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Chapter 1

Summary and Outline

1.1 Technical Summary

This thesis is on the subject of low-dimensional topology, which studies manifolds
of dimensions up to 4. Even more specifically, this thesis lies in the field jokingly
called 3.5-dimensional topology, which studies 3-manifolds through the 4-manifolds
that they bound. One interesting question in this field is the following:

Question (Casson, [18, Problem 4.5]). Which rational homology 3-spheres bound
rational homology 4-balls?

In this thesis, we focus our attention on 3-manifolds that are positive surgeries
on algebraic knots, a family chosen because of its connection to algebraic geometry.
This thesis thus revolves around the following question:

Question. Which positive surgeries on algebraic knots bound rational homology
4-balls?

This question is studied from different angles in the two papers that this thesis
consists of, referred to as [Paper I] and [Paper II]. [Paper I] is focussed entirely on
obstructing positive integral surgeries on algebraic knots from bounding rational
homology balls. One tool that can be used to obstruct rational homology 3-spheres
from bounding rational homology balls is called lattice embeddings, but it requires
the rational homology sphere in question to have a definite filling in order to be
applicable. In [Paper I] we construct such a filling for large enough surgeries on al-
gebraic knots. We use the lattice embedding obstruction on these fillings to obstruct
some families of surgeries on algebraic knots from bounding rational homology balls.
[Paper II], on the other hand, is more constructive. There, we construct large fam-
ilies of 3-manifolds that we show bound rational homology balls, amongst which
we find many examples of rational surgeries on torus knots, the simplest algebraic
knots.

1.2 Outline of the Thesis

This thesis is based on two papers, [Paper I] and [Paper II], which are appended
in the end, although the online version lacks [Paper I] due to copyright issues. The
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purpose of the chapters is to explain how these papers fit into a bigger picture.
To this purpose, Chapter 2, gives an introduction to the field of low-dimensional

topology in general and Casson’s question for surgeries on algebraic knots in par-
ticular. Section 2.1 starts off by introducing the field of low-dimensional topology
as well as the intersection forms that lie at the core of 4-manifold theory. The
highlight of this section is Donaldson’s theorem from 1982, a theorem that revolu-
tionised 4-manifold theory because it allowed us to obstruct the existence of smooth
4-manifolds with certain properties. This was a crucial tool to counterweigh the
construction methods of the 70’s with which we attempted to construct manifolds
whose existence Donaldson proved impossible. What were these construction meth-
ods of 4-manifolds? Well, one rich family of examples of 4-manifolds can be obtained
from algebraic geometry, namely complex surfaces, but there would be great reason
to believe that this is a tiny unrepresentative portion of all 4-manifolds. A much
more efficient and general method is by using Kirby diagrams, that is diagrams
that give us information on how to glue 4-balls together into a smooth 4-manifold.
There is an excellent book [17] that explains all the ins and outs of Kirby calculus,
but in Section 2.2 of this thesis, we give a crash course in how to interpret the Kirby
diagrams in the appended papers, both as diagrams of 4-manifolds with boundary
and as diagrams of the 3-manifolds that bound them. As we go further, we reach
Section 2.3, in which we introduce Casson’s problem on rational homology 3-spheres
bounding rational homology 4-balls. Here, we also introduce the lattice embedding
obstruction to a 3-manifold bounding a rational homology 4-ball, an obstruction
coming from Donaldson’s theorem. Finally, in Section 2.4, we peek into the world
of singularity theory in order to explain why it is so interesting to study Casson’s
question for surgeries on algebraic knots.

While Chapter 2 explains the setting of my research, Chapter 3 summarises my
actual results. There is a section for each paper, containing the main results as well
as some notes on the techniques used, but the proofs are omitted.
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Chapter 2

Background

2.1 Low-Dimensional Topology

Manifolds, spaces that locally look like Rn, have been a major object of math-
ematical research for over a century. This is not strange, since a major goal of
mathematical research is to understand the world, and manifolds regularly occur
in nature, not just as descriptions of the physical spaces we live in, but also as all
sorts of phase spaces, that is spaces of possible data points.

Manifold theory has been studying the following questions:

Question. Fix n. Can we make a list of all possible n-manifolds? What prop-
erties and structures can they have? (E.g. smooth structures, complex structures,
Riemannian metrics, etc.)

So, what do we know about manifolds? Curves and surfaces, that is manifolds
of dimensions 1 and 2, have been well understood since the nineteenth century.
They are classified up to homeomorphisms and diffeomorphisms, and their differ-
ential geometry is well understood too. Three-manifolds are not classified, but
there was steady progress in their study throughout the twentieth century, progress
that continues to this day. In the 1960’s, high-dimensional topology was revolu-
tionised by the s-cobordism and surgery theorems which were both proved using
the so called “Whitney trick”. These theorems allowed us to answer many ex-
istence and uniqueness questions about manifolds of dimensions ≥ 5 and turned
high-dimensional topology into its own subject with quite an algebraic flavour. As
for dimension 4, we knew very little until 1981, when Freedman discovered that a
version of the Whitney trick could also be applied to 4-manifolds with small enough
fundamental group, if we disregard their smooth structures. In fact, this discovery
allowed Freedman to classify closed simply connected topological 4-manifolds com-
pletely [12]. Almost at the same time, Donaldson used gauge theory to show that
smooth 4-manifolds were drastically different from their topological counterparts,
and that the Whitney trick fails miserably for them. Four-dimensional manifolds
are very interesting in that way, that the topological manifolds and the smooth ones
differ so dramatically. A corollary of Freedman’s and Donaldson’s results is that the
topological manifold R4 has infinitely [16], and in fact uncountably [33, Theorem
1.1], many different smooth structures.
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The main character in Freedman’s and Donaldson’s results is the intersection
form. A compact, oriented, topological 4-manifold admits a fundamental class

[X] ∈ H4(X, ∂X;Z)

and thus a bilinear form

QX : H2(X, ∂X;Z)×H2(X, ∂X;Z) → Z

defined by QX(a, b) = ⟨a ∪ b, [X]⟩. Since a ∪ b = (−1)2·2b ∪ a, this form is also
symmetric. Note that a∪b = 0 if either a or b is torsion, so we can view it as a form
on H2(X, ∂X;Z)/Torsion. Using Poincaré duality, we can instead view it as a form
H2(X)/Torsion×H2(X)/Torsion → Z. Fixing a basis of H2(X)/Torsion, QX can
be represented by an integral matrix M . A change of basis can be represented by
an integral matrix B of determinant ±1, and the matrix of QX becomes BTMB
under this basis transformation. Thus, det(QX) is well-defined.

If X happens to be a smooth 4-manifold, then every element of H2(X;Z) can be
represented by an embedded surface [17, Proposition 1.2.3.]. This gives us an easy
interpretation of QX for smooth 4-manifolds. For a, b ∈ H2(X, ∂X;Z), let Σa,Σb

be surface representatives of PD(a), PD(b) ∈ H2(X;Z). Then the following holds:

Proposition ([17, Proposition 1.2.5]). For a, b ∈ H2(X, ∂X;Z), QX(a, b) is the
number of points in Σa ∩ Σb counted with sign.

We can now state Freedman’s and Donaldson’s theorems:

Theorem (Freedman, [13],[12]). For every symmetric bilinear form Q : Zn×Zn →
Z with det(Q) = ±1, there exists a simply connected, closed, topological 4-manifold
X such that QX

∼= Q. If Q is even, that is Q(α, α) ≡ 0 (mod 2) for all α ∈ Zn, this
manifold is unique up to homeomorphism. Otherwise, there are exactly two different
homeomorphism types of manifolds with the given intersection form, at most one of
which carries a smooth structure.

Theorem 1 (Donaldson, [8, 9]). If the intersection form QX of a smooth, closed
4-manifold X is negative definite, then QX

∼= − Id.

Freedman’s and Donaldson’s theorems were massive breakthroughs in low-dimensional
topology because they allowed us to obstruct things in 4-manifold theory. For ex-
ample, we can show that some topological 4-manifolds have no smooth structure.
For example, there exists a closed topological 4-manifolds with this negative definite
determinant-1 intersection form:

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


,
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but it cannot have a smooth structure. This thesis heavily uses a corollary to
Donaldson’s theorem (Theorem 11) to obstruct some 3-manifolds from bounding
certain kinds of 4-manifolds, but before talking about that, we will look at some
tools to construct 4-manifolds.

2.2 Kirby Diagrams

While 3- and 4-manifolds belong to “low-dimensional” topology, these are still too
many dimensions for us humans to be able to visualise with ease. While we may not
be able to see 3- and 4-dimensional objects in front of us, we can create diagrams
that encode all the relevant information. Kirby diagrams are precisely this kind of
tool for drawing 4-manifolds with or without boundary. Morse theory shows that we
can construct every compact smooth 4-manifold out of five types of simple building
blocks, and a Kirby diagram is a diagram that encodes the gluing information.

Figure 1: A Kirby diagram representing a 4-manifold with boundary built by at-
taching three “fat discs” to D4.

Kirby calculus, the theory of Kirby diagram manipulation, is an essential tool
for a low-dimensional topologist that can be learnt in [17, Chapters 4-5]. In this
section, we summarise these chapters in order to provide the reader with a crash
course in how to interpret the Kirby diagrams and the plumbing/chain graphs in
the appended papers.

The purpose of Kirby calculus is to represent 4-manifolds up to diffeomorphism.
The theory of Kirby calculus consists of the following pieces:

1. The pieces. All closed smooth n-manifolds with boundary can be built out
of so called n-dimensional handles.

2. The diagrams. A Kirby diagram is a diagram that shows how the k-handles
are glued together into a 4-manifold.

3. The calculus. Two different Kirby diagrams could represent the same 4-
manifold up to diffeomorphism. Kirby calculus is to Kirby diagrams what
Reidemeister moves are to link diagrams: a sufficient set of diagrammatic
operations that take us from one representation of a 4-manifold to any other.

12



In this section, we will describe the pieces and the diagrams, since they are
necessary to understand the results of the thesis, but the calculus is left for the
advanced reader to learn in [17].

2.2.1 The Pieces

Definition. For 0 ≤ k ≤ n, an n-dimensional k-handle h is a copy of Dk ×Dn−k

attachable to an n-manifold with boundary X through an embedding φ : ∂Dk ×
Dn−k → ∂X. This attachment is referred to as “adding a k-handle to X”.

I like to think of a k-handle as a Dk × Dn−k with boundary (∂Dk × Dn−k) ∪
(Dk × ∂Dn−k), with glue on the ∂Dk ×Dn−k bit and no glue on the Dk × ∂Dn−k

bit.

Figure 2: 3-dimensional handles. The glue is shown in red.

When attaching a k-handle, there is a canonical way to smooth corners, so
attaching a handle to a smooth manifold gives us a new smooth manifold of the same
dimension. Also note that X ∪φ h deformation retracts onto X ∪φ|

∂Dk×{0}
Dk ×{0},

so up to homotopy, attaching a k-handle amounts to attaching a k-cell. Thus we
can also think of an n-dimensional k-handle as a k-cell that has been thickened to
an n-dimensional object.

2.2.2 The Diagrams

From Morse theory, we get the following theorem:

Theorem ([32, Theorem D]). Every closed connected smooth manifold has a self-
indexing Morse function with exactly one minimum and one maximum.

This theorem has a very important corollary:

Corollary 2. All closed connected smooth n-manifolds M can be built by attaching
handles the following way:

(0) Attach a 0-handle to empty space to create the manifold X0 = Dn.

(1) Attach a number of 1-handles to X0 to create a manifold X1.

13



(i+ 1) Attach a number of (i+ 1)-handles to Xi to create a manifold Xi+1.

(n) Attach one n-handle to create the closed manifold Xn
∼= M .

Thus, if we want to build a closed 4-manifold, we start by attaching n 1-handles
to D4 along the boundary, and obtain ♮nS1 × D3. Thereafter, we attach some 2-
handles. Now, the boundary of X2 should be the same as the boundary of the
union of the 3- and 4-handles, which should, by symmetry, be ♮nS1 × D3. As
it happens, there is a unique way up to diffeomorphism to glue ♮nS1 × D3 into
∂(♮nS1 × D3) = #nS1 × S2, so in order to specify the closed 4-manifold, we only
need to explain the gluing of the 1- and 2-handles. This is exactly the information
that a Kirby diagram contains.

In this thesis on 3.5-dimensional topology, we do not use any 1-handles. This is
because 3.5-dimensional topologists usually only need 2-handles, for reasons given
in Subsection 2.2.4. We will thus only explain how to read Kirby diagrams with
2-handles only.

A 4-manifold with boundary X2 consisting of one 0-handle and s 2-handles is of
the form D4 ∪(φ1,...,φs)

⊔s
i=1(D

2 ×D2), where φi : (S
1 ×D2) → ∂D4 are embeddings

with disjoint images. Since we only want to specify X2 up to diffeomorphism, it is
enough to specify φ :=

⊔s
i=1 φi up to isotopy. What information can we scale away?

The first thing we note is that the image of φ is a disjoint union of solid tori
embedded in S3. Composing φ with a self-isotopy of S3 will yield a 2-handle
attachment map giving the same 4-manifold. This roughly says that isotopies of
the image of φ do not matter for the diffeomorphism class of X2.

The second thing we need to ask ourselves is if knowing the image of φi is enough
to specify φi up to isotopy. The answer is no, because there is a free and transitive
action of Z on the isotopy classes of diffeomorphisms ψ : S1 × D2 → S1 × D2,
where n acts as the postcomposition with the self-diffeomorphism fn(e

iθ1 , reiθ2) =
(eiθ1 , reiθ2einθ1). Thus, the isotopy classes of diffeomorphisms between two different
solid tori can be described using an integer, as long as we can choose a particular
diffeomorphism to be labelled 0.

Taking the above considerations into account, [17, Chapters 4-5] show that we
can describe φi up to isotopy with the following two data points:

1. the knot K = φi(S
1 × {0}) (and thereby its tubular neighbourhood, which is

isotopic to φi(S
1 ×D2)), and

2. an integer n := lk(K,φi(S
1 × {p})) for 0 ̸= p ∈ D2, called the framing.

Thus, a typical Kirby diagram in this thesis is a link where each component is
assigned an integer, as in Figure 1.

2.2.3 A Trinity of Kirby Diagram Interpretations

So far, we have been talking about Kirby diagrams as representations of connec-
ted closed smooth 4-manifolds. Every connected closed smooth 4-manifold can
be represented by a Kirby diagram, possibly using 1-handles. However, not every
Kirby diagram we can think of represents a closed smooth manifold. If we draw an

14



Figure 3: The meaning of a knot with a number. The linking number of the red
and the blue knots is 4.

integer-weighted link, we can construct a manifold with boundary X2 by attaching
2-handles according to the diagram information. However, unless ∂X2

∼= S3, we
will not be able to close the manifold by attaching a 4-handle. However, we can
still use that Kirby diagram as a simultaneous representation of the manifold with
boundary X2 and the 3-manifold ∂X2. In fact, it is these two interpretations that
are most useful in 3.5-dimensional topology.

To summarise, these are the possible interpretations of a Kirby diagram:

1. Just adding 1-handles and 2-handles to D4 according to the data specified
in the Kirby diagram gives us some 4-manifold with boundary X2. Not all
4-manifolds with boundary can be described using such a diagram with no 3-
or 4-handles.

2. The boundary of X2 is some closed 3-manifold, so we can say that the Kirby
diagram is a description of the 3-manifold ∂X2. Every closed orientable con-
nected 3-manifold can be described using a Kirby diagram with nothing but
2-handles (see Corollary 5).

3. If ∂X2
∼= ♮nS

1 × D3, then we can in a unique way add 3- and 4-handles to
X to obtain a closed 4-manifold. Every smooth closed oriented connected
4-manifold can be described by this kind of Kirby diagram (possibly with
1-handles).

