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ABSTRACT

Double angle-ply or ‘Double-Double’ (DD) laminates offer new design possibilities in laminated

composite materials design, permitting non-standard ply orientations with new layup configur-

ations. DD laminates can be viewed as an alternative to so-called ‘Variable Angle Tow’ (VAT)

laminates. The latter allow each ply within the laminate to possess constantly changing fibre

directions and ply thicknesses. In contrast, double angle-ply technology uses straight fibres (with

non-standard ply orientations and may confer similar benefits to VAT laminates, but without

the added design complexity associated with a continuously changing fibre orientation and

ply thicknesses, or indeed without the added manufacturing complexity and equipment costs

involved in producing VAT laminates. This research focuses on the use of a lamination parameter

design space as a way of designing laminated composite materials with both conventional and

DD configurations.

Design spaces of compression and shear buckling of finite length Bend-Twist (B-T) coupled

laminates manufactured from traditional ply orientations (containing 0°, 90° and ±45° ply ori-

entations), with simply supported edges, are investigated. Both local and global optima of

compression and shear buckling are shown in the lamination parameter design space, with prac-

tical design rules applied. Shear buckling contour maps demonstrate significant improvements in

shear buckling performance with the presence of B-T coupling.

Buckling and First-Ply Failure (FPF) performances of DD laminates are discussed and com-

pared to standard laminate configurations through stiffness matching. Polar plots have demon-

strated that DD designs with coupled properties offer comparable FPF strength to standard

laminates when off-axis orientation is applied to maximise anisotropy or Extensional-Shear (E-

S) coupling. It is demonstrated that DD laminates with B-T coupling can provide significant

improvement in FPF strength over traditional laminates without reducing the buckling load.
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NOMENCLATURE & ABBREVIATIONS

NOMENCLATURE

All units of measurement throughout this thesis conform to the Système Internationale, with

deviations from this rule noted where appropriate.

Aij Extensional stiffness matrix and elements

Bij Extensional-bending couple

Dij Bending stiffness matrix and elements

a Length of laminate (mm)

b Width of laminate (mm)

β Off-axis alignment (°)

Cij Stiffness coefficients

C Stiffness matrix of material in Cartesian coordinate system

E1,2 In-plane longitudinal and transverse Young’s moduli

G12 In-plane shear modulus

H Total thickness of laminate (mm)

kx,xy Compression and shear buckling factors

Mx,y,xy Bending moments in x, y and xy directions

Nx Applied load (N/mm)

Nxy Shear load (N/mm)

n Number of plies in laminate

P Applied compression load (N)

Qij Reduced stiffnesses

Q̄ij Transformed reduced stiffnesses

XIX



XX

Sij Material compliance

t Thickness of one ply (mm)

Ui Laminate invariants

Xt, Xc Allowable tensional and compressional stresses in x direction

Yt, Yc Allowable tensional and compressional stresses in y direction

zk,k−1 Location of the interfaces for layer k

ϵx,y,xy Direct and shear strain in x and y directions

λ Eigenvalue from FEA

n+, n−, n◦, n• Non-dimensional parameters for extensional stiffness

χ+, χ−, χ◦, χ• Non-dimensional parameters for coupling stiffness

ζ+, ζ−, ζ◦, ζ• Non-dimensional parameters for bending stiffness

νij Poisson’s ratio

θ Angle ply orientation of laminate

ξ1, ξ2 or ξ A
1−2 Lamination parameters for orthotropic extensional stiffness

ξ3, ξ4 or ξ A
3−4 Lamination parameters for coupled extensional stiffness

ξ5−8 or ξB
1−4 Lamination parameters for in-plane and out-of-plane coupling stiffness

ξ9, ξ10 or ξD
1−2 Lamination parameters for orthotropic bending stiffness

ξ11, ξ12 or ξD
3−4 Lamination parameters for coupled bending stiffness

ϵx,y,xy Direct and shear strain in x and y directions

κx,y,xy Curvature in x and y directions

phi±, ϕ± Ply orientation for double angle-ply laminates

sigma Direct stress

τ Shear stress

ϵ Strain

γ Shear strain

SUBSCRIPTS

S Symmetric

Iso Isotropic
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F Finite

0 Zero

ABBREVIATION

AFP Automatic Fibre Placement

a/b Aspect Ratio

B-T Bending-Twisting coupling

CFRP Carbon Fibre Reinforced Polymer

CLT Classical lamination theory

CTS

DD Double angle-ply/ Double-double

E-S Extension-Shearing coupling

E-S-B-T Extension-Shearing and Bending-Twisting coupling

FEA Finite Element Analysis

FPF First ply failure

GA Genetic algorithm

NCF Non-crimped fabric

Pre-preg Pre-impregnated composite

Quads Quasi-isotropic

VAT Variable angle tow

x, y, z Principal axes



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The use of composite materials on aircraft component has increased due to the rapid advance in

materials technology. Polymer composites, CFRP in particular, have become the primary material

of modern aircraft manufacturing, accounting for half of the total materials. In 1903, the Wright

brothers flew the first powered aircraft made from wood. Since then, composite materials have

been implemented in the construction of aircrafts. Fibrous composites were used in another

aircraft built by the Wright Brothers. In the late 1930s, plastic-impregnated wood materials were

used in an eight engine Duramold aircraft known as the Space Goose, which was constructed by

Hughes Aircraft Co. Glass fibre was developed and applied on an aircraft reportedly in the late

1940s. However, composite materials were not used in major aircraft component constructions

until the invention of carbon fibre in mid 1960s [1]. Military technology was the first to use carbon

fibre reinforced materials in the aeronautical industry to construct certain components of the

aircraft, i.e., rudders, doors and spoilers. The primary material of aircraft advanced from wood to

alloys, like steel and aluminium, then to advanced composite materials. For commercial aircraft,

the use of composite materials has gradually increased from 5% in structural weight on an A300

aircraft in the early 1980s to approximately 53% on a modern A350 and 50% on a B787 aircraft

[2, 3, 4]. The components that are made from composite materials on the Airbus airliners, and

the percentage of composite structures used on aircraft are shown in Figure 1.1 and 1.2 [2, 5]. The

application of carbon composites in aircraft structures is believed to be increased further and

this domination will likely to be continued for a long period of time as the technology continues

to develop, and new designs and manufacturing methods continue to drive improvements in

1
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composite materials.

Figure 1.1: Components on Airbus airliners made from composite from 1970’s to 2000’s [2].

Figure 1.2: Composite structures used on aircraft from 1975 to 2010 [5].

The definition of composite means a mixture of two or more materials to create a more useful

material in terms of strength, weight, or any other advantageous function. Similar to composite,

an alloy is a metallic substance that consists of two or more metals, or a metal or alloy with other

elements. While composite materials consist of two or more components that are not necessarily
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metal. The two constituents are called the ‘matrix’ and the ‘reinforcement’ parts. For polymer

composites in particular, the resin can be a vinyl ester, epoxy or polyester while the reinforcement

part could be any kind of fibres such as glass and carbon.

The advantage of composite materials is that they maintain the best properties that the

components possess and the properties that the components are not strong can be improved.

Typically, the material properties that can be improved by producing composite material are

shown in Table 1.1 [6].

Table 1.1: Material properties that can be improved with composite materials.

Physical Mechanical

Weight Thermal insulation Strength

Attractiveness Thermal-dependent behaviour Wear resistance

Corrosive resistance Acoustical insulation Fatigue

Thermal conductivity Stiffness

On the other hand, composite materials have high costs due to the high raw material costs,

fabrication and assembly costs, recycling and repairing are hard the design and manufacture

process are much more complicated and require more considerations compare to conventional

materials like metals. The mechanical performance of composite materials out of plane can be

significantly different to their in-plane properties.

Composite laminates are usually manufactured as very thin panels. Therefore, composite

laminates are easily buckled, this makes buckling one of the most important design requirements

for composite plates [7], in particular: aircraft wing and fuselage panels. As buckling is one of

the most major design criteria for thin composite laminates, it is also vital to understands the

first-ply failure (FPF) behaviour of such materials.
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1.2 LITERATURE REVIEW ON THE FUNDAMENTALS OF ADVANCED COM-

POSITES

Composite materials are a relatively new technology, current understanding of composites is just

tip of the iceberg. Traditional design approaches only make use of the fundamental advantages

of composite. Recent research has shown further potential to improve on the performances of

composite structures by developing new manufacture techniques. For example, Variable Angle

Tow (VAT) technology offers new design possibilities in laminated composite materials design

and construction, permitting each layer of the laminate to possess constantly changing fibre

directions [8]. However, new technique comes with new challenges. VAT laminates can produce

gaps and overlaps during the manufacturing process. The technology is now understood, gaps

and overlaps can be avoided through tow-shearing, albeit with a resulting ply thickness variation

[9].

1.2.1 BACKGROUND KNOWLEDGE OF COMPOSITE LAMINATE MECHANICS

This part gives an introduction to the basic mechanics of composites is necessary in order to

understand the subsequent content of this thesis, some terminology and notations are first intro-

duced.

Laminated structures consist of stacking of a number of layers of material, which make the length,

width and the thickness of a laminate the primary dimensions. Because of this, a regular global

Cartesian coordinate system is often used, which is also called the structural coordinate system, in

which the x and y axes represent the length and width in the plane of the laminate layer and the

z axis refers to the thickness of the laminate perpendicular to the x-y plane. However, z does not

start at the bottom of the laminate, but the mid-point of the total laminate thickness H, and posit-

ive z direction is downwards. While z starts from the midplane of the laminate, the numbering of

layers starts from the layer with the most negative z value, counting towards the Nth layer, with

the ztextitk th layer being the layer at any arbitrary location within a laminate. In addition, the

interface layers are defined with a subscripted z, e.g. z0 refers to the top surface of a laminate and

z1 represents the lower surface of layer 1. Finally, the fibre angle, denoted by θ, of a lamina is the

angle between the fibre direction and the x axis. For example, a 0° layer means the fibre direction

is parallel to the x axis and a fibre angle of 90° represents a layer with fibre directions paral-
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lel to the y axis. Figure shows the x-z plane demonstration and the fibre direction in x-y plane [10].

(a) x-z plane (b) x-y plane

Figure 1.3: Illustration of a laminate in (a): x-z plane and (b): x-y plane [10].

The configuration of a laminate can be described with a stacking sequence. A stacking

sequence defines the fibre orientation of a laminate from the 1st to the Nth layer, written from left

to right. For example, a [+45/0/90/90/0/+45] laminate indicates a 6 layers laminate, with the first

layer being 45°, layer 2 with 0° ply etc., until layer Nth, which is layer 6. In addition, subscripts

are also used to describe a stacking sequence of a laminate. A subscript T is often positioned at

the end of a stacking sequence, which represents ‘Total’, to specify a complete laminate, in which

the stacking sequence mentioned above can be written as [+45/0/90/90/0/+45]T. Subscript S

is also used to for ‘symmetric’ between the upper and lower half of the laminate, in which the

same laminate can be written as [+45/0/90]S. Finally, a subscripted number indicates a repeat of

certain times. For example, a stacking sequence of [±45/90]2 represents a 6 ply laminate with the

following layout: [±45/90/±45/90]T. And the subscripts can be used together.

1.2.2 CLASSICAL LAMINATION THEORY (CLT)

Classical Laminate Theory (CLT) is vastly used to treat composite structures like thin plates and

shells. CLT describes the stress distribution within a laminate and relates the force and moment

resultants to the strain and curvature with the well-known ‘ABD’ stiffness matrix. The theory can

be used to predict the deformation of a laminate, to access the performance of a simple block

of material (such as a square or a rectangular block), a laminate and even a complete laminated

structure. The ABD matrix refers to a 6 by 6 stiffness matrix that relates in-plane and out-of-plane

loading to in-plane strains and out of plane curvatures and is important because it is the simplest

and most common way to express the mechanical response of advanced composite laminates. It

can be used for both buckling and first-ply failure performances predictions. The derivation of the
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CLT is provided in Chapter 2 with detailed example calculations, but the resulting relationship is

given here as [10]:



Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26

A61 A62 A66 B61 B62 B66

B11 B12 B16 D11 D12 D16

B21 B22 B26 D21 D22 D26

B61 B62 B66 D61 D62 D66





ϵx

ϵy

ϵxy

κx

κy

κxy


(1.1)

which can also be represented in a simplified notation as:

N

M

 =

A B

B D


ϵ

κ

 (1.2)

Here Aij refers to the extensional stiffnesses; Bij refers to the extensional-bending coupling

stiffnesses and Dij represents the bending stiffnesses. Aij and Dij can also be found for metallic

structures while Bij only occurs in composite structures. The calculation and validation of the ABD

matrix individual terms are provided in Chapter 2, to ensure that the equations are implemented

correctly and accurate to use in the rest of the investigation.

1.2.3 ELASTIC COUPLING

The reaction of composite laminates to thermal and mechanical loading, usually refers to the

coupling behaviour within the laminate. Coupling refers to the interaction of combinations of

simple material deformation, such as bending, extension, shear, twisting, etc. these do not occur in

conventional materials [11]. Research has been conducted on the application of coupled laminates

to practical designs such as passive adaptive wings or rotating blades [12, 13, 14, 15, 16]. A passive

adaptive wing or a wind turbine blade can be imagined as a box structure, as demonstrated in

1.4 [15].
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Figure 1.4: A box model illustrating a B-T coupled wing structure or a wind turbine blade,
showing (a) general box configuration; (b) the deformation of the top and bottom skin and; (c)
the B-T coupled deformation [15].

The application of coupled laminates has extended to manned from only unmanned air

vehicles, for instance, Volocopters and Multicopters, in which the blades with Extension-Twist

coupling offer the potential to increase the lift characteristics through the change in rotor speed

[16].

The combination of coupling properties depends on the configuration of the laminate, which

determines the ABD matrix of the laminate and hence its buckling and FPF performance. In

general, coupling behaviours occur between:

■ In-plane (extension or membrane) and out-of-plane (bending or flexure) loading, or when a

laminate has a non-zero [B] matrix [17]. The combination of coupling and their characterist-

ics are listed below [18, 19, 20].
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Table 1.2: Illustration of different combinations of coupling behaviour for B matrix.

Notation
Designation and

labelling

Laminate

configuration
Matrix form

B1 Extension-Bend E-B


B11 0 0

0 B22 0

0 0 0



Bt

Extension-Twisting and

Shearing-Bending
E-T, S-B


0 0 B16

0 0 B26

B16 B26 0



Blt

Extension-Bending,

Extension-Twisting and

Shearing-Bending

E-B, E-T, S-B


B11 0 B16

0 B22 B26

B16 B26 0



BS

Extension-Bending, and

Shearing-Twisting
E-B, S-T


B11 B12 0

B12 B22 0

0 0 B66



BF

Extension-Bending, and

Shearing-Bending,

Extension-Twisting,

Shearing-Twisting (or

fully coupled)

E-B, S-B, E-T, S-T


B11 B12 B16

B12 B22 B26

B16 B26 B66
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where the subscripts: l represents the leading diagonal elements B11 and B22 are non-zero; t

means the transverse elements are B16 and B26 non-zero; S refers to simple, uncoupled i.e.

B16 and B26 equal to zero and; F implies that all the elements are finite.

■ In-plane shear and extension, where A16 and A26 are non-zero (for which the [A] matrix can

be written as AF). Figure 11 illustrates a laminate that possesses coupling between extension

and shear.

Figure 1.5: An Extension-Shear coupled laminate [21].

■ Out-of-plane bending and twisting, where D16 and D26 are non-zero (DF).

Figure 1.6: An Bend-Twist Coupled laminate [22].

In industry, symmetric and uncoupled laminates are mostly used because these types of

laminate are guaranteed to be free of thermal warping and distortion free i.e. the [B] matrix

is zero. Nevertheless, research has been conducted on fully uncoupled, Extension-Shear and

Bend-Twist coupled laminates to show that these types of laminates are can also avoid thermal

warping [23, 24, 20, 25]. This finding expands the potential of composite laminates applicable for

aircraft applications. Moreover, the introduction of coupling behaviour expands the size of the
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overall design space of composite laminates, allowing more options to be explored and potential

improvements in performance to be made.

1.2.4 CLASSIFICATION OF COMPOSITE LAMINATES

Composite laminates are usually classified in terms of stacking sequence. The difference in

stacking sequence leads to a huge difference in the ABD matrix and hence the performance of a

laminate. The form of the individual ABD stiffness matrices of a laminate can be described using

various subscripts notations: F represents a matrix with all elements being finite, i.e. non-zero; 0

means all the elements within the matrix are zero; S for specially orthotropic, where the 16 and 26

elements of the matrix are zero and; I for isotropic [18, 19, 21]. Composite laminates are typically

classified as:

■ Isotropic laminate

Isotropic laminate is a unique type of laminate where the material properties are identical

in every direction and independent of the orientation. The ABD matrix of an isotropic layer

of thickness H is: 

A νA 0 0 0 0

νA A 0 0 0 0

0 1−ν
2 A 0 0 0 0

0 0 0 D νD 0

0 0 0 νD D 0

0 0 0 0 0 1−ν
2 D


(1.3)

where A = EH
1−ν and D = EH3

12(1−ν2)

For an isotropic material:

A11 = A22 = A

A66 =
A11 − A22

2
(1.4)

Dij =
AijH2

12
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For composite laminates that possess isotropic properties:

ν =
Q11 + Q22 + 6Q12 − 4Q66

3Q11 + 3Q22 + 2Q12 + 4Q66

G =
Q11 + Q22 − 2Q12 + 4Q66

8
(1.5)

E = 2(1 + ν)G

This is an unusual type of response for a composite laminate because composite materials are

usually orthotropic, where the material properties are different in 3 mutually perpendicular

directions and are orientation dependent.

■ Anisotropic laminate

On the other hand, composite materials are often anisotropic, here the material properties

are different in all directions, anisotropic laminates have a fully non-zero ABD matrix:



A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26

A61 A62 A66 B61 B62 B66

B11 B12 B16 D11 D12 D16

B21 B22 B26 D21 D22 D26

B61 B62 B66 D61 D62 D66


(1.6)

■ Balanced laminate

A laminate is said to be balanced if all the layers have a specific ‘pair’ within the laminate, i.e.

with the same material properties, thickness but opposite in fibre directions. For example,

a [0/±45/0]T laminate. A balanced laminate always has the extensional stiffness element

A16 and A26 equal to zero and can be referred as ASB0DF. The ABD matrix of a balanced
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laminate would be: 

A11 A12 0 0 0 0

A21 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D21 D22 D26

0 0 0 D61 D62 D66


(1.7)

■ Symmetric laminate

A laminate is said to be symmetric if the stacking sequence is mirrored at the midplane of the

laminate, with each pair sharing identical material properties and thickness. For example,

a stacking sequence of [90/±45]S represent a symmetric laminate with a configuration of

[90/+45/-45/-45/+45/90]. The Bij matrix of a symmetric laminate a is always zero, with a

notation of AFB0DF, and the ABD matrix would be:



A11 A12 A16 0 0 0

A21 A22 A26 0 0 0

A16 A26 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D21 D22 D26

0 0 0 D61 D62 D66


(1.8)

■ Balanced and Symmetric laminate

A balanced and symmetric laminate is the combination of the two types of laminates

above, the stacking sequence must be both symmetrical about the midplane of the laminate

and every layer must be paired with an opposite layer. The designation of a balance and
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symmetric laminate is ASB0DF and the ABD matrix becomes:



A11 A12 0 0 0 0

A21 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D21 D22 D26

0 0 0 D61 D62 D66


(1.9)

Balanced and symmetric laminates are widely used in practice and industry because they are

guaranteed to be immune to thermal warping during the high temperature curing process,

and the ABD matrix is considerably simplified. One of the most important simplifications

is that the B matrix is zero, which eliminates the ‘coupling’ behaviour that is unique to

advanced composite materials,. Non-symmetric designs commonly possess thermal warping

problems that arise during the fabrication process„ or in terms of the ABD matrix, when

Bij are non-zero [7], making the analysis technique non-linear and making the prediction

process less accurate However, research have shown that non-symmetric laminates can be

immune to thermal warping, when [B] equals zero [18, 19].

■ Specially orthotropic or Cross-ply laminates Cross-ply refers to layers with either 0°and

90°fibre orientations, and a cross-ply laminate indicates a laminate consisting of only 0°and

90°ply laminates [26]. The characteristics of this type of laminate is that the transformed

reduced stiffnesses Q̃16 and Q̃26 are zero, therefore all A16, A26, B16, B26, D16 and D26

elements in the ABD matrix and also B12 and B66 are zero, which results in the following

form: 

A11 A12 0 B11 0 0

A21 A22 0 0 B22 0

0 0 A66 0 0 0

B11 0 0 D11 D12 0

0 B22 0 D21 D22 0

0 0 0 0 0 D66


(1.10)

■ Symmetric Cross-ply laminate A symmetric cross-ply laminate contains only 0°and 90°ply
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laminates, and the laminate is symmetric about the midplane. Beside the 16 and 26 terms,

the entire [B] matrix is zero, the ABD matrix becomes:



A11 A12 0 0 0 0

A21 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D21 D22 0

0 0 0 0 0 D66


(1.11)

1.2.5 LAMINATION PARAMETERS

In lay-up optimisation problems, the traditional approach is to design laminates by rotating the

fibre direction or changing the stacking sequence, which often involves optimising the ABD matrix

using a genetic algorithm [27, 28, 29, 30]. For an optimisation problem, the minimum number of

terms required to describe a laminate using the ABD matrix is 8 for a fully uncoupled laminate,

i.e. A11, A12, A22, A66, D11, D12, D22 and D66, and up to a maximum of 21 for a fully coupled

laminate, in which the ABD matrix also depends on the engineering constants. Also, design

problems optimised by rotating the fibre orientation are non-convex, which means the optimised

results are often found to be local optima rather than global. Moreover, the order of layer stacking

combined with the fibre orientations, makes the optimisation process complicated, and this

complexity increases with the number of layers, which significantly increases the computation

cost of optimisation.

Optimisation of composite laminate layup has evolved significantly over the past 40 years.

Another, albeit less popular way to carry out optimisation design problems, is to use trigonometric

functions called ‘lamination parameters’, a method first introduced by Tsai [31, 32]. Much

research on designing composite laminates using lamination parameters has since been conducted

[33, 34, 35, 36, 37, 38]. Lamination parameters consist of 12 variables, ξ1−12, with 4 parameters

representing each of the [A], [B] and [D] matrices, or ξ A
1−4, ξB

1−4 and ξD
1−4. These parameters

only depend on the stacking sequence and the number of plies, but not on the thickness of

each ply. By using lamination parameters, less variables are needed to describe a laminate.
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For example, using the ABD matrix needs 8 variable to describe a fully uncoupled laminate,

while using lamination parameters requires only 4 variables, making it a more efficient way

of optimising composite laminates [39]. The design can also become a convex problem, and

the feasible design region described using lamination parameters can be convex [40]. As the

stiffness terms are related linearly with the lamination parameters, everything is defined within

a convex space, which means optimum results obtained using this approach are global, rather

than local optima. Lamination parameters offer an advantage for optimisation of laminate design

as the stiffness terms are given as linear variables. The latter are often treated as independent

design variables constrained by inequality relationships that determine a feasible design space.

For example, lamination parameter design spaces are often drawn using buckling factors, the

patterns that are created in these plots can then be used to find the most buckle-resistant design

for a given laminate. In industry, aircraft skins, spars and stiffeners are usually designed with

typical lamination parameter values, represented by a fixed point in the lamination parameter

plots. Stacking sequences that fit the specific point can then be found and the buckling and

FPF performance of the different configurations can be compared. Moreover, using lamination

parameters as the optimisation tool is also beneficial as the results can be easily related to the ply

percentages, corresponding stacking sequences can be determined directly from the results of the

lamination parameter optimisation problem.

Lamination parameters are used to present the feasible design space of composite laminates.

This process first requires the derivation of the relationships between the lamination parameters.

Miki (1982) and Mike and Sugiyama (1993) were some of the earliest to use lamination parameters

as the design variables for optimising composite laminates [41, 42]. Miki (1993) stated that 2

in-plane (ξ1 and ξ2) or 2 out-of-plane (ξ9 and ξ10) lamination parameters are needed to describe

the feasible design space of an orthotropic laminate graphically, using the following relationship

[41]:

2(ξ j
1)

2 − 1 ≤ ξ
j
2 (1.12)

where j = A or D Later on in 1992, the feasible design space of 4 in-plane (ξ1−4) and 4 out-of-plane
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(ξ9−12) lamination parameters was developed [43]:

(/xij
1)

2 + (ξ
j
3)

2 ≤ 1

2(1 + ξ
j
2)ξ

j
3 − 4ξ

j
1ξ

j
3ξ

j
4 + (ξ

j
4)

2 ≤ (ξ
j
2 − 2ξ

j
1 + 1)(1 − ξ

j
2) (1.13)

After that, the relationship between the in-plane and out-of-plane lamination parameters was

derived [40]:
1
4
(ξA

i + 1)3 − 1 ≤ ξD
i ≤ 1

4
(ξA

i − 1)3 + 1 (1.14)

There is a range of value for ξD
i for any value of ξ A

i , except when ξ A
i =ξD

i for ξ A
i = ±1. Then

Diaconu et al. (2002) derived the relationship between the in-plane, coupling and out-of-plane

lamination parameters [44] as:

(ξ A
i + 1)4 + 3(ξB

i )
2 ≤ 4(ξ A

i + 1)3(ξD
i + 1)

(ξ A
i − 1)4 + 3(ξB

i )
2 ≤ 4(ξ A

i − 1)3(ξD
i − 1) (1.15)

The 12 lamination parameters can be related to the non-dimensional parameters, the stacking
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sequence and the number of plies are given in [32] as:

ξ1 =
[n+ cos(2θ+) + n− cos(2θ−) + n◦ cos(2θ◦) + n• cos(2θ•)]

n

ξ2 =
[n+ cos(4θ+) + n− cos(4θ−) + n◦ cos(4θ◦) + n• cos(4θ•)]

n

ξ3 =
[n+ sin(2θ+) + n− sin(2θ−) + n◦ sin(2θ◦) + n• sin(2θ•)]

n

ξ4 =
[n+ sin(4θ+) + n− sin(4θ−) + n◦ sin(4θ◦) + n• sin(4θ•)]

n

ξ5 =
[χ+ cos(2θ+) + χ− cos(2θ−) + χ◦ cos(2θ◦) + χ• cos(2θ•)]

χ

ξ6 =
[χ+ cos(4θ+) + χ− cos(4θ−) + χ◦ cos(4θ◦) + χ• cos(4θ•)]

χ
(1.16)

ξ7 =
[χ+ sin(2θ+) + χ− sin(2θ−) + χ◦ sin(2θ◦) + χ• sin(2θ•)]

χ

ξ8 =
[χ+ sin(4θ+) + χ− sin(4θ−) + χ◦ sin(4θ◦) + χ• sin(4θ•)]

χ

ξ9 =
[ζ+ cos(2θ+) + ζ− cos(2θ−) + ζ◦ cos(2θ◦) + ζ• cos(2θ•)]

ζ

ξ10 =
[ζ+ cos(4θ+) + ζ− cos(4θ−) + ζ◦ cos(4θ◦) + ζ• cos(4θ•)]

ζ

ξ11 =
[ζ+ sin(2θ+) + ζ− sin(2θ−) + ζ◦ sin(2θ◦) + ζ• sin(2θ•)]

ζ

ξ12 =
[ζ+ sin(4θ+) + ζ− sin(4θ−) + ζ◦ sin(4θ◦) + ζ• sin(4θ•)]

ζ

where n, χ and ζ represent the non-dimensional parameters for extension, coupling and bending

stiffness respectively.

For traditional laminates (containing 0, 90 and ±45 degree orientations) these are given by:

n+ = ∑(zk − zk−1)+ χ+ = 2 × ∑(z2
k − z2

k−1)+ ζ+ = 4 × ∑(z3
k − z3

k−1)+

n− = ∑(zk − zk−1)− χ− = 2 × ∑(z2
k − z2

k−1)− ζ− = 4 × ∑(z3
k − z3

k−1)− (1.17)

n◦ = ∑(zk − zk−1)◦ χ◦ = 2 × ∑(z2
k − z2

k−1)◦ ζ◦ = 4 × ∑(z3
k − z3

k−1)◦

n• = ∑(zk − zk−1)• χ• = 2 × ∑(z2
k − z2

k−1)• ζ• = 4 × ∑(z3
k − z3

k−1)•

The non-dimensional parameters (n+, n−, n◦, n•, χ+, χ−, χ◦, χ•, ζ+, ζ−, ζ◦ and ζ• are required

to calculate the lamination parameters, the subscripts +, -, ◦ and • are the notation for +45°, -45°,

0°and 90°ply orientations.

Foldager et al. (1998) looked at the convexity of composite laminate compliance optimisation
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using lamination parameters [45] and later the feasible design space was actually proven to be

convex [40]. Hammer et. al. (1997) used lamination parameters to optimise the compliance

of a composite laminate under in-plane single and multiple loadings [34] and Setoodeh et. al.

(2006) attempted to design minimum compliance variable-stiffness laminates under both in-

plane and out-of-plane loadings using lamination parameters [33]. Optimisation of orthotropic

and non-orthotropic laminated plates under shear loading was done by Grenestedt (1991) [46].

The difference in buckling load predictions when using lamination parameters versus using a

genetic algorithm (GA) as the optimisation tool, for balanced and symmetric laminates with

different aspect ratios was compared [47]. Results showed that lamination parameters predicted

very similar buckling loads as the approach using GA. The pros and cons of using lamination

parameters as an optimisation tool are listed below [48].

To summarise, the advantages of using lamination parameters means that:

■ Less design variables are required, which ensures lower computational costs, greater

robustness and consequently improved computational efficiency.

■ Lamination parameters can be linearly related to the ABD matrix which has the advantage

of enabling a simpler optimisation process than optimising using fibre angles.

■ The analysis is presented in terms of a convex design space with a single global maximum

(as opposed to a non-convex design space that often occurs when using fibre angle as the

optimisation tool).

and the disadvantages of using lamination parameters are that:

■ The development of the relationship between the 12 lamination parameters can be difficult

as it becomes a 4-dimensional problem.

■ Including strength in the optimisation problem is not easy as any particular point in the

lamination parameter design space could have more than one stacking sequence with

different ply angles, which leads to different strength values.

The method of using lamination parameters to design composite laminates is adopted as the

primary design approach for this project as it is shown to be a more efficient approach to carry

out optimisation of composite laminates, at least when the buckling load is the primary concern,

see Section 1.2.6). Equations and example calculations are presented in Chapter 2.
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1.2.6 BUCKLING

Composite laminates are mostly manufactured as thin panels, which makes buckling the primary

design factor for many composite laminates and structures. Unlike column buckling, where

a lateral deflection grows along the column length, plate buckling involves one or more, two-

dimensional out-of-plane sine wave deflections in the load direction, where the number of sine

waves (or modes) along the length of the structure developed during the buckling process depends

on the length, a, of the plate [6].

Figure 1.7: Illustration of a laminated plate before and after buckling deformation from [6].

When the applied load increases, the plate shortens in the load direction and stays flat until a

critical buckling load is reached. The plate becomes unstable, and the deformation bifurcates,

jumping from the old unstable path to a new stable path. A buckled plate is able to carry

extra loading, beyond the buckling load, in its post-buckled configuration, but at the moment

of buckling its stiffness is suddenly reduced. In contrast, column buckling indicates that the

structure simply fails and will collapse at the buckling load. Demonstration of plate and column

buckling is shown in Figure 7 [49].

(a) Plate buckling (b) Column buckling

Figure 1.8: Illustration of (a) plate and (b) column buckling [49].
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Plate buckling analysis under in-plane loads can be performed by solving an eigenvalue

problem, in which the pre-buckling displacement is ignored. A closed form solution can be

developed for fully uncoupled laminates. The compression buckling load, Nx, for simply

supported edge boundary condition can be obtained exactly as [6]:

Nx = π2[D11(
m
a
)2 + 2(D11 + 2D66)(

n2

b2 ) + D22(
n4

b4 )(
a
m
)2] (1.18)

from knowledge of the bending stiffness, Dij, plate length, a, and width, b, and the buckling

half-wave parameter in x and y directions, m and n (=1, 2, 3, ...), it is possible to find the lowest

critical force resultant Nx. (Worked examples is provided in Chapter 2). However, as emphasised

previously, Equation 1.18 and the analysis presented above, is only applicable to fully uncoupled

laminates, in which D16 = D26 = 0. Consequently, using this analysis the buckling performance

for a general balanced and symmetric laminate, where D16 and D26 ̸= 0, can result in a significant

overestimate of the buckling load (unsafe). For more general cases of the buckling performance

of a laminate that possesses any kind of coupling behaviour Finite Element Analysis (FEA) is

required. Furthermore, although closed form solutions of buckling behaviour for infinitely long

plates subject to compression or shear buckling exist [50, 51], closed form solutions for short plates

are only applicable to compression buckling, shear buckling behaviour must also be performed

using FEA.

Other than simply supported, there are other boundary conditions like free, clamped, re-

strained, etc. This project focuses on simply supported laminates, other boundary conditions are

considered and can be modelled with slight modification in the finite element model. This project

primarily looks at laminates just under a simply supported condition to better explore different

areas of interest concerning composite laminate behaviour.

York (2000) used FEA to model and analyse rectangular isotropic laminates subject to several

different boundary conditions [52]. Compression and shear buckling results of plates with aspect

ratio (a/b) ranging from 0.5 to 2.5 were presented in the form of buckling (or Garland) curves.

Example results from the simply supported case are shown below.
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(a) Compression buckling (b) Shear buckling

Figure 1.9: Illustrations of buckling curves for: (a) Compression and (b) Shear buckling [52]

A Garland curve shows the buckling factors for a laminate across a range of aspect ratios and

are adopted in this project as a way to show buckling results. The buckling factor, or buckling

coefficient, (k) represents the normalised buckling load against the Diso of the laminate, given as:

k =
Nb2

π2Diso
(1.19)

where Diso is the bending stiffness of the equivalent isotropic laminate, defined by:

DIso =
EIsoH3

12(1 − ν2
Iso

=
U1H3

12
(1.20)

Ui is called the material invariant, given by:

U1 =
3Q11 + 3Q22 + 2Q12 + 4Q66

8
(1.21)

More details on the actual theory and formulations are provided in Chapter 2 with worked

examples showing how to use them.

For aspect ratio (a/b) = 1.0, the compression buckling factor, Nx, is 4.0, which is the classical

buckling factor of an supply supported isotropic square plate. While the classical shear buckling



Introduction 22

factor, KS, for a simply supported square panel is 9.35, which was proved by Stein and Neff [53].

The classical compression and shear buckling factors are used for validation of the FEA model

predictions found in this project.

Fukunaga et. al used lamination parameters as design variables, to increase the buckling load

of composite laminates [54]. Square and rectangular symmetric Bend-Twist coupled laminates

were loaded in both compression and shear. The buckling performance of the laminates was

analysed and contour maps of buckling factors were plotted. Optimal lamination parameters

for maximum buckling load are found within the feasible ranges of the 4 lamination parameters

ξ9−12 (note that these 4 lamination parameters are the only ones that influence the buckling load).

Examples of compression design space contour maps for simply supported square laminates are

shown in Figure 1.10.

Figure 1.10: Compression buckling contours from [54]: (a) ξ9 - ξ10 where ξ11 and ξ12 = 0 and; (b)
ξ11 - ξ12 where ξ9 = 0.5 and ξ10 = -0.2.

A contour map shows a lamination parameter design space, which can also illustrate the

relationship between lamination parameters and any relevant results such and buckling factors

or buckling loads, with each line on the graphs representing a constant value. For instance, the

contour lines in Figure 8 represent the normalised compressive buckling load.

Uncoupled laminates are normally used in industry because this type of laminate provides

resistance to all different kinds of coupling behaviours. However, interest in coupled laminates

has increased in the past few decades [17, 53, 54, 55, 56, 57], as the introduction of coupling

increases the size of the design space and hence more options can be explored, potentially for

better designs. Design spaces and contour maps are the major way of presenting the results

obtained in this project, it is therefore important to understand the fundamentals.
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1.2.7 FIRST PLY FAILURE (FPF)

First ply failure (FPF), is used to access the failure performance of laminate designs in this project.

First ply failure means that any one of the layers within a laminated plate fails first and the whole

laminate is assumed to be failed at that point. This is a convenient and conservative way to

determine the failure strength of a composite structure using CLT. The stress in different directions

in the principal coordinate system of each ply is calculated using CLT, then the stresses are used to

determine the first ply failure strength of the laminate by applying different failure criteria, which

is straightforward. There are various methods to evaluate the strength performance of composite

laminates under different types of loading such as compression and shear loads. Different failure

criteria have been developed to predict failure strength. Each of the failure criteria predict strength

differently, with their own advantages and limitations. These predictions have been evaluated

using experimental data. However, none of the criteria provides definitive predictions under

all loading conditions, due to the complexity of the interactions within the matrix and the fibre

materials within the laminate, the stacking sequence and the orientations of the plies within the

laminate. Therefore, multiple failure criteria can be considered and compared to experimental

tests to determine the best available failure criteria for a given loading scenario and laminate.

