. 1992, deKloet et al. 1998). In the basolateral 

membrane of the luminal cells of the tubules, Mg 2+- dependent, Na+Ký -dependent 
ATPases mediate sodium: potassium exchange and maintain the electrochemical 

gradient across the cell membrane. When aldosterone is administered chronically, 

these cells undergo changes in structure and the basolateral membrane surface area is 

increased with higher expression of the genes encoding the cc- and P- subunits of the 

Na+KýATPase (Komesaroff et al. 1994). The epithelial Amiloride-sensitive channel 

also found in the distal nephron (Rossier 1994) is also regulated by aldosterone and 
helps to maintain Na+ balance, extracellular volume and blood pressure by controlling 
Na + entry into the cells of the distal nephron (Canessa et al. 1994). 

Aldosterone -sensitive sodium reabsorption by the distal nephron constitutes only 5% 

of filtered sodium; the remaining 95% has already been absorbed prior to arriving at 
these sites. Never the less, the remaining 5% constitutes about 80 grams per day and 
therefore the regulation of its absorption by aldosterone is crucial in the control of 

extracellular electrolytes, volume and blood pressure. Hydrogen ion secretion is also 

regulated by the kidney by the intercalated cells of the collecting tubule. Aldosterone 

acts on the AT? -dependent apical hydrogen ion pump combined with regulation of 
the basolateral membrane Cl-/HC03 exchanger (Hays 1992). The net result of these 

effects on sodium, potassium and hydrogen ions is to increase the extracellular 

volume and increase blood pressure. Aldosterone excess results in hypokalaernia, 

metabolic alkalosis, raised exchangeable sodium content and a low body potassium 
(Ferriss et al. 1983, Kremer et al. 1977). 

Recently, studies have been published which suggest that aldosterone may affect cell 
functions other than electrolyte transport. A specific example is that aldosterone 

mediated via a non-epithelial non-protected MR can induce experimental cardiac 
hypertrophy and fibrosis (Brilla et al. 1992). The receptors described above are 

cytosolic. However, a membrane receptor has been reported (Wehling et al. 1997). 
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This receptor is found on the red blood cell membrane, has a very high affinity for 

aldosterone and a very rapid response. In white blood cells, it increases Na+/H- and 

in cardiac fibrocytes it is associated with increased collagen synthesis. 

Cholesterol is the principal building block of steroid hormone biosynthesis. Steroid 

hormone biosynthesis occurs mainly in the mitochondria of steroidogenic tissues 

where a series of enzymes, the majority of which belong to the haem-containing 

cytochrome P450 superfamily, convert cholesterol to endogenous steroids. 

1.4.1 Steroidogenesis 

The biosynthetic pathways within the adrenal gland will be discussed in some detail 

later in this section. Firstly however, cholesterol must be delivered to the 

mitochondria. It can be synthesised in the adrenal cortex de novo from acetate or 

mobilised from cholesterol esters in intracellular pools. Approximately 80% of 

cholesterol is derived from circulatory lipoproteins, predominantly low density 

lipoprotein (LDL). Acting at a cell surface receptor (Gwynnc and Strauss 1992), the 

LDL particle is internalised by receptor-mediated endocytosis, releasing the 

cholesterol esters within the cell for steroid biosynthesis (Kovanen 1979, Brown 

1979). Adrenocortical cells, particularly those of the zona fasciculata (ZF), are 

characterised by abundant fat vacuoles packed with stores of esterified cholesterol 

which are mobilised for steroidogenesis. The rate limiting step of steroidogenesis was 

originally thought to be cholesterol conversion to pregnenolone by the cytochrome 
P450 side chain cleavage enzyme (P450scc) (see below) but it is now well-established 
that the mobilisation and delivery of cholesterol to this enzyme within the 

mitochondria is the real rate-limiting factor. The enzyme, cholesterol ester desmolase, 

hydrolyses cholesterol esters, releasing free cholesterol available for steroidogenesis 
in response to hormonal stimulation (see section 1.5). Once mobilised, the cholesterol 

must cross the outer and inner mitochondrial membrane. A number of cholesterol 

carrier/translocation systems have been identified. 
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1.4.2 Cholesterol translocation 

Sterol carrier protein, SCP2 is a well-characterised carrier of sterols and is found in 

the liver. It also enhances the formation of pregnenolone from cholesterol in adrenal 

mitochondria. Involvement of this protein in adrenal steroidogenesis has been 

documented (Vahouny et al. 1985). Following hydrolysis of cholesterol esters, the 

sterol is transferred to the inner mitochondrial membrane, a process facilitated by a 

SCP2-like protein. 
More recently, a cholesterol carrier protein localised to the mitochondria, and induced 

in steroidogenic cells by ACTH (see section 1.5) has been identified (see review 

Stocco 1998) and is known as steroidogenic acute regulatory protein (StAR). As 

levels of cholesterol increase within the mitochondria, so too do levels of StAR 

(Strauss abstr. 1998). StAR acts directly at the mitochondrial surface, possibly with a 

surface protein, and forms an import core through which cholesterol flows down a 

gradient from the outer to the inner membrane. When cholesterol moves into the 

mitochondrial matrix, StAR activity stops (Strauss abstr. 1998). Missense mutations 
in the StAR gene have been detected in patients with Congenital lipoid hyperplasia. 

Patients have a total inability to make steroids and the adrenal cortex is packed full of 

the steroid building block cholesterol. The resulting defective StAR protein is unable 

to carry cholesterol to the mitochondrial enzymes. 

In the last ten years, a novel cholesterol transport mechanism distinct from those 

described above has been identified. It is based on the peripheral-type benzodiazepine 

receptor PBR (Papadopoulos 1993) and occurs in response to acute hormonal 

stimulation (see section 1.5). Benzodiazepines are a class of anticonvulsant drugs 

which act in the CNS at GABAA receptors (Haefly et al. 1975, Costa et al. 1979). 

However, a different receptor from that in the CNS has been identified in the 

periphery and localised specifically to the outer mitochondrial membrane (Anholt et 

al. 1986). It is associated with a voltage-dependent anion channel protein (VDAC) 

and an inner mitochondrial membrane adenine nucleotide carrier (McEnry et al. 
1992). This suggests that the PBR is a multimeric complex. The VDAC protein is a 
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large diameter ion channel which is located in outer membrane of mitochodria at 

junctions or contact sites with the inner mitochondrial membrane (Levitt et al. 1990). 

VDAC, as well as anions, allows small molecules to be translocated from the 

cytoplasm to the inner mitochondrial membrane (Levitt et al. 1990). PBR molecules 

are found in clusters and are associated with these VDAC channels. Their 

arrangement on the outer mitochondrial membrane at contact sites enables them to 

transport free cholesterol from the outer to the inner mitochondrial membrane. The 

mechanism by which the translocation of cholesterol is controlled will be discussed in 

section 1.7. 

After translocation into the mitochondria, cholesterol undergoes complex 

modification. A series of hydroxysteroid dehydrogenases and mixed function 

oxidases catalyse the biosynthesis of adrenal steroid hormones. The oxidases belong 

to a superfamily of haern-containing mono-oxygenases which also includes liver 

enzymes such as those involved in drug detoxification (Williams 1973). Adrenal 

enzymes are either microsomal or mitochondrial. Side chain cleavage enzyme, II P- 

hydroxylase and Aldosterone synthase are mitochondrial. They require a coupled 

coenzyme system which transfers electrons to the P450 enzyme as the reducing 

equivalents necessary for the hydroxylation reaction (see figure 1.4a) 

NADPH 
NADPH 

r NADP 

02 FMN FAD NADP 

I Redu 

0-ACn -ACA 

(b) Microsomal 

Figure 1.4a. Steroidogenic electron transfer system in (a) mitochondria 
and (b) microsomes. Adapted form Kominani et al (1984). 
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1.4.3. Electron sources for hydroxylation 

Two such electron transport systems are found in man. The adrenodoxin/ adrenodoxin 

reductase system is utilised by side chain cleavage enzyme, II P-hydroxylase and 

aldosterone synthase which are mitochondrial (Kimura and Suzuki. 1967). 

Adrenodoxin, a non-haem iron protein, is linked to the flavoprotein adrenodoxin 

reductase which accepts electrons from NADPH supplied mainly from the citric acid 

cycle. In man, adrenodoxin and adrenodoxin reductase are each encoded by single 

genes; the reductase has two isoforms due to alternative DNA splicing (Solish et al. 

1988). There are also two adrenodoxin pseudogenes. The adrenodoxin/adrenodoxin 

reductase "electron shuttle' system is illustrated in flgure Ma. 

By providing electrons, NADPH transforms adrenodoxin reductase into its reduced 

state which in turn reduces adrenodoxin. This then transfers reducing equivalents to 

the P450 enzyme. Its active site has a single iron protoporphyrin prosthetic group 

where dioxygen binds, is reduced and cleaved. The steroid substrate binds the low 

spin Fe 3+ P450 enzyme to generate a high spin ferric complex. An electron from 

NADPH converts Fe 3+ to Fe2+ which is then able to bind molecular oxygen. This 

second electron reduction is followed by addition of 2H+ with consequent subsequent 

elimination of water. The dioxygen thus achieves its activated atomic form, the 

substrate is oxidised and the enzyme haem is returned to the Fe 3+ state. This process 
is illustrated in flgure 1.4b. 

The second type of electron transport system uses P450 reductase, a flavoprotein. 

which is microsomal and different from adrenodoxin. reductase. It is coupled to 17(x- 

hydroxylase and 21-hydroxylase (Kominami et al. 1984). P450 reductase transfers 

two electrons from NADPH to these enzymes in a process analogous to that in figure 

1.4b. 17cc-Hydroxylase and 21-hydroxylase also employ cytochrome b5 

(Yanagibashi and Hall, 1986). 
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Figure 1.4b. The sequence of reactions in P450 catalysed hydroxylation. 
Adapted from Dawson (1988). 

Both electron transport mechanisms enable the mono-oxygenases to insert one atom 

of oxygen into the substrate (Hall et al. 1985, Gwynne and Mahaffee, 1986); the other 

atom of molecular oxygen combines with H+ to form water. The overall reaction is as 
follows: 

Substrate-H + NADPH + H+ + 02 = Substrate-OH +NADP+ +H20 

1.4.4 Boosynthefic pathways 
The sequence of reactions leading to the formation of the corticosteroid hormones is 

summarised in flgure 1.4c. Briefly, the steps are as follows. 

(a) Cortisol and Corticosterone 

1. Cholesterol enters the inner mitochondrial membrane where side chain cleavage 

enzyme converts it to pregnenolone. Side chain cleavage enzyme catalyses 
hydroxylations at the 22R and 22S positions. The side chain is cleaved as isocaproic 

acid leaving the C21 steroid, pregnenolone (Strott et al. 1990). This enzyme is 
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encoded by a single gene (CYP11A) on chromosome 15 and is expressed in all 

steroidogenic tissues (Chung et al. 1986a). 

2. Pregnenolone is converted to progesterone by the enzyme 3p-hydroxysteroid 

dehydrogenase/isomerase (3p-HSD). It is also able to catalyse the conversion of 17(x- 

hydroxypregnenolone to l7a-hydroxyprogesterone (see below). This is not a 

cytochrome P450 enzyme. It is encoded by a single gene on chromosome I (Berube 

et al. 1989). The gene exhibits tissue-specific expression and a number of isoforms 

have been described (Lachance et al. 199 1). 

3. Pregnenolone leaves the mitochondria, passing to the smooth endoplasmic 

reticulum where it is converted to the l7a-hydroxyderivative by 17cc-hydroxylase. 

This enzyme is encoded by a single gene, CYP17A, on chromosome 10 (Matteson et 

al. 1986). 17a-Hydroxypregnenolone is converted to 17(x-hydroxyprogesterone as 

described in 2. Progesterone may also be 17(x-hydroxylated to produce 17cc- 

hydroxyprogesterone. These 17a-hydroxysteroids are required for cortisol 

biosynthesis. The enzyme possesses an additional 17-20 lyase activity which converts 

l7a-hydroxylated C21 steroids into C19 steroids, the adrenal androgens 
(dehydroepiandrosterone (DHEA), androstenedione and testosterone (Orth ct al. 

1992). There is no l7a-hydroxylase activity in the ZG. Moreover, the rat adrenal 

gland contains no 17(x-hydroxylase. 

4. l7a-Hydroxyprogesterone is then converted to 11 -deoxycortisol in the ZF by the 

enzyme 21-hydroxylase, also in the smooth endoplasmic reticulum. Progesterone 

from 2. can also be converted to 11-deoxycorticosterone (DOC) by P450C21. This 

enzyme is encoded by the CYP21A gene which lies on chromosome 6. A highly 

homologous inactive pseudogene, CYP21P, lies in tandem with CYP21A within the 

Major Histocompatibity Complex region. 

5.1 I-Deoxycortisol (S) is shuttled back to the inner mitochondrial membrane where 
II P-hydroxylase converts it to cortisol (F), the major human glucocorticoid. This 

enzyme is encoded by CYP IIBI which resides on the long arm of chromosome 8 
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(8q22) (Mornet et al. 1989). As well as cortisol formation, this enzyme can II P- 

hydroxylate 11-deoxycorticosterone (DOC) to produce corticosterone (B), and 18- 

and 19-hydroxylate to produce 18-hydroxydeoxycorticosterone (18-OHDOC), 18- 

hydroxycorticosterone (B) and 19-hydroxy-11-deoxycorticosterone (19-OHDOC) 

respectively, also in the ZF. 

DOC 10.18-OHDOC 
s 10' F 

B 

19-OHDOC 
18-OHB 

(b) Aldosterone 

Conversion of cholesterol to DOC in the ZG is identical to steps 1-2 and step 5 

converts progesterone to pregnenolone above. Production of aldosterone, the major 
human mineralocorticoid, from DOC is catalysed by the enzyme aldosterone synthase 

and involves three enzymatic reactions, II P-hydroxylation, 18-hydroxylation and 18- 

oxidation. This enzyme is encoded by the CYPllB2 gene and also resides on 

chromosome 8 situated in tandem approximately 40kb upstream of CYPllBl (see 

section 1.6). Aldosterone synthase is exclusively expressed in the ZG and it is in this 

zone that the three terminal stages of aldosterone biosynthesis occurs. 

1. DOC is the preferred substrate of aldosterone synthase. 
The II P-hydroxylase activity of this enzyme converts DOC to corticosterone (B) by 

adding a hydroxyl group at C 11. 

2. Corticosterone (B) is then converted to 18-hydroxycorticosterone (180HB) by 18- 

hydroxylation and addition of a hydroxyl group at position C 18. 
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3.18-OHB is finally converted to aldosterone by the final 18-oxidation step which 

converts the hydroxyl group at C 18 to an aldehyde with subsequent removal of water. 

DOC - 00 B 00.18-OHB ' 0' Aldosterone 

There has been some controversy over the existence of an 18-oxo product in the 

interconversion between 18-OHB and aldosterone and an 18-hydroxysteroid 

dehydrogenase activity of aldosterone synthase between 18-OHB and aldosterone has 

been described. 18-OHB has a hydroxyl group at C18 and aldosterone has an 

aldehyde group at this position. This suggests that an 18-hydroxysteroid 

dehydrogenase catalyses the interconversion. However, when 18-OHB is incubated 

with aldosterone synthase, a small amount of aldosterone is produced (Vinson and 
VAýiitehouse 1970). It is therefore the consensus opinion that aldosterone arises 

through a second hydroxylation at C18 with subsequent water loss to produce an 

aldehyde and hence aldosterone. The absolute requirement for reduced NADP is 

strong evidence of this (Fraser and Lantos 1978). 

In vitro studies using cloned human aldosterone synthase showed that B was less 

efficient at producing 18-OHB and aldosterone than DOC (Denner et al. 1995). These 

findings show that DOC is the prefered substrate and that it probably stays bound to 

the active site throughout the three stages of conversion releasing B and 18-OHB 

only as by-products. Aldosterone is the major, most potent mineralocorticoid in 

human subjects and is produced in small amounts (100-500pM). It is this aspect 

which delayed its discovery. 

38 



t 

PROGESTERÖiiE--1 
-T 17-OHPROGESTERONE 

21-Hydroxylase 
(CYP21) 

DEOXYCORTICOS 11 -D-EOXYCORTISOL 

11 ß-Hydroxylase 11 ß-Hydroxylase 
(CYP1 1 B2) cypilB1 

f t 

- 
CORTICOSTERONE CORTISOLJ 

18-Hydroxylase 
(CYP1 1 B2) CH, OH 

HO 
- -OH 

r18-OH 
CORTICOST 

0 6. m 

18-Oxidase 0 

(CYP1 1 B2) 
0 

- i 
H CH, OH 

ALD0STER: Z: O :N ýý 

0 

Figure 1.4c Biosynthetic pathway 

39 



1.5 Control of Corticosteroid biosynthesis and secretion. 

Cortisol (corticosterone in the rat) and aldosterone are thus synthesised from 

cholesterol by a complex pathway comprising a series of reactions which remove 

most of the side chain and introduce, in a coordinate manner, a series of substituents, 

mainly hydroxyl groups, into the 4-ring structure. Each step in the pathway is 

catalysed by an enzyme specific for the nature, locus and orientation of the substituent 

moiety. The rates of synthesis of cortisol (or corticosterone) and aldosterone are 

controlled independently. In this section, the nature of these control systems will be 

outlined briefly but with the principal aim of describing the changes in second 

messenger activity within the adrenocortical cell which will determine the rates of 

expression of the genes encoding the steroidogenic enzymes. The following sections 

will then deal with the chemistry, biochemistry and genetics of the pathway. 

The functioning of the hypothalamic-pituitary-adrenal (BPA) system is surnmarised in 

flgurel. 5a. 

In response to a variety of 'stress stimuli' (physical, metabolic, psychological), 
hypothalamic neurones release corticotrophin releasing hormone (CRH) into the 

hypothalamic-pituitary-portal system (AVP may also be an important releasing factor) 

to act via G-protein-linked receptors on the corticotroph cells. ACTH is synthesised 

as part of a precursor molecule, pro-opiomelanocorticotropin (POMC), which also 

contains P-endorphin, melanocyte-stimulating hormone and a number of other 

peptides of uncertain function. ACTH is a 39 arnino acid peptide, the first 24 residues 

of which are highly conserved. Biological activity resides in the N-terminal region (I- 

18); the C-terminal region is immunogenic. ACTH is released from POMC during 

post-translational modification by enzymatic cleavage. Its secretion follows a 

circadian rhythm, highest early in the morning and lowest late at night. ACTH 

stimulates, almost immediately, the secretion of cortisol and corticosterone from the 

zona fasciculata/reticularis. It also stimulates adrenal blood flow and, chronically, 

promotes hypertrophy of the zona fasciculata. Acutely and in vitro, aldosterone 
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secretion from the zona glomerulosa is also enhanced. However, continued ACTH use 
in vivo leads to inhibition of secretion and eventual atrophy of the zone. 

STRESS 
ENDOGENOUSRHYTHMS 

VE 

HYPOTHALAMUS 
CRH 

VE 
ANTERIOR PITUITARY 

ACTH 

ZF 
ADRENAL 

F 

ANTERIOR PITUITARY 
POW 

i 

ACTH 

Figure 1.5a. The hypothalamic-pituitary-adrenal (HPA) system 

ACTH's primary action is to increase cortisol secretion by activating its synthesis; 
intra-adrenal storage of cortisol is minimal (Dickerman et al. 1984, Hall 1985). At the 

cellular level, ACTH acts on the zona fasciculata cells by binding to high-affinity 

specific cell surface receptors on the plasma membrane, initiating a series of 
intracellular second messenger systems. The adrenocortical cell membrane is said to 

possess approximately 3600 ACTH-binding sites (Orth et al. 1992). Only a small 

receptor occupancy is required to obtain a maximal steroidogenic response. ACTH 

binding stimulates the guanine nucleotide binding protein, Gs, which stimulates 
adenylate cyclase and the production of cAMP (Figure 1.5b). This intracellular 

cyclic nucleotide then phosphorylates a number of proteins and transcription factors 

which leads to the transcription of enzymes required for steroid hormone biosynthesis. 
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Figure 1.5b. Diagram of ACTH and ANG-11 receptors and intracellular 

mechanisms. 

Adapted from The Adrenal Cortex. Ed. Vinson, Whitehouse and Hinson (1992). 

For example, cholesterol ester desmolase is phosphorylated directly and converts 

cholesterol esters to free cholesterol. From these fatty stores, cholesterol is then 

transported to the, site of steroid hormone biosynthesis, the inner mitochondria 

membrane (see section 1.4). ACTH increases transcription and expression of side 

chain cleavage enzyme, llp-hydroxylase, 21-hydroxylase, 17(x-hydroxylase and 

adrenodoxin genes in vitro in bovine adrenocortical cells and similarly, cAMP also 
demonstrates these effects (Simpson and Waterman 1988). The mechanism by which 
ACTH-dependent cAIVIP increases transcription is discussed in depth later in this 

section. 

Chronic effects of ACTH include increased synthesis of the steroidogenic enzymes 
(excluding aldosterone synthase) as well as actions on cell growth (Hall 1985, 

Simpson and Waterman 1988). Prolonged absence of ACTH causes levels of 

steroidogenic enzymes and RNA to fall in association with atrophy of the adrenal 
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cortex. However, these effects are reversed over a period of a few days when ACTH 

is re-administered (Orth et al. 1992). 

ACTH may also affect other second messenger systems such as intracellular calcium 
[Ca2+]i. Extracellular Ca2+ is required to promote hormone-receptor interaction and 

to maintain receptor occupancy (Haksar and Peron 1973, Cheitlin et al. 1985). The 

generation of cAMP by ACTH stimulation requires an influx of extracellular Ca2+ 

(Kojima et al. 1985) which inturn causes a rapid transient increase in [Ca2+]i (Kojima 

et al. 1986). The effects of these intracellular mechanisms are discussed later in this 

section. 

Angiotensin II (ANG-II) is a pressor octapeptide and is the product of the renin 

angiotensin system (RAS) (Figure 1.5. c ). Briefly, the enzyme renin is secreted from 

epitheloid cells of the juxtaglornerular apparatus of the afferent glomerular arterioles 

in response to a decrease in intravascular volume or sodium levels. In the circulation, 

it cleaves an inactive decapeptide, ANG-1, from an a2-globulin, angiotensinogen, 

which is of hepatic origin. Plasma and tissue angiotensin converting enzyme (ACE) 

hydrolytically removes two further amino acid residues to release ANG-11. This has a 

short half-life and is rapidly degraded by angiotensinases. Recent studies have shown 

that complete RAS systems also exist in the brain, vasculature, adrenal cortex and 

other tissues (Sarnani 1994). 

ANG-Il acts on target cells via specific membrane receptors. Two have been 

identified, ATI and AT2. Most biological responses are mediated through ATI 

receptors. ZG cells respond via AT1 receptors which, on binding ligand, stimulate 

phospholipase C (PLC) hydrolysis of phosphatidyl inositol biphosphate (PIP2), 

generating diacyl glycerol (DAG) and inositol triphosphate (IP3) which releases 
bound Ca2+ from intracellular stores, thus increasing [Ca2+]i. Studies using the 

technique of patch clamping or following the rate of K+ flow across the cell 

membrane have shown that ANG-II also rapidly depolarises the ZG cell membrane. 
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As a result, voltage-dependent-Ca2+ channels open. Since [Ca2+], massively exceeds 
[C2+]i, there is a rapid influx which also contributes to the increase in[Ca2+], (Connor 

et al. 1987, Shepherd 1989). 
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ALDOSTERONE DIRECT PRESSOR 
SECRETION EFFECT 

Fig 1.5c. The Renin-angiotensin system 

ANG-II is a key regulator of sodium status and extracellular volume. It is perhaps not 

surprising, therefore, that sodium status itself modulates the quantitative relationship 
between ACTH, ANG-II or K+ with aldosterone. Thus infusion of ANG-II into 

sodium deplete subjects produces higher increases of aldosterone than the same 

amount of ANG-II than in sodium loaded subjects (Oelkers et al. 1974, Gordon ct al. 
1980). The opposite is true for pressor sensitivty to ANG-11. The mechanism of this 

modulation has been the subject of much research but has yet to be satisfactorily 

resolved. The ANG-II receptor is up-regulated in the kidney in response to Na+ but 

this is not the case in the adrenal (Aguilera and Catt 1978a). 
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1.5.3 Potassium 

Cells of the ZG are extremely sensitive to changes in extracellular K+. Increased 

extracellular Ký levels increase aldosterone secretion (Muller 1987) which in turn 

facilitates renal potassium excretion thus, controlling body potasssium balance. 

Potassium, like sodium, can modify response to other agonists. High dietary 

potassium intake enhances responsiveness, while low potassiuni reduces the response 
(Dluhy et al. 1972). In the rat, Northern blotting showed that adrenal aldosterone 

synthase mRNA levels increased some 5 to 6 fold following dietary potassium 

supplementation and sodium restriction (Tremblay et al. 1992). Rat 11 P-hydroxylase 

mRNA levels were not altered by these dietary changes which is consistent with 

unchanged cortisol levels. Captopril, an inhibitor of angiotensin converting enzyme 
(ACE), significantly decreased the level of aldosterone synthase message induced by 

these monovalent cation changes, indicating that these effects require ANG-11 

production (Tremblay et al. 1992). 

1.5.4 Potassium activates Calciuuchannels 

In rat ZG cells in vitro, an increase in extracellular K+ of as little as 0.5 mM produces 

an increase in cytoplasmic [Ca2+]i (Pralong et al. 1992) underlining the extreme 

sensitivity to K+. This increase in [Ca2+]i occurs by the activation of voltage- 
dependent Ca2+ channels (VDCC's) (Cohen et al. 1988, Durroux et al. 1988). 

VDDC's in these cells are mostly of the T-type (Vamai et al. 1995) but there have 

also been reports of L-type channels (Durroux et al. 1988, Varnai et al. 1995). T-type 

channels are low activation threshold (-69mV) , transient, rapid activation channels 

whereas L-type are high threshold (4OmV) with larger Ca2+ conductance (Vamai et 
al. 1995). The T-type channel in rat ZG cells is activated even by raising extracellular 
[Ký] by an increment not exceeding the physiological range. Tbus it is possible that 

these T-channels or a sub-type do not require membrane depolarisation for activation 

which suggests the occurrence of a non-voltage -operated Ca2+ influx (Vamai et al. 
1995). Further channel subtypes are receptor-operated and second-messenger 

operated. ZG cells have a Ký activated, C2+ permeable channel possessing a Ký 
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binding site (Pardo et al. 1992). Variations in extracellular [Ký] therefore modify the 

rate of influx of Ca2+ through a variety of channels in order to alter [C2+]i (see figure 

1.5d ). 
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Figure 1.5d. Calcium channels and routes of entry 

Adapted from Heist and Schulman (1998). 

More and more endogenous ligands are joining the list of control factors exerting 

effects on aldosterone secretion. A few of the well-known ones are shown in table 1.5 
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CONTROL EFFECT RECEPTOR/ REFERENCE 

FACTORS MECHANISM 

Atrial natriuretic: Inhibitory ANP Receptor Goodfriend 

peptide Wdosterone ýpregnenolone et al 1984 

Adrenaline, Stimulatory 0-adrenergic De Lean 

Noradrenaline TAIdosterone receptors et al. 1984 

Acetylcholine Stimulatory Muscarinic Hadjan. 1981 
TAIdosterone receptors 

Vasoactive Stimulatory Synergises with Holzwarth et al. 1984 

intestinal peptide TAIdosterone ACTH 

Dopamine Inhibitory Tonic inhibition Norbiato et al. 1977, 
ýAldosterone via DA receptor Dunn et al. 198 1, 

Connell et al 1987 

Adrenomedullin Inhibitory Receptor mediated Mozzochi et al. 1996 
lAldosterone I 

Table 1.5. Table showing effects of several control factors on aldosterone secretion. 

Thus, agonists of the adrenal cortex have certain common effects on intracellular 

second messenger systems. From the point of view of eventual translation of these 

changes into altered enzyme activity, it is now necessary to consider what changes 

each of these messengers evoke on gene transcription. It would be expected that the 

second messenger would interact directly or indirectly within specific control sites on 
the gene promoter. These are discussed in the following sections. 

ACTH, but not ANG-II or potassium, stimulates levels of cAMP. As a second 

messenger, cAMP results in the phosphorylation of a variety of proteins required for 

transcription of genes involved in adrenal steroidogenesis. It activates protein kinase 

A (PKA) which uses ATP to phosphorylate a number of proteins and increases 

nuclear mRNA production of a number of ACTH-dependent genes (Daniel et al. 
1998). Phosphoprotein. phosphatases (PP1 and/or PP2) are also required to maintain 

steroidogenic responses to ACTH and cAMP in rat ZG cells (Sayed et al. 1997). 
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These enzymes dephosphorylate phosphoproteins and recent evidence suggests that 

they may be involved in the regulation of the activity of a phosphoprotein which acts 
before PKA activation (Sayed et al. 1997). Activation of the PKA pathway in H295R 

cells (a human adrenal cell line) using an exogenous activator of this pathway, 
dibutyryl cAMT or forskolin, preferentially increases mRNA levels of CYP11131 

which suggests that ACTH may act through this pathway to increase CYPIIBI 

transcription (Denner et al. 1996). 

Levels of StAR (see section 1.4) mRNA and StAR protein are increased by cAMP 
through increases in the rate of transcription also mediated by PKA phosphorylation 
(Clark et al. 1995, Kiriakidou et al. 1996). More recently, northern and western 
blotting showed that administration of ACTH to hamsters in vivo caused a 2- to 3- 

fold increase in StAR mRNA and a 1.5-fold increase in StAR protein respectively, 1 

hour post-treatment (Fleury et al. 1998). This small mammal is a good model for 

studying the in vivo effects of ACTH because, like man, cortisol is the major 

glucocorticoid (LeHoux et al. 1992). 

cAMP regulates the expression of specific genes by mediating the PKA-dependent 

phosphorylation of cAMP-responsive element binding protein (CREB) transcription 

factor (Gonzalez et al. 1989) see flgure 1.5e. It interacts directly with CREB in the 

cytosol of adrenocortical cells. This protein forms part of a cAMP -dependent protein 
kinase. CREB then binds CPB (CREB binding protein) and this complex then 

interacts directly with genes such as the CYP 11 B1 and CYP II B2 which have a CRE 

(cAMP responsive element) (see section 1.6) in their control regions. Recently, 

ANG-II and Ký have been shown to regulate human CYP II B2 transcription in H295R 

cells through common steroidogenic factor-I (SF-1) and CRE-like cis-elements, thus 

providing a plausible molecular mechanism by which these physiological regulators 

may combine to control aldosterone production (Clyne et al. 1997). cAMP activation 

of PKA preferentially activates gene transcription of CYPllB1 over that of CYPHB2 

in vitro (Denner et al. 1996). 
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Steroldogenic factor I (SF-1), also known as adrenal 4-binding protein (Ad4BP), is a 

major regulator of tissue specific expression of the cytochrome P450 steroid 

hydroxylase enzymes of the adrenal cortex and the gonads (Lala et al. 1992, 

Morohashi et al. 1992). It is thought to be activated by PKA phosphorylation (Pon et 

al. 1986). SF-I is a nuclear hormone receptor and SF- I cDNAs from human, bovine, 

rat and mouse share conserved regions of known functional importance with other 

members of this superfarnily (Evans 1988). SF-I cDNA is highly homologous with 

known transcription factors: embryonal long terminal repeat-binding protein (ELP) 

from mouse embryonal carcinoma cells (Tsukiyarna et al, 1992) and fushi tarazu 

factor- I (FTZ F I), a Drosophila orphan nuclear receptor (Ueda et al. 1990, Lavorgna 

et al. 1991) which are involved in retroviral expression and developmental regulation 

respectively. These functional domains consist of two zinc fingers which mediate 

DNA binding, an AF-2 transactivation domain at the carboxy terminus, a proline -rich 
domain which is thought to mediate transactivation and also a consensus site for PKA 

phosphorylation in response to cAMP. The mechanism by which SF-I exerts its 

regulatory effects on gene transcription is not known. However, in a recent study, SF- 

I has been shown to mediate cAMP and phorbol ester upregulation of some 

steroldogenic enzymes, such as bovine P45017 and human 3P-HSD directly(Bakke & 

Lund 1995, Leers-Suchetat et al 1997). The efficiency with which SF-1 activates 

transcription is increased upon binding 25-OH-cholesterol (Lala et al. 1997). 
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Recently an interaction between CREB and SF- I has been demonstrated in the control 

of bovine CYP11A, CYPIIB and aromatase gene transcription (Morohashi et al. 
1993, Michael et al. 1997). This interaction may mediate cAMP-dependent gene 

activation or SF-I may exert a direct effect on the CREB-binding protein itself 

(Smith et al. 1996). 

1.5.7 Effects of Calcium as an intraceIlular messenger 

The routes by which Ca2+ enters the cell are shown in figure 1.5d. 

ANG-II and extracellular K+ induce aldosterone secretion by increasing [Ca2+]i via 

signal transduction mechanisms (Spat et al. 1991, Ganguly et al. 1994). A recent 

study has shown that a sustained increase [Ca2+]i increases the levels of mitochondrial 
NADPH, ATP and GTP in ZG cells stimulated with ANG-Il or Ký. This may 

contribute to increased hormone production (Rochas et al. 1997) by increasing the rate 

of steroid hydroxylation (Rochas et al. 1997). As well as ANG-II and Ký stimulation 

of aldosterone production, C2+ has been implicated in the mechanism of ACTH 

stimulation of cortisol synthesis (Davies et al. 1985). 

There is increasing evidence that the calcium-signalling pathway can directly utilize 
CREs to increase transcription via the calcium/calmodulin-dependent protein kinase 

pathway by phosphorylation of CREB (Schwaninger et al. 1993, Eckert et al. 1993, 

Gonzalez. et al. 1989, Lee et al. 1990, Sun. et al. 1996). Ca2+ binds to calmodulin 
(CaM). Stimulation of adrenocortical cells with ACTH increases levels of CaM in ZF 

nucleii (Harper et al. 1980), a change associated with the phosphorylation of CREB 

(Deisseroth et al. 1998). The Ca2+/CaM complex then activates a series of 
Ca2+/cahnodulin-dependent protein kinases (1,11 or IV) which mediate the action of 
many other agonists which also elevate [Ca2+]i (Hanson et al. 1992, Braun et al. 1995, 
Schulman et al. 1998). These kinases activate a number of nuclear proteins such as 
transcription factors and other DNA-binding proteins (Heist and Schulman 1998). 

CaMkinases I and IV phosphorylate CREB at serine 133 (Sun et al. 1996) which 
increases transcriptional activation by CREB of genes with CREs (Krebs and Beavo 
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1979) CaMkinase II phosphorylates CREB serines at positions 133 and 142 causing 
inactivation (Sun et al. 1994, Sun and Maurer 1995). CaMkinase IV, once activated 

by C2+lCaM complexes, can phosphorylate CREB with similar kinetics to 

phosphorylation by PKA (Enslen et al. 1995). The CaM kinase cascade activates CBP 

which then binds CREB and associates as a complex with CRE elements on gene 

promoters to activate CRE-dependent transcription. The CaM kinases are expressed 
in adrenocortical cells and appear to be involved in the acute stimulation of 

aldosterone production (Papadopolous et al 1990, Fem et al. 1995, Clyne et al 1995, 

Pezzi et al. 1996) (see figure 1.5e). 

Evidence for possible involvement of this pathway in ACTH-induced StAR 

expression has been obtained from studies of cultured adrenal ZF cells (Nishikawa et 

al 1997). It is known that cAMP and protein kinase C -dependent processes play a 

crucial role in the regulation of expression of StAR protein when bovine cells are 

stimulated by ACTH. Also in bovine ZF cells, ACTH increases cytosolic [Ca2+] and 

activates StAR expression with a resultant increase in cortisol production (see section 
1.3). Pre-treatment with a specific inhibitor of CaM kinase 11, KN-93, inhibited the 

stimulatory effects of ACTH on both StAR and cortisol production. This suggests 

that ACTH can enhance StAR expression and cortisol not only through cAMP 

mechanisms but also via the calcium/calmodulin dependent pathway (Nishikawa et al. 
1997). 

Activated CaM has a variety of other functions such as binding and activation of 

proteins involved in RNA-processing or splicing, RNA binding proteins and nuclear 

ribosomal proteins (Agell et al. 1998). These findings further suggest the existance of 

cross-talk mechanisms between intracellular messenger pathways. 

It is well known that CYP 11 B1 expression in the adrenal cortex is restricted largely to 

the ZF and CYPIIB2 is expressed exclusively in the ZG cells. The reason for this 

zone-specific expression and tight regulation within the adrenal cortex remains 
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controversial. Some recent data have described the involvement of activated protein 
(AP-1) transcription factor in the zone-specific expression of CYPI 1131. 

The immediate early genes such as c-fos can be activated by Ca2+, cAMP, DAG and 

other second messengers (Morgan et al. 1991, Ghosh et al. 1995). Their promoters 
have CRE sequences, the regulation of which involves Ca2+ activation of CREB 

(Sheng et al. 1990). The products of the immediate early genes Fos and Jun produce 
jun (c-jun, junB, junD) and fos (c-fos, fosB, Fra-1, Fra-2) family proteins. 
Homodimer or heterodimer complexes between jun and fos members which then 

function as a transcription factor known as activated protein (AP-1) transcription 

factor. AP-1 transcription factor binds a regulatory element AP-I in the promoter 

region of target genes. The human CYPllB1 gene promoter has two sequence 

elements similar to the consensus sequence for binding AP-1 (Kawamoto et al 1990). 

The exact role of these elements in human CYP IIBI transcription is not yet known. 

A recent study in ZF cells from rat adrenal cortex showed that an AP-I transcription 
factor is found only in ZF cells of the adrenal cortex (Mukai et al. 1995). It binds to a 

regulatory element of the rat CYP IIBI promoter, an AP- I binding site responsible for 

transcriptional activation of CYP 11 B1 in response to ACTH or cAMP (Mukai et al. 
1995). 

The combination of AP-I dimers in response to ACTH and cAMP induction has been 

studied in rat ZF cells (Mukai et al. 1998). These cells constitutively express basal 

levels of jun and fos family members: c-jun, JunB and Fra-2. ACTH or cAMP 
induction increases c-jun to 3-times the basal level and also cause a rapid transient 
increase in junB and c-fos (Mukai et aL 1998). Heterodinier protein complex 

combinations all bind to the AP- I element with similar strengths (Mukai et al. 1998). 

To determine which heterodimers mimicked the transcriptional activation of 
CYP IIBI by ACTII and cAMP, genes encoding the various early gene proteins were 

cotransfected into cells (Mukai et al. 1998). Combinations of c-jun and c-fos genes 
dramatically increased transactivation of the CYPHBI gene and worked 

synergistically. In non-stimulated cells, heterodimer AM complexes are different 

from complexes seen in cells exposed to ACTH or cAMP (Mukai et al. 1998). This 

suggests that ACTH or cAMP regulate CYPIIBI transcription by inducing a 
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particular subset of these proteins that mediate zone-specific expression of CYP IIBI 

in ZF cells in the rat. The activation of these proteins may involve the cAMP/PKA 

pathway (Mukai et al. 1998). Whether ANG-II regulates ZG cells in a similar manner 
is not known but recent data show that ANG-11 in ZF cells, in vitro, caused a different 

pattern of stimulation of fos and jun complexes compared to ACTH (Viard et al. 
1992). Thus, in normal ZF cells ACTH and ANG-II regulate these compnonents 
differently which may account for differences in action of ACTH and ANG-II on 
differentiated adrenal cell function (Viard et al. 1992). Whether ANG-II induces a 

particular subset of transcription factors exclusive to the ZG which regulates zone 

specific expression of CYP II B2 is not known. Moreover, whether finding in animals 

are applicable to man is uncertain. However, the human CYPI1BI promoter does 

have two AP-1 binding sites which may be involved in transcription of this gene in 

the ZF (see section 1.4) 

1.5.9 Summa 

In summary, ACTH, ANG-II and Ký stimulate cAMP and Ca2+ levels respectively 

within the cell. These second messengers activate a series of intracellular pathways 

which ultimately switch on gene transcription and hence control cortisol and 

aldosterone production. 
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The previous section discussed the mechanisms by which ACTH, ANG-II and K+ 

control cortisol and aldosterone secretion respectively and the intracellular 

mechanisms which lead to transcription of those genes required for steroid hormone 

biosynthesis. In this section, the structure of the genes encoding 11 P-hydroxylase and 

aldosterone synthase will be discussed. 

110-Hydroxylase and aldosterone synthase are encoded by the CYPlIBI and 
CYPlIB2 genes respectively and lie in tandem on chromosome 8q2l-22 in man 
(Chua et al 1987, Momet et al 1989, Wagner et al 1991). Studies of large restriction 
fragments separated by pulse field electrophoresis suggest that the two genes are only 

approximately 40kb apart (Lifton et al. 1992a, Pascoe et al. 1992a). This arrangement 
is also known to exist in the mouse where CYP II B2 lies on the left if the genes are 

shown being transcribed right to left (Domalik et al. 1991). In man, no genomic 

clones have been identified which have the genes in this arrangement but studies of 

patients with congenital hypoaldosteronism due to aldosterone synthase deficiency 

(corticosterone methyloxidase II deficiency) (Pascoe et al. 1992b) or with 

glucocorticoid-suppressible hyperaldosteronism (see section 1.8) suggest that a 

similar arrangement exists. Each gene spans approximately 7Kb of genomic DNA 

and is composed of 9 exons and 8 introns (see flgure 1.6 a) 

59 3, 
mZ1mm um m 
ma1mm um a 

134 

Figure 1.6a Exonic-intronic arrangement of CYPIlBl/1132 genes 
(not to scale) >8000bp 

The coding region nucleotide sequence of their exons is 95% identical and their 
intronic regions share 90% identity. The putative proteins encoded are composed of 
503 amino acids including a 23 amino-acid signal peptide (Kawamoto et al. 1992). 

Their amino acid sequences share 93% identity. Due to sequence similarities, these 
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genes have been assigned to a specific sub-group of the cytochrome P450 gene 

superfamily (Nelson et al. 1993). CYPI IA, the gene encoding side chain cleavage 

enzyme has a similar arrangement of exons and introns and the protein shares 36% 

identity with aldosterone synthase and II P-hydroxylase (Morohashi et al. 1987). 

The 5' LJTR (promoter) regions of the CYP IIBI and B2 genes share least homology, 

presumably due to differences in transcriptional regulation of these genes. In both 

genes, the TATA box (GATAAAA) lies at position -35 to -29 upstream of the 

transcription initiation site. Binding sites for transcription factors such as CREB, SF- 

I and AP-I (see section 1.5) which switch on gene transcription have been identified. 

The cANIP-responsive element (CRE) is a palindromic sequence (TGACGTA) 

upstream of the TATA box which binds cAMP-responsive element binding protein 
(CREB). The promoter regions of the CYPI lB1 and B2 genes are shown in (Figure 

1.6 b). 

C:: ) CRE 
4C:: ý SF- I 

0 
AP-I(CYPIIBI)orAP-2(CYPlIB2) 

-2015 -1521 -864 413 -221 -65 
Human CYPlIB2 promoter 

Human CYPI IBI promoter, U 
t 

-'1324 -1'093 . 
460 

-ý05 -294 . 1'05 ý7 

Figure 1.6b promoter regions of human CYPI I Bl and CYPI I B2 genes 

Sequence analysis of the CYPI. IB I promoter revealed a CRE at position -71 to -64 
and two AP-I elements at -383 to -377 and -139 to -133 (Kawamoto et al. 1990). 
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Figure 1.6c CYPllBl promoter constructs 47--ý 

In vitro expression studies of the CYPllB1 promoter where successive deletions 

were made have demonstrated that cAMP regulates transcription through the CRE 

(Kawamoto et al. 1990) (Figure 1.6c). Promoter constructs fused to a CAT reporter 

gene were expressed in Y-1 cells, a mouse adrenal cortex turnour cell-line, and tested 

for their response to 8-bromo-cAMP, a cAMP analogue. The 5' flanking region of 
CYPIIBI up to -1324 had promoter activity but deletion up to -1094 increased 

activity 4-fold. This suggests that a negative cis element suppressing transcription is 

present in the region deleted. Constructs deleted further to -761 caused a marked 
decrease in activity, suggesting that the region between -1094 and -761 is required for 

full promoter activity. Deletion to -506, -295, -105 and -47 progressively decreased 

activity further (Kawarnoto et al. 1990). These results suggest that there are several 

positive cis acting elements in the region from -1094 to -47 necessary for full 

promoter activity (see figure 1.6c). From these experiments, the CRE and the two 

AP- I binding sites identified are essential for CYP 11 BI promoter activity and other 

positive regulatory elements present in the region -1093 to -506 are also required. 
Recent evidence has shown transcriptional activation of CYP1lB1 by AP-1 

transcription factors in response to ACTH and cAMP in rat, ovine and bovine ZF 

cells. These are thought to mediate zone-specific expression (see section 1.5). 