Each of these interpretations of Kirby diagrams have their own set of operations
that preserve the diffeomorphism class of the manifold described. These operations,
the Kirby diagram analogues of Reidemeister moves for link diagrams, can be found
in [17, Chapters 4-5].

2.2.4 Dehn/Rational Surgery

We have just seen how we can describe 3-manifolds using Kirby diagrams, by viewing
them as the boundary of some 4-manifold with boundary. This section is all about
forgetting about the 4-manifold with boundary and viewing our weighted link simply
as the diagram of a 3-manifold.
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Question. What does each 2-handle attachment do to ∂X2?

Answer. Recall that the boundary of a 4-dimensional 2-handle D2 × D2 is (S1 ×
D2) ∪ (D2 × S1), the first component covered in glue. When we attach a 2-handle
to a 4-manifold, the boundary 3-manifold changes through the removal of a solid
torus and the gluing of a different one in along the boundary, which is a torus.

How do we describe this gluing? Well, we can describe it by saying where the
meridian S1 × {1} of new solid torus D2 × S1 goes. For that we need a definition:

Definition. Let K ⊂ S3 be an oriented smooth knot. The boundary ∂(νK) of a
tubular neighbourhood νK of K is an embedded torus in S3. The meridian M
and the longitude L are oriented simple closed curves inside ∂(νK), determined
up to isotopy by the following homology and linking relations:

� [M ] = 0 and [L] = [K] in H1(νK), and

� lk(M,K) = 1 and lk(L,K) = 0.

So, say that we have some 4-manifold X with boundary Y and we attach a 2-
handle D2×D2 through a map φ : S1×D2 → S3. Recall that up to diffeomorphism
of the resulting manifold, the map φ can be described just by the knot K = φ(S1×
{0}) and n = lk(K,φ(S1 × {1})). What happens to the boundary is that we take
out φ(S1×D2), which is a tubular neighbourhood of K, and glue a new solid torus
along the boundary into the hole φ(S1×S1) = ∂νK, in such a way that φ(S1×{1})
becomes the new meridian. This new meridian can, up to isotopy, be described by
the homology class [L] + n[M ] ∈ H1(∂(νK)).

Now we know that the 3-manifold represented by a Kirby diagram

(K1, n1; . . . ;Ks, ns)

with no 1-handles is S3 but with the tubular neighbourhoods of the knots Ki

replaced by a different solid torus, whose meridian is a curve in homology class
[Li] + ni[Mi] ∈ H1(∂(νKi)). However, if we want to use Kirby diagrams as de-
scriptions of 3-manifolds only, no 4-manifolds, there is no reason why we couldn’t
generalise them to say “Take out a tubular neighbourhood of K and glue in a solid
torus so that it obtains meridian q[L]+p[M ] ∈ H1(∂(νK)).” Such generalised Kirby
diagrams are called surgery diagrams.

Definition (Dehn/Rational surgery). Let p and q be relatively prime integers. A
p/q-surgery on K inside S3, denoted S3

p
q
(K) is the manifold (S3−νK)∪φD

2×S1,

where the diffeomorphism φ : ∂S1 × S1 → ∂νK is such that [φ(S1 × {1})] =
q[L] + p[M ] ∈ H1(∂(νK)). The case of p = ±1 and q = 0 is called an ∞-surgery
and S3

∞(K) ∼= S3.

Proposition 3. Dehn surgery is a well-defined operation on oriented smooth man-
ifolds up to oriented diffeomorphism.

Definition. A surgery diagram is a diagram of a link L in S3 where each com-
ponent Ki is assigned a rational number ri. It represents a 3-manifold obtained
from performing an ri-surgery on each Ki.
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Note that a surgery diagram with only integral weights can be viewed as a Kirby
diagram, and this view gives the same 3-manifold. While a surgery diagram with
rational weights does not come with a 4-dimensional filling, a surgery diagram with
only integral ones automatically does.

What is cool though is that every rational surgery diagram can be replaced by
an integral surgery diagram representing the same 3-manifold. This can be done
using the slam-dunk move [17, p. 163]. It is illustrated in Figure 4.

Figure 4: This operation on surgery diagrams, called the slam-dunk, does not change
the represented 3-manifold. Here the segment is a portion of a knot K, the closed
loop is necessarily a meridian of K, n ∈ Z and r ∈ Q ∪ {∞}.

So, if component Ki of the link in the surgery diagram has surgery coefficient
pi
qi

and

pi
qi

= a1 −
1

a2 −
1

. . . −
1

an.

=: [a1, a2, . . . , an]
−

for some integer values a1, . . . , an, then we can attach a “chain” of length n − 1
to Ki and give both Ki and the new chain components the integer coefficients
a1, a2, . . . , an in order, as in Figure 5.

We finish this section by showing that every closed orientable connected 3-
manifold has a 4-dimensional filling. We will first need the following black box of a
theorem:

Theorem 4 (Lickorish-Wallace Theorem, 60’s, [35, Theorem 6], [22, Theorem 2]).
Every closed orientable connected 3-manifold can be obtained as a Dehn surgery on
some Q-weighted link in S3.

Now we can use the fact that we can replace any surgery diagram by an integral
surgery diagram to obtain:

Corollary 5 (Proven directly in [22, proof of Theorem 2, p. 539]). Every closed
connected orientable 3-manifold can be represented by a Kirby diagram with nothing
but 2-handles.

But, since every Kirby diagram represents both a 3-manifold and a 4-manifold
with said 3-manifold for a boundary, we get:
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Figure 5: This is an integral surgery diagram of S3
22
9

(K) whereK is the right-handed

trefoil. This diagram is obtained by writing 22
9

= [3, 2, 5]− and using the reverse
slam-dunk move to expand the chain from K.

Corollary 6 ([22, Theorem 3]). Every closed connected orientable 3-manifold is the
boundary of some simply-connected 4-manifold with boundary.

Note that the fact that every 3-manifold is the boundary of a 4-manifold was
known much earlier, for instance to Rohlin in 1951 [28], but the above sequence of
corollaries might be more useful to a 3.5-dimensional topologist wanting to find a
filling for their 3-manifolds constructed by surgery.

2.2.5 Intersection Forms

One of the main points of Kirby diagrams is that they allow us to construct smooth
3- and 4-manifolds with all sorts of desired properties. For example, given any
symmetric bilinear form Q : Zn × Zn → Z, we can construct a simply connected
smooth 4-manifold with boundary with that intersection form.

How, you may ask? Well, given a 4-manifold with boundary X2 (or closed
4-manifold X) described by a Kirby diagram with only 2-handles, what is its inter-
section form?

Proposition 7. Consider a Kirby diagram consisting of an n-component link L =⊔n
i=1Ki with weights w⃗ = (w1, . . . , wn). Then the described 4-manifold X2 has

H2(X2) = Z(S1, . . . , Sn), for Si the union of the core D2 × {0} of the 2-handle
attached along Ki and the cone on Ki inside the 0-handle D4. In this basis, X2 has
the intersection form

QX(Si, Sj) =

{
wi if i = j

lk(Ki, Kj) if i ̸= j.

Now, given a symmetric bilinear form, it is not hard to draw some link with
matching linking numbers. In fact, there as at least as many ways to do that as

18



there are knots. For example, given the matrix 6 −2 −3
−2 −2 3
−3 3 −1

 ,

we can draw both the Kirby diagram in Figure 6 and the Kirby diagram in Figure
7. (However, nothing a priori prevents these diagrams from representing the same
4-manifold.)

Figure 6: A complicated Kirby diagram with a simple intersection form.

Figure 7: A simple Kirby diagram with the same intersection form.

Corollary 8. For any symmetric bilinear form Q : Zn × Zn → Z, there exists a
simply connected smooth 4-manifold with boundary with that intersection form.

2.2.6 Special Kirby Diagrams

In the appended papers, the Kirby diagrams that appear are especially simple. One
of the simple families of 4-manifolds we consider are those whose Kirby diagram
consists of just one knot K and its framing/weight n. In [Paper I, Section 3], we
denote such a 4-manifold with boundary by D4

n(K). Its boundary is denoted S3
n(K).
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The other simple family of 4-manifolds with boundary that appears in this
thesis is the family of plumbings described by weighted forests. While plumbed 4-
manifolds are usually defined as being constructed out of disc bundles over surfaces
(see [17, Section 6.1]), the following alternative definition is enough for the purposes
of this thesis:

Definition. Given a forest-shaped plumbing graph Γ with weight function W :
V → Z, we may associate to it a 4-manifold XΓ by describing its Kirby diagram.
First, we draw a small unknot at each vertex of Γ. Then, for each edge, we create
a Hopf linking between the knots corresponding to the edge ends as in Figure 8.
We denote the resulting link by LΓ. Then XΓ is the simply-connected 4-manifold
obtained by attaching 2-handles with framing W (v) to the unknot at each vertex
v.

We denote the 3-manifold ∂XΓ by YΓ.

Figure 8: Kirby diagram associated to a plumbing.

2.3 Casson’s Problem

We have now seen that every closed orientable 3-manifold Y is the boundary of some
simply-connected 4-manifold X. (We say that X is a filling of Y .) While this is in
itself a really impressive and interesting result, we can explore it even further. If we
introduce some conditions on Y , can we find a filling X with additional properties?
The field of study of the interactions between 3-manifolds and their 4-dimensional
fillings is tongue-in-cheek called “3.5-dimensional topology”.

This thesis is concerned with the study of rational homology spheres and rational
homology balls. These are 3- and 4-dimensional objects that through the eyes of
one algebraic invariant look like 3-dimensional spheres and 4-dimensional balls,
respectively.

Definition. For a manifold M , we say that a manifold N is a rational homology
M if M and N are of the same dimension and H∗(M ;Q) ∼= H∗(N ;Q).
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Remark. Note that all rational homology n-balls (Bn) have the same homology.
When the dimension of the manifold N is clear, we might just refer to N as a
“rational homology ball” without specifying the dimension.

This thesis is concerned with the following problem, attributed to Casson, which
appears as Problem 4.5 on Kirby’s list of the most important problems in low-
dimensional topology [18].

Question 9 (Casson). Which rational homology 3-spheres (QHS3s) bound rational
homology 4-balls (QHB4s)?

Rational homology 3-spheres abound in nature. For example, Y = S3
p/q(K), the

p/q-surgery on K, satisfies H1(Y ) = Z/pZ for all knots K and non-zero rational
numbers p/q. However, very few of them bound rational homology balls, as shown
by [2, Theorem 1.1]:

Theorem 10 (Aceto-Golla). For a given knot K and integer q ̸= 0, there exist at
most 4 values of p such that S3

p
q
(K) = ∂QHB4.

The two most common methods for obstructing 3-manifolds from bounding ra-
tional homology balls are lattice embeddings and Heegaard Floer correction terms.
Aceto and Golla used Heegaard Floer correction terms to prove their theorem. Lat-
tice embeddings is a technique that was first systematically used by Paolo Lisca
in [23]. It is based on the following corollary to Donaldson’s Theorem [8], in this
thesis referred to as Theorem 1:

Theorem 11 (Corollary of Donaldson’s Theorem). Let Y be a rational homology 3-
sphere and Y = ∂X for X a negative definite smooth connected oriented 4-manifold.
If Y = ∂W for a smooth rational homology 4-ball W , then there exists a lattice
embedding

f : (H2(X)/Torsion, QX) ↪→ (ZrkH2(X),− Id),

i.e. a map f : H2(X)/Torsion → ZrkH2(X) such that QX(a, b) = −f(a) ·f(b), where
· is the Euclidean dot product.

Imagine now that I have a rational homology 3-sphere Y and I want to show that
it does not bound a rational homology ball. In order to use the lattice embedding
obstruction, I need to first find a definite X such that Y = ∂X. This is not
necessarily easy and such an X might not even exist [14, 27, 15]. Suppose it does
exist and that we have found its intersection form. Now, it is easy to check if a lattice
embedding exists. Let {ei}1≤i≤rkH2(X) be a basis of ZrkH2(X). Every basis vector v

of H2(X)/Torsion has to map to
∑rkH2(X)

i=1 λiei where |
∑rkH2(X)

i=1 λ2i | = |QX(v, v)|,
which leaves us with finitely many possible images for each basis vector. We might
find out that a lattice embedding actually does exist. In that case, there might
exist a different definite filling X ′ of Y for which there does not. All the more
challenging is checking this obstruction for a whole family of 3-manifolds Y at once.
This difficulty is described in the introduction of Paper II.

The first study of rational homology 3-spheres bounding rational homology 4-
balls was published in 1981, when Casson and Harer found several families of ho-
mology lens spaces bounding rational homology 4-balls and homology 3-spheres
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bounding contractible manifolds [6]. In 2007, Lisca classified all the so called lens
spaces (rational surgeries on the unknot) and connected sums of lens spaces bound-
ing rational homology 4-balls [23, 24], popularising the technique of obstructing
bounding rational homology 4-balls with lattice embeddings. Many people have
since then used lattice embeddings on various classes of 3-manifolds to classify the
ones that admit fillings with certain homological constraints. Examples include
Lecuona’s study of double branched covers of S3 branched over some families of
Montesinos knots [21], Aceto’s study of rational homology S1 × S2s bounding ra-
tional homology S1 ×D3s [1], and Simone’s classifying torus bundles on the circle
bounding rational homology S1 × D3s [30], which he used to construct rational
homology 3-spheres bounding rational homology 4-balls in [31]. Recently, Aceto,
Golla, Larson and Lecuona managed to answer Casson’s question for positive in-
tegral surgeries on positive torus knots, a classification with a whopping 18 cases
[2, 3].

This thesis studies Casson’s question for surgeries on so called algebraic knots,
which is a class of knots arising in singularity theory. Both the unknot and all
positive torus knots are algebraic knots, so one can view my question as a natural
continuation of the work done in [23, 2, 3]. In order to define algebraic knots, we will
however take a little tour through the algebraic geometry and topology of singular
algebraic plane curves.

2.4 Algebraic Knots and Rational Cuspidal Curves

Let’s leave the realm of topology for a while for something completely different.
We are instead going to dive into the world of algebraic curves in CP 2. Algebraic
curves are possibly singular surfaces inside CP 2 that arise as solutions to polynomial
equations and are a classical object of study for algebraic geometers. In this section,
we are going to introduce the reader to the question of classifying singular algebraic
curves, and then explain its complicated relationship to Casson’s question.

Readers who wish to delve deeper beyond this brief introduction would benefit
from exploring [5] and [34], both of which are standard texts on algebraic plane
curves. However, the author learned this material from a topological book, namely
[10], which explores invariants of graph manifolds, with singularities of plane algeb-
raic curves as its central motivating example.

Definition. An affine plane curve is the zero set inside C2 of a non-zero poly-
nomial f ∈ C[x, y]. It is denoted by V (f).

Definition. A projective plane curve is the zero set inside CP 2 of some non-zero
homogeneous polynomial F ∈ C[x, y, z]. It is denoted by V (F ).

We call both affine and projective plane curves (complex) algebraic, just to
set them apart from smooth curves in R2. Note that algebraic curves are 2-real-
dimensional.

Already now, we can formulate the most fundamental question of algebraic plane
curves:
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Question 12. What can an algebraic plane curve look like?

This question is not very precise. We can ask what object this solution set
looks like topologically, that is up to homeomorphism. We can also ask about
how this topological object is embedded in C2 or CP 2. We can also ask about
the holomorphic structure of the curve. For now, we want to study Question 12
topologically, that is up to homeomorphism and maybe diffeomorphism.

First, let’s look at some examples of algebraic curves. In Figure 9, we see three
polynomials together with their real solution sets. Since we only have the real
picture in front of us, we cannot see the shape of the surfaces that the solution sets
form. We do however see that they cannot always be manifolds, since they might
have singularities. In Figure 9b, there is a self-intersection, and in Figure 9c, there
is a cusp.