Some of the commonly used failure criteria that are used in this project are listed below, note that

Xt, c and Yt, c represents the allowable stress values of the material in x and y directions. Overall,

there are four generic types of failure criteria: (I) independent or non-interactive, (II) partially

interactive, (III) fully interactive and (IV) new criteria. Their predictions can be compared against

experimental results to determine the criterion that performs best for use in this project.

I. Independent condition (or limit) criteria

Independent criteria simply compare the lamina stress or strains in the 1 and 2 directions with

the compression, tensile or shear strength of the material to determine the failure load and mode

without considering any interactions between the stresses or strains.

■ Maximum Stress Criterion
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The maximum stress criterion predicts the failure of a laminate by looking into the stresses

individually, interactions between the tension and compressive stresses are ignored [6, 58].

σ1

σXt

or
σ1

σXc

= 1

or

σ2

σYt

or
σ2

σYc

= 1 (1.22)

or

|σ6|
σQ

= 1

■ Maximum Strain Criterion

The maximum strain criterion function is similar to the maximum stress criterion, but instead of

stresses, this approach uses strains to predict the failure strength of a laminate [6, 58].

ε1

εXt

or
ε1

εXc

= 1

or

ε2

εYt

or
ε2

εYc

= 1 (1.23)

or

|ε6|
εQ

= 1

II. Partially Interactive (or Separative) Criteria

Partially interactive criteria consider the matrix and fibre failure separately. Here interactions

between stresses are considered but the matrix and fibre failure modes are considered separately.

■ Puck-Modified Criterion

The Puck-modified criterion is an updated version of the simple Puck criterion. The modified

version considers interactions between the stress in compression and in tension, normal to the
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fibre direction [58, 59, 60].

σ1

Xt
or

σ1

Xc
= 1

or (1.24)

σ2
2

YtYc
+ σ2(

1
Yt

− 1
Yc

) + (
σ6

Q
)2 = 1

■ Hashin-Rotem Criterion

The Hashin-Rotem failure criterion considers the matrix and fibre failure modes separately.

Interactions between the various stress components are also considered [61].

Fibre failure:
σ1

X
= 1

Matrix failure: (
σ2

Y
)2 + (

σ6

Q
)2 = 1 (1.25)

■ Hashin Criteria

The Hashin failure criterion is a modification of Hashin-Rotem criterion, which involves the

interactions between the stresses for both fibre and matrix failure [62].

Fibre failure in tension: (
σ1

Xt
)2 + (

σ6

Q
)2 = 1

Fibre failure in compression:
σ1

Xt
= 1 (1.26)

Matrix failure: (
σ2

Yt
)2 + (

σ6

Q
)2 = 1

III. Fully Interactive Criteria

Here the failure load and failure modes are predicted with one single equation, considering all

the stresses or strains.

■ Tsai-Wu Failure Criterion

Compared to the independent and partially-interactive criteria, the Tsai-Wu criterion gives a more

comprehensive prediction by considering the interaction between the compressive and tensile

strengths. However, the criterion does not indicate whether the laminate failure occurs in the

fibre or matrix material. Like the previously mentioned criteria, the Tsai-Wu criterion is predicted
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using a single expression. Moreover, assumptions are made to generalise the von Mises criterion,

giving the A12 term [58, 32].

F1σ1 + 2F2σ2 + F11σ2
1 + F22σ2

2 + F66τ2
12 −

√
F11F22σ1σ2 = 1 (1.27)

where

F1 =
1

σT
1
+

1
σC

1
F2 =

1
σT

2

1
σC

2
(1.28)

F11 = − 1
σT

1 σC
1

F22 = − 1
σT

2 σC
2

F66 = (
1

τF
12
)2

■ Tsai-Hill Failure Criterion

Similar to the Tsai-Wu criterion, the Tsai-Hill criterion determines the strength with one single

expression, without indicating whether the failure occurs in the fibre or matrix material. The

Tsai-Hill criteria is applicable to the case of a single homogeneous orthotropic layer [58].

(
σ1

X
)2 − σ1σ2

X2 + (
σ2

Y
)2 + (

σ6

Q
)2 = 1 (1.29)

■ Puppo-Evensen Criterion

The Puppo-Evensen criterion is proposed to carry out strength assessment for an entire laminate,

although it can also be utilized for a single layer. The criterion considers a more thorough

interaction between the tensile and compressive stress than the Tsai-Hill criterion and requires

simpler testing requirements than the Tsai-Wu criterion [58, 63]. However, adjustments are needed

according to the sign of the stresses, which makes it more cumbersome to use than the Tsai-Wu

failure criterion.

(
σ1

X
)2 − ϕ

Xσ1σ2

X2Y
+ ϕ(

σ2

Y
)2 + (

σ6

Q
)2 = 1 (1.30)

where

ϕ =
3Q2

XtYt

IV. New failure criteria

Other than the ones mentioned above, which have been used in industry for a long time, there

are now several new failure criteria that have been recently developed:
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■ Omni Strain

Omni strain criterion is an invariant based failure criterion proposed by Tsai and Melo [64], which

introduces a modified approach to include the stiffness of a material and can be classify into the

group fully interactive criterion.

A survey from AIAA journal in 1983 about the popularity of different failure criteria was

conducted and results show that 80% of the representatives used either the Maximum stress,

Maximum strain, Tsai-Wu or Tsai-Hill failure criteria, and the remaining 20% used either the

Hashin, Hashin-Rotem or other criteria [65]. Sun et. al. [66] compared the six failure criteria

mentioned in the survey and another review of the six criteria was also conducted by Paris [67].

Hinton et. al. compared 14 different failure criteria using both predictions and experimental data

to determine the overall effectiveness of the various theories [68].

To determine the failure mode, some of the criteria mentioned above require adjustments in

the strength values, while others require 2 or more equations, depending on whether the applied

stress is positive or negative (tensile or compression). On the other hand, the Tsai-Wu failure

criteria is designed to account for both positive and negative stresses, hence only one equation is

needed and no adjustments to the strength values are required. Beside the suggested equations,

it is found that A12 is insignificant for the majority of failure theories [69], indeed setting A12 to

zero provides prediction accuracy sufficient for many engineering problems [70].

1.2.8 VARIABLE-STIFFNESS LAMINATES

A relatively new concept of manufacturing composite laminates called ‘variable stiffness lam-

inates’, ‘variable angle tow’ (VAT) or ‘steered-fibre’ laminates was proposed by Gurdal and

Olemedo in the early 1990s [8]. The most important characteristic of VAT laminates is that the

fibre orientation of each ply varies constantly as a wave along the longitudinal or transverse

directions, hence the stiffness properties also change, illustrations are provided in Fig. 1.11

[71]. The engineering properties and transverse stresses of symmetric square VAT laminates

were improved compared to straight fibre laminates, approximate closed form solutions of a

variable stiffness panel under 3 different boundary conditions along the transverse edges were

also derived, i.e. free, fixed and free but straight [8].
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(a) Longitudinal (b) Transverse

Figure 1.11: Illustration of VAT laminates with fibre angles varying along (a) longitudinal and (b)
vertical axes [71].

Buckling analysis of variable stiffness laminates have been performed many times previously

[72, 73, 74, 75]. Weaver et al. conducted experimental buckling tests on VAT laminates and

compared the results with FEA and with similar experiments on straight fibre laminates [71].

Both longitudinal and transverse ply laminates were used. Results showed that variable stiffness

laminates offer improvements in buckling performance but there was a 10 to 20 percent difference

between the experimental results and the computational predictions. The difference might have

been due to load misalignment or inaccurate modelling of the thickness change across the VAT

laminates in FEA. Buckling analysis of stiffened VAT panels using a generalised Rayleigh-Ritz

procedure was studied and compared with FEA [76, 77]. Raju et al. used a two-level approach to

optimising VAT laminates using lamination parameters [78]. First, optimal lamination parameters

that gave the maximum buckling load were found using a gradient based mathematical program

and second, the fibre angles and stacking sequence were determined with fixed lamination

parameters. Buckling results between the 2-level laminate parameter approach and the direct
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genetic algorithm approach provided very similar predictions, and buckling performance was

shown to improve compared to conventional straight fibre laminates. However, thickness changes

across the VAT laminates were not considered.

Research has also shown improvements in the post-buckling performance of VAT laminates

[79]. Wu et al. used a genetic algorithm to optimise VAT laminate design and also showed that

the postw-buckling performance was improved compared to straight fibre laminates [80]. Wu et

al. designed VAT laminates using lamination parameters and the feasible region of lamination

parameters was examined [81].

Traditionally, manufacturing of variable stiffness laminates uses automatic fibre placement

(AFP) machines. The lay-up process involves a tow-placement head that rotates freely and follows

the centreline of the tow path of each ply [82]. Shifting methods are often used, as additional

paths are required to cover the area of the laminate. However, tow overlaps can occur when

adjacent tow paths are created as the paths move outward from the centreline and tow gaps

can also occur as adjacent tow-paths diverge as the tow-paths move inwards due to in-plane

bending deformation [83]. The defects lead to gaps and abrupt local changes in thickness across

the laminate, affecting the properties of the structure. New manufacturing methods have been

developed such as continuous tow shearing (CTS) to avoid overlaps and gaps, which allow

thickness changes within VAT laminates to be predicted [84], the thickening pattern of AFP and

CTS are illustrated in Figure 1.12 [9].
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(a) Longitudinal (b) Transverse

Figure 1.12: Thickness variation illustration of (a) AFP and (b) CTS technologies [9].

1.2.9 DOUBLE ANGLE-PLY LAMINATES (DOUBLE-DOUBLE, DD)

After understanding the basics of the more tradition technology related to composite laminates

(see Sections 1.2.2 - 1.2.8), it is also of interest to learn about new developments within the

area, this leads to an important area of study in this research project, namely, ‘Double angle-

ply laminates’. Conventional laminates usually incorporate just 4 ply-angles (quad laminates),

namely, 0°, 90° and ±45°, which has limited design space. The design of conventional laminates

in industry typically follows a number of rules [85, 86]: (i) mid-plane symmetric to prevent

thermal warping; (ii) balanced to prevent any mechanical couplings, (iii) the 10 percent rule,

which means that each of the 4 plies must take up at least 10% of the total number of plies and

(iv) ply contiguity of no more than 3 plies, to reduce delamination.

A new layup method of composite laminate was introduced by Tsai in 2017, called double

angle-ply, or double-double (DD) laminates [87]. A DD laminate is a novel idea for designing

laminates involving two pairs of sub-laminates. These replace conventional fixed ply angles (i.e.

0°, 90°, ±45°), in which the two pairs of fibre angles can theoretically be arbitrary. DD laminates

offers great potential for improvements over standard quad laminates, as listed below:

■ DD laminates have been shown to offer potential improvements in first ply failure strength

[88]
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■ Rather than being limited to 4 fixed angles for standard quad designs, ϕ and ψ in DD

laminates can be any arbitrary angle between 0°to 90°. This offers a significantly larger

design space compared to standard ply laminates.

■ Ease of manufacturability: DD plies enhance the compatibility between the sub-laminates,

which reduces the chance of wrinkle defects during the forming process, hence a higher

production rate and lowering the requirement of manufacturing knockdown factors [89].

■ As ϕ and ψ can be arbitrary angles, unlike the set angles found in quads, the fibre potential

is allowed to be utilised fully with optimised combinations. Less layers are therefore needed

to obtain the same performance as standard laminates of the same mass, which means

reductions in the weight of the resulting structure [90].

■ Mid-plane symmetric is not required with DD laminates because ϕ and ψ always comes

with a positive and negative pair and always repeats, which allows DD laminates to be

homogenised more quickly than standard quad laminates [91, 92]. A homogenised laminate

refers to a laminate that has repeated properties throughout its thickness.

■ The design and manufacture processes of homogenised laminates is simple, tailoring is also

more straightforward and less prone to delamination [93].

■ Layup speed of DD laminates can be up to 6 times quicker than quad laminates and with

less scrap [93].

■ Tapering can be achieved using a single ply drop-off at each step, rather than two drop-offs,

as required with quad laminates [93].

■ Ply termination of a DD laminate can be done anywhere on the laminate [93].

■ DD laminates have a less serious problem of blending [93], which refers to a design

methodology where a panel or laminate is divided into different regions, single ply drop

off is allowed from one region to the adjacent region according to the load concentration of

each region [94].

■ More aggressive tapering can be achieved, up to a ratio of 10:1 between the centre and the

edge. This can lead to further weight savings [95, 87].

Double angle ply laminates utilize the same design techniques as standard laminates and the
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lamination parameters method can also be used for optimisation. Here the stacking sequence

can be determined from the desired lamination parameters coordinates, i.e. the position within a

lamination parameter design space. Moreover, the required lamination parameter values can be

determined by stiffness matching; matching the lamination parameter coordinates of standard

-ply designs for extensional (ξ1−4) and bending stiffness (ξ9−10) with those of DD laminates. For

example, York used a stiffness matching approach to design double angle ply laminates and

compared these with standard quads and also performed buckling analysis on the double angle

ply laminates [96]. Here, lamination parameters were used for optimisation of the buckling

performance of the DD laminates.

It should be noted that the notations for double angle ply laminates must be slightly modified

from that of quad laminates. The symbols ◦, •, + and – are replaced with (+ϕ/-ϕ), (-ϕ/+ϕ),

(+ψ/-ψ) and (-ψ/+ψ) respectively. The relationships between the lamination parameters and the

laminate configuration become:

ξ1 =
n+ϕ cos 2θ+ϕ + n−ϕ cos 2θ−ϕ + n+ψ cos 2θ+ψ + n−ψ cos 2θ−ψ

n

ξ2 =
n+ϕ cos 4θ+ϕ + n−ϕ cos 4θ−ϕ + n+ψ cos 4θ+ψ + n−ψ cos 4θ−ψ

n

ξ3 =
n+ϕ sin 2θ+ϕ + n−ϕ sin 2θ−ϕ + n+ψ sin 2θ+ψ + n−ψ sin 2θ−ψ

n

ξ4 =
n+ϕ sin 4θ+ϕ + n−ϕ sin 4θ−ϕ + n+ψ sin 4θ+ψ + n−ψ sin 4θ−ψ

n

ξ5 =
χ+ϕ cos 2θ+ϕ + χ−ϕ cos 2θ−ϕ + χ+ψ cos 2θ+ψ + χ−ψ cos 2θ−ψ

χ

ξ6 =
χ+ϕ cos 4θ+ϕ + χ−ϕ cos 4θ−ϕ + χ+ψ cos 4θ+ψ + χ−ψ cos 4θ−ψ

χ

ξ7 =
χ+ϕ sin 2θ+ϕ + χ−ϕ sin 2θ−ϕ + χ+ψ sin 2θ+ψ + χ−ψ sin 2θ−ψ

χ
(1.31)

ξ8 =
χ+ϕ sin 4θ+ϕ + χ−ϕ sin 4θ−ϕ + χ+ψ sin 4θ+ψ + χ−ψ sin 4θ−ψ

χ

ξ9 =
ζ+ϕ cos 2θ+ϕ + ζ−ϕ cos 2θ−ϕ + ζ+ψ cos 2θ+ψ + ζ−ψ cos 2θ−ψ

ζ

ξ10 =
ζ+ϕ cos 4θ+ϕ + ζ−ϕ cos 4θ−ϕ + ζ+ψ cos 4θ+ψ + ζ−ψ cos 4θ−ψ

ζ

ξ11 =
ζ+ϕ sin 2θ+ϕ + ζ−ϕ sin 2θ−ϕ + ζ+ψ sin 2θ+ψ + ζ−ψ sin 2θ−ψ

ζ

ξ12 =
ζ+ϕ sin 4θ+ϕ + ζ−ϕ sin 4θ−ϕ + ζ+ψ sin 4θ+ψ + ζ−ψ sin 4θ−ψ

ζ

Note that [B] is kept to zero at all times during this project to prevent thermal warping or any
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coupling behaviour between the in-plane and out-of-plane loading, which means ξ5−8 are also

zero. For balanced double angle-ply pairings, + and - ϕ and ψ are the equal, hence the expressions

for extension and bending stiffnesses simply to:

ξ1 =
n±ϕ cos 2θ±ϕ + n±ψ cos 2θ±ψ

n
ξ2 =

n±ϕ cos 4θ±ϕ + n±ψ cos 4θ±ψ

n

ξ3 =
n±ϕ sin 2θ±ϕ + n±ψ sin 2θ±ψ

n
ξ4 =

n±ϕ sin 4θ±ϕ + n±ψ sin 4θ±ψ

n

ξ5 =
χ±ϕ cos 2θ±ϕ + χ±ψ cos 2θ±ψ

χ
ξ6 =

χ±ϕ cos 4θ±ϕ + χ±ψ cos 4θ±ψ

χ
(1.32)

ξ7 =
χ±ϕ sin 2θ±ϕ + χ±ψ sin 2θ±ψ

χ
ξ8 =

χ±ϕ sin 4θ±ϕ + χ±ψ sin 4θ±ψ

χ

ξ9 =
ζ±ϕ cos 2θ±ϕ + ζ±ψ cos 2θ±ψ

ζ
ξ10 =

ζ±ϕ cos 4θ±ϕ + ζ±ψ cos 4θ±ψ

ζ

ξ11 =
ζ±ϕ sin 2θ±ϕ + ζ±ψ sin 2θ±ψ

ζ
ξ12 =

ζ±ϕ sin 4θ±ϕ + ζ±ψ sin 4θ±ψ

ζ

For bending stiffness matching, n±ψ and ζ±ϕ can be written as n − n±ϕ and ζ − ζ±ϕ, and by

substituting α = cos 2ϕ, β = sin 2ψ , γ =
ζ±ϕ

ζ and the double angle trigonometric relationship

cos 4ϕ = 2 cos2 2ϕ − 1, the bending stiffness lamination parameters, ξ9 and ξ10, become [97]:

ξ9 =
ζ±ϕ

ζ
α + (1 −

ζ±ϕ

ζ
)β ξ10 =

ζ±ϕ

ζ
(2α2 − 1) + (1 −

ζ±ϕ

ζ
)(2β2 − 1) (1.33)

Also, β can be expressed by the following quadratic solution [97]:

β = −ξ10 + 1 − 2α2

4(α − ξ9)
+

√
(

ξ10 + 1 − 2α2

4(α − ξ9)
)3 − 2α2ξ9 − α − ξ10α

2(α − ξ9)
(1.34)

Finally using the obtained target value of β, the solution for α can be obtained iteratively until

Eqn. 1.34 is balanced, where the target coordinates of ξ9 and ξ10 are used. Finally, the values of ψ

and ϕ can be calculated.

Furthermore, stiffness matching for the extensional stiffness (ξ1 and ξ2) can also be performed

in a similar way, to determine the ply percentages and the exact values of ψ and ϕ.

Previous work has been done on bending stiffness matching [97], where the stiffness of

the DD laminates were matched to standard laminate configurations. A new database of DD

laminate configurations, containing specific mechanical coupling characteristics was developed.

The stiffness matching approach is also used in the current investigation to develop designs with
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bending isotropy. Off-axis orientations can then be modified in order to introduce Extension-Shear

coupling for first ply failure assessment.

1.3 THESIS OUTLINE

The remainder of this thesis is split into six chapters as follows:

■ Chapter 2 provides the detailed theorical derivations behind classical laminate theory and

closed form buckling solutions. Multiple approaches are applied to ensure that the equations

are implemented correctly using numerical examples. The details behind creation of a Finite

Element Analysis model for buckling simulations is also presented.

■ Chapter 3 provides an overview of the design of composite laminates with traditional

orientations. Techniques for optimising standard laminates using lamination parameters are

introduced. Results predicted under both compression and shear loading are presented,

and design spaces of uncoupled standard laminates are plotted.

■ Chapter 4 introduces a method of designing composite laminates with new DD configur-

ations. The buckling and strength performance of DD laminates are examined, and their

design spaces are plotted.

■ Chapter 5 looks into the effect of different coupling behaviours on the buckling and FPF

performance for both standard and DD laminate configurations are investigated. The

4-dimensional design space of laminates possessing coupling behaviours is also investigated

further. Design spaces for fully coupled laminates are presented.

■ Chapter 6 concludes the research and potential future work is also presented.

1.4 RESEARCH OBJECTIVES

The aim of this research is to design and optimise composite laminates with improved buckling

and first-ply failure performance using an alternative design approach, which allows improved

design of composite laminates without any concerns related to thickness changes that can occur

in VAT laminates. In industry, symmetric and uncoupled laminates are mostly used because

this type of laminate is guaranteed to be free of thermal warping and distortion. However,

this rather conservative design approach is overly restrictive and can preclude the design of



Introduction 35

better optimised laminates and structures. With better understanding of the technology, the

potential of composite laminates can be better utilised with improved performance in buckling

and FPF behaviour, with greater weight saving and with. more flexible laminates possessing

aero-elastic coupling behaviours. This point leads to one of the main motivations behind this

project; namely, to examine the influence of non-symmetric and coupled laminates on buckling

and FPF performance. To facilitate this goal, novel laminate design spaces will be developed

and utilized to obtain an enhanced understanding of mechanically coupled laminates, involving

bending and twisting.

To summarise, the goals for the current study are:

■ To explore the lamination parameter design space for standard quad and DD laminates

under compression and shear loading and to use the lamination parameter design space as

a way of designing laminates.

■ To design laminates using newly developed DD lamination configurations

■ To examine possible improvements of DD laminates in terms of buckling and FPF perform-

ance.

■ To examine the effect of coupling behaviours on the buckling and FPF performance of

composite laminates, and to understand how the design spaces changes with coupling

behaviours.

1.5 PUBLICATIONS

Journal Article

Lee, H.S. Jason. and York, C. B. (2020). Compression and shear buckling performance of finite

length plates with bending-twisting coupling. Composite Structures, 241, 112069. In Conference

Proceedings

Lee, H.S. Jason. and York, C.B. (2019). Design Procedures for Improved Laminate Performance in

Bending and Extension. 22nd International Conference on Composite Materials 2019 (ICCM 22),

Melbourne, Australia, 11-16 Aug 2019.



CHAPTER 2

THEORY AND EXAMPLE CALCULATIONS AND FEA

MODELLING

For completeness, this chapter provides theory and equations that are used during the investiga-

tion. Worked examples are also presented for clarity.

2.1 CLASSICAL LAMINATE THEORY (CLT)

2.1.1 THEORY

Classical laminate theory was briefly introduced in 1.2.2, which is given by:

N

M

 =

A B

B D


ϵ

κ

 (2.1)

Here Aij refers to the extensional stiffnesses; Bij refers to the extensional-bending coupling

stiffnesses and Dij represents the bending stiffnesses. Aij and Dij can also be found on metallic

structures while only occurs in composite structures. The individual terms in the ABD matrix are

the integrals given as:

Aij =
∫ + H

2

− H
2

Qijdz =
N

∑
k=1

Qijk(zk − zk−1)

Bij =
∫ + H

2

− H
2

Qijzdz =
1
2

N

∑
k=1

Qijk(z
2
k − z2

k−1) (2.2)

Dij =
∫ + H

2

− H
2

Qijz
2dz =

N

∑
k=1

Qijk(z
3
k − z3

k−1)

36
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where Qij are the transformed reduced stiffnesses given by:

Q11 = m4Q11 + 2m2n2(Q12 + 2Q66) + n4Q22

Q12 = n2m2(Q11 + Q22 − 4Q66) + (n4 + m4)Q12

Q16 = nm(m2(Q11 − Q12 − 2Q66) + n2(Q12 − Q22 + 2Q66))

Q22 = n4Q11 + 2m2n2(Q12 + 2Q66) + m4Q22 (2.3)

Q26 = nm(n2(Q11 − Q12 − 2Q66) + m2(Q12 − Q22 + 2Q66))

Q66 = n2m2(Q11 + Q22 − 2Q12 − 2Q66) + (m4 + n4)Q66

and Qij are the reduced stiffnesses that are related to the engineering constants as:

Q11 =
E1

1 − ν12ν21
Q12 =

ν12E2

1 − ν12ν21
=

ν21E1

1 − ν12ν21
Q22 =

E2

1 − ν12ν21
Q66 = G12 (2.4)

2.1.2 EXAMPLE 1. CALCULATION OF THE ABD MATRIX FROM MECHANICAL

PROPERTIES OF THE LAMINATE

A 24-ply graphite/epoxy T300/5208 fully isotropic plate is used to illustrate the calculations of

the ABD matrix with the 3 approaches mentioned using the following properties: Young’s moduli

E1 = 181.0 GPa and E2 = 10.3 GPa, shear modulus G12 = 7.17 GPa, Poisson ratio ν12 = 0.28 and

lamina thickness t = 0.1397 mm. The stacking sequence of the plate is: [-/•/◦/+/◦/+/•/+/-/◦/-

/•/-/•/+/•/◦/-/◦/+/◦/+/-/•]T, where subscripts +, -, ◦ and • are the notation for +45°, -45°,

0°and 90°ply orientations respectively. First of all, the method of using the reduced stiffness starts

with applying Eqn. 2.4:

Q11 =
E1

1 − ν12ν21
=

181, 000
1 − 0.3 × 0.01593

= 181, 811N/mm2

Q12 =
(ν12E2)

1 − ν12ν21
=

0.28 × 10, 300
1 − 0.3 × 0.01593

= 2, 897N/mm2

Q22 =
E2

1 − ν12ν21
=

10, 300
1 − 0.3 × 0.01593

= 10, 346N/mm2

Q66 = G12 = 7170N/mm2

The transformed reduced stiffnesses are calculated by using Eqn. 2.3 and shown in Table 2.1.
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Table 2.1: Illustration of the transformed reduced stiffness for -45°, 45°, 0° and 90° layers.

θ° Q11 Q12 Q16 Q22 Q26 Q66

-45 56,658 42,318 -42,866 56,658 -42,866 46,591

45 56,658 42,318 42,866 56,658 42,866 46,591

0 181,811 2,897 0 10,346 0 7,170

90 10,346 2,897 0 181,811 0 7,170

By applying Eqn. 2.2, and using A11 as example:

A11 =
N

∑
k=1

Q11(zk − zk−1)

= ((Q11)−45 × (12 × 0.1397 − 11 × 0.1397) + (Q11)90 × (11 × 0.1397 − 10 × 0.1397)

+ (Q11)0 × (10 × 0.1397 − 9 × 0.1397) + (Q11)45 × (9 × 0.1397 − 8 × 0.1397)

+ (Q11)0 × (8 × 0.1397 − 7 × 0.1397) + (Q11)45 × (7 × 0.1397 − 6 × 0.1397)

+ (Q11)90 × (6 × 0.1397 − 5 × 0.1397) + (Q11)45 × (5 × 0.1397 − 4 × 0.1397)

+ (Q11)−45 × (4 × 0.1397 − 3 × 0.1397) + (Q11)0 × (3 × 0.1397 − 2 × 0.1397)

+ (Q11)−45 × (2 × 0.1397 − 1 × 0.1397) + (Q11)90 × (1 × 0.1397 − 0 × 0.1397)

+ (Q11)−45 × (0 × 0.1397 − (−1)× 0.1397) + (Q11)90 × (−2 × 0.1397 − (−2)× 0.1397)

+ (Q11)45 × (−2 × 0.1397 − (−3)× 0.1397) + (Q11)90 × (−4 × 0.1397 − (−4)× 0.1397)

+ (Q11)0 × (−4 × 0.1397 − (−5)× 0.1397) + (Q11)−45 × (−6 × 0.1397 − (−6)× 0.1397)

+ (Q11)0 × (−6 × 0.1397 − (−7)× 0.1397) + (Q11)45 × (−8 × 0.1397 − (−8)× 0.1397)

+ (Q11)0 × (−8 × 0.1397 − (−9)× 0.1397) + (Q11)45 × (−10 × 0.1397 − (−10)× 0.1397)

+ (Q11)−45 × (−10 × 0.1397 − (−11)× 0.1397) + (Q11)90 × (−11 × 0.1397 − (−12)× 0.1397)

= 256, 047N/mm



Theory and Example Calculations and FEA modelling 39

Repeating the process with the rest of the ABD matrix element gives:


A11 A12 A16

A21 A22 A26

A61 A62 A66

 =


256, 047 75, 798 0

75, 798 256, 047 0

0 0 90, 125

 N/mm


D11 D12 D16

D21 D22 D26

D61 D62 D66

 =


239, 858 71, 005 0

71, 005 239, 858 0

0 0 84, 426

 N/mm

Classical laminate theory is very important as the ABD matrix is used for buckling and first-ply

failure assessment throughout this project. Therefore, it is vital that the ABD matrix is correctly

calculated. In addition to using classical laminate theory, the ABD matrix can be obtained by

other approaches that produce identical results. The approaches are listed below and are used to

cross check and mutually verify results. In so doing it is ensured that all the different approaches

used in this investigation are correctly implemented.

■ Lamination parameters

■ Non-dimensional parameters

2.2 LAMINATION PARAMETERS, NON-DIMENSIONAL PARAMETERS AND

ABD MATRIX

This section provides the theory behind lamination parameters. These are used as an important

design optimisation tool in this project. They are used to draw design spaces and to calculate the

ABD matrix (which is required for buckling analysis). The form and presentation of lamination

parameters has evolved since the theory was first introduced by Tsai in 1968 [31, 32]. The

relationship between the lamination parameters and ABD matrix is discussed below. Examples of

the use of lamination parameters are provided to demonstrate the method.
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2.2.1 THEORY

The derivation process of the lamination parameters starts with evaluating Eqn. 2.2:

Aij =
∫ + H

2

− H
2

Qijdz Bij =
∫ + H

2

− H
2

Qijzdz Dij =
∫ + H

2

− H
2

Qijz
2dz

By expanding the transformed reduced stiffnesses, Qij, with Eqn. 2.3, the ABD matrix relationship

becomes:

A11 =
∫ + H

2

− H
2

(m4Q11 + 2m2n2(Q12 + 2Q66) + n4Q22)dz

A12 =
∫ + H

2

− H
2

(n2m2(Q11 + Q22 − 4Q66) + (n4 + m4)Q12)dz

A16 =
∫ + H

2

− H
2

(nm(m2(Q11 − Q12 − 2Q66) + n2(Q12 − Q22 + 2Q66)))dz

A22 =
∫ + H

2

− H
2

(n4Q11 + 2m2n2(Q12 + 2Q66) + m4Q22)dz (2.5)

A26 =
∫ + H

2

− H
2

(nm(n2(Q11 − Q12 − 2Q66) + m2(Q12 − Q22 + 2Q66)))dz

A66 =
∫ + H

2

− H
2

(n2m2(Q11 + Q22 − 2Q12 − 2Q66) + (m4 + n4)Q66)dz

By expanding m and n and grouping the terms, the expression becomes:

A11 =
∫ + H

2

− H
2

(
3Q11 + 3Q22 + 2Q12 + 4Q66

8
+ (

Q11 − Q22

2
) cos 2θ

+ (
Q11 + Q22 − 2Q12 − 4Q66

8
) cos 4θ)dz

A12 =
∫ + H

2

− H
2

(
Q11 + Q22 + 6Q12 − 4Q66

8
− (

Q11 + Q22 − 2Q12 − 4Q66

8
) cos 4θ)dz

A16 =
∫ + H

2

− H
2

(
2Q11 − 2Q22

8
+ (

Q11 + Q22 − 2Q12 − 4Q66

8
) sin 4θ)dz

A22 =
∫ + H

2

− H
2

(
3Q11 + 3Q22 + 2Q12 + 4Q66

8
− (

Q11 − Q22

2
) cos 2θ (2.6)

+ (
Q11 + Q22 − 2Q12 − 4Q66

8
) cos 4θ)dz

A26 =
∫ + H

2

− H
2

(
2Q11 − 2Q22

8
− (

Q11 + Q22 − 2Q12 − 4Q66

8
) sin 4θ)dz

A66 =
∫ + H

2

− H
2

(
Q11 + Q22 − 2Q12 + 4Q66

8
− (

Q11 + Q22 − 2Q12 − 4Q66

8
) cos 4θ)dz
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By repeating the same process for [B] and [D] matrices, and substituting 2 new variables Ui and

ξij, the relationships is simplified to:

A11 = (U1 + ξ1U2 + ξ2U3)× H A12 = A21 = (−ξ2U3 + U4)× H

A16 = A61 = (
ξ3U2

2
+ ξ4U3)× H A22 = (U1 − ξ1U2 + ξ2U3)× H

A26 = A62 = (
ξ3U2

2
− ξ4U3)× H A66 = (−ξ2U3 + U5)× H

B11 =
(ξ5U2 + ξ6U3)× H2

4
B12 = B21 =

(−ξ6U3 + U4)× H2

4

B16 = B61 =
( ξ7U2

2 + ξ8U3)
2

4
B22 =

ξ5U2 + ξ6U3)× H2

4
(2.7)

B26 = B62 =
( ξ7U2

2 − ξ8U3)× H2

4
B66 =

(−ξ6U3 + U5)× H2

4

D11 =
(U1 + ξ9U2 + ξ10U3)× H3

12
D12 =

(U4 − ξ10U3)× H3

12

D16 = D61 =
( ξ11U2

2 + ξ12U3)× H3

12
D22 =

(U1 − ξ9U2 + ξ10U3)× H3

12

D26 = D62 =
( ξ11U2

2 − ξ12U3)× H3

12
D66 =

(−ξ10U3 + U5)× H3

12

where Ui are called the material invariants or Tsai-Pagano parameters that depend on the reduced

stiffnesses, given as:

U1 =
3Q11 + 3Q22 + 2Q12 + 4Q66

8

U2 =
Q11 − Q22

2

U3 =
Q11 + Q22 − 2Q12 − 4Q66

8
(2.8)

U4 =
Q11 + Q22 + 6Q12 − 4Q66

8

U5 =
Q11 + Q22 − 2Q12 + 4Q66

8
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and ξij are called the lamination parameters, give as:

ξ1 =
∫ + H

2

− H
2

cos 2θdz ξ5 =
∫ + H

2

− H
2

cos 2θzdz ξ9 =
∫ + H

2

− H
2

cos 2θz2dz

ξ2 =
∫ + H

2

− H
2

cos 4θdz ξ6 =
∫ + H

2

− H
2

cos 4θzdz ξ10 =
∫ + H

2

− H
2

cos 4θz2dz (2.9)

ξ3 =
∫ + H

2

− H
2

sin 2θdz ξ7 =
∫ + H

2

− H
2

sin 2θzdz ξ11 =
∫ + H

2

− H
2

sin 2θz2dz

ξ4 =
∫ + H

2

− H
2

sin 4θdz ξ8 =
∫ + H

2

− H
2

sin 4θzdz ξ12 =
∫ + H

2

− H
2

sin 4θz2dz

Expanding the integrals and grouping the same angle orientations, the relationship between the

12 lamination parameters and the non-dimensional parameters, the stacking sequence and the

number of plies are given in [32] as:

ξ1 =
[n+ cos(2θ+) + n− cos(2θ−) + n◦ cos(2θ◦) + n• cos(2θ•)]

n

ξ2 =
[n+ cos(4θ+) + n− cos(4θ−) + n◦ cos(4θ◦) + n• cos(4θ•)]

n

ξ3 =
[n+ sin(2θ+) + n− sin(2θ−) + n◦ sin(2θ◦) + n• sin(2θ•)]

n

ξ4 =
[n+ sin(4θ+) + n− sin(4θ−) + n◦ sin(4θ◦) + n• sin(4θ•)]

n

ξ5 =
[χ+ cos(2θ+) + χ− cos(2θ−) + χ◦ cos(2θ◦) + χ• cos(2θ•)]

χ

ξ6 =
[χ+ cos(4θ+) + χ− cos(4θ−) + χ◦ cos(4θ◦) + χ• cos(4θ•)]

χ
(2.10)

ξ7 =
[χ+ sin(2θ+) + χ− sin(2θ−) + χ◦ sin(2θ◦) + χ• sin(2θ•)]

χ

ξ8 =
[χ+ sin(4θ+) + χ− sin(4θ−) + χ◦ sin(4θ◦) + χ• sin(4θ•)]

χ

ξ9 =
[ζ+ cos(2θ+) + ζ− cos(2θ−) + ζ◦ cos(2θ◦) + ζ• cos(2θ•)]

ζ

ξ10 =
[ζ+ cos(4θ+) + ζ− cos(4θ−) + ζ◦ cos(4θ◦) + ζ• cos(4θ•)]

ζ

ξ11 =
[ζ+ sin(2θ+) + ζ− sin(2θ−) + ζ◦ sin(2θ◦) + ζ• sin(2θ•)]

ζ

ξ12 =
[ζ+ sin(4θ+) + ζ− sin(4θ−) + ζ◦ sin(4θ◦) + ζ• sin(4θ•)]

ζ

where n, χ and ζ represent the non-dimensional parameters for extension, coupling and bending

stiffness respectively.
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For traditional laminates (containing 0, 90 and ±45 degree orientations) these are given by:

n+ = ∑(zk − zk−1)+ χ+ = 2 × ∑(z2
k − z2

k−1)+ ζ+ = 4 × ∑(z3
k − z3

k−1)+

n− = ∑(zk − zk−1)− χ− = 2 × ∑(z2
k − z2

k−1)− ζ− = 4 × ∑(z3
k − z3

k−1)− (2.11)

n◦ = ∑(zk − zk−1)◦ χ◦ = 2 × ∑(z2
k − z2

k−1)◦ ζ◦ = 4 × ∑(z3
k − z3

k−1)◦

n• = ∑(zk − zk−1)• χ• = 2 × ∑(z2
k − z2

k−1)• ζ• = 4 × ∑(z3
k − z3

k−1)•

The non-dimensional parameters (n+, n−, n◦, n•, χ+, χ−, χ◦, χ•, ζ+, ζ−, ζ◦ and ζ• are required

to calculate the lamination parameters, the subscripts +, -, ◦ and • are the notation for +45°,

-45°, 0°and 90°ply orientations. While the non-dimensional parameters n, χ and ζ (without a

subscript) represent the sum of all parameters with the same subscripts, and the non-dimensional

parameters for total coupling, χ and bending stiffnesses, ζ can also be expressed in terms of the

n, which are given by:

n = n+ + n− + n◦ + n•

χ = χ+ + χ− + χ◦ + χ• (2.12)

ζ = ζ+ + ζ− + ζ◦ + ζ•

The non-dimensional parameters for extensional stiffness (n+, n−, n◦, n•) can also be found by

inspection of the laminate stacking sequence, it is simply the number of +, -, ◦ and • plies within

the laminate, e.g. no = 4 in the following laminate [0/90/+45/-45/90/0]2, which is equivalent to

the summation of (zk − zk−1) for each ply orientation, where zk is the distance of the th layer to

the midplane normalised against thickness, t. The non-dimensional parameters for extensional

stiffness (n◦, n+, n-, n•) are simply a summation of the number of plies in each of the standard

ply orientations, which can be expressed as a proportion of the total number of plies, n, and are

commonly expressed as ply percentages.

