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Abstract

The past fifteen years have seen an increasing number of unexpected economic and political changes that

have interrupted a prolonged period of low market instability. This has challenged the predictability of

macroeconomic leading indicators, due to delays in data being made available. As a result, economists have

had a growing interest in considering present day written documents generated by media and government

institutions, as a medium to develop new variables that are able to provide additional economic insights in

real time.

This PhD thesis departs from this literature and contributes to enhancing the use of text as a valuable source

of information for studying the behaviour of monthly crude oil prices. The work comprises three core

chapters organised as follows.

In the first study I develop a set of text-based indexes capturing human sentiment and economic uncertainty

in the oil market. The text analysis includes the titles and full articles of 138,797 oil related news items

which featured in The Financial Times, Thompson-Reuters and The Independent. Empirical experiments

show that sentiment indicators readily react to economic and geopolitical events affecting the price of oil,

thereby enabling said indicators to accurately predict real oil prices. In contrast, measures of uncertainty

hide structural weaknesses and thus yield unreliable oil price forecasts. This work results in a new text-

based index that significantly improves the real oil price point forecasts, especially in periods of financial

stress, when forecasting matters the most.

In the second essay I investigate the predictability of monthly real oil prices when daily and weekly text

data are combined alongside the oil market fundamentals. Text data are retrieved from 140,096 full oil-

related articles which featured in The Financial Times, Thomson Reuters and The Independent. I show that

models containing high-frequency financial and commodity variables do not yield significant improvements

i



on the no-change forecast. In contrast, when text data are used along with commodity variables and oil

market fundamentals, the preferred models reduce the MSPEs by 18%. However, despite this marginal

improvement, gains are low. Indeed, the corresponding models with variables observed at homogeneous

frequency, generate similar out-of-sample forecasts in terms of accuracy. I thus conclude that variables

sampled at different frequencies do not significantly improve the predictability of monthly real oil prices.

This is true for point and density forecasts.

In the final empirical chapter I highlight how oil studies typically assume the correct model specification and

thus ignore the problem of estimating overly optimistic confidence sets. This implies that model uncertainty

is pervasive in the empirical results. By relaxing this specification assumption, I revisit the role of (i) oil

supply, (ii) aggregate demand and (iii) oil-specific demand shock, by proposing the Information Criterion

model averaging as a strategy to address the problem of informational deficiency. In this analysis I consider

a large macroeconomic panel, modelled with a structural vector autoregression model. The analysis is

implemented with real and artificial data, and the non-orthogonalized impulse-response matrix shows that,

in contrast to Kilian [2009], oil price response is less persistent after an aggregate demand shock, and more

persistent following an oil specific demand shock.
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Introduction

1.1 Motivation

The oil industry plays a significant role in global economic growth. According to the International Energy

Agency (IEA) recent report, oil meets 60 per cent of the world transportation demand and accounts for

almost 3 per cent of global domestic product. What’s more, the oil sector supports 11.9 million jobs world-

wide, including 20 per cent of total energy employment. Both Covid-19 and the Russia-Ukraine war have

increased the frequency of oil price spikes, potentially leading to long-term consequences for the global

economy. It is not surprising, therefore, that policy makers have an increasing necessity to accurately fore-

cast oil prices also in periods of economic instability. In this regard, it is worth mentioning that since 2010,

due to a number of unexpected economic and political changes, the monthly price of oil has been extremely

hard to forecast (see Baumeister et al. [2020]).

The reason behind such poor predictions is mainly twofold. Firstly, data commonly used to predict the

monthly price of oil (i.e. global real economy, oil production and oil consumption at a world level) are

made available by government authorities, usually with a delay. This implies that the econometric model

used to forecast the price of oil is not informed in real time and the coefficient estimates cannot react

promptly. Secondly, said indicators are by nature slow to respond to specific global events, such as political

unrest and natural disasters. A potential solution to this problem can be found in a subfield of computer

science, artificial intelligence and linguistics, known as natural language processing (NLP1).

NLP is a strategy that enables computers to extract structured data from written text, which can then be used

for multiple purposes (e.g. sentiment analysis, speech recognition, topic modelling among many others).

1In this thesis I use the terms “text mining”,“natural language processing”, “computational linguistics”, and “text/textual
analysis” interchangeably.

1
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This technology field is providing outstanding insights to address policy questions in macroeconomics and

finance that would have been hard to reach a few decades ago. Prominent contributions include Mosteller

and Wallace [1963], Groseclose and Milyo [2005], Gentzkow and Shapiro [2010], Gentzkow et al. [2014],

Baker et al. [2016], Hansen et al. [2018], Caldara and Iacoviello [2022], Shapiro et al. [2020]. These

studies show that the information encoded in digital text is a valuable complement to the more structured

data traditionally used in the economic research.

More specifically, in the context of macroeconomic forecasting and impulse response analysis, text mining

provides timely news signals to low-frequency macroeconomic indicators (Larsen and Thorsrud [2019]).

Such high-frequency information is useful when the economy evolves in extreme conditions, as traditional

(hard) predictors can interact with many more variables that embed data in real time. This makes the

text-cleaning, the feature selection and the assigning score to words/phrases key tasks that deserve extra

attention if the analyst seeks to incorporate unbiased human knowledge into a purely data driven model.

Some of these features have already shown to perform well when applied to a more general framework (see

Baker et al. [2016]), but there are also other features that carry new information useful for understanding

the behaviour of crude oil spot prices.

1.2 Thesis Contribution and Outline

Motivated by the premises outlined above and by departing from the literature on textual analysis, the goal

of this thesis is to develop and apply new text based indicators to modelling and forecast the evolution

of crude oil spot prices. This work is also linked to the literature on using machine learning tools in

macroeconomics (Giannone et al. [2008], Fan et al. [2020]), and to the research aimed at discovering

methodologies that perform well in periods of high economic instability (Chan [2022], Clark et al. [2022]).

While these studies seek to modify off-the-shelf models in order to capture the time-varying volatility, I

propose textual analysis as a strategy to develop new oil price drivers which incorporate information that

was previously missed. Such contribution is provided in three core chapters.

Chapter 2 is titled “Oil Price Forecasting: Gains and Weaknesses of Text Data”. In this essay I develop

thirteen text-based indexes, nine of which are designed to capture the human sentiment and the remaining

four aim to assess the economic uncertainty in the oil market. The textual analysis includes the titles and

full body of 138,797 oil related news items that featured in The Financial Times, Thompson-Reuters and
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The Independent from 1982M1 to 2021M11. The time series of such indicators demonstrates that human

sentiment indexes promptly react to geoeconomics and geopolitical events affecting the price of oil. In

contrast, uncertainty measures are not able to capture most of the events that have significantly affected

the price of oil in the past decades. In the first experiment I show that including sentiment indexes into

alternative vector autoregression (VAR) models yields more accurate out-of-sample forecasts in comparison

to the corresponding non-text based model. Such results are 1%, 5% and 10% statistically significant as

suggest by the Diebold and Mariano test. In the second experiment I develop a new text oil sentiment

indicator (TOSI) by extracting the first principal component from a matrix that includes the best performing

text indexes. I show that endogenizing TOSI in a Bayesian VAR with stochastic volatility improves the real

oil price point forecasts in the short, middle and long run. Such good performance is observed in particular

across periods of financial instability, when forecasting matters the most.

Chapter 3 is titled “Do High Frequency Text Data Help Forecast Crude Oil Prices? MF-VAR vs. MIDAS”.

This essay is motivated by the large body of literature assessing that models with variables sampled at dif-

ferent frequencies have the potential to release lower standard error estimates and more accurate predictions

(Ghysels [2016]). In this regard, I investigate the predictability of monthly oil prices when daily/weekly

text and financial data are combined along with the oil market fundamentals. The textual analysis builds on

an updated version of the database used in Chapter 1. Specifically, text data are retrieved from 140,096 full

oil-related articles featured in The Financial Times, Thomson Reuters and The Independent from 1982M1

to 2021M12. I show that models combining oil market fundamentals with both high-frequency financial and

commodity variables do not yield significant improvements on the no-change forecast. In contrast, more

accurate results in the short run are achieved when text data are used along with commodity variables and oil

market fundamentals. In particular, including weekly observations of BERT and the Commodity Research

Bureau index in a monthly-frequency VAR can reduce the minimum sum of prediction errors up to 18%.

However, the effectiveness of using mixed-frequency models to forecast the monthly value of real oil prices

is minimum. Indeed, the corresponding models with variables observed at the same frequency, generate

similar out-of-sample forecasts in the short run, and perform significantly better in terms of accuracy in the

middle and long run. I thus conclude that variables sampled at different frequencies do not improve the

prediction accuracy of monthly real oil prices. This is true for point and density forecasts.

Chapter 4 is titled “Oil Supply and Demand Shock under Model Uncertainty”. In this essay I address the

problem of model uncertainty which is pervasive within empirical oil studies. In particular, I emphasise
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that previous research (Kilian [2009], Kilian and Murphy [2012], Alquist et al. [2013] and Baumeister and

Hamilton [2019] are some examples) is built on interactions among a small number of oil market funda-

mentals, by implicitly assuming that the model is correctly specified. However, a body of research suggests

that the oil prices are affected by a much larger number of variables (Jones and Kaul [1996], Carruth et al.

[1998], Davis and Haltiwanger [2001]). This implies that in a framework of impulse response analysis, the

existing literature proposes confidence sets that are too optimistic. I thus revisit the role of (i) oil supply,

(ii) aggregate demand and (iii) oil-specific demand shock, by proposing the Information Criterion model

averaging as a strategy to address the problem of informational deficiency. In this analysis I consider a

large macroeconomic panel, modelled with a structural vector autoregression model. Unknown parame-

ters are estimated through the random walk Metropolis-Hastings algorithm. The analysis is implemented

with real and artificial data, and the non-orthogonalized impulse-response matrix shows that, in contrast

to Kilian [2009], the oil price response is less persistent after an aggregate demand shock, and more per-

sistent following an oil specific demand shock. Such results are robust across different VAR identification

strategies.



2

Oil Price Forecasting:

Gains and Weaknesses of Text Data
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2.1 Introduction

Despite government efforts to reduce the consumption of heating oil in favour of green alternative solutions,

oil in fuels is still the commodity in greatest demand due to its many uses. Fuel oil is commonly used for

the propulsion of vehicles, the heating of buildings, the production of steam for industrial uses and also to

generate electricity in power plants. Because of this crucial role, oil price structural shocks are still able to

affect the inflation and the growth rate of a country. Therefore, predicting and controlling the volatility of

oil prices is of the utmost importance for central banks as well as international organizations1. It is therefore

imperative to make the correct choice of a model and its variables, in order to study the fluctuations of real

oil prices.

For this purpose, a variety of models are suggested in the literature. Some economists have, for example,

modelled the behaviour of oil prices through a random walk (RW) model, and have thus implicitly assumed

that the future oil values could not be predicted on the basis of past history (Favero et al. [1994], Smith

and McCardle [1998]). Many others, in contrast, have tried to contest such beliefs suggesting alternative

econometric models that are able to forecast the price of oil better than a RW in the short and medium term

(Knetsch [2007], Baumeister and Kilian [2012] Baumeister and Kilian [2014]). However, such empirical

studies have two main limitations. Firstly, the econometric models have only been tested in periods of

financial stability, whereas after 2010 oil prices have been particularly difficult to forecast (see Baumeis-

ter et al. [2020]). Secondly, the forecasting accuracy in the long run is still poor and falls far below the

performance of a RW. What makes such results particularly discouraging is essentially (i) the inability of

the model to anticipate structural economic shocks determined by oil price volatility, and (ii) the inability

to rely on robust drivers of the oil market. Baumeister et al. [2020] provide a valuable contribution to the

second problem by developing a global economic conditions (GECON) indicator, that improves the real

oil price forecasts in both the short and long run. However, despite this good forecasting performance,

Baumeister et al. [2020]’s methodology is still vulnerable to strong unexpected economic recessions (e.g.

global financial crisis, the COVID pandemic) for two main reasons. Firstly, macroeconomic data running

in Baumeister et al. [2020]’s dataset cannot inform the model in real time, as they are made available by

government authorities, usually with a delay. Secondly, such variables are by nature slow to respond to

1Some companies that are particularly concerned about the future value of oil prices are: World Bank, Energy Information
Administration (EIA), World Petroleum Council (WPC), International Energy Agency (IEA), World Energy Council (WEC),
International Monetary Fund (IMF), Organization of Petroleum Exporting Companies (OPEC) and many others.
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unexpected structural shocks2.

In this work I propose a remedy for both of the aforementioned problems by developing a text-based oil-

related human sentiment index, that relies on qualitative data retrieved from unbiased daily newspapers.

In this way, information in real time can be used to inform a monthly-based vector autoregression (VAR)

model, in order to anticipate periods of financial stress in the oil market.

Text analysis has become increasingly popular in economics and political science during recent years3.

Written language is in fact the medium that central banks’ executive board of governors periodically use

to present a number of reports that account for multiple tasks, such as the country’s financial position,

economic results of the bank’s maneuvers and monetary policy decisions. Additionally, there are myriads

of newspaper articles and tweets that promote on a daily basis, the public understanding of the current

economy and future trends. All these data are based on written words, and can be used to identify a

number of economic parameters, such as the occurrence of financial market failures, investment and growth

opportunities, economic priority challenges and so on. Following these premises, it is reasonable that in

order to understand in which direction the economy is going, we also must be able to interpret what central

bankers and economists are saying and writing.

Several studies in the past have already demonstrated the existence of a strong correlation between the

content of economic newspapers and investor reactions (see for example Gentzkow and Shapiro [2010]

and Engelberg and Parsons [2011]), but unfortunately the massive volume of data has always prevented

the analyst from performing a meticulous study of written documents. Natural language processing (NLP)

now offers many fast methodologies that, when used with modern operating systems, allow a computer to

digest and elaborate strong volumes of text data. In this way, business companies and central institutions

can analyse critical data in real time, prioritize urgent matters, and take quick actions.

2The authors use a 4-variable Bayesian vector autoregression with stochastic volatility originally developed by Carriero et al.
[2016]. The dependent variables entering the econometric model are: (i) oil price, (ii) oil production, (iii) global real economy
and (iv) oil inventories. Variables (ii), (iii) and (iv) react slowly to an oil price structural shock (see Baumeister and Hamilton
[2019]).

3See for example, Acosta [2014], Hansen et al. [2018] and Nyman et al. [2021], where computational linguistics is applied
in behavioural economics. Baker et al. [2016], Kalamara et al. [2020] and Mittermayer [2004] that compare the application of
alternative text metrics to improve the out-of-sample forecast of macroeconomic and financial variables. Baumer et al. [2015],
Johnson et al. [2017], Vafa et al. [2020] and Colladon [2020], where NLP is used to predict the outcome of presidential elections
or classify and identify the political party an individual belongs to, based on Twitter and Facebook written posts. These are
only few examples, NLP literature is growing up exponentially, and it is almost impossible to cite all works here individually.
However, Bholat et al. [2015] and Xing et al. [2018] are good surveys that describe different NLP methodologies applied in
economic studies.
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In this work text data are retrieved from the titles and full bodies of 138,797 oil related daily news items,

which featured in the Banking, Finance and Energy section of The Financial Times (FT), Thomson Reuters

(TR) and The Independent (IND). The heuristic motivation behind the choice of using such newspapers lies

on the least biased and highest factual reporting rating that Media Bias/Fact Check agency regularly gives

regarding such data sources. Favouring one political party over others when reporting economic news, can

indeed deviate the objective view of reality, and consequently the integrity of a text based indicator dimin-

ishes. Articles are selected based on the joint occurrence of the words “oil” and “price”, and the analysis

of written documents is performed as follows. Qualitative data are firstly retrieved from FT, since this is

the longest data sample available in digital format on the LexisNexis database. Thirteen text indicators are

developed and individually included in different econometric models, which are then used to forecast the

price of oil. The analysis is then extended by including TR and IND articles, which are available for a

shorter time horizon (Appendix A.1 provides additional details concerning the data sources). The text ex-

ercises previously investigated are then replicated for any possible combination between FT, TR and IND,

in order to understand which combo generates the best performing text indicator relative to the forecast of

each oil price measure4. After that, the first principal component is extracted from the best performing text

indicators and I show that this text oil sentiment indicator (TOSI) not only improves the real oil price point

forecast at any time horizon h = 1, 3, 6, 12 and 24, but in many cases empirical results are even 1%, 5%

and 10% statistically significant based on the Diebold-Mariano test.

This paper contributes to enhancing the economic literature of oil price forecasts by providing a new text

based indicator which captures the human sentiment in the oil market. I build upon the work of Baumeister

et al. [2020] and show that VAR models with endogenous or exogenous text variables yield important

and statistically significant forecasting gains. This work also provides some guidance for central banks,

international organizations and oil companies by shedding light on the gains and structural weaknesses that

different text metrics generate when economic information is retrieved from oil-related news items.

The gains are that human sentiment text based metrics depict time series indexes that are very responsive

to historical geopolitical events (catastrophes, wars, terroristic attacks) that affect the price of oil (see Ap-

pendix A.2). Therefore, when such indicators are endogenised in a VAR model, statistically significant

results are achieved in the short, medium and long term. Moreover, by plotting the difference between the

cumulative sum of forecasting errors of a text based model and a RW, I also show that some sentiment

4Three main indicators are commonly used as a measure of crude oil prices: refiner acquisition cost (RAC) of oil imported in
the US, West Texas Intermediate (WTI) index and Brent price. This study investigates all three of them.
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based text metrics are able to anticipate economic downturns occurred in the oil market in the short run.

In contrast, text indicators assessing economic uncertainty in the oil market hide structural weaknesses,

such as incomprehensible peaks (see for example Figure A.10 in Appendix A.2), that prevent them from

anticipating potential economic recessions, which is when forecasts matter the most.

This study is also related to many other works. Firstly, it contributes to the forecasting literature which

aims to anticipate economic shocks (Townsend [1983], Evans and Lewis [1995], Cochrane and Piazzesi

[2002], Christiano et al. [2014]), as I am including real time data in alternative econometric models in order

to be able to predict unexpected periods of financial instability in the oil market. Then, it is linked to the

rich literature on oil price analyses with the outstanding contributions of Kilian [2009], Baumeister and

Hamilton [2019] and Baumeister et al. [2020]. Finally, this paper also seeks to exploit machine learning

tools (e.g. NLP, BERT) to improve statistical models that have an economic fundamental (structural VAR,

BVAR, SV-BVAR). Steps down this path have been taken by Hansen et al. [2018], Chernozhukov et al.

[2018], Lamperti et al. [2018] and many others.

The outline of the paper is as follows. Section 2.2 reports the process by which qualitative data are trans-

formed into numbers. Section 2.3 presents the methodologies used to construct sentiment and uncertainty

text-based indicators. Section 2.4 offers several empirical applications where text variables are included

in different VAR models, which are then used to forecast alternative oil price measures. Section 2.5 con-

cludes.

2.2 From Text to Numbers

Cleaning text is imperative before analysing written documents. Articles in their original form have in

fact a huge number of non informative punctuations such as quotation marks, apostrophes, commas and

unnecessary white spaces, that affect the performance of any generic algorithm used for semantic analyses.

Making text readable and unbiased mostly depends on the metric that the analyst is planning to work with.

For example, the unigram count (thoroughly discussed in section 2.3.1) is only possible when words are

spelled in lowercase. On the other hand, BERT (presented in section 2.3.4) requires only the document

to be split into independent sections\sentences, as layers in BERT’s network architecture are designed

specifically to differentiate between uppercase and lowercase words, relative to the context in which they

belong. However, it is beneficial to discuss some general steps that I commonly use in this work to transform
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text into numbers, regardless of the NLP procedure applied.

DOWNLOAD AND STRUCTURAL TRANSFORMATION. Oil-related articles are downloaded in .rtf for-

mat from the LexisNexis database. Items are selected from the Banking, Finance and Energy section of

The Financial Times (FT), Thomson Reuters (TR) and The Independent (IND), based on the joint occur-

rence in each article of the words oil and price. The overall dataset is then manually checked in order to

remove unrelated oil articles5. Similar to Kalamara et al. [2020], documents are also filtered by similarity,

and observations are considered in real time, so that information leakage is avoided. After the download,

documents are converted to .txt format by using a bash based macro.

PUNCTUATION AND STOP WORDS OMISSION. Single documents are removed of unnecessary non

alphanumeric characters (i.e. more than two white spaces and redundant repetition of XML tags such as

<>@”,’/&%[]#$ˆ ‘{}∼), and vocabulary words are then split by white spaces. For example, the sen-

tence {Member of the board’s capital committee, $250,000 per "consultant." < | >},

becomes {'Member'; 'of'; 'the'; 'board'; 's'; 'capital'; 'committee'; '250000';

'per'; 'consultant';}6. Stop words (e.g. the “s” featuring in the previous example) and high

frequency text words (i.e. articles, conjunctions and prepositions) are then filtered out, as they do not

convey meaningful information.

NORMALIZING, STEMMING AND LEMMATIZING. For unigram and geometrical text analysis, uppercase

words are converted to their equivalent lowercase form, and the number of vocabularies is reduced by map-

ping similar terms to their single root. In this way, terms like consultant, consulting, consultants,

consulting, consultative all became consult. This process is known as stemming, and contrary to

lemmatizing, it does not seek to understand the context in order to convert a word to its base form, but

it only removes (or stems) the suffix of a word. This means that good, better and best still remain

unchanged after applying a stemming procedure, while a lemmatization would map all three of them to

good, making a text variable slightly biased. For example, when oil prices turned negative for the first time

in history, the Financial Times released the following two articles.

5Oil and price are in fact words that can also occur in articles discussing for example the “olive oil” market that, albeit
correlated to petrol prices, do not affect the sentiment of oil investors directly. For this reason I also do a scanning-word analysis,
in order to delete unnecessary articles and minimise the biasedness in the dataset.

6Text source: The Financial Times.
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Why the oil price shock is nothing to celebrate? The collapse in prices will not

deliver much of a boost to rich economies. Lower revenues exacerbate the damage

for poorer producer nations...Both countries appear to have badly miscalculated. Russia,

opportunistically, saw the coronavirus as a chance to launch a broadside against American

shale producers and the US economy. If demand was falling anyway, why not rely on others

to make output cuts and hurt a geopolitical rival in the process? Saudi Arabia did not play

ball. A shock-and-awe strategy of increasing its own production sent oil prices tumbling and

wiped billions off the market value of western majors. The price of oil initially dropped at

its fastest rate since the Gulf war in 1991; it went on to have its worst quarter on record.

[Financial Times, April 5 2020 ]

A bailout of the oil industry is a fate worse than death. Whenever things went

wrong growing up, my dad would tell me, ”What doesn’t kill you only makes you stronger.”

Dying was supposed to be the worst-case scenario. He never mentioned zombies. But

that’s what a bailout for the oil industry would create: zombie companies that can’t earn

the cost of staying in business, kept afloat with taxpayer dollars......As debts rose along

with oil supplies, a shake-out was inevitable. A bailout would throw good money after

bad, propping up an industry desperately in need of productivity gains and consolidation.

[Financial Times, April 19 2020 ]

If both pieces of text are lemmatised, words like worse, worst and badly, are all mapped to bad which

is also used inside the text but for a different purpose. There are several stemming algorithms available

in the computer science literature, but in the interest of brevity and simplicity, this work relies on Porter

[1980]’s procedure. For VADER and BERT analysis words are lemmatised, as both methodologies aim to

understand the context rather than the meaning of single words.

EXTRA CLEANING. Digital articles also present additional irrelevant written sections, such as copyrights,

the author’s name, the location where articles are written and many other notes that do not really influence

the sentiment of a reader. Each newspaper places the “unnecessary” sections according to the company’s

style (they can be found at the beginning of the article, below the title, or at the end as a concluding remark).

Therefore, supplementary newspapers-specific cleaning algorithms are run in order to ensure that the final

article is produced solely with the title and full corpus. Removing futile sections is necessary to reduce
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structural bias further. Following the aforementioned steps, words are then ready to be transformed into

numbers.

DATASET STRUCTURE. 138,797 articles are collected in monthly folders, sorted by year. Each folder

includes a number of K articles, that change over time. Article k of a generic month m, resulting after

applying the cleaning steps outlined above, is represented as a vector N × 1 of unique words wn, where N

is the number of unique words running in document k. A collection of all vectors k of a generic month m

generates a full (or sparsity) matrix X of dimension N ×K expressing the occurrence of unique words used

in month m. Text metrics presented in section 2.3 are all applied to the X matrix.

2.3 Text Mining Methodologies

This section presents the methodologies used for the semantic analysis of articles investigated in this paper.

A deep description is given for each text mining methodology. The analysis starts with two basic statistical

methods relying on the word count (unigram and Boolean). Thereafter I investigate some more advanced

methodologies, five of which are dictionary based, two have a geometrical structure, and a final one has a

neural network architecture. Some metrics are used to develop both a sentiment and an uncertainty indicator,

whilst some others are used to develop only one of them. More details are given in each subsection. Overall,

14 different text based indicators are developed. The best performing ones are then used in section 2.4 to

forecast the price of oil. However, the reader is encouraged to consult Appendix A.5 for the additional

empirical results.

2.3.1 Statistical Models

The most straightforward text metric used in the semantic analysis of this study is the single word (or

unigram) count probability model, which estimates the maximum likelihood of a specific word wk by

counting the number of times w occurs in document (article in our case) k. The result is then normalized

by the number of words running in the document. Therefore, if X is a matrix of dimensions N ×K, with N

representing the number of unique words running in a single document and K the number of documents

analysed in month m, the unigram count probability of a generic word wk is

p(wk) =
counts(w|k)

∑
N
n=1 counts(wn|k)

, for k = 1, . . . ,K. (2.1)
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The monthly score is the sum of K unigram probabilities, normalized by the number of monthly arti-

cles. Examples of works relying on the unigram probability model as a metric to analyse written docu-

ments are Antweiler and Frank [2004]; Schumaker and Chen [2009]; Wuthrich et al. [1998]; Zhai et al.

[2007] and Schumaker et al. [2012]. Equation (2.1) is used to generate two time series variables. The

first is based on the count of words “economy”, “economies”, “economic” and “economics”, that are

all stemmed to the single root “econom”. Whereas the second relies on the count of words “uncertain”,

“uncertainty”, “uncertainties” and “uncertainly”, stemmed to “uncert”. Following Kalamara

et al. [2020], p(econom) is used to develop a human sentiment index, henceforth referred to as sentiment

count in oil articles (SentCO), and p(uncert) is used to generate an index assessing the level of uncer-

tainty in the oil market. The latter indicator is referred as uncertainty count in oil articles (UnCO). Figure

A.1 and Figure A.2 display the behaviour of both time series variables. SentCO looks very responsive for

some historical events such as the first Gulf War, OPEC’s cut of 1.5 million barrels per day, Iraq War, the

global financial crisis and COVID pandemic. The same applies for UnCO, which soars when Iraq increased

missile attacks on Iran, on 9/11 terroristic attack, and when U.S. Marines invaded Iraq. However, for some

events that affected the price of oil, both indexes do not provide a rational illustration. For example, 1.5

million barrels per day account for only 5% of global oil output, and generating a drop greater than COVID-

19 is quite unlikely. Moreover, the uncertainty indicator is not responsive enough over the global financial

crisis period. Such weakness is also reported by Baker et al. [2016], who show that the negative trend of

their economic policy uncertainty index does not soar between 2007-2009 (with the exception of a short-

period spike following the Lehman Brothers collapse). In any case, an unresponsive signal of uncertainty

indicators across periods of financial stress is not surprising in the framework of crude oil markets. This

is because uncertainty about oil prices is generally correlated to the fear of wars involving oil-exporting

countries rather than financial market disruptions7. Wars in oil production countries can indeed cause the

destruction of oil fields with subsequent shortfalls in crude oil production and oil price increases (Kilian

[2009], Edelstein and Kilian [2009]). Therefore, the irrational response to geopolitical events can be con-

sidered as one of the main reasons why UnCO is not performing well when it is used to forecast the price

of oil (see Appendix A.4).

A more complex statistical model investigated, which still relies on the word count, is the Boolean

7This peculiarity is also identified by other oil price uncertainty indexes developed through more structured data. See for
example the conditional standard deviation indicator of Elder and Serletis [2010].
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method used in Alexopoulos et al. [2009]; Pang et al. [2002]; Rachlin et al. [2007] and Baker et al.

[2016]. In this case, I look for a sequence of two words that, unlike the bigram, need not be adjacent

and can be placed anywhere within the document. Therefore, let S1 and S2 be two sets of terms such

that S1= {“economy”, “economies”, “economic”, “economics”} and S2= {“‘uncertain”, “uncertainty”,

“uncertainties”, “uncertainly”}. Given a set of unique words W defined in an N dimensional vector and

running in article k ∈ K, a count is made if and only if

{
wn∈W |k ∈ S1

}
∧
{

w j∈W |k ∈ S2
}
, for any n ̸= j ∈ N (2.2)

Namely, I make a count of one when at least one word inside S1, jointly occurs with at least one word

inside S2. The sum of monthly counts is then normalized by the number of articles published in that month.

Relation (2.2) is used to compute an index accounting for uncertainty in the oil market, henceforth referred

to as UnBool. Figure A.3 depicts the time series behaviour of UnBool. In this case the index is much more

responsive to negative events such as the first gulf war or Venezuelan protests, but unfortunately also for

this metric the description of many historical events is not trustworthy. For example the COVID-19 shock

is illustrated as half of the 9\11 attack’s variation. However, in April 2020 oil prices turned negative for the

first time in history, while after the terroristic attack the price of oil remained mostly unchanged. Appendix

A.4 reports some empirical applications where UnBool is used to forecast the price of oil. The evidence

demonstrates that this second uncertainty index is not a reliable predictor of oil prices.

2.3.2 Dictionary Models

Dictionary based text methods are designed to attribute a positive, negative or neutral value to a word,

according to a predefined list of vocabularies with preallocated scores. It is a sort of key-value pairs

methodology, where the word we look for in a dictionary is the key, and its definition is the value. There

are several off-the-shelf dictionaries that can be used for text analysis. In this work I investigate five

methodologies.

1. FINANCIAL STABILITY of Correa et al. [2017], with 391 words that can have a value of -1

(negative) or +1 (positive), and are calibrated to the language of financial stability reports used in central

bank communications.



Chapter 2. Oil Price Forecasting: Gains and Weaknesses of Text Data 15

2. FINANCIAL LIABILITY of Loughran and McDonald [2011], with 4,150 words that can still have a

value of -1 (negative) or +1 (positive), but they are selected from a more general financial context.

3. AFINN of Nielsen [2011], which is an improved version of ANEW dictionary trained for micro-blogs

analysis (i.e. Identi.ca or Twitter), and accommodate 2,477 unique words. AFINN, like SentiStrength in

Thelwall et al. [2010], assigns a number value to a text string between -5 (very negative) and +5 (very

positive).

4. HARVARD-IV, which is a general-purpose dictionary developed by the Harvard University. It is used

in Tetlock [2007], Tetlock et al. [2008] and Price et al. [2012], although for more specific economics

frameworks it is sometimes not recommended (see Loughran and McDonald [2011]).

5. VALENCE AWARE DICTIONARY AND SENTIMENT REASONER (VADER), which rates words on

a scale of “−4 Extremely Negative” and “+4 Extremely Positive” to evaluate sentiment in tokenized

oil articles. This database has been developed by Hutto and Gilbert [2014] and, in contrast to previous

dictionaries, words are not stemmed or in lower case. VADER in fact seeks to understand the context rather

than merely classifying a single word.

Anyhow, the numerical score of a single article is based on a standard formula, regardless of the dictionary

considered. Specifically, given the X matrix mentioned in section 2.3.1, if w = (w1,w2, . . . ,wN) counts the

occurrence of each word in document k (article in our case), and Θ = (Θ1,Θ2, . . . ,ΘN) is a set of weights

of the corresponding words,

Sk =
∑

N
n=1 Θnwn

∑
N
n=1 wn

for k = 1, . . . ,K

describes the net score of document k, and

Sm =
∑

K
k=1 Sk

Total No. Doc.m
for m = 1, . . . ,M (2.3)

is the monthly score in month m. Equation (2.3) is used across the overall data collection to develop five

sentiment indicators reported in Figure A.4, A.5, A.6, A.7 and A.8. This time the proportion of positive

and negative events is more realistic. In fact the COVID pandemic is correctly represented with the lowest

value by each dictionary with the exception of Correa et al. [2017]. Indeed in April 2020 oil prices turned
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negative for the first time in history. Furthermore, the World Trade Center attack and Iraq invasion report

a large drop in human sentiments as oil prices declined by 28% and 18% respectively8. Similarly, for

the last two most negative events, namely the First Gulf War and the global financial crisis. The former

generated a cut-off of Kuwaiti and Iraqi oil from the oil market, which increased the price of oil by 14.6

basis points in three months before a subsequent drop, following the decision of Saudi Arabia to increase

oil production by more than 3 million barrels per day. The latter, in contrast, caused an oil price fall of 71%

with respect to the previous year, since the negative aggregate shock yielded lower corporate earnings and

more unemployment.

However, the evidence shows that VADER generates the best performing text indicator for oil price fore-

casts, among any other dictionary investigated. Therefore, the empirical application of VADER is reported

in the main experiments of this paper, while the remaining results based on the other dictionaries are dis-

played in Appendix A.5. It is worth highlighting that this analysis could also be extrapolated to other

individual dictionaries recently developed in the NLP literature (De Smedt and Daelemans [2012]), or else

a combination of them (Shapiro et al. [2020]).

2.3.3 Geometrical Models

Still in the context of a “bag-of-words” representation9, geometrical models are a more advanced infor-

mation retrieval methodology. They have been frequently adopted in past (Salton and Buckley [1988],

Joachims [1996], Joachims [1998]) as well as more recent papers (Fung et al. [2003], Mittermayer [2004],

Groth and Muntermann [2011] and Hagenau et al. [2013]), and also look at the frequency of a specific word

occurrence. However, contrary to unigram and Boolean, the relevance of a word does not increase propor-

tionally with the term frequency. Such models exploit angle, distance, projection and vector space proper-

ties in order to derive a mathematical representation of a text document. They are very well-considered by

many text analysts for their joint ability to be both straightforward to construct, and to generate accurate

results.

The first geometrical text metric that I use is the term-document matrix, which incorporates information

about the occurrence of a specific term in each document (newspaper article in my case) relative to the

overall monthly data collection. In particular, given a sparse matrix X of dimension N ×K, the generic

8The former variation is not captured in the Harvard IV dictionary, most likely because this is a more general book of words,
rather than an economic oriented one.

9Matrix X is constructed disregarding the word order in the articles.
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binary vector k has dimensions N × 1, where N is the total number of unique words running in a monthly

data collection. This implies that cell wn,k,m = 1 if the nth word appears in article k, of month m, otherwise it

is empty. This matrix, although simple to construct, has the powerful property to retrieve all words running

in a specific document, as well as all documents containing the word I am looking for. The monthly score

of a generic word w is then given by

T Fw =
∑

K
k=1 wn,k

Total No. Doc.m
for m = 1, . . . ,M (2.4)

where the numerator sums all binary cells in which the word w occurs, and the denominator reports the total

number of articles running in month m. Equation (2.4) is used to generate a sentiment and an uncertainty

index referred to as SentOdx and UnOdx respectively. SentOdx is developed by considering the set of

words S={“economy”, “economies”, “economic”, “economics”}, while UnOdx relies on U={“uncertain”,

“uncertainty”, “uncertainties”, “uncertainly”}. Figure A.9 and A.10 depict both time series indexes. It is

clear that some historical events that have affected the price of oil are well illustrated by both series. For

example, SentOdx goes up in August 1996 when the ARCO-led Petrolera Ameriven S.A. memorandum

of understanding (MoU), set up the basis to produce 32,000 m3/d of crude oil in the Venezuelan region

Hamaca, bringing a 17% surge in oil prices in fewer then two weeks. Or in June 2016, when SentOdx

correctly turns negative, and UnOdx rises due to the Venezuelan protests. These occurrences prompted a

collapse in Venezuelan oil prices, representing 95% of Venezuela’s export revenue, and leading to severe

shortages in food and other basic necessities. However, there are still some unexplained turnarounds in both

series. The most evident is in May 2000 when unexpectedly UnOdx records a 13% increase in the level of

uncertainty, even though the oil market is perfectly stable. I attempt to justify this deficiency by remember-

ing that this vector-space model has a strong limitation. Namely, in a term-document matrix two different

documents have the same vector-space representation if equivalent words (or set of vocabulary words) oc-

cur in both documents, regardless of the order. This problem is a direct consequence of the binary nature

of the term-document matrix, since bag-of-words model representations are blind to distinguish between

certain different documents. Anyhow, this weakness can be overcome by extending this methodology into

a weighted vector-space model. By combining term frequency weights and inverse document frequency

weights, it is possible to curb term-document matrix limitations and construct a new information retrieval

strategy known as term-frequency inverse-document-frequency (TF-IDF) matrix.
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TF-IDF is the second geometrical procedure used in the semantic analysis of this study. This method-

ology is based on a structural weighting scheme and exploits multidimensional vector spaces, where

words constitute the orthogonal basis. There are two main intuitions behind the application of the

weighting-scheme. The first is that not all words are equally important within the same document, and

this is what the term-frequency scheme aims to model. The second is that the frequency distribution of a

vocabulary word is not uniform across the data collection, and this issue is addressed by computing the

inverse-document-frequency. In this way, the weighting scheme from one side focuses on those words that

are common within a document, but rare across the data collection, and from the other it is also sensitive to

those words that are (i) either rare within and across documents (very informative words), and (ii) common

within and across documents (non informative words). To briefly illustrate TF-IDF, suppose we wish to

start from a sparse N ×K matrix, where N displays the total number of unique words running in K articles

of month m. If the logarithm of word frequencies for each document is computed, as a natural consequence

the term-frequency decreases as the word rank increases. Then, suppose the frequency of words at a row

level is summed and the logarithm of the ratio between the value of K and the frequencies at a row level is

computed. As a natural effect document-frequency exponentially increases as word rank increase, because

the number of documents containing very frequent words is expected to be higher. Finally, by combining

both effects we obtain a measure which is able to capture the occurrence of very informative words. In

mathematical terms TF-IDF is expressed as

T F-IDFw =
log [1+T Fw]

log [1+(Km/nm)]
, (2.5)

where nm is the number of documents in which the word w occurs, and Km the overall data collection in

month m10. As previously done with term-document matrix, I use TF-IDF to compute a sentiment and

an uncertainty index, referred to as SentOidf and UnOidf, respectively depicted in Figure A.11 and A.12.

While UnOidf still possesses the same weaknesses found in UnOdx (see Figure A.10), SentOidf perfectly

matches the main historical events that affect the price of oil. In particular, there is strong evidence of a long

negative drop caused by the global financial crisis as well as the First Gulf War. At this point, even though

Venezuelan oil price reached the lowest value on summer 2016, the index is correctly negative for a larger

period, as Venezuelan protests run from late 2015 through the end of 2016. Moreover, Iran-Iraq war and

the dissolution of the Soviet Union are also correctly represented by negative human sentiments. The same

10For more details on geometrical models see Banchs [2012]
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applies for COVID pandemic, where SentOidf reaches its minimum value since oil price turned negative in

April 2020. It is worth noting, that this index is also very responsive to positive events such as ARCO-led

Petrolera Ameriven S.A. MoU, the cease-fire decision in the Iran-Iraq war, and the first shipments of oil

produced from Kazakhstan’s Tengiz field that opened a new era for oil international exports. These reliable

signals reflect the potential explanatory power when either SentOdx and SentOidf are used to predict future

oil price values; especially in the short and medium term, as reported in section 2.4.

2.3.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) is the last language representation model

that I investigate in this study. The methodology is used to generate a human sentiment based index. BERT

is based on deep neural networks, and has been recently presented by engineer researchers at Google AI

Language (see Devlin et al. [2018]). Whilst initially this methodology was primarily designed to solve prob-

lems of language translation, it has been shown that BERT provides state-of-the art results in a wide variety

of fields (e.g. question answering, sentiment analysis, text summarization and many other machine compre-

hension tasks11). The outstanding feature in BERT is the bidirectional encoder architecture that allows the

machine to understand the context from both directions (left-to-right and right-to-left) simultaneously. This

is in contrast to the bidirectional long short-term memory (LSTM) networks that first analyse left-to-right

and right-to-left context separately, and then concatenate the two layers by slightly losing the true context

(see Colón-Ruiz and Segura-Bedmar [2020] for a detailed comparison). The network architecture in BERT

is fairly flexible. In my case I set a base network structured as follows.

• 2 input layers that accommodate a set of two sentences in order to investigate whether one sentence

is correlated with the previous one,in a sort of binary classification problem. The maximum length

for any input sentence is set to 512 words.