(a) xy − 1 = 0 (b) −x3 + x2 − y2 = 0 (c) y2 − x3 = 0

Figure 9: Examples of algebraic curves.

Definition. A singular point of an affine plane curve is a point p = (p1, p2) ∈ V (f)

such that
(

∂f
∂x
, ∂f
∂y

)
|p = (0, 0).

Recall that the projective plane is covered by the affine charts [x : y : 1], [x : 1 : z]
and [1 : y : z], so we can study local properties inside affine charts. A point on a
projective curve is singular if it is singular inside an affine chart.

A curve without singular points is called non-singular, and is notoriously bor-
ing topologically. Non-singular projective plane curves are 2-dimensional subman-
ifolds of CP 2. Their genus is directly dependent on the degree of the polynomial
(see for example [19, Chapter 4] for multiple proofs of this standard result):

g =
(d− 1)(d− 2)

2
,

and moreover, two non-singular projective curves of the same degree are always
isotopic to each other (due to the variety of singular projective curves, a.k.a. the
discriminant locus, having real codimension 2 inside the moduli space of all pro-
jective curves). Let us instead focus on singular curves.

We start by focussing on the local topology of a singularity.

Question 13. What does a singularity of an algebraic curve look like?
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In other words, if an algebraic curve is not locally homeomorphic to the pair
(R4,R2), what does it actually look like around a singularity? One good answer
comes from considering singularity links.

Theorem 14 ([25, Theorem 2.10]). Let f ∈ C[x, y] be a non-zero polynomial van-
ishing at 0. Also let C = V (f) = {(x, y) ∈ C2 | f(x, y) = 0}. For small enough
ε, the pair (D4

ε , C ∩D4
ε) is homeomorphic to the pair consisting of the cone on S3

ε

and the cone on C ∩ S3
ε . Here D4

ε and S3
ε are a 4-ball and a 3-sphere, respectively,

of radius ε centred at 0.

Definition. The link C ∩ S3
ε ⊂ S3 is called the singularity link of C at 0.

Theorem 14 shows the singularity link completely describes the topological type
of the singularity. The cone on one link component is a topological disc, but, unless
the link is the unknot, this disc can be embedded into D4 in an interesting way. If
the singularity link has only one component, we call the singularity cuspidal. If
the singularity link consists of several components, this means that the singularity
is an intersection of multiple branches (as in Figure 9b), which might or might not
themselves be weird cusps (as when (y2−x3)(y2+x3) = 0). A knot that is the link
of some cuspidal singularity is called algebraic.

Example 15. The curve in Figure 9a is non-singular. A non-singular point always
has the unknot as its singularity link. The curve in Figure 9b has a transversal
intersection of two smooth components at 0, which corresponds to the singularity
link being the Hopf link. The singularity at 0 of the curve in Figure 9c is more
interesting. This singularity is cuspidal. Its singularity link is the right-handed
trefoil knot T (2, 3).

So, can we classify all the possible singularity links? In fact, we can. Both [10,
Appendix to Chapter 1], [5, pp. 431-439], and [34, Section 5.4] describe different
ways to translate the algebraic data of a singularity (Puiseux or Newton pairs) into
the topological data of a singularity link. In particular, they show that all algebraic
knots are in fact iterated torus knots, which we now define:

Definition. Let p, q be relatively prime integers, and K a knot in S3. We denote
by Cp,q(K) ⊂ S3, the unique (up to isotopy) simple closed curve in ∂(νK) with
homology class p[L] + q[M ] ∈ H1(∂(νK)). The curve Cp,q(K) is called the (p, q)-
cable on K.

Definition. The iterated torus knot with k iterations T (p1, α1; p2, α2; · · · ; pk, αk)
is the knot

T (p1, α1; p2, α2; · · · ; pk, αk) = Cpk,αk
Cpk−1,αk−1

· · ·Cp1,α1(O),

O being the unknot.

Theorem 16 (Immediate corollary to [10, Proposition 1A.1]). A knot is algebraic
if and only if it is an iterated torus knot

T (p1, α1; · · · ; pk, αk)

satisfying
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� that pi, αi ≥ 2 for all 1 ≤ i ≤ k, and

� that αi+1 > pi+1piαi for all 1 ≤ i ≤ k − 1.

A projective plane curve with only cuspidal singularities (no self-intersections)
is called cuspidal. Theorem 16 answers the local question for cuspidal curves, that
is what a cuspidal curve looks like at a singularity. However, we would also want
to know what the curve looks like globally. Some relevant statistics we would like
to know are

1. the entire collection of local singularity types, and

2. the genus of the curve.

It is not known if these data points determine the curve up to isotopy or homeo-
morphism of the complement. This certainly is false for line arrangements in CP 2

[29]. However, this data does determine the topology of the tubular neighbourhood
of the curve.

Definition. An algebraic plane curve C is called rational if it is birational to CP 1.

For a topologist, this implies that there is a diffeomorphism from C − P to
CP 1−Q for P ⊂ C and Q ⊂ CP 1 finite sets of points. Since CP 1 ∼= S2, this means
that C is some sort of singular sphere, possibly with self-intersections. If C is also
cuspidal, it is truly a topological sphere.

The following is a a restricted version of the question of what a singular curve
looks like globally:

Question 17. What are the possible collections of singularities of a rational cuspidal
curve?

We can even restrict it further:

Question 18. Let K be an algebraic knot. Can it be the link of an only singularity
of a rational cuspidal curve?

A projective curve with only one singularity, which is also cuspidal, is called
unicuspidal.

These questions have been studied by algebraic geometers and low-dimensional
topologists alike. The reason for the low-dimensional topologists’ interest is the
following:

Proposition 19. Let C ⊂ CP 2 be a rational cuspidal curve of degree d with sin-
gularity links (K1, . . . , Kl). Then νC is the 4-manifold obtained by attaching a
d2-framed 2-handle along K1# · · ·#Kl, ∂νC ∼= S3

d2(K1# · · ·#Kl), and CP 2 − νC
is a rational homology ball.

We invite the reader onto a rollercoaster of thoughts on this proposition’s signi-
ficance:
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1. If K is an algebraic knot and S3
d2(K) does not bound a rational homology ball,

then there is no rational unicuspidal curve of degree d whose only singularity
has link K. We can therefore consider the following weaking of Question 18:

Question 20. For which algebraic knots K and integers d does S3
d2(K) bound

a rational homology ball?

Us topologists, we have a few tools to obstruct S3
d2(K) from bounding rational

homology balls. Maybe we could help the algebraic geometers to answer Ques-
tion 18? Unfortunately, obstructing S3

d2(K) from bounding rational homology
balls seems harder than obstructing rational unicuspidal curves of degree d
from having singularity link K. For example, [11] told us in 2007 when a torus
knot is the only singularity link of a rational cuspidal curve, but it took until
2020 for [3] to tell us when S3

d2(T (p, q)) bounds a rational homology ball. In
the meantime, [4] managed to answer Question 18 for cables on torus knots
too, whereas [Paper I] from 2023 is the best that we currently have for the
corresponding topological question.

2. Maybe the algebraic geometers can help us topologists instead? After all, they
often do by providing us with examples. Here too, we can find many examples
of S3

d2(K) bounding rational homology balls in papers like [11] and [4]. Can
we find examples not coming from algebraic geometry? Comparing the results
of [11] (listing the torus knots that occur as singularity links of unicuspidal
curves) and [3] (listing the positive torus knots that admit a positive integral
surgery that bounds a rational homology 4-ball) tells us that we can, that
is S3

d2(K) bounding a rational homology ball is more permissive than the
existence of a rational unicuspidal curve of degree d with singularity link
K. We conclude that while algebraic geometry provides us with nice first
examples, the purely topological Casson question for surgeries on singularity
links is strictly more supple than Question 18. This probably doesn’t surprise
anyone. However, it is often still interesting to compare algebro-geometric
and topological results and measure how different they are and why. A great
result in that vein, proven by Kronheimer and Mrowka in [20], but better
known as the Thom conjecture, states that smooth algebraic curves are the
minimal genus representatives of their homology classes in CP 2, so while there
exist many more smooth surfaces than algebraic curves embedded in CP 2, the
algebraic ones are in some sense the best.

3. While Questions 18 and 20 are quite different with the former being more
rigid and the latter more supple, Question 20 is not entirely disconnected from
algebraic geometry. Algebraic geometry is good for constructing 4-manifolds
and sometimes we need to construct something in order to obstruct something
else. In [Paper I, Section 3], we use the fact that the knots considered are
algebraic in order to construct negative definite fillings of S3

d2(K) on which
we can use Theorem 11 to obstruct S3

d2(K) from bounding rational homology
balls.
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Chapter 3

On the Appended Papers

Both appended papers are on the theme of Casson’s question, that is “Which ra-
tional homology 3-spheres bound rational homology 4-balls?” The studied rational
homology 3-spheres are positive surgeries on algebraic knots. However, Paper I is
an obstructive paper, whereas Paper II is constructive.

In this chapter, we summarise the results of the papers, and give a few comments
on their history and the choice of methodology.

3.1 Paper I

The main objective of Paper I is to use lattice embeddings to obstruct integral
surgeries on algebraic knots from bounding rational homology balls.

A prerequisite for using lattice embeddings to obstruct a rational homology ball
from filling a 3-manifold Y is having a definite filling of Y . In [Paper I, Section 3],
we use blow-up resolutions of singularities to construct negative definite fillings for
all 3-manifolds Y = S3

n(K) where K is an algebraic knot and n is large enough.

Theorem 21 (Paper I, Theorem 8). Let K = T (p1, α1; p2, α2; . . . ; pk, αk) be an
algebraic knot and let n ≥ pkαk + 2. Then S3

n(K) bounds a negative definite
plumbed 4-manifold with the graph shown in Figure 10, where each hook Wi is
described by Figure 11. Here, N = n − pkαk, [ci,2, ci,3, . . . , ci,si ]

− = αi

αi−pi
and

[di,1, di,2, . . . , di,ti ]
− = αi

pi
.

Figure 10: The minimal negative definite plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)). Each Wi is a subgraph described by Figure

11. Here N = n− pkαk.
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Figure 11: Close-up diagram of each Wi part of the plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)) in Figure 10. In order for this diagram to make

sense at the extremities, interpret p0α0 as 0, and −ck+1,pkαk+1 as −2.

Thereafter, in [Paper I, Section 4], we use the lattice obstruction of Theorem 11
to show:

Theorem 22 (Paper I, Theorem 2). Let α1 ≡ 1 (mod p1), α2 ≡ ±1 (mod p2),
α2/p2 > p1α1 and n ≥ 2+p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2))
bounds a rational homology 4-ball if and only if the tuple (p1, α1; p2, α2;n) is one of
the following:

1. (p1, p1 + 1; p2, p2(p1 + 1)2 − 1; p22(p1 + 1)2) or

2. (2, 7; p2, 16p2 − 1; 16p22).

The condition α2/p2 > p1α1 is equivalent to demanding that T (p1, α1; p2, α2) be
algebraic. This condition, together with n ≥ 2 + p2α2 are necessary in order to be
able to use Theorem 21 to obtain a negative definite filling of S3

n(T (p1, α1; p2, α2))
to perform a lattice analysis on. The other two conditions, however, are there to
simplify the lattice embedding analysis.

Recall, that while testing for a lattice embedding obstruction on one 3-manifold
Y with a negative definite filling X is easy, this can be extremely difficult to do for
an infinite family at once. People that work with lattice embeddings know some
tricks for this. One trick, used by for example [23, 24, 21, 3], requires that Y = ∂X,
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where X = XΓ for a chain graph Γ, such that − trQX − 3 dimH2(X) ≤ −1, and
such that removing one vertex from Γ gives us something whose lattice embeddings
have already been classified. Unfortunately, these conditions are only satisfied for
S3
n(T (p1, α1; p2, α2)) when α2 = 1 + p2 + p1α1p2. Under this restriction on α2, the

trick helps with the lattice embedding analysis, but still does not completely solve
the problem of which S3

n(T (p1, α1; p2, 1 + p2 + p1α1p2)) bound a rational homology
ball.

Instead, we have, analogously to [2], assumed that α1 ≡ 1 (mod p1) and α2 ≡ ±1
(mod p2). This makes sure that the weights of the graph in Figure 10 are nearly all
−2. Chains of −2 have very few possible embeddings and the possible embeddings
of the vertices with other weights are constrained by some Diophantine equations,
which we solve.

3.2 Paper II

Paper II naturally sprung out of my project of studying which S3
n(T (p1, α1; p2, 1 +

p2 + p1α1p2)) bound a rational homology ball. Just like the event of a manifold
S3
n(K) bounding a rational homology ball, the event of the intersection lattice of

a negative definite filling of S3
n(K) admitting a lattice embedding happens very

rarely. This makes you wonder: what does an intersection lattice special enough to
be embeddable look like?

Studying the tree-shaped chain graphs Γ for which (H2(XΓ), QXΓ
) admits a lat-

tice embedding revealed some patterns. Very often, they looked like some famously
lattice embeddable small graph with a couple of so called “complementary legs”
grown on top.

Definition. Two sequences (a1, a2, . . . , am) and (b1, b2, . . . , bn) with ai, bj ≥ 2 are
complementary if and only if 1/[a1, . . . , am]

− + 1/[b1, . . . , bn]
− = 1.

Definition. A pair of complementary legs is a union of two path graphs with
weights (−a1,−a2, . . . ,−am) and (−b1,−b2, . . . ,−bn), respectively, such that the
sequences (a1, a2, . . . , am) and (b1, b2, . . . , bn) are complementary.

In [Paper II, Section 2], we recall some basic facts about complementary legs
and their lattice embeddings.

In [Paper II, Section 3], we define what it means to grow complementary legs.
This is done through defining two operations (called GOCL and IGOCL moves,
standing for (inner) growth of complementary legs) on chain graphs with lattice
embeddings. The operations preserve lattice embeddability, so growing comple-
mentary legs on an enbeddable graph gives us another embeddable graph. However,
the existence of an embedding of the intersection lattice of XΓ does not imply that
∂XΓ bounds a rational homology ball. The main result of [Paper II, Section 3]
is that ∂XΓ does in fact bound a rational homology ball when Γ is obtained from
the famously lattice embeddable [23, 21] (−3,−2,−2,−3)- or (−3,−2,−3,−3,−3)-
weighted path graphs through applying GOCL and IGOCL moves. Figures 12 and
13 show the results of these operations.
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−(1 + b1)

−a1−(3 + k) −(1 + α1) −2 −2

−(1 + β1)

· · ·

−a2

−am1

−α2

−αm2

−b2

−bn1

−β2

−βn2

...
...

...
...

Figure 12: These are the graphs obtainable by performing IGOCL and GOCL
moves on the linear graph (−3,−2,−3,−3,−3). Here the length of the chain of
−2’s is k ≥ 0, (a1, . . . , am1) and (α1, . . . , αm2) are complementary sequences, and
(b1, . . . , bn1) and (β1, . . . , βn2) are complementary sequences.

1− β1 − ζ1

−a1 −b1
1− α1 − z1

−a2

−al1

−α2

−αl2

−β2

−βm2

−b2

−bm1

−z2

−zn1

−ζ2

−ζn2

...
...

...
...

...
...

Figure 13: The form of all graphs obtainable from (−3,−2,−2,−3) using GOCL
moves. Here the sequences (a1, . . . , al1) and (α1, . . . , αl2) are complementary, as well
as the sequences (b1, . . . , bm1) and (β1, . . . , βm2), and the sequences (z1, . . . , zn1) and
(ζ1, . . . , ζn2).
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Theorem 23. All 3-manifolds described by the chain graphs in Figures 12 and 13
bound rational homology balls.

Sketch of proof. In this proof we use strongly invertible links:

Definition. A strongly invertible link is a link L ⊂ R3 such that

1. it is invariant under 180◦ rotation around the x-axis, and

2. every component intersects the x-axis in exactly two points.

