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Abstract

The research in this thesis deals with the influence of charge on the adsorption of milk

proteins to surfaces. A variety of charged surfaces were used including negatively

charged and zwitterionic liposomes prepared from phosphatidylglycerol and

phosphatidylcholine respectively and positively and negatively charged polystyrene

latices. Adsorption was determined by measuring the increase in the hydrodynamic

radius of the particles by photon correlation spectroscopy and also by solution depletion

techniques. In some instances, electrophoretic mobility measurements were also used

in order to determine changes in the surface charge of the particle as a result of protein

adsorption.

The ionic strength and pH of the buffer were found to be important in the

adsorption of protein to liposomes. In the absence of NaCl, adsorption did not occur.

At low pH values, addition of both x-casein and IJ-Iactoglobulin to negatively charged

liposomes caused very large increases in size presumably as a result of aggregation.

At pH6.2, protein layer thicknesses on the negatively charged liposomes were

significantly greater than on the zwitterionic ones due to charge repulsion between the

negatively charged surface and the negatively charged regions of the proteins.

Removal of the negatively charged phosphate groups which form a cluster in the

hydrophilic region of l3-casein resulted in a reduction in the thickness of the adsorbed

protein layer on the negatively charged liposome but did not have any effect on the

thickness on the zwitterionic surface. The thickness of adsorbed layers of a.I-, K-, and

l3-casein and J3-lactoglobulin on the phosphatidylcholine liposomes were all very similar

at around 6nm. Addition of all-casein to the negatively charged liposomes appeared

to cause aggregation as a result of protein molecules bridging between liposomes.

Attempts to determine the fraction of added protein which bound to the surface



of the liposomes were unsuccessful and therefore, the binding of native,

dephosphorylated and methyl-esterified l3-casein to small, monodisperse, positively and

negatively charged polystyrene latices was studied. As with the liposomes, the

thickness of the adsorbed l3-casein layer was greater on the negatively charged surface.

Removal of the phosphate groups from the protein decreased the layer thickness by

about 4nm on the negatively charged surface but had relatively little effect on the

thickness on the positively charged surface, once again showing the effect of charge

interactions. As with dephosphorylation, methylation also reduces the net negative

charge of the protein, but by a different mechanism. This also resulted in a reduction

in the thickness of the adsorbed protein layers but only after a significant proportion

of the free carboxyl groups had been esterified. Thus methylation of 35% of these

groups had relatively little effect on the thickness of the layer on the positively charged

latex and no effect on the negatively charged, but esterification of a further 9%

(equivalent to two residues) caused a substantial decrease in thickness on both surfaces.

These changes are believed to result from alterations in both the charge and

hydrophilicity of particular regions of the l3-casein molecule. Bridging was found to

occur when low levels of native or modified {3-casein were added to the positively

charged latex. Protein loading was found to range from 2.5 to 5.5mg m? depending

on the nature of the protein and the charge on the surface.

The thickness of adsorbed native and dephosphorylated l3-casein layers on the

negatively charged latex was found to be influenced by the presence of calcium and

increasing ionic strength. Increasing levels of either calcium ions or NaCI in the

medium resulted in a very pronounced decrease in the thickness of pre-adsorbed

phosphorylated ~-casein layers. The changes in dephosphorylated protein layers were

less pronounced. The results are discussed in terms of the proposed loop-and-train



configuration of the ~-casein at the surface of the latex.

The influence of protein phenotype and the extent of glycosylation on the

adsorption of x-casein was also determined. The more highly glycosylated protein

molecules, which also had a higher net negative charge, formed thicker layers on the

negatively charged surface. Again, layer thicknesses were less on the positively

charged surface, but for each x-cn phenotype glycosylation increased the thickness,

presumably as a result of the increased hydrophilicity of the protein. x-Casein A,

which has one more negative charge than the B phenotype, was found to give a slightly

thicker layer on the negatively charged latex. Under certain conditions, adsorbed K-

casein could be cleaved by the enzyme chymosin as shown by the reduction in the size

of the coated latex.
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Chapter 1

General Introduction

1.1 Outline

Proteins in foods are the source of amino acids essential to growth and

sustenance but in physically manufactured foods they are used to give stability and

structure to such foods. Proteins interact with the other ingredients in foods in order

to confer stability. Although we are beginning to understand how proteins interact in

food systems further information is required in order to maximise their usefulness in

the food industry, and in order to predict the properties of particular systems.

The area of interest with which this thesis is concerned is that of protein

interactions with surfaces in model food colloid systems and in particular the influence

of the charge of both the protein and surface, on these interactions.

The thesis consists of seven chapters. The first constitutes a general

introduction to the area of food colloids, whilst the second chapter outlines the

structure and physical properties of the proteins used in these investigations. Chapter

3 presents the theory behind some of the techniques employed. Chapters 4-7 detail the

results obtained with various natural and modified proteins and discusses the

significance of the results.

1.2 Definition of a colloid

Colloids consist of a dispersed phase distributed uniformly in a finely divided

state in a dispersion medium. The dispersion medium can be solid, liquid or gas.

Examples of colloids include mists and smokes, which are dispersions of fine liquid
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droplets or solid particles in gas and are also termed aerosols; milk and mayonnaise,

are dispersions of fine droplets of fat in an aqueous phase and are also termed

emulsions; butter is also an emulsion but consists of droplets of water in a fat phase;

milk is also a gel, which is a dispersion of solid (casein micelles) in a liquid; jellies

which are dispersions of macromolecules in liquid and are also termed gels.

Strictly, the definition of a colloid is a system where the dispersed phase lies

in the size range l-l000nm. However, these limits are not rigid, since in some cases,

such as emulsions, particles larger than lOOOnmmay be present.

1.3 Stability of food colloids

A colloid dispersion is stable, if, over a certain period of time, there is only

little or no detection of aggregation of the particles. An aggregate is a group of 2 or

more solid particles or liquid droplets, held together by unspecified forces.

Coagulation and flocculation are terms used to differentiate between compact and loose

aggregates. Coagulation produces aggregates with relatively small interparticle distance

and is usually irreversible, whilst flocculation produces "floes" having larger

interparticle distances. An additional term is coalescence. This is where two droplets

combine to form one larger droplet.

Colloids such as emulsions, need to be stabilised by the addition of an

emulsifier. Emulsifiers act by lowering the free energy of the oil/water interface by

forming an adsorbed film around the oil droplets. As a result of their amphipathic

nature, many proteins are excellent emulsifiers. They are able to bridge across the

interfaces by orientating themselves so that the hydrophilic portion of the protein lies

in the aqueous phase, and the hydrophobic portion lies in the oil phase.
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1.4 Forces involved in colloid stability

The particles in colloidal systems may aggregate i.e. stay very close to each

other for a much longer time than would be the case in the absence of attractive forces

between them. Such aggregation may determine the rheological properties and the

appearance of the product, as well as its physical instability. This is reflected in a

change in consistency or a loss of homogeneity. Many foods also contain

macromolecules (polymers) which may affect aggregation and its rate in a variety of

ways.

Whether or not aggregation occurs depends primarily on the interactive forces

between the particles. These forces are investigated in colloid science. However, the

application of colloid theory to food colloids should be undertaken with care. Colloid

theory usually deals with identical, homogeneous, hard spheres. Most foods contain

a heterogeneous population of particles ranging in size, shape and deformability. Also

food colloids contain proteins which are more complicated than simple polymers. In

addition changes may occur, for example, those due to enzymes.

Nevertheless, the application of colloid science can be useful. However, the

nature of the system being used must be known first i.e. what particles it contains and

how they aggregate.

1.4.1 Interaction forces - DLVO theory

For charged colloidal particles the Deryagin- Landau- Verwey-Overbeek

(DLVO) theory has proved very useful. This theory considers the free energy, G,

required to bring two charged particles from an infinite distance apart to a close

distance between their surfaces, hl
•
2
.
3
• There are two components which are additive;
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1) electrostatic repulsion between particles, which can be explained as being

due to a local increase in osmotic pressure where the ion clouds around

charged particles overlap and,

2) van der Waals attraction between identical molecules, and hence

particles.

For two identical homogenous spheres of radius, a, in water at room temperature

(conditions common in food colloids);

(1.4.1)

and

GA == -Aall2h (1.4.2)

where, 1/10' is the surface potential of the particles, often taken as the electrokinetic

potential, as this can be obtained more easily, K is the Debye-Hiickel parameter, which

is the inverse of the electric double layer. In this case K==3.3JI nm, where I is the

total ionic strength (molar). The electric double layer is due to the charge on the

colloid surface. Oppositely charged ions (counter ions), are attracted to the particle

surface, whereas ions of the same charge (co-ions), are repelled from the surface, so

that an ionic atmosphere is formed (Fig. 1.1). A, is the Hamaker constant which

depends on the material of the particles and that of the interstitial liquid.

It is therefore possible to calculate the interaction free energy from known or

determinable parameters. Fig. 1.2 gives an example. If the minimum near C is deep

compared to the average kinetic energy involved in the encounter of two particles (kT),

the particles tend to aggregate, i.e. particles stay together at the corresponding value

of h (secondary minimum). If the maximum near B is not large compared to kT two

particles may occasionally move over this energy barrier and become aggregated near,
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Colloid
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Fig. 1.1. Diagram of the electric double layer at

the surface of a colloid particle.

The plrticle surflce hIS I net charge (+). The ions of

opposite chlrge (counter ions), are Ittrlcted to the par ticle surface

where they effectively form I layer. The ions of equal charge to

the colloid particle surface (co-ions), are repelled by the colloid

particles. but the counter ions will attract the co-ions, so forming

a .econd Ionic layer around the colloid particle.
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Fig. 1.2. Calculated examples of the repulsive (GR),

attractive (GAl, and total interaction free energy

(GT), as a function of surface separation distance

(h), of two identical spheres.

Diagram illustrates electric repulsion and van der Waals attraction.

Taken from Walstra·,
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A (in the primary minimum). Lowering the surface potential, e.g. by altering the pH,

or increasing ionic strength, diminishes the electrostatic repulsion and thereby promotes

aggregation.

The DLVO theory has been fairly successful in predicting the aggregation

stability of inorganic colloids. However, the predicted effect of particle size is

generally not observed. The theory rarely holds true at very small distances, roughly

less than 3nm. This is due to the unevenness of the particle surface and also the

presence of adsorbed material which cannot be easily accounted for. This adsorbed

material may cause additional repulsion and interfere with the determination of the

surface potential. Consequently the DLVO theory is rarely exact for food colloids, but

has been found to predict trends fairly well.

1.4.2 Steric stabilisation

Polymers present in the continuous (usually aqueous) phase may adsorb onto

the particles. If they do not, the polymers usually cause the viscosity of the liquid to

be higher. This slows down any aggregation, and may even cause a weak gel to be

formed, which will prevent aggregation. Dissolved polymers may also cause

aggregation by depletion flocculation. Adsorbed polymers may either prevent

aggregation (steric stabilisation) or promote it (bridging flocculation).

Fig. 1.3 shows how macromolecules may adsorb (or be grafted) onto surfaces.

Adsorption of the polymer depends on its solubility. The osmotic pressure, n, of a

polymer solution can be used as a guide to polymer solubility. The osmotic pressure

is given by;

(1.4.3)
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homopolymer
fairly soluble

grafted
very soluble

homopolymer
poorly soluble/charged

block copolymer

Fig. 1.3. Diagram of the types of

protruding macromolecules.

Taken from Walstra4•
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Fig. 1.4. Diagram of osmotic pressure divided

by molar concentration (IT/Cm) versus mass

concentration (c) of polymer solutions for

various kinds of solvent quality.

8 • e solvent.

Taken from Walatra4,
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where, R, is the gas constant, cm' is the molar concentration, and, B, is the second

virial coefficient, which can be determined fairly easily. Examples are shown in Fig.

1.4. For a good solvent (this curve represents xanthan in water) adsorption is very

unlikely. In (J solvents (these occur where forces of attraction between macromolecules

are cancelled out by repulsion forces between macromolecules) it is likely, and for poor

solvents it is almost certain. In order to have a macromolecule that is both certain to

adsorb and also likely to protrude into the solvent, block copolymers are used. Here,

part of the macromolecule is poorly soluble and hence adsorbs onto the particle

surface, and the other part which is highly soluble, protrudes into the solvent.

Proteins, on the other hand, adsorb in a more complicated way involving

various interactions. These include charge-charge (Coulombic), dipole and van der

Waals interactions as well as hydrogen bonding. Some portions of the protein will be

more attracted to the colloidal surface and other portions will be preferentially attracted

to the dispersion medium. As a result the polymer will exist in various orientations.

Where the attraction to the particle surface is strongest, the polymer will lie close to

the particle forming a "train". In those regions where repulsion from the particle

surface is strongest "loops" (within the body of the polymer) or "tails" (if the repulsion

occurs at the free ends of the polymer) will be formed.

The adsorbed layers on two colloidal particles can interact in 3 ways;

a) the two layers compress without the layers mixing (interpenetration),

b) the layers interpenetrate but there is no compression,

c) the layers undergo conformational rearrangement without interpenetration

or compression occurring.

These options are illustrated in Fig. 1.5.



11

a) b) c)

Fig. 1.5. Different interactions between colloidal particles.

Situation (c) really only occurs with solid particles, and therefore the real situation in

food colloids is a mixture of interactions (a) and (b). During collision the loops and

tails relax towards their equilibrium configurations, but the distribution of loop size

remains constant.

At present there is no comprehensive statistical mechanical theory of steric

stabilisation and therefore, a more intuitive method is used. The repulsion between

adsorbed macromolecules is mainly entropic and therefore confers a free energy

character on steric interaction. The total free energy change is composed of two

components, the volume restriction term and the mixing term. These terms are

explained in the following sections. For the detailed mathematics concerned in this

area, the reader is referred to Dickinson and Stainsby?

Volume restriction term

When a surface approaches the protruding macromolecules of another colloid

surface, the macromolecules become restricted in their freedom of motion; leading to

a decrease in entropy; and hence a repulsive free energy (Fig. 1.6a). A macromolecule



(a)

12

(b)

Fig. 1.6•. Diagram of the mechanisms of

steric repulsion by protruding macromolecules,

(a) volume restriction, (b) mixing,

Taken from Walstra4,
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adsorbed at a surface loses configurational entropy when a second impermeable surface

approaches, due to the restricted volume. The entropy change ;

(1.4.4)

is related to a reduction in the number of configurational states from 00 to o. k is the

Boltzmann constant. This treats the colloidal particles as if they were stabilised by an

elastic coating.

The free energy change (~GJ has been derived by Meier and Hesselink" by

using random-walk statistics between two flat surfaces. The resulting volume

restriction term is;

(1.4.5)

Nj is the number of loop or tails of j macromolecule segments per unit area and R is

the distance between the centres of the particles, d is the distance between the surfaces

of the particles and R(j ,d) represents the relative loss of configuration for a single loop

or tail of j macromolecule segments. This volume restriction term is always positive

i.e. it causes strong repulsion (unless the macromolecule adsorbs onto the other

surface).

Mixin2 term

Mere volume restriction will, however, rarely occur, since the other surface

generally bears macromolecules as well. When adsorbed layers interpenetrate, the

increased segment concentration leads to a local osmotic repulsion between the

particles. The interpenetration of adsorbed layers corresponds to the mixing of two

concentrated macromolecular solutions in the overlapping interpenetration region?

(Fig. 1.6b). The thermodynamic mixing term (~G~ can then be determined from the
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Flory-Huggins theory, assuming that the segment density n° in the overlap region is the

sum of the segment densities from each of the colloidal particles. Therefore, from

Flory and Krigbaum", the free energy of mixing in a volume element 5V is;

(1.4.6)

where, N I is the number of solvent molecules contained in oV, <PI is the solvent volume

fraction, and <P2 = 1-<pI which is the polymer volume fraction. X is the Flory-Huggins

parameter;

(1.4.7)

where, k is the Boltzmann constant, z is the lattice co-ordination number, €11 the

attractive energy between two solvent molecules, €22 the attraction between two solute

molecules and €12 the attraction between a solvent and a solute segment.

Total interaction energy

The total steric free energy change (LlGs) is;

~Gs = ~GE + ~GM (1.4.8)

Therefore, if the mixing term becomes sufficiently large and negative to overcome the

volume restriction term, attraction between the adsorbed chains can lead to

flocculation. This will occur in poor solvents i.e. where attraction between segments

is greater than the attraction between segments and solvent molecules.

The total interaction energy LlGT(d)between two particles a distance, d, apart

is given by;

(1.4.9)

where, UR, is the double-layer repulsion term and UA, is the van der Waals attraction

term. It should be noted that these terms are coupled. So that anything that alters the
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electrostatics affects ~Gs(d) and changes in ~G.(d) affect r-potential and hence UR(d)

as well

1.5 Aggregation phenomenon

The food colloids which are of particular interest in this project are emulsions,

particularly the oil-in-water (o/w) emulsions. An emulsion may become unstable due

to;

a) creaming - movement of droplets under the action of gravity,

b) flocculation - clustering of droplets and,

c) coalescence - spontaneous joining of small droplets into larger ones.

The basic principles underlying these events are briefly explained below.

1.5,1 Creamin~

The term "creaming" comes from the spontaneous separation of

unhomogenised milk into cream and skim milk. Creaming occurs when the aggregates

formed are less dense than the dispersion medium. If the aggregates were more dense,

then sedimentation would occur. Both effects are due to the influence of gravity.

Creaming is the main process whereby droplets are "removed" from an emulsion, and

frequently occurs prior to coalescence. Creaming is inhibited by small droplet size,

a highly viscous dispersion medium and a low density difference between the phases.

Fat crystallisation may also affect the rate of creaming.

1.5.2 DrQPlet coalescence

During coalescence two droplets approach each other (a). The surfaces of the
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two droplets at the point of contact become thin (b), and then the film bursts to produce

one large droplet of lower surface area (c) (Fig. 1.7).

o
8 oo

a) b) c)

Fig. 1.7. Diagram of the coalescence between two colloidal particles.

The main barrier to coalescence involves the final stages of thinning and bursting of

the film. If the dispersion medium is of high viscosity, as the two droplets approach

each other, some of the viscous medium may become trapped between the particles

(Fig. 1.8).

c:o-- trapped medium

Fig. 1.8. Entrapment of the medium between the two colloidal particles if the medium

is a highly viscous one.

The expulsion of this fluid may be a slow process which therefore inhibits coalescence.

Thus, the stability of an emulsion to coalescence depends on the resistance to film
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thinning and rupture.

1.5.3 Flocculation

Flocculation is the term used to describe the situation where particles aggregate

without destroying their individuality. Flocculation is mainly controlled by the nature

of the counter ion and under given conditions the effectiveness of the counter ion to

cause flocculation is strongly dependent on the valency of this counter ion.

An approximate measure of the influence of an electrolyte on the flocculation

of hydrophobic (if in aqueous solution) colloid particles is the critical coagulation

concentration (ccc). This is the minimum concentration of counter ions which leads

to coagulation under specified conditions of, for example, concentration of colloid

particles, rate of addition of counter ions etc. The ccc is not always a very

reproducible quantity, but it is sufficient to establish the Schultze-Hardy rule. Here,

the ccc is determined largely by the valency of the counter ions. As the valency

increases so too does the effectiveness in coagulation of negatively charged colloid

particles.

There are three types of flocculation;

a) reversible,

b) bridging and

c) depletion.

l.5.3.1 Reversible flocculation

Reversible flocculation may occur under certain conditions in either

electrostatically stabilised systems, or in sterically stabilised systems. When two
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particles interacting in this way come within range of their mutual attraction, they will

tend to form a doublet. This interaction is opposed by Brownian motion of the

dispersion medium. Therefore, providing the system is energetically favourable,

Brownian motion will act to keep some particles in suspension.

1.5.3.2 Brid~ini: flocculation

Flocculation is not only an electrostatic phenomenon. Adsorption of

macromolecules to the colloid particles can also cause flocculation by bridging across

two charged particles. Homopolymers adsorbed to the surfaces of closely approaching

particles will always make bridges (i.e. single molecules become adsorbed

simultaneously onto two surfaces) if equilibrium between adsorbed and desorbed

homopolymers is attained". However, equilibrium is usually not reached. Since, for

bridging to occur the molecules need to be in contact for a relatively long period of

time. Brownian motion prevents this from happening.

Bridging does occur if particles covered with adsorbed polymer are mixed with

uncovered particles!". This occurs if the concentration of the polymer in the solvent

is very low, and if very highly surface active polymers are used.

1.5.3.3 Depletion flocculation

Non-adsorbing macromolecules with a radius of gyration, Ra, leave a layer with

a thickness approximately equal to R. around any particle depleted of macromolecules

(Fig. 1.9). This causes the osmotic pressure of the system to be higher than in the

absence of particles. If the particles come close to each other, the volume of solvent

depleted is decreased; leading to a lower osmotic pressure and hence, a decrease in free
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o

Fig. 1.9. Diagram ot the depletion

flocculation ot macromolecules.

R... radius of gyration of a macromolecule.

a • radius of the colloid particle.

Taken from Walstra'.
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energy. This provides a driving mechanism for flocculating the particles. For two

hard spheres of radius, a, the interaction free energy is given by!':

Gdep = -'II'R/(2a + 4Rg/3)IIf(h) (1.5.1)

The function, f(h), decreases from 1 at zero separation distance, to 0 for h > 2Rg. So

depletion flocculation occurs if Ra is large (i. e. high molar mass, good solvent) and if

II is high. For some polysaccharides added to foods, it may be very difficult to

determine whether aggregation is caused by (weak) bridging or by depletion".

1.6 Protein behaviour in emulsions

In addition to the primary sequence of the amino acid residues which are linked

together by peptide bonds, most proteins contain additional components such as lipids,

carbohydrates, or specialised groups. Due to the variety of polarity on the amino

acids, protein molecules have an amphipathic character. Therefore, adsorption will

occur due to removal of non-polar residues from the aqueous environment.

The secondary and tertiary structure of an isolated protein molecule in solution

is determined by a delicate balance between intramolecular segmental interactions and

interactions between protein segments and water. In oil/water emulsions the non-polar

portions of the molecule will be attracted to the oil phase, whilst the polar portions will

be attracted to the aqueous phase.

1.6.1 Protein adsorption

Because of their wide range of polarities, proteins are ideal molecules with

which to study macromolecular interactions with emulsions. Adsorption of protein

onto emulsion droplets results in a protein film being produced.
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Depending on the experimental procedure, protein films can be divided into two

groups;

a) spread - the protein is literally spread at the o/w interface,

b) adsorbed - protein is adsorbed to the o/w interface from solution.

In dilute spread films the proportion of residues lying on the surface (trains)

compared with that solvated by either the oil or water phase (loops and tails) depends

on the primary structure of the protein and the experimental conditions. For example,

the hydrophobicity of the solvent phase could be changed. Increasing the

hydrophobicity leads to an increase in the solubility of the non-polar residues of the

protein. In concentrated adsorbed films involving stabilised food colloids, there is a

mixture of completely unfolded, partially unfolded and native protein molecules.

The effectiveness of a particular protein as a food emulsifier partly depends on

its rate of adsorption at the o/w interface. There are three main stages by which

protein adsorbs to the surface";

a) diffusion of protein molecules to the surface,

b) spreading and/or unfolding of adsorbed protein molecules and,

c) conformational rearrangement of adsorbed protein molecules.

For further details of the kinetics of these processes the reader is referred to Dickinson

and Stainsby', Briefly, the surface concentration increases during process (a), and also

in (b), if there is a positive barrier to penetration, but remains constant in process (c).

Due to the greater size and complexity of proteins, their adsorption is much slower and

more complicated than that which occurs when simple surfactants bind at the oil/water

interface.
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1.6.2 Irreversibility of protein adsorption

There is some disagreement as to whether, in simple systems, protein adsorption

is irreversible or not. Small molecules adsorb at a single site on the particle surface

and spontaneously leave the surface a short while after adsorbing. Since proteins

adsorb at different points along their polypeptide chains, protein desorption would

require the removal of the protein at all these points simultaneously, which is unlikely.