• 2 embedding layers with 23,041,535 parameters that transform words in tokens.

• 1 embedding position layer with 393,216 parameters that report where a single token was placed in

the input sentence. As sentences are upper bounded to 512 words, a position can only take a value in

between [1,512].

11See for example Yang et al. [2019], d’Hoffschmidt et al. [2020], Karpukhin et al. [2020], Liu and Lapata [2019], Singh et al.
[2021], Pota et al. [2021] and Liu [2019].
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• 12 bidirectional encoder layers with 85,648,129 parameters that understand the context of text data

simultaneously.

• 1 fully connected softmax layer with 622,130 parameters, 30,000 of which are distinct tokens that

break down single words to component words12 by using a softmax activation function.

Overall, there are 109,705,010 parameters, but the structure can also accommodate a larger number of

layers. Anyhow, the more parameters, the slower the algorithm. Because BERT works with a limited set

of independent sentences, in order to make the resulting index unbiased, I firstly split each article k into n

independent sentences, and then I run the first two input layers. Furthermore, in this case the monthly score

is given by the arithmetic average between the results of each article belonging to the same month. Since

this is a novel methodology, not many works in the economic literature have applied BERT to improve a

variable forecast. However, there are already many private firms (such as Amazon, Microsoft, Google and

Alibaba), where researchers are using BERT for multiple tasks (see for example Sun et al. [2019], Chang

et al. [2019], Zhang et al. [2019] and Zhou et al. [2020]). This has motivated me to implement BERT in this

study.

In this paper BERT is trained to learn human sentiment from oil news and the index that I develop is

referred to as Bidirectional Text Representation of Crude Oil (BiTReCO). Figure A.13 plots the time series

of BiTReCO from 1982M1 through 2021M11. It is evident that this index is very responsive to historical

events that affect the price of oil. In particular, this is the first text based index that correctly depicts the

strong decline of oil prices which started in late November 1997 and pushed Brent to a low of just $9.55

at the end of 1998. This crisis was jointly caused by a combination of the high level of oil inventories

produced by OPEC countries from one side, and the stagnation of the Asian economy. Moreover, there is

also evidence of an oil price plunge between 2014-2016, as caused by the exponential oversupply of US oil

and a deteriorating demand in the mid 2015 by oil importing countries. These economic signals are well-

fitted in BiTReCO. A reasonable explanation for this can be that BERT is trained to understand the context

rather than counting the number of times a word occurs in a document. BiTReCO provides a powerful

insight when the price of oil is forecast in the short run.

12For example the word dropping becomes (drop, %%ing), so if a sentence like “oil price dropped about 6%” occurs
in future articles, the algorithm can infer the meaning of “dropped”, as it splits the token into (drop,%%ed).
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2.4 VAR Model Forecast

Since the seminal contribution of Kilian [2009], a wide variety of vector autoregression (VAR) models has

been used in the economic literature to analyse and forecast the price of oil. Some prominent contributions

are Baumeister and Kilian [2012], Lippi and Nobili [2012], Kilian and Murphy [2012], Inoue and Kilian

[2013], Alquist et al. [2013], Baumeister and Kilian [2014], Baumeister et al. [2015], Baumeister and

Kilian [2015], Hamilton [2019] and Baumeister et al. [2020]. This literature has consistently improved the

original 3-variable VAR proposed in Kilian [2009]. In particular, it has been shown that the inclusion of

additional oil market fundamentals in a VAR, such as oil inventories, improves the ability of the model

to capture additional oil price volatilities that were previously missed (Baumeister and Hamilton [2019]).

Moreover, Hamilton [2019] also shows that, in place of the dry cargo bulk freight rate, using the world

industrial production index (originally developed in Baumeister and Hamilton [2019]) as a proxy of global

real economy, is more efficient for predicting the price of oil. Finally, there is a consensus that real-time oil

market fundamentals yield more accurate oil price forecasts (Baumeister and Kilian [2012], Garratt et al.

[2019]).

Based on the aforementioned, for the purpose of this paper, I use text analysis to build upon the work

of Baumeister et al. [2020] which uses Baumeister and Hamilton [2019]’s 4-variable VAR to forecast al-

ternative measures of real oil prices. Such a model has been shown to produce very promising oil price

forecasts. In this analysis, I am including in the benchmark model each text regressor developed in section

2.3, either as an exogenous, and as an endogenous factor. Alternative VAR models are investigated and

the performance of each model is evaluated by comparing the minimum sum of prediction errors (MSPE)

of the model itself to the ones generated by a random walk (RW) without drift13. MSPE values greater

(less) than one indicate that VARs on average outperform (fall behind) a RW. The sample size runs from

1982M1 through 2021M11, unknown VAR parameters are estimated recursively, and real oil price is fore-

cast for horizons h = 1, 3, 6, 12 and 24 months ahead. Namely, I first estimate a VAR from 1982M1 through

2000M12, then I forecast real oil price from 2001M1 through 2003M1. Thereafter, I re-estimate the VAR

up to 2001M1, and forecast real oil price from 2001M2 through 2003M2 and so on. Crude oil predicted

values are exponentiated, because real oil prices are entering the VAR in log-level. The empirical analysis

13This strategy has long been used among the forecasting literature (Meese and Rogoff [1983], MacDonald and Taylor [1994],
Taylor [1995], Kilian and Taylor [2003] and Clarida et al. [2003]), especially when the variable is hard to forecast as it is the case
of crude oil prices
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proceeds as in Baumeister et al. [2020]. Namely, the comparison between text and no-text VAR is firstly

investigated by using a frequentist approach, and then through alternative Bayesian methodologies. The ev-

idence shows that, text regressors assessing human sentiment can not only improve real oil price forecasts,

but in some cases it is also possible to anticipate periods of financial stress, particularly in the short run.

Such promising results are achieved principally because qualitative data are now informing a VAR in real

time, unlike previous models that rely exclusively on laggard macroeconomic data.

2.4.1 Frequentist Forecast

As remarked in the previous section, the benchmark model is Baumeister and Hamilton [2019]’s VAR,

which can be expressed in the following reduced form:

Yt = c+Φ1Yt−1 + ...+ΦpYt−p + εt , (2.6)

where Yt is a 4× 1 vector of observed endogenous variables, and c is a 4× 1 vector of intercepts; Φp is

a 4× 4 matrix of coefficients, with p = 1, . . . ,12 indicating the number of lags14, and εt is a white noise

innovation vector. The out-of-sample forecasts resulting from equation (2.6) are then compared to the ones

generated by the following two text-based VARs:

Yt = c+Φ1Yt−1 + ...+ΦpYt−p + γxt + εt , (2.7)

Yt = c+Φ1Yt−1 + ...+ΦpYt−p + εt , (2.8)

where, xt in equation (2.7) is a 4× 1 exogenous vector of text information, and γ is the associated 4× 4

matrix of regression coefficient. Yt in equation (2.8) is a 5×1 vector of dependent variables, in which xt in

equation (2.7) is now considered as an endogenous variable. Equation (2.6) can be seen as the unrestricted

version of the structural VAR proposed by Kilian and Murphy [2014]. But in this case, I follow Baumeister

et al. [2020] and I use alternative measures of real oil prices, and world industrial production in place of the

dry cargo bulk freight rate.

14Baumeister and Kilian [2015] show that VAR with 12 autoregressive lags, generate the most accurate model estimation of
real oil price.
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Before discussing the empirical results, it is worth noting that VARs estimated through a frequentist ap-

proach generate accurate forecasts of real oil price until 2010, as oil price volatility was almost explained

by crude oil commodity factors. Starting from 2011, oil price fluctuations are mostly explained by a crude

oil financial attribute, which is directly affected by an additional number of financial factors. This trend

variation makes oil price data difficult to forecast through traditional instruments (see Baumeister et al.

[2020]). However, it is also vital to understand whether text variables can explain this trend variation, still

by using a frequentist econometric approach. Table 2.1 and A.1 (appendix A.4) respectively report the

out-of-sample forecast of text-based VARS, when text variables account for sentiment or uncertainty in the

oil market. Panel A, B and C respectively display the forecasting results for WTI, RAC and Brent oil price,

while Model-1, 2 and 3 stand for equation (2.6), (2.7) and (2.8) respectively. Any forecast that outperforms

the benchmark’s is displayed in red, whereas the lowest MSPE ratios of each specific time horizon h, rela-

tive to the oil price measure considered, are displayed in blue. The evidence shows that, consistently with

Baumeister et al. [2020], the MSPEs are still greater than one at any time horizon considered. However,

although a RW always outperforms both the benchmark and text models, some interesting results can be

observed. First of all, Model-3 with SentOdx and SentOidf endogenously included always outperforms

Model-1. When VadOil is the text variable considered, Model-3 outperforms Model-1 for WTI and RAC oil

price forecast, while for Brent price the performance is poor. The well performing TF-IDF and TF-MTX

in the short and medium term is a recurrent evidence all over this empirical paper. Second, the marginal

forecasting improvements for horizons h = 1,3,6,12,24, are 18%, 33%, 7%, 13% and 22% for WTI, 15%,

33%, 5%, 11% and 24% for RAC, 23%, 44%, 6%, 13% and 22% for Brent price. When text variables

account for uncertainty in the oil market, forecasting gains are lower, but “blue” values still belong to VARs

with text factors included (see appendix A.4 for additional details).

It is also interesting to compare the forecasting performance between text and no-text models at each point

in time. For this purpose, I compute the difference between the cumulative sum of forecasting errors

(CSFE) of equation (2.8) and (2.6). Values greater (less) than zero indicate that text based VARs outperform

(fall behind) the benchmark. Results are depicted in Figure 2.1 and are fairly heterogeneous. In fact,

from one side endogenising SentCO and SentOidf in a VAR is useful to anticipate periods of financial

stress in the short run. From the other, VADER as well as BERT perform really poorly across the COVID

period, but on average outperform the benchmark for almost any time horizon. A similar exercise is also

performed in comparison to CSFE generated by a random walk. Figure A.19 in appendix A.5 reports such

results, showing that at least with respect to short term predictions, equation (2.8) performs quite well, but
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unfortunately there are two drastic turnarounds at the time of the global financial crisis and the COVID

pandemic. In contrast, for medium- and long-term forecasts, no VAR outperforms the RW, and this is

clearly displayed in Table 2.1.

This exercise is also replicated when text variables account for uncertainty in the oil market. Results are

displayed in Figure A.14 and clearly show the structural weaknesses that uncertainty text variables incor-

porate. Indeed, not only equation (2.8) is unable to predict unexpected periods of financial stress, but the

amount of loss in terms of MSPE in comparison to the benchmark is significant, especially in the medium

and long term. A similar outcome is visible in Figure A.20, where although text-based VARs outperform

the random walk in the short run, the overall outcome in the medium and long term is very poor.

2.4.2 Bayesian Forecast

Estimating equation (2.8) implies uncovering N (1+N p) = 305 unknown VAR parameters, in a starting

sample of 227 observations (1982M2-2000M12). This richly parameterized reduced form VAR generates

high error values if estimated through a frequentist approach. As a direct consequence, beating the RW

becomes even more complicated. A possible solution to this problem is to shrink the proliferation of

unknown parameters in a Bayesian fashion. Many different methodologies are available in the literature.

However, as remarked in section 2.4, one of the purposes of this work is to show whether the introduction of

different text metrics in a VAR model improves the MSPEs produced in Baumeister et al. [2020]. Therefore,

as in Baumeister et al. [2020], I also use the Bayesian shrinkage methodology suggested in Giannone et al.

[2015]. Namely, I select the appropriate amount of shrinkage in each Bayesian VAR (BVAR), by choosing

the hypervalues that maximise the marginal likelihood of data as a function of the unknown hyperparameters

(additional details about this procedure are provided in appendix A.3). Anyhow, based on the choice of the

prior, this experiment may also be implemented through alternative Bayesian methods (see the survey of

Koop and Korobilis [2010] for a review). Empirical results are presented in Table 2.2, where again the

out-of-sample forecasts of a BVAR(12) without text variables (Model-1) are compared to the out-of-sample

forecasts of a BVAR(12) with exogenous (Model-2) and endogenous (Model-3) text variables expressing

investors (or simply reader) sentiments. An equivalent exercise with text factors accounting for uncertainty

in the oil market is given in Table A.2 (appendix A.4). The evidence shows that endogenising a text regressor

in a stochastic system estimated in a Bayesian fashion, generates more convincing results in comparison

to the previous experiment. In particular, Model-3 with SentOdx or SentOidf as a text variable, not only
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yields the lowest MSPEs (see blue values), but for RAC short term forecasts the reduction is even 5%

statistically significant based on the Diebold-Mariano test15. However, in the long run, recursive MSPE

ratios are always greater than one, which highlights that overcoming a RW is still an onerous task, even

when a system is estimated in a Bayesian fashion.

Figure 2.2 replicates the CSFE exercise presented in section 2.4.1, but this time the forecasting errors of

equation (2.6) and (2.8) are generated from a text- and no-text-based BVAR(12). Results are very promising,

as in the short run any text based model is now able to anticipate crucial periods of economic stress in the

oil market. In fact, for h = 1 not only text models perform on average better than the benchmark, but

there are also important marginal forecasting gains across the global financial crisis and COVID period. In

particular, for the global crisis there are average improvements of 43%, 26% and 62%, while for the global

pandemic they are 22%, 26% and 30% for WTI, RAC and Brent respectively. Less robust improvements

are also achieved when text factors account for uncertainty. In fact, Figure A.15 shows that equation (2.8)

does perform better than equation (2.6) even in periods of high volatility, as well as in the long term.

In regards to the comparison between text based BVARs and RWs, the evidence shows that for horizons

h= 1 and 3, BVAR models on average outperform RW, but the performance across the global financial crisis

and COVID period is poor. The unanticipated falls are thus not captured yet, but the downward jump is now

lower in comparison to the frequentist experiment. For SentOidf variable, the financial crisis downturn is

quite unobservable (see Figure A.21 and A.22 in appendix A.5). As highlighted in Table 2.2 and A.2, RW

performs really well in the long run, and this is reflected in the CSFE differences, as they are constantly

negative for h = 12 and 24, regardless of the sentiment or uncertainty measure used.

2.4.3 Bayesian Forecast with Stochastic Volatility

Crude oil prices have long been subject to drastic changes determined by external events (e.g. wars, 9\11

terroristic attack, financial crisis, COVID) and internal decisions (e.g. OPEC unilateral changes on the

quantity of oil produced, and on the stock of oil inventories), that have affected the aggregate demand

of industrialized economies. This has made the price of oil a highly volatile variable, which is hard to

forecast especially from 2010 onwards. A possible solution to address the problem of structural changes

in the volatility of a variable, is to define a parsimonious law of motion for the error term structure in

order to estimate the dynamic path (see, for example, Primiceri [2005], Cogley and Sargent [2005],

15This is consistent with Kalamara et al. [2020]’s evidence, where sentiment T F-IDF also produce good results.
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Sims and Zha [2006] and Mumtaz and Zanetti [2013]). Following Baumeister et al. [2020], in this

section I investigate the exogenous and endogenous inclusion of text variables developed in section 2.3, in-

side the stochastic volatility BVAR (SV-BVAR) proposed in Carriero et al. [2016]. The benchmark model is

Yt = c+Φ1Yt−1 + ...+ΦpYt−p + εt , εt ∼ N (0,Σt) (2.9)

where Yt still denotes the vector of N dependent variables, while Σt is a full covariance matrix with elements

changing over time. Without loss of generality, we can write

Σt =
(
A−1)

Λt
(
A−1)′ and Σ

1/2
t =

(
A−1)

Λ
1/2
t

with Λt being a diagonal matrix and λi,t a generic diagonal element, for i = 1, . . . ,N representing the ith

dependent variable. A−1 is a lower diagonal matrix with ones on the main diagonal. The system in equation

(2.9) can be then rewritten as

Yt = c+Φ1Yt−1 + ...+ΦpYt−p +A−1
Λ

1/2
t εt , εt ∼ iid N (0, IN) (2.10)

In the benchmark case, N = 4 and the structure of Λt is

Λt =


exp(λ1,t) 0 · · · 0

0 exp(λ2,t) · · · 0
...

... . . . ...

0 0 · · · exp(λ4,t)

 (2.11)

where λ1,t ,λ2,t , . . . ,λ4,t refer to the log volatility of the N = 4 structural shocks in equation (2.9), and the

law of motion for the stochastic volatility is given by

λ̃t = λ̃t−1 +νt , with νt ∼ N (0,Q) and E(εt ,νt) = 0

where λ̃t = [λ1,t ,λ2,t , . . . ,λ4,t ], and by considering εt as a diagonal matrix with ones on the main diagonal,

we implicitly suppose that the disturbance terms are uncorrelated across the dependent variables. In this
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way the system can be estimated equation-by-equation.

As a first exercise, consistently with the previous experiments, I compare the benchmark forecasts of eq

(2.9) to the ones generated from a text based SV-BAR, with exogenous (Model-2) and endogenous (Model-

3) text variables. Results are reported in Table 2.3. For almost any time horizon h, endogenizing a text

factor in a SV-BVAR generates more accurate results. In particular, SentOidf forecasts are 1% statistically

significant for WTI, and 1% for RAC in the short run. Moreover, SentOdx forecasts in the medium and

long term (h = 6 and 12) are also 10% statistically significant. Based on the relevant gains achieved in this

exercise, it is also important to compare the forecasting performance at each point in time. The difference

between the CSFE of a text and no-text SV-BVAR is displayed in Figure 2.3. The results show that the good

performance of some text metrics is consistent across the short, medium and long term (see for example

VadOil, SentOdx and BiTReCO). There is still evidence that text models perform better in periods of high

volatility, especially at the beginning of the COVID pandemic. Similar conclusions cannot be claimed when

text regressors account for uncertainty in the oil market. In fact according to Table A.3 the benchmark model

sometimes outperforms the text based models. Such results are also visible in Figure A.16, where the CSFE

is negative for almost any time horizon h. This experiment emphasizes, once again, the structural limitations

of text measures accounting for uncertainty in the oil market.

In any case, it is worth pointing out that SentOidf can efficiently anticipate RAC future values before the

global financial crisis and the COVID pandemic. And can do so even better than a RW. Although for WIT

and Brent there are still few negative downturns, on average the forecasting errors generated by a text model

are far lower than a RW’s (see Figure A.23 in appendix A.5). Similar conclusions can be drawn when text

measures account for uncertainty, despite the lower marginal gains in comparison to sentiment variables

(see Figure A.24 in appendix A.5).

2.4.4 Are More Text Data Better?

In many recent empirical studies, as common practice text experiments are performed by relying on only

one source of text data (Diederich et al. [2003], Ming et al. [2014], Bybee et al. [2021]). This choice

implies that the analyst is implicitly assuming that the readers\investors sentiment can only be affected

by the content of a specific newspaper, thereby ignoring the possibility that people can read alternative

newspapers, which also provide meaningful information able to affect the human sentiment. In this way,

not only is uncertainty pervasive within empirical results, but the evidence is also biased by the analyst’s
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subjective choice regarding the newspaper selected for text analysis. This problem is addressed in this

section, as I consider two additional sources of text data: The Independent and Thomson Reuters. For

each newspaper, I firstly generate the same text indicators developed with information retrieved from The

Financial Times, and then I investigate any possible combination of text data, relative to each oil price

measure forecast.

Such additional data sources are now including types of information that are not generally found in The

Financial Times, such as oil company’s CEO statements, information for shareholders and future plans of

energy sector leading firms, like Laredo Petroleum, KBR, Transocean, Nordic American Tankers, Seadrill,

Statoil, Marathon Petroleum and many others. Although it would have been interesting to compare the

individual outcomes generated by each text source at each point in time, the different availability of digital

archives16 prevented me from being able to investigate this comparison. Therefore, this experiment pro-

ceeds as follows. Human sentiment data are firstly extracted from The Financial Times newspapers from

1982M01 to 1988M08, as they are the only items available across this time span. Then, from 1988M09

through 2002M10, the analysis also includes daily oil related articles featured in The Independent. Finally,

from 2002M11 up to 2021M11 also Thomson Reuters’ articles are incorporated. It is worth emphasizing

that I do not compute the sentiment (or uncertainty) score for each newspaper individually, and then average

the three different metrics. Articles are instead selected as they belonged to the same folder.

When transforming words from text into numbers, articles are often cleaned in a ”personalised” way. For

example, articles featured in Thomson Reuters have been manually checked, because hundreds of docu-

ments reported a section with sensitive information about the company (e.g. headquarter position, telephone

numbers and so on), which do not tend to affect the sentiment of a reader, and consequently no relevant

information can be retrieved from this section. On the contrary, keeping such information in the dataset can

only generate bias in the empirical results.

Table 2.4, reports the forecasting outcome when news items of multiple sources are jointly combined and

the resulting index is endogenised in a SV-BVAR. The evidence shows that additional text data not only

generate marginal gains in comparison to the equivalent methodology that only relies on one text source,

but for the short and long run forecasts such improvements, in some cases are even statistically significant

based on the Diebold-Mariano test. For example, the use of multiple text sources drastically improves

the one-month ahead forecast of Brent oil, which is now 10% statistically significant. Then, although the

16The Independent articles are available from 1988M9, whereas Thomson Reuters from 2002M11.
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short-run forecasts for WTI and RAC are statistically equivalent to the results reported in Table 2.3, there

is however a 1% and 3% of marginal gain. Finally, for medium- and long-term forecasts there is evidence

of a 10% statistical significance (see e.g. WTI and RAC in Table 2.4 panel C), and overall a marginal

improvement between 1%- 6%. Also the CSFEs associated with multiple sources, on average outperforms

the correspondent one source based CSFEs in the short, medium and long run, other than showing a better

performance in periods of financial stress too (see Figure A.27 appendix A.5).

This remarks the importance of including additional - and politically unbiased - text information in the

empirical experiment, as a strategy to incorporate the human sentiment of people reading alternative news-

papers.

2.4.5 A New Text Based Sentiment Indicator

So far empirical evidence has shown that on average sentiment indicators based on economic information

retrieved from daily newspapers can drastically improve the point forecasts of alternative oil price measures,

regardless of the econometric model performed. On the other hand text based uncertainty indicators hide

structural weaknesses and as a result inaccurate oil price forecasts are generated. However, the outcomes

resulting from the previous exercises can only assess that some sentiment metrics are more reliable than

others, although no final solution has been reached yet. When analysts and policy makers forecast the

price of oil, in place of running multiple sentiment indicators, and compare the related results, they might

want to use one econometric model that incorporates the benefits of any best performing text indicators

previously investigated. For this reason, in this section I extract the first principal component from the

time series sentiment measures that have produced the lowest MSPEs in the last experiment (i.e. VadOil,

SentOdx and BiTReCO extracted from multiple text sources17). The resulting index is referred to as text oil

sentiment indicator (TOSI18), and the related series is displayed in figure 2.5. It is clear that, the normalized

index tracks pretty well the main geopolitical events that affected the price of oil over the period 1982M1-

2021M11. In fact, COVID-19 and global financial crisis correctly identify the main economic drops that

have negatively affected the economy at a world level and consequently the price of oil as well. Then, in

17According to Table 2.4 panel D, even though TF-IDF yields the lowest MSPEs for WTI short-run forecast, SentOidf is
however excluded from the non parameterized combination. The reasons behind this choice can be explained by highlighting the
evidence that not only TF-IDF used for WTI short-run forecast does not generate statistically significant improvements, but the
remaining point forecasts are even worse compared to the BERT based ones. Therefore, including SentOidf in the PCA analysis
would decrease the performance the new index.

18Text variables are standardized before conducting the principal component analysis. Overall TOSI explains 86% variation
of the original dataset.
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the interval [0,−2] we can also observe other important negative shocks, such as the Gulf War, the oil price

crisis of 1998 where Brent price fell below a level of £18 per barrel, the Twin Towers attack and the vibrant

Venezuelan protests of 2016 demanding president Maduro resign. On the other hand, TOSI also tracks the

positive events that have stabilized the oil price level of both WTI and Brent following an increase in oil

production.

The choice of using the first principal component is also supported by the goodness-of-fit that TOSI provides

as opposed to the remaining common factors. Specifically, after running the principal component analysis,

I follow McCracken and Ng [2016] by regressing the ith best performing text series on each common

component k. This yields Ri(k)2 for text series i. The average importance of factor-k is then given by
1
N ∑

N
i=1 Ri(k)2. Results are reported in Table 2.7. Not only TOSI provides more information across each text

series, but it also yields the highest average importance.

In order to assess the forecasting performance of TOSI in predicting the price of oil and to anticipate periods

of high volatility, I run a SV-BVAR as in equation (2.9) and use TOSI as an endogenous variable. For the

sake of robustness, results are now compared to alternative proxy SV-BVARs. Namely, in the previous

experiments I have implicitly supposed that uncertainty and human sentiment indicators can directly affect

a commodity price. In fact, text variables were entering the benchmark model of equation (2.6) and (2.10)

as exogenous or endogenous variables. Now, I investigate the possibility to consider a text indicator as a

proxy of the stochastic volatility. Hence, suppose I wish to apply the Kalman filter to estimate the law of

motion of each λt in (2.11), I then consider the stochastic volatility vector related to oil prices λ̃
p

t and run

the following regression

λ̃
p

t = β0 +β1Sentt +ut (2.12)

where Sentt is a text indicator that in the previous experiments was entering the main VAR expression. The

resulting ˆ̃
λt is then used in place of λ̃

p
t in the N ×4 matrix of volatility states. Such comparison is reported

in Table 2.6, and the evidence shows that although the proxy SV-BVAR does perform slightly better than

a TOSI based SV-BVAR in WTI one-step-ahead forecast, such gains are not statistically significant. Other

than that, in any other step-ahead forecast, TOSI based SV-BVARs outperform any alternative model, and

in several cases the results are also 1% and 10% statistically significant for the short, medium and long

run19 (see RAC panel). Moreover, by looking at the cumulative sum of prediction errors of a TOSI based

19Figure 2.5 displays the overall first principal component series. However, in this exercise TOSI is generated recursively. This
means that for each iteration a first principal component is extracted and endogenously included in the stochastic model. This is
important as text factors can only incorporate information up to the time in which the forecast is performed and no future signal
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SV-BAVR, I can assess that (i) the use of this text index generates on average better results in comparison

to a random walk (line 1, figure 2.4) and to the benchmark model of equation (2.10) (line 2, figure 2.4),

especially in the short and long run. (ii) In periods of high volatility (global financial crisis and COVID-19

among all), text variables do improve point forecast accuracy drastically.

Before concluding with a summary of the empirical results, to improve the validity of the evidence, I also

run 4 simplified versions of a SV-BVAR by comparing the case of TOSI and no-TOSI. Specifically, I start

from a univariate autoregression model where the price of oil is the unique dependent variable and then I

compare the forecasting outcomes of this model to a two-variable SV-BVAR’s, where TOSI is considered

as a second endogenous variable. After that, I run a two-variable SV-BVAR with oil price and global real

economy as dependent variables, and compare the forecasting outcomes to a three-variable SV-BVAR’s

with TOSI endogenised, and so on. The purpose of this exercise is to show that the forecasting gains

achieved by endogenising TOSI are robust to different model specifications. Results are displayed in figure

2.6, and effectively show that TOSI does improve the performance accuracy of any SV-BVAR used to

forecast the price of oil 1-, 3- and 6-months ahead. In particular, other than the outcome produced by a

3-variable SV-BVAR for RAC 1-month ahead forecast, TOSI generates better results for any time horizon h

considered, and such outcome is often even statistically significant according to the Diebold-Mariano test.

Therefore, empirical results achieved so far can definitely motivate the choice of using TOSI to improve

actual econometric models used to forecast real oil prices.

SUMMARY OF EMPIRICAL RESULTS. In short, according to the evidence provided in Table 2.1, 2.2, 2.3,

2.4 and 2.6, and with the support of Figure 2.1, 2.2, 2.3 and 2.4, the following can be inferred. 5 variable

SV-BVARs with endogenous text variables outperform any other model investigated in this study, and it is

helpful to combine multiple text sources in order to minimize the bias in general (as people read alternative

newspapers), and in doing so drastically improve the oil forecasts in particular. For h = 1, the Financial

Times and The Independent incorporate more useful information to predict WTI, and TF-IDF is used as

a text metric. Whereas, for RAC and Brent forecasts, BERT is the text metric used to retrieve relevant

information from the Financial Times and Thomson Reuters. The latter strategy is also suggested for a

3-months ahead forecast, and just for WTI and Brent when oil price is forecast 6-months ahead. For long

term forecasts (h = 12), the evidence suggests that incorporating any text source is better off, TF-MTX is

useful for WTI and RAC, while BERT for Brent. Lastly, when oil prices are predicted two-years ahead, a

is included.
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dictionary based model is still the best performing text metric and the newspaper combination suggested is

the Financial Times and Thomson Reuters. Table 2.5 summarizes the aforementioned results.

Many other experiments have been performed in this paper. Only a few of them are mentioned here,

but the reader is addressed to consult appendix A.5 for additional results. Firstly, I have used the global

economic conditions indicator (GECON) developed in Baumeister et al. [2020], in place of world industrial

production in a SV-BVAR(12), and have investigated the forecasting performance with both sentiment and

uncertainty text based indicators (see Table A.4 and A.5 in appendix A.5). I have also used a measure

of world oil consumption in place of oil produced at a global level with sentiment and uncertainty text

variables. Finally, I have replicated the same exercise by considering the global steel production factor as a

measure of real economy. Such results are provided in appendix A.5 and still show that text variables can

drastically improve a no text based VAR.

2.5 Conclusions

This work develops a set of text based time series variables assessing (i) human sentiment and (ii) economic

uncertainty in the oil market. The empirical application of such measures in multiple vector autoregression

models shows the gains and weaknesses of the text metrics used to retrieve meaningful information from

oil related news items. The weaknesses are mostly associated with uncertainty measures, as their empirical

application does not generate statistically significant improvements when alternative oil price measures are

forecast, and the related time series are not prone to react to the main geopolitical events affecting the price

of oil. In contrast, sentiment indicators can track such episodes reasonably well, and consequently the

econometric models relying on such indicators can significantly enhance the forecasting accuracy of real

oil prices.

The empirical evidence also shows that by endogenising VadOil, SentOdx and BiTReCO in a 5-variable

SV-BVAR, and by taking into consideration multiple text sources, the forecasting performance of a SV-

BVAR model not only outperforms the random walk’s in the short, medium and long run, but the MSPEs

associated with such text-based SV-BVARs are even significantly lower than any other benchmark model

considered in this study. The first principal component is extracted from the best performing text indicators,

and the work results in a new text-based index that significantly improves the real oil price point forecasts,

especially in periods of financial instability. A number of improvements could be made to this research. For
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example, a considered, proportionate, incorporation of a wider range of newspaper types (red top tabloids

versus left-wing publications) would allow the collection and analysis of more data with the potential to

enhance TOSI’s performance. This task is to be left for future research.

Thus, in conclusion, this work provides a state-of-the art guidance for energy companies, central banks and

international organizations that need accurate forecasts of real oil prices to make informative policy and

strategic decisions, in order to anticipate potential periods of economic downturn.
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Table 2.1: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil price in a VAR(12), estimated through a frequentist approach. World industrial production is used
as a measure of global real economy, and text regressors account for human sentiment about oil news.

Monthly SentCO VadOil SentOdx SentOidf BiTReCO
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

1.404
1.407
1.108
1.329
1.319

1.380
1.688
1.437
1.599
1.896

1.449
1.448
1.134
1.322
1.160

1.455
1.557
1.157
1.532
1.401

1.365
1.429
1.097
1.322
1.202

1.411
1.581
1.681
3.618
6.612

1.310
1.201
1.050
1.227
1.277

1.336
1.347
1.374
1.899
2.720

1.246
1.156
1.091
1.264
1.077

1.478
1.772
1.137
1.432
1.695

1.524
2.202
1.074
1.377
1.373

B. RAC based VAR

1
3
6

12
24

1.183
1.391
1.126
1.406
1.302

1.169
1.578
1.297
1.473
1.576

1.232
1.454
1.148
1.411
1.142

1.238
1.616
1.243
1.713
1.466

1.158
1.345
1.105
1.390
1.180

1.181
1.563
1.768
4.451
7.639

1.100
1.187
1.083
1.318
1.271

1.141
1.289
1.272
1.816
2.226

1.084
1.140
1.112
1.344
1.029

1.255
1.779
1.152
1.537
1.722

1.297
1.983
1.096
1.464
1.347

C. Brent based VAR

1
3
6

12
24

1.637
1.855
1.202
1.378
1.277

1.606
2.118
1.554
1.591
1.677

1.714
1.850
1.227
1.368
1.104

1.682
2.018
1.235
1.528
1.278

1.626
1.865
1.202
1.359
1.153

1.641
2.119
1.768
3.615
5.577

1.452
1.446
1.160
1.291
1.256

1.563
1.679
1.350
1.750
2.109

1.451
1.445
1.178
1.293
1.020

1.756
2.642
1.278
1.620
1.910

1.861
2.973
1.187
1.427
1.329

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the lowest MSPE results
relative to a specific horizon h.
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Figure 2.1: The figure plots the difference between the cumulative sum of forecasting errors of equation
(2.8) and the benchmark model in (2.6). VAR parameters are estimated through a frequentist approach and
text variables account for human sentiment about oil news.
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Table 2.2: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a BVAR(12). World industrial production is used as a measure of global real economy, and
text regressors account for human sentiment about oil news.

Monthly SentCO VadOil SentOdx SentOidf BiTReCO
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

0.996
0.951
1.001
1.107
1.210

0.991
0.951
0.998
1.107
1.204

0.973
0.948
1.004
1.107
1.135

0.983
0.976
1.043
1.174
1.345

0.975
0.944
1.009
1.105
1.133

0.976
1.021
1.293
1.902
3.186

0.980
0.928
0.974
1.062
1.178

0.978
0.957
1.068
1.269
1.527

0.936
0.897
0.971
1.071
1.110

0.976
0.944
0.998
1.106
1.206

0.980
0.942
0.978
1.096
1.205

B. RAC based VAR

1
3
6

12
24

0.846
0.934
1.001
1.151
1.227

0.846
0.937
1.000
1.142
1.222

0.831∗

0.925
1.018
1.141
1.147

0.845
0.968
1.061
1.257
1.413

0.823∗

0.914
1.009
1.129
1.138

0.838∗

1.071
1.490
2.516
4.791

0.803∗∗

0.887
0.977
1.093
1.191

0.826∗

0.933
1.064
1.317
1.569

0.803∗∗

0.875
0.970
1.096
1.105

0.843
0.931
0.997
1.138
1.222

0.845
0.931
0.993
1.137
1.220

C. Brent based VAR

1
3
6

12
24

1.048
1.039
1.040
1.141
1.202

1.014
1.008
1.042
1.137
1.198

1.000
0.991
1.047
1.132
1.119

1.013
1.040
1.104
1.236
1.359

1.007
1.013
1.045
1.127
1.127

0.998
1.258
1.896
3.456
7.675

0.980
0.970
1.010
1.094
1.175

1.000
1.032
1.146
1.372
1.663

0.964
0.943
0.996
1.078
1.086

1.023
1.027
1.040
1.142
1.203

1.015
1.006
1.022
1.127
1.200

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the lowest MSPE results
relative to a specific horizon h. *, **, *** respectively denote 10%, 5% and 1% level of significance of Diebold-Mariano test.
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Figure 2.2: The figure plots the difference between the cumulative sum of forecasting errors of equation
(2.8) and the benchmark model in (2.6). VAR parameters are estimated in a Bayesian fashion and text
variables account for human sentiment about oil news.
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Table 2.3: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). World industrial production is used as a measure of global real economy,
and text regressors account for human sentiment about oil news.

Monthly SentCO VadOil SentOdx SentOidf BiTReCO
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

0.976
0.962
0.918
0.946
0.925

0.978
0.945
0.902
0.943
0.919

0.970
0.951
0.944
0.983
0.918

0.982
0.987
0.944
0.985
1.034

0.946
0.929
0.916
0.959
0.892

0.977
0.954
0.915
0.945
0.925

0.958
0.933
0.903
0.915
0.927

0.967∗

0.934
0.910
0.940
0.910

0.924∗

0.913
0.943
1.009
1.013

0.960
1.015
1.010
1.194
1.604

0.955
0.923
0.896
0.939
0.936

B. RAC based VAR

1
3
6

12
24

0.818∗∗

0.909
0.971
0.938
0.847

0.819∗∗

0.901
0.876
0.927
0.852

0.809∗∗

0.907
0.912
0.971
0.845

0.821∗∗

0.936
0.898
0.964
0.973

0.799∗∗

0.890
0.882
0.926
0.811

0.822∗∗

0.907
0.872
0.906
0.830

0.813∗∗

0.875
0.841∗

0.873∗

0.828∗

0.824∗∗

0.907
0.868
0.917
0.838

0.793∗∗∗

0.875∗

0.911∗

0.982
0.911

0.796∗∗

0.959
0.949
1.119
1.339

0.802∗∗

0.872
0.842
0.899
0.841

C. Brent based VAR

1
3
6

12
24

0.980
1.032
0.910
0.937
0.908

0.975
1.009
0.913
0.948
0.928

0.966
1.011
0.957
0.977
0.905

0.982
1.041
0.944
0.992
1.019

0.952
0.991
0.906
0.938
0.884

0.980
1.044
0.912
0.928
0.898

0.980
1.016
0.890
0.909
0.908

0.989
1.031
0.915
0.944
0.913

0.933
0.975
0.934
0.985
0.956

0.948
1.086
0.987
1.141
1.431

0.947
0.973
0.873
0.903
0.921

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the lowest MSPE results
relative to a specific horizon h. *, **, *** respectively denote 10%, 5% and 1% level of significance of Diebold-Mariano test.
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Figure 2.3: The figure plots the difference between the cumulative sum of forecasting errors of equation
(2.10) with and without text indicators. VAR parameters are estimated in a Bayesian fashion by assuming
stochastic volatility in the error term, and text variables account for human sentiment about oil news.
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Table 2.4: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices. Combination between different text data sources

Model 1-month 3-months 6-months 12-months 24-months
WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

A. SentCO

FT-TR 0.970 0.809∗∗ 0.965 0.950 0.907 1.010 0.934 0.907 0.949 0.964 0.938 0.962 0.915 0.836 0.901
FT-IND 0.973 0.806∗∗ 0.962 0.965 0.917 1.020 0.948 0.920 0.960 0.982 0.958 0.977 0.919 0.845 0.907
FT-IND-TR 0.973 0.806∗∗ 0.962 0.965 0.917 1.02 0.948 0.920 0.960 0.982 0.958 0.977 0.919 0.845 0.907

B. VadOil

FT-TR 0.945 0.797∗∗ 0.952 0.926 0.882 0.999 0.911 0.870∗ 0.906 0.946 0.901∗ 0.923 0.882 0.783∗ 0.870
FT-IND 0.949 0.806∗∗ 0.948 0.938 0.889 1.008 0.925 0.886 0.929 0.958 0.923 0.938 0.890 0.797∗ 0.876
FT-IND-TR 0.954 0.800∗∗ 0.954 0.934 0.893 1.009 0.920 0.882 0.915 0.953 0.904 0.921 0.888 0.784∗ 0.874

C. SentOdx

FT-TR 0.961 0.812∗∗ 0.980 0.929 0.885 1.021 0.897∗ 0.839∗ 0.880 0.912∗ 0.873∗ 0.909 0.920 0.822∗ 0.908
FT-IND 0.954 0.811∗∗ 0.967 0.916 0.879 0.994 0.881∗ 0.835∗ 0.880 0.899∗ 0.864∗ 0.900 0.918 0.835 0.907
FT-IND-TR 0.953 0.807∗∗ 0.971 0.924 0.881 0.998 0.885 0.830∗ 0.876 0.892∗ 0.862∗ 0.897 0.916 0.833 0.909

D. SentOidf

FT-TR 0.920 0.790∗∗∗ 0.949 0.913 0.871 0.988 0.915 0.889∗∗ 0.919 0.962 0.932 0.937 0.924 0.818∗ 0.898
FT-IND 0.914 0.788∗∗∗ 0.925∗ 0.902 0.861∗ 0.954 0.917 0.881∗ 0.911 0.969 0.943 0.937 0.968 0.871 0.928
FT-IND-TR 0.923 0.790∗∗∗ 0.926 0.901 0.860 0.952 0.900 0.862∗ 0.889∗ 0.939 0.903∗ 0.901∗ 0.915 0.807∗ 0.882

E. BiTReCO

FT-TR 0.920 0.772∗∗∗ 0.891∗ 0.891 0.838 0.916 0.887 0.832 0.869 0.926 0.881 0.891 0.924 0.841 0.914
FT-IND 0.950 0.795∗∗ 0.949 0.928 0.877 0.983 0.887 0.848 0.879 0.929 0.885 0.898 0.929 0.840 0.919
FT-IND-TR 0.947 0.796∗∗ 0.940 0.921 0.864 0.978 0.891 0.835 0.875 0.931 0.875 0.897 0.938 0.837 0.928

Note: In column 1, FT: Financial Times, TR: Thomson Reuters, IND: Independent. Blue values report the lowest MSPE result relative to each horizon h and oil price measure (WTI, RAC and Brent). *, **, *** respectively
denote 10%, 5% and 1% level of significance of Diebold-Mariano test.