In [26], Montesinos shows that a 4-manifold constructed by attaching 2-handles
along a strongly invertible link is the double cover of D4 branched over a surface
that he describes. This is how we use this knowledge:

1. Let Γ be one of the graphs in Figure 12 or 13. The Kirby diagram of a tree-
shaped chain graph is always strongly invertible. Representing it in such a
way allows us to describe XΓ as the double branched cover D4 branched over
some surface SΓ.

2. We show that we can add one or two 2-handles to the Z/2Z-equivariant Kirby
diagram of XΓ in such a way that the attaching link stays strongly invertible,
and such that this new 4-manifoldX ′ happens to be S1×S2 or (S1×S2)#(S1×
S2) respectively. It follows that X ′ is the double cover of D4 branched over a
surface S ′ that has two or three boundary components respectively, which are
unknotted and unlinked in S3. From the construction, we have that S ′ is just
SΓ with one or two bands attached, respectively. These band attachments
provide us with a cobordism from ∂SΓ to either the two- or three-component
unlink.

3. The fact that ∂S ′ is an unlink in S3 means that we can cap it off with discs
in D4. The union of these two or three disks with the one or two bands we
attached to turn ∂SΓ into ∂S ′ is a surface S of Euler characteristic 1.

4. We use [7, Proposition 2.6] which says that the double branched cover of D4

over a surface of Euler characteristic 1 is a rational homology ball to show
that ∂XΓ is the boundary of the rational homology ball Σ(D4, S).

Another short famously embeddable path graph is (−2,−2,−3,−4). It is miss-
ing from the current version of [Paper II]. While we believe that all graphs obtainable
from it using GOCL and IGOCL moves do bound rational homology balls, we are
unable to prove it using the method described above since we cannot find a way to
perform step 2, that is to equivariantly add two −1-weighted 2-handles and obtain
(S1 × S2)#(S1 × S2). We cannot seem to prove that all the graphs in Figure 14
bound a rational homology ball. For a subset of these, we can make do with one
−1-weighted 2-handle only, in which case we can find a good rational homology ball
filling of the boundary.

In [Paper II, Section 4], we find interesting subsets of the graphs of Figures 12
and 13, namely ones that describe 3-manifolds that are rational surgeries on torus
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−(2 + k)

−b1

−1− a1

−α1 − β1

−a2 −a3
· · ·

−an1

−α2

· · ·
−αn2

−b2
· · ·

−bm1

−β2
· · ·

−βm2

−2

...

−2

Figure 14: Graphs obtainable from the path graph (−2,−2,−3,−4) using GOCL
and IGOCL moves. Here the sequences (a1, . . . , an1) and (α1, . . . , αn2) are comple-
mentary, and the sequences (b1, . . . , bm1) and (β1, . . . , βm2) are complementary as
well. The length of the chain of −2’s is k.

knots. We show the following theorem, which provides us with new, previously
unknown, examples of rational surgeries on iterated torus knots bounding rational
homology balls.

Theorem 24. For the following pairs (p, q) with 1 < p < q and GCD(p, q) = 1,
there is at least one r ∈ Q+ such that S3

r (T (p, q)) bounds a rational ball. Here
k, l ≥ 0.

1. (k + 2, (l + 1)(k + 2) + 1)

2. (k + 2, (l + 2)(k + 2)− 1)

3. (2k + 3, (l + 1)(2k + 3) + 2)

4. (2k + 3, (l + 2)(2k + 3)− 2)

5. (k2 + 7k + 11, k3 + 12k2 + 45k + 51)

6. (S
(k)
l+1, S

(k)
l+2) for (S

(k)
i ) a sequence defined by S

(k)
0 = 1, S

(k)
1 = 2, S

(k)
2 = 2k + 7

and S
(k)
i+2 = (k + 4)S

(k)
i+1 − S

(k)
i .

7. (T
(k)
l+1, T

(k)
l+2) for (T

(k)
i ) a sequence defined by T

(k)
0 = 1, T

(k)
1 = k + 2, T

(k)
2 =

k2 + 6k + 7 and T
(k)
i+2 = (k + 4)T

(k)
i+1 − T

(k)
i .

8. (Ul+1, Ul+2) for (Ui) a sequence defined by U0 = 1, U1 = 3, U2 = 14 and
Ui+2 = 5Ui+1 − Ui.

Assuming that all graph of Figure 14 bound rational homology balls, we can
conjecturally extend the list with these items:
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1. (Pl+1, Pl+2) for (Pi) a sequence defined by P0 = 1, P1 = 4, P2 = 19 and
Pi+2 = 5Pi+1 − Pi.

2. (Ql+1, Ql+2) for (Qi) a sequence defined by Q0 = 1, Q1 = 2, Q2 = 9 and
Qi+2 = 5Qi+1 −Qi.

Currently, however, it is unknown if these bound rational homology balls.

33



Bibliography

[1] Paolo Aceto. “Rational homology cobordisms of plumbed manifolds”. In: Al-
gebr. Geom. Topol. 20.3 (2020), pp. 1073–1126. issn: 1472-2747. doi: 10.
2140/agt.2020.20.1073.

[2] Paolo Aceto and Marco Golla. “Dehn surgeries and rational homology balls”.
In: Algebr. Geom. Topol. 17.1 (2017), pp. 487–527. issn: 1472-2747. doi: 10.
2140/agt.2017.17.487.

[3] Paolo Aceto, Marco Golla, Kyle Larson and Ana G. Lecuona. “Surgeries on
torus knots, rational balls, and cabling”. In: arXiv e-prints, arXiv:2008.06760
(Aug. 2020), arXiv:2008.06760. arXiv: 2008.06760 [math.GT].

[4] J. Bodnár. “Classification of rational unicuspidal curves with two Newton
pairs”. In: Acta Math. Hungar. 148.2 (2016), pp. 294–299. issn: 0236-5294.

[5] Egbert Brieskorn and Horst Knörrer. Plane algebraic curves. Translated from
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SURGERIES ON ITERATED TORUS KNOTS
BOUNDING RATIONAL HOMOLOGY

4-BALLS
Errata

Lisa Lokteva
University of Glasgow

e.lokteva.1@research.gla.ac.uk

19th October 2023

• Page 2, line 12: In the paper, we have used [Don83, Theorem 1] as a reference
for Donaldson’s diagonalisation theorem. However, [Don83, Theorem 1] has
the additional assumption that X be simply connected, which is done away
with in [Don87, Theorem 1].

• Page 3, line -2: “The reason only one of the two families of cables with positive
surgeries bounding torus knots mentioned in [AGLL20, Theorem 1.3] appears
is that the other family has surgery coefficient lower than p2α2.” should say
“Since S3

(p1+1)2T (p1, p1 + 1) and S3
16T (2, 7) bound rational homology balls,

[AGLL20, Theorem 1.3] predicts that S3
p22(p1+1)2

T (p1, p1+1; p2, p2(p1+1)2±1)

and S3
16p22

T (2, 7; p2, 16p
2
2 ± 1) will do so too. The reason half of these do not

appear in the statement of Theorem 2 is that their surgery coefficient is lower
than p2α2.”

• Page 6, line -3: “describes” should be “describe”.

• Page 7, line -15: The end of proof symbol should not be there.

• Page 7, line -7: ”Leaf node” should be ”leaf vertex”.

• Page 9, line 8: The “Proof” environment should not start. This is the con-
tinuation of the proof on page 7.

• Page 10, proposition 7: “positive iterated torus knot” should be “algebraic
knot”.

• Page 12, line -1: “node” should be “trivalent vertex”.

• Page 13, line -12: “less that” should be “less than”.
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Constructing Rational Homology 3-Spheres That
Bound Rational Homology 4-Balls

University of Glasgow

Lisa Lokteva
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Abstract

We present two large families of new examples of plumbed 3-manifolds
that bound rational homology 4-balls. These are constructed using two oper-
ations, also defined here, that preserve an algebraic obstruction to bounding
rational homology balls. Apart from in the cases shown in this paper, it
remains open whether these operations are rational homology cobordisms in
general.

The families of new examples include a multitude of families of rational
surgeries on torus knots, and we explicitly describe which positive torus knots
we now know to have a surgery that bounds a rational homology ball.

While not the focus of this paper, we implicitly confirm the slice-ribbon
conjecture for new, more complicated, examples of arborescent knots, includ-
ing many Montesinos knots.

1 Introduction

In Kirby’s problem 4.5 [13], Casson asks which rational homology 3-spheres bound
rational homology 4-balls. While rational homology 3-spheres abound in nature,
including the r-surgery S3

r (K) on a knot K for any r ∈ Q− {0}, very few of them
actually bound rational homology balls. In fact, Aceto and Golla showed in [2,
Theorem 1.1], that for every knot K and every q ∈ Z+, there exist at most finitely
many p ∈ Z+ such that S3

p/q(K) bounds a rational homology ball. It is hard to
answer Casson’s question in full generality, but recently a great deal of progress has
been made on specific classes of rational homology 3-spheres. For example, in 2007
we learnt the answer for lens spaces [16, 17], in 2020 for positive integral surgeries
on positive torus knots [2, 3], and in between we learnt the answer for several other
classes on Seifert fibred spaces with three exceptional fibres [14, 15]. We do not
yet know the answer for general Seifert fibred spaces with three exceptional fibres.
In [18], the author started studying surgeries on algebraic (iterated torus) knots,
which are not Seifert fibred but decompose into Seifert fibred spaces when cut along
a maximal system of incompressible tori [12].
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An important tool to study which 3-manifolds bound rational homology balls is
the following corollary of Donaldson’s diagonalisation theorem [8, Theorem 1]:

Theorem 1 (Corollary of Donaldson’s Theorem). Let Y be a rational homology 3-
sphere and Y = ∂X for X a negative definite smooth connected oriented 4-manifold.
If Y = ∂W for a smooth rational homology 4-ball W , then there exists a lattice
embedding

(H2(X)/Torsion, QX) ↪→ (ZrkH2(X),− Id).

HereQX is the intersection form onH2(X)/Torsion. Determining which 3-manifolds
in a family F bound rational homology 4-balls using lattice embeddings often goes
like this:

(i) Find a negative-definite filling X(Y ) for every Y ∈ F.

(ii) Guess the family F′ ⊂ F of manifolds whose filling’s intersection lattice (that is
second homology with the intersection form) embeds into the standard lattice
of the same rank.

(iii) Show that (H2(X(Y )), QX(Y )) does not embed into (Zb2(X(Y )),− Id) for any
Y ∈ F− F′.

(iv) Hopefully prove that Y bounds a rational homology ball for any Y ∈ F′.

This process is sensitive at every step. There exist 3-manifolds without any definite
fillings [10]. However, lens spaces, surgeries on torus knots and large surgeries on
algebraic knots do have definite fillings. In fact, they all bound definite plumbings
of disc bundles on spheres. Step (iv) is definitely not guaranteed to work either.
For example, S3

−m2(K) bounds the knot trace D4
−m2(K) (D4 with a −m2-framed

2-handle glued along K) which has intersection lattice (Z, (−m2)) which embeds
into (Z,− Id), but according to [2, Theorem 1.2], S3

−m2(K) bounds a rational ho-
mology ball for at most two positive integer values of m. However, in [16, 17, 2,
3] the authors managed to find an X(Y ) for each Y in such a way that the lattice
embedding obstruction turned out perfect. These X(Y )s have been plumbings of
disc bundles on spheres with a tree-shaped plumbing graph, moreover satisfying the
property that the quantity

I =
∑
v∈V

(−w(v)− 3),

where V is the set of vertices of the graph and w(v) is the weight of v, would be
negative.

Steps (ii) and (iii) can sometimes be done at the same time, but often, like
in [3] where F is the set of positive integral surgeries on positive torus knots, they
cannot. It is then important to eliminate embeddable cases early in order to proceed
with step (iii). Theorem 1.1 in [3], the classification of positive integral surgeries
on positive torus knots bounding rational homology balls, lists 5 families that are
Seifert fibred spaces with 3 exceptional fibres. They bound a negative-definite star-
shaped plumbing with three legs. Families (1)-(3) have two complementary legs,
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that is two legs whose weight sequences are Riemenschneider dual (defined, for the
reader’s convenience, in Section 2 of this paper). All such 3-manifolds that bound a
rational homology ball have been classified by Lecuona in [14]. Family (5) contains
two exceptional graphs which were known to bound rational homology balls both
because they arise as boundaries of tubular neighbourhoods of rational cuspidal
curves in [9] and because they are surgeries on torus knots T (p, q) where q ≡ ±1
(mod p), which were studied in [2]. However, Family (4) took the authors of [3] a
while to find, in the meantime thwarting their attempts at step (iii). Eventually
they found Family (4) using a computer. This allowed them to finish off their lattice
embedding analysis, but Family (4) still looked surprising and strange and begged
the question of “How could we have predicted its existence?”

1.1 GOCL and IGOCL Moves

This work came out of widening the perspective and asking which boundaries of
4-manifolds described by plumbing trees with negative definite intersection forms
and low I bound rational homology balls. In particular, we asked ourselves which
plumbing trees generate an embeddable intersection lattice. We looked at what the
graphs of 3-manifolds we know to bound rational homology balls look like and tried
to see if there are any common patterns. In [15, Remark 3.2], Lecuona describes
how to get all lens spaces that bound rational homology balls from the linear graphs
(−2,−2,−2), (−3,−2,−3,−3,−3), (−3,−2,−2,−3) and (−2,−2,−3,−4) using
some modifications. (She restates Lisca’s result in [16] in the language of plumbing
graphs rather than fractions p/q for L(p, q).) In this paper we define a couple of
moves called GOCL and IGOCL moves on embedded plumbing graphs that preserve
embeddability and generalise the moves described by Lecuona. From this point of
view, Lecuona’s list simply turns into a list of IGOCL and GOCL moves that keep
the graph linear. The IGOCL move was also used by Jonathan Simone in [23] under
the name of expansions. The GOCL move is a generalisation of Lisca’s expansions
in [16].

We may then ask ourselves if these moves preserve the property of the described
3-manifolds bounding rational homology balls. There is unfortunately no obvious
rational homology cobordism between two 3-manifolds differing by a GOCL or an
IGOCL move. We can however prove that repeated applications of these moves
to the embeddable linear graphs (−3,−2,−3,−3,−3) and (−3,−2,−2,−3) give
3-manifolds bounding rational homology balls. We get the following theorem:

Theorem 2. All 3-manifolds described by the plumbing graphs in Figures 1 and 2
bound rational homology balls.

Remark. See Definition 12 for the definition of complementary.

In fact, we prove this theorem by showing that the above plumbed 3-manifolds
bound a double cover of D4 branched over a χ-slice link [7, Definition 1]. By [7,
Proposition 5.1], this must be a rational homology 4-ball. At the same time, we
show that these links are χ-ribbon.

Our method of showing that our 3-manifolds are double branched covers over
χ-slice links appears to fail for the 3-manifolds described by plumbing graphs ob-
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−(1 + b1)

−a1−(3 + k) −(1 + α1) −2 −2
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· · ·

−a2
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−α2
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−b2
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−β2

−βn2

...
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Figure 1: These are the graphs obtainable by performing IGOCL and GOCL moves
on the linear graph (−3,−2,−3,−3,−3). Here the length of the chain of −2’s is k ≥
0, (a1, . . . , am1) and (α1, . . . , αm2) are complementary sequences, and (b1, . . . , bn1)
and (β1, . . . , βn2) are complementary sequences.

1− β1 − ζ1

−a1 −b1
1− α1 − z1

−a2

−al1

−α2

−αl2

−β2

−βm2

−b2

−bm1

−z2

−zn1

−ζ2

−ζn2

...
...

...
...

...
...

