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Abstract

Predictive species distribution models (SDMs) are becoming increasingly important in
ecology, in the light of rapid environmental change. The predictions of most current SDMs
are specific to the habitat composition of the environments in which such models were
fitted. However, species respond differently to a given habitat depending on the avail-
ability of all habitats in their environment, a phenomenon known as a functional response
in resource selection. The Generalised Functional Response (GFR) framework captures
this dependence by formulating the SDM coefficients as functions of habitat availability
in the broader environment. The original GFR implementation used global polynomial
functions of habitat availability to describe functional responses. In the present thesis, I
develop several refinements of this approach and compare their explanatory and predictive
performance using two simulated and three real datasets.

I use local radial basis functions (RBF), a more flexible approach than global poly-
nomials, to represent the habitat selection coefficients and regularization to balance bias
and variance and prevent over-fitting. Second, I use the RBF-GFR and GFR models in
combination with the classification and regression tree (CART), which has more flexibil-
ity and better predictive powers for non-linear modelling. As further extensions, I use
random forests (RF) and extreme gradient boosting (XGBoost) ensemble approaches that
consistently lead to variance reduction in generalization error.

After applying the original and extended models to four different datasets, I find that
the different methods perform consistently across the datasets, such that their approximate
ranking for out-of-data prediction is preserved. The traditional stationary approach to
SDMs, excluding the GFR model, consistently performs at the bottom of the ranking. The
best methods in my list provide non-negligible improvements in predictive performance,
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in some cases taking the out-of-sample R2 score from 0.3 up to 0.7 across datasets.
At times of rapid environmental change and spatial non-stationarity ignoring the ef-

fects of functional responses on SDMs, results in two different types of prediction bias
(under-prediction or mis-positioning of distribution hotspots). However, not all functional
response models are created equal. The more volatile GFR models may fall foul of similar
biases. My results indicate that there are consistently robust GFR approaches that achieve
transferability consistently across very different datasets.

In addition to these improvements in predictive performance resulting from the GFR,
RBF-GFR and their extensions, it is also essential to know whether these models can
offer insights into the mechanisms mediating species distributions. I use one of the sim-
ulated datasets to interpret two of the models that provide the best predictive power for
this dataset. The resulting selection coefficients from the two models are similar, which
explains why the two models are able to explain the observed data in similar ways. In addi-
tion, the behaviour of the availability-filtered selectivity coefficients is consistent with the
known mechanisms generating the data. These findings indicate that despite their purely
statistical nature these fundamentally different models show convergent and realistic be-
haviour.

To test the transferability of the improved versions of the GFR model in a large-scale
and multi-species dataset, I use the challenging large-scale North American Breeding Bird
Survey BBS dataset. I discuss how the information in the dataset affects the predictive
ability of each species abundance. My recent extensions of the GFR model double the
biodiversity prediction accuracy compared to the standard generalised linear model (GLM)
and the original GFR model.
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Chapter 1

Introduction

The need to understand the relationship between organisms and their physical environ-
ment drives demand for new statistical models that can reliably forecast future changes in
species distributions, in response to changes in habitat availability. A habitat is a specific
point in environmental space (Paton and Matthiopoulos, 2016), the combination of partic-
ular values in different environmental dimensions. Habitat use is the proportion of time
that an individual, population or species spend at a particular habitat, and habitat selec-

tion is the behavioural process by which an organism chooses its habitat, which results in
habitat use and influences the species’ survival (Block and Brennan, 1993). Habitats are
not used randomly, and therefore habitat use can differ from habitat avaiability. Habitat

preference refers to the disproportionality between the use of a habitat and its availability
in the environment (Aarts et al., 2008). The models used to model habitat preferences by
using a quantitative comparison between habitat use and availability are habitat models

(Paton and Matthiopoulos, 2016).
As the complexity of questions related to conservation and ecosystem management

begins to outstrip our ability to collect detailed spatial and temporal data (Fordham et al.,
2016; Kindsvater et al., 2018), we have come to rely on more sophisticated statistical
methodologies for interpolating between locations, times and taxonomic groups and for
predicting into the future. Predictive models of species distributions, in particular, play an
increasingly important role as organisms respond to accelerating changes in climate and
land use (Evans et al., 2012; Houlahan et al., 2017; Maris et al., 2018; Mouquet et al.,

1
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2015; Sequeira et al., 2018; Travers et al., 2019; Yates et al., 2018).
The demand for transferable models (i.e., models that can predict accurately in en-

vironments very different to those used for model fitting - Yates et al., 2018) has led to
the realisation that statistical species distribution models (SDMs) are currently not fit-for-
purpose, particularly in the case of animal species (Austin, 2002; Bahn and McGill, 2013;
Barbet-Massin et al., 2018; Barbosa et al., 2009; Dormann, 2007; Ehrlén and Morris,
2015; Randin et al., 2006; Tessarolo et al., 2021; Torres et al., 2015; Zurell et al., 2009).

A key challenge with the transferability of SDMs is that species, particularly animals,
respond differently to a particular habitat depending on the availability of other habitats
in their environment (Boyce and McDonald, 1999; Mysterud and Ims, 1999). Fig. 1.1,
which has been taken from Matthiopoulos et al. (2011), illustrated this problem when a
generalized linear model was applied using a simple animal in a particular environment.
The model fits well in the same environment (comparing Fig. 1.1 c and d) but provides
poor predictions of habitat use when placed in a different environment (comparing Fig.
1.1 g and h). This process, termed a functional response in habitat selection, is the result
of complex mechanistic interactions between habitat availability and animal behaviour.
These two factors interact with each other to produce a response, rather than either influ-
ence acting on its own (Matthiopoulos et al., 2011; Mauritzen et al., 2003; Mysterud and
Ims, 1998). This is difficult to capture with standard statistical models because the esti-
mated parameters of SDMs are specific to the environmental settings where these models
were fitted. The consequence of functional responses is that unless the environmental con-
text is explicitly taken into account, spatial predictions can be increasingly inaccurate as
the prediction settings diverge from the model fitting environmental profiles (Paton and
Matthiopoulos, 2016). The standard species distribution models do not take into account
the effects of habitat availability functions, where these models give poor predictions if
they are used in extrapolation scenarios (i.e. prediction in different environments). This
process is not new in statistics, but it appears to have been somewhat unclear in the ecol-
ogy literature. Functional responses in habitat selection are detectable in real datasets.
Fig. 1.2 shows how moose in Norway used nine different habitat types based on relative
habitat availability (Fig. 6 in Bjørneraas et al. (2012)). Two species of birds show positive
functional responses to three treatments of habitat (see Fig. 2 and Table 3 in Gillies and
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St. Clair (2010)). Functional responses to pastures were detected in a telemetry dataset
containing 62 red deer in Norway (Godvik et al., 2009). When pasture was rare, the se-
lection of pastures was increased, but the selection of pasture decreased with increasing
pastures availability (Godvik et al., 2009). Functional responses are detectable by many
different methods, but the exact nature of the response depends on the statistical method-
ology that is used to capture it. For example, two species of conservation concern, Canada
lynx in the United States and woodland caribou in Canada, were used to evaluate four dif-
ferent functional response approaches (Holbrook et al., 2019). Habitat use in the additive
scale, habitat use model in the multiplicative scale, habitat selection with resource selec-
tion function RSF, and habitat selection with the interaction of RSF. There was a variation
among these approaches with regard to evaluating the functional response (See Fig. 3 in
Holbrook et al. (2019)). Some approaches show increases in habitat use by Canada lynx
with increasing advanced regenerating forest availability while other approaches show the
opposite effect. Some approaches demonstrated no functional response. The same vari-
ation in results occurred when testing woodland caribou habitat use in response to linear
features. Differences resulting from different implementations highlight the importance
of investigating the robustness of functional response models, my initial objective in this
thesis.

The functional response model is a model in which the model coefficients are func-
tions and the response is a scalar. This model is a functional extension of linear regression
and a type of functional data analysis, where such models are usually called generalised
regression of scalars on functions (For more details, see Chapter 15 in Ramsay and Silver-
man, 2005). Different approaches have been proposed to model functional responses in
habitat selection, ranging from single-habitat models of usage as a function of availability
(Mysterud and Ims, 1998) to writing SDM coefficients as functions of the availability of
all habitats (Boyce and McDonald, 1999). The need to account for functional responses is
clearly demonstrated by the efficacy of approaches that do not use any model of functional
response but simply recognise the distinction between different environmental scenarios
by means of random effects (Gillies et al., 2006). The generalized functional response
GFR approach (Matthiopoulos et al., 2011) uses a function of availability to represent
the SDM’s coefficients. The coefficients of the GFR are modeled by functions of lo-
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cal habitat availability using a polynomial function approach (Matthiopoulos et al., 2011;
Matthiopoulos et al., 2019). The GFR model is ultimately structured using the local value
of the habitat covariates, moments (e.g., the means) from the distribution of the habitat
covariates, and the pairwise interactions between these terms (Matthiopoulos et al., 2011).
The GFR is an example of a varying-coefficient model, an extension of the generalized
linear model with coefficients written as functions of other variables (Hastie and Tibshi-
rani, 1993). For example, Fig. 1.3 shows a similar simulated process of Fig. 1.1, where
an animal whose priorities are feeding and hiding is observed in a habitat where a simple
SDM is fitted and provided a good fit in the same habitat (comparing Fig. 1.3 b and c) and
poor predictions when placed in a different habitat (comparing Fig. 1.3 a and f). Fig. 1.4
shows that the predictions from the GFR model are in good agreement with the ground
truth of the second environment used in Fig. 1.3.

The approach taken in Matthiopoulos et al. (2011) was to model each of the SDM co-
efficients as a global polynomial, motivated by the fact that under fairly general regularity
conditions, any smooth function can be approximated by a Taylor series. The practical
problem, however, is that this power series expansion with its polynomial coefficients has
to be learned from data. Taking a high polynomial order leads - for limited and noisy data
- to potential over-fitting (and poor transferability). Standard approaches, therefore, aim
to find the adequate degree of model complexity, e.g., via cross-validation or based on in-
formation criteria, such that for small datasets and high noise levels, less complex models
are preferred.

However, for a global polynomial function, controlling model complexity e.g., by re-
stricting the number of adjustable model parameters, implies a truncation of the polyno-
mial order and a limitation of the degree of non-trivial differentiability. This is method-
ologically inconsistent: the highest polynomial order and the degree of non-trivial dif-
ferentiability are an intrinsic feature of the systems under investigation and must not be
dictated by the quantity and quality of the available data. The first aim of the thesis is
to build on the GFR approach proposed by Matthiopoulos et al. (2011), by replacing the
global polynomial expansion by several more recent methods from multivariate statistics
and machine learning such that the logical inconsistency outlined above is avoided.

To address the limitations of the original GFR model proposed in Matthiopoulos et al.
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(2011), I adapt three state-of-the-art flexible regression paradigms to model the habitat se-
lection coefficients. The first approach is based on a radial basis function (RBF) expansion,
as e.g., reviewed in Chapter 5 of Bishop, 1995, and I refer to this model as the RBF-GFR
model. I ensure that the RBF-GFR model flexibility is not deployed indiscriminately by
using regularization to limit that flexibility so that, under out-of-sample predictions, the
model can behave well. I refer to this model as the regularized RBF-GFR model. Next, I
combine classification and regression trees (CART), reviewed e.g., in Chapter 9 of Hastie
et al., 2008 or Section 16.2 in Murphy, 2012, with both the original GFR model and RBF-
GFR model. I refer to these models as GFR-CART and RBF-GFR-CART, respectively.
I finally create model ensembles, based on random forests (RFs) trained with bagging
(see Chapter 15 in Hastie et al., 2008) or boosting (see e.g., Chapter 16 in Hastie et al.,
2008 or Section 16.4 in Murphy, 2012). I refer to these ensembles with the suffix “RF” or
“XGBoost”.

I assess these models on two different levels. First, I explore the out-of-sample spa-
tial predictions by looking at scenario-specific plots of predicted usage over geographical
space for four small-scale and single-species datasets: two individual-based simulated
datasets and two real-life applications. The two simulated datasets are species abundance
levels, whereas the real applications are binary species use/availability datasets. I compare
the test set accuracies, which have been quantified in terms of out-of-sample R2 scores,
and split the presentation of the results by dataset. Looking at the predictive level is an
insufficient assessment, and an ecological realism assessment is needed to explore species
abundance models (Austin 2007). Thus, looking at space- and scenario-independent plots
is the second level of model assessment I use. I look for the spurious effects in the graph-
ical diagnostic selectivity coefficients γi and try to use these coefficients to see if these
models biologically make sense. It is important to offer some explanatory power of the
mechanisms mediating species distributions and know whether these models allow us to
look beyond the predictions by visualising the changes in the regression coefficients. I
use one of the simulated datasets for this assessment because the mechanisms generating
this dataset are known. Hence, the models can be assessed by their ability to infer these
mechanisms. The mechanisms generating data can be explored by looking at the patterns
illustrated in images, where these patterns result from the statistical model being fitted to
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data.
It is better to use larger scale and multiple species datasets to apply varying coeffi-

cient models because prevailing conditions are likely to vary a lot across a large map.
After looking at how the models behave under relatively small scale or simulated datasets,
it is essential to test those models in large-scale conditions. I use the large-scale North
American Breeding Bird Survey (BBS) dataset to predict the abundance of ten different
species in the data by applying the GFR model and various recent extensions using land-
cover types and the temperature of each segment as covariates. Furthermore, I use the
Shannon entropy score, the most frequently used measure of biodiversity in ecology, to
investigate three different things. First, I use the entropy score to assess the transferability
of the generalized function response (GFR) model and its extensions by measuring the
information content in the dataset. Second, since biodiversity is widely used to describe
the variation and there are emergent trends in how biodiversity increases or declines with
ecological context, I observe the relationship between biodiversity and land cover types
using the GFR model and various recent extensions. Finally, I quantify the legacy effect
arising from extinction debts and colonisation credits (Haddou et al., 2022), using the GFR
models of land cover types on biodiversity.

The present thesis is structured as follows: I review the methodology, statistical back-
ground and related literature that are used throughout this thesis in Chapter 2. Details of
my new models and outlines of the relationship between all the models proposed in the
present study can be found in Chapter 3. Chapter 4 provides an overview of two simulated
and three real-world datasets used for a comparative evaluation of the various methods.
The results of the predictive evaluation of four datasets are presented in Chapter 5. Ex-
planatory quantification and some ecological interpretations of selectivity coefficients of
one of the simulated datasets can be found in Chapter 6. Chapter 7 provides discussions
of individual species distribution predictions in the large-scale North American Breeding
Bird Survey (BBS) dataset, the relationship between biodiversity and land cover types
using the GFR models, and legacy effects on biodiversity. I finish with my general dis-
section and conclusions in Chapter 8. To keep the main text sufficiently concise, I have
relegated some methodological details along with more comprehensive simulation results
to Appendix A.
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Figure 1.1: Illustration of the key challenge with the transferability of SDMs. The two
rows represent two different environments with different geographical (a and e) and en-
vironmental (b and f) spaces. The local densities of the two resources in a and e are
represented by the intensity of the two colors (red and green). The colors in the environ-
mental space plots b and f represent the prevalence of a particular combination of values
for the two resources going from green (low) to white (high). The colors in the observed
usage plots c and represent species abundance in the two environments in terms of latitude
and longitude for the ground truth where green indicates low abundance levels and white
represents a high abundance levels. The generalized linear model fits well in the first envi-
ronment by comparing c and d. However, the same model provides poor predictions in the
second row when applied to a different environment using the same animal by comparing
g and h. This figure has been taken from Matthiopoulos et al. (2011).
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Figure 1.2: Evidence of functional responses in habitat selection taken from Bjørneraas et
al. (2012). The plots represent the relationship between the proportion available of nine
different habitat types and the concentration of moose use, which increased relative to the
availability of several habitat types except for bog and barren.
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Figure 1.3: The two rows represent two different environments with different geographical
(a and d) where the availability of two resources (food and cover) is represented by the
intensity of the two colours (red and green). Panels d and e are heat maps of species
abundance in the two environments in terms of latitude and longitude for the ground truth
where light colours indicate low abundance levels, so the abundance levels increase as the
colour shading gets darker. The generalized linear model fits well in the first environment
by comparing b and c. However, the same model provides poor predictions in the second
row when applied to a different environment using the same animal by comparing e and f.
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Figure 1.4: Heat maps of species abundance in the second environment (second row of Fig.
1.3) in terms of latitude and longitude for the ground truth where light colours indicate low
abundance levels, so the abundance levels increase as the colour shading gets darker. The
generalized linear model fits in the first environment (first row of Fig. 1.3) and provides
poor predictions when applied to environment a (i.e., shows stronger deviations from the
ground truth). The predictions from the GFR model show a very good agreement with the
ground truth (by comparing a and c).



Chapter 2

Statistical Background and Related
Literature

2.1 Introduction

This chapter provides an overview of the methodology, statistical background and related
literature that are used throughout this thesis. Section 2.2 introduces the mathematical
details of the generalized function response (GFR) model, which is the model motivat-
ing this thesis. The maximum likelihood estimation method which is used to estimate the
GFR model parameters is outlined in section 2.3. Section 2.4 introduces the basis function
approach, focusing on the radial basis function which is the foundation of the first exten-
sion model. Section 2.5 provides an overview of mixture models, with a particular focus
on Gaussian mixture models (GMMs) and outlines the method that was used to estimate
the GMM parameters. Section 2.6 introduces the main concept of the classification and
regression tree, which is used in the second extension model. Section 2.7 gives a brief
outline of model ensemble, which was used as a basis of the final extension models, espe-
cially the random forest model in Section 2.7.1 and the extreme gradient boosting model in
Section 2.7.2. Section 2.8 covers the techniques used for making decisions about selecting
the best number of parameters or models. The measures of the out-of-sample performance
(and hence, the transferability) and total variability explained by models used in this thesis

11
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are described in Section 2.9.

2.2 The Generalized Functional Response (GFR) Model

To explain GFRs more precisely, I need to introduce this class of models mathematically,
starting from the basic form of modern species distribution models (SDMs). Both of the
dominant methods for modelling species distributions (i.e., Maxent and Resource Selec-
tion Functions) use the following formulation of a predictor function of environmental
covariates x = (x1, . . . ,xI) to predict the distribution of a species in space as follows:

h(x) = exp

(
β0 +

I

∑
i=1

βixi

)
(2.1)

where h(x) is the habitat preference and the coefficient βi for the ith covariate is fixed (i.e,
the coefficients are scalars and not functions, Phillips et al., 2006; Boyce et al., 2002). The
SDM here is written in terms of the environmental variable x, and the SDMs literature uses
the exponential function (non-negative valued function), thereby avoiding negative usage
by using some type of environmental variable, such as environmental risks. This expo-
nential transformation of the linear predictors could be a generalized linear model (GLM)
using an appropriate link function depending on the distribution of data (Matthiopoulos
et al., 2020a). If the response variable is a binary species use/availability indicator, then
the data can be modelled as a Bernoulli process and the logit transformation is used. Al-
ternatively, for species abundance levels, the Poisson distribution is used with log trans-
formation. Although the summand shown above is the prototypical expression for a linear
predictor and h(x) is a generalized linear model, the approach is augmented with custom-
ary extensions such as higher-order polynomial terms, interactions, or generalized additive
terms. The coefficients of the linear predictor are either estimated by likelihood (Václavík
and Meentemeyer, 2009) or entropy criteria (Phillips et al., 2006), and they are fitted to
different types of data (e.g., telemetry, survey etc) by different link functions. Modern
inference has unified all the existing approaches to different types of data under the frame-
work of Inhomoheneous Point Processes (IPP), and has therefore tended to interpret the
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quantity in Eq. (2.1) as the intensity function of the IPP (reviewed in Matthiopoulos et al.,
2020a).

Habitat selection models formalized in this way are known to have low transferability
to new environmental scenarios (Boyce and McDonald, 1999; Mysterud and Ims, 1999).
The predictions from Eq. (2.1) rely on the assumption that animals use habitats in pro-
portion to their preference and that preference does not change when habitat availability
changes. This assumption is born of statistical convenience, not biological reality, where
any changes in habitat availability lead to disproportionate changes in species’ response, a
phenomenon called functional response in resource selection (Mysterud and Ims, 1998).

Boyce and McDonald (1999) argued that functional responses could be captured by re-
laxing the stationarity of the fixed coefficients βi ∈R. Hence, in their original GFR model,
Matthiopoulos et al. (2011) allowed the βi to vary as functions of habitat availability in
the case of continuous environmental space:

βi,b =
∫

γi(x) fb(x)dx, (2.2)

where fb(x) is a probability density function for habitat availability in the bth sampling
instance for the ith variable. A sampling instance represents an environmental scenario
defined in a biological way as the environment experienced by the study animals during
an appropriate spatiotemporal frame of accessibility (Matthiopoulos et al., 2020b). For
example, a sampling instance could represent the spatial domain of a well-mixing sub-
population during a given year. A sampling instance could represent different years for
the same population or different sub-populations in the same year (i.e., a space-for-time
substitution in sampling effort is possible). An approximate, discretised version of this
formulation, uses summation:

βi,b =
N

∑
n=1

γi(xn) fb(xn), (2.3)

where n encodes for a specific habitat. Intuitively, the function γi(x) describes the change
in the SDMs slope for the ith covariate, generated by a unitary increase in the availability
of the nth habitat type.
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Matthiopoulos et al. (2011) used a polynomial function to formulate the γi(x) for each
environmental variable (x):

γi(x) =
I

∑
j=1

M j

∑
m=0

δ
(m)
i, j xm

j (2.4)

where the coefficient of γi(x) for the mth power of the jth variable is δ
(m)
i, j . This derivation

leads to the following expression for the β ’s:

βi,b = γi,0 +
I

∑
j=1

M j

∑
m=0

δ
(m)
i, j E[Xm

j ]b (2.5)

where M j is an integer order parameter and E[Xm
j ]b is the mth moment of the covariate j

calculated for the conditions prevailing in the bth sampling instance, which assumed to be
normally distributed. Furthermore, γi,0 is an intercept corresponding to the scenario of zero
expectations. If at least the first two moments of X are zero (corresponding to zero mean
and variance for X), this implies that the environmental variable has its baseline value,
uniformly across accessible space. Let z denote a vector composed of all elements {xm

j }
and {E[Xm

j ]b}. Using the polynomial function approach described above, habitat prefer-
ence h(z) can be expressed as a function of the fixed effects of covariates and pairwise
interactions between covariates and their moments:

h(z;θ) = exp

 γ0,0 +
I

∑
i=1

 Mi

∑
m=0

δ
(m)
0,i E[Xm

i ]b + γi,0xi + xi

I

∑
j=1

M j

∑
m=0

δ
(m)
i, j E[Xm

j ]b

 (2.6)

where θ is a parameter vector composed of the parameters γi and δi and z is a vector
combining habitat variables xi and their expectation values E[Xm

i ], as well as their product
terms.
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2.3 Maximum Likelihood (ML)

Seeking a good method to estimate a parameter θ of a population described by a func-
tion p(x|θ) is very important because it properly represents a population (Casella and
Berger, 2021). A good estimation method is a method that provides a consistent, effi-
cient, and unbiased estimation (Murphy, 2012). An estimator is unbiased when the sam-
pling distribution of the estimated parameter is centred around the true parameter (i.e,
bias(θ̂) = E(θ̂)−θ = 0; Murphy, 2012). An unbiased estimator is efficient if it provides
an estimate with the smallest theoretically possible variance (i.e., it achieves the Cramer-
Rao lower bound; Murphy, 2012; Miura, 2011). A consistent estimator is when the esti-
mated parameter converges in probability to the true parameter as the sample size of the
data goes to infinity. There are different methods used for parameter estimating. For exam-
ple, the method of moments is, perhaps, the oldest method used for estimating parameters
(Casella and Berger, 2021; Tallis and Light, 1968). The method of moments is an easy
method to use for parameter estimation. However, the estimates of the method of moments
could be inaccurate in some cases (Marchisio and Fox, 2005). Furthermore, the method
of moments is sometimes biased and inefficient estimators (Pearson, 1936). Bayesian in-
ference is a popular approach to estimating parameters of interest depending on a prior
distribution of the parameters, which are not fixed quantities (Casella and Berger, 2021).
However, unless the posterior distribution is available in closed form, Bayesian inference
is an expensive computational approach (Sunnåker et al., 2013).

Maximum likelihood (ML) is a widely used parameter estimation method (Casella
and Berger, 2021). Under certain regularity conditions, maximum likelihood estimators
(MLEs) are consistent, asymptotically unbiased and asymptotically efficient (Murphy,
2012). In general, the goal of MLE is to maximize the likelihood function L(θ,z,y);
find θ̂ that maximizes the function L(θ,z,y) over the parameter space. It is often easier
to work with the log likelihood function l(θ,z,y) = 1

N log L(θ,z,y). If the response
variable for a dataset is a binary species use/availability indicator, that is, yn ∈ {0,1}, then
the Bernoulli model is used in each site with probability of use p = Pr(y = 1|z;θ) and
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probability of availability 1− p = Pr(y = 0|z;θ) where:

p = Pr(yn = 1|zn;θ) =
1

1+ e−h(zn;θ)
; (2.7)

Pr(yn = 0|zn;θ) = 1− p (2.8)

where the subscript n denotes a geographical patch or plot where species counts are taken.
The likelihood function is:

L(θ,z,y) =
N

∏
n=1

Pr(yn|zn;θ). (2.9)

The log likelihood is:

l(θ,z,y) =
N

∑
n=1

logPr(yn|zn;θ). (2.10)

For species abundance levels, the Poisson distribution is used with mean parameter
equals to h(z;θ) in Eq. (2.6) for the GFR model. If yn is the number of species in cell n,
then

p(yn|zn;θ) =
h(zn;θ)yne−h(zn;θ)

yn!
. (2.11)

The likelihood function using the maximum likelihood algorithm to optimize θ is:

L(θ,z,y) =
N

∏
n=1

h(zn;θ)yne−h(zn;θ)

yn!
(2.12)

The log likelihood is:
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l(θ,z,y) =
N

∑
n=1

log
h(zn;θ)yne−h(zn;θ)

yn!

=
N

∑
n=1

[log(h(zn;θ)yn)+ log(e−h(zn;θ))− log(yn!)]

=
N

∑
n=1

[yn log(h(zn;θ))−h(zn;θ)− log(yn!)]

(2.13)

Further note that for GLM-type models, the ML equations have no closed-form solu-
tion, and the iteratively reweighted least squares optimization algorithm is therefore ap-
plied (see e.g., Section 4.3.3 in Bishop, 2006; McCullagh and Nelder, 1983; Faraway,
2016; Chapter 3 in Wood, 2017 for details).

2.4 Basis Functions

The basis function approach is widely used as a flexible regression and an extension of the
linear regression model (Bishop, 2006) where the linear regression model is in the form:

y(x,β) =
I

∑
j=0

β jx j (2.14)

for x = (x1, . . . ,xI) and the linear coefficients β . The basis function represents the target
variable y as a linear combination of fixed non-linear functions instead of a linear combi-
nation of input variables as used in linear regression as follows:

y(x,δ) = ∑
j

M j

∑
m=0

δ
(m)
j φ(x j,θ j,m) (2.15)

where φ(x j,θ j,m) is a basis function of input covariate x j with parameters θ j,m for the jth

varaible and mth basis function.
There are many possible choices of φ . The polynomial basis function is one possibility
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of φ , as follows:

y(x,δ) = ∑
j

M j

∑
m=0

δ
(m)
j xm

j . (2.16)

Matthiopoulos et al. (2011) used the same method to formulate γi(x) in Eq. (2.4).
A spline basis function of degree K addresses the limitation of global functions using
the polynomial approach discussed in Section 2.2. A spline basis function of order K is
achieved by dividing the input domain into regions and then fitting the polynomial function
of degree K −1 in each region.

A radial basis function (RBF) expansion is a widely used flexible basis function ap-
proach, which is a local approach that disentangles the number of basis functions from the
degree of differentiability:

φ(x j,θ j,m) = exp

(
−1

2
(x j −ξ j,m)

2

σ2
j,m

)
(2.17)

where ξ j,m is the center of the mth basis function for the jth covariate and σ j,m is its
bandwidth parameter.

A sigmoidal basis function is another way of formulating φ , as follows :

φ(x j,θ j,m) =
1

1+ exp
(
−(x j−ξ j,m)

σ j,m

) (2.18)

A Fourier basis function is an extension of a sigmoidal basis function using the sinu-
soidal function as the basis function, which is not local where the spatial range is infinite,
from positive to negative infinity, leading to poor sharp approximation (Donald et al.,
2009). In contrast, a wavelet basis function is a flexible basis function approach that is
localized in finite ranges, leading to better sharp approximation.
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2.5 Gaussian Mixture Model (GMM)

Finite mixture models are statistical/machine learning models commonly used to estimate
an unknown distribution or cluster a data into k clusters (McLachlan and Rathnayake,
2014). The importance of finite mixture models increased after it was proven that, under
certain regularity conditions, a target probability distribution can be arbitrarily closely
approximated by a mixture model (provided there is no limit on the number of mixture
components) (Nguyen et al., 2020; McLachlan et al., 2019). The model in the mixture is
one of the exponential families such as Gaussian, Poisson, Binomial, Bernoulli, Beta or
Gamma as follows:

f (x) =
K

∑
k=1

wk p(x|θk) (2.19)

where K is the total number of mixture components, wk is the mixing weight of the kth

component, which satisfies ∑
K
k=1 wk = 1 and θk is the vector of the distribution’s unknown

parameters of component k. The Gaussian mixture model (GMM) is a finite mixture prob-
ability distribution model which assumes that observations in the data are generated from a
finite number of Gaussian distributions with unknown parameters (Boiarov and Granichin,
2019). The GMM traditionally uses the maximum likelihood estimator to estimate the
GMM parameters via an expectation–maximisation algorithm (Xuan et al., 2001). The
GMM assumes that the data point in x = (x1, . . . ,xI) is generated from a Gaussian distri-
bution mixture with unknown parameters as follows:

f (x) =
K

∑
k=1

wkN(x|µk,Ck) (2.20)

where K is the total number of mixture components, µk defines its centre and Ck is the
covariance matrix. N(x|µk,Ck) is Gaussian distribution for each component defined as
follows:

N(x|µk,Ck) =
1

(2π)
I
2 |Ck|

1
2
· exp

(
−1

2
(x−µk)

′
C−1

k (x−µk)

)
(2.21)
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The covariance matrix Ck can be a diagonal matrix, as follows:

N(x|µk,Ck) =
I

∏
j=1

1√
2πσ j, j

· exp

(
−1

2
(x j −µ j,k)

2

σ2
j, j

)
(2.22)

I used the GMM to model the probability distribution fb(x) in Eq. 2.2 (i.e., the habitat
availability characterising a sampling instance). There are different choices for the com-
ponents’ orientations, shapes and volumes. These components’ characteristics can be the
same or vary between clusters. The covariance matrix Ck determines the shape, volume
and orientation of each component. The covariance matrix Ck can be written as follows:

Ck = λkDkAkDT
k (2.23)

where λk is a constant that controls the component volume, Dk is an orthogonal matrix
of eigenvectors control the component orientation and Ak is a diagonal matrix which con-
trols the component shape (Russell et al., 2014). If each component has its own general
covariance matrix, then the components are fully flexible and may independently adopt
any volume, orientation and shape. If all components have the same covariance matrix,
then they have the same shape, but this may be any shape. The contour axes are ori-
ented along the coordinate axes if the model has diagonal covariance matrices. Spherical
components are the components that have their own single variance.

For example, EII refers to components that are spherical with the same size, VII refers
to components that are spherical with different sizes, EEI refers to components that are
diagonal with the same size and shape, VEI refers to components that are diagonal with
different sizes and the same shape, and EEE refers to components that are ellipsoidal with
the same size, shape, and orientation (Fraley et al., 2012).

2.5.1 Expectation-Maximization for the GMM Parameters

The GMM parameters θ=(w1,w2, .....,wK,µ1, ,µ2, ....,µK,C1,C2, .....,CK) are estimated
using the maximum likelihood approach. An expectation-maximization (EM) algorithm
is a broadly used for latent variable models to iteratively compute maximum likelihood
estimates (Gentle et al., 2012). The EM algorithm attempts to find maximum likelihood
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estimates for models with latent variables z = (z1, .....,zn) that determine the component
from which the observation originates such that p(zi = k) = wk. The EM algorithm is an
iterative algorithm which consists of an E-step followed by an M-step. The iteration starts
with initial estimates of the parameters to run the E-Step and the M-Step and maximize the
log-likelihood function until it converges; no further significant changes occur between the
log-likelihood of the last iteration and the previous iteration, as explained in Algorithm 1.