Table 2.5: Summary of Empirical Results

Oil Variable Table Model Suggested Source

h=1
WTI Table 2.4 Panel D SentOidf based SV-BVAR FT-IND
RAC Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR
BRENT Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR

h=3
WTI Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR
RAC Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR
BRENT Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR

h=6
WTI Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR
RAC Table 2.4 Panel C SentOdx based SV-BVAR FT-IND-TR
BRENT Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR

h=12
WTI Table 2.4 Panel C SentOdx based SV-BVAR FT-IND-TR
RAC Table 2.4 Panel C SentOdx based SV-BVAR FT-IND-TR
BRENT Table 2.4 Panel E BiTReCO based SV-BVAR FT-TR

h=24
WTI Table 2.4 Panel B VadOil based SV-BVAR FT-TR
RAC Table 2.4 Panel B VadOil based SV-BVAR FT-TR
BRENT Table 2.4 Panel B VadOil based SV-BVAR FT-TR

Note: In column 5, FT: Financial Times, TR: Thomson Reuters, IND: Independent.
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Table 2.6: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). World industrial production is used as a measure of global real economy,
and text regressors accounting for human sentiment about oil news are used as instrumental variables of
stochastic errors of oil prices.

Monthly SentCO VadOil SentOdx SentOidf BiTReCO
horizon TOSI IV -SV-BVAR IV -SV-BVAR IV -SV-BVAR IV -SV-BVAR IV -SV-BVAR

A. WTI based VAR

1
3
6

12
24

0.925∗

0.905
0.894
0.935
0.883

0.919∗

0.910
0.925
0.980
1.052

0.911∗

0.909
0.925
0.977
1.041

0.909∗

0.905
0.925
0.978
1.043

0.909∗

0.908
0.923
0.975
1.048

0.909∗

0.910
0.924
0.977
1.040

B. RAC based VAR

1
3
6

12
24

0.782∗∗∗

0.862
0.849∗

0.887∗

0.786∗

0.804∗∗

0.889
0.919
1.001
1.053

0.800∗∗

0.882
0.912
0.989
1.051

0.803∗∗

0.886
0.919
0.994
1.051

0.805∗∗

0.885
0.915
0.996
1.053

0.807∗∗

0.886
0.917
0.999
1.053

C. Brent based VAR

1
3
6

12
24

0.928∗

0.960
0.894
0.912
0.882

0.963
0.965
0.948
1.002
1.046

0.942
0.954
0.942
0.993
1.046

0.948∗

0.956
0.942
0.997
1.046

0.950
0.951
0.939
0.998
1.048

0.944∗

0.952
0.943
1.001
1.045

Note: Blue values show the lowest MSPE results relative to a specific time horizon h. *, **, *** respectively denote 10%, 5% and
1% level of significance as suggested by the Diebold-Mariano test.
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Figure 2.4: First line plots the difference between the cumulative sum of forecasting errors of equation
(2.10) with TOSI endogenised and a random walk. Second line plots the difference between the cumulative
sum of forecasting errors of equation (2.10) with and without TOSI. In both cases VARs are estimated in
a Bayesian fashion by assuming stochastic volatility in the error term. Blue, red and yellow lines describe
WTI, RAC and Brent crude oil respectively.
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Figure 2.5: First principal component factor extracted from a dataset made up by the following text indi-
cators: VadOil, SentOdx and BiTReCO. Blue and red notes describe the main historical events that have
positively or negatively affected the price of oil. Sample period runs from 1982M1 through 2021M11 and
articles are drawn from The Financial Times, Thomson Reuters and The Independent.

Table 2.7: Total variation explained by individual common components.

PCA R2 R2 R2 Overall Avg
factors VadOil SentOdx BiTReCO dataset importance

TOSI 0.53 0.99 0.90 0.86 0.81
Factor 1 0.47 0.11 0.01 0.14 0.19
Factor 2 0.01 0.10 0.01 0.01 0.04

Note: Column 1 lists the 3 principal component factors. Columns 2, 3 and 4 reports the R2 generated by regressing the relative text series on each component. For example, TOSI explains 53% variation of VadOil,
99% variation of SentOdx and 90% variation of BiTReCO. The fraction of variance in the data explained by individual components is listed in column 5, whereas the last column reports the average importance of
each principal component variable.
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Figure 2.6: Comparison between the cumulative sum of forecasting errors among four alternative SV-BVAR
models with and without TOSI. The oil measures are reported on the y-axis, while the month-ahead forecast
is displayed on the x-axis. Models beat the random walk when bars lay below 1.
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3.1 Introduction

Following Russia’s invasion of Ukraine and the unstable inflation rates over the past few years, investors

and central bankers are apprehensive about the future prices of oil. The idea that crude barrel prices could

hit new record highs is concerning to firms, households, and governments. But how far can oil prices go in

the short run? And what is the probability that they will turn negative again? Such questions are of crucial

importance, as central banks can only make informed policy decisions if they can rely on accurate forecasts

of inputs which could have far-reaching impacts on the gross domestic product and inflation.

In Gifuni [2021] I emphasize that oil market fundamentals commonly used to forecast future prices of oil

are vulnerable to unexpected economic shocks, due to delays in data being made available. For this reason,

I provide a solution by developing a new and highly informative text oil sentiment indicator (TOSI). This

index is based on written information retrieved in real time and is designed to capture the human sentiment

in the oil market. TOSI is calculated on a monthly basis and is used as an endogenous variable in a vector

autoregression (VAR) model. In Gifuni [2021] I show that text data yield significant forecasting gains,

especially across periods of financial instability. This is mostly because not only is TOSI available at high

frequency, but it is also not subject to revisions. However, daily data combined on a monthly basis are unable

to provide a truly accurate reflection of specific, global and economic events. Albeit infrequent, occurrences

(for example wars and natural disasters) still have the potential to evoke widespread and profound economic

changes. What’s more, information available at the end of the month is likely to be more informative than

older news (Ghysels et al. [2004], Ghysels et al. [2007]).

For this reason, in this work I aim to show whether information retrieved from daily newspapers, combined

on a weekly and daily basis, is useful for improving how accurately monthly real oil prices can be predicted.

Specifically, I develop alternative weekly and daily text-based series and examine whether said indicators

can improve the out-of-sample forecasts of monthly real oil prices. Both tasks require the use of text mining

strategies1 and mixed-frequency (MF) models.

This study builds on the literature aiming to explain the fluctuations in crude oil prices through variables

sampled at different frequencies. Prominent contributions include Baumeister et al. [2015], Degiannakis

and Filis [2018], Ma et al. [2019] and Gong et al. [2022]. I return to this question using text data, which has

1In his paper I use the terms “text mining”, “natural language processing”, “computational linguistics” and “text analysis” are
used interchangeably.
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long been considered as an alternative source of knowledge with potentially informative content. Text as

data is indeed used in many areas of the literature (see for example Baker et al. [2016], Hansen et al. [2018],

Shapiro et al. [2022] and Shapiro and Wilson [2022]). This paper is also closely related to the fast-growing

body of work aimed at discovering methodologies that perform particularly well in periods of economic

instability; see Clark et al. [2022], Chan [2022] and Carriero et al. [2022]. In the context of my framework,

I develop a set of weekly and daily text indicators that incorporate new information available in real time.

Said indicators are further included in alternative models with variables sampled at different frequencies.

In this way immediate changes can be promptly captured and the reaction of low frequency variables can

be identified accordingly.

While the use of models accommodating MF data finds a broad empirical application among several areas

in the economic literature2, the idea of forecasting the monthly price of oil with data sampled at different

frequencies is relatively unexplored. To the best of my knowledge there are only two notable exceptions:

Baumeister et al. [2015] and Degiannakis and Filis [2018]. In the former study, the authors use financial

data available at a daily and weekly frequency to fit Mixed-data sampling (MIDAS) and MF-VAR models.

Findings show that despite the predictability of oil prices through MF models, overall not much information

is lost by ignoring high frequency data when forecasting the monthly price of oil. In contrast, Degiannakis

and Filis [2018] point out that there are several informative financial and commodity variables not explored

in Baumeister et al. [2015], the variation of which can impact on crude oil spot prices. Said variables also

provide a large amount of ultra-high frequency data3, that the authors use to construct variable-specific

realised volatilities, which are then incorporated into alternative MIDAS. Results show that realised volatil-

ities of financial variables radically improve the MIDAS performance on a no-change forecast at short,

medium- and long-term horizons.

However, a number of pitfalls can be observed from both empirical works. Firstly, high-frequency variables

only rely on financial and commodity data, while there are several recent studies showing the importance

of combining daily and weekly text data along with financial variables and oil market fundamentals (Li

et al. [2019], Gifuni [2021], Bai et al. [2022]). Secondly, the evaluation period used in Baumeister et al.

2A comprehensive review concerning the use of MF models is beyond the purpose of this paper. However, Foroni and
Marcellino [2013] and Foroni et al. [2013] survey the most common techniques for sampling variables at different frequencies,
alongside many empirical applications.

3This expression refers to the availability of a large number of intraday observations. These were originally determined by
massing tick-by-tick market data, where each tick is one logical unit of information. In financial markets it is common practice
to observe thousand of ticks or transactions per business day.
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[2015] and Degiannakis and Filis [2018] does not cover the most recent events that have made crude spot oil

prices hard to predict (e.g. the Covid pandemic and the Russia-Ukraine war). If indeed the sample period

runs until recent times, high frequency financial data do not produce similar gains in terms of accuracy (see

section 3.5). Such drawbacks are addressed in this study.

Specifically, I use Gifuni [2021]’s dataset to construct a set of real-time text variables. Written informa-

tion is retrieved from the most widely read newspapers, such as The Financial Times, Thompson Reuters

and The Independent. Text data run from 1982M1 to 2021M12 for a total of 140,096 oil related articles

downloaded from the LexisNexis database. Text variables are designed to capture the human sentiment and

the uncertainty in the oil market. Said indicators are included into alternative MF models alongside several

financial and commodity variables that are commonly used to forecast the real oil prices. The analysis starts

with a comparison between homogeneous- and mixed-frequency models, with and without text variables. I

demonstrate that, endogenising weekly text data in a monthly based mixed-frequency stochastic volatility

Bayesian VAR does improve the forecasting performance of the model in the short run. However, such

marginal gains are low and negligible.

In a second experiment I follow Degiannakis and Filis [2018] and use intraday data to compute the daily

returns from financial and commodity markets. MIDAS models with daily returns and oil market funda-

mentals are then used to forecast WTI crude oil spot prices. The evidence shows that intraday returns

marginally improve the out-of-sample 1-month ahead prediction on the no-change forecast. But at any

other time horizon, random walks generate better forecasts in terms of accuracy. In any case, statistically

significant improvements are observable when MIDAS models include both text data and intraday returns.

In particular, I find that the Commodity Research Bureau (CRB) index, the GBP/USD exchange rate and

the natural gas spot price generate the most informative daily returns. When such information is used in

a MIDAS model along with text data, it is possible to observe a marginal improvement on the no-change

forecast up to 18%, and a statistically significant gain up to 1%. For 1-step ahead forecasts, results are even

more accurate than the outcome generated by the corresponding model incorporating variables sampled at

homogeneous frequency. However, improvements are minimal and the evidence still supports Baumeis-

ter et al. [2015]’s empirical findings. This is true for weekly and daily data, as well as point and density

forecasts.

The remainder of this paper is organised as follows. Section 3.2 illustrates the methodology used to ma-

nipulate daily text data at different frequencies. Text metrics are described in section 3.3, while section
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3.4 outlines the mixed-frequency models used to forecast the price of oil. Section 3.5 reports the empirical

results and section 3.6 concludes.

3.2 Text-Data Transformation

Text documents rely on written articles that featured in the banking, finance and energy section of The

Financial Times, Thomson Reuters and The Independent from 1982M1 to 2021M12. In order to retrieve

articles and transform text into structured data, a number of procedures were required. The main steps are

outlined as follows:

1-DOWNLOAD AND STORAGE. Articles are selected based on the joint occurrence of the words oil and

price. Documents are firstly downloaded in .rtf format from the LexisNexis database, then transformed

into .txt files, and finally stored in “newspaper-specific” monthly folders. Before transforming text into

numbers, I have also done a word search with the purpose of removing articles not discussing oil-related

topics. For example, the words oil and price might also occur in articles discussing topics related to the olive

oil market, or the biography of an oil-company worker. Said articles are all removed from the database, as

they do not include informative data.

2-CLEANING. After storing .txt files in monthly folders, documents have unnecessary white spaces,

punctuation and numbers removed. I have then retrieved the title and full text by removing non informative

written sections, such as copyrights, publication name, location, editor and additional notes placed at the

end of the body. Following this, words are lowercased and then stemmed or lemmatised4, based on the text

processing methodology performed. In particular, for bag-of-words methodologies, I apply the stemming

procedure, as converting a word to its lemma might generate bias when tokens are counted. For example,

when oil prices turned negative for the first time in history, the Independent released two articles with the

following content:

Firms have an opportunity to change for the better. ...They should not enter into sham

schemes to reduce their taxes. They should not pollute or treat their staff and customers badly.

And they should be seen to mean it. In essence, they should behave as good citizens...There

will be a reckoning after this. Somebody is going to have to pay for the mind-boggling, budget-
4Stemming procedure is used to cut off the suffix of a word by preserving its original form. Differently from the lemmatization

that works on the morphological analysis and reduces words to their original root.
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busting rescue packages and handouts. Governments do not make money; they collect and

spend other people’s. It’s inevitable then that attention will turn to those who can best

fork out. That is bound to point to the wealthiest in society, to the richest individuals and

corporations. (The Independent, April 11 2020)

British Airways job cuts: what will the redundancies mean for passengers? It is

certain that BA’s intercontinental fleet will become significantly smaller. ...Balpa says

it is baffled by the decision. The general secretary, Brian Strutton, told The Independent: ”I

would have thought British Airways would wait to see what was happening to its competitors.

”I wonder also if it’s a bit opportunistic? Maybe a bit of a land grab, because they’re also

talking about our terms and conditions.” A phrase that is widely repeated in aviation is:

”Never waste a good crisis.” ...A reduction in capacity generally means an increase in prices.

If procedures such as leaving middle seats empty are introduced, that alone will trigger a 50

per cent fare rise. I predict that for years we will look back on the summer of 2019 as ”peak

mobility” and best value for airline passengers. (The Independent, April 29 2020)

If both pieces of text are lemmatised, words like good, better and best, are all mapped to good which is also

used inside the text but with a different meaning. Therefore for unigram and geometrical models, tokens

are stemmed, as the purpose of both strategies is to count a preselected root word (in my case “econom” for

human sentiment and “uncertain” for oil market uncertainty). In contrast, for dictionary and Bert model

words are lemmatised in order to retrieve the meaning from each stand-alone token.

3-TRANSFORMATION. The procedure for mapping words into numbers changes across the text met-

ric used. For this reason the reader is advised to read section 3.3, where each methodology is discussed

thoroughly. However, it is important to outline here the general procedure employed to generate daily,

weekly and monthly text indicators. As previously remarked, the database consists of daily articles. A

numerical score is computed for each article and averaged across the remaining daily scores (if any). For

weekly/monthly indicators, daily scores are then averaged across the values belonging to the corresponding

week/month.
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3.3 Text Metrics

NLP methodologies investigated in this study build on Gifuni [2021]. However, while Gifuni [2021] only

uses computational linguistics to develop monthly indicators, in this paper text metrics are also used to

compute daily and weekly indexes. Text indicators are designed to capture the human sentiment and the

uncertainty in the oil market, and the text metrics are outlined as follows.

I start with the unigram count probability model, where I use the word-specific maximum likelihood esti-

mation

p(ωk) =
counts(ω|k)

∑
N
n=1 counts(ωn|k)

, for k = 1, . . . ,K. (3.1)

for tokens ω = {“economy”, “economies”, “economic” and “economics”} occurring in document k. N

represents the number of words running in article k. Document-specific unigram scores are then averaged

across the number of articles released on day d or week w as follows

ωd/w =
∑

K
k=1 p(ωk|d/w)

Total No. Doc.d/w

It is common practice to use equation (3.1) for constructing text series aiming to capture the human sen-

timent. Abrahams et al. [2015], Renault [2017], McGurk et al. [2020] and Shapiro et al. [2020] are some

examples of empirical works using such a procedure for improving the forecasting accuracy of alternative

econometric models. This measure, albeit not statistically well-performing when considered at a monthly

frequency (see Gifuni [2021]), is in this work used for the first time to develop an oil related human sen-

timent index at a daily and weekly frequency. The time series are depicted in Figure 3.1. An equivalent

procedure is used to construct uncertainty based indicators. Tokens ω = {“uncertain”, “uncertainty”,

“uncertainties” and “uncertainly”} are stemmed to “uncert”. For expository purposes, the empirical

application of uncertainty measures is provided in Appendix B.3.

In a second analysis, I use Valence Aware Dictionary and sEntiment Reasoner (VADER) of Hutto and

Gilbert [2014] to classify tokens into positive, neutral and negative classes. The mapping of words to

numbers follows the following equation

Sk =
∑

N
n=1 Θnωn

∑
N
n=1 ωn

for k = 1, . . . ,K (3.2)
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and the daily/weekly score is

Sm =
∑

K
k=1 Sk

Total No. Doc.d/w

Θ is the set of pre-assigned weights with values running from -4 (for very negative tokens) to +4 (for very

positive tokens), which is then normalised into a more narrowed interval [-1; +1]. Figure 3.2 shows the

weekly and daily series of VADER. This methodology has also been applied in several recent works; see

for example Shu et al. [2020], Baylis [2020] and Suardi et al. [2022].

Furthermore, human sentiment and oil market uncertainty information is retrieved through the application

of two geometrical models: (i) term frequency matrix (tfm) and (ii) term frequency - inverse document

frequency matrix (tf-idf). Both strategies rely on the frequency of occurrences of preselected unigrams.

However, in contrast to equation (3.1), geometrical models are not proportionally sensitive to term fre-

quency changes. Specifically, tfm is given by

t f mω =
∑

K
k=1 ωn,k

Total No. Doc.d/w
(3.3)

and incorporates information about the frequency of a token in each article for the overall daily or weekly

data collection K. While tf-idf is given by

t f -id fω =
log [1+ t f mω ]

log
[
1+
(
Kd/w/md/w

)] (3.4)

and helps to overtake the limits associated with equation (3.3). In particular, tf-idf normalizes the tfm value

over the inverse ratio between the overall data collection K and the number of (daily or weekly) documents

m where a generic token ω occurs. This particular weighting scheme allows the methodology expressed

by equation (3.4) to map words that are rare within and across the dataset as very informative tokens,

and words common within and across the dataset as non informative (see Banchs [2012] for a review, or

Kalamara et al. [2020] and Li et al. [2021] for an empirical application). For expository purposes only tfm

series are reported (see Figure 3.3).

Finally, I also use Bidirectional Encoder Representations from Transformers (BERT) of Devlin et al. [2018]

to process words in a deep learning structure of 12 layers, 768 hiddens, 12 heads and 110M parameters.

Daily and weekly series are displayed in Figure 3.4. The methodologies briefly described in this section
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are used to develop human sentiment and oil market uncertainty indexes at a daily and weekly frequency,

which are then included in alternative econometric models explained in section 3.4. For additional details

of such methodologies, see Gifuni [2021].

3.4 Real-Time Forecasting Models

In this section I discuss the econometric models used to forecast alternative measures of monthly real oil

prices. Two macro models are explored: (i) polynomials with variables sampled at homogenous frequency

and (ii) mixed-frequency models.

The univariate MIDAS regression is the first mixed frequency model examined. The structure of this poly-

nomial is also discussed in Ghysels et al. [2007], Ghysels and Wright [2009] and Clements and Galvão

[2008, 2009], and involves the use of a Beta lag weight function. Results are reported in Appendix B.3,

where I show that exponential Almond, equal-weighted lag and unrestricted MIDAS generate approxi-

mately similar results in terms of accuracy. I then estimate a mixed-frequency VAR (MF-VAR) model for

each text variable examined. For this polynomial, I use a parsimonious data-driven methodology, where low

and high frequency variables are stacked in one matrix and the model is estimated at its lowest observed fre-

quency (see Baumeister et al. [2015] and Ghysels [2016] for more details about this methodology)5.

3.4.1 Non Text Based Models

The most basic methodology used in this work to forecast the monthly value of real oil prices is the uni-

variate autoregressive (AR) model. The reason behind this choice is because AR polynomials have long

been used as a model benchmark across the literature, as they provide robust forecasts when estimated with

consistent estimators such as OLS (Stock and Watson [2003], Banerjee et al. [2005]). Therefore, I first

assume that oil prices evolve according to the following stochastic equation:

yt = c+ρ1yt−1 + . . .+ρpyt−p + εt , ε ∼ N
(
0,σ2) (3.5)

5There is a second approach that is widely used in the literature, where the VAR is modelled in a state space representation
form (see Giannone et al. [2008], Ghysels and Wright [2009], Schorfheide and Song [2015] and Schorfheide et al. [2018]).
Albeit efficient, this methodology is useful to estimate and then now/forecast the missing values of a low-frequency variable (i.e.
quarterly GDP). In contrast, the purpose of this work is to forecast the monthly value of an ultra-high-frequency variable as the
price of oil. Using a state space model would only create bias, as there is no missing information to estimate.
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where the dependent variable y represents the price of oil in log-level at time t, c is the intercept, p is the

number of lags, ρ are the unknown coefficients estimated through least square, and ε is an exogenous shock.

In the empirical application, the number of lags is determined by using the Bayesian Information Criterion

(BIC) methodology, and it changes across each recursive forecast.

Subsequently, the univariate model in equation (3.5) is augmented with exogenous lagged factors repre-

senting the main oil market fundamentals. Such variables are: (i) oil produced at a world level (qoil), (ii)

industrial production as a proxy of global real economy (wip) and (iii) oil inventories (inv)6. In this case the

dependent variable yt is also estimated through OLS, and BIC is used to determine the most likely number

of lags p.

In conjunction with the estimation through OLS, oil prices and market fundamentals are then included into

a 4-variable VAR specified through the following reduced form:

Yt = c+Φ1Yt−1 + . . .+ΦpYt−p +ut u ∼ iid N(0,Σ) (3.6)

where Yt is a 4×1 vector comprising
[
qoil

t ,wipt , poil
t , invt

]
, c is a vector of intercepts, Φ are 4×4 matrices

of unknown coefficients and u is a normally distributed error vector with mean 0 and full covariance matrix

Σ. In this case, the number of lags is not recursively determined by BIC, but it is set equivalent to 12 for

each out-of-sample forecast, as suggested by Baumeister and Kilian [2015]. Equation (3.6), as well as its

structural representation, has been used in several influential works in the oil literature, such as Baumeister

and Kilian [2012], Kilian and Murphy [2014], Alquist et al. [2013], Degiannakis and Filis [2018] and many

others. A natural concern of estimating a model through OLS across periods of financial turbulences is that

the model might overfit the data. Indeed, since 2010 oil prices have become quite unstable due to their high

uncertainty principally linked to unexpected economic/political changes and natural disasters (e.g. Great

Recession, Covid pandemic, OPEC disagreements, Russia-Ukraine war). This has made the price of oil

hard to forecast with traditional statistical methods, especially when the system is richly parameterised (see

Baumeister et al. [2020] and Gifuni [2021]). For this reason, I regularize the overfitting problem through

the following objective functions:

6Lippi and Nobili [2012], Caldara et al. [2019] and Baumeister and Kilian [2015] are a few examples of works where oil
market fundamentals (along with additional oil related variables) are used to analyse the behaviour of real oil prices over time
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- Ridge (L2 penalty): ∑t
(
yt+h − ŷt+h|t

)2
+λR ∑

p
j=1 ρ2

j ;

- Lasso (L1 penalty): ∑t
(
yt+h − ŷt+h|t

)2
+λL ∑

p
j=1|ρ j|;

- ElasticNet (L1 + L2 penalty): ∑t
(
yt+h − ŷt+h|t

)2
+λR ∑

p
j=1 ρ2

j +λL ∑
p
j=1|ρ j|.

where ŷt+h|t denotes the forecast value of variable yt at horizon h, while the parameters λR and λL control

the shrinkage of coefficients. For λR and/or λN = 0, the coefficient estimates converge to ordinary least

square estimators. In contrast, larger values of λ imply a more aggressive penalty on parameters which

shrink towards zero. Ridge, Lasso and ElasticNet are all solutions that prevent the parameter proliferation

by using a different penalty factor. In particular, Ridge uses the squared magnitude of coefficients as a

penalty term in order to limit the size of the coefficient vector. The larger λR is, the closer the coefficients

get to zero. Lasso uses the absolute operator to eliminate variables with coefficients that zero. If from one

side this can be seen as an improvement (since Ridge model does not shrink coefficients to zero), in case

of multicollinearity it can happen that Lasso might rule out relevant independent variables. ElasticNet uses

both L1 and L2 penalties in order to combine the characteristic of both Ridge and Lasso. In this way the

total effect determined by all coefficients is reduced without eliminating all the features.

Another approch that I use to reduce the number of parameters is the Bayesian shrinkage, where a reason-

able choice of prior not only shrinks a rich set of coefficient estimates,but in many cases also yields a better

inference. Estimating equation (3.6) in a Bayesian Fashion does not preclude any structural change of the

VAR model, other than specifying a prior distribution for the unknown parameters Φ and Σ. In my case, I

follow Giannone et al. [2015] and specify the following priors:

Σ|ξ ∼ IW (ψ,d)

Φ|Σ ∼ N (φ ,Σ⊗Ωξ )

where Ω is a predefined Minnesota shrinkage rule, and ξ is an unknown parameter used to make inference

on the informativeness of the prior. Specifically, a value for ξ is chosen whenever the marginal density of

data as a function of all possible values of ξ is maximized. Under the aforementioned assumptions, the
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posterior densities are shown to be:

Φ|Σ,Y ∼ N
(
Φ̂(ξ ),Σ⊗V̂ (ξ )

)
Φ̂(ξ ) = vec

(
φ̂(ξ )

)
φ̂(ξ ) =

(
X ′X +(Ωξ )−1

)−1(
X ′Y +(Ωξ )−1

φ̂

)
V̂ (ξ ) = Σ⊗

(
X ′X +(Ωξ )−1

)−1

However, as previously mentioned, oil prices can be particularly hard to forecast in the long run, especially

when unexpected shocks occur. This methodology, although well performing across different kinds of

dataset7, is not a well-suited strategy for oil price long-run forecasts (see Baumeister et al. [2020] and Gifuni

[2021]). In contrast, Bayesian VAR allowing for stochastic volatility (SVBVAR) in the error structure are

shown to be a valuable alternative for solving the issues of their homoskedastic counterpart8.

For this reason, in a first application I implement the SVBVAR developed in Carriero et al. [2015], which

is further extended to a text based mixed-frequency BVAR (MF-SVBVAR). The model is specified as

follows:

Yt = c+Φ1Yt−1 + ...+ΦpYt−p +ut , ut ∼ N (0,Σt) (3.7)

where Σ
−1
t = A′Λ−1

t A, and A is N ×N lower triangular, and Λt is a diagonal matrix:

A =


1 0 · · · 0

α1,1 1 · · · 0
... . . . . . . ...

αN,1 · · · αN,N−1 1

 Λt =


exp(λ1,t) 0 · · · 0

0 exp(λ2,t) · · · 0
...

... . . . ...

0 0 · · · exp(λN,t)


The log-volatilities in Λt evolve according to the following random walk:

λ̃t = λ̃t−1 +νt , with νt ∼ N (0,Q) , Q = diag
(
q2

1, . . . ,q
2
N
)

and E(ut ,νt) = 0

Models presented in this section have all been extended to incorporate monthly, weekly and daily text data.

The latter two cases identify the so called mixed-frequency models, which are thoroughly discussed in the

7See Alquist et al. [2013], Weale and Wieladek [2016], Lenza and Primiceri [2020] and Miranda-Agrippino and Ricco [2021].
8See Koop and Korobilis [2013] and Carriero et al. [2019] for a comparison.
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next section.

3.4.2 Univariate Text Based Models

Time series regression models presented so far involve the use of data sampled at the same frequency.

These models are inadequate when weekly or daily text data are used to explain the behaviour of a lower-

frequency variable, such as the monthly real price of oil. In this case a new class of models needs to be

introduced.

For univariate regressions, since the seminal work of Ghysels et al. [2004], mixed-data sampling (MIDAS)

models have made a great contribution to modelling and forecasting macroeconomic and financial vari-

ables9. MIDAS models are parsimonious and flexible one-sided polynomials, in which high-frequency

explanatory variables are incorporated into a lower frequency regression. In my framework, I propose the

following general model structure:

yt = c+
p

∑
j=1

{
Xt− jB j + txt(w)t− jΘ j

[
D
(

L1/w;τ

)]}
+ εt , εt ∼ N

(
0,σ2) (3.8)

where, yt is the dependent variable assessing the monthly value for alternative measures of real oil prices.

Xt = [yt−1, xt−1] is the matrix of low-frequency observations, and xt−1 incorporates the lagged values of

oil production, global real economy and oil inventories. txt(w)t− j =
[
xw, 1

t , xw, 2
t , . . . ,xw, n

t

]
stacks the weekly

text-data released in month t − j, where n is the number of weeks in a given month, and εt is the vector of

error terms. B and Θ are unknown parameters to be estimated, L1/w is a lag operator, and D
(

L1/w;τ

)
is the

weighting scheme that is parameterized in three different ways:

BETA LAG. I follow Ghysels et al. [2007], Rodriguez and Puggioni [2010] and Foroni and Marcellino

[2013], and use the Beta lag estimation to define the daily weights. In particular,

D(k; τ) =
f (k/n; τ)

∑
n−1
k=0 f (k/n; τ)

,

where f (x,a,b) =
xa−1 (1− x)b−1

Γ(a)Γ(b)
and Γ(a) =

∫
∞

0
e−xxa−1dx

where I set τ =
[
τ(1), τ(2)

]
, with τ(1) = 1 and τ(2) = 5 in order to allow for a declining weighting scheme.

9Some notable contributions are Ghysels et al. [2007], Ghysels et al. [2005], Ghysels et al. [2006], Clements and Galvão
[2009], and more recently Guérin and Marcellino [2013], Foroni et al. [2015].
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The greater τ(2) is, the faster the declining rate will be. B and Θ are then estimated through a non linear

least square method.

EXPONENTIAL ALMON LAG. This refers to the interpolation distribution originally developed by Almon

[1965] and pursued in several prominent works, such as Modigliani and Sutch [1966], Griliches [1967],

Ashenfelter and Pencavel [1969], Feldstein and Eckstein [1970], Laffont and Garcia [1977], Blinder [1981]

and many others. In which:

D
(

L1/w; τ

)
=

3

∑
k=0

w(k;τ)Lk/w ,

Lk/w
(

X (w)
t

)
= X (w)

t−k/w
,

w(k; τ) =
eτ1k + ... + τzk z

∑
3
k=0 eτ1k + ... + τzk z , and z = 2.

I set τ(2) ≤ 0 to guarantee a declining weight. The number of lagged weeks p is defined by the minimum

value that the Bayesian information criterion determines for each model estimation. The unknown parame-

ters B and Θ are then estimated through a non linear least square methodology.

EQUAL-WEIGHTED LAG. This is a more parsimonious univariate regression representation, as the weekly

variables x1
t , x2

t , x3
t , x4

t all have the same weight. While Almond and Beta approaches are adopted to guaran-

tee higher weights to data observed at the end of each month, the use of equal weights is useful to avoid any

misspecification bias in the variance of the out-of-sample forecasts. It is worth noting that equal weights

may also be obtained in the exponential Almond case by setting τ1 = τ2 = 0, or with the Beta function as

long as τ1 = τ2 = 1. In any case, in this case equation (3.8) is linear in B and Θ, and can be expressed

as:

yt = c+
p

∑
j=1

{
Xt− jB j +

3

∑
k=0

1
4

X (w)
t−k/4− j Θ j

}
+ εt , ε ∼ N

(
0,σ2)

where B and Θ can be now recursively estimated through linear least square.

U-MIDAS. The weighting scheme is left unrestricted, the unknown coefficients of weekly text data linearly

enter the univariate regression and then are estimated through ordinary least square. Namely,

yt = c+
p

∑
j=1

{
Xt− jB j +

3

∑
k=0

Θk, jX
(w)
t−k/4− j

}
+ εt , ε ∼ N

(
0,σ2)

For expository reasons, only the outcome of MIDAS regressions with weighting scheme estimated through
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the Beta function is reported in the main section of empirical results. However, the reader is directed to

consult Appendix B.3, where the alternative parametrization methods are examined.

3.4.3 MF-VAR

By assuming that oil prices still evolve at a weekly frequency, an alternative dynamic representation can be

outlined through the following MF-VAR:

yt = c+Φ1yt−1 + . . .+Φpyt−p + εt , εt ∼ iid N (0, Σ) (3.9)

where yt =
[
y′w,t , y′m,t

]′ is the n× 1 vector of mixed-frequency observations, in which yw,t includes the

weekly observable data, such as text variables discussed in section 3.3. ym,t collects the remaining monthly

variables, such as oil production, global real economy and oil inventories. c is the vector of intercepts, Φ is

the matrix of unknown coefficients and ε is the error term.

The advantage of this methodology is that there are no missing observations that need to be estimated as

in Durbin and Koopman [2012]. In fact, by denoting with y(d)t the vector of daily data retrieved from oil

related articles, weekly data can be stacked into four different vectors yw,t =
[
yw, 1

t , yw, 2
t , yw, 3

t , yw, 4
t

]
based

on the daily release of each news item. Φ and Σ are estimated in a frequentist and Bayesian approach. All

variables are taken in log-differences, other than oil prices which are considered in log-levels, and lags p

are set equivalent to 1210. The out-of-sample forecasts of real oil prices for h = 1, 3, 6, 12 and 24 months

ahead are performed by iterating the estimated BVAR models recursively, conditionally on the date t of the

information set. Empirical results are then compared to the outcome generated by the corresponding BVAR

model with variables all sampled at a monthly frequency.

3.5 Empirical Results

The empirical analysis begins by comparing two classes of univariate models, such as autoregressive (AR)

and MIDAS models. After that, I estimate different VARs in a frequentist and Bayesian fashion. For the

former methodology, VARs are estimated through standard ordinary least square, Ridge, Lasso and Elastic-

Net regression techniques. For the latter I firstly use a standard Bayesian shrinkage, and then I also estimate

10BVAR with the aforementioned data transformation, as well as number of lags has been proven to generate superior out-of-
sample forecasts (see Baumeister and Kilian [2015] for additional details)
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the stochastic system by assuming the heteroskedasticity in the error structure. Finally, I estimate different

MIDAS models to assess the contribution of text data for forecasting the price of oil.

3.5.1 HF vs. MF Models

The first part of the analysis presents a comparison across a broad set of univariate and multivariate models,

both used to forecast the monthly real oil prices. Results are reported in table 3.1 and are based on the ratio

between the minimum sum of prediction errors (MSPEs) of models specified in column 1, over the MSPEs

of a no-change forecast. Panel A includes models that incorporate oil market fundamentals as explanatory

variables, while Panel B, C, D and E include models that also accommodate the weekly text variables11

computed in section 3.3. The evidence shows that on average Bayesian estimation and text based VARs

generate lower MSPEs. In particular, for a short-run forecast, MF models (i.e. MF-SVBVAR-TXT) out-

perform the corresponding models having variables sampled at the same frequency. However, for medium-

and long-term forecasts, SVBVAR-TXT yield the lowest MSPEs (the only exception is MF-SVBVAR-TXT,

when text series are generated through the VADER dictionary model). In this exercise, there is thus evi-

dence in favour of Baumeister et al. [2015]. Namely, mixed frequency models slightly improve a 1-step

ahead forecast of monthly oil prices. This improvement is however negligible, as SVBVAR-TXT models

on average yield 18% of marginal gains in comparison to a no-change forecast, while MF-SVBVAR-TXT

show 19% of marginal gains. In the medium and long term, monthly based models always yield lower

MSPEs. It is worth stressing that MIDAS models in table 3.1 incorporate text data collected on a weekly

frequency and the Beta lag function is used to estimate the unknown coefficients. This exercise is also

replicated with different weighting schemes. Details are provided in Appendix B.3.

3.5.2 High-Frequency Data

Several works in the literature have tried to explain the behaviour of monthly real oil prices by using high-

frequency financial data (Sari et al. [2011], Baumeister et al. [2015], Miao et al. [2017] and Degiannakis and

Filis [2018]). Degiannakis and Filis [2018] have concluded that ultra-high frequency financial data have

the potential to generate more accurate real oil price forecasts. In contrast, no robust evidence has been

found by Baumeister et al. [2015] regarding the possibility to improve the out-of-sample forecasts of real

oil prices through high-frequency financial data. However, in both empirical works the performance of each

11The title of each panel reports the nature of text variable used to forecast the price of oil.
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forecasting model is tested by using a limited time horizon not covering the most recent economic/political

changes. It is well know that after 2010, oil prices became harder to forecast. Therefore, a good forecasting

model might be challenged if the dataset was extended to include the most recent data. Remember that the

Covid pandemic and the war between Russia and Ukraine have increased the number of volatility spikes in

the oil market significantly.

In this section I use MF models that incorporate weekly financial variables that have been shown to out-

perform traditional models commonly used to forecast the price of oil. MF models are tested on a larger

time-span, and each model is then compared to the case in which a text variable is also included. This

experiment starts by using oil future prices as a medium to forecast the monthly price of oil. As pointed out

in Alquist and Kilian [2010], in the absence of a risk premium, arbitrage implies that the oil futures price is

the conditional expectation of the spot price of oil. This implies that

Et (∆st+h) = ft,h − st (3.10)

where st is the WTI spot price and fh is the futures prices with maturity on month h. The spread reported

in equation (3.10) enters in the MIDAS regression (3.8) as a polynomial in Fint,h,w = ft,h,w− st,h,w where w

refers to week 1, 2, 3, 4, and/or 5 of a given month t. Equation (3.8) is therefore rewritten as:

yt = c+
p

∑
j=1

{
yt− jB j +Fin(w)t− jΘ j

[
D
(

L1/w;τ

)]}
+ εt , (3.11)

and it is compared to the case in which also text data enter the linear regression:

yt = c+
p

∑
j=1

{
yt− jB j +

(
Fin(w)t− jΘ j +T xt(w)t− jΓ j

)[
D
(

L1/w;τ

)]}
+ εt , (3.12)

Results in Table 3.2 show that, for a 1-month ahead oil price forecast, weekly oil futures yield 9% of

marginal improvement, which is also 10% statistically significant according to the Diebold and Mariano

(DM) test. However, when text data also fit the polynomial, there is not only a marginal improvement

equivalent to 11%, but results are even 5% statistically significant when Bert series is included in the

polynomial. For any other time horizons h > 1 month, random walk generates lower MSPEs.

In a second experiment, I follow the literature aiming to explain the oil price volatility through petroleum

product data (Karrenbrock et al. [1991] , Borenstein et al. [1997], Bachmeier and Griffin [2003]). Specif-
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ically, I use the spread between gasoline price and WTI spot price to forecast the monthly crude oil spot

price. Gasoline data are available since April 1990. This implies that equations (3.11) and (3.12) are trained

until October 2014 and tested on the remaining period up to December 2021. Results show that also in this

experiment weekly observations of gasoline-crude oil spread generate a 10% statistically significant gain

for short-run forecasts. However, there is still evidence of more accurate forecasts when weekly text data

are used alongside this commodity variable. In particular, Bert-MIDAS yields 17% of marginal gains for 1-

month ahead forecast. This result is 5% statistically significant. As in the previous experiment, the random

walk again outperforms the forecasts of text and no-text based MIDAS at time horizons h > 1 month.

Panel C, in Table 3.2, explores the case in which the Commodity Research Bureau (CRB) index is used to

forecast the oil spot prices. The CRB index is based on the arithmetic average of 19 commodity futures

prices and is designed to capture the directional movement of such industrial commodities. The main idea

behind the use of this indicator is that variations of non-oil industrial raw materials Granger cause variations

in the crude oil prices (see Alquist et al. [2013], Baumeister and Kilian [2012], Baumeister et al. [2015]

and more recently Aastveit et al. [2022]). In this experiment there is stronger evidence in favour of using

text data. In fact, when only the CRB index fits the MIDAS model, no marginal gain is achieved at any

time horizon h. In contrast, when this indicator is included along with text based series, there is a marginal

improvement between 1% and 18% up to 3-months ahead forecast. Outstanding results are achieved with

Bert, where 1-month ahead forecasts are even 1% statistically significant as suggested by the DM test.