CYPIIBI. and CYPIIB2 differ in the control of their expression and consequently 
differ most at the structural level at their control regions. 
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A long palindromic sequence from -1734 to -1001 is present in CYPHB2 but not 

CYPllBI (Kawamoto et al. 1992). According to Kawarnoto et al (1992), 8-bromo 

cAMP-responsive promoter ability differs between the two genes when regions of the 

respective promoter are deleted. The CAT expression system was used to measure 

promoter activty in vitro in Y-1 cells. Expression of a CAT construct containing up 

to -2015 of the 5' flanking region of CYP 1 IB2 did not respond to 8-bromo cAMP. 

Progressive deletion to -1490, -654 or -373 also did not respond but deletion up to 

-64 increased expression by producing a small basal promoter response to 8-bromo 

cAMP. This suggested that the region -2015 to -65 inhibits the promoter activity of 

CYP II B2 (Kawarnoto et al. 1992) whereas, in CYP IIB1, a large section - 1093 to -47 

contains elements which increase promoter activity (Kawamoto et al, 1990)(see 

figure 1.6d) 

Basal 8-Bromo-cAMT 

-2015 
o0 

-1490 -00 

Kawamoto et al. 1992 -654 00 
Y-1 cells 

-373 00 

-64 --- 
Figure 1.6 d CYP11B2 promoter constructs ++ 

However, results conflicting with those of Kawamoto have recently been reported 

although the conflict may have been due to the different cell lines used. In this second 

study, human CYPllB2 expression was stimulated by ANG-II and Ký through 

common cis-elements (Clyne et al. 1997). Concentrations of Ký used in this study 

were much higher than the physiological range and therefore one must consider that 

the effects observed by this stimulus in vitro are not representative of the in vivo 

situtation. Analysis of the 5' flanking region identified a CRE at position -71 to -64 
(TGACGTGA) and an SF-I binding site at -129 to -114 (CTCCAGCCT). 

Electrophoretic mobility shift assays demonstrated that the - 129 to - 114 element could 
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bind SF-I. Promoter deletion constructs showed that the first 2015 bp of 5' flanking 

region was sufficient to direct basal reporter gene transcription when expressed in 

H295R cells (human adrenal tumour cell-line). Progressive deletions, -1521, -864, - 
413 to -221 retained similar basal activity but deletion to -65 reduced promoter 

activity to 15%. These results indicate that there are DNA sequences between -221 
and -65 which are essential for basal CYP II B2 gene expression (Clyne et al. 1997) 

(see flgure 1.6e). 

Basal 

-2015 

-1521 

-864 1 

-413 

Clyne et al. 1997 -221 
H295R cells 

-65 

ANG-11 K+ 

++ 

+++ +4- 

++ 

(BU)2 cAMP 

0 000 

Figure 1.6 e CYPllB2 promoter constructs 

When cells transfected with the construct containing the 2015bp 5'flanking region of 
CYP II B2 were treated with ANG-II or Ký, the basal activity was increased 5.5 and 
4.5 fold respectively. Deletion mutants up to -221 retained this augmented response 
to ANG-II and W' but deletion up to -65 completely abolished ANG-II or W 

induction (Clyne et al. 1997). 

Another analogue of cAMP, (Bu)2cAMP, was used to test the efficiency of promoter 
constructs. The full promoter construct activity increased by 13 times basal level 

whereas deletion to -864 reduced the response by 50-60% and deletion to -65 
completely abolished the response (Clyne et al 1997). This suggests that there are 
CRE's in the region between -2015 to -864 and between -864 and -221 which are 
required for full promoter activity in response to cAMP (Clyne et al 1997). These 
findings are also in conflict with those of Kawamoto et al (1992) who suggested that 
the region -2015 to -65 repressed promoter activity but this may again be due to the 
different cell lines in which they were expressed. It is possible that cAMP stimulates 

58 



induces different sub-sets of regulatory proteins in the two cell-lines which have very 

different consequences. These findings collectively show that the -221 to -65 region 

of the CYPIIB2 promoter is essential for basal and cAMP- and C2+ -induced 
transcription. 

DNasel footprinting analysis was performed using H295R cell nuclear extracts to 

identify protein binding sites within the promoter. The -129/-114 element binds SF-I 

and is required for full basal and agonist-induced reporter activity and the -71/-64 

element binds CREB and is necesssary for induction by increased [C2+]i (Clyne et 

al. 1997). Mutation of the CRE -71/-64 reduced basal activity to 50% and drastically 

decreased induction by ANG-Il, Ký and cAMP. Thus, this CRE is required not only 

for response to cAMP but also to increased [Ca2+]i. This element itself, however, is 

not sufficient for full basal activity as deletion of the SF-1-129/-114 element further 

reduced this activty. Therefore, it follows that CYPI 1B2 promoter activty requires 

the interaction of the CRE and SF-I binding sites for full transcriptional activity 

(Clyne et al. 1997). These results once again contradict the findings of Kawarnoto et 

al (1992); these differences may be due to the differing cell-lines utilised. From 

alignment studies of sequences from other species, another SF-I site at position -351/- 
343 has been identified in the human CYPIIB2 promoter. Deletion studies have, 

however, ruled out a functional role for this site even though it binds SF-I tightly 

(Clyne et al. 1997). SF-I sites also bind another factor called chicken ovalbumin 

upstream promoter transcription factor (COUP-TF). Like SF-I, this factor is an 

orphan nuclear receptor. Two additional SF-1 sites in the CYP II B2 promoter which 

bind COUP-TF in H295R cells were identified (Clyne et al. 1997). In the bovine 

CYP17 promoter, COUP-TF competes with SF-I for the binding site. Possibly 

COUP-TF functions in this way to repress transcription (Lund et al. 1995). Whether 

COUP-TF is a repressor or activator of human CYP 11 B2 transcription is not known. 

In summary, CYPIIBI and B2 consist of a9 exon structural component and a 

promoter region which contains specific sites for interaction with known transcription 

factors which are essential for both basal and agonist-stimulated activity. 
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Two polymorphisms have been identified in the human CYPI lB2 gene. The first is a 

polymorphism in the consensus sequence for the SF-1 binding site at position -351/- 
343 and the second is a gene conversion in intron 2. The SF-1 binding site 

polymorphism involves a -344C/T substitution in the putative SF-l binding site 

(White et al. 1995). In functional studies, the -344C allele binds SF-1 4 times more 

strongly than the -344T allele (White et al 1995). Deletion constructs of the 

CYP 11 B2 promoter show that this SF- 1 site has no apparent functional importance in 

promoter activity (Clyne et al 1997). It is therefore unlikely that the -344C allele 

causes increases in transcription of CYP 11 B2 in subjects carrying this allele. The 

intronic conversion, also identified in the human CYPllB2 gene, has almost all of 

intron 2 replaced with that of CYPlIBI (White et al. 1995). The -344T and the 

intronic conversion are in linkage disequilibrium. 

Studies of these two biallelic polymorphisms have been performed in hypertensive 

and control populations (Brand et al. 1998, Benetos et al. 1997, Davies et al. in 

press). There was a higher frequency of the intronic conversion in the hypertensive 

population (Davies et al. in press). There was no change in frequency observed 

between the two groups in studies by Benetos (1997) and Brand (1998). There was a 

significant association of the -344T allele of the SF-1 site with essential hypertension 

(Brand et al 1998, Davies et al. in press). Benetos et al (1997) found an association 

with the -344C allele and increased plasma aldosterone levels. In 486 subjects from 

the North Glasgow MONICA normotensive population, subjects with the SF-1 -344 
TT or TC genotype had significantly higher excretion rates of tetrahydroaldosterone 

(the excretory product of aldosterone found in urine) (Davies et al. in press). In 

agreement with the other studies, the intronic conversion showed no association with 
hypertension or urinary excretion rate of aldosterone (Davies et al. in press). Thus a 

possible intermediate phenotype has been identified on the basis of higher urinary 

aldosterone excretion in subjects bearing the allele which is overrepresented in 

patients with essential hypertension. Aldosterone rate, together with TT/CT 

genotype, may thus be linked to raised blood pressure. In a different study, the -344C 
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allele was shown to be associated with higher plasma aldosterone (Pojoga et al. 1998, 

Benetos et al. 1997). The -344C allele has also been shown to be a predictor of 
increased left ventricular mass (Kupari et al. 1998). 

From these studies, it is apparent that there is considerable disagreement over which 

allele is important and is associatedwith hypertension. One would expect the same 

allele to be associated with increases in blood pressure, increased plasma aldosterone 

or increased urinary aldosterone as well as increased left ventricular mass but this is 

not the case. It is possible that, due to the small number of studies, that the 

observations are a consequence of type II statistical error. In a recent linkage study, 
the CYP11132 was not significantly associated with hypertension. Similar studies 
from other populations are required to establish whether this locus is a usefill or 

reliable marker for hypertension. Further studies are also required to define the 

precise nature of the intermediate phenotype and the physiological implications of this 

association. 
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1.7 Protein structur 
The exact structure of mammalian cytochrome P450 enzymes are unknown but 

simpler bacterial cytochrome P450 enzymes have been crystallised and their 

structures determined. These provide the basic and core structure on which modelling 

of human and other cytochrome P450s can be performed. Specific enzyme 

architecture determines individual activities and substrate specificity. The following 

sections describe the protein structure and how its features account for the catalytic 

properties. 

1.7.1 Bacterial/microsomal P450 structur 
The high resolution crystal structure of camphor mono-oxygenase (P450c. "') 

from 

Pseudomonas putida was determined in 1987 (Poulos et al. 1987). In depth 

biochemical and biophysical studies followed and it is this structure which has 

become the model for the study of all other cytochrome P450s. Various techniques 

were used to investigate the relation of structure to function including studies of 

various inhibitor/substrate complexes and recombinant expression utilising site- 

directed mutagenesis. Both techniques have identified domains and key residues of 

structural and functional importance. Residues essential for and characteristic of 

cytochrome P450 structure have been shown by sequence comparison to be absolutely 

conserved in all cytochrome P450s and will be discussed in detail. More recently, 

other prokaryotic P450 enzyme crystal structures have been determined: microsomal 

P450BM3 (Ravichandrin et al. 1993), P450t. (Hasemann et al. 1994) and most 

recently P450MF (Cupp-Vickery et al. 1994). Comparison of these structures has 

identified similar secondary and tertiary structure and key functional regions 

(Hasemann et al. 1995). These are discussed below. 

1.7.2 Protein topology: appearance. 

Despite low sequence identity (less than 20%), the overall folding patterns and 

topology of cytochrome P450s are very similar. From this information, it is probable 

that all P450 enzymes, including membrane-bound enzymes such as human 110- 

hydroxylase and alclosterone synthase, have a conserved tertiary structure. The 

polypeptide chain is composed of an cc-helical (A-L) rich region (cc-domain) towards 
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the C-terminal end and a P-sheet rich region (P-domain) towards the N-terminal end. 

The long cc-helices and P-sheets lie in a plane parallel to the plane of the haem, thus 

producing a flat, triangular shaped molecule. The C-terminal portion forms the inner 

core of the molecule with helices I and L bracketing either side of the haem; any P- 

structure in the C-terminal portion is towards the surface of the molecule (Figure 1.7 

of P450,,,, ). 

HELICES 
A 37-45 
B 67-79 
C 108-121 
D 123-143 
E 149-156 
F 176-185 
G 192-205 
H 218-225 
1 234-267 
J 268-276 
K 282-292 
L 359-378 

P-sheets 
1 56-62 
2 226-233 
3 296-301 

315-320 
4 305-312 
5 390-400 

Taken from FEBS (Suppl. ) Cytochrome P450 systems: from structure to 

application. Bernhardt 1998: L13. 
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Comparison of P450c and P450tep has revealed regions important for P450BM3 

their structure and function. 

(a). Haem-binding W 

P450 enzymes have haem groups and use iron-oxo intermediates for oxidative 

reactions (see section 1.4). Helices are arranged around the haem in an orientation that 

leaves a cavity enabling the substrate to bind to the oxyferryl centre in the heart of the 

molecule. The haem containing domain and the region surrounding it are well 

conserved and include the central 1-helix, the cys pocket (see below), the L-helix and 

the J-helix (Hasemann et al. 1995). The haem. is maintained in a hydrophobic 

environment due to the conservation of no-polar resiues in this region. 

The eys pocket. 
A cysteine residue at position 357 (P450,.,,, numbering) which is absolutely conserved 
in all P450 enzymes forms the 5th ligand to the haem prosthetic group and is found at 
the N-terminus of the L-helix. The haem iron is covalently bound to the cysteine 
through the sulphur atom in the cys pocket, loop or P-bulge. In P450,., residues 350- 

400 form the cys ligand loop. Lying closest to the haem, this is the most highly 

conserved region between all P450 enzymes. The P-bulge, which forms part of the 
loop, creates a hydrophobic environment or pocket around the cys ligand. This region 
is hydrophobic which is required to maintain the anionic fonn of the sulphur ligand in 

the cys pocket on which the redox potential of the haem im and substrate binding 

depend (Kassner et al. 1973). 

Propionate co-ordinaflon 
The haern has propionate groups (see table 1.7b) which interact with residues of the 

protein holding the haern in a specific orientation (termed propionate co-ordination) 

which influences the redox potential of the haern iron (Gunner 1991, Mathews 1985). 
These residues are polar or charged (see table 1.7b) (Hasemann et al 1995). In 
P450t., two residues are found at the amino terminal end of the C-helix, another in 
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PI-4 and another in the cys pocket (Hasemann et al. 1995). These residues are 
Hisl 10, ArgI 14, Arg319 and His375 respectively. In P450BM3, residue 319 is a lysine 

but this residue is chemically similar to arginine and therefore still maintains the 

environment required to stabilise the haem A-ring propionate (Hasemann et al. 1995). 

Other amino acids occupy this position in other P450 enzymes but their properties 

must be such as to still maintain the polar environment. However, there may be 

important exceptions. For example, the residues which interact with propionates in 

P450scc have been identified as Arg 357 and Arg 421 (Vijayakamur and Salerno 

1992). Only two residues are involved, each forming two bonds. From the secondary 

structure prediction, 357 lies in P-sheet 3 and presumably 421 is within the cys pocket 
(Vijayakamur and Salemo 1992) which suggests that residues forming propionate 
bonds are not located in exactly the same regions in all P450 enzymes. This 

information is relevant to 11 P-hydroxylase and aldosterone synthase as arginine 

residue (R448) in these enzymes is thought to be involved in haem binding (VAlite et 

al. 1991) (see section 1.8). 

The Meander and ERR-tr*ad 

The meander is a region of the K-helix and the cys pocket which has neither a-helices 

nor P-sheet configuration. The ERR-triad is three residues, Glu-Arg-Arg, which are 

conserved. The first two residues of the triad are invariant and found in the K-helix of 

all P450s whereas the third residue can be Arg, His or Asn (Hasemarm et al. 1995). 

The ERR triad forms a set of salt bridges. As a consequence the third residue of the 

triad can form H-bonds with camohyl oxygens. These bonds produce a highly 

conserved 3-D structure, establishing a folding motif which holds the cys pocket 
firmly in place and provides a stable association between haern and protein. This 

network of H-bonds connects the haern to the K-helix. The location of the meander 
suggests that it may be involved in redox-partner interaction, for example with 
adrenodoxin (see later). 

Substrate binding re2ion 
The substrate binding regions exibit most diversity. Gotoh et al (1992) proposed, from 

analysis of CYP2 family proteins, that all eukaryotic P450 enzymes have six regions 

65 



involved in substrate recognition. These regions or substrate recognition sequences 
(SRS) are described below: 

SRS1 B'helix 

SRS2 Carboxy terminal of F helix 

SRS3 Amino terminal of G helix 

SRS4 Central I helix 

SRS5 P6-1 and P1 -4 (P6-1 is present in some but not all P45 0 

structures) 
SRS6 P4 

SRSI varies most between P450 enzymes, probably due to amino acid insertions at 
both ends. Residues which alter substrate specificity have been identified in the turn 
between B'-C helices in a variety of enzymes (Matsunga et al. 1990, Lindberg et al. 
1989, Kronbach et al. 1989, Halpert et al. 1993). - Several amino acids of the F-helix 

(SRS2) have been identified as substrate contact points in a number of enzymes 
(Lindberg et al. 1989, Iwasaki et al. 1993, Juoven et al. 1991). Where the loop 

between helices F and G, is very large this may alter the position of the G-helix 

(SRS3) so that it does not have any contact with substrate (Hasemann et al. 1995). In 

most eukaryotic P450 enzymes the loop is large. Therefore, this region is unlikely to 

act as an SRS in the eukaryotic enzymes. The D' helix and F-G regions are thought to 
form part of the substrate access channel. We would expect these areas to be most 

variable to allow selective access of different substrates to the active site. SRS4 is the 

central I-helix and has the least inter-cytochrome P450 variabilty. It is involved in 

the proton delivery essential for catalysis (see section below). Between P450'aln, 

P45013M3 and P450,, p, this region is the most conserved (Hasemann et al. 1995). The 
I-helix is associated with both substrate and haern binding. A threonine or an aspartate 
at position 252, found at the local widening of this helix in P450,,,, plays a crucial 
role in enzyme catalysis by activating molecular oxygen. It is conserved in all 
cytochrome P450 enzymes (Imai et al. 1989, Martinis et al. 1989, Raag et al. 1991). 
This key catalytic group is discussed in depth later. In Ilp-hydroxylase and 
aldosterone synthase , residues 288,301,302 and 320 in the I-helix have been shown 
to affect substrate specifity and enzyme activity (Bottner et al. 1996, Cumow et 
al. 1997) (see section 1.8. ) 
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SRSS, the P6-1 and PI-4 regions, spans part of the haem binding domain and contains 

several residues which have been shown to influence catalytic activity in several 

enzymes (Lindberg et al. 1989, Halpert et al. 1993, Hsu et al. 1993, He et al. 1992). 

SRS6 has some variability between P450,.,,,, P450BM3 and P450tem in terms of length 

and composition. 

The above sections have described conserved structural regions between cytochrome 
P450 enzymes. It is possible to align these regions with eukaryotic P450 enzymes 

such as 11 P-hydroxylase and aldosterone synthase to predict where SRS regions lie in 

these enzymes. The sections below describe how these structures correspond to their 

catalytic function. 

(c). Binding and cleavage of molecular o2jygen and proton delivery 

The residue Thr252, found at the local widening of the I helix in P450, *am , 
is a key 

catalytic group involved in the cleavage of molecular oxygen, a process requiring 

protonation. It is in a stretch of residues directly adjacent to the oxygen binding site. 

This region, bewteen residues 248 to 253, acts as a pocket to accomodate the bound 

oxygen (Poulos et al. 1987). The threonine residue 252 interacts by H-bonding to the 

carbonyl 0 of Gly248 and directly donates a proton to molecular oxygen. When 

threonine is replaced by other residues, there is uncoupling of electron transfer and no 

substrate hydroxylation (Imai et al. 1989, Furuya ct al. 1989, Imai et al. 1989, 

Martinis et al. 1989). In human 11 P-hydroxylase and aldosterone synthase, the 

corresponding threonine is at position 318. Mutation of this residue to a methionine, 

T318M, completely abolishes enzyme activity in vitro (Curnow et al. 1993) (see 

section 1.7). This threonine residue may also exert steric control over the way in 

which oxygen binds. Other residues may shuttle the protons required for 

hydroxylation into the active site for 0-0 bond cleavage; an example is Asp25 1, 

another highly conserved residue, which ion pairs with Lys178 and Arg186 (P450, 
mn 

numbering) (Ortiz de Montellano 1992). It is likely that a similar system for 

generating protons exists in eukaryotic enzymes such as human 11 P-hydroxylase and 

aldosterone synthase. 
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(d). Redox partner interaction 

Splitting of molecular oxygen depends on the binding of the enzyme to its redox 

partner e. g. adrenodoxin. The redox-partner enzyme association permits delivery of 

electrons to the haern which causes a shift in redox potential of the haern iron. The 

redox potential of the haem influences activity but this is also dependent on the spin 

state of the iron and binding of the substrate (see section 1.4). In the substrate-free 

structures of P450cam, P450BM3 and P450teTp t the active sites are hydrated, have haem 

low spin state iron and a low redox potential (Hasemann et al. 1995). In P450,,, p, 
when substrate binds, all the solvent moves out of the active site (Hasemann et al. 

1994) with an accompanying increase in redox potential; the iron is then in high spin 

state (see section 1.4). The electron donor (e. g. adrenodoxin) has negatively charged 

amino acids which associate with positive amino acid charges on the enzyme redox- 

partner docking site on the cytochrome P450 surface (Coughlan et al. 1991, Geren et 

al. 1984, Wada and Waterman 1992). A tyrosine at position 82 on adrenodoxin has 

been shown to be important for binding to 11 P-hydroxylase (Beckert et al. 1994). The 

positive charges are centred around the cys pocket but are assymmetrically 
distributed, thus producing a molecular dipole which stabilises the redox partner 
interaction by pulling the partner close to the protein surface. Mutations of CYP1 IA, 

which encodes side chain cleavage enzyme, within the K-helix at positions K377 and 

K381 dramatically decrease binding of adrenodoxin to side chain cleavage enzyme 
(Wada and Waterman 1992), showing that these residues are involved in redox- 

partner interaction. In II P-hydroxylase and aldosterone synthase , residue R374 is 

thought to be involved in adrenodoxin interaction (Curnow et al. 1993, see section 
1.7). 

1.7.4. Modelling based on crystallised structures 

The above sections have described briefly the core structure using information based 

on the crystalline structures of P450camp P450BM3 and P450"rp . This information has 

been used to model eukaryotic P450 enzymes such as bovine side chain cleavage 

enzyme (Vijayakamur and Salemo 1992). The first problem of this approach is that, 

unlike bacterial structures, eukaryotic P450 proteins possess an N-terminal membrane 
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anchor. Alignment of side chain cleavage enzyme to P450 . .... has been performed 
beginning after this anchor sequence so that the N-terminal sequence is excluded. 
Structures common to P450s start after this region. In a separate study, the first 44 

residues of human cytochrome P450s could not be aligned to the core structure of 

.,, n, (Zvelebil et al. 1991). Sequence analysis suggests that residues 1-26 fonn a P450, 

single membrane spanning segment (Zvelebil et al. 1991). The tables below show 
(1.7a) the secondary structure prediction of side chain cleavage enzyme based on 

P450c.,,, and (1.7b) the haern propionate bonds (Vijayakamur and Salerno 1992). The 

key catalytic residue Thr252 in P450cam is found at position 291 in side chain 

cleavage enzyme and the cysteine haem ligand is found at position 423. 

Secondary Structure P450,,, bovine 

side chain cleavage 

enzyme 

a-helix A 3746 56-65 

a-helix B' 89-96 105-112 

a-helix C 106-126 124-143 

a-helix D 127-145 144-162 

cc-helix F 173-185 214-224 

cc-helix G 192-214 231-253 

a-helix 1 234-267 273-306 

a-helix L 359-378 425444 

P3 295-301 353-359 

315-323 374-382 

P4 305-312 363-370 

05 382405 448-471 

1 1 
146-150 

1 
163-167 

Table 1.7. a Conserved secondary structure of side chain cleavage enzyme compared 
to P450,. (Vijayakwnur and Salemo 1992). 

69 



P450, am bovine side chain cleavage enzyme 

haern 0 IA Arg 299 Arg 357 

haern 02A Arg 299 Arg 357 

haern 02D His 355 Arg 421 

I haern OID Arg 112 1 Arg 421 1 

Table 1.7. b Haem-propionate bonds of cytochrome P450c.,, compared to side chain 

cleavage enzyme (Vijayakamur and Salerno 1992). 

This aligmnent shows that there is indeed conservation of structure between bacterial 

and eukaryotic cytochrome P450 enzymes. A similar comparison can be used with 

confidence to predict the structure of II P-hydroxylase and aldosterone synthase 

which are closely related to side chain cleavage enzyme. The basic structure is highly 

conserved between members of the cytochrome P450 superfamily but variations in 

substrate binding regions between more closely related enzymes such as Ilp- 

hydroxylase and aldosterone synthase are due to changes in tertiary structure which 

tightly regulate substrate specificity and it is these regions which share least 

homology. 

70 



Previous studies have discussed the structure of the CYP 11 BI and CYP 11 B2 genes 

(Chua et al. 1987, Mornet et al. 1989, Wagner et al. 1991) and described what is 

currently known about the primary , secondary and tertiary structure of the proteins 

they encode, Ilp-hydroxylase and aldosterone synthase. These enzymes are 

structurally highly homologous but their catalytic properties are markedly different. 

What are the differences, in terms of amino acid sequence and 3-dimensional 

structure, which account for these distinct properties? 
Although there is as yet no complete answer to this question, relevant information is 

available from two general sources, the effects of mutations in man and the rat, which 

have pathological consequences and more recent experiments in which site-specific 

mutations have been introduced and the biochemical consequences subsequently 

examined in vitro. The following sections deal with this in detail. 

1.8.1 Disorders of corticosterold biosynthesis, 

Characteristic diseases are associated with both excess and deficiency of particular 

corticosteroids. Excess cortisol secretion, such as occurs in Cushing's syndrome 

where the excess may be due to a cortisol-secreting turnour in the adrenal cortex or an 

ACTH-secreting adenoma in the arterior pituitary, leads to hypertension and 

metabolic abnormalities such as glucose intolerance and altered bone metabolism 

among others. Conversely, inability to synthesise cortisol, for example, when the 

ACTH receptor is non-functional, results in neonatal death. Similarly, excess 

secretion of aldosterone by an adrenocortical adenoma (Conn's syndrome) causes 

sodium retention, hypokalaernia, a metabolic alkalosis and hypertension. In 

Addison's disease or in rare inherited diseases (see below), a deficiency of aldosterone 

results in sodium loss, hyperkalaernia, hypovolaernia and hypotension. With the 

possible exception of the adrenocortical turnour tissue (see below), these syndromes, 

which are not inherited, provide little insight into enzyme structure-function 

relationships. 
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The biosynthesis of cortisol and aldosterone from cholesterol is illustrated in flgure 

1.4c. Genetic defects have been described for each of the many enzyme-catalysed 

reactions in these pathways (New et al. 1998). While the biochemistry of these inborn 

errors of corticosteroid biosynthesis and its relationships to pathology have in most 

cases been understood for many years, the underlying explanation in terms of 

molecular biology is more recent. Since the concern of this thesis is the cytochrome 
P450-containing enzymes, 3P-hydroxysteroid dehydrogenase/isomerase deficiency 

will not be considered. Similarly, although originally thought to be due to 

cytochrome P450scc deficiency, congenital adrenal lipoid hyperplasia is now thought 

to be due to StAR protein deficiency and will not be discussed fin-ther. The following 

discussion will concentrate on inherited deficiences of Ilp-hydroxylase and 

aldosterone synthase. Those of 17(x-hydroxylase and 21-hydroxylase deficiencies 

will be mentioned where relevant. In addition, a discussion of glucocorticoid- 

suppressible hyperaldosteronism is relevant here. 

1.8.2 Congtnital adrenal hyperplasia (CAH) 

Congenital adrenal hyperplasia (CAH) is due to decreased production of cortisol 

which is required to exert feedback inhibition on ACTH secretion. Deficiences of 
17a-hydroxylase 

,21 -hydroxylase or 11 P-hydroxylase all result in cortisol deficiency 

(in 21 -hydroxylase deficiency, aldosterone may also be deficient). As a consequence, 

ACTH secretion is high and causes hyperplasia of the adrenal cortex and excessive 

production of steroid precursors and other products. These steroids, produced in 

inappropriately large amounts, cause undesirable effects such as hypertension and 
disturbance of secondary sex characteristics and reproduction. The steroid 

abnormalities can be treated and corrected by glucocorticoid replacement therapy. 

1.8.3 11D-Hydroxylase defleiency 

Dcficiency of 11 P-hydroxylase, an autosomal recessive disorder, again causes CAR 
Most cases of CAH which are due to 21 hydroxylase deficiency, present with salt- 
wasting but a small proportion develop hypertension when cortisol synthesis is 
impaired (White et al. 1994). In II P-hydroxylase deficiency, which constitutes 5-8% 

of CAH cases (Zachmann et al. 1983), activity of this enzyme is impaired but 
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aldosterone biosynthesis, a process requiring Ilp-hydroxylation but which is 

accomplished by aldosterone synthase, is unaffected. Plasma aldosterone levels are 
low but this effect is due to suppression of renin production (Bongiovanni and 
Eberlein 1967). The adrenal cortex fails to synthesise cortisol in the zona fasciculata 

because II P-hydroxylase is required to convert I 1-deoxycortisol (S) to cortisol (F). 

ACTH levels are elevated due lack of negative feedback inhibition resulting from low 

levels of cortisol. 11 P-Hydroxylase catalyses the conversion of S to F and DOC to B. 

Abnormally high levels of 17cc-hydroxy-21-deoxy compounds resulting from high 

ACTH drive are shunted into adrenal androgen biosynthesis causing masculinization 

of external genitalia in females and premature appearance of secondary sexual 

characteristics in males. 

Cholesterol 

PREGNENOLONE --W-17cr-HYDROXYPREGNENOLONE DHEA 

PROGEýTERONE --b- 17ct-HYDROXYPRýESTERONE --*- Androstenedione 

11-DEO YCORIICOSTERONE 11-D; OXYCORTISOL 

llß-hydroxylas, 

CORTICOSTERONE CORTISOL 
4 

18-HYDROXYCORTICOSTERONE 
i 

ALDOSTERONE 

EFICIENT '*ýHORMONES 

Figure 1.8a Deficiency of 11 P-hydroxylase in man. 

ESS ES 
N*%ýHXOCRMONES 
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The elevated levels of DOC, which possesses mineralocorticoid activity, causes 
hypertension, suppression of the renin-angiotensin system and hypokalemia. If the 

patients are left untreated, approximately two-thirds become hypertensive and this 

usually occurs before adulthood (Rbsler et al. 1988) (see figure 1.8a). 

The 11 P-hydroxylase enzyme is encoded by the CYP IIB1 gene (see section 1.6). To 

date, 25 different mutations in the CYPllB1 causing Ilp-hydroxylase deficiency 

have been identified which can be characterised as missense, nonsense, frameshift or 
insertions (Table 1.8a and Table 1.8b). For amino acid names, abbreviations and 

symbols see appendix 1. Missense mutations abolish in vitro llp-hydroxylase 

activity (Table 1.8c). Amino acid names, symbols and abbreviations are shown in 

appendix 2. All other mutations result in a premature stop codon which would result 
in a non-functional truncated protein lacking haern and substrate binding domains. 

All mutations result in II P-hydroxylase deficiency. 

Missense mutation R448H in exon 8 of CYP11BI changes an arginine residue to a 
histidine. Its frequency is 115000 births in a Jewish population of Moroccan origin 

(White et al. 1991). This residue lies within a conserved haem-binding region 

containing a cysteine residue (C450) which forms the fifth ligand to the iron atom of 

the heme prosthetic group. This arginine R448 residue is conserved among all known 

eukaryotic cytochrome P450 enzymes (Gotoh et al. 1989, Nebert et al. 1991) (see 

section 1.7). In Pseudomonas putida P450cam, however, the residue at the analogous 

position is a histidine (Gotoh et al. 1989). The R448H mutation abolishes in vitro 
Ilp-hydroxylase activity when simulated in a transient transfection assay 
incorporating the eukaryotic expression vector pCMV4 and a non-steroidogenic 
COS-1 cell-line (Curnow et al. 1993). At this position, substituting a different 

residue, R448C, also abolishes in vitro activity (Geley et al. 1996). 

Mutation R427H was found in combination with V384A and a 5bp insertion at codon 
121 in an Asian patient of Kenyan origin (Skinner ct al. 1994). The insertion itself 

would produce a truncated non-fimctional protein. R427 also lies within the haem- 
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binding region, is highly conserved (Nelson and Strobel 1987) and is thought to be 

involved in adrenodoxin interaction (Ravichandran et al. 1993). 

Mutation Exon Typeof Ethnic Reference 
mutation Group 

AC32 I Frameshift White Curnow et al. 
+ possible splice 1993 

variant (htz) 
A28bpEx2 + 2 Frameshift/ Caucasian Geley et al. 

V129M missense 1996 
(compound htz) 

W116X 2 Nonsense Japanese Nakai et al. 
(hmz) 1993 

Ins 5bpl2l+ 2,6,8 Frameshift/ Asian Skinner et al. 
V348A, R427H missense Kenyan 1994 
(compound htz) 

Ins 5bpl2l, 2,8- Frameshift/ Indian Skinner et al. 
R427H (hmz) missense Asian 1996 

A28bpEx2 (htz)+ 2,5 Frameshift/ Caucasian Skinner et al. 
G267R missense 1996 
(hmz) 

K174X +R384Q 3,7 Nonsense/ White Curnow et al. 
(htz) missense 1993 

W247X 4 Nonsense Caucasian Geley et al. 
(hmz) 1996 

W247X, R448H 4,8 Nonsense/ Caucasian Geley et al. 
(htz) missense 1996 

W247X, E371G 4,6 Nonsense/ Caucasian Geley et al. 
(htz) missense 1996 

Q338X (hmz) 6 Nonsense Indian Cumow et al. 
Sikh 1993 

Q356X 6 Nonsense Afro- Curnow et al. 
(hmz) American 19939 

& Skinner et al. 
Nigerian- 1996 
African 

Ins2bp 394 7 Insertion/ Jewish Helmberg et 
(hm) Frameshift al. 1992 

Ins3bp464 8 Insertion/ Caucasian Geley et al. 
(hmz) Frameshift 1996 

Table 1.8a Complex mutations in the CYPIIBI gene causing Ilp-hydroxylase 

deficiency. hmz=homozygous, htz--heterozygous. 
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Mutation Exon Ethnic Reference 
Group 

G267D hmz or 5 Caucasian Geley et al. 1996 
+ possible 

splice 
vanant(htz) 

T318M (hmz) 5 Yemenite Cumow et al. 1993 
A33 IV (hmz) 6 Caucasian Geley et al. 1996 
R374Q (hmz) 7 Lebanese Cumow et al. 1993 
R384G (hmz) 7 Japanese Yang et al. 1995 
V441 G (hmz) 8 White Cumow et al. 1993 

R448H, or 8 Morroccan & Curnow et al. 1993, 
R448C (hmz) Caucasian/Iranian Geley et al. 1996 

Jews 
C494F (hmz) 9 Indian(Asian) Skinner et al. 1996 
or + possible Turkish 

splice 
variant(htz) 

Table 1.8b Missense mutations in the CYP11131 gene causing Ilp-hydroxylase 

deficiency. hmz=homozygous litz = heterozygous. 

If this mutation or other mutations within this region, were found alone and were 

homozygous, they would probably influence enzyme activity (Skinner et al. 1994). 

The substrate binding domain is a highly conserved area and spans residues 362-375 

(White et al. 1987). Residues E371 and R374 lie within this region (Cumow et al. 
1993). Two other residues within this region have been shown to be essential for 

binding of adrenodoxin, an electron transport protein, in a closely related enzyme 
(Wada and Waterman 1992) (see section 1.7.3d). Residues T318 and R384, where 

missense mutations have been identified, are highly conserved among members of the 

P450 family (Gotoh et al. 1989). R384 forms part of a P-sheet thought to be 

important in substrate binding (Cumow et al. 1993). T318 is specifically involved in 

the proton transfer which cleaves molecular oxygen (see section 1.7.3c). Residues at 

positions 331,337 and 427 are arginines or histidines in all cytochrome P450 

enzymes. They have structural importance and mutations at these sites which replace 
them with innappropriate residues will therefore exert detrimental effects on helices 1, 
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K and L respectively and hence on the secondary structure of the protein (Geley et al. 

1995). 

Mutation EXON Activity Functional Reference 
CYP11BI in vitro signiflcance 

V129M 2 0 substrate Geley et al. 
binding 1996 

G267R 5 NA Skinner et al. 
1996 

G267D 5 NA as above 
T318M 5 0 alters proton Curnow et al. 

transfer 1993 
A331V 6 0 disturbs I- Geley et al. 

helix 1996 
V348A 6 NA Little effect Skinner et al. 

conservative 1994 
E371G 6 0 Adx Geley et al 

interaction 1996 
K-helix. 

R384Q 7 0 P-strand/ Curnow et al. 
substrate 1993 
binding 

R384G 7 0 as above Yang et al. 
1995 

R427H 8 Adx Skinner et al. 
interaction/ 1994, Skinner 

haem binding et al. 1996 
V441G 8 0 Alters Cumow et al. 

secondary 1993 
structure 

R448H 8 0 Haem binding Curnow et al. 
1993, Geley et 

al. 1996 
R448C 8 0 as above Geley et al. 

1996 
C494F 9 NA Substrate/Adx Skinner et al. 

interaction 1996 

Table 1.8c Effects of missense mutations of CYPHBI on lI P-hydroxylase 
activity in vitro . 

Residue 337 is also thought to be important in adrenodoxin interaction (Geley et al. 
1996). An insertion of a leucine at position 464 also disturbs L-helix structure (Geley 
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et al. 1996). The valine at residue 129 is also highly conserved but its exact function 

is unknown. 

A recent in vitro study showed that 1112, which lies close to V 129, is important for 

hydroxylation potency and is perhaps involved in substrate binding (see section 

1.9.2). The exact structural and functional role of the other residues affected by 

missense mutations is not known. However, it is clear from their clinical 

consequences that they are important for enzyme activity. Residues 267,441 and 494 

are not highly conserved between members of the cytochrome P450 family but, from 

this evidence, must be important. 

An additional 10 mutations have been identified which result in premature termination 

of the coding sequence and a truncated, non-functional gene product. Mutations of 

this kind are nonsense mutations; K174X, Q338X, Q356X, W116X and W247X or 

frameshift mutations; AC32,2bp insertion at codon 394, a 28bp deletion or a 5bp 

duplication in exon 2 (see tables 1.8a to 1.8c for references). The haem-binding and 

substrate binding domains are absent or incomplete which explains the lack of enzyme 

activity. 
It is clear that all the mutations identified within CYP IIBI exert detrimental effects. 

However, they do not provide enough information to explain in detail the relation 

between gene/protein structure and enzyme activity. 

1.8.5 Aldosterone synthase defldt= 

Inborn errors of aldosterone biosynthesis were first described by Ulick and colleagues 
in 1976. It was originally thought that the final conversion steps in aldosterone 
biosynthesis involved two enzymes, corticosterone methyloxidase type I which 

generated 18-hydroxycorticosterone and corticosterone methyloxidase type II, 

responsible for the generation of aldosterone. It is this concept which led to the 

classification of the disorders as CMO-I and CMO-II deficiencies which are 

categorised by either deficient levels or elevated levels of 18-hydroxycorticosterone 
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(18-OHB) respectively (Ulick et al. 1992). In CMO-I deficiency, there is loss of the 

18-hydroxylation capacity of aldosterone synthase which should be reflected in a 

build up of corticosterone although this may be difficult to detect. On the other hand, 

in CMO-II deficiency, the problem is directed towards the 18-oxidative capacity of 

aldosterone synthase and prevents the oxidation at the C18 position of 18- 

hydroxycorticosterone to aldosterone. In both cases, there is a lack of aldosterone and 

consequently disruption of the fine balance of fluid homeostasis which may result in 

marked sodium loss. The severity of this disorder becomes less as the kidney matures. 
Sodium reabsorption capacity, which is aldosterone-independent, improves and the 

symptoms of the disorder apparently become increasingly undetectable in adulthood, 

occurring only during sodium losing crises such as vomiting, diarrhoea, excessive 

sweating or menstruation (R6sler et al. 1984) (see figure 1.8b). 

DOC DOC 

B 
ttt 

B 

DEFECT 
180HB IowI8-OHB 

ALDOSTERONE no aldosterone 

Normal TYPEI 

HIGH B 

DOC 

B 

ttt 

18-OHB 

LjEFEC`r 
low aldosterone 

TYPE ii 

HIGH 18-OHB 

Figure 1.8b Aldosterone synthase deficiencies type I and Il 

CMO-I and II deficiencies are autosomal recessive inherited disorders due to a defect 

in the CYP II B2 gene. Mutations have been identified in coding regions of CYP II B2 

in nearly all cases of aldosterone synthase deficiency and are shown in table 1.8d. 
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Mitsuuchi et al (1993) identified homozygous inheritance of a 5bp deletion in exon I 

of the CYP II B2 gene which results in a premature stop codon in CMO-I deficient 

patients. A premature stop codon in exon 4 (E255X) was identified (Peter et al. 1997) 

in a patient described by Visser and Cost (1964). The mutant enzyme was predicted 

to lack the 5 terminal exons that contain the haem-binding domain. Homozygous 

amino acid substitution R384P also causes CMO-I deficiency (Geley et al. 1995). A 

similar mutation has been identified CYP11BI which completely completely 

abolishes enzyme activity (Cumow et al. 1993) (see section 1.8.4). This arginine is 

highly conserved in all mitochondrial cytochrome P450 enzymes and is involved in 

binding of the haem group (Geley et al. 1995). More recently, a homozygous point 

mutation, IA61P, which lies in exon 8 and is involved in the putative haem-binding 

site, has been identified (Nomoto et al. 1997). Expression of missense mutations 

causing CMO-I deficiency in vitro have been shown that they cause complete loss of 

aldosterone synthase activity (Table 1.8e). 

This is surprising as the biochemical phenotype, in vivo, suggests that only 18- 

hydroxylase activity is deficient. In a recent study, a patient with classical CMO-I 

deficiency was homozygous for three mutations (R173K, E198D and V386A) 

(Portrat-Doyen et al. 1998). R173K and V386A are polymorphic in the French 

population (Portrat-Doyen et al. 1998). In vitro studies have shown that R174K is no 
different from wild-type aldosterone synthase (Fardella et al. 1996b). V386A and 
E198D, when introduced singly, reduced aldosterone production only mildly but a 

construct with all three mutations (R173K, E198D and V386A) had reduced llp- 

hydroxylase and some residual 18-hydroxylase activity but no 18-oxidase activity 
(Portrat-Doyen et al. 1998). The mutant construct suggests that the patient should 
have CMO-H deficiency and not CMO-I as there is still some 18-hydroxylase activity 
(Portrat-Doyen et al. 1998). Thus, the relationship between phenotype and genotype 
is not as clear as once thought. 
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CM04 Exon Type of Ethnic Reference 
Mutation mutation Group 

5bp 1 deletion Amish Mitsuuchi et al 
dcletionExl North America 1993 

(hmz) Nomoto et al 
1997 

E255X 4 Nonsense Netherlands Peter et al 1997 

O=) 
R384P 7 Missense White Geley et al. 1995 
(hm) 
L461P 8 Missense Turkish Nomoto et al 
(hmz) 1997 

R173K, 3,7 Missense French Portrat-Doyen et 
E198D, al. 1998. 

V386A (hmz) 
CMO_11 
Mutation 
R181W/ 3,7 Missense Iranian j ews Pascoe et al 
V386A 1992, Mitsuuchi 

hmz et al 1992 

AC372/RI81W 7/3 Zhang et al 1995 
one allele + 

+ 5/7 
T318M/V386 

A 
other allele 
(Compound 

htz) 
Exon 3+4 3/4 Conversion Scot/Ifish/ Fardella et al 
conversion Afro-American 1996 

Table 1.8d Complex mutations in the CYP II B2 gene causing aldosterone synthase 

deficiencies CMO-I and Il. hmz=homozygous, htz=heterozygous 
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Several mutations have been identified in the coding regions of the CYP 11 B2 gene in 

this disorder (Table 1.8d). However, it is possible that mutations in the promoter 

region or other non-coding regions, or mutations in genes other than CYPI. I B2 which 

exert control over CYP II B2 expression or enzyme function, may cause the syndrome. 
Of course, this may also apply to other inherited syndromes of corticosteroid excess. 

For example, a polymorphism in one of the SF-1 binding sites within the promoter 

region and also an intronic conversion in intron 2 of CYP11132 has been identified 

(see section 1.6). 

Two substitutions, R181W and V386A, have been identified in patients with CMO-II 

deficiency (Pascoe et al. 1992b). Individuals affected by the disorder were 
homozygous for both mutations but relatives who were homozygous for either 
R181W or V386A were unaffected (Pascoe et al. 1992b). Also, recently a T1851 

mutation, which lies close to RI 8 1, was identified in two cases of CMO-II deficiency 

(Peter et al. 1998a). 