If chemical reactions occur between the protein molecules adsorbed at the lipid

surface, then protein desorption ceases. Such chemical bonds include the formation of

intermolecular disulphide bonds produced by the disulphide-sulphydryl interchange

reaction 14,15.

Experiments with spread and adsorbed films give very different results. This

is probably because the experiments are not undertaken in equilibrium conditions. In

practice it may take a significant length of time before equilibrium can be reached.

Experiments have shown that protein can be desorbed from the interface using

either other proteins" or other surfactants'I'":":". So protein reversibility does seem

to occur under certain conditions.

1.6.2.1 Protein displacement from interfaces by surfactants

As a general rule, small amphipathic molecules are more surface-active than

proteins in that, at the same concentration (by weight) they lead to a lower interfacial

tension at the oil/water interface. It is therefore to be expected that small surfactants

will displace proteins from the interface above a certain critical concentration.

Competitive adsorption in particular systems is rather sensitive to the nature of protein-

surfactant interactions occurring in aqueous solution and at the interface. Protein-
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surfactant interactions may be important in the case of latices, since a smaIl amount of

surfactant is present in commercially prepared latices. These surfactants will compete

with the protein that is subsequently added to the latex suspension.

For a system containing protein plus ionic surfactant, binding can be divided

into five regions (1-V in Fig. 1.10). At very low surfactant concentrations (I) the

surface tension is essentially the same as that determined with protein alone. The

protein predominates at the interface and those surfactant molecules which are present

are bound strongly to protein molecules in both the bulk solution and at the interface.

Binding is primarily due to electrostatic interactions, but is reinforced by hydrophobic

interactions. In region II, the surface tension falls more rapidly with increasing

surfactant concentration. It is suggested that there is increasing occupation of surface

sites by the adsorption of surfactant molecules in the small gaps between protein train

segments caused by the conformational constraints of the adsorbed protein. Because

the protein-surfactant complex is more hydrophobic than the native protein, this will

also help to reduce the surface tension. Region III, is the intermediate plateau region

and extends over a large range of surfactant concentration around the critical micelle

concentration (cmc) of the pure surfactant. At some point along this plateau, the

surface tension of the mixed protein plus surfactant system becomes higher than that

of the pure surfactant. This is despite the fact that the mixed system has more surface-

active material. It is presumed that it is more energetically favourable for the

surfactant molecules to bind cooperatively on to the protein than it is for them to

displace the hydrophobic segments of the protein from the interface. This free energy

balance is eventually reversed in region IV, where the protein-surfactant complexes are

gradually displaced from the interface. This process may also be, at least partly,
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cooperative. In region V, the interface is covered with a surfactant monolayer whilst

the bulk solution contains a mixture of surfactant monomers, protein-surfactant

complexes and surfactant micelles, with some of the micelles being associated with the

protein molecules.

With nonionic surfactants it is generally assumed that the complexes are rather

surface-inactive. This is because hydrophobic areas of the protein and nonionic

surfactant molecules come together in the binding.

Competition between proteins and small-molecule surfactants can have

considerable effect on the behaviour of food emulsions by changing the state of

aggregation of the dispersed droplets. For example, bridging flocculation between

droplets may be disrupted by using a surfactant to displace protein from the interfacef

which then reduces the emulsion viscosity. Conversely, in whipped toppings

displacement of protein from the oil/water interface by addition of low molecular

weight emulsifiers leads to an increase in bulk rheological properties caused by partial

droplet coalescence at the air/water interface".

1.6.2.2 Protein displacement from interfaces by other proteins

Emulsions containing milk proteins are subject to competitive adsorption

between disordered polymers (caseins) and globular proteins (whey proteins). Model

systems involving ~-casein (~-cn), as-casein (as-en) and ~-lactoglobu1in (~-lg) have

shown24
,19 that the casein tends to predominate in the adsorbed layer when the two pure

proteins are exposed simultaneously to the fresh oil/water interface during

emulsification. However, if {3-cnis added to an emulsion that has been made with {3-lg

there is little displacement of the ~-lg from the interface and there is a small amount
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of additional binding due to {3-cn25
• This contrasts with the addition of {3-cn to

emulsions made with aBI-cn26• Here there is a rapid displacement of ad-cn. It appears

that once globular proteins such as {3-lgbecome established at the oil/water interface,

they interact strongly with neighbouring protein molecules's which makes them very

difficult to displace by other proteins, though they can still be displaced by small

surfactants'F". The ability of one protein to displace another is also partly dependent

on their relative surface activity. This explains why {3-cndisplaces the less surface

active ad-cn and also why the reverse does not occur as readily.

1.6.3 Structure of adsorbed films

The structure of adsorbed protein films is more complex than adsorbed layers

of small molecules. Graham and Phillips28,29,3o have extensively investigated the

behaviour of a wide range of proteins including the open structured, random coil

protein, {3-cn and the compact globular protein lysozyme. From their results the

structures of these proteins at different surface concentrations has been suggested

(Fig. 1.11).

Considering {3-cnfirst, at low concentrations the protein is flattened onto the

interface (a). As more protein is packed onto the surface the loop and tail

configurations become important (b). As excess protein is added, the layer at the

interface remains the same, but multilayers form as more {3-cnadsorbs onto the original

{3-cnlayer (c). Analysis of the identity and kinetics of peptide formation resulting from

the trypsin-catalysed proteolysis of {3-cnstabilized oil/water emulsions32,33,34 has given

additional information on the structure of the adsorbed {3-cn. The hydrophilic N-

terminal end of the molecule appears to form a loop or tail which projects into the
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Lysoz~me

Fig. 1.11. Highly schematic representation of B-cn and lysozyme

at the air/water interface at; (a). low, (b), at saturation and,

(c), high protein concentrations. .._ represents disulphide bonds.

Taken from Dickinson and Stainsby31.
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aqueous phase. Only when most of this region of the (3-cnmolecule is cleaved is the

remainder of the polypeptide attacked by the protease. Furthermore, the nature of the

oil phase affects the structure of the adsorbed layer. On the more hydrophilic

triglyceride/water interface, the protein is more stretched and more of the trypsin-

sensitive sites are accessible than on the more hydrophobic tetradecane/water interface.

This has been postulated as being due to some of the less hydrophobic side-chains of

the amino acids "dissolving" in the glycerol portion of triglyceride.

Lysozyme molecules have a mainly a-helical structure and contain disulphide

bridges. At low concentrations, lysozyme adsorbs with an unchanged configuration

(a). As the concentration increases it is suggested that part of the protein becomes

denatured and remains adsorbed to the interface, but the rest still in its native form is

able to exchange with the protein in solution (b). At excess protein concentrations,

multilayer formation again occurs (c).

The actual structure and stability of these protein films will vary depending on

pH and electrolyte concentrations, since electrostatic interactions playa vital role in

protein adsorption behaviour as is demonstrated in later chapters.

1.6.4 Effect of protein on the stability of dispersions

The way in which adsorbed protein molecules affect the rate of aggregation of

colloidal particles depends on the nature and concentration of the protein and also the

solvent properties of the dispersion phase.

As protein adsorbs to the particles, the electric double-layer will be disrupted.

This will be due to;

a) the protein penetrating the layer (if its electrostatic charge is sufficiently
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large),

b) neutralisation of some of the charge in the double-layer by the opposite

charges of the protein,

c) exclusion of some of the counter ions from the surface as the protein adsorbs

and,

d) trapping of ions within the loop regions of the protein.

These effects change the t-potential and electric double-layer thickness.

In a "good" solvent a thick adsorbed protein layer stabilises the emulsion by

steric effects. It is the loops and tails that act as steric stabilisers.

1.7 Model emulsion systems

Since it is not possible to study the adsorption of protein onto oil droplets

because of the instability of uncoated or partially coated droplets, a variety of model

systems have been used to simulate this situation. These include spread

monolayers35.36.37and solid planar surfaces":" e.g. mica and polystyrene latex. This

thesis will deal mainly with adsorption to positively and negatively charged polystyrene

latices and also to phospholipid liposomes whose surface charge has been varied by

using phospholipids with variously charged head groups.
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Chapter 2

Milk Proteins

2.1 Introduction

Milk protein is one of the most widely consumed human foods and milk from

the Western breeds of dairy cows Bos taurus, represents the major source of milk for

the food industry, this section will deal solely with the composition of bovine milk.

Milk is a multiphase secretion of the mammary gland containing emulsified fat

globules, colloidally dispersed casein micelles and dissolved proteins, lactose and salts.

Typically the overall composition is 4% fat, 3.5 % protein, 4.8% lactose and 0.7% oils.

Water represents the dispersion medium. The fat and protein constituents are

seasonall y variable and reflect breed differences, stage of lactation and feeding

regimes",

Milk proteins can be divided into two major groups, the caseins and whey

proteins. The caseins are a family of related phosphoproteins and contribute about

80% of the total protein content of milk. The majority of the caseins are in the form

of large colloidal particles called casein micelles with only about 10% being located

in the serum (whey) phase". The family of caseins consist of four members; all-casein

(a.,-cn), a.2-casein (a.2-cn), {3-casein ({3-cn)and x-casein (x-cn) which are present in

the ratio 3: 1:3: 1 by weight respectively. Micelles require calcium ions in order to

maintain structure and the calcium ion concentration in milk is 30mM, of which 27%

occurs in micelles".

When caseins are removed from skimmed milk (e.g. by isoelectric

precipitation), the resulting aqueous phase is called whey or milk serum. The protein
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present in whey contributes about 20% of the total milk protein". ff-Iactoglobulin (ff-

19) and a-lactalbumin (a-la) make up 70-80% of the whey proteins, the remainder

being bovine serum albumin (BSA), immunoglobulins and protease-peptones".

2.2 Occurrence of genetic variants

The heterogeneity of milk proteins is further complicated by the fact that they

are products of co-dominant allelic autosomal genes. Genetic variants of ff-Ig were the

first to be recognised". Discovery of variants of other gene products followed.

Currently there are five known genetic variants of a.l_cn43,44,45,eight of ~_cn46,47,48,49,

four of K_cn50,5I,52,53,54,55, and six of ~_lg56,42,44.Examination of the pattern of inheritance

of the various casein polymorphs indicates a close linkage of the four gene loci for

these proteins57,58,59,Thus the four gene products are not observed with random or

equal frequencies, For example in western breeds ad-cn Band a,2-cn A and ~-cn Al

and ~-cn A2occur more frequently than other genetic variants whereas, x-cn A and B

exhibit a more equal frequency of occurrence. Frequency of occurrence is, however,

strongly influenced by breed of cows, Similarly, ~-Ig A and B appear with equal

frequency, whereas the other variants are very rare.

2.3 Identification of milk proteins by gel electrophoresis

Milk proteins are separated from whole milk by various methods, which will

not be described here, but usually begin by isoelectric precipitation of the caseins by

adjusting skim milk to pH4.6 at 20°C with HCl. Once the proteins have been isolated

it is possible to identify, and name them, by measuring their free electrophoretic

mobility. The advent of zone electrophoresis in gels made greater resolution possible.
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Fig. 2.1. Diagram of the separation of

milk proteins on SDS PAGE.

Taken from Swalsgoodu.
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Resolution occurs due to both electrophoresis and molecular sieving. Including urea

in the gels causes dissociation of the individual proteins". This development provided

the impetus for identification, isolation and characterisation of individual components

of the casein fraction and the discovery of genetic variants.

The most widely used procedure involves alkaline urea gel electrophoresis in

either starch (SGE) or polyacrylamide (PAGE) gels6I,60,62. These methods are

particularly useful for resolution of proteins in the casein fraction. A typical separation

is shown schematically in Fig. 2.1. {3-lgcan also be identified in skim milk in the

presence of urea and 2-mercaptoethanol as a band migrating immediately in front of

{3-cnduring alkaline SGE or PAGE62•64,6S.

The caseins have been named on the basis of their electrophoretic separation,

the caseins can also be resolved by ion exchange chromatography. Again, for effective

separation it is necessary to disrupt the protein interactions during Chromatography

using urea and 2-mercaptoethanol66•

2.4 Composition of milk proteins

As a result of the sequencing of the primary structures of the caseins, the

composition of these proteins can be presented with much greater accuracy. The amino

acid composition of the caseins are not significantly different from those of typical

globular proteins. Average hydrophobicities (based on the free energies of transfer of

amino acid side chains from water to organic solvent) are only slightly higher than

those for the majority of globular proteins which range from 4.18 to 4.60kJ residue".

The most unique characteristic of caseins, namely phosphorylation, results from

po~t-tnm~l~tiomllmOOifiUltion. Ed\in U.r\ifi, p-\in ilml K-cn molecule conoom 11
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characteristic number of phosphoseryl residues. Thus, a,l-cn B, J3-cn A and x-cn A

or B contain 8, 5 and I residues respectively. With exception of one residue in all-cn

D, all of the phosphorylated residues that have been conclusively identified are serines.

In addition to phosphorylation, the x-cns are also glycosylated. The extent of

glycosylation is quite variable, ranging from zero to possibly five sialic acid residues".

The carbohydrate moiety of x-cn from normal milk is composed of three

monosaccharides; N-acetylneuraminic acid (NeuNAc), galactose (Gal) and N-

acetylgalactosamine (GalNAc)68.69.7o.These residues usually occur as a trisaccharide;

NeuNAc ....2,3 Gal~GalNAc~Thr

or as a tetrasaccharide;

NeuNAc ....2.3Gal /l-1.3GalNAc /l-lThr- -I -
....2,6

NeuNAc

as determined in several laboratories'Y"?'. The number of these chains attached to the

x-cn molecule can also vary 72.

Another unique feature of {3-cn,x-cn and asl-cn is the relatively high frequency

of occurrence of prolyl residues. These disrupt a-helical and {3-structures and often

occur in fj-turns and are believed to be responsible, at least in part, for the relative lack

of secondary structure of the caseins.

Accurate determination of the composition allows certain physico-chemical

parameters to be predicted. The predicted values agree well with experimental

observations'" (Table 2.1). The net charge at pH6.6 was calculated because this is

approximately the pH of milk. The net charge on these proteins in milk will be altered

by the binding of other ions, particularly calcium. x-cn will also exhibit charge



Protein Charge at
pH6'6

Isotonic
pH

Partial
specific
volume

Absorptivity
(cm2Ig)
280llm
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Molecular
weight

(X.I-Casein
A
B
C
D

a.l-Casein A
PIO(:X.6)
Pll(:x,.)
P 12(:X.J)
PIJ(:X.2)

p-Casein
AJ

A2
Al

B
C

x-Casein
A
B

-20,0
-20·9
-20·0
-22-6

-13·2
-14·8
-16'4
-18·0

-12·8
-12·3
-11·8
-10·8
-8·2

-H
-3,0

4·97
4·96
5'00
4·91

5·39
5·32
5·25
5·19

5·11
5'19
5·27
5·35
5·53

5'43
5·64

0·722
0·725
0·725
0·723

0·722
0·721
0·720
0·718

0·742
0·742
0·742
0·742
0·742

0·734
0·734

1·13
1'05
1'06
1·05

1·11
1·10
1·10
1·10

0-46
0'46
0·46
0·46
0'46

0·95
0·95

22066
23612
23540
23722

25148
2S 228
25308
25388

23971
23980
24020
24089
23939

19037
19005

Table 2.1. Physico-chemical characteristics of

caseins, calculated from composition.

Each molecular weight for K-cn consists of amino acid residues

only. Each trisaccharide chain will add 6570a and each

tetrasaccharide chain 9480a, to the molecular weight.

E.g. K-cn A has 3 tetrasaccharides and therefore, has a

molecular weight of 21,881 Oa.

Taken from Swaisgood".
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heterogeneity according to its content of NeuNAc.

The major gene products of milk occurring in the whey protein fraction are /3-lg

and a-la. These proteins do not undergo the extent of post-translational processing

present in the caseins. Thus they are not phosphorylated and are only rarely

glycosylated.

The elucidation of the primary structure has again made it possible to calculate

physico-chemical parameters. However, in the case of j3-lg there are major

discrepancies (Table 2.2). From studying proton binding equilibria it has been found

that two /3, 'Y-carboxyls per /3-lg dimer do not ionise with the normal pK. These two

protons dissociate with an apparent pK of 7.3 following a conformational change of the

protein. The unusual titration characteristics of j3-lg reflects its stable, compact

globular structure.

2.5 Primary structures

Further information on the structural characteristics of proteins is obtained from

knowledge of the sequence of residues in the polypeptide chain i.e. primary structure.

Elucidation of the primary structure should enable the three-dimensional structure to

be determined. This is because the primary structure represents the lowest free energy

for residue-residue and residue-solvent interactions. Among others, Chou and

Fasman73,74,75 have proposed an empirical method for predicting a-helical, j3-structure

and /3-turns in the sequences of proteins. A combination of sequence and structural

information also allows the interpretation and prediction of the location of post-

translational modifications.
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H. Ar9-Pro-Lys-llis -Pro-Ila-Lys-His -Gln-GI y-Leu-Pro-Gl n-
21 ------------------------

Lou-Ar9-rho-Ph~-Vn.l-Aln.(V"'rll1nt O,e,o,E"
-rro-Ph~-rro-Glu-Val-Phe-Gly-Ly.-Glu-Ly.-Val-A.n-Glu-LaU_________________________ (Voriant A)

'1 Ala(Varlant. A,B,C,E) Gln(Varlantl ArB,C,D)
S.r-Lyo-Aop-Ile-Gly-Sarp-Glu-S.rp-Thr-Glu-Aop-Gln- -Mat-Glu-Aop-Ile-Lyo- -Het-

ThrP(Vari.nt D) Glu(Variant E)
61Glu-Ala-Glu-SerP-Ile-SecP-SerP-SerP-Glu-Glu-Ile-Val-Pro-Aln-SecP-Val-Glu-Gln-LYI-Hll-
81

Ile-Gln-Lyo-Clu-A.p-Val-Pro-Ser-Glu-Ar9-Tyr-Leu-Gly-Tyr-Leu-Glu-Gln-Leu-Leu-Arg-
10 I
Leu-Lyo-Lyo-Tyr-Lyo-Val-Pro-Gln-Leu-Glu-Ile-Val-pro-Aen-SecP-Ala-Glu-Glu-Arg-Leu-
121
Hil-Ser-Het-LYI-Glu-Gly-Il.-Hls-Ala-Gln-Gln-Lyo-Glu-Pro-Het-Ile-Gly-Val-Aen-Gln-

141
Glu-Leu-Ala-Tyr-Phe-Tyr-pro-Glu-Lau-Phe-Arg-Gln-phe-Tyr-Gln-Leu-Aop-Ala-Tyr-Pro-
161
Ser-Gly-Ala-Trp-Tyr-Tyr-Val-Pco-Leu-Gly-Thr-Gln-Tyr-Thr-Asp-Ala-pro-Sar-Phe-Sar-

181 Glu(Variant A,B,o) 199
Aap-Ile-Pro-Asn-Pro-lle-Gly-Ser-Glu-A.n-Ser- -Lys-Thr-Thr-Het-Pro-Leu-Trp.OH

Gly(Variant C,t)

Fig. 2.2.
variants At B, C, 0 and E.

Primary structure of a.,-casein

Taken from Swaisgood7l,
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2.5.1 a'i-casein

The primary structures for the genetic variants are shown in Fig. 2.2. From

the primary structure it can be seen that like the other caseins, strongly hydrophobic

and charged residues are not uniformly distributed along the polypeptide chain. The

effect of clustering of similar residues becomes apparent when plots of the

hydrophobicity and charge distribution are observed (Figs. 2.3 and 2.4). Three

hydrophobic regions, (1-44), (90-113) and (132-199) can be identified. Another region

unique to the calcium-sensitive caseins is the region (41-80) which contains the cluster

of phosphoseryl residues. At pH6.6 this sequence would have a net charge of

approximately -20.6 for the B variant, while the remainder of the molecule would have

effectively no net charge. These observations suggest a dipolar-type structure with a

globular, rather hydrophobic domain(s) and a highly solvated and charged region which

occupies a disproportionately large fraction of the molecular volume.

From early studies of the optical rotatory dispersion (ORD) it was concluded

that caseins possess very little secondary structure, particularly o-helix". This is

probably true with respect to a-helix. However, all-cn may contain some {3-structure

and undoubtedly a significant proportion of residues occur in {3-turns7S• Caseins have

been described as random, structureless, rheornorphic" or denatured proteins. A

significant fraction of the residues in the hydrophobic domain certainly are unlikely to

confer random coil structure on the protein. Future predictions based on the primary

structure will probably include l3-structure and l3-turns in addition to unordered

structure.

a.,-Cns are more susceptible to proteolysis than compact, stable globular

proteins such as a-Ia80• This difference may be due to the acidic, highly solvated
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I
H.Ar9-Glu-~,u-Glu-Glu-Leu-A.n-Val-Pro-Gly-Glu-Ile-Val-Glu-SecP-Leu-SerP-SerP-SecP-Glu-

(Variant C)
21 Ser ~ya
Glu-Ser-Ile-Thr-Arg-Ile-Asn-Ly.-~ya-Ile-Glu-Lya-Phe-Gln- -Glu- -Gln-Gln-Gln-

SeeP Glu
(Varlants A,8)

41
Thr-Glu-A.p-Glu-~eu-Gln-Asp-LYI-Ile-Hi.-Pro-Phe-Ala-Gln-Thr-Gln-Ser-Leu-val-Ty~-

61 Pro, Variants v, A')
Pro-Phe-Pro-Gly-Pro-Ile- -A.n-Ser-~eu-Pro-Gln-Aan-lle-Pro-Pro-Leu-Thr-Gln-Thr-

Hil,Varlants C,A', and 8)

81
Pro-val-Val-val-Pro-Pro-Phe-Leu-Gln-Pro-Glu-Val-Het-Gly-Val-Ser-Lys-Val-Ly.-Glu-

101 ttis(V,lrit\nts "I,A', RrC,
Ala-Het-1I1a-Pro-Ly.- -Ly.-Glu-Het-Pro-Phe-Pro-Li.-Tyr-Pro-Val-Glu-Pro-Phe-Thr-

Gln(Variant A'I

121 Ser(Variant. II,C)
Glu- -Gln-Ser-Leu-Thr-~eu-Thr-Aap-Val-Glu-A.n-Leu-Hi.-Leu-Pro-Leu-Pro-Leu-Leu-

Ar9(Variant 8)

141
Gln-Ser-Trp-Het-Hi.-Gln-Pro-1I1s-Gln-Pro-L~u-Pro-Pro-Thr-Val-Het-Phe-Pro-Pro-Gln-

161
Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-Lys-val-Leu-pro-Val-Pro-Gln-Ly.-Ala-Val-Pro-Tyr_

181
Pro-Gln-lIr9-lIsp-Het-Pro-Ile-Gln-lIla-Phe-Leu-Leu-Tyr-Gln-Glu-Pro-val-Leu-Gly-Pro-

20 I 209
Val-lIr9-G1y-Pro-Phe-pro-Ile-Ile-Val.0H

Fig. 2.5. Primary structures 01 B-casein

variants, A', A2, A', Band C.
Sites of pOlt-tranllational phosphorylation are in

italics.

Taken from Swaisgood7l•
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domain which probably has random coil properties. This would also explain the

accessibility of residues in this domain to casein kinases which result in

phosphorylation of the protein. In addition, a.l-cn is more susceptible to proteolysis

by rennet than l3-cn at higher temperatures where l3-cn is polymerised. But, at low

temperatures, where l3-cn is monomeric, it is l3-cn that is most susceptible to rennet

attack81•82•

2.5.2 B-casein

Primary structures for five of the genetic variants of l3-cn are shown in Fig.

2.5. It is the most hydrophobic of all the caseins. In addition, the highly charged

domain is clearly separate from the large hydrophobic domain (Figs. 2.3 and 2.4).

