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Abstract

Transmission lines play a vital role in the reliable and efficient delivery of elec-

trical power over long distances, and these lines are affected by faults that occur

due to lightning strikes, equipment failures, human, animal or vegetation interfer-

ence, environmental factors, ageing equipment, voltage sag or grid faults adverse

effects on the line. Therefore, protecting these transmission lines becomes crucial

with the increasing demand for electricity and the need to ensure grid stability.

The modelling process involves the development of a comprehensive protection

scheme utilising modern technologies and advanced algorithms. The protection

scheme encompasses various elements, including fault detection, fault classifica-

tion, fault location, and fault clearance. It incorporates intelligent devices, such

as protective relays and communication systems, to enable rapid and accurate

fault identification and isolation.

First, a 330 kV, 500 km three-phase Delta transmission line is modelled using

MATLAB/SIMULINK. A section of the Delta network in Delta State Nigeria

was used since the entire Nigeria 330 kV network is large. Faulty current and

voltage data were generated for training using the CatBoost, 93340 data sizes

comprising fault data from three-phase current and voltage extracted from the

Delta transmission line model in Nigeria were designed, and twelve fault condi-

tions were used. The CatBoost classifier was employed to classify the faults after

different machine language algorithm was used to train the same data with other

parameters. The trainer achieved the best accuracy of 99.54%, with an error

of 0.46%, at 748 iterations out of 1000 compared to GBoost, XBoost and other

classification techniques.

Second, the Artificial Neural Network technique was used to train this data,

and an accuracy of 100% was attained for fault detection and about 99.5% for

fault localisation at different distances with 0.0017 microseconds of detection and

an average error of 0% to 0.5%. This model performs better than Support Vector

Machine and Principal Component Analysis with a higher fault detection time.

The effect of noise signal on the ANN model was studied, and the discrete wavelet

technique was used to de-noise the signal for better performance and to enhance
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the model’s accuracy during transient.

Third, the wavelet transforms as a data extraction model to detect the thresh-

old value of current and voltage and the coordination time for the backup relay

to trip if the primary relay does not operate or clear the fault on time. The dif-

ference between the proposed model and the model without the threshold value

was analysed. The simulated result shows that the trip time of the two relays

demonstrates a fast and precise trip time of 60% to 99.87% compared to other

techniques used without the threshold values. The proposed model can eliminate

the trial-and-error in programming the instantaneous overcurrent relay setting

for optimal performance.

Fourth, the PSO-PID controller algorithm was used to moderate the load fre-

quency of the transmission network. Due to the instability between the generation

and distribution, there is always a switch in the stability of the transmission or

load frequency; therefore, the PSO-PID algorithm was used to stabilise the Delta

power station as a pilot survey from the Nigerian transmission network. Also,

a hybrid system with five types of generation and two load centres was used

in this model. It has been shown that the proposed control algorithm is effec-

tive and improves system performance significantly. As a result, the suggested

PSO-PID controller is recommended for producing high-quality, dependable elec-

tricity. Moreover, the PSO-PID algorithm produces 0.00 seconds settling time

and 0.0005757 ITAE. It’s essential to carefully consider potential drawbacks like

complexity and computational overhead, sensitivity to algorithm parameters, po-

tential parameter convergence and limited interpretability and assess their impact

on the specific LFC application before implementing a PSO-PID controller in a

power system.

When implemented with the model in this research, the Delta transmission

line network will reduce the excessive fault that occurs in the transmission line

and improve the energy efficiency of the entire network when replicated with the

Nigerian network.

Generally, for the effective design and implementation of the protection scheme

of the 330 kV transmission line, the fault must be detected and classified, and the

exact location of the fault must be ascertained before the relay protection and

load frequency control will be applied for effective fault management and control

system.
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Chapter 1

Introduction

1.1 Research Overview

The electrical power system consists of different segments interacting with each

other, including generation, transmission and distribution. The transmission line

is an essential power system component since it transfers electricity from the gen-

erating station to the distribution and the end-users. These components, such as

circuit breakers, transformers, and fuses, are interconnected through the trans-

mission lines and are subjected to inevitable faults, which cannot be controlled

manually to the required standards except by advanced techniques [1, 2].

A transmission line fault refers to any abnormal condition on a transmission

line, a power transmission system that carries electricity from a power generation

facility to a substation. Transmission line faults include short circuits, open

circuits, and ground faults. These faults can cause damage to the transmission

line equipment, disrupt the power supply, and even lead to power outages [3].

Various factors, including equipment failure, natural disasters, and human

error, can cause transmission line faults. Several methods are used to detect and

locate faults on transmission lines, such as distance protection, current differential

protection, and overcurrent protection. The protection method choice depends

on the transmission line’s specific characteristics and the equipment connected to

it.

Several things can happen on a transmission line when a fault occurs, depend-

ing on the type of fault and the protection system in place.

• Voltage sag: A fault on a transmission line can cause a temporary voltage

drop, known as voltage sag. The extent of the voltage drop depends on the

location and severity of the fault.

• Protective relays trip: When a fault occurs, protective relays detect the

1
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fault at each end of the transmission line and send a signal to the circuit

breaker to trip. This isolates the faulted section of the transmission line

from the rest of the power system.

• Power outage: If the fault is severe enough and not cleared quickly, it can

cause a power outage for customers served by the affected transmission line.

• Damage to equipment: The fault current that flows through the transmis-

sion line during a fault can cause damage to the equipment, including the

conductors, insulators, and other components.

• Arcing and fires: In some cases, a fault on a transmission line can cause

arcing, leading to fires and damage to nearby buildings or structures.

• Restoration of service: The transmission line can be restored once the fault

is cleared or restored immediately after the fault occurs. This may involve

replacing damaged equipment or repairing the conductors or insulators.

It is important to note that transmission lines are designed with redundancy to

minimize the impact of faults. This includes having multiple transmission lines

serving the same area and backup power sources and protection systems to isolate

and clear faults quickly [4].

Transmission line protection models are intended to identify transmission line

faults and isolate the affected segment from the remainder of the system. The pro-

tection system comprises relays attached to the transmission line. It is intended

to detect faults and send a trip signal to the circuit breakers, causing the defective

segment of the line to be disconnected and isolated from the main transmission

line to prevent system collapse. Transmission line protection system modelling

entails simulating the protection scheme’s behaviour under different fault sce-

narios to verify that it performs appropriately and dependably. The simulation

models may adjust the protection settings and assess the protection scheme’s

performance under various operating systems.

It is crucial to quickly detect and locate transmission line faults to minimise

damage and restore the power supply as soon as possible. This is typically done

using protection devices such as relays and monitoring the transmission line for

abnormal conditions using sensors and other monitoring equipment.

According to the International Energy Agency (IEA), the global transmission

and distribution network increased from around 2.2 million km in 1990 to ap-

proximately 6.9 million km in 2018, representing an increase of around 214% over

this period. It should be noted that this data only covers the period from 1990

to 2018 [5]. This is due to the fast expansion of electric power networks over the
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last several decades. Free markets and deregulation have been implemented all

over the globe, and they have resulted in ever-stricter standards for supplying

a consistent and high-quality supply of electricity without appreciable increases

in the cost of the energy being provided. Supply continuity, dependability, and

reliability are crucial in modern power systems. A higher need for high-quality

power-system protection and control devices, together with their auxiliary equip-

ment, has emerged as being of utmost significance due to the enforced stringent

criteria [6, 7].

1.1.1 The Transmission Line Model

The transmission line model is a mathematical representation of an electrical

transmission line used in power systems. It provides a simplified representation

of the behaviour of signals or electrical power as they propagate along the line.

The basic transmission line model consists of a series of lumped electrical com-

ponents that approximate the distributed parameters of the actual transmission

line. These lumped elements include resistance (R), inductance (L), conductance

(G), and capacitance (C). The model assumes that the transmission line is in-

finitely long and has uniform parameters along its length.

Figure 1.1: Long Transmission line model [8]

The primary parameters used in the transmission line model are the char-

acteristic impedance Zo and the propagation constant Y . The characteristic

impedance represents the impedance that the line would present to a signal if it

were terminated in a purely resistive load. The propagation constant describes

the propagation characteristics of the signals along the line, including the phase

velocity and attenuation.

A long transmission line consists of 160 km and above and is represented

in Figure 1.1 and 1.2 representing the long transmission line and the equivalent
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Figure 1.2: Equivalent circuit of a long transmission line [8]

circuit, respectively. The derivation of the transmission line model is shown in

Appendix A

1.2 Problem Statement

Over the next few decades, the use of transmission lines expanded rapidly as

electric utilities began to build power plants and transmission networks to meet

the growing electricity demand. In the early 20th century, the development of

alternating current (AC) power transmission technology allowed for longer trans-

mission distances and higher voltage levels, increasing the transmission system’s

efficiency [9]. These increase in transmission line capacity and the high demand

for electricity with corresponding growth in the population worldwide has put a

demand on electricity transmission, thereby leading to faults.

Nigeria’s transmission line faces the same challenges and is prone to faults

due to its peculiarities. The Transmission Company of Nigeria (TCN) evacuates

electricity from generation to distribution nationwide. The 330 kV transmission

network is the primary line that connects all the generating stations and load cen-

tres into a single grid. The network covers about 5,523.8 km and about 15,000

km [10, 11]. This vast transmission network has been exposed to different types

of faults, such as symmetrical and unsymmetrical faults, which affect the network

not to perform to its maximum capacity. The installed capacity is about 12522

MW, while the output is about 7689.04 MW as of December 2019 [12]. With

this, only 3733.01 MW was transmitted to distribution substations or load cen-

tres, which is inadequate for a country with a population of about 200 million.

About 3583.23 MW of electricity was wasted or unused due to faulty transmission

lines and losses. This has been a significant problem in the Nigerian power sector,
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coupled with other factors like faulty and ageing equipment, bad weather con-

ditions and poor government policies. Nigeria uses the distance relay protection

and overcurrent protection scheme for its network [12]. The sulphur Hexafluoride

(SF6) circuit breaker is also used for overcurrent protection. The weak protec-

tive nature of the line has cost the government and investors in the power sector

losses in revenue and power loss along the line. Hence, the adverse effect on the

economy is devastating [13].

The transmission line is generally the most affected by faults in the power

system components; therefore, protecting it from faults to avert system collapse

is necessary. This system collapse will cause power shortages and blackouts,

energy loss, and damage to power system equipment like transformers and circuit

breakers. These can affect the country’s economy and cause the loss of jobs.

Furthermore, when faults occur in transmission lines or power systems, the relays

are expected to send signals to the circuit breaker to trip on time. This may not

sometimes happen because of faulty types of equipment and wrong relay settings,

and sometimes the relay is configured based on trial and error.

Transmission lines are susceptible to various types of faults, including short-

circuits, ground faults, and open-circuits, which can result in power outages,

equipment damage, and safety hazards. Therefore, it is essential to have an

effective fault protection system that can quickly detect and isolate faults while

minimising the impact on the power system. The main challenges in transmission

line fault protection include:

Detection of faults: Faults in transmission lines can be intermittent and occur

in different forms. Therefore, it is essential to have a fault detection system that

can quickly identify the presence of a fault and distinguish between different types

of faults. Fault detection systems must operate in real-time to quickly identify

and respond to faults. The algorithms and techniques used for fault detection

should be efficient and capable of processing large volumes of data within tight

time constraints. This has affected the Nigerian transmission network to perform

optimally.