Note that different types of laminates have different relationships between their non-dimensional

parameters. For example, Bend-Twist (B-T) coupled laminates have equal n+ and n− and extension-

shear (E-S) coupled laminates have equal ζ+ and ζ−. Extension-shear and bend-twist (E-S-B-T)

coupled laminates have n+ ̸= n− and ζ+ ̸= ζ− [98].
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Finally, the non-dimensional parameters (Eqn. 2.11) be used to calculate either the lamination

parameters, or to calculate the ABD matrix directly, if the lamination parameters are not required,

Figure 2.1 shows the relationship between the three.

Figure 2.1: The relationship between non-dimensional parameters, lamination parameters and
ABD matrix.

Note that the non-dimensional parameters can be used to directly calculate the ABD matrix

without finding the lamination parameters, which is useful when lamination parameters are not

necessary. The relationship between the non-dimensional parameters and the ABD matrix is:

Aij = (n+(Qij)+ + n−(Qij)− + n◦(Qij)◦ + n•(Qij)•)× t

Bij =
(χ+(Qij)+ + χ−(Qij)− + χ◦(Qij)◦ + χ•(Qij)•)× t2

4
(2.13)

Dij =
(ζ+(Qij)+ + ζ−(Qij)− + ζ◦(Qij)◦ + ζ•(Qij)•)× t3

12

Examples are provided below for demonstration purposes.

2.2.2 EXAMPLE 2. CALCULATION OF THE ABD MATRIX FROM

NON-DIMENSIONAL PARAMETERS

Using the same 24-ply fully isotropic laminate as used in Example 2.1.2, with [-/•/◦/+/◦/+/•/+/

-/◦/-/•/-/•/+/•/◦/-/◦/+/◦/+/-/•]T, the procedure of determining first the non-dimensional

parameters is shown in Fig. 2.2, and from there these non-dimensional parameters are used

to find the ABD matrix. The first 2 columns of Table 5 represent the ply order starting from

the top surface of the laminate and the correspond ply orientation. The next columns are

the summation of the number of each ply orientation within the laminate for the A, B and D
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matrices, i.e. (zk − zk−1, (z2
k − z2

k−1) and (z3
k − z3

k−1), where zk is the distance of the kth layer to

the mid plane. For the non-dimensional parameters of the extension stiffness matrix [A], the

number of positive angle ply, n+(A∑+), number of negative angle plies, n−(A∑−), the number

of 0°cross-plies, n◦(A∑◦) and the number of 90°cross plies, n•(A∑•) are all equals to 6. The

sum of the bending-extension stiffness matrix [B] the non-dimensional parameters, B ∑i are zero,

which indicates that Bij = 0. Finally for the bending stiffness matrix, [D]: the bending stiffness

parameters, ζ+ = ζ− = ζ◦ = ζ• = (4D ∑+ = 4 × 864) = 3456 and n3 = 183 = 5, 832.

Figure 2.2: Illustration of the procedure of finding the lamination parameter using
non-dimensional parameters.
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Using the same laminate as above with the stacking sequence with Eqn. 2.13:

A11 = (n+(Q11)+ + n−(Q11)− + n◦(Q11)◦ + n•(Q11)•)× t

= (6 × 56, 658 + 6 × 56, 658 + 6 × 181, 811 + 6 ∗ 10, 346)× 0.1397 = 256, 047N/mm

B11 =
(χ+(Q11)+ + χ−(Q11)− + χ◦(Q11)◦ + χ•(Q11)•)× t2

4

=
(0 × 56, 658 + 0 × 56, 658 + 0 × 181, 811 + 0 ∗ 10, 346)× 0.13972

4
= 0N/mm

D11 =
(ζ+(Q11)+ + ζ−(Q11)− + ζ◦(Q11)◦ + ζ•(Q11)•)× t3

12

=
(3, 456 × 56, 658 + 3, 456 × 56, 658 + 3, 456 × 181, 811 + 3, 456 ∗ 10, 346)× 0.13973

12

= 239, 858N/mm

The rest of the ABD matrix then becomes:
A11 A12 A16

A21 A22 A26

A61 A62 A66

 =


256, 047 75, 798 0

75, 798 256, 047 0

0 0 90, 125

 N/mm


B11 B12 B16

B21 B22 B26

B61 B62 B66

 =


0 0 0

0 0 0

0 0 0

 N/mm


D11 D12 D16

D21 D22 D26

D61 D62 D66

 =


239, 858 71, 005 0

71, 005 239, 858 0

0 0 84, 426

 N/mm

Note that the values of the ABD matrix calculated in Example 2.2.2 are identical to those

determined in Example 2.1.2, validating the implementation of both approaches.

Once again use of lamination parameters to calculate the ABD matrix provides mutual

verification to ensure the correct implementation of the equations used in each approach. But

more importantly, this also allows the use of the lamination parameter design space to optimise

laminate behaviour (the advantages of this approach over direct use of the fibre orientation were

discussed in Section 1.2.5). Nevertheless, the ABD matrix can be found from the lamination

parameters and used for buckling analysis. Stacking sequences that can produce the desired ABD
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matrix can also be obtained by applying CLT, allowing optimisation of composite laminates. This

process is illustrated in the following example.

2.2.3 EXAMPLE 3. CALCULATION OF ABD MATRIX FROM THE LAMINATION

PARAMETERS

Using the same laminate example as before, by applying Eqn. 2.10, the lamination parameters are

calculated as follow:

ξ1 =
[n+ cos(2θ+) + n− cos(2θ−) + n◦ cos(2θ◦) + n• cos(2θ•)]

n

=
6 cos(2 × 45) + 6 cos(2 ×−45) + 6 cos(2 × 0) + 6 cos(2 × 90)

24
= 0

ξ2 =
[n+ cos(4θ+) + n− cos(4θ−) + n◦ cos(4θ◦) + n• cos(4θ•)]

n

=
6 cos(4 × 45) + 6 cos(4 ×−45) + 6 cos(4 × 0) + 6 cos(4 × 90)

24
= 0

ξ3 =
[n+ sin(2θ+) + n− sin(2θ−) + n◦ sin(2θ◦) + n• sin(2θ•)]

n

=
6 sin(2 × 45) + 6 sin(2 ×−45) + 6 sin(2 × 0) + 6 sin(2 × 90)

24
= 0

ξ4 =
[n+ sin(4θ+) + n− sin(4θ−) + n◦ sin(4θ◦) + n• sin(4θ•)]

n

=
6 sin(4 × 45) + 6 sin(4 ×−45) + 6 sin(4 × 0) + 6 sin(4 × 90)

24
= 0

ξ9 =
[ζ+ cos(2θ+) + ζ− cos(2θ−) + ζ◦ cos(2θ◦) + ζ• cos(2θ•)]

ζ

=
3, 456 cos(2 × 45) + 3, 456 cos(2 ×−45) + 3, 456 cos(2 × 0) + 3, 456 cos(2 × 90)

243 = 0

ξ10 =
[ζ+ cos(4θ+) + ζ− cos(4θ−) + ζ◦ cos(4θ◦) + ζ• cos(4θ•)]

ζ

=
3, 456 cos(4 × 45) + 3, 456 cos(4 ×−45) + 3, 456 cos(4 × 0) + 3, 456 cos(4 × 90)

243 = 0

ξ11 =
[ζ+ sin(2θ+) + ζ− sin(2θ−) + ζ◦ sin(2θ◦) + ζ• sin(2θ•)]

ζ

=
3, 456 sin(2 × 45) + 3, 456 sin(2 × 45) + 3, 456 sin(2 × 0) + 3, 456 sin(2 × 90)

243 = 0

ξ12 =
[ζ+ sin(4θ+) + ζ− sin(4θ−) + ζ◦ sin(4θ◦) + ζ• sin(4θ•)]

ζ

=
3, 456 sin(4 × 45) + 3, 456 sin(4 ×−45) + 3, 456 sin(4 × 0) + 3, 456 sin(4 × 90)

243 = 0
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The procedure continues by calculating the laminate invariants:

U1 =
3Q11 + 3Q22 + 2Q12 + 4Q66

8

=
3 × 181, 811 + 3 × 10, 346 + 2 × 2, 897 + 4 × 7, 170

8
= 76, 368

U2 =
Q11 − Q22

2

=
181, 811 − 10, 346

2
= 85, 732

U3 =
Q11 + Q22 − 2Q12 − 4Q66

8

=
181, 811 + 10, 346 − 2 × 2, 897 − 4 × 7, 170

8
= 19, 710

U4 =
Q11 + Q22 + 6Q12 − 4Q66

8

=
181, 811 + 10, 346 + 6 × 2, 897 − 4 × 7, 170

8
= 22, 607

U5 =
Q11 + Q22 − 2Q12 + 4Q66

8

=
181, 811 + 10, 346 − 6 × 2, 897 + 4 × 7, 170

8
= 26, 880

Using the lamination parameters and laminate invariants, the ABD matrices are:

A11 = (U1 + ξ1U2 + ξ2U3)× H

= (76, 368 + 0 × 85, 733 + 0 × 19, 710)× 3.3528 = 256, 047 N/mm

B11 =
(ξ5U2 + ξ6U3)× H2

4

=
(0 × 85, 733 + 0 × 19, 710)× 3.35282

4
= 0 N/mm

D11 =
(U1 + ξ9U2 + ξ10U3)× H3

12

=
(76, 368 + 0 × 85, 733 + 0 × 19, 710)× 3.35283

12
= 239, 858 N/mm
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The final ABD matrix is:
A11 A12 A16

A21 A22 A26

A61 A62 A66

 =


256, 047 75, 798 0

75, 798 256, 047 0

0 0 90, 125

 N/mm


B11 B12 B16

B21 B22 B26

B61 B62 B66

 =


0 0 0

0 0 0

0 0 0

 N/mm


D11 D12 D16

D21 D22 D26

D61 D62 D66

 =


239, 858 71, 005 0

71, 005 239, 858 0

0 0 84, 426

 N/mm

The ABD matrix obtained from lamination parameters is identical to the one obtained from

non-dimensional parameters in example calculation 2.1.2 and using CLT in example 2.2.2. All

the method gives the same results for the ABD matrix, which confirms that the calculations are

correct and can be used for the rest of the project. The different methods of obtaining the ABD

matrix are implemented with Excel.

2.3 BUCKLING

2.3.1 THEORY

As mentioned in Section 1.2.6, the compression buckling load, Nx, can be obtained exactly by

Eqn. 1.18 [6]:

Nx = π2[D11(
m
a
)2 + 2(D11 + 2D66)(

n
b
)2 + D22(

n
b
)4(

a
m
)2]

For verification purposes, another numerical way of calculating the buckling load is to apply the

equation and data from ESDU 80023 datasheet [99], which is given as:

Nxb =
K0

√
(D11D12)

b2 +
Cπ2D66

b2 (2.14)
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Finally, the buckling factor is given by:

Kx =
Nxb2

π2DIso
(2.15)

where Diso is the bending stiffness of the equivalent isotropic laminate with the same thickness

and material properties, it is defined by:

Diso =
U1H3

12
(2.16)

The buckling factor is an important parameter in determining the optimum buckling behaviour of

a laminate and can be determined by substituting either Eqn. 1.18 or 2.14 into Eqn. 2.15. However,

the closed form solution is only applicable to fully uncoupled laminates, laminates with any kind

of coupled behaviour must be analysed with Finite Element Analysis.

2.3.2 EXAMPLE 4. CALCULATION OF BUCKLING LOAD AND BUCKLING FACTOR

OF A SQUARE LAMINATE SUBJECT TO A UNIFORM AXIAL LOAD

The procedure for obtaining the compression buckling factor starts by applying the closed form

buckling solution i.e. Eqn. 1.18. Using the ABD matrix of the same isotropic laminate in the

above calculation, the buckling load is:

Nx = π2[D11(
m
a
)2 + 2(D11 + 2D66)(

n
b
)2 + D22(

n
b
)4(

a
m
)2]

= {π2[239, 858(
1

300
) + 2(239, 858 + 2 × 84, 426)(

1
300

)2 + 239, 858(
1

300
)4(

300
1

)2]

= 105.214 N/mm

Hence using Eqn. 2.15, the buckling factor is:

Kx =
Nxb2

π2DIso

=
105.214 × 3002

π2 × 239, 860
= 4.0

Next, the buckling load and buckling factor can be checked by using the ESDU 80023 datasheet

[99]. By applying Eqn. 2.14 and K0 = 19.7 from the datasheet of aspect ratio 1, the buckling load
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Nxb is:

Nxb =
K0

√
(D11D12)

b2 +
Cπ2D66

b2

=
19.7(239, 858 × 239, 858)0.5

10002 × 0.32 +
2 × π2(71005 + 2 × 84426)

10002 × 0.32

= 52.50 + 52.61 = 105.11 N/mm

and the buckling factor:

Kx =
105.11 × 3, 002
π2 × 239, 860

= 3.996

Both methods match the classical compressive buckling coefficient of 4.0 for an isotropic laminate.

2.4 FINITE ELEMENT ANALYSIS MODELLING

Since the buckling performance of laminates with coupling behaviour cannot be predicted with

closed form equations, Finite Element Analysis must be used. The FEA model is explained in

this section. The FEA software ABAQUS is used for buckling simulations throughout this project.

Input file editing is used instead of the user interface to create the model of a laminate. The

input requires either the stacking sequence or the ABD matrix of the laminate, both ways should

produce the same result. Both approaches are tested for cross verification and the input files

for both are provided in Appendix. Conventional shell elements are used to create the model

because the thickness of thin laminated structures is very small compared to their length and

width, hence the transverse shear flexibility is considered negligible in the element formulation.

A conventional stress/displacement shell element with 8 nodes and 5 degrees of freedom, S8R5,

is used for modelling laminates in this project [100]. Comparing to a more general-purpose shell

element, S4R for instance, S8R5 only focuses on thin plates whereas S4R is applicable for both

thick and thick plates. However, S8R5 requires less refined mesh, which is a more efficient option

and requires less running time [98, 101]. 2-D rather than 3-D models are generated by the input

code. Here the thickness and lay-up are not shown. The mesh of the Abaqus model is shown in

Figure 17.
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Figure 2.3: Illustration of the FEA model mesh.

The example is a square plate that contains 30 elements in each direction, where each element

is 10 mm x 10 mm. This sums up to a 300 mm x 300 mm plate containing 3,600 nodes and 900

shell elements.

The buckling analysis from Abaqus is an eigenvalue problem, the eigenvalues obtained are

then converted to the corresponding buckling loads and buckling factors. The converted buckling

factors from FEA should be identical to the ones obtained with the closed form solution, i.e.

4.0 (see Section 1.2.6). The predicted buckling shape of the plate for the given ABD matrix and

stacking sequence are shown in Figure 18. The same 24-ply laminate as that used in Examples 2.1.2,

2.2.2 and 2.2.3 is used to ensure that the FEA model produces the same results as using the closed

from solution. The resulting Kx values, obtained using the two different input techniques (i.e. the

ABD matrix or the stacking sequence) are 3.991 and 3.946 respectively, revealing differences of

0.125% and 1.25% from the closed form solution. Since the values obtained using the ABD matrix

input is closer to the closed form solution than the stacking sequence input, the ABD matrix is

used as the input for all FEA in the remainder of this project and extracts of codes used for the

FEA in ABD and stacking sequence are included in A1 and A2.
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(a) ABD matrix (b) Stacking sequence

Figure 2.4: Illustration of the buckling pattern for (a) ABD matrix and (b) stacking sequence
inputs with corresponding eigenvalues.

Moreover, the closed form solution is only applicable to compressive buckling, therefore FEA

must be used for shear buckling analysis. The input code for shear buckling is similar to that used

for compression buckling, the only difference is the load condition, here the loading direction is

changed to both x and y directions instead of the x direction only. Extract of the shear loading

codes is included in A3. The same 24-ply laminate as that used in Examples 2.1.2 - 2.2.3 is once

used again for demonstration purposes. The predicted shear buckling pattern is shown in Figure

2.5a, which reveals a similar pattern compared to that presented by York [52] in Figure 2.5b.
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(a) From FEA (b) From York [52]

Figure 2.5: Illustration of the shear buckling pattern from FEA model compared to literature.

The converted buckling factor from the Abaqus eigenvalue gives 9.297, which is 0.41% away

from the classical shear buckling factor value of 9.35 (from Stein and Neff [53]). The FEA model

is therefore considered to be accurate enough for shear modelling in this project.

The theory and equations discussed in this chapter are used throughout this thesis in order to

fulfil the objectives mentioned in Chapter 1.4. The CLT and lamination parameters are used to for

design and optimisation of composite laminates with both standard and DD configurations. The

compression closed form buckling solution is used for uncoupled laminate designs while FEA is

used for any design that possesses any coupling behaviours.

The next chapter applies the theory in practice, starting by the investigation of compression

and shear buckling performances of finite length laminates with standard ply orientations.



CHAPTER 3

COMPRESSION AND SHEAR BUCKLING PERFORMANCE OF

FINITE LENGTH PLATES WITH BENDING-TWISTING

COUPLING

3.1 INTRODUCTION AND MOTIVATION TO LAMINATE BUCKLING LOAD

OPTIMISATION USING LAMINATION PARAMETER DESIGN SPACE

The aim of the work in this chapter is to explore buckling performance across the lamination

parameter design space of laminated composite materials with both standard (as opposed to

double angle) and straight (as opposed to steered) fibre orientations. Buckling performance is

projected on the feasible design space to facilitate direct comparisons between any location within

the design space. By indicating the buckling factors on the design space plots, locations with the

highest laminate strength can easily be seen. This allows designers to know the buckling load at

any location in the design space of applications that have typical values of lamination parameters,

such air aircraft skins, spars and stiffeners. This chapter acts as the foundation of the entire study,

laminates with more complicated designs will be investigated in later chapters.

Reduction in the buckling performance of composite plates or panel structures can occur

whenever the material exhibits Bend-Twist coupling [102, 25], which commonly arises in symmetric

laminate designs under compressive loading but not necessarily for shear. However, the effect of

Bend-Twist coupling continues to be ignored on the basis that the effects dissipate for laminates

comprised of many plies. However, fuselage panels typically have between 12 and 16 plies

and wing panels may have less than 17 plies in buckling critical regions. In these cases, the

compression buckling load may be overestimated (unsafe) and shear buckling load may be either

55
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overestimated or underestimated (over-designed) if the effects of Bend-Twist coupling are ignored.

Optimisation of buckling performance can be performed by various methods. An earlier study

on the effect of Bend-Twist coupling on finite length plates with simply supported edges adopted

non-dimensional parameters [103], as indeed did the most recent study [22]. However, the latter

differed from the lamination parameters approach to aid optimum design, used in this research,

and by others [46, 54]. Furthermore, the buckling factor results presented in those studies were

normalised by a bending stiffness parameter, which varies across the design space, hence buckling

performance was not directly comparable. The advantages of using lamination parameters over

non-dimensional parameters in buckling optimisation are outlined in Section 1.2.5.

Laminate databases containing Extension-Shear [104] and/or Bend-Twist coupling [25] proper-

ties demonstrate that the design spaces contain predominantly non-symmetric stacking sequences.

Heuristic design rules are applied to these databases [85], including the adoption of symmetric

stacking sequences, ply percentages and contiguity constraints to provide practical rather than

purely theoretical designs, from which meaningful buckling performance characteristics can be

assessed.

A set of high-fidelity orthographic projections of the lamination parameter design space can

provide information on the significance of ply percentages and contiguity constraints. These are

discussed later in this chapter in the context of the effect that in-plane material constraints have

on the out-of-plane design space, with specific reference to Bend-Twist coupling.

Finally, new insights into compression and shear buckling performance are provided in this

chapter via buckling factor contour maps, which are superimposed onto the lamination parameter

design spaces. Contour mapping is applied to cross-sections through the design space, to allow

detailed interrogation of the effects of Bend-Twist coupling on buckling performance. The mapping

is also applied to external surfaces of the feasible domain of lamination parameters, on which

some of the designs are found, since these bounding surfaces also correspond to bounds on

buckling load. The results are applicable to finite length plates, across a range of aspect ratios, and

complement a similar study on infinitely long plates with simply supported edges [86]. The latter

provides lower bound solutions to the finite length plate results. The results of this chapter are

useful for preliminary design, where optimised lamination parameters can be quickly matched to

practical designs.



Compression and shear buckling performance of finite length plates with

bending-twisting coupling 57

The effect of different combinations of simple supports and other boundary conditions is now

well understood [52] and is covered extensively in the literature, albeit predominantly for metallic

(isotropic) plates. This chapter therefore adopts an equivalent isotropic laminate datum to bridge

the gap between metallic and composite behaviour, by comparing the buckling results of metallic

and composite materials.

There are also many published results dealing with the minimum mass design or optimisation

of laminated composite plate assemblies or built-up structures subject to buckling constraints.

Optimisation procedures for stiffened panels generally lead to coincident buckling modes, i.e.,

the global and local modes share the same buckling load [105]. An exception to this is when

constraints are applied to the stiffener height, here global modes develop at loads far below the

local buckling load [106]. However, buckling behaviour cannot be generalized in such cases

because it is configuration dependent. Results from the current study, assuming finite length

plates, and from the earlier study, assuming infinitely long plates, are applicable where plate

assemblies exhibit local buckling of the individual flat plates between stiffeners. Hence the

influence of aspect ratio on the reduction in buckling load, resulting from poor laminate design

choice, is a primary focus of this study. The behaviour of finite length plates is found to be

very different from that of infinitely long panels, where buckling loads of infinitely long plates

represents the lower bound.

3.2 DESIGN SPACE INTERROGATION

The database for Bend-Twist coupled designs with up to 21 plies is presented graphically in Figs.

3.1 and 3.2. Figure 3.1a represents the lamination parameter design space for extensional stiffness

(ξ1,ξ2) with ply percentage mapping of straight fibre ply orientation. As mentioned in Chapter

5.1, ξ1−4 represent the extensional stiffness, ξ5−8 represent the coupling (in & out of plane)

stiffness and ξ9−12 represent the bending stiffness, each set has its own feasible design region.

The lamination parameter point cloud for extensional stiffness is illustrated by 112 points (grey

circles) in Fig. 3.1a. Here ξ3 = ξ4 = 0, the coupling stiffness ξ5−8 = 0, and the bending stiffness

ξ12 = 0, while ξ9, ξ10 and ξ11 are all non-zero. Each of the 112 unique points represents many

individual laminate designs sharing the same proportion of standard ply orientations, i.e. 0°,

90°and ±45°plies, but with different stacking sequences that result in different bending stiffnesses
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(i.e. different values of ξ9, ξ10 and ξ11). The contents of the database are also summarized in

Table 3.1. The larger black triangle in Fig. 3.1a represents the feasible region of the design space

when the extensional stiffness is uncoupled (i.e. A16 and A26 are zero). Note that the 10% rule

has been applied, which means that each design consists of at least 10% of each of the standard

ply orientations, this defines a smaller triangle (a sub-region) within the uncoupled design space

corresponding to this constraint. Ply contiguity further constrains the available design space,

which is set to a maximum of 3 adjacent plies with the same orientation, as is now common

design practice. Ply contiguity is used to prevent ‘ply blocking’, which refers to a large numbers

of consecutive repeating plies with the same fibre angle, that would increase the likelihood of

delamination occurring [85]. This condition further shrinks the available design space. The

smaller black triangle in Fig 1a is defined by the application of both these two types of constraint.

The green grid lines represent constant ply percentage values for 0°, 90° and ±45° plies, ranging

from 0 to 100% in intervals of 10%, where the top, left and right lines of the triangular design

space represent purely 0°, 90°and ±45°plies respectively. To give an example of how to read this

graph, the blue point in Fig. 3.1a at (ξ1, ξ2) = (-0.7, 0.8) contains (0/±45/90) ply percentages of

(10/10/80), as indicated by the green grid lines. Typical locations of aircraft wing skins, spars

and stiffeners in this design space are indicated by the red points in Fig 1a. The results in Table 1

reveal that applying the contiguity constraint alone creates results that closely match predictions

when applying the 10% rule constraint alone, across all ply number groupings. Figure 3.1b shows

20 points in a three-dimensional design space for bending stiffness defined by ξ9, ξ10 and ξ11.

The points are randomly selected from all available designs correspond to the points shown in

Fig. 3.1a.

Finally, Fig 3.1c shows the location of the planes defined by ξ11 = 0 (bounded by the dashed

line) and ξ11 = 0.5 (bounded by the dashed-dotted line) in the bending stiffness design space.

These 2-D cross-sections are used later in Ch. 3, 4 and 5, where a 15-point grid of sample points

is used to develop closed form bucking equations, as discussed in Section 3.1. ξ11 represents

the out-of-plane coupling, with 0.5 being the most extreme value for this type of coupling used

by industry. By using this value, the knock-down in buckling performance due to out-of-plane

coupling can be assessed, while the size of the design space is reduced, making the optimisation

more feasible.
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(a)

(b) (c)

Figure 3.1: Lamination parameter design spaces for symmetric Bend-Twist coupled laminates
with up to 21 plies, with 10% rule and ply contiguity constraints (≤ 3) applied, corresponding to
point clouds for: (a) extensional stiffness (ξ1, ξ2), including ply percentage mapping; (b)
three-dimensional representation of the lamination parameter design space for bending stiffness
with 20 randomly chosen points, and; (c) 3-D representation of the lamination parameter design
space highlighting the planes with ξ11 = 0 and ξ11 = 0.5.
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Table 3.1: Effect of ply continuity constraints (1, ≤2, ≤3) on the number of stacking sequence
solutions for each ply number grouping (n), balanced and symmetric representing Bend-Twist
coupled designs from databases with the 10% rule applied.

n
Ply contiguity only

10% rule only
1 ≤2 ≤3

7 4 4 4 4

8 - 6 6 6

9 10 14 18 18

10 - 20 20 24

11 14 30 44 48

12 - 96 104 128

13 68 164 242 260

14 - 392 422 534

15 240 676 980 1,080

16 - 1,572 1,790 2,302

17 690 2,736 4,184 4,612

18 - 6,000 7,142 9,324

19 4,108 10,846 16,842 18,720

20 - 13,532 15,860 19,994

21 5,114 32,116 49,282 53,224

Note that, each point in the ξ1 - ξ2 design space has multiple possible design layups in the

ξ9−11 design space, leading to over around 50,000 designs as shown in 3.1. If the constraints on

ξ11 (0 and 0.5) are not applied, then the whole set of data is extremely large. For example, the full

data set in the ξ9−11 design space can be plotted, as shown in Fig. 3.2. The lamination parameter

point clouds for bending stiffness are illustrated in the orthographic projections in Fig. 3.2. The

point clouds correspond to symmetric Bend-Twist coupled laminates with up to 21 plies, with 10%

rule and ply contiguity constraints (≤ 3) applied. Here, the effect of the 10% rule is seen to have

limited impact, since the point cloud extends to the bounds of the feasible region.
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(a)

(b) (c)

Figure 3.2: Orthographic projections (a): plan, (b) front elevation and (c) side views of point
clouds for bending stiffness (ξ9, ξ10, ξ11), corresponding to symmetric Bend-Twist coupled
laminates with up to 21 plies, with 10% rule and ply contiguity constraints (≤3) applied.

Whilst the use of standard ply orientations was chosen primarily because they conform to

common design practice, this also permits an otherwise 4-dimensional design space for non-

standard ply orientations [54] to be represented in 3-dimensions, resulting in a design space

defined by a regular tetrahedron, see Fig. 3.1b.

In the original derivation of the database, all stacking sequence designs possess a single outer
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surface angle ply (e.g. +45°), as is a common design practice, to improve damage tolerance. This

also serves to eliminate the possibility of generating cross-ply only designs. The resulting design

space therefore appears to be skewed toward the positive region of the lamination parameter

design space, defined by the lamination parameter ξ11, representing the magnitude of Bend-Twist

coupling, as seen in the plan view of Fig. 3.2a. If the signs of all the angle plies are switched, such

that there is now a negative outer surface angle ply, the design space will be skewed towards

the negative region. Designs that represent merely a switch in the sign of the ply angles are not

unique and since the stacking sequences are listed in symbolic form (+/ -/ ◦/ •), the designer has

complete freedom to choose both the sign and the value of the ply angles. For the compression

buckling design charts that follow, the results are unaffected by a sign switch in the angle plies,

but for the corresponding shear buckling design charts a sign switch is equivalent to reversing

the shear load direction, hence both positive and negative shear buckling charts are illustrated.

3.2.1 STIFFNESS AND LAMINATION PARAMETER RELATIONS

Ply angle dependent lamination parameters are now commonly adopted in design practice since

they allow extensional and bending stiffness to be expressed as a set of linear design variables

within convenient bounds. However, optimized lamination parameters must still be matched to a

corresponding laminate configuration within the feasible region, and this is aided by graphical

representations and laminate listings provided in an earlier article [25].

The general stiffness and lamination parameter relationship is discussed in chapter 1.2.5 and

2.2.1, given by Eqn. 2.10, while some simplification is introduced here. Namely, for standard ply

orientations (+/ -/ ◦/ •) = (45°/-45°/0°/90°), lamination parameter ξ12 = 0. Note also that for

balanced laminates, the extensional stiffness parameter n+ = n− = n±/2, thus Eqn. 2.10 reduce

to:

ξ1 =
n± cos(2θ+) + n◦ cos(2θ◦) + n• cos(2θ•)

n

ξ2 =
n± cos(4θ+) + n◦ cos(4θ◦) + n• cos(4θ•)

n
(3.1)

Lamination parameters are provided for all stacking sequence data in the this chapter and the

associated electronic annexe.
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3.2.2 EFFECT OF DESIGN HEURISTICS ON THE LAMINATION PARAMETER DESIGN

SPACE

Ply percentages are often used to account for design uncertainties relating to in-plane properties

[103] and can be readily applied to the associated in-plane lamination parameter design space [89].

However, the effect of these constraints on the bending stiffness properties has not previously

been investigated.

Ply percentages for standard (0°/±45°/90°) orientations are mapped onto the lamination

parameter design space of Fig. 3.1a, and are related directly to orthotropic lamination parameters,

ξ1 and ξ2. Typical aircraft components, such as a Spar, Skin and Stiffener, can be represented by

(0/±45/90) ply percentages (10/80/10), (44/44/12) and (60/30/10), which are in turn related

to the equivalent in-plane (ξ1, ξ2) lamination parameters (0, -0.6), (0.32, 0.12) and (0.5, 0.4),

respectively.

These typical aircraft components are plotted together with 112 unique points representing

symmetrically laminated designs, with up to 21 plies, possessing Bend-Twist coupling. All are

contained within the 10% design rule and correspond to a ply contiguity constraint of up to

3 adjacent plies with identical orientation. Restricting the design space to a maximum of 21

plies is justified by the fact that it represents a natural limit for symmetric designs with the

design heuristics applied here, i.e. with [453/-453/03/903/03/-453/453]T. Beyond this, repeating

sub-laminates lead to homogenisation of the stiffness properties and a reduction in the magnitude

of Bend-Twist coupling.

The corresponding lamination parameter point cloud for bending stiffness is illustrated in the

orthographic projections of Fig. 3.2, there is no discernible difference between this and the design

space representing the entire database [25]. Each point within this 3-dimensional design space

represents a coordinate from which the bending stiffness properties can be calculated directly,

and to which a stacking sequence from the laminate database can readily be matched. There are

3,404 solutions with duplicate bending stiffness properties, meaning that designs with identical

bending stiffness can and do possess different extensional stiffness properties. Of course, it is

well-known that designs sharing the same extensional stiffness, i.e. ply angle percentages, possess

different bending stiffness properties depending on the stacking sequence. The size of the dataset
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can also be dramatically reduced if other constraints are applied, for example in Fig. 3.3 the data

points in the ξ9−11 design space for just quasi-isotropic laminates are plotted, note that all these

laminate designs share a single point in the ξ1−2 design space, i.e. ξ1, ξ2 = 0, 0 in the lamination

parameter design space for extensional stiffness.

(a)

(b) (c)

Figure 3.3: Orthographic projections (a): plan, (b) front elevation and (c) side views of point
clouds for bending stiffness (ξ9, ξ10, ξ11), corresponding to Quasi-Isotropic laminates.

Such designs are often used for benchmarking due to the simplification of in-plane properties,

but the simplification should never be assumed to extend to bending stiffness properties. For the
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symmetric stacking sequences considered here, quasi-isotropic properties are found exclusively

within 8 and 16 plies laminates, for which there are 6 and 536 solutions. The stacking sequence

listings for 16 plies laminates can be found in Table A4 of the electronic annexe, together with

their lamination parameter coordinates. They are grouped by matching orthotropic bending

stiffness to reveal significant differences in Bend-Twist coupling magnitude, where each group

contains between 2 and 6 stacking sequences.

Of the 93,536 designs, only 25,922 possess unique orthotropic bending stiffness properties,

which corresponds to the number of points illustrated on the front elevation of the orthographic

projection of Fig. 3.2. The entire design space is contained on 5,731 discrete parallel planes. This

allows the effect of Bend-Twist coupling to be studied systematically, by comparing laminates

with matching orthotropic properties. The plan view of Fig. 3.2 reveals that the vast majority of

practical Bend-Twist coupled designs are contained within the design space defined by ξ11 ≤ 0.5,

which informs the study on buckling performance that follows.

3.3 BUCKLING PERFORMANCE OF FINITE LENGTH PLATES

The effect of Bend-Twist coupling on the buckling performance of finite length plates with simply

supported edges has previously been investigated for both compression [103] and/or shear

loading [107, 108] of hypothetical designs. However, the application of design heuristics to the

database of Bend-Twist coupled laminates [86, 25] now permits an assessment of the buckling

performance of practical design configurations. To assess the vast number of designs contained

in the laminate database, a closed form solution of compression buckling is necessary. Eqn. 1.18

gives:

Nx = π2[D11(
m
a
)2 + 2(D11 + 2D66)(

n2

b2 ) + D22(
n4

b4 )(
a
m
)2]

from knowledge of the bending stiffness, Dij, plate length, a, and width, b, and the buckling half-

wave parameter, m (= 1, 2, 3, ...), which produces the lowest critical force resultant Nx. However,

Eqn. 1.18 is only applicable to fully uncoupled laminates, in which D16 = D26 = 0, and the buckling

load for a general balanced and symmetric laminate, in which D16, D26 ̸= 0, can therefore be

significantly overestimated (unsafe). Furthermore, there is no equivalent closed form solution for

finite length plates under shear loading. New equations must therefore be developed to assess

the relative buckling performance of finite length Bend-Twist coupled laminates. The following
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sections therefore develops new equations applicable to both compression and shear buckling

assessment of finite length rectangular plates, with simply supported boundary conditions, to

complement the lower-bound solutions of the infinitely long plate [86]. The equations are then

used to develop contour maps of buckling factors, which are superimposed on the lamination

parameter design space to facilitate preliminary design. The contour mapping is readily applied

to any cross-section throughout the design space, with constant ξ11, to allow detailed interrogation

of the effects of increasing Bend-Twist coupling on buckling performance.