Thus, the N-terminal 21 residue sequence would carry a net charge of about -12 at

pH6.6, whilst the hydrophobic domain would have no net charge. Consequently, {3-cn

is a distinctly amphipathic molecule, with a polar domain comprising one-tenth of the

chain length, but carrying one-third of the total charge, whereas the nonpolar domain

is very hydrophobic, especially in the C-terminal two-thirds of the molecule. l3-cn is

also characterised by a high frequency (- 0.17) of prolyl residues which would be

anticipated to have an effect on the secondary structure.

Much of the discussion pertaining to a.ecn also applies to l3-cn. It seems

unlikely that residues in the hydrophobic domain would be completely hydrated, owing

to the unfavourable loss of water entropy. l3-cn has physico-chemical properties quite

different from globular proteins and therefore has been the subject of much

investigation. Sequence information has provided predictions on l3-cn structure using

Chou-Fasman analysis. It was concluded that J3-cnconsisted of 10% a-helix, 13% 13-
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sheet and 77% unordered structure". The amount of {3-turnswas not calculated, which

could be important due to the large proportion of prolyl residues present", The picture

that emerges from these results is that of an amphipathic molecule with marginal

structural stability. The polar domain probably consists of random coil, whereas the

hydrophobic domain contains some structural stability.

The action of proteases on {3-cnis particularly interesting in view of its primary

structure. The apparent greater susceptibility of {3-cnin comparison with all-cn is most

likely caused by the weaker association of {3-cn in the micelle, especially at low

temperatures", As would be expected, the C-terminal peptides are very hydrophobic

and can be extracted with organic solvents". When subjected to a mixture of

proteases, the initial rate of hydrolysis of {3-cnis similar to that of all-cn. However,

the extent of hydrolysis is significantly less'", This may also be related to its larger

hydrophobic domain.

2.5.3 ,,-casein

The primary structures of two genetic variants of x-cn are shown in Fig. 2.6.

In comparison with other caseins the most outstanding features of its structure are the

lack ofphosphoseryl clusters (there is only one serine phosphorylated, residue 149) and

the attachment of carbohydrate moieties to threonyl residues. As a consequence, x-cn

does not bind Ca2+ to the same degree as other caseins and hence its solubility

characteristics are not affected by this ion. Again the x-cn molecule has amphipathic

character", with an N-terminal hydrophobic domain and a C-terminal polar domain.

There are no cationic residues in the C-terminal 53 amino acids. At pH6.6 the net

charge of the x-cn macropeptide is -10 or -11, depending on the variant. This gives
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1
pyroGlu-Glu-Gln-A.n-Gln-Glu-Gln-pro-Ile-Arg-CY8-Glu-Lys-Asp-G1U-Arg-Phe-Phe-Ser-Asp-

21LY8_Ile_Ala_Lys_Tyr_Ile_pro_Ile_Gln_Tyr_Val_Leu_Ser_Arg-Tyr-Pro-Ser-Tyr-Gly-Leu-
41 •

Aan-Tyr-Tyr-Gln-Gln-Lys-Pro-Val-Ala-Leu-Ile-Asn-Asn-GIn-Phe-Leu-pro-Tyr-pro-Tyr-
61

Tyr-Ala-Lys-pro-Ala-Ala-Val-Arg-Ser-Pro-Ala-Gln-Ile-Leu-Gln-Trp-Gln-Val-Leu-Ser-
Bl

Aen-Thr-Val-Pro-Ala-Lys-Ser-Cys-Gln-Ala-Gln-pro-Thr-Thr-Het-Ala-Arg-Ki8-Pro-His-

101 10S!106
PrO-Kia-Leu-Ser-Phe-Het-Ala-Ile-pro-Pro-Lys-Lya-Aen-Gln-Asp-Lys-Thr-Glu-Ile-Pro-

121 Ile(Variant BI
Thr-Ile-Asn-Thr-Ile-Ala-Se:-Gly-Glu-Pro-Thr-Ser-Thr-Pro-Thr- -Glu-Ala-Val-Glu

Thr( Variant A I

141 Ala(Variant BI
Ser-Thr-Val-Ala-Thr-Leu-Glu- -SerP-Pro-Glu-Val-lle-Glu-Ser-Pro-Pro-Glu-lle-Asn-

A8p(Variant Al
161 169
Thr-Val-Gln-Val-Thr-Ser-Thr-Ala-Val.OH

Fig. 2.6. Primary structures of x+casein

variants, A and B.
Site I of pOlt-tranllational pholphorylation and

glycolylatlon are in italics.

+ Indicates site of chymosln cleavage.

Taken from Swaisgood7
'.
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an overall charge on the x-cn molecule of -3.9 for x-cn A and -3.0 for x-cn B. In

addition, each sialic acid residue contributes an additional charge, which for three

tetrasaccharide chains would yield a total charge of -9.9 or -9.0.

The distinct separation of the hydrophobic and charged domains has been known

for some time, due to the specific chymosin-catalysed hydrolysis which releases the

macropeptide resulting in the clotting of para-x-casein. The only bond hydrolysed

during the primary action of chymosin is Phe105-Met106 so the resulting macropeptide

(106-169) contains all the post-translational modifications and the genetic variation in

its sequence":":". Release of the polar macropeptide leaves the N-terminal para-e-

casein which is slightly cationic at pH6.6, and has an increased hydrophobicity and a

greatly decreased solubility.

A considerable amount of structure is predicted from the amino acid sequence",

i.e. 23% a-helix, 31% p-sheet and 24% p-turns. A highly predicted p-sheet in the

region (73-80), which is quite hydrophobic, could participate in the intermolecular

interactions leading to curd formation". There are two predicted p-turns either side

of the chymosin-sensitive bond and another p-turn (113-116) could cause the sensitive

sequence to stand out on the molecular surface, making it especially susceptible to

proteolytic attack", Analysis of CD spectra suggests that x-cn contains more structure

than other caseins (14% a-helix, 31% ,6-structure)88. The amount of a-helix is only

half that of predicted values but can be increased by increasing the temperature, Also,

x-cn is less susceptible to general proteolysis at pH7.4 than that of al.-cn or l3-cn80•

Another aspect that is involved in the secondary structure of x-cn, is the

presence of two cysteinyl residues, which are located in the hydrophobic domain.

When isolated from milk these residues are in the disulphide form involving
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intermolecular linkages so that a heterogeneous population of covalent polymers are

observed", Existence of the disulphide form in milk would be expected in view of the

sulphydryl oxidase activity associated with the skim milk fraction?". Thus these

residues must be on the surface and accessible for oxidation. This agrees with the

predicted structure as Cysl l is in an unordered sequence and Cys88 is in a ~-turn

region. These observations are consistent with a globular hydrophobic domain

possessing a considerable amount of secondary structure.

2.5.4 B-Iacto~lobulin

The primary structure of ~-lg is shown in Fig. 2.7. An important feature is the

presence of both disulphide bonds and a free thiol group. The thiol group must be

located in a structural region which limits its accessibility to reagents, especially for

the case of the C variant". Fig. 2.7 indicates that the thiol is equally distributed

between positions 119 and 12192. However, this assumption has been questioned",

Even so, the molecule presents a unique opportunity for intra- and intermolecular thiol-

disulphide interchange, particularly under conditions that increase the accessibility.

Predictions of the amounts of various secondary structures have been made from

its sequence", Variable amounts of a-helical structure were predicted, 10-50%,

depending on the method used. Better agreement was found for the amount of ~-sheet

structure, 20-30%, and unordered plus ~-tum structure, 50-60%. Since it is a highly

structured molecule there is nothing to be gained by observing the hydrophobicity

plots. This is because some of the residues will be hidden within the protein molecule

when the molecule is in solution. X-Ray crystallography studies have shown three

forms of ~-lg, lattices X, Y and Z9S. All three structures show features suggestive of
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an a-helix and some {3-sheet,but there are no distinct differences. The lattice X forms

at pH6.5 which is then converted to Y and Z at pH7.8. The first structure of bovine

{3-lg to be obtained was that of lattice y96. The structure consists of nine strands of

anti-parallel {3-sheet, eight of which wrap round to create a flattened, conical barrel,

or calyx, closed at one end. There is a three-turn a-helix on the outer surface of the

calyx.

2.6 Physico-chemical characteristics of the caseins

Due to homology in their primary structures, the caseins have many features of

their physico-chemical properties in common. Therefore, although each protein

possesses distinctive characteristics, it is helpful to consider and compare their

properties as a unit. Because of their tendency for interaction or self-association it is

difficult to find suitable conditions for measurement of characteristics for native

monomer forms. Consequently the true characteristics of monomers as they would

exist at physiological pH and temperature remains questionable. Even so, it is useful

to examine the properties of monomers obtained under the mildest possible conditions.

al.-Cn dissociates to monomers at low ionic strength, 0.003-0.01, and

physiological pH. The intrinsic viscosity is somewhat larger than that expected for a

typical globular protein. The three-dimensional shape of the molecule is also

questionable. A prolate ellipsoid seems to be unreasonably symmetrical on the basis

of other observations, whilst the water associated with a spherical molecule (about

3g H20/g) is much higher than for globular proteins. However, the "native" monomer

is definitely not a random coil. It only forms a random coil in denaturing solvents.

On considering these properties together with the primary structure, it appears that the
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ad-cn molecule contains domains of rather unstable structure, particularly the polar

domain which may approach random coil behaviour. Because of this marginal stability

and amphipathic nature, the molecular dimensions are sensitive to ionic strength. This

instability means that at any point in time, an appreciable fraction of the molecular

backbone and side chains will be exposed to water. This requires the hydration of

hydrophobic groups which explains the observed atypical hydration and the high

affinity of water to the protein.

Hydrophobic interactions seem to playa larger role in the association of {3-cn

molecules. Consequently {3-cnoccurs as a monomer at low temperatures, 0-4°C97•

Under these conditions the hydrodynamic behaviour of {3-cn monomer is the most

unusual of all the caseins, and is very similar to that for a random coil chain.

So far suitable conditions for examination of a "native" monomer for K-cnhave

not been discovered. The interactions between monomers are extremely stable so that

at physiological pH, dissociation is not affected by changes in temperature or ionic

strength. Native x-cn monomers are linked together by intermolecular disulphide bonds

so that a heterogeneous population ranging probably from trimers to much larger

covalent polymers":" of 30-35 monomers" are formed. Hydrodynamic data for native

x-cn suggest a spherical polymer with a radius of roughly 9.7nm and a hydration of 3g

H20/g. This structure probably results from lateral interactions between hydrophobic

domains which stabilise the secondary structure in these regions, whilst the polar

domains form a highly solvated surface.

Cleavage of the disulphide bonds by reduction or {3-eliminationat pH 12, permits

characterisation of the monomer in strongly dissociating solvents". At pHI2 the

Stokes radius approaches that expected for a random coil structure.



51

Calcium binding equilibria and the resultant changes in structure are of

particular importance to the formation of casein micelles. Because of the acidic peptide

regions, including the phosphoseryl residue clusters in the polar domains of a.l-cn and

{3-cn(as well as a.2-cn), the association of Ca2+with these proteins is unique. Results

have shown that the strength of Ca2+ binding to a.l-cn increases with increasing ionic

strength or decreasing pH99. In addition the binding of CaH to {3-cn, after the first

Ca2+ ion has bound, is weaker than the binding of a.l-cnIOO• As Ca2+ is bound, protons

are released and the extent of solvation decreases to plateau levels of 1.7g H20/g and

1.9g H20/g for a.l-cn and {3-cnrespectively. Precipitation is initiated in both proteins

at levels consistent with Ca2+ binding only to phosphoseryl residues. Results also

suggest that precipitation of the a.l-cn/Ca2+ complex is almost completely determined

by the charge of the complex!". This is also supported by radioisotope studies'?'.

However, in this study there was some binding of Ca2+ to x-cn, even though only one

phosphoseryl group is present'?'. This suggests that Ca2+ may be binding to a

negatively charged cluster.

2.7 Physico-chemical characteristics of {3-lactoglobulin

This protein has been the subject of many physico-chemical studies. Only a few

of these, relating to the structure of the molecule, will be discussed. At pH values near

its isoelectric point up to and including the pH of milk, and at room temperature, each

genetic variant exists as a stable dimer of molecular weight about 36, 700Da63•

At pH7, {3-lgexists as a dimer of about 36,OOODa. The dimensions of the long

axis is 6.9311111and that of the short axis, 3.58nmIll3
•
H14

• At pH values lower than 3.5

(below the isoelectric point of 5.09 and 5.23 for phenotypes A and B respectively lOS),
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the dimer dissociates into two subunits which appear to be identical'?' and this is not

accompanied by a change in conformation". At this point there is little difference

between genetic variants, but between pH's 3.5 and the isoelectric point, genetic

variant influences the association properties. At the pH range 3.5 to just above the

isoelectric point and at low temperatures, the {1-lgA dimer associates to form octamers

of = 147,OOODa. At a concentration of 15g I-I and temperatures above 4.5°C, it

appears that significant amounts of tetramer and hexamer must also be present. At

higher concentrations or lower temperature the results agree with a simple dimer-

octamer model'?', The octamers have a diameter of about 8.2nm along their long

axis'?'. {1-Lg B cannot form aggregates greater than a tetrarner'?', therefore the

tetramer would have a diameter of approximately 6.7nm. Association is attributed to

4 carboxyl groups present at the site of interaction, one of which is probably at residue

64 where variant A has an aspartate and variant B a glycine, resulting in variant A

having one more carboxyl than B, and therefore being more surface activeI03,106,J08.

Consequently the smaller decrease in entropy for {3-lgA may result from release of

more water molecules as this carboxyl is buried in the interaction site'?'. It also

appears that the interaction is less hydrophobic than that of {3-cn, for example, since

the effect of temperature is the opposite.

In the alkaline region there is a reversible conformational change centred around

pH7.5 which exposes and ionises one abnormal carboxyl per monomerl09.1I0.lIl.J08.The

transition and the abnormally titrating carboxyl are observed in all variants examined

i.e. A, B and ellJ,lI2. Tyrosyl and tryptophyl residues become exposed due to the

transition. This suggests that these residues are located in the three-dimensional

structure near the hidden carboxyl group!".
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Increasing the pH to still higher values induces further structural changes which

become irreversible around pH9.5. At this point the 13-lgtyrosine residues begin to

ionise.

ORD and CD studies indicate a secondary structure consisting of lO-15% a-

helix, 43% l3-sheet and 47% unordered structure'P'!". The general agreement is that

there is a considerable amount of l3-structure but very little a-helix which agrees with

predictions from the primary structure". The calyx structure obtained from X-ray

crystallography also agrees with this". A more detailed review of 13-lgproperties has

been written by Hambling et allis.
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Chapter 3

Physical Techniques

3.1 Introduction

When colloidal particles are immersed in a fluid, they scatter a beam of light

(Tyndall effect). The scattering pattern (i. e. the intensity of the scattered light as a

function of 8, the angle between the incident beam and the scattered beam) depends on

the particle size and on the wavelength of light. Therefore, a method of analysing the

scattering pattern will provide one effective way of determining the size of the colloidal

particles. An alternative method, photon correlation spectroscopy ,which examines

fluctuations in light intensity, has only become possible relatively recently due to the

introduction of lasers that give coherent, monochromatic, intense and narrow incident

beams, together with sensitive and stable photon-detection apparatus and rapid data

analysis techniques by computer.

3.2. Photon Correlation Spectroscopy

A typical photon correlation spectroscopy (peS) apparatus has a laser light

source providing an incident beam to be scattered by the sample with the scattered light

detected at a given angle away from the light source (Fig. 3.1). It therefore comprises

all of the components required in a static light scattering system. Precautions to be

observed are the same as those involved in the static or integrated light scattering

situations.

Since light is scattered strongly at an interface where a refractive index

difference occurs (e.g. where there is a change from the cuvette wall to the sample),
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scattered light from the edge of the cuvette must not reach the detector. The scattering

angle is often restricted to 90° and this is usually sufficient to prevent this happening.

In addition the scattering cuvette is immersed in a "refractive index matching fluid"

(usually water) which minimises the change in index at the edge of the cuvette. The

water also acts to keep the temperature of the cuvette the same as that of the rest of the

measurement cell, which is maintained at a given temperature.

The detector consists of a photon counting photomultiplier that produces an

electrical pulse when a photon is detected by the "photocathode". An electron ejected

from the photocathode is accelerated in a high voltage field, then falls into a "dynode"

that tends to eject more than one electron when struck by a single one. This process

is propagated over twelve or more times so that the electron ejected from the original

photon is multiplied by 107 or more. This electrical pulse is then amplified and

converted to a standard "logic pulse" that can be counted and processed by other

electronic modules in the system. The detector cannot respond to another photon until

the previous output is complete. As a consequence the maximum count rate is around

20 million photons per second. However, photons will arrive at the detector at

different times. In order to allow for this, the mean rate should be a factor of 5 or so

lower in order to guarantee that the count rate is really proportional to the detected

light intensity. The intensity can be altered by changing the aperture in front of the

detector. Increasing the aperture increases the number of photons that reach the

detector and hence increases the intensity count rate. The scattering sample must be

of a sufficient concentration to scatter light, but not so concentrated that the scattered

light hits other particles before it reaches the detector (multiple scattering).
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3.2.1 The fundamentals of pes measurement

pes (also referred to as Quasi-elastic light scattering (QELS)) uses the fact that

a photon counting detector can track rapid changes of intensity, if enough photons are

present during the "sample time" in which an individual portion of the total intensity

is recorded. If those photons detected over an entire "sample time run" are averaged,

they would record the sample average intensity as in the previous sample time run,

providing all other conditions are kept constant.

The correlator stores successive samples of the signal in "sequential bins" and

then multiplies every "old sample" by the current value of the signal as it is measured

and these multiples are then added together and stored in a "store channel" (1). Every

sample signal is then multiplied by the signal in the bin two bins away and the sum of

all these multiples is stored in another store channel (2). Intervals of three bins are

then used and the sum of these multiples are stored in another store channel (3). This

continues until the interval length is the same as the total number of store channels

available (Fig. 3.2).

Each store channel represents a point in a correlation function. The correlation

functions are then plotted against the store channel number to give a decay curve. If

the sample is monodisperse i.e. all of the particles are of the same size, the decay is

exponential. The semi-logarithmic plot of InG(t) vs sample time gives a straight line

is produced, the gradient of which is the diffusion coefficient. In practice the earlier

store channels (those calculating small differences in time) are the only ones used. The

correlation function decays because particles are moving. When no correlation is seen,

particles have moved a distance greater than one wavelength.

The diffusion coefficient, D, can be related to particle size by using the Stokes-
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a b c d n

Store channel 1 • [(axb) + lbxel + Iexdl + ... (...xnll

Store channel 2 = Ilaxel + (bxd) + ... (...xnll

Store channel 3 • [(axd) +... (...xn)]

Fig. 3.2. Diagram of a simple correia tor •

Correlator sums the mUltiples of the number of counts

in each bin by the number of counts in the bin

distance N-z away and stores it In a store channel.

The same occurs for succe"lvely increasing time intervals.

Continue. until the time interval equais the total number of

.tore channels.
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Einstein equation for spheres;

D = kt/61rl1Rb (3.2.1)

where, t, is the absolute temperature, k, is the Boltzmann constant, 1/, the solvent

viscosity and Rh' the hydrodynamic radius. Rh' is generally slightly larger than the

geometrical radius due to solvation by solvent and some interaction effects. Since size

is dependent on viscosity, any change in this parameter must be accounted for. In very

dilute systems any addition of small amounts of solute, such as protein, latex or

liposomes, will not appreciably alter the viscosity.

The data can be analysed in different ways. Different methods are used because

no single method of analysis is applicable in all cases. This is due to there being more

than one particle size distribution that corresponds to very similar correlation functions.

The method used here is that of cumulants'". The cumulant method makes no

assumption about the distribution form. It fits a polynomial in channel time (or

number) to the Loge of the normalised correlation function (equation 1.3.2). Cumulant

refers to the full measured correlation function being represented by a theoretically

infinite series, each term representing a "statistical moment" of successively higher

order. These can be interpreted to give information about the shape of the distribution

of "decay times" and hence particle sizes. Generally only the first 2 or 3 terms are

used. The first moment is used to derive a "z average" mean size and the second the

"polydispersity" which is a measure of the width of the distribution;

Loge«G(t)/B)-l) = a + bt + ct2 + ... (1.3.2)

where, G(t), are the measured correlation points, B is the baseline (calculated from the

monitor channels), a, b, and c, are the coefficients of the cumulants fit determined by

a simple linear-least-squares fit. The coefficient a, is the "intercept", b, the "slope"
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(measures the relaxation time for the signal), and, c, the departure from linearity (the

curvature of the fit). From these values the diffusion coefficient can be extracted;

T = lIb = 2DK2 (1.3.3)

where, K, is the scattering vector. Polydispersity is then defined as c/2b. It measures

the variance of the distribution of decay times and hence provides a measure of the

width of the particle size distribution. A monodisperse system, by definition, will have

a low polydispersity value, and any large change in polydispersity will indicate

aggregation of the system. In these studies any non-time-dependent increase in the z

average particle diameter without a corresponding change in polydispersity upon

addition of protein, is taken to indicate that protein is adsorbing to the particle (latex

or liposome), so forming a layer around the particle.

3.3 Electrophoretic mobility

Another method of characterising protein adsorption to latex particles is that of

laser Doppler electrophoresis, which measures the electrophoretic mobility of particles.

The Malvern "particle charge" system was used to determine the electrophoretic

mobilities. A diagram of the apparatus is given in Fig. 3.3. The system is designed

so that two beams of light are focused and cross at a given angle within the volume of

an electrophoresis cell (capillary). The light scattered by particles in this cell is then

detected by a photomultiplier system, which converts the optical signals into electronic

signals that can be analysed to give detailed information about the motions of particles

in the electrophoresis cell. If the particles are in motion, e.g. when an electric field

is applied, the scattered light will undergo a change in frequency due to the Doppler

effect. The change in frequency due to Doppler shift is very small. In order to
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magnify this change in frequency, the light scattered from the moving particles is

allowed to interfere with unshifted light at the detector. As a result, optical "beats"

are produced at the Doppler frequency due to the "carrier" frequency being filtered out

by the frequency response of the detection system.

Particles move at an angle of 0' to a light beam, the scattered light is detected

at an angle of 4>' to this direction of motion so that the frequency change due to the

Doppler effect (~fD) is given by;

~fD = (nv/A)(cos4>' - coss ') (3.3.1)

where, A, is the wavelength of light, v, particle velocity and n, the refractive index of

the suspending medium.

The electric field applied across the sample can be generated using constant

current mode. The resistivity of the medium in the electrophoresis cell (R.:) is given

by;

(3.3.2)

where, 'Y, is the conductance of the medium and, r, is the radius of the capillary.

Hence, given the current (I.) the electric field (E) can be determined;

(3.3.3)

Once the electric field and particle velocity are determined the electrophoretic mobility

(/Le) is extracted from;

(3.3.4)

This method requires moderately or slightly turbid solutions, since it relies on the

scattering of light. This makes it ideal for studying latices and the protein bound to

their surface. As protein adsorbs to the latex surface, the charge on the latex will be

masked by the charge on the protein, so a change in electrophoretic mobility will
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occur.
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Chapter 4

Adsorption of Milk Proteins to

Phosphatidylglycerol and

Phosphatidylcholine Liposomes

5.1 Introduction

Phospholipid bilayers are important cell constituents as they form the basic

element of the cell membrane. In milk, 21% of the fat globule membrane is composed

of phospholipid with protein comprising 41%. Phospholipids, particularly

phosphatidylcholine (PC) are added to some processed foods in order to act as

emulsifiers. Protein-phospholipid interactions are therefore important with regard to

the behaviour of these systems. In addition to forming monolayers at air/water

interfaces, phospholipids can be organised into liposomes. These are vesicles in which

an aqueous volume is enclosed within a membrane composed of lipid molecules.