Expression studies in vitro demonstrated that a mutant enzyme carrying both 

substitutions resulted in loss of both 18-hydroxylase and 18-oxidase activities of 

aldosterone synthase (Pascoe et al. 1992b). When considered individually, the mutant 

enzyme with R181W had reduced 18-hydroxylase and a complete loss of 18-oxidase 

activity, whereas mutant V386A had only mildly impaired aldosterone synthase 

capacity (Pascoe et al. 1992b). In combination with the biochemical in vivo 

observations, this suggests that the R181W mutant still produces a very small amount 

of aldosterone in vivo and that, in vitro, this is undetectable (Pascoe et al. 1992b). 

Several other mutations have been identified. However, again these occur in 

combination in CYPllB2 and are somewhat complex. In one patient, AC372 was 
found on one allele and two substitutions, T318M and V386A, on the other allele 
(Zhang et al. 1995). We know that T318 is highly conserved and plays a crucial role 
in proton transfer and, from the previous study (Pascoe et al. 1992b), V386A results 
in slightly impaired loss of function of P450AIdo. However, we do not know the 

combined effect of these mutations in vitro. This suggests that, although one allele is 
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totally dysfunctional and carries AC372, the other less affected allele determines the 

biochemical phenotype (Zhang et al. 1995). Effects of missense mutations on 

aldosterone synthase in vitro are shown in table 1.8e. 

Missense Exon Activity Functional Reference 
Mutation in vitro significance 

R173K 3 normal Fardella et al. 
aldosterone 1996b, Portrat- 

Doyen et al. 1998 
R181W 3 18- enzyme activity Pascoe et al. 1992, 

Hydroxylase Mitsuuchi et al. 
no 18- 1992 
oxidase 

R181W, 3,7 as above enzyme activity as above 
V386A conformational 

change 
E198D 3 slight highly Portrat-Doyen et al. 

reduced conserved- 1998 
aldosterone functional role 

V386A 7 as above, no Mitsuuchi et al. 
change 1992, Pascoe et al. 

1992, Zhang et al. 
1995, Portrat-Doyen 

et al. 1998. 

R173K, 3,7 'Wip- conformational Portrat-Doyen et al. 
E1981), hydroxylase changein 1998. 
V386A no 18- protein 

functions 
D147E 3 normal - Fardella et al. 1996a 

aldosterone 
KISIN 3 as above - as above 
1248T 4 as above - as above 
Ex3/4 3,4 normal - asabove 

conversion aldosterone 
, D147E, 
K151N, 
I248T 
R384P 7 Sunstrate Geley et al. 1995 

I binding 
L461P 8 1 enzyme activity Nomoto et al. 1997 

Table 1.8e Effects of missense mutations of CYPI 1132 on a1dosterone synthase 
activity in vitro . 
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A possible gene conversion event between CYPllB1 and CYP11132 exons 3 and 4 

has been identified in a patient with CMO-II deficiency (Fardella et al. 1996). This 

produced an aldosterone synthase enzyme containing all residues from exons 3 and 4 

of 110-hydroxylase. Aldosterone synthase and 110-hydroxylase are' highly 

homologous and between the regions encoded by exons 3 and 4, only 3 residues differ 

in the protein (at positions 147,152 and 248). Seven constructs were prepared 

expressing each mutation singly, each of the three possible pairs of mutations and the 

triple mutant. In vitro expression studies only measured aldosterone production. 
None of the -mutants affected aldosterone production. No attempt was made to 
identify which of the several functions of aldosterone synthase was affected in the 

patient. From these findings, it appears that this gene conversion event is associated 

with, but is not the cause of, the deficiency (Fardella et al. 1996a). Other factors 

affecting aldosterone biosynthesis may be responsible. Polymorphisms/ mutations of 
the CYPHB2 gene have not been restricted to aldosterone synthase deficiency. 

Recently a genetic variant of aldosterone synthase was identified in Chilean patients 

with low renin essential hypertension (Fardella et al. 1996b). In this disorder, the 

ratio of aldosterone concentration to plasma renin activity (PRA) is high, as 

aldosterone levels are normal but renin levels are low. It is possible that 
inappropriately increased aldosterone biosynthesis could be due to a CYP II B2 defect. 

The CYP 11 B2 genes were sequenced and found to possess two allelic variants which 

resulted in a aldosterone synthase with Arg173 or Lysl73. In vitro expression studies 

revealed that both had similar Vmax and Km values. Although these variants 

apparently exert no detrimental effects on enzyme function, the Arg173 variant of 
CYP11132 had a higher frequency in patients with low renin essential hypertension 
(Fardella et al. 1996b). Recently, homozygous deletion of R173 in aldosterone 
synthase has been identified in a patient with CMO-II deficiency (Peter et al. 1998b). 
Deletion of this residue which lies in helix-D may alter secondary structure (Peter et 
al. 1998b). This does suggets that this specific locus of aldosterone synthase is 
important. 
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1.8.8 Glucocorticoid-suppressible hyperaidosteronism (GSH) 

The previous sections have discussed mutations in the CYP 11 B1 and B2 genes. GSH 

is due to the presence of a chimeric gene formed between CYPllB1 and CYPIIB2 

and is thought to occur via unequal crossover at meiosis. To briefly summarise, 

CYPHBI and B2 are found approximately 40kb apart on chromosome 8q22 in a 

similar arrangement to that of CYP21 and CYP21P (Pascoe et al. 1992, Lifton et al. 

1992). CYPllB1 is regulated by ACTH, can convert DOC to B and S to F and is 

expressed in the ZF. CYPlIB2 is expressed exclusively in the ZG, is regulated by 

ANGII in vitro and is required for the conversion of DOC to aldosterone. The 

biochemical phenotype of GSH arises from a chimeric gene possessing control 

regions of CYPllBl fused to the coding regions of CYPllB2 and expressed 

ectopically in the ZG (Lifton et al. 1992a). 

Hybrid genes of this description has been observed in several kindreds with this 

disorder (Pascoe et al. 1992, Lifton et al. 1992a, Lifton et al. 1992b). This rare 

autosomal dominantly inherited disorder is characterised by hypersecretion of 

aldosterone with suppressed plasma renin activity, hypertension and hypokalaemia. 

These abnormalities are successfully reversed by administration of small doses of the 

synthetic glucocorticoid, dexamethasone. Aldosterone levels are subject to control by 

ACTH and the diurnal variation in plasma cortisol levels correlate strongly with 

plasma aldosterone levels as do levels of DOC (Connell et al. 1986). 

Steroid ratios of DOC: B and S: F are elevated, suggesting an additional defect in 

Ilp-hydroxylation (Jamieson et al. 1996, Fallo et al. 1994). The chimeric enzyme 
further metabolises cortisol in the ZF to 18-hydroxy and 18-oxocortisol. In normal 

patients, small amounts of 18-hydroxycortisol are secreted (Corrie et al. 1985). In 

patients with GSH, urinary secretion rates of both 18-hydroxy and 18-oxocortisol are 

markedly raised (Ulick and Chu 1982, Gomez-Sanchez. 1984, Connell et al. 1986). 

Both 18-hydroxycortisol and 18-oxocortisol are structurally similar to 18- 
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hydroxycorticosterone and aldosterone (an alternative name for 18-hydroxycortisol is 

17a-hydroxyaldosterone) (see flgure 1.8c). 

18-oxocortisol 
0 H20H 

ý ým 

-OH 

18-hydroxycortisol 

H2OH 
OH H OH 

Aldosterone 
H20H 

H 

dc 

18-hydroxycorticosterone 

Figure 1.8c. 18-oxocortisol and 18-hydroxycortisol 

18-Hydroxycortisol has extremely low affinity for both GR and MR (Gomez-Sanchez 

ct al. 1984); 18-oxocortisol has higher affinity than 18-hydroxycortisol for both but 

still very low when compared to aldosterone (1%) and dexamethasone (3%) (Ulick et 

al . 1983, Gomez-Sanchez et al. 1985). It is therefore unlikely that these steroids exert 

significant mineralocorticoid or glucocorticoid actions in vivo. As mentioned 

previously, II P-hydroxylation is defective in patients with GSH. It has been 

suggested that 18-hydroxycortisol and 19-oxocortisol may act as inhibitors of enzyme 

activity (see chapter 6). 

In summary, patients with GSH have excessive levels of aldosterone, 18- 

hydroxycortisol and 18-oxocortisol which is responsive to ACTH. This suggests that 

there is ACTH-responsive aldosterone synthase activity in the ZG and the ZF. These 

changes are associated with the hypertension, hypokalaemia and suppression of the 

renin-angiotensin system although affected subjects vary in severity of phenotype 

which is even absent in some subjects possessing the chimeric gene. The alternative 

86 



chimera which possesses the 5'regions of CYPllB2 fused to the 3' regions of 

CYP IIB1, has not to date been found. 

By Southern blotting, the chimeric gene was identified in subjects from a single North 

American kindred (Lifton et al. 1992). DNA from patients was digested with the 

restriction enzyme BamHI, and transferred to a nylon membrane. A radiolabelled 

probe containing exons 3-4 of CYPllB1 was used to probe the membrane. 

Individuals with GSH had three hybridising species, the two normal species 8.5kb and 

4.5kb for CYPIlB1 and CYPllB2 respectively, and an additional 6.3kb band 

representing the chimeric gene. 

Linkage analysis of the kindred yielded a maximum lod score of 5.23 for complete 

linkage of the 6.3kb band with GSH. Using densitometry, the band intensities were 

analysed. The 6.3kb band showed intensity approximately 50% of that of the bands 

representing CYPllB1 and CYPllB2. This suggests that affected subjects have one 

copy of the additional chimeric gene in addition to their normal copies of the 

CYPllB1 and CYPllB2 genes. From these observations evolved the idea of the 

unequal crossover event. The resulting gene would possess the 5' regions of 

CYPI IBI fused to the coding regions of CYPI IB2. In subjects from four unrelated 

kindreds, a similar gene has been identified, thus confirming Lifton's findings (Pascoe 

et al. 1992a). In this latter study, the chimeric genes were selectively amplified in all 
four subjects using the polymerase chain reaction (PCR). Primers were designed 

which were specific to CYPllB1 and B2 to locate the crossover site. Twelve 

kindreds of Celtic origin have been reported (Lifton et al. 1992). Eight out of the 

twelve had Irish ancestry (Lifton et al. 1992). In the United Kingdom, seven kindreds 

have been identified, all of which were of Scottish origin except one Irish kindred. 

Therefore, of the 21 kindreds studies so far affected with GSH, 15 have a Celtic 

background. A founder effect is unlikely as sequence analysis has shown that there 

are at least 7 different chimeric genes in these kindreds (Lifton et al. 1992, Jamieson 

1995). 
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The sites of crossover have been detemiined (Pascoe et al. 1992b, Lifton et al. 1992a). 

In all cases, the site is between intron 2 and intron 4 and always before exon 5 of 

CYP II B2 (Lifton et al. 1992, Miyahara et al. 1992). This information alone indicates 

that the aldosterone synthesising capacity of human P450aldo is conferred by amino 

acids specific to this enzyme encoded by exons 5-9 of the CYPI IB2 gene. All GSH 

kindreds studied so far have inherited a copy of the chimeric Bl/B2 gene from either 

parent which includes exon 5 of CYPllB2. To investigate the effect of the exonic 

arrangement of these chimeric genes, in vitro studies of the steroidogenic activity of 

cDNA constructs with variable proportions of CYP IIBI and CYP II B2 exonic DNA 

have been perfonned (Pascoe et al. 1992a). Constructs and in vitro enzyme activity 

are shown in figure 1.8d. 

cDNA 

B2 

HI 

H3 

H5 

H7 

BI 

constuct 

Exon I Exons2-3 Exons 4-5 Exons 6-7 Exons 8-9 

% conversion from DOC 
B 18-OHB Aldo 

30 22 11 

21 7 5 

28 9 6 

8 0 0 

13 0 0 

74 0 0 

B2 Exons 1-9 of CYP II B2 only 
HI Exon I from CYPIIBI -Exons2-9 from CYPllB2 
H3 Exons 1-3 from CYPIIBI- Exons 4-9 from CYP11132 
H5 Exons 1-5 from CYPIIBI-Exons 6-9 from CYPlIB2 
H7Exons 1-7 from CYPIIBI-Exons 8-9 from CYP11132 
BI Exons 1-9 of CYP IIBI only 

Figure 1.8d Aldosterone synthase activity of chimeric CYPIlBl/CYPllB2 cDNA 

constructs in vitro. 

Constructs possessing exons 1-3 of CYP 11 B1 fused to exons 4-9 of CYP II B2 have 

full aldosterone synthase activity. Constructs with exons 1-5 or more of CYP IIBI 
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had no detectable aldosterone synthase activity. This confirms that exon 5 of 

CYP II B2 encodes residues important for aldosterone synthase activity. 

In a recent study, crucial residues of CYPI1132 important for aldosterone synthase 

activities were identified in exons 4,5 and 6 (Mulatero et al. 1998). At the 

corresponding positions in CYP IIB1, the residues were replaced for the aldosterone 

synthase specific residues. In vitro, the mutant CYP11131 construct had aldosterone 

synthesising capacity (Mulatero et al. 1998). If found in vivo, this gene would be 

regulated by ACTH but possess aldosterone synthase activity and would be the result 

of a conversion event between exons 4,5 and 6 between the CYP 11 BI and CYP II B2 

genes and result in GSH. In all cases studied, no such a conversion was found 

(Mulatero et al. 1998). 

In summary, GSH is caused by chimeric genes where the crossover is in the first 4 

exons of CYPIlBland fused to exons 5-9 of CYPllB2. These exons contain the 

active site consisting of the haern-binding and substrate-binding domains, both 

essential for enzyme function. Specific residues within these exons of CYPIIB2 

confer aldosterone synthase activities of the chimeric gene product. The precise 
importance of these individual residues has been investigated (see section 1.9) 

Steroidogenesis and adrenal cytochrome P450 enzymes in the DahI salt sensitive (S) 

and salt- resistant (R) rat models of salt-induced hypertension have provided useful 
insights into structure-function relationships. The pathophysiological mechanisms 

underlying blood pressure regulation in these strains have been studied extensively. 
Dahl et al (1962) selectively bred rats for their blood pressure response to high sodium 
dietary intake. Two strains were identified. The Dahl S rat is sensitive to the 

hypertensive effects of sodium whereas the DaM R rat is resistant. Differences in the 

structure of both CYPllBI and B2 may be responsible. 18-Hydroxy-11- 

deoxycorticosterone (18-OHDOC) secretion by the adrenal glands of the DahI S rat 

was 2-fold higher than those of the Dahl R rat (Rapp and Dahl 1972) suggesting that 
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the DaM R rat had a reduced capacity to synthesise 18-OHDOC due to mutations in 

CYPIlBl. 

RT-PCR and sequence analysis of the CYP IIBI from the DahI S and R models 

revealed six nucleotide differences five of which caused amino acid changes, R127C, 

V351A, V381L, 1384L, V443M ( Matsukawa et al. 1993, Cicila et al 1993). When 

the cDNA was expressed in COS-7 cells, 18-OHDOC synthesis was dramatically 

reduced compared to the Dahl S cDNA (Matsukawa et al. 1993). Hybrids formed 

between DahI S and R cDNA were constructed to determine the effects of these 

diferences on steroid production. Replacement of R127 and V351 of DahI S with 

valine (V) and cysteine (C) of DahI R within the DahI S cDNA did not alter 18- 

OHDOC production of DahI S. Replacement of V381,1384 and V443 of DahI S with 

leucine (L), leucine (L) and methione (M) of DahI R within the Dahl S cDNA 

markedly altered 18-OHDOC, making DahI S production more like that from the 

Dahl R cDNA. 
The reverse of these changes were also constructed. Substituting DahI R residues 
381,384 and 443 with the DahI S equivalent in the DahI R cDNA made DahI R more 
like DahI S (Matsukawa et al 1993). Therefore, the alternative residues at 127 and 
351 do not determine the rates of IIP and 18-hydroxylation in the Dahl rat P4501 1 P. 

Residues 381,384 and 443 are within a region which affects UP and 18- 

hydroxylation (Matsukawa et al. 1993). Residues 351,381 and 384 are located near 
Ozol's region (Ozol 1989) which is important for orientation of the substrate and the 

haem in the active site (Nonaka et al. 1989). It has also been implicated in the electron 

transfer interaction between cytochrome P450s and adrenodoxin (Wada and 
Waterman 1992). Residues 381 and 384 reside in a region known to be a substrate 

recognition site (SRS-5) in this family of P450s (Gotoh et al 1992) (see section 
1.7.3b). Although located near the haem binding region, residue 443 probably does 

not affect substrate orientation (Matsukawa et al. 1993). 

From these structural observations, it is most likely that the alterations of amino acids 

at residues 381 and 384 in the DaM R rat account for the dramatic decrease in 18- 

OHDOC (Matsukawa et al. 1993). In the DahI S rat, high levels of 18-OHDOC may 
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be at least partly responsible for pressor sensitivity to dietary sodium. Cicila et al 

(1993) showed that in inbred Dahl S and R rats, CYPIIBI polymorphisms 

cosegregate with both the capacity to synthesise 18-OHDOC and with blood pressure. 

This CYPllB1 locus has been implicated as a hypertension QTL (quantitative trait 

locus) in chromosome 7 (Garret et al. 1998). 

Aldosterone synthase cDNA is another potential candidate for the chromosome 7 

QTL (Cicila et al. 1997). The Dahl R rat aldosterone synthase has amino acid 

substitutions, E136D and Q251R, compared to the Dahl S rat enzyme (Cover et al 

1995). cDNA's from both were expressed in vitro. When corticosterone (B) was used 

as substrate, the Dahl R rat cDNA produced >1000 times more aldosterone than the 

Dahl S cDNA (Cover et al. 1995). Kinetic experiments followed but I I- 

deoxycorticosterone (DOC) was used as substrate (the reason for this switch in 

substrate is not explained). This produces a Dahl R enzyme with an increased Vn,, 

and reduced K.. compared to Dahl S enzyme in vitro ( Cover ct al. 1995). The gross 

over- production of aldosterone in vitro by Dahl R rat compared to the Dahl S rat does 

not reflect the biochemical phenotype as there is only a 2-fold difference in plasma 

aldosterone levels reported between these strains (Rapp et al. 1978, Kusano et al. 

1986). This suggests that other factors, in addition to inherent enzymatic properties, 

control aldosterone levels (Cover et al. 1995). 

Mutations of human aldosterone synthase were prepared, at the analogous positions 

to those identified in the DahI R rat, to yield three constructs altering E 13 6D, K25 IR 

or both (Fardella et al. 1995). Transfection studies revealed that the K251R 

substitution, in particular, produced 3 to 4 times more 18-OHB than wild-type 

aldosterone synthase as well as a 50% increase in aldosterone (Fardella et al. 1995). 

Substitutions of this kind which increase aldosterone production may be implicated in 

human hypertension (Fardella et al. 1995). 

In summary, mutations have been identified in the CYP11BI and B2 genes of the 

DahI R strain which have functional implications. In the case of CYP11132, these 

91 



mutations produce an overactive aldosterone synthase. Similar mutations 

manufactured in the human CYP II B2 had lesser effects than the rat mutations but did 

increase human aldosterone synthase activity. A mutation of this kind found in human 

subjects would be likely to cause hypertension. The use of animal models provides a 

useful tool by which the mechanism of disease can be understood. This particular 

model has provided useful information concerning adrenal steroids and their 
involvement in hypertension. - 
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Disorders of the adrenal gland and its steroidogenic enzymes are often the 

consequence of rare mutations. For example, in Ilp-hydroxylase deficiency, all of 

the mutations described to date completely abolish enzyme activity which explains the 

resulting clinical changes (see section 1.8.2). These mutations, therefore, do not 

provide much useful information about the residues which are structurally important 

or those which are essential for enzymatic activity and substrate specificity. Mutations 

on the other hand which increase activity or provide a new activity for the enzyme are 

much more interesting and are very likely to be in close proximity to the active site. 
As previously discussed, Ilp-hydroxylase and aldosterone synthase are highly 

homologous isozymes. However, their enzymatic properties differ dramatically and 

this must be due ultimately to the residues which differ between the two isozymes. 

Therefore, it is of interest to identify those residues responsible for the aldosterone 

synthesising capacity and the lower II P-hydroxylase activity in aldosterone synthase 

compared to Ilp-hydroxylase. It is also important to identify those natural 

polymorphic residues which do not contribute to their structural and enzymatic 
differences. The amino acid differences between llp-hydroxylase and aldosterone 

synthase are shown in figure 1.9a. 

To date neither II P-hydroxylase nor aldosterone synthase tertiary structure has been 

determined. Their association with the inner mitochondrial membrane has made 

preparation, purification and crystallisation difficult. Regions of structural 
importance have been deduced by close comparison with the crystallised bacterial 

P450 enzymes. Although displaying low homology with the bacterial P450 enzymes, 

all p450s in this family have highly conserved secondary and tertiary structure. This 
information along with a knowledge of the residues that differ between aldosterone 

synthase and 11 P-hydroxylase, will enable precise identification of residues which 

are structurally important as well as those residues conferring specific enzymatic 

activities (see section 1.7). 
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CYP11B1 CYP11B2 Exon 
Met 11 Val Val 13 Ala 
Gin 22 Arg 
Val 31 Ala 
Arg 43* Gin 1 
Arg 44 His 

Asp 63 His 

....... 
Vol 

........ .... 
68 

..... ..... .. 
Met 

........ Asp 82 Asn 
Ala 86 Pro 
Gly 87 Arg 

2 
His 109 Cys 
Scr 

....... ......... 
112 

........... 
Ile 

.................. 

Glu 147 Asp 
Asn 152 Lys 

3 Lys 173* Arg 

Thr 248 Ile 

Ser ...... .... 28i Asn 
Gin 285 His 
Ser 288 Gly 
Asn 296 Lys 5 
PTO 301 Tcu 
AS 
v 

f 302 
2 

Qlu 
, 0 3 Ala 

Asn 335 Asp 
Ala 339 Ile 6 

....... ........ Ala .......... .... 386* ............... Val .. 
7 

................ ATg ............... 404 ................. Gin 
Pro 414 Ala 

Tyr 439 His 

u .... ...... 471 ...... ...... ke 
Gin 472 Leu 

Sff 492 Gly 
Met 493* Thr 
Phe 494 Ser 

Figure 1.9a. Differences in amino acids between human 
II P-hydroxylase (CYPlIBI) and aldosterone synthase 
(CYPlIB2). The diagram shows 35 residue differences with 
locations of exon junctions. Asterisks are naturally occurring 
polymorphisms which do not always differ. 

The molecular biological explanation of GSH has been described (section 1.8). Many 

pedigrees have been studied. All chimeric genes have exons 1-4 of CYPHBI and 
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exons 5-9 of CYPI1132 with the crossover site within intron 4. This indicates that 

residues in exons 5-9 of aldosterone synthase are essential for aldosterone synthase 

activity (Pascoe et al. 1992). Hybrid cDNA in vitro transfection studies have clearly 

shown that the crossover point must lie upstream of exon 5 for the resultant enzyme 

hybrid to possess efficient 18-hydroxylase and 18-oxidase activities (Pascoe et al. 

1992). When the genes are fused after exon 3, aldosterone synthase activity is 

retained. However, if the genes are fused after exon 5 (Le retaining exons 6-9 ) 

aldosterone synthase activity is lost. This suggests that exon 5 is essential for 18- 

hydroxylase and 18-oxidase activities (Pascoe et al. 1992). Similar hybrid cDNA 

construction has been performed between cloned rat CYP11131 and CYP11132 (Zhou 

et al. 1994). A hybrid containing the first five exons; of CYP IIB1 fused to the last 4 

exons of CYP11132, when expressed in COS-7 cells and incubated with DOC, 

possessed II 0-hydroxylase activity but had no 18-hydroxylase or 18-oxidase activity. 

That is, it synthesised corticosterone but not 18-hydroxycorticosterone or aldosterone. 
This suggests that residues upstream of exon 6 of aldosterone synthase are required 
for aldosterone synthesising capacity in the rat. The reverse of this construct, exons 1- 

5 of CYP11132 fused to exons 6-9 of CYP11131) was also studied. It was inactive. 

Thus residues present in the first 5 exons of CYP11131 are essential for the llp- 

hydroxylase activity in the rat (Zhou et al. 1994). 

Exon 5 encodes amino acids essential for aldosterone synthase activity. This exon and 

part of exon 6, which encodes residues 299-388 of human aldosterone synthase and 
Ilp-hydroxylase, were aligned to the I-helix region of P450cam, P450BM3 and 
P450terp which forms the active site domain in these simpler enzymes (Bottner et al. 
1996). This careful alignment permitted the investigation of the different activities 

and substrate specificities in the two human enzymes (Bottner et al. 1996). As 

described above, hybrid cDNAs constructed between these two human genes 
demonstrated that the crucial breakpoint was amino acid 256 (exon 4) and that the C- 

terminal portion beyond this residue of aldosterone synthase seems to be important in 

aldosterone synthesising capacity (Pascoe et al. 1992). In P450cam, this I-helix 
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region contributes mainly to the active site. In an earlier study, Thr 252, which is 

highly conserved in all P450 proteins (Bernhardt et al. 1995), was reported to be 

required for oxygen activation, a key stage in P450 enzyme activity (Imai et al. 1989, 

Martinis et al. 1989, Raag et al. 1991) (see section 1.7). From this information alone, 
it is probable that residues close to or within this domain play functional roles in 

enzyme activity. At positions 296,301,302,320 and 355, aldosterone synthase- 

specific residues (K, L, E, A and D respectively) which align to this domain were 

replaced by the 11 P-hydroxylase equivalents (N, P, D, V and N respectively). The 

mutant cDNAs were expressed in COS- I cells and conversion of 11 -deoxycortisol (S) 

and DOC measured by HPLC or radioimmunoassay (Bottner et al. 1996). With 

respect to ability to convert S to F, i. e. 11 P-hydroxylase activity, mutants K296N and 
D335N showed a slight increase in activity compared to wild-type aldosterone 

synthase. However, greatly increased 11 P-hydroxylation was observed with mutants 
L301P, E302D or A320V. When these single mutations were combined, a more 

pronounced positive effect on II P-hydroxylation was seen. Double substitution of 
L301 P and A320V increased 11 P-hydroxylation by aldosterone synthase to 60% of 

wild-type llp-hydroxylase (aldosterone synthase llp-hydroxylase activity is 

normally only 10% of wild-type llp-hydroxylase). Conversion of DOC to 

aldosterone was suppressed compared to wild-type aldosterone synthase, the triple 

mutant L301P/E302D/A320V losing 90% of its aldosterone synthesising capacity. 
The replacement of these residues demonstrated a switch in the substrate specificity of 

aldosterone synthase, increasing its ability to convert S, the preferred 11 P-hydroxylase 

substrate, by replacing residues with those essential for 11 P-hydroxylation by human 

II P-hydroxylase. 

A more recent careful alignment study of human aldosterone synthase and 11 P- 

hydroxylase with the equivalent enzymes of other species, has identified two key 

residues which contribute to the 18-oxidase and 18-hydroxylase activities (i. e. 

aldosterone-synthesising capacity) of aldosterone synthase (Curnow et al. 1997). 
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Substitution within Effect on S to F 

I-helix of conversion 

Aldosterone synthase 

K296N Slight T compared to 

WT aldosterone 

synthase 

L301P TTT 

E302D -TTT 
A320V TTT 
D355N Slight T compared to 

WT aldosterone 

synthase 

L301P, A320V TTTTT (60% of WT 

11 P-hydroxylase activity) 

L301P, E302D, A320V TTTTT I 

Table 1.9a Effects of replacing aldosterone synthase specific residues with the II P- 

hydroxylase equivalents on S to F conversion in vitro (Bottner et al. 1996). 

Residues 248-340 (a region encoded by part of exon 4-6) of human aldosterone 

synthase were aligned to the corresponding region of aldosterone synthases from other 

species and also to human II P-hydroxylase. Residues G288 and A320 were 

conserved in aldosterone synthase in all species. Interestingly, at the corresponding 
loci in human II P-hydroxylase, there were a S288 and a V320 respectively (Curnow 

ct al. 1997). Using in vitro sitc-directed mutagenesis, progressive C-tenninal 

substitutions were performed. Resulting cDNA mutants were expressed in vitro in 

COS-7 cells and conversion of DOC to B, 18-OHB and ALDO measured by TLC 

with subsequent RIA. Results showed that efficient I 8-hydroxylation and 18- 

oxidation were dependent on the nature of ten central residues located between 248 

and 339.18-Oxidase activity was markedly reduced when exon 6 residues of 
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aldosterone synthase (A320, D335,1339) were replaced by those of 11 P-hydroxylase 

(V320, B335, A339). On the other hand, when the differing residues of exon 4 and 5 

(248,281,285,288,296,301,302) of Ilp-hydroxylase were replaced by those of 

aldosterone synthase, this II P-hydroxylase mutant was able to produce low levels of 

aldosterone (Curnow et al. 1997). Further substitution of the Ilp-hydroxylase 

residues P301 and B302 with the corresponding aldosterone synthase residues L301 

and Z302 did not influence this low level of aldosterone produced by this hybrid II P- 

hydroxylase (Curnow et al. 1997). The most profound effect was seen when residues 
S288 and or V320 of II P-hydroxylase were substituted for their aldosterone synthase 

equivalents G288 and A320. This alone was sufficient to confer 18-hydroxylase and 
18-oxidase activities respectively upon II P-hydroxylase, enabling aldosterone 

synthesis (Curnow et al. 1997). Thus, efficient 18-hydroxylation requires a glycine at 

position 288 and subsequent 18-oxidation requires an alanine at position 320. Such 

mutations, should they occur naturally, might have important implications in 

hypertension. Screening of normal and hypertensive populations for mutations and 

polymorphisms within these genes may reveal some interesting results. 

Substitution 

within 

llp-hydroxylase 

Activity 

S288G Confers 18-hydroxylase activity 

V320A Confers 18-oxidase activity 

S288G, V320A Full aldosterone synthase activity 

Table 1.9b Amino acid substitutions conferring a1dosterone synthesising capacity on 
I P-hydroxylase (Cumow et al. 1997). 

A more recent study, also based on structural alignement, focussed on the 

regioselective role of isoleucine (I) at position 112 (exon 2) in human aldosterone 

synthase (Bechtel and Bernhardt 1998). Structural and sequence comparison with 
P450cam suggested that 1112 of human aldosterone synthase may be of importance to 

the enzymes catalytic properties. Site-directed mutagenesis was used to alter this 
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residue to either a serine I112S (the equivalent residue found in human Ilp- 

hydroxylase) or a proline Il 12P (residue found at corresponding position in mouse 

and rat II P-hydroxylase ). The resultant mutants were then expressed in COS- I cells 

and the rate of conversion of DOC to aldosterone compared to wild-type aldosterone 

synthase. The rates of all three stages of aldosterone biosynthesis from DOC were 
increased by the I112P mutation but unaffected by the I112S mutation: UP- 

hydroxylation was increased by 30%, 18-hydroxylation by 78% and 18-oxidation by 

22%. This residue may be excluded from forming interactions with the substrate due 

to its distance from the active site but, from this study, it is clearly important for 

hydroxylation by aldosterone synthase (Betchel and Bernhardt 1998). 

1.9.3 Summa 

It is clear from these studies that several residues close to the active site play essential 

roles in the specific functions of these two enzymes. However, little is known about 

residues outwith this region and their role, if any, in enzymatic function with the 

exception of residue 112 in exon 2 whose role has been clearly defined (Betchel and 
Bernhardt 1998). It is unwise to class residues as functionally irrelevant solely on the 
basis of their locii. Although they may lie at some distance from the active site, they 

may still influence enzymatic function. Possible roles may be initial substrate contact 

points, binding of facilitatory proteins and protein folding all of which will contribute 
to activity and function. 

1.9.4 Alms of this study. 
From the survey of the literature there is strong evidence that corticosteroid 

metabolism is frequently changed and may be involved in the aetology of essential 
hypertension. In order to establish this relationship two things are necessary. Firstly, a 
clearer understanding of the relationship of structure-function of alosterone synthase 
and II P-hydroxylase not only at sites of known functional importance but throughout 

the molecule is required. Secondly, to determine whether mutations/polymorphisms 

occuring in essential hypertension change activity, bearing in mind that changes in 

the pattern of steroid synthesis, for example , the synthesis of abnormal steroids, may 
indirectly affect fanction. This problem has been addressed using techniques of 

molecular biology and established biochemical methods. 
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CHAPTER 2 
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2.1.1. Plasmids 

The cDNA encoding human llp-hydroxylase (CYP11BI) and aldosterone synthase 

(CYP I IB2) were in the vector pCMV4; named pCMVB 1 and pCMVB2 respectively 

(referred to as BI or B2) and were kindly provided by Professor Perrin White 

(Curnow et al. 1991). The inserts constitute 1.5kb and the plasmid vector is 4.8kb. 

The cDNA encoding bovine adrenodoxin was contained in the plasmid pCD Adx 

(Okamura et al. 1985) and was a gift from Prof. J Ian Mason. As a reporter gene for 

transfection studies, the plasmid pSVP-gal (Promega, Madison , USA) was used. All 

plasmids share a common general CMV-derived promoter. Plasmid DNA was 

prepared by CsCl/EtBr purification both small-scale and large-scale DNA preparation 

protocols (see below). 

2.1.2 Preparation of competent cells 

A stock of E. coli DH5 a in glycerol was used to inoculate 2ml L-broth supplemented 

with glucose (0.2% w/v) and MgC12 (lOmM) and incubated overnight at 37*C in an 

orbital shaker (225rpm). I ml of this fresh overnight culture was inoculated into 100ml 

of L-broth supplemented with glucose (0.2% w/v), MgC12 GOMM) and incubated at 

37*C with orbital shaking (225rpm). When the optical density at 600nm was between 

0.2 and 0.3, the culture was placed on ice/water for 10 minutes to cool to 4'C. The 

cells were then pelleted in pre-cooled sterile 250ml centrifuge bottles by 

centrifugation at 3000 rpm for 15 minutes at 4*C. The supernatant was decanted and 

the cells were resuspended by pipetting and gentle triturating in 10ml of ice-cold 

"Miller" transformation solution (see appendix 3). The resuspension was completed 

by gentle swirling. The suspension was divided into aliquots (100gl), frozen on "dry 

ice' and stored at -70"C until required. Transformation efficiency tests were 

performed on transformed cells. 

2.1.3 Transformation of bacterial cells 

Plasmid DNA (10-100ng) was added to a 100ýtl suspension of competent E. coli 

DH5a. in a 1.5ml Eppendorf tube. The mixture of cells and DNA was stored on ice 

for 30 minutes and then subjected to a heat shock of 30 seconds at 37C. The cells 
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were allowed to recover on ice for 2 minutes before adding 500111 of L-broth 

supplemented with glucose (0.2% w/v), MgC12 (lOmM) and incubating at 37"C for 45 

minutes in an orbital shaker (225rpm). The cells were pelleted by microfuging for 30 

seconds and all but 100gl of the supernatant was removed. The cell pellet was 

resuspended in this residual medium and spread onto L-agar plates (L-broth, 1.5% 

agar) containing 100gg/ml ampicillin. The plates were allowed to dry and then 

inverted and incubated overnight at 37T. Colonies were visible after 16 hours. 

2.1.4 Screening transformed col * 

L-agar ampicillin plates allow the selection of clones containing closed circular 

plasmid DNA with an intact, ampicillin-resistant gene. Analysis of clones was 

performed by restriction analysis and sequencing as necessary (see below) 

2.1.5a Small scale plasmid purification by alkaline lysis method 
A transformed colony was used to inoculate 2ml L-broth supplemented with 
100ýig/ml ampicillin and incubated overnight at 37T with orbital shaking. 1.5ml of 
the resulting culture was pelleted in a microcentrifuge at 40OOrpm for 5min and the 

supernatant was removed. The pellet was resuspended in 1001il of ice-cold solution 1, 

pH 8.0 (50mM glucose, 25mM Tris, lOmM EDTA), then 200[d of freshly prepared 

room temperature solution 2 was added (1% SDS, 0.2M NaOH). The mixture was 
inverted 5 times and stored on ice. 1501il of ice-cold solution 3, pH 4.8 (3M 

potassium acetate, 5M acetic acid) was added and the suspension was mixed by gentle 

vortexing in an inverted position and then stored on ice for 15 minutes. Cell debris 

was removed by centrifugation at 120OOrpm for 5 minutes. The DNA in the 

supernatant was then precipitated with ethanol (see below) and resuspended in 50gl of 
TE buffer (IOmM Tris. HCl pH 8.0, ImM EDTA, pH 8.0) or sterile water, 

supplemented with DNase-free RNase at a final concentration of 20gg/ml. 

2.1.6a Large scale DNA puriflcation 
A single colony was used to inoculate 2ml of L-broth supplemented with 1009'g/ml 

ampicillin. It was incubated overnight at 37T in an orbital shaker (225rpm). This 

overnight culture was used to inoculate 500ml of L-broth supplemented with 
100pg/ml ampicillin in a 2L flask which was incubated for 16hours at 370C with 

orbital shaking at 225rpm. Cells were harvested by centrifugation in a Sorval 

ultracentrifuge (Beckman J series rotor) at 50OOrpm for 5minutes at 4*C in 250ml 

102 



centrifuge bottles. The pellet was resuspended in l8mls of ice cold solution I (see 

2.1.5a). Freshly prepared lysozyme (2ml) (10mg/ml in I OmM Tris. HCI (pH8.0)) was 

then added. Freshly prepared solution 2 (40ml) was then added, the suspension mixed 

by inverting 10 times and then stored on ice for 5 minutes. Ice cold solution 3 (20MI) 

was then added, the suspension mixed gently by inverting 10 times and stored on ice 

for 15 minutes until a white flocculent precipitate appeared. The bacterial lysate was 

then centrifuged at 100OOrpm for 15 minutes at 4*C. The centrifuge was allowed to 

decelerate gently without braking. The supernatant was filtered through four layers of 

sterile gauze into a fresh 250ml centrifuge bottle containing 48ml of isopropanol (0.6 

x volume). This was mixed and then left at room temperature for 10 minutes. The 

resulting mixture was transferred to a 50ml Beckman ultracentrifuge tube and DNA 

was recovered by centrifugation at 120OOrpm for 15 minutes at room temperature. 

The supernatant was decanted and the pellet was rinsed in 70% ethanol and allowed to 

dry. The pellet was then resuspended in 7ml H20 or TE. Plasmid DNA was then 

purified by CsCl-EtBr gradient centrifugation. 
2.1.6b Caesium chloride-ethidium bromide density gradient centrifugation 

For every ml of DNA solution, Ig of solid caesiurn chloride (CsCl) was added. 
Ethidiurn bromide (EtBr, 10mg/ml in water), 0.8ml, was added for every IOMI of 
DNA/CsCI solution. The tubes (Beckman quick-seal centrifuge tubes) were balanced 

using mineral oil and centrifuged at 490OOrpm for 16 hours at 20T (with a WO rotor 
in a Beckman centrifuge). The DNA was detected as fluorescent bands using a long 

wavelength UV light source and the lower band containing supercoiled plasmid DNA 

was collected using a syringe. The higher band is chromosomal DNA. EtBr was 

removed by successive extractions with an equal volume of water-saturated butanol. 

Water (3 x volume) was added followed by 2 volumes (DNA solution +3 volumes 

water) of ethanol and the mixture placed on ice for 15 minutes. It was then centrifuged 

at 15000 rpm for 20minutes at 4'C. The supernatant was removed and the pellet was 

resupended in Iml sterile dH20- CsC1 was removed by dialysis against dH20 or TE 

for 24 hours with approximately 6-8 changes of dH20 or TE. 

2.1.6c Ethanol precipitation 
Nucleic acids were precipitated by adjusting the monovalent cation concentration to 

0.3M using 3M sodium acetate (pH 5.7) stock solution, adding 2.5 x volumes of 
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ethanol and incubating at -20"C for 30 minutes. The precipitated nucleic acids were 

pelleted at 120OOrpm in a centrifuge at 12 OOOrpm. The pellet was washed with 70% 

(v/v) ethanol and air-dried before resuspension in water or TE. 

The concentration of each preparation was determined by measuring the optical 

density of samples at 260run. Five microlitres of the DNA solution were added to a 

final volume of Iml of H20 in a quartz cuvette and the extinction measured at 260mn 

in a dual beam spectrophotometer with a deuterium lamp. An optical density OD260 

of I corresponds to 50ýtg/rnl of double stranded DNA. An OD260 of I corresponds to 

40jig/ml of RNA. The optical density of pure preparations of DNA and RNA have an 

extinction 260/280 ratio of approximately 1.8 and 2.0 respectively (Sambrook et al. 

1989). 

DNA quality and identification of the individual plasmids was verified by 

sequencing, digestion by restriction enzymes and gel electrophoresis. 

Two micrograms of plasmid DNA was placed in a 1.5ml Eppendorf tube with 1PI of 

high concentration of the desired enzyme and 2ptl of IOX buffer (specific for each 

enzyme, see Appendix 4). The enzyme Spel for example was used to distinguish 

pCMV4-B I from B2. Double digests, Not I/BgI II and BamHI/HindIII, were used to 

digest pCD-Adx and pSV-P-gaI respectively. Where required, 2ýd of lOx BSA was 

added. H20 was added to make the final reaction volume of 20gl. Digests were 
incubated at 37*C for at least 2hours or overnight. The completeness of each 
digestion and characteristic bands generated were identified by electrophoresis of the 

total reaction volume plus 5ptl of loading buffer (see Appendix 3) on a 1.0% agarose 

gel. 

2.1.9 Preparation of agarose gels for electrophoresis. 

Agarose (1% w/v) was added to 100ml of TAE buffer (see appendix 3), mixed and 

heated in a 650W microwave oven for 120 seconds. Whilst cooling, I jil of ethidium 
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bromide was added to the agarose, the agarose mixed and poured into gel moulds with 

teflon combs. The gel was allowed to set for Ihour before removing the combs. Gels 

were placed in standard electrophoresis tanks with 100ml of TAE buffer and 

connected to a constant power source at 60V for Ihour. 

2.2. Direct DNA sequencing from PCR products. 

The sequenase system. 

Determination of nucleotide sequences to confirm mutations created by site directed 

mutagenesis and ensure that undesirable mutations were not incorporated was 

performed on PCR-amplified plasmid DNA by a modification of the chain 

termination method using a commercially available Sequenase kit (United States 

Biochemicals, Ohio, U. S. A). Dimethyl sulphoxide (DMSO) was included to enhance 

breakdown of DNA secondary structure. Buffer ingredients and details are in 

appendix3. 

The chain termination method involves the synthesis of a DNA strand by DNA 

polymerase in vitro using a single-stranded DNA template. Synthesis is initiated at the 

site of hybridisation of a target specific sequencing primer which anneals to the DNA 

of interest and a DNA strand is elongated until the reaction is terminated by the 

incorporation of a nucleotide analogue that does not permit finther elongation. Such 

analogues include the 2', 3'-deoxynucleoside Y-triphosphates (ddNTP's) which lack 

the YOH group required for DNA chain elongation. Four such reactions are carried 

out in parallel using different ddNTP's mixed with the complementary dNTP's to 

provide complete sequence information A radioactively labelled nucleotide is 

included in the synthesis so that the labelled chains of varying length can be 

visualised by autoradiography after high resolution electrophoresis. 

2.2.1 Sequencing protocol 

Annealing 

Each of the reactions listed below was carried out in a sterile Eppendorf tube: 

a) 4 tubes containing 2.5 pl of each of the four ddNTP's in a termination mix 

were prepared. 
b) A mixture was prepared containing the following: 

DNA 6 ýtl (I pg/ pl) 
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H20 1 [11 

DMSO 25% 1 ýd 
Sequencing primer 2 pl (10 pM) 
Total volume 10 P1 

The mixture was placed on a heating block at 99*C for 5 minutes to denature DNA 

and then centrifuged briefly. The tube was then placed on a mixture of dry ice and 

100% ethanol. 
2.2.2 Preparation of the label reaction 

C) In a sterlie Eppendorf tube: 

DTT I ýtl 
label mix 2 pl (1: 5 diln) 
35 S-ATP label 1 [11 , 

All subsequent reactions were performed behind perspex to shield against 

radioactivity. 
d) The plasmid mix from a) was gently thawed and centrifuged briefly. Immediately 2 

pl of Sequenase buffer was added and mixed well. After 5 minutes at room 

temperature to allow complete denaturation, the sample was briefly spun and stored 

on ice. 