Algorithm 1 Expectation–Maximization Algorithm
1: procedure ESTIMATE GMM PARAMETERS(state)
2: Start with initial values of θ.
3: for each data instance xi do
4: E− step : compute the responsibility value rik (the probability that xi belongs

to k): rik =
wkN(xi|µk,Ck)

∑
K
j=1 w jN(xi|µ j,C j)

5: for each component k do
6: M− step : use rik to re-estimate θ as follows: wk =

∑
n
i=1 rik

n , µk =
∑

n
i=1 rikxi

∑
n
i=1 rik

and

Ck =
∑

n
i=1 rik(xi−µk)(xi−µk)

T

∑
n
i=1 rik

7: Evaluate the log likelihood: ∑
n
i=1 log∑

K
k=1 wkN(xi|µk,Ck)

8: Repeat steps 3 to 7 until the log likelihood convergence.

2.5.2 Number of Gaussian Components

Including a few Gaussian mixture components loses discrimination between the Gaussian
components, while including many components may ignore the relevance among samples
(Gao and Dai, 2014). Most studies set the number of components either as a fixed number
or based on some information criteria (Gao and Dai, 2014). Some studies set the number
of components based on cross-validated log likelihood, where the data is divided into
training and validation sets to try different numbers of components and select the best
based on log likelihood values (McLachlan and Rathnayake, 2014). In this thesis, the
number of components k is selected based on the Bayesian information criterion (BIC).
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2.6 Classification and Regression Trees (CARTs)

Classification and regression trees (CARTs) are widely used in regression and classifica-
tion to predict variables in a new dataset using training data. CART can be represented by
a binary tree, leading to one leaf per region, as illustrated in the top panel of Figure 2.1.
For a comprehensive review of tree-based methods, refer to Breiman et al. (1984). A
cost function is used to choose the root node variable, which is the best candidate variable
to start the tree, and the best split value, which is the threshold of the candidate variable
(Murphy, 2012). Consider the bottom panel of Figure 2.1. The left panel shows a hypo-
thetical domain defined by two habitat variables, x1 and x2, and a population of species
observations, reported by a team of ecologists. Green triangles indicate that a species has
been found and reported, while red circles indicate the absence of a species. The his-
tograms on the right show the distribution of presence/absence labels for two alternative
candidate splits, one at habitat variable x1, the other at habitat variable x2. Which split
is better? Intuitively, the bottom split is better, in that it gives a clearer separation of the
regions in habitat space where species can be found and where they are absent, whereas
the former split still shows a high degree of uncertainty. The node xi and the threshold
or split value h, which is a value from xi, is chosen based on criteria such as the Breiman
criteria, as in Breiman et al. (1984). In the Breiman criteria, a locally optimal maximum
likelihood estimator is used for the split function. The regression cost for a certain node
is the residual error left after fitting the model in each leaf using the variables in the path
from the root to that node (Murphy, 2012). Entropy and Gini index are common classifi-
cation costs; the split with the lower Gini or entropy scores would be preferred (Murphy,
2012). The classification cost using the Gini index refers to the probability of a randomly
chosen element being classified in an incorrect class if it was randomly classified based on
the distribution of classes in the data as follows:

Gini = 1−
k

∑
i=1

p2
i (2.24)

where pi is the probability of a randomly chosen element in the leaf being classified in
class i and k is the total number of classes in this leaf. Entropy is defined as follows:
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H(p) = −
k

∑
i=1

pi log(pi) (2.25)

Fig. 2.2 shows the entropy measure for a two-class problem where H(p) is maximized
for p = 0.5, i.e., for maximal uncertainty, and minimized for p ∈ {0,1}, i.e., when there is
no uncertainty. The minimum value of H(p) is when p = 0 or 1, as follows:

lim
pi→1

pi log(pi) = 1 × log(1) = 0 (2.26)

For pi → 0, L’Hopital’s rule is used as follows (Lopez, 1994):

lim
pi→0

pi log(pi) = lim
pi→0

log(pi)
1
pi

= lim
pi→0

[log(pi)]
′

[ 1
pi
]′

= − lim
pi→0

1
pi
1
p2

i

= − lim
pi→0

pi = 0 (2.27)

It can be shown that the maximum value of H(p) for a two-class problem is when
p = 1

k = 0.5. Before taking the derivation of H(p) with respect to p and setting it equal
to zero in order to find the maximum value, the constraint C(p) = ∑

k
i=1 pi = 1 and the

Lagrange multiplier technique is used as follows:

∇pH(p)−λ∇pC(p) = 0 (2.28)

The derivation of Eq. (2.28) is:

−[log(pi)+1]−λ = 0 (2.29)

By solving Eq. (2.29) for pi, I get:

pi = exp(1−λ ) = c

=⇒ pi = c (2.30)
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Thus, using the constraint, I get:

1 =
k

∑
i=1

pi =
k

∑
i=1

c = kc

=⇒ c =
1
k

(2.31)

Inserting Eq. (2.31) into Eq. (2.30) leads to the following:

pi =
1
k

(2.32)

Because the original GFR model is in the generalized linear model (GLM) family,
which limits its modelling flexibility, the CART model is used here to address this by
recursively partitioning the input space into subregions, each modelled with a separate
GLM. A pruning scheme is used whereby the minimum cross-validation, based on a 10-
fold cross-validation scheme on the training data (but excluding the test data) determines
the best number of terminal nodes.

2.7 Ensemble Models, Bagging and Boosting

The model ensemble is a widely used machine learning method, especially in recent
decades (Polikar, 2012; Zhang and Ma, 2012; Pintelas and Livieris, 2020). The growth of
ensemble use comes after it was proven effective in real applications and problem-solving
(Zhou, 2012). A model ensemble trains collections of base models that are supervised,
which learns from training data to predict in a new dataset (Oza and Russell, 2001), by
combining multiple models to make a final decision (Sagi and Rokach, 2018). The main
idea of a model ensemble is to provide a final model by combining multiple models for
solving machine learning tasks and yielding better results than any individual model used
in the model ensemble. The model ensemble reduces the problem of over-fitting that can
occur in a single model, especially using small datasets. The over-fitting problem is re-
duced by averaging the outcomes that result from the ensemble members, which reduces
the risk of predicting a wrong outcome using a single model (Sagi and Rokach, 2018).
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Figure 2.1: Illustration of CART. Top panel: Classification tree (left) and corresponding
partitioning of the data space (right). Bottom panel: Two alternative splits at an internal
node. The left panel shows a hypothetical domain defined by two habitat variables x1 and
x2, and a population of species observations. Green triangles indicate that a species has
been found and reported, red circles indicate the absence of a species. The histograms
on the right show the distribution of presence/absence labels for two alternative candidate
splits, one at habitat variable x1, the other at habitat variable x2. Which split is better?
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Figure 2.2: The entropy measure for binary classification (k = 2). The horizontal axis cor-
responds to the probability of class 1 (p(X = 1)) and the vertical axis is the corresponding
entropy score.

The ensemble approach helps to extend the search space, which helps make the optimal
hypothesis inside the model space, by combining different models because the optimal hy-
pothesis could be outside any single model space (Sagi and Rokach, 2018). Furthermore,
the model ensemble performs very well when dealing with class imbalance issues, where
the presence of one class is determined to be very high compared to other classes by using
some techniques, such as training each of the members using a balanced subsample of the
data (Nikulin et al., 2009; Sagi and Rokach, 2018). Moreover, this approach deals with
high-dimensional datasets (Sagi and Rokach, 2018). This high-dimension problem can be
improved with a model ensemble using bagging, where each ensemble member is trained
using a random subset of features (Bryll et al., 2003) or using a different algorithm for
feature selection (Rokach, 2008; Huang et al., 2010). A single output ŷi is predicted using
the model ensemble as follows:

ŷi = G( f1, f2, ....., fk) (2.33)
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where G is an the aggregation function that combines the outputs from k ensemble mem-
bers fi, i = 1, . . . ,k. There are different techniques to train the model ensemble. The
aggregation function is different for classification and regression problems. In classifica-
tion problems, the predicted class is the one that has the most votes from the members.
The average of the predictions across all members is the predicted value in a regression
problem. There are two frameworks of the model ensemble; independent and dependent.
An independent model ensemble is where all members of the ensembles are built indepen-
dently from each other, such as bagging, random forests and extremely randomized trees
(Sagi and Rokach, 2018). Bagging and random forests are similar techniques depend-
ing on bootstrapping and aggregating but the members of a random forest are trees and
each node of a tree is chosen based on a subset of features while the members of bagging
are any model and the nodes are selected from all the features. The extremely random-
ized trees method is different from bagging and random forests in the way that the split
is chosen: randomly for extremely randomized trees and based on some criteria such as
the Gini index or entropy for bagging and random forest (Geurts et al., 2006). Dependent
frameworks, such as adaptive boosting, gradient boosting and extreme gradient boosting,
are when each member of the model ensemble is built based on the other members. All
the dependent methods use weak learners, which are models that perform slightly better
than random guessing, in each step to create a better model in the subsequent step and
combine these weak learners to create a strong learner, which performs much better than
random guessing and achieves arbitrarily good accuracy (Zhou, 2012). In each iteration of
the adaptive model, different weights are given to the observations based on the previous
iteration: greater weight is awarded to previously misclassified observations, and weight
is also assigned to each weak learner based on their overall predictive performance to
combine them to create a final strong learner. The gradient boosting approach adds weak
learners using gradient descent to minimize the loss function (Sagi and Rokach, 2018).
First-order iterative optimisation algorithm, which is a gradient descent (first derivative)
to find a local minimum, is used to minimize the loss function in the gradient boosting
approach and the second-order iterative optimization, which uses Hessian (second deriva-
tive) to find a local minimum, is used in extreme gradient boosting. Random forests from
the independent framework and extreme gradient boosting from the dependent framework
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were used in this thesis, where each leaf node of the trees of the RF model and each it-
eration of the XGBoost model is a GFR model. These ensemble approaches were used
because of the increased attention being paid to them due to the excellent results in classi-
fication and regression problems (Du et al., 2015; Rodriguez-Galiano et al., 2012; Rakhra
et al., 2021; Sheridan et al., 2016).

2.7.1 Random Forest (RF)

The method of random forests (RFs) is well known for classification and regression prob-
lems. In general, the RF approach is an ensemble approach that contains a collection of
trees, and each tree is constructed independently from the other trees by randomly select-
ing the tree inputs and features. The RF approach has been successfully implemented in
different fields such as data science, ecology, chemoinformatics and bioinformatics (Biau
and Scornet, 2016). The RF method has proven to be successful for prediction purposes
since its innovation 21 years ago by L. Breiman (Breiman, 2001). Before that in 1996, L.
Breiman built different trees using a bagging approach, a shortcut of "bootstrap aggregat-
ing", without replacement to create the forest (Breiman, 1996). The bagging approach was
followed by the idea of choosing the split of each node randomly from the 20 best candi-
date splits based on information gain (Dietterich, 1998). The L. Breiman’s RF approach
used here was motivated by Amit and Geman’s approach where each split is randomly
selected from a large number of features defined geometrically (Breiman, 2001).

In addition to the RF’s ability to predict well in new datasets, it has few tuning parame-
ters, that show the ability to handle small-size datasets, a large number of features and real
applications (Biau and Scornet, 2016). The expected loss can be explained by the bias and
the variance of a model, which is called the bias-variance decomposition (Bishop, 2006).
The expected out-of-sample prediction error of yi can be decomposed into a bias and a
variance component as follows:
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E[(ŷi − yi)
2] = E[[(ŷi − ȳ)+(ȳ− yi)]

2]

= E[(ŷi − ȳ)2]+2(ȳ− yi)E[ŷi − ȳ]+ (ȳ− yi)
2

= E[(ŷi − ȳ)2]+ (ȳ− yi)
2

= var[ŷi]+bias2[ŷi] = variance+bias2 (2.34)

where yi is the observation in the test set, ŷi is the model prediction and ȳ is the mean of the
predictions. For a flexible model, such as CART, the main contribution to this error comes
from the variance term, that can be reduced in a model ensemble. In RF, the expected
out-of-sample quadratic prediction error for yi using K independent trees is:

E[
1
K

K

∑
k=1

(ŷi
(k)− yi)]

2 = var[
1
K

K

∑
k=1

ŷi
(k)]+ [E[

1
K

K

∑
k=1

ŷi
(k)]− yi]

2

=
1

K2

K

∑
k=1

var[ŷi
(k)]+ [

1
K

K

∑
k=1

E[ŷi
(k)]− yi]

2

=
1

K2 Kvar[ŷi]+ [
1
K

K E[ŷi]− yi]
2

=
1
K

var[ŷi]+ [ȳi − yi]
2

=
variance

K
+bias2 (2.35)

where ŷi
(k) is the prediction from tree k. The variance contribution to the expected out-

of-sample prediction error of a model ensemble can be reduced by a factor of K for K

independent models, as seen in Eq. (2.35). Thus, bagging and subsets of candidate features
for split nodes help make the models more independent. The idea behind the RF approach
is to divide and conquer (Biau and Scornet, 2016). In this case, ’divide’ refers to the
partitioning of the configuration space, ’conquer’ refers to the ability to learn complex
functions, and ’strategy’ refers to the approach to learn a complex function by breaking
up a complex task into several simpler subproblems, each of which can be tackled with a
simpler model, such as a GLM. The piecewise linear model is a very simple example in



CHAPTER 2. STATISTICAL BACKGROUND AND RELATED LITERATURE 30

which the data are divided into subsets and every subset is modelled with a linear model.
The RF approach follows a divide-and-conquer strategy by recursively partitioning the
input space into subregions and combining the predictions of multiple individual decision
trees, fit in all subregions, to make a final prediction. This helps to reduce overfitting and
improves the overall accuracy of the model. In machine learning, Breiman’s RF consists
of different trees where each tree uses a random subset of the dataset with replacement to
insures each tree does not depend on the other trees to reduce the overall variance. The
best prediction of a certain input x is the class receiving the highest vote from the trees
in classification problems, and the average of the outputs across the trees in regression
random forests (Breiman, 2001). The members of a random forest are trees and each node
of a tree is chosen based on a subset of features while the members of bagging are any
model and the nodes are selected from all the features, as seen in Algorithm 2 and Fig. 2.3
that have been taken from Raschka et al. (2022).

Algorithm 2 Bagging
1: procedure BAGGING OF m BOOTSTRAP SAMPLES (state)
2: for i=1 to m do
3: Draw bootstrap sample of size n, Di .
4: Train base classifier hi on Di.
5: ŷ = comb{h1(x), ...,hm(x)}: comp is a function of classifiers (e.g., the most

popular class in classification and the average of the outputs in regression).

In RF, each tree is created using a random sample of features from the dataset as de-
scribed in Algorithm 3. I use bagging to obtain an individual member or tree of the forest.
Each observation has a probability of 1/n of being selected in a bag and a probability of
1− 1/n of not being chosen. The dataset is sampled n times with replacement and re-
sulting in a bootstrap sample of n samples. Therefore, the probability of an observation
not being selected in all the draws for a bag is (1− 1/n)n. As the value of n increases,
limn→∞((1− 1/n)n) = e−1 and the probability of an observation being selected in a bag
with replacement at least once = 1−1/e which is about 63.2% . Therefore, an individual
member or tree of the forest Dn contains about 63.2% (the probability of an observation
being selected in a bag with replacement at least once = 1−1/e) of the observations, which
are chosen randomly with replacement from the dataset . By contrast, the unused about
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Figure 2.3: The process of a model ensemble using the bagging approach for a classifi-
cation problem, as described in Algorithm 2 (Raschka et al., 2022). T1...,Tn are bootstrap
samples used to predict ŷi’s form training different classifiers hi. The final prediction ŷ f is
the most popular class.

36.8 % of the observations are called out-of-bag data and used for validation purposes
(Breiman, 1996; Han et al., 2022; Liaw and Wiener, 2018). Each node has p random can-
didate variables, which are the

√
v for classification and v/3 for regression, where v is the

total number of features in D dataset (Breiman, 2001). The optimal number of candidate
variables achieves a trade-off between the correlation between the trees and the strength
of the individual trees; increasing the candidate variables number leads to an increase in
the strength of each tree, but a higher correlation between the trees and hence increases
the generalization error (Breiman, 2001). Each tree is stopped growing if each terminal
node consists of 1 point in classification or 5 points in regression based on the R package
’randomForest’ (Liaw and Wiener, 2018).

2.7.1.1 Variable Importance

In general, machine learning methods are black-box methods that are hard to interpret
(Rudin, 2019). In machine learning methods, variable importance refers to the relative
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Algorithm 3 L. Breiman’s Random Forest

1: procedure RANDOM FOREST OF m = (1, ......,M) TREES (state)
2: for m = 1 to M do
3: Draw a bootstrap sample Dn from the training dataset D.
4: Build a full tree using the CART model described in section 2.6, but each node

has p random candidate variables to be used.
5: Stop growing the tree if each terminal node consists of 1 point in classification

or 5 points in regression.
6: return the best prediction of each input x: the most popular class in classification

and the average of the outputs in regression.

importance of each variable in predicting a target variable. These measurements are vital
because they help provide model improvement insight so we can better understand the
model process (Lundberg and Lee, 2017). Each predictor in a random forest has a score of
how important that variable in the forest is computed by using mean decrease in accuracy.
The most important variable is the variable with the highest score, and the other variables
are ranked accordingly. The importance score of each variable is based on an out-of-bag
dataset. The out-of-bag dataset is the unused data in each tree (about 36.8%); about 63.2%
of the data were used for training in each tree. To calculate the importance score for
variable j (Han et al., 2016):
1: For out-of-bag data in each tree, compute the error rate for classification and mean
squared error (MSE) for regression.
2: Randomly permute the jth variable and calculate the error rate or MSE after permuting
the variable.
3: Find the difference between the error rate and MSE from step 1 and the error rate and
MSE from step 2 for each tree.
4: Average the difference from step 3 over all trees.
5: Normalize using the standard deviation of the difference from step 3.



CHAPTER 2. STATISTICAL BACKGROUND AND RELATED LITERATURE 33

2.7.2 Extreme Gradient Boosting (XGBoost)

In general, boosting is a machine learning method that is based on the principle that finding
multiple moderate accurate rules is not as difficult as coming up with one highly accurate
prediction rule (Schapire, 2003). The main goal of the boosting method is to improve
the accuracy of any method or algorithm (Schapire, 2003). Boosting combines ensem-
ble members (classifiers) to generate predictions that are better than any single ensemble
member’s predictions (Bishop, 2006). The boosting variant used in this work is extreme
gradient boosting (XGBoost), proposed by Chen and Guestrin, 2016. XGBoost is another
ensemble approach that was used to make predictions from regression and classification
models using multiple trees, which shines in many files. XGBoost has recently come to
dominate the machine learning field and has won many competitions in Kaggle (Poongodi
et al., 2022). This considerable attention resulted from XGBoost’s speed and the ability to
perform well in an unseen dataset (Poongodi et al., 2022; Barnwal et al., 2022). XGBoost
is an ensemble dependence model that focuses on difficult cases in the training set, which
are hard to predict. It is a fast implementation of the gradient tree boosting approach (Chen
et al., 2015), where each iteration aims to minimize the loss function and learn from the
previous tree by computing the first partial derivatives of the loss function, whereas XG-
Boost uses the second partial derivatives of the loss function. The loss function for the
classification problem is different from the loss function for the regression problem. The
objective of XGBoost is to minimize the following function at iteration t:

L(s j)
(t) =

k

∑
j=1

∑
i∈I j

[l(yi, ŷi
(t−1))+gis j +

1
2

his2
j +

1
2

λ s2
j ] (2.36)

where s j is the weight that one wants to optimize of the jth node, k is the total number
of leaf nodes in the tree and I j is a set of instances belongs to the jth node. The regular-
ization parameter λ helps avoid the over-fitting of a tree by penalizing the leaf weights.
l(yi, ŷi

(t−1)) is the loss function of the previous prediction and equals 1
2(yi − ŷi

(t−1))2 for
regression and l(yi, ŷi

(t−1)) = −yilog(ŷi
(t−1))+ (1− yi)log(1− ŷi

(t−1)) for classification.
gi =

∂ l(yi,ŷi
(t−1))

∂ ŷi
(t−1) represents the first-order gradient statistics of the loss function and hi is the

second-order ∂ 2l(yi,ŷi
(t−1))

∂ [ŷi
(t−1)]2

resulting from using a second-order Taylor expansion to quickly
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optimize l(s j)
(t). By omitting l(yi, ŷi

(t−1)) from the optimization because it does not con-
tain s j, taking the derivative of Eq. (2.36) with respect s j and setting it to 0 in order to
minimize l(s j)

(t) (see Chen and Guestrin, 2016 for more details), we get:

s∗j =
−∑i∈I j gi

∑i∈I j hi +λ
(2.37)

Since the loss function for regression is different from the classification problem, s∗j
for regression is:

s∗j =
∑i∈I j(yi − ŷi

(t−1))

∑i∈I j 1+λ
(2.38)

s∗j for classification is:

s∗j =
∑i∈I j(yi − ŷi

(t−1))

∑i∈I j [ŷi
(t−1)(1− ŷi

(t−1))]+λ
(2.39)

The corresponding L(s∗j)
(t) using Eq. (2.37) is:

L(s∗j)
(t) = −1

2

k

∑
j=1

(∑i∈I j gi)
2

∑i∈I j hi +λ
(2.40)

The first step to build the first tree is choosing an initial prediction ŷ(0)i (usually ŷ(0)i =
∑

n
i=1 yi
n ). The root node is the residuals yi − ŷ(0)i , and to choose the best split of this node,

the gain is calculated as follows:

Gain = L(s∗j(le f t))
(t)+L(s∗j(right))

(t)−L(s∗j(root))
(t)

where L(s∗j(le f t))
(t) and L(s∗j(right))

(t) are the corresponding L(s∗j)
(t) in Eq. (2.40) for the

left and right nodes of the jth node and L(s∗j(root))
(t) is the corresponding L(s∗j)

(t) for the
root. The branch that has the maximum gain score is chosen. The first tree is completed
by choosing the split that has the maximum gain at each node. The prediction from the
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first tree is:
ŷi
(1) = ŷi

(0)+η × residual(1)
(i)

where η is learning rate (= 0.3 by default) and residual(1)
(i) are the residuals from the first

tree. The second tree is built based on the residuals from the first tree, and the tree is built
using the gain score as in the first tree; continually build trees so that each tree predicts
smaller residuals than the previous tree. The final prediction is:

ŷi
(t) = ŷi

(0)+η × residual(1)
(i) +η × residual(2)

(i) + ......+η × residual(t)
(i)

The ensemble size, which is the number of iterations t in XGBoost, matters much
more for boosting than for the RF model. In XGBoost, large ensemble sizes can cause
over-fitting because the gradient technique focuses on the most difficult cases, which can
be noise cases and cause over-fitting. To avoid over-fitting in XGBoost, the validation set
scheme is used to optimize the number of training iterations.

2.7.2.1 SHAP Feature Importance

The feature importance is computed in XGBoost using SHapley Additive exPlanations
(SHAP) introduced by Lundberg and Lee, 2017. It is a model-agnostic local explanation
technique that aims to explain each prediction of the model. Each feature value in the
dataset has a SHAP value once a model is trained, and that value shows how much this
feature value contributed to the difference between the prediction and the average predic-
tion across all observations (Molnar, 2020). The sum of the SHAP values of feature values
in a dataset row is the difference between the prediction of the row of features and the
average of the predictions across the data, as follows:

ŷi = E(y)+
J

∑
j=1

SHAP(i)
j (2.41)

where E(y) is the predictions average, J is the total number of features in the ith row of the
dataset and SHAP(i)

j is the SHAP value of the jth variable in row i of the dataset computed



CHAPTER 2. STATISTICAL BACKGROUND AND RELATED LITERATURE 36

as follows:

SHAP(i)
j = ∑

R⊆A\{ j}

| R |!(| A | − | R | −1)!
| A |

[ fR∪{ j}(x
(i)
R∪{ j})− fR(x

(i)
R )] (2.42)

where A is the set that contains all the features in x(i): the observations in the ith row of the
dataset. R is all feature subsets of A, while | A | and | R | are the total number of features
in the full set A and the subset R, respectively. fR∪{ j}(x

(i)
R∪{ j}) is the model’s output with

the feature j included in the model, and fR(x
(i)
R ) is the output without feature j included.

Excluding a feature in a row from the model is accomplished by putting a random value
from the train dataset instead of the actual value, in the row. Eq. (2.42) demonstrates the
SHAP value for each feature value in the dataset after training a model. The SHAP feature
importance Pj for feature j can be obtained using:

Pj =
1
N

N

∑
i=1

| SHAP(i)
j | (2.43)

where Pj is the average of the absolute SHAP values per feature j across the data (Molnar,
2020). This SHAP variable importance measure is an alternative measure to the mean
decrease in accuracy used in the RF approach. The difference between the two measures is
that the mean decrease in accuracy is computed based on decreases in model performance
while the SHAP variable importance measure is computed using feature contributions of
the output (Molnar, 2020).

2.8 Model Comparison

In a statistical model, selecting an adequate number of parameters that will fit data well
is an issue that statisticians have always faced (Schwarz, 1978). There are some criteria
for checking, evaluating and identifying different statistical models applied to the same
observed dataset. A good model selection criterion attempts to achieve the trade-off be-
tween a model’s goodness of fit and complexity (Myung and Pitt, 2004). Increasing the
number of parameters, which is the case of maximizing likelihood function L, leads to
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over-fitting. Adding a penalty term that controls the model complexity is necessary and
was the primary motivation for model selection criteria. Akaike Information Criterion
(AIC), Deviance information criterion (DIC), Watanabe-Akaike or widely available in-
formation criterion (WAIC), and Bayesian Information Criterion (BIC) are examples of
model selection criteria that penalize the goodness of fit of a model (Gelman et al., 1995).
In the present thesis, I use AIC and BIC because they are computationally affordable. DIC
and WAIC are used for Bayesian model selection, where the posterior distributions of the
models have been obtained by Markov chain Monte Carlo (MCMC) simulation which is
computationally expensive.

2.8.1 Akaike Information Criterion (AIC)

AIC (Akaike, 1974) is a model selection criterion used to compare different models and
determine the best fit for the data. AIC penalizes the maximum likelihood using the num-
ber of independent variables used to build the model, as follows:

AIC =−2log(L(θ̂))+2 p (2.44)

where L(θ̂) is the maximized value of the likelihood function represents the goodness of
fit term, and p is the number of parameters used to build the model, which captures the
complexity of the model. The model with the minimum AIC value would be preferred
when comparing two or more models.

2.8.2 Bayesian Information Criterion (BIC)

BIC (Schwarz, 1978) is another common model selection criterion. BIC is derived using
the log marginal likelihood, where the marginal likelihood is defined as follows:

p(x) =
∫

p(x|θ) p(θ) dθ (2.45)

where p(θ) is the prior for the random variable θ and p(x) is the posterior density. The
Gaussian approximation to the second-order around θ∗ by Taylor expansion is used to
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approximate the log marginal likelihood (Murphy, 2012), as follows:

log(p(x))≈ log(p(x|θ∗))+ log(p(θ∗))− 1
2

log(|H|) (2.46)

where H is the Hessian matrix of second derivatives of the log posterior given as H =

∇2ln(p(x|θ∗)) and log|H|= log|nĤ|= log(np|Ĥ|) = p log(n)+ log|Ĥ| for a fixed matrix
Ĥ. Assuming that H is a full rank matrix, having uniform prior (ln(p(θ) ∝ 1), dropping
log|Ĥ| because it is independent of n and using MLE to estimate θ, we get:

log(p(x))≈ log(p(x|θ̂))− p
2

log(n) (2.47)

where p is the number of parameters and n is the number of observations in the dataset.
Maximizing the function log(p(x)) is equivalent to minimizing BIC, as follows:

BIC =−2log(L(θ̂))+ p log(n) (2.48)

The size of the data is included in the penalty term of BIC. The model with the mini-
mum BIC value would be preferred when comparing two or more models. AIC and BIC
are conceptually different, and they are both asymptotic measures. AIC is used for predic-
tive model selection, and BIC is used as an explanatory model selection (Shmueli, 2010;
Sober, 2002). BIC prefers simpler models than AIC because the penalty term of BIC is
larger than the penalty term of AIC, especially for large datasets. Therefore, in the case
of having different models chosen as best based on the values of BIC and AIC, I choose
the best model based on BIC because I want to have a less complex model and a more
parsimonious model.

2.8.3 Effective Number of Parameters

AIC and BIC depend on the number of parameters p, where the simplest approach is to
take the actual number of parameters to calculate AIC and BIC. The actual number of
parameters for a model is the total number of parameters p in the model. The linear model
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is defined as follows:

y = Xβ (2.49)

where y is the response variable and X is the inputs matrix of size n× p defined as follows:

X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

... . . . ...
1 xn1 xn2 · · · xnp


where n in this thesis denotes the number of units or geographical patches and p is the
number of habitat variables. β is the vector of the model’s coefficients. The method
of ordinary least squares estimation to estimate β is minimizing the following quadratic
prediction error:

(y − Xβ)T (y − Xβ) (2.50)

β̂ has the following closed-form solution (Goldberger et al., 1964):

β̂ = (XT X)−1XT y (2.51)

The effective number of parameters (pe) is tr(S), where S is a smoothing matrix, that
can be written by analogy with linear models as follows:

S = X(XT X)−1XT (2.52)

The smoothing matrix S is obtained by, formally, writing the vector of estimates ŷ as:

ŷ = Xβ̂ (2.53)
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Then,

ŷ = X(XT X)−1XT y

ŷ = Sy (2.54)

Without the regularization approach, the effective number of parameters (pe) reduces
to the actual number of parameters p, as follows:

pe = tr(S)

= tr[X(XT X)−1XT ]

= tr[XT X(XT X)−1]

= tr[I] = dim(β) = p (2.55)

However, if the matrix (XT X)−1 in Eq. (2.51) is singular or to prevent over-fitting, the
regularized approach can be used. Ridge regression is a particular form of regularization,
where the quadratic prediction error in Eq. (2.50) becomes:

(y − Xβ)T (y − Xβ)+λβTβ (2.56)

where λ is a regularization parameter. The corresponding solution for β̂ is given by (Mur-
phy, 2012):

β̂ridge = (XT X+λ I)−1XT y (2.57)

Thus, the smoothing matrix for ridge regression can be written as:

Sridge = X(XT X+λ I)−1XT (2.58)

The effective number of parameters for ridge regression is calculated as:



CHAPTER 2. STATISTICAL BACKGROUND AND RELATED LITERATURE 41

pe = tr[Sridge] = tr[X(XT X+λ I)−1XT ]

= tr[Hλ ]

=
p

∑
j=1

d2
j

d2
j +λ

(2.59)

where d j are the singular values of X; the square roots of the eigenvalues of XT X (the
details of calculating the singular values can be found in Stewart, 1993). If λ is zero (i.e,
without using the regularization approach), pe = ∑

p
j=1 1 = p, which is the same result

obtained using Eq. (2.55). The concept of the effective number of parameters is illustrated
in Fig. 2.4

Increasing λ reduces the effective number of parameters in the model. I have explained
the concept to the effective number of parameters for linear models. To obtain the effective
number of parameters for a generalized linear model, a linearization via a first-order Taylor
series expansion of the model output around the mode is carried out, where the mode is the
parameter vector at the optimum of the regulazised objective function in Eq. (2.56). The
matrix X in the previous equations is now replaced by the Jacobian matrix, i.e., the matrix
of partial derivatives of the function outputs with respect to the model parameters. For
more details and the exact mathematical expressions I refer the reader to the literature, e.g.,
Chapter 10 in Bishop (1995) (especially Eqs. (10.30), (10.31), (10.39), (10.68), (10.70))
or (MacKay, 1992). The effective number of parameters will be needed for the model
selection discussed in Section 5.2.2.

Fig. 2.4 in my thesis is inspired by Fig. 10.12 in Bishop (1995), which approaches the
topic of the efficient number of parameters from a Bayesian perspective. The two figures
can be related as follows.