Figure 2: The form of all graphs obtainable from (−3,−2,−2,−3) using GOCL
moves. Here the sequences (a1, . . . , al1) and (α1, . . . , αl2) are complementary, as well
as the sequences (b1, . . . , bm1) and (β1, . . . , βm2), and the sequences (z1, . . . , zn1) and
(ζ1, . . . , ζn2).
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−(2 + k)

−b1

−1− a1

−α1 − β1

−a2 −a3
· · ·

−an1

−α2

· · ·
−αn2

−b2
· · ·

−bm1

−β2

· · ·
−βm2

−2

...

−2

Figure 3: General expansion of Lisca’s (−2,−2,−3,−4) graph by GOCL and
IGOCL moves. Here 1/[a1, . . . , an1 ]

− + 1/[α1, . . . , αn2 ]
− = 2; in other words

[a1, . . . , an1 ]
− and [α1, . . . , αn2 ]

− are complementary. The fractions [b1, . . . , bm1 ]
−

and [β1, . . . , βm2 ]
− are complementary as well. The length of the chain of −2’s is k.

tainable by GOCL and IGOCL moves from the (−2,−2,−3,−4) linear graph. Nev-
ertheless, we believe the following to be true:

Conjecture 3. All 3-manifolds described by the plumbing graph in Figure 3 bound
rational homology balls.

The families of Figures 1, 2 and 3, together with the one generated from (−2,−2,−2)
which only contains linear graphs already found by Lisca, include all lens spaces
bounding rational homology balls. They also contain more complicated graphs. In
[1], Aceto defines linear complexity of a plumbing tree to be the minimal number of
vertices we need to remove in order to get a linear graph. The families of Figures
3, 2 and 1 have linear complexities up to 2. Many papers, e.g. [1, 2, 3, 15, 23],
using lattice embeddings to obstruct plumbed 3-manifolds from bounding a rational
homology ball have used arguments of the form “If my graph Γ is embeddable, then
this other linear graph obtained from Γ is embeddable, and we know what those
look like.”, which gets harder to do the further Γ is away from being linear. Thus
we only really have lattice embedding obstructions so far for families of graphs of
complexity 1. The families of Theorem 2 include many graphs of Seifert fibred
spaces. They include Family (4) in [3] and predict its existence because Family
(4) is just the intersection between the set of graphs in Figures 3, 2 and 1 and the
negative-definite plumbing graphs of positive integral surgeries on positive torus
knots.

As mentioned above, there is no obvious rational homology cobordism between
the 3-manifolds described by two plumbing graphs differing by a GOCL or an
IGOCL move. This is interesting in comparison with the case in the works by
Aceto [1] and Lecuona [14]. Lecuona shows that given a plumbing graph Γ, you can
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modify it to a graph Γ′ by subtracting 1 from the weight of a vertex v and attaching
two complementary legs (−a1, . . . ,−am) and (−b1, . . . ,−bn) (see Section 2 or [14]
for definitions) to v, and the 3-manifolds YΓ and YΓ′ described by the graphs will be
rational homology cobordant, that is bound a rational homology 4-ball if and only
if the other one does. Thus, if she wants to know if a YΓ′ , for Γ′ a graph with two
complementary legs coming out of the same vertex, bounds a rational homology
ball, she can reduce it to the same question for a simpler graph. However, since we
do not know if the GOCL and IGOCL moves are rational homology cobordisms,
we cannot play this trick for complementary legs growing out of different vertices.

Another work that has shown that applying GOCL moves to embedded plumb-
ing graphs bounding certain rational homology balls gives us new plumbed 3-
manifolds that bound rational homology balls is [4]. They show that the families
Σ(2, 4n+ 1, 12n+ 5) and Σ(3, 3n+ 1, 12n+ 5) of Brieskorn spheres bound rational
homology balls. In fact, these families are obtained by applying GOCL moves to the
plumbing graphs of Σ(2, 5, 17) and Σ(3, 4, 17). Just like us in Section 3, they per-
form a −1-surgery on their spaces and the result of this surgery is the same for each
space. Unlike us, they use this to show that the families Σ(2, 4n + 1, 12n + 5) and
Σ(3, 3n+1, 12n+5) are surgeries on the 0-surgery on a rationally slice knot, which
by [4, Lemma 2] implies that they bound rational homology balls. Reconciling our
approaches is an interesting direction for future research.

1.2 Rational Surgeries on Torus Knots

An interesting generalisation of [3, Theorem 1.1], would be to classify all positive
rational surgeries on positive torus knots that bound rational homology balls. The-
orem 2 allows us to construct more examples of such surgeries than is sightly to
write down. Instead, we may ask ourselves the following question:

Question 4. For which 1 < p < q with GCD(p, q) = 1 is there an r ∈ Q+ such
that S3

r (T (p, q)) bounds a rational homology ball?

Section 4 is dedicated to showing the following theorem:

Theorem 5. For the following pairs (p, q) with 1 < p < q and GCD(p, q) = 1, there
is at least one r ∈ Q+ such that S3

r (T (p, q)) bounds a rational ball. Here k, l ≥ 0.

1. (k + 2, (l + 1)(k + 2) + 1)

2. (k + 2, (l + 2)(k + 2)− 1)

3. (2k + 3, (l + 1)(2k + 3) + 2)

4. (2k + 3, (l + 2)(2k + 3)− 2)

5. (k2 + 7k + 11, k3 + 12k2 + 45k + 51)

6. (S
(k)
l+1, S

(k)
l+2) for (S

(k)
i ) a sequence defined by S

(k)
0 = 1, S

(k)
1 = 2, S

(k)
2 = 2k + 7

and S
(k)
i+2 = (k + 4)S

(k)
i+1 − S

(k)
i .
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7. (T
(k)
l+1, T

(k)
l+2) for (T

(k)
i ) a sequence defined by T

(k)
0 = 1, T

(k)
1 = k + 2, T

(k)
2 =

k2 + 6k + 7 and T
(k)
i+2 = (k + 4)T

(k)
i+1 − T

(k)
i .

8. (Ul+1, Ul+2) for (Ui) a sequence defined by U0 = 1, U1 = 3, U2 = 14 and
Ui+2 = 5Ui+1 − Ui.

9. (Rl+1, Rl+2) for (Ri) a sequence defined by R0 = 1, R1 = 3, R2 = 17 and
Ri+2 = 6Ri+1 −Ri.

10. (A, (n+1)Q+P ) for P and Q such that L(Q,P ) bounds a rational homology
ball (or equivalently Q

P
lying in Lisca’s set R [16]), and A a multiplicative

inverse to either Q or nQ + P modulo (n + 1)Q + P such that 0 < A <
(n+ 1)Q+ P .

11. ((n+1)Q+P, (l+1)((n+1)Q+P )+A) for P and Q such that L(Q,P ) bounds
a rational homology ball (or equivalently Q

P
lying in Lisca’s set R [16]), and

A a multiplicative inverse to either Q or nQ + P modulo (n + 1)Q + P such
that 0 < A < (n+ 1)Q+ P .

12. (B,P ) for P and Q such that L(Q,P ) bounds a rational homology ball (or
equivalently Q

P
lying in Lisca’s set R [16]), and B a multiplicative inverse to

either P ⌈Q
P
⌉ −Q or Q− P ⌊Q

P
⌋ modulo P such that 0 < B < P .

13. (P, (l+ 1)P +B) for P and Q such that L(Q,P ) bounds a rational homology
ball (or equivalently Q

P
lying in Lisca’s set R [16]), and B a multiplicative

inverse to either P ⌈Q
P
⌉ −Q or Q− P ⌊Q

P
⌋ modulo P such that 0 < B < P .

14. (P,Q) such that there is a number n such that (P,Q, n) ∈ R ⊔ L for the sets
R and L defined in [3, Theorem 1.1]. (Note that here r = n ∈ {PQ,PQ −
1, PQ+ 1}, so we are looking at an integral surgery.)

If Conjecture 3 is true, then the following would follow:

Theorem 6. If Conjecture 3 is true, then for the following pairs (p, q) with 1 <
p < q and GCD(p, q) = 1, there is at least one r ∈ Q+ such that S3

r (T (p, q)) bounds
a rational ball. Here k, l ≥ 0.

1. (Pl+1, Pl+2) for (Pi) a sequence defined by P0 = 1, P1 = 4, P2 = 19 and
Pi+2 = 5Pi+1 − Pi.

2. (Ql+1, Ql+2) for (Qi) a sequence defined by Q0 = 1, Q1 = 2, Q2 = 9 and
Qi+2 = 5Qi+1 −Qi.

The interested reader can use the methods of Section 4 to obtain the surgery coef-
ficients r too.

In Theorem 5, case 14 is shown to bound rational homology balls in [3] and
reflects the degenerate cases of surgeries on torus knots that are lens spaces or
connected sums of lens spaces, cases 10-13 are shown to bound rational homology
balls in [14] because their graphs have a pair of complementary legs, while the cases
1-8 are shown to bound rational homology balls in this paper, using that there
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exists an r such that S3
r (T (p, q)) bounds a graph in the families of Figures 2 and 1.

Case 9 is not obtainable from Theorem 2 but Conjecture 3. However, we know that
it bounds a rational homology ball from [3, Theorem 1.1 (4)]. The authors of [3]
classified all positive integral surgeries on positive torus knots that bound rational
homology balls. The classification included 18 families, whereof families (6)-(18)
are included in our family 14, family (4) in our family 9, and the others in families
1 and 2.

At the moment of writing we do not know of any other positive torus knots
having positive surgeries bounding rational homology balls. The pair (8, 19) is in
some metric the smallest example not to appear on the list of Theorem 5. Thus we
may concretely ask:

Question 7. Is there an r ∈ Q+ such that S3
r (T (8, 19)) bounds a rational homology

ball?

We may also note that some positive torus knots have many surgeries that bound
rational homology balls. For example, Theorem 2 allows us to construct numerous fi-
nite and infinite families of surgery coefficients r ∈ Q+ such that S3

r (T (2, 3)) bounds
a rational homology ball. All we need to do is to choose weights in the graphs in Fig-
ures 1 and 2 so that we get a starshaped graph with three legs whereof one is (−2)
and another is either (−2,−2) or (−3). For example, S3

(6k+5)2

6k2+9k+3

(T (2, 3)) bounds a

plumbing of the shape in Figure 2 with (a1, . . . , al1) = (2+ k, 2), (b1, . . . , bm1) = (2)
and (z1, . . . , zn1) = (2), k ≥ 1, and thus bounds a rational homology ball for
any k ≥ 1. There are also surgeries on T (2, 3) that bound rational balls, but do
not have graphs of the shapes of Figures 1, 2 or 3. For example, S3

64
7

(T (2, 3)) =

−S3
64(T (3, 22)), which bounds a rational homology ball because it is the bound-

ary of the tubular neighbourhood of a rational curve in CP 2 [9], but whose lat-
tice embedding contains a basis vector with coefficient 2, which we do not get
by applying GOCL or IGOCL moves to (−2,−2,−3,−4), (−3,−2,−2,−3) and
(−3,−2,−3,−3,−3). The lattice embedded plumbing graph of S3

64
7

(T (2, 3)) does

however fit into Family C of [24] of symplectically embeddable plumbings. Unfor-
tunately, Family C of [24] contains both surgeries on T (2, 3) that bound rational
homology balls and ones that do not. For example, S3

169
25

(T (2, 3)) of [24, Section

2.4, Figure 12] does not bound a rational ball despite bounding a plumbing with an
embeddable intersection form. A later paper [6] classified which surgeries on T (2, 3)
appearing in Family C, viewed as surface singularity links, bound a rationally acyc-
lic Milnor fibre. Interestingly, all but two of the embedded graphs in that family are
generated by applying IGOCL moves to the graph of S3

64
7

(T (2, 3)). However, we do

not know if any other members of Family C bound a rational homology ball which
is not a Milnor fibre. Hence, the following is a rich open question worth studying:

Question 8. For which r ∈ Q+ does S3
r (T (2, 3)) bound a rational homology ball?

1.3 Outline

We start off the paper with Section 2 by recalling some results on complementary
legs and the basics of the lattice embedding setup. In Section 3 we define the GOCL
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and IGOCL moves and show Theorem 2. In Section 4 we prove Theorem 5 for the
families 1-11, while the other families follow directly from [14] and [3].

2 Complementary Legs and Lattice Embeddings

In this section we list some definitions and easy propositions that are helpful to
understanding the paper. We recall the definition of lattice embeddings and apply
it to chain graphs and complementary legs.

Definition 9. A chain graph is a simple graph with Z-weighted vertices and {+1,−1}-
weighted edges, together with a particular embedding into R2.

Given a chain graph Γ with weight function W : V → Z, we associate to it
a 4-manifold XΓ by describing its Kirby diagram. First, we draw a small unknot,
oriented anti-clockwise, at each vertex of Γ. Then, for each edge, we create a Hopf
linking between the knots corresponding to the edge ends as in Figure 4. We denote
the resulting link by LΓ. Then XΓ is the simply-connected 4-manifold obtained by
attaching 2-handles with framing W (v) to the unknot at each vertex v.

We denote the 3-manifold ∂XΓ by YΓ.

Figure 4: Construction of the 4-manifold XΓ associated to a chain graph Γ. For
each +1-edge, we create a positive Hopf linking between the corresponding unknots
as in this figure. For each −1-edge, we create a negative Hopf linking instead.

Remark 9.1. Note that if Γ is a tree, then the definition of a chain graph coincides
with the definition of a plumbing graph (see [11, Example 4.6.2]).

Remark 9.2. It is useful to study which pairs of graphs (Γ,Γ′) give XΓ
∼= XΓ′ and

YΓ
∼= YΓ′ . Obviously, XΓ

∼= XΓ′ if Γ is isotopic to Γ′. However, we need to take
care when changing the order of the edges around a vertex. This can sometimes be
done, which can be seen by translating into Kirby calculus.

Remark 9.3. A common abuse of terminology is “the chain graph Γ bounds a ra-
tional homology ball”, which means that YΓ bounds a rational homology ball.
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Let Γ be a chain graph. The second homology of XΓ is the free abelian group
Z⟨V1, . . . , Vk⟩ on the vertices and the intersection form is

⟨Vi, Vj⟩QX
=


weight of Vi if i = j

sign eij if Vi is adjacent to Vj through edge eij

0 otherwise.

Definition 10. Let X be a 4-manifold with boundary. A lattice embedding

f : (H2(X)/Torsion, QX) ↪→ (ZN ,− Id)

is a linear map f such that ⟨Vi, Vj⟩QX
= ⟨f(Vi), f(Vj)⟩− Id. We will simply denote

⟨·, ·⟩ := ⟨·, ·⟩− Id. If nothing else is specified, then N = rkH2(X), that is the number
of vertices in the graph.

Common abuses of notation include “embedding of the graph”, meaning an embed-
ding of the lattice (H2(X)/Torsion, QX), where X is described a chain graph.

Knowing when a lattice embedding exists is useful because of Theorem 1 in the
introduction.

Now we turn our heads to lattice embeddings of specific chain graphs, namely
pairs of complementary legs.

Definition 11. We define the negative continued fraction [a1, . . . , an]
− as

[a1, . . . , an]
− = a1 −

1

a2 −
1

. . . −
1

an.

Negative continued fractions often show up in low-dimensional topology because
of the slam-dunk Kirby move [11, Figure 5.30], which allows us to substitute a
rational surgery on a knot by an integral surgery on a link.

Definition 12. A two-component weighted linear graph (−α1, ...,−αn), (−β1, ...,−βk)
(with αi, βj integers greater than or equal to 2) is called a pair of complementary
legs if

1

[α1, ..., αn]−
+

1

[β1, ..., βk]−
= 1.

We call the sequence (β1, ..., βk) the Riemenschneider dual or complement of the
sequence (α1, ..., αn), and we call the fractions [α1, ..., αn]

− and [β1, ..., βk]
− comple-

mentary.