Dilution of SeQuenase enzyme 

e) I pI Sequenase enzyme was diluted with 7 pI Sequenase dilution buffer to give a 
1: 8 dilution, mixed well, centrifuged briefly and transferred directly onto dry ice. 

f) 2 til of diluted enzyme from e) was added to the label reaction from c) mixed well 

and transferred directly onto ice. 

g) 5.5 til of this mixture from f) was added to the denatured plasmid DNA from step 
d) mixed well, spun briefly and stored on ice. This mixture was referred to as the 
'total mix'. 
h) The four ddNTP tubes from a) were placed on a pre-heated block at 37*C for I 

minute. Then 3.5 pI of total mix was added, the tubes capped to prevent evaporation 

and incubated for a further 5 minutes at 37*C. To each reaction were 4 P1 of stop 

solution (see appendix 3) was added and stored at -20*C until run on a 

polyacrylamide gel. 
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2.2.3 Polyacrylamide gel preparation 

Polyacrylamide gels were prepared using a modification of a standard protocol. Two 

glass plates were cleaned using isopropanol and then siliconised and left to dry in air 

with teflon spacers in place. A 6% polyacrylamide gel with urea was prepared: 

Acrylamide: bisacrylamide (40%, 19: 1) 22.5ml 

I OX TBE 15ml 

Urea 63g 

These were mixed and the volume adjusted to 150ml with H20. The acrylamide: urea 

mix was polymerised by addition of 150ýtl of 25% ammonium persulfate and 150ýd 

TEMED, and poured. Combs were inserted into the top of the gel and the gel allowed 
to set for approximately 3 hours. 

2.2.4 Polyacrylam*de gel electrophoresis 
The gel heated to 45"C. The lanes were cleared of bubbles by a fine-tipped Pastuer 

pipette and the loading combs replaced. 
Samples were removed from -20'C storage and placed on a heating block at 75"C for 

2 minutes before loading. For each lane of the gel, 3.5 pt of the terminated 

sequencing mix were placed in a well. Four reactions were run in parallel on the gel 
for each sequencing pimer in the order: GATC allowing the complete sequence of the 

DNA to be determined. Gels were run at 55-70 Watts, ensuring that the surface 
temperature of the gel did not rise above 50*C. Gels were run from 3 to 5 hours 

depending on the primer site in relation the region to be sequenced. 

After electrophoresis, the gel was removed from the tank and the plates soaked in cold 

water in a flat tank for 30 minutes. The top plate was then carefully removed and gels 
were absorbed onto 3mm Whatman paper, covered in clingfilm and then dried for 60 

minutes. The dried gels were subjected to autoradiography overnight and 
autoradiographs developed (Kodak X-Omat ). 

Sequences were determined directly from the autoradiograph and comparison with the 

consensus sequence of the CYP IIBI and CYP 11 B2 genes. 
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2.2.7 Automated Cycle Sequenc*ng 

Automated sequencing was performed using the ABI Prism BigDye Terminator Cycle 

Sequencing Reaction Kit (PE Applied Biosystems, Foster City, CA, USA) using a 
Perkin Elmer ABI Prism 377XL DNA Sequencer by Dr Wai Kwong Lee and Nick 

Brain (Blood Pressure Group). The technique is an adaptation of the dideoxy 

termination method of sequencing (Sanger et al. 1977). 

Sequencing reaction: 100-500ng of template DNA 

3.2 pmol of primer 
8pl Ready Reaction Mix (supplied in kit) 

20ý11 Total 

Reactions were overlaid with 40pl of mineral oil. The reaction was run over 25 cycles 

on a Perkin Elmer PCR block: 

Protocol: 96*C for 30s 

(Annealing Temp *C primer) for 25s 

60"C for 4min 

Prior to the gel run, sequencing products were precipitated in sodium acetate and 

ethanol (2.1.6c). To the pelleted DNA 6pl of 5: 1 deionised fon-narnide: 25mM EDTA 

with 50mg/ml blue dextran dye, pH8.0 was added, the sample vortexed and denatured 

at 95"C for 2min. 1.5pl of each sample was loaded onto a 5% polyacrylamide gel ( 36 

cm "well-to-read" distance, 0.2mm thick). Samples were electipohoresed in afield of 
1.68kV at 51*C in TBE buffer. At these settings the instrument resolves at 
100bp/hour. The ready reaction mix contains 2', 3' dideoxy terminators which are 
labelled with dichlor-rhodamine fluoresecent dyes. Each ddNTP flouresces at a 

particular wavelength between 532 and 620nm. As the labelled DNA fragments 

migarte down the gel, an argon-ion laser scans horizontally back and forth emmitting 
two wavelengths of 488nm (blue light) and 514.5nm (green light). This emmission 

excites the flourescent dye on each DNA fraginnent which flouresces, emmitting light 

at a particular wavelength. This is detected by the instrument and the data sent to a 
Power macintosh G3 computer and analysed using ABI Prism Sequencing analysis 

v3.0 (Perkin Elmer). 
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2.3. Screening of the CYP1 1B1 and CYPI IB2 genes for mutations in normal and 

hypertensive populations 

2.3.1 Blood samples 

Blood samples were taken using Vacutainer needles and bottles (Becton Dickson, 

Europe, Meylan, Cedex-France). 

2.3.2 Genomic DNA extraction from blood 

Genomic DNA was extracted from leukocytes using a variation of the method of 

Sambrook (Sambrook et al. 1989). Ten millilitres of EDTA-preserved whole blood 

(10ml) was placed in a Universal tube and 40ml of cell lysis mix (appendix 3) added. 

Tubes were left on ice for 10 minutes before centrifugation at 2800 rpm. for 10 

minutes at 4*C. The resulting pellet was resuspended in 3ml of nucleic lysis mix 

(appendix 3), 200pl 10% SDS and 100ýd proteinase K (10mg/ml) were added.. After 

overnight incubation at 370C incubation, I ml of 6M NaCl was added with vigorous 

shaking, then 5ml of phenol: chloroform: isoamyl alcohol (25: 24: 1), (PH aqueous 

phase >7.6) and the tubes centrifuged at 2800 rpm for 20 minutes at 4*C. The upper 

aqueous phase of the supernatant was then transferred to a fresh universal container 

and two volumes of ethanol added. DNA was then spooled out with a glass rod, 

washed in 70% ethanol, allowed to air dry and then suspended in 100ýtl TE buffer and 

stored at 4*C. 

2.3.3 PCR amplfficatoon of genornic DN 

Preparaflon of synthetic oligonucleotides 

Synthetic oligonucleotides which were HPLC-purified were designed from published 

sequences of CYPIIBI and CYPIIB2 and obtained from a commercial source 

(Oswel DNA Service, Southampton). Primers were generally between 20-24 base 

pairs and had approximately 50% guanine and cytosine nucleotides (G/C). The melting 

temperature TM of primers was around 65*C. The primer was also designed not to 

contain any hairpin structure. 

2.3.4 Polymerase chain reaction ampifficateon 

Amplification of genomic DNA exons for SSCP analysis was performed using the 

polymerase chain reaction (PCR). Genomic DNA extracted from the blood of 
individuals from both normotensive and hypertensive subjects were used as the 

reaction template. Reactions were carried out in sterile polypropylene Eppendorf 
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tubes. A standard protocol was used for amplification reactions of genomic DNA and 

oligonucleotide primers were altered according to the gene and exonic region. Before 

actual SSCP was performed, the PCR conditions were optimised using genomic 
DNA from 4 normal subjects. 

A IpI ( approximately 50ng/pl) aliquot of the genomic DNA to be amplified was 

placed in a sterile Eppendorf tube and then placed on ice. 

A reaction "pre-mix" was prepared for addition to the DNA prior to incubation: 

dH20: 15.75ýd 

dNTP's (ImM each): 2.5ptl of mixture of dATP, dCTP, dGTP, 
dTTP 

MgC12 (25mM): 0.75ýtl 

Sense primer: I pl (I Opmoles/pLI) 

Antisense primer: I ýLl (I Opmoles/gl) 

I OX Buffer: 2.5ýtl 

Taq Polymerase: 0.5ýtl (5U/ýLl) 

The total reaction volume was 25pl. Taq polymerase, a thermostable DNA 

polymerase, was used. Reaction mixtures were covered with 50 gI of mineral oil and 

placed in a thermal cycler. The heating block temperature was raised to 94*C for 3 

minutes for the initial reaction to allow complete denaturation of the DNA template to 

occur prior to cycling. 

I. Denaturation: 94*C for 60seconds 

2. Annealing: 65*C for 60seconds (dependent on primers) 

3. Extension: 72"C for 120seconds 

I to 3 were repeated for 35 cycles and followed by a final extension step of 72*C for 7 

minutes. 
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Different pairs of primers were used to amplify different exons of the two different 

genes. Details of these primers and exons are shown in tables 3 and 4 of appendix 2. 

For some exons it was not possible to obtain primers specific for each gene. When 

this was the case primers chosen amplified both CYP 11 BI and B2 exons. It was then 

necessary to separate CYPllBl from CYP11132 by subcloning into T-vector to 

facilitate sequencing (detailed later). 

Following completion of the PCR, samples were placed on ice until run on 1% 

agarose gels stained with ethidium bromide to verify the presence of the desired 

reaction products. 

Once the PCR reaction had been optimised, conditions for SSCP were set up. This 

technique is used to detect mutations in DNA sequences which have been amplified 

from genomic DNA by PCFL It uses a PCR product which, by incorporating a 

radioactively labelled substrate in the PCR reaction, becomes labelled itself. These 

PCR products are then run on a non-denaturing acrylamide gel. The electrophoretic 

mobility of single-stranded nucleic acids depends on size and sequence. Using single- 

stranded fragments of :9 250bp single base changes in the sequence can be detected as 

mobility shifts on the gel. 

2.3.7 SSCP PC 

PCR conditions were the same as those detalied in section 2.3.5. PCR products greater 

than 250bp were digested to generate fragments of size suitable for SSCP (see 2.3.8). 

Details of restriction enzymes used are shown in the table 3. In each run of SSCP a 

total of 50 (1pl) genomic DNA samples were run simultaneously. This consisted of 10 

samples chosen at random from normotensive participants in the Monica IV survey, a 

project surveying coronary risk in random samples of patients on the lists of Glasgow 

general practitioners and 40 samples from patients with essential hypertension. A 

reaction PCR mix was prepared adequate for 60 samples. To this mix, 2ýd of 

radioactive dCTP was added and the mixture carefully mixed behind perpsex. 
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Aliquots (24pl) of the radioactive mix was then added to each DNA sample and 

mixed. Reactions were covered with mineral oil and placed in a thermal cycler as 

described in 2.3.6. 

In some cases the PCR product amplified required digestion in order to obtain 
fragment sizes of 250 bases or smaller. A non-denaturing SSCP gel is more sensitive 
in detection of band shifts in fragments of this size. Details of the enzymes used are 

shown in table 3 appendix 2. 

An enzyme reaction mix was prepared and added directly to the completed PCR 

reaction: 

Enzyme 0.5111 

Buffer 2.51il 

Total 5.0ýtl 

Again a master mix sufficient for 60 reactions was prepared and 5ýtl aliquots pipetted 
into each completed PCR reaction, carefully mixed and incubated overnight at 37"C. 

A 5ýtl aliquot of the completed SSCP PCR reaction containing digested or undigested 
fragments was transferred to fresh tubes and I Opl of stop blue (see appendix 3) was 

added and carefully mixed. 101il of this mixture were loaded per well on a non- 
denaturing SSCP gel. 

2.3.10 Preparaflon of the non-denaturing gel for SSCP 

Gels for SSCP (30 x 40 cm) were prepared using a modification of a standard 

protocol. Two glass plates were cleaned using isopropanol and the top plate 

siliconised and left to dry in air with (0.2mm) teflon spacers in place. Unlike 

sequencing gels, there is no urea present in a non-denaturing gel. The mixture for a 

polyacrylamide 6% gel was prepared as follows: 
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Acrylamide: bisacrylamide (30%, 37.5: 1) 30ml 

I OX TBE 15ml 

Glycerol 7.5ml 

0.5M pH 8.0 EDTA 0.3ml 

dH20 97.2ml 

Total 150ml 

The resulting 6% polyacrylamide gel contained 5% glycerol. The acrylamide mix was 

polymerised by addition of 150 pI of 25% ammonium persulfate and 150 ýLl TEMED. 

2.3.11 SSCP gel electrophoresis 
Approximately IL of IX TBE was added to the apparatus tank. The lane combs were 

removed and the gel equilibrated at room temperature. 

Samples were removed from storage and placed on a heating block at 95*C for 5 

minutes before loading to denature. For each lane of the gel, 5PI of the stop blue PCR 

mix were placed in a well. Gels were run for approximately 4 to 5 hours at 30 Watts 

(1875V, l6mA) at room temperature, ensuring that the surface temperature of the gel 

did not rise above 50*C. 

2.3.12 Preparation and autoradfography of SSCP gels 

After completion of the electrophoresis, the gel was removed, dried and exposed to 

photographic film as before. 

The banding pattern of the individual samples were compared. Samples with a unique 
band shift were urther analysed by sequencing to detect base changes in the DNA 

sequence as described in 2.2 to 2.2.6. 

2.4.14 Sub-cloning into T-vector 

For some exons it was not possible to select primers which amplified selectively only 

CYP 11 BI or CYP II B2. In these instances exonic regions were amplified using non- 

selective primers which produced CYP 11 BI and CYP 11 B2 amplicons. The resulting 

PCR products were sub-cloned into T-vector (Promega) to facilitate sequencing. 
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2.4.15 T-vector ligation reaction 

0.6 ýtl PCR product (ze 25ng) 

1.0 ýil DNA ligase 

1.0 pl ligase buffer 

I ILI Vector 

6.4 pl dH20 

10 ýjl Total 

Incubated at 4*C for 16 hours. The ligation reaction was then transformed into JM 109 

cells as described in the manufacturers' protocol and plated onto LB-amp plates 

(2.1.3). 20 colonies expressing ampicillin resistance were picked off and 2ml cultures 

inoculated. These were grown overnight at 37"C and shaken at 225rpm in an orbital 

shaker. DNA was extracted as described in (2.1.5a). The resulting DNA was ran on a 
1% agarose gel to check quality and then sequenced directly following ethanol 

precipitation. 
More colonies were screened as necessary to decide whether a subject was 
homozygous or heterozygous for a particular polymorphism. 

2.4 Site-directed mutallenesis. 
Mutations identified in either CYPIIBI or CYPllB2, detected by SSCP, which 

altered the amino acid sequence of either Ilp-hydroxylase or aldosterone synthase 

were constructed in vitro using the cloned cDNAs for both genes: plasmids pCMV4- 
BI or pCMV4B2. Other constructs were also prepared which resulted in aldosterone 

synthase-specific residues being altered to the II P-hydroxylase equivalent in 

aldosterone synthase and in some cases vice versa in an attempt to identify residues 

which account for their differing activities. 
Site-directed mutagenesis was performed using the Quick-Change site-directed 

mutagenesis kit (Stratagene Ltd., Cambridge, UK). Mutation of nucleotides which 

altered the amino acid sequence was carried out by PCR using sense and antisense 

primers incorporating the desired mutation. The primers used are shown in table I 

and 2 and were purified by HPLC (Oswell DNA Service, University of Southampton). 
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2.4.1 The PCR reaction contained: 
5 ýtl reaction buffer (1 Ox) 

2pl plasmid DNA (pCMV4-B I or B2,20ng/pl) 

I pl (I 25ng) sense primer 
I pl (I 25ng) antisense primer 
I pl dNTP mix (I OmM) 

I pl pfu DNA polyinerase (2.5U/ýtl) 

4AH2, Q 

50al total. 

2.4.2 The PCR protocol consisted of : 

95*C for 30 secs initial denaturation step 

1.95"C for 30secs denaturation 

2.55'C for Imin annealing 
3.68"C for 14 min extension 

1,2 and 3 were repeated for 12 cycles. 

2.4.3 Digestion of parental strand 

Parental (non-mutated) supercoiled dsDNA template remaining in the PCR reaction 

was digested by addition of lpl of the restriction enzyme Dpn I for Ihour at 37"C. 

Dpn I specifically digests DNA which is methylated and of bacterial origin. Therefore 

the newly PCR synthesised strand remains intact. 

2.4.4 Transformation of bacterial cells with mutant plasmid 

Epicurion Coli XLI-Blue supercompetent cells (50ýtl) (Promega Corp. Southampton 

UK. ) were transformed with Iýd of the PCR reaction after DpnI digestion by heat 

shock at 42"C for 45 seconds and grown at 37*C in NZY+ broth for I hour. Details of 

medium ingredients are shown in appendix 3. The transformation reaction was plated 

onto LB/ ampicillin plates (100pg/ml) and incubated at 37*C for >16hours. Single 

white colonies were selected and innoculated into 2ml of LB/ ampicillin broth 

(100pg/ml). Plasmid DNA was prepared and the entire insert sequenced to ensure the 
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desired mutation had been incorporated as described in 2.2 to 2.2.6. Large scale 

plasmid DNA preparations were carried out by CsCI/Etbr purification centrifugation 

as described in 2.1.6a to 2.1.6c. 

2.5 Trans*ent transfection system 

2.5.1 COS cell maintenance 

The preparation of media and all cell handling procedures were performed in a type II 

vertical laminar flow tissue culture hood COS-7 cells (African Green Monkey kidney 

cells, European cell culture collection) were maintained in Dulbecco's modified 

Eagle's medium (DMEM) supplemented with 2mM L-glutamine. The culture medium 

was supplemented with 5% foetal calf serum, lOOU/mI pennicillin G, lOOPg/ml 

streptomycin and amphotericin B. The latter three reagents were supplemented as an 

antibiotic/antimycotic complex solution( Gibco BRL). Cells were either cultured in 

175CM2 culture flasks (containing 20ml medium) or 100mm. dishes (containing 10ml 

medium) and placed in a humidified atmosphere of 5% C02 and 95% air at 37C. 

2.5.2 Sub-culturing 

Cells were passaged upon reaching 90% confluence. Medium was aspirated and the 

cells washed twice with phosphate-buffered saline (PBS). Trypsin solution (0.25% 

trypsin and 0.02% EDTA in Dulbecco's buffered saline) was layered over the the cell 

monolayer and then aspirated off. Cells were incubated at 37*C for 5 minutes. Cells 

were suspended in fresh medium and pelleted at 10OOrpm for 5 minutes to remove 

traces of trypsin solution and resuspended in the appropriate growth medium at the 

required density. 

2.5.3 Storage and revival of frozen stocks 

Cells grown to 90% confluence were trypsinised and pelleted as before and then 

resuspended in media containing 10% dimethyl sulfoxide (DMSO). Aliquots (Iml) 

were transferred to 1.5ml cryovials which were placed in Nalgene cryo I*C freezing 

container. This was placed in a -70"C freezer for 24 hours to ensure gradual chilling 

of the cells (approximately PC/minute). These vials were then transferred to a liquid 

nitrogen freezer for long term storage. Cells were removed from liquid nitrogen 

source for use when required and quickly thawed by placing in a 37*C water bath. 

The cells were washed in DMEM, supplemented as before, to remove DMSO and 
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pelleted. The pellet was then resuspended in fresh growth medium and transferred to a 

small flask. Cells were incubated at 37"C, 5010 C02 

2.5.4 COS cell Transfection 

COS-7 cells are non-steroidogenic apart for some basal 11 P-HSD activity and are 

therefore suitable for transfection with aldosterone synthase and II P-hydroxylase 

genes. Transfections were carried out using DOTAP Liposomal Transfection Reagent 

(Boehringer Mannheim, Germany). The reagent and DNA form cationic DNA- 

liposome complexes which fuse with the cell membrane. Approximately 5x 107 cells 

at 80% confluence in 100mm dishes were pre-incubated for 3 hours with 8mls of 
Optimem I Reduced Serum Medium supplemented with 100 units /mI penicillin, 
O. Img/ml streptomycin and 0.025mg amphotericin-B (antibiotic-antimycotic solution 
from Sigma-Aldrich Company, Dorset, England, UK). A transfection mixture was 

then supplemented and the cells were exposed to this for 8 hours. The transfection 

mixture was prepared as follows sufficient for duplicate dishes: 

VIAL A VIAL B 

DNA (I jig/[tl) (A 

Adx, P-gal Test 20mM HEPES DOTAP 20mM HEPES 

10 20 20 150 150 50 

Vial A was mixed with that of vial B and incubated at room temperature for 15 

minutes. DOTAP was supplemented accordingly so that the DOTAPONA ratio was 
3: 1.200pl of the mixture was carefully poured over the cells per 100mm dish and 

evenly distributed. 

The test plasmids were: 

wild-type plasmids: pCMV4-B I or pCMV4-B2 
CYPI IB2 mutants: B2-Q43R, B2-DI47E, B2-1248T, B2-K357N or 

B2-T493M 

CYPI. IBI, mutants: BI-HI07Y, Bl-E147D or BI-LI86V. 

Control transfections were also performed 
1. lOpg of pSV-P-gaI 
2.1 Opg pSV-P-gaI plus 5[tg of pCD-Adx 
3. lOpg pSV-P-gal, 5pg of pCD-Adx plus lOpg plasmid vehicle. 
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For every pg of DNA transfected, 3 ýd of DOTAP was used and the total volume was 

made up to 200 pI with 20mM HEPES buffer per dish. Control transfections were 

also performed in duplicate. 200 Id of transfection mixture was used per IOOMM 

tissue culture dish. Also a negative control was also performed where cells were not 

exposed to any transfection mixture. After 24 hours, the cell medium was replaced 

with DMEM and incubated for 48 hours to allow protein expression. 

2.5.5 Steroid Incubation 

After 48 hours, cells were permeabilised with 10% DMSO in PBS for 2 minutes at 

room temperature and then washed twice with PBS. Transfected cells were then 

incubated with DMEM supplemented with 5pM 11 -DOC plus [3H] 11 -DOC (10 000 

cpm, 36 Ci/mmol) or 51iM I I-deoxycortisol plus [3H] I 1-deoxycortisol (10 000 cpm, 

50 Ci/mmol) for a further 48 hours. When more accurate quantification of steroids 

was required, non-tritiated steroids were incubated and the resultant steroid products 

analysed by radioimmonoassay. All transfections were performed in duplicate and 

repeated 4 times. Medium was retained for steroid analysis and cell extracts prepared 

for protein measurement and P-galactosidase activity. RNA was prepared for semi- 

quantative RT-PCR. 

2.6 Measurement of transfection efficiency 

Protein and 0-galactosidase measurements 
COS-7 cell extracts were prepared post-transfection for measurements of protein 

content (Biorad Laboratories Ltd., Hertfordshire) and P-galactosidase activity 
(Promega Corp. Southampton UK. ) following the manufacturers' protocols. 
Transfection efficiency was determined using these data and steroid results corrected 

as necessary. 
2.6.1 Preparation of cell lysates 

Cell lysates were prepared using Reporter Lysis Buffer (Promega). Steroid-containing 

medium was removed and stored for analysis and then cells were washed twice with 
PBS and any residual traces of PBS removed. Iml of Ix Reporter lysis buffer was 

added per 100mrn dish to ensure complete coverage of the cell surface. Dishes were 
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incubated at room temperature for 15 minutes with gentle rocking of the dishes 

several times during the incubation. The cells were scraped off using a 'rubber 

policeman', transferred to a pre-chilled 1.5ml Eppendorf tube and placed on ice. 

Tubes were then vortexed for 10-15 seconds and centrifuged at full speed in a 

microcentrifuge for 2 minutes at 41C. The supernatant was then assayed directly for P- 

galactosidase activity. For the protein assay, the whole cell lysate was used to 

determine the protein concentration and this was retained at -70"C until use. 

2.6.2 Promega 0-galactosidase au-U 

This proceedure was carried out according to the manufacturer's protocols. 
Galactosidase activity was determined in cell extracts transfected with the pSV-p-gal 

reporter gene. The standard assay was used where an equal volume of standards 
(150ýil: 1-6 milli units purified P-galactosidase enzyme) in duplicate or appropriately 
diluted samples (150gl) were added to an equal volume of 2x assay buffer which 

contains the substrate ONPG (o-nitrophenyl-p-D-galactopyranoside). Samples were 

mixed by vortexing and incubated at 37C for 30 minutes. During this time, a faint 

yellow colour appears as the P-galactosidase hydrolyses the colourless substrate to o- 

nitrophenol which is yellow. The reactions were terminated by addition of 500ptl of 
IM sodium bicarbonate and vortexed. The absorbance was read at 420nm in a 

spectrophotometer. P-Galactoisdase concentration was determined using the standard 

curve. 
2.6.3 Worad Protein Assa 

Bovine serum albumin standard solutions (100pl: 200-1400ýtg/nil) were prepared in 

duplicate. Biorad reagent concentrate was diluted I in 5 and filtered through Whatman 

No I filter paper. Diluted dye reagent (5ml) was added to standards and 100ýfl of 

appropriately diluted samples to be analysed, gently vortexed and incubated at room 
temperature for 5-30 minutes. Absorption was measured at 595run. Protein 

concentration was determined using the standard curve. 

2.7. Semi-quantitative RT-PC 

A semi-quantitative PCR system was used to detect noticeable differences in the 

transcriptional levels of wild-type and mutant cDNAs. Using this method PCR 

=plification of the CYP 11 BI and B2 cDNAs was carried out and and standardised 
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against the ubiquitously expressed GAPDH (Glyceraldehyde 3-phosphate 

dehydrogenase, a key enzyme in glycolysis) gene. In tissues or cells of the same 

origin the level of GAPDH transcription should be the same, providing similar levels 

of RNA are utilised. For this technique, RNA is isolated and any residual DNA is 

digested with Dnase. mRNA is then selected using oligo dT primers which select the 

poly adenylation site of the mRNA. The mRNA is reverse transcribed to produce 

cDNA and the desired region amplified by PCR. Primers were chosen which 

amplified a region of the GAPDH mRNA or which amplified a region of the test gene 

Le Bl, B2 or mutants. 
2.7.1 RNA isolation 

RNAzol B (Biogenesis, Poole, England, UK. ) was used to isolate RNA. COS-7 cells 

were washed twice with PBS and then Iml of RNAzol B added per flask/dish. Using a 

'rubber policeman', the resulting mixture was transferred to a sterile, prechilled 1.5ml 

Eppendorf tube and placed on ice. 100 pl of chloroform were added per tube, 

vigorously shaken to mix and placed on ice for a further 5 minutes. The tubes were 

then spun at 4"C for 5 minutes at 3200rpm. The top layer was retained and transfered 

to a fresh tube containing an equal volume of isopropanol (500 ýtl). This was gently 

mixed and left on ice for 15 minutes to precipitate the RNA. The RNA pellet was 

obtained by microcentrifagation for 15 minutes at 4"C at 100OOrpm. The supernatant 

was removed and the pellet was washed with 70% ethanol, gently resuspended and 

once again microcentrifuged for 15 minutes at 41C at I 00OOrpm. The pellet was left to 

air-dry on ice and then resuspended by gentle trituring in 100 P1 of cold (diethyl 

pyrocarbonate) DEPC H20, which prevents RNA degradation. The RNA was stored 

at -70"C. 

2.7.2 Agarose Gel Electrophoresis of RNA 

A 1% (w/v) agarose gel containing 2ýtl of ethidium bromide was prepared in 100mls 

Ix TAE. The gel was allowed to set for Ihour before removing the combs. Gels were 

placed in standard electrophoresis tanks with 100ml of TAE buffer and connected to 

a constant power source. A mixture of 2gl of RNA solution, 3gl of DEPC H20 and 

5gl of 6x loading dye was added to per well with 6gl of X HaeIII digest as a marker in 

one well to ensure the gel was runing correctly. The gel was run at 5V/cm (-55V per 
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gel) for about 45 minutes and then visualised using a UV illuminator. Distinct rRNA 

bands were visualised. 

Any contaminating DNA was digested with RNase free DNase for 1 hour at 37"C as 

follows. 

MgC12 (25mmol/L) 20 ýtl 

lox Mg 2+ free PCR buffer 10 PI 

RQ1 DNase (IU/pl) 20 gl 

RNA (I Opg) 50 jil 

The reaction was terminated by addition of an equal volume of phenol/chloroform. 

The tube was then vortexed and spun at 14 000 rpm at 4*C for 5 mins. The aqueous 

top layer was removed and an equal volume of chloroform added. This was spun at 

14 000 rpm at 4"C for 5 mins, the top layer removed and 3 volumes of 100% ethanol 

and 0.1 volumes of DEPC treated 3M sodium acetate were added. The RNA was 

precipitated at -20'C for 30 mins and spun at 14 000 rpm at 4C for 30mins. The 

pellet was washed in 70% ethanol and air dried for 15 mins. The pellet was 

resuspended in I Oul of DEPC water and quantified. 

2.7.3 Reverse Transcription 

The following components were placed in a Perkin-Elmer tube. All solutions were 

kept on ice throughout: 

RNA (I pg/gl) LOPI 

M902 (25pM) 4. Opl 

I OX PCR Buffer Il 2. Opl 

dATP (lOgM) 2. Ogl 

dCT? (I OpM) 2. Opl 

dGTP (I OpM) 2.0ýtl 
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dTTP (lOgM) 2. Ogl 

RNase inhibitor (20U/jil) LOPLI 

MuLV- reverse transcriptase (5 OU/pl) 1. Ogl 

Oligo-(dT)16 primers (25pM) I. Ogl 

DEPC-treated water 2. Opl 

Total 20. Opl 

Control reactions were also constructed omitting either reverse transcriptase (R. T. ) or 
RNA (water blank). In all the above cases, alterations in the various amounts of 

components that were added were compensated for by altering the volume of DEPC- 

H20, such that a final volume of 20 pI was achieved. Each reaction was overlayed 

with a drop of mineral oil. 

The reactions were then incubated in a Perkin-Elmer thermal cycler as follows: 

15mins 4211C 

5mins 990C 

5mins 50C 

Samples were stored at -20*C until required for PCR. 

2.7.4 PCR of first strand eDN 
The completed reaction product from 2.7.3 was prepared for PCR by adding the 
following components to Perkin Elmer tubes: Primers used amplified GAPDH or 
CYP IIBI or CYP II B2 (see table 5 appendix 2). The number of cycles carried out 
for CYPIIBI/B2 and GAPDH was 30 and 34 respectively, which are in the linear 

part of the amplification curve (see Figure 3.6a, chapter3). 
Components Volume 

R. T. reaction product 20.0ýtl 

1 OX PCR buffer II 8.0ýd 

Primers (sense) (1.5pmoles/ýtl) LOPI 

Primers (antisense) (I. Spmoles/pl) 1.0ý11 

M902 (25pM) 4. Opl 
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AmpliTaq DNA polyinerase 0.5ýtl 

Water 65.5gl 

Total 100.0[d 

The tubes were centrifuged briefly in a microcentrifuge and then placed in a Perkin 

Elmer cycle. The optimised programs were as follows: 

CYPI I Bl/B2 

94*C for 3 min 

94'C for I min 

56"C for lmin 

72*C for I min 

72"C for 7min 

30 cycles 

GAPDH 

94"C for 3 min 

94"C for 45 secs 
60"C for 45 secs 
72*C for 2 mins 

>34 
cycles 

72"C for 7min 

PCR reactions were run on 1% agarose gel where lOptl of loading dye was added to 

each sample, then 30pl was loaded on the agarose gel. 6ýtl of HaeIII OX174 digest 

and/or HindHI X digest were added as markers. The gel was run at 80V for a length of 

time appropriate to the amplified fragment size and then visualised under UV light. 

The intensity of the GAPDH and CYPllBl/B2 bands were measured by 

phosphorimaging analysis. The ratio of the CYP IIBI /B2: GAPDH was calculated for 

each RNA sample. Ratios for RNA samples from wild-type plasmid transfected cells 

were compared to mutants. 

2.8 Enzyme activity and steroid production 

This was assessed 48 hours post-transfection. by measuring the conversion of the 

substrate 3H-1 1 -DOC to B, 18-OH-B, aldosterone or 18-OH-deoxycorticosterone (18- 

OH-DOC). In some experiments, the conversion of 3H 
-11-deoxycortisol to cortisol 

was also measured. Alternatively, non-tritiated products were measured by 

radioimmunoassays. 
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2.8.1 Steroid extraction 
Steroids were extracted from Iml aliquots of culture medium with 5 volumes of 

freshly distilled methylene chloride. Phases were separated by centrifugation at 

1500g at room temperature for 5 min and the aqueous layer aspirated and discarded. 

The organic phase was washed with dH20 Oml) to remove the residual medium. 

2.8.2 Measurement of tritiated products 
For measurement of tritiated products unlabelled ll-DOC, B, 18-OH-B and 

a1dosterone (3ýLg) were added as carriers to each organic phase, which was evaporated 

to dryness under a stream of N2 at 37"C. The residues were resuspended in 

chloroform: methanol (2: 1,20ýtl) and applied to glass-backed silica F254-coated TLC 

plates. Standards (3pg) were also applied. The plates were developed in methylene 

chloride-methanol-water (300: 20: 1). Steroids were located under UV light and 3H 

content measured by liquid scintillation spectrometry. These results were used to 

construct ratios of product to substrate (e. g. B: DOC or F: S, 18-OHB: B, Aldo: 18- 

OHB) which are indices of the individual enzyme activities II P-hydroxylation, 18- 

hydroxylation or 18-oxidation respectively. 
2.8.3 Radioimmunoassay. 

Concentrations of steroids were measured by radioimmunoassay after extraction and 

partial purification by paper chromatography (Belkien et al. 1980, Fraser et al. 1975). 

Iml samples to which 3 H-steroid standards had been added were extracted with 
freshly distilled dichloromethane and the extract evaporated to dryness under nitrogen 

at 30*C. The residues were chromatographed on paper (Whatman 2) using a volatile 

system (appendix 3) and the steroid regions located using isotope scanning and eluted 
in methanol. Aliquots of corticosterone and 18-hydroxycorticosterone were assayed 

using 3 H-steroids and antisera raised in rabbits to steroid-3-carboxymethyloxine 

conjugated to bovine serum albumin. Bound and free steroid were separated using the 

dextran-coated charcoal method (Fraser et al 1975). Measurement of aliquots of 

aldosterone were performed using a solid phase (coated tube) radioimmunoassay 
(Diagnostic products (UK) Ltd). The coefficient of variation is <10.4% and the limit 

of detection Ing/dL. Cortisol measurements were also made using a commercially 
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available kit, using a coated tube radioimmunoassay (Diagnostic products (UK) Ltd). 

The coefficient of variation is <6.4% and the limit of detection is 0.2ýtg/dL. 

ibiti 

Cells used were parental V79 cells, stably transfected CYP IIB1 or CYP 11 B2 V79 

cells. These cells are Chinese hamster lung cell-lines which express the necessary 

electron transport proteins required by cytochrome P-450 enzymes. 

2.9.2 Cell culture conditions 
V79 cells were grown, handled and maintained in the same manner as COS-7 cells as 

described in 2.5 to 2.5.2. 

2.9.3 Subculturing cell lines 

A 175cm. 2 tissue culture flask containing cells at confluence was submitted to the 

following protocol: the culture medium was removed and cells washed with 10ml 

phosphate buffered saline (PBS) as a prelude to washing with 5ml Ix trypsin-EDTA 

solution (Gibco, Life Technologies, Paisley, Scotland, UK). The cells were incubated 

at room temperature for 2min and then resuspended in 10ml of cell culture medium. 
The cell suspension was then transferred into a sterile universal and spun for 5min at 

37*C at 10OOrpm. The supernatant was removed and the pellet of cells resuspended in 

90ml of cell culture medium. Of this volume, 20ml was transferred to a fresh large 

flask as the continuing flask (producing a splitting ratio of 1: 4 approx). Of the 

remaining suspension, 4ml aliquots were transferred per well into 6-well plates. In 

order to provide adequate wells for a single experiment, 2 large flasks were required 

and treated in exactly the same way as described above. Following 24 hours culture, 

cells in the 6-well plates were used in inhibitor studies. 

2.9.4 Steroid incubation in presence and absence of potential steroid Inhibitors 

Steriod Substrate incubation 

A 1mg/ml working concentration of DOC, S or 18-OHDOC was prepared in pure 

ethanol. For experiments, concentrations ranging from 10,3 jiM to I OýM were 

prepared in tissue culture medium. 
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Steroid effectors 
lmg/mI working solutions in ethanol were prepared of the following potential 

inhibitors: 18-OHDOC, 18-OXOF and 18-OHF. As a starting point, 10ýLM of 

inhibitor was used. This was added to medium containing either a fixed 

concentration of IpM substrate or substrate concentrations ranging from 10 "3 PM to 

IpM of substrates DOC or S. This was performed for both substrates used and 

concentration ranges were set up in duplicate. One set was prepared in the presence of 

inhibitor. 

2.9.4 Steroid incubation 

Each concentration point, in the presence and absence of inhibitor, was set up in 

quadruplicate using 4 wells of a 6-well plate. 4ml of each of the steroid medium 

mixtures were incubated per well for a period of 24 hours (determined by time-course 

experiments) and at the end of this time-point, medium was transferred to a 5ml tube, 

capped and stored at -20"C for steroid analysis. Cell lysates were prepared for protein 

determination. 

2.9.5 Preparation of cell lysates 

Following removal of steroid medium, cells were washed twice with PBS. The cells 

were then scraped off the surface of the well and resuspended in Iml of PBS and 

transferred to pre-chilled 1.5ml Eppendorf tubes. The resultant cell lysate was stored 

on ice, vortexed at full speed for 10secs and then stored at -20*C until protein 

concentration was determined. 

Determination of protein concentration 
Protein concentration of cell lysates was determined using Biorad protein Assay kit as 
described in section 2.6.3. 

2.9.6 Radioimmunoassay 

Steroids were extracted, partially purified by paper chromatography and measured by 

radioimmunoassay as described in section 2.8.3. Steroid measurements were 

corrected for protein concentration. 
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In the zona fasciculata (ZF) of the adrenal cortex, II P-hydroxylase is regulated by 

ACTH and catalyses the conversion of 11-deoxycorticosterone (DOC), a weak 

mineralocorticoid, to corticosterone (B), 18-OHB, 18-OH-DOC or 19-OH-DOC. It 

also catalyses the conversion of 11-deoxycortisol (S) to cortisol (F). In the zona 

glomerulosa (ZG), aldosterone synthase is controlled by angiotensin II and potassium 

(see section 1.5). It catalyses the initial IIP hydroxylation to convert DOC to B, and 

is then able to perform the necessary 18-hydroxylation and dehydration steps to 

produce 18-hydroxycorticosterone and aldosterone respectively. It is clear that the 

relative efficiency of 11 P- and 18-hydroxylation will strongly influence the ratio of 

glucocorticoid: mineralocorticoid secreted by the adrenal cortex. 

The genes encoding Ilp-hydroxylase (CYPIlBI) and aldosterone synthase 

(CYPlIB2) lie in tandem on chromosome 8 in man. They share 93% nucleotide 

sequence identity but have quite different functional properties (see 1.6) which have 

been outlined above. To investigate the molecular basis of the functional differences 

between the enzymes and to determine the effects of small genetic changes on steroid 

production, aldosterone synthase-specific amino acids (Glutamine Q43, Aspartate 

D147, Isoleucine 1248 and Threonine T493) were substituted for Ilp-hydroxylase 

specific-residues (Arginine R43, Glutamate E147, Threonine T248 and Methionine 

M493) respectively within aldosterone synthase. Mutants which caused a significant 

alteration in DOC conversion were further investigated by constructing the analogous 

mutation Le substitution of II P-hydroxylase specific residues for the aldosterone 

synthase specific residues within Ilp-hydroxylase (Glutarnate E147 to Aspartate 

D147). 

3.2 Methods (see section 2) 

Mutants were prepared using site directed mutagenesis (section 2.4). Large scale 

preparations of mutant plasmids, wild-type plasmids pCMV4-BI and B2, pSV-0-gal 
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and pCD-Adx were made (section 2.1.6a. ). These were analysed by restriction digests 

(section 2.1.8) and mutant plasmids were sequenced (section 2.2). Transient 

transfection in vitro was performed in COS-7 cells (section 2.5). 5ýtM 3H or non- 
tritiated substrates were added to the medium of transfected cells and incubated for a 

period of 48 hours. (section 2.5.5). Steroid conversion rate was measured by liquid 

scintillation and production rate by radioimmunoassay (section 2.8). Cell lysates were 

prepared (section 2.6.1) and protein (section 2.6.3) and P-galactosidase assays 

performed (section 2.6.2) . RNA was prepared from cells for semi-quantitative RT- 

PCR (2.7). Where a mutation showed a significant alteration in DOC conversion rate, 
kinetic studies were performed. This was as described above except that varying 

concentrations of substrate, ranging from 0.01 to 15ýLM, were used. 

3.3 RESULTS 

3.3.1 Restriction digests of plasmids 
Plasmid DNA was digested using restriction enzymes to identify and assess its 

quality. Spe I was used to digest both pCMV4-B1 and B2 plasmids. This enzyme 
hydrolyses a unique site in pCMV4-B1 but cuts pCMV4-B2 at two sites, therefore 

clearly distinguishing the two plasmids. Double digests were used for pCD-Adx and 

pSV-P-gal which were Not I/ Bgl II and BamHI/HindIIl respectively. Spe I digests are 
shown in figure Ma. 

3.3.2. Conflrmation of mutant sequences 
The incorporation of the mutations was verified by sequencing. Codon 43 in exon I 

was altered from CAG to CGG, thus changing a glutamine to an arginine residue. 
Codon 147 in exon 3 was altered from GAT to a GAA, thus changing an aspartate to a 
glutamate residue. Codon 248 in exon 4 was altered from ATC to ACC, thus coding 
an isoleucine instead of threonine residue. Codon 493 in exon 9 was altered from 
ACG to ATG, thus coding a threonine instead of methionine. Codon 147 of 
CYP IIB1 cDNA was altered from GAA to GAT thus changing a glutaxnate to an 
aspartate. Sequence data are shown in flgures 3.3b, 3.3c and 3.3d. 
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Figure 3.3a Spe I digests of wild-type plasmids pCMV4-BI 
and pCMV4-B2 
A I% agarose gel showing Spe-I digests of pCMV4-B I and 
pCMV4-B2. Uncut plasmids are shown in lanes 3 and 4 
respectively with digests in lanes 4 and 5. Lane I shows 
DNA I kb ladder and lane 2 shows k DNA Hae III digest as a 
marker. Spe-I linearises pCMV4-B I to generate a 6.3Kb band. 
Spe-1 cuts pCMV4-B2 twice to generate two fragments of 4.2 
and 2.1 Kb approximately. 
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Figure 3.3b. 
Sequence of wild-type plasmid pCMV4-B2 and mutant 
constructs B2-Q43R and 132-T493M 
A portion of nucleotide sequence of exon I from wild-type 
plasmid pCMV4-B2 and from mutant B2-Q43R are shown in 
the top panel. In the panel directly above, a portion of 
nucleotide sequence of exon 9 from the wild-type plasmid 
pCMV4-B2 and from mutant 132-T493M are shown. Arrows 
indicate where the mutations have been incorporated at codons 
43 and 493. 
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Figure 3.3c. 

constructs tsz-v 1,4 /L ang tsz-iz, 4zi i 
A portion of nucleotide sequence of exon 3 from wild-type 
plasmid pCMV4-B2 and from mutant 132-13147E are shown in the 
top panel. In the panel directly above, a portion of nucleotide 
sequence of exon 4 from the wild-type plasmid pCMV4-B2 and 
from mutant 132-1248T are shown. Arrows indicate where the 
mutations have been incorporated at codons 147 and 248. 
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CYP1 I BI Exon 3-147 

GATCGATC 

Figure 3.3d. 
Sequence of wild-type plasmid pCMV4-BI and mutant 
construct Bl-E147D 
A portion of nucleotide sequence of exon 3 from wild-type 
plasmid pCMV4-BI and from mutant BI-EI47D are shown. An 
arrow indicates where the mutation has been incorporated at 
codon 147. 
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Figure 3.3e. 
Th effect of increasing transfected pSV-D-gal DNA on cell 
lysate P: galactosidase activity expressed as millo-units (m-units) 
per mg of protein. COS-7 cells were transfected with 10ýtg of 
pCMV4 vehicle or increasing doses of pSV-p-gal. P-galactosidase 
activity was perfonned on cell lysates. 