In another experiment I examine the long-term relationship between the weekly Baltic Dry (BD) index and

the monthly real oil prices. The BD indicator measures the daily change in the cost of moving alternative

dry bulk cargoes containing raw materials, such as coal, steel, grain, iron and other commodities. As such,

this composite index can be considered as a good approximation of the economic activity in real time, and

thus a good predictor of future world economy (see Bakshi et al. [2010]). The evidence shows that with the

BD series, MIDAS beat the random walk only when oil prices are forecast one month ahead. Results are

10% statistically significant. However, including text data does generate up to 10% of marginal gains.

The last exercise builds on the dated diatribe between some economists assessing that high crude oil prices

raise real interest rates (Barro and Sala-i Martin [1990], Barro [1991]), and some others showing that oil

prices rise significantly following a reduction of interest rates (Hotelling [1931], Frankel [1986]). Both

cases imply a relationship either positive or negative between monetary policy and crude oil prices. This

has motivated my choice to investigate the correlation between the weekly US short-term interest rates and
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crude oil spot prices. Results are displayed in panel E and the evidence shows that USi-MIDAS outperforms

the random walk when oil prices are forecast one month ahead. However, it is still worth fitting a MIDAS

with text data. In particular, Bert series yields 15% of marginal gains and results are also 5% statistically

significant according to the DM test.

In summary, this section demonstrates that for a 1-month ahead forecast, it is possible to outperform a ran-

dom walk by fitting a MIDAS with weekly financial and commodity data. However, Bert based SVBVARs

generate lower MSPEs in comparison to MIDAS models at any time horizon (see Table 3.1). Nevertheless,

if text data fit a MIDAS alongside a weekly financial or commodity factor, there is not only a marginal

gain up to 18% for h = 1- and 3-months ahead forecast, but results are even 1%, 5% and 10% statistically

significant as suggested by the DM test. Furthermore, when Bert and the CRB index are incorporated into a

MIDAS, the MSPEs of 1-month ahead forecast is lower than SVBVAR-TXT’s, with 2% of marginal gains.

Thus, it can be assessed that for short-term forecasts MIDAS models can be slightly preferred to SVBVARs,

but for longer horizons SVBVARs yield lower forecasting errors.

3.5.3 Financial Intra-Day Returns

The increased availability of high-frequency data has also motivated a wide range of researchers to use

intraday data in order to improve the in- and out-of-sample volatility forecasts. For example, Andersen

and Bollerslev [1998] and Martens [2001] demonstrate that intraday returns can be used to construct well

performing ex-post interdaily volatility measurements. Such factors are shown to provide a radical reduction

in noise, and more accurate daily volatility forecasts of alternative exchange rates. Sévi [2014] and Ghysels

et al. [2006] exploits the information in intraday data to forecast the volatility of crude oil futures and the

Dow Jones Index. Furthermore, there are also several studies showing that the covariance between crude

oil prices and country-specific stock markets is affected by geopolitical shocks (Kollias et al. [2013], Aloui

and Jammazi [2009], Mugaloglu et al. [2021]), and financial data yield more efficient oil price forecasts

(Nguyen and Walther [2020]).

By departing from this literature, I use high-frequency financial and commodity data to construct intraday

returns and forecast the monthly WTI crude oil prices. The analysis starts by fitting a MIDAS with intraday

returns of FTSE 100, which is a share index of the top 100 companies by market capitalisation that trade on

the London Stock Exchange. The resulting model is referred to as FT-IR-MIDAS. Data are considered on

a weekly average, and results are compared to the case in which alternative text variables are included into
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FT-IR-MIDAS model. Results are displayed in Table 3.3 and are consistent with the previous experiments.

Indeed, despite a 10% of significant improvement on the random walk for 1-month ahead forecast, overall

text data provide lower MSPEs. In particular, Bert-IR-MIDAS beats FT-IR-MIDAS at any time horizon

with a marginal improvement up to 17%.

By applying a similar approach I also use the intraday returns of S&P 500, the Euro Stoxx 50 index and the

Hang Seng index, which are the market-capitalization-weighted indexes of the largest public companies of

the US, Europe and Hong Kong respectively. Said indicators are included into a MIDAS and results are still

consistent with the previous exercises. Namely, using Bert alongside a financial index generates a radical

improvement on a no-text based model. The lowest MSPEs are achieved in 1-step ahead forecasts by using

Bert and the Euro Stoxx 50 index. Such results are also 1% statistically significant.

Another popular approach widely used among many empiricists is to forecast the real oil prices through

alternative currency exchange rates. Some observers have in fact noted a divergent, but existent reaction of

foreign exchange markets to oil price fluctuations (Golub [1983], Akram [2004], Ferraro et al. [2015]). This

has motivated my interest to determine whether text data and the intraday returns of the most liquid trading

pairs can fit a MIDAS and improve the out-of-sample forecasts of real oil prices. The trading pairs investi-

gated are GBP/USD, EUR/USD and CAD/USD. Based on Table 3.3 it is possible to observe that intraday

returns of GBP/USD generate the most accurate forecasts with a marginal improvement of 12% in the short

term. Once again, Bert series radically improves the financial based MIDAS forecasting performance for

one and three months ahead. The marginal improvement is equivalent to 18% with a statistical significance

of 1%. It is worth pointing out that GBP/USD and Bert based MIDAS overall generate the lowest MSPE ra-

tios when the oil prices are forecast one month ahead. Table 3.3 also shows that improvements on a random

walk can only be observed up to h = 3-months ahead forecast.

3.5.4 Commodity Intra-Day Returns

Following the previous experiment, in this section MIDAS models are fit by intraday returns of alternative

commodity market prices. This procedure still aims to reduce the noise that daily spot prices incorporate,

by employing the additional information that intraday returns enclose. Sévi [2014], Degiannakis and Filis

[2018] and Degiannakis and Filis [2022] are examples of studies that advocate the use of intraday returns

of commodity prices as a strategy to improve the out-of-sample forecasts. Intraday returns are computed

for: WTI crude oil, gold, copper, natural gas, palladium and silver. Results are reported in Table 3.4. As per
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in the previous experiments, the evidence shows that for 1-month ahead forecast, MIDAS with exogenous

intraday returns outperform the random walk. The outcome is 10% statistically significant, with a marginal

improvement up to 9%. However, results are further improved when text based series are used alongside

commodity intraday returns. In particular, including Bert in NG-IR-MIDAS or PL-IR-MIDAS improves

the results significantly. Despite the valuable contribution of text data and intraday returns, for medium-

and long-term forecasts MIDAS tend to have higher MSPEs in comparison to a random walk.

Based on the empirical findings provided above, the following can be assessed. High frequency financial

and commodity data can be modelled and included into mixed data sampling models in order to forecast the

price of oil. However, when MIDAS are tested over the recent periods of high volatility (the Covid pandemic

or in general from 2010 onwards), a marginal improvement on a no-change forecast is observable only for

1-month ahead forecast. In any case, such results are still weak in comparison to the outcome achieved

by using SVBVARs. A potential workaround is to incorporate weekly text based data into a MIDAS. In

particular, for 1-month ahead forecast, using Bert alongside other high-frequency indicators (i.e. CRB

index, GBP/USD exchange rate, natural gas spot price) yields a marginal improvement on both SVBVAR

and MF-SVBVAR. But for time horizons greater than one month, SVBVARs have on average lower MSPEs,

reinforcing the conclusion of Baumeister et al. [2015] about the negligible contribution of high-frequency

data when used to forecast the monthly real price of oil.

3.5.5 Sensitivity Analysis

Despite the high frequency availability of data, so far observations have been modelled on a weekly fre-

quency and then included into alternative MF models. I now show that the main results are still robust to a

number of modifications and experiments.

Daily Predictors Fitting the MIDAS.

A rational exercise is to fit MIDAS models by using daily observations. Equation (3.8) then becomes:

yt = c+
p

∑
j=1

{
Xt− jB j + txt(d)t− jΘ j

[
D
(

L1/d;τ

)]}
+ εt , εt ∼ N

(
0,σ2) (3.13)

where, txt(d)t− j =
[
xd, 1

t , xd, 2
t , . . . ,xd, n

t

]
stacks the daily text-data released in month t − j, n is the monthly

length and the lag operator and the weighting scheme are L1/d and D
(

L1/d;τ

)
respectively. Based on this,

I replicate the previous exercises and use daily data to forecast monthly WTI, RAC and Brent crude oil
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prices. Results are reported in Table 3.5 and, like in the previous experiments, the evidence shows that the

CRB index used alongside the Bert series yields the highest marginal gains for each oil price measure, with

a statistical significance between 1% and 5%. It is worth noting that for RAC and Brent price forecasts, the

MSPEs are even lower than monthly based VAR’s (see Table 3.1, panel E). It is also possible to observe

additional important points. Firstly, incorporating the CRB index and text data into a MIDAS yields the

lowest MSPEs up to three months ahead. Secondly, and perhaps most importantly, daily observations make

a remarkable contribution to medium- and long-term forecasts. This evidence diverges from that of weekly

data, where MIDAS do not beat the no-change forecast for time horizons longer than three months.

Oil Prices Density Forecasts.

Forecasting densities has the advantage of providing information on the likelihood of any future quantile,

as well as on point forecasts through the mean of density forecasts. This strategy also takes into account

the uncertainty that is pervasive in point forecasts12. As previously remarked, one of the goals of this

paper is to show that low frequency based models incorporating high-frequency text data yield negligible

improvements of monthly real oil price forecasts. For this reason, in this section I evaluate the density

forecasts in order to ensure the reliability of the empirical findings discussed so far. In particular, I compare

the forecasting outcome of SVBVARs and MF-SVBVARs, as well as MIDAS with and without weekly text

variables.

The quality of density forecasts is evaluated through the averages of log predictive likelihoods (ALPLs).

Higher values of ALPLs indicate a more accurate forecast. Table 3.6 reports the ALPLs for the subset

of the best performing models at each time horizon h. Results are consistent with the outcome shown in

the previous experiments. Namely, including the CRB index alongside text data yields the highest ALPLs

among any MIDAS model. However, by observing the BVARs outcome, there is evidence that the im-

provement of MF models on SVBVAR-TXT is negligible for each oil price measure. Indeed, SVBVAR

with dictionary or Bert based variables are always the best performing models, except for horizon 12 where

MF-SVBVAR-TXT yield slightly higher, but still imperceptible, ALPLs.

Therefore, according to the density forecasts it is possible to conclude that high-frequency text data provide

a remarkable contribution to MIDAS for monthly oil price forecasts. However, this improvement becomes

negligible in comparison to the performance of a low frequency based SVBVAR-TXT model. The latter

does in fact generate the highest log predictive likelihoods at almost every time horizon.

12See Rossi [2014] for a more practical illustration of point and density forecasts.
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3.6 Conclusions

Data available or combined on a monthly basis are unable to provide an accurate reflection of global,

specific economic events. Despite their infrequency, occurrences like natural disasters and political unrest

in oil-producing countries have the potential to affect the price of oil and bring about profound economic

changes. A natural question, therefore, is whether combining high-frequency data alongside the oil market

fundamentals can improve the forecast of monthly real oil prices. In this paper I answer this question by

using text mining strategies and mixed-frequency models.

Empirical findings show that MF-SVBVAR accommodating weekly text data yields more accurate 1-step

ahead forecasts in comparison to the corresponding model with variables observed at the same frequency.

The best performing text indicator is Bert. However, this improvement is low. Indeed, for Brent crude

spot price, MSPEs are improved by 2%, while for WTI and RAC marginal gains are even lower than 1%.

In a second experiment, I follow Degiannakis and Filis [2018] by fitting alternative MIDAS models with

high-frequency financial and commodity variables. I show that financial and commodity variables alone do

not generate significant improvements on a no-change forecast. In contrast, when text data are used along

with commodity variables the MSPEs are reduced significantly. The best performing model is a MIDAS

including oil market fundamentals, available on a monthly basis, and weekly observations of the CRB index

and Bert series. The latter model displays the lowest 1-month ahead MSPEs among any model investigated

in this study. However, such improvement is marginal and negligible. Indeed, no statistically significant

gain is achieved on the corresponding model based on variables available at a low frequency.

I thus conclude that despite a marginal improvement, on average, combining text, financial and commodity

variables along with oil market fundamentals, does not significantly improve the out-of-sample forecasts of

monthly real oil prices. This is true for point and density forecasts. A natural extension of this research is to

investigate whether daily text-based information is able to improve the predictability of weekly oil prices.

This task is left for future research.
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Table 3.1: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices. Homogeneous vs. mixed frequency models.

Model Freq 1-month 3-months 6-months 12-months 24-months
WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

A. No text-based models

AR HF 0.932 0.805∗∗ 0.954 1.022 0.973 1.039 1.073 1.056 1.088 1.086 1.095 1.105 1.166 1.173 1.154
AR-X HF 0.862∗∗ 0.760∗∗∗ 0.877∗∗ 0.997 0.962 0.948 0.946 0.946 0.972 0.975 1.022 1.033 1.161 1.164 1.162
VAR HF 1.015 0.824∗ 1.061 1.115 1.038 1.177 1.100 1.124 1.195 1.288 1.360 1.341 1.303 1.291 1.263
Ridge HF 1.032 0.864 1.065 1.070 1.011 1.136 1.016 1.046 1.110 1.168 1.246 1.234 1.187 1.205 1.184
Lasso HF 1.848 2.042 2.153 2.005 2.265 2.448 1.906 2.185 2.421 1.880 2.175 2.251 1.748 1.796 1.784
ElasticNet HF 2.090 2.373 2.462 2.086 2.371 2.525 1.925 2.207 2.418 1.877 2.175 2.234 1.749 1.797 1.781
BVAR HF 0.898 0.752∗∗∗ 0.912 0.938 0.897 0.977 0.994 0.999 1.032 1.087 1.125 1.120 1.195 1.216 1.191
SV-BVAR HF 0.884∗∗ 0.776∗∗∗ 0.893∗∗ 0.915 0.864 0.925 0.933 0.913 0.930 1.007 1.132 1.019 0.934 0.837 0.908

B. Unigram based variable

AR-X-TXT HF 0.863∗∗ 0.761∗∗∗ 0.882∗∗ 1.014 0.961 0.950 0.956 0.956 0.981 0.993 1.035 1.049 1.049 1.042 1.045
Ridge HF 1.030 0.863 1.063 1.071 1.012 1.143 1.017 1.045 1.108 1.166 1.250 1.232 1.183 1.203 1.182
Lasso HF 1.885 2.057 2.190 2.022 2.277 2.482 1.901 2.185 2.430 1.853 2.162 2.227 1.722 1.776 1.762
ElasticNet HF 2.131 2.388 2.502 2.100 2.381 2.556 1.916 2.203 2.422 1.851 2.163 2.211 1.724 1.778 1.760
MIDAS-TXT MF 0.902∗ 0.765∗∗∗ 0.931∗ 0.959 0.992 0.970 0.953 0.949 0.980 0.980 1.016 1.047 1.101 1.101 1.092
BVAR-TXT HF 0.896 0.765∗ 0.908 0.928 0.903 0.962 0.998 1.019 1.039 1.083 1.126 1.115 1.134 1.154 1.118
MF-BVAR-TXT MF 0.919 0.790∗∗∗ 0.945 0.950 0.923 0.986 1.019 1.028 1.056 1.077 1.104 1.107 1.131 1.149 1.125
SV-BVAR-TXT HF 0.887∗∗ 0.770∗∗∗ 0.904∗∗ 0.926 0.892 0.946 0.956 0.975 0.986 1.044 1.218 1.100 0.936 0.878 0.929
MF-SV-BVAR-TXT MF 0.898∗∗ 0.778∗∗∗ 0.919∗ 0.945 0.894 0.966 0.983 0.978 1.012 1.075 1.234 1.080 0.935 0.880 0.914

C. Dictionary based variable

AR-X-TXT HF 0.850∗∗ 0.757∗∗∗ 0.879∗ 1.013 0.988 0.968 0.963 0.962 0.987 0.980 1.012 1.027 1.050 1.049 1.048
Ridge HF 1.017 0.869 1.079 1.056 1.003 1.142 1.013 1.035 1.109 1.176 1.251 1.234 1.087 1.105 1.083
Lasso HF 1.819 2.013 2.123 1.962 2.220 2.406 1.859 2.134 2.367 1.847 2.148 2.214 1.718 1.771 1.755
ElasticNet HF 2.058 2.339 2.426 2.043 2.327 2.484 1.879 2.159 2.367 1.847 2.152 2.200 1.721 1.774 1.755
MIDAS-TXT MF 0.896∗ 0.759∗∗∗ 0.926 0.955 0.986 0.965 0.960 0.956 0.996 0.988 1.013 1.038 1.168 1.161 1.155
BVAR-TXT HF 0.877∗ 0.748∗∗∗ 0.903 0.926 0.892 0.965 0.994 0.990 1.027 1.079 1.104 1.102 1.129 1.134 1.122
MF-BVAR-TXT MF 0.890∗ 0.767∗∗∗ 0.902∗ 0.927 0.897 0.955 1.002 1.002 1.027 1.068 1.092 1.094 1.131 1.139 1.124
SV-BVAR-TXT HF 0.860∗∗ 0.763∗ 0.887∗∗ 0.894 0.861 0.925 0.931 0.930 0.940 1.053 1.284 1.112 0.908 0.833 0.893
MF-SV-BVAR-TXT MF 0.859∗∗ 0.751∗ 0.871∗∗ 0.892 0.846 0.920 0.950 0.940 0.947 1.221 1.518 1.155 0.898 0.848 0.897

D. Geometrical based variables

(tfm) AR-X-TXT HF 0.854∗∗ 0.755∗ 0.866∗∗ 0.993 0.958 0.942 0.944 0.943 0.966 0.937 0.979 0.997 1.142 1.143 1.143
(idf) AR-X-TXT HF 0.862∗∗ 0.760∗ 0.870∗∗ 1.002 0.944 0.935 0.939 0.933 0.954 0.936 0.960 0.981 1.015 0.993 0.996

(tfm) Ridge HF 1.040 0.873 1.069 1.060 1.007 1.136 0.984 1.020 1.085 1.113 1.194 1.185 1.166 1.188 1.178
(idf) Ridge HF 1.028 0.866 1.060 1.066 1.001 1.128 1.017 1.047 1.096 1.172 1.243 1.209 1.041 1.009 1.007

(tfm) Lasso HF 1.831 2.017 2.121 1.979 2.239 2.431 1.869 2.148 2.398 1.841 2.140 2.219 1.732 1.780 1.771
(idf) Lasso HF 1.812 2.003 2.119 1.932 2.190 2.388 1.815 2.093 2.333 1.798 2.096 2.166 1.682 1.732 1.722

(tfm) ElasticNet HF 2.072 2.344 2.427 2.059 2.344 2.508 1.888 2.170 2.394 1.840 2.142 2.204 1.733 1.782 1.768
(idf) ElasticNet HF 2.050 2.327 2.424 2.008 2.291 2.459 1.832 2.115 2.329 1.799 2.099 2.153 1.686 1.737 1.723

(tfm) MIDAS-TXT MF 0.906∗∗ 0.755∗ 0.929∗∗ 0.946 0.981 0.959 0.947 0.950 0.974 0.976 1.016 1.034 1.155 1.158 1.158
(idf) MIDAS-TXT MF 0.918 0.761∗∗∗ 0.935 0.967 1.005 0.979 0.948 0.946 0.971 0.980 1.015 1.037 1.160 1.171 1.176

(tfm) BVAR-TXT HF 0.887∗ 0.749∗∗∗ 0.897∗ 0.911 0.882 0.942 0.968 0.967 1.003 1.042 1.075 1.076 1.168 1.182 1.162
(idf) BVAR-TXT HF 0.879∗ 0.744∗∗∗ 0.884∗ 0.887 0.849 0.923 0.943 0.939 0.982 1.045 1.069 1.057 1.106 1.108 1.090

(tfm) MF-BVAR-TXT MF 0.911∗ 0.779∗∗ 0.913∗ 0.958 0.918 0.974 1.021 1.019 1.050 1.062 1.082 1.093 1.161 1.169 1.152
(idf) MF-BVAR-TXT MF 0.911∗ 0.776∗∗ 0.902∗ 0.941 0.905 0.959 1.018 1.014 1.038 1.064 1.087 1.092 1.147 1.162 1.144

(tfm) SV-BVAR-TXT HF 0.885∗∗ 0.767∗ 0.886∗∗ 0.894 0.849 0.914 0.918 0.904 0.922 1.005 1.263 1.035 0.941 0.847 0.917
(idf) SV-BVAR-TXT HF 0.873∗∗ 0.788∗ 0.900∗∗ 0.905 0.887 0.936 0.945 0.970 0.954 1.084 1.417 1.110 1.015 0.922 0.977

(tfm) MF-SV-BVAR-TXT MF 0.900∗∗ 0.782∗ 0.907∗∗ 0.917 0.860 0.934 0.938 0.899 0.945 1.033 1.041 0.984 0.941 0.852 0.926
(idf) MF-SV-BVAR-TXT MF 0.924∗ 0.806∗∗∗ 0.922∗ 0.934 0.885 0.946 0.977 0.933 0.968 1.070 1.072 1.047 1.034 1.022 1.075

E. Network based variable

AR-X-TXT HF 0.844∗∗ 0.743∗ 0.850∗∗ 0.975 0.956 0.938 0.930 0.933 0.954 0.986 1.041 1.039 1.195 1.200 1.197
Ridge HF 0.961 0.826∗ 1.016 0.999 0.957 1.098 0.987 1.022 1.094 1.185 1.276 1.254 1.223 1.238 1.220
Lasso HF 1.837 2.048 2.150 1.993 2.257 2.448 1.908 2.182 2.427 1.894 2.193 2.264 1.749 1.796 1.786
ElasticNet HF 2.079 2.378 2.457 2.074 2.363 2.525 1.926 2.204 2.422 1.891 2.191 2.244 1.749 1.797 1.782
MIDAS-TXT MF 0.880∗∗ 0.745∗ 0.909∗ 0.931 0.942 0.933 0.958 0.933 0.971 0.995 1.032 1.054 1.184 1.265 1.207
BVAR-TXT HF 0.867∗ 0.745∗∗∗ 0.877∗ 0.909 0.875 0.942 0.976 0.989 1.017 1.082 1.113 1.109 1.195 1.209 1.181
MF-BVAR-TXT MF 0.868∗∗ 0.751∗∗∗ 0.888∗ 0.920 0.891 0.948 0.989 0.993 1.017 1.069 1.099 1.109 1.158 1.171 1.156
SV-BVAR-TXT HF 0.846∗∗∗ 0.747∗∗∗ 0.868∗∗ 0.875 0.830 0.890 0.897 0.876 0.890 0.950 1.056 0.941 0.932 0.856 0.925
MF-SV-BVAR-TXT MF 0.842∗∗∗ 0.739∗∗∗ 0.848∗∗ 0.885 0.840 0.900 0.929 0.890 0.919 1.023 1.072 0.995 0.960 0.913 0.967

Note: In column 1 AR: autoregression model, ARX: autoregression augmented with (no text-based) explanatory variables, VAR: vector autoregression, BVAR: Bayesian vector autoregression, SV-BVAR: Bayesian vector autoregression assuming
stochastic volatility of the error term, AR-X-TXT, autoregression model augmented with text and no text-based explanatory variables, MIDAS-TXT: mixed frequency model, BVAR-TXT: text-based Bayesian vector autoregression model, MF-BVAR-
TXT: mixed frequency text-based vector autoregression, SV-BVAR-TXT: stochastic volatility text-based Bayesian vector autoregression, MF-SV-BVAR-TXT: mixed frequency stochastic volatility text-based Bayesian vector autoregression, tfm:
term-frequency matrix, idf: term-frequency inverse-document-frequency matrix. In column 2, HF and MF respectively denote homogeneous and mixed frequency models. Bold values indicate improvements on the no-change forecast. Blue entries
stand for the lowest MSPE for a given time horizon, relative to a specific oil price measure. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.
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Table 3.2: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with high-frequency financial variables; text vs. no-text.

Monthly TXT-FIN-MIDAS FIN-MIDAS

horizon Uc-MIDAS Dc-MIDAS idx-MIDAS idf-MIDAS Bert-MIDAS OFs-MIDAS

1 0.903∗ 0.907∗ 0.907∗ 0.901∗ 0.887∗∗ 0.906∗
3 1.079 1.079 1.094 1.090 1.040 1.082
6 1.105 1.112 1.113 1.105 1.089 1.101

12 1.168 1.151 1.197 1.193 1.192 1.186
24 1.525 1.705 1.545 1.605 1.560 1.577

GLs-MIDAS

1 0.899∗∗ 0.868∗∗ 0.909∗∗ 0.910∗∗ 0.835∗∗ 0.911∗∗
3 1.078 1.067 1.110 1.109 0.997 1.102
6 1.139 1.141 1.178 1.158 1.072 1.147

12 1.213 1.239 1.221 1.212 1.178 1.212
24 1.481 1.504 1.462 1.450 1.505 1.430

CRB-MIDAS

1 0.856∗∗ 0.850∗∗ 0.861∗∗ 0.868∗∗ 0.821∗∗∗ 1.718
3 0.946 0.962 0.994 0.918 0.928 2.566
6 0.988 1.002 0.993 1.030 0.964 1.538

12 1.078 1.113 1.093 1.088 1.089 1.338
24 1.379 1.425 1.481 1.494 1.516 6.618

BDi-MIDAS

1 0.908∗ 0.908∗ 0.909∗ 0.919∗ 0.898∗ 0.914∗
3 1.067 1.078 1.077 1.094 1.036 1.087
6 1.151 1.137 1.152 1.107 1.149 1.107

12 1.250 1.321 1.316 1.285 1.281 1.287
24 1.399 1.342 1.354 1.352 1.346 1.342

USi-MIDAS

1 0.904∗ 0.896∗ 0.908∗ 0.912∗ 0.853∗∗ 0.909∗
3 1.084 1.059 1.051 1.075 0.983 1.046
6 1.069 1.081 1.066 1.062 1.022 1.067

12 1.080 1.098 1.076 1.078 1.079 1.078
24 1.461 1.515 1.487 1.518 1.537 1.512

Note: For column headers OFs-MIDAS, GLs-MIDAS, CRB-MIDAS, BDi-MIDAS, USi-MIDAS denote MIDAS models where the high-
frequency financial variables fitting the polynomial are (i) crude oil-futures prices spread, (ii) crude oil-gasoline spread, (iii) CRB spot price
index, (iv) Baltic Dry index and (v) the federal funds rate. Each outcome is then compared to the case in which text data are included
in the model, in addition to the financial variable. In particular, Uc-MIDAS, Dc-MIDAS, idx-MIDAS, idf-MIDAS Bert-MIDAS denote
MIDAS models where the text variable fitting the polynomial is respectively developed through (i) unigram word-count, (ii) dictionary, (iii)
term-frequency matrix, (iv) term-frequency inverse-document frequency matrix and (v) BERT. Black bold values indicate improvements on
the no-change forecast. Green bold values indicate improvements of TXT-FIN-MIDAS on FIN-MIDAS. Blue entries stand for the lowest
MSPE for a given time horizon. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-
Mariano test.
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Table 3.3: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with realized volatility of ultra-high-frequency financial variables; text vs. no-text.

Monthly TXT-FIN-MIDAS FIN-MIDAS

horizon Uc-IR-MIDAS Dc-IR-MIDAS idx-IR-MIDAS idf-IR-MIDAS Bert-IR-MIDAS FT-IR-MIDAS

1 0.883∗∗ 0.870∗∗ 0.879∗∗ 0.886∗∗ 0.830∗ 0.884∗
3 1.064 1.066 1.059 1.085 0.986 1.072
6 1.073 1.085 1.081 1.074 1.015 1.074

12 1.091 1.127 1.090 1.085 1.077 1.080
24 1.339 1.405 1.376 1.366 1.370 1.373

SP-IR-MIDAS

1 0.886∗ 0.868∗ 0.873∗ 0.892∗ 0.832∗∗ 0.876∗
3 1.047 1.042 1.049 1.052 0.987 1.050
6 1.066 1.080 1.071 1.066 1.013 1.063

12 1.088 1.133 1.068 1.085 1.087 1.083
24 1.356 1.405 1.447 1.418 1.483 1.428

ES-IR-MIDAS

1 0.873∗∗ 0.868∗∗ 0.875∗∗ 0.880∗∗ 0.821∗∗∗ 0.876∗∗
3 1.056 1.051 1.069 1.076 0.984 1.071
6 1.123 1.112 1.148 1.111 1.025 1.111

12 1.146 1.192 1.176 1.136 1.097 1.139
24 1.360 1.456 1.397 1.336 1.420 1.352

HS-IR-MIDAS

1 0.887∗ 0.875∗∗ 0.887∗ 0.895∗ 0.829∗∗ 0.889∗
3 1.051 1.055 1.048 1.073 0.988 1.068
6 1.107 1.104 1.082 1.092 1.052 1.091

12 1.098 1.102 1.094 1.092 1.095 1.098
24 1.433 1.471 1.488 1.520 1.584 1.494

PD-IR-MIDAS

1 0.879∗∗ 0.865∗∗ 0.880∗∗ 0.881∗∗ 0.820∗∗∗ 0.882∗∗
3 1.026 1.020 1.042 1.048 0.953 1.036
6 1.066 1.078 1.065 1.072 1.028 1.062

12 1.143 1.192 1.149 1.148 1.162 1.141
24 1.563 1.676 1.590 1.609 1.684 1.601

CD-IR-MIDAS

1 0.929∗ 0.893∗∗ 0.918∗∗ 0.919∗ 0.853∗∗∗ 0.916∗∗
3 1.184 1.181 1.182 1.218 1.076 1.205
6 1.397 1.299 1.361 1.502 1.328 1.419

12 2.121 1.441 1.378 1.368 1.263 1.387
24 3.873 2.410 3.113 3.951 4.433 6.278

ED-IR-MIDAS

1 0.886∗∗ 0.873∗∗ 0.884∗∗ 0.910∗ 0.835∗∗ 0.904∗
3 1.039 1.016 1.035 1.017 0.964 1.020
6 1.067 1.075 1.064 1.081 1.019 1.060

12 1.126 1.163 1.114 1.118 1.124 1.113
24 1.489 1.451 1.539 1.542 1.613 1.543

Note: For column headers FT-IR-MIDAS, SP-IR-MIDAS, ES-IR-MIDAS, HS-IR-MIDAS, PD-IR-MIDAS, CD-IR-MIDAS, ED-IR-MIDAS denote
MIDAS models where the ultra-high-frequency financial variables fitting the polynomial are (i) intraday returns of FTSE100 index , (ii) intraday returns
of S&P500 index, (iii) intraday returns of Euro Stoxx 50 index, (iv) intraday returns of Hang Seng index, (v) intraday returns of GBP/USD exchange
rate, (vi) intraday returns of CAD/USD exchange rate and (vii) intraday returns of EUR/USD exchange rate. Each outcome is then compared to the case
in which text data are included in the model, in addition to the financial variable. In particular, Uc-MIDAS, Dc-MIDAS, idx-MIDAS, idf-MIDAS Bert-
MIDAS denote MIDAS models where the text variable fitting the polynomial is respectively developed through (i) unigram word-count, (ii) dictionary,
(iii) term-frequency matrix, (iv) term-frequency inverse-document frequency matrix and (v) BERT. Black bold values indicate improvements on the
no-change forecast. Green bold values indicate improvements of TXT-FIN-MIDAS on FIN-MIDAS. Blue entries stand for the lowest MSPE for a
given time horizon. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.
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Table 3.4: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with realized volatility of ultra-high-frequency commodity prices; text vs. no-text.

Monthly TXT-CMDTY-MIDAS CMDTY-MIDAS

horizon Uc-IR-MIDAS Dc-IR-MIDAS idx-IR-MIDAS idf-IR-MIDAS Bert-IR-MIDAS CO-IR-MIDAS

1 0.902∗ 0.897∗ 0.894∗ 0.909∗ 0.866∗∗ 0.895∗
3 1.103 1.104 1.091 1.077 1.135 1.081
6 1.070 1.074 1.102 1.061 1.097 1.063

12 1.059 1.040 1.079 1.060 1.079 1.057
24 1.241 1.425 1.289 1.278 1.295 1.280

GL-IR-MIDAS

1 0.893∗ 0.878∗∗ 0.893∗∗ 0.898∗ 0.832∗∗ 0.896∗
3 1.053 1.064 1.058 1.079 0.977 1.085
6 1.061 1.076 1.066 1.074 1.009 1.061

12 1.090 1.096 1.064 1.101 1.066 1.087
24 1.281 1.345 1.374 1.426 1.434 1.394

CP-IR-MIDAS

1 0.927∗ 0.930∗ 0.940∗ 0.936∗ 0.923∗∗ 0.941∗
3 1.120 1.158 1.139 1.106 1.144 1.135
6 1.097 1.090 1.103 1.118 1.134 1.104

12 1.101 1.143 1.079 1.101 1.094 1.172
24 1.267 1.424 1.315 1.305 1.292 1.316

NG-IR-MIDAS

1 0.913∗ 0.882∗∗ 0.918∗ 0.920∗ 0.821∗∗∗ 0.922∗
3 1.078 1.041 1.106 1.149 0.933 1.148
6 1.163 1.143 1.198 1.207 1.020 1.159

12 1.169 1.239 1.197 1.172 1.120 1.165
24 1.467 1.704 1.402 1.403 1.485 1.402

PL-IR-MIDAS

1 0.907∗∗ 0.876∗∗ 0.901∗∗ 0.910∗ 0.825∗∗∗ 0.914∗
3 1.056 1.049 1.081 1.089 0.951 1.081
6 1.143 1.123 1.189 1.115 1.002 1.121

12 1.173 1.190 1.178 1.149 1.086 1.155
24 1.429 1.560 1.420 1.428 1.537 1.411

SL-IR-MIDAS

1 0.892∗ 0.880∗ 0.891∗ 0.898∗ 0.833∗∗ 0.893∗
3 1.066 1.064 1.073 1.085 0.989 1.088
6 1.075 1.088 1.052 1.071 1.010 1.059

12 1.088 1.107 1.073 1.074 1.087 1.074
24 1.253 1.512 1.388 1.383 1.435 1.393

Note: For column headers CO-IR-MIDAS, GL-IR-MIDAS, CP-IR-MIDAS, NG-IR-MIDAS, PL-IR-MIDAS, SL-IR-MIDAS, denote MIDAS models
where the ultra-high-frequency commodity variables fitting the polynomial are (i) intraday returns of WTI index, (ii) intraday returns of Gold index, (iii)
intraday returns of Copper index, (iv) intraday returns of Natural Gas index, (v) intraday returns of Palladium index and (vi) intraday returns of Silver
index. Each outcome is then compared to the case in which text data are included in the model, in addition to the commodity variable. In particular,
Uc-MIDAS, Dc-MIDAS, idx-MIDAS, idf-MIDAS Bert-MIDAS denote MIDAS models where the text variable fitting the polynomial is respectively
developed through (i) unigram word-count, (ii) dictionary, (iii) term-frequency matrix, (iv) term-frequency inverse-document frequency matrix and
(v) BERT. Black bold values indicate improvements on the no-change forecast. Green bold values indicate improvements of TXT-CMDTY-MIDAS
on CMDTY-MIDAS. Blue entries stand for the lowest MSPE for a given time horizon. *, ** and *** respectively denote 10%, 5% and 1% level of
significance as suggested by the Diebold-Mariano test.
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Table 3.5: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. Sensitivity
analysis with daily values fitting the MIDAS models.