Take a zero mean multivariate normal distribution with isotropic covariance matrix
(which is commonly done) as the prior distribution in parameter space. The log of this
prior distribution is equal to the penalty term in Eq. (2.56), second term, except for an un-
informative additive constant. See Eq. (10.9) in Bishop (1995), apply a log transformation
and allow for the difference in notation.
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Parameter 1

Parameter 2

Figure 2.4: Illustration of the effective number of parameters. The figure shows contour
lines of the unregularized objective function in Eq. (2.50) (in blue) and the L2 (ridge
regression) regularization term in Eq. (2.56), second term, (in red) for a hypothetical model
with two parameters. Without regularization, the optimum of the objective function is
given by the black dot, and the effective number of parameters is equal to the total number
of parameters. With regularization, the optimum of the regularized objective function is
given by the black asterisk. The eigenvalues d2

1 and d2
2 (see Eq. (2.59)) for parameters 1

and 2 are inversely proportional to the curvature of the unregularized objective function,
indicated by the blue contour lines; the regularization parameter λ is inversely proportional
to the radius of the red contour lines. In the direction of parameter 1, the eigenvalue d2

1
is small compared with λ and so the quantity d2

1/(d
2
1 +λ ) is close to zero. This implies

that the first parameter does not make a significant contribution to the effective number of
parameters and is effectively ignored. In the direction of parameter 2, the eigenvalue d2

2 is
large compared with λ and so the quantity d2

2/(d
2
2 +λ ) is close to 1. This implies that the

second parameter makes a significant contribution to the effective number of parameters.
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For iid Gaussian additive noise (which is also commonly assumed), the log likelihood
is equal to the standard residual sum of squares objective function - Eq. (2.50) - except
for an uninformative additive constant. See Eq. (10.15) in Bishop (1995), apply a log
transformation, allow for the difference in notation as well as the difference between vector
notation (Eq. (2.50)) and scalar notation (Bishop (1995)’s Eq. (10.15)).

2.9 Median, and Median-Absolute-Deviation

To measure the out-of-sample performance (and hence, the transferrability) of different
models, the out-of-sample R2 was used, derived by splitting the dataset in two parts, for
training and testing. The metric is defined as

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 , (2.60)

where yi are the observations in the test set and ȳ is the mean of the observations in the test
set, ŷi are the predictions. The k-fold cross-validation scheme was used to calculate the
R2; then the median of the out-of-sample R2 scores obtained from each fold was calculated
because it is more robust than the mean (Leys et al., 2013). I used k-fold cross-validation,
where each fold is a block or sample instance. The block cross-validation approach is
used to address the spatial autocorrelation of dataset structures because ignoring structure
dependence in data increases the susceptibility to overfitting. I have implemented the
block cross-validation approach to account for the autocorrelation of dataset structures and
to reduce the overfitting issues of the models that are used to predict in different sample
instances. For species abundance levels, R2

DEV,P is generally a better behaved statistic
based on deviance residuals for count data regression models (Cameron and Windmeijer,
1996). R2

DEV,P is defined as:

R2
DEV,P = 1− ∑

n
i=1{yilog(yi/ŷi)− (yi − ŷi)}

∑
n
i=1 yilog(yi/ȳ)

, (2.61)

In addition, the median-absolute deviation (MAD) of the out-of-sample R2 scores was
used to measure the variability of the R2 scores obtained from each fold. MAD is a more
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robust quantity than standard deviation, being less sensitive to outliers. In this study, MAD
was thus defined as

MAD = median(| R2 − R̃2 |)× c

where R̃2 is the median of the out-of-sample R2 scores and c = 1.4826, with the latter
acting as a factor that converts MAD to the standard deviation, based on an assumption
that the data has a Gaussian distribution (Leys et al., 2013).

Pseudo R2 score was used to measure the proportion of the total variability explained
by the model as follows:

R2 = 1− Residual Deviance
Null Deviance

= 1− 2l(θc,z,y)−2l(θ,z,y)
2l(θc,z,y)−2l(θ0,z,y)

, (2.62)

where Residual Deviance is the difference between the log-likelihood for the full model
l(θc,z,y) and the proposed model l(θ,z,y) whereas Null Deviance is the difference be-
tween the log-likelihood for the full model and the null model l(θ0,z,y). The null model
consists of the intercept only and the full model is where the number of parameters is equal
to the number of data points (Smith and McKenna, 2013).



Chapter 3

Methodological Innovation

3.1 Introduction

To address the limitations of the original GFR model proposed in Matthiopoulos et al.
(2011), I have adapted three state-of-the-art flexible regression paradigms to model the
habitat selection coefficients. The first approach is based on a radial basis function (RBF)
expansion, as reviewed in Section 2.4, and I refer to this model as the RBF-GFR model in
Section 3.2. Section 3.2.2 gives a brief outline of some methods I have applied to select the
RBF-GFR model parameters. I provide details of how regularization reduces over-fitting
in Section 3.3. Next, I combine classification and regression trees (CART), which have
been reviewed in Section 2.6, with both the original GFR model and RBF-GFR model. I
refer to these models as GFR-CART and RBF-GFR-CART, respectively, in Section 3.4. I
finally create model ensembles based on random forests (RFs) trained with bagging (see
Section 2.7.1) or boosting (see Section 2.7.2). I refer to these ensembles with the suffix
’RF’ or ’XGBoost’ in Sections 3.5 and 3.6, respectively. Table (3.1) and Fig. 3.5 in
Section 3.7 provide outlines of the relationship between all the models proposed in the
present study.

45
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3.2 A Radial Basis Function (RBF-GFR) Model

Although the GFR model has been shown to achieve better generalization performance
than the conventional GLM model of Eq. (2.1), it suffers from various limitations. The
degree of nonlinear complexity and smoothness is restricted in advance: the functions in
Eq. (2.6) are only M j times differentiable, where the M′

js are the highest polynomial orders.
A complex function with a high degree of differentiability thus requires a large number of
parameters, which renders the approach susceptible to over-fitting. Restricting the max-
imum polynomial order commensurately with the training set size leads to the paradox
situation that the functional complexity of the habitat preference coefficients, which is an
inherent property of the species and the habitat under investigation, becomes contingent
on the arbitrariness of the data acquisition process. Moreover, while the degree of smooth-
ness and model complexity is allowed to vary with respect to the choice of environmental
variable, it is assumed to apply globally to the entire input domain. These shortcomings
are well-known in the statistics and machine learning communities, and various flexible
regression methods have been developed to address them (see e.g., Hastie et al., 2008).
To address these limitations, I use a basis function expansion to model habitat preference
γi(x) instead of the polynomial function that was used in the original GFR model:

γi(x) = ∑
j

M j

∑
m=0

δ
(m)
i, j φ(x j,θ j,m) = ∑

j
∑
m

δ
(m)
i, j φ(x j,θ j,m) (3.1)

where δ
(m)
i, j is the coefficient of γi(x) for the mth basis function of the jth variable and φ

is a basis function (e.g., splines, wavelets, basis functions of a reproducing kernel Hilbert
space, etc.) with parameters θ j,m, chosen to represent known functional characteristics,
and the sum over m going from 0 to M j. It can be shown that this is equivalent to a
Gaussian process (see e.g., Bishop, 2006, Section 6.4), with the form of the covariance
function determined by φ(.), by writing Eq. (3.1) in matrix form:

γ = Φδ (3.2)
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where Φ is a design matrix composed of the basis functions φ(x j,θ j,m), and placing a
multivariate normal distribution as a prior on δ, δ ∼ N(δ|0,C). This implies that γ is a
zero-mean Gaussian process with covariance matrix ΦCΦT.

I choose a radial basis function (RBF) for γi(x) because it is computationally easier to
get a closed-form integral of the Gaussian distribution (see Bishop, 1995):

γi(x) = ∑
j
∑
m

δ
(m)
i, j exp

(
−1

2
(x j −ξ j,m)

2

σ2
j,m

)
(3.3)

where ξ j,m is the center of the mth basis function for the jth covariate and σ j,m is its
bandwidth parameter.

I follow Matthiopoulos et al. (2015) and model the probability distribution fb(x) (i.e.,
the habitat availability characterising a sampling instance) with a Gaussian mixture model:

fb(x) =
K

∑
k=1

[wk]bN(x|[µk]b, [Ck]b) (3.4)

where K is the number of mixture components, [wk]b is the mixing weight of the kth com-
ponent and bth sample instance, µk defines its centre and Ck is the covariance matrix. I
assume that it is implied that f , w, µ, C are all specific to a sampling instance, and there-
fore that the subscript b is implied for all these quantities. Inserting Eq.(3.3) into Eq.(2.2)
and making use of Eq.(3.4) gives:

βi,b = γi,0 +
∫

γi(x) fb(x)dx

= γi,0 +∑
j
∑
m

∑
k

δ
(m)
i, j [wk]b

[∫
φ(x j,θ j,m)N(x|[µk]b, [Ck]b)dx

]
(3.5)

where

φ(x j,θ j,m) = exp

(
−1

2
(x j −ξ j,m)

2

σ2
j,m

)
(3.6)

The coefficient βi,b has closed-form solution:
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βi,b = γi,0 +∑
j
∑
m

∑
k

δ
(m)
i, j [wk]bψ(θ j,m, [µk]b, [Ck]b) (3.7)

where
ψ(θ j,m, [µk]b, [Ck]b) =

∫
φ(x j,θ j,m)N(x|[µk]b, [Ck]b)dx (3.8)

The idea of the following derivation steps is to simplify Eq. (3.8) by getting a closed-
form integral of the Gaussian distribution to take it out of the calculation as follows:

=
∫

exp

(
−1

2
(x j −ξ j,m)

2

σ2
j,m

)
× 1√

2π[σ j, j]b
· exp

(
−1

2
(x j − [µ j,k]b)

2

[σ2
j, j]b

)
dx

=
∫ 1√

2π[σ j, j]b
· exp

−1
2

(
(x j −ξ j,m)

2 · [σ2
j, j]b +(x j − [µ j,k]b)

2 ·σ2
j,m

[σ2
j, j]b ·σ2

j,m

)dx

By multiplying the exponential part by
[σ2

j, j]b+σ2
j,m

[σ2
j, j]b+σ2

j,m
, I get:

=
∫ 1√

2π[σ j, j]b
· exp

−1
2

(x j −ξ j,m)
2 · [σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+(x j − [µ j,k]b)

2 · σ2
j,m

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m


dx

By multiplying the denominator by
√

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b+σ2

j,m
, I get:

=
∫ 1√

2π[σ2
j, j]b ·

σ2
j, j+σ2

j,m

[σ2
j, j]b+σ2

j,m

·exp

−1
2

(x j −ξ j,m)
2 · [σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+(x j − [µ j,k]b)

2 · σ2
j,m

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m


dx
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=
∫ 1√

2π · [ [σ
2
j, j]b·[σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m
]

·exp

−1
2

(x j −ξ j,m)
2 · [σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+(x j − [µ j,k]b)

2 · σ2
j,m

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m


dx

=
∫ 1√

2π · [σ2
j, j]b

[σ2
j, j]b+σ2

j,m
· [[σ2

j, j]b +σ2
j,m]

·

exp

−1
2

(x j −ξ j,m)
2 · [σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+(x j − [µ j,k]b)

2 · σ2
j,m

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m


dx

(3.9)

By moving the part
√

[σ2
j, j]b +σ2

j,m from the denominator to the exponential part, I
get:

=
∫ 1√

2π · [σ2
j, j]b

[σ2
j, j]b+σ2

j,m

·ζ dx (3.10)

where ζ is:

ζ = exp


ln

1√
[σ2

j, j]b +σ2
j,m

− 1
2

(x j −ξ j,m)
2 · [σ2

j, j]b

[σ2
j, j]b+σ2

j,m
+(x j − [µ j,k]b)

2 · σ2
j,m

[σ2
j, j]b+σ2

j,m

[σ2
j, j]b·σ2

j,m

[σ2
j, j]b+σ2

j,m




(3.11)
After some algebra (the details of the following derivation are in Appendix A.1), I

obtain the following for ζ :
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ζ = exp

−1
2

(x j −A)2 +C
[σ2

j, j]b·σ2
j,m

[σ2
j, j]b+σ2

j,m


 (3.12)

where A =

(
ξ j,m[σ

2
j, j]b+σ2

j,m[µ j,k]b

σ2
j,m+[σ2

j, j]b

)
, and

C =
[σ2

j, j]bσ2
j,m(

[σ2
j, j]b +σ2

j,m

)2 ·
(
[µ j,k]b −ξ j,m

)2
+

[σ2
j, j]bσ2

j,m(
[σ2

j, j]b +σ2
j,m

) ·
(

ln
(
[σ2

j, j]b +σ
2
j,m

))

By using Eq. (3.12), ψ(θ j,m, [µk]b, [Ck]b) is as follows:

ψ(θ j,m, [µk]b, [Ck]b) =
∫ 1√

2π · [σ2
j, j]b

[σ2
j, j]b+σ2

j,m

·exp

−1
2

 (x j −A)2

[σ2
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(3.13)
By multiplying the first fraction of Eq. (3.13) by σ j,m
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, I get:
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(3.14)
The integral part of Eq. (3.14) is the integral of a Gaussian distribution, which is equal
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to 1 with mean A and variance
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Finally,

ψ(θ j,m, [µk]b, [Ck]b) =
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 (3.15)

Inserting Eq. (3.15) into Eq. (3.7) leads to the following expression for the habitat
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selection coefficients of the SDM:

βi,b = γi,0 +∑
j
∑
m

δ
(m)
i, j [I j,m]b (3.16)

A comparison with Eq. (2.6) shows that the new RBF-GFR model replaces E
[
xm

j

]
b

from the original GFR model in (Matthiopoulos et al., 2011) by [I j,m]b:

[I j,m]b = ∑
k
[wk]b

σ j,m√(
[σ2

j, j]b +σ2
j,m

) · exp

−1
2

([µ j,k]b −ξ j,m
)2

[σ2
j, j]b +σ2

j,m


 (3.17)

Defining z slightly differently from before, namely composed of all elements in {xi}
and {[I j,m]b}, and inserting Eq.(3.16) into Eq. (2.1), I get the following model of habitat
preference:

h(z;θ) = exp

 γ0,0 +
I

∑
j=1

M j

∑
m=0

δ
(m)
0, j [I j,m]b +

I

∑
i=1

γi,0 +
I

∑
j=1

M j

∑
m=0

δ
(m)
i, j [I j,m]b

xi

 (3.18)

The vector z, which characterizes the habitat, is usually given a separate subscript, zn,
where n denotes a particular plot or geographical patch where species counts are taken.

3.2.1 Testing the Derivation with Monte Carlo Approximation

Monte Carlo approximation is a technique that uses random numbers to approximate the
distribution of a function (Murphy, 2012). The Monte Carlo approximation is used to
approximate the expected value of any function by repeating random sampling, which is
called Monte Carlo integration (Murphy, 2012). The expression in Eq. (3.15) is the result
of solving the integral of Eq. (3.8) analytically. The Monte Carlo approach is used to check
if the derivation of the integral of Eq. (3.8) is correct. If the numerical approximation of
the integral of Eq. (3.8) using the Monte Carlo approach converges to the expression
in Eq. (3.15), the expression in Eq. (3.15) is correct. The numerical approximation of
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the integral is obtained by randomly selecting samples drawn from N(x|[µk]b, [Ck]b) and
taking the average of φ(x j,θ j,m) of these samples, as follows:

ψ̃N(θ j,m, [µk]b, [Ck]b) =
1
N

N

∑
n=1

φ(x(n)j ,θ j,m) (3.19)

where {x(n)j } is a sample of the jth element of N vectors drawn from N(x|[µk]b, [Ck]b).
Fig. 3.1 shows that ψ̃N(θ j,m, [µk]b, [Ck]b) converges to ψN(θ j,m, [µk]b, [Ck]b) in Eq. (3.15)
with an increasing number of samples N.

Figure 3.1: Monte Carlo approach to check the integral of Eq. (3.8). The curve is the
function ψ̃N(θ j,m, [µk]b, [Ck]b) in Eq. (3.19), which converges to ψN(θ j,m, [µk]b, [Ck]b) =
0.413 from Eq. (3.15) (the straight line) with an increasing number of samples N.
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3.2.2 RBF-GFR Model Parameters

For the RBF-GFR model, I need to decide on the number of Gaussian mixture components
(see Eq. (3.4)) and the number of RBF basis functions, as seen from Eq. (3.3). I repeated
the iterative optimization of the objective function from Eq. (3.18) for different choices
of the number of RBF basis functions and then picked the one that minimized model
selection scores (AIC, BIC). For the number of Gaussian mixture components, I repeated
the iterative optimization of the objective function from Eq. (3.4) for different choices,
picked the one that minimized model selection scores (AIC, BIC) for each block and then
used the average of the number of components of all blocks as the optimal number of
Gaussian mixture components. In some cases, the best number of Gaussian components
based on AIC or BIC is close to the number of observations in the dataset, and the number
of components is not allowed to be close or more than the data points. This is because each
component will contain one point and cause singularity issues. Thus, the best number of
components can be set to be less than half of the number of data points or by applying
other methods which depend on the distance between components, such as k-means and
silhouette methods. The parameters of the RBFs, ξ j,m and σ j,m in Eq. (3.3), need to be
determined in advance to find [I j,m]b in Eq. (3.17). A general discussion of how to set
the RBF parameters can be found in Chapter 5 of Bishop (2006). In my own work, the
following methods were applied to select these parameters and the best method was chosen
based on AIC or BIC.

3.2.2.1 Histogram Approximation

A histogram approximation was used to approximate the habitat variable and get the pa-
rameters of the basis functions. The first method is carried out by constructing a histogram
over the observations (cells) and then selecting the midpoints of the histogram bins to the
centres ξ j,m. Here, the σ j,m are determined as the differences between any two consecu-
tive midpoints because the differences are the same and the bins are equally spaced. The
number of bins is determined by Sturges’ formula, which is based on the range of the data



CHAPTER 3. METHODOLOGICAL INNOVATION 55

(Batz et al., 2018; Sturges, 1926), as follows:

B = 1+3.322× log(n) (3.20)

where B is the number of bins and n is the number of observations. Another way to deter-
mine the number of bins (basis functions) is by varying the number of bins and applying
the RBF-GFR model using different numbers of basis functions and then picking the one
that minimizes the BIC and AIC scores.

3.2.2.2 Quantile Approach

I set the centres of the basis functions ξ j,m of the jth environmental covariate to be the
quantile of the jth environmental covariate. The bandwidth parameter σ j,m is the larger of
the differences between the m-quantile and (m− 1)-quantile and the difference between
the (m+ 1)-quantile and m-quantile. For example, if the number of basis functions is 3,
then the first quantile, median, and third quantile are the centres of the basis functions.
Specifically, σ j,2 is the larger of the difference between the first and second quantiles and
the difference between the second and third quantiles. I applied the quantile approach to
select the basis function parameters to ensure that most of the observations are included
in the basis functions. The larger of the differences between the m-quantile and (m− 1)-
quantile and the difference between the (m + 1)-quantile and m-quantile is selected as
the bandwidth parameter of the basis functions to include most of the data in the basis
functions. This process can be used for Gaussian and non-Gaussian datasets.

3.3 Calibration and Regularization

The original GFR and RBF-GFR models are types of GLMs, whose parameters can be
estimated via maximum likelihood (ML). In the GFR and RBF-GFR models, the ML ap-
proach aims to maximize the likelihood function L(θ,z,y) where θ is a parameter vector
composed of the parameters γi,0 and δ

(m)
i, j in Eq. (2.6) for the GFR model and Eq. (3.18)

for the RBF-GFR model. Note that z is a vector combining habitat variables xi and either
their expectation values, E[Xm

i ], or the derived quantities Ii,m defined in Eq. (3.17). The
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variables zi are readily available from the observed data. On fitting a Gaussian mixture
model to the explanatory data, I obtain the quantities Ii,m from Eq. (3.17). The vector
y = (y1, ...,yN) contains species observations, where N denotes the number of patches
where species counts are taken. Depending on the study, the elements of this vector, yn, can
be binary use/availability indicators or count data. The equivalence between grid count,
use-availability and point-process data has been demonstrated in the literature, on the basis
of their corresponding likelihood functions (Aarts et al., 2012; Renner and Warton, 2013;
Warton and Aarts, 2013; Warton and Shepherd, 2010). Although some of the datasets I
used in this study took the form of binary (0/1) values, they were nevertheless equivalent
to abundance models. A binary dataset is equivalent to this abundance model because it
results in similar estimates of habitat preference to those obtained using models fitted to
count data in discrete space (Aarts et al., 2012). My analyses stayed firmly in the area of
abundance rather than occupancy models. Occupancy models (the recording of the pres-
ence of a species, regardless of its abundance) also result in binary data, but involve loss of
information on abundance and although they are a widely used type of analysis (MacKen-
zie et al., 2017), they pose additional analytical challenges that were outside the remit of
this thesis.

Parameter estimation with ML can be susceptible to over-fitting, especially for sparse
and noisy data. This can be addressed with regularization, where a penalty term that
quantifies model complexity is added to the log likelihood; see e.g., Section 3.2 in (Bishop,
2006). A particular form of regularization is ridge regression, where the size of the model’s
coefficients is penalized by maximizing a combined function that includes the weighted
L2 norm of the parameter vector θ:

l(θ,z,y)−λ∥θ∥2 (3.21)

The weighting factor λ is a regularization parameter (see, e.g., Platt et al., 1999) that
needs to be optimized. In the present work, I repeated the iterative optimization of the
objective function in Eq. (3.21) for 100 discrete candidate values of λ chosen from an
equidistant grid (Hastie et al., 2016) and then selected the value that minimizes the model
selection scores: AIC and BIC. AIC may possibly disagree with BIC because the two
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criteria apply different penalties based on the number of estimated parameters. However,
they often agree. AIC always has a chance of choosing too large a model, regardless of
the number of observations in the dataset. BIC might disagree with AIC if the number of
observations is sufficiently large. If the AIC and BIC scores are in disagreement, I chose
λ based on BIC because I want to have a less complex model and a more parsimonious
model. For ridge regression, AIC and BIC computed using the actual number of param-
eters p will only be based on the log likelihood because changing lambda does affect the
number of parameters when using L2 regularization. Thus, I used the effective number
of parameters calculated in Eq. (2.59) rather than the actual number of parameters when
computing AIC and BIC for ridge regression, as described in Section 2.8.3.

3.4 The GFR-CART & RBF-GFR-CART Models

The original GFR and RBF-GFR models are in the generalized linear model (GLM) fam-
ily, which limits their modelling flexibility. One way to address this is to follow a divide-
and-conquer strategy by recursively partitioning the input space into subregions, each
modelled with a separate GLM. In what follows, I summarize how I have adapted them to
the modelling of habitat preference.

Let Φ(z,θk) denote one of the previous GLM-type models, Eq. (2.6) for the GFR
model and Eq. (3.18) for the RBF-GFR model, with parameter vector θk and input vector
z (recall that this is a vector combining habitat variables xi, expectation variables E(Xi) or
Ii,m, as well as the product terms). The output of the tree is given by:

f (z) =
K

∑
k=1

I(z ∈ Rk)Φ(z,θk)

where I() is the indicator function, which is 1 if the argument is true and 0 otherwise, Rk

is the region defined by the kth leaf node, and K is the number of leaf nodes in the tree.
For the example in Figure 2.1, K = 5. The output of function Φ(z,θk) depends on the ap-
plication. For binary species presence/absence data, Φ(z,θk) ∈ {0,1}, and we speak of a
classification tree. For continuous species abundance data, Φ(z,θk) ∈ R+, and we have a
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regression tree. The method is usually referred to as CART, described in Section 2.6. Find-
ing the optimal partitioning of the data is an NP-hard problem, and it is therefore common
to use a greedy iterative procedure, where in each iteration a new split node is introduced
so as to optimize a local optimality criterion. This criterion is different for classification
and regression trees. The classification cost is appropriate for species presence/absence
data where the response variable determines whether an individual occurs at a location or
not, while the regression cost is suitable for species abundance data where the response
variable is the number of individuals in a location. I start with the former, i.e., I consider
species presence/absence data first. The degree of uncertainty in the presence/absence
status can be quantified with the entropy:

H(p) = −p log(p)− (1− p) log(1− p)

where p = p(y = 1) is the observed probability of detecting the species. It can be shown
with standard calculus that H(p) is maximized for p = 0.5, i.e., for maximal uncertainty,
and minimized for p ∈ {0,1}, i.e., when there is no uncertainty, as seen in Section 2.6.
The best split is then defined as the split that minimizes the uncertainty, maximizing the
following difference:

H(y)− Nl

N
H(y|z j < t)− Nr

N
H(y|z j ≥ t) =−

1

∑
c=0

p(y = c) log p(y = c)

+
Nl

N

1

∑
c=0

p(y = c|z j < t) log p(y = c|z j < t)+
Nr

N

1

∑
c=0

p(y = c|z j ≥ t) log p(y = c|z j ≥ t)

(3.22)

where H(y) is the value of the entropy before the split, H(y|z j < t) is the entropy score
of the left branch after the split using the threshold t, H(y|z j ≥ t) is the right branch
entropy score after the split, Nl is the number of data points in the left branch and Nr is
the number of data points in the right branch, as illustrated in Fig. 3.2. The search is
over all habitat variables {z j} and all valid threshold values t. Note that p(y = c) is the
probability of detecting the species in Eq. (2.7) or the probability of absence in Eq. (2.8),
but the difference is that Eqs. (2.7) and (2.8) depend on the vector {z} of all explanatory
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Figure 3.2: Illustration of the entropy criteria in Eq. (3.22) to select the best split of a
node in CART. H(parent) refers to the initial value of entropy before the split, whereas
H(child1) and H(child2) are the left and right branch entropy scores, respectively.

variables and Eq. (3.22) depends on just one coordinate {z j} of the vector {z} above or
below the threshold t. Conditional on the best split, each region of the habitat space is
modelled with a separate GLM type model of one of the forms discussed above (GFR and
RBG-GFR), whose parameters are optimized based on the maximum likelihood estimator
(MLE), as described in Section 2.3. To prevent over-fitting, I can apply ten-fold cross-
validation and stop growing the tree when the average objective function on the validation
set starts to increase. In practice, it turns out to be better to grow a “full" tree, and then
to use cross-validation to perform pruning. The cross-validation of pruning of the full
tree works by allowing the model to grow to its full depth. Once the model grows to its
full depth, tree branches are removed to prevent the model from overfitting by splitting
the data into ten folds then training the model using nine folds and validating it using the
remaining fold and repeating the process for all folds. Finally, the average square error
is calculated for the full tree and all sub-trees and the tree that has the minimum average
square error is chosen. The 1-SE rule is used to choose the optimal tree depth, i.e., the
optimal number of nodes. The standard error is computed during the cross-validation, and
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then the tree whose cross-validation error is within one standard error of the minimum
error is chosen (Murphy, 2012; Breiman et al., 1984). Fig. 3.3 illustrates the process of
pruning a tree using the 1-SE rule (Murphy, 2012). In the case that there are multiple
trees within one standard error of the minimum cross-validation error, we will choose the
smallest one since that tree would predict as well as the others, but it would also have
fewer branches, which leads to a simpler explanatory model and further helps to avoid
over-fitting (Therneau et al., 1997).

Figure 3.3: Illustration of the cross-validation pruning process. The y-axis is the cross-
validation error vs the tree’s depth in the x-axis. A model with five terminal nodes gives
the least complex tree within 1SE of the minimal cross-validation error. Adapted from
Figure 16.5 in Murphy (2012).

For modelling species abundance, the split function chooses the best habitat variable,
and the best threshold value for this variable using the gain from before and after the split,
as follows:

cost(zn,yn,θ)−
[

Nl

N
cost(zni < t,yn,θl)+

Nr

N
cost(zni ≥ t,yn,θr)

]
(3.23)
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where t is a threshold parameter, i a habitat variable index, zn are the augmented input
vectors (combining habitat variables, their expectations, and cross products between both)
and θl , θr are two separate model parameter vectors for the two separate input space
regions (Murphy, 2012; Therneau et al., 1997 ). The cost function is the Poisson deviance
defined as follows:

cost(zn,yn,θ) = 2
N

∑
n=1

[yn log(
yn

h(zn, θ̂)
)− (yn −h(zn, θ̂))] (3.24)

where h(zn, θ̂) is obtained from Eq. (2.6) for the original GFR model or Eq. (3.18) for the
RBF-GFR model using the maximum likelihood algorithm to optimize θ using Eq. (2.12).

3.5 The GFR-RF & RBF-GFR-RF Models

We can combine classification and regression trees into a random forest. This is based
on the insight that the expected out-of-sample prediction error can be decomposed into a
bias and a variance component, that for a flexible model, like CART, the main contribution
to this error comes from the variance term, and that this variance term can be reduced in
a model ensemble, provided the models are sufficiently uncorrelated (see Section 2.7.1).
In general, a model ensemble combines multiple individual models to build a predictive
model.

To reduce the correlation between the individual members of the model ensemble, I
follow the “bootstrapping and aggregating" procedure proposed by Breiman 2001, also
called “bagging", whereby CART models are repeatedly trained on different independent
bootstrap replicates, and then aggregated in a model ensemble, via voting (for classifica-
tion) or averaging (for regression). To further decrease the correlation between the indi-
vidual CART models, the split rules at the inner nodes of the trees are limited to randomly
selected subsets of the features as candidate sets. For further details, see Section 2.7.1.
In the present thesis, I propose a new variant of random forests, where each leaf node of
the trees in the ensemble is a GFR or GFR-RBF model. Since the number of trees had
to be selected, a baseline of 500 trees was set. This parameter is not particularly critical,
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provided the number of trees is sufficiently large, and a value of 500 is widely used as a
default (see e.g., Kassambara, 2018, Chapter 33). The OOB error variations become very
small once the number of trees is sufficiently large. The greater the number of trees in a
Random Forest Algorithm, the higher its accuracy. In practice, 500 trees is often a good
choice. The disadvantages of having a large number of trees relate more to computational
efficiency than to predictive performance. More trees may be needed if the data contain a
multitude of features. The random forest is built using Algorithm 3 in Section 2.7.1, where
each leaf in each tree was a separate original GFR model or RBF-GFR model; I refer to
these models as the GFR-RF and RBF-GFR-RF models.

3.6 The GFR-XGBoost and RBF-GFR-XGBoost Models

An alternative to bagging is boosting, where the models in the ensemble are trained se-
quentially using a weighted form of the data, in which the weights depend on the previous
model such that misclassified or poorly predicted instances receive greater weights (for
further details, see Section 2.7.2). In the present thesis, the GFR and RBF-GFR models
were used at each iteration of the XGBoost model.

While the ensemble size for bagging is not particularly critical, provided it is suffi-
ciently large (500 is a widely used default value), it does matter for boosting. In XGBoost,
large ensemble sizes can cause over-fitting because the gradient technique focuses on the
most difficult cases, which can be due to noise. To avoid the over-fitting issue in XG-
Boost, I used a nested k-fold cross-validation scheme. I split each dataset into 3 subsets:
the tuning set (k-2 folds), validation set (1 fold), and test set (1 fold). For each choice of
the number of iterations {2, 5, 10, 15, 20, 40, 80, 100, 200, 300, 400, 500} and each fold,
I trained the model on the tuning set and monitored the performance on the validation set
by calculating the out-of-sample prediction accuracy and taking the median of k-1 folds.
This gave me k medians for each number of iterations as explained in Algorithm 4 and
shown in Fig. 3.4.
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Figure 3.4: For each fold, the training set was split into a tuning set (blue boxes) and a
validation set (yellow boxes), with the XGBoost model applied for each number of itera-
tions {2, 5, 10, 15, 20, 40, 80, 100, 200, 300, 400, 500} and each fold, as shown in the top
panel. The results after applying Algorithm 4 are given in the bottom panel.
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Algorithm 4 Optimize the iteration number
1: procedure SPLIT THE DATASET INTO K FOLDS(state)
2: for each k-1 folds do
3: for each of number of iterations do
4: Split the dataset to k-2 folds (tuning set), and 1 fold (validation dataset)
5: Train the model using the tuning set and the number of iterations.
6: Predict using the 1 fold validation set.
7: Calculate the out-of-sample R2.
8: Calculate the median of k-1 out-of-sample R2’s for each number of iterations

to pick the best number of iterations.
9: return a matrix of medians for each fold (k folds) in rows and each number of

iterations in columns.

3.7 Models Overview

The overview in Table (3.1) and Fig. 3.5 summarizes and outlines the relationship between
all models proposed in the current study. The time to fit the random forest and XGBoost
model depends on the dataset. These two model takes minutes to fit in the first simulated
dataset but hours to fit in the second simulated dataset. The rest of the models take less
than an hour to fit in all datasets.
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Figure 3.5: A diagram showing the relationship between all models proposed in this study.
The orange boxes refer to the GFR model and the extensions of the GFR model while the
pink boxes are the RBF-GFR model and its extensions. The gray boxes are the methods
that were used to combine to the GFR and RBF-GFR models.
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Table 3.1: Description of all models I used.