134 



14- 

lo. - 

6-- 

2 

0 

-ve control 

Eign-MI'lE 
Effect of various pCD-Adx co centration in transfected cells on 
substrate conversion. 
The effect on steroid conversion of I I-deoxycortisol (S) of varying 
concentrations of pCD-Adx in cells transfected with wild-type 11 P- 
hydroxylase. COS-7 cells transfected with either 10ýtg of pCMV4 
vehicle (-ve control) or increasing doses of pCD-Adx and 10ýtg of 
pSV-0-gal were incubated with 5pM 3H S for 48 hours. 3H-steroids 
from the medium were extracted and separated by TLC and analysed 
in duplicate by liquid scintillation counting. Results are expressed as 
ratio of product to substrate (cortisol) F: S which is an index of 11 
hydroxylase activity. 
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F*gure 3.3g. 
Effect of Optimem -I on transfection efficiency. 
Incubation of COS-7 cells with Optimem-I prior to, and for the 
duration of transfection increases P-galactosidase activity in cell 
lysates. COS-7 cells were transfected with lOpg of pCMV4 vehicle 
or 10ýLg of pSV-P-gal. P-galactosidase activity was performed on 
cell lysates. 

136 

10ýtg lopg 1 OýLg 1 Oýtg 

pCW4 P-gal 
pCW4 

P-gal 

vehicle vehicle 



3.3.3 Transient transfection system 

Optimal conditions for transfcctions were assessed. Varying doses of pSV-P-gal and 

pCD-Adx were transfected to determine the lowest dose which produced the 

maximum response (Figures Me and 3.3f). Increasing the dose of pSV-P-gal 

transfected increased the cell lysate P-galactosidase activity. A dose of 10ýtg was 

chosen for all subsequent transfections as this was the lowest dose providing 

maximum activity. Increasing doses of pCD-Adx increased in vitro enzyme activity, 

as determined by steroid conversion, which reached a plateau at concentrations greater 

than Spg. This dose was chosen as it produced the maximum steroid conversion at the 

lowest dose of pCD-Adx. The effect of incubating cells with Optimern I, a form of 

starvation medium which induces cells to enter simultaneously the same phase of the 

cell-cycle, prior to and for the duration of transfection on transfection efficiency of P- 

galactosidase was also assessed (Figure 3.3g). Transfection efficiency values were 

calculated by converting protein and P-galactosidase concentrations of cell lysates to 

milli-units (m-units) P-galactosidase per mg of protein. These values were then 

converted to percentages of the maximum pSV-P-gal control transfection. Use of 

Optimem I clearly increases transfection efficiency by 20%. 

3.4.1 Steroid conversion ratios of aldosterone synthase mutants 

The results from 3 H-DOC steroid incubations are expressed as ratios of product to 

substrate, which are indices of the individual enzymatic activities of aldosterone 

synthase. The B: DOC, 18-OH-B: B and aldosterone: 18-OH-DOC ratios represent 
110-hydroxylase, 18-hydroxylase and 18-oxidase activities respectively. The 

aldosterone :B ratio is indicative of combined 18-hydroxylase and 18-oxidase 

activities. All steroid results were corrected for transfection efficiency as necessary. 
The ratios of product: substrate for the wild type aldosterone synthase and the four 

mutants are shown in figures 3.4a. and 3.4b. Compared to the wild-type aldosterone 

synthase, mutant B2-DI47E significantly increased the B: DOC ratio from 0.5 ± 0.1 to 

3±0.4 (P<0.001, n--8), suggesting that II P-hydroxylase function was increased. B2- 

D147E also caused a small but nonetheless significant decrease in the 18-OH-B: B 

ratio from I±0.1 to 0.7 ± 0.1 (p<0.05). There was no significant 
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Figure 3.4a, 

Mutants B2-Q43R and B2-T493M conversion ratios are shown 
compared to wild-type aldosterone synthase (CYPlIB2). COS-7 cells 
transfected with 10[ig of pCMV4 expression vector, 5ýig of pCD-Adx 
and I 0ýtg of pSV-P-gal were incubated with 5ýtM 3H DOC for 48 hours. 
3H steroids from the medium were extracted and separated by TLC and 
analysed in duplicate by liquid scintillation counting. Results are 
expressed as ratios of product to substrate B: DOC, 18-OHB: B, Aldo: 18- 
OHB which are indices of II P-hydroxylase , 18-hydroxylase and 18- 
oxidase activities. The Aldo: B ratio represents overall I 8-function. 
Results are mean ± SEM from four separate transfections, each done in 
duplicate. Statistical analysis was done by the Mann-Whitney U test. 
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Mutants 132-DI47E and 132-1248T conversion ratios are shown 
compared to wild-type aldosterone synthase (CYP11132). COS-7 cells 
transfected with IOVtg of pCMV4 expression vector, 5pg of pCD-Adx 
and lOpg of pSV-P-gal were incubated with 5 pM 3H DOC for 48 hours. 
3H steroids from the medium were extracted and separated by TLC and 
analysed in duplicate by liquid scintillation counting. Results are 
expressed as ratios of product to substrate B: DOC, 18-OHB: B, Aldo: 18- 
OHB which are indices of II P-hydroxylase, 18-hydroxylase and 18- 
oxidase activities. The Aldo: B ratio represents overall I 8-function. 
Results are mean ± SEM from four separate transfections, each done in 
duplicate. Statistical analysis was done by the Mann-Whitney U test. 
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difference in the ratio of aldosterone: I 8-OH-B or aldosterone: B between the wild-type 

aldosterone synthase and B2-DI47E, B2-Q43R, B24248T and B2-T493M had no 

significant effect on steroid production compared to wild-type aldosterone synthase. 

3.4.2. Comparison of aldosterone synthase mutant B2-D147E with wild JYJ& 

IM-hydroxylase 

As Ilp-hydroxylation was increased, the effect of B2-DI47E on the conversion of 

DOC to B with wild-type II P-hydroxylase was compared. Figure 3.4c. shows that, 

as expected, the B: DOC ratio for the wild-type II P-hydroxylase was high: 6.2 ± 0.4 

compared to wild-type aldosterone synthase which was 0.5 ± 0.05 (p<0.001). The B: 

DOC ratio for B2-D I 47E was 3.0 ± 0.4 (n--8) suggesting that the II P-hydroxylase 

fimction of the mutant is not as cfficient as that of wild type II P-hydroxylase. 

3.4.3 Effect of B2-DI47E on overall steroid production 

The previous results show the effects of the mutants on the individual enzymatic 
functions of aldosterone synthase. The effects, in terms of overall steroid production, 

are shown in f1gure 3.4d. These were calculated as a percentage of total counts in 

each lml sample. Compared to wild-type aldosterone synthase, mutant B2-DI47E 

increased B production 85%, 18-OH-B by 50% and aldosterone by 25%. The 

production of 18-OH-DOC, which can be synthesised from DOC by 11 P-hydroxylase, 

was also measured. However, its production was not significantly affected by B2- 

D147E. 

3.4.4. Conversion of 11-deoxycorfisol to cortisol by a1dosterone synthase mutan 

B2-D147E 

As B2-D 147E causes an increase in II P-hydroxylation, its effect on the conversion of 

11-deoxycortisol, the principal substrate of llp-hydroxylase, to cortisol was also 

studied. Figure 3.4e. shows the effect of B2-Dl47E on the F: S ratio. The ratio of 

wild type llp-hydroxylase was 9.6 ± 1.2 compared to 0.3 ± 0.02 for wild-type 

aldosterone synthase and 0.3 ± 0.03 for B2-D 147E. (n--6; P<0.00 1). 
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Figure 3.5a. 
B: DOC ratio of II ý-hvdroxvlase mutant BI-EI47D 
Comparison of B: DOC ratio of II P-hydroxylase mutant Bl-El47D with 
wild-type I lp-hydroxylase (CYPI 1131). COS-7 cells transfected with 
I Oýig of pCMV4 expression vector, 5ýLg of pCD-Adx and I Opig of pSV- 
P-gal were incubated with 5[tM 3H-DOC for 48 hours. 3H-steroids from 
the medium were extracted and separated by TLC and analysed in 
duplicate by liquid scintillation counting. Results are expressed as ratio 
of product to substrate B: DOC, which is an index of II P-hydroxylase 
activity. Results are mean ± SEM from four separate transfections, each 
done in duplicate. Statistical analysis was done by Mann-Whitney-U 
test. 
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Figure 3.4d. 
Effect of aldosterone synthase mutant B2-D147E on overall 
steroid production compared to wild-type a1dosterone synthase 
(CYP11B2). 
COS-7 cells transfected with 10ýtg of pCMV4 expression vector, Spg 
of pCD-Adx and lOpg of pSV-P-gal were incubated with 5pM 3H 
DOCfor 48 hours. 3H-steroids from the medium were extracted and 
separated by TLC and analysed in duplicate by liquid scintillation 
counting. Results are expressed a percentage of total counts in I ml of 
steroid medim. Results are mean ± SEM from four separate 
transfections, each done in duplicate. 
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Figure 3.4e. 
F; S ratios of a1dosterone synthase mutants B2-DI47E and B2-1248T. 
The F: S ratios of 132-13147E and 1248Tare shown compared to wild-type 
a1dosterone synthase (CYP I 1132) wi Id-type IIP -hydroxylase(CYP IIB I). 
COS-7 cells transfected with IOVg of pCMV4 expression vector, 5vig of 
pCD-Adx and lOpg of pSV-P-gal were incubated with 5pM 3H S for 48 
hours . 

3H-steroids from the medium were extracted and separated by TLC 
and analysed in duplicate by liquid scintillation counting. Results are 
expressed as ratio of product to substrate (cortisol) F: S which is an index 
of II P-hydroxylase activity. Results are mean ± SEM from four separate 
transfections, each done in duplicate. Statistical analysis was done by the 
Mann-Whitney U test. 
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3.5.1 Effect of 11 5-hydroxylase mutant BI-E147D on B: DOC steroid ratio 

The Ilp-hydroxylase mutant BI-EI47D B: DOC ratio was significantly decreased 

compared to wild-type 11 P-hydroxylase from 9.5 ± 2.7 to 2.1 ±1.3 (n=6) (P<0.000 1). 

Figure 3.5a.. shows that, as expected, the B: DOC ratio for the wild-type 110- 

hydroxylase was high (9.5 12.7) compared to wild-type aldosterone synthase (0.6 ± 

0.08; p<0.001). This suggests that the BI-EI47D mutant decreased llp-hydroxylase 

efficiency compared to wild type II P-hydroxylase but that it is still more efficient at 

11 P-hydroxylating than aldosterone synthase. 

3.5.2 Cortisol production by BI-E147D. 

All subsequent steroid measurements were performed by radioimmunoassay. Figure 

3.5b. shows cortisol production expressed as nmol/mg/48 hours. Wild-type 11 P- 

hydroxylase produced 22 ± 2.7 nmol/mg/48 hours and mutant BI-EI47D produced 
20.6 ± 2.6 nmol/mg/48 hours (n--6). This shows clearly that BI-EI47D has no effect 

on the efficiency of Ilp-hydroxylation of 11-deoxycortisol. 

3.6 Semi-quantitative RT-_PCR of transfected cell RN 

Western blotting to assess protein expression was not an available option during the 

course of these experiments. No human antibodies were available at that time. 

However, recently human antibodies have been raised to both II P-hydroxylase and 

aldosterone synthase which are currently being tested. As protein expression was not 

an option, semi-quantitative RT-PCR was used to measure the level of transcription. 

For RT-PCR, the number of cycles used has to be within the linear part of the 

amplification curve. Figure 3.6a shows the RT. PCR amplification curve for 

GAPDHandCYPllBl/B2. In subsequent experiments, the optimised cyclenumber 
GAPDH and CYPI IB 1/132, was 34 and 30 respectively. 
Figure 3.6b shows representative RT-PCR amplification of GAPDH and CYP II B2 

for wild-type aldosterone synthase and mutant B2-DI47E. The levels of CYPllB2 

expression (arbitrary units calculated by band intensity) were standardised by dividing 

by the levels of GAPDH expression, calculated in the same way. 
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Figure 3.5a. 
B: DOC ratio of II P-hydroxylase mutant BI-EI47D 
Comparison of B: DOC ratio of II P-hydroxylase mutant BI -El 47D with 
wild-type II P-hydroxylase (CYP IIB 1). COS-7 cells transfected with 
lOpg of pCMV4 expression vector, 5pg of pCD-Adx and 10[ig of pSV- 
P-gal were incubated with 5[LM 3H-DOC for 48 hours. 3H-steroids from 
the medium were extracted and separated by TLC and analysed in 
duplicate by liquid scintillation counting. Results are expressed as ratio 
of product to substrate B: DOC, which is an index of II P-hydroxylase 
activity. Results are mean ± SEM from four separate transfections, each 
done in duplicate. Statistical analysis was done by Mann-Whitney-U 
test. 
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Figure 3.5b. 
F production from I IB-hvdrqxyIase mutant BI-EI47D 
Comparison of cortisol (F) production from II P-hydroxylase mutant 
BI -E I 47D with wild-type II P-hydroxylase. COS-7 cells transfected 
with 10[tg of pCMV4 expression vector, 5pg of pCD-Adx and 10ýtg 
of pSV-0-gal were incubated with 5juM II -deoxycortisol (S) for 48 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radio i mmunoassay. Results are expressed as mean ± SEM from four 
separate transfections, each done in duplicate. 
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Figure 3.6a Optimisation of cycle-number for RT-PC 
Phosphorimage analysis of CYPllBl/B2 and GAPDH PCR 
amplicon with varying cycle number. RT-PCR was carried out on 
RNA (Ipg) for 22-40 cycles and the intensity of the band analysed. 
Subsequent RT-PCR was carried out using the number of cycles 
where the graph remained linear. For CYPllBl/B2 30 cycles were 
used and for GAPDH 34 cycles were used. 
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Figure 3.6b RT-PCR of RNA from cells transfected with wild-typ 
CY PI I B2 or a1dosterone synth ase mutant B2-D I 47E 
Representative examples of semi-quantitative RT-PCR analysis of RNA 
(Ipg) from COS-7 cells transfected with wild-type CYPIIB2 or 
a1dosterone synthase mutant B2-DI47E. The top panel shows the 
CYPIIBI/B2 amplicon (594bp) in 3 flasks transfected with B2-DI47E 
(lanes 2-4) and 4 flasks transfected with wild-type CYP II B2 (lanes 7- 
10). The corresponding GAPDH amplicon (452bp) is shown in the 
bottom panel. Lanes 5 and 6 show water blanks. The intensity of the 
bands was analysed by phosphorimaging analysis. 
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Table 3.6 shows the range of CYPIIBI/B2: GAPDH ratios for the wild-type 

constructs and the mutants tested. Mutant construct values are within the ranges of the 

wild-type constructs. 

CONSTRUCT CYPlIBl/B2: GAPDH 

RATIOS 

CYPllB1 0.88 to 1.82 (n--3) 

CYPllB2 0.8 to 1.6 (n=4) 

B2-DI47E 0.7 to 1.2 (n--3) 

B2-1248T 0.6 to 1.3 (n=3) 

B2-K357N 0.6 to 0.7 (n--2) 

BI-EI47D 0.7 to 0.9 (n=2) 

Table 3.6 CYP11B1/B2: GAPDH ratios for RT-PCR 

The results clearly show that residue 147 of aldosterone synthase and II P- 

hydroxylase are important for efficient II P-hydroxylation of 11 -deoxycorticosterone. 
Results from semi-quantitative RT-PCR show that the level of transcription was 

similar in transfected cells which suggests that the altered steroid production was due 

to an effect on enzyme activity and not to an increase in gene transcription. They did 

not, however, allow a decision on whether protein expression had been altered. If this 

was the case, all three activities of aldosterone synthase would be increased in similar 
proportions. However, only the 11 P-hydroxylase function was affected. To assess 

whether these amino acid changes affect binding affinity for II -deoxycorticosterone, 
kinetic analysis was performed. 

Kinetic experiments were performed for mutants B2-Dl47E and BI-EI47D using 
DOC as substrate at concentrations ranging from 0.01 to 10 and 15pM respectively. 
As before, the mutants and wild-type plasmids were transiently expressed in COS-7 
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cells with the necessary controls. Time course experiments were performed for B 

production, as measured by radioimmunoassay (2.8.3), to determine the end-point 

which was maximal but still in the linear range which follows first rate order kinetics. 

An end-point of 8 hours was chosen as determined by figure Ma. 

3.7.1 Kinetic analysis of aldosterone synthase mutant B2-D147E compared to 

wild-We aldosterone synthase 

Dose-response curves of steroid products: corticosterone (B), 18- 

hydroxycorticosterone (18-01113) and aldosterone against 11-deoxycorticosterone 

(DOC) concentration for aldosterone synthase and the mutant B2-DI47E are shown in 

figures 3.7b, 3.7c and 3.7d. B production by aldosterone synthase mutant B2-DI47E 

was significantly increased at all concentrations of DOC compared to wild-type 

aldosterone synthase. Results were analysed by ANOVA followed by Student's West. 

Lineweaver-Burke analysis and derivation of Kin was performed (Figure 3.7e). As 

Kin is independent of enzyme concentration, it can be derived even though precise 

quantification of enzyme concentration was not possible. Vmax on the other hand 

largely depends on enzyme concentration. Therefore it is unacceptable to use this data 

set to obtain Vmax values. The Lineweaver-Burke plot for B analysis for wild-type 

aldosterone was y=0.0005x + 0.0001 and for B2-DI47E was y=0.00007x + 

0.00005. The data points show the mean ± SEM for four individual plates of cells. 
The values for Km for wild-type aldosterone synthase and B2-DI47E, derived from 

these equations, were 5pmol/L and 1.4pmol/L respectively. These values differ 

significantly. Thus, mutant B2-DI47E has a lower apparent Km for conversion of 
DOC to corticosterone than that of wild-type aldosterone synthase. 

18-OHB production from B2-D147E was also increased compared to wild-type 

aldosterone synthase but to a lesser extent than B production. No attempt to derive 

Km values was made. 

3.8. Kinetic analysis of 110-hydroXYlase mutant BI-EI47D compared to wild 

We 11 D-hydroxylase 

Dose-response curves of steroid products; B and 18-OHB against DOC concentration 

for II P-hydroxylase and the mutant B1 -E I 47D are shown in flgures 3.8a., and 3.8b. 
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Figure Ma. 
Time-course of B production from COS-7 cells transientl 

I with wild-type a1dosterone synthase (CYPI1B2) or 110- 
hyýroxylase (CYP1 IM 
COS-7 cells transfected with 10ýtg of pCMV4 expression vector, 5Pg 
of pCD-Adx and 10ýtg of pSV-P-gal were incubated with 5ýLM DOC 
between 0 and 48 hours. Steroids from the medium were extracted 
and separated by paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean J: SEM from four separate 
transfections. 
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Figure 3.7b. 
B production fro concentrations of DOC from 
aldosterone svnthase mutant B2-DI47E comDared to wild--tvDe 

COS-7 cells transfectcd with lOgg of pCMV4 expression vector, 
5gg of pCD-Adx and lOgg of pSV-P-gal were incubated with 
varying concentrations DOC for 8 hours. Steroids from the 
medium were extracted and separated by paper chromatography and 
analysed in duplicate by radioimmunoassay. Results are mean ± 
SEM from four separate transfcctions and were analysed by 
ANOVA. B production by B2-DI47E was significantly higher that 
wild-type aldosteronc synthasc at all concentrations of substrate 
(n=4, p<0.05, Student's Mcst) 
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Figure 3.7c. 
18-OHB production from v entrations of DOC o 
a1dosterone synthase mutant B2-D147E compared to wild-typ 
a1dosterone synthase (CYP11M 
COS-7 cells transfected with lOpg of pCMV4 expression vector, 
5ýtg of pCD-Adx and 10ýtg of pSV-P-gal were incubated with 
varying concentrations DOC for 8 hours. Steroids from the medium 
were extracted and separated by paper chromatography and analysed 
in duplicate by radioimmunoassay. Results are mean ± SEM from 
four separate transfections. 
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Figure 3.7d. 
Aldosterone production from icentrations nI DOC of 
aldosterone synthase mutant-BLDWE compared to wild-type 
aldosterone synthase (CYP11=. 
COS-7 cells transfected with 10[tg of pCMV4 expression vector, 
5ýtg of pCD-Adx and lOgg of pSV-P-gal were incubated with 
varying concentrations DOC for 8 hours. Steroids from the medium 
were extracted and separated by paper chromatography and analysed 
in duplicate by radioimmunoassay. Results are mean ± SEM from 
four separate transfections. 
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Figure 3.7e. 
Lineweaver-Burke analysis and derivation of Kin for aldosterone 
synthase mutant B2-DI47E compared to wild-type aldosterone 
synthase (CYPlIB2) for DOC to B conversion (data taken from 
figure 3.7b). The axes are the reciprocal of the substrate 
concentration in micromolar (1/S) and the reciprocal of the velocity 
of B production in nmol per mg/8 hours (I/V). COS-7 cells 
transfected with lOgg of pCMV4 expression vector, 5lig of pCD- 
Adx and lOgg of pSV-P-gaI were incubated with various 
concentrations of DOC for 8 hours. Steroids from the medium were 
extracted and separated by paper chromatography and analysed in 
duplicate by radioimmunoassay. Results are mean ± SEM from four 
separate transfections. 
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F*gure 3.8a. 
B production from var*ous concentrations of DOC from 110- 
hydroxylase mutant B1-E147D compared to wild-We 110- 
hydroxylase (CYP11B1) 
COS-7 cells transfected with lOgg of pCMV4 expression vector, 
5ýtg of pCD-Adx and 10ýtg of pSV-P-gal were incubated with 
varying concentrations DOC for 8 hours. Steroids from the 
medium were extracted and separated by paper chromatography and 
analysed in duplicate by radioimmunoassay. Results are mean ± 
SEM from four separate transfections and were analysed by 
ANOVA followed by Student's West. B production by BI-EI47D 
was significantly lower that wild-type aldosterone synthase at all 
concentrations of substrate (n=4, p<0.0001, Student's West). 
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Figure 3.8b. 
18-OHB production from va itrations of DOC from 
JIL-hydroxylase mutant B1-E147D compared to wild-type 1IL- 
hydroxylase (CYPIIBI) 
COS-7 cells transfected with lOpg of pCMV4 expression vector, 
5pg of pCD-Adx and lOpg of pSV-P-gaI were incubated with 
varying concentrations DOC for 8 hours. Steroids from the 
medium were extracted and separated by paper chromatography and 
analysed in duplicate by radioimmunoassay. Results are mean 
SEM from four separate transfections. 
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Figure 3.8c. 
Lineweaver-Burke analysis and derivation of Km for UP- 
hydroxylase mutant BI-E147D compared to wild-type Ilp- 
hydroxylase, (CYP IIB 1) for DOC to B conversion (data taken from 
figure 3.8a). The axes are the reciprocal of the substrate 
concentration in micromolar (1/S) and the reciprocal of the velocity 
of B production in nmoles per mg/8 hours (I/V). COS-7 cells 
transfected with 10ýig of pCMV4 expression vector, 5jig of pCD- 
Adx and lOpg of pSV-P-gaI were incubated with various 
concentrations of DOC for 8 hours. Steroids from the medium were 
extracted and separated by paper chromatography and analysed in 
duplicate by radioimmunoassay. Results are mean ± SEM from four 
separate transfections. 
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respectively. B production for llp-hydroxylase mutant Bl-E147D was significantly 

decreased at all concentrations of DOC compared to wild-type Ilp-hydroxylase. 

Results were analysed by ANOVA followed by Student's West. Lineweaver-Burke 

analysis and derivation of the Kin is shown in figure 3.8c. The Lineweaver-Burke 

regression analysis for wild-type II P-hydroxylase was y= 0.0224x + 0.0088 and for 

BI-EI47D was y--0.2239 + 0.0299. The values forKm forwild-type Ilp-hydroxylase 

and the mutant BI-E147D, derived from these equations were 2.5 ýLmol/L and 7.5 

gmol/L respectively. These values differ significantly. This shows that mutant Bl- 

EI 47D has a higher apparent Kin for conversion of DOC to corticosterone than that of 

wild-type II P-hydroxylase which explains the decrease in corticosterone production. 

18-OHB production from BI-EI47D was decreased compared to wild-type llp- 

hydroxylase but to a lesser extent than B production. No attempts to derive Kin values 

was made. 

3.5 Discussion 

Aldosterone synthase and II P-hydroxylase are key enzymes in the terminal stages of 

corticosteroid biosynthesis in the adrenal gland. Functionally these enzymes are quite 

different. II P-Hydroxylase is expressed principally in the ZF and is regulated by 

ACTH (White et al. 1994). It catalyses the conversion of the mineralocorticoid, DOC 

to B, 18-OH-DOC or 19-OH-DOC. It also catalyses the conversion of I I- 

deoxycortisol (S) to cortisol (F). In contrast, aldosterone synthase is expressed solely 

in the ZG under the control of angiotensin 11 and potassium (White et al. 1994), and 

converts DOC to aldosterone via B and 18-OH-B. Despite these functional 

differences, the genes which encode these two enzymes are highly homologous. Only 

7% of amino acid residues differ between these two enzymes and these account for 

the key differences in enzymatic activities and substrate specificity. 

To investigate the molecular basis of these functional differences, specific amino 

acids of aldosterone synthase were mutated and the effects on steroid production 

studied. Molecular studies by other groups have already shown the absolute 

requirement of a glycine residue at position 288 and an alanine residue at position 320 
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for efficient 18-hydroxylation and subsequent 18-oxidation in aldosterone synthase 
(Curnow et al. 1997). Also II P-hydroxylase specific residues 301,302 and 320 have 

been shown to be important for II P-hydroxylase activity (Bottner et al. 1996). From 

the current study, it may be possible to gain ftirther insight into the role played by 

other amino acid residues which differ between the two enzymes. 

Four separate amino acid substitutions were examined, in each instance replacing an 

aldosterone synthase-specific residue with the II P-hydroxylase equivalent and, in one 

case, replacing the II P-hydroxylase-specific residue with the aldosterone synthase 

equivalent. The selection of which residues to study was guided, in part, by the 

example of the Dahl salt-resistant (R) and salt-sensitive (S) rat models which have 

been used to investigate the genetic component of salt-sensitive hypertension (see 

1.8). In the S strain, there is increased 18-OH-DOC production which is thought to 

account for approximately 20% of the excess blood pressure in this model. Studies of 
the CYPI1131 gene in the R strain have revealed mutations which alter UP- 

hydroxylase activity and decrease 18-OH-DOC production (Matsukawa et al. 1993). 

These mutations co-segregate with reduced adrenal capacity to synthesise 18-OH- 

DOC and resistance to the hypertensinogenic effects of salt (Cicila et al. 1993) . 
Studies of CYP11132 gene have also identified 7 mutations in the Dahl R rat, 2 of 

which alter the predicted amino acid composition of the protein (Exon 3, Glu 136 to 
Asp and Exon 4, Gln 251 to Arg). These appear to encode an enzyme with a greater 

apparent Vmax and a lower apparent Km, resulting in an increased rate of conversion 

of DOC to aldosterone (Cover et al. 1995). Exact replication of these mutations in 

human aldosterone synthase, increased B and aldosterone production (Fardella et al. 
1995). Further examination of exons 3 and 4 of the human genes showed 6 codons 
which differ between the CYPllB1 and B2 genes, 4 of which code for different 

amino acids. Two examples are codons 147 (exon 3) and 248 (exon 4), which code 
for the amino acids glutamate and isoleucine in aldosterone synthase and aspartate and 
threonine in II P-hydroxylase. To determine the functional significance of these 

residues, which lie close to those identified in the Dahl R rat and have been shown to 
have major effects on enzyme activity, aldosterone synthase-specific residues were 

replaced with the II P-hydroxylase equivalents. A converse mutant in II P- 
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hydroxylase replacing was prepared where residue 147 was substituted with the 

aldosterone synthase equivalent. In addition, residues 43 and 493 which are found in 

exons I and 9 respectively, were mutated. These are distant from the putative active 

site of the enzyme and unlikely to exert a major effect on the enzyme activity of 

aldosterone synthase. A recent study, where chimeric proteins were constructed 
between llp-hydroxylase and aldosterone synthase to investigate the importance of 

residues differing in their C-terminal regions, showed that residues 471,472,492,493 

and 494 were not important for steroid hydroxylation (Bottner et al. 1998). The 

different residues at this position in aldosterone synthase and II P-hydroxylase do not 

therefore account for the differences in enzyme activity between these enzymes 
(Bottner et al. 1998). They provide a useful control for the two mutations in exons 3 

and 4. The conversion of S to F was not assessed for these mutations and it is possible 

that they may affect cortisol production but this is unlikely. Whether analogous 

substitution of these residues in 11 P-hydroxylase for the aldosterone synthase-specific 

residues affects enzyme activity of II P-hydroxylase is not known. 

The results showed clearly that alterations of residues 43,248 and 493 of aldosterone 

synthase to the corresponding 11 P-hydroxylase residues had no effect on steroid 

production. This strongly suggests that these amino acids do not confer functional 

specificity. Although they differ between the two enzymes, they may be naturally- 

occuring polyrnorphisms which have been conserved. It is relevant that, since this 

investigation was completed, there has been a further report suggesting that this is the 

case for residue 43 in aldosterone synthase (Curnow et al. 1997). Amino-acids 1-44, 

the mitochondrial anchor, have recently been shown to be necessary for insertion of 

mitochondrial cytochrome P450 enzymes into the membrane. Removal of these 

residues is not detrimental to enzyme function (Zvelebil et al. 1991). It is therefore to 
be expected that mutation of residue 43 does not alter enzymatic function. In 

addition, a recent study has identified a mutation in residue 173 of aldosterone 

synthase in a group of subjects with low renin essential hypertension. However, it 

had no demonstrable effect on the enzyme kinetics of aldosterone production in vitro 
(Fardella et al. 1996b). No attempt was made to assess whether it influenced B or 18- 

OHB production. 
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The major finding of the current study was that altering aspartate 147 residue (exon 3) 

of aldosterone synthase to the corresponding llp-hydroxylase-specific glutamate 

residue caused a dramatic increase in B production and a smaller but significant 
increase in aldosterone production. Closer inspection of the individual enzymatic 

activities of aldosterone synthase revealed that there was a large increase in the ratio 

of B: DOC, a small but nonetheless significant decrease in the 18-OH-B: B ratio and no 

change in the aldosterone: 18-OH-B or aldosterone: B ratios. This suggests that the 

increase in B and aldosterone production was due to an increase in the UP- 

hydroxylase activity of aldosterone synthase and not increased 18- 

hydroxylase/oxidase activity. It seems likely that the small decrease in the 18-OH-B: B 

ratio was caused by increased availability of substrate (B) coming from the previous 

reaction, rather than an actual decrease in 18-hydroxylase efficiency. However, the 

use of B and 18-OH-B as substrates would provide a clearer picture of the effects of 
B2-DI47E on 18-modifying functions of the enzyme. Unfortunately, studies by other 

groups have shown that these make poor substrates for aldosterone synthase (Vinson 

and Whitehouse 1970, Denner et al. 1995). To further emphasise the importance of 
this locus for 11 P-hydroxylation, the converse mutation, where substitution of the 

11 P-hydroxylase-specific residue 147 was mutated to the aldosterone synthase 

equivalent, had the opposite effect on II P-hydroxylase. Whereas B2-D 147E increased 

II P-hydroxylation of aldosterone synthase, B1 -E I 47D dramatically reduced the II P- 

hydroxylation efficiency of 11 P-hydroxylase by reducing the ratio of B: DOC. It could 
be argued that the changes in enzyme function are due to altered levels of expression 

of the modified proteins. This seems extremely unlikely as only one function is 

majorly affected. If the effects were due to for example, an increase in expression of 
aldosterone synthase mutant B2-DI47E, then a proportional increase in B, 18-OHB 

and aldosterone would be observed. That the llp-hydroxylase mutant, Bl-E147D, has 

the exact opposite effect and decreases II P-hydroxylation is further evidence that the 

effects are not due to changes in protein expression. At the time of this study 

antibodies against human aldosterone synthase and 11 P-hydroxylase were not readily 

available. These could have been used for Western blotting to demonstrate that 

protein expression was similar. Recently antibodies have become available which are 

currently being tested (Paul Stewart and Bill Rainey, personal communication). Semi- 
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quantitative RT-PCR was used to detect any obvious differences in transcriptional 

levels mutant cDNAs compared to wild-type cDNAs. No major differences were 
detected. Whilst it must be recognised that this technique does not indicate any 

changes at the expressional level, it does provide good evidence that transcription of 

the mutant and wild-type cDNAs are similar. 

Having shown that 132-1) 147E increases the II P-hydroxylase function of aldosterone 

synthase, this was compared with the ability of the wild-type II P-hydroxylase to 

convert DOC to B. The B: DOC ratio of the wild-type Ilp-hydroxylase is 

approximately 6, whereas for wild-type aldosterone synthase it is approximately 1. 

The B: DOC ratio for B2-Dl47E is between these two (approximately 3), suggesting 

that although residue 147 plays an important role in 11 P-hydroxylation , there are 

other residues which contribute to the greater efficiency of 11 P-hydroxylase activity 
in II P-hydroxylase. Indeed, studies by other groups have shown that amino acid 

residues 301,302 and 320 and 384 are also involved in II P-hydroxylation (Curnow et 

al. 1993, Bottner et al. 1996). Similarly, the lI P-hydroxylase mutant BI-EI47D was 

also compared to wild-type aldosterone synthase. The B: DOC ratio for wild-type 

aldosterone synthase was 0.88 ± 0.11 which was lower than that for the mutant 131- 

E147D. This suggests that, although mutation of residue 147 of llp-hydroxylase 

decreases the B: DOC ratio, it remains higher than that of aldosterone synthase, again 

suggesting that other residues contribute to Ilp-hydroxylase activity. Mutations of 
Ilp-hydroxylase have been described in Ilp-hydroxylase deficiency; these 

completely abolish enzyme activity (see section 1.8). This disorder results in severe 
hypertension due to the increased levels of DOC. It is possible that mutant BI -E I 47D, 

if found in vivo, may result in increased DOC levels. 

As B2-D I 47E increases II P-hydroxylation, its ability to convert II -deoxycortisol, the 

principal substrate of II P-hydroxylase, to cortisol was also studied. The F: S ratio for 

II P-hydroxylase was approximately 10. In contrast, the F: S ratio with B2-DI47E was 

not significantly different from that of wild-type aldosterone synthase, which does not 

convert S to F in vivo. This suggests that residue 147 plays a key role in the 11 P- 

hydroxylation of DOC but not of S and, moreover, that some functions conferred by 

specific amino acids appear to be substrate-dependent. Similarly, mutant BI-EI47D 
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produced levels of F comparable with those of wild-type II P-hydroxylase, again 

showing that this residue exerts effects on II P-hydroxylation which are substrate- 

specific for DOC. It is unlikely that II P-hydroxylase mutant BI -E I 47D, if found in 

vivo, would cause cortisol deficiency which is a result of II P-hydroxylase deficiency. 

In the light of these findings, kinetic experiments which looked at 11 P-hydroxylation 

of DOC revealed that mutation of residue 147 of aldosterone synthase reduced the Kin 

value for DOC and mutation of residue 147 of 11 P-hydroxylase increased the Km 

value for DOC compared to wild-type aldosterone synthase and II P-hydroxylase 

respectively. Measurement of Km is independent of enzyme concentration and 

therefore any changes in Km reflect true changes in enzyme activity. Aldosterone 

synthase catalyses the conversion of DOC to aldosterone via three sequential steps. 
The efficiency of each individual step will therefore be directly affected by that of 

previous steps. To overcome this, the enzymes should be incubated with the 

intermediate precursors as substrates Le corticosterone or 18-hydroxycorticosterone to 
determine Knis for the conversion of B to 18-OHB and 18-OHB to aldosterone 

respectively. However, as already stated both steroids are poor substrates. This may 
be why such kinetic experiments were not performed by Bottner et al. (1996) and 
Curnow et al. (1997). In this experiment, the efficiency of II P-hydroxylation has been 

assessed; it was increased in mutant B2-DI47E compared to wild-type aldosterone 

synthase (Le lower Km for DOC). Increases in 18-OHB production were probably due 

to increased availability of B. This was particularly clear in the initial experiments 

where the ratio of 18-OHB: B was slightly decreased due to increased B production 
(figure 3.4b). Aldosterone levels were not significantly increased for mutant 132- 
D147E compared to wild-type aldosterone synthase. 

The reason for the effect of substituting residue 147 from CYPI 1131 to CYPI 1132 and 

vice versa on 11 -hydroxylase activity is uncertain and surprising in that the amino 

acid change is conservative (acidic for acidic). In this regard, it is relevant that human 

aldosterone synthase and 11 P-hydroxylase have not yet been crystallised and little is 

known about the structure of the protein. However, crystallised protein structures 
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have been determined for several bacterial P450 enzymes, for example P450cam, 

P450bm3 and P450terp, which show that they are composed of a number of helices 

(A to L) (see section 1.7). Although these enzymes share low homology with 

mammalian P450 enzymes, there are some highly conserved regions. One such 

region is the I helix, spanning amino acid residues 295-346 which runs through the 

core of the protein molecule and contains the haem and substrate binding domains. 

Putative models of the 3D-structure of aldosterone synthase and llp-hydroxylase 

suggest that residue 147 may interact in some way with this active core, possibly to 

maintain the correct orientation/position of the substrate within the active site. That 

mutation of this residue only affects DOC conversion is unusual. DOC and S differ 

only by a 17cc-hydroxy group in their steroid structure. It is possible that they have 

different contact points with the enzyme and that residue 147 affects contact with 

DOC and not S. From information obtained from protein modelling studies based on 

these known crystalline bacterial structures, it is possible to superimpose human 

aldosterone synthase and II P-hydroxylase on them (see chapter 4). From this model, 

residue 147 is likely to be situated at the interface between the D- helix and a stretch 

of rope. It is possible that alteration of this residue, even conservatively, may alter the 

local environment such that the position of the helix with which it is closely 

associated may be slightly altered, possibly creating changes in the orientation of 

other nearby helices involved in particular substrate binding or recognition and, as a 

consequence, enhance or decrease the conversion of this substrate. 

In conclusion, the data show clearly how a conservative change in amino acid 

composition can cause a profound change in enzymatic function and steroid 

production. It is likely that residues work synergistically to determine the activity or 

activities of a particular enzyme. Residue changes may have subtle or severe structural 

effects depending on their position and amino acid properties. This type of mutation 

plays a role in some forms of hypertension, where steroid ratios are altered. Mutant 

B2-DI47E showed a small increase in aldosterone production. Although small and of 
borderline significance, small changes in aldosterone production may in vivo have a 
dramatic effect. For example at the peripheral level, tissues are extremely sensitive to 

small changes in aldosterone and it is possible that a mutation such as B2-D147E may 
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have a large effect on these tissues. A small increase in aldosterone in the brain, for 

example, may have dramatic effects on blood pressure (Gt5mez-Sanchez 1997). 

Mutant BI-EI47D may, if found in vivo, cause hypertension due to the reduction in 

DOC to B conversion with resulting accumulation of DOC precursor. Mutations such 

as this may lead to a new form of llp-hydroxylase deficiency where cortisol 
biosynthesis is unaffected. However, their contribution to essential hypertension 

remains to be determined. 
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Chapter 4 

4.1 Modelling of human a1dosterone synthase and 11D-hydroxylase structures. 

110-Hydroxylase and aldosterone synthase are mitochondrial cytochrome P450 

enzymes which insert molecular oxygen at positions II and 18 on the steroid 

molecule to form hydroxyl groups. Aldosterone synthase can also catalyse the 

formation of the C18 aldehyde group (see section 1.4). These enzymes belong to the 

cytochrome P450 superfamily, possessing characteristics attributable to the binding of 

haem to a highly conserved cysteine residue on the polypeptide which enables the 

iron-enzyme complex to absorb light at 450mn. It is obvious that the unique 

properties of these enzymes must depend on subtle differences in their three- 

dimensional structures. Several bacterial members of this family are soluble proteins ( 

e. g. P450,., P450BM3 and P450tep). Their crystal structures have been determined 

(Poulos et al. 1987, Ravichandran et al. 1993, Hasemann et al. 1994). However, 

steroidogenic enzymes are associated with cell membranes. For example, side-chain 

cleavage enzyme, II P-hydroxylase and aldosterone synthase are mitochondrial and 

21-hydroxylase and 17cc-hydroxylase are microsomal. Membrane association has 

made crystallisation of these mammalian enzymes difficult and attempts to date have 

not been successful. However, since the chemical reactions are analogous, several 

functional domains have been conserved. It is possible therefore to model 

mammalian proteins on those crystal bacterial structures. This technique has proven to 

be a useful tool in determining regions of structural and functional importance. 

Sequence aligriment studies of the P450 superfamily proteins and modelling based on 
P450c have revealed that all of these proteins have a similar folded structure (Nelson 

and Strobel 1989). They possess a common structural core on which the tertiary 

structures of all P450 proteins can be based. One such study modelled bovine 

P450scc, which is closely related to II P-hydroxylase and aldosterone synthase, on 
the crystal structure of P450c 

,. n,. Sequence homology and physical properties were also 

considered. This showed that there were regions that were highly conserved such as 
the haem binding domain and regions involved in oxygen activation, and regions that 

were less well conserved such as the substrate binding regions. These latter regions 

will display greatest variabilty as they catalyse the conversion of substrates which 
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differ in size, shape, origin and chemistry. It is therefore to be expected that P450 

enzymes which catalyse the same reactions and are from different species will display 

greatest homology. This being the case, it is possible to use the structure of a simple 
bacterial P450 to model the unknown structures of the more complex mammalian 

enzymes. 

Protein sequences obtained from the Swissprot database. Accession numbers are 
listed below: 

II P-hydroxylase 

Aldosterone synthase 

Side chain cleavage enzyme 

human p15538, sheep p51663, 

rat BI p15393 & B3 p30100, mouse p15539, 
bovinep15150. 

human p19099, rat p30099. 

human p05108, pig p 10612, rat p 1413 7, 

bovine pOO 189, oncrny Q07217. 

The crystalline structures were obtained from pdb Brookhaven ( Brookhaven National 

Laboratory Protein Databank) (Bernstein et al. 1977) 

Accession numbers were: 
P450, PDB: lCP4 
P450BM3: PDB: 2BPD 

P450terp: PDB: 1CPT 
P450NOR: PDB: IROM 
P450ERY: PDB: I OXA 

Multiple Sequence Alignment 

Sequence alignment was performed using the Multi-align Maxhorn multiple sequence 

alignment. Human 11 P-hydroxylase and aldosterone synthase amino acid sequences 
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were aligned using multi-align to the bacterial enzyme P450c P450te P450BM3, 
"P, 

P450NOR and P450ERy known crystal structures. 
Human II P-hydroxylase and aldosterone synthase each have 503 amino acids. The 

bacterial enzymes used in the alignment exercise have 60-100 fewer residues. 
Additional residues are distributed throughout the molecule but 30-50 residues at the 

start or N-terminus of II P-hydroxylase and aldosterone synthase proteins constitute 

the mitochondrial sequence which inserts and anchors these enzymes into the inner 

mitochondrial membrane. As the crystallised bacterial structures are not mernbrane- 
bound, the aligriment begins after this N-terminal sequence in human II P- 

hydroxylase and aldosterone synthase. Gaps were introduced where regions lacked 

homology. The size and number of these gaps were varied by the program to optimise 
the positioning of gaps relative to highly conserved regions such as the oxygen 
binding site or the area surrounding the thiolate ligand. These gaps identify regions in 

human II P-hydroxylase and aldosterone synthase where insertions may have occurred 
to accomodate the larger substrate. Human 11 P-hydroxylase and aldosterone synthase 

and side chain cleavage enzymes can also be aligned to the same enzymes from other 

species. Again the introduction of gaps was necessary but to a lesser extent as these 

enzymes share greater homology. 

Secondary structure prediction 
Secondary structure prediction was performed by Procheck (Laskowski et al. 1993). 

Modelling 

The program Swiss-model was used to model the three-dimensional (3-D) structure of 
human 11 P-hydroxylase and aldosterone synthase based on a consensus structure 
derived from the crystal structures of P450,., P450BM3, P450t"P, P450NOR and 
P450ERY (Pietsch 1996). The predicted 3-D structure was superimposed on the 

crystalline structure of P450c,,, The model was refined manually to remove 

unrealistic features such as loops or wandering regions which, from their appearance, 

could contribute to or form a P-sheet or an cc-helical structure. 

4.3 Results 

The results of sequence aligrunents are shown in flgures 4.3a and 4.3b. 
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Sequence aligmnent of human II P-hydroxylase and aldosterone synthase with the 
bacterial cytochrome P450 crystal structures (figure 4.3a) shows that there are 12 

absolutely conserved residues between human Ilp-hydroxylase and aldosterone 

synthase and all five crystal structures included in the alignment. The cysteine residue 

which forms the thiolate ligand is absolutely conserved in all cytochrorne P450 

enzymes and is marked with an asterisk. The threonine involved in oxygen activation 
is also indicated. Between human I. I P-hydroxylase and aldosterone synthase and 
P450,,,.,, there are 40 invariant residues. Absolutely conserved residues found in all 
the enzymes included in the alignment are in upper case in the consensus row and are 

shown in red. 
Sequence alignment of human with other mammalian 11 P-hydroxylase, aldosterone 

synthase and side chain cleavage enzymes (figure 4.3b) shows a greater number of 

absolutely conserved residues than that seen in figure 4.3a. There are 120 out of the 
500 residues aligned within this group that are invariant. Finally between II P- 

hydroxylase and aldosterone synthase enzymes from various species, 264 residues 

are invariant. The putative I-helix, steroid-binding domain and mitochondrial leader 

are indicated in flgure 4.3b. 