3.3.1 CONTOUR MAPPING FOR COMPRESSION BUCKLING

For orthotropic laminates, the following buckling equation, represented by a 2-dimensional, 4th

order polynomial, can be solved estimated using buckling loads obtained from the exact closed

form buckling solution at 15 equally spaced points across the lamination parameter design space,

as illustrated by the example cross section in Fig. 3.1c, when ξ11 = 0:

kx = c1 + c2ξ9 + c3ξ10 + c4ξ2
9 + c5ξ2

10 + c6ξ9ξ10 + c7ξ3
9 + c8ξ3

10 + c9ξ9ξ2
10

+ c10ξ2
9ξ10 + c11ξ4

9 + c12ξ4
10 + c13ξ9ξ3

10 + c14ξ2
9ξ2

10 + c15ξ3
9ξ10 (3.2)

where kx is defined by Eqn. 2.15:

kx =
Nxb2

π2DIso

This normalization ensures that buckling factor results are comparable across the design space,

since the relative change in buckling factor, kx, is the same as the relative change in the critical

force resultant, Nx. In this study, IM7/8552 carbon-fibre/epoxy material is used, with Young’s

moduli E1 = 161.0 GPa and E2 = 11.38 GPa, shear modulus G12 = 5.17 GPa and Poisson ratio ν12

= 0.38.

In contrast to the infinite plate results investigated previously [86], mode changes complicate

the contour maps for finite length plates. Hence Eq. 3.2 is no longer a continuous function across

the design space. The mode change boundaries must therefore first be determined, and separate

equations must be derived for each mode region. To help further understand the buckling mode

changes across the lamination parameter design space, classical Garland curves are first presented

across a range of aspect ratios (a/b) in Fig. 3.4 Garland curves show the relationship between
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buckling factor and the aspect ratios of laminates. These correspond to simply supported plates

subject to uniaxial compression. Here, the solid black lines represent the buckling load factor

of uncoupled laminate designs, whilst the broken black lines represent the buckling load factor

when ξ11 = 0.5 (corresponding to the limit for practical designs), comparison of the two sets of

lines illustrates the effect of introducing a Bend-Twist coupling. The individual curves of Fig. 3.4,

with circled labels 1 – 5, and 11 - 15 represent discrete coordinate points along the boundary

of the ξ9, ξ10 lamination parameter design space, while curves 6-10 represent points along the

middle line of the ξ9, ξ10 design space, as indicated by the corresponding label locations in Fig.

3.5. Points on the same curve also represent points with the same location on design spaces across

a range of aspect ratios (a/b) from 0.5 to 2.5, the coordinates of the points on the design spaces

are indicated by the coordinates under each curve. For example, the lowest curve, curve 1, in Fig.

3.4a represents the buckling factor of laminates with lamination parameters (ξ9, ξ10) = (-1, 1), in

which the a/b = 1.0 case is shown on Fig. 3.5a. The curves are split into 3 separate graphs in Fig.

3.4 to avoid confusion that might be caused by crowding overlapping curves. Fine dotted black

lines connect the cusps on the uncoupled (ξ11 = 0) and coupled (ξ11 = 0.5) curves demonstrate the

effect of coupling on the location of mode change in terms of aspect ratio. Only 3 coupled curves

with ξ11 = 0.5 are presented in Fig. 3.5a - 3.5c because the design space shrinks as the value of ξ11

increases, therefore no feasible data points are available for points located with ξ10 > 0 for ξ11 =

0.5.
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(a) (b) (c)

Figure 3.4: Compression buckling Garland curves for ξ11 = 0 (solid lines) and ξ11 = 0.5 (broken lines). The corresponding lamination
parameter coordinates (ξ0.5) are given alongside each curve.
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(a) (b) (c)

Figure 3.5: Compression buckling contours kx(= Nxb2/π2DIso) for ξ11 = 0.0, with: (a) a/b = 1.0 (including parabolic bounds after Ref. [54];
(b) a/b = 1.5 and; (c) a/b = 2.0.
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Figure 3.5 illustrates contour maps with different aspect ratios (a/b = 1, 1.5 and 2), where

distinct different styles of parallel-line in-fill patterns, represent different buckling mode regions

(indicated by the inset images above Fig 5 3.5). The value of the buckling load for the contours

is indicated by the numbers in the figure. Boundaries between these regions correspond to the

cusps in Fig. 3.4. In Fig. 3.5a, the ’mode change line’ (highlighted in one instance in Fig. 3.4

and also in Fig. 3.5 by a green line) separates two regions representing modes with one and

two longitudinal half-waves, i.e. wavelength parameters m = 1 (red lines) and m = 2 (blue lines).

This mode change is also apparent in Fig. 3.4a, between curves 2 and 3 at aspect ratio a/b =

1.0. Such boundary lines are readily determined whenever Eq. 1.18 is applicable, by fixing one

lamination parameter coordinate and solving for the other by simply equating Nx,m=1 and Nx,m=2.

The locations of the mode change at the boundaries in Fig. 3.4a correspond to (ξ9, ξ10) = (-0.567,

0.134) and (-0.691, 1), with buckling factor kx = 3.86 and 2.95, respectively. The same procedure

can be used to confirm the shape of the mode change line.

Figure 3.4a represents the buckling factor contour map for constant aspect ratio (a/b = 1.0)

plates with uncoupled orthotropic bending stiffness. Similarly, labels on the Garland curves of

Figs. 3.4b and 3.4c correspond to those on the contour maps of Figs. 3.5b and 3.5c for aspect

ratios, a/b = 1.5 and 2.0, respectively. Hence, for a fixed aspect ratio, the isolines of constant

buckling factor, kx, are seen to vary with respect to the lamination parameter coordinates, or

bending stiffness, as defined by Eqn. 2.15.

The centre of the contour map represents a fully isotropic laminate, with (ξ9, ξ10) = (0, 0), and

corresponds to curve 8 on Fig. 3.4b where kx = 4.0 for aspect ratio a/b = 1, 2, 3, · · · , ∞. The

cusps that arise from changes in buckling mode also occur at a/b =
√

2,
√

6, · · · as in metallic

plates [52]. However, for composite materials, the cusp locations are now strongly influenced

by orthotropic bending stiffness properties; and further still by the introduction of Bend-Twist

coupling.

For Bend-Twist coupled laminates, Eqn. 1.18 is no longer valid and therefore a different

approach must be adopted. Buckling factor (kx) results are established at 15 sample points

across the feasible region of the design space, corresponding to the grid point intersections of the

triangulation illustrated by the cross-section of Fig. 3.1c, from which the coefficients c1 – c15 in

Eqn. 2.15 can then be derived for each buckling mode.
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The finite element analysis software ABAQUS [100] was used to generate buckling factor

results, using the same relative grid point geometry for any cross-section throughout the lamina-

tion parameter design space with constant magnitude of Bend-Twist coupling, ξ11. Lamination

parameters ξ11 = 0 and ξ11 = 0.5 are compared in this chapter since these represent the bounds for

practical laminate designs. Note that -ξ11 and +ξ11 yield the same compression buckling factor, kx,

hence only +ξ11 are given. The process of developing the contour maps is now briefly described

with specific reference to Fig. 3.5c, representing plate aspect ratio a/b = 2.0; chosen because it

contains four buckling mode regions. Here, individual buckling contours maps, illustrated in Fig.

3.6, represent the four modes of interest, each generally requires the calculation of a large number

of eigenvalues at each grid point to ensure that the specific modes are found. The individual

contour maps therefore represent continuous functions and, in general, all the coefficients c1 – c15

in Eq. 3.2 are non-zero. Fig. 3.5c is therefore comprised of the shaded regions from each of the

individual contour maps, i.e., regions containing the lowest buckling factor contours from any of

the four modes. The coefficients used to generate each mode region (m = 1, 2, 3, and 4) in Fig

3.5c, are listed in Table 3.2. Note that the number of significant figures in the coefficients has been

reduced but is sufficient to maintain a buckling factor accurate to 2 decimal places.



C
o

m
p
r

e
s
s
i
o

n
a

n
d

s
h

e
a

r
b
u

c
k

l
i
n

g
p
e
r

f
o

r
m

a
n

c
e

o
f

f
i
n

i
t
e

l
e
n

g
t
h

p
l
a

t
e
s

w
i
t
h

b
e
n

d
i
n

g-
t
w

i
s
t
i
n

g
c

o
u

p
l
i
n

g
72

(a) m=1 (b) m=2 (c) m=3 (d) m=4

Figure 3.6: Compression buckling contours map construction for a/b = 2.0, involving superposition of contour maps for each buckling mode,
representing m = 1, 2, 3 and 4 in Eqn. 1.18. Shading illustrates the extent of each mode region, corresponding to minimum kx.
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Table 3.2: Buckling coefficients for Eqn. 2.15, for all discrete mode regions of Fig. 3.5c, with ξ11 =
0 and a/b = 2.0.

m 1 2 3 4

c1 6.2445 3.9946 4.6875 6.2395

c2 -4.1056 0.0002 1.9754 4.0991

c3 -0.4533 -1.0428 -0.8605 -0.4529

c4 -0.0010 -0.0007 -0.0015 -0.0040

c5 -0.0014 -0.0020 -0.0021 -0.0018

c6 0.0013 0.0000 -0.0002 -0.0007

c7 -0.0014 -0.0004 -0.0001 0.0003

c8 -0.0002 -0.0003 0.0000 0.000

c9 -0.0029 -0.004 0.0000 0.0004

c10 -0.0023 0.0004 0.0003 0.0001

c11 -0.0011 0.0000 -0.0002 -0.0006

c12 -0.0003 0.0001 0.0000 -0.0005

c13 0.0013 0.0003 0.0001 -0.0005

c14 0.0008 -0.0002 0.0000 0.0000

c15 0.0015 0.0004 0.0000 -0.0004

Individual points on the boundary lines between mode regions are found from Eqn. 2.15 by

generating two equations using the coefficients from adjacent mode regions, m and (m + 1) and

then equating for a fixed lamination parameter ξ10, to solve for the variable lamination parameter

ξ9. Points on the boundary lines were also verified by individually calculating kx,m, corresponding

to the mode numbers, m, of interest, at 5 sample points along edges of the feasible region, from

which two simpler polynomial equations of the following general form:

k1 = c1 + c2ξ9 + c3ξ2
9 + c4ξ3

9 + c5ξ4
9 (3.3)

Points can be generated and equated to reveal the location, ξ9, of coincident buckling modes,

kx,m = kx,(m+1). Equation 3.3 has also been used to generate the lines of each mode boundary in

Fig. 3.5c, using the coefficients listed in Table 3.3.
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Table 3.3: Coefficients for Eqn. 3.3, representing mode boundaries in Fig. 3.5c, with ξ11 = 0 and
a/b = 2.0.

Coefficient m1 = m2 m2 = m3 m3 = m4

c1 -3.8053 -3.8280 -10.0172

c2 -6.9129 -11.0256 -32.8008

c3 0.1197 -0.6705 -45.9682

c4 -0.1282 -1.2113 -34.0498

c5 0.0513 -0.8160 -9.4571

The accuracy of Eqn. 2.15, was the verified by seeding each mode region with 15 new sample

points and recalculating the coefficients. This is an alternative approach to establishing the mode

regions but requires multiple re-seeding steps to achieve convergence.

Generating buckling factor contours for finite length plates is therefore more involved than for

the equivalent infinitely long plate, which requires only a single continuous function [25]:

kx,∞ = 4.000 − 1.049ξ10 − 1.217ξ2
9 + 0.340ξ10ξ2

9 − 0.360ξ4
9 − 0.034ξ2

10ξ2
9 (3.4)

which was previously printed with an error [25].

Figure 3.4 reveals that the mode changes occur at lower aspect ratios for Bend-Twist coupled

laminates in comparison to their uncoupled counterparts. The buckling curves (dotted lines)

for Bend-Twist coupled laminates are also seen to descend with increasing aspect ratio and,

uniquely for curve 3 with lamination parameter coordinates (ξ9, ξ10, ξ11) = (-0.5, 0, 0.5), ascending

curves are also revealed. This is in stark contrast to the curves for uncoupled laminates (solid

lines), for which the lowest point between cusps is always coincident with the asymptotic value,

corresponding to the buckling load factor of the infinitely long plate.

Figure 3.5a contains a special comparison between triangular bounds for the standard ply

laminates considered in this study and parabolic bounds obtained from the literature [54],

corresponding to free form angles, where fibre angles are arbitrary. For non-standard or free

form fibre directions with arbitrary values, the design space changes from a 3-dimensional to a

4-dimensional relationship, which significantly complicates the mapping procedure. There is also
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a further reduction in the buckling factor when the fibre orientations are changed from standard

to non-standard angles, since ξ12 becomes non-zero. This can be demonstrated through a pseudo

quasi-homogeneous quasi-isotropic Bend-Twist coupled design: [45/0/90/45/90/-452/0]S for

which all lamination parameters are zero, except ξ11 = 0.4. For finite length plates, with aspect

ratios a/b = 1.0, 1.5 and 2.0, when the fibre directions are changed from standard ±45°plies

to non-standard ±30°(±60°) plies, the buckling factors are reduced by a further 5.2% (5.2%),

4.2% (12.1%) and 3.8% (6.0%). However, this is primarily because the lamination parameters

representing orthotropic stiffnesses become non-zero, i.e. (ξ9, ξ10) = (±0.25, 0.25). The coupling

stiffnesses remain at similar magnitudes: for ±30°, ξ11 = ξ12 = -0.34 and; for ±60°,°ξ11 = -ξ12 =

-0.34. This comparison does not therefore reveal the true influence of ξ12. However, if ξ12 is

introduced artificially, to give (ξ9, ξ10, ξ11, ξ12)= (0, 0, 0.4, ±0.4), the resulting buckling factor is

reduced by a further 0.6% (0.5%), -0.1% (1.1%) and -1.9% (3.5%) at aspect ratios a/b = 1.0, 1.5 and

2.0, respectively.

The choice of aspect ratios presented here was strongly influenced by the plethora of results

reported in the literature for isotropic plates which represent only a single point in the centre

of the lamination parameter design space. The square and rectangular plate, with a/b = 2, give

identical compression buckling results only when the design is representative of the (equivalent)

isotropic laminate, i.e., curve 8 of 3.4b, or indeed for square symmetric properties, i.e., curves

6–10 of Fig. 3.4b. The results are also identical to the lower-bound solution corresponding to

the infinitely long plate. For Bend-Twist coupled designs, there is a very large difference in the

degradation in buckling load between these two aspect-ratios, as shown by curve 13 of Fig. 3.4c.

The rectangular plate configuration with a/b = 1.5 is also commonly presented in this chapter.

However, this aspect ratio has special significance in composite materials testing because of

the requirement for compression strength after impact assessment in the ASTM standard [109],

with an anti-buckling requirement and for which the boundary conditions of the test are simple

supports. The ASTM guidelines recommend a stacking sequence of: [45/0/-45/90]rS, , but the

variable number of repeats, r = 1, 2, 3, · · · , can be seen to possess significantly varying magnitude

of Bend-Twist coupling, i.e., (ξ9, ξ10, ξ11) = (0.28, -0.38, 0.47), (0.16, -0.19, 0.21) and (0.12, -0.13,

0.14), respectively.

Finally, Fig. 3.7 represents the buckling factor contour map for constant aspect ratio (a/b = 1.0,
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1.5 and 2.0) plates with Bend-Twist coupled orthotropic bending stiffness where ξ11 = 0.5. The

buckling performances of Bend-Twist coupled laminates across different aspect ratios is illustrated

in Fig. 3.4. The Garland curves for the coupled plates are related to the curves with the same ξ9,

ξ10 design space cross section coordinates but uncoupled (ξ11 = 0) with dotted lines. Figure 3.7

also reveals that the Bend-Twist coupled laminates have reduced buckling performances compared

to uncoupled laminates with the same location in the design space.
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(a) (b) (c)

Figure 3.7: Compression buckling contours, kx(= Nxb2/π2DIso, for ξ11 = 0.5 with: (a) a/b = 1.0; (b) a/b = 1.5 and (c) a/b = 2.0.
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3.3.2 CONTOUR MAPPING FOR SHEAR BUCKLING

Equations for shear loaded plates are obtained using the same procedure adopted for compression

buckling. However, the finite element analysis software ABAQUS [100] must now be used for

uncoupled as well as coupled designs to generate buckling factors. The plate axis system, positive

shear load, positive fibre orientation with respect to the x-axis, and aspect ratio (a/b) are also

defined in the thumbnail sketch in Fig. 3.8.

Figure 3.8: Illustration of the plate axis system, positive shear load, positive fibre orientation
with respect to the x-axis, and aspect ratio (a/b).

For the uncoupled laminates, positive and negative shear give identical buckling load factors.

The shear buckling factors are obtained by substituting the calculated coefficients into Eqn. 1.18.

In this case, kxy is defined by:

Kxy =
Nxyb2

π2DIso
(3.5)
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(a) (b) (c)

Figure 3.9: Positive and Negative Shear buckling factor contours, kxy(= Nxyb2/π2DIso), for ξ11 = 0.0 with: (a) a/b = 1.0; (b) a/b = 1.5, and (c)
a/b = 2.0.
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(a) (b) (c)

Figure 3.10: Negative Shear buckling factor contours, kxy(= Nxyb2/π2DIso, for ξ11 = 0.5 with: (a) a/b = 1.0; (b) a/b = 1.5 and (c) a/b = 2.0.
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(a) (b) (c)

Figure 3.11: Positive Shear buckling factor contours, kxy(= Nxyb2/π2DIso, for ξ11 = 0.5 with: (a) a/b = 1.0; (b) a/b = 1.5 and (c) a/b = 2.0.
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The resulting contour maps are presented in Figs. 3.10a - 3.10c, showing isolines of constant

buckling load factor across the lamination parameter design space for aspect ratios a/b = 1.0,

1.5 and 2.0, respectively. Positive shear direction (Nxy) is defined together with positive fibre

angle direction in Fig. 3.8. For uncoupled rectangular plates, there is no difference in the shear

buckling results for positive shear or negative shear loading. However, for Bend-Twist coupled

rectangular plates with ξ11 = 0.5, Fig. 3.10 and Fig. 3.11 demonstrate marked differences due to

shear load reversal. This can be appreciated by the fact that shear loading and Bend-Twist coupling

(ξ11 ̸= 0) both give rise to skewed nodal lines in the buckling mode shapes [86]. Figure 3.10 and

3.11 represent the equivalent series of negative and positive shear buckling factor contour maps,

respectively. In both cases, minima and maxima are on the sloping boundary of the feasible

design space, which often coincide with dotted lines indicating a change in buckling mode. The

maximum negative shear buckling factors, kxy = 14.86 and 10.71, are both located at (ξ9, ξ10, ξ11)

= (0, -1, 0.5) for a/b = 1.0 and 1.5, whilst for a/b = 2.0, ks = 9.89 at (ξ9, ξ10, ξ11) = (-0.35, -0.31, 0.5).

By contrast, only the maximum positive shear buckling factor, kxy = 7.30, for coupled laminates

with a/b = 1.0, is located at (ξ9, ξ10, ξ11) = (0, -1, 0.5). For a/b = 1.5 and 2.0, (ξ9, ξ10, ξ11) = (0.41,

-0.92, 0.5) and (-0.13, -0.74, 0.5), with kxy = 5.30 and 4.84, respectively.

Shear buckling results from the literature [54] represent optimised lamination parameters

for hypothetical or non-standard designs. For aspect ratio a/b = 2.0 they correspond to (ξ9,

ξ10) = (-0.39, -0.7) for orthotropic designs and (ξ9, ξ10, ξ11, ξ12) = (-0.42, -0.64, -0.91, 0.77) for

Bend-Twist coupled designs, representing buckling factor results, kxy = 7.94 and 12.51, respectively.

By contrast, the maximum shear buckling factor for practical designs corresponds to kxy = 7.52, at

(ξ9, ξ10) = (-0.26, -0.49) on Fig. 3.9c, for which stacking sequence [45/-452/90/45/903/0]S, with

matching lamination parameter coordinates, is readily extracted from the laminate database. Sim-

ilarly, stacking sequence [452/902/-45/90/0/-45]S corresponds to the maximum shear buckling

factor, kxy = 9.89, at (ξ9, ξ10, ξ11) = (-0.35, -0.31, 0.5) on Fig. 3.10c. Practical designs clearly offer

more modest performance benefits than optimised solutions would suggest.

Note that the optimized lamination parameters for shear buckling [54], with a/b = 1 and

2, were virtually the same for both simply supported and clamped conditions. The degrading

influence of a Bend-Twist coupling on compression buckling load was also found to be similar for

both simply supported and clamped boundary conditions [25].
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3.3.3 SURFACE CONTOUR MAPPING FOR COMPRESSION AND SHEAR BUCKLING

Contour mapping is applied to external surfaces of the feasible domain of lamination parameters

for each of the aspect ratios a/b = 1.0, 1.5 and 2.0 as illustrated in Figs 3.12 - 3.14 for compression

buckling and Figs. 3.15 - 3.17 for (positive) shear buckling, respectively. The design space is a

tetrahedron shape identical to Fig. 3.1c, the surface contours start from the left surface, which is

the ξ10 − ξ11 plane with ξ11 = 1 on the left. These reveal the bounds on buckling performance for

all hypothetical designs, as well as local optima away from the edges of the design space.
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(a) (b) (c) (d)

Figure 3.12: Lamination parameter design space surface contours for Compression buckling factor, kx(= Nxb2/π2DIso), with a/b = 1,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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(a) (b) (c) (d)

Figure 3.13: Lamination parameter design space surface contours for Compression buckling factor, kx(= Nxb2/π2DIso), with a/b = 1.5,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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(a) (b) (c) (d)

Figure 3.14: Lamination parameter design space surface contours for Compression buckling factor, kx(= Nxb2/π2DIso), with a/b = 2,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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Figures 3.12 - 3.14 show all four surfaces of the design space, represented by a regular

tetrahedron, onto which compression buckling contours for aspect ratios a/b = 1.0, 1.5 and 2.0

are superimposed. The mode changes are denoted by dotted lines, which once again disrupt the

continuity of the isolines of constant buckling load factor, as was seen in cross-sections through the

design space. The effect of Bend-Twist coupling, arising from ξ11 ̸= 0, now introduces significant

curvature into the boundaries between different mode regions, as illustrated in Fig. 3.12a. The

local optimum at the centre of the front and rear sloping faces represents the hypothetical limit

of the pseudo quasi-homogeneous quasi-isotropic laminate, with ξ11 = ±0.5 and kx = 3.46. The

maximum buckling load factor, kx = 5.03, can be found along the bottom edge of the design space,

on Fig. 3.12a and 3.12c, but this corresponds to a fully uncoupled design. The local optimum

at the centre of the front and rear sloping faces shift position with changes in aspect ratio, and

corresponds to a mode change boundary in Figs. 3.12 and 3.14. The variation in the optimum

buckling factor for the three aspect ratios of Figs. 3.15 to 3.17 can be explained by observing the

behaviour of the highest Garland curve across Fig. 3.4 at the same aspect ratios.
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(a) (b) (c) (d)

Figure 3.15: Lamination parameter design space surface contours for Positive Shear buckling factor, kxy(= Nxyb2/π2DIso), with a/b = 1,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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(a) (b) (c) (d)

Figure 3.16: Lamination parameter design space surface contours for Positive Shear buckling factor, kxy(= Nxyb2/π2DIso), with a/b = 1.5,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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(a) (b) (c) (d)

Figure 3.17: Lamination parameter design space surface contours for Positive Shear buckling factor, kxy(= Nxyb2/π2DIso), with a/b = 2,
corresponding to: (a) Left (sloping) face; (b) Front (sloping) face; (c) Right (sloping) face and; Rear (sloping) face.
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Figures 3.15 - 3.17 illustrate the surface contours for shear buckling with a/b = 1.0, 1.5 and

2.0, respectively. Lines traced from the apex of the tetrahedron, across these surfaces, differ

significantly from those of the cross section of Figs. 3.9, at ξ11 = 0. Similarly, surface mode

changes can be compared to the cross sections of Figs. 3.10 and 3.11 for negative shear (front

surface) and positive shear (rear surface) at ξ11 = 0.5, respectively, and reveal the influence on

mode change with increasing magnitude of Bend-Twist coupling. The number and position of

these mode changes also vary significantly with aspect ratio. Indeed, no mode changes are

present in the surface contours for the infinitely long case [86], in which local optima were also

found in locations that are non-intuitive, i.e. the optimum shear buckling factor kxy,∞ = 9.06 at

(ξ9, ξ10, ξ11) = (-0.18, -0.64, -0.82), which exceeds kxy,∞ = 8.84 at (ξ9, ξ10, ξ11) = (0, -1, -1). For finite

length plates, the hypothetical optima for a/b = 1.0, 1.5, and 2.0 correspond to kxy = 17.69, 12.79

and 11.12, respectively, and all occur at (ξ9, ξ10, ξ11) = (0, -1, -1).

Collectively, the cross-section and surface contour maps demonstrate the added complexity

associated with laminate selection from a design space in which buckling factor is a non-

continuous function (i.e. the buckling mode changes across the design space). They also

demonstrate that the isolines of constant buckling factor become increasingly curved as the

aspect ratio tends towards an infinitely long plate, and/or the magnitude of ξ11 (i.e. the Bend-

Twist coupling) increases. However, for practical designs, the limits of ξ11 are more realistically

represented through cross sections at ξ11 = 0 and ξ11 = 0.5, which reveal optima that are non-

intuitive.

These design charts can also be used in conjunction with the data in Table A4 of the electronic

annexe, containing 16-ply quasi-isotropic symmetric stacking sequence listings with associated

lamination parameter coordinates, grouped to aid design selection for minimising the degrading

influence of Bend-Twist coupling.

3.4 CONCLUSION

■ Insights have been given for maximising compression and shear buckling load for simply

supported finite length plates with 0°, 90°and ±45°ply orientations, through the superpos-

ition of contour maps onto the lamination parameter design space for practical laminate

designs with Bend-Twist coupling. The non-intuitive location of local as well as global
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optima are revealed by inspection.

■ Contour maps representing cross sections through the design space demonstrate the added

complexity associated with laminate selection when buckling factor is a non-continuous

function. This is due to mode changes that are dependent both on bending stiffness

properties (or lamination parameter coordinate) as well as plate aspect ratio.

■ The contour maps represent practical limits on buckling performance by accounting for

common laminate design rules, including symmetry, standard ply angles, minimum ply

percentages and maximum ply contiguity rules.

■ Contour maps representing the outer surfaces of the design space demonstrate the limits on

both compression and shear buckling performance as a result of the presence of Bend-Twist

coupling, noting that significant improvements in shear buckling load, are largely beyond

those achievable in design practice.

The raw and processed data required to reproduce these findings are available to download at

doi: 10.17632/rys232ynhf.2



CHAPTER 4

DOUBLE ANGLE-PLY (DD) LAMINATES

4.1 INTRODUCTION AND MOTIVATION TO DOUBLE ANGLE-PLY LAMIN-

ATES AND OFF-AXIS ALIGNMENT

Previous chapters explored the buckling performance of uncoupled and Bend-Twist coupled

laminates with standard fibre configurations. The aim of the work in this chapter is to apply

knowledge from Chapters 1 to 3 to explore the first ply failure (FPF) performance of composite

laminates with double-angle, as opposed to standard angle-ply configurations.

Small plates are likely to fail by material failure, i.e. first ply failure, as their small size makes

buckling unlikely. As size increases, buckling becomes more likely; plates with large aspect

ratios are likely to fail by buckling. Consequently, there is a certain plate size where the FPF and

buckling loads are identical. For such laminates, neither buckling nor material failure occurs until

the structure fails by both mechanisms simultaneously. This leads to the other goal of this chapter,

to design laminates that possess equal buckling and first ply failure (FPF) strengths using the

lamination parameter optimisation approach introduced in previous chapters.

The first part of this chapter involves applying the same lamination parameter design space

contour mapping technique used in the previous chapter, but this time to double angle-ply or

‘Double-double’ (DD) laminates. The latter contains 2 distinct pairs of plies with fibre orientations

(±ψ, ±ϕ), that are repeated numerous times through the laminate, instead of the more usual

(0°, 90°and ±45°) layup configuration. The DD configuration offers an extended design space in

which to identify a laminate with the same weight but higher buckling and/or FPF strength, or

alternatively, a laminate with the same buckling and/or FPF strength, but of lower weight. A

stiffness matching technique is then used to design DD laminates and ‘feasible’ design regions

93
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(i.e. those subject to the applied design constraints) of the DD laminate designs are plotted.

Off-axis rotations are applied to laminates and the FPF performance is compared to laminates

with standard fibre orientations. Polar plots of the FPF performance of the laminates subject to

off-axis alignments are presented, to compare the various laminate designs. The final objective

involves predicting the optimum size of the laminate plates, in which the aspect ratios are typical

of the width between stiffeners in a stiffened panel wing skin.

Aero-elastic tailoring of composite wings is expected to lead to a valuable drag reduction

mechanism in conventional swept back wings [110], by reducing any fluctuation away from the

optimized static cruise configuration, i.e., reducing the magnitude of wing-twist as it bends. Drag

reduction can be achieved by introducing passive Bend-Twist coupling behaviour (a so-called

passive-adaptive wing), to maintain a constant angle of attack across the wing, irrespective of the

magnitude of the bending deflection [14]. This has been demonstrated for a number of competing

laminate tailoring techniques. To create a Bend-Twist coupled behaviour Extension-Shear coupled

properties are usually required and achieved by including off-axis fibre orientations in the layup.

Off-axis alignment (β) refers to an angle away from the x-y axes, where the latter are defined by

the direction of loading, as illustrated in Fig. 4.1. The focus of the previous chapters has, thus far,

been restricted to buckling behaviour. The effect of such tailoring on laminate first ply failure

performance is now also considered to examine the feasibility of this tailoring method. This is

assessed by combining buckling predictions with material strength constraints.

Figure 4.1: Illustration of the off-axis alignment on the x-y axis.

Studies on buckling optimisation of composite laminates subject to material strength con-

straints are summarised elsewhere [39]. Their purpose is to reduce the feasible design region

and obtain stacking sequences for specific design applications. Material strength constraints are

applied either through a maximum limit on laminate strain or via individual ply stresses [111].
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This includes methods for determining optimal stacking sequences to maximise buckling load

[112]. This includes methods for determining optimal stacking sequences to maximise buckling

load [28].

Very few studies have previously been conducted on the assessment of buckling, subject to

material strength constraints, for off-axis aligned laminates possessing Extension-Shear coupling

behaviour [113]. The objective of this study is therefore to explore the available design space for a

number of design solutions, including both DD and standard laminates. Off-axis orientation (with

respect to the loading direction) is applied to both types of laminate to introduce Extension-Shear

coupling, and also to standard designs that already possess an Extension-Shear coupling without

the requirement for off-axis alignment. Laminate designs are matched for buckling load, with off-

axis alignments that give maximum Extension-Shear coupling, and material strength assessment is

then made.

The introduction of passive Bend-Twist coupling at the wing-box level has been demonstrated

[110] Shear coupling at the laminate level, i.e., in the wing skins. However, there is a limited

design space for standard ply laminates with Extension-Shearing coupling [104] (with 0°, ±45°and

90°ply orientations). By contrast, a substantial design space exists for laminates that possess

both Extension-Shearing and Bending-Twisting coupling [102], yet care must be exercised since the

presence of Bend-Twist coupling leads to a significant reduction in buckling load [25].

DD laminates have been shown to offer potential improvements in material strength [88],

together with ease of manufacturability [89], when compared to standard ply laminates. However,

little consideration has been given to bending stiffness.

The normal practice of choosing the extensional stiffness first, typically by applying certain ply

percentages, offers the possibility of shuffling the stacking sequence, within the constraints of the

symmetric design rule for standard laminates, to optimise the buckling performance. However,

this usually leads to the introduction of a Bend-Twist coupling behaviour which, more often than

not, leads to a penalty in the buckling load. The methodology adopted here instead imposes a

desired buckling load to match a required laminate strength target.



Double angle-ply (DD) laminates 96

4.2 METHODOLOGY

This chapter follows on from a recent study focusing on bending stiffness matching [97], and the

development of a new database of DD laminate configurations containing specific mechanical

coupling characteristics. The stiffness matching approach is used to develop laminate designs

with bending isotropy, i.e. where the bending stiffness lamination parameters (ξ9−12) are zero, to

which off-axis loading orientations can then be applied to introduce Extension-Shear coupling for

first ply failure assessment. This is to ensure that the buckling performance is not affected by the

introduction of off-axis alignment.

The development of a passive adaptive Bend-Twist coupled wing requires Extension-Shear

coupled laminate skins [14], these can be achieved in several ways. The following types of

laminates are used for the design process:

1. off-axis fibre alignment (β) of otherwise balanced and symmetric laminates with standard

ply orientations (0°, ±45°and 90°)

2. Off-axis orientation of double angle-ply (DD) (±ϕ◦ and ±ψ◦) laminates, with otherwise

Uncoupled properties

3. Extension-Shear coupled (only) laminates with standard ply orientations

A non-symmetric isotropic laminate configuration with standard ply orientations is also used

as a datum to compare against the coupled designs, as this laminate is fully isotropic, i.e. ξ1−12 =

0 and has a classic compressive buckling factor of 4.0.

[45/90/0/-45/0/-45/90/-45/45/0/45/90/45/90/-45/90/0/45/0/-45/0/-45/45/90]T (4.1)

where the subscript T represents a complete laminate stacking sequence, as mentioned in Chapter

1.

The designs are fixed to 24-plies, which represents the minimum ply number grouping for

π/4 bending isotropy [114, 96].
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The balanced and symmetric design has the stacking sequence:

[-45/45/03/45/0/-45/0/90/0/90]S (4.2)

This stacking sequence is selected from the 24-ply laminate database, since it produces the

highest Extension-Shear coupling, measured as A16/A11 = 21.9% at off-axis orientation of β=

37.3°. Note that the application of off-axis alignment also introduces the non-zero lamination

parameters, ξ3 and ξ4, giving (ξ1, ξ2, ξ3, ξ4) = (0.09, -0.29, 0.32, 0.17). Without off-axis alignment,

the lamination parameters (ξ1, ξ2) = (0.33, 0.33). The lamination parameter and extensional

stiffnesses, Aij, are related through Eqn. 2.7 from Chapter 1.

For the DD designs, a new design methodology is adopted [97]. A technique to match the

bending stiffness between standard ply laminates (with 0°, ±45°and 90°fibre directions) and

DD laminates (with ±ϕ◦ and ±ψ◦ fibre directions) is used. The conventional fibre directions,

0°, 90°and ±45°are replaced with ±ϕγ and ±ψ1−γ pairs, where γ represents the proportion

of ±ϕ, and (1 − γ) represents the proportion of ±ψ. For extension stiffness matching, these

proportions correspond to the ±ϕ and ±ψ ply percentages. For bending stiffness matching, the

proportions correspond to the relative contribution to bending stiffness of ±ϕ and ±ψ plies in

the laminate. The formulation of stiffness matching was explained in section 1.2.9, only a short

recap is provideed here. The relative contribution to bending stiffness of the ±ϕ ply sub-laminate

in terms of lamination parameters is given by:

ζ±ϕ = (ξ9 − β)(α − β) (4.3)

α = cos 2ϕ β = cos 2ψ (4.4)

where α and β can be expressed in the form of a quadratic equation:

β = −ξ10 + 1 − 2α2

4(α − ξ9)
+

√
(

ξ10 + 1 − 2α2

4(α − ξ9)
)3 − 2α2ξ9 − α − ξ10α

2(α − ξ9)
(4.5)

which leads to a solution for angle ϕ from Eqn. 4.4 (solved iteratively), then Eqns. 4.3 and 4.5 are

matched for the desired lamination parameters (ξ9, ξ10). Finally, a solution for angle ψ is obtained

directly from Eqn. 4.4, once the iterative process has converged.
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Stacking sequences, lamination parameters and angles ϕ and ψ from a previous study [97] are

listed in Table 4.1. The angles were derived from Eqns. 4.3 – 4.5 for (ξ9, ξ10 = (0, 0).

Table 4.1: Stacking sequences for fully uncoupled double angle-ply laminates with 24 layers. The
listed angles (ϕ, ψ) produce bending isotropy.