Models Description
Standard In Eq. (2.1), βi values are fixed.

Original GFR In Eq. (2.6), the polynomial function in Eq. (2.4) was used
to represent βi values in Eq.(2.1).

RBF-GFR In Eq. (3.18), the radial basis function in Eq.(3.3) was used
to represent βi values in Eq.(2.1).

Regularized GFR Ridge regression was used to estimate βi values in the orig-
inal GFR model in Eq. (2.6). The size of the GFR model’s
coefficients is penalized by maximizing a combined func-
tion that includes the weighted L2 norm of the parameter
vector θ.

Regularized RBF-GFR ridge regression was used to estimate βi values in the RBF-
GFR model in Eq. (3.18). The size of the RBF-GFR
model’s coefficients is penalized by maximizing a com-
bined function that includes the weighted L2 norm of the
parameter vector θ.

GFR-CART The combination between the CART model and the GFR
modelin Eq. (2.6), where the GFR model was used at each
leaf of the tree by recursively partitioning the input space
into subregions, each modelled with a separate GFR.

RBF-GFR-CART The combination between the CART model and the RBF-
GFR model in Eq. (3.18), where the RBF-GFR model was
used at each leaf of the tree by recursively partitioning the
input space into subregions, each modelled with a separate
RBF-GFR.

GFR-RF The combination between the RF algorithm and the GFR
model in Eq. (2.6). The GFR model was used at each leaf
of the tree in the RF model, where each tree is constructed
independently from the other trees by randomly selecting
the tree inputs and features.

RBF-GFR-RF The combination between the RF algorithm and the RBF-
GFR model in Eq. (3.18). The RBF-GFR model was used
at each leaf of the tree in the RF model, where each tree is
constructed independently from the other trees by randomly
selecting the tree inputs and features.

GFR-XGBoost The combination between the XGBoost algorithm and the
GFR model in Eq. (2.6). The GFR model was used at each
iteration of the XGBoost model, where each iteration aims
to minimize the loss function and learn from the previous
iteration by computing the second partial derivatives of the
loss function.

RBF-GFR-XGBoost The combination between the XGBoost algorithm and the
RBF-GFR model in Eq. (3.18), where the RBF-GFR model
was used at each iteration of the XGBoost model.



Chapter 4

Datasets

4.1 Introduction

Five distinct datasets are used in the present thesis. I used the same simulated datasets as
in Matthiopoulos et al. (2015) and Matthiopoulos et al. (2011) that were used to apply
the original GFR model. These individual-based simulated datasets were generated from
multiple simulated instances using the resources and conditions as covariates. The simu-
lated dataset in Matthiopoulos et al. (2015) is a complex version of the simulated dataset
in Matthiopoulos et al. (2011), considering the population density of each sample in the
simulation. These two simulated datasets are species abundance levels; the response vari-
able is represented by the species abundance of each unit. The response variable in the
sparrow and wolf datasets, which are real-life datasets, is a binary species use/availability
indicator. I have applied all modelling approaches, as described in Table (3.1) and Fig.
3.5, to the simulated and real-life datasets, as seen in Chapter 5. The key reason for using
the simulated datasets is that knowing the mechanisms that generate the data helps infer
some of these mechanisms using a statistical model and then assess the model, which is
the motivation of Chapter 6. The North American Breeding Bird Survey BBS dataset is
another real-life dataset that was used as a count dataset, where each value of the response
variable refers to the abundance of 10 different birds. The continental BBS dataset is a
large-scale, Spatio-temporal dataset that suffers from the various inherent limitations dis-
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cussed in Chapter 7. Still, it consists of multiple species data, which motivated me to use
the GFR models as predictive models of biodiversity over this large spatial scale, as seen
in Chapter 7.

4.2 Simulated Datasets

4.2.1 Simulated Dataset in Matthiopoulos et al. (2015)

Test data were derived from multiple simulated instances, representing subpopulations of a
species living in different landscapes. This simulated data is species abundance levels; the
response variable is represented by the species abundance of each unit. Each instance was
obtained from a realisation of an individual-based simulation within a small (50x50 cell)
spatial arena, where rudimentary energetics gave rise to simple demographic processes
and population dynamics. Two spatially autocorrelated environmental covariates (food -
a resource - and temperature - a condition) were distributed across the arena. Individuals
were programmed to move up gradients of environmental profitability (i.e., food richness
moderated by temperature) and their movement was subject to perception error. The pop-
ulation size (N) associated with the entire sampling instance was also included to capture
density-dependent effects on the distribution of the animals.

The dataset contains 20 landscape scenarios whose dynamics were modelled for 20
years, yielding 400 different sampling instances, where the dataset has a spatial structure
based on these scenarios. Each instance has potentially 2500 spatial observations (50×50
grid). The total sample size of the data is 200,000 spatial cells. Different subsets of this
dataset can be used to emulate realistic scenarios of sample size across time and space.

4.2.2 Simulated Dataset from Matthiopoulos et al. (2011)

A simpler version of the above individual-based model (IBM), which simulates popu-
lations based on individuals and their properties, looks at two resources (e.g., food and
cover) required in alternation, without the effect of demography and population dynamics.
The response variable is represented by the species abundance of each unit. The simulated
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animals in this version of the individual-based model climb up gradients of food when
they are hungry and then climb up gradients of cover when they are sated. Feeding oc-
curs through a Holling type II model of food consumption in which the organism reaches a
maximum consumption rate as the food increases because the animal can no longer process
more food per unit of time. In trophic ecology, this is called a Holling type II functional
response (Matthiopoulos, 2011). These simulated data contain 20 scenarios, and each
sampling instance can provide a maximum of 2500 observations, where the total sample
size is 50,000 units. The animal simulation step, which generates a usage map, is given
certain movement rules in this simulation process. The animal accumulated energy (E)

through the consumption of food (u). The rate of food consumption as a function of food
abundance was calculated using the Holling type II functional response model (Holling,
1959). The energy balance equation of the animal at time t is calculated as follows:

Et = Et−1 + f eedingt −den

where den is the metabolic cost; the amount of energy consumed. f eedingt is defined as
the amount of food consumed per time unit. The energy at time t depends on the amount
of food consumed at time t, the energy that remains from the previous time and the amount
of energy consumed at the same time. The feeding rate is a function of the amount of food
available calculated using type II functional response that considers saturation as follows:

Et = Et−1 +
a× f oodx(t)

b+ f oodx(t)
−den

where a is the feeding rate or maximum consumption rate that the organism can reach, b

is the half-saturation parameter a/2, which describes how fast the value of the function
increases, and f oodx(t) is the amount of available food at time t (Matthiopoulos, 2011).
In this simulation, upon satiation (E > E1), the animal stopped feeding and climbed up
the gradient of cover until reaching a local maximum. When E fell below a starvation
threshold (E2), the animal climbed up the food gradient until reaching a local maximum.
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4.3 Real-Life Datasets

4.3.1 Sparrow Population Dataset

The sparrow population data are used in (Matthiopoulos et al., 2019) when they aimed
to prove that population change can be predicted based on habitat availability by using
the GFR model. The data were collected by the Royal Society for the Protection of
Birds (RSPB) and the University of Glasgow in 2014 during the breeding season from
32 colonies in the United Kingdom. Each colony contains 40 spatial cells, which means
that the data contains 1280 different cells. The Sparrow variable in the data is the response
variable presented by values of 1 and 0 based on the presence of sparrows in each cell. I
use three main variables in the dataset, which are the estimated percentages of grass, bush

and roof for each cell captured by Google Earth. The response variables for this data set
are binary species presence/absence indicators, the binomial log likelihood in Eq. (2.10)
was used when fitting the original GFR model and the RBF-GFR model to the data using
the habitat variables grass, bush, and roof as the main covariates in the models and size
of each colony, which is the count of the maximum number of males measured in each
colony, as an additional explanatory variable.

4.3.2 Wolf Dataset

The wolf dataset is a telemetry dataset that was used in Mathiopoulos et al. (2011) to
fit the original GFR model. The telemetry data are different from the survey datasets
because the observations are collected over time (Matthiopoulos et al., 2020a). The wolf
data comprise a telemetry dataset incorporating a use-availability approach to determine
the response variable, where the response variable is represented by either 0 or 1. These
data consist of 11 wolves, which are members of five different packs. The wolf dataset
has a grouping structure based on the five packs that the wolves belong to. The dataset
consists of continuous and factor variables. There are three continuous variables, which
are as follows: distance to high human use, distance to edge and slope. The factor levels
are the landcover types: burnt, alpine, shrub, rock and herbaceous. The sample size of the
data is 18,042 spatial units.
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4.3.3 BBS Dataset

The North American Breeding Bird Survey (BBS) dataset was used in Haddou et al.
(2022) to measure past and current landscape contributions to the current effective number
of species. The BBS dataset was instituted in 1966 to monitor the trends in abundance of
more than 400 different bird species. Data collection occurs in June during the breeding
seasons over more than 3000 routes. Each route is about 40 kilometres long. Making
3min stops every 800 metres (yielding 50 stops per route), the observers record every seen
or heard bird. This data is species abundance levels, where the response variable is rep-
resented by the species abundance of each stop. The dataset used in the current study is
from 2001 to 2019 because the land cover covariates (urban, forest, grass, crop, wet, wa-

ter and elevation) are available for those years in the open-access NLCD CONUS (Yang
et al., 2018). The temperature covariate for this period was taken from the PRISM cli-
mate dataset (PRISM, 2019). I used the abundance of 10 different birds from more widely
distributed species: mourning dove (Zenaida macroura), American robin (Turdus migrato-

rius), red-winged blackbird (Agelaius phoeniceus), American crow (Corvus brachyrhyn-

chos), barn swallow (Hirundo rustica), brown-headed cowbird (Molothrus ater), European
starling (Sturnus vulgaris), chipping sparrow (Spizella passerina), blue jay (Cyanocitta

cristata), and common yellowthroat (Geothlypis trichas). First, to reduce the spatial auto-
correlation between the stop points segments and avoid overlaps between these segments
in the analysis, across the 50 stops, the 1st , 11st , 21st , 31st , and 41st stop counts for the
route were used, where each stop is a representative of about 8 km transects for the land-
scape surrounding it within a 400 m buffer, as seen in Fig. 4.1. This process is a point
process and is represented as points randomly located in space.

The land cover covariates are the percentage of the forest, grass, urban, crop, wet,

water, and barren within a 400 meters buffer around the segment from which bird abun-
dances were taken. These covariates have been used as habitat features and to represent
habitat availability with total of 134,275 spatial cells.
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Figure 4.1: A diagram explaining the BBS data pre-processing showing the first 22 stop
points of a route in the data. The red points are the stop points and the blue polygons are
the 400 m buffer around each stop point. Here, 400 is the size in metres of the radius for
which the landscape was sampled around each segment. The grey polygons are the stop
points I used in the present study, which are the 1st , 11st , and 21st stop points for the first
22 stop points of the route.

4.4 Datasets Outlines

Table 4.1 outlines the datasets used in the following chapters. The sample instances num-
ber refers to the number of sample instances (scenarios) in which a sampling instance
represents an environmental scenario defined in a biological way as the environment expe-
rienced by the study animals during an appropriate spatiotemporal frame of accessibility.
The two simulated, wolf and sparrow datasets are used to apply the original GFR, RBF-
GFR and various extension models to assess and compare the predictions of species distri-
butions resulting from the models in Chapter 5. The simulated dataset in Matthiopoulos et
al. (2011) is used in Chapter 6 to focus on explanatory modelling for testing the models’
transferability. The result of the predictions of species distributions and biodiversity of the
GFR models as applied to the BBS dataset are summarized in Chapter 7.
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Table 4.1: Overview table of the datasets, the habitat variables, number of sample in-
stances, and data size.

Dataset Habitat variables Type of response Sample instances Data
variable number size

Simulated dataset in
Matthiopoulos et al.
(2015)

Food, temperature, and
population size

species abundance 400 200,000

Simulated dataset in
Matthiopoulos et al.
(2011)

Food, and cover species abundance 20 50,000

Sparrow Grass, bush, roof, and
colony size

presence/absence 32 1,280

Wolf Distance to high human
use, distance to edge,
slope, burnt, alpine,
shrub, rock, and herba-
ceous

use-availability 5 18,042

BBS urban, forest, grass,
crop, wet, water, eleva-
tion, and temperature

species abundance 10 134,275



Chapter 5

Using GFRs for Robust Predictions of
Species Distributions

5.1 Introduction

In the first part of the comparative model assessment study, the original GFR model, which
was reviewed in Section 2.2, was compared with the proposed RBF-GFR model, which
was described in Section 3.2, the combination of GFR and RBF-GFR with the CART
model, which was described in Section 3.4, the combination of GFR and RBF-GFR with
the RF model, which was described in Section 3.5, and the combination of GFR and RBF-
GFR with the XGBoost model, which was described in Section 3.6. I compared the test
set accuracies, which have been quantified in terms of out-of-sample R2 scores, and split
the presentation of the results by the four datasets (simulated dataset in Matthiopoulos et
al. (2015), simulated dataset in Matthiopoulos et al. (2011), sparrow and wolf datasets), as
shown in Section 5.2. Section 5.3 shows that model ensembles can perform the same role
as regularization. The comparison between the two ensemble models combined with the
GFR and RBF-GFR models is discussed in Section 5.4. Section 5.5 shows how regular-
ization is relevant to the second simulated dataset and is not needed for the other datasets.
To summarize the comparative model assessments study, the models were then ranked by
performance for each of the four datasets in turn, generating a ’league table’ of models.
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Thus, this table offers the ranks of all the models included in the study, as shown in Section
5.6. Based on the need to assess the quality of the predictions, the predictions of animal
habitat usage derived from the models were presented in spatial maps, and further visu-
alisations of species abundance have been generated in Section 5.7. Section 5.8 provides
interpretations of which explanatory variables are important in the real-life applications.

5.2 The Datasets’ Results on Predicting Species Abun-
dance from Habitat Variables

The GFR and RBF-GFR models depend on different complexity parameters. For the GFR
model, it is necessary to define the polynomial order, as seen from Eq. (2.5). For the RBF-
GFR model, I had to decide on the number of Gaussian mixture components, as indicated
in Eq. (3.4), and the number of RBF basis functions, as seen in Eq. (3.3). I repeated the
iterative optimization of the objective function from Eq. (3.18) for different choices of
the number of RBF basis functions before, and then picked the one that minimized the
model selection score (BIC). For the number of Gaussian mixture components, I found
the number of components that minimize the BIC score for each block, and then used the
average number of components of all blocks as the optimal number of Gaussian mixture
components for the RBF-GFR model and its extensions, as shown in Appendix A.3. The
parameters of the RBFs, ξ j,m and σ j,m, need to be determined in advance to find [I j,m]b

in Eq. (3.17). I used the histogram approximation and quantile approaches, discussed
in Section 3.2.2, to select these parameters and the best method (quantile approach) was
chosen based on AIC and BIC, as seen in Appendix A.2.

For the best parameters to be selected, I compared the test set accuracies, which have
been quantified in terms of out-of-sample R-square scores, for the original GFR and the
proposed RBF-GFR model. The CART and RF models were combined with the original
GFR and RBF-GFR models, and all models were then compared against the original GFR
and RBF-GFR models, as described in Table 3.1. A standard CART algorithm, where each
leaf is a separate GFR model or RBF-GFR model, was applied in each case, and the cost
function, discussed in Section 3.4, was used to grow the tree and find the best split variable
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for each iteration of the optimization algorithm. The tree was then pruned using 10-fold
cross-validation based on the training set. For the RF model, the number of trees had to be
selected, as described in Section 3.5. In this case, a baseline of 500 trees was set, where
each leaf in each tree was a separate original GFR model or RBF-GFR model.

The XGBoost model was used in combination with the original GFR and RBF-GFR
models over several different numbers of iterations {2, 5, 10, 15, 20, 40, 80, 100, 200,
300, 400, 500}; Algorithm 4 in Section 3.6 was then used to determine the best number of
iterations of XGBoost for use in all subsequent applications.

5.2.1 Results of the First Simulated Dataset

The RBF-GFR model applied to the first simulated dataset using f ood and temperature

as the main covariates and population size N as an additional explanatory variable is as
follow:

use = exp{γ0,0 + γ1,0 f ood + γ2,0temp+ γ3,0temp2+ γ4,0N +
M

∑
m=1

δ
(m)
0,1 I f ood,m+

M

∑
m=1

δ
(m)
0,2 Itemp,m +

M

∑
m=1
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1,1 ( f ood · I f ood,m)+

M
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δ
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δ
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M
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m=1

δ
(m)
2,2 (temp · Itemp,m)+
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∑
m=1

δ
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3,1 (temp2 · I f ood,m)+

M

∑
m=1

δ
(m)
3,2 (temp2 · Itemp,m)+δ4,1( f ood ·N)+δ4,2(temp ·N)+δ4,3(temp2 ·N)}

(5.1)

where M is the best number of basis functions in the RBF-GFR model, temp2 is a quadratic
main effect for temperature, γi,0 is the intercept that does not depend on changes in avail-
ability for the ith covariate, and δ

(m)
i, j is the coefficient of γi(x) for the mth basis function

of the jth variable. The performance of the original GFR and RBF-GFR models were
evaluated using the maximum likelihood function described in Section 2.3. M was varied
from 1 to 12, a process was used to determine the best polynomial order for the original
GFR, per Eq. (2.5), and the best number of basis functions in the RBF-GFR model in
Eq. (3.3) was set to 10 based on model selection scores as shown in Fig. 5.1. On varying
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the number of Gaussian mixture components from 1 to 100, 9 Gaussian mixture compo-
nents was selected as the best number of components for availability approximation based
on the model selection score, Bayesian information criterion (BIC) as seen in Appendix
A.3. The training set for the first set of simulated data contained 90% of scenarios, with

Figure 5.1: Optimization of the polynomial order number using model selection scores
for the original GFR model (left panel) and the RBF-GFR model (right panel) as applied
to the first simulated dataset. The two points refer to the best number of orders and basis
functions based on AIC and BIC. The best polynomial order for the original GFR and the
best number of basis functions in the RBF-GFR model is 10, which is the minimum for
both the AIC and BIC scores.

360 sample instances, while the test set consisted of 10% of the scenarios, with 40 sample
instances, for both models. The out-of-sample performance score was calculated using
Eq. (2.60) with a 10-fold cross-validation test for both models, with the standard model in
Eq. (2.1) for comparison. The results for the median out-of-sample R2 ± MAD are shown
in Table 5.1.

The first dataset is a large dataset that contains a large number of sample instances, as
discussed in Section 4.2.1. As setting 500 trees for a large-size dataset is computationally
expensive, the number of trees, in that case, was set to 15. The habitat usage of the test
set was then predicted by the GFR-CART, RBF-GFR-CART, GFR-RF and RBF-GFR-RF
models to measure the out-of-sample prediction scores, as presented in Table 5.2.

No over-fitting problems occurred in the first simulated dataset, and the out-of-sample
R2 score in Eq. (2.60) did not decrease when the number of XGBoost iterations increased
as shown in Fig. 5.3. Thus, I decided to run the algorithm for 500 iterations.



CHAPTER 5. GFRS FOR ROBUST PREDICTIONS 78

Table 5.1: Median of out-of-sample performance scores of the standard, original GFR and
RBF-GFR models described in Table 3.1 applied to the first simulated dataset.

Orders Standard Original GFR RBF-GFR
(R2 ± MAD ) (R2 ± MAD) (R2 ± MAD )

1 0.731 ± 0.026 0.768 ± 0.021 0.760 ± 0.080
2 0.731 ± 0.026 0.813 ± 0.011 0.813 ± 0.018
3 0.731 ± 0.026 0.818 ± 0.012 0.822 ± 0.009
4 0.731 ± 0.026 0.825 ± 0.010 0.822 ± 0.010
5 0.731 ± 0.026 0.829 ± 0.012 0.824 ± 0.010
6 0.731 ± 0.026 0.830 ± 0.008 0.828 ± 0.010
7 0.731 ± 0.026 0.831 ± 0.009 0.835 ± 0.013
8 0.731 ± 0.026 0.834 ± 0.012 0.837 ± 0.013
9 0.731 ± 0.026 0.835 ± 0.013 0.837 ± 0.012

10 0.731 ± 0.026 0.837 ± 0.014 0.837 ± 0.014
11 0.731 ± 0.026 0.837 ± 0.014 0.837 ± 0.014
12 0.731 ± 0.026 0.837 ± 0.014 0.837 ± 0.014

Table 5.2: Median of out-of-sample performance scores for the original GFR and RBF-
GFR models in combination with the CART, RF and XGBoost models using the first
simulated dataset. The scores for the original GFR and RBF-GFR models are provided for
comparison.

Models R2 (order or basis) R2 (CART) R2 (RFs) R2 (XGBoost)
Original GFR 0.837 ± 0.014 0.821 ± 0.006 0.936 ± 0.008 0.944 ± 0.012

RBF-GFR 0.837 ± 0.014 0.822 ± 0.007 0.937 ± 0.010 0.941 ± 0.011

Both the GFR and RBF-GFR models outperform the simple SDM model when applied
to the first simulated dataset in terms of predictive performance. There is no significant
difference between the performance resulting from the GFR model and that resulting from
the RBF-GFR model. The forecasting performance of the RF and XGBoost in combina-
tion with the original GFR and RBF-GFR models outperformed that of the original and
RBF-GFR models.
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Figure 5.2: Comparison of performance score for the RBF-GFR and original GFR ap-
proaches on the first simulated model; bars are the ± MAD.

5.2.1.1 Model Checking

I assumed that the response variable for this simulated dataset follows the Poisson distri-
bution because it is species abundance levels. In the Poisson distribution, the mean and
variance are mathematically exactly the same. However, the mean and variance for the re-
sponse variable of the dataset are very different (the mean is 3.4 and the variance is 11.6).
A chi-squared goodness of fit test can be used to test the hypothesis that observed data
follow a particular distribution. So, I used it here to observe if the response variable fol-
lows the Poisson distribution. Here, the null and alternative hypotheses for the chi-square
goodness of fit test are the following:
Null: The data follow the Poisson distribution.
Alternative: The data do not follow the Poisson distribution.
When the p-value for the chi-square goodness of fit test is less than the significance level,
I reject the null hypothesis. I observed that the p-value is 0, so I reject the null hypothesis;
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Figure 5.3: Optimization of iteration number using Algorithm 4 on a combination of the
XGBoost with the original GFR (left panel) and XGBoost using RBF-GFR (right panel)
as applied to the first simulated dataset.

the data do not follow the Poisson process. Therefore, I applied the negative binomial
model, which is a more flexible model that is similar to the Poisson model but incorpo-
rates an additional term to account for the excess variance. The negative binomial model
can be used when the variance is substantially higher than the mean. Unlike the Poisson
distribution, the variance of the negative binomial distribution is a function of its mean as
follows:

σ
2 = µ +

µ2

k
(5.2)

where k is the dispersion parameter. Here, there are no substantial differences in either
models’ predictive performance when assuming the negative binomial distribution or the
Poisson distribution using the original GFR, RBF-GFR, regularized GFR and regularized
RBF-GFR models, as seen in Table 5.3. The predictive performance of the GFR, RBF-
GFR, regularized GFR and regularized RBF-GFR models assuming negative binomial
gives a slight improvement, but it’s not a massive improvement. Therefore, I assume the
predictive performance does not change much for the more flexible models, such as CART,
RF and XGBoost. I fitted the model in the R program using the library glm.nb. The glm.nb
function uses the ML estimate of the dispersion parameter k. There is a possibility that this
standard library does not do an appropriate maximization for the dispersion parameter, and
it might be a local optimum. In future work, it is useful to try an alternative library, such
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as feglm.nb. No substantial differences were evident between the Poisson and Negative
Binomial Distributions assumption; therefore, I continued to use the Poisson distribution
for the count datasets. Some diagnostic plots can be found in Appendix A.4.

Table 5.3: Median of out-of-sample performance scores for the original GFR, RBF-GFR
regularized GFR and regularized RBF-GFR models using the first simulated dataset as-
suming Poisson and Negative binomial distributions.

Distribution R2 (GFR) R2 (RBF-GFR) R2 (Reg-GFR) R2 (Reg-RBF-GFR)
Poisson 0.837 0.837 0.796 0.796

Negative binomial 0.841 0.841 0.798 0.796

5.2.2 Results of the Second Simulated Dataset

For the second simulated dataset, the effect of the training set size was investigated across
various scenarios using the rules developed by Matthiopoulos et al. (2011), as described in
Section 4.2.2. The number of scenarios was set to 20 sites. The best number of polynomial
orders and basis functions was selected as 10, as seen in Fig. 5.4, with the best number of
Gaussian mixture components being 24 based on BIC, as discussed in Appendix A.3.

Figure 5.4: Optimization of the polynomial order number using model selection scores
for the original GFR model (left panel) and the RBF-GFR model (right panel) as applied
to the second simulated dataset. The two points refer to the best number of orders and
basis functions based on AIC and BIC. The best number of polynomial orders and basis
functions was selected as 10 based on both AIC and BIC.
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Estimating the original GFR and RBF-GFR model parameters using a maximum like-
lihood estimator as described in Section 2.3 did not provide good forecasting performance
scores, however, especially when the number of basis functions and orders increased,
based on the 20-fold cross-validation test of out-of-sample R2 for both models as shown
in Table 5.4. The out-of-sample R2 is a model comparison of the prediction model with a
baseline prediction model. Here, the negative value means the prediction tends to be less
accurate than the average value of the data, which is a result of overfitting and led me to
regularize the model using ridge regression.

Table 5.4: Out-of-sample performance scores of the original GFR and RBF-GFR models
for the second simulated dataset.

Number of Original GFR RBF-GFR
orders (R2 ± MAD ) (R2 ± MAD )

1 0.434 ± 0.213 0.297± 0.199
2 0.472 ± 0.278 0.391 ± 0.371
3 0.543 ± 0.316 0.506± 0.296
4 0.537 ± 0.334 0.597± 0.173
5 0.593 ± 0.268 0.521 ± 0.196
6 0.573 ± 0.260 0.597 ± 0.139
7 0.450 ± 0.417 0.521 ± 0.386
8 0.300± 0.502 0.459± 0.453
9 -3.43 ± 5.770 -1.44± 3.03

10 -2.223 ± 2.212 -2.34 ± 3.65
11 -1.691 ± 1.678 -1.68 ± 2.76
12 -1.691 ± 1.678 -1.76 ± 3.39

Ridge regression discussed in Section 3.3 was applied using Eq. (3.21) to both models
on the second simulated data to improve the performance of their forecasting ability. The
results of R2 for both models using λ that gave the lowest BIC in the training set are
listed in Table 5.5 and Fig. 5.5. Recall that the information criteria BIC is a function of
the effective number of parameters, which depend on the regularization parameter λ as
explained in Section 2.8.3 and illustrated in Fig. 2.4.

A comparison with Table 5.4 shows that the inclusion of L2 regularization created a
general performance improvement.
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Table 5.5: Median of R2 for 20-fold cross-validation for different models using regular-
ization where BIC is used to choose λ for the second simulated dataset (20 scenarios).

Basis or orders Standard Original RBF-GFR
(R2 ± MAD ) (R2 ± MAD ) (R2 ± MAD )

1 0.256 ± 0.179 0.425 ± 0.262 0.201 ± 0.201
2 0.256 ± 0.179 0.426 ± 0.256 0.379 ± 0.213
3 0.256 ± 0.179 0.517 ± 0.290 0.492 ± 0.174
4 0.256 ± 0.179 0.397 ± 0.307 0.542± 0.148
5 0.256 ± 0.179 0.389 ± 0.332 0.566 ± 0.121
6 0.256 ± 0.179 0.392 ± 0.316 0.611± 0.158
7 0.256 ± 0.179 0.396 ± 0.307 0.617 ± 0.161
8 0.256 ± 0.179 0.358 ± 0.311 0.619 ± 0.136
9 0.256 ± 0.179 0.358 ± 0.155 0.633 ± 0.127

10 0.256 ± 0.179 0.359 ± 0.341 0.635 ± 0.147
11 0.256 ± 0.179 0.359 ± 0.337 0.640 ± 0.148
12 0.256 ± 0.179 0.358 ± 0.337 0.631 ± 0.153

The CART and RF models were used in combination with the RBF-GFR and original
GFR models to improve forecasting performance for the second simulated dataset under
20 scenarios. Table 5.6 shows that the CART and RF outperformed the original GFR and
RBF-GFR models.

Table 5.6: Median of out-of-sample performance scores for the original and RBF-GFR
model and the CART, RF and XGBoost models in combination with the GFR model using
the second simulated dataset.

Models R2 (order or basis) R2 (CART) R2 (RFs) R2 (XGBoost)
Original GFR -0.972 ± 1.77 0.235 ± 0.196 0.443 ± 0.396 0.491 ± 0.192

RBF-GFR -2.35± 3.65 0.440 ± 0.225 0.593 ± 0.107 0.535 ± 0.10

500 XGBoost iterations were used because the cross-validation R2 score increased as
the iteration number increased, as shown in Fig. 5.6. No over-fitting problems occurred in
the second simulated dataset.
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Figure 5.5: Comparison of performance score for the standard, regularized GFR and reg-
ularized RBF-GFR models applying to the second simulated dataset; bars are ± MAD.

5.2.3 Results of the Sparrow Dataset

For the sparrow dataset, the AIC and BIC scores are not consistent as the best number
of basis functions in the RBF-GFR model based on the AIC score is three and the BIC
score is one. However, the difference between the scores is small, as shown in Fig. 5.7, so
the first and third order polynomial model and one and three radial basis functions were
represented, first order and one basis functions model here and third order and three basis
function models in Appendix A.5 Table A.3.

The best number of Gaussian components for the RBF-GFR model was 39. However,
each colony consists of 40 data points, and the number of components is not allowed to
be close or more than the data points. This is because each component will contain one
point and cause singularity issues. Thus, the best number of components was set to 18
components as it is less than half of the number of data points in each colony. Table 5.7
presents the model selection scores for the original GFR and RBF-GFR models, using the
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Figure 5.6: Optimization of iteration number using Algorithm 4 on a combination of the
XGBoost with the original GFR (left panel) and XGBoost using RBF-GFR (right panel)
as applied to the second simulated dataset.

Figure 5.7: Optimization of the polynomial order number using model selection scores for
the original GFR model (left panel) and the RBF-GFR model (right panel) as applied to
the sparrow population dataset. The two points refer to the best number of orders and basis
functions based on AIC and BIC. The AIC and BIC scores are not consistent as the best
number of basis functions in the RBF-GFR model based on the AIC score is three and the
BIC score is one.
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percentage of grass, bush, and roof as covariates, in addition to the pseudo R2 representing
the variability in dependent variables as calculated using Eq. (2.62). The pseudo R2 score
was used to measure the proportion of the total variability explained by the model. Al-
though the RBF-GFR model performed better than the original GFR model, neither model
accounted for the variability in the space use data, based on their low pseudo R2 scores of
6.1%.

Table 5.7: Comparison of the original GFR (first order) and the RBF-GFR method (one
basis function) using three main variables for sparrow population data.

Method AIC BIC Pseudo R2

Original GFR 1698.76 1781.234 0.0606
RBF-GFR 1698.68 1781.16 0.0607

To better account for the variability in both models, the size of each colony was added
as an additional explanatory variable representing values applying uniformly to each sam-
pling instance in both models, along with the three main variables of grass, bush, and roof.
The size of each colony was included in both models as large colonies behave differently
from small colonies. The full RBF-GFR model is as follows:

use = exp{ γ0,0 + γ1,0grass+ γ2,0bush+ γ3,0roo f + γ4,0size+
M

∑
m=1

δ
(m)
0,1 Igrass,m+

M

∑
m=1

δ
(m)
0,2 Ibush,m +

M

∑
m=1

δ
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0,2 Ibush,m +

M

∑
m=1

δ
(m)
1,1 (grass · Igrass,m)+

M
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δ
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M
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δ
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δ
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M
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δ
(m)
2,2 (bush · Ibush,m)+

M

∑
m=1

δ
(m)
2,3 (bush · Iroo f ,m)+

M

∑
m=1

δ
(m)
3,1 (roo f · Igrass,m)+

M

∑
m=1

δ
(m)
3,2 (roo f · Ibush,m)+
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∑
m=1

δ
(m)
3,3 (roo f · Iroo f ,m)+δ4,1(grass · size)+

δ4,2(bush · size)+δ4,3(roo f · size)}

(5.3)

where M is the best number of basis functions in the RBF-GFR model, γi,0 is the inter-
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cept that does not depend on changes in availability for the ith covariate, and δ
(m)
i, j is the

coefficient of γi(x) for the mth basis function of the jth variable.
A noticeable improvement occurred in terms of the ability to account for the variability

on this inclusion in both models: at that point, the RBF-GFR model explained 30% of
the null deviance and the original GFR model explained 31%. A leave-one-out cross-
validation scheme was then applied to calculate the out-of-sample performance score R2:
thus, each time the models were applied, all the colonies except one were used, for a total
of 31 colonies, allowing tests to be performed on the colony not used in the training set.
Table 5.8 shows the out-of-sample performance using the original GFR, regularized GFR,
RBF-GFR and regularized RBF-GFR models.