Usually, the membrane consists of a bilayer of phospholipid molecules whose charged

head groups project into the aqueous phase. The charge on the liposome surface can

be changed by using different classes of phospholipids. All phospholipids have the

same general structure consisting of a glycerol backbone to which is attached two

hydrophobic fatty acyl chains, RI and R2 and a charged head group, XI17;



65

iH20COR 1

R2COOCH

I 0
CH2~POX

b-

(4.1.1)

Phosphatidylglycerol (PG), a glycerophospholipid, is the major phospholipid present

in photosynthetic tissues and in many bacteria. The structure of its head group is'";

(4.1.2)

This results in PG having an overall net negative charge. Phosphatidylcholine (PC) is

another major phospholipid class and is found in large amounts in plants and in small

quantities in some bacteria. The structure of its head group is;

(4.1.3)

which results in the molecule having no net overall charge.

Such polar lipids are able to form liquid-crystalline phases. Bonding between

the polar head groups result in sheets being formed. These bonds are quite strong

when compared with the weak van der Waals forces between the fatty acyl chains. As
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a result, before the phospholipid melts completely there is a range of temperatures

where the fatty acyl chains are fluid, but the polar head groups are still associated in

sheets. Therefore, the overall structure consists of lipid bilayers having disordered

chains. Such a structure of short range disorder, but long range order, is referred to

as liquid crystalline!".

When this phase is in aqueous solution above the initial hydrocarbon chain

"melting" temperature, water penetrates the polar region and a lamellar-water structure

is formed. This consists of water layers alternating with lipid bilayers (Fig. 4.1).

LIPID BILAYER

WATER

LIPID BILAYER

Fig. 4.1. Diagram of lamellar-water structure.

Recent work has suggested that there is a higher degree of chain disorder and

entanglement than suggested by the above diagram!", although this will not affect the
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position of the polar head groups. Any proteins binding to the bilayer will attach to

the head groups and not to the fatty acyl chains. However, it could be envisaged that

any highly hydrophobic regions of the proteins could penetrate the bilayer and interact

with the hydrophobic tail regions of the phospholipids (e.g. as with intrinsic membrane

proteins).

In very dilute suspensions and upon gentle agitation, the lamellar phase can be

induced to form liposomes. Here the bilayers are curved into aggregated or hollow

vesicles. In dilute systems liposomes take up a spherical shape. These liposomes

consist of multiple shells of phospholipid bilayers separated by aqueous layers.

Prolonged sonication causes these multilamellar liposomes (MLL) to break up to form

homogeneous single spheres consisting of a single bilayer and these are termed

unilamellar Iiposomes (ULL)120, Fig. 4.2.

Fig. 4.2. Diagram of the structure of a Iiposome.

A good deal of research is currently in progress with regard to the potential use

of liposomes as a carrier of drugs trapped in the internal aqueous phase. However, the
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life span of liposomes within the body is variable. Adsorption of blood proteins from

the blood serum onto the surface of liposomes has been demonstrated!" and this may

influence the stability of individual liposome preparations.

Polystyrene latex has been used to study the interaction of proteins with charged

surfacesI22,123,39,124. The attraction of polymer latices is that they can be prepared

reasonably "clean" (free from surface-active impurities) and monodisperse.

Many aspects of adsorption at solid surfaces apply equally to liquid interfaces,

however, two specific areas of difference can be identified. First, there are

electrostatic interactions between charged protein residues and fixed charges on the

particle surface (e.g. on polystyrene latex there are sulphate groups from the

polymerization initiator). The protein interacts with the electrical double-layer around

the particle. This alters the ionic distribution in the diffuse layer, which modifies the

dissociation of titratable groups on the latex surface and on the protein. Secondly, the

solid phase is relatively impenetrable. This means the tendency for protein molecules

to unfold and expose their apolar residues to the non-aqueous phase is not so strong as

at liquid interfaces. Therefore, they do not necessarily provide the most realistic

models for food systems involving proteins and phospholipids. This is partly because

polystyrene latices are solid, impenetrable spheres and also because the detergent that

may be present with the latex may compete with the protein molecules in binding to

the latex surface. Therefore, the examination of the binding of milk protein to small

ULL was used as an alternative model to the latex particles. This chapter deals with

the interaction of a number of the major milk proteins with small ULL, and also

investigates the influence of charge and pH on these interactions.
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4.2 Materials and methods

L-a-phosphatidyl-DL-glycerol (PG) and L-a-phosphatidylcholine (PC), both

from egg yolk, were purchased from Enzymatix Ltd, Cambridge, UK and Sigma

Chemical Company Ltd., Poole, Dorset, UK respectively. Caseins were purified

chromatographically from bulk skimmed milk". The A and B phenotypes of 13-1gwere

purified from homozygous 13-lgmilks by method la of Armstrong et aIm, with the

purified protein being freeze-dried rather than crystallised. {3-cnwas dephosphorylated

using potato acid phosphatase obtained from Sigma'",

Liposomes were prepared by drying 50mg of a chloroform solution of the

phospholipid onto the walls of a round-bottomed flask, under vacuum for 2hr. Saline

(0.9%; 25ml), previously purged with nitrogen and warmed to 25°C, was added and

the contents mixed on a vortex mixer until all the lipid was removed from the flask

walls. The suspension was then placed in a looml conical flask and sonicated under

nitrogen for lhr in a sonicating water bath. After standing for 2hr at 25°C to allow the

liposomes to anneal, the suspension was centrifuged at 91,OOOgand 25°C for 2hr. The

supernatant, which contained the small ULL, was decanted from the pellet and after

filtering through a 0.2J.Lm filter, was stored under nitrogen at 4°C until required.

Liposomes were only used the day following their preparation.

The concentration of lipid in the supernatant fraction was determined by

measuring its phosphorus content by a sulphuric acid digestion procedure!". Lipid was

extracted from the aqueous suspensions by adding l ml of the liposome preparation to

4ml of chloroform/methanol (2: 1 v/v). The chloroform layer was collected and

assayed for lipid phosphorus. The degree of oxidation of the phospholipids in the

liposome preparation was determined spectrophotometrically at 233nm128.
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The average hydrodynamic diameter of the liposomes was determined by photon

correlation spectroscopy (PCS) using a Series 7032 Multi 8 Correlator (Malvern

Instruments Ltd., Malvern, Worcs. UK). Measurements of the dynamics of scattered

light were made at 90°, average diffusion coefficients being determined by the method

of cumulants!", and particle diameters were calculated from these using the Stokes-

Einstein relation for spheres. Aliquots of the proteins in saline were added to the

liposome suspensions and incubated for at least 30min. at 20°C before determining the

hydrodynamic diameter of the coated liposomes. Adsorbed layer thicknesses were

determined by subtracting the uncoated Iiposome radius from that of the protein coated

liposome particle. For each suspension, five determinations of particle radius were

made and these were averaged to give the value for that suspension.

4.3 Results

4.3.1 Analysis of liposome preparation

Mean concentrations of the phospholipids in the ULL preparations were 1.08

± 0.07mg ml' for PG and 1.00 ± O.09mg ml' for PC. This was equivalent to a yield

of 54 and 50% respectively. Typically, the PG liposomes had a mean diameter of

80nm and the PC liposomes, 150nm. The relative degree of error in measuring the

increase in diameter of the particles as protein molecules adsorbed to the surface was

therefore less with the PG liposome preparations than it was with PC. This explains

the reduced scatter in the measurements of the increase in diameter as a result of

protein binding to PG liposomes. Liposomes are naturally a polydisperse system. The

filtering of the liposomes through a 0.2JLm filter eliminates the large particulate matter.

The resulting liposome suspension has a relatively high polydispersity of 0.1-0.4
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compared to 0.02-0.05 obtained with polystyrene latex. Conventionally a system is

considered polydisperseabove values of 0.3. The values obtained for this parameter

do not vary during normal adsorption studies and are consistent between preparations

and with time. So it appears that the liposome preparation method produces a

reasonably monodisperse suspension of Iiposomes. The total available Iiposome surface

area in these studies was approximately 0.2 to 0.3m2 ml' and the volume fractions of

the solution occupied by the PG and PC liposomes were typically 0.0012 and 0.0028

respectively. The extent of oxidation of the lipids in the liposome preparations was

low at 0.3% for PG and 0.08% for PC liposomes.

Attempts to separate bound from unbound protein by filtration or size exclusion

chromatography, in order to determine the proportion of added protein which was

bound to the surface, were unsuccessful. Since it was not possible to determine the

amount of adsorbed protein, and since the available surface area would be important

with respect to protein coverage, the increase in protein layer thickness was plotted as

a function of added protein expressed as p.g or mg of protein per square metre of

available liposome surface.

4.3.2 Influence of ionic strength

Sodium chloride (0.9% i.e. 154mM) was found to be essential for binding of

protein to both types of liposome. This level of NaCI had been used previously by

workers investigating liposome preparationsI29.130,131,presumably because it is the

physiological concentration of NaCl. In the absence of salt, no increase in diameter

was detected as the protein concentrations increased.
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4.3.3 Effect of pH

In liposome suspensions in which isotonic saline was used as the hydration

buffer, the pH was typically 6.2. To try and simulate these conditions, the pH of

liposomes already present in 50mM bis-tris-propane (BTP)/O.9% NaCI pH7.0 was

adjusted to pH6.2. Fig. 4.3 shows the effect on x-cn binding in these conditions.

There appears to be only a slight difference in the binding affinities between these two

pHs, suggesting that the protein is probably binding in its native form. This is not true

when the pH is reduced further, to pH4.4. The increase in radius at pH4.4 is much

greater than at pH7.0, and is probably indicative of aggregation.

pH4.4 is too close to the isoelectric points of ad-cn and {3-cn. Attempts to bind

these proteins failed as they precipitated out of the stock solution. At pH9.0 no

binding was observed with all-cn, {3-cn, ,,-cn or {3-lg. In the case of {3-lg this was

probably due to denaturation which occurs more rapidly at pH9.0132• In the presence

of acetate buffer (pH4.4) the adsorption of both {3-lgA and {3-lgB is enhanced (Fig.

4.4). At pH7, addition of {3-lgB resulted in a thicker adsorbed protein layer (8nm)

when compared with {3-lgA (4nm), although the concentration of protein required to

reach the maximum layer thickness for both phenotypes was similar. This difference

is significant since both results carry a standard error of approximately ± 1nm.

4.3.4 Adsorption of 8-cn

Increase in particle size as a result of adsorption of native, fully phosphorylated

f3-cn to PG and PC Iiposomes is shown in Fig. 4.5. The maximum layer thickness on

the PC liposomes was about 6nm whereas that on the PG liposomes was 11nm. The

layer thickness on the PG liposomes is almost identical to that of {3-cnon negatively
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charged latex as measured by PCS by Mackie et al", but 4nm less than that measured

by Dalgleish!" and Leaver and Horne!" on the same type of latex. However, the

addition of 154mM (0.9 %) NaCI to these (j-cnllatex suspensions caused a reduction in

the layer thickness to about 10 to l lnm'" (see Chapter 5). Some of the negative

charge on the (j-cn is due to the phosphoserine residues which form a cluster between

residues 15 to 19. These phosphate groups can be removed by treating the protein with

the enzyme potato acid phosphatase. When the binding of this dephosphorylated

protein was measured (Fig. 4.6), the adsorbed thickness on the PG surface was found

to be slightly less (by about 0.5 to 1.0nm) than that of phosphorylated (j-cn. This

decrease in the thickness of the protein layer as a result of dephosphorylation, was less

than the 4nm reported by other researchers using negatively charged latexl22,39. But

again, in the presence of 154mM NaCI, the difference in the layer thicknesses of native

and dephosphorylated (j-cn on negatively charged latex is reduced to 1 to 2nm (see

Chapter 5). The thickness of the adsorbed protein layer on PC liposomes was the same

for both the native and dephosphorylated forms. The shape of the plot of the increase

in radius as a function of the concentration of added dephosphorylated (j-cn was

considerably more sigmoidal than that for native (j-cn on both surfaces.

4.3.5 Adsorption of all-cn

The binding of aal-cn to the two types of liposomes is shown in Fig. 4.7. At

low concentrations of the protein, the increase in the radius of both PC and PG

liposomes was very similar. Above a protein concentration of about 20llg ml', the

particle radius of the PG liposomes began to increase more rapidly, probably signifying

aggregation, reaching a plateau value of about 50nm compared with 7nm on the PC
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liposomes. Dalgleish!", reported a layer thickness of 1O.5nm for ad-cn on negatively

charge latex, which increased to 11.5nm when urea was added to the buffer,

presumably as a result of urea causing unfolding of the protein structure. The same

author also detected aggregation of the latex particles at low protein levels in the

presence of 50mM NaCl, but this was overcome at higher protein concentration.

4.3.6 Adsorption of K-cn

The increase in the radius of PC and PG liposomes with increase in the applied

x-cn concentration at pH6.2 is shown in Fig. 4.8. The maximum layer thickness was

greater on PG liposomes than on PC (18.0 and 6-7nm respectively). At low protein

concentrations the diameter of the PC liposomes increased more rapidly than that of

the PG. Whether this was due to differences in the affinity of the x-cn for the two

surfaces, and hence in the amount of protein bound, or to differences in the orientation

of the protein on the surface is not known.

The thickness of the x-cn layer on PG liposomes was found to be time

dependent (Fig. 4.9). In general, at higher protein concentrations the adsorbed layer

thickness decreased with time, whereas it increased at low protein concentrations. This

may indicate that initially there is a relatively rapid adsorption of the protein molecules

to the surface, which is followed by a slow rearrangement.

The age of the x-cn solution was found to be important with respect to

adsorption behaviour. On addition of freshly prepared x-cn to PG liposomes a layer

8nm thick was formed. However, when the same protein solution was used 3days

later, very little binding occurred (Fig. 4.10). This may be due to stable aggregates,

which had a lower affinity for the liposome surface, forming in the stock solution.
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This was supported by the observation that although addition of 2-mercaptoethanol to

a fresh solution of x-cn did not change the binding curves, it did increase the layer

thickness of 3 day old K-cn, but not to the levels of fresh K-cn. This suggests that the

formation of the aggregates may be, in part, irreversible. The layer thickness of

freshly prepared x-cn on PG liposomes in Fig. 4.10 was about lOnm less than in Fig.

4.8. In Fig. 4.8 the liposomes were prepared in 0.9% saline pH around 6.2, however,

in Fig. 4.10 SOmM bis-tris-propane/0.9% saline, pH7.0, was used as the suspension

buffer. This slight change in pH coupled with the buffer salts is probably responsible

for this. Because earlier studies had shown that the layer thickness was altered by the

choice of suspension buffer it was decided to remain with one suspension solution

throughout (0.9% saline).

e-cn coated PG liposomes were treated with trypsin. The concentration of

trypsin used was similar to that used by Dalgleish and Leaver" to hydrolyse (3-cn on

coated latex. From earlier experiments it appeared that trypsin works better on freshly

coated Iiposomes, than if the Iiposomes were coated with f(-cn the day before. This

could be due to protein molecules "settling-down" on the liposome surface with time.

The trypsin sensitive bonds may, therefore, become masked resulting in the trypsin

molecules being unable to reach the bonds in order to cleave the protein. When trypsin

was added to x-cn coated PG liposomes (Fig. 4.11) a fall in radius of about 9nm occurs

followed by aggregation. The initial drop in radius does not fall to that of the uncoated

liposomes, but leaves a protein layer about 9nm thick.

4,3.7 Adsorption of B-I~

The binding of both the A and B variants of {3-1gto the liposomes at pH6.5 was
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similar. The plot of the increase in radius of the PC liposomes with protein

concentration (Fig. 4.12) had a stepped appearance. The first plateau corresponded to

a protein layer 4nm thick and the second plateau of 7.5nm at higher protein levels. No

stepping was observed with the PG liposomes where a single plateau at a layer

thickness of 8-9nm was determined.

4.4 Discussion

In these studies of the interactions between surface active proteins and

liposomes, it was important to keep the levels of lipid oxidation low. This is because

the oxidised products may compete with the proteins for the surface and will tend to

destabilise the phospholipid bilayer. Preparation of liposomes by bath sonication under

nitrogen was found to be more effective at minimising the amount of oxidation than

was probe sonication.

The failure to detect any increase in diameter of the liposomes in the absence

of salt suggests that the initial charge-charge repulsion between the proteins and

liposome surface was diminished at high salt concentration, allowing hydrophobic

interactions to dominate.

The differences in the shapes of the plots of increase in particle diameter as a

function of added casein for the two types of liposome and also in the thickness of the

adsorbed protein layers, can largely be explained on the basis of the net charge on the

liposome surface and the distribution of charge on the protein molecules. Above

pH4.4, PG possesses a net negative charge!", whereas the zwitterionic PC has no net

charge. (j-Cn is the most hydrophobic of the caseins and has a pronounced amphiphilic

structure with a hydrophilic N-terminal region and a relatively hydrophobic C-terminal
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region. The 21 residues in the N-terminal domain have a net negative charge of _1263.

The remainder of the molecule has no net charge. Therefore, it would be expected that

electrostatic charge repulsion would lead to thicker layers on the PG liposomes as the

N-terminal region is pushed away from the surface. There is increased sigmoidicity

in the plots of the increase in diameter of both of the liposome preparations as a

function of the concentration of added dephosphorylated {3-cn. This may have been due

to the removal of some of the negative charge permitting the protein molecules to pack

closer together, before electrostatic repulsion on adjacent protein molecules pushes

them out into the aqueous phase to their maximum extent.

The increase in diameter in the PG liposome preparation at higher

concentrations of all-cn was too great to be accounted for merely by extension of the

protein from the surface. Protein bridging between liposomes is the most likely

explanation. As with the other caseins, the charged amino acids of all-cn are not

uniformly distributed throughout the molecule". However, unlike {3-cnand «-cn, the

highly charged region is located in a more central position. At pH6.6, the region

comprising residues 41-80, which also contains the phosphoseryl cluster, would have

a net charge of about -20. The remainder of the molecule will have no net charge.

On the PC surface the all-cn apparently behaves like the other caseins with the

unordered casein molecule lying relatively close to the surface. On the negatively

charged PG surface, however, charge repulsion would result in the negatively charged

region of the protein being displaced from the liposome surface. It apparently remains

attached by one or both ends of the molecule. As protein loading increases either one

of the ends is displaced from the surface by competition with other casein molecules,

or the concentration of the free ends reaches a level at which they will link to other
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liposomes and form stable clusters. This is indicated by the large increase in particle

size.

x-cn also has an amphiphilic structure with a hydrophobic domain in the N-

terminal region and a C-terminal polar domain". No positively charged amino acids

are found in the C-terminal 53 amino acids. The net charge of the C-terminal portion

at pH6.6 is -10 or -11. The sialic acid residues are bound to e-cn in the polar domain

and each residue contributes an additional negative charge. Therefore, for three

tetrasaccharride chains there would be an overall net charge of -16 or -17. Hence, it

would be expected that electrostatic repulsion would be greater between the negatively

charged C-terminal tail and the negatively charged PG head groups. This would result

in the charged x-cn "tail" being pushed further from the liposome surface.

The time dependent decrease in the thickness of the adsorbed K-cn layer and the

relatively high layer thickness on PG liposomes, could have been due to adsorbed x-cn

molecules rearranging and settling down onto the negatively charged surface.

Multimeric x-cn (formed through disulphide bridging between molecules) may also

rearrange after adsorption to the liposome surface.

The fact that 2-mercaptoethanol causes no appreciable difference in the binding

of fresh x-cn to PG liposomes, suggests that x-cn may be binding in a monomeric

form. 2-Mercaptoethanol reduces disulphide bonds, so preventing bridging between

x-cn molecules. Therefore in the presence of 2-mercaptoethanol x-cn should be binding

as monomers. Some of these disulphide bonds may be on the inside of the x-cn

complex and so protected from the action of 2-mercaptoethanol, which would explain

why the addition of 2-mercaptoethanol to aged x-cn only slightly increases the thickness

of the e-cn layer. Larger, more stable aggregates may be present in aged solutions
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which cannot be disrupted by 2-mercaptoethanol.

Lowering the pH of binding causes aggregation when e-cn is added to PG

liposomes. The isoionic point of x-cn is approximately pH5.563
, therefore, at pH4.4

the e-cn molecule will be largely positively charged. This will result in greater

attraction towards the negatively charged PG. This may result in the x-cn acting as a

bridge between liposome molecules, which would then result in a larger particle size.

When trypsin was added to x-cn coated PG liposomes, the radius of the coated

liposomes decreased. This was followed by an increase due to aggregation. Trypsin

hydrolyses proteins at lysine and arginine residues, of which e-cn has a total of 14. The

fact that the size of the particles does not decrease to that of the uncoated liposomes

could be due to aggregation beginning before the hydrolysis of all the protein molecules

is complete, or some peptides may remain bound to the liposome surface. As x-cn is

hydrolysed, the more hydrophobic peptides will remain bound to the liposomes,

whereas the hydrophilic peptides will migrate into the aqueous phase. As proteolysis

proceeds the surface of the liposomes will become more hydrophobic and so aggregate.

In contrast to the random coil structure of the casein molecules, {j-Ig has a

highly folded, globular structure. Addition of (3-lg to liposomes also caused

aggregation at low pH values. This agrees with Cornell's!" work on interactions

between (3-lgand the negatively charged lipid, phosphatidic acid. At pH4.4 {j-Igexists

as polymers with {j-Ig A forming octamers with a diameter of about 8.2nm along the

long axis'?', whilst {j-lg B only forms tetramers with a diameter of 6.7nm. As a

consequence, it is these polymers which bind to PG liposomes. A maximum increase

in radius of approximately 8.2nm for {J-IgA and 6.7nm for {J-lgB, would be expected

if a monolayer of aggregates is formed. In both cases the increase in radius is much
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larger i.e. approximately 32nm for {3-lgA and 35nm for {3-lgB. This suggests that

either multi layers of the polymerised {3-lg are coating the liposomes, or that {3-lg

induced aggregation of liposomes is occurring. Binding of {3-lgto PG at pH4.4 which

is below the isoelectric point of the protein at 5.1, probably results from electrostatic

attraction between the positively charged protein and negatively charged PG surface,

as concluded by Cornell'".

Contrary to the results of Cornell" at pH7.0, {3-lgalso bound to PG liposomes.

This discrepancy could be due to the difference in the lipids used (Cornell used

phosphatidic acid), which may make a difference at pH7.0, but not at pH4.4. At

pH6.2, {3-lg exists as a dimer with a long axis of 6.93nm and a short axis of

3.58nm103
,l04. If the {3-lgmolecules were initially adsorbed onto the PC surface with

the long axis parallel to the surface, this would result in a layer thickness of around

4nm. As the amount of added protein increases, these molecules may then reorientate

such that the long axis was perpendicular to the surface. The measured layer thickness

of 7.5-8nm is within experimental error of the expected value of 6.93nm. There was

no indication of this stepping on the PG liposomes. The final layer thickness of around

8nm suggests that the protein molecules were orientated perpendicular to the surface

at all protein concentrations. As with the binding of casein molecules, this may have

been due to charge repulsion between, in 13-lg, the liposome surface and negatively

charged regions of {3-lg. The charge distribution is more difficult to predict due to its

globular structure. Examination of the distribution of charge does not show the

existence of any specific, highly charged regions", An alternative explanation for the

stepping behaviour is the formation of multilayers of protein on the surface. In the

absence of measurements of the protein surface loadings, this cannot be ruled out. But



91

even assuming that all of the added protein is adsorbed to the liposome surface,

multilayer formation must be occurring at relatively low surface loadings.

This study has clearly shown the role which charge plays in adsorption

behaviour in the liposome-protein system. This may be important not only with respect

to the long-term stability of colloidal food systems but also in the use of liposomes as

drug carrier systems in the body. In the latter case, there will be a tendency for

injected liposomes to adsorb proteins from blood serum. As this work shows, the

composition and hence the charge on the liposome surface may influence the behaviour

of the adsorbed protein. This may explain, in part, why different formulations of

liposomes have differing life-spans in the blood stream. Similarly, the types of

phospholipid, pH and the ionic strength of foods in which they are found, may

influence the long-term stability of these colloidal systems.