Localisation of faults: Once a fault is detected, it is necessary to determine its

location accurately. This can be challenging, especially for long transmission lines

with multiple branches. The transmission line includes limited information about

the exact location of faults, and measurement of the accuracy of voltage, current

and other parameters is limited due to errors in measurement, sensor limitation

and noise signal. Also, fault transients are challenging to analyse and extracting

relevant information to localise fault accurately can be complex. Communication

and data synchronisation can be challenging due to the vast land mass, and the
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long transmission line length of the Nigerian TL is difficult to impedance because

of non-uniform line parameters, which affects fault signals.

Discrimination of faults: Different types of faults require different protection

schemes. Discriminating between faults is critical in selecting the appropriate

protection scheme to minimise the impact on the power system.

Speed of operation: Fault protection systems must operate quickly to isolate

faults before they can cause significant damage to the transmission line and the

connected equipment.

Sensitivity and selectivity: Fault protection systems must be sensitive enough

to detect minor faults and selective enough to avoid nuisance tripping caused by

transient disturbances or non-fault conditions. The Nigeria TL network relays

and circuit breakers are obsolete, making detecting faults in real-time difficult.

Overall, the problem statement of transmission line fault protection is to de-

velop an effective protection system that can detect, locate, and isolate faults

quickly and accurately while minimising the impact on the power system. This

requires a combination of advanced sensing, computing, and control technologies

and appropriate protection schemes and strategies.

1.3 Research Motivation

Transmission lines are the power grid’s backbone, and their dependable perfor-

mance is critical to the overall operation of the power system. Faults in trans-

mission lines may create interruptions in power delivery, affecting industry, com-

merce, equipment breakdown and everyday life. To limit downtime and avoid

future damage, it is vital to identify, categorise, and localise problems in trans-

mission lines as fast and correctly as possible [14].

One of the motivations of this research is to provide more accurate and efficient

ways of identifying and diagnosing defects in real-time. Manual inspections are

time-consuming, costly, and prone to human mistakes in traditional fault detec-

tion, categorisation, and localisation approaches, on the other hand, automated

systems may swiftly detect faults and offer early notice of possible issues, allowing

operators to take proactive actions to avoid outages or reduce their effect.

Secondly, this study enhances power system performance by lowering the time

it takes to detect and diagnose defects. This may assist in lessening the length

and severity of power outages, equipment damage and overall system depend-

ability. Moreover, correct fault classification may give helpful information for

transmission system maintenance and improvements.

Thirdly, technical advancements have created new and more complex fault
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detection, classification, and localisation procedures. The machine learning al-

gorithm, artificial intelligence, and data analytics are examples of developing

technologies that may be used to analyse multi-data and detect patterns that

may suggest the existence of faults. These approaches can potentially increase

the accuracy and efficiency of fault detection, classification, and localisation, al-

lowing for the discovery of transient faults that would otherwise be difficult to

detect.

Finally, improving fault detection and localisation in transmission lines can

have significant economic and environmental benefits, by minimising downtime

and reducing the need for maintenance and repairs, the reliability of the power

system can be improved, leading to increased productivity and reduced costs,

additionally, identifying faults early may prevent more severe damage to the

transmission line and reduce the risk of environmental contamination from surges

or other hazardous materials.

1.4 Research Objectives

This research aims to model the transmission line protection scheme using Nige-

ria’s 330 kV a transmission line as a case study. The research has the following

objectives:

1. To model a 330 kV, 500 km transmission line with simulated fault condi-

tions at different distances along the transmission line. This involves using

MATLAB/SIMULINK to model a 330 kV, 500 km transmission line using

different sim power tools and configuring them with all the transmission

line parameters.

2. To identify different types of faults in the transmission line and generate a

faults dataset from the simulated model using MATLAB/SIMULINK.

3. To classify the fault using the data generated from the transmission line

model. This can be achieved by using artificial intelligence and different

machine learning techniques to train the data generated from the designed

model for fault detection, classification and localisation.

4. To classify the fault using the data generated from the transmission line

model and integrate the result acquired from the machine learning model

into the power system for effective fault management in the transmission

line.



CHAPTER 1. INTRODUCTION 8

5. To design an instantaneous overcurrent and voltage relay for optimum pro-

tection of the 330 kV transmission line and using the particle swarm opti-

misation method to control the load frequency of the transmission line for

optimal fault protection.

1.5 Research Contributions

The major contribution of this thesis is summarised as follows:

1. One of the research contributions is the implementation of the existing Cat-

boost algorithm for fault classification. The Catboost classifier can classify

faults accurately with speed. It is an efficient technique in machine learn-

ing because of its quick response to a fault and can handle multi-dataset.

Additionally, the model’s ability to train with noisy data without affect-

ing system accuracy and performance. This algorithm has an accuracy of

99.54%, compared to ELM and PCA, with an accuracy of 98% and 99.12%,

respectively.

2. A fault detection and localisation algorithm was modelled, which has the

accuracy and speed of sending the signal to the exact location of the fault

and the type of fault initiated. The artificial neural network is proposed.

This approach provides rapid, reliable, and accurate fault identification and

localisation in transmission lines. Also, detecting many fault circumstances,

such as defective voltage and current, minimises fault detection time delay.

The proposed algorithm’s performance was assessed by simulating several

errors and training them with the ANN model, and the results were com-

pared with existing models, which showed better performance. In addition,

the model will be used to develop transmission line fault management and

protection in power systems. Also, introducing the DWT to de-noise the

signal for effective fault detection and localisation and to prevent noise dur-

ing transient improves accuracy and model performance.

3. The use of threshold values of faulty current and voltage to configure the

instantaneous overcurrent and overvoltage relay to achieve timely and ac-

curate trip time and reduce the delay time of relays for speedy, prompt

sending fault signal to the circuit breaker to isolate faulty lines. This re-

search has led to the developing of more robust protection schemes that can

handle complex fault scenarios and ensure power systems’ safe and reliable

operation.
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4. The load frequency plays a significant role in power system stability; there-

fore, the use of particle swarm optimisation for the control and stability

of the transmission frequency for effective and efficient voltage stability.

In general, modelling transmission line protective schemes has significantly

improved protection schemes’ efficiency, accuracy, and reliability. These ad-

vances have played a critical role in ensuring the safe and reliable operation

of the power system.

1.6 Thesis organisation

The remaining part of this thesis is organised as follows:

Chapter Two explains the history of transmission lines and the different types

of faults. It also enumerates and explains the types of faults that occur in the

transmission lines, the causes and the Nigeria transmission network. It also anal-

ysed the relevant research on the protection of the transmission line and the

various techniques used in detecting, classifying and localising faults in the trans-

mission line. Also, the conventional, hybrid and machine learning techniques

were discussed. The different techniques were compared and analysed based on

fault type, application area, the accuracy of analysed results, fault detection time,

and trip time was also analysed. Also, the advantages and disadvantages of the

different techniques were enumerated, and the research gap was discussed.

Chapter three explains using the Catboost classifier to classify faults in trans-

mission lines using a multi-dataset. This chapter discussed fault classification

and using the CatBoost classifier to classify faults into different categories. A

330 kV, 500 km three-phase transmission line was modelled using SIMULINK to

extract faulty data from twelve fault scenarios. The multi-dataset was used to

train the Catboost classifier, and the results were analysed, showing the classi-

fier’s efficiency concerning the speed of execution and accuracy of the result. The

results were compared with other classifiers for fault classification performance,

accuracy and speed.

The contribution of the CatBoost algorithm to transmission line fault classi-

fication is as follows:-

• Transmission line faults are accompanied by the noise signal; therefore,

only the de-noised signal was used to train the data using the CatBoost

algorithm. These assist in improving the accuracy of the results

• The introduction of ground resistance of 0.001Ω to detect residual voltage

and transient current on the transmission line helps to improve the sensi-
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tivity of the algorithm and the entire model.

Chapter four focuses on fault detection and localisation, and the ANN tech-

nique is used to detect and locate faults on the modelled transmission line. The

technique is used due to its low fault detection and localisation latency. The

chapter focuses on using extracted data from Chapter three to detect faults in

transmission lines. Four primary fault conditions were considered: single-phase

to ground fault, double-phase to ground fault, three-phase to ground fault and

no-fault conditions. Also, a SIMULINK model was designed to locate faults ac-

curately and timely, emphasising the four major fault scenarios selected as a case

study. The achievement of chapter four include:-

• Using the Simulink model to design an ANN algorithm for transmission line

location was achieved. This method locates and detects the fault location

with precision and an accuracy of 100 % and 99.5% for fault detection and

localisation, respectively.

• The model can operate multi-data sets with different fault conditions simul-

taneously due to its pattern recognition and parallel processing capabilities,

making it unique in terms of non-linearity.

The main theme of Chapter five is the use of instantaneous overcurrent relays

in determining the threshold Current and voltage for optimal fault protection and

control in the transmission line. The wavelet transform technique determined the

modelled transmission line’s faulty threshold current and voltage. The threshold

values were used to determine the trip time and setting of the relays to ascertain

the operating time, time delay and accuracy of the trip time of the circuit breaker.

Comparing the results with deep learning and machine learning techniques shows

that the threshold values obtained from wavelet transform assisted in the fast

setting of the relay, which leads to a prompt response time to trip the circuit

breaker. The achievement of chapter five include:-

• The proposed algorithm uses the threshold values for setting the overcurrent

and overvoltage relay. Additionally, fault signals are accompanied by noise.

Therefore, using the wavelet transform to determine the threshold current

and voltage helps de-noise the signal to attain stability in the system.

• It also serves as a fast gateway for instantaneous relay settings for optimal

protection of transmission and distribution line fault detection and isolation

using a circuit breaker.
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Finally, Chapter Six focuses on load frequency control in the transmission

line. This is one of the significant parameters to check during the generation

and transmission of electricity to maintain the generating frequency and load

frequency for a steady and reliable power system. A SIMULINK model was

generated, and the Principal swarm optimisation algorithm was used to determine

and maintain the load frequency at 50 Hz. The main achievement of chapter six

include:-

• The PSO-PID algorithm controls the LFC of the power system. The model

was designed using the PSO-PID controller to optimise the load frequency

using the ITAE cost function to determine the improved controller and the

cost function of the PSO-PID algorithm. Comparing with the conventional

approach, the algorithm provided precision and speed due to the hybrid

method used and the introduction of the PID controller.

In summary, the transmission line protection scheme has been explained in

detail, the various fault types were different literature was compared with the

proposed methodology, and the research gap was highlighted. Fault detection,

classification and localisation were also explained using different literature. The

CatBoost classifier was used to classify faults, while the artificial neural network

was used to detect and locate faults in the transmission line. The instantaneous

overcurrent and overvoltage relay was used as a tripping device after the thresh-

old values generated from the wavelet transform were used to set the relay for

fast circuit breaker tripping. Finally, the load frequency control was applied to

maintain the load frequency of the transmission line for stability and reliability

of the entire power system. The particle swarm optimisation algorithm is used

to control the frequency of the transmission line.
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Literature Review

This chapter briefly discusses faults and their various types on the transmission

line. Also, a brief introduction to the Nigeria 330 kV transmission line and its

networks. Then, an overview of fault detection, classification and localisation

and the necessary protection techniques. Also, various machine learning (ML)

algorithms are applied in transmission line fault analysis. Finally, recent literature

on the main topic is reviewed. The research gap identified in each algorithm and

the techniques used in fault classification, detection, and localisation were also

analysed.