Design Stacking Sequence ψ◦, ϕ◦ ξ1, ξ2

a
[ψ/-ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-ϕ/-

ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ψ/-ψ]T

63.78, 17.44 -0.13, -0.06

b
[ψ/-ψ/-ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/-

ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ψ/-ψ]T

65.08, 19.58 -0.17, -0.04

c
[ψ/-ψ/-ϕ/ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/-

ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/ψ/-ψ]T

68.08, 23.04 -0.25, 0.01

d
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ]T

74.28, 27.06 -0.37, 0.20

e
[ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/ψ/-

ψ/-ϕ/ϕ/ϕ/-ϕ/ψ/-ψ]T

70.46, 24.95 0.17, -0.05

f
[ψ/-ψ/ϕ/-ϕ/ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/-

ϕ/ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

78.64, 28.59 0.05, -0.04

The Extension-Shearing coupled laminate with standard ply orientations:

[-45/0/45/90/90/0/45/45/-45/45/90/45/45/90/45/-45/45/90/45/0/45/0/90/-45]T (4.6)

was derived using an algorithm developed previously [104]. The design has a maximum A16/A11

of 16.7%, without off-axis alignment, β, and shares the same compression buckling load, Nx,

as the isotropic plate, as can be readily confirmed from the closed form solution of Eqn. 1.18

in Chapter 1, given that the design is fully uncoupled in bending, i.e., D16 = D26 = 0. For

convenience, the equation is provided here again:

Nx = π2[D11(
m
a
)2 + 2(D11 + 2D66)(

n2

b2 ) + D22(
n4

b4 )(
a
m
)2]

where a and b are the length and width of the laminate, m is the number of half-waves of the
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buckling mode along the plate length and Dij are the elements of the bending stiffness matrix

[D]. The lamination parameter is generally given by Eqn. 2.7 in Chapter 1, ), though for double

angle-plies, the equation is adjusted slightly to:

ξ1 =
nϕ cos 2θϕ + nψ cos 2θψ

n
ξ2 =

nϕ cos 4θϕ + nψ cos 4θψ

n

ξ3 =
nϕ sin 2θϕ + nψ sin 2θψ

n
ξ4 =

nϕ sin 4θϕ + nψ sin 4θψ

n
(4.7)

ξ9 =
ζϕ cos 2θϕ + ζψ cos 2θψ

ζ
ξ10 =

ζϕ cos 4θϕ + ζψ cos 4θψ

ζ

ξ11 =
ζϕ sin 2θϕ + ζψ sin 2θψ

ζ
ξ12 =

ζϕ sin 4θϕ + ζψ sin 4θψ

ζ

where ζ = n3.

The Tsai-Wu failure criteria 1.27 is used for the strength assessment and is defined by:

F1σ1 + 2F2σ2 + F11σ2
1 + F22σ2

2 + F66τ2
12 −

√
F11F22σ1σ2 = 1 (4.8)

where

F1 =
1

σT
1
+

1
σC

1
F2 =

1
σT

2

1
σC

2
(4.9)

F11 = − 1
σT

1 σC
1

F22 = − 1
σT

2 σC
2

F66 = (
1

τF
12
)2

Individual terms correspond to the strength data listed in Table 4.2 for the T300/5208 graph-

ite/epoxy material adopted in this study.

Table 4.2: Engineering properties of T300/5208 graphite/epoxy.

E1 (GPa) 181.0 σT
1 1500

E2 (GPa) 10.3 σC
1 -1500

G12 (GPa) 7,17 σT
2 40

ν12 0.28 σC
2 -246

τ12 68

where σ1T, σ1C, σ2T and σ2C represent the allowable le tensile and compression stress values in

the principal coordinate system, and τ12F represents the allowable in-plane shear stress value.
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The stiffness matching approach is now extended to simultaneously match both first ply

failure and buckling load constraints, for a chosen DD laminate with maximised Extension-Shear

coupling.

The results presented are based on compression buckling load, Nx, of a rectangular, simply

supported plate with fixed aspect ratios, a/b, which for the uncoupled designs adopted here,

allows the use of the closed form buckling solution given by Eqn. 1.18. The procedure involves

simultaneously matching the load for both buckling and first ply failure, from which the physical

plate dimensions a and b can be determined.

4.3 DESIGN SPACES OF DOUBLE ANGLE-PLY LAMINATE DESIGNS

Only six laminate designs for fully uncoupled DD laminates with 24 layers produce bending

isotropy, these are listed in Table 4.1. These six DD laminate designs share two unique sets of

extension stiffness properties, hence there are only two points on the lamination parameter design

spaces for extensional stiffness. Designs a, b, c and d share one of the unique points and e and f

share the other.

The DD laminate designs (listed in Table 4.1) are far from the in-plane lamination parameters

(ξ1, ξ2) for typical aircraft components. For example, a Spar (0, -0.6), a Skin (0.32, 0.12) and a

Stiffener (0.5, 0.4), which correspond to the following ply percentages for 0°, ±45°and 90°ply

orientations: Spar (10/80/10), Skin (44/44/12) and Stiffener (60/30/10). However, if the angles

are switched, where the outer plies of the laminates become ϕ rather than ψ the design space

becomes a mirror image of the design space that was generated before switching the angles, and

the new solutions are found to be in close proximity to a typical Skin component, for which

buckling load and FPF strength constraints coincide at some point along a wing structure.

The results are therefore reported with the ϕ and ψ in the DD laminate design stacking

sequence switched. However, for bending isotropy to be maintained in the designs reported in

Table 4.1, the values of ϕ and ψ must be modified as follows:

ϕswithced = 90◦ − ψ (4.10)

ψswitched = 90◦ − ϕ



Double angle-ply (DD) laminates 101

Figure 4.2a and 4.2b represent the lamination parameter design spaces, for extensional (4.2a) and

bending stiffness (4.2b), for DD laminate design case d. The latter was chosen for illustration in

Fig. 4.5 as it was found to have the lowest first ply failure (FPF) load (i.e. 605.3 N/mm) among all

the standard and DD laminate designs, in which the FPF load is used as the input load for all the

laminate design analyses. Referring to Fig. 4.5, the fine grey lines indicate isolines along which

the percentage of ψ and ϕ ply orientations in the laminate layup are constant (the percentage

values are given in Fig. 4.2a in green font colour for the psi ply angle and brown font colour for

the phi ply angle). The red bold lines indicate values of the laminate parameters that predict

constant buckling factors for a square plate (i.e. kx = 4.0, the classical value for a square plate

manufactured from an isotropic material such as aluminium or a QI laminate) superimposed

on the design spaces, varying from 0°at the top right to 90°at the top left and ±45°at the bottom

of the design space, as shown in Fig. 4.2a that are in grey font colour. The dashed guidance

line is used to read off the values of the ψ and ϕ ply angles for the DD design indicated by the

blue point (laminate design d) by using its intersection values with the bold purple line. In the

example shown in Fig. 4.2a, the values of ψ and ϕ are 74.28 and 27.06, as listed in Table 4.1. Note

that for any given point in the graphs, the dashed guidance line must be recalculated using the

method outlined in Section 4.2.

The overall compression for aspect ratio (a/b) = 1 and 1.5 are superimposed onto the bending

stiffness design spaces of laminate design d on Fig. 4.2c and 4.2d, respectively.



Double angle-ply (DD) laminates 102

(a) (b)

(c) (d)

Figure 4.2: Lamination parameter design spaces for laminate d from Table 4.1 corresponding to
(a) extension stiffness and; (b) bending stiffness, with the lines of constant compression buckling
factor kx = 4.0. Compression buckling contour maps for aspect ratio (c) a/b = 1.0 and; (d) a/b =
1.5.
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(a) (b)

Figure 4.3: Feasible design space for (a) extension stiffness and; (b) bending stiffness, for the
angles switched DD laminate d with bold lines that pass through the blud points representing
constant compression buckling factor, kx = 4.0.

Figure 4.3 represents the extension and bending stiffness design spaces with a superimposed

compression buckling line of kx = 4.0 for the angles switched DD laminate design d. Figure 4.2a,

4.2b and Figure 4.3 illustrate that it is possible to design double angle-ply laminates with the

classical buckling factor of 4.0.

The compressive load (Nx), given by Eqn. 1.18, corresponding to the minimum first ply failure

after off-axis orientation, is used to normalise all the polar plots that follow.

The first ply failure strength across the lamination parameter design spaces for extensional

stiffness DD laminate design d is presented as a bubble plot in Figure 4.4a, which will be used later

on to show the potential improvements for other designs. The size of the bubble is proportional

to the FPF strength value, which is normalised against the FPF load of ϕ and ψ = 0° degree (5027

N/mm), i.e. a unidirectional laminate. This means that the stronger the design is in terms of FPF,

the larger the bubble is. The full-size bubble (= 1.0) of the 0° laminate (i.e. with ξ1, ξ2 = (1, 1) in

the top right corner of Figure is shown for comparison. Figure 4.4b represents a conversion of the

bubble to a 3-D plot for an alternative method of illustrating the data, where the lines in the z

direction represent the FPF strength of the point with the length proportional to the magnitude.

Maximum first ply failure strength using Tsai-Wu failure criterion occurs at (ψ, ϕ) = (±6°, ±6°),
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approximately 3.5% higher than 0°. Figure 4.4c shows a plot of the FPF strength for various

failure criteria (Tsai-Wu, Tsai-Hill, Maximum Stress, Maximum Strain Puck and Puppo-Evensen)

with (ψ, ϕ) ranged from 0° to 12° to investigate the the prediction of Tsai-Wu model that the ply

orientation with highest FPF strength does not occur at 0°but elsewhere. Only the Tsai-Wu failure

criterion shows an increase in strength from 2°to 8°while all the other criteria have a decreasing

trend, showing that the Tsai-Wu failure criterion gives a different prediction to the other criteria.

This is important since the observation suggests that uni-directional laminate is not the strongest

in terms of FPF strength according to Tsai-Wu failure criterion, where 0°laminates is usually

expected to be the strongest under compressive loading. Since different failure criteria predict

failure differently, experimental tests are needed to verify which failure criterion gives the best

prediction for the laminate designs.
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(a) (b)

(c)

Figure 4.4: Illustration of: (a) a bubble plot with comparison of a full size bubble at (ξ1, ξ2) = (1,
1); (b) a 3-D conversion of the bubble plot for laminate d and (c) comparisons between 6 failure
criteria with ψ, and ϕ ranging from 0°to 12°.

Figure 4.5a and 4.5b represent bubble plots of the first ply failure strength of DD laminates

a to d, in 10°increments across the design space for both normal and switched angles, while

Fig. 4.5c and 4.5d represent the bubble plots for laminate e and f . The black bold lines in the

design spaces representing kx = 4.0 is superimposed on Figs. 4.5a to 4.5d. Figures 4.5e and 4.5f

show bubble plots of standard ply angles with the 10% rule applied and onto which the 6 DD

laminate designs are superimposed for comparisons. The Tsai-Wu failure criterion is used to

assess uniaxial compression strength, which is proportional to bubble area and is normalized

with respect to the 0° ply laminate,which has the highest failure strength of 1. Only the results
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for DD laminates a to d are given in Figs. 4.5a and 4.5b. The location of typical aircraft wing

skin designs is also plotted on the lamination design space of Figs. 4.5b, 4.5c, 4.5e and 4.5f for

comparison with the DD laminates. The colour of the bubbles corresponds to the colours of the

DD Designs a, b, c, d, e and f .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Strength comparisons for fully uncoupled Standard laminates (satisfying 10% rule)
and DD laminates for stacking sequences a to d with angles: (a) as listed in Table 4.1; (b)
switched; stacking sequences e and f with angles: (c) as listed in Table 4.1; (d) switched. Standard
laminates are superimposed on designs a to f with angles: (e) listed in Table 4.1 and; (f) switched.
Strength values are indicated by bubble area, normalized against maximum (100%) strength for
0°ply laminate shown at (ξ1, ξ2) = (1, 1).
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Figure 4.5a and 4.5b) illustrate the potential to optimize laminates for FPF strength without

degrading the buckling load, by choosing designs along the buckling line indicated in bold in Fig.

4.3. This implies that the strength of composite laminates can be improved without a reduction in

buckling load. The equivalent line of constant buckling factor, kx = 4.0, is plotted in Figs. 4.5a and

4.5b, revealing that the line on Fig. 4.5b is very close to the typical location of aircraft wing skin

configuration. From Fig. 4.6e, it can be seen that the designs e and f , with (ξ1, ξ2) = (0.17, -0.05)

and (0.05, -0.04) respectively, have higher failure strength than designs a to d, but with angles

switched using Eqn. 4.10 in Fig. 4.6f, design d has the highest strength compared to the other

designs.

Strength values are indicated by bubble area, normalized against maximum (100%) strength

for a 0°ply laminate shown at (ξ1, ξ2) = (1, 1). This was chosen to reflect the test procedure for

determining laminate strength data. Laminate d has a normalised strength of 6.2%, in Figure 4.5a,

and with angles switched has a normalised strength of 10.3%, in Figure 4.5b.

Only 2 extensional stiffness design spaces are presented here for the 6 laminates, as laminates

with the same ply percentages share the same extensional stiffness design space, i.e. a to d and e

and f . In contrast, the bending stiffness design space is different for each design, which is shown

in Figs. 4.6 and 4.7, the former for normal angle and the latter for angle-switched designs.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The bending stiffness design space for the laminates with normal angle
configurations (a): a; (b): b; (c): c; (d): d; (e): e and (f): f .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: The bending stiffness design space for the laminate with angle switched
configurations (a): a; (b): b; (c): c; (d): d; (e): e and (f): f .
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4.4 OFF-AXIS ALIGNMENT

Off-axis alignments from 0°to 360°are introduced to the laminate designs listed above, and the

resulting first ply failure performance, predicted using the Tsai-Wu failure criterion, is presented

using polar plots. Fig. 4.8 represents polar plots of first ply failure with applied off-axis orientation,

including the 6 DD laminates, balanced and symmetric, isotropic and Extension-Shear coupled

only laminates. All the designs are normalized against DD laminate d which has the lowest first

ply failure load. The point on each figure, denoted by the value of β, gives the maximum value of

A16/A11.
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(a) Max A16/A11 = 8.3% at β = 32.5◦ (b) Max A16/A11 = 8.3% at β = 32.5◦

(c) Max A16/A11 = −10.4% at β = 33.8◦ (d) Max A16/A11 = −14.4% at β = 38.3◦

(e) Max A16/A11 = −22.1% at β = 46.1◦ (f) Max A16/A11 = 10.3% at β = 56.2◦
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(g) Max A16/A11 = 3.6% at β = 59.1◦ (h) Laminates a to f out envelopes

(i) A16/A11 = 16.3% at β = 0◦ and Max
A16/A11 = 18.0% at β = 170.1◦

(j) Laminate d and E-S coupled outer
envelopes

(k)

Figure 4.8: Strength comparisons for off-axis orientation β between a full envelope of 24 plies: (a)
Isotropic laminate; DD laminate design: (b) a; (c) b; (d) c; (e) d; (f) e and (g) f ; (h) superimposed
laminates a to f ; (i) Balanced and symmetric; (j) Extension-Shearing coupled (only) design and;
(k) Superimposed laminate d and Extension-Shearing coupled design, all subject to equal
compressive force resultant (Nx).
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Laminate d has the highest maximum A16/A11 among all the DD designs. The angles switched

laminates gives the same maximum A16/A11 as their non-switched angles counter laminates.

Normalised against the first ply failure load for laminate d (100% at β = ±7.1°), the balanced and

symmetric design is at 37.5% of its material strength constraint and the Extension-Shear coupled

only laminate is at 79.3% (at β = 0°). However, at off-axis alignment, corresponding to maximum

A16/A11, laminate d and the balanced and symmetric designs are at 68.9% (at β = 46.1°) and

73.1% (at β = 37.3°) of their material strength constraint, respectively. This shows that the FPF of

the laminate designs can be improved by implementing off-axis alignments.

Figure 4.9 shows the design spaces of the 6 DD laminates. The initial graphs in this figure are

plotted with the off-axis alignment of each laminate orientated to give the max value of A16/A11

applied (as indicated in the top row of the Figure) the subsequent graphs in Fig. 4.9 are without

off-axis alignment. Figure 4.10 presents the similar design spaces for the angle switched version.

ϕ and ψ are swept from 0° to 90° to investigate the effect of off-axis alignment on both the design

space and the material strength. The design space shrinks as β increases from 0° to 45° and

expands from 45° to 90°.
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(a) Laminate a - d without off-axis alignment β

(b) Laminate a (Max
A16/A11 = 8.3% at β = 32.5◦)

(c) Laminate b (Max
A16/A11 = 10.4% at β = 33.8◦)

(d) Laminate c (Max
A16/A11 = 14.4% at β = 38.3◦)

(e) Laminate d (Max
A16/A11 = 22.1% at β = 46.1◦)
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(f) Laminate e - f without off-axis alignment β

(g) Laminate e (Max A16/A11 = 10.3% at β = 56.2◦) (h) Laminate f (Max A16/A11 = 3.6% at β = 59.1◦)

Figure 4.9: Illustration of the extensional stiffness design spaces of the 6 DD laminate designs with and without off-axis alignment, and
bubbles indicating the normalized FPF strength
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(a) Laminate a - d without off-axis alignment β

(b) Laminate a (Max
A16/A11 = 8.3% at β = 32.5◦)

(c) Laminate b (Max
A16/A11 = 10.4% at β = 33.8◦)

(d) Laminate c (Max
A16/A11 = 14.4% at β = 38.3◦)

(e) Laminate d (Max
A16/A11 = 22.1% at β = 46.1◦)
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(f) Laminate e - f without off-axis alignment β

(g) Laminate e (Max A16/A11 = 10.3% at β = 56.2◦) (h) Laminate f (Max A16/A11 = 3.6% at β = 59.1◦)

Figure 4.10: Illustration of the extension stiffness design spaces of the 6 angle switched DD laminate designs with and without off-axis
alignment, and bubbles indicating the normalized FPF strength
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Figure 4.11 shows a series of polar plots showing the normalised first ply failure load, using

the FPF load of a 24-ply unidirectional laminate containing all 0°laminate with FPF strength of

5027N. In mathematical representation, is given as Nx/NX0 .
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(a) (b)

(c) (d)

(e)

Figure 4.11: Strength comparisons for off-axis orientation β between a full envelope of 24 ply: (a)
Isotropic laminate; (b) DD laminate design d; (c) Balanced and symmetric; (d) E-S coupled (only)
design and; (e) Superimposed laminate d and E-S coupled design, normalised to equal
compressive force resultant (Nx) of 5027N.
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The FPF load (Nx) of a 0°laminate (5027N) is applied to all the designs as the input compressive

load, and off-axis alignment is then introduced to calculate the Tsai-Wu FPF strength using Eqn.

1.27. As the FPF load for 0°off-axis alignment is the highest, all the Tsai-Wu values of the designs

with off-axis alignment must be larger than 1.0. Therefore, the reciprocal values are used to

generate the polar plots, meaning that 1.0 is the highest strength.

Normalising against the first ply failure load for a 0° ply laminate, the Isotropic laminate has

8.5% of the FPF strength and the E-S coupled only laminate has 5.5% (at β = 0°). For off-axis

alignment, corresponding to maximum A16/A11, laminate d and the balanced and symmetric

designs are at 6.2% (at β = 46.1°) and 5.8% (at β = 37.3°) of the first ply failure strength, respectively.

However, off-axis alignment introduces extra terms in both extensional and bending stiffness

lamination parameters i.e. ξ3,4 and ξ11,12, changing the design space from 2-D to 4-D. The

relationship between the lamination parameters and off-axis alignment for the DD designs is

presented in Fig. 4.12. Note that for ξ1−4 and ξ9−12 with the same relationship against β (laminate

a, b, c and d), the laminate is considered as Quasi Homogenous, where Dij = AijH2/12.

(a)

(b)

(c)
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(d)

(e)

(f)

Figure 4.12: The relationship between the extensional ξ1−4 and bending stiffness lamination
parameters ξ9−12 and β for DD laminate designs: (a) a; (b) b; (c) c; (d) d; (e) e and (f) f .

Figure 4.12 demonstrated that the values of ξ1−4 can increase up to almost ±0.4, while the

values of ξ9−12 ranged between ±0.0006. However, the the relationship between the lamination

parameters and off-axis alignment and the influence are generally not understood, more thorough

explanation is required. Therefore, Chapter 5 will focus on the influence of the coupling terms

and 4-D design spaces.

Table 4.3 presents the required laminate width, b, for coincident buckling and first ply failure

under compression load of the DD laminate designs for aspect ratios a/b = 1.0, 1.5, 2.0 and 2.5.

The dimensions are typical of the width between stiffeners in a stiffened panel wing skin. Table

4.4 shows the width-to-total thickness ratio, b/H, of the optimal designs in Table 4.3. Note that

results of a/b = 1 and 2 are shown in the same row as the two ratios share identical dimensions.
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Table 4.3: Plate width (mm), b, corresponding to 24-ply DD design with coincident buckling and
first ply failure.

Laminate Design

AR a b c d e f

1 and 2 107.7 107.7 116.5 124.5 92.0 98.6

1.5 112.1 115.3 121.4 129.6 95.8 102.7

2.5 109.4 112.6 118.5 126.5 93.5 100.2

Table 4.4: Width-to-thickness ratio, b/H, corresponding to optimal 24 ply DD designs in Table
4.3.

Laminate Design

AR a b c d e f

1 and 2 32.1 33.0 34.8 37.1 27.4 29.4

1.5 33.4 34.4 36.2 38.7 28.6 30.6

2.5 32.6 33.6 35.3 37.7 27.9 29.9

4.5 COMPRESSION TEST

The final section of this chapter involves compression tests. The main objective of the tests is to

characterise the compression behaviour of the material including compression stiffness, evaluate

predictions made in this chapter and investigate the failure strength of the laminate designs

discussed in this chapter. Due to COVID-19, I was not able to perform the manufacture and test

process myself, but Prof. Christopher York and Dr Periyasamy Manikandan kindly helped carry

out the processes at the Singapore Institution of Technology. Double angle-ply laminate design,

d with β = -46.1°, isotropic, E-S coupled and balanced and symmetric (BS) laminates with β =

37.3°were manufactured, with 3 specimens tested for each design. The stacking sequences are

listed in Chapter 4.2. SE 84LV low temperature cure carbon fibre epoxy prepreg was used [14],

the designed length, width and thickness of the laminates were: 150 mm, 25 mm and 3.30 mm,

and a cross sectional area, A, of 82.5 mm2.

The unidirectional (UD) prepreg tape was rolled out and cut manually to the required fibre

orientations and the plies were manually stacked according to the specified stacking sequences. To
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remove any voids or air gaps between plies during the lay-up process, debulking was performed

in every 6 plies of stacking. Stacked laminates were then cured using an autoclave programmed

to the recommendations given by the material supplier, where pressure and temperature are 1

bar and 80 °C.

The laminates are then cut into the desired size as shown in Fig. 4.13.

Figure 4.13: Manufactured DD laminates.
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Figure 4.14 shows a demonstration of the manufactured DD laminates.

Figure 4.14: Manufactured DD laminates.

All the specimens were held using a fully clamped end boundary condition for the tests. The

compression test was carried out using the Z100 Universal Test machine at a displacement rate of

1 mm/min (meaning the crosshead of the UTM is allowed to move by 1 mm per minute). The

fixture used was identical to the one described in the ASTM standard [115].

The compression test was conducted as follows:

i The manufactured specimen was placed and aligned at the centre of the wedges using an

alignment bar.

ii The specimen with wedges was placed into the wedge housing block assemblies.

iii The housing assemblies were attached to the platens, with the upper wedge housing block

assembly attached to the upper crosshead of the test machine and the lower housing block

assembly fitted on a lower platen.

iv To ensure that no small clearance or gap was present between the planar surface of the

wedges and the housing block, an initial preload was applied to the specimen before

recording the actual test data, in this case, the preload was 1 kN.



Double angle-ply (DD) laminates 126

v The coupon was loaded to 1 kN and returned to 0 to monitor the strain readings, where the

strains were usually about 100 to 200 micro-strain, which is negligible.

vi The compression test was started, and the samples were loaded until failure.

The measured values of the manufactured laminates are shown in Table 4.5, where DD, ES,

BS and ISO represent the double angle-ply, Extension-Shear coupled, balance and symmetric and

fully isotropic designs.

Table 4.5: Measured dimensions of manufactured laminate designs.

Specimen l (mm) w (mm) t (mm) A (mm2)

DD-1 150 24.72 3.29 81.31

DD-2 150 24.00 3.40 81.60

DD-3 150 24.97 3.41 85.02

ES-1 150 23.95 3.39 81.19

ES-2 150 24.04 3.38 81.24

ES-3 150 24.57 3.38 83.05

BS-1 150 23.94 3.39 81.14

BS-2 150 24.17 3.39 81.94

BS-3 150 24.42 3.41 85.27

ISO-1 150 24.64 3.27 80.48

ISO-2 150 23.99 3.38 81.07

ISO-3 150 24.02 3.35 80.45
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Examples of the laminates after failure are shown in Fig. 4.15.

(a)

(b)

Figure 4.15: Samples after failure for (a) all E-S laminates and (b) a zoomed in capture of one of
the laminates after failure.

The resulting compressive stress is given as:

σi =
Pi

A
(4.11)

where Pi represents the compressive load at a particular point. Finally, the chord modulus of
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elasticity, Echord, is given as:

E =
δσ

δϵ
(4.12)

A range of strain from 1000 to 3000 µ strain is used for modulus calculations, which is

recommended by ASTM standards [115]. Strain gauges were attached to the front and back

surfaces of the test specimens, one on each surface. A compression load was applied until the

specimens failed. The resulting failure strength, maximum stress, strain and modulus obtained

using both the measured dimension and design dimensions are summarised in Tables 4.6 and

4.7. The resulting stress-strain graphs of the specimens are presented in Fig. 4.16. While FPF

predictions are made using Tsai-Wu failure criteria for comparisons, which are given in Table 4.8,

since the engineering properties of the SE 84LV material is not given by the material supplier,

T300/5208 is used for the prediction and the predictions are used to compare to the test results.

Table 4.6: Resulted failure strength, maximum stress, strain and modulus obtained from using
measured dimensions.

Property Pmax (kN) σmax (kN)

Sample Iso DD ES BS ISO DD ES BS

1 22.70 28.56 22.83 30.72 351.30 281.15 378.66

2 29.32 29.73 24.58 23.32 361.68 364.36 302.56 284.62

3 31.06 21.95 22.42 26.22 386.08 258.17 269.99 314.85

Average 30.19 26.75 23.28 26.75 373.88 324.61 284.57 326.04

Property ϵu
av (%) E (GPa)

Sample ISO DD ES BS ISO DD ES BS

1 0.86 0.62 1.05 42.99 38.66 40.13

2 0.74 1.01 0.81 0.87 51.19 39.07 38.72 39.67

3 0.70 0.68 0.75 0.87 48.88 40.78 37.85 36.40

Average 0.72 0.85 0.73 0.93 50.03 40.95 38.41 38.74
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Table 4.7: Resulted failure strength, maximum stress, strain and modulus obtained from using
designed dimensions.

Property Pmax (kN) σmax (kN)

Sample Iso DD ES BS ISO DD ES BS

1 22.70 28.56 22.83 30.72 346.24 276.69 372.41

2 29.32 29.73 24.58 23.32 355.41 360.38 297.93 282.67

3 31.06 21.95 22.42 26.22 376.48 266.07 271.78 317.79

Average 330.19 26.75 23.28 26.75 365.95 324.23 282.13 324.29

Property ϵu
av (%) E (GPa)

Sample ISO DD ES BS ISO DD ES BS

1 0.86 0.62 1.05 42.99 38.66 40.13

2 0.74 1.01 0.81 0.87 51.19 39.07 38.72 39.67

3 0.70 0.68 0.75 0.87 48.88 40.78 37.85 36.40

Average 0.72 0.85 0.73 0.93 50.04 40.95 38.41 38.74

Table 4.8: First ply Failure load predictions of the fully isotropic, DD design d with β=-46.1°, E-S
coupled and balanced and symmetric designs β=37.3°under compressive load.

FPF Strength Prediction (N)

ISO DD laminate design d (β = -46.1) ES BS (β=37.3°)

22,780 19,977 18,059 19,279

Note that one of the strain gauges for ES-1 specimens malfunctioned during the test and no

strain gauges were installed for ISO-1. Therefore, the results for these 2 test samples are simply

discarded.
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(a) (b)

(c) (d)

Figure 4.16: Stress-strain curves of specimens for (a): Isotropic; (b): DD design d; (c):
Extension-Shear and; (d): Balanced and Symmetric laminates.

Table 4.8 shows the numerical predictions of FPF for the 4 different designs. It can be seen that

the isotropic design has the highest predicted FPF load, the E-S coupled design has the lowest

failure strength and the DD design has a similar performance as the balanced and symmetric

design. The compression test results for the 4 designs in Tables 4.6 and 4.7 show a similar

relationship but with higher values. The isotropic design has the highest failure load, while the

E-S design is the first to fail and the DD and balanced and symmetric designs lie in the middle
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with very similar failure strengths. Figure 4.16 presents the stress and strain relationships of the

samples for the 4 different designs. The results show that E-S coupled laminates have the most

consistent results, but only 2 samples were available for comparison. The E-S coupled design

does not show any favourable improvement compared to the other designs, while DD laminate

with off-axis alignment gives a similar failure strength as the balanced and symmetric design

with standard fibre orientation. Laminate design d was chosen as the weakest without off-axis

alignment, other DD designs (which have stronger FPF strength without off-axis alignment) with

their beta that gives their responding maximum E-S can be manufactured and tested.

This is a preliminary experiment, only 3 specimens were manufactured and tested for each

design, which cannot conclude the findings reliably, therefore more specimens should be manu-

factured and tested with 155 mm length that provides more accurate results. The failure load

of the predictions is on average 3,000 N lower than the test results, the difference between the

prediction and test results is due to the difference in material used for the predictions and actual

test. For future experiment, the engineering properties should be characterised for better predic-

tions and direct comparisons with the test. The difference in failure load can also be associated

with the prediction tool, predictions were made with the Tsai-Wu failure criterion, but failure is

predicted slightly differently according to the failure criteria, as discussed in Chapter 1. Therefore,

predictions should be done with other failure criteria and compared to the experimental results

to find out the criterion that has the closest fit to the test results.

Moreover, the recommended length of the specimen is 140 to 155 mm, and the actual size of

the specimen is 150 mm, which is within the suggested range. However, the sample is subjected

to shear deformation soon after the load is not pure axial compression load. After 50 tests,

it was concluded that specimens with 155 mm length provided more accurate modulus and

strength values compared to the data provided by the supplier, than 150 mm samples. Moreover,

specimens of 155 mm were able to be slotted within the wedges more firmly, reducing the chance

of in-plane shear motion occurring under axial compression loads.

In terms of potential future work, buckling and first ply failure tests can also be performed,

which would act as validations for all the numerical and analytical work performed in the past 4

years.
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4.6 CONCLUSION

This chapter has explored the design spaces of DD laminate designs, which match the equivalent

ply percentages of typical aircraft skin designs. The effect of off-axis alignment on the first ply

failure performance of laminates is demonstrated. Moreover, this chapter has attempted to predict

the optimum dimensions of the DD laminates by matching the structural buckling and material

strength constraints.

Polar plots of first ply failure have demonstrated that DD designs offer comparable strength

to standard laminates when off-axis orientation is applied in order to maximise anisotropy or

Extension-Shear coupling.

Preliminary experimental tests have shown that the DD designs with off-axis alignment offer

comparable failure strength to standard laminates when aligned to the prediction by the Tsai-Wu

failure criterion.

The design approach used to achieve optimised material strength and anisotropy has been

shown to be possible without degrading the buckling performance of various standard and DD

laminate designs.



CHAPTER 5

COUPLING EFFECTS

5.1 INTRODUCTION

Chapter 3 explored the buckling performance of uncoupled and Bend-Twist (B-T) coupled lam-

inates with standard fibre orientations. Chapter 4 introduced the new double angle-ply or

‘double-double’ (DD) configuration where the first ply failure (FPF) of DD laminates was assessed

and discussed. This chapter follows the previous 2 chapters, applying knowledge of coupling

behaviour to DD laminate technology. The goal of this chapter is to combine the knowledge

from chapters 3 & 4 to explore the design space of fully B-T coupled DD laminates to and design

laminates with potential improvements in buckling or FPF performance with Tsai-Wu failure

criteria [58, 32].

The first objective of this chapter involves the investigation of the effect of fully coupled

bending stiffness parameters, ξ11 and ξ12, on the buckling performance of laminates with standard

quad and DD orientations. The second objective is to assess the buckling and first-ply failure

performance of DD laminates with full B-T coupling, using a stiffness matching technique. To do

this, a 4-dimensional design space for fully coupled B-T designs is presented. Another objective

is to design fully B-T coupled laminates with improved FPF performance without degradation

in buckling performance. The final objective of the chapter is to investigate the performance

of tapered DD laminates that possess B-T coupling, the effect of the direction of tapering on

buckling performance is also examined.

Optimisation of composite laminates using lamination parameters allows the design process

to be simplified. The introduction of coupling behaviour, such as Extension-Shear (E-S) and

B-T coupling, leads to extra design variables such as ξ3 and ξ4 or ξ11 and ξ12 and results in a

133
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more complicated 3, or even 4-dimensional design space. However, the increase in size of the

design space increases the possibility of designing composite structures with improved material

properties or failure performance.

Earlier studies attempted to design composite laminates using lamination parameters and

investigated the relationships between the different lamination parameters [46, 43, 37]. The rela-

tionships between the lamination parameters were also developed [43, 44, 40, 41] and projections

of 6 planes of bending stiffness was demonstrated [40]. The relationship between the bending

stiffness lamination parameters for standard quads and DD laminates in 2 and 3 dimensions are

summarised in Table 1. However, no prior studies have successfully fully illustrated the entire

4-dimensional design space.

Table 5.1: The bending stiffness lamination parameters relationships of standard and DD
laminates in 2-D and 3-D design spaces.

Standard Quads Double angle-ply

2-D
ξ2 = 2ξ1 − 1 or ξ2 = −2ξ1 − 1 ξ2 = 2ξ2

1 − 1

ξ10 = 2ξ9 − 1 or ξ10 = −2ξ9 − 1 ξ10 = 2ξ2
9 − 1

3-D

ξ2 = 2ξ1 − 1 or ξ2 = −2ξ1 − 1 ξ2 = −2ξ2
1 + 1

ξ3 = ξ1 + 1 or ξ3 = ξ1 − 1 ξ2
1 + ξ2

3 = 1

ξ10 = 2ξ9 − 1 or ξ10 = −2ξ9 − 1 ξ10 = −2ξ2
9 + 1

ξ11 = ξ9 + 1 or ξ11 = ξ9 − 1 ξ2
9 + ξ2

11 = 1

Bend-Twist coupled laminates are known to have reduced compressive buckling load, in

contrast to fully uncoupled laminates even through stiffness matching. The effect is often ignored

in practice as it can be dissipated by thick laminates containing a lot of plies [116]. However, this

can cause predictions to be unsafe even when following design guidance [103] and using closed

form solutions [50]. This is especially true in thin plate laminates, where buckling performance

is affected by B-T -coupling and can be overestimated if the effect is ignored. The effect of B-T

coupling on buckling performance has been studied previously in terms of lamination parameter

design space [86].

As discussed in the literature review in Chapter 1, researchers have attempted to illustrate the

4-D design spaces for fully coupled laminates. Previous chapters explored the 2-D and 3-D design
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space of standard Quads and DD laminates. This chapter explores the 4-D world of coupled

laminates, focusing on the effect of B-T coupling. A laminate database from [117] containing fully

uncoupled standard quad laminates with balanced and symmetric configurations is used for this

part of the project using newly developed datasets. First, the effect of B-T coupling is investigated.

Stiffness matching between quads and DD designs is performed to determine the double angle

that gives matching lamination parameters values of standard laminates. Laminates with different

thicknesses are examined, and compressive buckling and FPF performance comparisons are

provided.

5.2 BENDING-TWISTING COUPLING

The first part of this chapter involves the investigation of the specific effect of bending stiffness ξ11

and ξ12 on buckling performance for laminates aspect ratios 1, 1.5 and 2 with standard quads and

DD orientations. A database (Appendix 1: Balanced and Symmetric Standard-Ply Designs) from

York [96] is used, which contains fully uncoupled laminate designs for 12 to 24-ply balanced and

symmetric layups, with standard angles. All the balanced and symmetric designs are subject to

the 10% rule design constraint, where each ply angle contributes at least 10% towards the whole

laminate; and ply continuity of 3, where the maximum number of repeating plies with the same

angle orientation, occurring consecutively, is limited to 3. Laminate designs including 12, 16, 20

and 24 plies are selected from the database. Designs closest to the point (ξ9, ξ10) = (0, -1) on a

bending stiffness lamination parameters (ξ9, ξ10) design space are chosen. The stacking sequences

of the different laminate thickness designs are listed Table 5.2 , where (+, -, ◦, •) = (+45°, -45°,

0° and 90°). Note that all the designs with standard fibre orientations are fully uncoupled, with

ξ11 and ξ12 = 0 and with 0 in the [B] matrix, which means the laminate is immune to thermal

warping. While the DD laminate designs are shown in Table 5.3, with their bending stiffnesses

matched to the standard fibre orientation counterpart of the same thickness. Note that there

are multiple stacking sequences of the same thickness that share the same point on a bending

stiffness lamination parameter (ξ9, ξ10) design space, as mentioned in chapter 3, but only one is

shown here for demonstration purposes.
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Table 5.2: Thickness, stacking sequence and the bending stiffness of the standard quads
laminates.