The refractive index of the water-filled liposomes was significantly less than that

of the solid latex particles usually used as model systems in protein binding studies.

As a result, the amount of light scattered by the liposomes was also less. In addition

the volume fraction of the liposomes used in these studies was 50 to 100 times greater

than that of latex particles used in similar studies. Even though this is still only 10%

of that of a real colloidal food system such as milk, the maintenance of single

scattering conditions makes it a more suitable model system when the ability of

proteins to bridge between individual particles is being considered. However, the

failure to separate bound from unbound protein means that surface loading of protein

cannot be determined. In addition, liposome preparation was a very time consuming

process. Therefore, subsequently, work concentrated on the determination of protein

binding to latex particles.
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Chapter 5

Influence of Electrostatic Interactions

on Adsorbed (J-cn Layers

5.1 Introduction

Information on the thickness and structure of adsorbed protein layers can be

used to make predictions about the stability of the emulsion system". Proteins carry

an electric charge which can result in intra- and intermolecular electrostatic

interactions. These interactions will influence the binding of the protein and the

adsorbed layer thickness.

These interactions can be influenced in various ways. Binding of one protein

can be influenced by competitive adsorption with another protein IS or other

surfactants". The binding of cations to a.-cn and ~-cn has been shown to reduce the

solubility!" and therefore, emulsifying properties of these proteins.

Modification of proteins effects their emulsifying and solubility properties.

Chobert et al136 showed that ethyl-esterification lowered the solubility and emulsifying

properties of ~-cn, whilst ethyl-alkylation increased the emulsifying properties.

Galactosylation also increases the emulsifying activity of ~-cnl37.

This chapter studies the effects which modifying ~-cn so as to reduce its net

negative charge, have on the binding of the protein to negatively charged polystyrene

latex. This involves the enzymatic removal of the cluster of phosphate groups on the

serine residues in the N-terminal region of the molecule. In addition, the effect of

ionic strength on the adsorbed protein layers was also investigated. Also reported are

parallel measurements of particle electrophoretic mobility and protein adsorption



isotherms, under the same experimental conditions.

comprehensive picture of the adsorbed protein layers.
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These will provide a

5.2 Materials and methods

Polystyrene latex (nominal diameter 91nm) and potato acid phosphatase were

purchased from Sigma Chemical Company Ltd., Poole, Dorset, UK. Stock latex

suspensions were used as supplied, without treatment to remove any stabilising

surfactants.

Bovine {3-cnwas purified from bulk milk by ion-exchange chromatography".

{3-cnwas completely dephosphorylated using potato acid phosphatase'", obtained from

Sigma.

5.2.1 Latex bindin~ studies

Stock latex and protein solutions were prepared in irnidazole/Hfll buffer

(20mM, pH7.0). Latex was diluted to 11'1 rnl' in imidazole/Hf'l buffer. Stock

calcium solution was prepared from calcium chloride hexahydrate, the ea2+ content

being determined by titration with a standard solution of ethylene diamine tetra-acetic

acid using a calcium selective electrode (Radiometer, Copenhagen). Aliquots of

protein were added to the latex suspension and left for 20min. before sizing. The

concentration of the stock protein solutions were measured spectrophotometrically using

known absorbance coefficients.

The hydrodynamic radii of the latex particles before and after treatment with

protein, were measured using photon correlation spectroscopy (peS). Adsorbed layer

thicknesses were determined by subtracting the uncoated latex radius from that of the
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protein-coated particle. For each suspension five determinations of particle radius were

made and these were averaged to give the value for that suspension. In all cases

standard deviations of these averages were about 1% of uncoated latex radius. In cases

where aggregation was occurring at low applied protein concentrations, separate latex

suspensions were prepared for each different applied protein concentration.

5.2.2 Adsorption isotherms

The amounts of protein adsorbed to the latex were determined by centrifuging

the suspension at 30,OOOgfor 2hr. at 200e to pellet the latex. The protein content of

the supernatant was then determined by the Bradford method'". This was converted

to a surface coverage measurement by dividing by the total available surface area of

latex.

5.2.3 Electrophoretic mobilities

These were deduced from the Doppler shift in frequency of the light scattered

by the particles in an electric field using a "particle charge" system. Dispersions of

protein-coated latices were prepared as for pes, except for the addition of sodium

chloride at a concentration of 50mM. The salt was required in order to provide an

ionic environment in which the particles could respond.

5.3 Results

5.3.1 Adsorption isotherms

The measured adsorption isotherms for native and fully dephosphorylated {3-cn

onto polystyrene latex at 200e and pH7.0 (20mM imidazole/He Ibuffer) are shown in
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Fig. 5.1. Isotherms are plotted as a function of the applied protein concentration,

defined as the concentration of protein supplied per unit area of available latex surface.

The adsorption isotherm for native {3-cnresembles that of Mackie et aP9, though the

applied protein levels used here extend to higher values in the plateau region in order

to guarantee that saturation coverage has been reached.

The adsorption isotherms for both native and dephosphorylated {3-cnare of the

"high-affinity" type, surface coverage rising linearly with unit gradient in the lower

range of applied protein. Both isotherms reach plateau values in the range of applied

protein between 4 and 6mg m". The adsorption of dephosphorylated {3-cnapparently

continues to increase linearly with applied protein concentration to higher surface

coverages than native {3-cn. This may indicate a slightly higher affinity for the latex

or possibly a higher packing density on the surface with the dephosphorylated protein.

The latter possibility is also indicated by the plateau values for the surface coverage.

These average at 3.3mg m? for dephosphorylated {3-cnand 3.1mg m? for native {3-cn.

Tighter error bars are required before a definitive answer can be supplied.

The close similarity in the adsorption behaviour of the two proteins suggests that

the affinity of the {3-cn for the polystyrene surface was largely unaffected by the

removal of the cluster of phosphate groups from the N-terminal of the protein. This

suggests that this region of the molecule does not bind to the latex surface. The values

for the saturation surface coverage for native {3-cnon polystyrene latices agree well

with most previously published valuesJ39•39, the exception being the large value of

6mg m? obtained by Dalgleish et a/140, who expressed concern about possible losses

of protein through binding to the filters used in the filtration procedure to separate the

latex-protein complex from unbound protein.
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5.3.2 Adsorbed layer thickness

The increase in the hydrodynamic radius of the latex particle in the presence of

native and dephosphorylated {3-cn is shown in Fig. 5.2. As the applied protein

concentration was increased, there was a smooth increase in the measured radius of the

latex/casein complex. For the native casein, this increase in radius levels off at

15.0nm, whilst for dephosphorylated {3-cnthere is a plateau at 11.3nm. These plateau

values are interpreted as representing the hydrodynamic thickness of an adsorbed

monolayer of protein around the latex particle, and not artefacts caused by limited

aggregation of the latex/protein complex, as demonstrated by previous

researchers 140,39,122. The values for layer thickness of both native and dephosphorylated

{3-cnare almost identical to those of Dalgleish'" under the same solution conditions.

However, results for native {3-cnare 3nm greater than the value obtained by Mackie

et aP9. Again it is noted that the applied concentration range used is twice as great as

that used by Mackie et UP9. A layer thickness of around 12nm is achieved in the

region of adsorption density that they considered to correspond to a plateau. The

results reported here agree with this, but further thickening of the native protein layer

was seen at slightly higher applied protein levels before a constant thickness was

reached over a reasonable range of protein concentration. Mackie et aP9 may have

reached an intermediate layer thickness where the protein molecules undergo

rearrangement prior to any observed increase in layer thickness.

The results for dephosphorylated {3-cndo not show the sigmoidal dependence

on protein concentration observed by Dalgleish'F, There was no apparent induction

stage at low protein concentrations. Instead there was the same linear increase in

radius as was found for native {3-cn. Plots for both proteins superimpose in this area
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of the graph. The author has no definitive explanation for this difference, though it

may be due to the {3-cnphenotype used. In these studies {3-cnB was used, but {3-cn

purified from bulk milk was used by Dalgleish, which would contain phenotypes A and

B.

5.3.3 Effects of NaCI addition

The above studies of layer thickness were carried out at low ionic strength.

This was to maximise the possible effects of electrostatic interaction between the highly

charged N-terminal region of (3-cn and the negatively charged latex surface. When

similar measurements were carried out in buffer containing 50mM NaCI, aggregation

was observed at low applied protein concentrations «2mg m"). These surface

coverages were lower than the plateau values of Fig. 5.1. This bridging flocculation

has been observed in previous studies with (3_cnI39.122.At higher applied protein

concentrations (> 4mg m"), this aggregation does not occur, and a plateau value for

the increase in particle radius is achieved. For native (3-cn the presence of 50mM

NaCI produces a slight decrease in layer thickness to 12.9nm, but for dephosphorylated

IJ-cn, the layer thickness remains the same, within experimental error, at 11.0nm.

In the next experiment, measurements of layer thickness were made on latex

suspensions as a function of applied protein concentration. First measurements were

taken in salt-free buffer and again following the addition of sufficient NaCI solution to

each proteinllatex suspension to give a final concentration of 25mM. In the absence

of NaCI, the layer thickness for the individual aliquots of applied protein was close to

those in Fig. 5.2, for native and dephosphorylated {3-cn. When NaCI was added,

bridging flocculation was again observed at low applied protein concentrations. As



C
«IE -6~------~------------~--~--~----

-E 2
c-

4D-o....:v -2
Q.

4D
en
«I
4D...-4o
c

100

• native
C dephosphorylated

o 4 6 8 10 12 14 162

applied protein concentration (mg m-2)

Fig. 5.3. Effect of adding NaCI at a level

of 25mM on the thickness of pre-adsorbed

B-cn layers.



101

applied protein concentration increased aggregation was no longer obvious, and

decreases in adsorbed layer thickness occurred (Fig. 5.3). Before complete surface

coverage is achieved « 3mg m') both protein layers show similar decreases in

thickness on exposure to NaCl. With complete coverage, the dephosphorylated protein

partially recovers. The layer thickness becomes less responsive to the effects of NaCI

addition, producing an average decrease of approximately 1.5nm over the region of

saturated surface coverage. Over the same range of applied protein concentration the

total contraction of native {3-cn remained at 3.6nm. Therefore, the more highly

charged protein is more responsive to changes in ionic strength, as it produces a larger

decrease in layer thickness as the ionic strength is increased.

The final experiment on the effects of NaCI concerned the influence of NaCI

concentration on the thickness of a pre-adsorbed layer of native {3-cnat a single applied

protein concentration of 9.2mg m". This protein concentration is high enough to

ensure saturation coverage, and is also well above the levels where bridging

flocculation might be expected when NaCI is added. Adding NaCl to this system

produced decreases in the adsorbed layer thickness (Fig. 5.4). The effect of increasing

ionic strength decreased as NaCI concentration was increased. At still higher NaCl

levels there was an increase in layer thickness. This indicates an increase in the size

of the coated latex particles and the onset of salt-induced aggregation. The maximum

decrease in thickness obtained before aggregation was 4-5nm.

5,.3.4. Effects of CaH addition

Addition of CaCl2 at a fixed level of 5.33mM, caused the layer thickness at all

protein concentrations, to be thinned (Fig. 5.5). Native {3-cnwas affected more than
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dephosphorylated {3-cn,so that both protein layers showed similar thicknesses of 7-8nm

at their plateau levels (compare with Fig. 5.2).

Adsorption isotherms at 5.33mM CaCI2, showed that the thinner layers were not

due to protein desorption (Fig. 5.6). At low protein concentrations, all of the protein

continued to be adsorbed. The attainment of plateau in the adsorption isotherm shifted

to higher values of applied protein for both native and dephosphorylated {3-cn.

Saturation surface coverage values were also higher at 5.0mg m",

Further measurements of layer thickness and surface coverage were made as a

function of CaCl2 concentration. The applied protein concentration was fixed at 15mg

m? to ensure saturation of protein adsorption. The variation in protein layer

thicknesses for both native and dephosphorylated {3-cnare shown in Fig. 5.7. Also

plotted are the variations in thickness observed for native {3-cnat a lower protein

concentration of 6mg m".

In the absence of Ca2+, the dephosphorylated protein gave a layer thickness of

lOnm compared to 11.8nm for native {3-cnat 6mg m-2 applied protein and 13nm at

15mg m? (compare with Fig. 5.2). The bound layers of both proteins were affected

by the addition of Ca2+. The effect was more marked with native {3-cn(Fig. 5.7). The

lowest Ca2+ concentration used induced the sharpest drop in layer thickness. The

dephosphorylated {3-cnlayer contracted to just under 8nm (a drop of 2nm) and then

declined slowly to approximately 7nm as the Ca2+content was raised to 12mM. The

native {3-cnlayer also contracted to 7.5-8nm in the presence of O.67mM Ca2+ (a drop

of 4-Snm). Again, as the Ca2+ level was increased, thinner layers were observed with

native {3-cnand a minimum layer thickness of 6nm was obtained. As Ca2+ levels

increased further, the layer thickness began to increase (above 6.7mM Ca2+ for higher
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protein concentration and lOmM for the lower). This is consistent with Ca2+-induced

aggregation of the coated latex particles. When Ca2+ was added to uncoated latex,

increases in radius were observed at all Ca2+ levels from ImM onwards. With Ca2+

levels <4mM, the increases in radius were constant over the time over which the

samples were observed. This indicates limited aggregation. Above 4mM Ca2+, the

radius continued to increase with time and the rate of increase grew as the Ca2+

concentration was increased.

Further measurements of surface coverages at the same applied protein

concentrations as above, confirmed that including Ca2+ did not cause protein

desorption. There was no drop in surface coverages when Ca2+ was added, which

shows that protein desorption was not the source of the decrease in layer thickness.

There was an increase in surface coverage which could be due to Ca2+ binding

reducing the size of the {3-cnmolecules so that more could adsorb onto the surface.

5.3.5. Electrophoretic mobilities

Electrophoretic mobilities were determined at 25°C in 20mM imidazole/HCl

buffer pH7.0, containing 50mM NaCl. Measurements for both native and

dephosphorylated {3-cn are plotted in Fig. 5.8 as a function of applied protein

concentration. The adsorption of protein lowered the particle mobility as the

latex/protein complex took on the charge of its coating. Thus the less highly charged

dephosphorylated {3-cnproduced the larger decrease. At saturation coverage of the

native protein, the value of 2.4xlO-8m2 Vs is obtained. This is close to the mobilities

obtained by Dalgleish et alt40 and Dickinson et art, for both polystyrene latex particles

and oil/water emulsion droplets coated with {3-cn.



108

en
>

5
N
E-•0 4...... c
><-
~ 0- 3._- 0
.a
0 • • •E c ~ 0

2 0 0
0._-41)
I-
0 1 • native.s:::.
c.
0
l- e dephosphorylated-Co) 041)-41) 0 2 4 6 8 10 12

applied protein concentration (mg m-2)

Fig. 5.8. Electrophoretic mobilities of

casein-coated latex particles as a

function of applied protein

concentration.



109

en
>....... 3N

E-to0
~ • native><- ••
>0.

2 n dephosphorylated....,._ •-
~ [] •0
~ [] C C ~ .• •c c c0

1 c []....,
CD • C C n
L-
0 •.cc.
0
L-....,
(.)

0CD- 0 2 4 6 8 10 12 14w

Ca2+ Concentration (mM)

Fig. 5.9. Electrophoretic mobilities of B-cn

coated latex particles in the presence of Ca2+.

Mobility is plotted as a function of Ca2+ concentration.
Measurements were made at an applied protein
concentration of Smg m-2•



110

The same Ca2+ concentrations used in the layer thickness studies were used in

electrophoretic mobility studies (Fig. 5.9). All solutions contained 50mM NaCI and

measurements were made at an applied protein level of Smg mol, which corresponded

to the plateau in the adsorption isotherm in the absence of Ca2+. From Fig. 5.9 it is

clear that Ca2+ was more effective in reducing the electrokinetic potential of the latex

particles coated with native l3-cn, than with those coated with the dephosphorylated

protein. The decrease in mobility in the dephosphorylated system, as Ca2+ increased,

was more shallow than that for the native protein. Native l3-cn mobility started from

a higher value and declined so rapidly as to overtake the dephosphorylated l3-cn

mobility. Further evidence of differences in the effects of Ca2+on these systems were

seen at high Ca2+ levels (> 9mM). In this region the gradual decline in mobility

continued for particles coated with dephosphorylated l3-cn. However, the mobilities

of native {j-cn coated particles became very low and erratic. This was presumably due

to the aggregation occurring via an isoelectric precipitation mechanism.

5.4 Discussion

The milk protein l3-cn is one of the most widely studied in terms of its

adsorption behaviour at oil/water interfaces. Research on this topic has recently been

summarised by Dickinson". The adsorbed protein can be represented by a loop-and-

train model, with train segments lying along the interface and loops and tails protruding

into the aqueous phase. Evidence for this model comes from a range of sources.

First, direct information on the structure of l3_cn142 and on the thickness and

structure of adsorbed l3-cn layers at the air/water and oil/water interfaces has been

obtained from neutron reflectivity measurementsl43• The segment density profile
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calculated from this data indicates a dense inner layer some 2nm thick and has a

volume fraction of about 0.9 and a tenuous outer layer some 6-8nm thick, volume

fraction 0.15. Such overall layer thicknesses agree well with the hydrodynamic layer

thicknesses obtained here and in other studies'F:" of {3-cnadsorption on latex particles.

This two-layer model fits the loop-and-train picture. It is also consistent with

the earlier speculated conformations based on the accessibility of digestion sites in the

adsorbed {3-cnmolecule to the proteolytic enzyme trypsin32,33,34. Those studies revealed

that the N-terminal region of {3-cnwas much more susceptible to proteolysis than was

the rest of the molecule. Peptides 1-25 and 1-28 were more readily cleaved from the

adsorbed molecule. The rapid release of these peptides was found to be correlated with

observed changes in the hydrodynamic radii of the latex/casein complex and casein-

coated emulsion droplets following the addition of trypsin". Tryptic attack caused the

adsorbed layer thickness of native {3-cnon latex to rapidly decrease by about lOnm, but

still left a layer 3-5nm thick on the latex particle.

The distribution of hydrophobic residues along the polypeptide chain is not

uniform, but favours the idea of a loop-and-train model. The first 40-50 residues of

the N-terminal polypeptide are predominantly hydrophilic. Therefore, it is feasible that

this part of the molecule extends into the aqueous phase and can be assigned the role

of the loop. This view is supported by its ready accessibility to trypsin.

The results of the experiments reported here not only provide further evidence

for the loop-and-train model, but also add more detail to this picture. The ideas are

best outlined by referring to the cartoon drawing (Fig. 5.10). This represents a {j-cn

molecule adsorbed onto polystyrene latex. Since an individual casein molecule is so

much smaller than a latex particle, the surface of the latex can be regarded as a plane.



112

- - -

i ~- - - -
(s) (b) (c) (d,)

Fig. 5.10. Diagram of the loop-and-train

configuration postulated for adsorbed

B-en on latex.

Top diagram. the numbers in squares on the first diagram
are the amino acid residue numberings along the

I

single chain protein sequence. It is suggested that
this configuration is equivalent to the blob and
spring shown alongside. the negatively charged blob or
head group repelled by the negatively charged surface
and constrained by the spring. In the series (a) to (d)
the size of the blob reflects the charge it carried and
the extension of the spring the hydrodynamic layer
thickness. In (c). the head group is effectively larger
due to the addition of NaCI. In (d). the double positive
charges represent bound Ca2+ ions.
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The latex surface carries sulphonic acid groups and so has an overall negative charge.

{j-cncan bind to the latex surface by hydrophobic interactions and also by plus/minus

salt bridges, which partly neutralise the surface charge of the latex. The high

concentration of negatively charged amino acids in the chain positions 15-25 allow this

portion of the loop-train to be regarded as a negatively charged "head". This will be

repelled from the latex surface by electrostatic forces, but will be restrained from

moving completely into solution by the extended, stretched "spring" section. This

"spring" is the amino acid chain that connects the "head" to the surface-bonded train.

When {j-cn is dephosphorylated, the cluster of negatively charged phosphate

groups are removed from residues 15-19. When compared to native {j-cn,

dephosphorylated {3-cnproduces a minimal change in surface coverage. Hence, the

train bonding and latex surface charge are unaffected, but the reduction in the charge

of the "head" segment decreases the electrostatic repulsion between surface and "head".

This allows the spring to relax back towards the surface (Fig. 5.10b) and a thinner

layer is observed.

Similarly when the ionic strength of the buffer is increased (by adding NaCl),

the range and effectiveness of the repulsion between "head" and surface are

diminished. This enables the spring section to relax which again reduces the adsorbed

layer thickness (Fig. 5.lOc). In this limited series of experiments, the plateau thickness

varies inversely with the square root of the ionic strength (Fig. 5.11). This is most

apparent for the native protein data. For the dephosphorylated {3-cnthe data is much

more sparse. Results indicate that the response to ionic strength is much less, lying

largely within experimental error, but tending towards a thinner layer as ionic strength

increases. The lower gradient in the plot of thickness versus J-'h for dephosphorylated
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l3-cn, is as would be expected from lowered repulsion by the charge-reduced head

group.

As shown in Fig. 5.7, the plateau layer thickness obtained with adsorbed native

l3-cn is extremely sensitive to the presence of Ca2+ in the buffer solution. The

dephosphorylated protein layer is less sensitive. The response to Ca2+ is too great to

fit with the I-'hdependence noted above, so this Ca2+ sensitivity is more than a simple

ionic strength effect. It is suggested (Fig. 5.lOd), that the layer thinning results from

specific binding of Ca2+ to the negatively charged "head". This again reduces the

electrostatic repulsion between "head" and surface, which then permits the "spring" to

relax. The evidence for this comes from the fact that dephosphorylated {3-cn is less

sensitive to Ca2+ than the native form, so Ca2+ is probably binding primarily to the

phosphate residues in the "head" region. Further evidence of specific binding effects

comes from the electrophoretic mobility plots of the protein/latex complexes as a

function of added Ca2+ (Fig. 5.9). For dephosphorylated l3-cn, a shallow dependence

of Ca2+ is observed. With native {3-cn there is a much higher initial mobility, as

expected for a more highly charged species. But, this then descends much more

sharply as Ca2+ content increases, and crosses the line of the dephosphorylated {3-cn

plot. If changes in mobility were due to the same mechanism, mainly increasing ionic

strength, then parallel plots would have been expected.

It is interesting that the minimum layer thickness measured for the native

l3-cn/latex complex prior to Ca2+-induced aggregation (Fig. 5.7) is approximately 6nm.

This is nearly identical to the "brush" thickness for the protein tail calculated to be

6.4nm by Mackie et aP9 using a model proposed by de Gennesl44,14S. If it is proposed

that there is neutralisation of protein charge, or at least isoelectric behaviour, then the



116

l3-cn tail apparently behaves as an uncharged homopolymer. The observed extension

in the absence of neutralising CaH ions suggests a repulsive force other than excluded

volume (a steric effect) controlling this extension. The effects of calcium, ionic

strength and protein charge indicate that this force is electrostatic in nature.

It is clear from these results that the conformation adopted by the bound caseins

is a function of the ionic composition of the aqueous phase, and that an adsorbed

molecule responds to such changes in its environment when able to do so. In

monitoring and recording these changes, definitive information is provided on the

precise structure of the protein film. The results also highlight the role of electrostatics

in controlling intramolecular interactions and protein layer thickness.
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Chapter 6

Influence of Surface Charge and Protein

Modification on Adsorbed Protein Layers

6.1 Introduction

The proteins in milk, whether used collectively in milk powders, or individually

as caseins and whey proteins, display a wide range of functional properties, and are

used in many food products because of these properties. Caseins and caseinates are

commonly used where solubility, heat stability and surface-active properties

(emulsifying, foaming) are requiredl46.141.Heating induces physicochemical changes

in whey proteins and induces complex formation with x-cn in micelles. Thus, specific

"preheat" treatments (85-100"C for 30min.) are used in the preparation of non-fat dry

milk to achieve optimum properties i.e. inactivation of loaf depressing factors for bread

making/bakery purposes!". In order to study these functional properties, the effects

of chemical modification of the proteins on their functional properties has been studied,

especially with ~_lg149.1S0.