Definition 13. A Riemenschneider diagram is a finite set of points S in Z+ × Z−
such that (1,−1) ∈ S and for every point (a, b) ∈ S but one, exactly one of (a+1, b)
or (a, b − 1) is in S. If (n, k) ∈ S is the point with the largest n − k, we say that
the Riemenschneider diagram represents the fractions [α1, ..., αn]

− and [β1, ..., βk]
−,

where αi is one more than the number of points with x = i and βj is one more than
the number of points with y = −j.
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Figure 5: Example of a Riemenschneider diagram representing the complementary
fractions [5, 3, 2, 2]− and [2, 2, 2, 3, 4]−.

Example 14. See Figure 5 for an example of a Riemenschneider diagram.

Proposition 15 (Riemenschneider [22]). The two fractions represented by a Riemenschneider
diagram are complementary.

Remark 15.1. Note that given any continued fraction [α1, ..., αn]
− with all αi ≥

2, we may construct a Riemenschneider diagram representing [α1, ..., αn]
− and its

Riemenschneider dual.

The following theorem is well-known, but we explicitly write out the embedding
construction for the reader’s convienience.

Proposition 16. Every pair of complementary legs has a lattice embedding.

Proof. The embedding can be constructed algorithmically from a Riemenschneider
diagram. Denote the vertices of the two complementary legs by (U1, . . . , Um1) and
(V1, . . . , Vm2). These vertices generate the second homology of the plumbed 4-
manifold described by the graph. We need to send every vertex to an element of
Z⟨e1, . . . , em1+m2⟩. Start by mapping both U1 and V1 to e1. Order the points in the
Riemenschneider diagram so that P1 = (1,−1), and if Pi = (a, b), then point Pi+1 is
either (a+1, b) or (a, b−1). Now, we recursively build an embedding as follows. For
each non-final i, if the current partial embedding is (u1, ..., un), (v1, ..., vk) (mean-
ing that (U1, . . . , Un) gets mapped to (u1, ..., un) and (V1, . . . , Vk) gets mapped to
(v1, . . . , vk)) and Pi = (a, b) is such that Pi+1 = (a + 1, b), then the new partial
embedding will be (u1, ..., un+ei+1), (v1, ..., vk−ei+1, ei+1). If Pi+1 = (a, b−1), then
the new partial embedding will be (u1, ..., un − ei+1, ei+1), (v1, ..., vk + ei+1) instead.
If Pi is final and the current partial embedding is (u1, ..., un), (v1, ..., vk), the new
embedding will be (u1, ..., un + ei+1), (v1, ..., vk − ei+1), or the other way around,
whatever is preferred. It is easy to see that an embedding (u1, ..., um1), (v1, ..., vm2)
constructed this way will have the properties:

� Each ui for i = 1, ..., n− 1 and vj for j = 1, ..., k will be a sum of consecutive
basis vectors, all but the last one with coefficient 1, and the last one with
coefficient −1. Meanwhile un will be a sum of consecutive basis vectors all
with coefficient 1.

11



� If the Riemenschneider diagram represents the fractions [α1, ..., αn]
− and [β1, ..., βk]

−,
then ⟨ui, ui⟩ = −αi and ⟨vj, vj⟩ = −βj.

� Since ui and ui+1 have exactly one basis vector in common, one with a pos-
itive coefficient and one with a negative one, ⟨ui, ui+1⟩ = 1, and similarly
⟨vi, vi+1⟩ = 1.

� The other pairs (ui, uj) (with |i − j| > 1) don’t share basis vectors and are
thus orthogonal. Similarly, the pairs (vi, vj) with |i− j| > 1 don’t share basis
vectors and are thus orthogonal.

� It is easy to show by induction on the construction that ⟨ui, vj⟩ = 0 for all
i, j.

These properties show that we are in fact looking at a lattice embedding of the
complementary legs.

Remark 16.1. In fact, if e1 is fixed to hit the first vertex of each complementary
leg, the rest of the embedding is unique up to renaming of elements and sign of the
coefficient [5, Lemma 5.2].

The following facts are useful when dealing with lattice embeddings. We will
often use these properties without citing them. The first fact follows from re-
versing the Riemenschneider diagram, the second from embedding the sequences
(am, . . . , a1) and (bn, . . . , b1) as in Theorem 16 and mapping the −1-weighted ver-
tex to −e1, and the rest from looking at a Riemenscheider diagram.

Proposition 17. Let (a1, . . . , am) and (b1, . . . , bn) be complementary sequences.
Then the following hold:

1. The sequences (am, . . . , a1) and (bn, . . . , b1) are complementary.

2. The linear graph (−a1, . . . ,−am,−1,−bn, . . . ,−b1) embeds in (Zm+n,− Id).

3. Either am or bn must equal 2, so assume without loss of generality that bn = 2.
Blowing down the −1 in the linear graph (−a1, . . . ,−am,−1,−bn, . . . ,−b1)
gives us the linear graph (−a1, . . . ,−(am−1),−1,−bn−1, . . . ,−b1). This graph
is once again a pair of complementary legs linked by a −1, described by the
Riemenschneider diagram obtained by the removing the last point.

4. Repeatedly blowing down the −1 in linear graphs of the form

(−a1, . . . ,−am,−1,−bn, . . . ,−b1)

eventually takes us to (−2,−1,−2), or even further to (−1,−1) or (0).

5. Similarly, blowing up next to the −1 gives (−a1, . . . ,−(am+1),−1,−2,−bn, . . . ,−b1)
or (−a1, . . . ,−am,−2,−1,−(bn + 1), . . . ,−b1), which are both pairs of com-
plementary legs connected by a −1, described by Riemenschneider diagrams
that are extensions of the initial one by one dot.
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−2 e1 − e2

−2 e2 − e3

−3 −e1 − e2 − e4

−4 e1 + e2 + e3 − e4

Figure 6: Lisca’s (−2,−2,−3,−4) graph with embedding.

−2 e1 − e2

−2 e2 − e3

−3 −e1 − e2 − e4

−5 e1 + e2 + e3 − e4 − f1

−2
e4 − f1

Figure 7: An extension of Lisca’s (−2,−2,−3,−4) graph with embedding.

3 Growing Complementary Legs on Lisca’s Graphs

The idea for this work comes from studying the lattice embeddings of linear graphs
and other trees that are known to bound rational homology 4-balls. Consider for
example Lisca’s classification of connected linear graphs that bound rational homo-
logy 4-balls [16], in the most convenient form for us described by Lecuona in [15,
Remark 3.2]. Every family of embeddable graphs can be obtained from the basic
graphs (−2,−2,−2), (−2,−2,−3,−4), (−3,−2,−2,−3) and (−3,−2,−3,−3,−3)
by repeated application of two types of moves, one of which is the following: choose
a basis vector e hitting exactly two vertices v and w, where w is final (Lisca’s word
for leaf, that is a vertex of degree 1 [16, p. 6]), subtract 1 from the weight of v and
attach a new vertex u of weight −2 to w. In this section, we will show that if we start
with any of the graphs (−2,−2,−2), (−3,−2,−2,−3) or (−3,−2,−3,−3,−3), we
can do away with the assumption that w is final and still get 3-manifolds bounding
rational homology 4-balls through repeating this operation.

Example 18. Consider Figure 6, showing an embedding of Lisca’s (−2,−2,−3,−4)
graph into the standard lattice (Z⟨e1, e2, e3, e4⟩,− Id). Note that e4 and e3 hit two
vertices each. Choose e4. We can now perform the operation described above by
choosing v to be the vertex of weight −4 and w the vertex of weight −3. The result
is shown in Figure 7 together with its embedding, which is a kind of “expansion”
of the embedding in Figure 6. Our new embedding has two basis vectors hitting
exactly two vertices each, namely e3 and f1, whereas e4 now hits three vertices. We
may now perform the same operation again on any of these basis vectors, thereby
obtaining any graph of the form described in Figure 3, with k = 0. We will show
that these graphs do not only have lattice embeddings, but also bound rational
homology 4-balls.
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(a) Before GOCL.

(b) After GOCL.

Figure 8: A GOCL move on a graph with a lattice embedding.

(a) Before IGOCL.

(b) After IGOCL.

Figure 9: An IGOCL move on a graph with a lattice embedding.
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We will now introduce two moves on chain graphs with a lattice embedding.
Let Γ = (V,E,W ) be a weighted negative-definite graph with lattice embedding
F : (V,QXΓ

) → (Z|V |,− Id). Assume that there is a basis vector e of Z|V | hitting
exactly two vertices A and B in Γ, whose images are v and w, in any order we prefer.
Then a GOCL (growth of complementary legs) operation is constructing an
embedded graph (Γ′ = (V ′, E ′,W ′), F ′) by V ′ = V ∪ C, E ′ = E ∪ {AC} and
u := F ′(C) = −⟨e, v⟩e− f , w′ := F ′(B) = w − ⟨e, v⟩⟨e, w⟩f and F ′(D) = F (D) for
all D ∈ V − {B}. This move is illustrated by Figure 8. Note that ⟨e, v⟩⟨e, w⟩ =
⟨f, u⟩⟨f, w′⟩. Thus, the GOCL operation substitutes e by f in the set of basis
vectors hitting the graph exactly twice and moreover, the sign difference between
the two occurrences of the basis vector is preserved. This operation can therefore
be applied repeatedly. If we start with the graph consisting of two vertices of weight
−2 and no edges, and the embedding e1− e2 and e1+ e2, then repeated application
of GOCL will simply give us two complementary legs.

The other operation which we will call IGOCL (inner growth of comple-
mentary legs) could be described as growing complementary legs from the inside.
Suppose a basis vector e hits exactly three vertices A, B and C in Γ, with their
images under the lattice embedding F being u, v and w respectively. Assume also
that B and C are adjacent and that ⟨v, e⟩⟨w, e⟩ = −1, that is e hits v and w
with opposite signs. Then Γ′ = (V ′, E ′,W ′) is described by V ′ = V ∪ {D}, E ′ =
(E−{BC})∪{BD,DC}, F ′(D) = −⟨v, e⟩e+⟨v, e⟩f , F ′(C) = w−⟨w, e⟩e+⟨w, e⟩f ,
F ′(A) = u+ ⟨u, e⟩f and F ′(X) = F (X) for all X ∈ V − {A,C}. This operation is
illustrated in Figure 9. After this operation is performed, we can perform it again
on either e or f , but the result is essentially the same. What it does is grow a
chain of −2’s between two vertices and compensate by subtracting from the weight
of a different vertex. If we apply the IGOCL operation on a vector hitting a pair
of complementary legs three times, we still get a pair of complementary legs, which
explains the name.

3.1 The Method to Show Theorem 2

Now that we have defined the GOCL and IGOCL moves, the remainder of this
section will be dedicated to their applications to Lisca’s basic graphs (−2,−2,−2),
(−3,−2,−3,−3,−3) and (−3,−2,−2,−3). We will show for these one by one that
the results obtained from repeatedly applying the aforementioned operations always
bound rational homology balls. This subsection details the method.

Recall Definition 9 and its notation. If Γ is a tree, then the link LΓ is strongly
invertible (defined in [19]), that is can always be drawn in a way equivariant
with respect to the 180◦ rotation around the x-axis in such a way that every knot
intersects the x-axis in exactly two points. (For example, see Figure 10.)
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Figure 10: Proof that the attaching link of the graph in Figure 7 is strongly invert-
ible.

Let π : XΓ → XΓ be the involution given by extending this 180◦ rotation around
the x-axis and let p : XΓ → XΓ/π be the quotient map when we identify x ∼ π(x).
By [19, Theorem 3], XΓ/π = B4 and p is a double covering, branched over a surface
SΓ ⊂ B4. The surface SΓ can be drawn by attaching bands to a disc according to
the bottom half of the rotation-equivariant drawing, adding as many half-twists as
the weight of the corresponding unknot [19]. (See Figure 11.) By KΓ we denote the
link KΓ = SΓ ∩ S3. Note that KΓ ̸= LΓ.

Figure 11: SΓ for Γ the graph in Figure 7 is a disc with five bands attached.

We will show that if Γ is obtainable from the (−3,−2,−3,−3,−3) or (−3,−2,−2,−3)
Lisca graphs by GOCL and IGOCL moves, then YΓ bounds a rational homology 4-
ball. We will do this by showing that KΓ is χ-slice, that is bounds a surface of Euler
characteristic 1 inside B4 [7, Definition 1]. The χ-sliceness will be proven by adding
two (or one) 2-handles to XΓ in a Z/2Z-equivariant fashion (changing the branching
locus from SΓ to a different surface S by adding two (or one) bands), in such a way
that we obtain (S1×S2)#(S1×S2) (or (S1×S2)) and that ∂S is the 3-component
(or 2-component) unlink. Addition of such bands is a concordance of boundary
links. It will follow that KΓ bounds an embedded surface F = S∪D2∪D2(∪D2) in
B4 obtained from adding two (or one) bands to KΓ and capping off with three (or
two) discs, meaning that KΓ is the boundary of a surface obtained from attaching
two bands to three discs (or one band to two discs). This surface is homotopy
equivalent to three points with two edges (or two points with one edge), which has
Euler characteristic 1. We use [7, Proposition 5.1] to conclude that the double cover
of B4 branched over F is a rational homology ball with boundary YΓ.
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(a) Simple blow-down (b) Simple blow-up (c) Twisted blow-down

Figure 12: Useful blow-ups and blow-downs.

3.2 (−2,−2,−2)

This graph has embedding (e1− e2, e2− e3,−e1− e2). The only basis vector hitting
twice is e1 whose both occurrences are in final vertices. Thus applying the GOCL
operation keeps the graph linear and all such graphs have been shown to be bound-
ing rational homology balls by Lisca. In fact, these graphs describe the lens spaces
L(p2, pq ± 1), for p > q > 0 with some orientation [16, Lemma 9.2].

3.3 (−3,−2,−3,−3,−3)

In this subsection, we show the following proposition:

Proposition 19. Every 3-manifold described by the graph in Figure 1 bounds a
rational homology 4-ball.

Let Γ be a graph as in Figure 1. By Subsection 3.1, we need to find a way to
add a 2-handle to XΓ in such a way that the boundary turns into S1 × S2, that
is the 3-manifold described by the 0-surgery on an unknot. For this, we will work
backwards and show that the 0-surgery on an unknot blows up to a surgery on YΓ.

The proof will be by Kirby calculus, so in Figure 12 we recall the effect of some
blow-ups and blow-downs on Kirby diagrams. Recall that if there are k strands of
a link component (counted with sign) in a bunch that we are about to perform a
±1 blow up around, then the framing of that component increases by ±k2.

Now, we start by the chain

(−bn1 , . . . ,−b1,−(2 + k),−1,−2, . . . ,−2︸ ︷︷ ︸
k

,−(1 + β1),−β2, . . . ,−βn2).

Note that it consists of two Riemenschneider dual chains connected by a −1, so
by Proposition 17, it blows down to the (0) chain. Since the graph is a tree, the
sign of the crossings doesn’t matter yet. We will arrange the crossings around the
−(2+k)-vertex as in Figure 13a. The chains (−b2, . . . ,−bn1) and (−2, . . . ,−2,−(1+
β1),−β2, . . . ,−bn2), on the other hand, since they are not relevant to the Kirby
moves that follow, are represented by tiny squares that freely move on their re-
spective components.

Now we apply the Kirby calculus of Figure 13. The diagram in Figure 13c can no
longer be described by a plumbing graph where every vertex is a link component. In
fact, the red, blue, and black components form a triple Hopf link. Let us perform a
blow-up at the clasp between the blue and the black components. This is a negative
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(a) Start (b) Isotope (c) Apply Figure 12a

Figure 13: Creating a 3-cycle.

Figure 14
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clasp, so we need to perform the twisted blow-up of Figure 12c. We obtain Figure
14.