2.1 The Transmission Line

History as it that power transmission started far back in 1882 [15,16]. The French

physicist Deprez was the first to complete a long-distance direct current trans-

mission test, which has evolved in annals of the power industry. He transmitted

a voltage of about 1500-2000 V through a 75 km telegraph wire of about 4.5

mm in diameter. It was generated by a direct current generator installed in the

Miebach coal mine. It was transmitted to the first electrically lit international

electrochemical exhibition at a Glass Palace in Munich and used to provide elec-

tricity for some construction work. In 1891, the Frankfurt power line was the

world’s first three-phase alternating current high voltage transmission line with

a length of 175 km and 15.2 kV [17, 18]. In 1908, the first 110 kV transmission

line was built in the United States; later, a 230 kV line was built in 1923. From

the 1950s, the electric power sector developed rapidly as the amount of voltage

transmitted increased to 380 kV in 1952, 500 kV in 1964, 735 kV, 750 kV and

767 kV transmission lines were built in Canada, the Soviet Union and the United

States from 1965 to 1969 [17]. In 2009, about a 1000 kV transmission line was

used in China, making it the highest alternative voltage transmission built and

12
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operational [18, 19].

2.1.1 Main Components of The Transmission Line

The primary function of the transmission line structure is to support the con-

ductor, which is achieved by maintaining the mechanical structure of the system

without deformation under maximum load conditions. Other reasons are to pro-

vide an electrical path to earth for fault current and provide a whole-of-line cost,

effective service, including lattice tower/masts, steel tubular poles, and concrete

poles [20]. The main component of the transmission line includes Resistance,

inductance, capacitance, and conductance.

The Conductor

These are the main components of the transmission line, comprising aluminium

conductors and reinforced steel. Others include all aluminium conductors (AAC),

all Aluminium-alloy conductors (AAAC), and aluminium conductor alloy-reinforced

(ACAR). Some conductors operating in high temperatures up to 150oc include

aluminium conductor steel supported (ACSS), the gap-type ZT-aluminum con-

ductor (GTZACSR), which uses heat-resistant aluminium over the steel core with

a small annular gap between the steel and the first layer of aluminium strands.

In recent times, composite materials are being used, such as aluminium conduc-

tor carbon reinforced (ACFR) and aluminium conductor composite reinforced

(ACCR) [21].

The Insulator

They are usually low-conductivity materials in which the passage of electric cur-

rent is minimal. Strings of porcelain, toughened glass, or polymer discs are used

to keep conductors together without harming the tower. Insulators of various

varieties include pin insulators, suspension insulators, strain insulators, stay in-

sulators, and shackle insulators. All of them are shield wires, high steel strength

conductors situated above the phase conductor against lightning and function

as an overcurrent protection mechanism. Resistance, inductance, capacitance,

and conductance are other electrical components of transmission lines. The four

parameters exist between the conductor and the ground; conductance accounts

for leakage current at overhead line insulators and via cable insulation. Second,

since it is changeable, it cannot be considered.
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2.2 Transmission Line Faults

A power system fault is an unexpected circumstance where equipment connected

to one of the system’s primary voltages has an electrical breakdown. Two different

sorts of faults mainly occur. The first is an insulation failure that leads to short-

circuit faults; it can be brought on by excessive stress, which causes the insulation

to deteriorate over time, or by an unexpected overvoltage condition. The second

fault is an open-circuit fault or a failure that interrupts the flow of electricity.

2.2.1 Basic Types of Faults in Transmission Line

Four different types of faults occur in the transmission line, which includes

1. Open circuit faults

2. Short circuit faults

3. Symmetrical faults

4. Unsymmetrical faults

Open circuit faults result from one or more conductors failing, also called se-

ries faults. A short circuit is described as an anomalous connection of very low

impedance between two locations of different potential in a transmission line,

whether purposeful or unintentional. These are the most frequent and danger-

ous failures, causing abnormally large currents to flow through the machinery or

transmission lines. The equipment suffers significant harm when these faults are

ignored, even briefly. Shunt faults are another name for short circuit faults. A

breakdown in the insulation between the phase conductors, the ground, or both

brings these problems.

Symmetrical faults, also known as balanced faults, are a type of electrical

fault in a power system that involves symmetrical or balanced conditions. These

faults occur when the fault impedance and conditions are the same for all three

phases of the electrical system. The term ”symmetrical” refers to the fact that

the fault conditions are balanced and identical for each phase of the system. All

phases are short-circuited to the ground or occasionally to one another in these

faults. Despite being uncommon, this requires a high current of more than 10kA.

In this type of fault, the system’s three phases are either earthed together or

short-circuited to one another. At the same time, unsymmetrical faults cause a

three-phase system to have an uneven current and phase shift. The distribution

or transmission lines’ open or short circuits generate asymmetrical faults. A
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natural disruption or human error causes them [1], and these do not involve

three-phase [22]. Asymmetrical faults, also known as unbalanced faults, occur

when the three phases of an electrical power system are not in balance. This

means that the voltage and current levels in each phase are unequal, resulting in

an uneven flow of electricity throughout the system.

Line to Line Fault (L-L)

When two-phase lines come into touch with each other, whether by wind or other

forces or when they are overhead or beneath, these types of faults can develop, as

shown in Figures 2.1 (a), (b) and (c) representing LL in phases AB, BC and CA

respectively. 15% of power system failures are of this type, where it is difficult to

estimate the bounds of the fault impedance [23].

Figure 2.1: Line-to-Line Fault

Single Line To Ground Faults (L-G)

The L-G fault contributes to about 80% of the total faults in transmission and

distribution lines and is also called a short circuit fault [24]. When a single line-to-

ground fault occurs, the voltage of all phases except the faulted phase increases;

sporadic arc grounding may cause arc voltage spikes and feeder inaccessibility,

which can easily lead to a short circuit between phases [25]. The L-G fault is

represented in Figures 2.2 (a),(b) and (c), enumerated as L- G faults in phases

A, B and C, respectively. Since the neutral point is not directly grounded during

L-G, the steady-state current flows solely through the grounded capacitance.

Double Line To Ground Fault (L-L-G)

The LLG faults contribute about 10% of the power system faults and turn into

three-phase or three phases to ground faults if not cleared on time. The occur-

rence occurs when two phases collide with the ground due to a falling tree or

another event. This can be seen in Figure 2.3 (a) L-L-G at phase ABG, (b)

L-L-G at phase BCG, and (c) L-L-G at phase ACG, respectively.
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Figure 2.2: Single Line to Ground Fault

Figure 2.3: Double Phase to Ground Faults

Three Phase to Ground Faults

Three phase-to-ground faults (L-L-L or L-L-L-G) account for 5% of total faults

in the power system network, are uncommon and are of greater severity. These

are symmetrical faults caused by the tower collapsing, equipment failure, and a

line connecting the remaining phases. When the voltage level drops to zero, the

fault current magnitude increases, which can result in significant damage [23].

This can be seen in the diagram in Figure 2.3 (d).

2.2.2 Causes of Faults

Open-circuit faults can occur when joints on cables or overhead lines fail or all

three phases of a circuit breaker or disconnector fail to open or close. Weather

causes the vast majority of short-circuit faults, which after that by equipment

failure, lightning strikes, snow or ice accumulation, heavy rain, strong winds or

gales, salt pollution depositing on insulators on overhead lines and in substations,

floods and fires near electrical equipment are typical weather factors that cause

short-circuit faults.

Lightning strikes can produce currents ranging from a few kilo-amps to 100 or

200 kA for several microseconds. If the strike strikes an overhead line or its earth

wire, the voltage generated across the insulator may be so high that it causes a

back-flashover and short circuit. As a result, a transient power frequency short-

circuits current flows through one or all three phases of a three-phase electrical
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circuit.

Equipment failure can result in faults, which can be caused by internal insu-

lation failure due to ageing and degradation, breakdown due to high switching

or lightning overvoltages, mechanical incidents, or improper installation. Most

short-circuit faults on primarily overhead line systems, typically 80-90%, tend to

occur on overhead lines, with the remainder occurring on substation equipment

and busbars combined. Long-term average short-circuit fault statistics on a high-

voltage transmission system with overhead line steel tower construction, such as

the England and Wales transmission system, show that around 300 short-circuit

faults occur annually. 60-70% are one-phase to earth, 25% are phase to phase, 5%

are three-phase to earth, three-phase clear of the earth, and 3% are two-phase to

earth. Lightning strikes cause approximately 77% of single-phase-to-earth faults,

followed by wind, gales, and salt pollution on insulators. Although lightning can

cause some phase-to-phase faults, snow/ice, followed by wind/gales that cause

two line conductors to collide, are the most common causes of these faults. Most

three-phase and two-phase earth faults in England and Wales are caused by light-

ning, followed by wind and gales [3].

2.3 The Nigerian Transmission Network

The Transmission Company of Nigeria (TCN) manages the electricity transmis-

sion network in the country. The 330 kV transmission network is the first network

that connects all generating plants and load centres in all parts of the country to

a single synchronised network. Hence its economic importance cannot be overem-

phasised [26]. This vast network is open to both symmetrical and unsymmetrical

faults. Nigeria’s transmission grid comprises a full-scale (theoretical) transmis-

sion capacity of 7,500 MW and above 20,000 km of transmission lines. Currently,

the transmitting size of 5,300 MW is larger than the average working generating

capacity of 3,880 MW, which is below the overall generating capacity of 12,523

MW. The entire installation is typically spiral, without redundancies, thus cre-

ating internal accuracy issues. At a mean of about 7.4%, the losses throughout

the system are high when compared to other Nations’ models of about 2% to 6%.

Nigeria transmits 330 kV to 132 kV, which will be stepped down to 33 kV and 11

kV, known as the distribution network. The most common causes of transmission

line fault in Nigeria include weak grounding systems, the type of conductors used

or ageing conductors, and the geographical terrain; these consist of swamps and

forests, weather/climate due to high rainfall and thunderstorm. Other factors in-

clude line losses, corona effect, lack of spare parts and technical human resources.
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Figure 2.4: Single line diagram of Nigeria 330 kV line [27]

Non-technical issues like vandalism and poor government policies are some of

Nigeria’s causes of transmission line failure. Protecting the transmission line is

very important, considering the associated faults, and this cannot be overempha-

sised. Firstly, it helps to identify and isolate the damaged section of the system

to avoid system collapse. Secondly, it helps to protect against overload and fault

current to feedback to the transformer or generators, which will help to provide

steady electricity to end-users.

Nigeria uses an overcurrent distance protection relay system for its network.

This scheme has some drawback which includes limited fault resistance measure-

ment capacity. Table 2.1 describes the diagram in Figure 2.4, showing the bus

number, bus rating, transformers, generating stations and load centres. In Nige-

ria, the network, as shown in Figure 2.4, consists of a 330 kV high voltage line

with about 27 buses and ten generating stations scattered across the country.