4.3.2 Secondary Structure prediction 
The predicted secondary structure based on sequence and aligriment alone is shown 
below: 

Helix Sheet Helix 

45-60 A 92-95 335-342 K 

96-108 BI 160-162 375-380 

122-130 C 262-271 402-410 

135-155 C/D 352-360 03 420-440 L 

165-175 D 363-372 P4 

187-205 442467 ps 

215-220 F 

227-245 G 

267-317 

322-3321 
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Based on mutations and structure-function studies of these enzymes in the literature, 

residues 299-338 form part of the I-helix (Nonaka et al. 1989). Also mutation of 

residues 331,337 and 427 disturb helices I, K and L respectively (Geley et al. 1996). 

Mutation of the leucine at position 464 in 11 P-hydroxylase also disturbs the L-helix 

(Geley et al. 1996). Modelling, based on P450cam, of the closely related bovine side- 

chain cleavage enzyme (Vijaykamur and Salemo 1992) has identified particular 
helices (A, B', C, D, F, G, I and L) and P-sheet regions (P3. N and PD. From these 

observations, it is possible to assign some of the helical regions and P-sheet regions 
from the secondary structure prediction of human aldosterone synthase and 11 P- 

hydroxylase a specific locus nomination. These are indicated above. 

4.3.3 Modelling based on known structures 

A model three-dimensional structure of human aldosterone synthase and 11 

hydroxylase with the incorporated haern is shown in flgure 4.3c. The model structure 

could be superimposed on that of P450carn indicating that in this model the 

positioning of the helices was conserved. The largest helix, the I-helix, runs through 

the centre of the molecule in close proximity to the haem. Residues of interest to this 

present study (chapters 3 and 5) are indicated on the structure. 

From the model these residues can be assigned to particular regions of the molecule. 

43 Rope/loop flanking helix A (exterior of the molecule) 
107 Helix B' surrounding core 

147 Flanking helix at interphase between rope/helix 

(between C and D). 
186 At end of helix D. 

248 Helix towards haern core (G-helix) 

357 P-sheet exterior of molecule 

493 P-sheet exterior of molecule 
Using this method it is possible to assign residues to particular regions and 
hypothesise structural and functional roles. 
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CPNI-HUWM MALRAKHEYCHRýPMLSLQRRQRLGTRARRVPIT'i'LPFERNPRRPGNRRLRLLQIUREQGYEDLHLEVHQTFQELGPIFRY[ILGGRGHVCVMLPEDVIXL 
CPN? 

-HUNRN MRIRRKRFVCVRRPOIýIORARRLGTRARROPiT'ýIPFFAHPQHPGNRMLRLLQIUREQGYEHLHLINHOTFQELGPIFRYNLGGPRMVCVHLPEDVFKI 
2HPD-P45O-Bn3 TIKEHPQPKTFGELKNLPLLNTBKPVQRLHKIM --- ELGEIFKFE--RPGRVTRYLSSURLIK 
IOXfl-P450-ERY RTVPDLE-SDSFHVDMYSTYRELRETAPVTPVR-FLGQDR 
1R(Hi-P450-MOR HRSGRPSFPFSRRSGPEPPREFOKLRRTWVSQVKLFOGSLA 

ICPT-P450-TERP MORRATIPEMIART'IILPOGYRODEVIYPRFKPLRDEOPLR"RHIEGYDPH 
KP41`450111M 'ITMNI PPI Pr"%Tý 11 VFDFUMYWSNLSRGVQERMKI-QESHWO 

Consensus Ife1vIe 

101 110 120 130 140 150 160 170 180 190 200 

[PN1-MMRN QQVDSLHPHR"SLEPWVHYROHRGHKCGVFLLNGPEWRFNRLRLNPEYLSPNRVQRFLPKVBR'IRROFSQRLKKKVLQNRRGSLTLOVOPSIFHYTIERS 
CPN2-HUNN QQVDSLHPCRHILEPWVflYRQHRGHKCGVFLLNGPEORFNRLRLNPOYLSPKRVQRFLPMVDflVRRDFSQRLKKKVLONRRGSLTLDVQPSIFHYTIERS 

2HPD-P45O-Bn3 ERCDESRF[)KNLSQRLKFVROFRGDGLFTSMTHEkNMKKRH ----- HILLPSFSQQRHXGYHRNMVDIWQLVQk4ERLNRDEHIEVPEDMTRLTLOTI 
1OXfl-P450-ERY WLVT6YDERKRRLSOLRLSSOPKKKYP6VEVEFPRYLGFPE------DVRWFRTNHGTSOPPTHTRLRKLVSQEFTVRRVER"WRVEOITRELLOEV 
1ROM-P450-NGR WLVTKHKDVCFVRTSEKLSKVRTRQ ------ GFPELSRSGK ------- QRRERKPTFVDH-BPPEH"HORSHVEFTFTPERVKNLOPYIQRTVDDLLEQH 

l[PT-P450-TERP WIRTKHRDVMQIGKQPGLFSNHEGSEILYBONNERFMRSIS ------- 66CPHVIDSLTSMWTHTHYRGLTLNWFQPRSlRKLEENIRRIBURSVORL 
1CP4-P450-Cflh L'Y'WTRCNGGHWIRTRGQLIRERY-EBYRHFSSECPFIPREA ------- GERYDFIP--TSHOPPEQRQFRALANQVVGMPVVDKLENRIQELRCSLIESL 

Consensus Vt Irg dpp rSi0 

201 210 220 230 240 250 2GO 270 290 290 300 

CPHLHUMN NLALFGERLG-LVGHSPSSnSLNFLIInL[VMFKSTVQLMFHPRSLSRWTSPKVMKEHFERMBEIFQYGDNCIQKIYQELRFSRPQQYTSIVRELLLNREL 
CPN2-HUMN NI RI-FGERLG-1 VGHSPSSASINF[HRLF'ýMFKSTVQLHFNPRSLSRUISPKVWFHFFRMDCIFQYGDNCIQKIYQELRFNRPOHYTGIVoELLLKHEL 

2HPD-P450-Bn3 GLCGFNYRFNSFYROOPHPFITSNVRALDERHHKLQRRN--PDDPflYDENKRQFOEDIKVHHDLYUKIIRDRKOS6EQSDOLLTHtiLNGKDPET--GEPL 
1OXR-P450-ERY GOSGV---VDIVDRFRHPLPIKVICELLGVDERRRGRFGRUSSEILVNWMQRGQRRREVVWILI)LVERRRTEPGMLLSflLISVQDDD--DGF4- 
1RON-P450-NOR kOKGCRNGPVDLVKEFRLPVPSYIIYTLL6VPFNULEYLTQQNR-IRTNGSSTPARSHONOELLDYLRILVEORLVEPKODIISA-CTEOVKP --- GNI 

1CPT-P450-TERP IDFD --- GECDFMTDCRLYYPLHVVhTRLGVPEOCEPLHLKLTQ[)F--FGVERRRRFHETIRTFYDYFNGFTVDRRSCPKDDVHSLLRNSKLOG --- NYI 
ICH-P450-COM RP-Q --- GOEWTEBYREPPIRIMUM PEFUIPHIKYLTDQM--TRP[KiSHTFRERKERLYBYI. IPIIEQRROKPGIDHISIVRNGQVNG --- RPT 

Consensus tv dappIgpe ed #9 r ep dd s11 

301 310 320 330 340 350 360 370 380 390 400 

CPN1-MNM SPORIKONSMLLIHGSVOTTVFPILMTLFFLRRNPNVOOHLRQFSLHHRHSISLHPUKHTTEIPLLRfiFtK[ILRtYPYGLFLERVRSSOLVLQN-YHIP 
CPK2-HU"RN SLERIKONSHELTRGSVOTTRFPLLHTLFELORNPDVQQILRQESLnflflRSISEHPQKRTTELPLLRMIXETLRLYPYGLFLERVVSSOLVLQN-YHIP 

2HPD-P450-Bn3 DOINIRYQIITFLIRGHETTSGLLSFRLYFLVKNPHVLQKRREERRRVLVD-PVPSYKQVKQLKYVG"VLNEMRWTRPRFSLYRKEDTVLGGEYPLE 
1OXR-P450-ERY SHOELTSIALVLLLRGFERSVSLIGIGTYLLLTHPDQLRLVRRWSR ----------------- LPNRVEEILRY-IOPPETTTRFRREEVEIGGVflIP 
1RM-P450-NOR DKSDRVQIRFLLLYOGNRTMVNNIRLGVRTLRMQLR%KRNPSL ----------------- RPQFVEELCRYHTRSOLAIKRTRKEDYNIGDKLYR 

1EPT-P450-TERP OOKYINRYYVRIHlffiHUITSSSSGGRIIGLSRNPEQLRLRKSOPHL ----------------- IPRLVDERVRM-IRPVKSFMRTHLROTEVRGQNIK 
ICP4. P450-CON ISO[flKRMCGLLLVGGLDTVVNFLSFSHIFLOKSPEHRQELIERPER ----------------- IPfbX[ELLRR-FSL'ýROG-RILTSDYIFHGVQLK 

Consensus i 11 ag dtty 1 La nP 1q 1ppaI IR rVi * Thr 318 
401 410 420 430 440 450 460 470 480 490 500 

CPNI-MM flGTLVRVFLYSLGRNPRLFPRP-ERYNPQRMLDIRGSGRNFYHVPFGFGNRQCLGRRLOIREMLLLLHWLKHLQVETLTOLDIKWYsrILRP-SHCPL 
CPN2-HM OGTLVQVFLYSLGRNRRLFPRP-ERYNPQRMLBIRGSGRNFHHVPFGFGMRQCLGRRLRFRENLLLLHWLKWLVETLTQFDIKWYSFILRP-GTSPL 

2WD-P450. Bn3 ýGDELHVLIPQLHRDKTINGBOYEEFRPERFENPSRIPQHflFK-PFGNGQRRCIGQQFRLHERTLVLGMHLKWDFEBRTHYELDIKETLTLKPEGFVVK 
1OXR-P450-ERY QYSTVLVRNGORNROPSQFPDP-ORFOYTRD--TRG ------ flLSFGQGIHFCHGRPLOKLEGEVALRALFGRFPRLSLGIDODDVVMRRSLLLRGIDHL 
lROH-P450-NOR HREGIIRSNOSONROIEVFENP-DEFNMNRKWPOO ------ PLGFGFGMRCIFIEHLRKRELTTVFSTLYOKFPDLKVRIPLGKINYTPLNRDVGIVDL 

ICPT-P450-TERP RGDRI"LSYPSRNRDEEVFSNP-DEFOITRF--PNR ------ HLGFWWNCLGQItRKLEMKIFFEELLPKLKSYELSGPPR--LY-ATNFVGGPKNV 
1CP4-P450-CRH KGDQII[PQMISGIDURENHCP-MHVUFSRQ--KVS ------ HITFGHGSHLCLGQHLRRREIIVTLKEULTRIPOFSIRPGRQ--IQHKSGIVSGVR 

Consensus gd Vs P# fpfRh FG 6h CIgg IR EIIr1161 

501 510 520 525 Cys 450 

EPN1-HUMN -IIFRRIN CIIN I= II 11-hdyroxylase 
CPN2-HUriflN -LTFRRIN (TN2- a1dosterone svnthase 2HPD-P450-Bn3 -OKSKKIPLGGIPSPSTEQSRKKVR 

lOXR-P450-ERY P'Y'RLOG 
IROM-P450-NOR PVIF 

1CPT-? 450-TERP PIRFTKR 
ICP4-P450-CM PLVMDPRTTKRV 

Consensus p( 
Figure 4.3a 

Sequence alignment of human aldosterone synthase and 
II P-hydroxylase with bacterial cytochrome P450 enzymes which 
have been crystallised. 
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Figure 4.3b 
Sequence alignment of aldosterone synthase, 1 10-hydroxylase and 
side-chain cleavage enzymes from human, rat and bovine species. 
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Fieure 4.3c 
3-Dimensional model of human alclosterone synthase and 
II P-hydroxylase enzymes. 
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4.4 Discussion 

It is clear that all P450's have a common folded structure despite having low sequence 

homology. From this present study, sequence alignment identified regions displaying 

a high degree of homology between bacterial protein sequences and those from 

mammals. Modelling based on known structures showed that the predicted three 

dimensional model of human Ilp-hydroxylase and aldosterone synthase could be 

superimposed upon known structures such as P450cam. The overall sequence length 

is greater in mammalian enzymes than in the bacterial enzymes but these are 

distributed throughout the molecule as inserts in loops and are probably of little 

consequence. 

The positioning of the helices remains the same in all P450's and is especially 

conserved surrounding the haern group. It is obvious that regions surrounding the 

haem and the I-helix, the key catalytic and functional centre, will display the greatest 
degree of structural similarity and that modelling should take this feature strongly into 

account to position the remaining helices. 

Helices I and L form primary contact points with the haem and constitute the inner C- 

terminal domain (see section 1.7). The large I-helix is in the centre of the model 

running through the core in close proximity to the haem. The N-terminal domain is to 

the exterior of the molecule, controlling entry and binding of substrates, and is 

wrapped around the inner domain . These N-terminal regions are more difficult to 

model as they display the highest degree of variability between P450s. In this model 

of human aldosterone synthase and II P-hydroxylase, the N-terminal regions required 

manual modification, indicating that there was significant structural differences due to 

the lack of homology between them and their bacterial relatives. 
From secondary structure prediction and modelling studies, various residues of 
interest to this present study were assigned to a particular region. In chapter 3, several 

residues in aldosterone synthase were substituted for the II P-hydroxylase equivalent 

at positions 43,147,248 and 493. Also, the analogous substitution was made in II P- 

hydroxylase at position 147. These enzymes are highly homologous yet have 

strikingly different properties. Substitutions were performed to assess the functional 
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consequence of changes of particular residues. In chapter 5, screening of 

normotensive and hypertensive populations for mutations in the genes encoding 

aldosterone synthase (CYP11132) and llp-hydroxylase (CYP11131) identified 

differences in the nucleotide sequence which result in amino acid changes at positions 
107,186 of llp-hydroxylase and 357 of aldosterone synthase. Using the structural 
information obtained from modelling and results from structure-function studies, it 

was possible to suggest roles for these residues. Secondary structure prediction 

revealed whether they formed part of (x-helices, P-sheets or of loops between them. 

The location of these structural segments is not exact; regions of helices, for example, 

may span shorter or longer amino acid distance than the secondary structure 

prediction suggests. Areas predicted as flanking helices, for example, may in fact 

form part of that helical structure itself. Progressing from secondary structure 

prediction to the three-dimensional model emphasises this. 

Residue 43 clearly lies in a region of loop or rope. Structure-function studies revealed 

that substitution at this locus in aldosterone synthase to the 11 P-hydroxylase residue 
(Q43R) had no effect on conversion of DOC (see chapter 3). This implies that a 

glutamate (Q) or arginine (R) at this locus are only accomodated in the structure and 
do not have a specific functional role. Residue 147 is positioned in the model at the 

immediate boundary of helix-D. Mutations at this locus may have functional 

implications. For example, mutations may alter the positioning of the adjacent helix 

and thus effect overall protein conformation which may have effects on enzyme 

activity. This residue of aldosterone synthase (D147) was replaced for the UP- 

hydroxylase equivalent (E147) and was shown to increase 11 P-hydroxylase activity 

which was specific for the substrate, DOC (chapter 3). The converse mutation 
decreased 110-hydroxylase activity. It is therefore possible that Ilp-hydroxylase- 

specific glutamic acid (E147) positions the helix in an orientation more favourable for 

the II P-hydroxylation of the substrate DOC. 

From these predictions residues 107,186 and 248 lie within helical regions 13', at the 

end of D and G respectively. Helix B' surrounds the active core and has been 

designated as SRS-I in P450cam (Gotoh et al. 1992). This region and part of the F-G 
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regions are thought to form part of the substrate access channel. Residues within this 

region may form substrate-specific contact points. Residue 248 at the end of helix G, 

like residue 107, may play a role in substrate access and recognition. However, results 
from structure-function studies, where the aldosterone synthase specific residue (1248) 

was replaced by the II P-hydroxylase equivalent (T248) (chapter 3), suggest that this 

is not the case and, like residue 43,248 contributes to the framework of the molecule. 

It is possible that, in each enzyme, the isoleucine (I) and threonine (T) perform the 

same function. This is a relatively conservative amino acid change and perhaps 

alteration at this locus to a residue with properties distinct from those of isoleucine 

and threonine may exert demonstrable effects. 

Residues 357 and 493 are within regions forming P-sheet which may form Part Of P3% 

N or P5. Both residues are exposed at the surface of the molecule and so any 
functional roles they may have could involve interaction with adrenodoxin or with the 

substrate. P3 is thought to be involved in adrenodoxin binding whereas N is a 

substrate recognition sequence in P450c,,, -n (Gotoh et al. 1992). Mutation K357N did 

not alter substrate specificity or enzyme activity which suggests that this particular 

substitution, a lysine (K) for an asparagine (N), does not alter substrate interaction 

(chapter 5). Substitution of the aldosterone synthase-specific residue, T493 for the 

11 P-hydroxylase-specific residue M493, did not alter in vitro enzyme activity. That 

this conservative substitution does not alter activity does not preclude the idea that 

substitution at this locus with an amino acid with different properties may alter 
fimction. 

Summaj: y 
Using modelling techniques, residues of interest pertaining to this present study have 

been assigned to particular regions of the enzyme molecule and their possible 
functional implications discussed. Although a valuable method, it is important to 

emphasise that the secondary structure and three-dimensional model are theoretical. 

To obtain an accurate picture of these enzymes it is necessary to obtain a high 

resolution x-ray structure . 
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Mutations of the CYPllB1 and CYPllB2 genes cause llp-hydroxylase and 

aldosterone synthase deficiencies respectively (see 1.8.4 and 1.8.6). In UP- 

hydroxylase deficiency, mutations completely abolish enzyme activity and are found 

in all exons but cluster in exons 6,7 and 8 (Cumow et al. 1993). Mutations consist of 
frameshift, insertions or nonsense mutations which ultimately result in a premature 

stop codon resulting in a truncated non-functional protein. Other mutations are 

missense which mutate critical functional residues and have deleterious effects on 
II P-hydroxylase in this condition. 

In aldosterone synthase deficiencies, CMO-I and II, mutations affect the 18-functions 

of aldosterone synthase causing accumulation of B or 18-OHB respectively. In 

comparison to II P-hydroxylase deficiency, mutations causing aldosterone synthase 
deficiencies are less severe in their in vivo manifestations as there is not complete 

aberration of enzyme activity. When expressed in vitro however, CMO-I mutations 
inactivate the encoded enzyme whereas CMO-II mutations cause slight decreases in 

Ilp-hydroxylation and loss of both 18-functions. In several instances multiple 

mutations have been identified in individual cases. The effects of these mutations 
individually and in combination have been assessed in vitro. It is clear that effects of 

mutations differ in their degree of severity. Milder mutations such as V386A may 

cause subtle changes in aldosterone production which are not obvious in vivo. It is 

possible that subtle steroid abnormalities may also exert detrimental effects, for 

example on blood pressure. Mutations which cause a mild increase in aldosterone 

production could be implicated in some forms of hypertension. 

Essential hypertension is a multifactorial disease, the cause of which, unlike II P- 

hydroxylase deficiency-induced hypertension, is unknown. Several studies have 

inferred that some essential hypertensiv6s have differences in their urinary and 

plasma steroids compared to control subjects (De Simone et al. 1985, Soro et al. 1995) 

Whether these differences are due to mutations in the genes which produce these 
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steroids is not known. In this study, the CYPHBI and CYPIIB2 genes from 

hypertensive and normotensive control populations were screened exon by exon to 

look for mutations. 

5.2 Methods 

Genomic DNA was extracted from blood (2.3.2) and individual exons of the 

CYPIIBI and CYPIIB2 genes amplified using PCR (2.3.3). Single stranded 

conformational polymorphism (SSCP) was used to detect sequence changes in exonic 

regions as determined by changes in electrophoretic mobility (2.3.6). As the 

sensitivity of SSCP is decreased greatly with PCR fragments greater than 300bp 

(Hayashi et al. 1991), digestions were performed to obtain fragments of suitable size 
(2.3.8). Where possible, primers were designed to specifically amplify CYP 11 BI or 
B2. However, because of the high degree of homology, this was not always possible 

and some primer pairs amplified CYP 11 BI and CYP 11 B2 within the same reaction. 
Therefore, to differentiate between the CYP IIB1 and B2 amplified alleles, the PCR 

products were subcloned into T-vector which facilitated allele separation and 

sequencing (2.3.14). Where alteration in the nucleotides resulted in amino acid 

substitutions in the encoded protein, functional in vitro studies were performed using 

transient transfection in COS-7 cells (2.5). Mutations found in subjects were 

mimicked in pCMV4 BI or B2 constructs by site-directed mutagenesis using primers 

containing the desired mutation (2.4). 

5.3 Results 

Screening of exonic regions of the CYP11B1 and CYP11B2 genes for mutaflons 
5.3.1 PCR optimisat* 
Prior to SSCP screening, PCR conditions were optimised for each pair of primers. The 

annealing temperatures were set 5-10*C below the melting temperature of primers and 
increased incrementally until PCR conditions were optimised. Typical examples for 

exons 5 and 6 of CYPlIB2 are shown in flgure 5.3a. PCR reactions were performed 

on 4 genomic DNA samples chosen at random where the primers used were 
T2141, T2138 and T2142, T2140 respectively. Amplification of exons 5 and 6 using 
these primers produced PCR amplicons of 337 and 224 bp respectively as determined 
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A 1% agarose gel showing optimised PCR of exons 5 and 6 of 
CYP11132 using primers T2141, T2138 and T2142, T2140 
respectively (see tables 3 and 4 appendix 2). PCR conditions for 
both were 94 for Imin, 60 for Imin, 72 for Imin for 30 cycles. 
Lane I shows k DNA Hae III digest as a marker. Exon 5 
amplicons were 337bp and are shown in lanes 2-5. Exon 6 
amplicons were 224bp and are shown in lanes 7-10. Lanes 6 and 
II show water blank controls. 
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by agarose gel electrophoresis using XHae III digest as a marker. Primer sequences, 

specificity and annealing temperatures used are detailed in table 4 in appendix 3 

Figure 5.3b. Shows a representative area of SSCP analysis of PCR amplified exon I 

of the CYPIIB2 gene. No electrophoretic mobility variants were detected in the 

sample number studied. This was also the case for exons 2,3,4,5,7 and 8 of 
CYP II B2 and also exons 4,5,7,8 and 9 of CYP 11 B 1. Exons 1 and 6 of CYP IIBI 

were not screened. 

5.3.3 SSCP analysis-Of exon 2 of the CYP11B1 and CYP1lB2 genes 

It was not possible to amplify exon 2 of CYP IIBI or B2 selectively. In this case, 

primers (Y6265, Y6266) amplified this region of both genes and SSCP analysis 

(Figure 5.3c. ) shows electrophoretic mobilty variants, from a representative area, 

following Rsa I digestion. Samples showing variants were subcloned into T-vector to 

facilitate separation of CYP 11 BI and CYP II B2 alleles and sequence analysis of the 

allele containing the mutation. 

5.3.4 SSCP analysis of exon 3 of the CYP11BI and CYP11B2 genes 
Again, due to the high degree of homology, exon 3 of CYP IIBI or B2 could not be 

selectively amplified. As described in 5.3.3 , both CYP IIBI and CYP II B2 exon 3 

were amplified using primers Y6263, Y6264. SSCP analysis of a representative area 
(Figure 5.3d. ) shows electrophoretic mobility variants following HhaI digestion. 

Those samples expressing differences in mobility, as indicated by the arrows, were 

sub-cloned into T-vector as described in 5.3.3. 

5.3.5 SSCP analysis Of exon 6 of the CYP11B2 gene 

Exon 6 of the CYP 11 B2 gene was selectively amplified using primers T2142, T2140. 

As the amplicon size was less than 250bp no digestion was required. SSCP analysis is 

shown in (flgure 5.3e). Electrophoretic mobility variants of exon 6 were detected in 

one single sample as shown by the arrows. 
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CYPI I B2 exon I SSCP 

Figure 5.3b. CYPI I B2 exon I SSCP 
SSCP analysis of PCR amplified/ Hha I digested DNA fragments 
of exon I of the human CYPIIB2 gene. PCR conditions and 
specific primers are shown in table 3 appendix 2. Non-denaturing 
acrylamide gel electrophoresis (6%) gel was carried out at room 
temperature (RT), 30W for 4/5 hours in the presence of 10% 
glycerol and IX TBE. No electrophoretic variants were detected. 
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CYPI I BI and CYPI I B2 exon 2 SSCP 

Band shift lip 

Figure 5.3c. CYPI I Bland CYPI I B2 exon 2 SSCP 
SSCP analysis of PCR amplified/ Rsa I digested DNA fragments 
of exon 2 of the human CYPIIBI and CYPI1132 genes. PCR 
conditions and specific primers are shown in table 3 appendix 2. 
Non-denaturing acrylamide gel electrophoresis (6%) gel was carried 
out at room temperature (RT), 30W for 4/5 hours in the presence of 
10% glycerol and IX TBE. Electrophoretic variants are shown by the 
arrows which were subsequently analysed. 
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CYPI I BI and CYPI I B2 exon 3 SSCP 

lialld "llift 
44 

Figure 5.3d. CYPI I BI and CYPI I B2 exon 3 SSCP 
SSCP analysis of PCR amplified/ Hha Idigested DNA fragments 
of exon 3 of the human CYPlIBI and CYPllB2 genes. PCR 
conditions and specific primers are shown in table 3 appendix 2. 
Non-denaturing acrylamide gel electrophoresis (6%) gel was carried 
out at room temperature (RT), 30W for 4/5 hours in the presence of 
10% glycerol and IX TBE. Electrophoretic variants are shown by the 
arrows which were subsequently analysed. 
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CYPI I B2 exon 6 SSCP 

Figure 5.3c. CYPI I B2 exon 6 SSCP 
SSCP analysis of PCR amplified DNA of exon 6 of the human 
CYP II B2 gene. PCR conditions and specific primers are shown in 
table 3 appendix 2. Non-denaturing acrylarnide gel electrophoresis 
(6%) gel was carried out at room temperature (RT), 30W for 4/5 
hours in the presence of 10% glycerol and IX TBE. Electrophoretic 
variants are shown by the arrows which were subsequently analysed. 
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5.3.6 SSCP analysis Of exon 9 of the CYPI1B2 gen 

Exon 9 of CYPllB2 was selectively amplified using specific primers (S6719, 

M6641). The amplicon size was 403bp. SSCP analysis is shown in figure 5.3E 

following Stu I digestion. A single variant is indicated with an arrow. 

5.4 Analysis of electrophoretic mobility variants 

Variants were detected in exons 6 an 9 of CYP 11 B2 and exons 2 and 3 of CYP 11 BI 

or B2. In this latter instance PCR products were sub-cloned into T-vector. A summary 

of nucleotide changes are shown below in table 5.4. 

EXON Mutation Amino acid 

change 

2 CYPI 1B 1 CAT to TAT H107Y 

3 CYPlIB1 CTG to GTG L186V 

6 CYP I IB2 AAG to AAT K357N 

9 CYPIIBI TGC to TTC C494F 

Table 5.4 Summary of nucleotide differences and resulting amino acid change 

Autoradiograph (Figure 5.4a. )shows the nucleotide sequence 5' to 3' of a section of 

exon 6 of the hypertensive sample compared to a normal CYPI. I B2. The sense 

primer T2142 used in the PCR amplification was used to sequence the region 

amplified. Using the antisense primer T2140 the region was also sequenced in the 

opposite direction (not shown) to ensure that the sequence change was incorporated 

on both strands. The sequence starts at the top with codon CAG (356) and ends with 

nucleotide A. The published sequence (see appendix 1) for this region is shown in the 

normal sequence CAG AAG GCA ACC A. The corresponding hypertensive 

sequence is CAG AAG/T GCA ACC A showing both AAT and AAG at codon 357. 

The presence of an aberrant T band indicates heterozygosity. 
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CYPI I B2 exon 9 SSCP 

04 Band shift 

Figure 5.3f, CYPI I B2 exon 9 SSC 
SSCP analysis of PCR amplified/ Stu I digested DNA fragments 
of exon 9 of the human CYPI 1132 gene. PCR conditions and specific 
primers are shown in table 3 appendix 2. Non-denaturing acrylarrilde 
gel electrophoresis (6%) gel was earned out at room temperature 
(RT), 30W for 4/5 hours in the presence of 10% glycerol and IX 
TBE. An electrophoretic variant is shown by the arrow which was 
subsequently analysed. 
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CYPI1B2 exon 6- 357 sequence from hypertensive subject 
carrying the mutation and a normal subject without the mutation. 

AAT/A-AG 

-10- 

GATCGATC 

Hypertensive Non-nal 

Figure 5.4a. CYPI I B2 exon 6 DNA sequence 
Nucleotide sequence analysis of a portion of exon 6 of CYP II B2. A 
portion of sequence ladders of exon 6 in CYP II B2 from a normal 
healthy individual (normal) and an essential hypertensive 
(hypertensive) patient are shown. The arrow denotes the point 
mutation at codon 357. 
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5.4.2 Sequence analysis of exon 9 of CYPIIB2 

Figure 5.4b. shows a region of exon 9 of CYP II B2 from a hypertensive patient. The 

sequence starts at CCC , codon 491 and ends with CTC. The published sequence for 

this region is CCC AGC ATG TGC CCC CTC CTC( see appendix 1). The 

hypertensive sequence is CCC AGC ATG TTC CCC CTC CTC showing a TTC at 

codon 494. 

5.4.3 T-vector subcloning and subsequent seQuence analysis of exon 2 

Figure 5.4c. shows a region of exon 2 of CYP IIBI from a hypertensive patient. The 

sequence starts at AGC , codon 105 and ends with CAC. The published sequence for 

this region is AGC CTG CAT CCC CAC ( see appendix 1). The hypertensive 

sequence is AGC CTG TAT CCC CAC showing TAT at codon 107. The PCR 

reaction contained CYPllB1 and CYP11132 exon 2 regions. It was therefore 

necessary to subclone the PCR products into T-vector in order to identify which gene 
had the nucleotide change and to assess whether it was present on both alleles of the 

gene. This was then transformed into bacteria. Mini-prep DNA was prepared from 20 

single colonies and sequenced directly. All CYP11132 alleles had sequences as 

published. Only CYPI 1BI alleles had the nucleotide change. Both normal and mutant 
CYP 11 BI alleles were detected indicating heterozygosity. 

5.4.4 I-vector subdoning and subsequent sequence analysis of exon 3 

Figure 5.4d. shows a region of exon 3 of CYP IIB1 from a hypertensive patient. The 

sequence starts at AGC , codon 183 and ends with TAG. The published sequence for 

this region is AGC CTG ACC CTG GAC GTC CAG ( see appendix 1). The 
hypertensive sequence is AGC CTG ACC GTG GAC GTC TAG showing GTG at 

codon 186 followed by a premature stop codon. The PCR products were sub-cloned 
into T-vector as described in 5.4.3. All CYPlIB2 alleles were normal and had 

sequences as published. Only CYPllB1 alleles had the nucleotide change. Both 

normal and mutant CYP 11 BI alleles were detected indicating heterozygosity. 

191 



CYP1 I Bl exon 9- 494 sequence from hypertensive subject 
carrying the mutation. 

Fieure 5.4b. CYP1IB1 exon 9 DNA sequence 
Nucleotide sequence analysis of a portion of exon 9 of CYPI IB1. A 
portion of sequence of exon 9 in CYPIIBI from an essential 
hypertensive patient is shown. The box denotes the point mutation at 
codon 494. 
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CYP1 1 Bl exon 2- 107 sequence from hypertensive subject 
carrying the mutation. 

Figure 5.4c. CYP1 I BI exon 2 DNA sequence 
Nucleotide sequence analysis of a portion of exon 2 of CYPI IBI. A 
portion of sequence of exon 2 in CYPIIBI from an essential 
hypertensive patient is shown. The box denotes the point mutation at 
codon 107. 
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CYPllBl exon 3- 186 sequence from hypertensive subject 
carrying the mutation. 

Figure 5.4d. CYPI 1 BI exon 3 DNA sequence 
Nucleotide sequence analysis of a portion of exon 3 of CYPI IB1. A 
portion of sequence of exon 3 in CYPIIBI from an essential 
hypertensive patient is shown. The box denotes the point mutation at 
codon 186. 
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5.4.5 Screening by restriction enzyme digestoon 

Mutations in exons 3 and 6 generate a restriction enzyme site. In future studies use of 

restriction digestion may facilitate screening of a large number of samples in an 

attcmpt to dctcrmine the frcqucncy of thcse mutations. 
EXON Restriction Recognition Supplier 

enzyme sequence 

CYP 11 B2 exon 6 Bsm I 5'GAATGCN*' 3' Promega 
3'CTFACAGN 5' 

- -- CYPI IBI exon 3 Dsa I T' C CRK Y GG 3' Boehringer- 
3' GGYRC^C 5' Mannheim 

Table 5.4.5 Screening by resrtiction enzymes 

B2-K357N 

The incorporation of the mutations was verified by sequencing. Codon 357 in exon 6 

was altered from AAG to AAT, thus changing a lysine (K) to an asparagine (N) 

residue (figure 5.5a). The sequencing primer used was Z0895. (see appendix 2 table 2 

for sequences of primers). 

The incorporation of the mutations was verified by sequencing of exons 2 and 3 

respectively using primers pCMV4 (s) and N4019. Codon 107 in exon 2 was altered 
from CAT to TAT, thus changing a histidine (H) to a tyrosine (Y) residue. Codon 

186 in exon 3 (figure 5.5b. ) was altered from CTG to GTG, thus changing a leucine - 
(L) to a valine (V) residue. Wild-type plasmid pCMV4 B1 sequence is shown in 

appendix 1. 

Corticosterone (B) production expressed as nmol/ mg/48 hours from 5ýM DOC was 

measured by radioirnmunoassay (figure 5.5c). Wild-type aldosterone synthase 

produced 62.3 ± 7.1 mnol/mg/48 hours and mutant B2-K357N produced 57.4 ± 5.6 

mnol/ mg/48 hours (n--6). This shows that B2-K3 57N has no effect on I 10- 
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TCCCCRG=GCAACCACC 

wild-type 

B2-K357N 

Figure 5.5a. Sequence of wild-type plasmid pCW4B2 and 
mutant construct B2-K357N. 
A portion of nucleotide sequence of exon 6 from wild-type pCMV4 
B2 and from mutant construct B2-K357N are shown. The box 
indicates codon 357 where the mutation has been incorporated. 
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BI-H107Y 

BI-L186V C TG A CC 
F TGýG -ý CG TC 

Figure 5.5b. Sequence of 110-hydroxylase mutants B1-H1O7Y 
and B1-L186V. 
A portion of nucleotide sequence of exon 2 and exon 3 from mutant 
constructs BI -H I 07Y and BI -L I 86V are shown. sequencing primers 
PCMV4 (S) was used to sequence exon 2 and N4019 for exon 3. See 
table 2 of appendix 2 for details of primers. The boxes indicate 
codons 107 and 186 where the mutations have been incorporated. 
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Figure 5.5c. B production from DOC from a1dosterone synthase 
mutant B2-K357N. 
Comparison of corticosterone (B) from aldosterone synthase mutant 
B2-357 with wild-type aldosterone synthase (CYPI I B2) and II P- 
hydroxylase (CYPIIBI). COS-7 cells transfected with 1OVig of 
pCMV4 expression vector, 5ug of pCD-Adx and I Opg of pSV-P-gal 
were incubated with 5pM 11-deoxycorticosterone for 48 hours. 
Steroids from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioinimunoassay. 
Results are expressed as SI units. Results are mean ± SEM from 
three separate transfections, each done in duplicate. Statistical 
analysis was done by Student's t-test. 
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hydroxylation of the substrate DOC. Wild-type 11 P-hydroxylase produced 208 ± 20.4 

mnol/mg/48 hours which is significantly greater than wild-type aldosterone synthase 

or B2-K357N (n--6; p<0.0001, Student's West). 

5.5.4 18-OHB and a1dosterone production from DOC by mutant B2-K357N 

18-OHB and aldosterone production are expressed as pmol/mg/48 hours from SýLM 

DOC as measured by radioimmunoassay (flgure 5.5d). For 18-OHB, wild-type 

aldosterone synthase produced 30.6 ± 1.3 pmol /mg/48 hours and mutant B2-K357N 

produced 24.9± 1.7 pmol/mg/48 hours (n--6). This shows that B2-K357N has no 

effect on 18-hydroxylation compared to wild-type aldosterone synthase. Wild-type 

Ilp-hydroxylase produced 35.7 ± 4.9 pmol/mg/48 hours 18-OHB (n--6). For 

aldosterone production, wild-type aldosterone synthase produced 40 ± 2.9 

pmol/mg/48 hours and mutant B2-K357N produced 34.6 ± 1.6 pmol/mg/48 hours 

(n=6). This shows that B2-K357N has no effect on 18-oxidation compared to wild- 
type aldosterone synthase (n--6). 

5.5.5 F production from S by mutant B2-K35M 

F production expressed as runol/L from 5gM S was measured by radioimmunoassay 
(flgure 5.5e) Wild-type aldosterone synthase produced 69.7 ±6 nmol/mg/48 hours 

and mutant B2-K357N produced 80 ± 9.2 nmol/mg/48 hours (n=6). This shows that 
B2-K357N has no effect on II P-hydroxylation of the substrate S compared to wild- 
type aldosterone synthase. Wild-type llp-hydroxylase produced 246 ± 41 

nmol/mg/48 hours which is significantly greater than wild-type aldosterone synthase 

or B2-K357N (n--6; p<0.0001, Student's Mest). 

5.6 F production from 110-hydroxylase mutant Bl-HI07Y 

F production expressed as nmol/mg/48 hours from 5ýtM S was measured by 

radioimmunoassay (figure 5.6) Wild-type Ilp-hydroxylase produced 10.1 ± 1.7 

nmol/mg/48 hours whereas mutant BI -H I 07Y produced 69.4 ± 7.1 nmol/mg/48 hours 

which is significantly greater than wild-type II P-hydroxylase 
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Figure 5.5d. 18-OHB and a1dosterone producteon from DOC 
from aldosterone sylithase mutant B2-K357N. 
Comparison of 18-OHB and aldosterone production from 
aldosterone synthase mutant B2-K357N with wild-type aldosterone 
synthase (CYPlIB2) and Ilp-hydroxylase (CYPIIBI). COS-7 
cells transfected with lOgg of pCMV4 expression vector, 5pg of 
pCD-Adx and lOgg of pSV-P-gaI were incubated with 51iM 11- 
deoxycorticosterone (DOC) for 48 hours. Steroids from the medium 
were extracted and separated by paper chromatography and analysed 
in duplicate by radioimmunoassay. Results are expressed as SI units. 
Results are mean ± SEM from three separate transfections, each 
done in duplicate. Statistical analysis was done by Student's West. 
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Comparison of cortisol (F) from aldosterone synthase mutant 132- 
K357N with wild-type aldosterone synthase (CYP I 1132) and II P- 
hydroxylase (CYPIIBI). COS-7 cells transfected with 10[tg of 
pCMV4 expression vector, 5pg of pCD-Adx and l0lig of pSV-P-gal 
were incubated with 5pM 11-deoxycortisol (S) for 48 hours. 
Steroids from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioirnmunoassay. 
Results are expressed as Sl units. Results are mean ± SEM from 
three separate transfections, each done in duplicate. Statistical 
analysis was done by Student's t-test. 
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FiLlure 5.6. F Droduction frffmA-W-hvdroxvlase mutant Bl-- 

Comparison of cortisol (F) production from II -deoxycortisol (S) 
from 110-hydroxylase mutant BI-HI07Y with wild-typc Ilp- 
hydroxylase (CYPIIBI). COS-7 cells transfected with 10ýtg of 
pCMV4 expression vector, 5pg of pCD-Adx and I Opg of pSV-P-gal 
were incubated with 5pM 11-deoxycortisol (S) for 48 hours. 
Steroids from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioinimwioassay. 
Results are expressed as SI units. Results are mean ± SEM from 
three separate transfections, each done in duplicate. Statistical 
analysis was done by Student's t-test. 
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(n=6; p<0.0001, Student's West). 

In this study, single stranded conformational polymorphism (SSCP) was used to 

detect mutations in the CYPHB1 and CYPIIB2 genes in normotensive and 
hypertensive subjects. Whilst this is a convenient, PCR-based technique which 

enables rapid detection of nucleotide variants by changes in electrophoretic mobility, 
it does have some limitations. SSCP can show false positives. Firstly, Taq 

polymerase may misincorporate nucleotides during amplification. Secondly, DNA 

strands having identical sequences can have different stable conformations which can 

present as electrophoretic variants. In addition, false negatives which are a 

consequence of the limitations of sensitivity of this technique can occur. SSCP is 

approximately 97% sensitive for sequences ranging from 100-300bp in its detection of 

nucleotide differences, leaving 3% of nucleotides which could potentially avoid 
detection. The gel used in this study is by far the most informative but varying the gel 

composition (i. e glycerol concentration and acrylamide) and temperature may 

occassionally identify mutations which have previously gone undetected. One added 

problem in this study was the high degree of homology of the CYPIIBI and 
CYPIIB2 genes which made it difficult to design primers which would selectively 

amplify the desired region of either gene, a problem which necessitated sub-cloning of 

amplicons into T-vector. 

Using the SSCP conditions described, several differences in coding regions of 
CYPIIBI and CYPllB2 were detected which alter amino acids in the encoded 

proteins which may have functional implications. Out of 40 hypertensive patients and 
10 normal patients, an AAG to an AAT was identified in a single case at codon 357 of 

exon 6 in CYPlIB2. This alters a lysine (K) to an asparagine (N) in the protein. In 

order to rule out the possibility of false negatives, several other hypertensives and 

normals, chosen at random, were also sequenced but were not different from the 

published sequence (see appendix 1). Manual sequencing analysis of the subject with 
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the exon 6 variant demonstrated that the patient was heterozygous as shown by co- 

existance of wild-type and mutant alleles. 

Residue 357 in aldosterone synthase is located in a region which, from secondary 

structure prediction and 3-D modelling, forms P-sheet (see chapter 4). In the closely 

related bovine side shain cleavage enzyme, amino acid regions 353-359 and 363- 370 

(bovine numbering) form sheets denoted P-3 and P-4 as predicted from modelling 

based on P450cam (Vijayakamur & Salerno 1992). P-4 is a substrate recognition 

sequence in P450cam (Gotoh et al. 1992). It is obvious from the model of human 

aldosterone synthase and II P-hydroxylase based on known crystal structures and the 

bovine side chain cleavage enzyme model (see chapter 4 figure 4.3c), that this residue 

is exposed to the exterior of the molecule. This suggests that any role it may have may 

be involved with interaction with substrates or electron donors. Indeed, in bovine side 

chain cleavage enzyme, the closeby K-helix is known to be involved in adrenodoxin 
interaction where mutation of residues K377 and K381 dramatically reduce binding 

of adrenodoxin (Wada & Waterman 1992). 

To assess the functional significance of this residue change (K357N), the mutation 

was incorporated in CYPllB2 cDNA in plasmid pCMV4-B2 by site-directed 

mutatgenesis. When expressed in COS-7 cells, the mutant cDNA had no effect on the 

conversion of DOC to B, 18-OHB and aldosterone compared to wild-type aldosterone 

synthase nor on S to F conversion. DOC is the preferred substrate for aldosterone 

synthase. Incubations with S were performed to assess whether the mutation caused a 

switch in substrate specifity to improve or decrease S to F conversion. That this 

substitution does not have any detrimental effects on enzyme conversion suggests that 

it does not appear to have a role in substrate interaction. Indeed the amino acid 

substitution is lysine (K) to asparagine (N) which changes a basic to an uncharged 

residue. This may not be sufficient to alter the chemical properties at the surface of the 

molecule to alter substrate recognition or interaction with other cofactors. 