Now note that removing the amber −1-knot in Figure 14 yields the Kirby
diagram of Figure 1 with (a1, . . . , am1) = (2). To obtain more general tuples
(a1, . . . , am1), we will have to repeatedly blow up the clasps on the −1-weighted
component. At the moment, both of these clasps in Figure 14 (in magenta) are
negative and can be blown up using Figure 12c, an operation that substitutes a
clasp by a −1-weighted ring with two negative clasps on either side. Thus, repeated
blow-ups will give us a figure like Figure 14, but with the amber ring potentially
substituted by a longer chain. In any case, the link in this figure is strongly invert-
ible, and removing the −1-weighted component yields the Kirby diagram of Figure
1.

3.4 (−3,−2,−2,−3)

In this subsection, we show the following proposition:

Proposition 20. Every 3-manifold described by the graph in Figure 2 bounds a
rational homology 4-ball.

By Subsection 3.1, it is enough to show that the (0, 0) surgery on the two-
component unlink blows up to a Z2-equivariant image of the Kirby diagram of
Figure 2 with two −1-framed 2-handles attached. By Proposition 17.4, one of the
unknots with framing 0 blows up to the chain

(−βm2 , . . . ,−β2, 1− β1, 1− b1,−b2, . . . ,−bm1),

which can be seen by noting that the above chain is one blow-up away from

(−βm2 , . . . ,−β1,−1,−b1, . . . ,−bm1).

Our first move will be to link the other unknot with framing 0 to the component
with framing 1 − β1 using a blow-up, thus obtaining Figure 15a. In this figure,
the chains (−b2, . . . ,−bm1) and (−β2, . . . , bm2) are represented by tiny squares that
freely move on their respective components and if there are two on the same one,
they could even pass through each other. Figure 15b is obtained from Figure 15a
by a simple isotopy. Note that the purple −1-weighted component is linked with
the black and the blue ones with negative clasps. We may thus use Figure 12c to
blow it up into an arbitrary chain of negative clasps as in Figure 15c.

Now, zoom into the lower part of Figure 15c and note that it looks like Figure
16a. It is isotopic to Figure 16b, which clearly blows up to Figure 16c. This shows
that Figure 15c blows up to Figure 17a. Applying an isotopy of the link gives Figure
17b. The green and the black components are now linked positively. The−1-blowup
that gets rid of this linking introduces a new component that links to the green and
the black components with a negative and positive clasp respectively. Repeated
blow-ups thus give us a chain with all clasps negative except the lowest one. We
conclude that Figure 17c is a Z2-equivariant blow-up of Figure 17b and hence of
the (0, 0) surgery on the 2-component unlink, but we may also note that removing
the two −1-weighted components gives us a tree-shaped plumbing, namely the one
in Figure 2.
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(a) (b) (c)

Figure 15: Creating a Z2-equivariant Kirby diagram of the Figure 2 with two extra
2-handles.

(a) (b) (c)

Figure 16: Zooming in on a part of Figure 15c and blowing up.
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(a) (b) (c)

Figure 17: Creating a Z2-equivariant Kirby diagram of the Figure 2 with two extra
2-handles.

4 Proof of Theorem 5

In this section, we prove Theorems 5 and 6 by studying the intersection between
the graphs in Figures 2, 1 and 3, and plumbing graphs of positive rational surgeries
on positive torus knots. First we describe the plumbing graphs of the surgeries on
torus knots, and then we go through the intersections with the graphs in Figures
2, 1 and 3 one by one. The change of order compared to Section 3 is because some
families obtained from Figure 1 are subfamilies of families obtained from Figure 2.

4.1 Plumbing Graphs of Rational Surgeries on Torus Knots

Figure 18: A Kirby diagram with boundary S3
n(T (p, α)) where n = [N1 +

pα,N2, . . . , Nk]
− and K = T (p, α), here drawn for k = 5.
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In order to find the intersection between the plumbing graphs of rational surgeries
on torus knots and the graphs obtained from Lisca’s graphs by repeated GOCL and
IGOCL moves, we need to know what the plumbing graphs of rational surgeries on
torus knots look like. Let n > 0 be a rational number. We want to find a plumbing
graph for S3

n(T (p, α)). We can write n = [N1+pα,N2, . . . , Nk]
− for N2, . . . , Nk ≥ 2.

The 3-manifold Sn(T (p, α)) bounds the 4-manifold in Figure 18, which is positive-
definite if n > 0. Now, we will use the same technique as in [18, Section 3] in order
to produce a definite plumbing graph. In the process, we need to measure how far
we are from being definite, so the following definition is useful.

Definition 21. The positive/negative index of a 4-manifold is the number of
positive/negative eigenvalues of its intersection form.

The argument of [18, Section 3] that the blow-ups decrease the surgery coefficient
by a constant still holds to show that S3

n(T (p, α)) bounds the 3-manifold described
by the graph in Figure 19.

−cs

−1

N1 N2

· · ·
Nk

−cs−1

· · ·
−c2

−dt
· · ·

−d2

Figure 19: A plumbing graph of S3
n(T (p, α)), where α > p. Here [1, c2, ..., cs]

− =
p/α, [d1, . . . , dt]

− = α/p and [N1, . . . , Nk]
− = N = n − pα. In particular, the

pair of fractions ([c2, . . . , cs]
−, [d1, . . . , dt]

−) are complementary. Also, we can write
[(c2, c3, . . . , cs) = (−2[d1−2], a1 + 1, a2, . . . , ar) so that [a1, . . . , ar]

− and [d2, . . . , dt]
−

are complementary.

The positive index of this graph is k by the same logic as in [18, Section 3]. To
obtain a definite graph, we will need the following generalisation of the algorithm
in [18, Figure 2]:

Proposition 22. Let Γ be a tree-shaped chain graph containing a chain (a con-
nected linear subgraph with no nodes, that is vertices of degree greater than 2)
(−α1, . . . ,−αk), as in Figure 20a. Let Γ′ be the graph Γ with the chain substi-
tuted by the chain (β1, . . . , βj), for [α1, . . . , αk]

− and [β1, . . . , βj]
− complementary

fractions, and the weight of the vertices adjacent to the chain increased by 1. Then
YΓ = YΓ′. Moreover, b2+(XΓ′) = b2+(XΓ) + j and b2−(XΓ′) = b2−(XΓ)− k.
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a −α1 −αk b−α2 −αk−1

. . .

(a) Changing a negative chain...

a+ 1 β1 βj b+ 1β2 βj−1

. . .

(b) ... to a positive one.

Figure 20: The graphs above bound the same 3-manifold if [α1, . . . , αk]
− and

[β1, . . . , βj]
− are complementary fractions.

Example. Before sketching the proof, we will provide an example of the algorithm
that we use to change such a chain. Start with the linear graph (−2,−4,−2). Right
now, all vertices have negative weights. We want to introduce a positively weighted
vertex. Let us perform a 1-blow-up. We obtain (1,−1,−4,−2). Now, we blow
down the −1 and obtain (2,−3,−2). We perform a 1-blow-up between the 2 and
the −3 and obtain (3, 1,−2,−2). Blowing up a 1 again between the last positively
weighted vertex and the first negatively weighted one gives us (3, 2, 1,−1,−2). We
blow down the −1 to get (3, 2, 2,−1) and again to obtain (3, 2, 3). We note that
every time we perform a 1-blow-up, we increase both the positive index and the
number of positive vertices by 1, and every time we perform a −1-blowdown, we
decrease both the negative index and the number of negative vertices by 1. Thus,
changing these 3 negative vertices into 3 positive ones decreased the negative index
by by 3 and increased the positive index by 3.

Proof sketch. This proposition follows from the fact that blow-ups and blow-downs
do not change the boundary 3-manifold, together with the algorithm of 1) per-
forming a 1-blow-up at the right of the rightmost chain element greater than
1, 2) blowing down any −1-weighted vertices, and 3) repeating. Following the
Riemenschneider diagram, we see that this algorithm gradually substitutes a se-
quence by its Riemenschneider dual. Blowing up by 1 increases both the positive
index and the number of vertices with positive weight by 1, and blowing down a −1
decreases both the number of vertices with negative weight and the negative index
by 1. Thus, substituting the k negative-weighted vertices by j positive-weighted
ones substracts k from the negative index and adds j to the positive index.

If N > 1 and thus N1 ≥ 2, we can use Proposition 22 to substitute the chain
(N1, . . . , Nk) with its negative Riemenschneider complement (−M1, . . . ,−Mj) and
obtain the negative-definite graph in Figure 21.

If 0 < N < 1, then the sequence (N1, . . . , Nk) starts with a 1 possibly followed
by some 2’s that we can blow down before turning the rest of the chain negative.
This will once again give us a negative-definite graph, namely the one in Figure 22.
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−cs

−2

−M1 −M2

· · ·
−Mj

−cs−1

· · ·
−c2

−dt
· · ·

−d2

Figure 21: A negative-definite plumbing graph of S3
n(T (p, α)), whereN = n−pα > 1

and α > p. Here [1, c2, ..., cs]
− = p/α, [d1, . . . , dt]

− = α/p and if N = n− pα = a/b
with a, b ∈ Z>0, then [M1, . . . ,Mj]

− = a
a−b

.

−cs

−(P1 + 1)
−P2 −P3

· · ·
−Pj

−cs−1

· · ·
−c2

−dt

· · ·
−d2

Figure 22: A negative-definite plumbing graph of S3
n(T (p, α)), where α > p and

0 < n−pα = N < 1. Here [1, c2, ..., cs]
− = p/α, [d1, . . . , dt]

− = α/p and the fraction
[P1, . . . , Pj]

− is complementary to 1
1−N

= [N2, . . . , Nk]
−. In fact, that means that

N = 1
[P1,...,Pj ]−

.

If N < 0, that is N1 ≤ 0, then changing turning the positively-weighted vertices
(N2, . . . , Nk) negative will not be enough to decrease the positive index to 0. Instead,
we will use Proposition 22 to turn the two other legs of our graph positive, and we
obtain the graph in Figure 23, which has negative index 1.

dt

1

N1 N2

· · ·
Nk

dt−1

· · ·
d1

er
· · ·

e1

Figure 23: A plumbing graph of S3
n(T (p, α)), where α > p and n − pα = N < 0.

Here the negative index is 1, [d1, . . . , dt]
− = α/p and [e1, . . . , er]

− is complementary
to [d2, . . . , dt]

−.

If N1 = 0, we will perform a 0-absorption (see [20, Proposition 1.1]) and obtain
the positive definite graph in Figure 24.

If N1 = −1, we simply blow it down. If N1 ≤ 2, we use Proposition 22 to turn
it into a chain of 2’s and obtain the graph in Figure 25.

In the graphs of Figures 21 22, 24 and 25, the vertex of degree 3 is called the
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dt

N2 + 1
N3 N4

· · ·
Nk

dt−1

· · ·
d1

er
· · ·

e1

Figure 24: A positive definite plumbing graph of S3
n(T (p, α)), where α > p and

−1 < N = n− pα < 0. Here [d1, . . . , dt]
− = α/p and [e1, . . . , er]

− is complementary
to [d2, . . . , dt]

−.

dt

2

N2 + 12
· · ·

Nk

dt−1

· · ·
d1

er
· · ·

e1

2
· · ·

N3

Figure 25: A positive definite plumbing graph of S3
n(T (p, α)), where α > p and

n − pα = N < −1. Here [d1, . . . , dt]
− = α/p and [e1, . . . , er]

− is complementary to
[d2, . . . , dt]

−, and the tail starts with a chain of −2’s of length −N1 − 1.

node. Removing the node splits the graph into 3 connected components, of which
the top left one is called the torso, the bottom left one is called the leg and the
right one is called the tail. This vocabulary is chosen to accord with the vocabulary
of [18] on iterated torus knots. We also often talk about the torso, leg and tail
collectively as legs. This comes from viewing the graphs as general star-shaped
graphs rather than graphs of surgeries on torus knots specifically. (The author
recommends looking at a flag of Sicily or Isle of Man for a more precise metaphor.)
This vocabulary is generally used by Lecuona, for instance in [14] and [15].

We say that two legs of a star-shaped graph are negatively quasi-complementary
if either adding one vertex at the end of one leg could make them complementary,
and positively quasi-complementary if removing a final vertex from one of the legs
could. We say that two legs are complementary if they are either positively or negat-
ively quasi-complementary. Note that the graphs in Figures 21, 22, 24 and 25 are ex-
actly the star-shaped graphs with three legs whereof two are quasi-complementary.
In the following subsections, we are thus going to look for star-shaped graphs with
a pair of quasi-complementary legs among the graphs in Figures 3, 2 and 1. The
following very easy-to-check proposition will come in useful:

Proposition 23. Suppose Q/P = [a1, . . . , an]
− and (−a1,−a2, . . . ,−an) is either

the leg or torso of the plumbing graph of S3
r (T (p, α)), a positive rational surgery on

a positive torus knot. (Here −an is the weight of the vertex adjacent to the node.)
Then α/p is one of the following:

�
Q
P
,
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Figure 26: It is impossible to choose k so that the length or height difference between
the full Riemenshneider diagram and the diagram to the right of the red line is one.

�
Q

Q−P
,

�
(l+1)Q+P

Q
for some l ≥ 0 or

�
(l+2)Q−P

Q
for some l ≥ 0.

Note that if GCD(P,Q) = 1, then all of these fractions are reduced. However,
if P = Q− 1, then, α/p = Q

Q−P
= Q is a degenerate case that we ignore.

4.2 (−3,−2,−2,−3)

In this subsection, we prove the following:

Proposition 24. For all torus knots T (p, q) in Families 1, 2, 3, 4, 6 and 7 of
Theorem 5, there exists an r ∈ Q+ such that S3

r (T (p, q)) bounds a rational homology
ball.

This is done by considering the intersections between the graphs in Figures 21,
22, 24 and 25 (rational surgeries on torus knots) and the graphs in Figure 2 (graphs
obtainable from (−3,−2,−2,−3) through GOCL moves).

Proof. Figure 2 is symmetric in the y-axis, so it is enough to try two of the vertices
for trivalency, say the one with weight 1− β1 − ζ1 and the one with weight −a1.

If we want to the vertex with weight 1 − β1 − ζ1 to be the trivalent vertex in
one of the Figures 21, 22, 24 and 25 , then l1 = m1 = 1. Hence βi = αj = 2
for all i and j. Also, l2 = 1 or n1 = 1. Suppose that (−βm2 , . . . ,−β2) is one of
the quasi-complementary legs. Proposition 23 would generate that (p, q) belongs
to Families 1 and 2 in Theorem 5. All of these are possible to produce by setting
l2 = 1, which frees us up to choosing (ζ2, · · · , ζn2) completely freely.

Now, we consider what happens if the legs other than (−β2, . . . ,−bm2) are quasi-
complementary. If n1 = 1, all αs, βs and ζs become −2, giving us a star-shaped
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Figure 27: Riemenschneider diagram of the quasi-complementary legs
(−a2, . . . ,−al1) and (−b1, 1− α1 − z1,−α2, . . . ,−αl2) in Figure 2 when m1 = n1 =
m2 = 1.

graph with two legs containing nothing but −2s, not allowing us out of the families
1, 2, 3 and 4. We consider the case l2 = 1 instead. We have a1 = α1 = 2.
Let b1 = k + 2 (so that the leg (−β2, . . . ,−βm2) = (−2, . . . ,−2) has length k). We
investigate if (−ζ2, . . . ,−ζn2) and (−2,−(k+2),−z1−1,−z2, . . . ,−zn1) can be quasi-
complementary. Consider the diagram in Figure 26. The black dots represent the
Riemenschneider diagram of (z1, . . . , zn1) and (ζ1, . . . , ζn2). The blue dots are added
in such a way that they together with the black dots form the Riemenschneider
diagram of (−2,−(k + 2),−z1 − 1,−z2, . . . ,−zn1). Call it the BB diagram. The
Riemenschneider diagram of (−ζ2, . . . ,−ζn2) is to the right of the red line. Call it
the RR diagram. Now we wonder if we can choose the black dots and k in such a
way that the BB diagram is just the RR diagram plus one row or column at the
end. However, we see that it is impossible to create a difference of one between the
length of one leg and the complement of the other leg.