The majority of studies on food protein structure-function properties have

involved alkylation and acylation of the epsilon amino group of lysine residues149.136.1S0,

although modification of ce-carboxyl groups of aspartyl and glutamyl residues has also

been investigatedI36.1.5I.1.5o.These types of modification can directly affect the net

charge and charge-density of the protein molecules. In addition they often result in

conformational changes and alterations in intra- and intermolecular interactions which

also modify the effective hydrophobicity of the proteins.
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In this chapter, the effect of methyl-esterification of l3-cn will be investigated.

Esterification of carboxyl groups may be accomplished by suspending the protein in the

appropriate alcohol (in this case methanol) with an acid catalystIS2,J.53. The carboxyl

groups of aspartate and glutamate residues can be blocked by amidation or

esterification. As with enzyme-catalysed dephosphorylation, esterification reduces the

net negative charge on the proteins. The free carboxyl groups are relatively uniformly

distributed throughout the protein, whereas the phosphates are all located in the N-

terminal region. Therefore, the effects on the esterification of the protein may well be

different. Any effects due to methyl-esterification are viewed in conjunction with the

effects of surface charge. This is investigated by using different latices. A positively

charged amidine and the negatively charged polystyrene latex, LBI are used. Also

reported are parallel measurements of particle electrophoretic mobility and protein

adsorption isotherms, under the same experimental conditions. These will provide a

comprehensive picture of the adsorbed protein layers.

6.2 Materials and methods

Positively charged amidine polystyrene latex (nominal diameter 76nm) was

obtained from Interfacial Dynamics Corporation, Portland, Oregon, USA. Negatively

charged LBI (sulphonated) latex (nominal diameter 9lnm) was purchased from Sigma

Chemical Company Ltd., Poole, Dorset, UK. l3-cn preparations whose free carboxyl

groups had been methyl-esterified to different extents were a gift from T. Haertle at

INRA, Laboratoire d'Etude des Interactions des Molecules Alimentaires, Nantes,

France. Bovine l3-cn was purified from bulk milk by ion-exchange chromatography",

l3-cnwas completely dephosphorylated using potato acid phosphatase obtained from
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6.2.1 Latex bindin~ studies

See section 5.2.1. The absorbance coefficients for native {3-cnwere used for

the methyl-esterified {3-cnsince nothing was known about the effects on the coefficient

due to methyl-esterification.

6.2.2 Adsorption isotherms

See section 5.2.2. To correct for possible interference in the protein

determination methyl-esterified {3-cnwas used to calibrate the Bradford assay instead

of native {3-cn.

6.2.3 Electrophoretic mobilities

See section 5.2.3.

6.3 Results

{3-cnwas esterified in the presence of methanol to produce methylated {3-cn.

{3-cnhas 23 carboxyl groups which are all susceptible to esterification. These consist

of the 18 glutamic acid and 4 aspartic acid residues plus the free C-terminal carboxyl

group. In two protein preparations, 35% and 44% of these carboxyl groups were

methylated. A third sample of 69% methylated {3-cnwas insoluble at pH7 and so was

not investigated further. It has been reported that additional methylation may occur

due to substitution during the esterification process!", Solubility of the methylated

protein was poor at pH7.0 and decreased with increasing methylation!". This is due
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to the increasing hydrophobicity resulting from methylation of the protein.

6.3.1 Adsorption isotherms

The adsorption isotherms for the 35% and 44% methylated (3-cn onto

polystyrene latices at 20°C and pH7.0, are shown in Fig. 6.1. These results are

compared with those of native and dephosphorylated {j-cn in Fig. 6.2. On the

negatively charged latex the final surface coverage values of both methylated samples

are 2.8mg m-2, which were similar to the value obtained with native (3-cn (3.0mg rrr'),

At low concentrations of added protein, the 44% methylated (3-cnbound more strongly

than did the 35% methylated form. The adsorption isotherm of the 35% methylated

protein had a sigmoidal appearance compared with the hyperbolic shape of the native

and 44% methylated forms. This was unexpected since the native and 44% methylated

(3-cnboth show high affinity for the surface (i.e. at low applied protein concentrations

all of the applied protein molecules bind to the latex). Itwould therefore be expected

that the 35% methylated (3-cnshould also have high affinity for LBI latex as well. The

maximum surface coverage levels were attained at a slightly lower applied protein

concentration with the 44% methylated protein. The similarity in the adsorption

behaviour of the' 44% methylated protein and native (3-cn, suggests that the affinity of

{j-cn for the negatively charged latex was similar. When the proteins were added to

the positively charged amidine latex, surface coverages continued to increase as more

protein is added. The maximum surface coverage of the 35% methylated protein was

approximately 2.3mg m-2• No plateau level was reached with the 44% methylated

protein. At higher applied protein levels the surface coverage of the 35% and 44%

methylated samples continued to increase rapidly. This suggests either that the protein
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was adsorbing as aggregates at higher protein levels, or that the proteins were reaching

their limits of solubility. and were therefore pelleting with the latex during

centrifugation. The latter possibility is favoured since, as the amount of methylation

increased it became more difficult to dissolve the protein before adding it to the latex.

6.3.2 Adsorbed layer thickness

The increase in the hydrodynamic radius of the latices as a result of adding the

35% and 44% methylated (3-cn is shown in Fig. 6.3. These plots are compared with

the results obtained with native and dephosphorylated (3-cn (Fig. 6.4). On the

negatively charged latex there was a smooth increase in radius as more methylated

protein was added to the latex. The maximum layer thickness of the 35% methylated

protein was some 6nm greater than with 44% methylated {3-cn(16nm compared with

lOnm). The layer thickness of native (3-cnlies between the two methylated forms, and

that of the dephosphorylated {3-cnis the same as the 44% methylated form (Table 6.1).

Addition of low concentrations of all the proteins resulted in aggregation (as

indicated by the large increase in particle size), when added to positively charged

amidine latex (Fig. 6.5). Similar results occurred with native and dephosphorylated

(3-cn. This aggregation was probably due to protein molecules bridging between latex

particles. These aggregates could not be disrupted by adding more protein, probably

due to the tight binding of protein to the latex surface. This is supported by the fact

that larger initial aliquots of protein produce no aggregation, and similar layer

thicknesses to those on LBI latex were observed. As the amount of methylation

increased, less protein was required to overcome this bridging. This suggests that the

less highly methylated fraction had a greater affinity for the positively charged latex.
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Protein System Native Dephos. 35% met. 44% met.

Layer LBI IS.O±O.S 11.0± 1.0 16.0±2.0 10.0± 1.0
Thickness

9.0±1.0(run) LBI + 12.9±1.0 Il.O±1.0 9.0±l.0
SOmM NaCI

Amidine 14.0+ 1.0 13.0±2.0 1O.0±2.0 6.0±l.O

Surface LBI 3.0±O.4 3.4±O.S 2.7±O.5 2.8±O.4
Coverage

LBI + 6.0±1.0 7.5±2.0 4.0±I.O NR(mg mol)
50mM NaCl

Amidine 5.2± 1.0 2.S±0.8 2.4±0.3 NR

Table 6.1. Layer thickness and surface coverage of native and modified l3-casein on
latices.

met. represents methylated l3-casein. Dephos. represents dephosphorylated l3-casein.
NR represents plateau not reached at the concentrations used. Results in the presence
of NaCl for native and dephosphorylated l3-casein are taken from chapter 5.
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The maximum layer thickness of the native, dephosphorylated, 35% methylated and

44% methylated l3-cns on the positively charged and negatively charged latices are

summarised in Table 6.1.

Similar aggregation occurred in the presence of salt with LBI latex. This

bridging flocculation has already been observed with J3-cnI39•122• Fig. 6.6 shows layer

thicknesses after the aggregation phase was exceeded. Layer thicknesses of about 9nm

were measured with both forms of methylated J3-cnthese thicknesses are considerably

thinner than the native and dephosphorylated proteins (Table 6.1).

6.3.3 Electrophoretic mobility measurements

Electrophoretic mobilities were determined at 25°C in 20mM imidazole/HCI

buffer pH7.0, containing 50mM NaCl. Only LBI latex was used, since NaCI induced

aggregation of amidine latex prior to protein addition. Mobility measurements for the

methylated, dephosphorylated and native proteins are shown in Fig. 6.7, as a function

of applied protein concentration. Adsorption of protein reduced the particle mobility

as the surface of the latex complex took on the charge of its coating. Thus, the less

highly negatively charged dephosphorylated {j-cn produced the larger decrease in

mobility. Electrophoretic mobility at saturation coverage of both methylated proteins

was similar to that of native protein at 2.5xlo-8m2 Vs. The values agree with the native

protein obtained by Dalgleish et a[140 and Dickinson et a[141. This suggests that the

methylated proteins have an overall surface charge similar to that of native {j-cn.

Approximately twice the amount of methylated protein was required to reach plateau

mobility compared with native {j-cn. Since each individual methylated casein molecule

will have less electrostatic charge (due to methylation of the free carboxyl groups) than
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native (j-cn, more protein is required in order to reach the same density of electrostatic

charge.

6.4 Discussion

There are 23 free carboxyl groups in (j-cn potentially available for esterification.

Of these, 14 are located within the first 48 amino acids of the N-terminal region. The

remaining 9 free carboxyl groups are distributed relatively uniformly throughout the

rest of the molecule. Methylation reduces the net charge of the protein within the

region of the molecule in which the free carboxyl groups are located, and also

increases the molecule's hydrophobicity. This is shown by the fact that methylating

69% of the free carboxyl groups renders the protein completely insoluble in the

imidazole buffer at pH7.0. Increasing the amount of methylation also reduces the

proteins' electrical charge, which also contributes to the 69% methylated protein being

insoluble.

It is important to realise that these methylated {3-cnsamples provided will not

be "pure" samples. There will be a distribution of the amount of methylation in each

of the samples, so that the "average" amount of methylation will be 35% or 44%154.

In addition methylation will occur at different sites along the protein chain. Therefore,

interpretation of the results can only be tentative and certain assumptions have to be

made, namely that the majority of the molecules will be either 35 or 44% methylated,

and that the positions of methylation are relatively uniform.

As indicated in Chapter 5, evidence is accumulating that the structure of

adsorbed (j-cn can be visualised in terms of a loop-and-train model with the loop being

formed by the hydrophilic N-terminal region of the molecule and the train by the
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remainder of the molecule which is, in general, considerably more hydrophobic. It

would therefore be expected that methylation of the free carboxyl groups of those

aspartate and glutamate residues in the loop region of the molecule would have a

greater effect on layer thickness than of those in the remainder of the molecule which

already lies relatively close to the surface of the latex. As the results presented in

Figs. 6.3 and 6.4 show, the 44% methylated {3-cnbehaved as expected when its

binding to the negatively charged LBI latex was measured. The maximum layer

thickness was 5nm less than that of the native protein and was approximately the same

as that of dephosphorylated {3-cn. In the case of dephosphorylated {3-cn the net

negative charge on the loop region was also reduced relative to that of the native

protein, but in this case by enzymatic hydrolysis of the phosphates from the serine

residues. This reduction in the net negative charge in the loop region reduces the

repulsion between this end of the protein and the negatively charged latex surface, and

thus allows the loop to lie closer to the interface. The binding isotherm of this 44%

methylated derivative was very similar to that of the native and dephosphorylated

proteins, being of the high affinity, hyperbolic type.

The layer thickness of both the native and dephosphorylated proteins was similar

at 15 to 16nm on the positively charged amidine latex. However, that of the 44%

methylated {3-cnwas dramatically reduced to only 6nm. The similarity of the protein

layer thicknesses of the native and dephosphorylated proteins suggests that attraction

between the positively charged surface and the negatively charged proteins is not as

important as the repulsion between the negatively charged protein and LBI latex. If

this was the case it would be expected that the layer thickness of the more negatively

charged native protein would be considerably less than that of either the
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dephosphorylated or the 44% methylated forms. This is clearly not the case. It

appears that with 44% methylated {3-cnadsorption to positively charged latex, (after

aggregation effects have been overcome), the effect of the increased amount of

hydrophobicity is more important than electrostatic interactions. Hence, the loop

section will have increased hydrophobicity due to methylation which apparently then

leads to the loop lying closer to the surface.

The behaviour of the 35% methylated {3-cnis more difficult to explain since

Whenlayer thicknesses of this derivative on both the positively and negatively charged

surfaces were determined, they were found to be almost identical with those of the

native protein. Therefore in this instance, the changes in the net negative charge of the

protein did not effect the protein thickness. As stated earlier, not only the number but

also the location of the methylated side-chains is probably important. Methylation of

35% of the free carboxyl groups is equivalent to esterification of 8 residues. If most

of these were located in the train region of the molecule, they may have little effect on

the behaviour of the loop and hence on the overall protein layer thickness. 44%

methylation is equivalent to 10 free carboxyl groups esterified. Therefore, an increase

of 2 in the number of methylated side chains has a dramatic effect on the behaviour of

the adsorbed protein. This indicates that there is a fine threshold with regard to the

effect which methylation has on the structure of the protein at the interface. It is worth

noting that despite the 44 % methylated protein binding to the negatively charged latex

in a high affinity manner, the shape of the 35% methylated protein binding isotherm

was sigmoidal, indicating that the affinity of this derivative was lower than that of the

other forms. Chobert et al136 have found a similar trend when studying the influence

of the degree of ethyl-esterification on the emulsifying properties of {3-cn. They
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reported that the emulsifying activity of 37% modified {3-cnwas marginally better at

pH7.0 than that of the native protein. However, increasing the extent of modification

to 43% resulted in the emulsifying activity being more than halved. Also, the stability

of the emulsion formed with the 37% ethyl-esterified protein was slightly poorer than

the native protein. The 43% ethyl-esterified was considerably worse and indeed could

not be measured due to emulsion collapse. More complete interpretation of these

results requires information regarding the positions of esterification and the secondary

structure of these derivatised proteins. Richardson'" has studied the methyl-

esterification of {3-lg using CD and has found that methyl-esterification induces a

change to more random structure. This suggests that methyl-esterified {3-cnmay also

be in a more denatured form, which may mean that the {3-cnderivatives are binding

in this denatured form. This could explain why the increased hydrophobicity of the

modified protein affects the adsorption to the latex surface. If the protein is denatured

then the methyl-esterified carboxyl groups may be at the surface of the protein, and so

freely accessible to interact with the latex surface. Therefore, the more methyl groups

present, the greater the hydrophobic interactions with the latex surface. In this case

it again appears that hydrophobic interactions are more important than electrostatic

ones.
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Chapter 7

Influence of Glycosylation and Surface

Charge on the Binding of x-cn to

Latex Particles

7.1 Introduction

x-Cn is unique amongst the casein proteins in its lack of calcium-sensitivity and

in existing in both glycosylated and non-glycosylated forms. The relative amounts of

glycosylation vary between individual animals and within the same animal during the

course of a lactation. Even within the glycosylated fraction, there is considerable

heterogeneity in the number of sugar residues attached to the protein molecules and,

to a much more limited extent, in the degree of phosphorylation. The carbohydrate

side chains consist of tri- and tetra-saccharide units of N-acetylneuraminic acid

(NeuNAc), galactose and N-acetylhexosamine, O-glycosidically linked to serine and

threonine residues in the C-terminal region of the protein'", Why x-cn out of all the

caseins should exist in these two major forms, and what effect glycosylation has on the

physical properties of the protein, is not known.

The structure of bovine casein micelles has been reviewed recently!", Much

of the x-cn is believed to be located in the external surface or coat region of the micelle

where it forms a "hairy" layer with the hydrophilic, C-terminal (glycosylated and

phosphorylated) region projecting into the aqueous phase. This stabilises the individual

micelles and prevents aggregation. The distribution of the glycosylated and the non-
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glycosylated forms of the protein within the micelle is unclear. The glycosylated form

may be selectively located on the outside of the micelle, or distributed uniformly

throughout the micelle.

Light scattering studies on casein micelles have shown that addition of either

rennin (chymosin) or of ethanol causes a decrease in the average radius of the micelles.

This is followed by a pronounced increase in the average particle size due to

aggregation of the individual micelles. The decrease in micellar radius as a result of

rennin addition is due to the hydrolysis of the peptide bond between the Phe105-

Metl06 residues of the x-cn molecule'". The release of the C-terminal

caseinomacropeptide reduces the repulsion between the individual micelles and the

subsequent aggregation is the basis of cheese manufacture. The decrease in micellar

radius as a result of ethanol addition is more gradual. Aggregation of micelles occurs

at ethanol concentrations above about 18% . These changes are believed to be due to

the collapse of the "hairy" layer permitting aggregation to occur!". This ethanol-

induced aggregation is important with regard to the production and stability of cream

liqueurs. Despite the importance of the surface properties of x-cn, no measurements

of its behaviour in model systems have been reported. In order to investigate the

influence of glycosylation on the physical properties of this technologically important

protein, e-cn has been fractionated into its major component forms. The binding of the

various forms of the protein to polystyrene latex (used as a model colloidal system) was

then determined. In addition, latices with different surface charges have been used in

order to further elucidate the effect of charge on protein binding.
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7.2 Materials and Methods

Positively charged amidine polystyrene latex (nominal diameter 76nm) was

obtained from Interfacial Dynamics Corporation, Portland, Oregon, USA. Negatively

charged LBI (sulphonated) latex (nominal diameter 91nm) was purchased from Sigma

Chemical Company Limited, Poole, Dorset, UK. Chromatography apparatus and

columns were from Pharmacia Biotech, Milton Keynes, Bucks., UK. The chymosin

(Maxiren 15) was obtained from Gist-Brocades. The concentrated chymosin was

diluted before use (O.3g chymosin made up to 109 with H20).

Whole bovine e-cn was purified from the milk of individual animals

homozygous for the A or B variant of the protein by cation exchange

chromatography66. After dialysis and freeze-drying, the x-cn component was

fractionated on a Hi-load 26/10 Q Sepharose HP anion exchange column. Whole x-cn

was dissolved at a protein concentration of 50mg ml" in bis-tris-propane buffer (5mM,

pH7.0) containing 6M urea. 2-Mercaptoethanol was added at a concentration of 11'1

mg' of protein and stirred for lhr to reduce disulphide bonds. After filtering through

a 0.22#Lmfilter, 20ml (lg) of protein was applied to the column. Protein was eluted

with a linear gradient of sodium chloride (0.15 to 0.3M in 5lmin.) in 5mM bis-tris-

propane buffer containing 3.3M urea. Peak fractions were collected and pooled, and

after dialysis against distilled water and freeze-drying, the purity and identity of the

various e-cn fractions was established by chromatography on a Mono Q FPLC

COlumnl60•

Hydrodynamic radii of the latex particles were determined using photon

correlation spectroscopy (PCS). Stock latex suspensions were diluted in imidazole/HCI

buffer (20mM, pH7.0) with and without 2-mercaptoethanol (0.1 %). Stock protein
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solutions were prepared in the same buffer with and without 2-mercaptoethanol (0.1 %),

the actual concentration of the protein solution being determined spectrophotometrically

using known extinction coefficients. Binding studies and adsorption isotherms were

carried out as detailed in Chapter 5.

Chymosin hydrolysis of x-cn coated latices was performed by adding CaCl2 at

a concentration of 20mM before adding x-cn. The hydrodynamic radius was

determined prior to chymosin addition. The change in radius is then followed with

time.

7.3 Results

The various glycosylated forms of the x-cn A and B were reasonably well

resolved on the Hi-load Q column as determined by FPLC of the individual fractions

on a Mono Q column (Fig. 7.1). Overlap between the fractions was low in most cases

(Fig. 7.2). Vreeman et al using DEAE-Sepharose161,162,separated x-cn B into five

fractions which they numbered I to V. They also determined the NeuNAc and

phosphate content of each of these fractions. For K-cn A their fractions I, II, III, IV

and V corresponded to fractions 2, 4, 5, 6 and 7 in this study. Fractions 2 and 3 were

part of a double peak, so that fraction 3 was the same as 2. Fraction 1 from this

separation was found by SDS-polyacrylamide gel electrophoresis not to be x-cn, and

was, therefore, discarded. For x-cn B the corresponding fractions were 1, 2, 4, 5 and

6 (complete data not available for 6). Vreeman's fraction I was essentially the non-

glycosylated form of K-cn bearing a single phosphate group. The remaining fractions

were found to have a somewhat heterogeneous composition. Fraction II was a mixture

of equal amounts of non-glycosylated protein with 2 phosphate groups and protein
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having 2 NeuNAc groups and a single phosphate group, III was a mixture of forms

containing 3 NeuNAc groups and generally a single phosphate group, IV was a mixture

of forms bearing 4 to 7 NeuNAc groups and mainly a single phosphate group and V

had 6 to 9 NeuNAc groups and a single phosphate. The separation obtained here on

the Hi-load Q column was very similar except for the separation of a further

glycosylated fraction (results for this fraction are not shown). In general, the

concentration of salt required to displace the protein from the ion exchange column

increased with the degree of glycosylation.

The diameters of the uncoated LBl and amidine latices as measured by pes

were 85 and lOOnmrespectively. The increase in the radius of the negatively charged

LBllatex as a function of added protein is shown for the various x-cn B fractions (Fig.

7.3). At lower protein concentrations the thickness was apparently greater than at

higher protein levels. This effect was only true for the non-glycosylated fraction 1.

The cause of this effect is not known. It may have been due to some aggregated

protein molecules bridging between latex particles at low protein concentrations since,

when 2-mercaptoethanol was added to the protein in order to reduce disulphide bonds

and so dissociate any aggregates of e-cn, the effect was not observed (Fig. 7.4 and Fig.

7.S shows the results for K-cnB and A). Instead, the radius increased smoothly to a

plateau value. The maximum thickness of the adsorbed protein layer on the LB1 latex

increased marginally with the degree of glycosylation. The layer thickness of the non-

glycosylated fraction (13nm for both phenotypes) was between 2.0 and 2.Snm less than

that measured with the highly glycosylated fractions depending upon the x-cn phenotype

(Table 7.1). In general, the layer thickness with all of the x-cn B fractions in the

absence of 2-mercaptoethanol was 1 to 2nm less than that in its presence. This is
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Protein Fraction Layer Surface
number Thickness Coverage

(nm) (mg m·l)

LBl Amidine LBl Amidine
e-cn A 2 13.0± 1.0 11.5±1.5 3.5±O.2 3.0±0.5

4 14.5+ 1.0 1O.5±1.5 4.6±0.1 4.0±O.2

5 15.0±1.2 12.0±1.5 2.5±0.7 5.2+0.5

6 15.5+ 1.0 13.0±2.0 5.2±0.1 *
7 15.5± 1.0 13.0± 1.7 3.2±0.2 3.5±0.5

x-cn B 1 13.0±1.0 14.5±1.5 5.2±0.1 3.0±0.5

2 14.0±1.0 11.0±1.5 3.9+0.1 1.5±0.2

4 14.5+ 1.5 12.0±2.0 3.0+0.2 3.0+0.2

5 15.0+ 1.0 12.5±2.0 3.0+0.1 1.7±0.5
Whole A 14.0± 1.0 12.5± 1.0 2.5±0.5 2.9±0.5
x-cn .

B 13.0±1.6 !2.0±3.0 2.0±1.0 2.1±O.5

Table 7.1. Layer thickness and surface coverage of x-cn A and B fractions and whole
x-cn A and B on negatively charged LB! and positively charged amidine latex.

* represents result not determined.
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presumably as a result of the relaxation in the secondary structure due to reduction of

disulphide bridges.