Model Text Financial 1-month 3-months 6-months 12-months 24-months
Variable Variable WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

TXT-MIDAS U - 0.903∗ 0.767∗∗∗ 0.930∗ 0.954 0.987 0.966 0.953 0.955 0.981 0.979 1.014 1.031 1.126 1.169 1.095
TXT-MIDAS D - 0.895∗ 0.757∗∗∗ 0.919∗ 0.949 0.971 0.957 0.965 0.961 0.982 0.984 1.013 1.039 1.149 1.159 1.148
TXT-MIDAS G - 0.910∗ 0.761∗∗∗ 0.929∗ 0.951 0.977 0.961 0.951 0.949 0.973 0.970 1.003 1.034 1.151 1.167 1.167
TXT-MIDAS B - 0.869∗∗ 0.725∗ 0.881∗∗ 0.892 0.884 0.882 0.927 0.913 0.938 0.981 1.020 1.032 1.211 1.208 1.209

FIN-MIDAS - OFs 1.086 - 1.104 0.981 - 0.979 0.941 - 0.965 0.972 - 1.006 1.350 - 1.312
TXT-FIN-MIDAS U OFs 1.034 - 1.065 0.945 - 0.948 0.989 - 0.965 0.979 - 1.017 1.180 - 1.191
TXT-FIN-MIDAS D OFs 0.962 - 0.998 0.977 - 0.970 0.969 - 0.992 0.924 - 0.991 1.324 - 1.297
TXT-FIN-MIDAS G OFs 1.000 - 1.071 0.982 - 0.959 0.963 - 0.982 0.966 - 1.017 1.352 - 1.317
TXT-FIN-MIDAS B OFs 0.978 - 1.031 0.953 - 0.940 0.954 - 0.979 0.982 - 1.012 1.350 - 1.299

FIN-MIDAS - GLs 0.962 0.785∗∗∗ 0.989 1.027 1.089 1.033 1.056 1.061 1.092 1.184 1.240 1.237 1.435 1.449 1.416
TXT-FIN-MIDAS U GLs 0.957 0.780∗∗∗ 0.993 1.021 1.068 1.030 1.068 1.068 1.106 1.182 1.243 1.236 1.498 1.496 1.476
TXT-FIN-MIDAS D GLs 0.942 0.773∗∗∗ 0.969 1.015 1.066 1.023 1.077 1.078 1.123 1.215 1.268 1.266 1.446 1.437 1.419
TXT-FIN-MIDAS G GLs 0.953 0.781∗∗∗ 0.990 1.023 1.087 1.036 1.077 1.081 1.113 1.198 1.254 1.249 1.427 1.447 1.417
TXT-FIN-MIDAS B GLs 0.933 0.770∗∗∗ 0.968 0.992 1.011 0.994 1.051 1.055 1.079 1.188 1.241 1.241 1.478 1.487 1.462

FIN-MIDAS - CRB 0.890∗ 0.725∗∗∗ 0.868∗∗ 0.902 0.919 0.906 0.897 0.876 0.916 0.962 1.006 1.020 1.152 1.145 1.168
TXT-FIN-MIDAS U CRB 0.890∗ 0.730∗∗∗ 0.872∗∗ 0.906 0.901 0.904 0.903 0.864 0.909 0.984 1.007 1.031 1.094 1.090 1.084
TXT-FIN-MIDAS D CRB 0.872∗∗ 0.730∗∗∗ 0.864∗∗ 0.903 0.895 0.897 0.908 0.892 0.931 0.979 1.010 1.023 1.172 1.165 1.148
TXT-FIN-MIDAS G CRB 0.876∗∗ 0.716∗∗∗ 0.873∗∗ 0.886 0.878 0.882 0.891 0.874 0.919 0.973 1.012 1.023 1.152 1.152 1.145
TXT-FIN-MIDAS B CRB 0.847∗∗ 0.713∗∗∗ 0.835∗∗∗ 0.886 0.862 0.864 0.863 0.885 0.926 0.978 1.020 1.031 1.171 1.192 1.180

FIN-MIDAS - BDi 0.964 0.790∗∗ 0.984 1.049 1.061 1.058 1.052 1.055 1.090 1.205 1.248 1.237 1.367 1.368 1.348
TXT-FIN-MIDAS U BDi 0.952 0.804∗∗ 0.975 1.059 1.076 1.062 1.049 1.045 1.088 1.164 1.242 1.212 1.322 1.315 1.300
TXT-FIN-MIDAS D BDi 0.966 0.794∗∗ 0.969 1.066 1.071 1.060 1.059 1.054 1.094 1.184 1.231 1.236 1.352 1.350 1.355
TXT-FIN-MIDAS G BDi 0.949 0.787∗∗ 0.975 1.039 1.063 1.056 1.076 1.069 1.107 1.188 1.245 1.238 1.363 1.362 1.347
TXT-FIN-MIDAS B BDi 0.934 0.779∗∗ 0.959 1.033 1.049 1.037 1.030 1.067 1.090 1.185 1.246 1.234 1.386 1.402 1.381

FIN-MIDAS - USi 0.940 0.761∗∗∗ 0.945∗ 0.966 1.005 0.968 0.960 0.958 0.994 1.046 1.094 1.102 1.380 1.385 1.354
TXT-FIN-MIDAS U USi 0.929 0.766∗∗∗ 0.939 0.958 0.992 0.963 0.967 0.963 0.997 1.047 1.094 1.105 1.333 1.328 1.305
TXT-FIN-MIDAS D USi 0.925 0.766∗∗ 0.942 0.956 0.992 0.960 0.976 0.971 1.005 1.056 1.093 1.107 1.338 1.324 1.345
TXT-FIN-MIDAS G USi 0.939 0.759∗∗∗ 0.934∗ 0.965 1.009 0.970 0.966 0.963 0.998 1.049 1.098 1.106 1.384 1.385 1.350
TXT-FIN-MIDAS B USi 0.918 0.745∗∗∗ 0.938 0.933 0.965 0.937 0.955 0.953 0.986 1.055 1.101 1.110 1.412 1.410 1.379

FIN-IR-MIDAS - FT 0.922 0.758∗∗ 0.922 1.017 1.035 1.001 1.008 1.003 1.040 1.063 1.118 1.115 1.301 1.304 1.274
TXT-FIN-IR-MIDAS U FT 0.929 0.759∗∗ 0.925 1.013 1.043 0.998 1.040 1.010 1.049 1.077 1.118 1.126 1.286 1.277 1.242
TXT-FIN-IR-MIDAS D FT 0.953 0.759∗∗ 0.936 1.014 1.039 1.003 1.046 1.026 1.065 1.104 1.142 1.151 1.320 1.275 1.251
TXT-FIN-IR-MIDAS G FT 0.922 0.751∗∗ 0.922∗ 0.998 1.022 0.994 1.011 1.010 1.045 1.065 1.120 1.123 1.315 1.309 1.276
TXT-FIN-IR-MIDAS B FT 0.915 0.749∗∗ 0.924 0.987 1.003 0.973 1.037 1.016 1.040 1.086 1.139 1.141 1.341 1.331 1.306

FIN-IR-MIDAS - SP 0.899∗ 0.754∗∗∗ 0.931∗ 0.956 0.978 0.959 0.931 0.945 0.971 0.974 1.011 1.026 1.117 1.109 1.103
TXT-FIN-IR-MIDAS U SP 0.910∗ 0.760∗∗∗ 0.938 0.970 0.983 0.973 0.962 0.946 0.986 0.978 1.018 1.034 1.079 1.069 1.068
TXT-FIN-IR-MIDAS D SP 0.918 0.760∗∗ 0.933 0.967 0.982 0.954 0.957 0.956 0.997 0.987 1.022 1.042 1.157 1.130 1.121
TXT-FIN-IR-MIDAS G SP 0.910∗ 0.751∗∗∗ 0.931∗ 0.951 0.976 0.951 0.950 0.950 0.982 0.972 1.018 1.023 1.111 1.103 1.097
TXT-FIN-IR-MIDAS B SP 0.892∗ 0.742∗∗∗ 0.908∗ 0.964 0.965 0.936 0.945 0.937 0.960 0.989 1.031 1.041 1.142 1.128 1.125

FIN-IR-MIDAS - ES 0.943 0.769∗∗ 0.979 1.012 1.032 1.009 1.019 1.022 1.051 1.090 1.130 1.121 1.377 1.353 1.336
TXT-FIN-IR-MIDAS U ES 0.943 0.769∗∗∗ 0.972 1.011 1.019 1.010 1.033 1.029 1.060 1.103 1.142 1.139 1.367 1.352 1.316
TXT-FIN-IR-MIDAS D ES 0.946 0.772∗∗ 0.973 1.011 1.034 1.007 1.052 1.044 1.070 1.135 1.164 1.162 1.482 1.375 1.320
TXT-FIN-IR-MIDAS G ES 0.938 0.768∗∗∗ 0.977 0.997 1.020 1.002 1.043 1.042 1.070 1.129 1.163 1.166 1.360 1.332 1.302
TXT-FIN-IR-MIDAS B ES 0.921 0.761∗∗ 0.937 0.982 0.993 0.979 1.010 1.016 1.037 1.092 1.143 1.118 1.372 1.363 1.320

FIN-IR-MIDAS - HS 0.884∗ 0.756∗∗∗ 0.906∗ 0.966 1.000 0.969 0.965 0.967 1.001 0.978 1.024 1.035 1.190 1.192 1.191
TXT-FIN-IR-MIDAS U HS 0.880∗ 0.758∗∗∗ 0.907∗ 0.961 0.999 0.967 0.970 0.974 1.008 0.964 1.023 1.021 1.127 1.101 1.111
TXT-FIN-IR-MIDAS D HS 0.881∗ 0.753∗∗∗ 0.904∗ 0.967 0.991 0.963 0.986 0.985 1.017 0.978 1.018 1.030 1.200 1.152 1.160
TXT-FIN-IR-MIDAS G HS 0.894∗ 0.751∗∗∗ 0.903∗ 0.950 0.985 0.955 0.962 0.967 1.001 0.984 1.027 1.038 1.176 1.170 1.169
TXT-FIN-IR-MIDAS B HS 0.880∗∗ 0.740∗∗∗ 0.897∗ 0.940 0.943 0.929 0.974 0.960 0.993 0.996 1.047 1.037 1.242 1.249 1.230

FIN-IR-MIDAS - PD 0.906∗ 0.764∗∗∗ 0.925∗ 0.958 0.980 0.962 0.961 0.966 1.001 1.041 1.087 1.105 1.206 1.202 1.202
TXT-FIN-IR-MIDAS U PD 0.904∗ 0.762∗∗∗ 0.924∗ 0.959 0.978 0.971 0.961 0.966 1.000 1.032 1.096 1.098 1.170 1.163 1.159
TXT-FIN-IR-MIDAS D PD 0.903∗ 0.757∗∗∗ 0.932 0.962 0.974 0.962 0.986 0.976 1.006 1.053 1.088 1.112 1.225 1.215 1.222
TXT-FIN-IR-MIDAS G PD 0.898∗∗ 0.758∗∗∗ 0.925∗ 0.948 0.966 0.960 0.955 0.964 0.999 1.032 1.076 1.088 1.204 1.205 1.202
TXT-FIN-IR-MIDAS B PD 0.883∗∗ 0.748∗∗∗ 0.909 0.932 0.931 0.932 0.956 0.956 0.986 1.061 1.110 1.116 1.262 1.323 1.300

FIN-IR-MIDAS - CD 0.932 0.768∗∗ 0.961 1.018 1.067 0.976 0.967 0.940 0.957 1.025 0.976 1.048 2.646 2.320 2.496
TXT-FIN-IR-MIDAS U CD 0.928∗ 0.769∗∗∗ 0.961 1.014 1.048 0.981 0.966 0.932 0.943 0.993 0.965 1.014 2.503 2.129 2.309
TXT-FIN-IR-MIDAS D CD 0.916 0.763∗∗ 0.950 0.997 1.031 0.965 0.911 0.929 0.939 1.168 1.093 1.172 2.935 2.543 2.702
TXT-FIN-IR-MIDAS G CD 0.941 0.767∗∗ 0.961 1.002 1.044 0.976 0.940 0.936 0.944 1.025 0.984 1.044 2.977 2.479 2.731
TXT-FIN-IR-MIDAS B CD 0.920 0.750∗∗∗ 0.930 0.975 0.970 0.935 0.942 0.838 0.880 1.043 1.040 1.041 2.976 2.553 2.806

FIN-IR-MIDAS - ED 0.908∗ 0.759∗∗∗ 0.926∗ 0.970 0.988 0.970 0.955 0.960 0.991 1.013 1.073 1.088 1.215 1.219 1.214
TXT-FIN-IR-MIDAS U ED 0.899∗ 0.766∗∗∗ 0.926∗ 0.967 0.981 0.973 0.965 0.966 0.996 1.024 1.076 1.087 1.166 1.160 1.164
TXT-FIN-IR-MIDAS D ED 0.901∗ 0.757∗∗∗ 0.936 0.967 0.974 0.970 0.980 0.978 1.008 1.040 1.080 1.087 1.244 1.224 1.217
TXT-FIN-IR-MIDAS G ED 0.897∗ 0.762∗∗∗ 0.927∗ 0.954 0.972 0.963 0.956 0.963 0.994 1.020 1.070 1.082 1.196 1.195 1.193
TXT-FIN-IR-MIDAS B ED 0.891∗ 0.746∗∗∗ 0.907 0.945 0.938 0.937 0.957 0.955 0.984 1.038 1.088 1.092 1.249 1.251 1.249

CO-IR-MIDAS - - 0.937 0.765∗∗ 0.935 0.983 1.041 0.981 0.955 0.957 0.994 0.936 0.971 0.989 1.013 1.009 1.004
TXT-CO-IR-MIDAS U - 0.925 0.761∗∗ 0.931 0.973 1.031 0.975 0.952 0.952 0.988 0.940 0.976 0.992 1.053 1.039 1.019
TXT-CO-IR-MIDAS D - 0.923 0.762∗∗ 0.929 0.975 1.024 0.974 0.967 0.961 1.002 0.961 0.988 1.006 1.103 1.121 1.107
TXT-CO-IR-MIDAS G - 0.927 0.757∗∗∗ 0.934 0.963 1.018 0.967 0.959 0.956 0.988 0.944 0.979 0.992 1.011 1.009 1.004
TXT-CO-IR-MIDAS B - 0.905∗ 0.752∗∗∗ 0.931 0.947 0.953 0.945 0.959 0.966 0.993 0.949 0.979 0.995 1.370 1.049 1.047

GL-IR-MIDAS - - 0.925 0.777∗∗ 0.943 1.001 1.031 1.004 1.007 1.005 1.037 1.079 1.134 1.141 1.321 1.313 1.287
TXT-GL-IR-MIDAS U - 0.927 0.775∗∗ 0.940 0.998 1.025 0.987 1.032 0.997 1.040 1.087 1.152 1.187 1.240 1.256 1.218
TXT-GL-IR-MIDAS D - 0.928 0.774∗∗ 0.940 0.993 1.026 0.993 1.036 1.012 1.053 1.092 1.136 1.157 1.326 1.300 1.293
TXT-GL-IR-MIDAS G - 0.918 0.768∗∗ 0.939 0.986 1.017 0.983 1.008 1.007 1.041 1.082 1.139 1.149 1.289 1.288 1.250
TXT-GL-IR-MIDAS B - 0.927 0.764∗∗ 0.937 0.966 0.987 0.964 1.029 1.002 1.038 1.102 1.162 1.169 1.363 1.353 1.301

CP-IR-MIDAS - - 0.935 0.770∗∗ 0.970 1.002 1.059 0.996 1.058 1.065 1.092 1.069 1.114 1.099 1.385 1.368 1.331
TXT-CP-IR-MIDAS U - 0.939 0.768∗∗ 0.975 1.000 1.061 0.996 1.080 1.090 1.109 1.081 1.110 1.114 1.402 1.383 1.350
TXT-CP-IR-MIDAS D - 0.930 0.771∗∗ 0.960 0.991 1.055 0.986 1.084 1.090 1.098 1.103 1.134 1.133 1.413 1.366 1.330
TXT-CP-IR-MIDAS G - 0.925 0.767∗∗ 0.977 0.984 1.047 0.990 1.081 1.079 1.112 1.073 1.102 1.091 1.383 1.348 1.312
TXT-CP-IR-MIDAS B - 0.905∗ 0.756∗∗ 0.914∗ 0.953 0.991 0.952 1.009 1.030 1.050 1.067 1.109 1.092 1.385 1.367 1.318

NG-IR-MIDAS - - 0.960 0.791∗∗ 0.955 1.037 1.035 1.077 1.069 1.081 0.996 1.068 1.107 1.100 1.439 1.421 1.376
TXT-NG-IR-MIDAS U - 0.953 0.787∗∗ 0.961 1.033 1.039 1.064 1.115 1.139 1.118 1.085 1.131 1.132 1.444 1.437 1.382
TXT-NG-IR-MIDAS D - 0.953 0.788∗∗ 0.946 1.001 1.033 1.071 1.073 1.065 0.998 1.095 1.135 1.131 1.604 1.536 1.484
TXT-NG-IR-MIDAS G - 0.959 0.798∗∗ 0.967 1.008 1.041 1.076 1.071 1.098 1.088 1.077 1.117 1.105 1.388 1.387 1.349
TXT-NG-IR-MIDAS B - 0.911 0.778∗∗ 0.928 0.987 1.014 1.034 1.025 1.020 1.044 1.081 1.116 1.101 1.651 1.593 1.539

PL-IR-MIDAS - - 0.985 0.795∗∗∗ 1.010 1.006 1.070 1.003 1.079 1.067 1.100 1.114 1.135 1.132 1.369 1.390 1.343
TXT-PL-IR-MIDAS U - 0.981 0.793∗∗∗ 1.002 1.009 1.075 1.002 1.095 1.093 1.131 1.119 1.147 1.150 1.423 1.388 1.334
TXT-PL-IR-MIDAS D - 0.970 0.791∗∗∗ 0.998 0.998 1.056 0.995 1.091 1.092 1.126 1.125 1.155 1.153 1.494 1.426 1.399
TXT-PL-IR-MIDAS G - 0.971 0.791∗∗∗ 0.999 0.988 1.052 0.992 1.092 1.089 1.120 1.112 1.143 1.147 1.333 1.318 1.312
TXT-PL-IR-MIDAS B - 0.938 0.777∗∗∗ 0.964 0.959 1.019 0.958 1.018 1.045 1.071 1.089 1.130 1.113 1.475 1.434 1.377

SL-IR-MIDAS - - 0.944 0.767∗∗∗ 0.942 1.023 1.041 1.017 0.998 0.993 1.037 1.058 1.103 1.112 1.267 1.299 1.263
TXT-SL-IR-MIDAS U - 0.936 0.772∗∗∗ 0.942 1.010 1.036 1.003 1.010 0.997 1.040 1.077 1.116 1.137 1.255 1.204 1.195
TXT-SL-IR-MIDAS D - 0.938 0.773∗∗∗ 0.944 1.011 1.032 1.004 1.021 1.002 1.043 1.070 1.098 1.118 1.309 1.291 1.275
TXT-SL-IR-MIDAS G - 0.936 0.759∗∗∗ 0.937 0.990 1.021 0.992 0.993 0.993 1.028 1.056 1.113 1.116 1.282 1.279 1.259
TXT-SL-IR-MIDAS B - 0.913 0.759∗∗ 0.931 0.988 1.005 0.975 1.001 0.986 1.018 1.078 1.119 1.133 1.319 1.278 1.253

Note: In column 1 TXT: text data defined in column 2, FIN: financial variable defined in column 3, IR: intraday returns, CO: crude oil, GL: gold, CP: copper, NG: natural gas, PL: palladium, SL: silver. In column 2 U: unigram count, D: dictionary method, G: geometrical model, B: Bert. In column 3
OFs: crude oil-futures prices spread, GLs: crude oil-gasoline spread, CRB: Commodity research bureau index, BDi: Baltic Dry index, USi: federal funds rate, FT: FTSE100 index, SP: S&P500 index, ES: Euro Stoxx 50 index, HS: Hang Seng index, PD: GBP/USD exchange rate, CD: CAD/USD exchange
rate, ED: UER/USD exchange rate. Black bold values indicate improvements on the no-change forecast. Red bold values indicate the lowest MSPE achieved with no text variable. Blue entries stand for the lowest MSPE for a given time horizon and relative to a specific oil price measure. *, ** and ***
respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.



Chapter 3. Do High Frequency Text Data Help Forecast Crude Oil Prices? MF-VAR vs. MIDAS 69

Table 3.6: Recursive ALPL ratios relative to a random walk density forecast of alternative monthly indica-
tors of real oil prices; text vs. no-text.

Model Text 1-month 3-months 6-months 12-months 24-months
Variable WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

SV-BVAR - 0.961∗∗∗ 1.009∗∗∗ 0.947∗∗∗ 0.123∗∗∗ 0.032∗∗∗ 0.122∗∗∗ -0.285∗∗∗ -0.326∗∗∗ -0.339∗∗∗ -0.601∗∗∗ -0.544∗∗∗ -0.778∗∗∗ -0.971∗∗∗ -0.994∗∗∗ -1.331∗∗∗

SV-BVAR-TXT U 0.957∗∗∗ 1.004∗∗∗ 0.938∗∗∗ 0.106∗∗∗ 0.012∗∗∗ 0.126∗∗∗ -0.298∗∗∗ -0.344∗∗∗ -0.338∗∗∗ -0.618∗∗∗ -0.563∗∗∗ -0.762∗∗∗ -0.953∗∗∗ -0.984∗∗∗ -1.255∗∗∗

SV-BVAR-TXT D 0.957∗∗∗ 0.988∗∗∗ 0.942∗∗∗ 0.105∗∗∗ -0.001∗∗∗ 0.093∗∗∗ -0.290∗∗∗ -0.330∗∗∗ -0.343∗∗∗ -0.623∗∗∗ -0.551∗∗∗ -0.787∗∗∗ -0.952∗∗∗ -0.954∗∗∗ -1.301∗∗∗

SV-BVAR-TXT G 0.963∗∗∗ 1.010∗∗∗ 0.957∗∗∗ 0.135∗∗∗ 0.046∗∗∗ 0.139∗∗∗ -0.260∗∗∗ -0.280∗∗∗ -0.289∗∗∗ -0.593∗∗∗ -0.531∗∗∗ -0.733∗∗∗ -1.015∗∗∗ -1.043∗∗∗ -1.327∗∗∗

SV-BVAR-TXT B 0.963∗∗∗ 1.005∗∗∗ 0.958∗∗∗ 0.105∗∗∗ 0.010∗∗∗ 0.100∗∗∗ -0.281∗∗∗ -0.327∗∗∗ -0.334∗∗∗ -0.602∗∗∗ -0.538∗∗∗ -0.736∗∗∗ -0.939∗∗∗ -0.931∗∗∗ -1.224∗∗∗

MF-SV-BVAR-TXT U 0.956∗∗∗ 0.996∗∗∗ 0.933∗∗∗ 0.104∗∗∗ 0.013∗∗∗ 0.117∗∗∗ -0.272∗∗∗ -0.316∗∗∗ -0.301∗∗∗ -0.572∗∗∗ -0.531∗∗∗ -0.679∗∗∗ -0.907∗∗∗ -0.942∗∗∗ -1.133∗∗∗
MF-SV-BVAR-TXT D 0.899∗∗∗ 0.989∗∗∗ 0.942∗∗∗ 0.079∗∗∗ 0.027∗∗∗ 0.087∗∗∗ -0.305∗∗∗ -0.288∗∗∗ -0.328∗∗∗ -0.631∗∗∗ -0.552∗∗∗ -0.757∗∗∗ -0.946∗∗∗ -0.986∗∗∗ -1.289∗∗∗

MF-SV-BVAR-TXT G 0.942∗∗∗ 0.996∗∗∗ 0.944∗∗∗ 0.091∗∗∗ 0.003∗∗∗ 0.096∗∗∗ -0.295∗∗∗ -0.294∗∗∗ -0.296∗∗∗ -0.614∗∗∗ -0.549∗∗∗ -0.734∗∗∗ -0.984∗∗∗ -1.039∗∗∗ -1.341∗∗∗

MF-SV-BVAR-TXT B 0.929∗∗∗ 0.991∗∗∗ 0.943∗∗∗ 0.087∗∗∗ -0.048∗∗∗ 0.050∗∗∗ -0.310∗∗∗ -0.355∗∗∗ -0.362∗∗∗ -0.636∗∗∗ -0.580∗∗∗ -0.734∗∗∗ -0.970∗∗∗ -0.949∗∗∗ -1.212∗∗∗

CRB index

MIDAS - -3.928∗∗ -3.890∗ -3.821∗∗∗ -4.923 -4.326 -4.553 -5.578 -4.881 -5.579 -7.653 -6.269 -7.364∗ -12.874∗ -11.194∗ -12.720∗

TXT-MIDAS U -3.950∗∗ -3.716∗∗ -3.762∗∗ -4.858 -4.091 -4.593 -5.805 -4.701 -5.239 -7.373 -6.302 -7.231∗ -10.691∗ -8.748∗ -10.203∗

TXT-MIDAS D -3.838∗∗ -3.632∗∗ -3.673∗∗ -4.865 -4.128 -4.628 -5.757 -4.757 -5.326 -6.586 -5.561 -6.308∗ -6.695∗∗ -5.743∗ -6.658∗∗
TXT-MIDAS G -3.901∗∗ -3.387∗∗ -3.526∗∗∗ -3.859 -3.464 -3.312 -5.131 -4.010 -4.451 -7.158 -6.169 -7.061∗ -10.135∗ -9.211∗ -10.259∗∗

TXT-MIDAS B -3.874∗∗ -3.694∗∗ -3.792∗∗ -4.685 -4.039 -4.515 -5.941 -4.899 -5.243 -7.763 -6.500 -7.257∗ -12.682∗ -10.386 -12.158∗

Euro Stoxx 50 index

MIDAS - -4.838∗ -4.165∗∗ -4.160∗∗ -6.888 -5.720 -6.160 -8.843 -7.049 -7.558 -9.114∗ -7.630∗ -8.708∗∗ -10.199∗ -9.218∗ -10.654∗

TXT-MIDAS U -4.759∗ -4.088∗∗ -4.107∗∗ -6.200 -5.433 -5.447 -8.666 -6.984 -7.302 -8.970∗ -7.508∗ -8.520∗∗ -10.187∗ -9.215∗ -10.623∗∗

TXT-MIDAS D -4.693∗∗ -4.046∗∗ -4.096∗∗ -6.652 -5.483 -5.791 -8.785 -7.028 -7.441∗ -8.670∗ -7.165∗∗ -8.233 -7.679∗ -7.045∗ -8.062∗
TXT-MIDAS G -4.673∗ -3.709∗∗ -3.847∗∗ -4.907 -4.622 -3.989 -6.183 -4.942 -5.246 -7.755∗ -6.652∗∗ -7.596∗∗ -9.316∗ -8.079∗ -9.424∗∗

TXT-MIDAS B -4.548∗∗ -3.920∗∗ -4.011∗∗ -6.269 -5.245 -5.529 -8.097 -6.518 -6.859 -8.726∗ -7.313∗ -8.290∗∗ -10.861∗ -9.561∗ -10.811∗

GBP/USD index

MIDAS - -4.415∗∗ -4.192∗∗ -4.487∗∗ -5.894 -5.094 -5.757 -7.134 -5.972 -6.554 -7.602∗ -6.541∗∗ -7.622∗∗ -13.630∗ -13.521∗∗ -15.673∗∗

TXT-MIDAS U -4.331∗∗ -4.042∗∗ -4.222∗∗ -5.417 -4.706 -5.173 -7.088 -5.862 -6.442 -7.658∗ -6.548∗∗ -7.622∗∗ -11.738∗ -9.240∗ -10.580∗

TXT-MIDAS D -4.235∗∗ -3.975∗∗ -4.136∗∗ -5.745 -4.898 -5.491 -7.226 -6.082 -6.615 -6.949∗ -6.040∗∗ -7.024∗∗ -7.869∗∗ -6.875∗∗ -7.228∗∗
TXT-MIDAS G -4.355∗∗ -3.903∗∗ -4.170∗∗ -4.881 -4.238 -4.308 -5.810 -4.830 -5.229 -7.383∗ -6.296∗ -7.435∗∗ -11.668∗ -11.418∗∗ -13.738∗∗

TXT-MIDAS B -4.081∗∗ -3.867∗∗ -4.085∗∗ -5.364 -4.580 -5.155 -6.848 -5.668 -6.174 -7.705∗ -6.625∗∗ -7.676∗∗ -13.887∗ -13.491∗∗ -15.071∗∗

Natural Gas index

MIDAS - -5.201 -4.431 -4.709∗ -8.605 -6.198 -8.959 -9.444 -7.467 -9.651 -8.929∗ -7.283∗ -8.496∗∗ -11.247∗∗ -10.165∗∗ -11.722∗∗

TXT-MIDAS U -4.815 -4.172∗ -4.221∗ -6.639 -5.546 -7.827 -8.908 -7.261 -9.594 -8.472∗ -7.000∗ -8.103∗∗ -9.064∗ -8.176∗ -9.668∗∗

TXT-MIDAS D -4.586∗ -3.988∗ -4.067∗ -7.211 -5.651 -7.995 -9.200 -7.441 -9.601 -8.590∗ -7.029∗ -8.341∗ -7.210∗∗ -6.766∗∗ -7.554∗∗
TXT-MIDAS G -4.360∗∗ -3.616∗∗ -3.612∗∗ -5.783 -4.853 -6.302 -7.238 -6.084 -8.518 -8.120∗ -6.603∗ -7.815∗∗ -8.860∗ -8.223∗ -9.818∗∗

TXT-MIDAS B -4.407∗ -3.775∗∗ -4.026∗∗ -6.275 -4.944 -6.684 -7.965 -6.380 -8.529 -8.508∗ -7.114∗ -8.221∗∗ -11.024∗∗ -10.041∗∗ -11.510∗∗

Palladium index

MIDAS - -4.803∗ -4.087∗ -4.257∗ -6.490 -5.454 -5.759 -8.474 -6.674 -7.130 -8.898∗ -7.360∗ -8.449∗∗ -11.197∗∗ -9.835∗ -11.389∗∗

TXT-MIDAS U -4.614∗ -3.916∗ -3.953∗ -5.837 -5.230 -5.135 -8.173 -6.579 -6.923 -8.611∗ -7.146∗ -8.163∗∗ -10.066∗∗ -8.886∗ -10.269∗∗

TXT-MIDAS D -4.398∗ -3.789∗ -3.885∗ -6.061 -4.874 -5.336 -8.272 -6.681 -7.119 -8.726∗ -7.048∗ -8.429∗∗ -7.059∗∗ -6.533∗∗ -7.346∗∗
TXT-MIDAS G -4.554 -3.682∗∗ -3.567∗∗ -4.659 -4.316 -3.787 -5.942 -4.711 -4.911 -8.337∗ -6.926∗ -8.089∗ -8.638∗∗ -7.948∗∗ -9.371∗∗

TXT-MIDAS B -4.344∗ -3.704∗∗ -3.821∗∗ -5.658 -4.690 -5.025 -7.551 -6.103 -6.522 -8.262∗ -6.956∗ -7.750∗∗ -11.909∗∗ -10.625∗∗ -12.586∗∗

Note: In column 1 SV: stochastic volatility, BVAR: Bayesian vector autoregression, MF: mixed frequency, TXT: text data defined in column 2. In column 2 U: unigram count, D: dictionary method, G: geometrical model, B: Bert. Bold values indicate the
highest ALPL improvements on the no-text based model, for a given time horizon and relative to a specific oil price measure. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.
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Figure 3.1: The top panel reports the unigram probability count indicator, developed by counting the number of words “econ-
omy”, “economies”, “economic”, “economics” occurring in each article, normalized by the total number of running words. The
figure plots the time series weekly score from 1982M1 through 2021M12. Blue and red notes describe the main historical events
that have positively or negatively affected the price of oil. The bottom panel replicates the equivalent time series by using daily
scores (labels are omitted on the bottom panel as in several cases daily variations are not informative).
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Figure 3.2: The top panel reports the VADER sentiment indicator, where words are assigned a value based on Hutto and Gilbert
[2014]’s dictionary. The figure plots the time series weekly score from 1982M1 through 2021M12. Blue and red notes describe
the main historical events that have positively or negatively affected the price of oil. The bottom panel replicates the equivalent
time series by using daily scores (labels are omitted on the bottom panel as in several cases daily variations are not informative).
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Figure 3.3: The top panel reports the term-frequency matrix indicator, developed by counting the number of words “econ-
omy”, “economies”, “economic”, “economics” occurring in each article, normalized by the total number of words running in a
weekly/daily dataset. The figure plots the time series weekly score from 1982M1 through 2021M12. Blue and red notes describe
the main historical events that have positively or negatively affected the price of oil. The bottom panel replicates the equivalent
time series by using daily scores (labels are omitted on the bottom panel as in several cases daily variations are not informative).
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Figure 3.4: The top panel reports the sentiment indicator extracted from oil related articles by using BERT. The figure plots
the time series weekly score from 1982M1 through 2021M12. Blue and red notes describe the main historical events that have
positively or negatively affected the price of oil. The bottom panel replicates the equivalent time series by using daily scores
(labels are omitted on the bottom panel as in several cases daily variations are not informative).
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4.1 Introduction

The instability over time between oil price fluctuations and the response of macroeconomic variables has

long been considered a case of study of primary interest for academics and central bankers. Economists

are particularly concerned regarding the spike in crude oil prices, as this results in rising inflation as seen

in the deep recessions in the mid-1970s and the early 1980s, and following the Russia-Ukraine war out-

break.

A considerable number of academic studies assessing the macroeconomic effects following oil disturbances

has been proposed in the economic literature. Some influential works are Hamilton [1983], Mork [1989],

Blanchard and Gali [2007], Kilian [2009] and many others. Whilst these papers offer no settled consensus

regarding a specific strategy related to the correct identification of the economic disturbances, they all agree

on the qualitative effects following a change in crude oil prices. However, as common practice, inference

is made by using a pre-determined small set of variables, as if this model had been given in advance.

This strategy generates uncertainty in the empirical results, and this problem has never been considered

in the economic literature. In this paper I use model averaging as a strategy to address this informational

problem.

MODEL AVERAGING and MODEL SELECTION are two valid approaches that can partially solve the prob-

lem of informational deficiency. The latter refers to a methodology in which, given a number of “reason-

able” datasets, the analyst assigns weight 1 to one model (or even more) and 0 to the remaining candidate

models. Several model selection criteria have been proposed in the literature and listing them all here is

quite impossible. However, there are two main reasons that have led me to choose model averaging as op-

posed to model selection. Firstly, the process of selecting one optimal model and discarding the remaining

candidates would under-report the overall variance. This generates additional uncertainty, or even bias (see

Madigan and Raftery [1994]). Secondly, alternative selection criteria usually result in offering different

best models for the same dataset. This implies that more candidate models do almost as well as the opti-

mal model. Hence, estimation post selection can generate very misleading results, whereas combining the

output across all possible solutions eliminates both the aforementioned problems all at once (see Claeskens

et al. [2008]).

Model averaging is thus a valid alternative to model selection for the purposes of this paper, because no

specific “winner model” is first selected and then estimated, but inference is made on all candidate models
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and the results are averaged according to how likely each model is. Several statistical arguments have been

made in support of model averaging (i.e. Leamer [1978], Draper [1995], Raftery et al. [1997], Hoeting

et al. [1999], Claeskens et al. [2008] and many others) and myriads of macro and microeconometric em-

pirical studies have used this procedure (see for example Min and Zellner [1993], Raftery et al. [1997],

Fernandez et al. [2001], Koop and Korobilis [2012] and Strachan and Van Dijk [2013]). There are many

advantages to averaging over a number of weighted models and only a few are mentioned here. Firstly,

inference on several weighted models implicitly incorporates model uncertainty and this allows the analyst

to obtain better coefficient estimates. Secondly, it leads to a significant decrease of error predictions in

high-dimensional regression problems (see Ando and Li [2014]). Third, this methodology provides useful

empirical results also when applied in some machine learning techniques such as computational linguistic

for speech recognition, and decision trees (see McAllester [1999]).

This study considers a strategy originally developed in Kass and Raftery [1995], known as Bayesian Infor-

mation Criterion (BIC) model averaging1, which is formalized as follows. Assume we wish to start with a

dataset of K variables and N observations, where K < N. If we assume that the set of reasonable models

is designed by whether a variable is included or excluded, the total number of candidate models is 2k. In

this paper, the information set is made up by 10 dependent variables, in which, the first three are kept fixed,

and the remaining K = 7 predictors are combined in order to define the set of all admissible candidates.

This means that, 27 = 128 different models are estimated. Coefficient estimates are then averaged over the

goodness-of-fit of each candidate model. Namely, weights are set proportional to exp
1
2 (BICk), where BICk

describes the goodness-of-fit of model k = 1, . . . ,K. Buckland et al. [1997] use a similar methodology,

but they express the quality of each candidate model with the Akaike Information Criterion in place of

BIC.

The contribution of this paper is twofold. Firstly, this strategy is used to revisit the role of (i) oil supply, (ii)

aggregate demand and (iii) oil-specific demand shock and explain the macroeconomic effects determined

by oil price fluctuations. In particular, I revisit, in face of model uncertainty, Kilian [2009] and Kilian and

Murphy [2012]. In fact, in both papers inference is made by using a 3-variable vector autoregression (VAR)

model, that is implicitly assumed to be correctly specified. In contrast, I use a set of 10 macroeconomic

variables, modelled in the form of a structural VAR, in which the first three (oil production
{

qoil}, real

global economy
{

yGDP} and real oil price
{

poil}) are kept fixed for any candidate model, and the remain-

1In this work the expressions BIC model averaging (BICMA) and information criterion model averaging (ICMA) are used
interchangeably.
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ing seven predictors are combined in order to generate 128 different datasets. Even though the analysis

estimates all model combinations, the reduced-form coefficients are used to compute the impulse response

functions (IRFs) only related to the first three dependent variables. Namely, the dynamic response of the

remaining factors is disregarded. I compare IRFs achieved through model averaging to IRFs based on the

3-variable VAR model used in Kilian [2009] and Kilian and Murphy [2012]. The latter model is referred to

as “misspecified” VAR. Empirical results show that following a demand-specific oil shock, the price of oil

increases on the impact as in Kilian [2009], but in the long term the positive variation is more persistent and

does not converge to zero as in the misspecified VAR. Moreover, the oil price response resulting from an

aggregate demand shock, is more stable in the long run and does not converge to infinite as in the informa-

tionally deficient VAR. The performance of this methodology is also assessed through a simulation study.

In particular I show that the median response of the true VAR falls inside the 100% posterior of credible set

of the artificial VAR responses. The results are robust to different VARs specification.

The second major contribution is that I propose the “oil-news shock” as a novel oil-related structural dis-

turbance. In particular, I show that other than world industrial production, TOSI is the variable that best

explains oil price fluctuations. TOSI is a text based factor that captures human sentiment related to oil news

items (see Gifuni [2021]). For this experiment I use the same dataset used in the previous exercise and

the variables that are kept fixed for any candidate model are: qoil, yGDP, poil , oil inventories
{

oilinv} and

oil news {oilnews}. The evidence shows that oil price stability is considerably affected by oil news shocks,

and this variation generates a persistent drop in the quantity of oil produced. Moreover, the difference be-

tween oil-news IRFs in the misspecified and full-specified VAR is clear. This highlights that the content of

newspapers is prone to react to any additional information.

The informational problem addressed in this paper is related to several other works in the literature.

Bernanke and Boivin [2003] use a factor augmented VAR and show that if factors are generated from a rich

dataset through principal component analysis, the model comes up with better predictions in comparison

to Fed’s forecasts. Forni and Gambetti [2014] demonstrate the necessary and sufficient conditions under

which a VAR is not informationally deficient. They also assume that the economy is described by a

state-space model and the hidden factors in the measurement equation are the principal components of

a large dataset, which Granger cause the dependent variables. However, using principal components to

inform a VAR does not allow the researcher to understand which factor is useful in estimating valid IRFs.

This, in a nutshell, is instead what model averaging does. Fernández-Villaverde et al. [2007] discuss the
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information accuracy of unrestricted VARs, but they assume that the DSGE structure of the economy is

known a priori. But what about if the economic model is unknown? It is when we hypothesize how the

economy evolves that structural VARs come into play. Model averaging can minimize the information

deficiency of a pre-specified VAR, by combining the inference output resulting from any candidate

model.

The remainder of the paper is organized as follows. Section 4.2 describes the main idea of BIC model

averaging. Section 4.3 presents the identification methodologies and the Bayesian approach used to revisit

Kilian [2009] and Kilian and Murphy [2012]. Section 4.4 illustrates through a simulation study the finite

sample properties of Information Criterion model averaging (ICMA)2. Section 4.5 provides the empirical

results and Section 4.6 concludes.

4.2 Information Criterion Model Averaging

The absence of a completely defined model and the related informational deficiency issue was firstly de-

scribed in Leamer [1978]. In this book, the author suggests that averaging a number of competing models

over a set of asymptotically consistent weights, allows inference output to account for model uncertainty3.

In response to this view, Sala-i Martin [1997] runs four million regressions and average the coefficient es-

timates over the integrated likelihood of each model with the purpose of finding as many good economic

growth predictors as possible. After this work, model averaging has begun to find an application amongst

several disciplines such as management science, meteorology and medicine (see for example Raftery et al.

[2005], Gneiting et al. [2005], Vrugt and Robinson [2007], Vrugt et al. [2008], Viallefont et al. [2001],

Raftery et al. [2005] and Yin and Yuan [2009]). Myriads of different data-driven averaging techniques have

been developed so far. For example, Granger and Ramanathan [1984] regress the observed values on the R

matrix of forecasted points (where R is the number of all model combinations) and provide OLS-estimated

weights. Bates and Granger [1969] weight each model over its forecasted variance and Wright [2008]

forecasts a class of bilateral exchange rates by considering the weights as free parameters to estimate in a

Bayesian fashion.

2In this work the expressions BIC model averaging (or BICMA) and information criterion model averaging (or ICMA) are
used interchangeably.

3In theory, weights are shown to be asymptotically optimal if they all sum up to one. However, recent studies have relaxed this
constraint, showing that in some specific circumstances, although the sum of weights is greater than one, asymptotic consistency
still holds (see Ando and Li [2014]).
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This paper suggests the Information Criterion averaging procedure, firstly proposed in Buckland et al.

[1997], as a method to compute the posterior weights ψ expressed as:

ψk =
exp−

1
2 ICk

∑
2K

k=1 exp−
1
2 ICk

∀ k = 1, · · · ,128 (4.1)

where ICk indicates the Information Criterion used to select the best lag order relative to VARk, for

k = 1, · · · ,128. In my case, ICk is the Bayesian Information Criterion, which is based on the following

equation:

BIC =−2ln(LT (θ̂))+
ln(T )r

T

where ln(LT (θ̂)) is the normalized log-likelihood evaluated at the estimated vector of parameters θ̂ , ln(T )k
T

is a penalty term which indicates the loss of degrees of freedom resulting from increasing the lag order of

model k, and r defines the number of VAR parameters4. However, empirical results are robust to different

Information Criteria5.

Now, turning to the model specification, each VAR is estimated in a Bayesian fashion illustrated in section

4.3.6, and the structural response relative to a variable j after a shock i in model k is denoted as ˜IRF j,i,k.

Hence, the weighted impulse-response of variable j after a shock i is given by:

˜IRF j,i =
27

∑
k=1

ψk ˜IRF j,i,k (4.2)

in which, k =1,...,128, j and i =1,2,3 since we are averaging 128 structural VARs and only the upper left

3×3 matrix response in investigated.

4The lag length p can assume a minimum value of 12 and a maximum of 36 in each model combination. Reasons behind this
choice can be found in Baumeister and Kilian [2015]

5Results do not deviate in case Akaike Information Criterion or Hannan Information Criterion are used in place of BIC.
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4.3 SVAR Identification Methodologies

As remarked in the introduction, this article evaluates, in face of model uncertainty, the importance of oil

supply and aggregate demand shock by revisiting Kilian [2009]’s and Kilian and Murphy [2012]’s empirical

results. Both papers investigate the identification of oil structural disturbances based on a small dynamic

simultaneous equation model in the form of a structural VAR. Kilian [2009] assumes a zero price elasticity

of oil supply and global economy, implying a contemporaneous impact response of real price of oil to oil

supply and aggregate demand shock. Based on this hypothesis the author suggests to identify the struc-

tural covariance matrix through a short-run recursive identification procedure. On the contrary, Kilian and

Murphy [2012] allow the oil production to react after an oil-specific demand shock, provided that the size

effect must be positive and fall in the interval [0,0.0258]. According to this assumption, the authors propose

to identify the matrix of structural disturbances by imposing sign restrictions on the impact effect of each

shock.