Now, consider the vertex labelled −a1 being trivalent instead. This means that
m1 = 1. Also, either n1 = 1 or l2 = 1. First, assume that n1 = 1. This means
that β1 = · · · = βm2 = ζ1 = · · · = ζn2 = 2. Either n2 or m2 must be 1. No
matter the choice, the left leg becomes (−2, . . . ,−2,−3) from the outside. If it is
included in a pair of quasi-complementary legs, which we can always ensure since
we can choose (α2, . . . , αl1) freely, we can use Proposition 23 to get all of families
3 and 4. In the more interesting case (where the leftmost leg is not one of the
quasi-complementary ones) (a2, . . . , al1) must be quasi-complementary (from the
inside) either to (2, 1 + k + α1, . . . , αl2) for some k ≥ 0 (depicted in Figure 27) or
to (2 + k, 1 + α1, . . . , αl2) for some k ≥ 0 (depicted in Figure 28), depending on
whether n2 or m2 is equal to 1.

Let us resolve the first case. Again, in order for (a2, . . . , al1) to be quasi-
complementary to (2, 1+k+α1, . . . , αl2) for some k ≥ 0, the BB diagram should be
the same as the RR diagram plus an extra row or column at the end. Since the part
to the left of the red line has at least two columns, it must be an extra row. One
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Figure 28: Riemenschneider diagram of the quasi-complementary legs
(−a2, . . . ,−al1) and (−b1, 1− α1 − z1,−α2, . . . ,−αl2) in Figure 2 when m1 = n1 =
n2 = 1.

Figure 29: A strange two-parameter family of rational surgeries on positive torus
knot that bound rational homology 4-balls.
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solution would be (α1, . . . , αl2) = (3). If the black diagram has more than one row,
we need α2 = (k+1)+2+1 = k+4. We can add as many rows as we want this way.
We get that (α1, . . . , αl2) = (3, (k+4)[s]) and (a1, . . . , al1) = (2, (3, (2)[k+1])[s], 2), giv-
ing us the graph in Figure 29. This graph is of the shape of Figure 25, so it describes
S3
n(T (p, α)) for α/p = [(k + 4)[s+1], 2]− and N = n− pα = [−1, (2)[k+1]]− = −2k+3

k+2
.

This corresponds to family 6 in Theorem 5. A different formulation of the result
is that S3

pα− 2k+3
k+2

(T (p, α)) bounds a rational homology ball for all p and α described

by (
α
p

)
=

(
k + 4 −1
1 0

)s+1 (
2
1

)
for some s, k ≥ 0. This two-parameter family is the most spectacular one we’ve
seen to date since it is polynomial in one variable and exponential in the other.

Figure 30: A strange two-parameter family of rational surgeries on positive torus
knot that bound rational homology 4-balls.

In the second case, that is if (a2, . . . , al1) is quasi-complementary to (2 + k, 1 +
α1, . . . , αl2) for some k ≥ 0, then (α1, . . . , αl2) = (k + 3, (k + 4)[s]) for some s ≥ 0.
Then the graph becomes as in Figure 30. Now α/p = [(k+4)[s+1], k+2]−, meaning
that S3

pα− 2k+3
k+2

(T (p, α)) bounds a rational homology ball for all p and α described

by (
α
p

)
=

(
k + 4 −1
1 0

)s+1(
k + 2
1

)
for some s, k ≥ 0. This family is similarly spectacular to the previous one. It
corresponds to Family 7 in Theorem 5.

If l2 = 1 instead of n1 = 1, then a1 = · · · = al1 = 2. We already know that we
can choose surgery coefficients when one of the complementary legs consists of only
−2s, so we do not need to check that case to formulate Theorem 5. In fact we do
not need to check further, as any star-shaped graphs with three legs whereof two
are quasi-complementary, the third one consisting only of −2s and the node having
weight −2 is a positive integral surgery on a positive torus knot, which have been
classified in [3].

4.3 (−3,−2,−3,−3,−3)

In this subsection, we prove the following:
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Proposition 25. For all torus knots T (p, q) in the families 5 and 11 of Theorem
5, there exists an r ∈ Q such that S3

r (T (p, q)) bounds a rational homology ball.

This is done by finding the intersections between the graphs in Figures 21, 22,
24 and 25 (rational surgeries on torus knots) and the graphs in Figure 1 (graphs
obtainable from (−3,−2,−3,−3,−3) through GOCL and IGOCL moves).

Proof. In Figure 1 there are three possibilities for a trivalent vertex. If we choose
the vertex of weight −a1, then m2 = 1 and thus two of the legs are (−3 − k) and
(−2, . . . ,−2). We already know that if one of these is in a quasi-complementary
pair, then (p, α) lies in families 1-4 in Theorem 5, so we get nothing new. Choosing
the vertex of weight −(1 + b1) to be trivalent, and noting that we land in families
1-4 if the left leg (−3−k,−2) is one of the quasi-complementary ones, does however
lead us to find that

S3
pα− 5

7
(T (p, α))

bounds a rational homology ball for every(
α
p

)
=

(
5 −1
1 0

)s+1(
3
1

)
where s ≥ 0. This corresponds to family 8 in Theorem 5. Finally, choosing the
vertex of weight −(1 + α1) to be trivalent gives us m1 = n1 = 1. If the lower
leg (−2, . . . ,−2) is included in the pair of quasi-complementary legs, we fall into
families 1-4 again. We need to investigate when (−(3 + k),−a1,−(1 + b1)) can be
quasi-complementary to ((−2)[b1−2],−3, (−2)[k]). The Riemenschneider dual of the
latter leg is (−b1,−(k + 2)), so we need b1 = a1 and k + 2 = b1 + 1. Note that
we also need a1 ≥ 3 in order to get a three-legged graph. Let a = a1 − 3. We get
(−(3+ k),−a1,−(1+ b1)) = (−(a+5),−(a+3),−(a+4)). Our graph is now as in
Figure 24. Thus α/p = [a + 5, a + 3, a + 4]− = a3+12a2+45a+51

a2+7a+11
. This correspond to

family 5 in Theorem 5.

The remaining families follow from [15] and [3].

4.4 (−2,−2,−3,−4)

In this subsection, we prove Theorem 6.
This is done by determining the intersection between the graphs in Figures 21,

22, 24 and 25 and the graphs in Figure 3, that is between the graphs of surgeries
on torus knots and the graphs of Figure 3, which we now know to bound rational
homology balls.

Proof of Theorem 6. To turn Figure 3 into a star-shaped graph, we will need to keep
some of the grown complementary legs to length 1. If we let the vertex of weight
−1 − a1 be trivalent, then m1 = 1 and thus (β1, . . . , βm2) consists only of 2’s. If
m2 > 1 then n2 = 1 and (a1, . . . , an1) = (2, . . . , 2). In order to have trivalency of the
−(1+a1) vertex, α1 ≥ 3 is required. It is easy to check that in this case the only legs
that can be quasi-complementary are the (−b1,−(2+ k)) one and the (−2, . . . ,−2︸ ︷︷ ︸

α1−2

)
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−(2 + k)

−2

−1− a1

−α1 − 2

−a2 −a3
· · ·

−an1

−α2

· · ·
−αn2

−2

...

−2

Figure 31: Choosing m1 = m2 = 1 in Figure 3 gives this star-shaped graph.

one. They can either be negatively quasi-complementary, made complementary by
adding −3 at the end of the second leg, in which case α1 = b1 and k = 0 have
to hold, or they can be positively quasi-complementary, made complementary by
removing −(2 + k) from the first one, in which case α1 − 2 = b1 − 1. The first case
shows that

S3
(2b21−2b1+1)2

2b21−b1+1

(T (b1 − 1, 2b1 − 1))

bounds a rational homology ball for any b1 ≥ 3. The second case shows that

S3
((k+2)b21−1)2

(k+2)b21+b1−1

(T (b1, b1(k + 2)− 1))

bounds a rational homology ball for all integers b1 ≥ 2 and k ≥ 0. Both of these
are subfamilies to families 1 and 2 in Theorem 5 that we will show can in fact be
fully realised.

We get more interesting families when we let m2 = 1, because then (α1, . . . , αn2)
can be anything as long as it has something but a 2 somewhere so that n1 > 1.
We will get graphs of the form in Figure 31. To make the top and right legs quasi-
complementary is easy: we need to choose whether they are to be positively or
negatively quasi-complementary and which leg needs an extra vertex or a vertex
removed to be complementary, and then we just need to choose (a2, . . . , an1) that
make it happen. We use Proposition 23 for Q/P = [2 + k, 2]− = 2k+3

2
. This

corresponds to the entire families 3 and 4 as well as subfamilies of families 1 and 2
in Theorem 5. The top and bottom legs cannot be made quasi-complementary.

The most interesting case to consider is whether the right and the bottom
legs can be made quasi-complementary. In Figure 32, the black dots show a
Riemenschneider diagram of the complementary sequences (a1, . . . , an1) and (α1, . . . , αn2).
Adding the blue dots gives us a Riemenschneider diagram for the sequence (2, . . . , 2︸ ︷︷ ︸

k

, α1+
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Figure 32

2, α2, . . . , αn2) (with complement (k + 2, 2, a1, . . . , an1)). Considering only the part
to the right of the red line gives us a Riemenschneider diagram for (a2, . . . , an1)
(with a complement (A1, . . . , An3)). In order for (2, . . . , 2︸ ︷︷ ︸

k

, α1 + 2, α2, . . . , αn2) and

(a2, . . . , an1) to be quasi-complementary, either the picture to the right of the red
line and the total picture without the last line, or the total picture and the picture to
the right of the the red line with an extra column, must be the same. The sequences
(k+2, 2, a1, . . . , an1) and (a2, . . . , an1) have length difference 2, removing the second
option. The only ways in which (2, . . . , 2︸ ︷︷ ︸

k

, α1+2, α2, . . . , αn2) and (A1, . . . , An3) can

have length difference 1 is if any of the following hold:

1. k = 0 and a1 = 3, or

2. k = 1 and a1 = 2.

If k = 0 and a1 = 3, then the first row of the total picture has length 3. Thus, in
the second total row, to the right of the red line, we need three dots, making a total of
4 dots. This is a valid solution, namely (α1, . . . , αn2) = (2, 5), (α1+2, α2, . . . , αn2) =
(4, 5), (A1, . . . , An3) = (4) and (a1, . . . , an1) = (3, 2, 2, 2). If we choose to con-
tinue and add α3, that means adding a new row completely to the right of the
red line, which must be as long as the second total row, namely 4 dots. That
again gives a valid solution (α1, . . . , αn2) = (2, 5, 5), (α1 +2, α2, . . . , αn2) = (4, 5, 5),
(A1, . . . , An3) = (4, 5) and (a1, . . . , an1) = (3, 2, 2, 3, 2, 2, 2). We can continue this
process and obtain the solution (α1, . . . , αn2) = (2, (5)[l]) and (a1, . . . , an1) = ((3, 2, 2)[l], 2, 2)
for all l ≥ 1. Our legs are positively quasi-complementary, so α/p = [d1, . . . , dt]

− =
[(5)[l], 4]−. Since 5− b

a
= 5a−b

a
, we have that(
α
p

)
=

(
5 −1
1 0

)l (
4
1

)
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−(2 + k)

−b1

−3

−2− β1

−b2
· · ·

−bm1

−β2

· · ·
−βm2

−2

...

−2

Figure 33: Choosing n1 = n2 = 1 in Figure 3 gives this star-shaped graph.

for l ≥ 1. This corresponds to family 6 in Theorem 5. We can compute N =
[0, 3, 2, 2]− = −3

7
. In other words, if p1 = 1, p2 = 4 and pj+2 = 5pj+1 − pj for all

j ≥ 0 [21, A004253], we can say that

S3
pjpj+1− 3

7
(T (pj, pj+1))

bounds a rational homology ball for all j ≥ 1. In this form it may not be obvious

that the numerator of the surgery coefficient is a square, but in fact, pjpj+1−3
7
=

V 2
j+1

7

for Vj being a sequence defined by V1 = 2, V2 = 5 and Vj+2 = 5Vj+1 − Vj for all
j ≥ 0 [21, A003501]. It is a shifted so called Lucas sequence. The equality can
be proven by first proving by induction that pj+2pj − p2j+1 = 3 for all j ≥ 0, then
noting that Vj+1 = pj+1 + pj for all j ≥ 0, and finally combining these equalities.

If k = 1 and a1 = 2 the argument goes the same way. The only way for the right
and bottom legs to be quasi-complementary is if the Riemenschneider diagram to
the right of the red line and the total diagram missing the bottom line coincide. By
the same argument as above, it happens if and only if (α1, . . . , αn2) = (3, (5)[l]) and
(a1, . . . , an1) = (2, (3, 2, 2)[l], 2) for all l ≥ 0. In this case α/p = [(5)[l], 5, 2]− and
N = [0, 2, 2, 3]− = −5

7
. This shows that if Q1 = 2, Q2 = 9 and Qj+2 = 5Qj+1 −Qj

for all j ≥ 1, then
S3
QjQj+1− 5

7
(T (Qj, Qj+1))

bounds a rational homology ball for all j ≥ 1. This corresponds to family 7 in
Theorem 5. Just as before, we can show that

QjQj+1 −
5

7
=

(Qj +Qj+1)
2

7
.

Returning to Figure 3, we can let the vertex of weight −b1 be the only node.
That forces n1 = 1, so (α1, . . . , αn2) = (2, . . . , 2). Putting a1 = 2 would give us
complete freedom in choosing (b2, . . . , bm1), so Proposition 23 applied to Q/P =
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Figure 34

2 + k gives that there are surgery coefficients n such that S3
n(T (k + 1, k + 2)),

S3
n(T (k + 2, (l + 2)(k + 2) − 1)) and S3

n(T (k + 2, (l + 1)(k + 2) + 1)) bound ra-
tional homology 4-balls. These families correspond to the entire families 1 and 2
in Theorem 5. (Note however, that a couple of subfamilies of these will also be
realised if we choose a1 > 2 because (b2, . . . , bm1) = (2, . . . , 2). These subfamilies
have an especially ample supply of choices of surgery coefficents.) If n2 > 1, then
m2 = 1 and (b1, . . . , bm1) = (2, . . . , 2). We will have three legs, namely (−(2 + k)),
((−2)[β1−2]) and (−(1+a1), (−2)[k],−(2+β1), (−2)[a1−2]). The first two can be quasi-
complementary in two ways, but the generated pairs (p, α) are already known. The
first and the third cannot be quasi-complimentary. The last two can also not be
quasi-complementary if n2 > 1. It is once again more interesting if n2 = 1 and
m2 > 1 is allowed. We get the graph in Figure 33. The top and the bottom legs
cannot be made quasi-complementary. The left and the bottom legs are the inter-
esting case. Analogously to how we used Figure 32, we can use Figure 34 to show
that k = 0 and (β1, . . . , βm2) = (4, (6)[l]) and (b1, . . . , bm1) = (2, 2, (3, 2, 2, 2)[l], 2).
This is in fact family (4) in [3, Theorem 1.1] and family 8 in Theorem 5.

Going back to Figure 3, we could also make the vertex of weight −α1 − β1 the
only trivalent vertex, but that would require m1 = n1 = 1 and thus all αi and all aj
are 2’s. The top leg would not be able to be quasi-complementary to a sequence of
2s, and the only way for the left and right legs to be quasi-complementary is if they
are the legs (−2) and (−2,−2) in either order. This just gives us two new families
of possible surgery coefficients on T (2, 3).
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