Addition of low concentrations of any of the x-cn fractions to diluted

suspensions of the positively charged amidine latex resulted in aggregation of the latex

particles even in the presence of 2-mercaptoethanol (Fig. 7.6). This suggests that the

aggregation was due to protein molecules bridging between latex particles. These

aggregates could not be disrupted by adding more protein, possibly due to the

additional protein molecules being unable to penetrate into the aggregates, or more

likely, to the tight binding of protein to the latex surface. This latter explanation is

favoured, since if larger initial aliquots of protein solution were added, no aggregation

was observed and thinner layers, similar to those on the LBI latex, were measured.

Fresh amidine latex dilutions had therefore to be used for each of the protein

concentrations examined. The concentration of added protein required to overcome this

bridging effect was not the same for all of the fractions. For x-cn B, the amount of

the non-glycosylated protein required to exceed this threshold was approximately four

times greater than that of any of the glycosylated proteins. The trend was the same for

e-cn A, but the difference was not as dramatic. As with the negatively charged latex,

the thickness of the non-glycosylated protein layer on amidine latex was between 1.5

and 2nm less than that observed with any of the other fractions (Fig. 7.7 and Fig.

7.8). Generally, the thicknesses of the absorbed protein layers on the positively

charged latex were approximately 2nm less than that of the same fraction on the

negatively charged latex. On the LBI latex, all fractions of x-cn A gave protein layers

which were approximately 1nm thicker than those of x-cn B fractions. On the amidine

latex, the behaviour of the non-glycosylated fractions of both e-cn phenotypes were
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similar, but the most highly glycosylated fractions gave protein layers about 1nm

thicker with the e-cn A phenotype. With amidine latex the error bars were much wider

than with LB1 latex (±2 to 3nm compared with ± 1 to 1.6nm). The thicknesses of the

absorbed protein layers as a function of surface coverage of the non-glycosylated

fractions and highly glycosylated fractions on the positively and negatively charged

surfaces were compared ( Fig. 7.9 and Fig. 7.10). Maximum layer thickness of the

non-glycosylated fraction of x-cn A and B on the negatively charged latex were

achieved at approximately 3 and 1.5mg mo2 respectively and the highly glycosylated

fractions of e-cn A at 2mg mo2 and x-cn Bat 2.5mg m-2• Due to aggregation of the

positively charged latex in the presence of lower concentrations of protein, it was not

possible to obtain exact values for this parameter. However, after the aggregation

phase had been exceeded the maximum protein layer thickness was attained at 3.0 and

2.5mg mo2 for non-glycosylated and 3.2 and 1.5mg m? for highly glycosylated fractions

of x-cn A and B respectively. The affinity of non-glycosylated and highly glycosylated

forms of x-cn A and B for the two surfaces was similar, and at low protein

concentrations all of the added protein was adsorbed to the surface (Fig. 7.11 and Fig.

7.12).

Similar experiments were performed with whole e-cn A and B. The results are

summarised in Table 7.1. x-cn A and B gave a slightly thicker protein layer by 1.0-

1.5nm, on the negative latex compared to positively charged latex. Layer thicknesses

on LB! latex are similar, with x-cn A layers being slightly thicker than x-cn B (Fig.

7.13). When adsorbed to amidine latex this difference in thickness was slightly less,

with e-cn A layers being about 0.5nm thicker than e-cn B (Fig. 7.13). It should be

noted that the results for x-cn B have wide error bars which may mean that this is not
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charged latices for fractions 2 and 7.
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a significant difference and the two points at -7.5mg m? applied protein are probably

due to scattering from some aggregates that are still present.

Surface coverage measurements showed only a slight difference between the

amount of e-cn A bound to LBI and amidine latex, or x-cn B binding to LBI and

amidine latex (Fig. 7.14). Surface coverages are slightly lower on the negatively

charged surface than on the positively charged latex which is more apparent with e-cn

A. Also e-cn A has a slightly higher surface coverage than e-cn B. Indications of

aggregation beginning to occur were detected at applied protein levels of 12.5mg m"

and above, as shown by the elevated values of bound protein.

Having shown that x-cn binds to the latex, attempts were made to cleave the

adsorbed protein using chymosin. The amount of x-cn added to the LBI latex was

sufficient to ensure high loading on the surface but also to minimise the amount of free

protein in solution which would preferentially be cleaved by the enzyme. Ca2+ is

necessary for maximum activity of the enzyme but the order of addition was found to

be important. The effect of chymosin on negatively charged LBI latex coated with

whole e-cn A or B is shown in Fig. 7.15. In order for there to be any change in

particle size on addition of chymosin, Ca2+ had to be added to the latex prior to x-cn

adsorption. e-cn A coated LBI latex required approximately 4 times the amount of

enzyme than x-cn B, in order for a decline in layer thickness to reach a constant value

(total decrease of 3-5nm).

7.4 Discussion

x-cn is a relatively small protein which possesses an amphiphilic structure

haVing a hydrophobic N-tcrminal domain and a polar C-lerminal domain. At pH6.6
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the net charge of the polar domain of the non-glycosylated molecule is -10 or -11, but

each additional NeuNAc residue contributes an additional negative charge. Since all

of the glycosylation sites are located in the polar domain, the net negative charge in

this region increases with glycosylation (Figs. 2.3 and 2.4).

These results can be compared with estimates of the dimensions of the

stabilising x-cn layer at the surface of the casein micelle. Since there is no conclusive

evidence that the various forms of the micellar x-cn are not uniformly distributed

throughout the micelle, the micelle surface can be assumed to carry a mixture of both

the glycosylated and non-glycosylated molecules. Addition of a critical level of ethanol

causes the hairs to lie flat on the surface rather than remove them completely. These

flattened hairs will still have a layer thickness. An estimate of the thickness of this

flattened layer can be obtained from a number of other measurements made on

adsorbed casein layers. Small-angle X-ray scattering studies of {3-cnon LBI latex"

and neutron reflectivity measurements of {3-cnat an oil-water interface'" have shown

that the protein layers consist of a dense region about 2 to 4nm thick with a more

diffuse region extending a further 8 to lOnm from the surface. Trypsinolysis of

adsorbed {3-cnlayers reduced the layer to a thickness of about 4 to 5nm34,124. Since IC-

en has a relatively unfolded structure like {3-cn,the flattened x-cn molecules would be

expected to have similar dimensions to the dense region of {3-cni.e. at least 2nm. The

average radius of casein micelles decreased by between 10 to 12nm as a result of

addition of ethanol. If this decrease is added to the assumed flattened x-cn layer

thickness, then a total e-cn layer thickness of 12 to 16nm results. The thicknesses of

the e-cn layers on the different surfaces reported here, ranging between 11 and 15.5nm

depending on the degree of glycosylation, are in good agreement with this estimated
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thickness. Recently Dalgleish" has studied the adsorption of whole e-cn to polystyrene

latex and has found a layer thickness of 13.7nm in the presence of 2-mercaptoethanol,

which also agrees with these results.

Glycosylation was found to have a significant effect on the thicknesses of the

adsorbed e-cn layers. There are two possible reasons for the increased layer thickness

of the glycosyJated forms of the protein. Since glycosylation increases the negative

charge in the C-terminal region of the protein, electrostatic repulsion between the C-

terminal end of the e-cn molecule and the negatively charged surface of the LBI latex

should be greater with the glycosylated forms. Conversely, electrostatic attractions

between this end of the molecule and the positively charged amidine latex should also

be greater with the glycosylated forms. In the absence of any other effects due to the

NeuNAc residues, the glycosylated molecules should lie closer to the positively charged

surface than the non-glycosylated protein. This did not occur with x-cn A and,

therefore, the increased hydrophilicity due to the presence of the NeuNAc groups must

outweigh the electrostatic attraction effect.

e-cn A possesses one more negative charge than e-cn B. As a result it would

be expected that there would be greater charge repulsion between the negatively

charged LBI latex and the x-cn A molecules. This would mean that the layer thickness

of e-cn A should be greater, which it is. When the layer thicknesses on the positively

charged amidine latex are compared, the highly glycosylated fractions of z-en A form

layers which are thicker than those obtained with e-cn B. IC-CnA molecules also

contain an extra glycosylation site", which would increase the molecule'S

hydrophilicity, and once again this seems to outweigh the electrostatic attractive forces.

In addition the NeuNAc group is quite a bulky moiety, which may also lead to thicker
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layers due to steric hindrance. Generally, with all e-cn fractions (independent of

phenotype), the thickness of the adsorbed protein layers on the positively charged

surface was 2 to 3nm less than on the negatively charged latex. This reflects

electrostatic interactions between the surfaces and the net negatively charged protein.

The density of packing of the non-glycosylated x-cn B molecules was

Significantly higher than that of the most highly glycosylated form of the protein on

both surfaces. This is probably due to their lower net negative charge and the absence

of the bulky NeuNAc groups in the hydrophilic tail region. This difference is not as

large in the case of e-cn A, which may be due to the increased steric hindrance of the

additional glycosylated molecule. The increased surface area which each protein

molecule occupied on the positively charged surface (the contrary result of fraction 5

of e-cn A cannot be explained) presumably results from interactions between negatively

charged regions on the protein and positively charged groups on the latex and/or the

decrease in electrostatic repulsion. This would permit the protein molecules to lie

closer to the latex surface and may account for some, or all, of the 2 or 3nm

differences in the layer thicknesses of x-cn B on the differently charged surfaces. This

also holds true when fractions of e-cn A are compared with the corresponding fraction

of x-cn B. With x-cn A the layer thickness and surface coverages on positively charged

latex increase as the amount of glycosylation increases. These results again suggest

that the steric hindrance caused by the additional NeuNAc residues outweighs the

electrostatic attraction forces between the negatively charged NeuNAc residues and the

positively charged latex.

The contribution of each of the fractions to the binding of whole x-cn A and B

can now be estimated. In milk of cows from the Hannah herd, x-cn B milk has a
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greater proportion of glycosylated molecules than does x-cn A (58% glycosylation for

e-cn A and 63% for e-cn B). These results agree with those of Ferron-Baumy et a/163

who found 60 to 67% glycosylation in bulk milk. On the negatively charged latex x-cn

A forms slightly thicker layers when compared with x-cn B, presumably as a result of

the extra repulsion between the more negatively charged x-cn A. In the case of

amidine latex, x-cn A still produces a slightly thicker layer than does e-cn B. This

difference is not as significant as when the separate glycosylated fractions are used.

This may be due to the higher proportion of glycosylated K-cnmolecules present in K-

cn B overcoming some of the electrostatic attraction between the protein and the

positively charged latex, in a manner similar to that in which the degree of

glycosylation effects the layer thickness in e-cn A.

Dalgleish"? has recently presented results on the adsorption of whole e-cn to

negatively charged polystyrene latex. He reported a protein layer thickness of 8.3nm

without 2-mercaptoethanol and 13.7nm with 2-mercaptoethanol. Though the results in

the presence of 2-mercaptoethanol agree with those presented here, the decrease in

layer thickness in the absence of 2-mercaptoethanol is at variance with the results for

e-cn fractions 1 and 2 in Fig. 7.3. Results reported here show thicker layers in the

absence of 2-mercaptoethanol causing a reduction in layer thickness presumably due

to the breaking up the protein polymers. Since there is no indication which e-cn

phenotype was used in Dalgleish's work, it is possible that the x-cn used contains both

e-cn A and B phenotypes. This may have some bearing on the results, as may the

greater latex concentration and e-cn concentration used by Dalgleish". Aliquots of

lOO#'gwere used by Dalgleish?", whereas aliquots ranging from 1.5-150l'g were used

in these studies. It could be that adding the protein in smaller amounts enabled
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adsorption to the latex surface to be more uniform, as the protein had effectively a

longer time to orientate on the latex surface. In addition, there is no indication as to

how long the protein was left in contact with the latex prior to sizing. This also limits

the time which the protein has to orientate at the latex surface.

The preliminary results on the effect of chymosin on the adsorbed layer

thickness are interesting. The requirement for Ca2+prior to K-cnadsorption suggests

that an ionic layer is formed around the latex particle, and that this affects the

orientation of the protein at the latex surface, so exposing the susceptible Phe105-

Metl06 bond to chymosin attack. Further analysis of the peptides released during

hydrolysis would give a better idea of the protein orientation at the latex surfaces.

Dalgleishn found an increase in size (aggregation) due to chymosin, but no decrease

in size prior to this aggregation was seen. However, there were no Ca2+ions present

in the buffer which could explain this difference. In the results reported here, no

aggregation of the latex/protein complex after proteolysis was detected, even after

7hours. This agrees with work done by Dickinson!" who found that x-cn coated latex

particles do not flocculate, suggesting that in order for aggregation to occur,

interactions between other proteins and Ca2+ ions may be required.

The decrease in radius of 3-Snm suggests that, as with e-cn coated PG

liposomes subjected to trypsinolysis in Chapter 4, the macropeptide was released into

solUtion,whilst the hydrophobic para-e-casein remained adsorbed to the latex surface.

This decrease is less than the 7.8nm reduction measured in renneting casein micelles'",

The bridging by individual protein molecules between latex particles at low

proteinlevels is not unique. Low concentrations of (3-lghave previously been shown!"

to cause bridging between latex particles although the size of these aggregates were
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smaller than those found with x-cn. This could be because the particle latex

concentration also has an effect on apparent size. With the exception of the slight

overshoot in the layer thickness when x-cn was adsorbed to the negatively charged latex

and which may have been due to bridging, extensive bridging between particles was

only observed with the positively charged latex. This reflects the fact that x-cn can be

regarded as having two "sticky" ends. The N-terminal region probably adsorbs to the

surface mainly through hydrophobic interactions. The other, highly negatively

charged, C-terminal region could interact with the positively charged surface through

electrostatic attraction. However, glycosylation decreases the extent of aggregation

and this argues against this form of binding and implies that, even here, hydrophobic

interactions between the dangling chain and the free surface of another latex particle

OCcur. If this is the case, increasing the extent of glycosylation will push the

hydrophobic/hydrophilic balance of this region towards the hydrophilic, diminishing

the strength of the hydrophobic interactions and the extent of bridging as was observed.

At low protein levels, the density of loading is sufficiently low for interactions with

both ends to occur. At higher levels the stronger hydrophobic interactions of the N-

terminal regions predominate and the C-terminal regions extend into the aqueous phase.

Heating milk at temperatures above about 70°C results in the formation of

disulphide bridges between the micellar x-cn and the globular whey proteins. This is

reflected in the rate at which the x-cn molecules are cleaved by chymosin!". It has

been reported that when milk was heated to high temperature, these interactions only

appeared to influence the rate of release of the glycosylated macropeptide'P, although

no explanation was given for the differences in reactivity. The results presented here,

Whichshow that the glycosylated molecule projects further from the surface, may in
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part, explain this difference.
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Chapter 8

Summary

The research described in this thesis concerns with the influence of charge on

the adsorption of milk proteins to surfaces. A variety of charged surfaces were used

i.e. negatively charged and zwitterionic liposomes prepared from phosphatidyJglyceroJ

(PG) and phosphatidylcholine (PC) respectively and positively and negatively charged

polystyrene latices.

8.1 Adsorption of milk proteins to phosphatidylglycerol and phosphatidylcholine

Iiposomes

Phospholipid bilayers are important cell constituents as they form the basic

element of the cell membrane. Phospholipids are also added to some processed foods

in order to act as emulsifiers. Protein-phospholipid interactions are therefore important

with regard to the behaviour of these systems. Phospholipids can be organised into

liposornes which are vesicles in which an aqueous volume is enclosed within a

membrane composed of lipid molecules. Usually, the membrane consists of a bilayer

of phospholipid molecules whose charged head groups project into the aqueous phase.

The charge on the Iiposome surface can be changed by using different classes of

phospholipids. PG has a head group with an overall negative charge, whilst PC is

zwitterionic.

The milk proteins investigated were the disordered proteins, 0'••-, {3- and K-

casein (-cn) and the globular whey protein p-Iactoglobulin (P-Jg). p-Cn was also

enzymatically dephosphorylated with potato acid phosphatase in order to reduce the net
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negative charge of the molecule.

Plots of the increase in particle radius as a function of added protein for the two

types of Iiposome showed a consistent difference in both the shape of the plots and in

the thickness of the adsorbed protein layers. In all cases protein layer thicknesses were

less on PC than on PG liposomes. These results can largely be explained on the basis

of the net charge on the liposome surface and the distribution of charge on the protein

molecules. (3-Cn is the most hydrophobic of the caseins and has a pronounced

amphiphilic structure with the N-terminal 21 residues having a net negative charge of

-1263
• The remainder of the molecule has no net charge. Therefore, electrostatic

charge repulsion should lead to thicker layers on the PG Iiposomes as the N-terminal

region is pushed away from the surface. Due to the reduction in the net negative

charge as a result of dephosphorylation protein layers were slightly thinner. There is

also increased sigmoidicity in similar plots for dephosphorylated {3-cn. This may have

been due to the removal of some of the negative charge permitting the protein

molecules to pack closer together before electrostatic repulsion on adjacent protein

molecules pushes them out into the aqueous phase to their maximum extent.

The increase in the average size of the PG liposome preparation at higher

concentrations of asl-cn was too great to be accounted for merely by extension of the

protein from the surface. The most likely explanation is that the increase arises from

protein bridging between Iiposomes. a.I-Cn has a highly charged region near the

centre of the molecule. At pH6.6 this region has a net negative charge of -20. On the

PC surface the a.ecn apparently behaves like the other caseins with the unordered

casein molecule lying relatively close to the surface. On the negatively charged PG

surface however, charge repulsion appears to result in this negatively charged region
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of the protein being displaced from the liposome surface. It apparently remains

attached by one or both ends of the molecule. As protein loading increases, either one

of the ends is displaced from the surface by competition with other casein molecules,

or the concentration of the free ends reaches a level at which they link to other

liposomes and form stable clusters. This is indicated by a large increase in particle

size.

K-Cn also has an amphiphilic structure with a hydrophilic C-terminal domain.

At pH6.6, this region has a net negative charge of -16 or -17 (including the sialic acid

residues). Therefore, it would be expected that the electrostatic repulsion would be

greater between the negatively charged C-terminal "tail" and negatively charged PG

head groups. This would result in the charged x-cn "tail" being pushed further from

the liposome surface resulting in much thicker layers on these Iiposomes.

In contrast to the random coil structure of the casein molecules, (3-lg has a

highly folded, globular structure. At pH6.2, {3-lgexists as a dimer with a long axis

of 6.93nm and a short axis of 3.58nmJ03.1!14. If {3-lgwas binding perpendicular to the

PC liposome surface, a layer thickness of 6.93nm would be expected. The value of

7.S-8nm is within experimental error of this value. Again this may be due to charge

repulsion between negatively charged portions of {3-lgand the negatively charged

liposome surface. Unlike the caseins, the charge distribution of the (3-lg molecule is

more difficult to predict due to its globular structure. Examination of the distribution

of charge does not show the existence of any specific, highly charged regions".

When the binding of x-cn and {3-lgto PG liposomes was determined at pH4.4,

a very large increase in particle size was observed. The isoelectric points of both

proteins are at about pHS. Therefore, at pH4.4 the protein molecules will be largely
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positively.charged. This will result in greater attraction towards the negatively charged

PG and may result in the protein acting as a bridge between Iiposome molecules

resulting in a larger particle size.

8.2 Effect of cations on adsorption of native and dephosphorylated fj-casein

Dephosphorylation decreased the thickness of adsorbed {3-cnlayers on LB1 by

about 4-5nm. At low concentrations of both native and dephosphorylated {3-cn the

addition of NaCI to negatively charged LBI latex suspensions resulted in a massive

increase in particle size. This was probably due to Na" ions reducing the net negative

charge on the proteins and surface allowing the proteins to bridge between uncoated

portions neighbouring latex particles. At higher protein concentrations this bridging

was overcome, since most of the latex surface would be coated with protein thus

preventing this bridging phenomenon.

Addition of Ca2+ reduced the thickness of preadsorbed {3-cnlayers from 12 to

6nm. However, the effect of Ca2+ on the layer thickness of native {3-cnis too great

to be explained by simple ionic strength effects. The Ca2+ ions apparently bind

primarily to the phosphate residues in the negatively charged "head". Once again, the

electrostatic repulsion between the "head" and surface is reduced, which permits the

"spring" to relax and also explains why dephosphorylated {3-cnis less sensitive to Ca2+

ions.

8.3 Effect of protein modification on the adsorption to positively and negatively

charged latices

The 23 free carboxyl residues of {3-cnwere methyl-esterified to an extent of 35,
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44 and 69%. It is not known which residues are methylated in each of the modified

samples but as with dephosphorylation, methylation reduces the net negative charge on

the protein. However, unlike dephosphorylation the sites of methylation occur

relatively uniformly throughout the protein molecule. In addition methylation increases

the hydrophobicity of the molecule. This explains why the 69% methylated (j-cn is

insoluble in the imidazole buffer at pH7.0.

When the binding of the 44 % methylated {3-cn to negatively charged LB I latex

was investigated the layer thickness was less than that of native (j-cn. As with

dephosphorylated (j-cn, the net negative charge on the loop region was probably less

than that of the native (j-cn molecule. This reduction in the net negative charge in the

loop region reduces the repulsion between this end of the protein and the negatively

charged latex surface and allows the loop to lie closer to the surface.

Addition of low concentrations of native or modified {3-cn to positively charged

amidine latex resulted in massive aggregation. Once again, this was probably due to

a bridging effect with the negatively charged portions of the proteins forming a bridge

between the positively charged latices and causing a large increase in particle size.

Once the latex surface is sufficiently coated with protein this bridging effect cannot

OCcur.

On the positively charged amidine latex, the layer thicknesses of native and

dephosphorylated {3-cn were similar at 15 to 16nm. However, the layer thickness of

the 44% methylated {3-cn was dramatically reduced to only 6nm. This suggests that

the adsorption of the 44% methylated {3-cn to the positively charged latex is affected

more by the increased hydrophobicity resulting from the methylation which would

cause the protein to lie closer to the latex surface, than by the reduction in the net
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negative charge which would have the opposite effect.

The behaviour of the 35 % methylated {3-cnwhich gave layer thicknesses similar

to native {3-cn on both positively and negatively charged surfaces, was more difficult

to explain. Methylation of 35 % of the free carboxyl groups in the {3-cn molecule is

equivalent to the modification of 8 residues. If most of these were located in the

"train" segment of the molecule, they may have little effect on the behaviour of the

loop and hence on the overall protein layer thickness. Methylation of 44 % of the free

carboxyl groups is equivalent to an extra 2 residues being esterified. This has a

dramatic effect on the behaviour of the adsorbed protein and this indicates that there

is a fine threshold with regard to the effect which methylation has on the structure of

the protein at the interface.

The effect of glycosylation on the adsorption of x-cn was also investigated by

fractionating the naturally occurring protein variants into samples having varying

degrees of glycosylation. Although not chemically modi tied in the laboratory. it is still

included in this section as a protein modification. Glycosylation occurs on threonine

residues in the N-terminal macropeptide region. Therefore, the flexible macropeptide

becomes increasingly more negatively charged as the amount of glycosylation

increases.

When the binding of the x-cn A and B fractions to negatively charged LB I latex

was determined, the addition of 2-mercaptoethanol was seen to cause a reduction in

protein layer thickness. This was probably due to 2-mercaptoethanol disrupting x-cn

polymers so that monomeric x-cn adsorbed to the surface. With both x-cn phenotypes.

the protein layer thickness increased with the extent of glycosylation. Again this was

probably due to electrostatic repulsion between the negatively charged surface and the
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negatively, charged macropeptide region of x-cn. In the absence of any other non-

electrostatic effects due to NeuAc residues, the layer thicknesses on the positively

charged amidine latex should decrease with increasing glycosylation due to increasing

electrostatic attraction between the positively charged surface and negatively charged

region of x-cn. This did not occur with K-cn A. Therefore, the increased

hydrophilicity due to the presence of the NeuAc groups must outweigh the electrostatic

attraction effect. This balance also explains why whole K-cn A forms slightly thicker

layers than x-cn B on the positively charged amidine latex. K-Cn A has one more

negative charge which should result in thinner layers. However, it also has an extra

NeuAc group and once again, the increased hydrophilicity outweighs the electrostatic

attraction effect.