Table 5.8: Comparison of the out-of-sample R2 between the RBF-GFR model with the
original GFR model on the sparrow population data with non-regularized and regularized
approaches.

Method R2 (order or basis) R2 (regularized)
Standard model 0.265± 0.603 -
Original GFR 0.338 ± 1.01 0.241± 0.561

RBF-GFR 0.306 ± 0.673 0.252± 0.538

The median of out-of-sample R2 scores over the 32 colonies is shown in Table 5.9,
which highlights that the forecasting performance scores of the CART and the RFs in
combination with the GFR and RBF-GFR models are better than those of the original
GFR and RBF-GFR models.

Table 5.9: Median of out-of-sample performance scores for the GFR and RBF-GFR mod-
els and the CART, RF models and XGBoost in combination with the GFR model using the
sparrow dataset.

Models R2 (order or basis) R2 (CART) R2 (RFs) R2 (XGBoost
Original GFR 0.338 ± 1.01 0.619 ± 0.674 0.730 ± 0.311 0.834 ± 0.594

RBF-GFR 0.306 ± 0.672 0.885 ± 0.171 0.861 ± 0.198 0.861 ± 0.205

Using XGBoost in combination with either the GFR or RBF-GFR models for the spar-
row data causes no over-fitting problems, as shown in Fig. 5.8, on using Algorithm 4. A
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total of 500 iterations was thus used to apply the XGBoost model in combination with the
GFR models and the results are in Table 5.9.

Figure 5.8: Optimization of iteration number using Algorithm 4 on a combination of the
XGBoost with the original GFR (left panel) and XGBoost using RBF-GFR (right panel)
as applied to the sparrow population dataset.

5.2.4 Results of the Wolf Dataset

The original GFR and the RBF-GFR models were applied using the first-order GFR model
and the RBF-GFR model with one basis function for the wolf dataset. Higher polynomial
orders or more basis functions result in a non-identifiable model as the 11 wolves observed
belonged to just five packs, leading to a lack of high diversity between the packs. 17
Gaussian mixture components were used to approximate habitat availability based on the
model selection score BIC, as described in Appendix A.3.

Table 5.10 shows the median out-of-sample performance scores from the 11 wolves in
wolf dataset using an 11-fold cross-validation scheme.

Table 5.10: Median of out-of-sample performance scores for the standard, original GFR
and RBF-GFR models using the wolf dataset.

Models R2 ± (MAD ×c)
Standard model 0.215 ± 0.603
Original GFR 0.156 ± 0.250

RBF-GFR 0.219 ± 0.157



CHAPTER 5. GFRS FOR ROBUST PREDICTIONS 89

The results, as seen in Table 5.11, suggest that the use of RF within the GFR models
offers better predictions than the original and RBF-GFR models.

Table 5.11: Median of out-of-sample performance scores for the original GFR and RBF-
GFR models and the CART, RF and XGBoost models in combination with the GFR model
using the wolf dataset.

Models R2 (order or basis) R2 (CART) R2 (RFs) R2 (XGBoost)
Original GFR 0.157 ± 0.250 0.222 ± 0.086 0.769 ± 0.082 0.405 ± 0.200

RBF-GFR 0.219 ± 0.158 0.182 ± 0.075 0.760 ± 0.080 0.345± 0.173

Based on Algorithm 4, the best number of iterations within the wolf dataset was 100
for the original GFR model in combination with the XGBoost model, as shown in the left
panel of Fig. 5.9. However, only 40 are required on combining the RBF-GFR model with
the XGBoost model, as suggested by the right panel of Fig. 5.9. A potential explanation
for this significant difference is that the wolf dataset may contain more outliers than the
other datasets, as suggested by Fig. 5.9.

Figure 5.9: Optimization of iteration number using Algorithm 4 on a combination of the
XGBoost with the original GFR (left panel) and XGBoost using RBF-GFR (right panel)
as applied to the wolf dataset.

The results in Table 5.11 suggest that the use of XGBoost within the GFR models
offers better predictions than the original and RBF-GFR models.
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5.3 Relevance for CART, RF and XGBoost

The CART, RF, and XGBoost approaches were used in combination with the GFR and
RBF-GFR models to increase the out-of-sample prediction accuracy. The difference be-
tween the out-of-sample scores using CART, RF and XGBoost and those resulting from
using the GFR models was significant across most datasets, as shown in Fig. 5.10. How-
ever, the use of regularized GFR models in the second simulated dataset addresses the
over-fitting problem in this dataset, suggesting that the regularization approach is relevant
if the ensemble approach is not used. However, with an ensemble tool, the regularized
method is less critical, as shown in Fig. 5.10. The CART, RFs and XGBoost approaches
in the second simulated dataset were thus used in combination with non-regularized GFR
models, as shown in Fig. 5.11.

Figure 5.10: Comparison of performance scores for the original GFR, CART, RF and
XGBoost using the original GFR (left panel) and the RBF-GFR, CART, RF and XGBoost
using RBF-GFR (right panel), as applied to three different datasets.

5.4 Comparison Between RF and XGBoost Models

The RF and XGBoost models were combined with the original GFR and RBF-GFR models
to increase the latter’s predictive power. The out-of-sample performance scores of the RF
and XGBoost models were thus compared. Table 5.12 and Fig. 5.12 show the out-of-
sample scores of the original GFR and RBF-GFR models alongside those where RF and
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Figure 5.11: Comparison of performance scores for regularized GFR, non-regularized
GFR , regularized GFR-CART, non-regularized GFR-CART, regularized GFR-RF, non-
regularized GFR-RF, regularized GFR-XGBoost and non-regularized GFR-XGBoost (left
panel) using the second simulated datasets. The right panel is a comparison of performance
scores for regularized RBF-GFR, non-regularized RBF-GFR, regularized RBF-GFR-
CART, non-regularized RBF-GFR-CART, regularized RBF-GFR-RF, non-regularized
RBF-GFR-RF, regularized RBF-GFR-XGBoost and non-regularized RBF-GFR-XGBoost
using the second simulated dataset.

XGBoost were applied to the four datasets. The predictive power of the GFR models in
combination with the RF model exceeds that of the GFR models in combination with the
XGBoost model based on the wolf dataset, while the differences between the models using
the other datasets are insignificant.

Table 5.12: Median of out-of-sample R2 scores for the RF and XGBoost models in com-
bination with the GFR and RBF-GFR modelS applied to the four datasets.

Datasets GFR-RF GFR-XGBoost RBF-GFR-RF RBF-GFR-XGBoost
First simulated 0.936 ± 0.008 0.944 ± 0.012 0.937 ± 0.010 0.941 ± 0.011

Second simulated 0.443 ± 0.396 0.491 ± 0.192 0.571 ± 0.122 0.535 ± 0.102
Sparrow 0.730± 0.311 0.834± 0.594 0.861 ± 0.196 0.861 ± 0.205

Wolf 0.769 ± 0.082 0.405 ± 0.200 0.760 ± 0.080 0.345 ± 0.173
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Figure 5.12: Comparison of out-of-sample R2 scores for the RF and XGBoost using the
original GFR and the RF and XGBoost using RBF-GFR applied to four different datasets.

5.5 Relevance of Regularization

The bar charts in Fig. 5.13 show the out-of-sample R2 scores both with and without reg-
ularization for the original GFR and RBF-GFR models across the four datasets. In three
out of four datasets, there was no substantial difference between regularized and non-
regularized models, indicating that the unregularized models did not have an over-fitting
problem. However, applying the models to the second simulated dataset without regular-
ization caused an over-fitting issue with high variance and poor forecasting performance
scores. Ridge regression was then applied to reduce variance to prevent this over-fitting
problem. The regularized models outperformed the non-regularized model in the second
simulated dataset.
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Figure 5.13: Comparison of performance scores for regularized and non-regularized GFR
and RBF-GFR approaches applied to four different datasets.

5.6 Model Ranking

The models were then ranked by performance for each of the four data sets in turn, as
shown in Fig. 5.14. This table thus offers the ranks and the detailed out-of-sample per-
formance of all the models included in the study, as shown in Fig. 3.5. While none of
the individual models consistently outperformed all other models across all data sets, a
pattern did emerge whereby the ensemble methods, which use bagging or boosting for
the creation of random forests, tend to outperform all other models as a class (namely
the “class” of ensemble methods, as opposed to individual models). In particular, the
combination of the proposed RBF-GFR and GFR models with bagging, as represented
by the two models shown in the top rows of Fig. 5.14, consistently achieve ranks in the
top 40% of the performance spectrum. This offers evidence of more stable performance
than the non-ensemble models, while the latter show higher variability, as exemplified by
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the regularized RBF-GFR model, which appears as the best model for the second simu-
lated data set, but as the third-worst model for the first simulated data set. Regularization
was not applied to the individual models included in the ensembles, with the results thus
suggesting that, in terms of improving out-of-sample generalization performance, model
averaging over ensembles offers an alternative to regularization, confirming similar find-
ings in Machine Learning literature (Sollich and Krogh, 1996). The combination of the
proposed RBF-GFR model with random forests (RBF-GFR-RF) produced the best model
overall, consistently achieving a place in the top three performance rankings. An impor-
tant additional finding was that almost all the methods proposed in this study outperform
the original GFR model from Matthiopoulos et al., 2011, which was the initial aim mo-
tivating the present work. As shown in Fig. 5.14, the GFR model never achieves a rank
better than 6. The computation time for the methods depends on the dataset. The random
forest and XGBoost models take minutes to fit in the first simulated dataset but hours to
fit in the second simulated dataset. The rest of the models take less than an hour to fit
in all datasets. R2

DEV in Eq. (2.61) is generally a better behaved measurement than R2 in
Eq. (2.60) for count data as described in Section 2.9. I used R2

DEV to calculate the out-
of-sample predictive performance in the two simulated datasets as shown in Fig. A.22 in
Supplement A.7. However, the overall ranks using R2

DEV are not different from the overall
ranks using R2 in Eq. (2.60) (comparing the average rank in Fig. 5.14 with ranks in Fig.
A.22 in Supplement A.7).

5.7 Visualising Model Predictions

The predictions of animal habitat usage derived from the models used were presented
in spatial maps and further visualisations of species abundance were generated using the
second simulated dataset, which contained 20 sample instances, with each sample being
formed of 2,500 observations (50 x 50 arena). One map was reserved from the cross-
validation scheme and used to generate predictions from all models. Samples # 1 & # 17
were selected to represent, along with selected samples are shown in Supplement A.9.

Figure 5.15 shows a heat map of species abundance and geographical predictions of
abundance in terms of latitude and longitude for the ground truth and the various models
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Figure 5.14: Rank table of the out-of-sample R2 scores of the models using the two sim-
ulated, sparrow, wolf datasets and the average score of out-of-sample R2. The shading of
colours indicates the ranks of the models. For each column, the colour shading ranges
from yellow to dark red, with yellow indicating the lowest score in the respective column,
and dark red indicating the maximum value.

shown in Table 3.1. Light colours indicate low abundance levels, so the abundance levels
increase as the colour shading gets darker. The two panels differ in colour range, with
the same output range used for all models in the upper panel, while in the lower panel,
the colour range encompasses the whole range of model outputs, which may be different
for different models, as the minimum and maximum values for which colours are plotted
are limited by the minimum and maximum actual values. Model outputs larger than the
maximum value of the truth are thus treated as missing values and are shown in white.

These results suggest that the RBF-GFR-RF model, which is overall the best model
according to Fig. 5.14, also offers the best qualitative agreement with the ground truth
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for predicted spatial abundance profiles. The RBF-GFR-RF predictions faithfully repro-
duce the high-intensity hotspots near the top right corner of the map, around coordinates
(0.8,0.8), as well as those near the left margin, around coordinates (0.2,0.4). The alterna-
tive models also tend to capture the ground truth pattern qualitatively, but these display
larger deviations. For instance, the GLM model shows reasonable agreement with the
ground truth in the left panel, i.e., when plotted on the same scale as the ground truth;
however, on its individually adjusted intensity scale (lower panel), the GLM predictions
are systematically lower than the ground truth values, implying that the GLM model sys-
tematically underestimates extremes, while the GFR model shows an opposing trend, sys-
tematically overestimating extremes, as indicated by the white patches in the lower panel.
Furthermore, the out-of-sample R2 scores shown in Table 5.13 of sample instance # 1 for
the various models used to predict the heat maps in Figs. 5.15 illustrate my finding from
the heat maps where the RBF-GFR-RF score is higher than the scores of other models.

Table 5.13: Out-of-sample R2 scores for the various models shown in Fig. 3.5 of sample
instance # 1 from the second simulated dataset.

Models R2

GLM 0.612
GFR -3.6

Reg GFR 0.695
GFR-CART 0.327

GFR-RF 0.673
GFR-XGBoost 0.764

RBF-GFR -0.734
Reg RBF-GFR 0.742

RBF-GFR-CART 0.628
RBF-GFR-RF 0.769

RBF-GFR-XGBoost 0.713

Figure 5.16 shows the predicted abundance profiles for a different sample instance:
as the regularized RBF-GFR model achieved the strongest performance in terms of out-
of-sample R2 scores, it is not surprising to see that the 2D intensity profiles suggest that
the regularized RBF-GFR model shows very good agreement with the ground truth, faith-



CHAPTER 5. GFRS FOR ROBUST PREDICTIONS 97

fully reproducing its true intensity hotspots around coordinates (0.9,0.6) and (0.3,0.1).
However, despite not being the absolute best models on this occasion, the two models’ en-
semble RBF-GFR-RF and RBF-GFR-XGBoost show 2D abundance profiles that are very
similar, and differences are hardly discernible by the eye. The other models show stronger
deviations from the ground truth, with the lower panel of the figure suggesting that the
majority of the alternative models systematically underestimate extreme values.

5.8 Variable Ranking

Colony size, measured by the maximum number of males in each colony, is the most im-
portant feature of the sparrow population, which was determined using the best two mod-
els overall, the RF approach in combination with the GFR and RBF-GFR models. The
percentage of bush, on the other hand, has the lowest importance score compared to the
other main variables, as seen in Fig. 5.17. The importance scores were calculated using
the mean decrease in accuracy from permuting out-of-bag data, as described in Section
2.7.1.1. Both features positively affect the habitat suitability of the sparrows based on the
GFR and RBF-GFR models.
For the wolf dataset, using the RF approach in combination with the RBF-GFR model, dis-

tance to high human use is the most important covariate, positively affecting the wolves’
habitat preference. The slope and distance to high human use strongly influence habitat
preference; decreasing the slope or increasing the distance to high human use increases
habitat preference. In contrast, rocks have the lowest impact on the wolves’ habitat pref-
erence, as seen in the right panel of Fig. 5.18. However, the slope is more important than
the distance to high human use based on the RF approach in combination with the GFR
model, as seen in the left panel of Fig. 5.18. Since the distance to high human use, slope

and distance to high human use strongly influence habitat preference based on the impor-
tance scores in Fig. 5.18, the low importance variables are excluded from the GFR-RF and
RBF-GFR-RF models to achieve more parsimonious model to increase the predictive per-
formance and avoid overfitting problems. However, the predictive power of the GFR-RF
and RBF-GFR-RF models using the three variables are 0.758 and 0.75, respectively, while
the predictive power of the same models using all variables are 0.769 and 0.76, indicating
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that exclusion of the variables with low importance scores does not affect the predictive
performance.

5.9 Conclusion

The predictive performance of the GFR, RBF-GFR and their extensions were found to be
significantly better than the currently used SDM approaches and approximately consistent
across the four datasets. Modelling habitat preference with a flexible approach that ex-
tends the model proposed in Matthiopoulos et al. (2011) in two distinct ways by using
Gaussian mixtures to approximate habitat availability and Gaussian basis functions to de-
scribe habitat preferences showed moderate improvements in the out-of-sample R2 score.
However, combining the original GFR and RBF GFR with the ensemble approach using
bagging and boosting showed a substantial improvement in terms of the out-of-sample R2

scores. This combination has appeared consistently in the top rows of the rank table in Fig.
5.14, whereas the performance of other models has been less consistent. From prediction
visualisation, applying the GFR model increased the risk of under-predicting the ground
truth. In contrast, the flexible RBF-GFR model provided a version that exaggerates the
extreme abundance values. The results from the ensemble and regularization approaches
confirmed the finding that these approaches reduce over-fitting. The regularization and
ensemble approaches were also able to control over-fitting and significantly increase pre-
dictive performance (increases in R2 from 0.25 to 0.85 in some cases). The improvement
in predictive performance in the simulated datasets was better than the improvement using
the two real-life datasets. The different amounts of predictive improvement can be at-
tributed to the fact that the simulated datasets were simulated using assumptions and roles
that could provide better adherence to the spatial stationarity of covariates. Furthermore,
the significant difference in the improvement from the dataset can result from different data
types; the sparrow and wolf datasets are use-availability datasets with poorer information
compared with the abundance dataset (Yates et al., 2018). Using the best predictive model
based on the rank table in Fig. 5.14, the most important variables of the model ensemble
in combination with the GFR model had almost the same essential roles when the model
ensemble was combined with the RBF-GFR model.
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Figure 5.15: A heat map of abundance and geographical predictions of the abundance of
sample instance # 1 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models shown in Table
3.1. The two panels differ in colour range. In the upper panel, I use the same output range
for all models. In the lower panel, the colour range encompasses the whole range of model
outputs and may be different for different models but the minimum and maximum values
for which colours should be plotted are limited by the minimum and maximum numbers
of the true values. Model outputs that are larger than the maximum value of the truth are
treated as missing values and are shown in white. The map with red borders is the best
predictive model based on out-of-sample R2.
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Figure 5.16: A heat map of abundance and geographical predictions of the abundance of
sample instance # 17 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models shown in Table
3.1. The two panels differ in colour range. In the upper panel, I use the same output range
for all models. In the lower panel, the colour range encompasses the whole range of model
outputs and may be different for different models but the minimum and maximum values
for which colours should be plotted are limited by the minimum and maximum numbers
of the true values. Model outputs that are larger than the maximum value of the truth are
treated as missing values and are shown in white. The map with red borders is the best
predictive model based on out-of-sample R2.
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Figure 5.17: Importance scores for the main variables in the sparrow population dataset,
using the GFR-RF model in the left panel and the BF-GFR-RF model in the right panel.

Figure 5.18: Importance scores for the main variables in the wolf dataset, using the GFR-
RF model in the left panel and the RBF-GFR-RF model in the right panel.



Chapter 6

Quantifying and Interpreting the
Variability of Selectivity Coefficients

6.1 Introduction

The main goal of the previous chapters was to increase the predictive power (i.e., the trans-
ferability) of SDMs, by improving on the performance of the GFR model. I have devel-
oped robust models that predict out-of-sample observations with high accuracy. To explore
these models, we can look at the spatial predictions (i.e., look at scenario-specific plots of
predicted usage over geographical space), which I have done in Chapter 5. A higher level
of abstraction can be achieved by exploring the output of these models for regression selec-
tion coefficients βi,b (i.e., look at plots that are space-independent, but scenario-specific).
At an even higher level, we can assess the models by looking at the GFR selectivity coeffi-
cients γi (i.e., look at plots that are both space- and scenario-independent). Looking at the
selectivity coefficients γi offers a lower dimensional space of information, so it is easier
to explore visually and also, it captures the essence of the behaviour of the model since
the selectivity coefficients γi are context-independent. They are not affected by the envi-
ronmental context at the location of a spatial point (e.g., exploring the spatial prediction
in Chapter 5) or the broader availability of habitats in space (e.g., exploring using βi,b).
The selectivity coefficients can be thought of as characteristics of the species, whereas the
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selection coefficients βi,b and the spatial predictions emerge from the interaction between
the species and its environment at different scales.

It is also essential to know whether these models allow us to look beyond the predic-
tions by offering us some explanatory power of the mechanisms mediating species distri-
butions. In order to do this, it is necessary to explore patterns in the behaviour of fitted
models, probe these, using statistical and visual summaries and interpret them post-hoc,
in the light of the assumptions that underpin the data-generating process. Output patterns
in the fitted models can be examined at the end-product (e.g., the predicted species dis-
tributions) or at some more informative intermediate stage (e.g., the selection coefficients
generated for each environmental scenario). The aim of this chapter is to explore such
patterns, and hence gain new insights into how fundamental biological mechanisms (such
as the pursuit of resources) give rise to particular values of regression coefficients. In
mapping, the "mechanistic to the empirical" several indirect (and maybe counter-intuitive)
effects may become apparent, so it is useful to build some intuition in this respect. Ex-
planatory models aim to find causative relationships (Sainani, 2014) by building hypothe-
ses about invisible structures that help explain visible phenomena (Harré, 2002). In this
chapter, images have been used to summarize the behaviour of different parts of the statis-
tical SDMs under wide ranges of different environmental scenarios.

Transforming information into images helps explore the information, discover any pat-
terns or behaviours, and analyse this information. Building images provides approaches
that effectively help manage more information and rapidly analyse the data (Huber and
Healey, 2005). Visualising a dataset using graphical approaches provides a better un-
derstanding of the dataset and discovers any data irregularities (Frankel and Reid, 2008).
Visualising the predictions of the models used in the present study helped to understand
certain patterns in the predictions, analyse the predictions and assess the transferability
of each model, as discussed in Section 5.7. For deeper insights into varying coefficient
models such as the GFR model, it is preferable to go beyond merely visualising spatial
predictions of abundance by, instead, visualising the changes in the regression coefficients.
This allows direct observation of the relationship between the availability of habitats and
apparent preference for these by animals. Here, I focus on the simulated dataset from
Matthiopoulos et al. (2011), which is described in Section 4.2.2. Knowing the mecha-
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nisms generating these data is the key reason behind using this simulated dataset. I begin
this chapter by discussing the specific biological rules of this simulation. The models are
assessed by their ability to infer these mechanisms by looking at the patterns illustrated in
images, where these patterns are purely the result of the statistical model being fitted to
data. Furthermore, I use the simulated dataset from Matthiopoulos et al. (2011) because it
is a simpler version of Matthiopoulos et al.’s (2015) dataset, which consists of 20 samples
and looks at just two resources (e.g., food and cover). It is hard to carry out this assessment
for real datasets because the mechanisms that control the real animals are unknown, and
these data consist of spatial locations (e.g., colonies in the sparrow population dataset),
that are not complete grids with full maps.

In this chapter, I focus on the coefficients of the regularized GFR and RBF-GFR mod-
els because they are the best models applied to the dataset based on Fig. 5.14.

6.2 Selectivity Coefficients Concept

The fixed selection coefficients βi in conventional SDMs based on the GLM structure
in Eq. (2.1) quantify the slopes of the response variable in relation to its environmental
covariates. However, in varying-coefficient models such as the regularized GFR and RBF-
GFR, the βi,b’s in Eq. (2.2) change with the environmental composition. Specifically,
they are represented by the integral of the weighted habitat availability fb(x), where the
weights γi(x) can be thought of as selectivity coefficients, which are space- and scenario-
independent. The selectivity coefficients of the GFR models are formulated using a poly-
nomial function, whereas the selectivity coefficients of the RBF-GFR models are formu-
lated using a radial basis function, as seen in Eqs. (2.4) and (3.3). The γi(x) describes how
the selection coefficient βi,b adapts to changes in habitat availability fb(x). More formally,
γi(x) represents the increment or decrement applied to βi,b through the addition into the
accessible environment of an extra unit of a particular habitat x. The value of the gamma
tells us whether an increase in the availability of that particular habitat is likely to increase
the apparent preference or decrease it and by how much. In other words, the gamma values
represent how much an extra unit of a particular habitat x affects the value of beta. There-
fore, if I want to add one more square metre of a particular habitat, such as a particular
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value of food and cover, the gamma values tell me what this is going to do to the betas
and how this is going to affect the behaviour of the animal. As a result, this gives either an
apparent increase in preference or a decrease. A positive γi(x) value implies that adding
one more unit of habitat (x) will tend to create the impression of a stronger preference for
the ith environmental variable. In contrast, negative values tend to create the impression of
lower preference for the ith environmental variable when adding a unit of habitat x. Values
of γi(x) close to zero indicate that the coefficient βi,b is unresponsive to changes in the
availability of habitat x.

6.3 Simulation Rules

In the second simulated data described in Section 4.2.2, I use different environmental sce-
narios of food and cover availabilities to simulate the usage, where each scenario is a
spatial grid of 50x50 of these features used by animals. The simulation uses a biased ran-
dom walk to attract the animal towards hotspots of food (when it is hungry) and hotspots
of cover (when it is sated). According to the simulation rules in Section 4.2.2, I expect
that if I introduce a poor habitat in one resource or both, I will increase the apparent pref-
erence of the resources because that makes the resources rarer. On the other hand, if I add
a habitat type that is rich in food, I will reduce the apparent preference for food because
the animal could use up to a certain amount of food (E1), irrespective of food abundance.
Upon satiation (E > E1), the animal stopped feeding and climbed up the gradient of cover
until reaching a local maximum. When E fell below a starvation threshold (E2), the animal
climbed up the food gradient until reaching a local maximum. Based on this rule, if I add
a habitat type that is rich in food, I will reduce the apparent preference for food because
the animal could use up to a certain amount of food (E1), irrespective of food abundance,
which mimics real-life scenarios because the animal could eat food until it is saturated in
real life and then do another activity such as looking for cover to hide from other animals.
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6.4 Visualising Selectivity Coefficients

The selectivity coefficient values for the regularized GFR are formalized as follows:

γi(x) =
I

∑
j=1

M j

∑
m=0

δ
(m)
i, j xm

j (6.1)

where the coefficient of γi(x) for the mth power of the jth variable is δ
(m)
i, j . The γi(x) for

the regularized RBF-GFR model is as follows:

γi(x) = ∑
j
∑
m

δ
(m)
i, j exp

(
−1

2
(x j −ξ j,m)

2

σ2
j,m

)
(6.2)

where ξ j,m is the centre of the mth basis function for the jth covariate and σ j,m is its band-
width parameter. To obtain γi(x) in both models, δ

(m)
i, j have to be estimated using Eqs.

(2.6) and (3.18) for the regularized GFR and RBF-GFR models, respectively. The esti-
mated δ

(m)
i, j is based on the selected value of λ in Eq. (3.21) chosen from an equidistant

grid that minimizes the model selection score BIC, as described in Section 3.3. Using the
simulated dataset from Matthiopoulos et al. (2011), Fig. 6.1 shows the selectivity coef-
ficients plots for both habitat variables using the regularized models. The plots describe
environmental space, so each point in this 2-D space represents a type of habitat with these
characteristics, where x-axis and y-axis represent the two resources: food and cover. So,
for example, a point in the bottom-left corner represents a habitat that is poor in both re-
sources (food and cover) whereas a point in the upper-right corner represents habitats that
are rich in both. I am interested in visualising how the selection coefficient for a particular
environmental variable is affected by the addition of a single unit of each habitat across
environmental space. Because the interpretation is made with a particular environmental
variable in mind, each plot is specific to a named variable (this focal variable is usually
reported in the title of each plot). The required effects in the selection coefficients βi(x)
are indicated by the γi(x) values that are plotted as colour gradients in each plot. The γi(x)
values that are large (compared to the baseline value of βi(x)) indicate a steepening in the
apparent response of the organism to the focal environmental variable (a change in βi(x)),
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while the negative values create an impression of reduction in the organism apparent re-
sponse. The γi(x) values close to zero tend to have no effect.

(a) Food selectivity coefficients (regularized
GFR model)

(b) Cover selectivity coefficients (regular-
ized GFR model)

(c) Food selectivity coefficients (regularized
RBF-GFR model)

(d) Cover selectivity coefficients (regular-
ized RBF-GFR model)

Figure 6.1: Selectivity coefficients for (a) food and cover (b) using the regularized GFR
model and food (c) and (d) for the RBF-GFR model.

In addition, I changed the parameters, a and den, in the simulation to understand the
behaviour of the γi(x) values of the regularized GFR and RBF-GFR models by increasing
the feeding rate, a, from low to high and to observe any gradual transition in the shape
as I increase the metabolic cost. The plots in Figure 6.1 are the gamma values for food
and cover in the regularized GFR and RBF-GFR models using 10 basis functions, den =
0.03, and the feeding parameter, a = 0.2. Figs. 6.2a and 6.3a show gamma plots using
the regularized GFR model for food and cover, where a equals 0.5, 1, 1.5, and 5 and den
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equals 0.001 and 0.003, respectively. Figs. 6.2b and 6.3b show the gamma plots using the
regularized RBF-GFR model for food and cover, where a = 0.5, 1, 1.5, and 5 and den =
0.001 and 0.003 respectively.

6.5 Selectivity Coefficients Explication

6.5.1 Models’ Selectivity Coefficients

From the GFR model in Fig. 6.1a, adding one unit of food in a habitat rich in cover
will increase the habitat preference of food, no matter how much food was in the habitat.
However, adding one more unit of cover in a habitat rich in food increases the cover
preference, regardless of how much cover there was, as seen in Fig. 6.1b.

By using the RBF-GFR model in Fig. 6.1c, adding one more unit of food in a habitat
that lacks food increases the food preference, regardless of the cover amount. In addition,
if I increase the cover by one unit in a rare cover habitat, the cover preference increases,
no matter how much food is in the habitat, when using the RBF-GFR model.

6.5.2 Varying the Simulation’s Biological Parameters

The apparent preference or avoidance towards environmental variables, as expressed by
the γ coefficients of the model, appear to be sensitive to changes in the maximum feeding
rate a and basal metabolic cost den, as seen in Figs. 6.2 and 6.3. However, because the γ

coefficient values of RBF-GFR model shows that there is no explicit causal link between
the abundance of food and preference for cover, as seen in Fig. 6.1d, it might be expected
that the gamma for cover would not be affected by the changes in a and den, which is
illustrated in Fig. 6.3b. My results (Fig. 6.2b) indicate that there is an emergent sensi-
tivity of a and den on the food preference, which I already observed in Fig. 6.1c, where
the preference for food using this model depends on the amount of food in that habitat.
The response of cover is sensitive to varying the feeding rate and metabolic cost using
the regularized GFR model, as seen in Fig. 6.3a, and this behaviour is expected because
the response of cover depends on the food amount, as observed in Fig. 6.1b. However,
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(a) Food selectivity coefficients (regularized GFR
model)

(b) Food selectivity coefficients (regularized RBF-
GFR model)

Figure 6.2: (a) Selectivity coefficients for food from (a) the regularized GFR model and
(b) the regularized RBF-GFR model and for different values of a in the columns and den
in the rows, where a = 0.5, 1, 1.5, and 5 and den = 0.001 and 0.003.
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(a) Cover selectivity coefficients (regularized GFR
model)

(b) Cover selectivity coefficients (regularized RBF-
GFR model)

Figure 6.3: (a) Selectivity coefficients for cover from (a) the regularized GFR model and
(b) the regularized RBF-GFR model and for different values of a in the columns and den
in the rows, where a = 0.5, 1, 1.5, and 5 and den = 0.001 and 0.003.
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the response of food is sensitive to varying feeding rates, and metabolic costs using the
regularized GFR model, as seen in Fig. 6.2a, even though the response of food does not
depend on food abundance, as shown in Fig. 6.1a, which is not expected.