This transmission line is synchronised to a single network with a single control

Centre only at Oshogbo [27].

2.4 Protection of Transmission line

The fault must be detected and classified for a transmission line to be fully

protected. The location of the fault must be accurate for quick isolation of the line

to protect it from system collapse. Figure 2.5 represent a simplified explanation

of a network’s fault correction flow. The input signal consists of high voltage
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Table 2.1: Bus description of Nigeria 330 kV transmission system network [27]
Bus
Number

Bus Name/Rating
(MVA/MV)

Bus
Number

Bus Name/Rating
(MVA/MV)

1 Egbin (+800 MW) 15 Ayede (-77-j91) MVA
2 Delta (+300 MW) 16 Oshogbo (–120-j76) MVA
3 Kainji (+400 MW) 17 Benin (-161-j82) MVA
4 Shiroro (+600 MW) 18 Ajaokuta (–63-j32) MVA
5 Sapele (90 MW) 19 Akangba (-233-j119) MVA
6 Jeba GS (+300 MW) 20 IK West (-334-j171) MVA
7 Afam (+470 MW) 21 Onitsha(-131-j67) MVA
8 AES (+300 MW) 22 New Heaven (-113-j57) MVA
9 Okapi (+490 MW) 23 Alaoji(-164-j83) MVA
10 Kano (-253-j129) MVA 24 Aladja (-48-j24) MVA
11 Gombe (-74-j38) MVA 25 Aja (120-j62) MVA
12 Jeba TS (-8-j4) MVA 26 Birnin Kebi (-70-j36) MVA
13 Jos (-82-j42) MVA 27 Kaduna(-150-j77) MVA
14 Katampe (-200-j103) MVA

sent to the current and voltage signal acquisition, which helps convert it to either

analogue to digital or vice versa. The next stage is the data processing unit, which

helps extract the data or signal the useful information needed in the module.

Figure 2.5: Fault location, detection and classification diagram [28]
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The fault detection unit provides a reliable and fast relaying operation. The

dominant protective relays for the transmission line are the overcurrent protection

relay, directional overcurrent relay, distance relay, and pilot relay. This Relay

helps to shield the line against symmetrical and unsymmetrical faults. However,

it does not guarantee full protection due to frequent short circuit faults at the

distribution network [29]. The fault locator and classifier section are used to

locate the exact distance of the fault and determine the fault type and phase.

2.5 Relevant Research on Protection of Trans-

mission Line

This section will discuss some approaches used to protect transmission lines and

will be divided into fault detection, classification and localisation. Recent liter-

ature on fault in transmission line detection, classification, and location shows

that many studies have been conducted on the subject. However, this research

has identified some disadvantages and will be enumerated. Two major techniques

have been used to analyse this concept: conventional and machine learningtech-

niques. The conventional methods include:-

1. Mobile robot approach

2. Distance relay approach

3. Wavelet transform approach

4. Fuzzy logic approach

Other hybrid techniques which involve the combination of two or three techniques

include

1. Neuro-fuzzy technique

2. Wavelet and ANN technique

3. Wavelet and fuzzy-logic technique

4. Wavelet and neuro-fuzzy technique

The rising development of power systems calls for innovative fault diagnosis tech-

niques to prevent unforeseen interruptions and expenses incurred due to power

outages. Transmission lines are a critical component of such systems. Therefore,

the machine learning techniques have been used for fault detection, classification
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Figure 2.6: Summary of fault diagnostic techniques using machine learning [28]

and localisation of transmission lines and are discussed in this section as shown

in Figure 2.6. Four main steps are performed in machine learning techniques em-

ployed for optimal performance. The first step is to collect data from TL current

and voltage signals generated by power system simulators like Matlab/Simulink.

Following that, data sampling approaches are employed. The third step is to ap-

ply data preprocessing and feature extraction methods such as Discrete Fourier

Transform (DFT) and Discrete Wavelet Transform (DWT) to extract significant

features. Finally, a method for fault identification (detection and classification of

TL faults) and fault location estimation is identified [28].

2.5.1 Inspection Robot Approach

Using an inspection robot in a transmission line to check for mechanical damage

has helped to reduce costs in terms of outages and man-hour wastage due to fault

[24, 30, 31]. The three main robots used for inspection are climbing, flying and

hybrid robots. The research proposed hybridising two robots into a single robot

as a better power transmission line monitoring model. Some of the drawbacks of

the paper include poor battery capacity, electromagnetic shielding, and advanced

control for uncertainties such as wind disturbance [24]. Another research based
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on a mobile robot was designed with the help of a controller, a programmable

device, an integrated circuit card, a monitor for the development network, and

a mobile robot. The robot is placed on the transmission line, which assists in

detecting mechanical faults on the transmission line [32]. This robot will send

the information to the controller and appear on the screen. Also, another article

on the multi-unit serial inspection robot the transmission network focused on

designing a four tri-arm inspection robot mechanism that has an obstacle-crossing

ability, uses fewer motors and is lightweight for motor and cable [31]. The article

did not discuss lightning fault (overcurrent fault) and other symmetrical faults, so

complete protection is not provided. Other advanced monitoring robots consist of

advanced sensing and imaging system that can detect and jump over an obstacle,

and the information will be monitored on a screen. The device consists of three

main parts: the robot motion control unit, the communication control unit, and

the remote monitoring control unit [32,33]

2.5.2 Distance Relay Approach

In the distance relay approach, the overcurrent relays (OCR) are commonly

utilised for transmission and distribution network protection. Because of the

variable short-circuit levels and load profile, the growing use of dispersed genera-

tors in distribution networks poses a problem for traditional relays. The analysis

may be performed in defective and standard settings using an adaptive Thevenin

circuit equivalent [34–36]. The circuit equivalent variation influences the time-

overcurrent relay characteristics: tripping time and pick-up parameters. This

determines the time it takes for the relay to trip and the current to trigger to

identify the fault location [29,37]. In [29], the method uses relay tripping time and

current pick-up characteristics tuned to the Thevenin equivalents. The pick-up

current is converted to impedance. Only the stepwise evolving Thevenin equiva-

lent is considered for transformation and adaptation based on the least square es-

timate. Examples include power networks operating in an island mode or setups

incorporating wind farms linked to the power grid. The Thevenin-equivalent-

based technique reduced tripping time and adjusted the pick-up current to the

equivalent impedance.

In [38] on ’the use of adaptive current protection scheme’ highlights the chal-

lenges encountered in current differential protection concerning speed, accuracy,

and sensitivity. This helps to detect the fault and the unreliability if such a

protection scheme arises if the shunt capacitance current is neglected in the line.

Also, errors may occur due to the core saturation with decaying DC.

A new approach for controlling restrictive areas for fast fault detection was
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introduced using the phasor approach for current differential protection with a

series compensated transmission line as a reference. The electromagnetic tran-

sient program simulation was used to analyse the results [39, 40]. In [41], the

Thyristor-controlled Series Capacitor (TCSC) was introduced as a high-frequency,

extra-high voltage transmission line protection device. The result shows that in-

troducing TCSC can affect the line if it fails to operate. The wavelet transform

uses transient protection to solve the problems caused by TCSC. The analysis

results demonstrated that the appearance of TCSC in extra-high voltage lines

is accurate. Another paper used an extreme learning machine combined with

the wavelet transform technique to test about 28,800 faults at different locations

by changing the inception angle, fault resistance, distance, load angle, and per-

centage compensation level. MATLAB Simulink was used to simulate the result,

indicating that the approach suits various systems and operating conditions [42].

2.5.3 Wavelet Transform Approach

The wavelet transform (WT) is a mathematical tool to analyse the power system

transient signals. It dilates a single prototype function to decompose a signal

into different scales with varying levels of resolution. It provides a local signal

representation in both the time and frequency domains. This wavelet transform

capability is used to locate, classify, and detect fault conditions. The basic idea

behind wavelet analysis is to choose an appropriate wavelet function known as

the ”mother wavelet” and then analyse it using shifted and dilated versions of

this wavelet [43]. In this method, the fault signals are transformed into various

frequency bands using the discrete wavelet transform and the Daubechies wavelet

transform, which may then be utilised to identify the faults [44,45]. These signals

can be represented in terms of both the scaling and wavelet function, as shown

in the equation 2.1 below;

f(t) = ΣnCJ
nΦt−n + ΣnΣ

J
j=0dj(n)2

j
2Ψ(2jt− n) (2.1)

Where CJ is the J level scaling coefficient, dj is the j level wavelet function.

Φ(t) is the scaling function, Ψ(t) is the wavelet function, J is the highest wavelet

level, and t is the time. Each wavelet is created by the scaling and translation

operations of the mother wavelet [43]. The continuous WT for a given signal x(t)

to the parent wavelet Ψ(t) is shown in equation 2.2.

CWTΨx(a, b) = Wx(a, b) =

∫ ∞

−∞
x(t)Ψa, b(t)dt (2.2)
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where Ψa, b(t) =| a | 12 Ψ( t−b
a
), a (scale) and b (translation) are real numbers [46].

For discrete-time systems, the discretion process leads to the time-discrete wavelet

series given in equation 2.3.

DWTΨx(m,n) =

∫ ∞

−∞
x(t)Ψm,n(t)dt (2.3)

Where Ψ.m, n(t) = a0
−m
2 Ψ

(
t−nboam0

a

)
, a = a0

m and b = nb0a0
m [46]. The wavelet

transform is a practical technique for classifying faults in a transmission line.

This is explained in [46]. It recommends a system utilising the wavelet technique

and current measurement to classify faults in the line. Analysis was carried out

using MATLAB under diverse fault conditions. The stability of the line was

tested using various fault criteria, and the results obtained were reliable. A pilot

wavelet was chosen using multi-resolution analysis (MRA) to check the signal at

multiple resolutions and frequencies, which is helpful for low-frequency signals.

In [47], an in-depth discussion of the wavelet transforms (WT). WT is a pop-

ular feature extraction method in various fault diagnostic systems. In practice,

discrete wavelet transform (DWT) is employed rather than continuous WT to

extract the properties of voltage and current data over several frequency bands

(CWT). Thus, choosing which mother wavelet (MW) and decomposition level to

utilise before producing features using DWT is critical. In [48], a comprehensive

analysis of several mother wavelets for fault detection and classification and sug-

gested mother wavelets for fault identification. Although multiple sample rates

were used, the frequency boundaries were more essential than the decomposition

level. Coefficients are chosen as a feature as seen in [49–51] at various detail levels.

In [52], the wavelet transform is used to decompose measured signals and extract

the most relevant features, which aids in Support Vector Machine (SVM) train-

ing, notably in terms of achieving superior classification performance with high

accuracy. After collecting functional characteristics from the measured signals,

three SVM classifiers are used to make a fault or no-fault judgement on any phase

or many phases of a transmission line. WT can also be used as a hybrid method

for fault classification and location, as seen in wavelet and Artificial Neural Net-

works (ANN) [53–55], wavelet and fuzzy-logic technique [56–60]. Also, Wavelet

and Neuro-fuzzy technique [61,62]. In [63], WT was used for data extraction and

processing for a deep learning-based intelligent approach for fault detection and

classification in transmission lines.
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2.5.4 Fuzzy Logic Technique

Zadeh [64] invented fuzzy theory in the 1960s, but it has only recently become

popular for fault detection and transmission line protection. Fuzzy logic systems

are similar to humans’ long-standing thinking abilities. It provides a trade-off

between accuracy and importance, a skill to human data interpretation abilities.