Number of ply Stacking Sequences (ξ9, ξ10)

12 [+/-/-/•/+/◦/◦/+/•/-/-/+]T (-0.083, -0.815)

16 [+/-/-/+/•/-/+/◦/◦/+/-/•/+/-/-/+]T (-0.070, -0.852)

20 [+/-/-/•/+/+/-/◦/◦/•/•/◦/◦/-/+/+/•/-/-/+]T (-0.102, -0.692)

24 [-/+/+/-/+/-/-/+/•/◦/◦/•/•/◦/◦/•/+/-/-/+/-/+/+/-]T (-0.007, -0.926)

Table 5.3: Thickness, stacking sequence and the bending stiffness of the DD laminates with
equivalent ξ9 and ξ10.

Number of ply Stacking Sequences (ξ9, ξ10)

12 [ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T (-0.083, -0.815)

16
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/ψ/-ψ/ϕ/-

ϕ/ψ/-ψ]T

(-0.070, -0.852)

20
[ψ/-ψ/ϕ/-ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ψ/-ψ/ϕ/-ϕ/-ψ/ψ]T

(-0.102, -0.692)

24
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(-0.007, -0.926)

To investigate the effect of the B-T coupling terms, the ξ9 and ξ10 are fixed and arbitrarily

ξ11 and ξ12 are introduced in different combinations since the designs from the database are

uncoupled. FEA predictions of buckling performance (where the simulation model was discussed

in Chapter 2 are made with various combinations of the coupling terms introduced, as listed in

Table 5.4. The same set of combinations is applied to the DD laminate designs to examine the

effect of coupling behaviour.

Table 5.4: List of combination of arbitrary B-T coupling applied to the standard and DD laminate
designs.

Combination 1 2 3 4 5 6 7 8 9

ξ11 0 0.25 -0.25 0.25 0 -0.25 0 0.25 -0.25

ξ12 0 0.25 -0.25 0 0.25 0 -0.25 -0.25 0.25

The resulting buckling factors for laminates of aspect ratios (AR) 1.0, 1.5 and 2.0 are presented
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below, the buckling performance for standard and DD configurations are identical, therefore only

one set of results is presented here.

Table 5.5: Buckling factors of standard quads and DD designs under the ξ11 and ξ12
combinations listed in Table 5.4 for AR = 1.0.

No. of Ply
Combination

1 2 3 4 5 6 7 8 9

12 4.84 4.71 4.71 4.72 4.83 4.72 4.83 4.71 4.71

16 4.87 4.74 4.74 4.75 4.87 4.75 4.87 4.75 4.75

20 4.70 4.57 4.57 4.58 4.70 4.58 4.70 4.58 4.58

24 4.93 4.81 4.81 4.81 4.93 4.81 4.93 4.81 4.81

Table 5.6: Buckling factors of standard quads and DD designs under the ξ11 and ξ12
combinations listed in Table 5.4 for AR = 1.5.

No. of Ply
Combination

1 2 3 4 5 6 7 8 9

12 4.99 4.87 4.87 4.85 4.99 4.85 4.99 4.83 4.83

16 5.04 4.90 4.90 4.90 5.03 4.90 5.03 4.88 4.88

20 4.84 4.70 4.70 4.70 4.84 4.70 4.84 4.69 4.69

24 5.19 5.05 5.05 5.04 5.18 5.04 5.18 5.02 5.02

Table 5.7: Buckling factors of standard quads and DD designs under the ξ11 and ξ12
combinations listed in Table 5.4 for AR = 2.0.

No. of Ply
Combination

1 2 3 4 5 6 7 8 9

12 4.84 4.73 4.73 4.70 4.83 4.70 4.83 4.66 4.66

16 4.87 4.77 4.77 4.74 4.87 4.74 4.87 4.70 4.70

20 4.71 4.60 4.60 4.57 4.70 4.57 4.70 4.53 4.53

24 4.94 4.83 4.83 4.80 4.95 4.80 4.95 4.76 4.76
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The introduction of B-T coupling leads to a very small decrease in buckling performance,

with at worst, almost 4% reduction. The buckling performance of laminate designs with only ξ12

is about 0.1% lower than the fully uncoupled case, this indicate that ξ12 has a bigger effect on

buckling performance than ξ11. As the design spaces expand with the introduction of coupling

behaviour, more designs are available to be explored. More flexible structures can potentially be

manufactured with coupling properties and non-symmetric stacking sequence instead of standard

Quads laminates without degrading the buckling performance.

5.3 STIFFNESS MATCHING

The purpose of this section is to examine the buckling and first-ply failure performance of DD

laminates with Bending-Twist coupling when using a stiffness matching technique. Laminate

designs from 3 datasets are used, the first dataset is the same set of uncoupled data provided in

York [96]. The second and third datasets are extensions of the first dataset. The second dataset was

derived in the same fashion as the first dataset but contains only 24 ply laminates, while the third

dataset is derived in the same fashion as the uncoupled dataset while relaxing the constraint for

the Bending-Twist coupling, the latter dataset includes 12, 16, 20 and 24 plies designs. The reason

for developing the new datasets (2 & 3) is that there were relatively few uncoupled solutions

in the first dataset, where B-T coupling is present in virtually all symmetric designs, which is

tolerated because of manufacturing simplicity, despite the knock-down in buckling load discussed

in previous chapters. Standard designs are fully uncoupled (ASB0DS), meaning that the A16, A26

terms of the [A] matrix, all the elements in [B] and D16 and D26 are all zero. In contrast, the DD

designs are all B-T coupled (ASB0DF).

In this section, DD laminates are designed with improved FPF strength without degrading

their buckling performance compared to standard quad laminates. A two-level design process

is used; the first level investigates the FPF strength of B-T coupled DD laminate designs in the

database, for the 4 different laminate thicknesses. Firstly, the fully coupled laminate designs with

standard orientations (listed in Table 5.2) are used as a target for subsequent comparisons. The

DD designs of each number of ply are divided into different groups in terms of ply percentages,

for example, the 12-ply designs are grouped into [±ψ/±ϕ] = [4/8] and [8/4], where all the

designs in each group give the same extensional stiffness for any given pair of angles. Each
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group has designs that produce the same bending stiffness lamination parameters ξ9 and ξ10

for a given value of ±ψ and ±ϕ, but the values of ξ11 and ξ12 differs between each design. A

stiffness matching technique is applied, which the tailoring was discussed in Chapter 4. The

bending stiffness ξ9 and ξ10 of the DD designs are matched to the standard quad design of the

same ply number. Each ply percentage group has the same values of ±ψ and ±ϕ that produce

the target bending stiffness, and the group that gives the highest FPF strength is found. The

fully uncoupled designs with bending stiffness lamination parameters (ξ9, ξ10) closest to (0, -1)

are selected because the point (0, -1) has the highest compressive buckling load and close to the

highest shear buckling load, as was shown in Chapter 3.

Next, the second level attempts to design laminates with the highest buckling load, here the

group that gives the highest FPF strength for each laminate thickness is used. The buckling load

of each design in the group is found using FEA to determine which has the highest buckling load.

The database contains B-T coupled laminate designs ranging from 12, 16, 20 and 24 plies, the

number of designs for each laminate thickness is shown in Table 5.8. Although there are over

15,000 designs in total, there are only 14 different extensional stiffnesses (ξ1−4), where all designs

have zero ξ3,4, while the bending stiffnesses (ξ9−12) differ for each design. This means that for a

given bending stiffness, there are only 14 different [A] matrices throughout.

Table 5.8: Number of DD laminate designs that match the design constraints for each laminate
thickness.

Number of plies 24 20 16 12

Number of designs 14,134 1,430 146 18

The buckling performance of the designs is predicted using Abaqus, while the FPF is assessed

using the Tsai-Wu failure criterion, which is given by Eqn. 1.27 in Chapter 1.2.7. The buckling

and FPF strengths of the fully uncoupled designs with standard quad orientations are listed in

Table 5.9. These values are used to compare against the B-T coupled DD designs (with matched

stiffnesses).
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Table 5.9: Buckling and first ply failure performances of the fully uncoupled laminate designs
with standard configurations listed in Table 5.2.

Ply number AR Buckling load (N) First ply failure load (FPF), Nx (N)

24

1 38927

229,9511.5 40,940

2 39,005

20

1 21467

208,5771.5 22,123

2 21,494

16

1 11,384

134,5731.5 11,786

2 11,394

12

1 4,770

114,9251.5 4,924

2 4,772

5.3.1 FIRST PLY FAILURE OF DD LAMINATES WITH BENDING-TWISTING COUP-

LING

The values of ψ and ϕ of double angle-ply laminate designs that can produce matched bending

stiffness lamination parameters, ξ9 and ξ10, to the standard laminates are calculated, where the

approach was introduced in Chapter 4. Although the number of designs available is large, the

number of designs that give the matching target lamination parameters ξ9,10 is significantly

reduced since not every configuration can produce the same lamination parameters.

24-PLY

The 24 plies DD designs are divided into 5 different sub-groups, according to the number of plies

for ψ and ϕ respectively, which are: [ψ/ϕ] = [4/20], [8/16], [12/12], [16/8] and [20/4]. There are

in total 14,134 designs that fit the stacking sequence constraints (10% rule and contiguity = 3), but

the number of designs that contain a combination of ±ψ and ±ϕ that matches the target bending

stiffness values of (ξ9, ξ10) = (-0.045, -0.967) is greatly reduced. All the designs are normalised
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against the FPF value of the standard quad benchmark. The FPF strengths are normalised against

their quad counterparts of the same thickness. DD designs from the same sub-groups within the

same thickness group, have identical FPF strength. One design from each sub-groups with the

lowest normalised FPF strength from each ply percentage group is shown in Table 5.10, while

the full list of all the sub-groups that give a different FPF value can be found in Appendix A5.

The first column shows the number of plies for ±ψ and ±ϕ within the 24-ply laminate and the

subscript represent the design number. The first column shows the number of plies for ±ψ and ±ϕ

within the 24-ply laminate and the subscript represents the design number. The second column

shows the stacking sequences of the designs, and the third column shows the ψ and ϕ angle that

gives the matching bending stiffness to the fully uncoupled design with the same number of plies.

The final column shows the FPF performances in comparison to their bending stiffness matched

Quad design. A more detailed list showing one design from each sub-group can be found in A5.

Table 5.10: 24-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches (ξ9, ξ10) = (-0.045, -0.967).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad [-/+/-/-/+/-/-/+/ • / ◦ / ◦ / • /

• / ◦ / ◦ / • /+/-/-/+/-/+/+/-]T

- 1

[4/20]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T

(±51.7°, ±40.5°) 2.292

[8/16]10

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ]T

(±48.8°, ±36.6°) 1.658

[12/12]17

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ]T

(±47.3°, ±29.9°) 1.014

[16/8]15

[ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ]T

(±46.3°, ±6.58°) 0.456

[20/4]3
[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(±46.9°, ±26.1°) 1.749

The FPF strength of the designs is normalised against the quad design, with the quad design
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being 1. Designs with a FPF strength value larger than 1 indicates that the design has a lower FPF

load than the standard design and a lower value means the design has a better FPF performance.

Although most designs show higher first ply failure value when compare with the standard quad

design, design [16/8]15 has a normalised FPF strength of 0.456. This means that the design is at

around 45% of its failure strength when the failure load of the quad design (766.5N) is applied.

This shows that some DD laminates offer the potential for improvement in FPF strength, without

any decrease in buckling performance. The 2-D extensional stiffness and 4-D design spaces of

design [16/8]15 are plotted and shown in Fig. 5.2 (where the laminate parameters ξ9−12 represent

the 4 different dimensions of the design space). Figures 5.2a, 5.2b and 5.2d in Fig. 5.2 shows the

usual 3-D design space that was shown in chapter 3 and 4, and the other 3 sub-figures show the

relationships between the 3 bending stiffness and the additional ξ12.

A 4-D design space offers an extra dimension of potential feasible designs to be explored,

which can potentially be used for optimisation with buckling factors superimposed on the design

space like the ones shown in Chapters 3 and 4. However, relationships between each 2 of the

4 stiffnesses cannot be described with simple formulations like the ones in Table 1, so overall

general design space (which 2-D and 3-D design spaces were drawn in previous chapters) was

not able to draw.

Figure 5.1: Illustration of the 2-D extensional stiffness design space of 24-ply design sub-group
[16/8]15.
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Figure 5.2: Illustration of the 4-D bending stiffness design space of 24-ply design sub-group [16/8]15.
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20-PLY

The 20 plies DD laminate designs are divided into 4 different groups, according to the number of

ψ and ϕ plies respectively. These include: [ψ/ϕ] = [4/16], [8/12], [12/8] and [16/4]. There are in

total 1,430 designs that fit the stacking sequence constraints (10% rule and contiguity = 3), only 17

designs with combinations of ±ψ and ±ϕ are found that match the target bending stiffness values

of (ξ9, ξ10) = (-0.102, -0.692). Again, the design with the lowest normalised FPF strength from

each sub-group for each ply percentage group of the 20 plies DD laminate designs are shown

in Table 5.11, together with the normalised FPF value. A more detailed list showing one design

from each sub-group can be found in A6.

Table 5.11: 20-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches (ξ9, ξ10) = (-0.102, -0.692).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad
[+/-/-/•/+/+/-/◦/◦/•/•/◦/◦/-

/+/+/•/-/-/+]T

- 1

[4/16]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T

(±59.7°, ±37.2°) 1.690

[8/12]6
[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(±53.8°, ±25.8°) 0.743

[12/8]8
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±52.8°, ±20.0°) 0.806

[16/4]2
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±52.6°, ±18.8°) 1.331

Table 5.11 shows that for the 20-ply designs, there are 2 sub-groups with improved FPF

performance, namely [8/12]6 and [12/8]8, with normalised FPF values of 0.743 and 0.806. The

2-D and 4-D extensional and bending stiffness design spaces of both designs [12/8]8and [8/12]6

are shown in Figs. 5.3, 5.4, 5.5 and 5.6.
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Figure 5.3: Illustration of the 2-D extensional stiffness design space of 20-ply design sub-group
[12/8]13.
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Figure 5.4: Illustration of the 4-D bending stiffness design space of the 20-ply design sub-group [12-8]6.
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Figure 5.5: Illustration of the 2-D extensional stiffness design space of 20-ply design sub-group
[8/12]6.
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Figure 5.6: Illustration of the 4-D bending stiffness design space of the 20-ply design sub-group [8-12]6.
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16-PLY

The 16-ply DD laminates are divided into 4 different groups, according to the number of ψ and ϕ

respectively, which are: [ψ/ϕ] = [4/12], [8/8] and [12/4].There are in total 146 designs that fit

the stacking sequence constraints (10% rule and contiguity = 3). All the 16-ply sub-groups of

B-T coupled DD laminates that match the target bending stiffness of (ξ9, ξ10) = (-0.070, -0.852)

with different first ply failure strengths are shown in Table 5.12. In this case, just one sub-group

with improved FPF performance is found, i.e. [8/8]4 with a normalised FPF value of 0.589. The

extensional and bending design spaces of design [8/8]4 is plotted and shown in Figs. 5.7 and 5.8.

Table 5.12: 16-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches (ξ9, ξ10) = (-0.070, -0.852).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad
[+/-/-/+/•/-/+/◦/◦/+/-/•/+/-/-

/+]T

- 1

[4/12]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ϕ/ψ/-ψ]T

(±53.6°, ±38.1°) 1.426

[8/8]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ]T

(±54.7°, ±39.4°) 1.717

[8/8]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-

ϕ/ϕ/-ϕ/ψ/-ψ]T

(±53.4°, ±37.8°) 1.675

[8/8]3
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ]T

(±52.2°, ±35.7°) 1.391

[8/8]4
[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(±49.9°, ±25.6°) 0.589

[12/4]1
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/ψ/-

ψ/ϕ/-ϕ/ψ/-ψ]T

(±52.0°, ±35.2°) 2.042

[12/4]2
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-

ϕ/ψ/-ψ/ψ/-ψ]T

(±49.7°, ±23.6°) 1.004
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Figure 5.7: Illustration of the 2-D extensional stiffness design space of 16-ply design sub-group
[8/8]4.
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Figure 5.8: Illustration of the 4-D bending stiffness design space of the 16-ply design sub-group [8-8]4.
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12-PLY LAMINATE DESIGNS

The 12 plies DD laminates are divided into 2 different groups according to the number of ψ and

ϕ, namely [ψ/ϕ] = [4/8], and [8/4]. There are in total 18 designs that fit the stacking sequence

constraints (10% rule and contiguity = 3). All the 12-ply sub-groups of B-T coupled DD laminates

that match the target bending stiffness of (ξ9, ξ10) = (-0.083, -0.815) with different FPF strengths

are shown in Table 5.13. However, there are no design with improved FPF performances are

found. The extensional and bending stiffness design spaces of design [4/8]1 are plotted and

shown in Figs. 5.9 and 5.10.

Table 5.13: 12-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches (ξ9, ξ10) = (-0.083, -0.815).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad [+/-/-/•/+/◦/◦/+/•/-/-/+]T - 1

[4/8]1 [ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T (±52.9°, ±34.2°) 1.255

[8/4]1 [ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ]T (±52.4°, ±32.9°) 1.823

Figure 5.9: Illustration of the 2-D extensional stiffness design space of 12-ply design sub-group
[4/8]1.
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Figure 5.10: Illustration of the 4-D bending stiffness design space of the 12-ply design sub-group [4-8]1.
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5.4 COMPRESSION BUCKLING

Section 5.3 of this chapter investigated the FPF performance of the B-T coupled designs, and

sub-groups with improved FPF for each laminate thickness were found. This section explores

the buckling performance of the designs. Buckling analysis is performed on the sub-groups that

showed improvements in FPF using FEA. From Section 5.3, improvements in FPF were found

for 16, 20 and 24 plies B-T coupled designs, therefore FEA is conducted on the designs from

the sub-groups that show improvements for these 3 laminate thicknesses. The sub-groups are

[16/8]15 from 24-ply, [8/12]6 and [12/8]8 from 16-ply laminates, the number of designs in these

sub-groups is listed below:

Table 5.14: Number of individual designs from sub-groups of 24, 20 and 16 plies laminate with
improved FPF strength.

Sub-Group [16/8]16 [12/8]6 [8/12]8 [8/8]4

Number of design 202 60 60 16

As this is a preliminary study on the database, a selection of random designs are picked from

each sub-groups, and buckling simulations are performed. The stacking sequence of designs that

are selected from each sub-group is listed in Table 5.15 to 5.16. All the designs from the same

sub-group have identical extensional stiffness ξ1−4 and bending stiffness ξ9 and ξ10, the difference

is in the bending stiffness terms associated with B-T coupling, where the notations 1 = ψ, 2 = -ψ,

3 = ϕ and 4 = ϕ.
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Table 5.15: List of stacking sequences of 10 designs from 24-ply B-T coupled DD laminate design
sub-group [16/8]15. All designs possess identical extensional stiffness (ξ1, ξ2, ξ3, ξ4) = (0.295,
-0.365, 0, 0) and bending stiffness (ξ9, ξ10) = (-0.007, -0.926).

Design Stacking Sequence (ξ11, ξ12)

[16/8]5a

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(-0.059, -0.001)

[16/8]5b

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ/-ψ/ψ]T

(-0.035, 0.003)

[16/8]5c

[ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/-ψ/ψ/ψ/-ψ/ψ/-ψ]T

(-0.004, 0.007)

[16/8]5d

[ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/-ψ/ψ]T

(0.004, -0.007)

[16/8]5e

[ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/-ψ/ψ]T

(0.010, 0.006)

[16/8]5f

[ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-

ϕ/ϕ/ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ]T

(0.015, 0.002)

[16/8]5g

[ψ/-ψ/ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/ψ/-ψ/ψ/-ψ/-ψ/ψ/-ψ/ψ]T

(0.028, -0.002)

[16/8]5h

[ψ/-ψ/ψ/-ψ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/-ψ/ψ/-ψ/ψ/ψ/-ψ]T

(0.052, 0.002)

[16/8]5i

[ψ/-ψ/ψ/-ψ/ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ψ/ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ]T

(0.059, -0.012)

[16/8]5j

[ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ]T

(0.114, -0.004)
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Table 5.16: List of stacking sequences of 10 designs from 20-ply B-T coupled DD laminate design
sub-group [8/12]6. All designs possess identical extensional stiffness (ξ1, ξ2, ξ3, ξ4) = (0.252,
-0.466, 0, 0) and bending stiffness (ξ9, ξ10) = (-0.102, -0.692).

Design Stacking Sequence (ξ11, ξ12)

[8/12]6a

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-

ϕ/ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ]T

(-0.014, -0.018)

[8/12]6b

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ψ/ψ/ψ/-ψ]T

(0.005, 0.006)

[8/12]6c

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ψ/ψ/ψ/-ψ]T

(0.024, 0.029)

[8/12]6d

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ψ/-ψ/-ψ/ψ]T

(-0.012, -0.036)

[8/12]6e

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/ϕ/-ϕ/ψ/-ψ/-ψ/ψ]T

(0.007, -0.013)

[8/12]6f

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/ϕ/-ϕ/ψ/-ψ/-ψ/ψ]T

(0.026, 0.011)

[8/12]6g

[ψ/-ψ/ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/-ψ/ψ]T

(0.059, -0.096)

[8/12]6h

[ψ/-ψ/ψ/-ψ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.087, -0.061)

[8/12]6i

[ψ/-ψ/ψ/-ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.106, -0.038)

[8/12]6j

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.134, -0.003)
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Table 5.17: List of stacking sequences of 10 designs from 20-ply B-T coupled DD laminate design
sub-group [12/8]8. All designs possess identical extensional stiffness (ξ1, ξ2, ξ3, ξ4) = (0.252,
-0.466, 0, 0) and bending stiffness (ξ9, ξ10) = (-0.102, -0.692).

Design Stacking Sequence (ξ11, ξ12)

[12/8]8a

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(-0.064, -0.014)

[12/8]8b

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ϕ/ϕ/-ψ/ψ/ψ/-ψ]T

(0.006, 0.045)

[12/8]8c

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ϕ/ϕ/ψ/-ψ/-ψ/ψ]T

(0.017, 0.039)

[12/8]8d

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ϕ/ϕ/-ψ/ψ/ψ/-ψ]T

(0.040, 0.026)

[12/8]8e

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ϕ/ϕ/ψ/-ψ/-ψ/ψ]T

(0.052, 0.020)

[12/8]8f

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ϕ/ϕ/-ψ/ψ/ψ/-ψ]T

(0.064, 0.014)

[12/8]8g

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/-ψ/ψ]T

(0.052, -0.028)

[12/8]8h

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.075, 0.008)

[12/8]8i

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.098, -0.005)

[12/8]8j

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(0.133, -0.023)
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Table 5.18: List of stacking sequences of 10 designs from 16 ply B-T coupled DD laminate design
sub-group [4/8]4. All designs possess identical extensional stiffness (ξ1, ξ2, ξ3, ξ4) = (0.228, -0.579,
0, 0) and bending stiffness (ξ9, ξ10) = (-0.070, -0.850).

Design Stacking Sequence (ξ11, ξ12)

[8/8]4a

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ]T

(-0.037, -0.046)

[8/8]4b

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/-

ψ/ψ/ψ/-ψ]T

(0.018, 0.023)

[8/8]4c

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-

ψ/ψ/ψ/-ψ]T

(0.037, 0.046)

[8/8]4d

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/-

ψ/ψ]T

(-0.013, -0.054)

[8/8]4e

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ψ/ψ]T

(0.023, -0.008)

[8/8]4f

[ψ/-ψ/-ψ/ψ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/ψ/-ψ/-

ψ/ψ]T

(0.041, 0.015)

[8/8]4g

[ψ/-ψ/ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/-

ψ/ψ]T

(0.102, -0.093)

[8/8]4h

[ψ/-ψ/ψ/-ψ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ]T

(0.139, -0.047)

[8/8]4i

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/-ϕ/ϕ/ϕ/-ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ]T

(0.157, -0.024)

[8/8]4j

[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ]T

(0.175, -0.001)

The buckling results of the designs for aspect ratios (a/b) 1.0, 1.5 and 2.0 are listed in Table

5.19 to 5.22, with the percentage change compared to their standard quad counterparts of the

same thickness.
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Table 5.19: Buckling and first ply failure performance comparison between 24-ply standard quad
and 10 designs from [16/8]15 Bend-Twist coupled double angle-ply sub-group.

Design
kx(with percentage change compared to quad)

a/b = 1 a/b = 1.5 a/b = 2

Quad 4.933 5.188 4.943

[16/8]15a 4.927 -0.13% 5.180 -0.15% 4.935 -0.15%

[16/8]15b 4.931 -0.05% 5.185 -0.06% 4.940 -0.05%

[16/8]15c 4.933 0% 5.188 0% 4.943 0%

[16/8]15d 4.933 0% 5.188 0% 4.943 0%

[16/8]15e 4.933 -0.01% 5.188 -0.01% 4.943 0%

[16/8]15f 4.933 -0.01% 5.187 -0.01% 4.943 -0.01%

[16/8]15g 4.932 -0.03% 5.186 -0.04% 4.941 -0.04%

[16/8]15h 4.928 -0.10% 5.182 -0.12% 4.937 -0.12%

[16/8]15i 4.927 -0.13% 5.180 -0.16% 4.935 -0.16%

[16/8]15j 4.909 -0.49% 5.158 -0.59% 4.914 -0.59%

Table 5.20: Buckling and first ply failure performance comparison between 20-ply standard quad
and 10 designs from [8/12]6 Bend-Twist coupled double angle-ply sub-group.

Design
kx(with percentage change compared to quad)

a/b = 1 a/b = 1.5 a/b = 2

Quad 4.701 4.844 4.707

[8/12]6a 4.700 -0.01% 4.844 -0.01% 4.706 -0.01%

[8/12]6b 4.701 0% 4.844 0% 4.707 0%

[8/12]6c 4.700 -0.03% 4.843 -0.03% 4.706 -0.02%

[8/12]6d 4.700 -0.01% 4.844 -0.01% 4.706 -0.01%

[8/12]6e 4.701 0% 4.844 0% 4.707 0%

[8/12]6f 4.700 -0.03% 4.843 -0.03% 4.705 -0.03%

[8/12]6g 4.694 -0.15% 4.835 -0.19% 4.695 -0.24%

[8/12]6h 4.686 -0.31% 4.826 -0.38% 4.688 -0.41%

[8/12]6i 4.680 -0.45% 4.818 -0.54% 4.681 -0.55%

[8/12]6j 4.667 -0.73% 4.803 -0.85% 4.669 -0.81%
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Table 5.21: Buckling and first ply failure performance comparison between 20-ply standard quad
and 10 designs from [12/8]8 Bend-Twist coupled double angle-ply sub-group.

Design
kx(with percentage change compared to quad)

a/b = 1 a/b = 1.5 a/b = 2

Quad 4.701 4.844 4.707

[12/8]8a 4.693 -0.17% 4.835 -0.19% 4.699 -0.17%

[12/8]8b 4.701 -0.01% 4.844 -0.01% 4.707 0%

[12/8]8c 4.700 -0.02% 4.844 -0.02% 4.706 -0.01%

[12/8]8d 4.698 -0.07% 4.839 -0.12% 4.704 -0.06%

[12/8]8e 4.696 -0.11% 4.838 -0.13% 4.702 -0.11%

[12/8]8f 4.693 -0.17% 4.835 -0.19% 4.699 -0.17%

[12/8]8g 4.696 -0.11% 4.838 -0.13% 4.700 -0.14%

[12/8]8h 4.690 -0.23% 4.832 -0.27% 4.695 -0.25%

[12/8]8i 4.682 -0.39% 4.822 -0.46% 4.686 -0.44%

[12/8]8j 4.667 -0.73% 4.803 -0.85% 4.669 -0.81%

Table 5.22: Buckling and first ply failure performance comparison between 16-ply standard quad
and 10 designs from [8/8]4 Bend-Twist coupled double angle-ply sub-group.

Design
kx(with percentage change compared to quad)

a/b = 1 a/b = 1.5 a/b = 2

Quad 4.869 5.041 4.873

[8/8]4a 4.866 -0.06% 5.038 -0.06% 4.871 -0.05%

[8/8]4b 4.868 -0.01% 5.040 -0.02% 4.873 -0.01%

[8/8]4c 4.866 -0.06% 5.038 -0.06% 4.871 -0.05%

[8/8]4d 4.868 -0.01% 5.040 -0.01% 4.873 -0.01%

[8/8]4e 4.868 -0.02% 5.040 -0.03% 4.872 -0.02%

[8/8]4f 4.866 -0.07% 5.037 -0.08% 4.870 -0.07%

[8/8]4g 4.849 -0.41% 5.015 -0.52% 4.845 -0.58%

[8/8]4h 4.833 -0.74% 4.996 -0.90% 4.828 -0.92%

[8/8]4i 4.823 -0.95% 4.984 -1.14% 4.818 -1.13%

[8/8]4j 4.811 -1.19% 4.970 -1.40% 4.807 -1.35%



Coupling Effects 161

The majority of the DD laminate designs have less than a 1% decrease in buckling load

compared to the standard quad design of the same number of ply. This result shows that B-T

coupled DD laminates are capable of providing FPF improvements of more than 200%, with

almost no degradation in buckling load. For example, a 24-ply B-T coupled DD laminate with

stacking sequence [ψ/-ψ/-ψ/ψ/ψ/-ψ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ψ/-ψ/ψ/-ψ]T

has a normalised FPF strength of 0.456 when the FPF compressive load of a 24-ply standard quad

laminate is applied. This shows the potential of B-T coupled laminates to replace traditional quad

laminates in applications where buckling performance is the main concern.

This is a preliminary view of the 4-D design space of the DD designs, the stacking sequences

were chosen by stiffness matching to the standard quad designs. Fully coupled laminates are

never the major focus of composite laminates and it is not well understood, as it adds another

degree of complications to the design space, etc. In the future, 4-D design spaces can potentially

be used as an optimisation tool like the way used in Chapters 3 and 4 to design fully coupled

laminates with improved buckling and/ or FPF performances depending on the applications.

5.5 CONCLUSION

This chapter explored the effect of Bend-Twist coupling on the buckling and FPF performance

of laminates with standard and DD ply configurations, focusing on the individual lamination

parameter terms associated with B-T coupling.

The FPF performance of laminate designs that possess B-T coupling is assessed and compared

with standard quad laminates. Results show the potential of DD laminates in improving FPF

strength with minimal reduction in buckling load. The 4-dimensional design spaces of B-T

coupled DD laminates with improved FPF were drawn.

In this preliminary study of the datasets, random designs were selected manually. Future

work should focus on developing a method to analyse the designs more efficiently. Using a more

efficient approach, DD designs with B-T coupled behaviour can be optimised to maximise FPF

strength. As a next step, the shear buckling performance of DD, B-T coupled laminates could

also be studied.



CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter presents conclusions of the work discussed in Chapters 3 - 5. Potential future work

that could be conducted, following on from the work are then presented.

6.1 CONCLUSION

The overall aim of this research was to enhance the buckling and first-ply failure (FPF) per-

formances of composite laminates that possess mechanically coupled behaviours. Traditionally,

composite laminates used in industry are mainly standard quad laminates without any coupling

behaviour; popular as these kinds of laminates are guaranteed to be warp-free. However, this

means that typically the full potential of composite laminates is not utilised, as the design space is

limited. This research therefore aimed to demonstrate that the new types of laminate have greater

potential than traditional designs. A less common approach (lamination parameters), is used to

design and analyse laminates with both standard and double angle-ply (DD) orientations. The

potential of DD laminate designs in terms of buckling and FPF performances, more specifically

their first ply failure and the effect of mechanical coupling behaviour on the performance of both

standard and DD composite laminates were explored.

Chapter 1 of this work discussed the history, background knowledge and previous studies

on composite laminates, including numerical and experimental work that focused on buckling

and first-ply failure analysis. Lamination parameters, which can be used as an optimisation tool,

were introduced, and were discussed in relation to previous research on composite laminate

optimisation using lamination parameters. Unlike the traditional optimisation method that uses

genetic algorithm (GA) to find the optimal ply angle for a particular stacking sequence, lamination

parameters combine the usual design variables like ply angle, ply percentages, thickness etc

162
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into a single set of design variables, allowing the optimisation problem to be linear for single

part structures. New ply orientation technology, variable angle tow (VAT) laminate, was also

discussed, which allows the laminate properties to be changed continuously across the laminate.

Research had shown potential in buckling, but the technology also causes the thickness of the

laminate to fluctuate throughout the laminate. An alternative ply orientation layout, double angle

ply laminates, was introduced, in which every ply within the laminate is straight while the ply

angle can be any arbitrary value. This increases the size of the design space and the potential to

improve the performances compared to standard orientation laminates. The numerical models

should be accurate therefore multiple approaches to calculate the ABD matrix were presented

to ensure all the equations were implemented correctly. Since buckling prediction of coupled

laminates must be done by FEA, the FEA model was presented in Chapter 2, demonstrating that

predictions from FEA and numerical formulas were identical. As double angle-ply laminates are

more complicated than standard laminates, standard quad laminates must first be understood

and then built upon. Chapter 3 implemented classical laminate theory, here the ABD matrix was

used to conduct buckling and first ply failure analysis. Compressive and shear buckling mode

shapes were predicted and contour maps of lamination parameter designs spaces for various

aspect ratio plates were drawn in terms of buckling factors, for both compression and shear

buckling. Design spaces of coupled laminates were also discussed.

Chapter 4 discussed improved laminate performance relating to both in-plane properties

(e.g. first ply failure) and out-of-plane properties (e.g. initial buckling) using double angle-ply

laminates (with ±ψ and ±ϕ ply orientations). The DD laminates were stiffness matched to standard

laminate configurations. The values of ψ and ϕ required to produce specific values of extensional

or bending stiffnesses. An original procedure for producing isotropic laminates in bending was

employed. The design space of DD laminates was explored and compared to standard quad

laminates. Bubble plots presenting the first ply failure strength of the DD designs were also

presented. Off-axis orientation was then applied to these designs to maximise Extension-Shear

coupling; bending isotropy is unaffected by off-axis alignment, hence buckling performance

is also unchanged. Polar plots of first ply failure illustrated that DD laminate designs offer

comparable strength to standard laminates when off-axis orientation is applied to maximise

anisotropy or Extension-Shear coupling. It was also shown that first ply failure strength can be

increased and optimised without affecting the buckling performance of both the standard and DD
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designs. Preliminary compressive tests showed similar findings when compared to the numerical

predictions.

The design space was expanded to 4-dimensions in Chapter 5, and the effect of bending

stiffness on the buckling performance of DD laminates was explored. Double angle-ply designs

were stiffness matched to standard laminates for various thickness designs. Buckling and first ply

failure performance were compared between standard and DD designs, and the 4-D design space

of the DD designs were plotted. Results showed that improving first-ply failure is possible with

negligible reductions in buckling performance. It was demonstrated that, with the introduction

of Bend-Twist coupling behaviour for double angle-ply designs, the reduction in buckling load

was very small. Preliminary research on tapering with DD laminates with Bend-Twist coupling

was also performed with an example.

Key conclusions of this thesis are summarised here:

■ Compressive and shear buckling mode shapes were predicted and contour maps of lamina-

tion parameter designs spaces were drawn

■ Polar plots of first ply failure illustrated that DD laminate designs with Extension-Shear

coupling offer comparable strength to standard laminates

■ First ply failure strength can be increased without affecting the buckling performance of

both the standard and DD designs

■ Results showed that Bend-Twist coupling has a small impact on the buckling performance

for both standard and DD laminates

■ Preliminary design showed that first-ply failure of fully coupled DD laminates can be

improved with very small reductions in buckling performance

Suggestions for future follow-up work are made in the next section. These include potential

research on developing a more effective approach to generating design spaces and contour maps,

shear buckling performance analysis of double angle-ply laminates and tapered laminates, invest-

igating first ply failure strength with different failure criteria and finally practical experiments to

validate all the predictions made from this research.
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6.2 FUTURE WORK

6.2.1 DESIGN SPACES AND CONTOUR MAPS

Previous chapters discussed design spaces and contour maps representing buckling factors. The

general approach to drawing the contour plots was discussed in Chapter 3, which involves a

polynomial surface equation using 15 points of a triangular zone. However, this method becomes

less accurate as the design space becomes more complicated. For example, when the shape of the

contour changes to non-triangular as the angle configuration changes from standard to double

angle, or if the region lies close to a buckling mode-change boundary, these regions on the design

space map are too complex to be well-described by a relatively simple 15 coefficients polynomial

equation . Also, when the triangular region is too small, the polynomial equation is inaccurate.