6.6 Investigating the Reasons for the Differences in the
Selectivity Coefficients between Models

Given the stark differences in the gamma plots in Fig. 6.1 between the two models, the
expected habitat preferences quantified by the regularized GFR and RBF-GFR models
should be different, even though they were both found to be the best-performing models in
terms of predictive power in Chapter 5. It is therefore interesting to explore whether these
differences between gamma coefficients propagate to the beta coefficients (the regression
coefficients that are ultimately responsible for the models’ goodness-of-fit and predictive
ability). Mathematically, the coefficient β is the integral of the coefficient γ times the
probability density of x, as follows:

βi,b =
∫

γi(x) fb(x)dx (6.3)

where the values of γi(x) using the GFR model have different patterns than the values
resulting from the RBF-GFR model and fb(x) is the probability density function for habi-
tat availability in the bth sampling instance. Here, I have used the probability density
function for habitat availability derived from all environmental scenarios f (x), which here
are represented by the kernel-smoothed habitat availability. The kernel-smoothed habitat
availability was used to create spatial autocorrelation between the cells like in the data sim-
ulation, where the kernel smooth has been used to create spatial autocorrelation between
the seed layers (Matthiopoulos et al., 2011). The kernel bandwidth was selected using a
normal reference bandwidth ĥ (Venables and Ripley, 2013) as follows:

ĥ(x) = 1.06×min
(

σ ,
R(x)
1.34

)
×n−0.5 (6.4)
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where σ is the standard deviation of x and R(x) is the difference between the third and
first quartiles of x.

f (x) is an attention function that allows the images to focus on the relevant regions
of environmental space that, because of their high frequency of occurrence in the model-
fitting data, are likely to have had a large influence on the model parameters, particularly
the selectivity parameters γi(x) that are habitat-independent, intrinsic features of the study
species. Fig. 6.4 shows the effect of the smoothed habitat availability of the cells in the
dataset. Most of the cells have a low amount of food and cover, as shown in the bottom
left of Fig. 6.4, and as illustrated by the marginal distributions plots for food and cover
availability in Fig. 6.5.

Figure 6.4: Kernel-smoothed density of habitat availability ( f (x) in Eq. (6.3)) in
Matthiopoulos et al.’s (2011) dataset.

Fig. 6.6 is the multiplication of the kernel-smoothed habitat availability surface, f (x)
in Eq. (6.3), by all of the selectivity coefficients maps in Fig. 6.1 that have been derived
from the regularized GFR and RBF-GFR models.

For a better view of the low-intensity regions in Fig. 6.6, I used the log-transformation
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Figure 6.5: The marginal distributions for food availability in the left panel and cover
availability in the right panel in Matthiopoulos et al.’s (2011) dataset.

(a) (b)

(c) (d)

Figure 6.6: Kernel-smoothed density of habitat availability ( f (x) in Eq. (6.3)) multiplied
by the selectivity coefficients plots for food (a) and cover (b) using the regularized GFR
model and food (c) and cover (d) using the regularized RBF-GFR model.
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function, which changes the scale such that low-intensity pixels are shown at a high res-
olution and high-intensity pixels are compressed. It is used for image enhancement and
to discern patterns by expanding the values of dark pixels while compressing the higher
values (Manikpuri and Yadav, 2014). The log-transformation function used is:

t(zi) = log(zi −min(z)+ ε) (6.5)

where ε and min(z) are used to ensure zi > 0 (here, I used ε = 1). The transformed
selectivity coefficients across environmental space were multiplied by the kernel-smoothed
habitat availability as t(γi(x)) f (x). Fig. 6.1 shows that the extreme values of the selectivity
coefficients (high preference of the variable) are located in different areas, depending on
the model and variable. However, the selectivity coefficients might be significant in a
certain area, but the kernel-smoothed probability density of the availability of this area is
small, leading to a downgrade of the high impact of this area by the smoothed availability,
which will have very little influence on the β s, as seen in Fig. 6.7.

Fig. 6.7 shows a broad consistency between models as a result of applying the cor-
rection of the habitat availability f (x), which focuses on frequently encountered habitats.
The regions that have a maximum impact of selectivity coefficients (i.e., the area around
cover = 0.10 in the top left panel and food > 0.12 in Fig. 6.1b) are effectively not ob-
servable in the data and, therefore, can be thought of as representing spurious features
generated by the model. Still, this difference does not affect the transferability of the mod-
els because the β values are affected by the probability density of the habitat availability,
and the extreme values of the selectivity coefficients are in very low-density areas. This
conclusion is illustrated by plotting the log transformation for the different values of a

and den for food and cover from the two regularized models in Figs 6.2a, 6.3a, 6.2b, and
6.3b. Figs 6.8a, 6.9a 6.8b, and 6.9b show the log-gamma for the different values of a and
den from the two models for food and cover, respectively; both models show consistent
behaviour of the selectivity coefficients, which are upgraded in the high-density region by
the kernel-smoothed density of habitat availability. In Fig. 6.8b, the log transformation of
food selectivity coefficients has some features that do not appear in the other plots (i.e.,
Figs. 6.8a, 6.9a, and 6.9b), which are the white patches in the high-density regions. These
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small light regions (i.e., white patches in Fig. 6.8b) are small positive values resulting after
transforming negative values of the selectivity coefficients using a log transformation in
regions located in the high kernel-smoothed density of habitat availability.

(a) (b)

(c) (d)

Figure 6.7: Kernel-smoothed density of habitat availability ( f (x) in Eq. (6.3)) multiplied
by log-gamma plots for food (a) and cover (b) for the GFR and food (c) and cover (d) for
the RBF-GFR model.

Essentially, the features in the bottom left of each plot in Fig. 6.7 are a combination
of how influential each particular habitat unit is and how often it has been encountered
in the data. Interpreting these plots is complicated because they have the same features
resulting from multiplying the log-transformation of selectivity coefficients by the kernel-
smoothed density of the habitat availability function of the variables, which is used as an
attention function. Instead of using the kernel-smoothed density of the availability function
as an attention function, it can instead be used as a filter function to show the selectivity
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(a) Log-food selectivity coefficients (regularized GFR
model)

(b) Log-food selectivity coefficients (regularized
RBF-GFR model)

Figure 6.8: (a) Log-transformation of selectivity coefficients for food from (a) the regular-
ized GFR model and (b) the regularized RBF-GFR model for different values of a in the
columns and den in the rows, where a = 0.5, 1, 1.5, 5 and den = 0.001 and 0.003.
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(a) Log-cover selectivity coefficients (regularized
GFR model)

(b) Log-cover selectivity coefficients (regularized
RBF-GFR model)

Figure 6.9: (a) Log-transformation of selectivity coefficients cover from (a) the regular-
ized GFR model and (b) the regularized RBF-GFR model for different values of a in the
columns and den in the rows, where a = 0.5, 1, 1.5, 5 and den = 0.001 and 0.003.
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coefficients only for those regions of plots that are sufficiently data-rich to be informative.
The new plots in Fig. 6.10 allow us to compare the behaviour of the gammas in influential
regions of environmental space, without the weighting previously applied by the function
f . The focus now is on the configuration space, where the smoothed probability density
is higher than 200 because there are extensive regions of environmental space below that
threshold, as seen in Fig. 6.4. Based on the regularized GFR model in the top panels
of Fig. 6.10, adding a habitat that is rare in food and has low amount of cover creates
the strongest effect on the apparent preference of food, while adding a habitat that has
intermediate richness in food and low amount of cover creates the strongest effect on the
apparent preference of cover.

From the bottom panels of Fig. 6.10, adding one more unit of a habitat that contains
rare food and rare or intermediate richness of cover increases the food preference in the
habitat using the regularized RBF-GFR model. In addition, the strongest effect on apparent
preference of cover occurs when add one unit of a habitat that has a rare or intermediate
richness of food amount and low amount of cover using the same model, that is, the RBF-
GFR model.

6.7 Qualitative Assessment of the Selectivity Coefficients

There is no direct correspondence between the statistical parameters γi(x) and biological
parameters used in the simulation such as the satiation threshold E1, starvation threshold
E2, feeding rate a, and metabolic cost den, described in Section 4.2.2. However, refer-
ring to the mathematical model used to simulate this dataset described in Section 4.2.2,
we can assess the selectivity coefficients by how plausible their values are based on the
simulation rules. From the simulation rules, we know that the preference for both food
and cover primarily depends on the food amount of a habitat because the behaviour of
the simulated animal depends on the satiation threshold E1 and starvation threshold E2

when moving between feeding and hiding. The preference of food is consistent between
the regularized GFR and RBF-GFR models, as seen from Figs. 6.10a and 6.10c, where
adding a habitat that is poor in food makes food-rich patches rarer, causing the animals to
show a stronger food preference mechanism, which is in the line with the simulation rule.
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(a) (b)

(c) (d)

Figure 6.10: Selectivity coefficients for food (a) and cover (b) of the GFR and for food (c)
and cover (d) of the RBF-GFR model using the kernel-smoothed density of the availability
as a filter function (threshold is 200).
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Because the response of cover depends on the food variable, not the cover variable, based
on the simulation rule, the values of the selectivity coefficient of cover from both models
are plausible. From Figs. 6.10b and 6.10c, if the food abundance is very low, the cover
does not matter, which means the preference for cover decreases because the animal will
starve and look for food. Both models conclude that the preference for cover increases as
the food becomes more prevalent, which is consistent with the mathematical model of the
simulation.

6.8 Conclusion

The behaviour of the selectivity coefficients of the regularized GFR and RBF-GFR mod-
els are different in both qualitative and quantitative terms, where the selectivity coefficient
gradients are presented with different directions and steepnesses (Fig. 6.1). The different
models (regularized GFR and RBF-GFR) are in agreement both qualitatively and quanti-
tatively when looking at the availability-weighted behaviour of the log-selectivity coeffi-
cients (Fig. 6.7). This explains why the two models are able to explain the observed data
in similar ways (i.e., produce similar values of the beta coefficients for each environmen-
tal scenario they are presented with). The different models are in qualitative agreement
only by looking at the availability-filtered behaviour of the selectivity coefficients (Fig.
6.10); i.e., the gradients are positioned in the same direction, even if the steepnesses differ.
The behaviour of the availability filtered of the selectivity coefficients using the regular-
ized GFR and RBF-GFR models is consistent with the mechanisms generating this data.
Furthermore, different selectivity coefficients can result in different betas and, hence, spa-
tial predictions. However, the radically different selectivity coefficients of the regularized
GFR and RBF-GFR models in regions of environmental space not often seen in the data
result in similar betas, showing that the work here has moved a long way towards the
aim of robust and transferable SDMs. This conclusion and interpretation of the selectivity
coefficients is difficult to obtain without having the availability-filtered of the selectivity
coefficients. The preference for both food and cover primarily depends on the food amount
of habitat because the behaviour of the simulated animal depends on the satiation threshold
E1 and starvation threshold E2 when moving between feeding and hiding. The behaviour
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of the selectivity coefficient for food and cover is consistent between the regularized GFR
and RBF-GFR models but the steepness is slightly different. The regularized RBF-GFR
model is slightly better than the regularized GFR model because the selectivity coefficient
behaviour of this model is more consistent with the mechanisms generating this data, es-
pecially when the food abundance is very low, the cover does not matter, which means the
preference for cover decreases because the animal will starve and look for food and this is
clearer with RBF-GFR model.



Chapter 7

Using GFRs to Predict Continental
Patterns of Biodiversity

7.1 Introduction

The four validating datasets I have been using to develop the varying coefficient models
are obtained from small-scale, single-species datasets. However, at larger scales, varying
coefficient models are more likely to be useful because, across a large map, the prevailing
conditions are likely to vary quite a lot. These expansive datasets would therefore play the
role of multiple scenarios in the four validating datasets I have been using up until now.
Furthermore, although larger-scale and multispecies datasets may be difficult to model or
less interpretable, the analysis of these kinds of datasets better represents the reality of this
species’ world. Thus, the need to reflect this reality drives the demand for the mathemati-
cal interpretation of the world in which these animals live. In addition, there are emergent
trends in how biodiversity increases or declines with ecological context. These patterns
are not easily interpretable (certainly not in terms of the behaviour or energetics of the con-
stituent species), but they may be no less predictable. Applying this modelling framework
to multispecies biodiversity patterns is therefore a worthwhile phenomenological exercise,
especially if it transpires that these GFR models can extend our predictive capability for
biodiversity trends. Biodiversity is a univariate reduction of a multi-species community,
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a statistical summary of ecosystem composition (i.e., the vector of species abundances).
The statistical summary can be driven using information theory.

Information theory holds a central place in probability and statistics (Kullback, 1997).
It aims to measure the amount of complexity needed to describe data or observed pat-
terns (Brillouin, 2013); its first application in ecology was in 1955 (MacArthur, 1955;
Ulanowicz, 2001) to measure biodiversity, which is a measure of variability in the species
composition of ecological communities. The Shannon entropy score is the most frequently
used measure of biodiversity in ecology (Sherwin and Prat i Fornells, 2019). It summa-
rizes the information about species abundance within a spatiotemporal sampling unit or
ecological community (Ricotta, 2002). In this chapter, I first model individual species
distributions in the large scale North American Breeding Bird Survey (BBS) dataset by
applying the generalized function response (GFR) model and various recent extensions
using land cover types and the temperature of each segment as covariates. I assess the
transferability achieved by using the GFR models by measuring the information content
in the dataset under study. Second, I model the relationship between biodiversity and land
cover types using the GFR models. I use the entropy score as my response variable in
the biodiversity-habitat association models. Finally, I investigate the importance of legacy
effects arising from extinction debts and colonisation credits (Haddou et al., 2022) in the
GFR models of land cover types on biodiversity.

7.2 The Shannon Entropy Score

The Shannon entropy score is a popular diversity metric in ecology and can be defined as
follows:

H(X) =−
m

∑
i=1

p(xi)log2 p(xi) (7.1)

where m is the total number of classes and p(xi) is the proportion of individuals belonging
to the ith species in the dataset of interest.

The Shannon entropy score can be used to measure the uncertainty and randomness in
the data (Higashi and Klir, 1982). The more randomness in a dataset, the higher will be
the entropy and lower the information gain. If the entropy is low, information will be high.
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To use entropy to express the information content in a community, I measured p(xi) for
each species separately as the number of individuals in each sampling unit divided by the
total number of individuals in the dataset, as follows:

Hs(X) =−
N

∑
n=1

ps(xn)log2 ps(xn) (7.2)

where n is the sampling unit (segment of route in the BBS dataset), N is the number of
sampling units, s refers to the species in the dataset and ps(xn) is defined as:

ps(xn) =
number o f individuals that belong to species s in cell n

total number o f individuals that belong to species s in the dataset

Here, Hs(X) is the entropy score for each species being calculated over all sampling
units in the dataset. In this case, a high entropy score is interpreted as low information
content in the data because having similar abundance scores of a species in all sampling
units is not informative. A variation of the abundance measures in the dataset leads to a
lower entropy score, which leads to a higher information content in the dataset.

Furthermore, the Shannon entropy score is used here to observe the effect of land
cover type on the biodiversity of species in each sample unit. In this situation, p(xi) is
the number of individuals of each species in a sample unit divided by the total number of
individuals in the same sample unit, as follows:

Hn(X) =−
S

∑
s=1

pn(xs)log2 pn(xs) (7.3)

where S is the total number of species in the dataset and ps(xn) is calculated as follows:

pn(xs) =
number o f individuals that belong to species s in cell n

total number o f individuals o f all species in cell n

Here, Hn(X) is the entropy score for each sample unit being calculated over all species
abundance scores in each sampling unit. The entropy score for each sampling unit is used
as the response variable in the GFR models, with land cover types and temperature as the
covariates to model the relationship between biodiversity and land cover types to predict
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biodiversity in a new dataset using the GFR models. For example, the entropy score for
each sample unit Hn(z;θ) using the GFR model can be expressed as a function of fixed
effects of covariates and pairwise interactions between covariates and their moments:

Hn(z;θ) = exp

 γ0,0 +
I

∑
i=1

 Mi

∑
m=0

δ
(m)
0,i E[Xm

n,i]b + γi,0xn,i + xn,i

I

∑
j=1

M j

∑
m=0

δ
(m)
i, j E[Xm

n, j]b


(7.4)

where θ is a parameter vector composed of the parameters γi and δi and z is a vector
combining habitat variables xn,i in cell n and their expectation values E[Xm

n,i], as well as
their product terms.

Because the legacy effects in the relationship between habitat changes and species
responses are common in nature (Haddou et al., 2022; Daskalova et al., 2020; Lira et al.,
2019; Sala et al., 2000), the entropy score in Eq. (7.3) is used to investigate the effect of
time lags of land cover covariates on the prediction of species biodiversity.

7.3 Increasing the Scale of the Neighbourhood Used to
Characterise Environmental Context

In the present Chapter, I used the large-scale BBS dataset described in Section 4.3.3. The
land cover covariates are the percentage of the forest, grass, urban, crop, wet, water, and
barren within a 400 m buffer around the segment from which bird abundances were taken.
These covariates have been used as habitat features and to represent the habitat availabil-
ity fb(x) in Eq. (2.3) when applying the GFR, regularized GFR, GFR-CART, GFR-RF
and GFR-XGBoost models. The models were applied to look at single species abundance
patterns at the first stage. I used the out-of-sample scores to evaluate the models’ transfer-
ability, as described in Section 2.9. After observing that one point is insufficient to describe
the environment of each block p and that using just five description points of 400 m buffer
to describe the 40 kilometres route (point per 8 kilometres) are insufficient to describe the
environment of each route, I used 1 kilometre of radius instead of 400 m around each se-
lected stop points (the 1st , 11st , 21st , 31st and 41st stop points) in each route and a smaller
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buffer (100 m) around 19 points selected randomly within the 1 kilometre buffer as the
availability points, here considering the percentage of the land cover types within a 100 m
buffer around the availability points, as seen in Fig. 7.1. Fig. 7.1 represents the process of
increasing the scale of the neighbourhood used to characterise the environmental context
in the model. Each route was represented using 5 stop points, the response variable for
each stop point was the abundance of each species, and the covariates were the land cover
types (habitat features) within a 400 m buffer of the stop points. After observing that 5
points are insufficient to describe the environment of the 40-kilometre route (point per 8
kilometres), I include more points around each stop point to use them as availability points
in the model. The response variable does not change (the abundance of each species for
each stop point), but the covariates are the land cover types within a 1-kilometre buffer
of the stop points, which include 19 additional points with a 100 buffer each to describe
the environment in the 1 kilometre. These availability points are used to increase the
habitat description around each selected stop point by calculating the moments E[Xm

j ]b in
Eq. (2.5). Thus, the availability points increase the scale of the environmental variables.

7.4 Performance Evaluation

In the first stage, I assessed the transferability of the GFR models using the out-of-sample
performance of different models to measure the abundance prediction of each bird sepa-
rately using the land cover covariates and temperature of each segment, as described in
Section 4.3.3. I split the dataset into two parts: the training set was for 2001 to 2016, and
the testing dataset was for 2019 and used years as the sample instance (blocks). To increase
the ability of the model to predict out-of-sample data, I used the state route partitions in
each year as the blocks and extended the dataset using the availability points, as described
in Section 7.3. The entropy score for each species being calculated over all sampling units
in the dataset in Eq. (7.2) is used here to measure the information gain of each species’
abundance in the BBS dataset. Furthermore, the entropy score for each sample unit being
calculated over all species abundance scores is used as a response variable to find the effect
of land cover types on the biodiversity of the ten birds in the BBS dataset, as described in
Eq. (7.3). The same entropy score in Eq. (7.3) is used to investigate the importance of
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Figure 7.1: A diagram explaining the availability points used to increase the description
around each selected point. The left polygon is the 400 m buffer around each stop point
I used, and the right polygon is the new 1 kilometre buffer around each stop point. The
small polygons are the 100 m buffers around the randomly selected points within the 1
kilometre buffer whereas the dark grey polygon contains the selected stop point.

legacy effects in the GFR models of land cover types on biodiversity.

7.5 Results

7.5.1 The GFR Models

To measure the transferability of the GFR models, the out-of-sample performance of dif-
ferent models was used to measure the abundance prediction of each bird separately using
the land cover covariates and temperature of each segment, as described in Section 4.3.3.
I split the dataset into two parts: the training set was for 2001 to 2016, and the testing
dataset was for 2019. The out-of-sample performance of the GFR models was poor, as
seen with the Mourning Dove in Table 7.1. The poor performance of the transferability
of a model could be a result of several reasons, such as using an insufficiently flexible
model, insufficient geographic separations, missing important predictors, or a lack of eco-
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logical information (Yates et al., 2018). The extended variants of the GFR model provided
non-negligible improvements in predictive performance when applied to four different
datasets, as seen in Chapter 5, so I did not consider insufficient model flexibility as a plau-
sible explanation. Using the years as sample instances (blocks) was insufficient in terms
of transferability because the data was a large-scale dataset of more than 700 routes in the
United States with very different geographical features across the states.

Table 7.1: The out-of-sample R2 scores of the original GFR with its extended models
using years as blocks in Mourning Dove.

Method GFR Reg-GFR GFR-CART GFR-RF GFR-XGBoost
R2 -18044.39 -0.740 0.069 0.183 0.115

To increase the ability of the model to predict out-of-sample data different from those
used for model fitting, I used the state route partitions in each year as the sample instance
(blocks). I have aimed to improve model performance by increasing the description of the
landscape around each observation, as described in Section 7.3. A 40 kilometres route
with just five segments is not sufficiently homogeneous; using just five description points
of 400 m buffer to describe a route of 40 kilometres (point per 8 kilometres) is insufficient
to describe the environment of each route. To describe the environment around each stop
point, I used the stop point in addition to the 19 additional availability points (a total
of 20 points to describe the environment of each stop point). Including more points is
better to increase the predictive power, but is computationally expensive. A collection of
19 observations around each point of birds to describe the environmental features around
each survey point shows a significant improvement of the model’s transferability based on
the results of the out-of-sample R2 scores, specifically for the GFR model’s transferability
using state route partitions in each year as blocks and 19 availability points around each
survey point in Table 7.2 compared with Table 7.1.

Although the GFR model’s transferability increased using the availability points, the
predictive ability of the GFR models is still considered poor based on the out-of-sample
R2 scores. This poor transferability of the GFR models was investigated numerically by
checking for multicollinearity between the covariates and regularizing the model parame-
ters. The multicollinearity was checked by the variance inflation factor (VIF), which is a
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Table 7.2: Out-of-sample R2 of the standard and GFR models for all species in the BBS
dataset using state route partitions in each year as blocks and 19 availability points around
each survey point.

Species GLM GFR Reg-GFR GFR-CART GFR-RF GFR-XGBoost
Mourning Dove 0.023 0.051 0.050 0.020 0.064 0.058

Red-winged Blackbird 0.073 0.184 0.195 0.187 0.462 0.327
American Crow -0.026 -0.032 -0.025 -0.032 -0.107 -0.007

Blue Jay 0.002 0.009 0.008 -0.010 -0.081 -0.044
Common Yellowthroat 0.047 0.102 0.10 0.018 0.150 0.069

Barn Swallow 0.003 -4.79 -0.051 -0.016 0.025 0.079
Brown-headed Cowbird 0.05 0.073 0.094 0.075 0.184 0.130

Chipping Sparrow -0.011 -0.137 -0.038 -0.081 0.077 0.055
European Starling -0.01 -0.021 -0.014 -0.267 -0.064 0.020
American Robin 0.039 0.105 0.092 0.046 0.316 0.280

measure of the amount of multicollinearity in the multiple regression variables. I removed
the variables that have VIF scores larger than five to reach an acceptable value for VIF
(Gareth et al., 2013; Menard, 2002) and then applied the model to the other variables.
Conceptually, multicollinearity might not affect the predictive performance, but when es-
timating the model’s parameters, a rank-deficient matrix must be inverted. Therefore, in
practice, if multicollinearity exists, X in Eq. (2.52) is not full rank, and its columns are
linearly dependent. Therefore, the matrix XT X becomes a singular matrix and has no
inverse. I avoided the problem by regularizing the model (ridge regression). While the
expression XT X can be singular, the expression XT X+ λ I in Eq. (2.58) is mathemat-
ically non-singular for any λ > 0, and the inversion is numerically stable if lambda is
sufficiently large. However, that basically leads to a biased model. For that reason, I
also tried the alternative approach by removing parameters to avoid having rank deficient
matrix and removing multicollinearity. Still, the reduced and regularized models did not
improve the prediction performance. Both the reduced model after removing variables
with high VIF scores and the regularization approach illustrate that poor transferability is
not a multicollinearity consequence.
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7.5.2 Entropy Score Uses

7.5.2.1 Information Gain

The poor predictive ability of a model does not always indicate a problem with model
mis-specification. It could also be a result of errors in the data or missing covariates.
If the information in a dataset is insufficient, using a complex model will not improve
the transferability of the model. A high entropy score indicates that a noninformative
dataset results from having similar density everywhere; the distribution is spread more
equally across a lot of segments (Bishop, 2006). In contrast, if the density is very low for
some segments but high for others, the entropy score will be low, which indicates that the
information content is high in the dataset. The Shannon entropy score was found for each
species in the data to measure the amount of information in each species dataset separately.
For the BBS dataset, I calculated the entropy score to measure the information gain of each
species abundance using Eq. (7.2) when the number of individuals in each cell is divided
by the total number of individuals of each species, as shown in Table 7.3.

Table 7.3: The Shannon entropy scores for all species using Eq. (7.2) in the BBS dataset.

Species Entropy score
Mourning Dove 8.655

Red-winged Blackbird 8.089
American Crow 8.386

Blue Jay 7.647
Common Yellowthroat 7.980

Barn Swallow 7.246
Brown-headed Cowbird 7.552

Chipping Sparrow 8.215
European Starling 7.212
American Robin 8.788

For comparison, I provided the entropy scores for the two real datasets (wolf and spar-
row) in Table 7.4. The entropy scores for all species in the BBS datasets in Table 7.3 are
higher than the entropy scores of the more precise datasets in Table 7.4, indicating that
the BBS dataset has low information content. I experimented with additional information
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Table 7.4: The Shannon entropy scores for sparrow and wolf datasets using Eq. (7.2).

Dataset Entropy score
Wolf 2.15

Sparrow 5

to increase the models’ transferability. For example, using the abundance of other species
as additional covariates aimed to capture the effects of species interactions (competition,
mutualism, and predation) on the distribution of any one focal species. Table 7.6 and Fig.
7.2 show the results of the out-of-sample R2 scores using the standard model with and
without the effect of other species abundances, indicating that the out-of-sample perfor-
mance of most of the species that consider other species abundance is better than the result
without. To test whether the impact of other species abundances is the missing informa-
tion that can significantly increase the transferability of the models, I used the parametric
t-test and non-parametric Wilcoxon test to compare the out-of-sample R2 scores before
and after adding other species abundance to the model (Stevens, 2013). Both tests were
used because the parametric t-test is more powerful than the non-parametric test if the dis-
tributional assumption is valid, which is hard to check for with such a small sample size,
as seen in Fig. A.31 in Appendix A.10, and the t-test is sensitive to outliers. Because the
scores were calculated for the same species before and after and the two sets are paired,
the following t-test was used for this case:

H0 : µD = 0 vs H1 : µD > 0
where µD is the mean of the difference between the scores before and after adding other
species abundance. The following hypothesis was used when the Wilcoxon test was ap-
plied: H0 : m1 = m2 vs H1 : m1 ̸= m2

where m1 and m2 are the medians of the scores before and after adding other species abun-
dance, respectively. Both tests were used to test the following hypotheses:

H0: The difference between the out-of-sample R2 before and after adding other
species abundance is zero

versus
H1: There is a non-zero difference between the out-of-sample R2 before and after

adding other species abundance
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Table 7.5: P-values of the t-test and Wilcoxon test for comparing the out-of-sample R2

scores for the GFR models before and after adding other species’ abundance measures to
the models.

Test P-value
T-test 0.669

Wilcoxon test 0.084

Table 7.5 shows the p-values of the t-test and Wilcoxon test for comparing the out-of-
sample R2 scores for the GFR models before and after adding other species’ abundance
measures. Based on the p-values, at the 5% significance level, I do not reject the null hy-
pothesis, as illustrated in Fig. 7.3, when the two boxes of the scores for both cases seem
to overlap. There is no sufficient evidence in the data to reject the hypothesis that the two
means and medians in the populations are similar, so the impact of other species’ abun-
dances is not the missing information that can increase the transferability of the model.

Table 7.6: Out-of-sample R2 for the standard (GLM) for all species in the BBS dataset
before and after including other species’ abundance as additional covariates.

Species Without other species abundance With other species abundance
Mourning Dove 0.023 0.033

Red-winged Blackbird 0.073 0.128
American Crow -0.026 0.036

Blue Jay 0.002 0.007
Common Yellowthroat 0.047 0.052

Barn Swallow 0.003 -0.511
Brown-headed Cowbird 0.05 0.08

Chipping Sparrow -0.011 0.021
European Starling -0.009 0.002
American Robin 0.039 0.096
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Figure 7.2: Scatter plot comparing the out-of-sample R2 scores for the standard (GLM)
model for all species in the BBS dataset without including other species’ abundance mea-
sures as additional covariates in the horizontal axis and with including other species’ abun-
dance measures in the vertical axis, where each red dot refers to a species and the blue
dashed line is the line of equal performance. The out-of-sample R2 scores are better than
the scores without including other species abundance, but the difference is not significant
based on the p-values of the t-test (p-value = 0.669) and Wilcoxon test (p-value =0.084) at
the 5% significance level. I concluded that there were no significant differences between
the out-of-sample R2 scores before and after including other species’ abundance scores.
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Figure 7.3: Box plots of the out-of-sample R2 scores for the standard (GLM) model for all
species in the BBS dataset after including other species’ abundance measures as additional
covariates in the left and before including other species’ abundance measures in the right
panel. The partial overlap of the boxes illustrates my finding from the p-values of the t-test
(p-value = 0.669) and Wilcoxon test (p-value = 0.084) at the 5% significance level, show-
ing that there are no significant differences between the out-of-sample R2 scores before
and after including other species’ abundance scores.

7.5.2.2 Biodiversity of Species

A previous study has found evidence for the effect of land cover types on the biodiversity
of bird species in the BBS dataset (Haddou et al., 2022). I used the GFR models to explore
whether the dependence of the coefficients of the model on different land cover compo-
sitions could improve the transferability of these models. The response variable was the
Shannon entropy scores of all species for each segment, calculated using Eq. (7.3), re-
gressed against land cover types and temperate. I found that biodiversity patterns can be
better predicted using the GFR model than the standard GLM model, as seen in Table 7.7.
The efficient in-sample performance of GFR-XGBoost and GFR-RF models indicates that
the model has the flexibility to learn the process. The transferability of the GFR-RF model
is better than the other models, as shown in Table 7.7, because the RF approach guards
to some extent against over-fitting. The increase in both the in-sample and out-of-sample
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scores as the model flexibility increase indicates no over-fitting issue. However, there is a
discrepancy between the in-sample and out-of-sample R2 scores in the ensemble models.
Any significant difference between the land cover types in the training and testing sets
could cause discrepancies between the in-sample and out-of-sample scores. To make this
comparison, I used the 2016 year dataset as a training set, which is the closest year to the
test set in the data, that is, the 2019 set. I wanted to compare the outcomes from the same
model using the training and testing sets to investigate the significant difference between
the in-sample and out-of-sample R2 scores. Thus, I used the same model applied to these
two datasets without removing any terms. Fig. 7.4 shows the histograms of the entropy
scores of the training and testing sets, where the height of each bar indicates the number of
locations that has an entropy score within the corresponding bin. The two histograms show
the agreement of the entropy scores in the training and testing sets, which is illustrated by
the scatter plots in Fig. A.32 in Appendix A.11.

Figure 7.4: Histogram of the entropy scores of the training set in the left panel and the
testing set in the right panel, where the height of each bar indicates the number of locations
that has entropy scores within the corresponding bin.

The t-test and Wilcoxon test results in Tables 7.8 and 7.9 illustrate that there are dis-
crepancies between the land cover covariates in the training and testing datasets, which are
supported by Figs. A.33 and A.34 in Appendix A.11. I found the mean decrease in accu-
racy and SHAP feature importance scores, as described in Sections 2.7.1.1 and 2.7.2.1. For
the random forest method, I extracted the importance measures for all the variables used
in the random forest by applying the models to the training data, and retraining the model
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using the test dataset to check if the variables would have a different level of importance
in the test and training datasets. The importance scores were calculated using the mean
decrease in accuracy from permuting out-of-bag data; the details for this calculation can
be found in Section 2.7.1.1. Fig. 7.5 shows that the most important five variables using the
GFR-RF model in the training set differ from the most important variable after retraining
the same model using the test set. For the extreme gradient boosting model, I found SHAP
feature importance scores measured as the mean absolute Shapley values, as described in
Section 2.7.2.1. The most important five variables using SHAP feature importance scores
of the GFR-XGBoost model in the training set differ from the most important variable by
retraining the same model using the test set, as shown in Fig. 7.6. The scatter plots, para-
metric test, non-parametric test, importance score from the RF approach, and importance
scores for the XGBoost illustrate that there is a discrepancy between the training set and
test set that caused the difference between the in-sample and out-of-sample scores in Table
7.7.