Fuzzy Logic (FL) is a soft computing method that depends on set theory percep-

tions relating to fuzzy systems, IF-THEN rules, which are a collection of linguistic

and reasoning-based assertions. The method of generating a non-linear mapping

between an input and an output envisioned using fuzzy logic is known as fuzzy

inference. Any FIS comprises four main units: fuzzification, rule base, inference

engine, and defuzzification. The fuzzification unit’s goal is to execute a mapping

from the scalar-valued input vector to the fuzzy matching set. The rule base is

linguistic and user-specified. If the rules have several antecedents, various fuzzy

operations produce a single firing point in the inference engine. The defuzzifi-

cation component converts the fuzzy set output into crisp values comprising the

FIS resulting output.

Various fault scenarios were thoroughly examined in [65]. Aside from exam-

ining symmetrical and unsymmetrical fault instances, a detailed examination of

severe fault scenarios such as evolving faults, high impedance faults, and faults

near the boundaries was conducted. The Mamdani-type FIS was designed using

the Fuzzy logic toolbox in MATLAB. The following are the stages for designing

the FIS system:

1. Define input and output: In this case, inputs are the essential components

of voltage and current signals, and output is the circuit breaker’s trigger

signal.

2. Create a triangle membership function corresponding to the high, middle,

and low input and output signal ranges.

3. Develop rules: For example, if the voltage and current signals are low, the

trigger signal will also be low.

4. Simulation of the final system.

The block diagram in Figure 2.7 shows how voltage and current across each circuit

component are measured for possible overcurrent and short circuit faults in major

components. A fuzzy controller is created for each component. The number of

monitored signals N is lowered as required, with voltages having precedence over

currents since they are less costly and easier to measure. P values, such as mean
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Figure 2.7: Block diagram of a fuzzy logic fault detection pathway

or RMS value, would then be determined for each N signal. These values are then

supplied into fuzzy controllers, each devoted to a distinct failure mode. Fuzzy

controllers use the P amounts per fault mode to provide an output value that

is compared across all controllers. The correlation block in Figure 2.7 picks the

highest value from all fuzzy controller outputs and declares a defect identified.

When a failure is detected, redundant components are activated to replace the

faulty component as required [66].

2.5.5 Real-Time Protection With Phasor Measurement

Unit Technique

Monitoring the transmission line and its parameters (resistance, inductance, ca-

pacitance and shunt conductance) is necessary for transmission line protection

[67]. The synchrophasor-based real-time transmission line parameter monitors

the system by tracking the parameter using an estimation algorithm model to

get accurate data from the Network. Real-time data were gathered from the util-

ity network and simulated with the new algorithm proposed. It was observed that

it performed better under unfavourable conditions. However, some of the tradi-

tional methods, such as the supervisory control and data accusation systems [68],

digital fault recorders [69], and travelling wave fault locators [70], were also used.

Other monitoring systems are based on informing the operator of the problem

and fault in the Network, so the introduction of multi-agent systems has an intel-

ligent response and self-troubleshooting of the system using MATLAB/Simulink

to simulate the model. When an outage is detected, the system can disconnect

the transmission line, clear the fault and provide flexible protection alternatives
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and fast response to a fault.

Another essential technique in the monitoring transmission line is the pha-

sor measurement unit (PMU) technique. This device produces the harmonised

measurement of real-time phasor of voltage and current. Harmonisation is ac-

complished by sampling voltage and current waveform using global positioning

system (GPS) timing signals. PMU provides the magnitude and phase angle of

the system in real-time [71]. In [72], it proposed a fault-monitoring methodology

for alternative power grid monitoring. This module can classify and detect faults

in a transmission line. This is achieved using PMU while studying the equivalent

power factor angle (EPFA) variation to help detect a fault in the Network. A fault

location method for two-terminal multi-section composite transmission lines that

combine overhead lines and underground power cables that employ synchronised

phasor measurements acquired by global positioning system (GPS)-based phasor

measurement units (PMUs) or digital relays with embedded PMUs or fault-on

relay data synchronisation algorithms. A unique fault section selector is expected

to pre-select the fault line section [73]. The expected approach can find a prob-

lem on an overhead line or an underground power wire. The selected approach

has a strong theoretical foundation regarding computational convolution and is

undeviating and uncomplicated [54].

Figure 2.8: A Block Diagram of Fault Classification Technique Using The PMU

Figure 2.8 below represents a block diagram of a western system coordinating

council (WSCC), which was modelled as a case study in [74]. The system line

parameter was represented in [72]. The transmission line connected to buses 4 and
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5 is taken as a case study. The fault was introduced at separate intervals of 20 km

from bus 4. The equivalent power factor angle of generator one was selected for

fault monitoring at a reasonable condition and had a constant value. In contrast,

a line-to-ground fault occurs in loops 4-5 (20 km at bus 4) at 0.04 s with R of

Zero ohms and fault inception angle (FIA) of 00. Also, [75] analyses the deviation

of transient power and the relationship between the network specification during

the fault. This is accomplished by aligning voltage and current at both ends of

the line to discover an internal and external fault and a DC fault.

Comparing the different protective schemes in transmission line

The various conventional protective schemes have advantages and disadvantages,

as seen in Table 2.2 based on techniques and configuration of their fault types

and methodology used in fault classification, detection and localisation. Also,

table 2.3 compares the input and output data needed for simulations or training

of the various techniques.

2.6 Machine Learning and Artificial Intelligence

Technique

Several machine learning and AI techniques have been used in fault detection,

classification and localisation. These techniques are shown in Figure 2.6 and will

be explained in detail.

ML is a family of algorithms that, unlike traditional or heuristic algorithms,

can learn from datasets without being explicitly coded [85]. They have been used

in various domains, including natural language processing and computer vision.

They are presently gaining popularity in wireless communications for the follow-

ing reasons [28, 86, 87]: For starters, they may discover hidden user behaviours

or network features from past data that cannot be analysed analytically. Second,

unlike heuristic algorithms, they can adapt to changing network circumstances

to optimise network performance. Finally, they need little human intervention

in the deployment process, making them a catalyst for network automation or

self-organizing networks. They are generally classed according to the quantity

and kind of supervision they get throughout their training time. ML algorithms

are classified into six categories: supervised learning (ML), unsupervised learning

(UL), semi-supervised learning, deep learning (DL), reinforcement learning (RL),

and federated learning (FL). However, only supervised techniques are presented

in this thesis since these methods are used for defect detection, classification, and
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localisation.

2.6.1 Artificial Neural Network Technique

Artificial Neural Networks have traditionally been used with great success in

various sectors of fault analysis. This is one of the most extensively utilised

artificial intelligence technologies, critical in constructing a robust power system

failure management model. An ANN model typically has three primary layers:

input, hidden, and output. The input layer receives data or signals from the

model, which can be fault current or voltage sent into the model. The hidden layer

extracts patterns associated with the analysed process or system. The output is

in charge of creating and displaying the final network output. These layers handle

most internal network processing, which involves the results processed from other

layers. ANN has several advantages that allow it to be widely used in developing

fault management models that are exceptionally effective [88].

Figure 2.9: A multi-layer Artificial Neural Network model

Figure 2.9 is a multi-layer neural network, and X1, X2, ..., Xn represents the

external source input signal which represents the faulty current and voltage sig-

nals. W1,W2, ...,Wn represent every input variable’s synaptic weights and enable

the evaluation of their importance to the model’s functionality. for a fixed train-

ing dataset of (x(1), y(1)), ..., (m, y(m)) of m training sample, and using the batch
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gradient decent, the cost function for a single dataset is given by equation 2.4

J(W, b;x, y) =
1

2
∥ b(x)− y ∥ (2.4)

while for a training set of m sample is defined as shown in equation 2.5 and 2.6

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

s∑
i=1

l

sl+1∑
j=1

(W
(l)
ji )

2 (2.5)

=

[
1

m

m∑
i=1

(
1

2
∥ hw, b(x(i)

)
− y(i) ∥2)

]
+
λ

2

nl−1∑
l=1

s∑
i=1

l

sl+1∑
j=1

(W
(l)
ji )

2 (2.6)

where J(W, b) is an average sum of the square error term and equation 2.6 is the

weight decay or regularisation term that decreases the weight’s magnitude and

helps prevent overfitting. Also, λ is the weight decay parameter.

Σ is the linear aggregator that combines all input signals weighted by synaptic

weights to generate an activation function. θ Is the activation threshold or bias

used to identify the suitable point that the linear aggregator makes. U denotes

the activation potential. If this value is positive, then U ≥ θ, the model has an

excitatory potential; otherwise, it will be inhibitory. g is the activation function,

while y is the output signal. The result produced by ANN, as proposed by

McCulloch and Pitts [88], is represented by equation 2.7

U =
n∑

i=1

w1.xi − θ (2.7)

And y = g(u). Therefore, the ANN gives the model a set of values that reflect

the input variable by multiplying each neuron input from its associated synaptic

weight, calculating the activation potential from the weighted sum of the input

signal, and removing the activation threshold. It also employs an appropriate

activation function in the activation potential to restrict neuron output and as-

semble it by applying the neural activation function. The error of a neuron j in

the output layer Y is given as shown in equation 2.8

Ej =
1

2
(Rj − Yj)

2 (2.8)

Where Rj is the predetermined value, and the total error E of the output layer

is shown in equation 2.9

E = ΣjEj =
1

2
Σj(Rj − Yj)

2 (2.9)
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To reduce the error E in terms of the weight change ∆Wkj and using the delta

rule to integrate the learning rate α in addition to the gradient descent method

strategies for defining weight change, as shown in equation 2.10

∆Wkj = −α. ∂E
∂Wkj

; 0 < α ≤ 1 (2.10)

Figure 2.10: A flow chart for ANN algorithm for fault detection [89,90]

The weight change will be negative if the gradient is positive and vice versa

if the gradient is negative. As a result, a negative symbol has been placed on the

right side. It has been demonstrated that backpropagation learning with enough

hidden layers may estimate any nonlinear function to arbitrary precision. As

a result, the backpropagation learning neural networks are excellent for signal

prediction and system modelling [91]. The flow chart in Figure 2.10 describes

how the algorithm is executed from the data extraction to fault detection. This

is achieved by:
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1. presenting a set of values to the neuron, representing the input variables.

2. Each neuron’s input should be multiplied by the corresponding synaptic

weight.

3. The activation potential created by the weighted sum of the input signals

is obtained, and the activation threshold is subtracted.

4. using a suitable activation function to reduce the output of the neurons.

5. Utilize the neural activation function in the activation potential to compile

the output.

The multiple layers comprise one or more hidden neural layers and solve vari-

ous issues, such as function approximation, pattern classification, system identifi-

cation, process control, optimization, and robotics [92]. The multi-layer typically

has three classes of layers: an input layer, which is used to transfer the input vec-

tor to the network, hidden layers of computation neurons; and an output layer,

which is made up of at least one computation neuron and produces the output

vector [93].