Since I aim to evaluate the substantial contribution of Information Criterion model averaging (ICMA) on

providing accurate IRFs which address the problem of model uncertainty, it is important to describe how the

identification strategies of both papers have been adapted in this model averaging experiment. In addition,

this section also reports the description of SVAR identification via heteroskedasticity that I use to capture

the changes in variance regimes when additional observations are included in the original dataset. The last

two subsections provide the Bayesian methodology that I use to estimate the reduced-form VAR coefficients

for each experiment. Additional details about the Bayesian sampling method, are included in Appendix C.2

and C.3

4.3.1 Monthly Dataset

Before presenting the identification methodologies, it is useful to show the credibility of the dataset ICMA

relies on. Namely, it is important to demonstrate whether all variables are statistically significant in pre-

dicting crude oil prices. Hence, in this subsection, I show in a two steps procedure that the macroeconomic

panel used in this study produces consistently reliable predictors. The plan follows Hamilton [2019]. In

particular, I firstly regress each measure of crude oil price on three own lags, plus three lags of a single

predictor selected from the panel. The linear regression is expressed in the form of an autoregressive (AR)

process written as:
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∆poil
t = c+

3

∑
j=1

β j∆poil
t− j +

3

∑
j=1

φ jxt− j + εt , ε ∼ N (0,Ω) (4.3)

where xt is the time series of the growth/index variable selected from the information set (see the last column

on the right of Table 4.1 for the description of all factors considered in this analysis). Secondly, I estimate

the joint significance of each candidate xt−1, xt−2 and xt−3 through the F-statistic test. The null hypothesis

is H0: φ1 = φ2 = φ3 = 0, with a p-value of α = 0.01 and a relative F-critical value of F = 2.89. Columns

2 in Table 4.1 reports the F-test results of all potential predictors. It can be noticed that the F-statistics of

each variable is always greater than the F critical value, and thus the null hypothesis that the factors are of

no help for predicting the price of oil can be rejected.

Turning to the information set used in this work, 10 monthly variables are considered. As common practice,

all factors have been differenced once before rendering the time series stationary. Data cover the period Jan-

uary 1973 - December 2007 in experiment 1 (revisiting of Kilian [2009]); January 1973 - September 2008

in experiment 2 (revisiting of Kilian and Murphy [2012]); January 1974 - December 2019 in experiment 3

(designed to capture the change of variance regimes when more observations are considered). Section 4.5

provides additional empirical results, where world industrial production is plugged in place of dry cargo

index rate, and WTI and Brent are alternatively used in place of oil price based on refiner acquisition costs.

In these case of studies observations run from January 1982 to December 2019. Appendix C.1 provides

useful information regarding the source of each variable.

Table 4.1: Monthly dataset and relative F-test

Acronym Code F-test Description

WoP 1 3.56 World Oil Production

WiP 1 7.61 World Industrial Production

Inv 2 4.07 Oil Inventories

TOSI 2 6.62 Text Oil Sentiment Indicator

PPI-M 1 6.41 Producer Price Index Metal

PPI-C 1 4.35 Producer Price Index Coal

PPI-IS 1 6.04 Producer Price Index Iron and Steel

Gold 1 4.19 Gold Fixing Price (London)

EX 1 4.57 U.S. / U.K. Foreign Exchange Rate

Note: Column 2 reports the strategy used to transform the variable original value. In particular, if the code equals 1, the series is detrended
by considering 100 times the log-difference of the original value. No transformation is applied when the code is 2.
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4.3.2 Short-Run Restrictions

Much of the literature regarding identifying oil supply and demand shocks relies on short-run exclusion

restrictions. The object of this methodology concerns the identification of a covariance matrix in which

the first shock only affects the first dependent variable, the first and the second shock impact on the

second dependent variable, and so on up to the last dependent variable, which is affected by all shocks.

Kilian [2009], Apergis and Miller [2009] and Bernanke et al. [1997] are relevant examples that apply this

identification procedure to study oil price fluctuations. In this work, the first ICMA experiment revisits

Kilian [2009] empirical results. I start by generating all possible model combinations and subsequently

identify each SVAR by imposing contemporaneous zero restrictions on the covariance matrix. After that,

I compute the impulse-response functions related to the first three dependent variables, regardless of the

number of factors in each candidate model. Finally, I average 128 3×3 impulse response matrices over the

goodness-of-fit of each VAR. Specifically, suppose to start with the following generic reduced form VAR:

yt = c+
p

∑
j=1

β jyt− j + εt ∀ t = 1, . . . ,T and ε ∼ N (0,Σ) (4.4)

where yt is a N×1 vector of endogenous variables of interest, c is a N×1 vector of intercepts, β j describes

the N × N matrices of coefficients, yt− j is a N × 1 matrix of lagged observations, and εt is the N × 1

error vector with zero mean and full variance-covariance matrix. N = 3, . . . ,10 depending on which

model combination is taken into consideration and t refers to the monthly observations of Kilian [2009],

which run from 1973M1 to 2007M12. In order to derive the IRFs, the VAR(p) system in (4.4) needs

to be re-specified in a companion VAR(1) form. In particular, it is possible to set e′t = (ε ′,0, · · · ,0), y′t
=
(

y′t ,y
′
t−1, · · · ,y′t−p+1

)
and define

B =


β1 β2 . . . βp−1 βp
IN 0 . . . 0 0
0 IN . . . 0 0
... . . . ...
0 . . . . . . IN 0



Therefore, the companion form of (4.4) may be written as yt = Byt−1 + et. By substituting backward for

infinite periods (under the hypothesis that the eigenvalues of B are less than one in absolute value) the
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system is re-parameterized as: yt = et +Bet−1 +B2et−2 + ... .

By writing yt = B(L)et, where L is the lag operator and et ∼ N (0,Σ), the first upper-left N ×N matrices

of Bj describe the effects of εt on yt+j. Now, by applying a Cholesky factorization on Σ, we can find the

unique lower triangular matrix A0 such that A0A′
0 = Σ. Since A0 is lower triangular, the system ends up in

a recursive form as follows:

yt = B(L)A0ν t ν t ∼ N (0, I) (4.5)

where, in case N = 10,

A0ν t =



1 0 0 0 · · · 0

α0
2,1 1 0 0 · · · 0

α0
3,1 α0

3,2 1 0 · · · 0

α0
4,1 α0

4,2 α0
4,3 1 · · · 0

...
...

...
... . . . 0

α0
10,1 α0

10,2 α0
10,3 α0

10,4 · · · 1





ν t
oil produced

ν t
GDP

ν t
oil price

ν t
4

...

ν t
10



and ν t is the independent shock. Without loss of generality, it is assumed that ν t follows a Gaus-

sian distribution with zero mean and diagonal covariance matrix Λ. Please note, structural shocks related to

the seven additional factors, have been marked as νt
4, . . . ,νt

10, since in this work I am only considering the

structural disturbances generated by the first three dependent variables. Thus, it is not necessary to specify

the recursive order, as well as the name, of the remaining predictors.

Identification of structural shocks follows Kilian [2009]. This implies, from a Bayesian perspective, that

I assume with certainty that the short-run supply curve is vertical and the price elasticity of oil supply is

zero. On the contrary, oil price is assumed to contemporaneously respond to movements of oil production

and global economy, although I disregard the values that the parameters αi j may have. This hypothesis is

formalized by using a flat prior on A0 and a weak weighted random walk prior on lagged coefficients. In

particular αi j are supposed to follow a t-Student distribution of the form

p
(
α

0
i j
)
=

Γ

(
φ+1

2

)
Γ

(
φ

2

)√
πφσ

[
1+

1
φ

(
αi j − c

σ

)2
]− φ+1

2
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in which, c = 0 is the location parameter, σ = 100 is the scale parameter, and φ = 3 represents the degrees

of freedom. Lagged coefficients shrink to zero as the lag p becomes higher with a weak weight of λ0 = 109

(see Doan [2013] for the choice of Minnesota prior). A general overview of prior and sampling posterior is

presented in subsections 4.3.5 and 4.3.6, whereas Appendix C.2 provides more specific details.

4.3.3 Identification through Sign Restrictions

In recent studies, such as Baumeister and Peersman [2013], Lippi and Nobili [2012], Kilian and Murphy

[2012] and Peersman [2005], sign restrictions have been adopted as an alternative approach to the exclusion

restriction method discussed above for the study of oil price fluctuations. The main difference with respect

to this identification methodology lies in the fact that the analyst imposes restrictions on the signs of impact

responses, without bounding any parameter of the covariance matrix to have value zero. Therefore, while

the lower triangular system just-identifies the reduced form VAR, the inequality restrictions do not identify

a sequence of IRFs uniquely, rather, they give rise to a large interval of admissible shocks, in which all

results respect the sign rule. The second experiment of this paper revisits Kilian and Murphy [2012] and

shows how dynamic effects of a standard 3-variable VAR, identified through sign restrictions, change when

the weighted value of all possible impulse-response functions are combined. The restriction methodology

follows Rubio-Ramirez et al. [2010]. In particular, assuming that the economy evolves according to

equation (4.4), which can be re-parameterized in the following structural forms:

A0yt = d +
p

∑
j=1

A jyt− j +νt ν ∼ N (0,Λ) (4.6)

where A0 is a lower triangular N ×N matrix (obtained factorizing Σ in a Cholesky way) displaying the

simultaneous relationship among exogenous and endogenous variables, A j is a N×N matrix of coefficients

related to the lag j operator, d is a N × 1 vector of constants and νt is the independent shock with zero

mean and diagonal variance matrix
(
Λ = diag

[
λ 2

1 ,λ
2
2 , ...,λ

2
N
])

. In order to uniquely identify all the shocks

over the sample 1973M1-2008M9, at least n(n−1)/2 additional restrictions are needed. Such “extra”

(sign) restrictions are directly imposed when sampling from the contemporaneous structural matrix A0 as

in Baumeister and Hamilton [2015]. Then, the reduced form coefficients A−1
0 A j are estimated by imposing

a Minnesota prior similar to the recursive experiment analysed so far.

The identification of the 3×3 nonorthogonalized impulse-response matrix follows Baumeister and Hamil-
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ton [2019] and Kilian and Murphy [2012]. This implies that the algorithm identifies (i) a supply shock when

qoil and poil move in opposite directions and an unfavorable oil productivity shock (decrease of ν
oil produced
t )

drops the level of global real economy; (ii) an aggregate demand shock when qoil , GDP and poil move in the

same direction; (iii) a positive oil-specific demand shock when an increase of ν
oil price
t leads to a decrease

of global economy. Signs of impact effects on matrix A−1
0 are summarized in Table 4.2 below.

Table 4.2: Inequality constraints imposed to the first three variable responses

qoil GDP poil Structural shocks

− − + Oil Supply Shock
+ + + Aggregate Demand Shock
+ − + Oil-Specific Demand Shock

Kilian and Murphy [2012] argued that sign restrictions displayed in Table 4.2 alone, are not enough to

identify a structural VAR, because implausible inference outcomes may have the same consistency as more

credible empirical results. Therefore, they suggest to impose a low impact effect of oil supply shock on real

economy and of aggregate demand shock on oil production; I set both as equivalent to zero as in Baumeister

and Hamilton [2019]. Despite the addition of these restrictions, the SVAR is still not identified, because

there are infinite ways to achieve the same maximum value of the likelihood function. Therefore, as in

Kilian and Murphy [2012], I assume that (i) the positive value of price elasticity of oil supply is bounded

with a range of values between [0,0.258] and (iii) the size effect of an oil-specific demand shock on global

real activity must fall in the interval [−1.5,0]. According to the sign rule outlined in Table 4.2 and the

additional constraints further imposed, it is now possible to estimate each individual SVAR resulting from

the 128 combinations based on the structural covariance matrix

A0 =



1 0 [0,0.0258] 0 · · · 0

0 1 [−1.5,0] 0 · · · 0

− + 1 0 · · · 0

α0
4,1 α0

4,2 α0
4,3 1 · · · 0

...
...

...
... . . . 0

α0
10,1 α0

10,2 α0
10,3 α0

10,4 · · · 1
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It is worth stressing that this experiment only considers the dynamic responses of the first three dependent

variables of each model; I impose the exclusion restriction methodology on the remaining predictors in

order to leave the structural model still partially identified. Reduced-form VAR coefficients are estimated

as in the previous identification methodology. Specifically, I assume to have no information regarding

S =
{

α0
1,3,α

0
2,3,α

0
3,1,α

0
3,2

}
, but this time they are sampled form a truncated t-Student distribution in order

to respect the sign rule imposed in A0. For all VAR combinations where 3 < N ≤ 10, any αi j not included

in S is sampled from a standard t-Student distribution with c = 0, σ = 100 and φ = 3, as in the short-run

recursive case.

4.3.4 Identification via Heteroskedasticity

In the third experiment of this paper I analyse the same three structural shocks, but with a larger sample. The

observation period runs from 1974M1 to 2019M12. In this exercise is it important to understand whether

oil price fluctuations across the financial crisis affects the standard dynamic responses path outlined in

earlier studies. For this purpose, it is convenient to identify each SVAR combination via heteroskedasticity,

thereby capturing any change in volatility. This methodology was initially suggested in Rigobon [2003],

and then proposed in further studies like Rigobon and Sack [2003], Lanne and Lütkepohl [2008], Lanne

et al. [2010] and many others. However, even though the standard approach entails the variance to switch

regime according to a hypothetical probability state matrix, this paper adopts a different approach, parallel

with Brunnermeier et al. [2017]. Namely, all regimes are a priori exogenously identified. In particular, the

whole sample period is split in two different sub-samples (see Table 4.3) according to the observed variation

in the time series variables. The first sample period (1974M1-2005M12) covers the main economic events

of Kilian [2009] and Kilian and Murphy [2012], thus I do not expect any change in the dynamic impulse-

response paths. In contrast, the second sample starts one year before the opening period of the financial

crisis and ends in December 2019. This choice is based on the assumption that if the new sample was

observed in January 2007, by considering the effects of the first-difference operator and by including a

large number of lags (between 12 and 24) on each time series, in the best case scenario the first observed

value of the dependent variable would be in January 2008. This would imply to inevitably lose the economic

response in 2007 and 2008. For this reason, the second sample periods is set to start in January 2006.

The basic model partially follows the stochastic system described in section 4.3.1. In particular, by taking

into consideration the structural re-parametrization of the reduced form VAR depicted in equation (4.6):
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Table 4.3: Sub-periods when variance switches regime

Start End Description

Jan 1982 Dec 2005 Period Pre-Crisis
Jan 2006 Dec 2019 Period Post-Crisis

A0yt = d +
p

∑
j=1

A jyt− j +νt ν ∼ N (0,Λ) (4.7)

Where A0 is a lower triangular N ×N Cholesky factorized matrix of Σ of equation (4.4) displaying the

simultaneous relationship among exogenous and endogenous variables, A j is a N×N matrix of coefficients

related to the lag j operator, d is a N × 1 vector of constants and νt is the independent shock with zero

mean and diagonal variance matrix
(
Λ = diag

[
λ 2

1 ,λ
2
2 , ...,λ

2
N
])

. As stated before, the whole time span

t = {1 . . .T} is exogenously separated into M = 2 sub-periods and E(νtν
′
t ) = Λm if and only if t is in period

m ∈ M; where Λm is diagonal. Estimation of IRFs follows the following procedure:

• First, estimate the dynamic relationship determined by A0 and A j of each structural VAR combination

based on the entire sample and store the resulting coefficient estimates Â0 and Â j;

• Second, perform ICMA on both reduced samples and store the variance estimates Λ̂1 and Λ̂2;

• Then, compute IRFs1 and IRFs2 of the first and second observation segment respectively, by consid-

ering the full sample Â0 and Â j coefficients and the related variances Λ̂1 and Λ̂2;

• Finally, average IRFs1 and IRFs2 in order to have full sample IRFs.

This procedure implies that the variance of structural shocks changes across samples, but the dynamic

relationship determined by A0 and A j, remains fixed. In this way, IRFs of structural shocks will have

the same shapes across the periods, but with a different scale. Since each interval is well defined and

continuous, the results will not differ from the endogeneity switching regimes case. An endogenous switch

of the variance could have been possible, but since the regimes are few in the data, this choice would have

complicated the model, with the possibility of erroneously determining the number of regime switches.

This restriction methodology allows for point identification as in the short-run recursive case, in contrast to

sign restrictions which do not provide point estimates.
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4.3.5 Prior Densities

Prior p(A0). As mentioned in the last part of each identification strategy, the parameters of structural VARs

are estimated in a Bayesian fashion. Starting from the contemporaneous relation matrix A0, informative

priors on single elements α0
i, j are represented in the form of a density function p

(
α0

i, j

)
, where a high

value of p
(

α0
i, j

)
implies a strong information about the generic i, j element of A0, whereas p

(
α0

i, j

)
= 0

when no useful prior information is available. Single elements inside A0 are supposed to follow a Student

t-distribution, in which the scale parameter values are chosen according to the prior belief that is assumed

on the specific elasticity. In case of lower triangular and heteroskedasticity identification all αi j have c = 0,

σ = 0 and φ = 3, because it is assumed that nothing is known about the potential value of the parameters.

This hypothesis is relaxed in the second experiment, where an initial value for αi j is guessed, according to

the sign rule imposed.

Prior p(Λ|A0). Prior information about Λ conditional on A0 is described by a Γ(κ i,τ i) distribution for each

λ
−1
ii reciprocal of element in row i and column i of matrix Λ. Namely:

p(Λ|A0) =
n

∏
i=1

p(λii|A0)

⇒ p
(
λ
−1
ii |A0

)
=


τ

κi
i

Γ(κ i)

(
λ
−1
ii
)κ i−1

exp
(
−τ iλ

−1
ii
)

forλ−1
ii ≥ 0

0 otherwise

where, (κ i/τ i) is the prior mean of λ
−1
ii and

(
κ i/τ2

i
)

is its variance. We set κ i = 0.5 and τ i = κ iA0SA0,

where S is the N ×N OLS variance of yt . It is assumed that τ i depends on (A0), while (κ i) does not.

Appendix C.2 provides a detailed illustration and some suggestions for the choice of values κ i and τ i.

Prior p
(
A j|Λ,A0

)
. Prior information regarding the lagged structural coefficients A j are represented with

a Normal conditional probability density function p
(
A j|Λ,A0

)
where A j ∼ N

(
mi,λ

−1
ii Mi

)
, which can be

summarized as follows:

p
(
A j|Λ,A0

)
=

n

∏
i=1

p(α j
i |Λ,A0)

⇒ p
(

α
j

i |Λ,A0

)
=

1

(π)
κ

2 |λiiMi|
1
2

exp
[
−
(

1
2

)(
α

j
i −mi

)′
(λiiMi)

−1
(

α
j

i −mi

)]

Mi incorporates information regarding the Minnesota structure, whose hyperparameters are {λ0,λ1, λ2,λ3}.
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I follow Doan [2013] and set λ0 = 109 to express the weight on prior values; λ1 = 1, which implies that

lagged coefficients shrink to zero as the lag order increases; λ2 = 1 governs the confidence in other-than-

own lags; λ3 = 100 makes the constant term essentially irrelevant. In this way parameters related to higher

lags shrink to zero and prior information about the intercept is essentially irrelevant. Vector mi indicates

the best guess of value α
j

i before seeing the data, where i denotes the ith structural equation of matrix A j.

Appendix C.2 includes additional details in the choice of hyperparameters {λ0,λ1,λ2,λ3}.

4.3.6 Posterior Sampling

Posterior p(A0|Yt). Based on the prior densities outlined in the previous section, the posterior distribution

is given by the product of prior densities conditional on having observed the sample YT . More specifically,

according to Baumeister and Hamilton [2015] the posterior of p(A0) can be expressed as:

p(A0|YT ) =
KT p(A)

[
det
(
AΩ̂T A′)] T

2

∏
n
i=1
[( 2

T

)
τ i (A)

]κ i

n

∏
i=1

τ i (A)
κ i

where KT is a function of the data and prior parameters, that allows the posterior density to integrate to

unity. It does not depend upon A0,A j or Λ and does not need to be calculated to determine the posterior. κ

and τ are the posteriors of κ and τ respectively (see below for the specific value). p(A0) is the prior density

of matrix A0 and Ω̂T is the variance matrix of reduced-form VAR residuals:

Ω̂T = T−1

 T

∑
t=1

yty′t −

(
T

∑
t=1

ytx′t−1

)(
T

∑
t=1

xt−1x′t−1

)−1( T

∑
t=1

xt−1x′t−1

)
for Xt−1 the matrix of lagged observations.

Posterior p(Λ|A0,Yt). With the same logic, if the prior of λ
−1
ii given A0 is Γ(κ i,τ i (A0)), the related poste-

rior is shown to be Γ(κ i,τ i (A0)), in which:

κ i = κ i +T/2 (4.8)

τ i (A0) = τ i (A0)+1/2ζ (A0) (4.9)

for ζ (A0) being the sum of squared residuals resulting from the regression of Ỹi (A0) over X̃i. In
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which:

Ỹi (A0) =
[
α
′
i y1 · · ·α ′

i yT mi (A0)
′Pi
]

X̃i =
[
x0 · · ·x′T−1 Pi

]

for Pi the Cholesky factorization of Mi = PiP′
i

Posterior p
(
A j|Λ,A0,Yt

)
. Finally, the posterior of p

(
A j|A0,Λ

)
turns out to be a Normal density with the

following parameters
(
mi (A0) ,λiiMi

)
. In which:

mi (A0) =
(

X̃i
′X̃i

)−1(
X̃i

′ỸiA0

)
Mi =

(
X̃i

′X̃i

)−1

In summary, the posterior distribution can be expressed in a closed-form expression, since we are assuming

that priors follow a proper parametric distribution. This implies that:

p
(
A0,A j,Λ|YT

)
= p(A0|YT ) p(Λ|YT ,A0) p

(
A j|YT ,A0,Λ

)
In each experiment, regardless of the structural identification methodology adopted, the posterior val-

ues of A0 are sampled by using a random-walk Metropolis Hastings algorithm, with a total of 20,000

draws for each SVAR combination, 10,000 of which are discarded. The remaining 10,000 draws of

A0 are used to generate candidate estimates of λii from Γ

(
κ i,τ i

(
A
(

α0
i j

)))
and estimates of α

j
i j from

N
(

mi

(
A
(

α0
i j

))
,λiiMi

)
. This means that each exercise runs a total of 1,280,000 draws. Appendix C.3

provides a detailed guide of the posterior sampling procedure.

4.4 Simulation Experiment

This section designs a simulation study that gives an empirical illustration of the finite sample properties

of the ICMA methods discussed so far. In doing that, I generate an artificial dataset from a VAR(12),

with N=10, which is based on real observations, and analyze the dynamic response of 5 different artificial

VARs. Real observations are manipulated making sure that the stochastic system they originate from is
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described by equation (4.6). The purpose of this exercise is twofold. Firstly, it demonstrates the estimation

accuracy of ICMA by comparing IRFs generated with artificial VARs and IRFs based on real observations.

Secondly, that ICMA can address the problem of estimation uncertainty with different natures of data

specifications.

The simulation experiment proceeds as follows. I first generate artificial data from a VAR(12), with N=10.

Second, I set up 5 different artificial VARs which are described by the following structures:

Model 1. A0yt = d +
12

∑
j=1

A jyt− j +νt with N = 10,

Model 2. A0yt = d +
24

∑
j=1

A jyt− j +νt with N = 10,

Model 3. A0yt = d +
12

∑
j=1

A jyt− j +νt with N = 6,

Model 4. A0yt = d +
36

∑
j=1

A jyt− j +νt with N = 10,

Model 5. A0yt = d +
12

∑
j=1

A jyt− j +νt with N = 3,

in which yt includes the artificial generated data, A0 and A j are the parameters to be estimated, and νt is the

structural disturbance. Although in reality the researcher has no prior belief about which particular model

generates the best estimates, here I assume that Model 1 is the correct specified VAR, and the remaining

models have some kinds of misspecifications. Third, I estimate the reduced-form coefficients and IRFs of

each model by applying the ICMA procedure discussed above. Finally, I compare IRFs of each model with

IRFs of the true VAR.

In short, it is evident that Model 2 and Model 4 incorporate more information, since I allow both models to

have a (larger) number of lagged values equivalent to 24 and 36 respectively. Model 3 omits the last four

factors, and Model 5 keeps only the first three variables. Under these assumptions, Model 1 is qualified as

being the correct estimated VAR.

This Monte Carlo (MC) simulation exercise, runs 500 parallel chains over 20,000 draws (10,000 of which

are discarded) for each case of study. This means that 500 different datasets are generated, and thus

25,000,000 distinct posterior coefficients are estimated. Listing all possible configurations of
{

Â−1
0 Â j

}
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and Σ̂ is futile, as well as impractical. The goal here concerns the evaluation of structural responses. For

this reason, and for the sake of brevity and simplicity, it is important to compare the impulse-response func-

tions of Model 1, which is the correct specified model, with the dynamic response of the true VAR for all

three experiments discussed in section 4.3. The reader is addressed to Appendix C.4 if interested to see the

dynamic response of the remaining models. I only anticipate that, in conformity with the assumptions, mis-

specified VARs generate incorrect impulse-response functions in comparison to Model 1 and consequently

to the true VAR.

Before plunging into any empirical example, it is also important to compare the goodness-of-fit, in face

of model complexity, of each case of study. Even though ICMA embeds all possible combinations of a

given VAR, it is impossible to list the goodness-of-fit of each model for every case of study. However, it is

worth noting which starting model displays the most appropriate dimensionality. I do that, by computing (i)

Bayesian Information Criterion (BIC), (ii) Akaike Information Criterion (AIC) and (iii) Hannan Information

Criterion (HIC) of the five models proposed in this simulation study.

Firstly, it is important to consider, that Model 2 and Model 5 admit a smaller number of variables, and

comparing the BIC values with the remaining VARs would not make much statistical sense. Therefore, I

first report BIC of all cases out of the second and the last, and then i estimate the goodness-of-fit of each

model taking into consideration just the first three variables. Please note, that in the latter experiment I

would have to estimate three equivalent models if I did not modify at least the number of lags. For this

reason, I assume that Model 3 and Model 5 have 20 and 30 lags respectively. The results are reported in

Table 4.4. Other than AIC in Model 4, the outcomes appear to prefer Model 1, as it displays the lowest

goodness-of-fit value.

Before showing the graphical results, please note that this analysis is using artificial generated data, and

therefore, the path displayed by the IRFs does not necessarily need to have an economic intuition. The

object of this discussion is merely to demonstrate the estimation accuracy of the methodology presented in

this paper.

Figure 4.1 displays a comparison between IRFs of Model 1 and the median response of true VAR (red

dotted lines). It should be considered that the dynamic response of the true VAR is based on OLS coefficient

estimates of a VAR(12) with 10 dependent variables. In contrast, IRFs of Model 1 (and of the remaining

artificial VARs) are generated from the reduced-form coefficients of any possible model combination of the
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Table 4.4: BIC, AIC and HIC for Model 1-5 when n=10 and n=3

Model 1 Model 2 Model 3 Model 4 Model 5

n=10
BIC -0.9457 0.1412 NA -0.4325 NA

AIC -2.0593 -2.0020 NA -3.1811 NA

HIC -1.5877 -1.0402 NA -1.3877 NA

n=3
BIC 2.0710 2.4684 2.2890 2.9349 2.7087

AIC 1.7065 1.7330 1.7169 1.8113 1.7815

HIC 1.8508 2.0244 1.9207 2.2570 2.1491

NB: Each column shows the quality of each case of study computed through BIC, AIC and HIC.
NA indicates that the experiment has not been done for that specific case.

starting artificially generated VAR(12) with N = 10. Therefore, the median path of true IRFs and artificial

IRFs can never perfectly match. Put differently, suppose I estimate the artificial coefficients of a model

combination in a VAR(12) with N = 10, when N = 4. The explanatory power of the Â j coefficients in the

upper left 4×4 matrix of the companion VAR, is inevitably different from the one reported in the first 4×4

upper left companion matrix of the true VAR. This implies, that the asymptotic accuracy of ICMA is tested

positive if the median response of true VAR (red dotted line) falls inside the 68/95% of credible set of the

artificial VAR responses. Looking at Figure 4.1 it is evident that this condition is satisfied and thus it can

be inferred that Model 1 generates IRFs that are asymptotically efficient when the SVAR is identified with

short-run recursive restrictions.

Figure 4.2 and Figure 4.3 report the same exercise, when the artificial generated SVARs are identified

through sign restrictions and heteroskedasticity respectively. Appendix C.4 provides a detailed represen-

tation of all IRFs for each simulation. It can be inferred that among all the misspecified models, Model 2

exhibits the worst IRFs. Hence, the loss of information related to the lag length, weights more than dropping

a specific number of dependent variables.

4.5 Empirical Results

Before analysing the empirical evidence, it is useful to formulate a premise. Kilian [2009] and Kilian and

Murphy [2012] both use a proxy of global economic activity based on dry cargo shipping rate. This measure
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has been revised following Hamilton [2019] and it is now based on the residuals of the regression

xt − log(CPI) = α +β t + εt

where xt is the nominal cost of bulk dry cargo shipping, CPI is the US consumer price index, t is a linear

time trend and the residuals ε are the index of real economic activity (see Hamilton [2019]). Even though

the standard shape of structural shocks remains unchanged, following this update, the impact size of some

disturbances is now slightly different and the reader is addressed to check Figure C.11 and C.12 in Appendix

C.5, because the first two experiments are investigated with Kilian’s original and updated index.

4.5.1 ICMA with Original Data

For each experiment, impulse-response functions are computed in two ways. Firstly, I identify a mis-

specified 3-variables VAR whose posterior median response matches with Kilian [2009]’s and Kilian and

Murphy [2012]’s, and store the results. Then, I extract 128 different VARs from my dataset, estimate

all reduced-form coefficients, compute 128 different impulse-response functions, weight the posterior es-

timates according to equation (4.2), and finally compare ICMA response (gray shaded regions) with the

misspecified VAR response (red dotted lines). The 3× 3 nonorthogonalized impulse-response matrix is

formalized as follows:


νq αq,y αq,p

αy,q νy αy,p

αp,q αp,y ν p


Figure 4.4 reports IRFs of experiment 1, where Kilian [2009] in revisited in face of model uncertainty.

Even though both posterior credible sets have a similar general path within the first year, in some cases the

remaining five months display a different response. For example, after an aggregate demand shock, real

oil prices in the misspecified model show a double increase after one year with respect to the equivalent

disturbance under model uncertainty. Similarly, but in the opposite direction, after an oil-specific demand

shock the misspecified VAR shows a decrease in the variation right after the 17th month. Whereas, under

model uncertainty, the shock is more persistent and does not show any sign of future decrease. In regards to

the magnitude of each shock, all variables have an impact size equivalent to the misspecified model.
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Figure 4.5 reports IRFs of experiment 2, where Kilian and Murphy [2012] is the study revisited. Results

are consistent with the previous experiment, although more exogenous disturbances show a different size

response when ICMA effects are compared to those of the misspecified VAR. In particular, in case of a 3-

variable VAR, real oil prices after an aggregate demand shock show a greater response than the equivalent

disturbance generated under model uncertainty. In contrast, after an oil-specific demand shock, the real

oil prices response in Kilian and Murphy [2012] goes to zero at the end of the period, while under model

uncertainty it does not. In conclusion, the difference between ICMA-VAR and misspecified VAR structural

responses in experiment 2 is larger in comparison to the previous experiment. A logical explanation can be

found in the identification strategy used. In fact, as remarked in section 4.3, sign restrictions do not identify

a structural response uniquely, but different results can maximize the vale of the likelihood function as long

as the sign rule imposed in matrix A0 is true.

Figure 4.6 reports IRFs of experiment 3, where observed data running in Kilian [2009] and Kilian and

Murphy [2012] are extended up to 2021M12. In this exercise, other then addressing the problem of model

uncertainty, the identification method is also useful in order to take into consideration two different levels

of variance occurring pre and post the global financial crisis. The differences between misspecified and

ICMA model are much more clear in this exercise. In fact, Figure 4.6 shows that the impact of oil supply

on oil production is stronger when additional variables are considered. The opposite applies at the same

dependent variable after an aggregate demand and oil-specific shock. Differences on dynamic effects on real

economy are mostly negligible, whereas for real oil prices it is possible to see that the size of the structural

shock completely differs between misspecified and ICMA model. In particular, after an oil-specific shock

a standard 3-variable VAR would suggest a positive increasing impact on oil prices up to 0.84% on the 18th

month. Whereas, under model uncertainty, oil prices go up to 1.77 percentage points. Moreover, following

an oil supply and aggregate demand shock the misspecified model is completely missing half of the 95%

posterior credible set. Therefore, by considering additional variables who do have an explanatory power

to predict real oil prices, it is clear that the reaction of oil price following a structural shock is larger in

comparison to what was previously assessed in the economic literature. A concrete evidence in favour of

this experiment is also given by looking at the economic recovery after the Covid pandemic between April

and July 2020. In this period, global real economy registered a growth of almost 2.9%, after a drop of 1.5%

in 2020Q1. This positive variation yielded a raise of refiner acquisition costs of imported oil in the US of

about 28.5%. Such change is very close to the empirical results reported in Figure 4.6 for αy,p, which raises

by 27.8% in the first quarter after the shock under model uncertainty, in comparison to the misspecified
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model that registered a raise in oil prices of about 12.5%.

4.5.2 ICMA with Updated Variables and Data

Although Kilian [2009] and Kilian and Murphy [2012] represent two important contributions to the aca-

demic literature related to oil shocks, recent studies suggest the use of alternative measures to better under-

stand the role of oil supply and demand shock. In particular, Hamilton [2019] shows that world industrial

production (WIP) offers a better monthly measure of global real economy than Kilian’s index, which is

based on shipping costs. Baumeister and Hamilton [2019] is another good example whereby the authors

point out the limits of expressing the real price of oil in terms of the U.S. refiner acquisition costs and

suggest the growth rate of West Texas Intermediate (WTI) price as a valid alternative.

In this section I replicate the previous exercises by expressing yGDP and poil with alternative measures.

Two experiments are investigated. First, following Baumeister and Hamilton [2019] I consider a 4× 4

nonorthogonalized impulse-response matrix, where also oil inventories are included. The misspecified VAR

is then compared with ICMA empirical results when WIP and WTI proxy for yGDP and poil respectively.

In this way the dataset can be extended up to December 2021, and take into considerations the devastating

effects of Covid pandemic on real economy in general, as well as real oil prices in particular6. Moreover,

the experiment is also replicated by using Baumeister et al. [2020]’s index GECON in place of WIP. For

both experiments a larger dataset is used, where data run from 1982M1 to 2021M12.

Figure 4.7 and Figure 4.8 report the structural responses of ICMA (black lines) vs the 4-variables VAR

(red dotted lines). Both experiments display the same peculiarities found in the first three exercises. In

fact, in Figure 4.7, an oil-specific demand shock on real oil price approaches to zero at the end of the

horizon considered when the model is misspecified, whereas under model uncertainty it does not. The same

characteristic holds for oil supply shock on real oil price. Then, an aggregate shock on oil price increases

after one year and half when the model is misspecified, while under model uncertainty the disturbance is

more persistent. What is odd in this experiment is the real economy reaction after each shock, which shows

a less significant response than Kilian’s index. If GECON proxies for real economy, quite surprisingly,

the behaviour of real oil prices following an aggregate demand shock when the VAR is informationally

deficient, does not change under model uncertainty. But, when the shock is determined by oil demand, the

6After COVID-19 outbreak, following government dispositions in most of the countries, non essential businesses shut and
industrial activities slowed. This generated a drop in the consumption of energy, which led oil prices in April 2020 to turn
negative for the first time in history.
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real oil price response converges again to zero in the misspecified VAR, while under model uncertainty it

does not (see Figure 4.8).

4.5.3 Oil Sentiment Shock

Based on Table 4.1, excluding real activity, TOSI is the factor that best explains the behaviour of real

oil prices. This is because news are able to affect individual thinking and rational decisions in financial

markets (Fang and Peress [2009], Peress [2014]), especially when the subject is the price of oil, which is by

nature characterised by a high level of uncertainty and volatility. It is therefore essential to understand what

happens when the economy is disturbed by an oil-related news shock. Namely, how oil production, real

economy, oil prices and oil inventories react following a variation determined by oil articles. To the extent

of my knowledge, the impact that oil news have on oil market fundamentals has never been demonstrated.

In this section I investigate this experiment firstly through a misspecified 5-variable VAR, and then under

model uncertainty. In this experiment West Texas Intermediate index is used as a proxy of the price of

oil, while world industrial production proxies the global real economy. The structural VAR is identified

through short-run restrictions and the factor that captures human sentiment from oil related news items is

placed at the bottom of the dependent variables matrix. The motivation behind this decision is based on the

assumption that newspapers are delivered in real time, and therefore they react immediately to any shock.

In contrast, individual decisions that are influenced by the content of news items, will affect oil market

fundamental with a lag.

Figure 4.9 depicts a misspecified 5-variable VAR and the evidence shows that following an oil news shock,

as expected, the price of oil drops by almost 1% after one month, and then the variable follow a highly

volatile trajectory in the following months. This might be interpreted as the impetus to realize profits by

selling Crude Oil contracts, which shifts the price of oil downward, thereby decreasing oil production. Are

the results robust to different variable specification? This question is addressed in a second experiment in

which the 5 dependent variables used in the previous exercise remain fix, and then I consider any possible

variable combination based on factors listed in Table 4.1.

Empirical evidence is reported in Figure 4.10. On average, for oil market fundamentals both the misspec-

ified and the complete model depict similar impulse response functions. However, accounting for model

uncertainty is beneficial to understand how news react following an oil supply, aggregate demand and

oil-specific demand shock. In fact, based on the last column of Figure 4.10 it can be inferred that the
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misspecified model is missing 50% of the posterior credible set.

4.6 Conclusions

In this study the usefulness of Bayesian Information Criterion model averaging proposed by Kass and

Raftery [1995] is used to revisit the role of (i) oil supply, (ii) aggregate demand and (iii) oil-specific demand

shock under model uncertainty. The evidence shows that following an oil-specific demand shock, oil price

response converges to zero after eighteen months when the model is misspecified, whereas under model

uncertainty the disturbance is shown to be more persistent. In addition, when uncertainty is pervasive in

the empirical results, after an aggregate demand shock, the rise of oil constantly increases even after one

year and half. In contrast, under model uncertainty, oil prices rise at the impact but the positive response is

constant over the months which follow. Moreover this study highlights the potential explanatory power of

oil news. In particular, it is shown that variations caused by the content of news items generate considerable

effects on oil prices, which lead to a reduction of oil production.

Overall this analysis highlights that model uncertainty is pervasive in empirical results. In particular, there

are additional macroeconomic variables which affect the volatility of oil prices that have never been con-

sidered before. Thus I suggest that averaging across all possible outputs is useful to generate more accurate

impulse-response functions. A number of extensions of this research are possible, of which only a few are

mentioned here. Firstly, I have imposed a flat prior on the additional 7 factors, but it would be interesting

to inform the parameter c (based on historical data) of each variable and generate more reliable impulse

responses. Secondly, for the sake of robustness, more weighting schemes and alternative variables should

be investigated, in order to make a more substantial comparison between a misspecified and full-specified

model. This task is left for future research.
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Figure 4.1: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified through short-run restrictions.
Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe the
relative 90% and 98% posterior credible set. Red dotted lines show the response of the true model.

Oil supply shock

0 10 20 30 40 50 60
-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Aggregate demand shock

0 10 20 30 40 50 60
-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Oil-specific demand shock

0 10 20 30 40 50 60

Months

-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Oil supply shock

0 10 20 30 40 50 60
-10

-5

0

5

R
e

a
l 
a

c
ti
v
it
y

Aggregate demand shock

0 10 20 30 40 50 60
-10

0

10

20

R
e

a
l 
a

c
ti
v
it
y

Oil-specific demand shock

0 10 20 30 40 50 60

Months

-10

-5

0

5

10

R
e

a
l 
a

c
ti
v
it
y

Oil supply shock

0 10 20 30 40 50 60
-5

0

5

10

R
e

a
l 
o

il 
p

ri
c
e

Aggregate demand shock

0 10 20 30 40 50 60
-4

0

4

8

R
e

a
l 
o

il 
p

ri
c
e

Oil-specific demand shock

0 10 20 30 40 50 60

Months

-4

4

12

R
e

a
l 
o

il 
p

ri
c
e

Figure 4.2: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified through sign restrictions.
Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe the
relative 90% and 98% posterior credible set. Red dotted lines show the response of the true model.
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Figure 4.3: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified via heteroskedasticity
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 98% posterior credible set. Red dotted lines show the response of the true model.