Table 7.7: In-sample and out-of-sample scores for the GLM, GFR, REG-GFR, GFR-
CART, GFR-XGBoost, and GFR-RF models when the entropy score is the response vari-
able.

Models In-sample R2 Out-of-sample R2

GLM 0.230 0.163
GFR 0.294 0.260

Reg-GFR 0.288 0.256
GFR-CART 0.263 0.240

GFR-XGBoost 0.948 0.293
GFR-RF 0.905 0.385
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Figure 7.5: Importance scores using the mean decrease in accuracy for the most important
five variables in the GFR-RF model using the training dataset (2016) in the left panel and
test dataset (2019) in the right panel.

Figure 7.6: SHAP feature importance scores using the mean absolute Shapley values for
the highest five variable scores in the GFR-XGBoost model using the training dataset
(2016) in the left panel and test dataset (2019) in the right panel..
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Table 7.8: T-test of the land cover variables in the training set (2016) vs. the test set.

variable p-value (T-test) conclusion at 5%
urban <2.2e-16 significant difference
forest 7.474e-05 significant difference
grass 4.243e-07 significant difference
crop 0.05394 no significant difference
wet 0.0004768 significant difference

water 0.4053 no significant difference
barren 5.88e-06 significant difference

temperature <2.2e-16 significant difference
elevation 0.765 no significant difference

Table 7.9: Wilcoxon test of the land cover variables in the training set (2016) vs. the test
set.

variable p-value (Wilcoxon test) conclusion at 5%
urban <2.2e-16 significant difference
forest 3.415e-05 significant difference
grass 2.51e-07 significant difference
crop 0.01662 significant difference
wet 8.771e-06 significant difference

water 0.2224 no significant difference
barren 0.0001715 significant difference

temperature <2.2e-16 significant difference
elevation 0.575 no significant difference

7.5.2.3 Legacy Effect

Biodiversity often occurs with time lags in response to land cover types (Haddou et al.,
2022; Daskalova et al., 2020; Lira et al., 2019; Sala et al., 2000). The BBS dataset I used in
the present thesis covers the species abundance of the years 2001, 2004, 2006, 2008, 2011,
2013, 2016, and 2019 with gaps of 3, 2, 2, 3, 2, 3, and 3 years, respectively. To investigate
the effect of time lags of the BBS dataset using the GFR models, I used the biodiversity
scores in 2016 with the land cover type and temperature from 2013, the biodiversity scores
in 2013 with the land cover type and temperature from 2011, the biodiversity scores in
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2011 with the land cover type and temperature from 2008, the biodiversity scores in 2008
with the land cover type and temperature from 2006, the biodiversity scores in 2006 with
the land cover type and temperature from 2004, and the biodiversity scores in 2004 with
the land cover type and temperature from 2001 as the training set to predict the biodiversity
scores in 2019, as shown in Table 7.10. Fig. 7.7 shows the out-of-sample and in-sample
R2 scores for the GFR models with time lags, as presented in Table 7.10 versus without
time lags shown in Table 7.7.

Table 7.10: In-sample and out-of-sample scores for the GLM, GFR, reg-GFR, GFR-
CART, GFR-XGBoost, and GFR-RF models when the entropy score is the response vari-
able with a delay effect.

Models In-sample Out-of-sample
GLM 0.204 0.224
GFR 0.292 0.260

Reg-GFR 0.268 0.257
GFR-CART 0.263 0.240

GFR-XGBoost 0.961 0.303
GFR-RF 0.904 0.385

Figure 7.7: In-sample R2 for the GFR models with versus without time lags in the left
panel. The right panel is the out-of-sample R2 scores for the GFR models with versus
without time lags .

To test whether biodiversity in the BBS dataset occurs with time lags in response to
land cover covariates, I used the paired t-test and Wilcoxon test to compare the out-of-
sample R2 scores, with and without including the delay effect using the GFR models.
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Because the scores were calculated for the same models before and after including time
lags, the two sets are paired, and the paired tests were used. Both tests were used because
six scores are inadequate for the normality test, as seen in Figs. 7.8 and 7.9.

Figure 7.8: Histogram to check if the normality assumption is valid of the in-sample R2

scores for the GFR models without time delay in the left panel and with time delay in the
right panel.

Figure 7.9: Histogram to check if the normality assumption is valid of the out-of-sample
R2 scores for the GFR models without time delay in the left panel and with time delay in
the right panel.

Based on the p-values in Table 7.11 for the out-of-sample R2 scores and in-sample R2

scores, at the 5% significance level, I do not reject the null hypothesis that the two means
and medians in the populations are the same, so biodiversity in the BBS dataset does not
occur with time lags in response to land cover covariates when using the GFR models, as
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Table 7.11: P-values of the t-test and Wilcoxon test for comparing the in-sample and out-
of-sample R2 scores with and without including the delay effect using the GFR models.

Test in-sample scores p-value out-of-sample scores p-value
T-test 0.823 0.141

Wilcoxon test 0.281 0.182

illustrated in Fig. 7.10, where the two boxes in the left panel for the in-sample scores and
the two boxes in the right panel for the out-of-sample scores seem to overlap.

Figure 7.10: Box plots of the in-sample R2 scores for the GFR models with and without
time delay in the left panel. The right panel is the out-of-sample R2 scores for the GFR
models with and without a time delay. The partial overlap of the boxes illustrates my find-
ing from the p-values of the t-test (p-value = 0.823) and Wilcoxon test (p-value = 0.281)
for the in-sample scores and the p-values of the t-test (p-value = 0.141) and Wilcoxon test
(p-value = 0.182) for the out-of-sample scores at the 5% significance level, indicating that
there are no significant differences between the in-sample and out-of-sample R2 scores for
the GFR models with and without a time delay.

7.6 Conclusion

The challenging large-scale North American Breeding Bird Survey BBS dataset was used
for several purposes in this chapter. The GFR model and its various extensions were used
to model individual species distributions, using the species abundance of each segment as
the response variable and the land cover (urban, forest, grass, crop, wet, water, elevation
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and temperature) as the covariates. The Shannon entropy score was used to investigate
three different aspects of these data. First, the entropy score for each species, calculated
over all sampling units in the dataset, was used to investigate the poor transferability of the
original GFR and its various recent extensions by measuring the information content in the
dataset under study. I found that the information in the dataset was insufficient after mea-
suring the entropy score of each species’ abundance. This could be the reason for the poor
predictive ability of each species’ abundance using the GFR models. Second, the Shannon
entropy score for each sample unit was calculated over all species abundance scores and
used as a response variable to observe spatial patterns of biodiversity and to explore the
ability of GFR tools to increase the predictive ability of these models. The GFR-RF model
doubled the predictive power of the biodiversity model compared with the generalized
linear model. Finally, using GFR models, I investigated the possibility of legacy effects
on biodiversity in response to land cover change. Biodiversity in the BBS dataset did not
occur with time lags in response to land cover covariates when using the GFR models.
This conclusion conflicts with a recent study by Haddou et al. (2022) which, by analysing
the same dataset, found that the past landscape composition predominantly affects the cur-
rent effective number of species. This discrepancy could be for a number of reasons. For
example, Haddou et al. (2022) model was not limited to landscape composition but also
took into account some other variables not included in my model such as observer effects,
the effective number of land cover types, time of day effects, between-route variation, and
a quadratic fixed effect for temperature. However, most importantly, although my model
was designed to quantify neighbourhood effects, Haddou et al. (2022) model was designed
to quantify the exact contribution of past and present landscapes as a weighted function.
Furthermore, the model in Haddou et al. (2022) was used to train the current biodiversity
using past and current landscapes, but my model was designed to use the past landscape
and current biodiversity to predict future biodiversity. However, the future debts and cred-
its were used to test the direction predicted by Haddou et al. (2022) model and quantified
by a Pearson correlation, R=0.28, which can be considered a low score. The time gap used
to model the legacy effect is another difference: a 15-year window in Haddou et al. (2022)
model and a 3-year window in my model.

The BBS dataset suffers from various inherent and well-documented limitations that
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reduce its suitability for detecting species distribution patterns. The collection of the
dataset was based on a single time window (breeding season) for each route, ignoring
the abundance during the non-breeding season (Rosenberg et al., 2017). The BBS dataset
suffers from a lack of remote geographic regions and coverage of hard-to-detect species
(Rosenberg et al., 2017). Heterogeneity in observer experience is ignored in the BBS
dataset resulting in very different efficiency of species identification (Peterjohn, 2001;
Sauer et al., 1994). Dataset collection is from a random collection of roadside routes
across North America, and these routes are not representative of the landscape in the re-
gions (Peterjohn, 2001; Hanowski and Niemi, 1995). The observer records every seen or
heard bird for three minutes, which is a technique shown to have deficiencies for sampling
bird species (Peterjohn, 2001; Verner, 1985). Counts in stop points in an area do not pro-
vide complete counts of all birds present in that area (Peterjohn, 2001; Barker and Sauer,
1995). Another reason why the data are imperfect is that the collection of information
does not occur every year (Currie and Venne, 2017). Even with all of these limitations that
the very large scale, multispecies, error-prone, imperfect BBS dataset has, all of which re-
duce the data suitability for detecting the distribution patterns, the extended GFR models
offer improvement in transferability of biodiversity, and the GFR-RF model doubled the
predictive power of biodiversity compared with the GLM and original GFR models.



Chapter 8

Overall Conclusions

Given their extensive applications to questions of anthropogenic change (Iturbide et al.,
2018) it is imperative that the predictive ability of SDMs be assessed by transferring mod-
els built in one region or time to another spatiotemporal frame where the prevailing envi-
ronmental conditions are different, and possibly outside the range of covariate values pre-
viously measured (Duque-Lazo et al., 2016; Elith and Leathwick, 2009). The discrepancy
between phenomenological models and the complex biological mechanisms they try to
capture leads to the existence of highly non-linear functional responses in species-habitat
associations (Mysterud and Ims, 1998). These are especially complicated in the cases of
animals with higher mobility and cognition. Despite the increasingly recognised chal-
lenges of model transferability (Petitpierre et al., 2017; Yates et al., 2018; Wenger and
Olden, 2012; Peterson et al., 2003; Randin et al., 2006; Townsend Peterson et al., 2007;
Barbosa et al., 2009; Sundblad et al., 2009; Wenger et al., 2011), particularly for purely
statistical models such as SDMs, there is a dearth of methods for functional responses in
SDMs and a lack of comparative validation of such methods with synthetic and real data.

Here, I have built on the suggestions of Boyce and McDonald, 1999 and the early
implementation of the GFR by Matthiopoulos et al., 2011. My work has addressed the
lack of flexibility and control in the original GFR model and investigated how alternative
models might be implemented within the broader GFR framework. Replacing the global
polynomial functions of the original GFR with radial basis functions as well as using the
Gaussian mixtures approximation to approximate habitat availability allowed the RBF-
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GFR model to be more flexible than the original GFR model. This flexibility poses the
risk of over-fitting, the opposite behaviour to the rigidity of classic SDMs (Paton and
Matthiopoulos, 2016). Over-fitting is a fundamental issue for achieving transferable GFR
models (Wenger and Olden, 2012). In this respect, I found regularization approaches to be
effective in controlling over-fitting in GFRs.

I have also explored the suggestion made by recent publications that modern machine
learning methods achieve better results than traditional statistical methods (Heikkinen
et al., 2012; Elith* et al., 2006; Lawler et al., 2006; Prasad et al., 2006). I have achieved
this by combining the RBF-GFR and GFR models with CART methods and, as a further
extension, I have used ensemble approaches, random forests (RF) and extreme gradient
boosting (XGBoost).

Ignoring structure dependence in data increases the susceptibility to over-fitting and
causes autocorrelations and non-independence of model residuals (Roberts et al., 2017).
The block cross-validation approach addresses the autocorrelation of dataset structures
(Roberts et al., 2017). I have implemented the block cross-validation approach to account
for autocorrelation of dataset structures. The simulated dataset in Matthiopoulos et al.
(2015) was derived from multiple instances, each comprising 500 observations represent-
ing a sub-population in a different landscape (Matthiopoulos et al., 2015). The dataset has
a spatial structure based on these scenarios. I have used these scenarios as dataset blocks
when I applied the models. I have used a cross-validation approach based on these blocks
(10-cross-validation where each fold contained 40 blocks) to measure the out-of-sample
predicted performance. The simulated dataset in Matthiopoulos et al. (2011) is a sim-
pler version of the Matthiopoulos et al. (2015) dataset consisting of 20 blocks (sample
instances). I set the blocks to be the folds, meaning that I have used a 20-block cross-
validation approach. In the sparrow population dataset, I have used the 32 colonies as the
blocks and folds, resulting in 32-block cross-validation. The wolf dataset has a group-
ing structure based on the five packs that the wolves belong to. I have used five-blocks
cross-validation based on these five packs when applying the models.

The resulting performance of the GFR, RBF-GFR and their extensions on four datasets
showed that considerable gains in predictive performance could be achieved and that these
were approximately consistent across data sets. Going from a global median regression
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GFR model to the radial basis function model, offered local flexibility in the functional
response curves but generated only moderate improvements in out-of-sample R2 score.
However, combining the ensemble approach using bagging and boosting with the GFR
and RBF-GFR models substantially improved the out-of-sample R2 scores. In general, en-
semble methods, such as bagging and boosting were consistently among the top-scoring
models, with no evidence of over-fitting, while for other models, performance varied
more drastically. In essence, the original GLM model provides a much flatter version
of the ground truth (i.e., under-predict the actual values), while applying overly flexible
extensions of the GFR model can increase the risk of exaggerating extremes in species
distribution (i.e., over-predicting abundance hot-spots/peaks and under-predicting cold-
spots/troughs). I also replicated the finding that model ensembles can perform the same
role as regularization, buffering the models’ predictions from such variances of exaggera-
tion.

It has been clear that simple SDMs homogenise predictions (Paton and Matthiopoulos,
2016) and that polynomial GFRs can be overly volatile. The key message from my work is
that using measures against over-fitting (i.e., either regularization or ensemble modelling)
can give consistent and impressive improvements in out-of-sample predictions, in some
cases raising the R2 from 0.25 to 0.85 (typical gains were from 0.35 to 0.80). This comes
at a cost of implementation. The libraries required for fitting these models are not as user-
friendly as the base GLM approaches, so some work will be needed in the future to develop
automation in software workflows for functional responses. A key advantage of such
approaches is that regularization is an efficient way of achieving a parsimonious models
so, in addition to GFR flexibility, it would simultaneously facilitate issues of covariate
selection.

The differences in performance between different data sets are as interesting as the
consistent features of Table 5.14, but considerably harder to explain. Improvements in
predictive performance were most dramatic in the two real data sets (the sparrows and
wolves), despite the fact that simulated data sets were designed to offer better adherence
to the spatial stationarity of covariates and distributional assumptions made by the models
fitted to those data. Several reasons have been mentioned for poor transferability in the
literature. For example, the poorer information content of occupancy compared to abun-
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dance data (Yates et al., 2018), the definition of the scale of habitat availability (Barbosa
et al., 2009; Paton and Matthiopoulos, 2016; Beyer et al., 2010), or the ranging behaviour
of the study species (Vanreusel et al., 2007; Yates et al., 2018, Wogan, 2016). The sug-
gestion of stratifying the data by the type of behavioural activity (Yates et al., 2018) as a
solution to the problem of varying conditions might improve the model’s transferability
under the auspices of the GFR family of models.

In addition to the marked improvements in the predictive performance of the RBF-
GFR and the extensions of GFR and RBF-GFR compared to the original GFR and GLM
models, it is also essential to know how plausible these models are by offering some ex-
planatory power of the mechanisms mediating species distributions. Understanding these
mechanisms and rules helps assess the models’ transferability by their ability to infer these
mechanisms.

The assessment was made by visualizing the selectivity coefficients γi(x) of the best
two models, regularized GFR and regularized RBF-GFR, for the simulated dataset in
Matthiopoulos et al. (2011). The availability-weighted behaviour of the log-selectivity
coefficients γi(x) of the two models is similar. The two models produce similar values
of the selection coefficients βi,b for each environmental scenario they are presented with
because the availability-weighted selectivity coefficients have similar behaviour. Most
importantly, although the behaviour of the selectivity coefficients (γi(x)) is significantly
different, the availability-filtered behaviour of the selectivity coefficients (γi(x)) is in qual-
itative agreement, and these coefficients are consistent with the mechanisms generating
these data. This illustrates that the two models have moved towards the goal of robust and
transferable SDMs.

The implementation of the improved versions of the GFR model was tested on small-
scale and single-species datasets in the first part of my thesis. However, it was important to
test the transferability of models for a large-scale (continent-wide), multi-species dataset.
At larger scales, varying coefficient models are more likely to be useful, because, across a
large map, such as the continental USA, prevailing conditions are likely to be varying a lot.
The insufficient information content in the dataset, which was measured here by the Shan-
non entropy score, could be a reason for the poor predictive power of species distribution
of the challenging large-scale North American Breeding Bird Survey BBS dataset, which
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is known for its inherent limitations mentioned in the literature (i.e., Rosenberg et al.,
2017; Peterjohn, 2001; Sauer et al., 1994; Peterjohn, 2001; Hanowski and Niemi, 1995;
Verner, 1985; Currie and Venne, 2017). Furthermore, the Shannon entropy score was used
to quantify the appropriateness of the GFR models to observe biodiversity patterns in the
imperfect BBS dataset using the land cover covariates. Although the BBS data suffers
from inherent limitations, the GFR-RF model was characterised by twice the predictive
power of fixed-coefficient models of biodiversity and the original GFR model. The GFR
models did not detect any effects of time lags in biodiversity in response to land cover
covariates, which conflicts with a recent study by Haddou et al. (2022). Adding more
covariates can improve model performance not only in detecting the effect of time lags
in biodiversity but also can improve the predictive power of species abundances using the
GFR models of the land cover covariates using the BBS dataset. Including historical bird
data at each stop point location as an additional covariate in the BBS dataset would further
improve the BBS population trend estimates (Hudson et al., 2017). Other covariates, such
as wind turbines, can significantly affect the abundance of the species in the BBS dataset
(Miao et al., 2019). Furthermore, Li et al. (2020) found that an increase in neonicoti-
noid use led to statistically significant reductions in bird biodiversity in the BBS dataset.
Including more descriptions of the landcover type can improve the prediction of species
abundance (Cazalis et al., 2019), where the abundance of forest species in protected forest
sites is significantly higher than in unprotected forests.

For the RBF model and its extension models, the RBF approach is used to model
γi(x) in Eq. (3.3). All the explanatory variables in the two simulated, sparrow and BBS
datasets are continuous variables, so extracting the parameters of the basis functions was
possible. However, some datasets such as the wolf dataset, contained binary variables
or factors, thus making the application of the basis function approach invalid because
these binary variables can only take one of two values, which is impossible to set the
centre and bandwidth parameters, ξ j,m and σ j,m, for m basis functions from these two
values. Therefore, the RBF-GFR models could be improved to deal with explanatory
binary variables. For instance, I may try using the decision tree by modifying the model,
where the binary variables can be used for the decision nodes and the continuous variables
for the input to the model associated with the leaf nodes.



CHAPTER 8. OVERALL CONCLUSIONS 149

The parameters of the basis function are currently fixed. I could try making the basis
function adjustable, and then the model becomes a neural network, which can improve
the approximation in addition to its several advantages such as its ability to provide good
generalization (Yu et al., 2011), and eliminate the effect of outliers (Chen and Jain, 1994).
The backpropagation algorithm can be used to adjust the radial basis functions neural net-
work parameters (Bishop, 1995). In addition, another flexible model, such as the spline
approach rather than the radial basis function or polynomial function, can be used to de-
scribe γi(x). The spline approach is a local function and more flexible than the polynomial
function, which addresses the limitation of the global polynomial functions by dividing
the input domain into regions and then fitting the polynomial function in each region. The
basis spline function requires fewer parameters compared to the radial basis function, and
hence it is computationally easier in order to derive βi. Furthermore, the ability to predict
in out-of-sample datasets increases when I apply the CART and ensemble models, which
are non-linear models. As a result of this improvement, applying more flexible non-linear
models, such as generalized additive models (GAMs) or spline regression in combination
with the GFR and RBF-GFR, might increase the models’ transferability.

The work done here instills computational robustness into a method that has been pre-
viously shown to work and opens the avenue for further comparative studies and biological
interpretation. Better visualisation methods for how regression coefficients in species-
habitat association models adapt to changes in overall habitat composition provide a link
between these de-facto phenomenological models with some quintessentially mechanistic
fields of environmental sciences, particularly behavioural and landscape ecology. For ex-
ample, the analysis of the functions γi(x) in Eq. (3.1), as derived from my GFR models,
has clear parallels with models of consumer choice developed in the areas of ethology (Sih
and Christensen, 2001) and the humanities (Raghavarao et al., 2010).

Similarly, by extending the SDMs to account for regional environmental context, the
models might provide clues about more holistic processes at the level of landscape ecol-
ogy. Therefore, the GFR, an approach that begun with the sole aim of trying to improve
predictive performance may, through the generation of new hypotheses for habitat selec-
tion, lead to new insights about fundamental biology at the level of the individual and the
landscape.
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Additional Appendices

A.1 Derivation Details of the RBF-GFR Model

The simplified ζ in Eq. (3.12) is obtained using the following simplification steps of Eq.
(3.11), as follows:
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By solving for C:
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Finally,

C =
[σ2

j, j]bσ2
j,m(

[σ2
j, j]b +σ2

j,m

)2 ·
(
[µ j,k]b −ξ j,m

)2
+

[σ2
j, j]bσ2

j,m(
[σ2

j, j]b +σ2
j,m

) ·
(

ln
(
[σ2

j, j]b +σ
2
j,m

))

By inserting Eq. (A.4) into Eq. (A.2), I get:
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A.2 Comparison of the RBF-GFR model’s parameter meth-
ods

The parameters of the RBFs, ξ j,m and σ j,m, need to be determined in advance to find [I j,m]b

in Eq. (3.17). I used the histogram approximation and quantile approaches, discussed
in Section 3.2.2, to select these parameters and the best method was chosen based on
AIC and BIC. Table A.1 shows the result of the simulated dataset in Matthiopoulos et
al. (2015), which was the first dataset used in this thesis. The number of basis functions
(bins using histogram approximation and quantiles using the quantile approach) was varied
from 1 to 13 and then the RBF-GFR model was applied to calculate AIC and BIC for
comparison. The quantiles approach was chosen to select the RBF parameters since the
model selection scores (AIC and BIC) using the quantile approach for most numbers of
basis functions are less than the scores from using the histogram approach, as seen in Table
A.1. Furthermore, Table A.2 provides a comparison of the AIC and BIC scores resulting
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from using the histogram and quantile approaches to select the RBF parameters applying
to the second simulated, sparrow, wolf datasets. The scores suggest that the quantiles
approach is better based on AIC and BIC in the second simulated dataset. However, there
is no difference between the score in the wolf dataset and just a slight difference between
the score in the sparrow dataset; the scores from the histogram approach are slightly lower
than the quantile approach scores. Based on these results, the quantile approach was used
to determine the RBF parameters when applying the RBF-GFR model and its extensions.

Table A.1: The AIC and BIC scores of the RBF-GFR model in the first simulated dataset
using the histogram and quantiles approachs to determine the basis function parameters
for 1 to 13 basis functions.

Basis functions AIC (histogram) AIC (quantiles) BIC (histogram) BIC (quantiles)
1 929481.9 922463.9 929573.8 922555.8
2 919408.2 918543.3 919561.3 918696.4
3 915465.7 914724.1 915680 914938.4
4 912934.3 913538 913209.9 913813.6
5 910790.4 913027.4 911127.2 913364.2
6 910483.8 911026.5 910881.8 911424.5
7 910402.5 909267.2 910861.8 909726.5
8 908237.6 908344.1 908758.1 908864.7
9 907465.2 907256.1 908047 907837.8

10 907205.8 907205.8 907818.2 907818.2
11 907221.3 907205.8 907854.1 907818.2
12 907230.2 907205.8 907883.4 907818.2
13 907269.7 907205.8 907933.1 907818.2

Table A.2: The AIC and BIC scores of the RBF-GFR model for the second simulated,
sparrow and wolf datasets using the histogram and quantiles approachs to determine the
basis function parameters.

Dataset AIC (histogram) AIC (quantiles) BIC (histogram) BIC (quantiles)
Second simulated 595025.5 595015.3 595572.4 595544.5

Sparrow 1698.067 1698.687 1780.54 1781.161
Wolf 15546.34 15546.34 15881.76 15881.76
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A.3 Optimal Number of Gaussian Mixture Components

The RBF-GFR model depends on different complexity parameters, such as the number
of Gaussian mixture components, see Eq. (3.4). To optimize the number of Gaussian
mixture components K, I found the number of components that minimize the BIC score
for each block (scenario), then used the average of the number of components of all blocks
as the optimal number of Gaussian mixture components for the RBF-GFR model and its
extensions. The number of components is not allowed to be close or more than the data
points. This is because each component will contain one point and cause singularity issues.
Thus, the best number of components is set to less than half of the number of data points
in a block. The optimal number of components using this method is 9, 24 and 17 for the
first simulated, second simulated and wolf datasets as seen in Fig A.1. For the sparrow
population dataset, the best number of Gaussian components for the RBF-GFR model was
39. However, each colony consists of 40 data points, and since the number of components
is not allowed to be close or more than the data points, the best number of components was
set to 18 components as it is less than half of the number of data points in each colony.

A.4 Model Diagnostics

I have used the scatter plot of residuals against the fitted values (Fig. A.2 - Fig. A.11)
to check the first assumption, which is that the residuals are independent and identically
distributed, and I have used the Quantile-Quantile plots (Fig. A.12 - Fig. A.21) to check
if residuals are normally distributed. In the residual plots, the residuals spread around
a horizontal line with distinct patterns. the bands in these plots correspond to different
counts of the response variable. Furthermore, the Quantile-Quantile plots are not ideal; the
deviations are in the tails in most cases. However, the focus of this thesis is on the out-of-
sample predictive performance and the out-of-sample results are sufficiently encouraging
even with this mismatch.

In 1976, the British statistician George Box wrote the famous line that “all models
are wrong, but some are useful.” Usefulness, in the context of the research carried out
for my thesis, is quantified by out-of-sample predictive performance, as the focus of my
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(a) (b)

(c) (d)

Figure A.1: The best number of Gaussian mixture components that minimizes the BIC
score for each block (blue points). The red line refers to the average of the number of
components of all blocks; the optimal number of Gaussian mixture components for the
RBF-GFR model and its extensions using (a) the first simulated dataset, K = 9 (b) the
second simulated dataset, K = 24 (c) the sparrow population dataset, K = 18 (d) the Wolf
dataset, K = 17.
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Figure A.2: Predicted values vs residuals of the GFR model in the first simulated dataset

research has been more on predictive rather than explanatory modelling. For that reason, I
conclude that while the residual diagnostics clearly point to room for improvement in the
modelling, they are no reason for undue concern as long as the out-of-sample predictive
performance indicates a clear improvement over state-of-the-art models, which I have been
able to successfully demonstrate.

A.5 Out-of-sample R2 for the Sparrow Dataset

Table A.3 shows the out-of-sample R2 scores for the sparrow dataset for all models using
one basis function or order and 3 basis functions or orders
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Figure A.3: Predicted values vs residuals of the RBF-GFR model in the first simulated
dataset

Figure A.4: Predicted values vs residuals of the regularized GFR model in the first simu-
lated dataset
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Figure A.5: Predicted values vs residuals of the regularized RBF-GFR model in the first
simulated dataset

Figure A.6: Predicted values vs residuals of the GFR-CART model in the first simulated
dataset
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Figure A.7: Predicted values vs residuals of the RBF-GFR-CART model in the first simu-
lated dataset

Figure A.8: Predicted values vs residuals of the GFR-RF model in the first simulated
dataset
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Figure A.9: Predicted values vs residuals of the RBF-GFR-RF model in the first simulated
dataset

Figure A.10: Predicted values vs residuals of the GFR-XGboost model in the first simu-
lated dataset
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Figure A.11: Predicted values vs residuals of the RBF-GFR-XGboost model in the first
simulated dataset

Figure A.12: Quantile-Quantile plot of the GFR model’s residuals in the first simulated
dataset
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Figure A.13: Quantile-Quantile plot of the RBF-GFR model’s residuals in the first simu-
lated dataset

Figure A.14: Quantile-Quantile plot of the regularized GFR model’s residuals in the first
simulated dataset
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Figure A.15: Quantile-Quantile plot of the regularized RBF-GFR model’s residuals in the
first simulated dataset

Figure A.16: Quantile-Quantile plot of the GFR-CART model’s residuals in the first sim-
ulated dataset
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Figure A.17: Quantile-Quantile plot of the RBF-GFR-CART model’s residuals in the first
simulated dataset

Figure A.18: Quantile-Quantile plot of the GFR-RF model’s residuals in the first simulated
dataset
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Figure A.19: Quantile-Quantile plot of the RBF-GFR-RF model’s residuals in the first
simulated dataset

Figure A.20: Quantile-Quantile plot of the GFR-XGboost model’s residuals in the first
simulated dataset
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Figure A.21: Quantile-Quantile plot of the RBF-GFR-XGboost model’s residuals in the
first simulated dataset

Table A.3: Out-of-sample R2 for sparrow data using one basis function or order and 3
basis functions or orders.

Models One (basis or order) Three (basis or orders)
GFR 0.338 0.250

GFR-CART 0.619 0.545
GFR-RF 0.730 0.765

GFR-XGBoost 0.834 0.599
RBF-GFR 0.306 0.351

RBF-CART 0.884 0.689
RBF-RF 0.861 0.920

RBF-XGBoost 0.861 0.935

A.6 Model Selection Scores for the GFR and RBF-GFR
Models

The primary goal of the thesis was to increase the transferability of SDMs and compare
the models’ performance by the out-of-sample performance score. In addition, I reached
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the model selection scores of the GFR and RBF-GFR models. The AIC and BIC scores
for the RBF-GFR model are lower than the AIC and BIC scores for the GFR model for
most of the datasets except for the second simulated data, where the scores are equal, as
seen in Table A.4. The RBF-GFR model often outperforms the GFR model in terms of the
out-of-sample R2 and model selection scores.

Table A.4: The AIC and BIC scores of the GFR and RBF-GFR model were applied to the
first simulated, second simulated, sparrow and wolf datasets.

Dataset AIC (GFR) AIC (RBF-GFR) BIC (GFR) BIC (RBF-GFR)
First simulated 907217.4 907205.8 907860.4 907818.2

Second simulated 595015.3 595015.3 595544.5 595544.5
Sparrow 1698.76 1698.687 1781.234 1781.161

Wolf 15625.83 15546.34 15961.25 15881.76

A.7 R2
DEV for Count Dataset

R2
DEV in Eq. (2.61) is generally better behave measurement based on deviance residuals

than R2 in Eq. (2.60) for count data regression models as described in Section 2.9. Since
the two simulated datasets that I used are species abundance datasets, I used R2

DEV to
calculate the out-of-sample predictive performance in these datasets as shown in the rank
table in Fig. A.22. However, the overall ranks using R2

DEV are not different from the
overall ranks using R2 in Eq. (2.60) by comparing the average rank in Fig. 5.14 with Fig.
A.22.