The ANN has been used in different literature for fault detection, classifica-

tion and localisation. In [94], the ANN was used in power systems for pattern

recognition and classification to detect quantities like noise absorption and fault

tolerance. These will not affect the variation in system parameters, which include

system voltage and line current. This technique was applied in the power system,

and positive feedback was attained [95]. Also, in [96], A 230 kV, three-phase, the

two-machine power system was used to analyse the measurement of the transmis-

sion line problem. The training pattern was developed by simulating the various

faults on the Network. Parameters like fault location, fault type, resistance and

initiation time were varied to achieve the practice template to cover many fault

conditions. A total of 3600 models and a transmission line distance of 100 km

were initiated in the training ANN distance relay. Some of the significant areas

of ANN that can be implemented include fault detection and classification, and

in this method, a three-phase voltage and current are fed at one end. The feed-

forward ANN propagation design was introduced to identify and classify faults

in the three phases. These faults are simulated with diverse parameters to test

the efficiency of the process using MATLAB [97].

In another article titled application of ANN in protective relaying of the trans-

mission line, the writer used the ADALINE model to explain the use of ANN in

transmission line protection, considering the distance relay. The model could

locate the operating point correctly in the decision space. The ANN is used



CHAPTER 2. LITERATURE REVIEW 35

as a conversational relay with two inputs: current and voltage, and the sug-

gested quantity can be used to model the microprocessor framework [98]. Also,

in [99,100], an Investigation of Faults in the Nigerian Power System Transmission

Line Using ANN focuses on performing three functions: detection, classification,

and isolation of faults. It detects two signals and chooses the best signal with the

least error as output; it also classifies signals based on preference and isolates the

signal with the most severe fault.

ANN technique has been used to model the Nigerian Network. The ar-

ticle evaluated the performance of ANN-based relays linked to both ends of

the line using the feedforward non-linear managed backpropagation method.

PSCAD/EMTP software was used to model the Network. The fault was gen-

erated from both sides of the transmission line, and two different power sources

were fed into the system with different fault inception angles, locations, and re-

sistance. The fault current will be analysed and used for the testing and training

of data using MATLAB. The result was simulated and confirmed using data from

a microprocessor-based Relay connected to the Network. This shows that ANN

accurately identifies, classifies, and localises the genuine fault on the transmission

line more precisely [99]. The analysis was also done using regression analysis and

the mean square error (MSE). Regression analysis is used to test and analyse the

system and the output of the system. If regression is 1, there is a closed relation-

ship between the output and target, but if regression is zero, it means that the

system has not yet converged, and their difference is still huge, which shows that

the Network needs to be checked for faults. On the other hand, the MSE tests

the average square difference between normalised output and the target. When

MSE is zero, it shows no error in the process, but the error is higher if it is more

significant than 0.4. Therefore, for a sound system, MSE should be within the

range of 0.0000 to 0.4000 [100]. Also, in [101] backpropagation technique was used

to detect and identify the fault on the Network. It was trained with conjugate

gradient backpropagation with high accuracy and low percentage error.

2.6.2 Support Vector Machine Classifier Technique (SVM)

SVM, a supervised ML approach capable of solving regression and classification

issues, is one of the most extensively used classification algorithms [102]. Its

benefits over other ML methods include being quick and easy to build, having

minimal processing burden, and providing excellent accuracy even with little

data. SVM locates a hyperplane in an N-dimensional space, where N is the

number of attributes used to classify the data. SVMs can classify faults in TLs

and use an alternate loss function to determine fault locations. Depending on the
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dataset, SVM employs linear or non-linear kernels such as polynomial, Gaussian,

and radial basis function (RBF) [103]. It can also solve multi-class classification

problems, and it helps to minimise cost function (F) as shown in equation 2.11

[104–106].

F =

[
1

n

n∑
i=1

max(0, 1− yi(w
Txi − b))

]
+ λ ∥ w ∥2 (2.11)

Where yi is the ith target, w is the weights matrix and wTxi−b is the ith output,

and λ is the weight decay enhances the margin size and keeps the data point xi

on the correct group.

Figure 2.11: Schematic of 11 transmission line fault classification using SVM

Figure 2.11 shows a hint of the SVM approach of fault classification. The black

dotted lines in this figure represent the hyperplanes that divide the fault types,

shown in different forms. The broad grey lines represent class margins, whereas

the solid black lines represent the maximum margin decision hyperplane.

2.6.3 Supervised Learning Techniques

Supervised learning is the process of learning a mapping between a collection

of input variables X and an output variable Y and then using that mapping to

predict the outcomes of unseen data. The most significant approach in machine

learning is supervised learning, which is especially crucial in processing multi-

media data. Supervised learning techniques generate models from this training
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data, which may be used to categorise additional unlabeled data [107,108]. This

research will be limited to a supervised learning algorithm to classify, detect and

locate faults on the transmission lines.

Classification Technique

The classification methods are used to categorise the input data. The classifiers

generate a discrete answer since they only estimate the class of unseen data based

on the class labels in the previous dataset. Input data is classified using classifica-

tion models, fault classification, voice recognition, and credit scoring are examples

of typical uses [109]. A summary of supervised learning-based techniques used in

fault detection and classification is shown in Table 2.4 below, showing the fault

type, an application used for the simulation and the type of fault analysed.

Fault Localisation Techniques

Accurate and exact fault location is critical for expediting transmission line

restoration, reducing outage duration, and significantly enhancing system de-

pendability. Fault location is defined as physically identifying the location of a

fault in a power system. Fault location in transmission lines is becoming more

critical in power system research [120,121]. Different approaches have been used

to solve transmission line fault localisation, and the supervised learning-based

methods are summarised in Table 2.5 below.

Fault Detection Technique

Normally, fault detection comes before classification and location estimate. The

extracted characteristics are used to identify faults. When using a self-governing

approach for fault detection, the classifier and locator are triggered only when a

defect has been definitively discovered. Furthermore, there is no need to develop

fault detection algorithms when classifiers and locators can differentiate between

normal and abnormal circumstances [45]. The various supervised learning-based

fault detection techniques are shown in Tables 2.4 and 2.5, enumerating the fault

type, software used for fault data extraction, and the application area covered.

2.6.4 Research Gap on Transmission Line Protection Tech-

niques

Recent literature on fault detection, classification, and location in transmission

lines shows that much research has been done on the topic. However, this research
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Table 2.5: Machine Learning-based Fault Localisation Techniques
ML Technique
Used

Fault
Type

Application
Area

Software
Used

Output Ref.

PCA
Three
Phase
Fault

220 kV Line PSCAD
Localisation,
Detection

[122]

GPR, SVM
Three
Phase
Fault

132 kV
DigSILENT
Power Fctory

Localisation
detection
Classification

[123]

PNN
Three
phase
Fault

400 kV,
300 km

MATLAB
Localisation
Detection
Classification

[124]

CNN, DQN L-G Fault
230 kV,
72 km

-
Localisation
Detection

[125]

ACNN
Three
Phase
Fault

IEEE-33
Bus
System

MATLAB
Localisation
Detection
Classification

[126]

ANN, GPR
High
Impedance
Fault

22 kV Power World
Localisation
Detection
Classification

[127]

SVM
Three
Phase
Fault

400 kV ATP
Detection
Localisation
Classification

[68]

ELM L-G Fault
500 kV,
300 km

MATLAB Localisation [128]

GCN, PCA +
SVM

L-G,L-L
LLG Fault

EEE-123
Bus
System

Open DSS Localisation [129]

Bagging,
Boosting,
RBFNN

Three
Phase
Fault

750 kV,
600 km

MATLAB
Localisation
Classification
Detection

[130]
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has identified some drawbacks and will be enumerated. Two major techniques

have been used to analyse this concept: conventional and machine learning tech-

niques. The conventional technique include distance relay approach [131], the use

of mobile robot [32,132–135]. Fuzzy logic approach [56,57,84], wavelet approach

[46], Neuro-fuzzy technique, wavelet and fuzzy approach [62,136]. While the ma-

chine learning approach includes the Artificial Neural Network (ANN) [99, 137],

Support Vector Machine (SVM) [1,138], Decision Tree (DT) [139], Principal Com-

ponent Analysis (PCA) [77]. All these methods have been successful based on

their accuracy and precision of classification and localisation of faults. However,

there is some hindrance which will be discussed in the literature. Some tech-

niques, like the Wavelet Technique WT, are useful when time and frequency data

are needed and are sensitive to noise and harmonics. It also requires a high

sampling rate and is time-consuming because getting a referred wavelet and the

number of decomposition is done by trials. WT and ANN are predominantly

used for fault detection and classification [55].

Many hybrid methods, such as S-transform and ANN, have been combined to

analyse faults in different scenarios. This method was used to detect and classify

faults on the transmission line. Though the ANN and SVM have produced good

results in identifying faults, they need a large volume of data for their training,

making it complex to handle [140].WT detects faults accurately and instantly,

though it is difficult to differentiate between the various fault conditions [141].

Although most of these methods have been used recently, some challenges exist,

such as not being applicable for high-frequency signals and high computational

complexity for Hilbert-Huang transform HHT [142]. Using Principal Component

Analysis in machine learning is a fast and straightforward method that minimises

re-projection error and is immune to noise. However, the convergence matrix is

always large if the number of dimensions exceeds the number of data points,

making it challenging to obtain the convergence matrix [143]. The DT is another

technique used in fault classification, though it uses RMS current and DWT to

generate data for the fault classification. The classifier performance of different

parameters is used to obtain the best decision tree classification. [139].

Also, in [141], three ANN approaches were compared to each other for fault

classification. They include PNN, Back Propagation Neural Networks (BPNN)

and Radial Basis Function Neural Networks (RBFNN). These methods had their

drawbacks because they were used on faulty voltage and current signals and fo-

cused more on the time and speed of execution of the training. Although most of

these methods have been used recently, some challenges exist, such as not being

applicable for high-frequency signals and having high computational complexity,
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as found in Hilbert-Huang Transform (HHT) [144]. The Convolutional Neural

Network (CNN) is another technique used in fault classification with positive

output in accuracy and speed. Still, the computational cost for offline analysis

is relatively high [143]. Principal Component Analysis (PCA) in machine learn-

ing is a fast and straightforward method that reduces re-projection error and is

immune to noise. It is also used to map data from multidimensional space to

low dimensional subspace to mitigate dimensionality, where the variance of the

data can be perceived in the best way possible. Also, the Kernel Principal Com-

ponent Analysis (KPCA) and the SVM are used for real-time fault diagnosis of

high-voltage circuit breakers, where a sample reduction algorithm based on simi-

larity degree function is used to analyse the similarity between samples to detect

faults [145]. Dynamic Kernel Principal Component Analysis (DKPCA) [146].

However, suppose the number of dimensions exceeds the number of data points.

In that case, the convergence matrix is always significant, making it challenging

to obtain the convergence matrix for data with varying properties and capabili-

ties [143] and [79].