Although there was no effect of mutant 357 in vitro, in vivo, it is possible that the B2 

357 mutation may be found in in combination with other as yet unidentified mutations 
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which may also change amino acid residues. These mutations may interact to effect 

protein conformation and subsequent enzyme function. Several mutations identified in 

these genes have been shown in vitro to exert very little, if any effect, on enzyme 

activity. However, in combination with another mutation known to reduce activity, 

they exacerbate the detrimental effect (Pascoe et al. 1992, Portrat-Doyen et al. 1998). 

Indeed, all mutations/polymorphisms of the CYP 11 BI and CYP 11 B2 genes described 

in this chapter have been confined to 5 patients, suggesting that single subjects may 

have several mutations/ polymorphisms on the same allele. Sequencing of the 

complete coding region of both genes is necessary to establish this followed by 

functional studies using constructs containing all mutations. 

In addition, a number of other mutations were identified. In the CYP IIB1 gene, three 

missense mutations resulted in amino acid differences in the encoded protein. These 

included nucleotide changes in CYPIlB1 which resulted in amino acid differences; 

L83S*, H107Y and H125R*(exon 2), L186V (exon 3) and C494F (exon 9). * Those 

indicated were identified by Christine Holloway (Blood Pressure Unit). . To 

determine the effects of these mutations on enzyme activity, in vitro functional 

studies are required. Preliminary in vitro functional analysis was performed for mutant 

BI-H107Y. 

llp-Hydroxylase mutant BI-HI07Y increases conversion of 11-deoxycortisol to 

cortisol compared to wild-type 11 P-hydroxylase in vitro. From these studies it is not 

possible to state whether this is purely a functional effect or may be due to an increase 

in protein expression. In vivo, an increase in cortisol production may affect overall 

adrenal secretion rate to switch off ACTH drive. Indeed, higher secretion rates of 
DOC and S have been reported in cases of essential hypertension where IIP. 

hydroxylation is abnormal, indicating that this may be a key locus (deSimone et al. 
1985). The effect on DOC conversion has yet to be assesssed. 

Nonsense mutations were also identified in the CYPlIB1 gene at codon 189. A 

nucleotide deletion was identified in one subject and a stop codon identified in 

another. Both would be expected to result in premature termination of the coding 
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regions and a truncated non-functional product. The stop 189 was found in a subject 

also carrying L186V. If this subject were to be homozygous then the stop would 
determine phenotype and not the L186V mutation. However, this would most 
definitely result in a severely altered steroidogenic profile which would have been 

detected in the clinic. It is also possible that subjects may have the L186V 

polymorphism/mutation on its own. Effects of this on enzyme activity have yet to be 

assessed. 

In CYP II B2 exon 8, a missing codon (464) was detected in a single patient. It is 

interesting that in another study, a 3bp insertion (homozygous) was detected at this 

codon in a patient with 110-hydroxylase deficiency (Geley et al. 1996), suggesting 
that this codon or those in the immediate vicinity are important for enzyme function. 

As yet it is unclear whether the mutations found in this study are unique to the 

patients studied or whether they occur frequently. Large population studies are 

necessary to determine the frequency of a mutation. Mutations whose frequency are 

greater than 2% are generally termed polymorphic. The polymorphism may or may 

not change an amino acid and/or the function of the enzyme. Although not carried out 
in this study, readily available and simple techniques such as restriction enzyme 
digestion and allele specific oligonucleotide should enable rapid and high throughput 

screening. Indeed restriction enzymes have been identified for some of mutations 
found in this study. 

Other polymorphisms have been identified in the CYP I IB2 gene, for example Q43R, 
R173K, B296K, V386A (Momet et al. 1989, Kawamoto et al. 1990, Fardella et al. 
1996b, Portrat -Doyan et al. 1998) and also C494F which, from our findings and 

comparison with the published sequence can encode a phenylalanine or a cysteine at 
this codon in CYPI 1131. The functional significance of this substitution has not been 

established. V386A, although characterised as a polymorphism, has been reported by 

some groups to cause a small decrease in enzyme activity in vitro (Pascoe et al. 
1992). 
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Although some mutations may cause only mild effects on enzyme activity and steroid 

production and may not lead to significant alterations in circulating corticosteroid 

concentrations, they may still have important implications in vivo. Indeed, there is 

now increasing evidence to suggest that the CYPI 1BI and CYP1 IB2 genes are also 

expressed in other tissues such as the CNS, heart and vascular system where they are 
thought to be involved in cardiovascular/blood pressure homeostasis. In the CNS, 

intracerebroventricular (icv) administration of aldosterone at doses too low to act 

systemically, cause dramatic increases in blood pressure in rats (Gomez-Sanchez 

1997). Therefore, it is possible that subtle changes in aldosterone production caused 
by mutations in the CYPllB2 gene may result in higher local concentrations in 

tissues such as the brain and cause significant changes in phenotype. 

Polymorphisms may be markers of certain forms of hypertension. In a recent study, 

codon 173 of CYPllB2 was shown to be polymorphic in a Chilean population 

encoding an arginine(R) or a lysine(K) (Fardella et al. 1996b). The R173 variant of 
CYP 11 B2 had a higher frequency in patients with low-renin hypertension (Fardella et 

al. 1996b) which is characterised by suppressed renin activity which may result from 

elevated aldosterone secretion. It is also possible that polymorphisms may be in 

linkage disequilibrium with other genotypic variants. To assess this proposal, a larger 

number of subjects would have to be screened to determine whether polymorphisms 

occur only in hypertensives and thus predict succeptability to hypertension. Screening 

the CYPllB1 and B2 genes in a well-characterised group of hypertensive subjects for 

example, low-renin hypertensives, may lead to the identification of mutations with 
greater functional significance. 

Whilst this study has concentrated on the exonic-coding regions of these genes, other 
studies have shown an intronic conversion and a SF-1 polymorphism in the non- 
coding and 5' untranslated regions of the CYPI IB2 gene (see 1.6) (Brand et al. 1998 
Davies et al. 1999, White et al. 1991). There was a significant association of the - 
344T allele of the SF-I site with essential hypertension (Brand et al. 1998, Davies et 
al. 1999). Screening of the promoter and intronic regions of both genes may also be 

informative. 
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In summary, a number of mutations have been identified in this study. In vitro 
functional implications for some of them have been assessed. Whether these in vitro 

observations are applicable to the in vivo situation is not known. No attempt has been 

made to compare genotype with phenotype, as all of the hypertensive patients studied 

were anonymous. However, future studies should examine how these mutations 

affect circulating concentrations of components of the renin-angiotensin-aldosterone 

system and blood pressure response to therapy. 
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Chapter. 6. 

6.1 Effects of 18-OXOF, 18-OHF and 18-OHDOC on 11D-hydroxylation of 11- 

deoxycortisol and 11-deoxycorticotserone by human aldosterone synthase and 

110-hydroxylase in vitro in stably transfected V79 cells. 

In the rare autosomal dominant disorder, glucocorticoid-suppressible 

hyperaldosteronism (GSH) aldosterone synthase activity is ectopically expressed in 

the adrenal zona fasciculata and is subject to ACTH control (see section 1.8). In 

addition to aldosterone, the chimeric enzyme also catalyses the synthesis of 18- 

hydroxycortisol (18-OHF) and 18-oxocortisol (18-OXOF) from cortisol (F). These 

are secreted in large quantities. It has been suggested that the impaired 11 P- 

hydroxylation observed in this condition (Jamieson et al. 1996) is due either to 

competitive or to non-competitive inhibition by these metabolites. A number of other 
18-hydroxy compounds are made in the normal adrenal cortex which may also exert 

endogenous inhibitory control. In this study, the effect of 18-OXOF, 18-OHF and 
18-OH-DOC on the conversion of 11 -deoxycorticosterone (DOC) to corticosterone 
(B) and 11 -deoxycortisol (S) to cortisol (F) was investigated using cell lines stably 

transfected with CYP 11 BI or CYP 11 B2. 

6.2 Methods. 

Stably transfected cell lines were a kind gift from Prof Rita Bernhardt and were 
handled as described in section (2.9.1). CYP 11 BI and CYP II B2 cells stably express 
human II P-hydroxylase and aldosterone synthase respectively. Steroid incubations 

(24hours) were performed as described in section (2.9.4). 18-OXOF and 18-OHF 

were synthesised and subsequently purified by CE Gomez-Sanchez. They were then 

re-purified by paper chromatography. Steroid products were measured by 

radioimmunoassay (section 2.8). Cell lysates were prepared (section 2.6.1) and 

assayed for protein (section 2.6.3) All steroid measurements were corrected and are 

expressed as mnol/pmol per ing of protein per 24 hours. 
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Time course experiments were performed to determine the point of maximum steroid 

conversion. An end-point of 24 hours was chosen (figure 6.3a) for both B and F 

production from DOC and S respectively in both cell lines. 

Stably transfected CYP 11 B1 cells were incubated with (I gM) DOC in the presence 

and absence of 10 and 20gM 18-OXOF or 18-OHF. In vivo 18-OHF urinary levels in 

patients with GSH are approximately 10 times the upper limit of the normal range. 
The results are shown in flgure 6.3b. Neither 18-OXOF nor 18-OHF had any effect 

on B production from cells stably transfected with CYP IIB1 at these concentrations. 

Figure 6.3c shows the results of incubating cells stably transfected with CYP IIBI 

with (IpM) S in the presence and absence of 10 and 20pM 18-OXOF or 18-OHF. 

These steroids had no effect on F production. 

Stably transfected CYPllB2 cells expressing human aldosterone synthase were 
treated as decribed in flgures 6.3b and 6.3c. Similar results were obtained (figures 

6.3d and 6.3e). In stably transfected CYPllB2 cells incubated with DOC, 18- 

hydroxycorticosterone (18-OHB) and aldosterone were also measured. 18-OXOFor 

18-OHF had no effect on 18-OHB or aldosterone production from DOC in these cells 
(flgure 6.3f and 6.3g. ) 

Summary 

From these results, 18-OXOF and 18-OHF at concentrations of 10 and 20ýM do not 

affect B or F production from DOC and S respectively by human aldosterone 

synthase or II P-hydroxylase, nor do they affect 18-OHB or aldosterone production 
from DOC by human aldosterone synthase. 
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Figure 6.3a 
Time course of-corticosterone (B) and cortisol (F) production from 
CYP11BI and CYPI1B2 stably transfected V79 cells. 
V79 cells (CI06) were incubated with IýLM of 11-deoxycorticosterone 
(DOC) or 11-deoxycortisol (S) for 0 to 48 hours. Steroids from the medium 
were extracted and separated by paper chromatography and analysed in 
duplicate by radioimmunoassay. Results are mean ± SEM from 
quadruplicate incubations. 
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Figure 6.3b 
Corticosterone (B) production from IgM 11-deoxycorticosterone 
(DOC) in the presence and absence of 10 and 20gM of 18- 
oxocortisol (18-OXOF) and 18-hydroxycortisol (18-OHF) in V79 
cells stably transfected with CYP IIB1. 
V79 cells (CI06) were incubated for 24 hours. Steroids from the 
medium were extracted and separated by paper chromatography and 
analysed in duplicate by radioirnmunoassay. Results are mean 
SEM from quadruplicate incubations. 
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Figure 6.3c 
Cortisol (F) production fromlýM 11-deoxycortisol (S) in the 
presence and absence of 10 and 20ýM of 18-oxocortisol (18-OXOF) 
and 18-hydroxycortisol (I 8-OHF) in V79 cells stably transfected with 
CYPlIBI. V79 cells (C106) were incubated for 24 hours. Steroids 
from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioimmunoassay. 
Results are mean ± SEM from quadruplicate incubations. 
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Figure 6.3d 
Corticosterone (B) production from 1ýM 11-deoxycorticosterone 
(DOC) in the presence and absence of 10 and 20ýM of 18- 
oxocortisol (18-OXOF) and 18-hydroxycortisol (18-OHF) in V79 
cells stably transfected with CYPllB2. V79 cells (CI06) were 
incubated for 24 hours. Steroids from the medium were extracted 
and separated by paper chromatography and analysed in duplicate 
by radioirnmunoassay. Results are mean ± SEM from 
quadruplicate incubations. 
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F*Zure 6.3 
Cortisol (F) production fromlýM 11-deoxycortisol (S) in the 
presence and absence of 10 and 20ýM of 18-oxocortisol (18-OXOF) 
and 18-hydroxycortisol (18-011F) in V79 cells stably transfected with 
CYPIIB2. V79 cells (cIO6) were incubated for 24 hours. Steroids 
from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioimmunoassay. 
Results are mean ± SEM from quadruplicate incubations. 
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Figure 6.3 f 
18-hydroxycorticosterone (18-OHB) production from IPM 11- 
deoxycorticosterone (DOC) in the presence and absence of 10 and 
20pM of 18-oxocortisol (18-OXOF) and 18-hydroxycortisol (18- 
Ol-IF) in V79 cells stably transfected with CYP II B2. V79 cells 
(006) were incubated for 24 hours. Steroids from the medium 
were extracted and separated by paper chromatography and 
analysed in duplicate by radioimmunoassay. Results are mean 
Sal from quadruplicate incubations. 
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Figure 6.3 g 
Aldosterone (Aldo) production from I gM 11-deoxycorticosterone 
(DOC) in the presence and absence of 10 and 20gM of 18- 
oxocortisol (18-OXOF) and 18-hydroxycortisol (18-OHF) in V79 
cells stably transfected with CYPIIB2. V79 cells (c106) were 
incubated for 24 hours. Steroids from the medium were extracted 
and separated by paper chromatography and analysed in duplicate 
by radioimmunoassay. Results are mean ± SEM from 
quadruplicate incubations. 
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18-OHDOC was also investigated as a potential inhibitor of B and F production. 
Initial studies using (1ýtW DOC or (11M) S with 10ýtM 18-OHDOC showed a 

reduction of B and F production by both cell types in the presence of 18-OHDOC. 

To characterise this inhibition further, a range of substrate concentrations between 

0.001 and I pM were used in the presence and absence of I OgM 18-OHDOC. 

Figure 6.4a shows B production from DOC in the presence and absence of IOPLM 

18-OHDOC from cells stably transfected with CYP 11 B 1. At concentrations less than 

0.01gM steroid concentrations were at the limits of detection of the 

radioimmunoassay. At all other concentrations of substrate, there was a significant 

reduction in B production of about 40-50% in the presence of 18-OHDOC 

(n=4; p<0.05; impaired Student's West). At 0.01,0.1 and I gM substrate 

concentrations, B production was reduced from 0.08 ± 0.11 to 0.04 ± 0.03,1 ± 0.1 to 

0.4 ± 0.05 and 4.8 ± 0.7 to 2.2 ± 0.2 nmol/mg/24 hours respectively. 

Figure 6.4b shows F production from S in the presence and absence of 10ýLM 18- 

OHDOC in cells stably transfected with CYP1 IBI. There was a significant reduction 

of about 40-50% in F production in the presence of 18-OHDOC (n=4; p<0.05). At 

0.01,0.1 and I[LM substrate concentrations, F production was reduced from 0.7 ± 

0.09 to 0.1 ± 0.02,2.4 ± 0.2 to 0.7 ± 0.1 and 14.0 ± 1.9 to 7.3 ± 0.9 nmol/mg/24 
hours respectively. 

stably transfected cells. 

Cells stably transfected with CYPI IB2 were treated as described in flgures 6.4a and 

6.4b. Similarly, B and F production from DOC and S respectively, were significantly 

reduced in the presence of 18-OHDOC (figures 6.5a and 6.5b). 
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B production from DOC+L- IOgM 8-OHDOC from stably 
transfected CYP11BI cells 
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Figure 6.4 a 
Corticosterone (B) production from 0.001 to I ýtm 11. 
deoxycorticosterone (DOC) in the presence and absence of 10 pM of 
18-hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYP11BI. V79 cells (cIO6) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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Figure 6.4 b 
Cortisol (F) production from 0.001 to IgM 11-deoxycortisol (S) in 
the presence and absence of 10 tLM of 18- 
hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYP 11 B 1. V79 cells (C 106) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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B production from DOC+L- 101! M 18-OHDOC in 

stably transfected CYP1 1 B2 cells 
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Figure 6.5 a 
Corticosterone (B) production from 0.001 to I ýIm 11- 
deoxycorticosterone (DOC) in the presence and absence of 10 ýLM of 
18-hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYPIIB2. V79 cells (CI06) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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F production from S +/- I OjjM 18-OHDOC in cells 
stably transfected with CYPIIB2 
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Figure 6.5 b 
Cortisol (F) production from 0.001 to IýLM 11-deoxycortisol (S) in 
the presence and absence of 10 ýtm of 18- 
hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYPlIB2. V79 cells (C106) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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At 0.01,0.1 and lgM substrate concentrations B was reduced from 0.2 ± 0.01 to 

0.05 ± 0.02,0.5 ± 0.06 to 0.3 ± 0.02 and 4.2 ± 0.7 to 2.1 ± 0.2 nmol/mg/24 hours 

respectively. Similarly, F production was reduced from 0.3 ± 0.02 to 0.18 ± 0.06,1 

0.16 to 0.5 ± 0.06 and 7.2 ± 0.4 to 4.4 ± 0.7 nmol/mg/24 hours respectively. 

In CYP1 1132 cells, 18-OHB and aldosterone production from DOC in the presence 

and absence of 10ýM 18-OHDOC were measured. As shown in figure 6.5c. and 

6.5d, 18-OHDOC caused a significant increase in 18-OHB and aldosterone 

production at all concentrations. At 0.001,0.01,0.1 and lpM substrate 

concentrations, 18-OHB production was increased from 0.4 ± 0.08 to 5.2 ± 1.2,1.3 

0.1 to 6.1 ± 0.6,4.0 ± 0.3 to 9.3 ± 0.7 and 11.9 ± 2.1 to 21.6 ± 2.1 pmol/mg/24 hours 

respectively. Similarly, aldosterone production was increased from 0.8 ± 0.6 to 6.6 ± 

0.7,2.9 ± 0.5 to 7.8 ± 0.7,4.2 ± 0.9 to 6.7 ± 0.5 and 5.3 ± 0.7 to 11.3 ± 3.2 

pmol/mg/24 hours respectively. 

Figure 6.6a shows 18-OHB and aldosterone production from concentrations of 18- 

OHDOC ranging from 0.5 to 10ýtM in CYP II B2 cells expressing human aldosterone 

synthase. 
With increasing concentrations of 18-OHDOC, there was a dose-dependent increase 

in 18-OHB and aldosterone production. This shows that 18-OHDOC can act as a 

substrate for human aldosterone synthase. Aldosterone production from DOC and 
18-OHDOC was compared and is shown in figure 6.6b. There was a dose dependent 

increase in aldosterone production with increasing concentrations of substrate. 
Results were analysed by ANOVA followed by Student's Mest. Aldosterone 

production from DOC was significantly higher than aldosterone production from 18- 

OHDOC at all substrate concentrations (n=4; p<0.05; Students' Mest). 
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18-OHB production from DOC +/- 10 L! M 18-OHDOC in 
cells stably transfected with CYP1 1 B2 
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Figure 6.5 c 
18-hydroxycorticosterone (18-OHB) production from 0.001 to I[IM 
11 -deoxycorticosterone in the presence and absence of 10 PM of 18- 
hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYP 11 B2. V79 cells (c 106) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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Figure 6.5 d 
Aldosterone (Aldo) production from 0.001 to IpM 11- 
deoxycorticosterone (DOC) in the presence and absence of 10 gM of 
18-hydroxydeoxycorticosterone (18-OHDOC) in V79 cells stably 
transfected with CYP11B2. V79 cells (C106) were incubated for 24 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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Figure 6.6 a 
Aldosterone (Aldo) and 18-hydroxycorticosterone (18-OHB) 
production from 0.5 to 10ýM 18-hydroxydeoxycorticosterone (18- 
OHDOQ in V79 cells stably transfected with CYP II B2. V79 cells 
(cIO6) were incubated for 24 hours. Steroids from the medium were 
extracted and separated by paper chromatography and analysed in 
duplicate by radioimmunoassay. Results are mean ± SEM from 
quadruplicate incubations. 
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Figure 6.6 b 
Aldosterone (Aldo) production from 0.5 to IOPM 18- 
hydroxydeoxycorticosterone (18-OHDOC) and Ildeoxycorticosterone 
(DOC) in V79 cells stably transfected with CYP 11 B2. V79 cells (c 106) 
were incubated for 24 hours. Steroids from the medium were extracted 
and separated by paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 

228 

0.5 12 10 



The approximate Kin values for aldosterone production from DOC and 18-OHDOC 

were determined. Lineweaver-Burke regression analysis and equations are shown in 

figure 6.6c. The Kin for 18-OHDOC was 9.09 ýLmol/L. The Kin value for DOC was 

1.73 pmol/L. These Kin values are significantly different suggesting that human 

aldosterone synthase uses DOC more effectively than 18-OHDOC. 

6.7 18-OHDOC as a substrate for 18-OHB production in CYPIIB1 stabi 
transfected cells. 

Figure 6.7 shows 18-OHB production from concentrations of 18-OHDOC and DOC 

ranging from 0.5 to 101iM in CYPI IBI cells expressing human 1 IP-hydroxylase. 

18-OHB production from 18-OHDOC was very poor indicating that 18-OHDOC is 

not a good substrate for human 11 P-hydroxylase in vitro. Results were analysed 

using ANOVA followed by Student's West. There was a dose dependent increase in 

18-OHB production with increasing concentrations of DOC which was significantly 
higher, at all concentrations, than 18-OHB production from 18-OHDOC (n=4; 

p<0.0001; Student's West). 
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Figure 6.6 c 
Lineweaver-Burke analysis and derivation of the Km for human 
aldosterone synthase for 11-deoxycorticosterone (DOC) and 18- 
hydroxydeoxycorticosterone (18-OHDOC) conversion to 
Aldosterone (Aldo). The axes are the reciprocal of the substrate 
concentration in micromolar (11S) and the reciprocal of the velocity 
of aldosterone production in pmol per mg per 24 hours (IN). 
Stably transfected V79 CYP II B2. cells (c 106) were incubated for 8 
hours. Steroids from the medium were extracted and separated by 
paper chromatography and analysed in duplicate by 
radioimmunoassay. Results are mean ± SEM from quadruplicate 
incubations. 
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Figure 6.7 
18-OHB production from 0.5 to lOgM 18-hydroxydeoxycorticosterone 
(18-OHDOC) and 11deoxycorticosterone (DOC) in V79 cells stably 
transfected with CYPllB1. V79 cells (cl. 06) were incubated for 24 
hours. Steroids from the medium were extracted and separated by paper 
chromatography and analysed in duplicate by radioimmunoassay. 
Results are mean ± SEM from quadruplicate incubations. 
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In GSH, aldosterone biosynthesis is dysregulated. In all kindreds studied, all affected 
individuals have inherited a chimeric gene consisting of the 5' regulatory regions of 
CYP IIBI fused to the 3' coding regions of CYP II B2 (see section 1.8). High levels 

of 18-OHIF and 18-OXOF are produced in GSH due to further metabolism of cortisol 

via the 18-hydroxylase and 18-oxidase activities of the hybrid enzyme. 18-OHF is 

produced in normal subjects through metabolism of cortisol by 110-hydroxylase 

which also has 18-hydroxylase activity. However, urinary levels in GSH patients are 

some 10-fold greater than those observed in normal subjects (Ulick et al. 1982, 

Gomez -Sanchez et al. 1984) 

In a recent study, the indices of 11 P-hydroxylation, ST and DOC: B ratios, were 

measured in patients with GSH after ACTH-stimulation and under resting conditions 
(Jamieson et al. 1996). Compared to control subjects, both resting and ACTH- 

stimulated, both indices of 11 P-hydroxylation were altered in patients, suggesting 

that there was inhibition of DOC to B and S to F conversion. The explanation for this 

is not known but one suggestion was that 18-OXOF and 18-OHF may inhibit II P- 

hydroxylation. In this study, 18-OXOF, 18-OHF and also 18-OHDOC, another 18- 

hydroxy derivative, were assessed in vitro for effects on II P-hydroxylation by 

human aldosterone synthase and II P-hydroxylase. As stated above, urinary levels of 
18-OHF are some 10-fold greater than normal levels in GSH patients. Comparable 

concentrations of 18-OXOF and 18-OHF did not affect 11 P-hydroxylation of S or 
DOC by either II P-hydroxylase or aldosterone synthase in vitro. In addition, 

neither steroid had any effect on DOC conversion to 18-hydroxycorticosterone or 

aldosterone by aldosterone synthase. 

It is possible that higher concentrations are necessary to exert inhibitory action but 

higher concentrations may exceed the pathophysiological range. However, the 

question arises as to whether urinary excretion rates reflect levels in the blood or 

more importantly local tissue levels within the adrenal cortex. It is probable that 

adrenal levels of 18-OHF and 18-OXOF are higher than those observed in urine as, 
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upon leaving their adrenal site of synthesis, they become diluted. That these steroids 

exert a synergistic inhibitory effect is unlikely. Therefore it remains possible that 

local concentrations in vivo, in close proximity to 11 P-hydroxylase and aldosterone 

synthase, may indeed alter S: F and DOC: B ratios by inhibiting 11 P-hydroxylation. 

Alternatively, these in vitro observations may reflect the in vivo situation. Since 18- 

OXOF and 18-OHF themselves do not directly inhibit II P-hydroxylation, what other 

explanations might account for the defective 11 P-hydroxylation observed in patients 

with GSH? There are several possibilities. One is the consequence of the high rate of 

expression of the chimeric gene itself in the ZF and also in the ZG (Pascoe et al. 

1995). CYP11132 expression is down-regulated due to suppression of the renin- 

angiotensin system and therefore DOC to B and S to F conversion must be due to the 

sum of the activities of the chimeric enzyme and llp-hydroxylase. Levels of 

chimeric mRNA in the ZF are greater than levels of CYP 11 BI mRNA (Pascoe et al. 
1995). The chimera responds more sensitively to ACTH and is more easily switched 

off by dexamethasone administration. This may explain why, although CYP IIBI 

and the chimera have the same 5' regulatory regions, the chimera is expressed at 
higher levels. As stated previously, levels of aldosterone, 18-OXOF and 18-OHF are 

abnormally high in GSH. It is possible that high aldosterone concentrations in vivo 

cause product inhibition of the further conversion of DOC by the chimeric 

aldosterone synthase. It then also follows that 18-OHF may similarly inhibit II P- 

hydroxylase or the chimera to prevent finther conversion of S to F and 18-OHF. 

This mechanism has been described; exogenously administered aldosterone has been 

shown to inhibit formation of corticosterone in cultured adrenocortical cells (Vinson 

and Whitehouse. 1979). It is possible that the defective DOC to B and S to F 

conversion observed in GSH is totally attributable to the chimera steroid products 

and that II P-hydroxylase is converting DOC to B and S to F normally. However, it 

is not possible to distinguish the contributions of the chimera and 11 P-hydroxylase in 

vivo as both are responsive to ACTH. The situation in vivo is far more complex and 
it is probable that other factors may contribute to the lower apparent II P- 

hydroxylase activity. 
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The unequal crossover event between CYPIIBI and CYPllB2 has occurred at 

meiosis. The alternative chimera which in theory could occur which has the 5' 

regions of CYPIIB2 fused to the 5' regions of CYPIIBI to date, has not been 

found. That it would have any major effect on steroidoigenesis is unlikely. 

A closely related 18-hydroxysteroid was also used in this study. 18-OHDOC 

decreased production of B and F by inhibiting II P-hydroxylation of S and DOC by 

aldosterone synthase and II P-hydroxylase. The mechanism is probably competitive 

inhibition. 18-OHDOC can act as a substrate for aldosterone synthase where II P- 

hydroxylation converts it to 18-OHB and subsequent 18-oxidase activity produces 

aldosterone. UP-Hydroxylase can convert 18-OHDOC to 18-OHB but produces 

only small quantities. Therefore, 18-OHDOC may reduce the conversion of S to F 

and DOC to B by competing as a substrate for II P-hydroxylation with both DOC 

and S. However, this is unlikely as compared to DOC, 18-OHDOC is a poor 

substrate of II P-hydroxylase and not likely to compete with DOC or S for the active 

site. It was not possible to perform Lineweaver-Burke regression analysis on the data 

as too few concentration points were used. Studies of adrenal steroids displaying 

inhibitory effects have been reported (Matkovic et al. 1995). In mitochondrial 

fractions from rat adrenals, cortisol completely inhibited the conversion of B, 18- 

OHB or 18-OHDOC to aldosterone but had no effect on conversion of DOC to 18- 

OHDOC or B (Matkovic et al. 1995). This may have been due to F competing for 

18-hydroxylase and 18-oxidase activities with B, 18-OHB and 18-OHDOC which 

were used as substrates in this study. DOC to B conversion is performed by an II P- 

hydroxylation. Cortisol already has an 11 P-hydroxyl group. This may explain why it 

did not inhibit DOC to B conversion. 

18-OHDOC was shown unequivocally in these experiments to be a substrate for 

human aldosterone synthase and, to a much lesser extent, II P-hydroxylase in vitro, 

producing 18-OHB and aldosterone and small quantities of 18-OHB respectively. 
Whether it is an important substrate in vivo remains to be established. In the rat, 18- 

OHDOC is said to be produced by II P-hydroxylase, sequestered within the adrenal 

cortex and available as an alternative substrate for aldosterone biosynthesis (see 
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below). 

18-OHDOC was first isolated and identified in 1961 (Birmingham and Ward 1961, 

Peron 1961). As early as 1979,18-OHDOC was thought to contribute to some forms 

of hypertension by acting as a mineralocorticoid (Nicholls et al. 1979). In the rat, 
high rates of secretion are associated with increases in blood pressure. Thus, in the 

DahI R rat, mutations in CYP IIBI result in an enzyme which produces 2-fold less 

18-OHDOC than the Dahl S rat in vitro (Matsukawa et al. 1993) and this is now an 

acc epted explanation of the difference in sensitivity of blood pressure to salt (see 

1.8.10). In man, 18-OHDOC levels are slightly greater than those of aldosterone 
(Melby et al. 1972, Messeril et al. 1976, Ulick et al. 1976) but its mineralocorticoid 

potency is much lower. There have been occasional reports of mildly raised levels of 
18-OHDOC in some forms of hypertension. However, that the associated 

mineralocorticoid effects observed in these patients with higher 18-OHDOC levels 

may be attributable to consequent small increases in aldosterone production through 

18-OHDOC conversion by aldosterone synthase, while possible, is unlikely. 

The question arises as to whether 18-OHDOC is an important substrate in vivo for 

aldosterone synthase or II P-hydroxylase in human subjects. There are several factors 

which suggest that it is not. The local tissue concentrations of adrenal steroids are not 
known. For the sake of argument, one may assume that the relative concentrations in 

plasma and urine excretion rates reflect their relative local concentrations. Normal 

plasma/ urine ranges for DOC, B and 18-OHDOC are 80 to 500 pM, 2.3 to 23 nM 

and 0.6 to 4.6 nM respectively. Taking these as indices of their relative local adrenal 

concentrations, it then follows that 18-OHDOC concentration may be some 10-fold 

higher than that of DOC. This would suggest that 18-OHDOC would be a readily 

accessible substrate for aldosterone synthase. This study however, shows that DOC 

has a much lower Km for a1dosterone synthase than does 18-OHDOC. Thus, despite 

somewhat higher concentrations, that 18-OHDOC can compete effectively with 
DOC for the aldosterone synthase active site seems unlikely. The Km of II P- 

hydroxylase for 18-OHDOC was not assessed as conversion to 18-OHB from 18- 

OHDOC was so poor. 18-OHDOC was converted to 18-OHB but the yield of 18- 
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OHB was much lower than from DOC. This suggests that 18-OHDOC is probably 

not an important substrate for llp-hydroxylase in vivo. The efficiency of 18- 

OHDOC conversion to aldosterone by cloned rat aldosterone synthase in vitro has 

been shown to be poor (Zhou et al. 1995). Also, bovine II P-hydroxylase catalyses 

aldosterone synthesis and 18-OHDOC has recently been shown not to be a preferred 

substrate ( Imai et al. 1998). 

Another important uncertainty is whether 18-OHDOC is sequestered by protein 
binding in man as it is in the rat (Vinson et al. 1992) and also whether this pool of 
18-OHDOC is readily available to the enzymes. In the rat, 18-OHDOC can only be 

released from ZF-sequestered stores in vitro by trypsinisation of cultured adrenal 

sections or by prior sodium depletion (Vinson et al. 1995). The mechanism by which 
ZF-produced 18-OHDOC finds its way to the ZG is not known but may involve a 

carrier and active transport. Whether in human subjects, ZF-produced 18-OHDOC 

has access to the ZG is not known. That 18-OHDOC is made by human aldosterone 

synthase in situ in the ZG in realistically useful quantities is also unlikely. In the rat, 

aldosterone synthase produces only very low levels of 18-OHDOC (Okarnato & 

Nonaka 1992). Moreover, to use sequestered 18-OHDOC, aldosterone synthase, 

which has a relatively low affinity for this steroid, must compete with the putative 
binding protein which, from in vitro evidence at least, binds it strongly. Therefore in 

vivo, 18-OHDOC is probably not an important substrate for aldosterone biosynthesis 

in man. Recent studies have claimed that 18-OHDOC may be utilised in aldosterone 

synthase deficiency (Portrat-Doyan et al. 1998). This too is unlikely as conversion of 
18-OHDOC to aldosterone requires II P-hydroxylation and 18-oxidation. This latter 

function requires aldosterone synthase. In summary, it is clear from the present in 

vitro study that 18-OHDOC inhibits DOC to B and S to F conversion and also that it 

can be converted to aldosterone and 18-OHB by human aldosterone synthase and 
llp-hydroxylase respectively. However, the affinity of 18-OHDOC for these 

enzymes is much lower than that of DOC, indicating that it is not a preferred 

substrate. 
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Enzyme function, like that of any catalyst, is structurally dependent. Substances such 

as substrates and cofactors are brought into close proximity with the enzyme active 

site and manipulated into the precise orientations appropriate for reaction and 

transformation. In the globulin protein enzyme molecule, this complex but precise 

topography is derived from the folding of a linear polypeptide comprising cc-helices 

and P-sheets with linking loops. Clearly, the effect of sequence differences - i. e. 

mutations or polymorphisms will depend on the extent to which they may change 

conformation. This is relevant to the studies of 11 P-hydroxylase as aldosterone 

synthase described in this thesis in two ways. 

1) As emphasised frequently in previous sections, aldosterone synthase and II P- 

hydroxylase have extensive structural homology but functions which, while 

overlapping, are different. While both catalyse llp- and 18-hydroxylation, only 

aldosterone synthase is capable of inducing the second hydroxylation at C18 

necessary for aldosterone biosynthesis. Moreover, studies in this thesis have shown 

that substrate specificities are quantitatively different (see chapter 3,5 and 6). This 

difference in potential lies mainly in the haem and substrate binding regions encoded 

by exons 6,7 and 8. Evidence in this thesis corroborates and extends that of previous 

structure-function studies. This information was obtained by site-directed 

mutagenesis of specific codons of CYPIIB1 and B2 and by expressing the altered 

genes in vitro. Careful evaluation in this study of the effects of mutations on the 

kinetics of each component reaction using each of the physiological substrates was 

accomplished using specific steroid analysis. Less predictable, but of great potential 
interest, was the finding that a relatively conservative mutation at some distance 

from domains apparently directly involved in catalysis (eg. the I helix, K-helix and 
P-sheets 3 and 4, see section 1.7,1.8 and 1.9) had significant quantitative and 

qualitative effects on the reactions. In order to establish the reasons for such effects, 
it is necessary to know their relative positions. Mutation of residues which appear to 

be in significant regions may have functional implications. In chapter 4, an attempt 

has been made to study this using modelling techniques based on simpler bacterial 
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cytochrome P450 enzymes. Residues at positions 43,107,147,186,248,357 and 

493 have been highlighted in this study. The regions to which they have been 

assigned by modelling techniques shows: residue 43 is within the membrane anchor, 

residues 107,147 and 186 and 248 lie within or flank helices surrounding the haern 

while residues 357 and 493 may form part of P-sheets 3 or 4. Substitutions K357N 

and T493M which lie within P-sheets 3 and 4, regions involved in 

substrateladrenodoxin interaction, did not alter function. However, it is probable that 

the chemical properties of an amino acid are important to the function. While these 

substitutions did not alter function, it remains possible that different amino acids at 

the same locus might do so. It is also possible that the modelling is imprecise and 

that residues are wrongly positioned resulting in a false expectation of the effects of a 

mutation. The shortcomings of this approach are obvious and have been emphasised. 

In order to obtain reliable information, it will be necessary to obtain the crystal 

structure of these enzymes. Milligram quantities are necessary for protein 

crystallography techniques. This will require large-scale protein expression using for 

example, a Baculovirus system, and subsequent isolation and purification. 

2) The practical implications of these findings, the second way in which the 

structure-function studies are important, relate to their possible clinical significance. 

As described in sections 1.6 and 1.8 and chapters 3 and 5, the aetiology of essential 

hypertension is unknown but there is strong evidence of an inherited component in 

the blood pressure rise and this may, at least in part, be explained by changes in 

corticosteroid synthesis and catabolism. Moreover, recent evidence obtained from 

twins (Inglis et al. 1998) suggests that secretion of many corticosteroids is strongly 
heritable. Screening DNA from patients with essential hypertension in our 
department has already revealed a number of polymorphisms in CYPllBI and 
CYPllB2 (chapter 5). Their clinical significance is not established. Using the 

techniques established in this study to prepare these altered genes and carry out 
kinetic analysis it will be possible to assess their potential influence on endogenous 
hormone levels. Used in conjunction with the results of crystallographic analysis, it 

may in the future be possible to predict their effects and perhaps also to develop 

pharmaceutical agents to control gene finiction. 
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The results outlined and discussed in previous chapters could be improved and 

extended in several ways. For example, in chapter 3, since the principal aim was to 

investigate the specific basis of aldosterone synthesis, only those residues potentially 
important to this activity were studied in detail. Residue 147 was found to be 

important in the II P-hydroxylation component of aldosterone synthesis; it was also 
important to the activity of Ilp-hydroxylase. However, although manipulation of 

residues 43,248,357 and 493 was without effect on aldosterone synthase activity, it 

cannot be assumed that they are similarly inconsequential to I 10-hydroxylase. This 

must be tested experimentally. The choice of residues to mutate may have been 

affected had the computer modelling been investigated before the experimental work 
began. This may have identified more key residues involved in specific enzyme 

activities. 

As explained in chapter 1,11 P-hydroxylase also catalyses 18- and 19-hydroxylation. 

Studies in the DahI rat strongly indicate that it is the balance of these activities that 
determines physiological and pathophysiological outcome. Moreover, it is possible 
that the timecourses of these various transformations are different. Future studies 

should therefore follow the effect of induced or naturally-occurring mutations of 
II P-hydroxylase on the ratio of IIP: 18: 19-hydroxy products, not at a single time 

point (48h) but as it changes with time. 

The enzymes studied interact with their respective substrates with characteristic 

affinities (chapter 3). It is important to emphasise that they also interact with co- 
factors, notably adrenodoxin. In the studies described herein, cells were 

cotransfected with bovine adrenodoxin whereas the human protein may have been 

more appropriate. While there are reports that such species-compatible constructs 

are more efficient, a thorough study of species and dose-response relationships 

would be valuable. 

No evidence that either 18-oxocortisol or 18-hydroxycortisol inhibit aldosterone 

synthase or II P-hydroxylase was obtained (chapter 6). This conclusion was based 

on the use of a single concentration (10ýM), a choice in turn based on the levels of 
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18-hydroxycortisol in GSH patents compared to control subjects. Again, it must be 

emphasised that the local in vivo tissue concentrations of these compounds in GSH 

or in normal subjects are unknown, nor is it known whether the fact that they are 
intracellular in vivo and extracellular in vitro may alter their action. Certainly, the 

low conversion rates of substrate steroids in this in vitro system suggest that it may 

not have been optimal. Further studies of tissue concentrations would be helpful. 

Finally, consideration of the crystallographic structure of human aldosterone 

synthase and llp-hydroxylase were necessarily speculative although it produced 

some interesting ideas. More detailed analysis is required and hence determination 

of the crystal structure. 

Like all good research endeavours, this work commenced with a small series of 

related questions. Some have been answered; some have not. Importantly, the 

research has raised a larger series of important questions to be addressed in the 

future. 
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APPENDIM 

Listed below are the nucleotide sequences for CYP IIBI and CYP 11 D2 obtained from the 

Human Genome databank. Accession numbers for the sequences are as follows: 

CYPIIBI CYPIIB2 

5' flanking region and exon I D10169, D90428, X55765 D10170, D90429 

Exon I and 2 M32863, J01540 M32864, J05140 

Exon 38 M32878, J01540 M32880, J05140 

Exon 9 M32879 J01540 M32881 J05140 

Exons are indicated by bold type. The position of oligonucleotides listed in appendix 
III are indicated by bold letters above the relevant sequence and underlined. Sense and 

antisense oligonucleotide are indicated by > and < respectively. 