The research in this thesis has shown the role which charge plays in the

adsorption behaviour in the liposome/latex-protein system. This may be important not

only with respect to the long-term stability of food systems but also in the use of

liposomes as drug carrier systems.



173

References

KRUYT, H.R. (Ed.) (1952) Colloid Science. Vol. I. Irreversible Systems,

Elsevier, Amsterdam.

2 DICKINSON, E. and STAINSBY, G. (Eds.) (1982) Colloid.'!in food,

Applied Science Publishers, London and New York.

3 LYKLEMA, J. (1991) Fundamentals of lnterface and Colloid Science. Vol. I

Fundamentals, Academic Press, London.

4 WALSTRA, P. (1993) In Food Colloids and Polymers : Stability and

Mechanical Properties, (eds. E. Dickinson and P. Walstra) Royal Society of

Chemistry, Cambridge, UK, p3.

5 MEIER, D.J. (1967) Journal of Physical Chemistry, 71, 1861.

6 HESSELINK, F.Th. (1969) Journal of Physical Chemistry, 73,3488.

7 FISCHER, E.W. (1958) Kolloid-Zeitschrift, 160, 120.

8 FLORY, P.l. and KRIGBAUM, W.R. (1950) Journal of Chemical Physics,

18, 1086.

9 FLEER, G.l. and SCHEUTIENS, 1.M.H.M. (1992) In Coagulation and

Flocculation: Theory and Applications, (Ed. B. Dobias) Dekker, New York.

10 FLEER, G.J. and LYKLEMA, J. (1974) Journal of Colloid and lntetface

Science, 46, 1.

11 VRI1, A. (1976) Pure and Applied Chemistry, 48,471.

12 BERGENSTAHL, B. (1988) In Gums and Stabilizers for the Food Industry,

(Eds. G.O. Phillips, P.A. Williams and OJ. Wedlock) IRL Press, Oxford, 4,

p363.



174

13 M~CRITCHIE, F. (1977) Journal of Colloid and Interface Science, 61, 223

14 DICKINSON, E. and MATSUMURA, Y. (1991) International Journal oj

Biological Macromolecules, 13, 26.

15 DICKINSON, E., ROLFE, S.E. and DALGLEISH, D.G. (1990) International

Journal of Biological Macromolecules, 12, 189.

16 DALGLEISH, D.G. (1991) In Food Polymers, Gels and Col/oids, (Ed. E.

Dickinson) Royal Society of Chemistry, Cambridge, UK, p485.

17 COURTHAUDON, J-L., DICKINSON, E. and CHRISTIE, W.W. (1991)

Journal of Agricultural and Food Chemistry, 39, 1365.

18 COURTHAUDON, J-L., DICKINSON, E. and DALGLEISH, D.G. (1991)

Journal of Colloid and Interface Science, 145, 390.

19 DICKINSON, E and GELIN, J-L. (1992) Colloids and Surfaces, 63, 329.

20 WILDE, P.J. and CLARK, D.C. (1993) Journal of Colloid and Interface

Science, 155, 48.

21 DICKINSON, E. and WOSKETT, C.M. (1989) In Food Colloids, (Eds. R.D.

Bee, P. Richmond and J. Mingins) Royal Society of Chemistry.

Cambridge, p74.

22 DARLING, D.F. and BIRKETT, R.J. (1987) In Food Emulsions and Foams,

(ed. E. Dickinson) Special Publication No. 58, Royal Society of Chemistry.

London, pl.

23 KROG, N., BARFOD, N.M. and BUCHHEIM, W. (1987) In Food Emulsions

and Foams, (Ed. E. Dickinson) Special Publication No. 58, Royal Society of

Chemistry, London, p144.



175

24 DI~KINSON, E., ROLFE, S.E. and DALGLEISH, D.G. (1989) Food

Hydrocolloids, 3, 193.

25 DALGLEISH, D.G., EUSTON, S.E., HUNT, J.A. and DICKINSON, E.

(1991) In Food Polymers, Gels and Colloids, (Ed. E. Dickinson) Royal

Society of Chemistry, Cambridge, p485.

26 DICKINSON, E., ROLFE, S.E. and DALGLEISH, D.G. (1988) Food

Hydrocolloids, 2, 397.

27 COURTHAUDON, J-L., DICKINSON, E., MATSUMURA, Y. and CLARK,

D.C. (1991) Colloids and Surfaces, 56, 293.

28 GRAHAM, D.E. and PHILLIPS, M.C. (1979) Journal of Colloid and

Interface Science, 70, 403.

29 GRAHAM, D.E. and PHILLIPS, M.C. (1979) Journal 0/ Colloid and

Interface Science, 70, 415.

30 GRAHAM, D.E. and PHILLIPS, M.C. (1979) Journal of Colloid and

Interface Science, 70, 427.

31 DICKINSON, E. and STAINSBY, G. (Eds.) (1982) Colloids in food,

Applied Science Publishers, London and New York, p308.

32 LEAVER, J. and DALGLEISH, D.G. (1990) Biochimica et Biophysica Acta,

1041, 217.

33 DALGLEISH, D.G. and LEAVER, J. (1991) In Food Polymers, Gels and

Col/aids, (Ed. E. Dickinson) Royal Society of Chemistry, Cambridge, U.K.,

pl13.

34 DALGLEISH, D.G. and LEAVER, J. (1991) Journal o/Colloid and Interface

Science, 141, 288.



176

35 MU.RRAY, E.K. (1987) In Food Emulsions and Foams, (Ed. E. Dickinson)

Royal Society of Chemistry, Cambridge, UK, p170.

36 HUNTER, J.R., KILPATRICK, P.K. and CARBONELL, P.G. (1991) Journal

of Colloid and Interface Science, 142, 429.

37 DICKINSON, E. (1992) Journal Chemical Society Faraday Transactions,

88,2973.

38 ELGERSMA, A.V., ZSOM, R.L.J., NORDE, W. and LYKLEMA, J. (1990)

Journal of Colloid and Interface Science, 138, 145.

39 MACKIE, A.R., MINGINS, J and NORTH, A.N. (1991) Journal of Chemical

Society Faraday Transactions, 87, 3043.

40 BRUNNER, J.R. (1977) In Food Proteins, (Eds. J.R. Whitaker and S.R.

Tannenbaum) AVI Publishing Company, Inc. Westport, Connecticutt, USA,

p175.

41 WHITE, J.C.D. and DAVIES, D.T. (1958) Journal of Dairy Research, 25,

236.

42 ASCHAFFENBURG, R. and DREWRY, J. (1957) Nature, 180, 376.

43 THOMPSON, M.P., KIDDY, C.A., PEPPER, L. and ZITTLE, C.A. (1962)

Nature, 195, 1001.

44 GROSCLAUDE, F., PUJOLLE, J., GARNIER, J. and RIBADEAU DUMAS,

B. (1966) Annalis de Biologie Animate Biochimie et Biophysique, 6, 215.

45 EIGEL, W.N., BUTLER, J.E., ERNSTROM, C.A., FARRELL, H.M.,

HARWALKAR, V.R., JENNESS, R. and WHITNEY, R. McL (1984) Journal

of Dairy Science, 67, 1599.

46 ASCHAFFENBURG, R. (1961) Nature, 192,431.



177

47 PETERSON, R.F. and KOPFLER, F.C. (1966) Biochemical and Biophysical

Research Communications, 22, 388.

48 ASCHAFFENBURG, R., SEN, A. and THOMPSON, M.P. (1966)

Comparative Biochemistry and Physiology, 25, 177.

49 ASCHAFFENBURG, R., SEN, A. and THOMPSON, M.P. (1968)

Comparative Biochemistry and Physiology, 25, 177.

50 NEELIN, J.M. (1964) Journal of Dairy Science, 47, 506.

51 SCHMIDT, D.G. (1964) Biochimica et Biophysica Acta, 90, 411.

52 WOYCHIK, J.H. (1964) Biochemical and Biophysical Research

Communications, 16, 267.

53 Di STASIO, L. and MERLIN, P. (1979) Rivista Zootecnica, 2, 64.

54 SEIBERT, B., ERHARDT, G. and SENFT, B. (1987) Animal Genetics, 18,

269.

55 ERHARDT, G. (1989) Journal of Animal Breeding and Genetics, 106, 255.

56 McKENZIE, H.A. (1967) Advances in Protein Chemistry, 22, 55.

57 GROSCLAUDE, F., GARNIER, J., RIBADEAU DUMAS, B. and JEUNET,

R. (1964) Compte Rendu de l'Academie des Sciences, 259, 1569.

58 KING, J.W.B., ASCHAFFENBURG, R., KIDDY, C.A. and THOMPSON,

M.P. (1965) Nature, 206, 324.

59 LARSEN, B. and THYMANN, M. (1966) Acta veterinaria Scandinavica, 7,

189.

60 WAKE, R.G. and BALDWIN, R.L. (1961) Biochimica et Biophysica Acta, 47,

225.



178

61 S~AISGOOD, H.E. (Ed.) (1975) In Methods of Gel Electrophoresis of Milk

Proteins, American Dairy Science Association.

62 THOMPSON, M.P. (1970) Journal of Dairy Science, 53, 1341.

63 SWAISGOOD, H.E. (1982) In Developments in Dairy Chemistry J., (ed. P.

Fox) Applied Science, London, pl.

64 ASCHAFFENBURG, R. (1964) Biochimica et Biophysica Acta, 82, 188.

65 MICHALAK, W. (1967) Journal of Dairy Science, 50, 131.

66 LEAVER, J. and LAW, A.J.R. (1992) Journal of Dairy Research, 59,557.

67 SWAISGOOD, H.E. (1973) CRC Critical Reviews Food Technology, 3, 375.

68 001, H., KAWAGUCHI, N., IBUKI, F. and KANAMORI, M. (1979)

Journal of Nutritional Science and Vitaminology, 25, 95.

69 TRAN, V.D. and BAKER, B.E. (1970) Journal of Dairy Science, 53, 1009.

70 FIAT, A-M., ALAIS, C and JOLLEs, P. (1972) European Journal of

Biochemistry, 27, 408.

71 JOLLEs, P. and FIAT, A-M. (1979) Journal of Dairy Research, 46, 187.

72 KANAMORI, M., KAWAGUCHI, N., IBUKI, F. and 001, H. (1980)

Agricultural and Biological Chemistry, 44, 1855.

73 CHOU, P. Y. and FASMAN, G.D. (1974) Biochemistry, 13, 211.

74 CHOU, P. Y. and FASMAN, G.D. (1974) Biochemistry, 13, 222.

75 CHOU, P. Y. and FASMAN, G.D. (1977) Journal of Molecular Biology, 115,

135.

76 SWAISGOOD, H.E. (1992) In Advanced Dairy Chemistry. Volume J :

Proteins, (Ed. P.F. Fox) Elsevier Science Publishers Ltd., Barking, Essex,

U.K., p63.



179

77 D~LGLEISH, D.G. (1993) Colloids and Surfaces B " Bioimetfaces, 1, 1.

78 HERSKOVITS, T.T. (1966) Biochemistry, 5, 1018.

79 HOLT, C. and SAWYER, L. (1993) Journal of the Chemical Society Faraday

Transactions, 89, 2567.

80 CHURCH, F.C., CATIGNANI, G.L. and SWAISGOOD, H.E. (1981) Journal

of Dairy Science, 64, 724.

81 FOX, P.F. (1969) Journal of Dairy Science, 52, 1214.

82 FOX, P.F. and GUINEY, J. (1973) Journal of Dairy Research, 40, 229.

83 ANDREWS, A.L., ATKINSON, D., EVANS, M.T.A., FINER, E.G.,

GREEN, J.P. ,PHILLIPS, M.C. and ROBERTSON, R.N. (1979) Biopolymers,

18, 1105.

84 REIMERDES, E.H. and HERLITZ, E. (1979) Journal of Dairy Research, 46,

219.

85 HILL, RJ. and WAKE, R.G. (1969) Nature, 221, 635.

86 DELFOUR, A., JOLLEs, J., ALAIS, C and JOLLEs, P. (1965) Biochemical

and Biophysical Research Communications, 19, 452.

87 JOLLEs, J., ALAIS, C and JOLLEs, P. (1968) Biochimica et Biophysica

Acta, 168, 591.

88 LOUCHEUX-LEFEBVRE, M-H., AUBERT, J.P. and JOLLEs, P. (1978)

Biophysical Journal, 23, 323.

89 SWAISGOOD, H.E., BRUNNER, J.R. and LILLEVIK, H.A. (1964)

Biochemistry, 3, 1616.

90 JANOLINO, V.G. and SWAISGOOD, H.E. (1975) Journal of Biological

Chemistry, 250, 2532.



180

91 PH}LLIPS, N.I., IENNESS, R. and KALAN, E.B. (1967) Archives

Biochemistry and Biophysics, 120, 192.

92 McKENZIE, H.A., RALSTON, G.B. and SHAW, D.C. (1972) Biochemistry,

11,4539.

93 PREAUX, G. and LONTIE, R. (1972) Archives Internationales de Physiologie

et de Biochimie, 80, 980.

94 DECKMYN, H. and PREAUX, G. (1978) Archives Internationales de

Physiologie et de Biochimie, 86, 938.

95 GREEN, D.W., ASCHAFFENBURG, R., CAMERMAN, A., COPPOLA,

I.C., DIAMOND, R.D., DUNNILL, P., SIMMONS, R.M., KOMOROWSKI,

E.S., SAWYER, L., TURNER, E.M.C. and WOODS, K.F. (1979) Journal

of Molecular Biology, 131, 375.

96 PAPIZ, M.Z., SAWYER, L., ELIOPOULOS, E.E., NORTH, A.C.T.,

FINDLAY, J.B.C., SIVAPRASADARAO, R., lONES, T.A., NEWCOMER,

M.E. and KRAULIS, P.J. (1986) Nature, 324, 383.

97 PAYENS, T.A.I. and VAN MARKWIJK, B.W. (1963) Biochimlca et

Biophysica Acta, 71, 517.

98 TALBOT, B and WAUGH, D.F. (1970) Biochemistry, 9, 2807.

99 DALGLEISH, D.G. and PARKER, T.G. (1980) Journal of Dairy Research,

47, 113.

100 PARKER, T.G. and DALGLEISH, D.G. (1981) Journal of Dairy Research,

48, 71.

101 HORNE, D.S. and DALGLEISH, D.G. (1980) International Journal of

Biological Macromolecules, 2, 154.



181

102 DICKSON, I.R. and PERKINS, 0.1. 1971) Biochemistry Journal, 124, 235.

103 PIEZ, K.A., DAVIE, E.W., FOLK, J.E. and GLADNER, J.A. (1961) Journal

of Biological Chemistry, 236, 2912.

104 MCKENZIE, H.A. (Ed.) (1971) In Milk Proteins, Chemistry and Molecular

Biology II, Academic Press, New York, p30S.

105 KLOSTERGAARD, H. and PASTERNAK, R.A. (1957) Journal of American

Chemical Society, 79, 5671.

106 KUMOSINSKI, T.F. and TIMASHEFF, S.N. (1966) Journal of American

Chemical Society, 88, 5635.

107 MACKIE, A.R., MINGINS, 1. and DANN, R. (1991) In Food Polymers, Gels

and Colloids, (Ed. E. Dickinson) Royal Society of Chemistry, Cambridge,

p96.

lOS TOWNEND, R., KERSKOVITS, T.T., TIMASHEFF, S.N. and

GORBUNOFF, M.J. (1969) Archives Biochemistry and Biophysics, 129,567.

109 TANFORD, C. and NOZAKI, Y. (1959) Journal o/Biological Chemistry, 234,

2874.

110 TANFORD, C. and TAGGART, V.G. (1961) Journal of American Chemical

Society, 10, 2738.

III TIMASHEFF, S.N., MESCANTI, L., BASCH,.l.J. and TOWNEND, R.

(1966) Journal of Biological Chemistry, 241, 2496.

112 BASCH, 1.J. and TIMASHEFF, S.N. (1967) Archives of Biochemistry and

Biophysics, 118, 37.

113 TIMASHEFF, S.N., TOWNEND, R. and MESCANTI, L. (1966) Journal of

Bi%Rica/ Chemistry, 241, 1863.



182

114 TqWNEND, R., KUMOSINSKI, T.F. and TIMASHEFF, S.N. (1967) Journal

of Biological Chemistry, 242, 4538.

115 HAMBLING, S.G., McALPINE, A.S. and SAWYER, L. (1992) In Advanced

Dairy Chemistry Volume / Proteins, (Ed. P.F. Fox) Elsevier Science Publishers

Limited, Barking, Essex, UK, p141.

116 KOPPEL, D.E. (1972) Journal of Chemical Physics, 57, 4814.

117 GUNSTONE, F.D., HARWOOD, 1.L. and PADLEY, F.B. (Eds.) (1986)

In The Lipid Handbook, Chapman and Hall, London, p29.

118 GUNSTONE, F.D., HARWOOD, J.L. and PADLEY, F.B. (Eds.) (1986)

In The Lipid Handbook, Chapman and Hall, London, p327.

119 PASTOR, R.W., VENABLE, R.M. and KARPLUS, M. (1991) Proceedings

of National Academy Science USA, 88, 892.

120 McDOUGAL, I.R. (1978) Scottish Medical Journal, 23, 6.

121 BONTE, F. and JULIANO, R.L. (1986) Chemistry and Physics of Lipids, 40,

359.

122 DALGLEISH, D.G. (1990) Colloids and Surfaces, 46, 141.

123 PRICE, I.C., GRIFFIN, W.G. and GRIFFIN, M.C.A. (1991) Biochemical

Society Transactions, 19, 508.

124 LEAVER, I. and HORNE, D.S. (1993) In Food Colloids and Polymers:

Stability and Mechanical Properties, (Eds. E. Dickinson and P. Walstra) Royal

Society of Chemistry, London, p332.

125 ARMSTRONG, J.MeD., MCKENZIE, H.A. and SAWYER, W.H. (1967)

Biochimica et Biophysica Acta, 147, 60.



183

126 BI~GHAM, E.W., FARRELL Jr., H.M. and CARROLL, R.I. (1972)

Biochemistry, 11, 2450.

127 HUNDRIESER, K.E., CLARK, R.M. and JENSEN, R.G. (1985) American

Journal of Clinical Nutrition, 41, 988.

128 NEW, R.R.C. (Ed.) (1990) In Liposomes: A Practical Approach, Oxford

University Press, Oxford, p105.

129 JULLIEN, S., VERTUT-CROQUIN, A., BRAJTBURG, J. and BOLARD, J.

(1988) Analytical Biochemistry, 172, 197.

130 HERNANDEZ-CASELLES, T., VILLALAIN,J. andG6MEZ-FERNANDEZ,

J.C. (1990) Journal of Pharmacy and Pharmacology, 42, 397.

131 BRANDL, M., BACHMANN, D., DRECHSLER, M. and BAUER, K.H.

(1990) Drug Development and Industrial Pharmacology, 16, 2167.

132 CHIANCONE, E. and GATTONI, M. (1991) Journal of Chromatography,

539,455.

133 HAUSER, H. and PHILLIPS, M.C. (1979) In Progress in Surface and

Membrane Science, (Eds. D.A. Cadenhead and J.F. Danielli) Academic Press,

New York, 13, p297.

134 CORNELL, D.G. (1982) Journal of Colloid and Interface Science, 88,536.

135 MULDER, Hand WALSTRA, P. (1974) The Milk Fat Globule,

Commonwealth Agricultural Bureaux, Farnham Royal, Bucks. England.

136 CHOBERT, J-M., TOUATI, A. BERTRAND-HARB, C.,

DALGALARRONDO, M., NICOLAS, M-G. and HAERTLE, T. (1990)

Journal of Agricultural and Food Chemistry, 38, 1321.



184

137 C~ YOT, P., COURTHAUDON, l-L. and LORlENT, D. (1991) Journal of

Agricultural and Food Chemistry; 39, 1369.

138 BRADFORD, M.M. (1976) Analytical Biochemistry, 72, 248.

139 DICKINSON, E., ROBSON, E.W. and STAINSBY, G. (1983) Journal of

Chemical Society Faraday Transactions,79, 2937.

140 DALGLEISH, D.G., DICKINSON, E. and WHYMAN, R.H. (1985) Journal

of Colloid and Interface Science, 108, 174.

141 DICKINSON, E., WHYMAN, R.H. and DALGLEISH, D.G. (1987) In Food

Emulsions and Foams, (Ed. E.Dickinson) Royal Society of Chemistry, London,

p40.

142 KUMOSINSKI, T.F., BROWN, E.M. and FARRELL, H.M. (1993) Journal

of Dairy Science, 76, 931.

143 DICKINSON, E., HORNE, D.S., PHIPPS, 1.S. and RICHARDSON, R.M.

(1993) Langmuir, 9, 242.

144 de GENNES, P.G. (1976) Journal of Physics, 37, 1443.

145 de GENNES, P.G. (1980) Macromolecules, 13, 1069.

146 MORR, C.V. (1982) In Developments in Dairy Chemistry - J, (Ed. P.F. Fox)

Applied Science Publications, London, p375.

147 MODLER, H.W. (1985) Journal of Dairy Science, 68, 2195.

148 WEBB, B.H. and WHITTIER, E.O. (1970) By-products from milk, AVI

Publishing, Westport, C.T.

149 KESTER, 1.1. and RICHARDSON, T. (1984) Journal of Dairy Science, 67,

2757.



185

150 DYFOUR, E. and HAERTLE, T. (1991) Biochimica et Biophysica Acta, 1079,

316.

151 MEANS, G.E. and FEENEY, R.E. (1968) Biochemistry, 7, 2192.

152 FRAENKEL-CONRAT, H. and OLCOTT, H.S. (1945) Journal of Biological

Chemistry, 161, 259.

153 WILCOX, P.E. (1967) Methods in Enzymology, 11, 605.

154 BERTRAND-HARB, C., CHOBERT, J-M, DUFOUR, E. and HAERTLE, T.

(1991) Sciences des Aliments, 11, 641.

155 RICHARDSON, T. (1985) Journal of Dairy Science, 68,2753.

156 EIGEL, W.N., BUTLER, J.E., ERNSTROM, C.A., FARRELL, H.M.,

HARWALKAR, V.R., JENNESS, R. and WHITNEY, R.McL. (1984) Journal

of Dairy Science, 67, 1599.

157 HOLT, C. (1992) In Advances in Protein Chemistry, (eds. C.B. Anfinsen, J.T.

Edsall, F.M. Richards and D.S. Eisenberg) Academic Press, New York, 43,

p63.

158 WALSTRA, P., BLOOMFIELD, V.A., WEI, G.J. and JENNESS, R. (1981)

Biochimica et Biophysica Acta, 669, 258.

159 HORNE, D.S. (1984) Biopolymers, 23, 989.

160 DAVIES, D.T. and LAW, A.J.R. (1987) Journal of Dairy Research, 54,369.

161 VREEMAN, H.J., BOTH, P., BRINKHUIS, J.A. and Van der SPEK, C.A.

(1977) Biochimica et Biophysica Acta, 491, 93.

162 VREEMAN, H.J., VISSER, S., SLANGEN, C.J. and VANRIEL, I.A.M.

(1986) Biochemical Journal, 240, 87.



186

163 F~RRON-BAUMY, C., MOLLE, D., GARRIC, G. and MAUBOIS, J.L.

(1992) Lait, 72, 165.

164 REDDY, I.M. and KINSELLA, J.E. (1990) Journal of Agricultural and Food

Chemistry, 38, 50.

GLASGOW
UNIVERSITY
LIBRARY