Deep learning intelligent diagnosis techniques have also been used in fault

classification, such as the Wavelet Packet Distortion and Convolutional Neu-

ral Network [147]. It applies the wavelet packet distortion to generate a faulty

data sample, while the convolutional neural network is used to classify the fault

into different categories. However, the wavelet packet function uses Daubechies

wavelet (DB4) for extraction, which does not have a theoretical justification. The

Adaptive Intraclass and Interclass Convolutional Neural Network (AIICNN) [148]

is applied in the algorithm to enhance sample distribution differences by apply-

ing designed intraclass and interclass constraints. While the 1-D Convolutional

Neural Network (1dCNN) has an activation function added to it to enlarge the

heterogeneous distance and reduce the homogeneous distance between samples

for proper classification. Normalized Conditional Variational Auto-Encoder with

Adaptive Focal Loss (NCVAE-AFL) are also used to classify faults into different

categories [149]. In [14], the convolutional Neural Network and Long Short Term

Memory (CNN-LSTM) were used to identify and locate fault using the frequency

response analysis (FRA) to extract the fault. This method is used to detect faults

timely and accurate.

Each of the methods mentioned above has disadvantages and limitations.

Some of the main noticeable observations are the inability of most articles to

extensively explain fault classification in terms of fault clearing time, thereby

making it difficult to isolate or take on significant fault repairs within the shortest

possible time. Also, discrete wavelet transform (DWT) and Decision Tree [150]
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have limited time resolution capability and low performance for high-performance

faults. Wavelet and Data mining [150], K- Nearest Neighbours (KNN) and De-

cision Tree [151], are limited to the fault classification technique only without

considering the speed and precision of the result. In [152], fault classification

was not determined in the S-transform technique, and the effect of noise in

the transmission line was not considered in the model [153]. Differential and

Hibert-Huang transmission methods are expensive and have no-fault directions.

In addition, for fault classification, the mathematical morphology and Recursive

Least-square (RLS) methods [154] involves using a mathematical morphology-

based fault feature extraction scheme. This method has high calculation and

technical standards that require a professional to implement. Furthermore, they

use either single phase-to-ground or double phase-to-line fault data for their train-

ing [77, 144, 155]. Another shortfall of most methods is the inability to consider

noise and disturbance in the transmission line networks since they are inevitable.

This method will also address the effect of noise signals and disturbances and

how they can be reduced or eliminated for optimal system performance and the

accuracy of results.
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Table 2.6: Comparing the different protection schemes

Protection

Type
Method Used Advantages Disadvantages Ref.

Series

compensated

TL

The use

of KR9 1

and EM9 1

Relay

Initiation

of the trip

after fault.

No-fault

identification
[156]

Current

differential

protection

dynamic

phasor and

series

compensated

TL

Speed and

accuracy in

detecting

faults

No-fault

correction

and isolation

[40]

Thyristor-

controlled

series

capacitor

TCSC)

Fault location

and

identification

fault isolation

No-fault

isolation
[41]

Wavelet

Approach
WT and DWT

Fault

classification

and detection

No-fault

isolation

and Relay

reclose

[157]

ANN

Approach

Uses ANN,

Distributed

and hierarchal

Neural Network,

Backpropagation

Fault

classification,

detection and

identification

No-fault

isolation
[75]

Fuzzy Logic

Approach
Fuzzy logic

Fault

Identification

No-fault

isolation

and reclose

[62]

Fuzzy Neural

Network

Approach

ANN, Fuzzy

logic and

Fuzzy

set approach

Fault

classification

and

Identification

No-fault

correction
[84]

Wavelet and

ANN Approach

DWT,

ANN and

CWT

Fault

Identification,

classification

and

localisation

No-fault

correction
[158]
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Protection

Type

Method

Used
Advantages Disadvantages Ref.

Monitoring

Robot

Technique

Sensor

Robot

Fault

Location and

mechanical or

cable danage

cannot detect

symmetrical

and

unsymmetrical

fault

[84]

PMU

Technique

EPFA and

GPS

Detects exact

location and

Fault

Classification

No fault

classification

and fault

correction

[67,72]

Transcient

power

measurement

technique

PMU

fault

identification

and isolation

No fault

correction
[159]

Distance

Relay

Technique

Distance relay

Microprocessor-

Based distance

relay

fast and

accurate

detection of

fault and

isolation

No accurate

monitoring of

fault

location

[39]

2.6.5 Comparing the Tripping and Settling Time of ANN

and Fourier Technique

Comparing the tripping time of the protective Relay at different kilometres using

ANN and the Fourier Algorithm in Tables 2.8 highlights the time it takes the

Relay to trip and settle back to normal. About 32 cases were analysed for all the

voltage levels and line lengths. At the end of every voltage level, it shows the

percentage of faults where the Fourier algorithm is slower than the ANN [160].
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Table 2.8: Comparing the Medium time of tripping in milliseconds for ANN and

Fourier algorithm technique

Voltage level Algorithm 50 km 74 km 150 km

138 kV

ANN 6.88 8.16 6.90

Fourier Algorithm 14.20 15.63 13.70

No. of Cases 97 100 100

345 kV

ANN 11.40 10.55 9.75

Fourier Algorithm 16.70 16.20 15.40

No. of Cases 100 100 100

500 kV

ANN 7.60 6.77 6.17

Fourier Algorithm 13.06 12.43 12.56

No. of Cases 97 97 97

Table 2.9: Comparing the Medium time for settling in milliseconds for ANN and

Fourier algorithm technique

Voltage level Algorithm 50 km 74 km 150 km

138 kV

ANN 12.28 13.65 12.17

Fourier Algorithm 17.97 18.75 18.12

No. of Cases 94 97 100

345 kV

ANN 17.15 17.57 18.46

Fourier Algorithm 19.50 18.30 18.53

No. of Cases 75 69 100

500 kV

ANN 36.85 35.03 44.42

Fourier Algorithm 16.85 17.00 16.93

No. of Cases 41 47 35

From Table 2.9, the ANN-based algorithm performs better than the Fourier

algorithm for transmission lines with a range of 345 kV. Also, this is more reliable

than the ANN-based algorithm for cases where the voltage level of transmission

lines is higher than 345 kV. Also, the impact of fault resistance on the accuracy

of the evaluated impedance was analysed. It was discovered that the reactance

and the fault resistance of the measured Relay depend on the line to the fault

load [160]. The fuzzy logic-based protection system is easy to implement, and the

results are accurate under the assumption of fault distance, fault resistance, line

length and pre-fault power flow. Although accuracy cannot be guaranteed in large

networks, the fuzzy-neuro approach is introduced because of its reliable relaying

algorithm during the execution and classification of the fault. This sensitive
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change requires a massive dataset for training and many neurons, which affects

their accuracy and speed in protecting an extensive network [136].

2.7 Summary of Literature Review

Considering the benefits and drawbacks of the aforementioned classifiers, it is

possible to conclude that machine learning-based approaches offer preferable solu-

tions to Transmission line faults detection, classification, and localisation estima-

tion issues. The ELM Supports noisy datasets, simple implementation, very quick

training time, high prediction accuracy, and faster performance speed than Feed-

forward neural network(FNN) [161] and other conventional and hybrid methods.

The hybrid method does not have a robust system and inefficient noisy dataset

handling, slow training and testing process, a heavy computational load and

sensitivity to feature selection methods.

A detailed evaluation of Machine Learning approaches for faults detection,

classification, and localisation in transmission lines has been provided. These

approaches have been classified into three categories: conventional, hybrid, and

machine learning. The core concept, essential equations, and significant papers

are presented and summarised for each approach. In this chapter, the signifi-

cance of this survey is addressed in comparison to the current review studies.

Moreover, the benefits and drawbacks of machine learning methodologies have

been thoroughly examined and summarised to give a clear road map for future

study. Overall, research contributions in modelling transmission line protection

schemes have significantly improved protection schemes’ efficiency, accuracy, and

reliability. These advances have played a critical role in ensuring power systems’

safe and reliable operation.



Chapter 3

TL Fault Classification using

CatBoost

3.1 Introduction

The electrical power system consists of different segments interacting with each

other, including generation, transmission, and distribution. The transmission

line is an integral part of the power system since it transfers electricity from the

generating station to the distribution and the end-users. These components are

interconnected through the transmission lines, which are subject to faults and

cannot be controlled manually except through advanced techniques [1]. A fault

in a transmission line causes significant damage to the entire power system’s

reliability, affecting the power output, loss of installations, power outage, and

system collapse. It is imperative to design a model that will classify and locate this

fault with great speed, accuracy, and precision to isolate the fault immediately

identified for proper fault protection and management.

In a transmission line, fault classification is essential for protecting the net-

work. Therefore, adequate measures must be implemented to achieve maximum

protection to avert system collapse and energy output. Faults can be categorised

in a power system based on incipient, unpredictable faults [162]. Incipient faults

are transient, while unforeseen faults occur due to human interference, lightning,

and extreme weather conditions directly affecting the entire network.

Researchers have been brainstorming the best way to protect transmission

lines from fault in recent years. To protect the transmission line, the faults must

be accurately classified according to their types to quickly isolate the line and pre-

vent system collapse [163]. However, feedback generated from fault classification

can significantly assist in detecting fault location for fast clearing time to restore

power [164]. In recent literature, fault classification using machine learning has

47
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been discussed, such as; Artificial Neural Network (ANN) [99, 137, 160, 165, 166],

Support Vector Machine (SVM) [1, 138, 162], Decision Tree (DT) [167] and the

Probabilistic Neural Network (PNN) [141].

All these methods have been used for the classification of faults. However,

some techniques, like the wavelet technique (WT), are helpful when time and

frequency data are needed, although this technique is sensitive to noise and har-

monics and requires a high sampling rate. It is time-consuming because getting

a referred wavelet and the number of decomposition is done by trials. Also, al-

though WT detects faults accurately and instantly, it is difficult to differentiate

between the various fault conditions [141]. WT and ANN are predominantly

used for fault detection, and classification [55]. Many hybrid methods have been

combined to produce good results; s-transform and ANN methods were used to

classify faults on the transmission line. Though the ANN and SVM have pro-

duced good results in identifying faults, they need a large volume of data for

their training, making them complex to handle [124]. Also, in [141], three ANN

approaches were compared to each other for fault classification. They include

PNN, Back Propagation Neural Networks (BPNN) and Radial Basis Function

Neural Networks (RBFNN). These methods produced good and accurate results.

However, they were used on faulty voltage and current signals and focused more

on the time and speed of execution of the training. Although most of these

methods have been used recently, some challenges exist, such as not being ap-

plicable for high-frequency signals and high computational complexity, as found

in Hilbert-Huang Transform (HHT) [144]. The Convolutional Neural Network

(CNN) is another technique used in fault classification with positive output in

accuracy and speed. Still, the computational cost for offline analysis is relatively

high [143]. Principal Component Analysis (PCA) in machine learning is a fast

and straightforward method that reduces re-projection error and is immune to

noise. It is also used to map data from multidimensional space to low dimen-

sional subspace to mitigate dimensionality, where the variance of the data can

be perceived in the best way possible. Also, the Kernel Principal Component

Analysis (KPCA) and the SVM are used for real-time fault diagnosis of high

voltage circuit breaker, where a sample reduction algorithm based on similar-

ity degree function is used to analyse the similarity between samples to detect

faults [145] and Dynamic Kernel Principal Component Analysis (DKPCA) [146].