Oil supply shock

0 5 10 15
-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Aggregate demand shock

0 5 10 15
-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Oil-specific demand shock

0 5 10 15

Months

-2.5

-1.5

-0.5

0.5

1.5

O
il 

p
ro

d
u

c
ti
o

n

Oil supply shock

0 5 10 15
-5

0

5

10

R
e

a
l 
a

c
ti
v
it
y

Aggregate demand shock

0 5 10 15
-5

0

5

10

15

20

R
e

a
l 
a

c
ti
v
it
y

Oil-specific demand shock

0 5 10 15

Months

-5

0

5

10

R
e

a
l 
a

c
ti
v
it
y

Oil supply shock

0 5 10 15
-5

0

5

10

R
e

a
l 
o

il 
p

ri
c
e

Aggregate demand shock

0 5 10 15
-2

0

2

4

6

8

10

R
e

a
l 
o

il 
p

ri
c
e

Oil-specific demand shock

0 5 10 15

Months

-1

3

7

11

R
e

a
l 
o

il 
p

ri
c
e

Figure 4.4: IRFs of the fixed 3×3 matrix, where SVARs are identified through short-run restrictions. Black
solid lines show the median responses of all model combinations and the shaded regions describe the relative
95% posterior credible set. Red dotted lines show the response of the 3-variables misspecified VAR.
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Figure 4.5: IRFs of the fixed 3×3 matrix, where SVARs are identified through sign restrictions. Black solid
lines show the median responses of all model combinations and the shaded regions describe the relative 95%
posterior credible set. Red dotted lines show the response of the 3-variables misspecified VAR.
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Figure 4.6: IRFs of the fixed 3× 3 matrix, where SVARs are identified via heteroskedasticity restrictions.
Black solid lines show the median responses of all model combinations and the shaded regions describe
the relative 95% posterior credible set. Red dotted lines show the response of the 3-variables misspecified
VAR.
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Figure 4.7: IRFs of the fixed 3×3 matrix, with WIP and WTI describing global economy and real oil price.
Black solid lines show the median responses of all model combinations and the shaded regions describe
the relative 95% posterior credible set. Red dotted lines show the response of the 4-variables misspecified
VAR.
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Figure 4.8: IRFs of the fixed 3× 3 matrix, with GECON and WTI describing global economy and real
oil price. Black solid lines show the median responses of all model combinations and the shaded regions
describe the relative 95% posterior credible set. Red dotted lines show the response of the 4-variables
misspecified VAR.
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Figure 4.9: IRFs of the misspecified 5×5 matrix, with WIP and WTI describing global economy and real
oil price. Black solid lines show the median responses, shaded regions and black dotted lines describe the
relative 68% and 95% posterior credible set.
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Figure 4.10: IRFs of the fixed 5×5 matrix, with WIP and WTI describing global economy and real oil price.
Black solid lines show the median responses of all model combinations and the shaded regions describe the
relative 68% posterior credible set. Red dotted lines show the response of the 5-variables misspecified VAR.



Concluding Remarks

5.1 Summary of Contributions

The empirical literature focusing on analysing the dynamic behaviour of crude oil prices is built on models

where only a small number of low-frequency variables interact. Said indicators are made available by

government agencies, usually with a delay of weeks. Some of them are even subject to revisions that can

take up to two years. Furthermore, and perhaps most importantly, they are by nature slow to respond to

global specific events, such as political unrest and natural disasters.

In this thesis I take the literature on natural language processing as a medium to develop non-traditional eco-

nomic variables as my starting point. I demonstrate that digital text is a valuable source of information, able

to capture the dynamics of crude oil prices. The textual database includes oil related articles retrieved from

the Banking, Finance and Energy section of The Financial Times, Thomson Reuters and The Independent.

I use the title and full body of roughly 140,000 news items to develop thirteen text based indicators. Nine

of these are designed to capture the human sentiment and the remaining four aim to assess the uncertainty

in the oil market. Overall, what I find can be summarized in the following three points.

First, sentiment indicators readily react to economic and geopolitical events affecting the price of oil. This

enables said indicators to interact with oil market fundamentals and improve the predictions of crude oil

prices. In contrast, uncertainty measures show structural weaknesses in the time series which generate unre-

liable oil price forecasts. A new text oil sentiment indicator (TOSI) is developed through a non-parametric

combination between the best performing human sentiment indexes. I show that, by endogenizing TOSI,

oil production, global real economy, real oil prices and oil inventories in a stochastic volatility Bayesian
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vector autoregression (SV-BVAR) model, the out-of-sample forecasts of the monthly price of oil improve

significantly. Indeed, as suggested by the Diebold-Mariano (DM) test, results are 1%, 5% and 10% sta-

tistically significant for short-, medium- and long-term forecasts respectively. Such improvements on the

no-change forecast are particularly evident when the economy runs periods of financial instability, which is

when forecasting matters the most.

Second, daily and weekly text data can be combined with commodity and financial variables, as well as

with oil market fundamentals observed at a monthly frequency. The resulting mixed-frequency models can

be used to predict the monthly price of oil. However, neither mixed-data sampling (MIDAS) or mixed-

frequency VAR (MF-VAR) models yield significant forecasting improvements in comparison to the corre-

sponding model with variables sampled at the same frequency. This is true for point and density forecasts.

In particular, the preferred mixed-frequency model reduces the minimum sum of prediction errors by 18%

in the short run, but according to the DM test such improvements are not statistically significant.

Third, in a framework of impulse response analysis modelled with a large Bayesian VAR (BVAR), and

by taking the model uncertainty into consideration, I show that Kilian [2009]’s confidence sets are too

optimistic. Specifically, I use the information criteria model averaging (ICMA) to address the problem of

information deficiency in a BVAR. I show that a demand-specific oil shock increases the price of oil on

impact, yet in the long term the positive variation is more persistent and does not converge to zero as in

the commonly used 3-variable VAR model. Moreover, the oil price response resulting from an aggregate

demand shock, is more stable in the long run and does not converge to infinite as reported in Kilian [2009].

Finally, I also show that the dynamic stability of crude oil prices is considerably affected by oil news shocks.

Such variation generates a persistent drop in the quantity of oil produced at a world level.

5.2 Avenues for Future Research

There are still many challenges to overcome when studying the dynamics of crude oil prices through text

data. In the future, it would be interesting to extend the textual database used in this thesis to incorporate oil

related articles retrieved from additional newspapers (e.g. The Wall Street Journal, The New York Times,

and The Economist to name a few). Text indicators presented in this work implicitly assume that agents

can only read The Financial Times, Thomson Reuters and The Independent. This implies that some bias

is pervasive in the empirical results. By including the most widely read newspapers in the text analysis, it
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would be possible to decrease the bias even further.

The literature focusing on forecasting oil prices through variables sampled at different frequencies also

requires further research. In Chapter 2, I show that not much information is lost when high-frequency

variables are not used to forecast the monthly value of real oil prices. However, it would be interesting to

understand whether daily text data can yield more accurate forecasts of the weekly crude oil prices. This

research question can also be extended to the weekly forecast of other commodity variables that have played

a major role in inflation’s surge in the last few years (e.g. natural gas).

Furthermore, there is a rapidly growing area of research aimed at converting audio and videos to text data in

order to extract human sentiment and emotion recognition (Poria et al. [2016], Li et al. [2022]). To date, the

idea of using audio and videos as a source of information for examining the behaviour of crude oil prices

is a relatively unexplored area. It would be therefore interesting to understand whether audio signals bring

new knowledge and can improve the prediction performance of existing models. I plan to further contribute

to this line of research.
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Chapter 1

A.1 Data Sources

As remarked in section 2.2, 138,797 articles that featured in the Banking, Finance and Energy section of

the following newspapers:

Source No. of Articles Period

The Financial Times 103,966 1982M01-2021M11

The Independent 28,103 1988M09-2021M11

Thomson Reuters 6,728 2002M11-2021M11

are retrieved from the LexisNexis database. Articles are selected based on the joint occurrence of the words

oil and price. Global oil production (Qoil) is considered in millions barrels per day, and world industrial

production (WIP) is used as a proxy of global real economy. Oil inventories (Oinv) rely on the ratio between

OECD petroleum inventories and US petroleum inventories. The result is then multiplied by US crude oil

inventories and normalized by the monthly production of oil (see Baumeister and Hamilton [2019] for more

details).

The out-of-sample forecast of three oil price measures is investigated. West Texas Intermediate and Brent

crude oil price are downloaded in nominal values from the Federal Reserve Economic Data (FRED)

database maintained by the St. Louis FED. Data are then normalized by the US consumer price index

in order to obtain the respective real values. The third measure of oil price is based on the refiner

acquisition cost (RAC) of imported oil, available on the Energy Information Administration website. Data

transformation is reported in the table below.
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Variable Transformation

Qoil 100*Log-diff

WIP 100*Log-diff

Oinv 100*Log-diff

Text-Data Raw

Brent Raw

WTI Raw

RAC Raw

A.2 Text Metrics Indicators

This section provides the time series of the text based indicators developed in section 2.3. Monthly data run

from January 1982 to November 2011.

1985 1990 1995 2000 2005 2010 2015 2020
-4

-3

-2

-1

0

1

2

3
SentCO Index

9
/1

1
 A

tt
a
c
k

Missile Attacks

on Iran      

 Civilian target truce

Iran-Iraq War     

First Gulf War 

Soviet Union

Collapse   

Joint-Venture 

MOU      

Kazakhstan

enters   

oil market 

OPEC's 

Cut    

 Venezuelan 

 Civil Unrest 

 Iraq War

Saudi Aramco

Inauguration 

Global  

Financial

Crisis  
Venezuelan

Protests  

COVID - 19 

Figure A.1: SentCO is a unigram human sentiment based index, developed by counting the number of words “economy”,
“economies”, “economic”, “economics” occurring in each article, normalized by the total number of running words. The figure
plots the time series monthly score from 1982M1 through 2021M11. Blue and red notes describe the main historical events that
have positively or negatively affected the price of oil.
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Figure A.2: Unigram UnCO accounts for uncertainty in oil market by counting the number of words “uncertain”, “uncertainty”,
“uncertainties”, “uncertainly” occurring in each article, normalized by the total number of running words. The figure plots the
time series monthly score from 1982M1 through 2021M11. Blue and red notes describe the main historical events that have
positively or negatively affected the price of oil.
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Figure A.3: UnBool index accounts for uncertainty in oil market and is based on the Boolean count as in Baker et al. [2016].
The figure plots the time series monthly score from 1982M1 through 2021M11. Blue and red notes describe the main historical
events that have positively or negatively affected the price of oil.
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Figure A.4: FinStab is a human sentiment index where words are assigned a numeric value between [−1;1] based on Correa
et al. [2017]’s dictionary. The figure plots the time series monthly score from 1982M1 through 2021M11. Blue and red notes
describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.5: LouMc is a human sentiment based index where words are assigned a numeric value between [−1;1] based on
Loughran and McDonald [2011]’s dictionary. The figure plots the time series monthly score from 1982M1 through 2021M11.
Blue and red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.6: Afinn is a human sentiment based index where words are assigned a numeric value between [−5;5] based on
Nielsen [2011]’s dictionary. The figure plots the time series monthly score from 1982M1 through 2021M11. Blue and red notes
describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.7: HarvOil is a human sentiment based index where words are assigned a numeric value between [−1;1] based on
Harvard IV dictionary. The figure plots the time series monthly score from 1982M1 through 2021M11. Blue and red notes
describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.8: VadOil is a human sentiment based index where words are assigned a numeric value between [−4;4] based
on VADER dictionary (see Hutto and Gilbert [2014]). The figure plots the time series monthly score from 1982M1 through
2021M11. Blue and red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.9: SentOdx is a human sentiment based index, where words “economy”, “economies”, “economic”, “economics”
are considered in a term-document matrix. The figure plots the time series monthly score from 1982M1 through 2021M11. Blue
and red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.10: UnOdx accounts for uncertainty in oil market, where words “uncertain”, “uncertainty”, “uncertainties” and
“uncertainly” are analysed in a document-term matrix. The figure plots the time series monthly score from 1982M1 through
2021M11. Blue and red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.11: SentOidf is a human sentiment based index, where words “economy”, “economies”, “economic”, “economics”
are considered in a TF-IDF matrix. The figure plots the time series monthly score from 1982M1 through 2021M11. Blue and
red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.12: UnOidf accounts for uncertainty in oil market, where words “uncertain”, “uncertainty”, “uncertainties” and
“uncertainly” are analysed in a TF-IDF matrix. The figure plots the time series monthly score from 1982M1 through 2021M11.
Blue and red notes describe the main historical events that have positively or negatively affected the price of oil.
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Figure A.13: BiTReCO Sentiment index is based on BERT methodology and covers a period running from 1982M1 through
2021M11. Blue and red notes describe the main historical events that have positively or negatively affected the price of oil.
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A.3 Prior Selection in Bayesian Estimation

Let Yt denote a set of n endogenous variables, and consider the following reduced form VAR(p):

Yt = c+Φ1Yt−1 + ...+ΦpYt−p + εt (A.1)

where p = 12, c is the vector of intercepts with dimension n × 1, Φi (i = 1, . . . ,12) are n × n matrices

of coefficients and εt is a white noise innovation vector. I follow Giannone et al. [2015] and multiply

the likelihood of data by a subjective prior belief assessing the distribution of the reduced form VAR

coefficients (i.e. a random walk with drift). In particular I assume a Normal-Inverse Wishart distribution of

my prior, which takes the following form:

Σ ∼W−1 (ψ,ν)

Φ|Σ ∼ N
(

φ̂ ,Σ⊗
(
X ′X

)−1
ζ

)
,

where Φ̂ = (X ′X)−1 X ′Y is the OLS estimate of Φ, φ̂ = vec(Φ̂) and X is a n× k matrix containing the

lagged values of Y . The degrees of freedom of the Inverse-Wishart are set such that ν = n+2, whereas ψ is

diagonal and elements ψi are function of the residual generated by regressing each variable on its own first

12 lags. ζ is the hyperparameter controlling the overall tightness of the prior distribution.

By assuming that Σ⊗(X ′X)−1
ζ = Ω, without loss of generality, Φ takes the following posterior probability

form

Φ|Σ,Y ∼ N
(
Φ̂(ζ ),Σ⊗V̂ (ζ )

)
Φ̂(ζ ) = vec

(
φ̂(ζ )

)
φ̂(ζ ) = V̂ (ζ )

(
x′y+Ω

−1
φ̂
)

V̂ (ζ ) =
(
x′x+Ω

−1)−1

where variables in lowercase are vectorized. Based on the Bayesian theory, a small value of ζ makes

the prior highly informative, whilst in contrast high values of ζ would yield an uninformative prior. It is
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evident that neither a small, nor a high value of ζ is convenient. However this issue may be seen as a

selection problem of the best tightness among all possible hyperparameters. In particular, if p(Y |θ) is the

likelihood of data as function of unknown parameters and p(θ)
γ

describes the belief of prior distributions

as a function of specific hyperparameters, the product between likelihood and prior can be solved through

a hierarchical model. In this way the starting likelihood can be written as p(Y |θ)
γ

because such density is

functional to the choice of hyperparameters and the simple expression p(Y |θ) would implicitly suppose

that all hyperparameter values have been marginalised. Assuming an uninformative hyperprior, maximizing

the marginal likelihood with this procedure is equivalent to maximizing the one step ahead out-of-sample

forecasting ability of the model. Therefore, the likelihood form of p(Y |θ)
γ

can be obtained from

p(γ|Y ) ∝ p(Y |γ) p(γ) ,

where p(γ) is the prior distribution of hyperparameters, while p(Y |γ)
γ

is the marginal likelihood of data as

a function of hyperparameters. Under the hypothesis of Natural conjugate priors, the marginal likelihood

has the following closed form expression

p(Y |γ) =
∫

p(y|θ ,γ) p(θ |γ)dθ (A.2)

Giannone et al. [2015] use a Monte Carlo Markov Chain strategy to maximize equation (A.2).
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A.4 Uncertainty Based Empirical Results

Table A.1: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil price in a VAR(12), estimated through a frequentist approach. Text regressors account for uncer-
tainty in oil market.

Monthly UnCO UnBool UnOdx UnOidf
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

1.404
1.407
1.108
1.329
1.319

1.410
1.423
1.116
1.337
1.322

1.403
1.371
1.148
1.348
1.300

1.403
1.398
1.115
1.335
1.299

1.348
1.321
1.171
1.395
1.342

1.427
1.390
1.107
1.325
1.326

1.468
1.527
1.145
1.338
1.311

1.451
1.489
1.116
1.325
1.327

1.434
1.472
1.147
1.343
1.356

B. RAC based VAR

1
3
6

12
24

1.183
1.391
1.126
1.406
1.302

1.187
1.400
1.133
1.414
1.307

1.190
1.353
1.174
1.440
1.301

1.182
1.370
1.133
1.414
1.288

1.182
1.368
1.197
1.487
1.334

1.201
1.381
1.124
1.405
1.314

1.244
1.495
1.168
1.423
1.293

1.214
1.466
1.132
1.403
1.313

1.184
1.437
1.152
1.421
1.338

C. Brent based VAR

1
3
6

12
24

1.637
1.855
1.202
1.378
1.277

1.642
1.886
1.207
1.383
1.281

1.620
1.642
1.262
1.403
1.276

1.638
1.859
1.207
1.384
1.263

1.588
1.598
1.275
1.438
1.306

1.662
1.789
1.195
1.361
1.267

1.849
2.070
1.248
1.395
1.274

1.703
2.010
1.217
1.371
1.280

1.753
1.937
1.237
1.395
1.331

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the
lowest MSPE results relative to a specific horizon h.
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Figure A.14: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and the bench-
mark model in (2.6). VAR parameters are estimated through a frequentist approach and text variables account for uncertainty in
the oil market.
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Table A.2: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil price in a BVAR(12). Text regressors account for uncertainty in oil market.

Monthly UnCO UnBool UnOdx UnOidf
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

0.996
0.951
1.001
1.107
1.210

0.993
0.951
1.000
1.113
1.212

0.970
0.961
1.022
1.105
1.193

0.997
0.957
0.998
1.108
1.208

0.973
0.960
1.013
1.101
1.194

0.981
0.973
1.050
1.198
1.388

0.955
0.949
1.010
1.103
1.190

0.975
1.181
1.480
1.978
2.681

0.962
0.944
1.015
1.098
1.195

B. RAC based VAR

1
3
6

12
24

0.846
0.934
1.001
1.151
1.227

0.851
0.940
1.000
1.144
1.226

0.830∗

0.947
1.035
1.141
1.205

0.852
0.942
1.008
1.146
1.218

0.831∗

0.932
1.023
1.137
1.216

0.833∗

0.935
1.021
1.175
1.273

0.810∗∗

0.916
1.011
1.124
1.206

0.828∗

1.155
1.517
2.088
2.585

0.813∗∗

0.914
1.011
1.127
1.205

C. Brent based VAR

1
3
6

12
24

1.048
1.039
1.040
1.141
1.202

1.020
1.015
1.038
1.140
1.204

1.000
1.013
1.072
1.141
1.186

1.021
1.021
1.040
1.137
1.196

1.014
1.008
1.058
1.132
1.198

1.030
1.020
1.044
1.132
1.190

0.989
1.000
1.047
1.127
1.182

1.016
1.197
1.463
1.846
1.846

0.964
0.976
1.047
1.129
1.192

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the
lowest MSPE results relative to a specific horizon h. *, **, *** respectively denote 10%, 5% and 1% level of significance
of Diebold-Mariano test.
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Figure A.15: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and the
benchmark model in (2.6). VAR parameters are estimated in a Bayesian fashion and text variables account for uncertainty in the
oil market.
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Table A.3: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). Text regressors account for uncertainty in oil market.

Monthly UnCO UnBool UnOdx UnOidf
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

0.976
0.962
0.918
0.946
0.925

0.982
0.968
0.939
0.958
0.942

0.981
0.967
0.938
0.966
0.931

0.980
0.970
0.938
0.957
0.951

0.981
0.956
0.928
0.953
0.928

0.984
0.953
0.918
0.946
0.933

0.973
0.955
0.913
0.945
0.939

0.990
0.970
0.914
0.944
0.936

0.957
0.942
0.911
0.947
0.954

B. RAC based VAR

1
3
6

12
24

0.818∗∗

0.909
0.871
0.908
0.837

0.833∗∗

0.933
0.898
0.929
0.842

0.833∗∗

0.934
0.924
0.944
0.845

0.819∗∗

0.927
0.894
0.932
0.873

0.823∗∗

0.914
0.895
0.926
0.835

0.811∗∗

0.905
0.872
0.909
0.833

0.816∗∗

0.901
0.867
0.912
0.850

0.813∗∗

0.909
0.881
0.910
0.843

0.808∗∗

0.899
0.885
0.933
0.892

C. Brent based VAR

1
3
6

12
24

0.980
1.032
0.910
0.937
0.908

0.979
1.045
0.933
0.943
0.916

0.993
1.052
0.946
0.962
0.905

0.987
1.053
0.928
0.951
0.937

0.997
1.031
0.933
0.942
0.911

0.970
1.022
0.910
0.930
0.911

0.975
1.024
0.917
0.939
0.922

0.973
1.025
0.918
0.944
0.917

0.974
1.019
0.927
0.956
0.948

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the
lowest MSPE results relative to a specific horizon h. *, **, *** respectively denote 10%, 5% and 1% level of significance
of Diebold-Mariano test.
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Figure A.16: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and the
benchmark model in (2.6). VAR parameters are estimated in a Bayesian fashion by assuming stochastic volatility of the error
term, and text variables account for uncertainty in the oil market.
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A.5 Additional Empirical Results

Table A.4: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). GECON is used as a measure of global real economy, and text regressors
account for human sentiment about oil news.

Monthly SentCO VadOil SentOdx SentOidf BiTReCO
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

1.002
1.032
0.968
0.945
0.948

0.994
1.028
0.969
0.938
0.944

1.000
1.033
0.990
0.970
0.968

0.994
1.088
1.118
1.310
1.742

0.981
1.004
0.974
0.962
0.925

0.992
1.093
1.194
1.649
3.084

0.984
0.998
0.948
0.901
0.945

0.997
1.120
1.176
1.372
1.922

0.968
1.009
0.978
0.980
0.994

0.952
1.048
1.072
1.261
1.837

0.973
0.981
0.934
0.930
0.941

B. RAC based VAR

1
3
6

12
24

0.830∗∗

0.968
0.926
0.912
0.863

0.835∗∗

0.966
0.930
0.906
0.867

0.833∗∗

0.985
0.991
0.987
0.922

0.830∗∗

1.047
1.109
1.377
1.775

0.819∗∗

0.951
0.957
0.958
0.863

0.835∗∗

1.005
1.014
1.198
1.640

0.828∗∗

0.942
0.894
0.860∗

0.888

0.841∗∗

1.025
1.045
1.170
1.366

0.824∗∗

0.956
0.974
0.978
0.946

0.792∗∗∗

0.994
1.032
1.231
1.676

0.803∗∗

0.919
0.907
0.919
0.891

C. Brent based VAR

1
3
6

12
24

0.998
1.091
0.970
0.935
0.943

1.006
1.092
0.968
0.933
0.938

0.997
1.095
1.034
1.000
0.976

1.009
1.168
1.134
1.317
1.599

0.994
1.077
1.004
0.979
0.938

1.015
1.157
1.111
1.344
1.945

1.010
1.083
0.942
0.899
0.955

1.021
1.189
1.165
1.329
1.712

0.995
1.073
1.018
0.981
0.993

0.943
1.122
1.095
1.293
1.833

0.947
0.990
0.918
0.913
0.946

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the lowest MSPE results
relative to a specific horizon h.
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Figure A.17: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.10) and the
cumulative sum of forecasting errors generated by a random walk. GECON based VAR parameters are estimated in a Bayesian
fashion by assuming the stochastic volatility of the error term, and text variables account for human sentiment about oil news.
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Table A.5: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). Text regressors account for uncertainty in oil market, and GECON is
now used in place of world industrial production.

Monthly UnCO UnBool UnOdx UnOidf
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

1.002
1.032
0.968
0.945
0.948

1.005
1.035
0.983
0.958
0.963

0.995
1.026
0.992
0.971
0.945

1.003
1.039
0.988
0.967
0.962

1.005
1.041
0.997
0.957
0.951

0.999
1.023
0.971
0.943
0.950

0.998
1.038
0.971
0.952
0.983

0.996
1.029
0.970
0.936
0.962

0.989
1.019
0.971
0.950
0.987

B. RAC based VAR

1
3
6

12
24

0.830∗∗

0.968
0.926
0.912
0.863

0.840∗∗

0.976
0.940
0.925
0.870

0.837∗∗

0.972
0.970
0.951
0.885

0.845∗∗

0.981
0.938
0.929
0.898

0.848∗∗

0.980
0.958
0.932
0.900

0.836∗∗

0.965
0.930
0.909
0.863

0.838∗∗

0.970
0.934
0.922
0.896

0.829∗∗

0.963
0.929
0.908
0.880

0.830∗∗

0.959
0.943
0.934
0.929

C. Brent based VAR

1
3
6

12
24

0.998
1.091
0.970
0.935
0.943

1.014
1.099
0.975
0.945
0.937

1.004
1.074
0.991
0.957
0.924

1.009
1.097
0.977
0.958
0.960

1.017
1.099
0.986
0.942
0.958

0.996
1.080
0.973
0.938
0.937

1.003
1.085
0.982
0.948
0.961

1.001
1.083
0.979
0.939
0.946

0.999
1.072
0.984
0.953
0.975

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the
lowest MSPE results relative to a specific horizon h.
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Figure A.18: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.10) and the
cumulative sum of forecasting errors generated by a random walk. VAR parameters are estimated in a Bayesian fashion by
assuming the stochastic volatility of the error term, and text variables account for uncertainty in oil market.
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Figure A.19: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated through a frequentist approach and text variables account for human sentiment
about oil news.

2001 2007 2013 2020

-2

-1

0

1

2

3

UnCO

h=1

2001 2007 2013 2020

-2

-1

0

1

2

3

UnBool

h=1

2001 2007 2013 2020

-2

-1

0

1

2

3

UnOdx

h=1

2001 2007 2013 2020

-2

-1

0

1

2

3

UnOidf

h=1

2001 2007 2013 2020

-1

0

1

2
h=3

2001 2007 2013 2020

-1

0

1

2
h=3

2001 2007 2013 2020

-4

-2

0

2
h=3

2001 2007 2013 2020

-1

0

1

2
h=3

2001 2007 2013 2019

-4

-2

0

2
h=6

2001 2007 2013 2019

-4

-2

0

2
h=6

2001 2007 2013 2019

-15

-10

-5

0

h=6

2001 2007 2013 2019

-4

-3

-2

-1

0

1

2
h=6

2001 2007 2013 2019

-10

-5

0

h=12

2001 2007 2013 2019

-10

-5

0

h=12

2001 2007 2013 2019

-30

-20

-10

0

h=12

2001 2007 2013 2019

-10

-5

0

h=12

2001 2006 2012 2018

-20

-10

0

h=24

2001 2006 2012 2018

-20

-10

0

h=24

2001 2006 2012 2018

-60

-40

-20

0

h=24

2001 2006 2012 2018

-20

-10

0

h=24

WTI RAC BRENT

Figure A.20: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a random
walk. VAR parameters are estimated through a frequentist approach and text variables account for oil market uncertainty.
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Figure A.21: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion and text variables account for human sentiment about oil
news.
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Figure A.22: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion and text variables account for oil market uncertainty.
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Figure A.23: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion by assuming stochastic volatility in the error term, and text
variables account for human sentiment about oil news.
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Figure A.24: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion by assuming stochastic volatility in the error term, and text
variables account for oil market uncertainty.
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Figure A.25: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion by assuming stochastic volatility in the error term, and text
variables account for human sentiment about oil news. GECON is used in place of WIP
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Figure A.26: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and of a
random walk. VAR parameters are estimated in a Bayesian fashion by assuming stochastic volatility in the error term, and text
variables account for oil market uncertainty. GECON is used in place of WIP
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Table A.6: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices in a SV-BVAR(12). World industrial production is used as a measure of global real economy,
text regressors are dictionary based and account for human sentiment.

Monthly FinStab LouMc Afinn HarvOil VadOil
horizon Model-1 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3 Model-2 Model-3

A. WTI based VAR

1
3
6

12
24

0.976
0.962
0.918
0.946
0.925

0.976
0.961
0.917
0.962
0.927

0.975
0.950
0.919
0.982
0.920

0.968
0.954
0.917
0.966
0.927

0.965
0.933
0.992
1.083
0.983

0.986
0.959
0.921
0.969
0.928

0.956
0.950
0.939
1.090
0.932

0.975
0.949
0.919
0.967
0.925

0.950
0.939
0.938
0.969
0.945

0.982
0.987
0.944
0.985
1.034

0.946
0.929
0.916
0.959
0.892

B. RAC based VAR

1
3
6

12
24

0.818∗∗

0.909
0.971
0.938
0.847

0.820∗∗

0.914
0.964
0.939
0.838

0.815∗∗

0.909
0.931
1.236
0.846

0.818∗∗

0.914
0.970
0.936
0.826

0.816∗∗

0.907
1.010
1.236
0.929

0.819∗∗

0.909
0.967
0.909
0.833

0.817∗∗

0.905
0.946
1.338
0.861

0.818∗∗

0.919
0.900
0.931
0.832

0.818∗∗

0.915
0.928
1.044
0.872

0.821∗∗

0.936
0.925
0.964
0.973

0.799∗∗

0.890
0.882
0.926
0.811

C. Brent based VAR

1
3
6

12
24

0.980
1.032
0.910
0.939
0.908

0.977
1.025
0.910
1.004
0.912

0.966
1.019
0.934
1.005
0.934

0.979
1.030
0.913
0.940
0.906

0.978
1.016
1.015
1.090
0.972

0.972
1.031
0.908
0.939
0.909

0.966
1.026
0.944
1.041
0.933

0.976
1.035
0.914
0.939
0.913

0.970
1.027
0.955
0.998
0.949

0.982
1.041
0.944
0.992
1.019

0.952
0.991
0.906
0.938
0.884

Note: Red values report MSPE ratio results lower than recursive MSPE ratios based on equation (2.6). Blue values are the lowest MSPE results
relative to a specific horizon h. *, **, *** respectively denote 10%, 5% and 1% level of significance of Diebold-Mariano test.

2001 2007 2013 2020

-0.2

-0.1

0

0.1

0.2

SentCO

h=1

2001 2007 2013 2020

-0.2

0

0.2

0.4

0.6

VadOil

h=1

2001 2007 2013 2020

-0.2

0

0.2

0.4

SentOdx

h=1

2001 2007 2013 2020

0

0.5

1

SentOidf

h=1

2001 2007 2013 2020

0

0.5

1

1.5

BiTReCO

h=1

2001 2007 2013 2020

-0.2

-0.1

0

0.1

0.2
h=3

2001 2007 2013 2020

-0.2

0

0.2

0.4
h=3

2001 2007 2013 2020

0

0.1

0.2

0.3
h=3

2001 2007 2013 2020

-0.2

0

0.2

0.4

h=3

2001 2007 2013 2020

0

5

10
h=3

2001 2007 2013 2019

-1

-0.5

0

h=6

2001 2007 2013 2019

-0.4

-0.2

0

0.2

h=6

2001 2007 2013 2019

-0.2

0

0.2

0.4

0.6
h=6

2001 2007 2013 2019

-1

-0.5

0

0.5

1
h=6

2001 2007 2013 2019

0

0.2

0.4

0.6

h=6

2001 2007 2013 2019

-1.5

-1

-0.5

0

0.5
h=12

2001 2007 2013 2019

-0.5

0

0.5

h=12

2001 2007 2013 2019

0

0.5

1
h=12

2001 2007 2013 2019

-2

-1

0

1
h=12

2001 2007 2013 2019

0

0.5

1

h=12

2001 2006 2012 2018

-1

-0.5

0

0.5

1
h=24

2001 2006 2012 2018

-1

0

1

2
h=24

2001 2006 2012 2018

0

0.5

1

1.5

2
h=24

2001 2006 2012 2018

-2

0

2

4
h=24

2001 2006 2012 2018

-1

-0.5

0

0.5
h=24

Figure A.27: The figure plots the difference between the cumulative sum of forecasting errors of equation (2.8) and the
benchmark model in (2.6). A comparison between one and multiple text data sources is presented.
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B.1 Data Sources

In this paper I use 140,096 oil related daily articles which featured in the Banking, Finance and Energy

section of the following newspapers:

Source No. of Articles Period

The Financial Times 103,966 1982M01-2021M12

The Independent 29,377 1988M09-2021M12

Thomson Reuters 6,753 2002M11-2021M12

Articles are retrieved from the LexisNexis database, and are selected based on the joint occurrence of

the words oil and price. Table B.1 reports the definition, the data transformation and the source of the

macroeconomic, financial and commodity variables used in this empirical analysis. Intraday returns are

computed by subtracting the closing price at which a stock/commodity variable has traded during a regular

trading session, from its opening. This measure captures the return generated by a variable during regular

business hours.

127
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Table B.1: Variable definition

Variable Transformation Period Frequency Source

World industrial production 100*log-difference 1982M01-2021M12 M Baumeister and Hamilton [2019]
WTI index 100*log-levels 1982M01-2021M12 M/W/D FRED & Bloomberg
Brent crude oil index 100*log-levels 1982M01-2021M12 M/W/D FRED & Bloomberg
Refiner acquisition cost of crude oil 100*log-levels 1982M01-2021M12 M EIA
World oil production 100*log-difference 1982M01-2021M12 M EIA
Oil inventories log-difference 1982M01-2021M12 M EIA
WTI future prices growth rate 1995M09-2021M12 M/W/D Bloomberg
Brent future prices growth rate 1995M09-2021M12 M/W/D Bloomberg
Gasoline growth rate 1986M06-2021M12 M/W/D Bloomberg
CRB index growth rate 1982M01-2021M12 M/W/D Bloomberg
Baltic Dry index growth rate 1985M01-2021M12 M/W/D Bloomberg
Federal Funds rate growth rate 1982M01-2021M12 M/W/D Bloomberg
FTSE100 growth rate 1984M01-2021M12 M/W/D Bloomberg
S&P500 growth rate 1982M01-2021M12 M/W/D Bloomberg
Euro Stoxx 50 growth rate 1987M01-2021M12 M/W/D Bloomberg
Hang Seng index growth rate 1982M01-2021M12 M/W/D Bloomberg
GBP/USD growth rate 1982M01-2021M12 M/W/D Bloomberg
CAD/USD growth rate 1982M01-2021M12 M/W/D Bloomberg
EUR/USD growth rate 1982M01-2021M12 M/W/D Bloomberg
Gold growth rate 1982M01-2021M12 M/W/D Bloomberg
Copper growth rate 1988M12-2021M12 M/W/D Bloomberg
Natural Gas growth rate 1990M04-2021M12 M/W/D Bloomberg
Palladium growth rate 1987M01-2021M12 M/W/D Bloomberg
Silver growth rate 1982M01-2021M12 M/W/D Bloomberg

Note: In column 4, M = monthly, W = weekly and D = daily.

B.2 Bayesian Shrinkage with Hierarchical Minnesota Priors

Suppose oil prices evolve according to the following reduced form VAR(12):

Yt = c+Φ1Yt−1 + ...+Φ12Yt−12 + εt

where c is the n× 1 vector of intercepts, Φi (i = 1, . . . ,12) are n× n matrices of coefficients and ε is the

covariance matrix of innovations with mean zero and variance Σ. In the spirit of Giannone et al. [2015] I

assume that parameters are distributed as follows:

Σ|ξ ∼ IW (ψ,d)

Φ|Σ ∼ N (φ ,Σ⊗Ωξ )

where Ω is a predefined Minnesota shrinkage rule, and ξ is an unknown parameter used to make inference

on the informativeness of the prior. In comparison to the standard versions of Minnesota prior where the

hyperparameters are fixed at some subjective values (see Doan et al. [1984] and Litterman [1986]), in this

data-driven variant the overall shrinkage hyperparameters are treated as coefficients to be estimated from

the data. Specifically, if p(Y |θ) is the likelihood of data as function of unknown parameters and p(θ)
γ
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describes the belief of prior distributions as a function of specific hyperparameters, the product between

likelihood and prior is solved through a hierarchical model. In this way the starting likelihood is written

as p(Y |θ)
γ

because such density is functional to the choice of hyperparameters and the simple expression

p(Y |θ) would implicitly suppose that all hyperparameter values have been marginalised. Assuming

an uninformative hyperprior, maximizing the marginal likelihood with this procedure is equivalent to

maximizing the one step ahead out-of-sample forecasting ability of the model. Therefore, the likelihood

form of p(Y |θ)
γ

can be obtained from

p(γ|Y ) ∝ p(Y |γ) p(γ) ,

where p(γ) is the prior distribution of hyperparameters, while p(Y |γ)
γ

is the marginal likelihood of data as

a function of hyperparameters. Under the hypothesis of Natural conjugate priors, the marginal likelihood

has the following closed form expression

p(Y |γ) =
∫

p(y|θ ,γ) p(θ |γ)dθ .

In my empirical application, for data in growth rates I set φ̂ = 0 to shrink all coefficients towards zero. In

contrast, for data in levels, I set φ̂ = 0.99 by expressing a belief that coefficients evolve as a random walk.

Furthermore, I set ν = n+ 2, ψ is diagonal with elements ψi that are function of the residual generated

by regressing each variable on its own first 12 lags. By assuming that Σ⊗ (X ′X)−1
ζ = Ω, without loss of

generality, Φ takes the following posterior probability form

Φ|Σ,Y ∼ N
(
Φ̂(ζ ),Σ⊗V̂ (ζ )

)
Φ̂(ζ ) = vec

(
φ̂(ζ )

)
φ̂(ζ ) = V̂ (ζ )

(
x′y+Ω

−1
φ̂
)

V̂ (ζ ) =
(
x′x+Ω

−1)−1

where Φ̂ = (X ′X)−1 X ′Y is the OLS estimate of Φ, φ̂ = vec(Φ̂) and X is a n× k matrix containing the

lagged values of Y . This methodology is shown to yield accurate out-of-sample forecast performance for

a variety of datasets (see Carriero et al. [2015], Lenza and Primiceri [2020] and Miranda-Agrippino and

Ricco [2021]).
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B.3 Additional empirical results

Table B.2: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with high-frequency financial variables; text vs. no-text. Alternative MIDAS parametrisations.

Model Weighting 1-month 3-months 6-months 12-months 24-months
Scheme WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

A. Unigram based variable

MIDAS-TXT Almond 0.930 0.778∗∗∗ 0.949 0.979 1.021 0.985 0.944 0.945 0.976 0.953 0.985 0.992 1.218 1.226 1.245
MIDAS-TXT Eq-Weights 0.919 0.763∗∗∗ 0.932∗ 0.973 1.006 0.974 0.948 0.943 0.965 0.981 1.010 1.027 1.036 1.035 1.036
MIDAS-TXT U-MIDAS 0.915∗ 0.763∗∗∗ 0.929∗ 0.978 0.964 0.954 0.954 0.949 0.977 0.985 1.011 1.041 0.997 0.965 0.983

B. Dictionary based variable

MIDAS-TXT Almond 0.909∗ 0.789∗∗ 0.957 0.970 0.973 0.962 0.955 0.952 0.977 1.030 1.057 1.089 1.370 1.375 1.418
MIDAS-TXT Eq-Weights 0.881∗∗ 0.754∗∗∗ 0.913∗ 0.932 0.937 0.930 0.930 0.894 0.914 0.987 1.011 1.034 1.123 1.123 1.122
MIDAS-TXT U-MIDAS 0.879∗∗ 0.761∗∗∗ 0.919∗ 0.915 0.941 0.911 0.969 0.949 0.961 0.997 1.014 1.041 1.088 1.080 1.087

C. Geometrical based variables

(tfm) MIDAS-TXT Almond 0.923 0.767∗∗∗ 0.986 0.965 1.003 0.982 0.948 0.946 0.974 0.977 1.014 1.034 1.103 1.122 1.132
(idf) MIDAS-TXT Almond 0.918 0.766∗∗∗ 0.931∗ 0.965 0.997 0.971 0.961 0.950 0.982 0.978 1.019 1.032 1.243 1.232 1.256

(tfm) MIDAS-TXT Eq-Weights 0.910∗ 0.760∗∗∗ 0.928∗ 0.957 0.992 0.960 0.973 0.973 0.973 0.928 0.959 0.937 1.023 1.011 1.029
(idf) MIDAS-TXT Eq-Weights 0.924 0.759∗∗∗ 0.928∗ 0.967 1.003 0.972 0.968 0.961 0.981 0.944 0.920 0.956 1.077 1.083 1.093

(tfm) MIDAS-TXT U-MIDAS 0.914∗ 0.755∗∗∗ 0.929∗ 0.957 0.989 0.959 0.951 0.951 0.978 0.920 0.933 0.946 1.003 1.002 1.036
(idf) MIDAS-TXT U-MIDAS 0.925 0.761∗∗∗ 0.930∗ 0.962 0.996 0.962 0.952 0.951 0.973 0.931 0.932 0.969 1.093 1.093 1.115

D. Network based variable

MIDAS-TXT Almond 0.897 0.816∗∗ 1.035 0.970 1.061 1.001 0.983 1.032 1.125 1.992 1.606 2.001 1.336 1.463 1.423
MIDAS-TXT Eq-Weights 0.879∗∗ 0.737∗∗∗ 0.897∗ 0.925 0.921 0.927 0.923 0.924 0.951 0.993 1.032 1.036 1.195 1.203 1.213
MIDAS-TXT U-MIDAS 0.891∗∗ 0.740∗∗∗ 0.909∗ 0.922 0.929 0.936 0.954 1.152 1.280 1.923 3.471 2.559 1.179 1.233 1.227

Note: In column 1 MIDAS: mixed data sampling, TXT indicates models including a text variable, tfm: term-frequency matrix, idf: term-frequency inverse-document-frequency matrix. Column 2 displays the weighting scheme of MIDAS parameters. Bold
values indicate improvements on the no-change forecast. Blue entries stand for the lowest MSPE for a given time horizon, relative to a specific oil price measure. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the
Diebold-Mariano test.