To cover the gaps and produce more accurate polynomial equations, the area can be split into

multiple smaller regions, with multiple polynomial equations zones to reduce the uncovered area.

For standard quad laminates, the increase in complexity near the mode shape regions can

be overcome by finding the polynomial equation of each mode (e.g. m = 1 and 2 etc) across the

entire design space surface or cross section. The line of change in the buckling mode can be

obtained by finding the points where the isolines for the different buckling modes intercept (for

example, m1=m2). This approach can be applied to double angle-ply laminate design spaces.

However, the issue with this approach is that regions close to a mode change line or parabola are

difficult to be solved by this method, since there is always area that cannot be covered by the 15

pints polynomial equation. Therefore, a possible future work may involve the development of a

more effective approach to generating design spaces and contour maps.

Moreover, bubble plots were introduced in Chapter 4, here the size of the bubble represents

the value of the first ply failure strength. Attempts were made to convert the bubble plots into

contour maps like the ones in Chapter 3 (see, for example, Fig. 4.4a. However, the attempts were

unsuccessful as the change in the first-ply failure values could not be described using the 15-point

polynomial equation. Instead, another approach was to present the strength values in a 3-D

plot, where the values are shown in terms of straight lines in the z-direction, see Fig. 4.4b. This

figure is a 3-D design space plot generated with a CAD model, which was intended to present

the bubble plot in an alternative way. Here the length of the lines is proportional to the strength
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values. However, drawing the line using a CAD model was extremely time-consuming, and the

software became unstable as the number of lines increased, which led to software crashes. A

computer with better hardware performance might solve the problem of crashing, but the major

problem was the method of generating the 3-D design space. Developing a more convenient way

to generate design spaces and contour maps could also aid to generate a better representation of

3-D design space plotting.

As mentioned in previous chapters, lamination parameters can be used as an optimisation

tool. By applying stiffness matching to a database of laminate designs, first ply failure strength of

DD laminates can be improved without degradation in buckling performance when compared to

standard quad laminates, which was shown in Chapter 5. One of the motivations of this project

was to examine DD laminates as an alternative approach to VAT laminates to design composite

laminates with potential improvements in buckling and FPF performance. It would be interesting

and sensible to compare the performance of DD and VAT laminates directly, hence another

potential future topic could focus on a comparison of the buckling and/or FPF performance of

laminate designs optimised using the lamination parameter design approach for both DD and

VAT laminates.

It would be useful to assess the knockdown for the most extreme cases for this set of designs,

but this may have to be relegated to future work.

6.2.2 BOUNDARY CONDITION

This project primarily focused on simply supported laminates. However, there are many more

alternative boundary conditions, such as clamped and free, that are used in industry for different

applications. Future work could assess the performance of composite laminates subject to different

boundary conditions.

6.2.3 SHEAR BUCKLING

This project primarily focused on compressive buckling. Chapter 3 looked into the shear buckling

design spaces of 24-ply laminates with standard quad configurations. Chapter 4, 5 and ?? only

considered compressive buckling due to its popularity, as it is more commonly encountered in

structural designs. Shear buckling is more important for structures like web sections on an ‘I’
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beam. Therefore, exploring the shear buckling performance of straight and tapered laminates for

standard and DD orientations could be beneficial and might be considered for potential future

work.

6.2.4 FIRST PLY FAILURE STRENGTH

This project considered the first ply failure strength of both standard quad and DD laminates.

Various types of failure criteria were used, including independent, partially interactive and

fully interactive. Chapter 4 compared the results obtained from different failure criteria, but

the majority of this project uses the Tsai-Wu failure criterion as it is one of the most popular

models used in industry. Another possible topic for future work could focus on the effect of

using different failure criteria on DD-orientated laminates and tapered laminates, to explore the

difference in their predictions. Ideally, with the help of experimental work, the failure criterion

that best fits the predictions could be identified.

6.2.5 EXPERIMENTAL WORK

All the buckling and FPF analysis in this project was based on simulations produced by finite

element analysis and equations mentioned in Chapter 1. During the early stages of the project, a

visit to the Singapore Institution of Technology was planned to manufacture laminate for buckling

and FPF testing. The buckling tests were aimed to validate and compare the results obtained

from FEA and numerical calculations, with experimental results. The FPF test was intended to

see which failure criterion would be closest to the test results. This would then be used for the

rest of the project. However, the trip did not happen because of COVID-19.

Towards to end of the project, an attempt was made to manufacture simple composite

laminates. A 12-ply woven fabric laminate was produced (see Fig. 6.1). The laminate was

manufactured by manually stacking each ply, then the stacked fabric was cured in an oven. Due

to the lack of time, no follow-up work was performed on the manufactured laminate.
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(a) (b)

Figure 6.1: (a) Top view and; (b) bottom view of the 12-ply laminate made from woven fabric.
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APPENDIX

A1 ABAQUS INPUT CODES FOR COMPRESSION BUCKLING WITH ABD

MATRIX INPUT

*HEADING

Compression loaded laminate with ABD matrix

**RESTART,WRITE

**Creating nodes for corners**

*NODE

1001, 0.,0.

1061,300.,0.

61001,0,300

61061,300,300

**Define the top and bottom edges**

*NGEN,NSET=BOT

1001,1061

*NGEN,NSET=TOP

61001,61061

**Generating and grouping nodes**

*NFILL,NSET=ALLN

BOT,TOP,60,1000

*NSET,NSET=LEFT,GENERATE

2001,60001,1000

*NSET,NSET=LEFTS,GENERATE

1001,61001,60000

179
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*NSET,NSET=LEFTD,GENERATE

3001,59001,2000

*NSET,NSET=LEFTQ,GENERATE

2001,60001,2000

*NSET,NSET=RIGHT,GENERATE

2061,60061,1000

*NSET,NSET=RIGHTS,GENERATE

1061,61061,60000

*NSET,NSET=RIGHTD,GENERATE

3061,59061,2000

*NSET,NSET=RIGHTQ,GENERATE

2061,60061,2000

**Generating elements**

*ELEMENT,TYPE=S8R5

1001, 1001,1003,3003,3001,1002,2003,3002,2001

*ELGEN,ELSET=ALLE

1001, 30,2,1, 30,2000,1000

**Apply material properties**

*MATERIAL, NAME=CFRP

*SHELL GENERAL SECTION, ELSET=ALLE, OFFSET=0.5

256047.4, 75797.9, 256047.4, 0, 0, 90124.7, 0, 0,

0, 239858.1, 0, 0, 0, 71005.4, 239858.1, 0,

0, 0, 0, 0, 84426.3

**Boundary conditions**

*BOUNDARY

**Simply supported boundary conditions.

TOP,3

TOP,5,6

BOT,3

BOT,5,6

DIAG,3
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DIAG,6

1001,1,2

61001,1

*STEP

1

**Conduct buckling analysis**

*BUCKLE

2,2,5,40

*CLOAD

**Applying compression load**

LEFTS,1,0.01673722

LEFTQ,1,0.066948883

LEFTD,1,0.033474441

RIGHTS,1,-0.01673722

RIGHTQ,1,-0.066948883

RIGHTD,1,-0.033474441

*ENDSTEP

A2 EXTRACTS OF ABAQUS INPUT CODES FOR COMPRESSION BUCKLING

WITH STACKING SEQUENCE

**Apply material properties**

*ELASTIC, TYPE=LAMINA

181000,10300,0.28,7170,7170,7170

*SHELL GENERAL SECTION, ELSET=ALLE, COMPOSITE

** AsB0Di 24-ply

0.1397„CFRP,-45

0.1397„CFRP,90

0.1397„CFRP,0

0.1397„CFRP,45

0.1397„CFRP,0
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0.1397„CFRP,45

0.1397„CFRP,90

0.1397„CFRP,45

0.1397„CFRP,-45

0.1397„CFRP,0

0.1397„CFRP,-45

0.1397„CFRP,90

0.1397„CFRP,-45

0.1397„CFRP,90

0.1397„CFRP,45

0.1397„CFRP,90

0.1397„CFRP,0

0.1397„CFRP,-45

0.1397„CFRP,0

0.1397„CFRP,45

0.1397„CFRP,0

0.1397„CFRP,45

0.1397„CFRP,-45

0.1397„CFRP,90

A3 EXTRACTS OF ABAQUS INPUT CODES FOR SHEAR LOADING

**Applying shear load

LEFTS,2,0.01673722

LEFTQ,2,0.066948883

LEFTD,2,0.033474441

RIGHTS,2,-0.01673722

RIGHTQ,2,-0.066948883

RIGHTD,2,-0.033474441

BOTS,1,0.01673722

BOTQ,1,0.066948883
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BOTD,1,0.033474441

TOPS,1,-0.01673722

TOPQ,1,-0.066948883
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A4 STACKING SEQUENCES

Table A1: Stacking sequences and Lamination Parameter coordinates for Quasi Isotropic laminates
for 16 ply laminates, i.e. (ξ1, ξ2) = (0, 0). Here the 10% rule has been applied, which corresponds to
the minimum number of plies in each of the standard ply orientations. Ply contiguity constraints
have also been applied, which limits the maximum of number of adjacent plies with the same
orientation to 3, as is now common design practice. The listings are grouped by matching
orthotropic bending stiffness (ξ9, ξ10) and ordered by increasing Bending-Twisting coupling, ξ11.
Symbols +, - ◦ and • represent standard ply angles 0°, 90°and ±45°, respectively.

Stacking Sequence ξ9 ξ10 ξ11

+ • • - - ◦ + ◦ ◦ + ◦ - - • • + -0.39 -0.07 0.15

+ • • - + ◦ - ◦ ◦ - ◦ + - • • + -0.39 -0.07 0.27

+ • • + - ◦ - ◦ ◦ - ◦ - + • • + -0.39 -0.07 0.36

+ • • - - ◦ ◦ + + ◦ ◦ - - • • + -0.38 -0.05 0.14

+ • • - + ◦ ◦ - - ◦ ◦ + - • • + -0.38 -0.05 0.28

+ • • + - ◦ ◦ - - ◦ ◦ - + • • + -0.38 -0.05 0.38

+ • • - ◦ - + ◦ ◦ + - ◦ - • • + -0.35 0.00 0.19

+ • • - ◦ + - ◦ ◦ - + ◦ - • • + -0.35 0.00 0.23

+ • • + ◦ - - ◦ ◦ - - ◦ + • • + -0.35 0.00 0.40

+ • • - ◦ - ◦ + + ◦ - ◦ - • • + -0.34 0.02 0.18

+ • • - ◦ + ◦ - - ◦ + ◦ - • • + -0.34 0.02 0.25

+ • • + ◦ - ◦ - - ◦ - ◦ + • • + -0.34 0.02 0.41

+ • - • - ◦ + ◦ ◦ + ◦ - • - • + -0.33 -0.19 0.09

+ • - • + ◦ - ◦ ◦ - ◦ + • - • + -0.33 -0.19 0.21

+ • + • - ◦ - ◦ ◦ - ◦ - • + • + -0.33 -0.19 0.42

+ • • - ◦ ◦ - + + - ◦ ◦ - • • + -0.32 0.07 0.20

+ • • - ◦ ◦ + - - + ◦ ◦ - • • + -0.32 0.07 0.22

+ • - • - ◦ ◦ + + ◦ ◦ - • - • + -0.32 -0.16 0.08

+ • - • + ◦ ◦ - - ◦ ◦ + • - • + -0.32 -0.16 0.22

+ • + • - ◦ ◦ - - ◦ ◦ - • + • + -0.32 -0.16 0.43

+ • • ◦ - - + ◦ ◦ + - - ◦ • • + -0.30 0.09 0.23

+ • • ◦ - + - ◦ ◦ - + - ◦ • • + -0.30 0.09 0.28

+ • • ◦ + - - ◦ ◦ - - + ◦ • • + -0.30 0.09 0.35

+ • - • ◦ - + ◦ ◦ + - ◦ • - • + -0.29 -0.12 0.13

+ • - • ◦ + - ◦ ◦ - + ◦ • - • + -0.29 -0.12 0.18

+ • + • ◦ - - ◦ ◦ - - ◦ • + • + -0.29 -0.12 0.46

+ • • ◦ - - ◦ + + ◦ - - ◦ • • + -0.29 0.12 0.22

+ • • ◦ - + ◦ - - ◦ + - ◦ • • + -0.29 0.12 0.29

+ • • ◦ + - ◦ - - ◦ - + ◦ • • + -0.29 0.12 0.36

+ • - • ◦ - ◦ + + ◦ - ◦ • - • + -0.28 -0.09 0.12

+ • - • ◦ + ◦ - - ◦ + ◦ • - • + -0.28 -0.09 0.19

+ • + • ◦ - ◦ - - ◦ - ◦ • + • + -0.28 -0.09 0.47
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+ • - - • ◦ + ◦ ◦ + ◦ • - - • + -0.28 -0.28 0.05

+ • - + • ◦ - ◦ ◦ - ◦ • + - • + -0.28 -0.28 0.26

+ • + - • ◦ - ◦ ◦ - ◦ • - + • + -0.28 -0.28 0.38

+ • • ◦ - ◦ - + + - ◦ - ◦ • • + -0.27 0.16 0.25

+ • • ◦ - ◦ + - - + ◦ - ◦ • • + -0.27 0.16 0.27

+ • - - • ◦ ◦ + + ◦ ◦ • - - • + -0.27 -0.26 0.04

+ • - + • ◦ ◦ - - ◦ ◦ • + - • + -0.27 -0.26 0.27

+ • + - • ◦ ◦ - - ◦ ◦ • - + • + -0.27 -0.26 0.39

+ • - • ◦ ◦ - + + - ◦ ◦ • - • + -0.26 -0.05 0.14

+ • - • ◦ ◦ + - - + ◦ ◦ • - • + -0.26 -0.05 0.16

+ - • • - ◦ + ◦ ◦ + ◦ - • • - + -0.26 -0.33 0.02

+ - • • + ◦ - ◦ ◦ - ◦ + • • - + -0.26 -0.33 0.14

+ + • • - ◦ - ◦ ◦ - ◦ - • • + + -0.26 -0.33 0.49

+ - • • - ◦ ◦ + + ◦ ◦ - • • - + -0.25 -0.30 0.01

+ - • • + ◦ ◦ - - ◦ ◦ + • • - + -0.25 -0.30 0.15

+ + • • - ◦ ◦ - - ◦ ◦ - • • + + -0.25 -0.30 0.50

+ • • ◦ ◦ - - + + - - ◦ ◦ • • + -0.23 0.23 0.28

+ • • ◦ ◦ - + - - + - ◦ ◦ • • + -0.23 0.23 0.30

+ • - - + ◦ • ◦ ◦ • ◦ + - - • + -0.22 -0.40 0.11

+ • - + - ◦ • ◦ ◦ • ◦ - + - • + -0.22 -0.40 0.20

+ • + - - ◦ • ◦ ◦ • ◦ - - + • + -0.22 -0.40 0.32

+ - • • ◦ - + ◦ ◦ + - ◦ • • - + -0.22 -0.26 0.06

+ - • • ◦ + - ◦ ◦ - + ◦ • • - + -0.22 -0.26 0.11

+ + • • ◦ - - ◦ ◦ - - ◦ • • + + -0.22 -0.26 0.53

+ - • - • ◦ + ◦ ◦ + ◦ • - • - + -0.21 -0.42 -0.02

+ - • + • ◦ - ◦ ◦ - ◦ • + • - + -0.21 -0.42 0.19

+ + • - • ◦ - ◦ ◦ - ◦ • - • + + -0.21 -0.42 0.45

+ • - - ◦ • + ◦ ◦ + • ◦ - - • + -0.21 -0.28 0.05

+ • - + ◦ • - ◦ ◦ - • ◦ + - • + -0.21 -0.28 0.26

+ • + - ◦ • - ◦ ◦ - • ◦ - + • + -0.21 -0.28 0.38

+ - • • ◦ - ◦ + + ◦ - ◦ • • - + -0.21 -0.23 0.05

+ - • • ◦ + ◦ - - ◦ + ◦ • • - + -0.21 -0.23 0.12

+ + • • ◦ - ◦ - - ◦ - ◦ • • + + -0.21 -0.23 0.54

+ • - ◦ • - + ◦ ◦ + - • ◦ - • + -0.20 -0.12 0.13

+ • - ◦ • + - ◦ ◦ - + • ◦ - • + -0.20 -0.12 0.18

+ • + ◦ • - - ◦ ◦ - - • ◦ + • + -0.20 -0.12 0.46

+ - • - • ◦ ◦ + + ◦ ◦ • - • - + -0.20 -0.40 -0.04

+ • - - + ◦ ◦ • • ◦ ◦ + - - • + -0.20 -0.40 0.11

+ - • + • ◦ ◦ - - ◦ ◦ • + • - + -0.20 -0.40 0.20

+ • - + - ◦ ◦ • • ◦ ◦ - + - • + -0.20 -0.40 0.20

+ • + - - ◦ ◦ • • ◦ ◦ - - + • + -0.20 -0.40 0.32

+ + • - • ◦ ◦ - - ◦ ◦ • - • + + -0.20 -0.40 0.46
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+ • - - ◦ • ◦ + + ◦ • ◦ - - • + -0.20 -0.26 0.04

+ • - + ◦ • ◦ - - ◦ • ◦ + - • + -0.20 -0.26 0.27

+ • + - ◦ • ◦ - - ◦ • ◦ - + • + -0.20 -0.26 0.39

+ • - ◦ • - ◦ + + ◦ - • ◦ - • + -0.19 -0.09 0.12

+ • - ◦ • + ◦ - - ◦ + • ◦ - • + -0.19 -0.09 0.19

+ • + ◦ • - ◦ - - ◦ - • ◦ + • + -0.19 -0.09 0.47

+ • ◦ • - - + ◦ ◦ + - - • ◦ • + -0.19 0.09 0.23

+ • ◦ • - + - ◦ ◦ - + - • ◦ • + -0.19 0.09 0.28

+ • ◦ • + - - ◦ ◦ - - + • ◦ • + -0.19 0.09 0.35

+ • - - ◦ + • ◦ ◦ • + ◦ - - • + -0.19 -0.33 0.07

+ • - + ◦ - • ◦ ◦ • - ◦ + - • + -0.19 -0.33 0.23

+ • + - ◦ - • ◦ ◦ • - ◦ - + • + -0.19 -0.33 0.35

+ - • • ◦ ◦ - + + - ◦ ◦ • • - + -0.19 -0.19 0.07

+ - • • ◦ ◦ + - - + ◦ ◦ • • - + -0.19 -0.19 0.09

+ • ◦ • - - ◦ + + ◦ - - • ◦ • + -0.18 0.12 0.22

+ • ◦ • - + ◦ - - ◦ + - • ◦ • + -0.18 0.12 0.29

+ • ◦ • + - ◦ - - ◦ - + • ◦ • + -0.18 0.12 0.36

+ • - ◦ • ◦ - + + - ◦ • ◦ - • + -0.16 -0.05 0.14

+ • - ◦ • ◦ + - - + ◦ • ◦ - • + -0.16 -0.05 0.16

+ • - - ◦ + ◦ • • ◦ + ◦ - - • + -0.16 -0.33 0.07

+ • - + ◦ - ◦ • • ◦ - ◦ + - • + -0.16 -0.33 0.23

+ • + - ◦ - ◦ • • ◦ - ◦ - + • + -0.16 -0.33 0.35

+ • - ◦ - • + ◦ ◦ + • - ◦ - • + -0.16 -0.19 0.09

+ • - ◦ + • - ◦ ◦ - • + ◦ - • + -0.16 -0.19 0.21

+ • + ◦ - • - ◦ ◦ - • - ◦ + • + -0.16 -0.19 0.42

+ • - ◦ - • ◦ + + ◦ • - ◦ - • + -0.15 -0.16 0.08

+ • - ◦ + • ◦ - - ◦ • + ◦ - • + -0.15 -0.16 0.22

+ • + ◦ - • ◦ - - ◦ • - ◦ + • + -0.15 -0.16 0.43

+ • ◦ • - ◦ - + + - ◦ - • ◦ • + -0.15 0.16 0.25

+ • ◦ • - ◦ + - - + ◦ - • ◦ • + -0.15 0.16 0.27

+ - - • • ◦ + ◦ ◦ + ◦ • • - - + -0.15 -0.54 -0.08

+ - • - + ◦ • ◦ ◦ • ◦ + - • - + -0.15 -0.54 0.04

+ - • + - ◦ • ◦ ◦ • ◦ - + • - + -0.15 -0.54 0.13

+ - + • • ◦ - ◦ ◦ - ◦ • • + - + -0.15 -0.54 0.25

+ + - • • ◦ - ◦ ◦ - ◦ • • - + + -0.15 -0.54 0.39

+ + • - - ◦ • ◦ ◦ • ◦ - - • + + -0.15 -0.54 0.39

+ • - - ◦ ◦ • + + • ◦ ◦ - - • + -0.15 -0.26 0.04

+ • - + ◦ ◦ • - - • ◦ ◦ + - • + -0.15 -0.26 0.27

+ • + - ◦ ◦ • - - • ◦ ◦ - + • + -0.15 -0.26 0.39
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+ • ◦ - • - + ◦ ◦ + - • - ◦ • + -0.14 0.00 0.19

+ • ◦ - • + - ◦ ◦ - + • - ◦ • + -0.14 0.00 0.23

+ • ◦ + • - - ◦ ◦ - - • + ◦ • + -0.14 0.00 0.40

+ - - • • ◦ ◦ + + ◦ ◦ • • - - + -0.14 -0.52 -0.09

+ - + • • ◦ ◦ - - ◦ ◦ • • + - + -0.14 -0.52 0.26

+ + - • • ◦ ◦ - - ◦ ◦ • • - + + -0.14 -0.52 0.40

+ - • - ◦ • + ◦ ◦ + • ◦ - • - + -0.14 -0.42 -0.02

+ - • + ◦ • - ◦ ◦ - • ◦ + • - + -0.14 -0.42 0.19

+ + • - ◦ • - ◦ ◦ - • ◦ - • + + -0.14 -0.42 0.45

+ • - - ◦ ◦ + • • + ◦ ◦ - - • + -0.14 -0.28 0.05

+ • - + ◦ ◦ - • • - ◦ ◦ + - • + -0.14 -0.28 0.26

+ • + - ◦ ◦ - • • - ◦ ◦ - + • + -0.14 -0.28 0.38

+ • - ◦ - + • ◦ ◦ • + - ◦ - • + -0.14 -0.23 0.12

+ • - ◦ + - • ◦ ◦ • - + ◦ - • + -0.14 -0.23 0.19

+ • + ◦ - - • ◦ ◦ • - - ◦ + • + -0.14 -0.23 0.40

+ • ◦ - • + ◦ - - ◦ + • - ◦ • + -0.13 0.02 0.25

+ • ◦ + • - ◦ - - ◦ - • + ◦ • + -0.13 0.02 0.41

+ • ◦ - • - ◦ + + ◦ - • - ◦ • + -0.13 0.02 0.18

+ - • - + ◦ ◦ • • ◦ ◦ + - • - + -0.13 -0.54 0.04

+ - • + - ◦ ◦ • • ◦ ◦ - + • - + -0.13 -0.54 0.13

+ + • - - ◦ ◦ • • ◦ ◦ - - • + + -0.13 -0.54 0.39

+ - • - ◦ • ◦ + + ◦ • ◦ - • - + -0.13 -0.40 -0.04

+ - • + ◦ • ◦ - - ◦ • ◦ + • - + -0.13 -0.40 0.20

+ + • - ◦ • ◦ - - ◦ • ◦ - • + + -0.13 -0.40 0.46

+ - • ◦ • - + ◦ ◦ + - • ◦ • - + -0.13 -0.26 0.06

+ - • ◦ • + - ◦ ◦ - + • ◦ • - + -0.13 -0.26 0.11

+ + • ◦ • - - ◦ ◦ - - • ◦ • + + -0.13 -0.26 0.53

+ • ◦ • ◦ - - + + - - ◦ • ◦ • + -0.12 0.23 0.28

+ • ◦ • ◦ - + - - + - ◦ • ◦ • + -0.12 0.23 0.30

+ - • ◦ • - ◦ + + ◦ - • ◦ • - + -0.12 -0.23 0.05

+ - • ◦ • + ◦ - - ◦ + • ◦ • - + -0.12 -0.23 0.12

+ • - ◦ - + ◦ • • ◦ + - ◦ - • + -0.12 -0.23 0.12

+ • - ◦ + - ◦ • • ◦ - + ◦ - • + -0.12 -0.23 0.19

+ • + ◦ - - ◦ • • ◦ - - ◦ + • + -0.12 -0.23 0.40

+ + • ◦ • - ◦ - - ◦ - • ◦ • + + -0.12 -0.23 0.54

+ - • + ◦ - • ◦ ◦ • - ◦ + • - + -0.12 -0.47 0.16

+ + • - ◦ - • ◦ ◦ • - ◦ - • + + -0.12 -0.47 0.42

+ • - ◦ - ◦ • + + • ◦ - ◦ - • + -0.11 -0.16 0.08

+ • - ◦ + ◦ • - - • ◦ + ◦ - • + -0.11 -0.16 0.22

+ • + ◦ - ◦ • - - • ◦ - ◦ + • + -0.11 -0.16 0.43

+ • ◦ - - • + ◦ ◦ + • - - ◦ • + -0.11 -0.07 0.15

+ • ◦ - + • - ◦ ◦ - • + - ◦ • + -0.11 -0.07 0.27

+ • ◦ + - • - ◦ ◦ - • - + ◦ • + -0.11 -0.07 0.36
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+ • ◦ - • ◦ - + + - ◦ • - ◦ • + -0.11 0.07 0.20

+ • ◦ - • ◦ + - - + ◦ • - ◦ • + -0.11 0.07 0.22

+ - • ◦ • ◦ - + + - ◦ • ◦ • - + -0.09 -0.19 0.07

+ - • ◦ • ◦ + - - + ◦ • ◦ • - + -0.09 -0.19 0.09

+ • - ◦ - ◦ + • • + ◦ - ◦ - • + -0.09 -0.19 0.09

+ • - ◦ + ◦ - • • - ◦ + ◦ - • + -0.09 -0.19 0.21

+ • + ◦ - ◦ - • • - ◦ - ◦ + • + -0.09 -0.19 0.42

+ • ◦ - - • ◦ + + ◦ • - - ◦ • + -0.09 -0.05 0.14

+ • - ◦ ◦ • - + + - • ◦ ◦ - • + -0.09 -0.05 0.14

+ • - ◦ ◦ • + - - + • ◦ ◦ - • + -0.09 -0.05 0.16

+ • ◦ - + • ◦ - - ◦ • + - ◦ • + -0.09 -0.05 0.28

+ • ◦ + - • ◦ - - ◦ • - + ◦ • + -0.09 -0.05 0.38

+ - • + ◦ - ◦ • • ◦ - ◦ + • - + -0.09 -0.47 0.16

+ + • - ◦ - ◦ • • ◦ - ◦ - • + + -0.09 -0.47 0.42

+ - • ◦ - • + ◦ ◦ + • - ◦ • - + -0.09 -0.33 0.02

+ - • ◦ + • - ◦ ◦ - • + ◦ • - + -0.09 -0.33 0.14

+ + • ◦ - • - ◦ ◦ - • - ◦ • + + -0.09 -0.33 0.49

+ - - • + ◦ • ◦ ◦ • ◦ + • - - + -0.09 -0.66 -0.02

+ - + • - ◦ • ◦ ◦ • ◦ - • + - + -0.09 -0.66 0.19

+ + - • - ◦ • ◦ ◦ • ◦ - • - + + -0.09 -0.66 0.33

+ - • ◦ - • ◦ + + ◦ • - ◦ • - + -0.08 -0.30 0.01

+ - • ◦ + • ◦ - - ◦ • + ◦ • - + -0.08 -0.30 0.15

+ + • ◦ - • ◦ - - ◦ • - ◦ • + + -0.08 -0.30 0.50

+ • ◦ - - + • ◦ ◦ • + - - ◦ • + -0.08 -0.12 0.18

+ • ◦ - + - • ◦ ◦ • - + - ◦ • + -0.08 -0.12 0.25

+ • ◦ + - - • ◦ ◦ • - - + ◦ • + -0.08 -0.12 0.34

+ - - • ◦ • + ◦ ◦ + • ◦ • - - + -0.08 -0.54 -0.08

+ - + • ◦ • - ◦ ◦ - • ◦ • + - + -0.08 -0.54 0.25

+ + - • ◦ • - ◦ ◦ - • ◦ • - + + -0.08 -0.54 0.39

+ - • - ◦ ◦ • + + • ◦ ◦ - • - + -0.08 -0.40 -0.04

+ - • + ◦ ◦ • - - • ◦ ◦ + • - + -0.08 -0.40 0.20

+ + • - ◦ ◦ • - - • ◦ ◦ - • + + -0.08 -0.40 0.46

+ • - ◦ ◦ - • + + • - ◦ ◦ - • + -0.07 -0.09 0.12

+ • - ◦ ◦ + • - - • + ◦ ◦ - • + -0.07 -0.09 0.19

+ • + ◦ ◦ - • - - • - ◦ ◦ + • + -0.07 -0.09 0.47

+ - - • ◦ • ◦ + + ◦ • ◦ • - - + -0.07 -0.52 -0.09

+ - + • ◦ • ◦ - - ◦ • ◦ • + - + -0.07 -0.52 0.26

+ + - • ◦ • ◦ - - ◦ • ◦ • - + + -0.07 -0.52 0.40

+ - • - ◦ ◦ + • • + ◦ ◦ - • - + -0.07 -0.42 -0.02

+ - • + ◦ ◦ - • • - ◦ ◦ + • - + -0.07 -0.42 0.19

+ + • - ◦ ◦ - • • - ◦ ◦ - • + + -0.07 -0.42 0.45
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+ - • ◦ - + • ◦ ◦ • + - ◦ • - + -0.07 -0.38 0.05

+ - • ◦ + - • ◦ ◦ • - + ◦ • - + -0.07 -0.38 0.12

+ + • ◦ - - • ◦ ◦ • - - ◦ • + + -0.07 -0.38 0.47

+ - - • + ◦ ◦ • • ◦ ◦ + • - - + -0.07 -0.66 -0.02

+ - + • - ◦ ◦ • • ◦ ◦ - • + - + -0.07 -0.66 0.19

+ + - • - ◦ ◦ • • ◦ ◦ - • - + + -0.07 -0.66 0.33

+ • - ◦ ◦ - + • • + - ◦ ◦ - • + -0.06 -0.12 0.13

+ • ◦ - - + ◦ • • ◦ + - - ◦ • + -0.06 -0.12 0.18

+ • - ◦ ◦ + - • • - + ◦ ◦ - • + -0.06 -0.12 0.18

+ • ◦ - + - ◦ • • ◦ - + - ◦ • + -0.06 -0.12 0.25

+ • ◦ + - - ◦ • • ◦ - - + ◦ • + -0.06 -0.12 0.34

+ • + ◦ ◦ - - • • - - ◦ ◦ + • + -0.06 -0.12 0.46

+ - - • ◦ + • ◦ ◦ • + ◦ • - - + -0.06 -0.59 -0.06

+ - + • ◦ - • ◦ ◦ • - ◦ • + - + -0.06 -0.59 0.22

+ + - • ◦ - • ◦ ◦ • - ◦ • - + + -0.06 -0.59 0.36

+ ◦ • • - - + ◦ ◦ + - - • • ◦ + -0.05 0.09 0.23

+ ◦ • • - + - ◦ ◦ - + - • • ◦ + -0.05 0.09 0.28

+ ◦ • • + - - ◦ ◦ - - + • • ◦ + -0.05 0.09 0.35

+ • ◦ - - ◦ • + + • ◦ - - ◦ • + -0.05 -0.05 0.14

+ • ◦ - + ◦ • - - • ◦ + - ◦ • + -0.05 -0.05 0.28

+ • ◦ + - ◦ • - - • ◦ - + ◦ • + -0.05 -0.05 0.38

+ - - + • ◦ • ◦ ◦ • ◦ • + - - + -0.05 -0.75 0.02

+ - + - • ◦ • ◦ ◦ • ◦ • - + - + -0.05 -0.75 0.14

+ + - - • ◦ • ◦ ◦ • ◦ • - - + + -0.05 -0.75 0.28

+ - • ◦ - + ◦ • • ◦ + - ◦ • - + -0.05 -0.38 0.05

+ - • ◦ + - ◦ • • ◦ - + ◦ • - + -0.05 -0.38 0.12

+ + • ◦ - - ◦ • • ◦ - - ◦ • + + -0.05 -0.38 0.47

+ ◦ • • - - ◦ + + ◦ - - • • ◦ + -0.04 0.12 0.22

+ ◦ • • - + ◦ - - ◦ + - • • ◦ + -0.04 0.12 0.29

+ ◦ • • + - ◦ - - ◦ - + • • ◦ + -0.04 0.12 0.36

+ - • ◦ - ◦ • + + • ◦ - ◦ • - + -0.04 -0.30 0.01

+ - • ◦ + ◦ • - - • ◦ + ◦ • - + -0.04 -0.30 0.15

+ + • ◦ - ◦ • - - • ◦ - ◦ • + + -0.04 -0.30 0.50

+ • ◦ - - ◦ + • • + ◦ - - ◦ • + -0.04 -0.07 0.15

+ • ◦ - + ◦ - • • - ◦ + - ◦ • + -0.04 -0.07 0.27

+ • ◦ + - ◦ - • • - ◦ - + ◦ • + -0.04 -0.07 0.36

+ - - • ◦ + ◦ • • ◦ + ◦ • - - + -0.04 -0.59 -0.06

+ - + • ◦ - ◦ • • ◦ - ◦ • + - + -0.04 -0.59 0.22

+ + - • ◦ - ◦ • • ◦ - ◦ • - + + -0.04 -0.59 0.36

+ • ◦ - ◦ • - + + - • ◦ - ◦ • + -0.04 0.07 0.20

+ • ◦ - ◦ • + - - + • ◦ - ◦ • + -0.04 0.07 0.22
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+ • ◦ ◦ • - - + + - - • ◦ ◦ • + -0.02 0.23 0.28

+ • ◦ ◦ • - + - - + - • ◦ ◦ • + -0.02 0.23 0.30

+ - • ◦ - ◦ + • • + ◦ - ◦ • - + -0.02 -0.33 0.02

+ - • ◦ + ◦ - • • - ◦ + ◦ • - + -0.02 -0.33 0.14

+ + • ◦ - ◦ - • • - ◦ - ◦ • + + -0.02 -0.33 0.49

+ - • ◦ ◦ • - + + - • ◦ ◦ • - + -0.02 -0.19 0.07

+ - • ◦ ◦ • + - - + • ◦ ◦ • - + -0.02 -0.19 0.09

+ - - • ◦ ◦ • + + • ◦ ◦ • - - + -0.02 -0.52 -0.09

+ - + • ◦ ◦ • - - • ◦ ◦ • + - + -0.02 -0.52 0.26

+ + - • ◦ ◦ • - - • ◦ ◦ • - + + -0.02 -0.52 0.40

+ - - + • ◦ ◦ • • ◦ ◦ • + - - + -0.02 -0.75 0.02

+ - + - • ◦ ◦ • • ◦ ◦ • - + - + -0.02 -0.75 0.14

+ + - - • ◦ ◦ • • ◦ ◦ • - - + + -0.02 -0.75 0.28

+ ◦ • • - ◦ - + + - ◦ - • • ◦ + -0.01 0.16 0.25

+ ◦ • • - ◦ + - - + ◦ - • • ◦ + -0.01 0.16 0.27

+ - ◦ • • - + ◦ ◦ + - • • ◦ - + -0.01 -0.26 0.06

+ - ◦ • • + - ◦ ◦ - + • • ◦ - + -0.01 -0.26 0.11

+ + ◦ • • - - ◦ ◦ - - • • ◦ + + -0.01 -0.26 0.53

+ - - • ◦ ◦ + • • + ◦ ◦ • - - + -0.01 -0.54 -0.08

+ - + • ◦ ◦ - • • - ◦ ◦ • + - + -0.01 -0.54 0.25

+ + - • ◦ ◦ - • • - ◦ ◦ • - + + -0.01 -0.54 0.39

+ • ◦ - ◦ + • - - • + ◦ - ◦ • + -0.01 0.02 0.25

+ • ◦ + ◦ - • - - • - ◦ + ◦ • + -0.01 0.02 0.41

+ • ◦ - ◦ - • + + • - ◦ - ◦ • + -0.01 0.02 0.18

+ - • ◦ ◦ - • + + • - ◦ ◦ • - + 0.00 -0.23 0.05

+ - ◦ • • - ◦ + + ◦ - • • ◦ - + 0.00 -0.23 0.05

+ - • ◦ ◦ + • - - • + ◦ ◦ • - + 0.00 -0.23 0.12

+ - ◦ • • + ◦ - - ◦ + • • ◦ - + 0.00 -0.23 0.12

+ + ◦ • • - ◦ - - ◦ - • • ◦ + + 0.00 -0.23 0.54

+ + • ◦ ◦ - • - - • - ◦ ◦ • + + 0.00 -0.23 0.54

+ ◦ • - • - + ◦ ◦ + - • - • ◦ + 0.00 0.00 0.19

+ • ◦ - ◦ - + • • + - ◦ - ◦ • + 0.00 0.00 0.19

+ ◦ • - • + - ◦ ◦ - + • - • ◦ + 0.00 0.00 0.23

+ • ◦ - ◦ + - • • - + ◦ - ◦ • + 0.00 0.00 0.23

+ ◦ • + • - - ◦ ◦ - - • + • ◦ + 0.00 0.00 0.40

+ • ◦ + ◦ - - • • - - ◦ + ◦ • + 0.00 0.00 0.40

+ • ◦ ◦ - • - + + - • - ◦ ◦ • + 0.01 0.16 0.25

+ • ◦ ◦ - • + - - + • - ◦ ◦ • + 0.01 0.16 0.27

+ - • ◦ ◦ - + • • + - ◦ ◦ • - + 0.01 -0.26 0.06

+ - • ◦ ◦ + - • • - + ◦ ◦ • - + 0.01 -0.26 0.11

+ + • ◦ ◦ - - • • - - ◦ ◦ • + + 0.01 -0.26 0.53
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+ - - ◦ • • + ◦ ◦ + • • ◦ - - + 0.01 -0.54 -0.08