CYPllBl 

TTTTCTAGTTCTTTTAATTGTGATGTTAGGGTGTCAGTTTTGGATCTTTCCTGCTTTCTC 60 

TTGTGGGCATTTAGTGCTATAAATTTCCCTCTACACACTGCTTTGAATGTGTTCCAGAGA 120 

TTCTGGTATGCTGTGTCTTTGTTCTCGTTGGTTTCAAGAACATCTTTATTTCTGCCTTCA 180 

TTTTGTTACGTACCCAGTAGTCATTCAGGAGCAGGTTGCTCAGTTTCCATGTAATTGAGC 240 

GGTTTTGAGTGAGTTTCTTAATCCTGAGTTCTAGTTTGATTGCACTAAAATTTTTAAAAA 300 

GTAAAAAAAATACATGTGGTTTAATACAATTCATGCCAACTCATTCCCTCGTTTTTTGCT 360 

ATAAACCTTGCAAGGAGATGAATAATCCAAGGCTCTTGGATAAGATAAGGGCCCCATCCA 420 

TCTTGCTCCTCTCAGCCCTTGGAGGAGGAGGGAGAGTCCTTTTCCCCTGTCTACGCTCAT 480 

GCACCCCCAATGAGTCCCTGCCTCCAGCCCTGACCTCTGCCCTCGGTCTCTCAGGCAGAT 540 

CCAGGGCCAGTTCTCCCATGACGTGATCCCTCTCGAAGGCAAGGCACCAGGCAAGATAAA 600 

AGGATTGCAGCTGAACAGGGTGGAGGGAGCATTGGAATGGCACTCAGGGCAAACZCAGAG 660 ex 1 

GTGTGCATGGCAGTGCCCTGGCTGTCCCTGCAAAGGGCACAGGCACTGGGCACGAGAGCC 720 

GCCCGGGTCCCCAGGACAGTGCTGCCCTTTGAAGCCATGCCCCGGCGTCCAGGCAACAGG 780 

TGGCTGAGGCTGCTGCAGATCTGGAGGGAGCAGGGTTATGAGGACCTGCACCTGGAAGTA 840 
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CACCAGACCTTCCAGGAACTGGGGCCCATTTTCAGGTAAAGCCCTCCCTGGCCCTCGCTG 900 

GAACACCCAGTGCCCTGCCCTTGCTGCCCAGGACCCTGCCGGGCACTCAGCACTGCCATT 960 

CCCAGCAGGTCCCGGCACTCTGCATCCTTTGGAAGAGGGAAGATCGAGCACGTGCTGTCT 1020 

GTGCGCTGCAGGGCAGGGCATGTGCAGAGCAAATGGGAGCTCGGCTGCAGAGAGGGCAGG 1080 

ACTCAGAGGCACTGAAGTTAAGAGGTTCCGGGCAGTCAGCAAGAGGGCGTTTAGCTGTGA 1140 
Y6265> 

AGCCGCTAATCCAGGAGAGGGGAGGGTGGACAGGAGACACTTTGGATTGGGACTGCAGGG 1200 

TGGGGCCAGCAGGGACTAGACCCCGTCCAGCAGGGCCTCCTGCTTGGCCCCACAGGTACG 1260 ex 2 

ATTTGGGAGGAGCAGGCATGGTGTGTGTGATGCTGCCGGAGGACGTGGAGAAGCTGCAAC 1320 
C3130> C3131< 

AGGTGGACAGCCT = TCCCCACAGGATGAGCCTGGAGCCCTGGGTGGCCTACAGACAAC 1380 
C0222> 

ATCGTGGGCACAAATGTGGCGTGTTCTTGCTGTAAGCGGCGAGCTGAGAGCTGGGAGCAG 1440 
C0223< 
GGTGGGCAGCCTGGGTGTAGGGGGGAGGCGAGAGAGGCAGGAAAAGCTTGACAACAGGGG 1500 

TCAGTTCCTTTCTTGCAGAAAATCCCTCCCCCCTACTACAGGGAGGGCCCGCATGGGTGA 1560 

GGTGGTGCCAGACTTGGGGCGCCAGGTCCCGGGAATGACCTCAGTTACCCTGTCAGCACC 1620 

TGTGGGCAGAAGCTACCATCTCATCCCTGCTTAGACCTGAGTGGCCTTTGTCCAGCACCT 1680 

GGAGGCCGTCTGAGAAAAGGCTGCAGCTCGAACACAAACAGGCAGCTTCTACCAGGGCCC 1740 
Y6263 

CCAGTCAGCTCCCTGCAGGCCGATTCCCCTTGGGACAAGGAGGATGGGATACGGGTCAGG 1800 

GCCTGTGTTTTGCTGGGGCGGCCTCACAAGCTCTGCCCTGGCCTCTGTAGGAATGC, GCCT 1860 ex 3 
C8489< Y6130> Y6131< 

GAATr. GCC. CTTCAACCGATTGCGC. CTGAATCCAGAAGTGCTGTCGCCCAACGCTGTGCAG 1920 

AGGTTCCTCCCGATGGTGGATGCAGTGGCCAGGGACTTCTCCCAGGCCCTCAAGAAGAAG 1980 

GTGCTGCAGAACGCCCGGGGGAGCCTGACCCTGGACGTCCAGCCCAGCATCTTCCACTAC 2040 
Y6264< 

ACCATAGAAGGTGTGGGCCACATGGGTTGATCCAGCCTCAGAGACCCTGGAGTGGCCAGG 2100 

GACGGGGATGGGGGACTGAAGGGAGTGTGGGGAGGCAGCCAGGAGGCCCGGTTCCCTTGT 2160 

GCTCAGCAGTGCATCCTCCCCGCAGCCAGCAACTTGGCTCTTTTTGGAGAGCC. GCTGGGC 2220 ex 4 
S6718> 

CTGGTTGGCCACAGCCCCAGTTCTGCCAGCCTGAACTTCCTCCATGCCCTGGAGGTCATG 2280 

TTCAAATCCACCGTCCAGCTCATGTTCATGCCCAGGAGCCTGTCTCC. CTGGACCAGCCCC 2340 

AAGGTGTGGAAGGAGCACTTTGAGGCCTGGGACTGCATCTTCCAGTACGGTGAGGCCAGG 2400 
B4251< 

GACCCGGGCAGTGCTATGGGGAAGGACACCATCGGGCCCCCAATTTCTCCCTCTCCACCA 2460 

2CCAGTGGGGAATGGAGGCCACAGGGAGGGGTCGGGGATTCCTCACCGTCCTGCCAGGGA 2520 

GATTGGTGTGAGGCTGGGGCTGGGCTGGGCTGATCCGGAGAATTTGGGATGAGAGCAGGG 2580 
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M6642> 
AGACTTGGTGCTGGGCTAGCTGGCAGGAGGAGGACACTGAAGGATGTTTCCCAGCACCAA 2640 

AGTCTGAGGGCTGCCTCCCGCTCCCCGGATAGGCGACAACTGTATCCAGAAAATCTATCA 2700 ex 5 

C. rýCTGGCCTTCAGCCGCCCTCAAr-AGTAr-ACCAGCATCGTGGCGGAGCTCCTGTTGAA 2760 

TGCGGAACTGTCGCCAGATGCCATCAAGGCCAACTCTATGGAACTCACTGCAGGGAGCGT 2820 

GGACACGGTCAGGCCGGCAACCAGCCCCACCCAGAGAGGGTGATGCCAAGCCTGCCTCCC 2880 

M6643< 
AGGCACTGCCTGCCAATGTCACACGGCGCCCACGTGTCCCATGCCCAGGCTATGGGCCCC 2940 

ACATTTCTTACTTGGGATTGTGATGTGATAAACACGTTTGCAGGTTGCCATGGTTGGAAT 3000 

GGGGGGTTCCTTTCCTTCTGTGGAGGACTCAGGGAAACGGGGTTTGGATGGGCATTAGGA 3060 

TTTGAAGTCTTGGGCTCTGTCGTGCTCAGGGTATGCATGTCTGCACCCCTCACAGGGAGG 3120 

TTGTCCTGGGAGGGGTGTCCCGGGGGCTGAGTCCTCCTGTGCAAGGTCTGACCCTGCAGC 3180 

TGTGTCTCCTGCAGACGGTGTTTCCCTTGCTGATGACGCTCTTTGAGCTGGCTCGGAACC 3240 ex 6 

CCAACGTC, CAGCAGGCCCTGCGCCAGC. AGAGCCTGGCCGCCGCAGCCAGCATCAGTGAAC 3300 

ATCCCCAGAAGGCAACCACCGAGCTGCCCTTGCTGCGTGCGGCCCTCAAGGAGACCTTGC 3360 

T2140< 
GGTGGGTGCTGGCTGAGGCCTCCCTGTGGCCCTGGCCCTGCTGGAGAGTCAGCCCCCACT 3420 

GGGTGGTTGCAGACAGAATCTGGGCTATAAACACCTACCCAGCAGCCATCCTGACTGCTC 3480 

TCTCGCGTCAAGGACAGGGAGCTCTTCTTCCTCTGGAATCCCTCTTCAACGCCCTGGGGA 3540 

TTAACGTGGGGGCATGTCCTTCTGCGCTCGGGGCTGCTTAAGTTAGGGGAGGTTTGGCCG 3600 

GGCTCAGCAGGTGCAAGGAAGCACTTCCTACACCTGGGCTTCCCATGGATCTGGGACCTC 3660 

TGCGGGGTCTTCGGTAGGAAGGGTGCAGAGAGCACAGGAACCCCATCCCAGCTGAGACCC 3720 

Y6259> 
TTTCTATGGATGCCCCCACCTCCAGGCTCTACCCTGTGGGTCTGTTTCTGGAGCGAGTGG 3780 ex 7 

CGAGCTCAC, ACTTGGTGCTTCAGAACTACCACATCCCAGCTGGGGTGAGTGAGCCCCACA 3840 
Y6261> 

CCCTCGAGCTGAGAACCTCCCTCCCCAGTCATTCCCTGATCCCCGCTCTGCTCCGTCCGC 3900 

AGACATTGGTGCGCGTGTTCCTCTACTCTCTGGGTCGCAACCCCGCCTTGTTCCCGAGGC 3960 ex 8 

CTGAGCGCTATAACCCCCAGCGCTGGCTAGACATCAGGC. GCTCCGGCAGGAACTTCTACC 4020 

ACGTGCCCTTTGGCTTTGGCATGCGCCAGTGCCTTGGGCGGCGCCTGGCAGAGGCAGAGA 4080 

TGCTGCTGCTGCTGCACCATGTGAGCAGGCCCGGGGAATTCTGGGCCTGGGCTGTAAGGT 4140 
M6635> 

GGGGCTGGTCAGGAATGAAACAGGTTGGAGGCCAGGCTGCTGTTCCCCCTTCAGCATAAT 4200 

CTCTGCAACTTTGAGGGTCTGAGAAGGCTGCACCACGTCGATGGGCTGCGGACCAAGCCA 4260 

GATGGAAACCCGGCTTCTGTCCTAGGTGCTGAAACACCTCCAGGTGGAGACACTAACCCA 4320 ex 9 
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AGAGGACATAAAGATGGTCTACAGCTTCATATTGAGGCCCAGCATGTGCCCCCTCCTCAC 4380 

M6637< 
CTTr-AGAGCCATCAACTAATCACGTCTCTGCACCCAGGGTCCCAGCCTGGCACCAGCCTC 4440 

CCTTTCTGCCTGACCCCAGGCCACCCCTCTTCTCTCCCACATGCACAGCTTCCTGAGTCA 4500 

CCCCTCTGTCTAACCAGCCCCAGCACAAATGGAACTCCCGAGGGCCTCTAGGACCAGGGT 4560 

TTGCCAGGCTAAGCAGCAATGCCAGGGCACAGCTGGGGAAGATCTTGCTGACCTTGTCCC 4620 

CAGCCCCACCTGGCCCTTTCTCCAGCAAGCACTGTCCTCTGGCAGTTTGCCCCCATCCCT 4680 

CCCAGTGCTGGCTCCAGGCTCCTCGTGTGGCCATGCAAGGGTGCTGTGGTTTTGTCCCTT 4740 

GCCTTCCTGCCTCTAGTCTCACATGTCCCTGTTCCTCTTCCCCTGCCAGGGCCCCTGCGC 4800 

AGACTGTCAGAGTCATTAAGCGGGATCCCAGCATCTAGAGTCCAGTCAAGTTCCCTCCTG 4860 

CAGCCTGCCCCCTAGGCAGCTCGAGCATGCCCTGAGCTCTCTGAAAGTTGTCGCCCTGGA 4920 

ATAGGGTCCTGCAGGGTAGAATAAAAAGGCCCCTGTGGTCACTTGTCCTGACATCCCCAT 4980 

TTTCAAGTGATACAACTGAGTCTCGAGGGACGTGTGTTCCCCAGCTGATCGTGTCAGCCT 5040 

CATGCCCCTGGCCTCATCTTTCATGGACCAGGCCTTGTTCCAGGAGTGGGCGTTGGGTCC 5100 

TCTGCTTCCTGTGCTGTCCCCTGGGGAAGGTCCCAAGGATGCTGTCAGGAGATGGAAGAG 5160 

TCATGTGGGGTGGGAACCTGGGGTGTGGTTCCAGAAATGTTTTTGGCAACAGGAGAGACA 5220 

GGATTGGGCCAACAAGGACTCAGACGAGTTTTATTGACTATTCTCTGACA 5270 

CYPllB2 

TTTGTC-TACATGTGTTCAAAACCCACAGCATGTTGACCACCAGGAGGAGACCCCATGTGACTCCAG 60 

-6 

GGCCCCTGGTTGATAACAACGTATCGAGATTCCTCACATGGAACCAGTGCGCTTCTGTGG 120 

TGGAGGGTGTACCTGTGTCAGGGCAGGGGGTACGTGGACATTTTCTGCAGTTTTTGATCA 180 

ATTTTGCAATGAACTAATCTCTGGTATAAAAATAAAGTCTATTAAAAGAATCCAAGGGGC 240 

CCTCTCATCTCACGATAAGATAAAGTCCCCATCCATTTTGCTCCTCTCAGCCCTGGAGAA 300 

AGGAGAGGCCAGGTCCCACCACCTTCCACCAGCATGGACCCCCAGTCCAGACCCCACGCC 360 

TTTTCTCAGCATCCTCAGACCAGCAGGACTTGCAGCAATGGGGAATTAGGCACCAGACTT 420 
T2137> 

CTCCTTCATCTACCTTTGGCTGGGGGCCTCCAGCCTTGACCTTCGCTCTGAGAGTCTCAG 480 

GCAGGTCCAGAGCCAGTTCTCCCATGACGTGATATGTTTCCAGAGCAGGTTCCTGGGTGA 540 

GATAAAAGGATTTGGGCTGAACAGGGTGGAGGGAGCATTGGAATGGCACTCAGGGCAAAG 600 ex 
1 
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GCAGAGGTGTGCGTGGCAGCGCCCTGGCTGTGCCTGCAAAGGGCACGGGCACTGGGCACT 660 
V5311> V5312< 

AGAGCCGCTCGGGCCCCTAGGACGGTGCTGCCGTTTGAAGCCATGCCCr-ACCATCCAGGC 720 

AACAGGTGGCTGAGGCTGCTGCAGATGTGGAGGGAGCAGGGTTATGAGCACCTGCACCTG 780 

GAGATGCACCAGACCTTCCAGGAGCTGGGGCCCATTTTCAGGTAAAGCCCTCCCTGGCCC 840 
T2139< 

TCGCTGGGAACACCCAGATCCCTCCCCCTGCTGCCCAGGACACTGCCAGGCACTCAGCAC 900 

TGCCATTCCCAGCAGGTCCCGGCACTCTGCATCCTTTGGAGGATGGGGAAGGAGTGCAGC 960 

ACATGCTGGTCTGTGGTGCTGCCAGGGCAGGGGATAGTGCAGAGAAAACCCCAGCTCACT 1020 

GCAGAGAGGGCAGGACTCAGAAGCACTAAAGTTGAAAGGTTCCAGGGAGCCAGCAGGAGG 1080 

GCTTTAGCTGTGAAGCCGCTAATCCAGGAGCAGGGAGGGTGGACAGGAGACACTTTGGAT 1140 

TGGGACTGCAGGGTGGGGCCACGAGGGACATGACCCCGTCCAGCAGGGCCTCCTGCTTGG 1200 

CCCCACAGGTACAACTTGGGAGGACCACGCATGGTGTGTGTGATGCTGCCGGAGGATGTG 1260 

ex 2 

GAGAAGCTGCAACAGGTGGACAGCCTGCATCCCTGCAGGATGATCCTGGAGCCCTGGGTG 1320 
N4019> 

GCCATCAGACAACAT CGTGGGCACAAATGTGGCGTGTTCTTGTTGTAAGCGGCGAGTTGG 1380 
Y6266< 

GAGCTGAGAGCTGGGAGCAGGGTGGGCAGCCTGGGTGTAGGGGGGAGGCGAGAGAGGTAG 1440 

GACCCAAAAGCACATCTGCCCTGGGCCCCTGTGGTGGGCAGTGAGGGTGAGCACCCGGCC 1500 

CAGAGGACGGCCATCCTGTGGGGTCGCGTCTGCACTGTGGGTTGGGGAAGCAGGGCGGTG 1560 

GTGGAGAAATGGGCAGGGGCACCTCTGCAGAGAAGACGCAGAGCAATGAGCCCTTCTGTG 1620 

TAGTGAGAACCCGCTCTGCACCAACCTCGGCGGCTGCTTTCTCTTGCGGTCTGGGGACTC 1680 

TCCTTCCCATAGGTCAGAAAACTGAGGCCCTGAGAAGGGGACTTCCACTGGCCCAGGTCA 1740 

CAGGCTGAGTACTGAGCCTGGTGTTCGCCGGGGCCACAGCCTCCCTCAGGGCGCTCAGGG 1800 

TCCCTGCAGAACAGGGGTCACCTCCTTTCTTGGAGAAAAGCCCTACCCTGTTACTACAGG 1860 

GAGGGCCTGCATGGGTGAGGTGGTGCCAGACTTGGGTCGCCAGGTCCCAGGAATGACCTC 1920 

AGTTACCCTGTCAGCACCTGTGGGCAGAAGCTACAGTCTCATCCCTGCTTAGACCTGAGC 1980 

GGCCTTTGCCCAGCACCTGGAGGTCGCTCTGAGAAAAGGTCTGCAGCTCGAACACAAACA 2040 
Y6263> 

GGCAGCTTCTACCAGGGCCCCAGTCACTCCTGCAGGCCGATTCCCCTTGGGTACAAGGAG 2100 

GATGGGATACGGGGTCAGGGCCTGTGTCTTGCTGGGGCGGCCTCACAAGCTCTGCCCTGG 2160 
T3900> T3901< 

CCTCTGTAGGAATGGGCCTC, AATGGCGCTTCAACCGATTGCGGCTGAACCCAGATGTGCT 2220 
ex 3 

GTCGCCCAAGGCCGTGCAGAGGTTCCTCCCGATGGTGGATGCAGTGGCCAGGGACTTTTC 2280 
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CCAGGCCCTCiAGGAAC. AAGGTGCTGCAGAACGCCCGGGGGAGCCTGACCCTGGACGTCCA 2340 

GCCCAGCATCTTCCACTACACCATAGAAGGTGTGGGCCATGCGGGAAGGTCCAGCCCCAG 2400 
Y6264< 

AGACCCTGGAGTGGCCAGGGATGGGGATGGAGGACTGAAGGGAGTGTGGGGAGGCAGCCA 2460 
B4250> 

GGAGGTCCGGGGCTGCCTTGTGCTCAGCAGTGCATCCTCCCCGCAGCCAGCAACTTAGCT 2520 
ex 4 

S6718> 
CTTTTTGGAGAGCGGCTGGGCCTGGTTGGCCACAGCCCCAGTTCTGCCAGCCTGAACTTC 2580 

CTCCATGCCCTGGAGGTCATGTTCAAATCCACCGTCCAGCTCATGTTCATGCCCAGGAGC 2640 
T3898> T3899< 
CTGTCTCGCTGGATCAGCCCCAAGGTGTGGAAGGAGCACTTTGAGGCCTGGGACTC, CATC 2700 

TTCCAGTACGGTGAGGCCAGGGACCCGGGCAGTGCTATGGGGAAGGGACACCATGGGGGC 2760 
B4251< 

CCAATTTCTCCCTCTCCACCACCCAGTGGGGAATGGAGGCCACAGGGAGGGGTCGGGGAT 2820 

TCCTCACCTTCCTGCCGGGGAGATTGGTGCGAGGCTGGGGCTGGGCTGGGCTGATCCGGA 2880 
T2138> 

GAATTTGGGATGAGAGCAGGGAGATTTGGGTGTCGGGGCAGTCTCGGCAGGAGGAGGACA 2940 

CTGAAGGATGCTTCCCAGCACCAAGATCTAGGGCTGTCCCCTGCTCCCTGTACAGGTGAC 3000 
ex 5 

z0895> 
AACTGTATCCAGAAAATCTACCAGGAACTGGCCTTCAACCCCCCTCAACACTACACAGGC 3060 

ATCGTGGCAGAGCTCCTGTTGAAGGCGGAACTGTCACTAGAAGCCATCAAGGCCAACTCT 3120 

ATGGAACTCACTGCAGGGAGCGTGGACACGGTCAGGCCAGCAACCAGCCCCACCCAGAGA 3180 
T2141< 

GGGTGATGCCAAGCCCTGCCTCCCAGCACTGCCTGCCAATGCCACACGGCACCCACGTTC 3240 

CCCATCCCCAGGCTACAGGCCCCACATTTCTGTTGCCCTCAGCCTTCCCCCTCCTTTGTT 3300 

AAGGGATGAGATTTGCAGGGGAGGGGAAATGTGAGCTCCCCCTCACATGAGACTGAGTTT 3360 

GCAGTTACCTGTGTGGGGATCCATGCTCCAGGCTGGAAGAAAGTTGGATGAGGCCCTGGA 3420 

CACACAGCAGCTCTGTCCCCACTGGAAAGCTCTGGGTGTACAAGGAGAAGGAGGGTTGAG 3480 

AGGCAGCTGGAGGACTCCACTGGGCACCCTTCCCAGTGTGCCCGGTCACCTTGGGCCAGA 3540 

AATGTACATGCATGGGAGGGCAGGGTTGTGGGGAAGGCAGCAGCACGGGCTCCAGCCAGT 3600 

GCAGAGGGGCCTGTGGGTGCACAGTGGGGAGAACTCAATGGAAGCAGAGGGAGCTGGGGC 3660 

TCCAGAACTCCCAGGATGATGCTGAGGTCTGGCCCCCTTTTCTAAGGTGGCTGTGAGAAC 3720 

CCGCCTGAAGAGGCTGCAGGGGACCTGGGCCTTGGTGGAGATGGGGGTCAGCTTTGCGTG 3780 

AAGAAGTCAGGGAATCTGGCCCAAGTGGTCATCAAGGTTTCAGATCCGGCGTCCCAGGGC 3840 

TCTGTCGTGCTCAGGGCATGGATGTCTCCACCCCTCAGAGGGAGGTTGTCCTGGCTGGGG 3900 
T2142> 
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TGTCCCGGGGGCTGAGTCCTCCTGTGCAAGGTCAGACCCTGCAGACATGGCTTCTGTAGA 3960 

ex 6 

CAGCGTTTCCGTTGCTGATGACGCTCTTTGAGCTGGCTCGGAACCCCGACGTGCAGCAGA 4020 
Y6132> 

TCCTGCGCAAGGAGAGCCTGGCCGCCGCAGCCAGCATCAGTGAACATCCCCAGAAGGCAA 4080 
Y6133< 
CCACCCAGCTGCCCTTGCTGCGGGCGGCCCTCAAGGAGACCTTGAGGTGGGTGCTGGATG 4140 

AGGCCTCCCTGTGGCCCTGGCCCCCTGCTGGAGAGCAGCCCCCACTGGGTGGTGGCAGAC 4200 

AGAATCTGGGGCTGATAAACAGCGTCACCCAGCAGCCCATTCCCCTGCACCTGCTCTTCC 4260 

TCCCCCTCAAGGTCTGGGAGCTCTTCTTCCTCTGAATCCCTCTTCAACACCCTGGGGATT 4320 

AACGTGGGGCATGTCCTTCTGCGCTTGGGGCTTCTCAAGTTAGGGGAGGTTTGGCTGGGC 4380 

TCAGCAGGTGCAAGGAAGCACTTCGTCACGACCTGGGCTTCCCATGGGCCAGGGAGCTGT 4440 

GCGGGGTCTTCGGTAGGAAGGGTGCAGAGAGCACAGGGAGCCCCATCCAGCTGAGGACCC 4500 
Y6259> 

TTTCTGTGGATGCCCCCACCTCCAGGCTCTACCCTGTGGGTCTGTTTTTGGAGCGAGTGG 4560 
ex 7 

TGAGCTCAGACTTGGTGCTTCAGAACTACCACATCCCAGCTGGGGTGAGTGAGCCCCCAC 4620 
Y6261> Y6260< 

ACCCCTCGAGCTGAGAACCTCCCTCCCCAGTCATTCCCTGATCCCTGCTCTGCACCGTCC 4680 

GCAGACATTGGTACAGGTTTTCCTCTACTCGCTGGGTCGCAATGCCGCCTTGTTCCCGAG 4740 

ex 8 

CCCTGAGCGGTATAATCCCCAGCGCTGGCTAGACATCAGGGGCTCCGGCAGGAACTTGCA 4800 

CCACGTGCCCTTTGGCTTTGGCATGCGCCAGTGCCTCGGGCGGCGCCTGGCAGAGGCAGA 4860 
Y6262< 

GATGCTGCTGCTGCTGCACCACGTAAGCAGGCCTGGGCCCCTTCAGCATAATTGTTGCAC 4920 
S6719> 

CTGGGACGATGGGAGGAAGCTGCCCCAGGTCCATGGGCTACTGACCAGCGCTGATGGAAA 4980 

CCCAGCCTCTGTCCTAGGTGCTGAAGCGCTTCCTGGTGGAGACACTAACTCAAGAGGACA 5040 
ex 9 

V5315 V5316 
TAAAGATGGTCTACAGCTTCATATTGAGGCCTGGCACGTCCCCCCTCCTCACTTTCAGAG 5100 

CGATTAACTAGTCTTGCATCTGCACCCAGGGTCCCAGCCTGGCCACCAGCTTCCCTCTGC 5160 
M6641< 

CTGACCCCAGGCCACCTGTCTTCTCTCCCACGTGCACAGCTTCCTGAGTCACCCCTCTGT 5220 

CCAGCCAGCTCCTGCACAAATGGAACTCCCCAGGGCCTCCAGGACTGGGGCTTGCCAGGC 5280 

TTGTCAAATAGCAAGGCCAGCGCACAGCTGGAGCGATCTTGCTGCAGGCCTGCCTTGTCC 5340 

CCAGCCCCACCTGGCCCCTTCTCCAGCAAGCAGTGCCCTCTGGACACTTGACTCTACTCC 6000 

TCCCAGCGCTGGCTCCAGGCTCCTCATGAGGCCATGCAAGGGTGCTGTGATTTTGTCCCZ 6060 

DTTGCCTTCCTGCZZZZCTAGTCTCACATGTCCCTGTCCCTCTCGCCCTGGCCAGGGCCT 6120 
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CTGTGCAGACAGTGTCAGAGTCATTAAGCGGGATCCCAGCATCTCAGAGTCCAGTCAAGT 6180 

TCCCTCCTGCAGCCTGACCCCAGGCAGCTCGAGCATGCCCTGAGCTCTCTGAAAGTTGTC 6240 

ACCCAGAAATACGATCCTGCAGGGTAGACTAAAAAGGCCCCTGTGGTCACTTATACTGAC 6300 

ACATTTTAAGTGATACAACTGAGTCTCGAGGGGCGTGTGTTCCCCAGCTGATCATGTCAG 6360 

CCTCATGCCCCAGGCCTCGTCTTTCATGGACCAGGTCTTGTTCAAGCAGCGAGTGTTGGG 6420 

TCCTCTGCTTCCTGAGCTGTCCCCTGGAAAAGGTCCCGAGGATGCTGTCAGGAGATGGAA 6480 

GAGTCATGTGGGGTGGGAACCTGGGGTGTGGTTCCAGAAATGTTTTTGGCAACAGGAGAG 6540 

ACAGGATTGGGCCAACAAGGACTCAGATGAGTTTATTGACTCATTCCTCTGGAAGATACG 6600 

CAGC 
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* Ala Alanine 
* Asx Asparagine or Aspartic acid 
* Cys Cysteine 
D Asp Asparticacid 
E Glu Glutarnicacid 
F Phe Phenylalanine 
G Gly Glycine 
H His Histidine 
I Ile Isoleucine 
K Lys Lysine 
L Leu Leucine 
M Met Methionine 
N Asn Asparagine 
P Pro Proline 
Q GI Glutamine 
R Arg Arginine 
S Ser Serine 
* Thr Threonine 
* Val Valine 
w Trp Tryptophan 
Y Tyr Tyrosine 
z GIx Glutamine or Glutamic acid 

M Phe TCT Ser TAT Tyr TGT Cys 
TTC Phe TCC Ser TAC Tyr TGC Cys 
ITA Leu TCA Ser TAA Stop TGA Stop 
TTG Leu TCG Ser TAG Stop TGG Trp 

CTT Leu ccr Pro CAT His CGT Arg 
TCT Leu CCC Pro CAC His CGC Arg 
CTA Leu CCA Pro CAA On CGA Arg 
CTG Leu CCG Pro CAG On CGG Arg 

ATT Ile ACT Tbr AAT Asn AGT Ser 
ATC Ile ACC Thr AAC Asn AGC Ser 
ATA Ile ACA Thr AAA Lys AGA Arg 
ATG Met ACG Thr AAG Lys AGG Arg 

GTT Val GCT Ala GAT Asp GGT Gly 
GTC Val GCC Ala GAC Asp GGC Gly 
GTA Val GCA Ala GAA Glu GGA Gly 
GTG Val 

Amino acid codons 
GCG Ala GAG Glu GGG Gly 
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The melting temperature of primers was calculated by: 

Tm OC = 2(A +T) + 4(G +Q 

The annealing temperature was PC below the melting temperature. 

CYP1 1 B2 MUTATIONS 
Exon Amino acid SENSE ANTISENSE 

change 
I B2-Q43R 5'GAAGCCATGCCCCGGCATC 5'GTTGCCTGGATGCCGGGGCA 

CAGGCAAC3' V5311 TGGCTrC3' V5312 
3 B2-Dl47E 5'GCGGCrGAACCCAGAAGT 5'GGCGACAGCACTTCTGGGTT 

GCTGTCGCC3' T3900 CAGCCGC3' T3901 
4 B2-1248T 5'CrGTCrCGCrGGACCAGCC 5'CACCTTGGGGCTGGTCCAGC 

CCAAGGTG3' T3898 GAGACAG3' T3899 
6 B2-K357N 5'GTGAACATCCCCAGAATGC 5'GCTCGGTGGTTGCATTCTGG 

AACCACCGAGC3'Y6132 GGATGTTCAC3' Y6133 
9 B2-T493M 5'GAGGCCTGGCATGTCCCCC 5'GTGAGGAGGGGGGACATGCC 

CrCCTCAC3' V5315 AGGCCTC3' V5316 

CYPllBl MUTATIONS 
Exon Amino acid SENSE ANTISENSE 

change 
2 Bl-HI07Y 5'GGTGGACAGCCTGTATCCC 5'CATCCTGTGGGGATACAGGC 

CACAGGATG3' C3130 TGTCCACC3' C3131 
2 Bl-LI86V 5'GGGAGCCTGACCGTGGAC 5'GCTGGACGTCCACGGTCAGG 

- 
GTCCAGC3' C0222 CTCCC3' C0223 

I F BI-E147D 5'GCGGCTGAATCCAGATGTG 5'GGCGACAGCACATCTGGAT-f I 

CrGTCGCC3' Y6130 I CAGCCGC3' Y6131 

SEQUENCING PRIMERS 
EXON 

- 
Name PRIMER 

5CMV4 (S) V6776 5'TAGTGAACCGTCAGAATrG3' 
* PCMV4 
(AS) 

V6777 5'TAGAGGACACTAGTCAGAC3' 

2(S) C8489 5'CAATCGGTTGAAGCGCCATTC3' 
2(S) N4019 5'AGACAACATCGTGGGCACAAATG3' 
4(S) S6718 5'AGTTCrGCCAGCCTGAACTTC3' 
5(S) Z0895 5'TACACAGGCATCGTGGCAGAG3' 

* primers flanking either side of the pCMV4 cloning site 
Table 2 Sequencing Primers 
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EXON Primer Pairs 
(S) (AS) 

Size Digestio 
n 

Fragments 

CYPllBl 
2 

Y6265 Y6266 260bp Rsa 1 77,183bp 

3 Y6264 Y6263 349bp Bha I 115,234bp 
4 B4250 B4251 306bp Stu 1 210,96bp 
5 M6642 M6643 312bp Rsa 1 123,189bp 
7 Y6260 Y6259 147bp 
8 Y6261 Y6262 262bp Hae III 119,143bp 
9 M6635 M6637 224bp 
CYPIlB2 
1 

T2137 T2139 487bp HhaI 199,288bp 

2 Y6265 Y6266 260bp Rsa 1 77,183bp 
3 Y6264 Y6263 349bp Hha 1 116,233bp 
4 B4250 B4251 306bp Stu 1 210,96bp 
5 T2138 T2141 337bp Rsa 1 148,189bp 
6 T2142 T2140 224bp 
7 Y6260 Y6259 147bp 
8 Y6261 Y6262 262bp Hae III 119,143bp 
9 S6719 M6641 403bp 

1 
Stu 1 

1 
78,100, 
210,15bp 

Table 3 Primer pairs for SSCP, amplecon sizes and digests 
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SSCP PRIMER Sequence 
T2137 5'Tcc=cATcrAC=GGCTG3' 
T2139 5'GAATGGCAGTGCTGAGTGCC3' 
Y6265 5'MGGATTGGGACTGCAGGG3' 
Y6266 5, cccAcccTGcrcCCAGCTC*T3' 
Y6264 5'TGGCCACTCCAGGGTCTCrG3' 
Y6263 5'CTGCAGGCCGATTCCCCTTG3' 
B4250 5'CCITGTGCTCAGCAGTGCAT3' 
B4251 5'GTGGTGGAGAGGGAGAAATT3' 
M6642 5'AGGAGGACACTGAAGGATGTT3' 
M6643 5'GACACGTGGGCGCCGTGTGAC3' 
T2141 5'GAACGTGGGTGCCGTGTGGC3' 
T2138 5'AMGGGTGTCGGGGCAGTCT3' 
T2140 5'AGGGCCACAGGGAGGCCTCA3' 
T2142 5, GACCCTGCAGACATGGCTTC3' 
Y6260 5'AATGACTGGGGAGGGAGGTT3' 
Y6259 5, TGGATGCCCCCACCTCCAGG3' 
Y6262 5'ACATGGTGCAGCAGCAGCAGC3' 
Y6261 5'CCCTCGAGCTGAGAACCTCC3' 
M6635 5, cTGTrCCCCCTrCAGCATAAT3' 
M6637 5'GAGACGTGATTAGTTGATGGC3' 
S6719 5'TACTGACCAGCGCTGATGGAAAC3' 
M6641 5'CTGTGCACGTGGGAGAGAAGA3' 

SEQUENCE 
GAPDH (S) 5'ACCACAGTCCATGCCATCAC3' P5817 
GAPDH (AS) 5'TCCACCACCCTGTTGCTGTA3' P5818 
CYPllBl/B2 

(S) 
5'AGACAACATCGTGGGCACAAATG3' N4019 Ex 2 

CYP11BI/B2 I 
(AS)_ 

5'GCrCCCrGCAGTGAGTrCCAT3' C065 Ex 6- I 
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Unless otherwise stated all standard chemicals and reagents were purchased form Sigma 
(Sigma-Aldrich Co Ltd). 

Bacterial media and plates 
LB medium lOg bacto-tryptone, 5g bacto-yeast extract, lOg NaCI to a final volume 

of I litre with deionised water, adjust to pH 7.0 with 5N NaOH. 
Autoclave (20 minutes at 15lb/sq. in. on liquid cycle) 

SOC medium 20g bacto-tryptone , 5g bacto-yeast extract, 0.5g NaCI to a volume of 
950 ml of deionised water. Dissolve and add 10ml of 250mM KCI, 
adjust to pH 7.0 with 5N NaOH and adjust volume to I litre with 
deionised water. Autoclave as above. Before use add 5ml of 2M MgC12 
and 20 ml of a filter-sterilised IM glucose solution. 

LB agar I Og NaCl, I Og Tryptone, 5g yeast extract, 20g of agar to a final volume 
of Ilitre with deionised water, adjust to pH 7.0 with 5N NaOH 

L-amp plates I liter of LB agar, add 20mg of filter-sterilized ampicillin (Sigma) 

Miller transformation solution LB broth containing: 
10% (w/v) PEG 4000 
5% (v/v) DMSO 
50mM MgS04 9 pH 6.5. 
Chung et al. 1989. 

Plasmid preparation alkaline lysis 
Modified version of Bimboim and Doly (1979) and Ish-Horowicz andBurke(1981) 

Solutions 1 50mM glucose, 25mM Tris-CI (pH 8-0), 1 OmM EDTA (pH 8.0) 

Solution II 0.2N NaOH, 1% SDS freshly prepared 

Solution HI 60ml of 5M potassium acetate, 11.5 ml glacial acetic acid and 28.5 ml 
of deioinised water. Resulting solution is 3M with respect to potassium 

Lysozyme I Omg/mI lysozyme, I OmM Tris pH 8.0 

Ethidium bromide EtBr(Sigma) I Omg/mI preapred in sterile water 

Buffers 
TE buffer I OmM Tris-HCI, I mM EDTA, pH 7.5. 

TAE buffer 40mM Tris-acetate, I mM EDTA pH 8.0 
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TBE Buffer 45mM Tris-phosphate, I mM EDTA pH8.0 

Loading dyelagarose gel blue 1.5g Ficoll, 25mg Bromophenol Blue, 
25mg Xylene Cyanol, room tempertaure 

Genomic DNA extraction (Sambrook ef AIM 
Cell lysis mix 10% sucrose, I OmM Tris pH 7.5,5MM MgC12, 

1% Triton@ X-100 (Sigma). 

Nucleic lysis mix I OmM Tris pH 8.2, OAM NaCl, 2mM EDTA. 

Proteinase K (Sigma) 10mg/mIProteinaseKI%SDS, 2mMEDTA 

r-CR 
Taq DNA polymerase (Promega) 

Storage buffer: 5OmM Tris-HCI (pH 8.0), IOOmM NaCl, ImM DTT, 
50% Glycerol, 1% Triton@ X-100. 

PCR I OX reaction buffer w/o MgC]2: (Promega) 

MgC12 (Promega) 25mM 

dNTPs (Promega) I OmM each 

53-CE 
Ammonium persulphate (APS) (Sigma) 25%w/v in sterile water 

Tetramethylethylenediamine (TEMED) (Sigma) 

30% Acrylainide/Bis Solution 37.5: 1 (Biorad) 

P] dCTP I OmCi/ml (Amersham) 

SSCP Stop Blue 9.5mls formamide, 0.2mls EDTA (0.5M pH8.0), 
5mg Bromophenol Blue, 5g Xylene cyanol 

Site directed mutagenesis 
Quick change site-directed mutagnesis kit (Stratagene) 

Pfu DNA polymerase (2.5U/pl) (Stratagene) 

I OX reaction buffer (Stratagene) 

Dpn I restriction enzyme (10 U/jil) (Stratagene) 
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Reagents not supplied in kit: 

Primers see table I appendix 2 

NZY+ broth (Sigma) I Og of NZ amine (casein hydrolysate), 5g of 
yeast extract, 5g of NaCl, 12.5ml of IM MgC12, 
12.5ml of IM Mg S04,10ml of 2M filter 

sterilised glucose solution per litre. 

LB-amp met agar plates I liter of LB agar, add 20mg of filter-sterilized 
ampicillin (Sigma), 80mg of filter-sterilized 
methicillin. (Sigma) 

Transfections 
DOTAP (Boerhinger-Mannheim) 

HEPES (Sigma) 

PBS 1X buffer (Mg 2+ and Ca2+ free) (Sigma) 

DMEM with 4500mg glucose/L, L-glutamine, pyroxidine, HCI and NaHC03 (Sigma) 

Fetal bovine serum (FCS) Heat inactivated, cell culture tested and sterile filtered (Sigma) 

Antibiotic-Antimycotic 10 000 units/ml penicillin G sodium, 10 000 ýLg/rnl streptomycin 
sulphate and 25 jig/ml amphotericin B as Fungizone 0 (Gibco BRL) 

Trypsin-EDTA solution (I X) (Sigma) 

Steroids 
Working solutions prepared in 100% ethanol (Sigrna) 

Paper ChromatograDhv 
Whatman2 paper. 
Solvent system I was used for separation of B and solvent system 2 was used for 
separation of F, 18-OHB or aldosterone. 

Solvent system 1: Water 
Methanol 

300ml 
700ml 

Petrolium Ether (80-100*C) 500ml 
Toluene 500ml 

Solvent system 2: Hexane 200ml 
Toluene 1800ml 
Methanol 1000ml 
Water 500ml 
Triethylamine 3.5ml 
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Whatman Silica glass-backed fluorescent plates 

Solvent system: Methylene Chloride: Methanol: water 
Ratio 300: 20: 1 

Ecoscint A Scintillation solution (National diagnostics, Atlanta Georgia 30336) 

P-gal assay (I! romega) 
Reporter lysis buffer (Promega) 

2X assay buffer 200mM sodium phosphate buffer, pH 7.3,2mM MgC12, 
I OOmM P-mercaptoethanol, 1.33mg/ml ONPG 

P-Galactosidase (I U/ptl) (Promega) 

IM Sodium carbonate 

Biorad Protein assay kit I 
Biorad protein assay dye reagent concentrate 

Bovine serum albumin (BSA). 1.42mg/ml 

Based on method of Bradford (Bradford 1976) 

Primers see table 4 appendix 2 

RNA isolation RNAzol B (Biogenesis) 

Gene Amp RNA PCR Core Kit (Perkin Elmer) 

Reagents supplied in kit: 

Reverse trancriptase MuLV (SOU/gl) 
RNase Inhibitor (20U/gl) 
1OX PCR buffer 
dNT? s (I OmM) each 
Taq DNA polymerase (5U/gl) 
MgC12 (25mM) 
Oligo d(T)16 primer (50gM) 

DEPC(Sigma) Diethyl pyrocarbonate lOpg/100ml sterile water 

Markers: 
I Kb, I 00bp ladder (Promega) 
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Mind III, Mae III (New England Biolabs) 

DNA sequencing 
Urea (Sigma) 

40% Acrylamide/Bis Solution 19: 1 (Biorad) 

TEMED and APS as for SSCP. 

[35S]dATPaS lOmCi/ml (Amersham) 

DNA Sequencing Kit (Sequenase Version 2.0) 
Storage Buffer 13U/ýd in 20mM KPOO pH7.4, ImM DTT, 

O. ImM EDTA, 50% glycerol. 

Enzyme dilution buffer lOmM Tris-HCI, pH7.5,5mM DTT, 0.5mg/ml BSA. 

Sequenase buffer (5X) 20omM Tris-HCI, pH 7.5,1 OOMM M902P 

250mM NaCl. 

Labelling mix (5X) 7.5pM dGTP, 7.5pM dCTP, 7.5ptM dTTP 

Termination mixes (SX) 

ddG 80pM dGT?, 80pM dATP, 8OpM dCTP, 80gM dTTP, 40gM ddGTP, 50mM 
NaCl. 

ddA 801iM dGT?, 801iM dAT?, 80ýM dCT?, 80ýM dTTP, 40ýiM ddATP, 5OmM 
NaCl. 

ddT 80gM dGTP, 801iM dATP, 801iM dCTP, 80gM dTTP, 40gM ddTTP, SOmM 
NaCl. 

ddC 80gM dGT?, 80gM dATP, 80gM dCT?, 801iM dTTP, 40pM ddCTP, SOmM 
NaCl. 

Stop Solution 95% formamidc, 20mM EDTA, 0.05% Bromophenol blue 
0.05% Xylene Cyanol FF. 

Autonmated Cycle Sequencing 
ABI Prism BigDye Terminator Cycle Sequencing Reaction Kit (PE Applied Biosystems, 
Foster City, CA, USA) 

Ready Reaction Mix 
Amplitaq@ DNA Polymerase, FS 
RTIh pyrophosphatase 
Fluorescently labelled 2', 3'-dideoxynucleotides 
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2'-dcoxynucleotides 
MgC12 

Buffer- Tris-HCI pH 9.0 

ddNTPs 
ddGTP- Dichloro RI 10 
ddATP- Dichloro [R6G] 
ddTT? - Dichloro TAMRA 
ddCTP- Dichloro ROX 

Excitation emission 4. (nm) 
532 
560 
594 
620 

Gel 5% polyacrylamide (Long Ranger Gel Solution, FMC, Rockland, Maine, USA) 

BamHI (Promega) IOU/pl Recognition site G^GATCC 
CCTAG^G 

Storage buffer 
lOmM Tris-HCI, 300mM KCI, O. ImM EDTA, ImM DTT, 0,5mglml 
BSA, 50% glycerol, pH 7.4. 

I OX Reaction buffer E 
6mM Tris-HCI, 6mM MgC12, I OOmM NaCl, I mM DTT, pH 7.5. 

SpeI (Boehringer- Mannheim) 10 U/pl Recognition site AýCTAGT 
TGATCAA 

Storage buffer 
20mM Tris-HCI, I OOmM NaCl, 0. ImM EDTA, I OmM 
2-mercaptoethanol, 0.2% (v/v) Triton@ X-100,50% (v/v) glycerol, 
pH 8.0. 

I OX Reaction buffer 
50mM Tris-HCI, I OOmM NaCl, I OMM MgC12, I mM DTT, pH 7.5. 

Bgl 11 (Promega) 10 U/pl Recognition site AýGATCT 
TCTAG^A 

Storage buffer 
lOmM Tris-HCI pH 7.3,3OOmM NaCl, O. 1mM EDTA, lmM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

I OX Reaction Buffer D 
6mM Tris-HCI, 150mM NaCl, 6mM MgC12, ImM DTT, pH 7.9. 

EcoR I (Promega) 8-12U/pl Recognition site G^AATTC 
CTTAAAG 
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Storage buffer 
I OmM Tris-HCI pH 7.4,4OOmM NaCl, O. lmM EDTA, I MM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

I OX Reaction Buffer H 
90mM Tris-HCI, 50mM NaCl, 10MM MgC12, pH 7.5. 

Hae IH (Promega) 10 U/pi Recognition site GG^CC 
CC^GG 

Storage buffer 
lOmM Tris-HCI pH 7.4,3OOmM NaCl, O. ImM EDTA, ImM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

I OX Reaction Buffer C 
lOmM Tris-HCI, 50mM NaCl, lOmM MgC12, ImM DTT, pH 7.9. 

Hha I (Promega) 10 Ulgi Recognition site GCG^C 
C^GCG 

Storage buffer 
lOmM Tris-HCI pH 7.4,50mM NaCl, O. lmM EDTA, lmM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

I OX Reaction Buffer C 
I OmM Tris-HCI, 5OmM NaCl, I OMM MgC12, I mM DTT, pH 7.9. 

Rsa I (Promega) 10 U/pi Recognition site GTAAC 
CA^TG 

Storage buffer 
lOmM Tris-HCI pH 7.4,3OOmM NaCl, O. ImM EDTA, ImM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

I OX Reaction Buffer C 
lOmM Tris-HCI, 50mM NaCl, IOMM M9CI2, ImM DTT, pH 7.9. 

Stu I (Promega) 10 U/ýtl Recognition site AGG^CCT 
TCC^GGA 

Storage buffer 
lOmM Tris-HCI pH 7.4,5OmM NaCl, O. ImM EDTA, IMM 
DTT, 0.5mg/ml BSA, 50% (v/v) glycerol. 

1OX Reaction Buffer B 
6mM Tris-HCI, 5OmM NaCl, 6mM MgC]2, ImM DTT, pH 7.5. 
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