Table B.3: Recursive MSPE ratios relative to a random walk forecast of alternative monthly indicators of
real oil prices. Homogeneous vs. mixed frequency models with uncertainty text indicators.

Model Freq Weighting 1-month 3-months 6-months 12-months 24-months
Scheme WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

A. Unigram based variable

AR-X-TXT HF - 0.871∗∗ 0.771∗∗∗ 0.891∗∗ 0.997 0.973 0.958 0.956 0.961 0.988 0.981 1.032 1.039 1.174 1.176 1.175
MIDAS-TXT MF Beta 0.926∗ 0.763∗∗∗ 0.917∗ 0.962 0.989 0.952 0.951 0.951 0.984 0.977 1.012 1.035 1.155 1.159 1.157
MIDAS-TXT MF Almond 0.942 0.787∗∗ 0.955 0.975 1.015 0.991 0.947 0.961 0.992 0.966 1.414 1.030 1.356 1.270 1.085
MIDAS-TXT MF Eq-Weights 0.928 0.771∗∗∗ 0.929 0.963 0.998 0.972 0.954 0.957 0.984 0.967 1.009 1.032 1.131 1.142 1.138
MIDAS-TXT MF U-MIDAS 0.936 0.802∗∗ 0.970 0.964 0.991 0.965 0.948 0.951 0.980 1.215 1.025 1.075 1.116 1.125 1.118
BVAR-TXT HF - 0.906 0.771∗∗∗ 0.920 0.950 0.911 0.974 1.021 1.025 1.058 1.089 1.119 1.126 1.181 1.198 1.177
MF-BVAR-TXT MF - 0.951 0.807 0.943∗∗∗ 0.973 0.934 0.981 1.025 1.032 1.062 1.063 1.096 1.102 1.162 1.180 1.161
SV-BVAR-TXT HF - 0.892∗∗ 0.792∗∗∗ 0.912∗ 0.936 0.902 0.949 0.956 1.021 1.011 1.089 1.631 1.264 0.940 1.154 1.136
MF-SV-BVAR-TXT MF - 0.905∗ 0.805∗∗∗ 0.922∗ 0.931 0.914 0.950 0.950 0.961 0.968 1.047 1.238 1.075 0.926 0.872 0.926

B. Geometrical based variables

(tfm) AR-X-TXT HF - 0.866∗∗ 0.762∗∗∗ 0.877∗∗ 0.999 0.964 0.950 0.948 0.948 0.974 0.979 1.025 1.037 1.158 1.159 1.159
(idf) AR-X-TXT HF - 0.866∗∗ 0.765∗∗∗ 0.879∗∗ 0.997 0.970 0.953 0.951 0.953 0.980 0.979 1.027 1.039 1.159 1.159 1.158

(tfm) MIDAS-TXT MF Beta 0.912∗ 0.749∗∗∗ 0.906∗∗ 0.952 0.983 0.955 0.949 0.950 0.974 0.978 1.012 1.034 1.125 1.129 1.118
(idf) MIDAS-TXT MF Beta 0.919∗ 0.761∗∗∗ 0.935∗ 0.968 1.003 0.975 0.948 0.946 0.973 0.980 1.015 1.038 1.157 1.167 1.177

(tfm) MIDAS-TXT MF Almond 0.964 0.823 0.961 0.974 1.037 1.020 0.946 0.957 0.970 0.965 1.022 1.025 1.364 1.518 1.350
(idf) MIDAS-TXT MF Almond 0.918∗ 0.766∗∗∗ 0.932∗ 0.965 0.997 0.971 0.958 0.959 0.983 0.957 1.011 1.029 1.221 1.223 1.231

(tfm) MIDAS-TXT MF Eq-Weights 0.912∗ 0.755∗∗∗ 0.940 0.955 0.988 0.970 0.962 0.971 0.991 0.970 0.980 0.981 0.889 0.920 0.894
(idf) MIDAS-TXT MF Eq-Weights 0.921∗ 0.758∗∗∗ 0.927∗ 0.964 0.999 0.970 0.963 0.953 0.978 0.894 0.896 0.932 1.079 1.079 1.090

(tfm) MIDAS-TXT MF U-MIDAS 0.911∗ 0.762∗∗∗ 0.940 0.949 0.987 0.965 0.963 0.948 0.974 0.914 0.887 0.913 0.890 0.875 0.895
(idf) MIDAS-TXT MF U-MIDAS 0.911∗ 0.760∗∗∗ 0.929∗ 0.961 0.986 0.963 0.953 0.951 0.973 0.922 0.863 0.892 1.097 1.083 1.114

(tfm) BVAR-TXT HF - 0.894∗ 0.759∗∗∗ 0.903∗ 0.937 0.901 0.959 1.013 1.011 1.042 1.084 1.105 1.109 1.184 1.200 1.172
(idf) BVAR-TXT HF - 0.899∗ 0.764∗∗∗ 0.908∗ 0.935 0.904 0.964 1.003 1.012 1.043 1.081 1.113 1.112 1.184 1.198 1.178

(tfm) MF-BVAR-TXT MF - 0.858∗∗ 0.749∗∗∗ 0.881∗ 0.909 0.889 0.949 0.977 0.987 1.017 1.065 1.100 1.102 1.172 1.193 1.174
(idf) MF-BVAR-TXT MF - 0.909∗ 0.780∗∗∗ 0.904∗ 0.949 0.911 0.963 1.016 1.020 1.052 1.063 1.095 1.098 1.148 1.166 1.147

(tfm) SV-BVAR-TXT HF - 0.886∗∗ 0.779∗ 0.898∗∗ 0.920 0.878 0.934 0.934 0.933 0.951 1.078 1.249 1.159 0.945 0.866 0.927
(idf) SV-BVAR-TXT HF - 0.887∗∗ 0.784∗∗∗ 0.899∗∗ 0.914 0.888 0.925 0.942 0.958 0.945 1.050 1.265 1.018 0.956 0.892 0.952

(tfm) MF-SV-BVAR-TXT MF - 0.848∗∗ 0.739∗∗∗ 0.852∗∗ 0.892 0.844 0.896 0.933 0.881 0.913 1.048 1.091 1.005 0.968 0.929 0.978
(idf) MF-SV-BVAR-TXT MF - 0.930∗ 0.805∗∗∗ 0.925∗ 0.950 0.899 0.955 0.980 0.964 0.973 1.106 1.164 1.074 1.017 1.006 1.073

Note: In column 1 AR: autoregression model, ARX: autoregression augmented with (no text-based) explanatory variables, VAR: vector autoregression, BVAR: Bayesian vector autoregression, SV-BVAR: Bayesian vector autoregression assuming stochastic volatility of
the error term, AR-X-TXT, autoregression model augmented with text and no text-based explanatory variables, MIDAS-TXT: mixed frequency model, BVAR-TXT: text-based Bayesian vector autoregression model, MF-BVAR-TXT: mixed frequency text-based vector
autoregression, SV-BVAR-TXT: stochastic volatility text-based Bayesian vector autoregression, MF-SV-BVAR-TXT: mixed frequency stochastic volatility text-based Bayesian vector autoregression, tfm: term-frequency matrix, idf: term-frequency inverse-document-
frequency matrix. In column 2, HF and MF respectively denote homogeneous and mixed frequency models. Column 3 displays the weighting scheme of MIDAS parameters. Bold values indicate improvements on the no-change forecast. Blue entries stand for the lowest
MSPE for a given time horizon, relative to a specific oil price measure. *, ** and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.
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Table B.4: Recursive ALPL ratios relative to a random walk density forecast of alternative monthly indica-
tors of real oil prices; text vs. no-text with uncertainty text indicators.

Model Text 1-month 3-months 6-months 12-months 24-months
Variable WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT WT I RAC BRENT

SV-BVAR - 0.961∗∗∗ 1.009∗∗∗ 0.947∗∗∗ 0.123∗∗∗ 0.032∗∗∗ 0.122∗∗∗ -0.285∗∗∗ -0.326∗∗∗ -0.339∗∗∗ -0.601∗∗∗ -0.544∗∗∗ -0.778∗∗∗ -0.971∗∗∗ -0.994∗∗∗ -1.331∗∗∗

SV-BVAR-TXT U 0.939∗∗∗ 0.996∗∗∗ 0.941∗∗∗ 0.067∗∗∗ 0.018∗∗∗ 0.133∗∗∗ -0.295∗∗∗ -0.343∗∗∗ -0.282∗∗∗ -0.499∗∗∗ -0.710∗∗∗ -0.754∗∗∗ -0.949∗∗∗ -0.962∗∗∗ -1.414∗∗∗

SV-BVAR-TXT G 0.939∗∗∗ 1.009∗∗∗ 0.949∗∗∗ 0.027∗∗∗ 0.029∗∗∗ 0.110∗∗∗ -0.286∗∗∗ -0.331∗∗∗ -0.367∗∗∗ -0.593∗∗∗ -0.539∗∗∗ -0.769∗∗∗ -0.964∗∗∗ -0.994∗∗∗ -1.312∗∗∗
SV-BVAR-TXT F 0.926∗∗∗ 0.993∗∗∗ 0.938∗∗∗ 0.019∗∗∗ 0.053∗∗∗ 0.110∗∗∗ -0.301∗∗∗ -0.317∗∗∗ -0.341∗∗∗ -0.615∗∗∗ -0.559∗∗∗ -0.772∗∗∗ -0.998∗∗∗ -1.017∗∗∗ -1.330∗∗∗

MF-SV-BVAR - 0.931∗∗∗ 1.009∗∗∗ 0.947∗∗∗ 0.023∗∗∗ 0.032∗∗∗ 0.122∗∗∗ -0.285∗∗∗ -0.326∗∗∗ -0.339∗∗∗ -0.601∗∗∗ -0.544∗∗∗ -0.778∗∗∗ -0.971∗∗∗ -0.994∗∗∗ -1.331∗∗∗

MF-SV-BVAR-TXT U 0.925∗∗∗ 0.970∗∗∗ 0.935∗∗∗ 0.044∗∗∗ 0.038∗∗∗ 0.131∗∗∗ -0.280∗∗∗ -0.321∗∗∗ -0.293∗∗∗ -0.665∗∗∗ -0.679∗∗∗ -0.707∗∗∗ -0.917∗∗∗ -0.952∗∗∗ -1.349∗∗∗

MF-SV-BVAR-TXT G 0.924∗∗∗ 0.993∗∗∗ 0.940∗∗∗ 0.073∗∗∗ 0.039∗∗∗ 0.050∗∗∗ -0.313∗∗∗ -0.352∗∗∗ -0.365∗∗∗ -0.640∗∗∗ -0.576∗∗∗ -0.737∗∗∗ -0.963∗∗∗ -0.956∗∗∗ -1.320∗∗∗
MF-SV-BVAR-TXT F 0.923∗∗∗ 1.004∗∗∗ 0.952∗∗∗ 0.030∗∗∗ 0.050∗∗∗ 0.138∗∗∗ -0.316∗∗∗ -0.311∗∗∗ -0.336∗∗∗ -0.664∗∗∗ -0.599∗∗∗ -0.841∗∗∗ -1.110∗∗∗ -1.228∗∗∗ -1.598∗∗∗

CRB index

MIDAS - -3.928∗∗ -3.890∗ -3.821∗∗∗ -4.923 -4.326 -4.553 -5.578 -4.881 -5.579 -7.653 -6.269 -7.364∗ -12.874∗ -11.194∗ -12.720∗

TXT-MIDAS U -4.033∗∗ -3.419∗∗ -3.562∗∗∗ -4.869 -4.136 -4.869 -5.424 -4.328 -5.945 -7.083 -6.662 -7.506∗ -11.580∗ -11.867∗ -13.640∗

TXT-MIDAS G -3.968∗∗ -3.409∗∗ -3.587∗∗∗ -4.806 -4.562 -4.302 -5.201 -4.968 -5.656 -7.335 -6.715 -7.558∗ -11.050∗ -9.417∗ -11.734∗
TXT-MIDAS F -3.984∗∗ -3.528∗∗ -3.564∗∗∗ -4.508 -4.904 -4.899 -6.061 -4.790 -5.882 -7.890 -6.420 -7.171∗ -12.900∗ -9.700∗∗ -11.735∗

Euro Stoxx 50 index

MIDAS - -4.838∗ -4.165∗∗ -4.160∗∗ -6.888 -5.720 -6.160 -8.843 -7.049 -7.558 -9.114∗ -7.630∗ -8.708∗∗ -10.199∗ -9.218∗ -10.654∗

TXT-MIDAS U -4.782∗ -4.933∗∗ -4.662∗∗ -6.072 -5.660 -6.258 -8.496 -7.755 -7.808 -8.177∗ -7.793∗ -8.383∗∗ -10.560∗ -9.205∗ -10.357∗∗
TXT-MIDAS G -4.600∗ -4.096∗∗ -4.485∗∗ -6.796 -5.478 -6.297 -8.418 -6.630 -7.860 -8.184∗ -7.125∗ -8.059∗∗ -10.764∗ -9.457∗ -10.931∗

TXT-MIDAS F -4.659∗ -4.363∗∗ -4.122∗∗ -6.999 -5.369 -6.836 -8.933 -6.494 -7.695 -8.679∗ -7.711∗ -8.701∗∗ -10.580∗ -9.778∗ -10.405∗

GBP/USD index

MIDAS - -4.415∗∗ -4.192∗∗ -4.487∗∗ -5.894 -5.094 -5.757 -7.134 -5.972 -6.554 -7.602∗ -6.541∗∗ -7.622∗∗ -13.630∗ -13.521∗∗ -15.673∗∗

TXT-MIDAS U -4.840∗∗ -4.699∗∗ -4.305∗∗ -5.244 -4.531 -5.875 -7.851 -5.217 -6.890 -7.950∗ -6.052∗∗ -7.078∗∗ -12.482∗ -13.461∗ -15.603∗∗
TXT-MIDAS G -4.496∗∗ -4.983∗∗ -4.909∗∗ -5.973 -4.494 -5.604 -7.657 -5.742 -6.298 -7.515∗ -6.729∗ -7.641∗∗ -11.045∗ -11.164∗∗ -13.565∗∗
TXT-MIDAS F -4.118∗∗ -4.664∗∗ -4.630∗∗ -5.725 -5.987 -5.987 -7.472 -5.083 -6.269 -7.652∗ -6.343∗ -7.688∗∗ -12.720∗ -12.506∗ -13.911∗∗

Natural Gas index

MIDAS - -5.201 -4.431 -4.709∗ -8.605 -6.198 -8.959 -9.444 -7.467 -9.651 -8.929∗ -7.283∗ -8.496∗∗ -11.247∗∗ -10.165∗∗ -11.722∗∗

TXT-MIDAS U -5.155 -4.205 -4.352∗ -8.556 -6.848 -8.319 -9.368 -7.897 -9.178 -8.637∗ -7.011∗ -8.402∗∗ -10.904∗∗ -9.633∗∗ -10.813∗∗
TXT-MIDAS G -5.986 -4.929∗ -4.576∗ -8.339 -6.592 -8.882 -9.301 -7.841 -9.379 -8.612∗ -7.007∗∗ -8.049∗∗ -9.718∗∗ -8.853∗∗ -10.724∗∗
TXT-MIDAS F -5.100∗ -4.526∗ -4.218∗ -8.027 -5.663 -8.901 -9.237 -7.540 -9.099 -8.546∗ -7.106∗ -8.154∗∗ -10.279∗∗ -9.282∗∗ -11.018∗∗

Palladium index

MIDAS - -4.803∗ -4.087∗ -4.257∗ -6.490 -5.454 -5.759 -8.474 -6.674 -7.130 -8.898∗ -7.360∗ -8.449∗∗ -11.197∗∗ -9.835∗ -11.389∗∗

TXT-MIDAS U -4.448∗ -4.216∗ -4.862∗ -6.343 -5.960 -5.799 -8.807 -6.631 -7.555 -8.873∗ -7.517∗ -8.721∗∗ -11.094∗∗ -9.623∗ -11.929∗∗

TXT-MIDAS G -4.473∗ -3.825∗ -4.409∗ -6.988 -5.032 -5.552 -8.401 -6.674 -7.146 -8.516∗ -6.311∗∗ -8.840∗∗ -10.921∗∗ -9.922∗ -11.220∗∗
TXT-MIDAS F -4.445∗ -4.748∗ -4.364∗ -6.340 -5.679 -5.439 -8.329 -6.034 -7.905 -8.272∗ -7.275∗ -8.159∗∗ -11.277∗∗ -9.836∗∗ -11.493∗∗

Note: In column 1 SV: stochastic volatility, BVAR: Bayesian vector autoregression, MF: mixed frequency, TXT: text data defined in column 2. In column 2 U: unigram count, G: geometrical term-frequency model, F: geometrical term-frequency inverse-
document frequency model. Bold values indicate the highest ALPL improvements on the no-text based model, for a given time horizon and relative to a specific oil price measure. *, ** and *** respectively denote 10%, 5% and 1% level of significance as
suggested by the Diebold-Mariano test.
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Table B.5: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with high-frequency financial variables; text vs. no-text with uncertainty text indicators.

Monthly TXT-FIN-MIDAS FIN-MIDAS

horizon Uc-MIDAS idx-MIDAS idf-MIDAS OFs-MIDAS

1 0.914∗ 0.892∗∗ 0.909∗ 0.906∗
3 1.056 1.087 1.084 1.082
6 1.073 1.094 1.099 1.101

12 1.295 1.213 1.175 1.186
24 3.737 1.768 1.619 1.577

GLs-MIDAS

1 0.909∗∗ 0.906∗∗ 0.909∗∗ 0.911∗∗
3 1.099 1.101 1.109 1.102
6 1.144 1.155 1.158 1.147

12 1.216 1.219 1.211 1.212
24 1.447 1.438 1.452 1.430

CRB-MIDAS

1 0.868∗∗ 0.858∗∗ 0.867∗∗ 1.718
3 0.944 0.938 0.941 2.566
6 0.988 0.990 1.025 1.538

12 1.103 1.121 1.084 1.338
24 1.466 1.389 1.489 6.618

BDi-MIDAS

1 0.932 0.917 0.919 0.914∗
3 1.120 1.108 1.100 1.087
6 1.184 1.111 1.106 1.107

12 1.298 1.302 1.288 1.287
24 1.374 1.304 1.351 1.342

USi-MIDAS

1 0.907∗ 0.905∗ 0.912∗ 0.909∗
3 1.067 1.061 1.074 1.046
6 1.062 1.060 1.061 1.067

12 1.089 1.077 1.092 1.078
24 1.506 1.456 1.516 1.512

Note: For column headers OFs-MIDAS, GLs-MIDAS, CRB-MIDAS, BDi-MIDAS, USi-MIDAS denote MIDAS models
where the high-frequency financial variables fitting the polynomial are (i) crude oil-futures prices spread, (ii) crude oil-
gasoline spread, (iii) CRB spot price index, (iv) Baltic Dry index and (v) the federal funds rate. Each outcome is then
compared to the case in which text data are included in the model, in addition to the financial variable. In particular,
Uc-MIDAS, idx-MIDAS, idf-MIDAS denote MIDAS models where the text variable fitting the polynomial is respec-
tively developed through (i) unigram word-count, (ii) term-frequency matrix and (iii) term-frequency inverse-document
frequency matrix. Black bold values indicate improvements on the no-change forecast. Green bold values indicate im-
provements of TXT-FIN-MIDAS on FIN-MIDAS. Blue entries stand for the lowest MSPE for a given time horizon. *, **
and *** respectively denote 10%, 5% and 1% level of significance as suggested by the Diebold-Mariano test.
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Table B.6: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with realized volatility of ultra-high-frequency financial variables; text vs. no-text with uncertainty text
indicators.

Monthly TXT-FIN-MIDAS FIN-MIDAS

horizon Uc-IR-MIDAS idx-IR-MIDAS idf-IR-MIDAS FT-IR-MIDAS

1 0.887∗ 0.888∗ 0.884∗ 0.884∗
3 1.079 1.064 1.081 1.072
6 1.081 1.079 1.074 1.074

12 1.086 1.093 1.085 1.080
24 1.394 1.371 1.366 1.373

SP-IR-MIDAS

1 0.891∗ 0.889∗∗ 0.882∗ 0.876∗
3 1.053 1.052 1.052 1.050
6 1.072 1.059 1.064 1.063

12 1.091 1.096 1.086 1.083
24 1.447 1.425 1.420 1.428

ES-IR-MIDAS

1 0.881∗∗ 0.879∗∗ 0.879∗∗ 0.876∗∗
3 1.073 1.072 1.075 1.071
6 1.115 1.103 1.110 1.111

12 1.133 1.165 1.136 1.139
24 1.348 1.337 1.337 1.352

HS-IR-MIDAS

1 0.887∗ 0.890∗ 0.895∗ 0.889∗
3 1.063 1.060 1.075 1.068
6 1.092 1.097 1.090 1.091

12 1.084 1.115 1.091 1.098
24 1.506 1.478 1.519 1.494

PD-IR-MIDAS

1 0.883∗ 0.881∗∗ 0.882∗∗ 0.882∗∗
3 1.037 1.029 1.049 1.036
6 1.067 1.072 1.072 1.062

12 1.148 1.148 1.147 1.141
24 1.610 1.565 1.607 1.601

CD-IR-MIDAS

1 0.922∗∗ 0.923∗ 0.921∗ 0.916∗∗
3 1.198 1.244 1.218 1.205
6 1.290 1.396 1.505 1.419

12 1.386 1.414 1.359 1.387
24 8.013 3.482 4.072 6.278

ED-IR-MIDAS

1 0.901∗ 0.895∗ 0.907∗ 0.904∗
3 1.035 1.016 1.004 1.020
6 1.068 1.062 1.077 1.060

12 1.131 1.122 1.117 1.113
24 1.551 1.501 1.542 1.543

Note: For column headers FT-IR-MIDAS, SP-IR-MIDAS, ES-IR-MIDAS, HS-IR-MIDAS, PD-IR-MIDAS, CD-IR-MIDAS, ED-IR-MIDAS denote MIDAS
models where the ultra-high-frequency financial variables fitting the polynomial are (i) intraday returns of FTSE100 index , (ii) intraday returns of S&P500
index, (iii) intraday returns of Euro Stoxx 50 index, (iv) intraday returns of Hang Seng index, (v) intraday returns of GBP/USD exchange rate, (vi) intraday
returns of CAD/USD exchange rate and (vii) intraday returns of EUR/USD exchange rate. Each outcome is then compared to the case in which text data
are included in the model, in addition to the financial variable. In particular, Uc-MIDAS, idx-MIDAS and idf-MIDAS denote MIDAS models where the text
variable fitting the polynomial is respectively developed through (i) unigram word-count, (ii) term-frequency matrix and (iii) term-frequency inverse-document
frequency matrix. Black bold values indicate improvements on the no-change forecast. Green bold values indicate improvements of TXT-FIN-MIDAS on
FIN-MIDAS. Blue entries stand for the lowest MSPE for a given time horizon. *, ** and *** respectively denote 10%, 5% and 1% level of significance as
suggested by the Diebold-Mariano test.
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Table B.7: Recursive MSPE ratios relative to a random walk forecast of monthly real oil prices. MIDAS
with realized volatility of ultra-high-frequency commodity prices; text vs. no-text with uncertainty text
indicators.

Monthly TXT-CMDTY-MIDAS CMDTY-MIDAS

horizon Uc-IR-MIDAS idx-IR-MIDAS idf-IR-MIDAS CO-IR-MIDAS

1 0.897∗ 0.899∗ 0.902∗ 0.895∗
3 1.053 1.078 1.077 1.081
6 1.061 1.060 1.060 1.063

12 1.052 1.050 1.060 1.057
24 1.310 1.326 1.287 1.280

GL-IR-MIDAS

1 0.897∗ 0.894∗ 0.897∗ 0.896∗
3 1.068 1.066 1.082 1.085
6 1.060 1.053 1.070 1.061

12 1.098 1.094 1.088 1.087
24 1.432 1.392 1.419 1.394

CP-IR-MIDAS

1 0.918∗∗ 0.926∗ 0.926∗ 0.941∗
3 1.176 1.126 1.098 1.135
6 1.125 1.106 1.125 1.104

12 1.120 1.098 1.087 1.172
24 1.320 1.276 1.322 1.316

NG-IR-MIDAS

1 0.927∗ 0.931∗ 0.923∗ 0.922∗
3 1.140 1.138 1.149 1.148
6 1.166 1.175 1.174 1.159

12 1.168 1.221 1.163 1.165
24 1.440 1.398 1.403 1.402

PL-IR-MIDAS

1 0.918∗ 0.908∗∗ 0.902∗∗ 0.914∗
3 1.095 1.088 1.091 1.081
6 1.089 1.110 1.120 1.121

12 1.155 1.186 1.145 1.155
24 1.448 1.443 1.574 1.411

SL-IR-MIDAS

1 0.897∗ 0.892∗ 0.893∗ 0.893∗
3 1.074 1.075 1.085 1.088
6 1.060 1.061 1.072 1.059

12 1.075 1.086 1.073 1.074
24 1.373 1.359 1.384 1.393

Note: For column headers CO-IR-MIDAS, GL-IR-MIDAS, CP-IR-MIDAS, NG-IR-MIDAS, PL-IR-MIDAS, SL-IR-MIDAS, denote MIDAS
models where the ultra-high-frequency commodity variables fitting the polynomial are (i) intraday returns of WTI index, (ii) intraday returns of
Gold index, (iii) intraday returns of Copper index, (iv) intraday returns of Natural Gas index, (v) intraday returns of Palladium index and (vi)
intraday returns of Silver index. Each outcome is then compared to the case in which text data are included in the model, in addition to the
commodity variable. In particular, Uc-MIDAS, idx-MIDAS and idf-MIDAS denote MIDAS models where the text variable fitting the polynomial
is respectively developed through (i) unigram word-count, (ii) term-frequency matrix and (iii) term-frequency inverse-document frequency matrix.
Black bold values indicate improvements on the no-change forecast. Green bold values indicate improvements of TXT-CMDTY-MIDAS on
CMDTY-MIDAS. Blue entries stand for the lowest MSPE for a given time horizon. *, ** and *** respectively denote 10%, 5% and 1% level of
significance as suggested by the Diebold-Mariano test.
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C.1 Data Sources

The time series of the first three dependent variables (qoil,yGDP, poil) in experiment 1 and 2 are based

on Kilian [2009]’s and Kilian and Murphy [2012]’s original data, made available on the public library of

Journal of the European Economic Association (http://onlinelibrary.wiley.com/doi/10.1111/j.

1542-4774.2012.01080.x/suppinfo). qoil is expressed as 100 times the log difference of oil productiv-

ity growth, yGDP relies on shipping costs, and poil is based on the U.S. refiner acquisition costs (RAC). the

latter proxy can be easily downloaded from the U.S. Energy Information Administration page in the section

Imported, and than deflated by the U.S. consumer price index (CPI) available from the Federal Reserve

Economic Data (FRED) database maintained by the St. Louis FED (CPIAUCSL).

In experiment 3, data are observed from 1974M1 to 2019M12, therefore yGDP has been downloaded from

Lutz Kilian’s official page, while oil production and RAC are made available on Christiane Baumeister’s of-

ficial page (https://sites.google.com/site/cjsbaumeister/research). However, FRED is a valid

alternative solution for the last two variables.

In Appendix C.5, experiment 1 and 2 are proposed again with Kilian’s updated index, downloaded from his

official page (https://sites.google.com/site/lkilian2019/research/data-sets).

In regard to the remaining seven time series, oil inventories data come from Christiane Baumeister’s official

page, and the residual six factors from FRED, coded as follows. (i) Producer Price Index by Commod-

ity: Metals and Metal Products (WPU10); (ii) Gold Fixing Price 10:30 A.M. (London time) in London

Bullion Market, based in U.S. Dollars (GOLDAMGBD228NLBM); (iii) Producer Price Index by Com-

modity: Fuels and Related Products and Power: Coal (WPU051); (iv) Producer Price Index by Com-

modity: Metals and Metal Products: Iron and Steel (WPU101); (v) U.S./U.K. Foreign Exchange Rate

(DEXUSUK); (vi) Consumer Price Index: OECD Groups: All Items Non-Food and Non-Energy for Japan

(CPGRLE01JPM657N).
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C.2 Informative Prior

In sections 4.3.5 and 4.3.6 I have outlined the structure of prior distributions for parameters A0,A j and Λ,

addressing the reader to consult this section for a detailed description of the methodology implemented

across the different identification strategies. It is important, in fact, to illustrate the specific steps that form

the basis for the posterior sampling presented in the next section.

C.2.1 Prior for A0

Short-run recursive. Suppose to identify the structural VAR as expressed in equation (4.7) by imposing

zero contemporaneous restrictions on the covariance matrix A−1
0 . Prior information regarding the expected

value of elements α0
i j of the lower triangular matrix A0 are described by an uninformed t-Student distribution

with mode at c = 0, scale parameter σ = 100, and φ = 3 degrees of freedom. This distribution is expressed

as:

p
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where i and j are rows and columns of the Cholesky matrix A0.

Sign restrictions. In this case I assume that structural shocks at time zero generate an impact effect, whose

sign is known and follows Kilian and Murphy [2012]’s rule (see section 4.3.3). This hypothesis is used

to inform my prior p(A0) by imposing a positive truncated t-Student distribution for values α0
i j which

positively respond to a structural disturbance, and a negative truncated t-Student distribution in the opposite

case. In this way candidate draws of α0
i j are sampled from the appropriate distribution. When the SVAR is

identified via heteroskedasticity, the same rules of lower triangular identification are applied.

C.2.2 Prior for Λ|A0

For this prior, and even for p
(
A j|Λ,A0

)
, there is no difference across the different experiments investigated.

Therefore, as remarked in section 4.3.5, I assume that λ
−1
ii follow a Γ(κ i,τ i (A0)) distribution, where τ

depends on A0, while κ does not. Baumeister and Hamilton [2015] show that κ/τ and κ/τ2 are the prior

mean and the prior variance of λ
−1
ii , which is set equal to A′

0ŜA0. This implies that τ i (A0) = κ iA
′
0ŜA0, with

κ i = 0.5 and Ŝ the N ×N OLS variance matrix of yt .
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C.2.3 Prior for A j|Λ,A0

Based on Baumeister and Hamilton [2019], individual lagged coefficients of matrix A j have a conditional

Normal distribution of the form
(

α
j

i j|A0,Λ
)
∼ N (mi,λiiM), where α

j
i j are supposed to behave like random

walks, and thus mi = 0. M is the prior variance, and as in Doan [2013] the matrix is set diagonal, with

hyperparameters that reflect a Minnesota structure of the form:

Mi,rr =


λ 2

0

(
1

Ŝpλ1

)
for coefficients on own lag j, ∀ j = 1, ...,24

λ 2
0

(
1

Ŝpλ1λ2

)
for lagged coefficients j of variable r ̸= i, ∀ j = 1, ...,24

λ 2
0 (100λ3) for the intercept

λ0 represents the overall confidence of prior beliefs; bigger values of λ0 imply a lower weight for the

random walk behavior. λ1 describes how fast lagged coefficients shrink to zero when j increases; when

the hyperparameter is set equal to zero, all lags have the same weight. λ2 is the confidence in other-than-

own coefficient lags. λ3 is the variance of the intercept; high values of λ3 imply that the constant term is

not relevant. In the first three experiments
{

λ0 = 109,λ1 = 1,λ2 = 1,λ3 = 100
}

, while in the last exercise

λ0 = 0.5 and the remaining hyperparameters do not change.

C.3 Posterior Sampling

The sampling procedure is equivalent in all experiments, even though we make two additional steps when

the SVAR is identified via heteroskedasticity.

C.3.1 Posterior for A0|YT

Given the prior value c, we first compute the posterior mode by maximizing the likelihood value of the

lower triangular matrix A0, then for any numerical value of A0 we find the log of the target

ϒ(Amax
0 ) = log(p(A0))+

(
T
2

)
log
[
det
(

A0
ˆΩT A′

0

)]
−

N

∑
i=1

κ ilog
[(

2
T

)
τ i (A0)

]
(C.1)

which is used to inform the random walk Metropolis Algorithm and generate candidate draws of α0
i j. κ and

τ are calculated with equation (4.8) and (4.9). Draws of α0
i j are progressively identified in each sampling
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step ρ as following. Suppose to generate a first draw for A0 which we call Aρ

0 from a random walk expressed

in the following form:

Âρ

0 = Amax
0 +ζ

(
Q̂−1)′ vt (C.2)

where Amax
0 is the optimized value of the lower triangular matrix A0 done before computing equation (C.1),

ζ is a parameter scalar chosen so that 30% of draws are retained, and Q̂−1 is the Cholesky of second

derivatives of A0 used to improve the efficiency of the algorithm (see Baumeister and Hamilton [2019]). If

ϒ
(
Âρ

0
)
< ϒ

(
Amax

0
)
, we set Aρ

0 = Amax
0 with probability 1− exp

[
Âρ

0 −Amax
0
]
; otherwise, we set Aρ

0 = Âρ

0 . In

a second step, we draw Aρ+1
0 from equation (C.2), but plug Aρ

0 in place of Amax
0 , compare which parameter

between Âρ+1
0 and Aρ

0 best describe Aρ+1
0 , and do that iteratively for P = 20,000 times.

C.3.2 Posterior for Λ|A0,YT and A j|Λ,A0,YT

For each of these P final values for α0
i j we generate λ

−1
ii posterior candidates from a Γ

(
κ i,τ i

(
Aρ

0
))

distri-

bution, and next we generate α
j

i posterior candidates from a N
(
mi
(
Aρ

0
)
,λ−1

ii Mi
)
. The process is repeated

10,000 times for each VAR combination, implying a total of 1,280,000 draws. The reduced form coeffi-

cients come up as the weighted average across the goodness-of-fit of each VAR, and then they are used in

the dynamic analysis.

C.4 Supplementary Results of DGP

This section reports the remaining results generated through a Monte Carlo simulation exercise for model

2-5 of section 4.4 in the main paper. Structural VARs of each model are identified through (i) short-run

restrictions, (ii) sign restrictions and (iii) heteroscedasticity.

C.5 Additional Empirical Evidence

It might be of interest to understand whether the empirical evidence provided in section 4.5 still holds when

we use the updated version of Kilian’s index. Figure C.13 and C.14 show the different size impact between

old and revised index which may help to better understand the diversity between Figure C.1 and C.2, with

experiment 1 and 2.
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Figure C.1: Model 2: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified through short-run
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.2: Model 2: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified through sign
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.3: Model 2: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified via heteroscedas-
ticity. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe
the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.4: Model 3: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified through short-run
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.5: Model 3: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified through sign
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.6: Model 3: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified via heteroscedas-
ticity. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe
the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.7: Model 4: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified through short-run
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.8: Model 4: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified through sign
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.9: Model 4: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified via heteroscedas-
ticity. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe
the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.10: Model 5: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified through short-run
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.11: Model 5: IRFs of the fixed 3× 3 matrix of artificial generated data, where SVARs are identified through sign
restrictions. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions
describe the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.12: Model 5: IRFs of the fixed 3×3 matrix of artificial generated data, where SVARs are identified via heteroscedas-
ticity. Black solid lines show the median responses of the correctly specified model and the shaded dark and light regions describe
the relative 90% and 68% posterior credible set. Red dotted lines show the response of the true model.
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Figure C.13: Black solid lines show the median responses of Kilian (2009) with the updated index, whereas red dotted lines
show the median response with previous measure of global real economy. Shaded regions describe the relative 95% posterior
credible set.
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Figure C.14: Black solid lines show the median responses of Kilian and Murphy (2012) with the updated index, whereas red
dotted lines show the median response with previous measure of global real economy. Shaded regions describe the relative 95%
posterior credible set.
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Figure C.15: IRFs of the fixed 3×3 matrix, where SVARs are identified through short-run restrictions and
Kilian’s updated index proxy for real world economy. Black solid lines show the median responses of all
model combinations and the shaded regions describe the relative 95% posterior credible set. Red dotted
lines show the response of the 3-variables misspecified VAR.
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Figure C.16: IRFs of the fixed 3× 3 matrix, where SVARs are identified through sign restrictions and
Kilian’s updated index proxy for real world economy. Black solid lines show the median responses of all
model combinations and the shaded regions describe the relative 95% posterior credible set. Red dotted
lines show the response of the 3-variables misspecified VAR.



Bibliography

Aastveit, K. A., Cross, J. L. and van Dijk, H. K. [2022], ‘Quantifying time-varying forecast uncertainty and

risk for the real price of oil’, Journal of Business & Economic Statistics pp. 1–15.

Abrahams, A. S., Fan, W., Wang, G. A., Zhang, Z. and Jiao, J. [2015], ‘An integrated text analytic frame-

work for product defect discovery’, Production and Operations Management 24(6), 975–990.

Acosta, J. [2014], ‘Fomc responses to calls for transparency: Evidence from the minutes and transcripts

using latent semantic analysis’, Mimeograph, University of Stanford .

Akram, Q. F. [2004], ‘Oil prices and exchange rates: Norwegian evidence’, The Econometrics Journal

7(2), 476–504.

Alexopoulos, M., Cohen, J. et al. [2009], ‘Uncertain times, uncertain measures’, University of Toronto

Department of Economics Working Paper 352(7), 8.

Almon, S. [1965], ‘The distributed lag between capital appropriations and expenditures’, Econometrica:

Journal of the Econometric Society pp. 178–196.

Aloui, C. and Jammazi, R. [2009], ‘The effects of crude oil shocks on stock market shifts behaviour: A

regime switching approach’, Energy economics 31(5), 789–799.

Alquist, R. and Kilian, L. [2010], ‘What do we learn from the price of crude oil futures?’, Journal of Applied

econometrics 25(4), 539–573.

Alquist, R., Kilian, L. and Vigfusson, R. J. [2013], Forecasting the price of oil, in ‘Handbook of economic

forecasting’, Vol. 2, Elsevier, pp. 427–507.

Andersen, T. G. and Bollerslev, T. [1998], ‘Answering the skeptics: Yes, standard volatility models do

provide accurate forecasts’, International economic review pp. 885–905.

Ando, T. and Li, K.-C. [2014], ‘A model-averaging approach for high-dimensional regression’, Journal of

the American Statistical Association 109(505), 254–265.

Antweiler, W. and Frank, M. Z. [2004], ‘Is all that talk just noise? the information content of internet stock

message boards’, The Journal of finance 59(3), 1259–1294.

147



Bibliography 148

Apergis, N. and Miller, S. M. [2009], ‘Do structural oil-market shocks affect stock prices?’, Energy eco-

nomics 31(4), 569–575.

Ashenfelter, O. and Pencavel, J. H. [1969], ‘American trade union growth: 1900-1960’, The Quarterly

Journal of Economics pp. 434–448.

Bachmeier, L. J. and Griffin, J. M. [2003], ‘New evidence on asymmetric gasoline price responses’, Review

of Economics and Statistics 85(3), 772–776.

Bai, Y., Li, X., Yu, H. and Jia, S. [2022], ‘Crude oil price forecasting incorporating news text’, International

Journal of Forecasting 38(1), 367–383.

Baker, S. R., Bloom, N. and Davis, S. J. [2016], ‘Measuring economic policy uncertainty’, The quarterly

journal of economics 131(4), 1593–1636.

Bakshi, G., Panayotov, G. and Skoulakis, G. [2010], ‘The baltic dry index as a predictor of global stock

returns, commodity returns, and global economic activity’, Commodity Returns, and Global Economic

Activity (October 1, 2010) .

Banchs, R. E. [2012], Text mining with MATLAB®, Springer Science & Business Media.

Banerjee, A., Marcellino, M. and Masten, I. [2005], ‘Leading indicators for euro-area inflation and gdp

growth’, Oxford Bulletin of Economics and Statistics 67, 785–813.

Barro, R. J. [1991], ‘World interest rates and investment’.

Barro, R. J. and Sala-i Martin, X. [1990], ‘World real interest rates’, NBER macroeconomics annual 5, 15–

61.

Bates, J. M. and Granger, C. W. [1969], ‘The combination of forecasts’, Journal of the Operational Re-

search Society 20(4), 451–468.
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