+ - + ◦ • • - ◦ ◦ - • • ◦ + - + 0.01 -0.54 0.25

+ + - ◦ • • - ◦ ◦ - • • ◦ - + + 0.01 -0.54 0.39

+ ◦ • - • + ◦ - - ◦ + • - • ◦ + 0.01 0.02 0.25

+ ◦ • + • - ◦ - - ◦ - • + • ◦ + 0.01 0.02 0.41

+ ◦ • - • - ◦ + + ◦ - • - • ◦ + 0.01 0.02 0.18

+ ◦ • • ◦ - - + + - - ◦ • • ◦ + 0.02 0.23 0.28

+ ◦ • • ◦ - + - - + - ◦ • • ◦ + 0.02 0.23 0.30

+ - ◦ • - • + ◦ ◦ + • - • ◦ - + 0.02 -0.33 0.02

+ - ◦ • + • - ◦ ◦ - • + • ◦ - + 0.02 -0.33 0.14

+ + ◦ • - • - ◦ ◦ - • - • ◦ + + 0.02 -0.33 0.49

+ - ◦ • • ◦ - + + - ◦ • • ◦ - + 0.02 -0.19 0.07

+ - ◦ • • ◦ + - - + ◦ • • ◦ - + 0.02 -0.19 0.09

+ - - + ◦ • • ◦ ◦ • • ◦ + - - + 0.02 -0.75 0.02

+ - + - ◦ • • ◦ ◦ • • ◦ - + - + 0.02 -0.75 0.14

+ + - - ◦ • • ◦ ◦ • • ◦ - - + + 0.02 -0.75 0.28

+ - - ◦ • • ◦ + + ◦ • • ◦ - - + 0.02 -0.52 -0.09

+ - + ◦ • • ◦ - - ◦ • • ◦ + - + 0.02 -0.52 0.26

+ + - ◦ • • ◦ - - ◦ • • ◦ - + + 0.02 -0.52 0.40

+ • ◦ ◦ - - • + + • - - ◦ ◦ • + 0.04 0.12 0.22

+ • ◦ ◦ - + • - - • + - ◦ ◦ • + 0.04 0.12 0.29

+ • ◦ ◦ + - • - - • - + ◦ ◦ • + 0.04 0.12 0.36

+ - ◦ • - • ◦ + + ◦ • - • ◦ - + 0.04 -0.30 0.01

+ - ◦ • + • ◦ - - ◦ • + • ◦ - + 0.04 -0.30 0.15

+ + ◦ • - • ◦ - - ◦ • - • ◦ + + 0.04 -0.30 0.50

+ - - ◦ • + • ◦ ◦ • + • ◦ - - + 0.04 -0.59 -0.06

+ - + ◦ • - • ◦ ◦ • - • ◦ + - + 0.04 -0.59 0.22

+ + - ◦ • - • ◦ ◦ • - • ◦ - + + 0.04 -0.59 0.36

+ ◦ • - - • + ◦ ◦ + • - - • ◦ + 0.04 -0.07 0.15

+ ◦ • - + • - ◦ ◦ - • + - • ◦ + 0.04 -0.07 0.27

+ ◦ • + - • - ◦ ◦ - • - + • ◦ + 0.04 -0.07 0.36

+ ◦ • - • ◦ - + + - ◦ • - • ◦ + 0.04 0.07 0.20

+ ◦ • - • ◦ + - - + ◦ • - • ◦ + 0.04 0.07 0.22

+ • ◦ ◦ - - + • • + - - ◦ ◦ • + 0.05 0.09 0.23

+ • ◦ ◦ - + - • • - + - ◦ ◦ • + 0.05 0.09 0.28

+ • ◦ ◦ + - - • • - - + ◦ ◦ • + 0.05 0.09 0.35

+ - - + ◦ • ◦ • • ◦ • ◦ + - - + 0.05 -0.75 0.02

+ - + - ◦ • ◦ • • ◦ • ◦ - + - + 0.05 -0.75 0.14

+ + - - ◦ • ◦ • • ◦ • ◦ - - + + 0.05 -0.75 0.28
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+ - ◦ • - + • ◦ ◦ • + - • ◦ - + 0.05 -0.38 0.05

+ - ◦ • + - • ◦ ◦ • - + • ◦ - + 0.05 -0.38 0.12

+ + ◦ • - - • ◦ ◦ • - - • ◦ + + 0.05 -0.38 0.47

+ ◦ • - - • ◦ + + ◦ • - - • ◦ + 0.05 -0.05 0.14

+ ◦ • - + • ◦ - - ◦ • + - • ◦ + 0.05 -0.05 0.28

+ ◦ • + - • ◦ - - ◦ • - + • ◦ + 0.05 -0.05 0.38

+ - - ◦ • + ◦ • • ◦ + • ◦ - - + 0.06 -0.59 -0.06

+ - + ◦ • - ◦ • • ◦ - • ◦ + - + 0.06 -0.59 0.22

+ + - ◦ • - ◦ • • ◦ - • ◦ - + + 0.06 -0.59 0.36

+ ◦ - • • - + ◦ ◦ + - • • - ◦ + 0.06 -0.12 0.13

+ ◦ • - - + • ◦ ◦ • + - - • ◦ + 0.06 -0.12 0.18

+ ◦ - • • + - ◦ ◦ - + • • - ◦ + 0.06 -0.12 0.18

+ ◦ • - + - • ◦ ◦ • - + - • ◦ + 0.06 -0.12 0.25

+ ◦ • + - - • ◦ ◦ • - - + • ◦ + 0.06 -0.12 0.34

+ ◦ + • • - - ◦ ◦ - - • • + ◦ + 0.06 -0.12 0.46

+ - - ◦ + • • ◦ ◦ • • + ◦ - - + 0.07 -0.66 -0.02

+ - + ◦ - • • ◦ ◦ • • - ◦ + - + 0.07 -0.66 0.19

+ + - ◦ - • • ◦ ◦ • • - ◦ - + + 0.07 -0.66 0.33

+ - - ◦ • ◦ • + + • ◦ • ◦ - - + 0.07 -0.52 -0.09

+ - + ◦ • ◦ • - - • ◦ • ◦ + - + 0.07 -0.52 0.26

+ + - ◦ • ◦ • - - • ◦ • ◦ - + + 0.07 -0.52 0.40

+ - ◦ - • • + ◦ ◦ + • • - ◦ - + 0.07 -0.42 -0.02

+ - ◦ + • • - ◦ ◦ - • • + ◦ - + 0.07 -0.42 0.19

+ + ◦ - • • - ◦ ◦ - • • - ◦ + + 0.07 -0.42 0.45

+ - ◦ • - + ◦ • • ◦ + - • ◦ - + 0.07 -0.38 0.05

+ - ◦ • + - ◦ • • ◦ - + • ◦ - + 0.07 -0.38 0.12

+ + ◦ • - - ◦ • • ◦ - - • ◦ + + 0.07 -0.38 0.47

+ ◦ - • • - ◦ + + ◦ - • • - ◦ + 0.07 -0.09 0.12

+ ◦ - • • + ◦ - - ◦ + • • - ◦ + 0.07 -0.09 0.19

+ ◦ + • • - ◦ - - ◦ - • • + ◦ + 0.07 -0.09 0.47

+ - ◦ • - ◦ • + + • ◦ - • ◦ - + 0.08 -0.30 0.01

+ - ◦ • + ◦ • - - • ◦ + • ◦ - + 0.08 -0.30 0.15

+ + ◦ • - ◦ • - - • ◦ - • ◦ + + 0.08 -0.30 0.50

+ - - ◦ • ◦ + • • + ◦ • ◦ - - + 0.08 -0.54 -0.08

+ - + ◦ • ◦ - • • - ◦ • ◦ + - + 0.08 -0.54 0.25

+ + - ◦ • ◦ - • • - ◦ • ◦ - + + 0.08 -0.54 0.39

+ - ◦ - • • ◦ + + ◦ • • - ◦ - + 0.08 -0.40 -0.04

+ - ◦ + • • ◦ - - ◦ • • + ◦ - + 0.08 -0.40 0.20

+ + ◦ - • • ◦ - - ◦ • • - ◦ + + 0.08 -0.40 0.46

+ ◦ • - - + ◦ • • ◦ + - - • ◦ + 0.08 -0.12 0.18

+ ◦ • - + - ◦ • • ◦ - + - • ◦ + 0.08 -0.12 0.25

+ ◦ • + - - ◦ • • ◦ - - + • ◦ + 0.08 -0.12 0.34
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+ - ◦ • - ◦ + • • + ◦ - • ◦ - + 0.09 -0.33 0.02

+ - ◦ • + ◦ - • • - ◦ + • ◦ - + 0.09 -0.33 0.14

+ + ◦ • - ◦ - • • - ◦ - • ◦ + + 0.09 -0.33 0.49

+ - - ◦ + • ◦ • • ◦ • + ◦ - - + 0.09 -0.66 -0.02

+ - + ◦ - • ◦ • • ◦ • - ◦ + - + 0.09 -0.66 0.19

+ + - ◦ - • ◦ • • ◦ • - ◦ - + + 0.09 -0.66 0.33

+ - ◦ + • - • ◦ ◦ • - • + ◦ - + 0.09 -0.47 0.16

+ + ◦ - • - • ◦ ◦ • - • - ◦ + + 0.09 -0.47 0.42

+ - ◦ • ◦ • - + + - • ◦ • ◦ - + 0.09 -0.19 0.07

+ ◦ - • - • + ◦ ◦ + • - • - ◦ + 0.09 -0.19 0.09

+ - ◦ • ◦ • + - - + • ◦ • ◦ - + 0.09 -0.19 0.09

+ ◦ - • + • - ◦ ◦ - • + • - ◦ + 0.09 -0.19 0.21

+ ◦ + • - • - ◦ ◦ - • - • + ◦ + 0.09 -0.19 0.42

+ ◦ • - - ◦ • + + • ◦ - - • ◦ + 0.09 -0.05 0.14

+ ◦ - • • ◦ - + + - ◦ • • - ◦ + 0.09 -0.05 0.14

+ ◦ - • • ◦ + - - + ◦ • • - ◦ + 0.09 -0.05 0.16

+ ◦ • - + ◦ • - - • ◦ + - • ◦ + 0.09 -0.05 0.28

+ ◦ • + - ◦ • - - • ◦ - + • ◦ + 0.09 -0.05 0.38

+ ◦ - • - • ◦ + + ◦ • - • - ◦ + 0.11 -0.16 0.08

+ ◦ - • + • ◦ - - ◦ • + • - ◦ + 0.11 -0.16 0.22

+ ◦ + • - • ◦ - - ◦ • - • + ◦ + 0.11 -0.16 0.43

+ ◦ • - - ◦ + • • + ◦ - - • ◦ + 0.11 -0.07 0.15

+ ◦ • - + ◦ - • • - ◦ + - • ◦ + 0.11 -0.07 0.27

+ ◦ • + - ◦ - • • - ◦ - + • ◦ + 0.11 -0.07 0.36

+ ◦ • - ◦ • - + + - • ◦ - • ◦ + 0.11 0.07 0.20

+ ◦ • - ◦ • + - - + • ◦ - • ◦ + 0.11 0.07 0.22

+ ◦ • ◦ • - - + + - - • ◦ • ◦ + 0.12 0.23 0.28

+ ◦ • ◦ • - + - - + - • ◦ • ◦ + 0.12 0.23 0.30

+ - ◦ + • - ◦ • • ◦ - • + ◦ - + 0.12 -0.47 0.16

+ + ◦ - • - ◦ • • ◦ - • - ◦ + + 0.12 -0.47 0.42

+ - ◦ • ◦ - • + + • - ◦ • ◦ - + 0.12 -0.23 0.05

+ ◦ - • - + • ◦ ◦ • + - • - ◦ + 0.12 -0.23 0.12

+ - ◦ • ◦ + • - - • + ◦ • ◦ - + 0.12 -0.23 0.12

+ ◦ - • + - • ◦ ◦ • - + • - ◦ + 0.12 -0.23 0.19

+ ◦ + • - - • ◦ ◦ • - - • + ◦ + 0.12 -0.23 0.40

+ + ◦ • ◦ - • - - • - ◦ • ◦ + + 0.12 -0.23 0.54

+ - ◦ - + • • ◦ ◦ • • + - ◦ - + 0.13 -0.54 0.04

+ - ◦ + - • • ◦ ◦ • • - + ◦ - + 0.13 -0.54 0.13

+ + ◦ - - • • ◦ ◦ • • - - ◦ + + 0.13 -0.54 0.39

+ - ◦ - • ◦ • + + • ◦ • - ◦ - + 0.13 -0.40 -0.04

+ - ◦ + • ◦ • - - • ◦ • + ◦ - + 0.13 -0.40 0.20

+ + ◦ - • ◦ • - - • ◦ • - ◦ + + 0.13 -0.40 0.46
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+ - ◦ • ◦ - + • • + - ◦ • ◦ - + 0.13 -0.26 0.06

+ - ◦ • ◦ + - • • - + ◦ • ◦ - + 0.13 -0.26 0.11

+ + ◦ • ◦ - - • • - - ◦ • ◦ + + 0.13 -0.26 0.53

+ ◦ • - ◦ + • - - • + ◦ - • ◦ + 0.13 0.02 0.25

+ ◦ • + ◦ - • - - • - ◦ + • ◦ + 0.13 0.02 0.41

+ ◦ • - ◦ - • + + • - ◦ - • ◦ + 0.13 0.02 0.18

+ - - ◦ ◦ • • + + • • ◦ ◦ - - + 0.14 -0.52 -0.09

+ - + ◦ ◦ • • - - • • ◦ ◦ + - + 0.14 -0.52 0.26

+ + - ◦ ◦ • • - - • • ◦ ◦ - + + 0.14 -0.52 0.40

+ - ◦ - • ◦ + • • + ◦ • - ◦ - + 0.14 -0.42 -0.02

+ - ◦ + • ◦ - • • - ◦ • + ◦ - + 0.14 -0.42 0.19

+ + ◦ - • ◦ - • • - ◦ • - ◦ + + 0.14 -0.42 0.45

+ ◦ - - • • + ◦ ◦ + • • - - ◦ + 0.14 -0.28 0.05

+ ◦ - + • • - ◦ ◦ - • • + - ◦ + 0.14 -0.28 0.26

+ ◦ + - • • - ◦ ◦ - • • - + ◦ + 0.14 -0.28 0.38

+ ◦ - • - + ◦ • • ◦ + - • - ◦ + 0.14 -0.23 0.12

+ ◦ - • + - ◦ • • ◦ - + • - ◦ + 0.14 -0.23 0.19

+ ◦ + • - - ◦ • • ◦ - - • + ◦ + 0.14 -0.23 0.40

+ ◦ • - ◦ - + • • + - ◦ - • ◦ + 0.14 0.00 0.19

+ ◦ • - ◦ + - • • - + ◦ - • ◦ + 0.14 0.00 0.23

+ ◦ • + ◦ - - • • - - ◦ + • ◦ + 0.14 0.00 0.40

+ ◦ • ◦ - • - + + - • - ◦ • ◦ + 0.15 0.16 0.25

+ ◦ • ◦ - • + - - + • - ◦ • ◦ + 0.15 0.16 0.27

+ - - ◦ ◦ • + • • + • ◦ ◦ - - + 0.15 -0.54 -0.08

+ - ◦ - + • ◦ • • ◦ • + - ◦ - + 0.15 -0.54 0.04

+ - ◦ + - • ◦ • • ◦ • - + ◦ - + 0.15 -0.54 0.13

+ - + ◦ ◦ • - • • - • ◦ ◦ + - + 0.15 -0.54 0.25

+ + ◦ - - • ◦ • • ◦ • - - ◦ + + 0.15 -0.54 0.39

+ + - ◦ ◦ • - • • - • ◦ ◦ - + + 0.15 -0.54 0.39

+ ◦ - - • • ◦ + + ◦ • • - - ◦ + 0.15 -0.26 0.04

+ ◦ - + • • ◦ - - ◦ • • + - ◦ + 0.15 -0.26 0.27

+ ◦ + - • • ◦ - - ◦ • • - + ◦ + 0.15 -0.26 0.39

+ ◦ - • - ◦ • + + • ◦ - • - ◦ + 0.15 -0.16 0.08

+ ◦ - • + ◦ • - - • ◦ + • - ◦ + 0.15 -0.16 0.22

+ ◦ + • - ◦ • - - • ◦ - • + ◦ + 0.15 -0.16 0.43

+ ◦ - - • + • ◦ ◦ • + • - - ◦ + 0.16 -0.33 0.07

+ ◦ - + • - • ◦ ◦ • - • + - ◦ + 0.16 -0.33 0.23

+ ◦ + - • - • ◦ ◦ • - • - + ◦ + 0.16 -0.33 0.35

+ ◦ - • - ◦ + • • + ◦ - • - ◦ + 0.16 -0.19 0.09

+ ◦ - • + ◦ - • • - ◦ + • - ◦ + 0.16 -0.19 0.21

+ ◦ + • - ◦ - • • - ◦ - • + ◦ + 0.16 -0.19 0.42

+ ◦ - • ◦ • - + + - • ◦ • - ◦ + 0.16 -0.05 0.14

+ ◦ - • ◦ • + - - + • ◦ • - ◦ + 0.16 -0.05 0.16
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+ ◦ • ◦ - - • + + • - - ◦ • ◦ + 0.18 0.12 0.22

+ ◦ • ◦ - + • - - • + - ◦ • ◦ + 0.18 0.12 0.29

+ ◦ • ◦ + - • - - • - + ◦ • ◦ + 0.18 0.12 0.36

+ ◦ • ◦ - - + • • + - - ◦ • ◦ + 0.19 0.09 0.23

+ ◦ • ◦ - + - • • - + - ◦ • ◦ + 0.19 0.09 0.28

+ ◦ • ◦ + - - • • - - + ◦ • ◦ + 0.19 0.09 0.35

+ ◦ - - • + ◦ • • ◦ + • - - ◦ + 0.19 -0.33 0.07

+ ◦ - + • - ◦ • • ◦ - • + - ◦ + 0.19 -0.33 0.23

+ ◦ + - • - ◦ • • ◦ - • - + ◦ + 0.19 -0.33 0.35

+ - ◦ ◦ • • - + + - • • ◦ ◦ - + 0.19 -0.19 0.07

+ - ◦ ◦ • • + - - + • • ◦ ◦ - + 0.19 -0.19 0.09

+ ◦ - • ◦ - • + + • - ◦ • - ◦ + 0.19 -0.09 0.12

+ ◦ - • ◦ + • - - • + ◦ • - ◦ + 0.19 -0.09 0.19

+ ◦ + • ◦ - • - - • - ◦ • + ◦ + 0.19 -0.09 0.47

+ - ◦ - ◦ • • + + • • ◦ - ◦ - + 0.20 -0.40 -0.04

+ ◦ - - + • • ◦ ◦ • • + - - ◦ + 0.20 -0.40 0.11

+ ◦ - + - • • ◦ ◦ • • - + - ◦ + 0.20 -0.40 0.20

+ - ◦ + ◦ • • - - • • ◦ + ◦ - + 0.20 -0.40 0.20

+ ◦ + - - • • ◦ ◦ • • - - + ◦ + 0.20 -0.40 0.32

+ + ◦ - ◦ • • - - • • ◦ - ◦ + + 0.20 -0.40 0.46

+ ◦ - - • ◦ • + + • ◦ • - - ◦ + 0.20 -0.26 0.04

+ ◦ - + • ◦ • - - • ◦ • + - ◦ + 0.20 -0.26 0.27

+ ◦ + - • ◦ • - - • ◦ • - + ◦ + 0.20 -0.26 0.39

+ ◦ - • ◦ - + • • + - ◦ • - ◦ + 0.20 -0.12 0.13

+ ◦ - • ◦ + - • • - + ◦ • - ◦ + 0.20 -0.12 0.18

+ ◦ + • ◦ - - • • - - ◦ • + ◦ + 0.20 -0.12 0.46

+ - ◦ - ◦ • + • • + • ◦ - ◦ - + 0.21 -0.42 -0.02

+ - ◦ + ◦ • - • • - • ◦ + ◦ - + 0.21 -0.42 0.19

+ + ◦ - ◦ • - • • - • ◦ - ◦ + + 0.21 -0.42 0.45

+ ◦ - - • ◦ + • • + ◦ • - - ◦ + 0.21 -0.28 0.05

+ ◦ - + • ◦ - • • - ◦ • + - ◦ + 0.21 -0.28 0.26

+ ◦ + - • ◦ - • • - ◦ • - + ◦ + 0.21 -0.28 0.38

+ - ◦ ◦ • - • + + • - • ◦ ◦ - + 0.21 -0.23 0.05

+ - ◦ ◦ • + • - - • + • ◦ ◦ - + 0.21 -0.23 0.12

+ + ◦ ◦ • - • - - • - • ◦ ◦ + + 0.21 -0.23 0.54

+ ◦ - - + • ◦ • • ◦ • + - - ◦ + 0.22 -0.40 0.11

+ ◦ - + - • ◦ • • ◦ • - + - ◦ + 0.22 -0.40 0.20

+ ◦ + - - • ◦ • • ◦ • - - + ◦ + 0.22 -0.40 0.32

+ - ◦ ◦ • - + • • + - • ◦ ◦ - + 0.22 -0.26 0.06

+ - ◦ ◦ • + - • • - + • ◦ ◦ - + 0.22 -0.26 0.11

+ + ◦ ◦ • - - • • - - • ◦ ◦ + + 0.22 -0.26 0.53
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+ ◦ ◦ • • - - + + - - • • ◦ ◦ + 0.23 0.23 0.28

+ ◦ ◦ • • - + - - + - • • ◦ ◦ + 0.23 0.23 0.30

+ - ◦ ◦ - • • + + • • - ◦ ◦ - + 0.25 -0.30 0.01

+ - ◦ ◦ + • • - - • • + ◦ ◦ - + 0.25 -0.30 0.15

+ + ◦ ◦ - • • - - • • - ◦ ◦ + + 0.25 -0.30 0.50

+ - ◦ ◦ - • + • • + • - ◦ ◦ - + 0.26 -0.33 0.02

+ - ◦ ◦ + • - • • - • + ◦ ◦ - + 0.26 -0.33 0.14

+ + ◦ ◦ - • - • • - • - ◦ ◦ + + 0.26 -0.33 0.49

+ ◦ - ◦ • • - + + - • • ◦ - ◦ + 0.26 -0.05 0.14

+ ◦ - ◦ • • + - - + • • ◦ - ◦ + 0.26 -0.05 0.16

+ ◦ ◦ • - • - + + - • - • ◦ ◦ + 0.27 0.16 0.25

+ ◦ ◦ • - • + - - + • - • ◦ ◦ + 0.27 0.16 0.27

+ ◦ - - ◦ • • + + • • ◦ - - ◦ + 0.27 -0.26 0.04

+ ◦ - + ◦ • • - - • • ◦ + - ◦ + 0.27 -0.26 0.27

+ ◦ + - ◦ • • - - • • ◦ - + ◦ + 0.27 -0.26 0.39

+ ◦ - - ◦ • + • • + • ◦ - - ◦ + 0.28 -0.28 0.05

+ ◦ - + ◦ • - • • - • ◦ + - ◦ + 0.28 -0.28 0.26

+ ◦ + - ◦ • - • • - • ◦ - + ◦ + 0.28 -0.28 0.38

+ ◦ - ◦ • - • + + • - • ◦ - ◦ + 0.28 -0.09 0.12

+ ◦ - ◦ • + • - - • + • ◦ - ◦ + 0.28 -0.09 0.19

+ ◦ + ◦ • - • - - • - • ◦ + ◦ + 0.28 -0.09 0.47

+ ◦ ◦ • - - • + + • - - • ◦ ◦ + 0.29 0.12 0.22

+ ◦ ◦ • - + • - - • + - • ◦ ◦ + 0.29 0.12 0.29

+ ◦ ◦ • + - • - - • - + • ◦ ◦ + 0.29 0.12 0.36

+ ◦ - ◦ • - + • • + - • ◦ - ◦ + 0.29 -0.12 0.13

+ ◦ - ◦ • + - • • - + • ◦ - ◦ + 0.29 -0.12 0.18

+ ◦ + ◦ • - - • • - - • ◦ + ◦ + 0.29 -0.12 0.46

+ ◦ ◦ • - - + • • + - - • ◦ ◦ + 0.30 0.09 0.23

+ ◦ ◦ • - + - • • - + - • ◦ ◦ + 0.30 0.09 0.28

+ ◦ ◦ • + - - • • - - + • ◦ ◦ + 0.30 0.09 0.35

+ ◦ - ◦ - • • + + • • - ◦ - ◦ + 0.32 -0.16 0.08

+ ◦ - ◦ + • • - - • • + ◦ - ◦ + 0.32 -0.16 0.22

+ ◦ + ◦ - • • - - • • - ◦ + ◦ + 0.32 -0.16 0.43

+ ◦ ◦ - • • - + + - • • - ◦ ◦ + 0.32 0.07 0.20

+ ◦ ◦ - • • + - - + • • - ◦ ◦ + 0.32 0.07 0.22

+ ◦ - ◦ - • + • • + • - ◦ - ◦ + 0.33 -0.19 0.09

+ ◦ - ◦ + • - • • - • + ◦ - ◦ + 0.33 -0.19 0.21

+ ◦ + ◦ - • - • • - • - ◦ + ◦ + 0.33 -0.19 0.42
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+ ◦ ◦ - • + • - - • + • - ◦ ◦ + 0.34 0.02 0.25

+ ◦ ◦ + • - • - - • - • + ◦ ◦ + 0.34 0.02 0.41

+ ◦ ◦ - • - • + + • - • - ◦ ◦ + 0.34 0.02 0.18

+ ◦ ◦ - • - + • • + - • - ◦ ◦ + 0.35 0.00 0.19

+ ◦ ◦ - • + - • • - + • - ◦ ◦ + 0.35 0.00 0.23

+ ◦ ◦ + • - - • • - - • + ◦ ◦ + 0.35 0.00 0.40

+ ◦ ◦ - - • • + + • • - - ◦ ◦ + 0.38 -0.05 0.14

+ ◦ ◦ - + • • - - • • + - ◦ ◦ + 0.38 -0.05 0.28

+ ◦ ◦ + - • • - - • • - + ◦ ◦ + 0.38 -0.05 0.38

+ ◦ ◦ - - • + • • + • - - ◦ ◦ + 0.39 -0.07 0.15

+ ◦ ◦ - + • - • • - • + - ◦ ◦ + 0.39 -0.07 0.27

+ ◦ ◦ + - • - • • - • - + ◦ ◦ + 0.39 -0.07 0.36
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A5 24PLYDDRESULTS-FULL

Table A2: 24-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches that (ξ9, ξ10) = (-0.045, -0.967).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad [-/+/-/-/+/-/-/+/ • / ◦ / ◦ / • /

• / ◦ / ◦ / • /+/-/-/+/-/+/+/-]T

- 1

[4/20]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T

(±51.7°, ±40.5°) 2.292

[8/16]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ]T

(±53.4°, ±41.5°) 2.587

[8/16]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ]T

(±52.9°, ±41.2°) 2.545

[8/16]3
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/ϕ/-

ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ]T

(±52.5°, ±41.0°) 2.500

[8/16]4
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ]T

(±51.8°, ±40.6°) 2.425

[8/16]5
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±51.7°, ±40.4°) 2.398

[8/16]6
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±51.3°, ±40.2°) 2.343

[8/16]7
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ]T

(±51.0°, ±39.9°) 2.284

[8/16]8
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±50.6°, ±39.6°) 2.221

[8/16]9
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ]T

(±49.8°, ±38.5°) 2.011

[8/16]10

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ]T

(±48.8°, ±36.6°) 1.658
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[12/12]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-

ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ]T

(±52.4°, ±40.9°) 2.765

[12/12]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ]T

(±52.0°, ±40.7°) 2.713

[12/12]3
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ]T

(±51.8°, ±40.5°) 2.685

[12/12]4
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±51.2°, ±40.1°) 2.599

[12/12]5
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±50.9°, ±39.8°) 2.537

[12/12]6
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ]T

(±50.7°, ±39.7°) 2.505

[12/12]7
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±50.6°, ±39.5°) 2.404

[12/12]8
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±50.0°, ±38.8°) 2.331

[12/12]9
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±49.9°, ±38.6°) 2.294

[12/12]10

[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±49.7°, ±38.4°) 2.255

[12/12]11

[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±49.5°, ±38.0°) 2.173

[12/12]12

[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±49.1°, ±37.3°) 2.040

[12/12]13

[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±49.0°, ±37.1°) 1.992

[12/12]14

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±48.7°, ±36.5°) 1.891

[12/12]15

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-

ϕ/-ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±48.5°, ±.35.8°) 1.780

[12/12]16

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±48.0°, ±34.2°) 1.525
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[12/12]17

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ]T

(±47.3°, ±29.9°) 1.014

[16/8]1
[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ]T

(±50.5°, ±39.4°) 2.899

[16/8]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±50.2°, ±39.1°) 2.826

[16/8]3
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±49.8°, ±38.6°) 2.709

[16/8]4
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±49.4°, ±37.9°) 2.583

[16/8]5

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-

ϕ]T

(±49.2°, ±37.5°) 2.493

[16/8]6
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±48.9°, ±37.0°) 2.396

[16/8]7
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±48.7°, ±36.4°) 2.291

[16/8]8
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±48.5°, ±35.7°) 2.176

[16/8]9

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ψ/-

ψ]T

(±48.3°, ±35.4°) 2.115

[16/8]10

[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ϕ/ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(±48.0°, ±34.0°) 1.909

[16/8]11

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ϕ/ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-

ψ]T

(±47.7°, ±32.9°) 1.749

[16/8]12

[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(±47.5°, ±31.5°) 1.566

[16/8]13

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(±47.2°, ±29.6°) 1.352
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[16/8]14

[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-

ϕ/ϕ/ϕ/-ϕ/-ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-

ψ]T

(±47.0°, ±26.7°) 1.098

[16/8]15

[ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ]T

(±46.3°, ±6.58°) 0.456

[20/4]1
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±48.7°, ±36.3°) 2.976

[20/4]2
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±47.7°, ±32.7°) 2.447

[20/4]3
[ψ/-ψ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ψ/-ψ]T

(±46.9°, ±26.1°) 1.749
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A6 20-PLY DD LAMINATES RESULTS

Table A3: 20-ply designs, stacking sequences and ψ±, ϕ± values that produce bending stiffness
that matches that (ξ9, ξ10) = (-0.102, -0.692).

Design Stacking sequence (±ψ, ±ϕ)

Normalised

FPF

strength

Quad
[+/-/-/•/+/+/-/◦/◦/•/•/◦/◦/-

/+/+/•/-/-/+]T

- 1

[4/16]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T

(±59.7°, ±37.2°) 1.690

[8/12]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/-ψ/ψ]T

(±64.0°, ±39.9°) 2.160

[8/12]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ]T

(±61.5°, ±38.6°) 2.020

[8/12]3
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±59.5°, ±37.1°) 1.833

[8/12]4
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±58.3°, ±35.9°) 1.686

[8/12]5
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/ϕ/ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ϕ/-ψ/ψ/ψ/-ψ]T

(±56.4°, ±33.1°) 1.345

[8/12]6
[ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ/-ϕ/ϕ/-

ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ]T

(±53.8°, ±25.8°) 0.743

[12/8]1
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±59.3°, ±36.9°) 2.372

[12/8]2
[ψ/-ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ]T

(±58.2°, ±35.7°) 2.203

[12/8]3
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ]T

(±57.6°, ±35.1°) 2.111

[12/8]4
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±56.2°, ±32.8°) 1.808

[12/8]5
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±55.3°, ±30.9°) 1.582
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[12/8]6
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ϕ/ϕ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±54.5°, ±28.5°) 1.337

[12/8]7
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ϕ/ϕ/-ψ/ψ/-

ψ/ψ/ϕ/-ϕ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±53.6°, ±25.2°) 1.076

[12/8]8
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ϕ/ϕ/ϕ/-ϕ/-

ψ/ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±52.8°, ±20.0°) 0.806

[16/4]1
[ψ/-ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ]T

(±55.2°, ±30.6°) 2.669

[16/4]2
[ψ/-ψ/-ψ/ψ/-ϕ/ϕ/-ψ/ψ/-ψ/ψ/-

ψ/ψ/ψ/-ψ/ϕ/-ϕ/ψ/-ψ/ψ/-ψ]T

(±52.6°, ±18.8°) 1.531


	Thesis Cover Sheet (My Version)
	2023LeeHSJPhD
	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Literature Review on the Fundamentals of Advanced Composites
	1.2.1 Background Knowledge of Composite Laminate Mechanics
	1.2.2 Classical Lamination Theory (CLT)
	1.2.3 Elastic Coupling
	1.2.4 Classification of Composite Laminates
	1.2.5 Lamination Parameters
	1.2.6 Buckling
	1.2.7 First Ply Failure (FPF)
	1.2.8 Variable-Stiffness Laminates
	1.2.9 Double Angle-ply Laminates (Double-Double, DD)

	1.3 Thesis Outline
	1.4 Research Objectives
	1.5 Publications

	2 Theory and Example Calculations and FEA modelling
	2.1 Classical Laminate Theory (CLT)
	2.1.1 Theory
	2.1.2 Example 1. Calculation of the ABD Matrix from Mechanical Properties of the laminate

	2.2 Lamination Parameters, Non-dimensional parameters and ABD matrix
	2.2.1 Theory
	2.2.2 Example 2. Calculation of the ABD Matrix from Non-dimensional parameters
	2.2.3 Example 3. Calculation of ABD Matrix from the Lamination Parameters

	2.3 Buckling
	2.3.1 Theory
	2.3.2 Example 4. Calculation of buckling load and buckling factor of a square laminate subject to a uniform axial load

	2.4 Finite Element Analysis Modelling

	3 Compression and shear buckling performance of finite length plates with bending-twisting coupling
	3.1 Introduction and Motivation to Laminate Buckling Load Optimisation Using Lamination Parameter Design Space
	3.2 Design space interrogation
	3.2.1 Stiffness and Lamination parameter relations
	3.2.2 Effect of design heuristics on the lamination parameter design space

	3.3 Buckling performance of finite length plates
	3.3.1 Contour mapping for compression buckling
	3.3.2 Contour mapping for shear buckling
	3.3.3 Surface contour mapping for compression and shear buckling

	3.4 Conclusion

	4 Double angle-ply (DD) laminates
	4.1 Introduction and motivation to double angle-ply laminates and off-axis alignment
	4.2 Methodology
	4.3 Design spaces of double angle-ply laminate designs
	4.4 Off-axis Alignment
	4.5 Compression Test
	4.6 Conclusion

	5 Coupling Effects
	5.1 Introduction
	5.2 Bending-Twisting Coupling
	5.3 Stiffness matching
	5.3.1 First ply failure of DD laminates with Bending-Twisting coupling

	5.4 Compression buckling
	5.5 Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Design spaces and Contour maps
	6.2.2 Boundary Condition
	6.2.3 Shear Buckling
	6.2.4 First ply failure strength
	6.2.5 Experimental Work


	Bibliography
	Appendix
	A1 Abaqus input codes for compression buckling with ABD matrix input
	A2 Extracts of Abaqus input codes for compression buckling with stacking sequence
	A3 Extracts of Abaqus input codes for shear loading
	A4 Stacking sequences
	A5 24plyDDResults-full
	A6 20-ply DD laminates Results