A.8 The Code and implementation

The following is a hyperlink to my GitHub repository that includes the code and imple-
mentation: https://github.com/shaykhah/rcodes/edit/main/README.md
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Figure A.22: Rank table of the out-of-sample R2
DEV scores of the models using the two

simulated, sparrow, wolf datasets and the average score of out-of-sample R2. Light colours
indicate low ranks; the rank of the models increases as the colour shading gets darker.
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A.9 Visualising Model Predictions for Some Samples

Images of predictions maps for the ground truth and the various models shown in Table
3.1 of some samples in the second simulated dataset such as samples # 2, 3, 5, 6, 10, 12, 15
and 20 in Figs A.23, A.24, A.26, A.27, A.28, A.29 and A.30 respectively. The predictions
from the new extended models are much better than the predictions from the GFR model
in the literature and the standard model in Eq. (2.1) based on comparing the maps to the
truth. Bagging and boosting regression trees are the best performing models or close to
the best models in each case. Overall, the GLM model provides a much flatter version
of the truth, but if the wrong extension of the GFR model is chosen, the opposite risk
of over predicting the extremes occurs. The GFR extension models are very different in
terms of the out-of-sample R2 scores from each other. The GFR model in sample instance
# 5, from Fig. A.25 is homogeneous after scaling in the left panel; however, without
scaling, as in the right panel, the GFR model seems to be extreme, without guarantee that,
under extrapolation, the baseline will remain correct. The baseline for the average values,
across the map is predicted by the average values of the covariances; thus, the coefficients
obtained for the way the system responds to the average values of the coefficients do not
work under extrapolation using the GFR model. In addition, Fig. A.25 shows one of the
rare occasions where the GLM model actually over predicts some areas. In Fig. A.27, the
RBF-GFR model maps in the scaling and non-scaling scenarios are white maps without
numbers. The reason for this is seen in the left panel: it is not a problem of truncation
but rather of singularity: the Gaussian kernel function has effectively converged to the
degenerate case of extreme scenarios. This singularity problem was addressed by applying
a regularization approach, as shown in the regularized RBF-GFR map, which also offers
the best model in terms of out-of-sample prediction performance in this scenario. Sample
instance # 20 is the only sample from the selected samples where the positions of the
hotspots are not correctly predicted by most methods as shown in Fig. A.30.
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Figure A.23: A heat map of abundance and geographical predictions of the abundance of
sample instance # 2 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models, as shown in
Table 3.1. The two panels differ in colour range. In the left panel, the same output range
is used for all models, while in the right panel, the colour range encompasses the whole
range of model outputs and may be different for different models, as the minimum and
maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.24: A heat map of abundance and geographical predictions of the abundance of
sample instance # 3 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models, as shown in
Table 3.1. The two panels differ in colour range. In the left panel, the same output range
is used for all models, while in the right panel, the colour range encompasses the whole
range of model outputs and may be different for different models, as the minimum and
maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.25: A heat map of abundance and geographical predictions of the abundance of
sample instance # 5 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models, as shown in
Table 3.1. The two panels differ in colour range. In the left panel, the same output range
is used for all models, while in the right panel, the colour range encompasses the whole
range of model outputs and may be different for different models, as the minimum and
maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.26: A heat map of abundance and geographical predictions of the abundance of
sample instance # 6 from the second simulated dataset in terms of geographical dimen-
sions: latitude and longitude for the ground truth and the various models, as shown in
Table 3.1. The two panels differ in colour range. In the left panel, the same output range
is used for all models, while in the right panel, the colour range encompasses the whole
range of model outputs and may be different for different models, as the minimum and
maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.27: A heat map of abundance and geographical predictions of the abundance
of sample instance # 10 from the second simulated dataset in terms of geographical di-
mensions: latitude and longitude for the ground truth and the various models, as shown
in Table 3.1. The two panels differ in colour range. In the left panel, the same output
range is used for all models, while in the right panel, the colour range encompasses the
whole range of model outputs and may be different for different models, as the minimum
and maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.28: A heat map of abundance and geographical predictions of the abundance
of sample instance # 12 from the second simulated dataset in terms of geographical di-
mensions: latitude and longitude for the ground truth and the various models, as shown
in Table 3.1. The two panels differ in colour range. In the left panel, the same output
range is used for all models, while in the right panel, the colour range encompasses the
whole range of model outputs and may be different for different models, as the minimum
and maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.29: A heat map of abundance and geographical predictions of the abundance
of sample instance # 15 from the second simulated dataset in terms of geographical di-
mensions: latitude and longitude for the ground truth and the various models, as shown
in Table 3.1. The two panels differ in colour range. In the left panel, the same output
range is used for all models, while in the right panel, the colour range encompasses the
whole range of model outputs and may be different for different models, as the minimum
and maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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Figure A.30: A heat map of abundance and geographical predictions of the abundance
of sample instance # 20 from the second simulated dataset in terms of geographical di-
mensions: latitude and longitude for the ground truth and the various models, as shown
in Table 3.1. The two panels differ in colour range. In the left panel, the same output
range is used for all models, while in the right panel, the colour range encompasses the
whole range of model outputs and may be different for different models, as the minimum
and maximum values for which colours should be plotted are limited by the minimum and
maximum numbers of the true values. Model outputs that larger than the maximum value
of the truth are thus treated as missing values and are shown in white. The map with red
borders is the best predictive model based on out-of-sample R2.
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A.10 Normality Assumption Check of Out-of-sample R2

Scores

Fig. A.31 shows the histograms used for the normality assumption check of the out-of-
sample R2 scores distribution from the standard (GLM) model for all species in the BBS
dataset before including other species’ abundance as additional covariates in the left and
after including other species’ abundance in the right panel.

Figure A.31: Histogram of normality assumption check of out-of-sample R2 scores distri-
bution from the standard (GLM) model for all species in the BBS dataset before includ-
ing other species’ abundance as additional covariates in the left and after including other
species’ abundance in the right panel.

A.11 Discrepancy Between the Land Cover Covariates in
Training and Testing Satasets of the BBS Dataset.

The scatter plots in Fig. A.32 show the agreement of the entropy scores in the training
and testing sets in the BBS dataset, where most of the points are scattered around a line of
equal performance. Figs. A.33 and A.34 illustrate how the training set is different from
the testing set of the BBS dataset, as described in Section 7.5.2.2.
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Figure A.32: Scatter plot of entropy scores in the training set in the x-axis vs entropy
scores of the test set in the y-axis where the majority of the points are scattered around the
line of equal performance.
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Figure A.33: Scatter plots of urban and forest covariates in the training set in the x-axis vs
urban and forest covariates of the test set in the y-axis and the line is the equal performance
line where there is a discrepancy between these land cover covariates in training and testing
datasets.
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Figure A.34: Scatter plots of grass and water covariates in the training set in the x-axis vs
grass and water covariates of the test set in the y-axis and the line is the equal performance
line where there is a discrepancy between these land cover covariates in training and testing
datasets.



Bibliography

G. Aarts, M. MacKenzie, B. McConnell, M. Fedak, and J. Matthiopoulos. Estimating
space-use and habitat preference from wildlife telemetry data. Ecography, 31(1):140–
160, 2008.

G. Aarts, J. Fieberg, and J. Matthiopoulos. Comparative interpretation of count, presence–
absence and point methods for species distribution models. Methods in Ecology and

Evolution, 3(1):177–187, 2012.

H. Akaike. A new look at the statistical model identification. IEEE transactions on auto-

matic control, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705.

S. Aldossari, J. Matthiopoulos, and D. Husmeier. Statistical modelling of habitat selection.
In The 35th International Workshop on Statistical Modelling. Servicio Editorial de la
Universidad del País Vasco, 2020.

S. Aldossari, D. Husmeier, and J. Matthiopoulos. Generalized functional responses in
habitat selection fitted by decision trees and random forests. In The 3rd International

Conference on Statistics: Theory and Applications (ICSTA’21). Avestia Publishing,
2021. doi: 10.11159/icsta21.125.

S. Aldossari, D. Husmeier, and J. Matthiopoulos. Transferable species distribution mod-
elling: Comparative performance of generalised functional response models. Ecological

Informatics, 71:101803, 2022.

M. Austin. Spatial prediction of species distribution: an interface between ecological

183



BIBLIOGRAPHY 184

theory and statistical modelling. Ecological modelling, 157(2-3):101–118, 2002. doi:
https://doi.org/10.1016/S0304-3800(02)00205-3.

M. Austin. Species distribution models and ecological theory: a critical assessment and
some possible new approaches. Ecological modelling, 200(1-2):1–19, 2007.

V. Bahn and B. J. McGill. Testing the predictive performance of distribution models.
Oikos, 122(3):321–331, 2013. doi: https://doi.org/10.1111/j.1600-0706.2012.00299.x.

M. Barbet-Massin, Q. Rome, C. Villemant, and F. Courchamp. Can species distribution
models really predict the expansion of invasive species? PloS one, 13(3):e0193085,
2018. doi: https://doi.org/10.1371/journal.pone.0193085.

A. M. Barbosa, R. Real, and J. M. Vargas. Transferability of environmental favourability
models in geographic space: the case of the iberian desman (galemys pyrenaicus) in
portugal and spain. Ecological modelling, 220(5):747–754, 2009. doi: https://doi.org/
10.1016/j.ecolmodel.2008.12.004.

R. J. Barker and J. R. Sauer. Statistical aspects of point count sampling. In: Ralph, C.

John; Sauer, John R.; Droege, Sam, technical editors. 1995. Monitoring bird popula-

tions by point counts. Gen. Tech. Rep. PSW-GTR-149. Albany, CA: US Department of

Agriculture, Forest Service, Pacific Southwest Research Station: p. 125-130, 149, 1995.

A. Barnwal, H. Cho, and T. Hocking. Survival regression with accelerated failure time
model in xgboost. Journal of Computational and Graphical Statistics, pages 1–11,
2022.

P. Batz, A. Ruttor, and M. Opper. Approximate bayes learning of stochastic differential
equations. Physical Review E, 98(2):022109, 2018.

H. L. Beyer, D. T. Haydon, J. M. Morales, J. L. Frair, M. Hebblewhite, M. Mitchell, and
J. Matthiopoulos. The interpretation of habitat preference metrics under use–availability
designs. Philosophical Transactions of the Royal Society B: Biological Sciences, 365
(1550):2245–2254, 2010. doi: https://doi.org/10.1098/rstb.2010.0083.



BIBLIOGRAPHY 185

G. Biau and E. Scornet. A random forest guided tour. Test, 25(2):197–227, 2016.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

W. M. Block and L. A. Brennan. The habitat concept in ornithology. In Current ornithol-

ogy, pages 35–91. Springer, 1993.

A. A. Boiarov and O. N. Granichin. Stochastic approximation algorithm with randomiza-
tion at the input for unsupervised parameters estimation of gaussian mixture model with
sparse parameters. Automation and Remote Control, 80(8):1403–1418, 2019.

M. S. Boyce and L. L. McDonald. Relating populations to habitats using resource selection
functions. Trends in ecology & evolution, 14(7):268–272, 1999. doi: https://doi.org/
10.1016/S0169-5347(99)01593-1.

M. S. Boyce, P. R. Vernier, S. E. Nielsen, and F. K. Schmiegelow. Evaluating resource
selection functions. Ecological modelling, 157(2-3):281–300, 2002.

L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. doi: https://doi.org/
10.1023/A:1010933404324.

L. Breiman, J. Friedman, and R. Olshen. Clasification and Regression Trees. Wadsworth,
1984.

L. Brillouin. Science and information theory. Courier Corporation, 2013.

R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets. Pattern recognition, 36(6):1291–
1302, 2003.

A. C. Cameron and F. A. Windmeijer. R-squared measures for count data regression
models with applications to health-care utilization. Journal of Business & Economic

Statistics, 14(2):209–220, 1996.



BIBLIOGRAPHY 186

G. Casella and R. L. Berger. Statistical inference. Cengage Learning, 2021.

V. Cazalis, S. Belghali, and A. S. Rodrigues. Using a large-scale biodiversity monitoring
dataset to test the effectiveness of protected areas at conserving north-american breeding
birds. BioRxiv, page 433037, 2019.

D. S. Chen and R. C. Jain. A robust backpropagation learning algorithm for function
approximation. IEEE Transactions on Neural Networks, 5(3):467–479, 1994.

T. Chen and C. Guestrin. XGBoost: a scalable tree boosting system. KDD, pages 785–794,
2016.

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, et al. Xgboost:
extreme gradient boosting. R package version 0.4-2, 1(4):1–4, 2015.

D. J. Currie and S. Venne. Climate change is not a major driver of shifts in the geographical
distributions of north american birds. Global Ecology and Biogeography, 26(3):333–
346, 2017.

G. N. Daskalova, I. H. Myers-Smith, A. D. Bjorkman, S. A. Blowes, S. R. Supp, A. E.
Magurran, and M. Dornelas. Landscape-scale forest loss as a catalyst of population and
biodiversity change. Science, 368(6497):1341–1347, 2020.

T. G. Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting and randomization. Machine learning, 32:1–22,
1998.

D. A. Donald, Y. Everingham, L. McKinna, and D. Coomans. Feature selection in the
wavelet domain: adaptive wavelets. Elsevier, 2009.

C. F. Dormann. Promising the future? global change projections of species distribu-
tions. Basic and applied ecology, 8(5):387–397, 2007. doi: https://doi.org/10.1016/
j.baae.2006.11.001.



BIBLIOGRAPHY 187

P. Du, A. Samat, B. Waske, S. Liu, and Z. Li. Random forest and rotation forest for fully
polarized sar image classification using polarimetric and spatial features. ISPRS Journal

of Photogrammetry and Remote Sensing, 105:38–53, 2015.

J. Duque-Lazo, H. Van Gils, T. Groen, and R. Navarro-Cerrillo. Transferability of species
distribution models: The case of phytophthora cinnamomi in southwest spain and south-
west australia. Ecological Modelling, 320:62–70, 2016.

J. Ehrlén and W. F. Morris. Predicting changes in the distribution and abundance of species
under environmental change. Ecology letters, 18(3):303–314, 2015. doi: https://doi.org/
10.1111/ele.12410.

J. Elith and J. R. Leathwick. Species distribution models: ecological explanation and
prediction across space and time. Annual review of ecology, evolution, and systematics,
40:677–697, 2009.

J. Elith*, C. H. Graham*, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans,
F. Huettmann, J. R. Leathwick, A. Lehmann, et al. Novel methods improve prediction
of species’ distributions from occurrence data. Ecography, 29(2):129–151, 2006.

M. R. Evans, K. J. Norris, and T. G. Benton. Predictive ecology: systems approaches,
2012.

J. J. Faraway. Extending the linear model with R: generalized linear, mixed effects and

nonparametric regression models. CRC press, 2016.

D. A. Fordham, H. R. Akçakaya, J. Alroy, F. Saltré, T. M. Wigley, and B. W. Brook.
Predicting and mitigating future biodiversity loss using long-term ecological proxies.
Nature Climate Change, 6(10):909–916, 2016. doi: https://www.nature.com/articles/
nclimate3086.

C. Fraley, A. E. Raftery, T. B. Murphy, and L. Scrucca. mclust version 4 for r: normal
mixture modeling for model-based clustering, classification, and density estimation.
Technical report, Technical report, 2012.



BIBLIOGRAPHY 188

F. Frankel and R. Reid. Big data: Distilling meaning from data. Nature, 455(7209):30–30,
2008.

Y. Gao and Q. Dai. View-based 3-D object retrieval. Morgan Kaufmann, 2014.

J. Gareth, W. Daniela, H. Trevor, and T. Robert. An introduction to statistical learning:

with applications in R. Spinger, 2013.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman
and Hall/CRC, 1995.

J. E. Gentle, W. K. Härdle, and Y. Mori. Springer Handbooks of Computational Statistics.
Springer, 2012.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learning, 63
(1):3–42, 2006.

C. S. Gillies, M. Hebblewhite, S. E. Nielsen, M. A. Krawchuk, C. L. Aldridge, J. L. Frair,
D. J. Saher, C. E. Stevens, and C. L. Jerde. Application of random effects to the study of
resource selection by animals. Journal of Animal Ecology, 75(4):887–898, 2006. doi:
https://doi.org/10.1111/j.1365-2656.2006.01106.x.

I. M. R. Godvik, L. E. Loe, J. O. Vik, V. Veiberg, R. Langvatn, and A. Mysterud. Temporal
scales, trade-offs, and functional responses in red deer habitat selection. Ecology, 90
(3):699–710, 2009.

A. S. Goldberger et al. Econometric theory. Econometric theory., 1964.

Y. Haddou, R. Mancy, J. Matthiopoulos, S. Spatharis, and D. M. Dominoni. Widespread
extinction debts and colonization credits in united states breeding bird communities.
Nature ecology & evolution, 6(3):324–331, 2022.

H. Han, X. Guo, and H. Yu. Variable selection using mean decrease accuracy and mean
decrease gini based on random forest. In 2016 7th ieee international conference on

software engineering and service science (icsess), pages 219–224. IEEE, 2016.



BIBLIOGRAPHY 189

J. Han, J. Pei, and H. Tong. Data mining: concepts and techniques. Morgan kaufmann,
2022.

J. M. Hanowski and G. J. Niemi. A comparison of on-and off-road bird counts: Do you
need to go off road to count birds accurately?(una comparación de conteos dentro-de
y fuera-de caminos:¿ hay que alejarse de los caminos para contar aves con exactitud?).
Journal of Field Ornithology, pages 469–483, 1995.

R. Harré. Cognitive science: A philosophical introduction. Sage, 2002.

T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the Royal Statistical

Society: Series B (Methodological), 55(4):757–779, 1993. doi: https://doi.org/10.1111/
j.2517-6161.1993.tb01939.x.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2008.

T. Hastie, J. Qian, and K. Tay. An introduction to glmnet, 2016.

R. K. Heikkinen, M. Marmion, and M. Luoto. Does the interpolation accuracy of species
distribution models come at the expense of transferability? Ecography, 35(3):276–288,
2012.

M. Higashi and G. J. Klir. Measures of uncertainty and information based on possibility
distributions. International journal of general systems, 9(1):43–58, 1982.

J. D. Holbrook, L. E. Olson, N. J. DeCesare, M. Hebblewhite, J. R. Squires, and R. Steen-
weg. Functional responses in habitat selection: clarifying hypotheses and interpreta-
tions. Ecological Applications, 29(3):e01852, 2019.

C. S. Holling. Some characteristics of simple types of predation and parasitism1. The

canadian entomologist, 91(7):385–398, 1959.

J. E. Houlahan, S. T. McKinney, T. M. Anderson, and B. J. McGill. The priority of predic-
tion in ecological understanding. Oikos, 126(1):1–7, 2017. doi: https://doi.org/10.1111/
oik.03726.



BIBLIOGRAPHY 190

J. Huang, H. Fang, and X. Fan. Decision forest for classification of gene expression data.
Computers in biology and medicine, 40(8):698–704, 2010.

D. E. Huber and C. G. Healey. Visualizing data with motion. In VIS 05. IEEE Visualization,

2005., pages 527–534. IEEE, 2005.

M.-A. R. Hudson, C. M. Francis, K. J. Campbell, C. M. Downes, A. C. Smith, and K. L.
Pardieck. The role of the north american breeding bird survey in conservation. The

Condor: Ornithological Applications, 119(3):526–545, 2017.

M. Iturbide, J. Bedia, and J. M. Gutiérrez. Background sampling and transferability of
species distribution model ensembles under climate change. Global and Planetary

Change, 166:19–29, 2018.

A. Kassambara. Machine learning essentials: Practical guide in R. Sthda, 2018.

H. K. Kindsvater, N. K. Dulvy, C. Horswill, M.-J. Juan-Jordá, M. Mangel, and
J. Matthiopoulos. Overcoming the data crisis in biodiversity conservation. Trends

in ecology & evolution, 33(9):676–688, 2018. doi: https://doi.org/10.1016/
j.tree.2018.06.004.

S. Kullback. Information theory and statistics. Courier Corporation, 1997.

J. J. Lawler, D. White, R. P. Neilson, and A. R. Blaustein. Predicting climate-induced
range shifts: model differences and model reliability. Global change biology, 12(8):
1568–1584, 2006.

C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation around the median. Journal

of experimental social psychology, 49(4):764–766, 2013. doi: https://doi.org/10.1016/
j.jesp.2013.03.013.

A. Liaw and M. Wiener. Package ‘randomforest’. University of California, Berkeley:

Berkeley, CA, USA, 2018. doi: 10.1023/A:1010933404324.



BIBLIOGRAPHY 191

P. K. Lira, M. de Souza Leite, and J. P. Metzger. Temporal lag in ecological responses
to landscape change: Where are we now? Current Landscape Ecology Reports, 4(3):
70–82, 2019.

R. J. Lopez. L’hôpital’s rule. Maple via Calculus: A Tutorial Approach, pages 88–90,
1994.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Ad-

vances in neural information processing systems, 30, 2017.

R. MacArthur. Fluctuations of animal populations and a measure of community sta-
bility. Ecology, 36(3):533–536, 1955. ISSN 00129658, 19399170. URL http:

//www.jstor.org/stable/1929601.

D. J. MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

D. I. MacKenzie, J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines.
Occupancy estimation and modeling: inferring patterns and dynamics of species occur-

rence. Elsevier, 2017.

U. Manikpuri and Y. Yadav. Image enhancement through logarithmic transformation. In-

ternational Journal of, 2014.

D. L. Marchisio and R. O. Fox. Solution of population balance equations using the direct
quadrature method of moments. Journal of Aerosol Science, 36(1):43–73, 2005.

V. Maris, P. Huneman, A. Coreau, S. Kéfi, R. Pradel, and V. Devictor. Prediction in
ecology: promises, obstacles and clarifications. Oikos, 127(2):171–183, 2018. doi:
https://doi.org/10.1111/oik.04655.

J. Matthiopoulos. How to be a quantitative ecologist: the’A to R’of green mathematics

and statistics. John Wiley & Sons, 2011.

J. Matthiopoulos, M. Hebblewhite, G. Aarts, and J. Fieberg. Generalized functional re-
sponses for species distributions. Ecology, 92(3):583–589, 2011. doi: https://doi.org/
10.1890/10-0751.1.



BIBLIOGRAPHY 192

J. Matthiopoulos, J. Fieberg, G. Aarts, H. L. Beyer, J. M. Morales, and D. T. Haydon.
Establishing the link between habitat selection and animal population dynamics. Eco-

logical Monographs, 85(3):413–436, 2015. doi: https://doi.org/10.1890/14-2244.1.

J. Matthiopoulos, C. Field, and R. MacLeod. Predicting population change from models
based on habitat availability and utilization. Proceedings of the Royal Society B, 286
(1901):20182911, 2019. doi: https://doi.org/10.1098/rspb.2018.2911.

J. Matthiopoulos, J. Fieberg, and G. Aarts. Species-habitat associations: Spatial data,
predictive models, and ecological insights, 2020a.

J. Matthiopoulos, J. Fieberg, G. Aarts, F. Barraquand, and B. E. Kendall. Within reach?
habitat availability as a function of individual mobility and spatial structuring. The

American Naturalist, 195(6):1009–1026, 2020b. doi: https://doi.org/10.1086/708519.

M. Mauritzen, S. E. Belikov, A. N. Boltunov, A. E. Derocher, E. Hansen, R. A. Ims,
Ø. Wiig, and N. Yoccoz. Functional responses in polar bear habitat selection. Oikos,
100(1):112–124, 2003. doi: https://doi.org/10.1034/j.1600-0706.2003.12056.x.

P. McCullagh and J. Nelder. Generalised linear models.,(chapman and hall ltd: London.),
1983.

G. J. McLachlan and S. Rathnayake. On the number of components in a gaussian mixture
model. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5):
341–355, 2014.

G. J. McLachlan, S. X. Lee, and S. I. Rathnayake. Finite mixture models. Annual review

of statistics and its application, 6:355–378, 2019.

S. Menard. Applied logistic regression analysis. Number 106. Sage, 2002.

R. Miao, P. N. Ghosh, M. Khanna, W. Wang, and J. Rong. Effect of wind turbines on bird
abundance: A national scale analysis based on fixed effects models. Energy Policy, 132:
357–366, 2019.



BIBLIOGRAPHY 193

K. Miura. An introduction to maximum likelihood estimation and information geometry.
Interdisciplinary Information Sciences, 17(3):155–174, 2011.

C. Molnar. Interpretable machine learning. Lulu. com, 2020.

N. Mouquet, Y. Lagadeuc, V. Devictor, L. Doyen, A. Duputié, D. Eveillard, D. Faure,
E. Garnier, O. Gimenez, P. Huneman, et al. Predictive ecology in a changing world.
Journal of Applied Ecology, 52(5):1293–1310, 2015. doi: https://doi.org/10.1111/1365-
2664.12482.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. doi:
https://doi.org/10.1080/09332480.2014.914768.

A. Mysterud and R. A. Ims. Functional responses in habitat use: Availability influ-
ences relative use in trade-off situations. Ecology, 79(4):1435–1441, 1998. doi:
https://doi.org/10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2.

A. Mysterud and R. A. Ims. Relating populations to habitats. Trends in ecology & evolu-

tion, 14(12):489–490, 1999. doi: 10.1.1.707.9728.

J. I. Myung and M. A. Pitt. Model comparison methods. Methods in enzymology, 383:
351–366, 2004.

T. T. Nguyen, H. D. Nguyen, F. Chamroukhi, and G. J. McLachlan. Approximation by
finite mixtures of continuous density functions that vanish at infinity. Cogent Mathe-

matics & Statistics, 7(1):1750861, 2020.

V. Nikulin, G. J. McLachlan, and S. K. Ng. Ensemble approach for the classification
of imbalanced data. In Australasian Joint Conference on Artificial Intelligence, pages
291–300. Springer, 2009.

N. C. Oza and S. Russell. Online ensemble learning. University of California, Berkeley,
2001.



BIBLIOGRAPHY 194

R. S. Paton and J. Matthiopoulos. Defining the scale of habitat availability for models of
habitat selection. Ecology, 97(5):1113–1122, 2016. doi: https://doi.org/10.1890/14-
2241.1.

K. Pearson. Method of moments and method of maximum likelihood. Biometrika, 28
(1/2):34–59, 1936.

B. G. Peterjohn. Some considerations on the use of ecological models to predict species’
geographic distributions. The Condor, 103(3):661–663, 2001.

A. T. Peterson, M. Papes, and D. A. Kluza. Predicting the potential invasive distributions
of four alien plant species in north america. Weed Science, 51(6):863–868, 2003.

B. Petitpierre, O. Broennimann, C. Kueffer, C. Daehler, and A. Guisan. Selecting pre-
dictors to maximize the transferability of species distribution models: Lessons from
cross-continental plant invasions. Global Ecology and Biogeography, 26(3):275–287,
2017.

S. J. Phillips, R. P. Anderson, and R. E. Schapire. Maximum entropy modeling of species
geographic distributions. Ecological modelling, 190(3-4):231–259, 2006. doi: https:
//doi.org/10.1016/j.ecolmodel.2005.03.026.

P. Pintelas and I. E. Livieris. Special issue on ensemble learning and applications, 2020.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

R. Polikar. Ensemble learning. In Ensemble machine learning, pages 1–34. Springer,
2012.

M. Poongodi, M. Malviya, C. Kumar, M. Hamdi, V. Vijayakumar, J. Nebhen, and H. Alya-
mani. New york city taxi trip duration prediction using mlp and xgboost. International

Journal of System Assurance Engineering and Management, 13(1):16–27, 2022.



BIBLIOGRAPHY 195

A. M. Prasad, L. R. Iverson, and A. Liaw. Newer classification and regression tree tech-
niques: bagging and random forests for ecological prediction. Ecosystems, 9(2):181–
199, 2006.

P. PRISM. Prism climate data (prism climate group, oregon state university), 2019.
http://prism.oregonstate.edu.

D. Raghavarao, J. B. Wiley, and P. Chitturi. Choice-based conjoint analysis: models and

designs. Chapman and Hall/CRC, 2010. doi: https://doi.org/10.1201/9781420099973.

M. Rakhra, P. Soniya, D. Tanwar, P. Singh, D. Bordoloi, P. Agarwal, S. Takkar, K. Jairath,
and N. Verma. Crop price prediction using random forest and decision tree regression:-a
review. Materials Today: Proceedings, 2021.

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 2005.

C. F. Randin, T. Dirnböck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan. Are
niche-based species distribution models transferable in space? Journal of biogeography,
33(10):1689–1703, 2006. doi: https://doi.org/10.1111/j.1365-2699.2006.01466.x.

S. Raschka, Y. H. Liu, V. Mirjalili, and D. Dzhulgakov. Machine Learning with PyTorch

and Scikit-Learn: Develop machine learning and deep learning models with Python.
Packt Publishing Ltd, 2022.

I. W. Renner and D. I. Warton. Equivalence of maxent and poisson point process models
for species distribution modeling in ecology. Biometrics, 69(1):274–281, 2013. doi:
10.1111/j.1541-0420.2012.01824.x.

C. Ricotta. Bridging the gap between ecological diversity indices and measures of biodi-
versity with shannon’s entropy: comment to izsák and papp. Ecological Modelling, 152
(1):1–3, 2002.

D. R. Roberts, V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein,
J. J. Lahoz-Monfort, B. Schröder, W. Thuiller, et al. Cross-validation strategies for
data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8):
913–929, 2017.



BIBLIOGRAPHY 196

V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez.
An assessment of the effectiveness of a random forest classifier for land-cover classifi-
cation. ISPRS journal of photogrammetry and remote sensing, 67:93–104, 2012.

L. Rokach. Genetic algorithm-based feature set partitioning for classification problems.
Pattern Recognition, 41(5):1676–1700, 2008.

K. V. Rosenberg, P. J. Blancher, J. C. Stanton, and A. O. Panjabi. Use of north american
breeding bird survey data in avian conservation assessments. The Condor: Ornitholog-

ical Applications, 119(3):594–606, 2017.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

N. Russell, L. Cribbin, and T. B. Murphy. upclass: An r package for updating model-based
classification rules. Cran R-Project Org, 2014.

O. Sagi and L. Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 8(4):e1249, 2018.

K. L. Sainani. Explanatory versus predictive modeling. PM&R, 6(9):841–844, 2014.

O. E. Sala, F. Stuart Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-
Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, et al. Global biodiversity scenarios
for the year 2100. science, 287(5459):1770–1774, 2000.

J. R. Sauer, B. G. Peterjohn, and W. A. Link. Observer differences in the north american
breeding bird survey. The Auk, 111(1):50–62, 1994.

R. E. Schapire. The boosting approach to machine learning: An overview. Nonlinear

estimation and classification, pages 149–171, 2003.

G. Schwarz. Estimating the dimension of a model. The annals of statistics, pages 461–464,
1978.



BIBLIOGRAPHY 197

A. M. Sequeira, P. J. Bouchet, K. L. Yates, K. Mengersen, and M. J. Caley. Transferring
biodiversity models for conservation: opportunities and challenges. Methods in Ecology

and Evolution, 9(5):1250–1264, 2018. doi: https://doi.org/10.1111/2041-210X.12998.

R. P. Sheridan, W. M. Wang, A. Liaw, J. Ma, and E. M. Gifford. Extreme gradient boost-
ing as a method for quantitative structure–activity relationships. Journal of chemical

information and modeling, 56(12):2353–2360, 2016.

W. B. Sherwin and N. Prat i Fornells. The introduction of entropy and information methods
to ecology by ramon margalef. Entropy, 21(8):794, 2019.

G. Shmueli. To explain or to predict? Statistical science, 25(3):289–310, 2010.

A. Sih and B. Christensen. Optimal diet theory: when does it work, and when and why
does it fail? Animal behaviour, 61(2):379–390, 2001.

T. J. Smith and C. M. McKenna. A comparison of logistic regression pseudo r2 indices.
Multiple Linear Regression Viewpoints, 39(2):17–26, 2013.

E. Sober. Instrumentalism, parsimony, and the akaike framework. Philosophy of Science,
69(S3):S112–S123, 2002.

P. Sollich and A. Krogh. Learning with ensembles: How over-fitting can be useful. Neural

Information Processing Systems (NIPS), 8:190–196, 1996.

J. P. Stevens. Intermediate statistics: A modern approach. Routledge, 2013.

G. W. Stewart. On the early history of the singular value decomposition. SIAM review, 35
(4):551–566, 1993.

H. A. Sturges. The choice of a class interval. Journal of the american statistical associa-

tion, 21(153):65–66, 1926.

G. Sundblad, M. Härmä, A. Lappalainen, L. Urho, and U. Bergström. Transferability of
predictive fish distribution models in two coastal systems. Estuarine, coastal and shelf

science, 83(1):90–96, 2009.



BIBLIOGRAPHY 198

M. Sunnåker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz. Ap-
proximate bayesian computation. PLoS computational biology, 9(1):e1002803, 2013.

G. Tallis and R. Light. The use of fractional moments for estimating the parameters of a
mixed exponential distribution. Technometrics, 10(1):161–175, 1968.

G. Tessarolo, J. M. Lobo, T. F. Rangel, and J. Hortal. High uncertainty in the effects
of data characteristics on the performance of species distribution models. Ecological

Indicators, 121:107147, 2021. doi: https://doi.org/10.1016/j.ecolind.2020.107147.

T. M. Therneau, E. J. Atkinson, et al. An introduction to recursive partitioning using the
rpart routines. Technical report, Technical report Mayo Foundation, 1997.

L. G. Torres, P. J. Sutton, D. R. Thompson, K. Delord, H. Weimerskirch, P. M. Sagar,
E. Sommer, B. J. Dilley, P. G. Ryan, and R. A. Phillips. Poor transferability of species
distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat
preferences across ocean basins. PLoS One, 10(3):e0120014, 2015. doi: https://doi.org/
10.1371/journal.pone.0120014.
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