However, suppose the number of dimensions is greater than the number of data

points. In that case, the convergence matrix is always significant, making it chal-

lenging to obtain the convergence matrix for data with varying properties and

capabilities [143] and [79].
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Deep learning intelligent diagnosis techniques have also been used in fault

classification, such as the Wavelet Packet Distortion and Convolutional Neu-

ral Network [147]. It applies the wavelet packet distortion to generate a faulty

data sample, while the convolutional neural network is used to classify the fault

into different categories. However, the wavelet packet function uses Daubechies

wavelet (DB4) for extraction, which does not have a theoretical justification. The

Adaptive Intraclass and Interclass Convolutional Neural Network (AIICNN) [148]

is applied in the algorithm to enhance sample distribution differences by apply-

ing designed intraclass and interclass constraints. While the 1-D Convolutional

Neural Network (1dCNN) has an activation function added to it to enlarge the

heterogeneous distance and reduce the homogeneous distance between samples

for proper classification. Normalized Conditional Variational Auto-Encoder with

Adaptive Focal Loss (NCVAE-AFL) are also used to classify faults into different

categories [149]. In [14], the convolutional Neural Network and Long Short Term

Memory (CNN-LSTM) were used to identify and locate fault using the frequency

response analysis (FRA) to extract the fault. This method is used to detect faults

timely and accurate.

Each of the methods mentioned above has disadvantages and limitations.

Some of the main noticeable observations on this subject did not focus more

on fault classification in terms of fault clearing time, thereby making it difficult

to isolate or take on significant fault repairs within the shortest possible time.

Also, discrete wavelet transform (DWT) and decision Tree [150] have limited time

resolution capability and low performance for high-performance faults. Wavelet

and Data mining [150], K- Nearest Neighbours (KNN) and Decision Tree [151],

are limited to the fault classification technique only without considering the speed

and precision of the result. In [152], fault classification was not determined in the

S-transform technique, and the effect of noise in the transmission line was not

considered in the model [153]. Differential and Hibert-Huang transmission meth-

ods are expensive and have no-fault direction. In addition, for fault classification,

the mathematical morphology and Recursive Least-square (RLS) methods [154]

involves using a mathematical morphology-based fault feature extraction scheme.

This method has high calculation and technical standards that require a profes-

sional to implement.

Researchers have widely used the machine learning method due to the in-

creased involvement of communication and computation in transmission sys-

tems [154]. Research shows that most techniques use a smaller data set to

train their algorithm, giving high-accuracy results [90]. Also, they use either

single phase-to-ground fault, or double phase-to-line fault data for their train-
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ing [77, 144, 155]. Another shortfall of most methods is the inability to consider

noise and disturbance in the transmission line networks since they are inevitable.

This method will also address the effect of noise signals and disturbance and how

they can be reduced or eliminated for optimal system performance and accuracy

of results [158].

Due to the shortcomings of the different algorithms and models discussed

in the literature on fault classification, the CatBoost classifier algorithm is pro-

posed for training fault data from single-phase, double-phase, and three-phase-to-

ground faults. Twelve data-sets types will be used for fault classification, and the

CatBoost classifier will train the data. This classifier is proposed for its accuracy,

speed and ability to train a multi-data-set of a transmission line fault within the

shortest possible time. The model is used because it can handle heterogeneous

data with categorical features, is sensitive to hyper-parameters, and can handle

noisy data [168]. Also, the uniqueness of the proposed model is the ability to

train noise data without affecting the accuracy and performance of the system.

The fault data will comprise four fault conditions in different scenarios, and the

analysis is divided into two major parts. First is the network modelling to ex-

tract fault cases from the transmission line using Matlab/Simulink. The next is

to detect and classify the faults using the data generated from the simulations to

detect and classify faults with the help of a trained classifier [112].

3.2 Modelling of 330 kV, 500 km Transmission

Line

Machine learning needs many data-sets for practical training, and those data-sets

are obtained from the model of a 330 kV, 500 km transmission line network shown

in Figure 3.1 below. The parameters from Tables 3.1 and 3.2 are used to create

the model in Simulink as in Figure 3.2. This model generates fault data of single

line to ground, double line to ground and three-phase to ground fault. This data

is used to train machine learning for fault classification. It will also be applied to

validate the data for accuracy, Root Mean Square Error (RMSE) and precision

of the result.

Figure 3.1 represents a three-phase, 330 kV transmission line model developed

and implemented in this article. It consists of a Nigerian 330 kV transmission line

which cut across a 500 km distance and was modelled using Matlab/Simulink.

The ground resistance used is 0.01 Ω based on the IEEE recommendation for

ground resistance, which is 0 Ω to 50 Ω range for the ideal situation [169]. Also, a
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Figure 3.1: A 330 kV three-phase, 500 km transmission line model

minimum fault line voltage of 0.001 V (minimum standard value) and the incipient

fault angle (0 to -30◦) were used to get the maximum arc resistance value. The

small ground fault resistance is chosen to detect transient faults because a higher

resistance value will lead to over-voltage and current, so the system may not

classify minor faults. Therefore, the higher the fault resistance, the lower the

fault detection. A three-phase fault simulator simulates the fault at a different

location on the transmission line for proper classification.

Table 3.1: Parameters of 330 kV, 500 km transmission line
Sequence parameter Value Unit
Positive and negative sequence resistance R1, R2 0.01273 Ω/km
Zero sequence resistance R0 0.3864 Ω/km
Positive and negative sequence inductance L1, L2, L3 0.9337x10−3 H/km
Zero sequence inductance L0 4.1264x10−3 H/km
Positive and negative sequence capacitance C1, C2, C3 12.74x10−9 F/km
Zero sequence capacitance C0 7.751x10−9 F/km

Table 3.1 shows the model parameters where R1 and R2 are positive and

negative sequence resistances of phases 1 and 2, respectively. L1, L2 and L3

represent the positive and negative sequence inductance of phases 1, 2 and 3,

respectively, whereas C1, C2 and C3 represent the positive and negative sequence

voltages of phases 1,2 and 3, respectively. Finally, R0, C0 and L0 represent the

zero resistance, capacitance, and inductance sequence respectively.

Table 3.1 and 3.2 are generic data used for modelling the scheme. These data

are collected from the Nigeria transmission network, like the phase voltage, source

resistance, and the positive and negative sequence impedance. These data are

used to design the model.

Tables 3.1 and 3.2 represent input data for modelling a 330 kV 500 km trans-

mission line that was designed. Simulations were carried out by inducing the

fault into the line at a 300 km distance. The parameters were carefully selected
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Table 3.2: Fault parameters of the proposed model
System components Parameters /units Value
Phase to phase voltage voltage(kV) 330
Source resistance Rs Ohms (Ω) 0.8929
Source inductance H 16.58x10−3

Fault incipient angle θ in degree 0◦ and -30◦

Fault resistance Ron Ohms (Ω) 0.001
Ground resistance Rg Ohms (Ω) 0.01
Snubber resistance Rs Ohms (Ω) 1.0x10−6

Fault capacitance Cs F infinite
Switching time seconds 0.2

Table 3.3: Fault types in binary representation
Class Fault type L1 (a) L2 (b) L3 (c) G (g)
1 a-g 1 0 0 1
2 b-g 0 1 0 1
3 c-g 0 0 1 1
4 a-b 1 1 0 0
5 a-c 1 0 1 0
6 b-c 0 1 1 0
7 a-b-g 1 1 0 1
8 b-c-g 0 1 1 1
9 a-c-g 1 0 1 1
10 a-b-c 1 1 1 0
11 a-b-c-g 1 1 1 1
12 No fault 0 0 0 0

Figure 3.2: Simulink Model of 330 kV. 500 km transmission line

based on the standard of the International Electro-technical Commission (IEC

60909) [170].

Fault voltage and current data were generated from the model in a different

scenario, and twelve fault conditions were considered. These are a-g, b-g, c-g,
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a-b, b-c, a-c, a-b-g, b-c-g, a-c-g, a-b-c, a-b-c-g and no-fault as seen in Table 3.3,

where a = fault at phase A, b = fault at phase B, c = fault at phase C and g is the

ground fault G. The binary representation shows the fault and no-fault conditions

representing 1 and 0, respectively. It indicates the fault number assigned to each

fault condition.

3.3 Methodology

Classifying faults using phase and zero-sequence current fault data obtained from

simulated models is possible. The diagram in Figure 3.3 shows the data processing

model for machine learning used for this research. It involves accessing and

loading the data collected from the simulated model into the trainer. Next, the

data collected is processed by looking for the data points located outside the fitted

end of the rest of the data to check if they can be ignored or considered. [170].

Figure 3.3: The data processing model for machine learning

The next step is deriving features by turning the information into a machine-

learning algorithm to improve the accuracy, boost model performance, improve

model interpretability and prevent over-fitting. This is preceded by building and

training the model, where a confusion matrix will be plotted that compares the

classification made by design with the actual data collected. Next, we improve

the model by checking the correlation matrix to remove the variables that are not

correlated. The fault data type was introduced in the 500 km, 500 kV transmis-

sion line, and the data-set is divided into training, testing, and validation data.
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Each data-set will be trained and analysed for final validation, accuracy, error

and performance.

3.3.1 Data Preparation and Extraction

The faulty data were extracted using a Simulink model from Figure 2.10, and the

waveform was generated from the model to show the frequency of fault occurrence.

The graphs in Figures 3.4 to 3.7 show the waveform to validate the presence of

a fault in the network. The faulty current and voltage are generated and used

for machine learning training to classify and locate faults in the transmission

line. The waveform displayed in Figure 3.4 shows a standard voltage and current

sinusoidal waveform.

Figure 3.4: Three-phase at no fault condition

Under the no-fault state, the waveform is sinusoidal and has no distortion due

to noise or fault, so the resultant waveform is standard, as seen in Figure 3.4.

When the fault occurs, the fault current of the power transmission line becomes

abnormally high, while the fault voltage decreases to a low value.

Figure 3.5 shows a three-phase to a ground fault where the current and volt-

age waveform of phase Va, Vb, Vc and Ia, Ib, Ic are distorted, and there is a sudden

decrease in their magnitude. Also, in Figures 3.6 and 3.7, the voltage and current

of phases B, C and A were also distorted due to faults in the line, respectively.

All these waveforms show distortion due to faults. The switching time of the

fault model was set at 0.2 s, and the fault location was at the 250 km distance of

the transmission line. Figures 3.4 to 3.7 illustrate fault detection in four differ-

ent fault scenarios: no-fault, single phase to ground-fault, double-line-to-ground

fault, and three-phase to ground fault. The fault current and voltage data were

generated, and machine learning was used in training the data to detect, classify
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Figure 3.5: Three-phase to ground fault (a-b-c-g)

Figure 3.6: Double phase to ground Fault (a-b-g)

Figure 3.7: Single-phase to ground fault (a-g)
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and locate the fault on the transmission line. The current in Figures 3.5, 3.6

and 3.7 increased drastically, and the voltage was reduced to zero, as shown in

Figure 3.6, confirming the transmission line fault.

3.3.2 The Use of CatBoost in Fault Classification

The CatBoost classifier algorithm is used as a machine learning tool for training

data-sets for fault classification due to its performance, ease of use, and handling

of categorical features automatically as compared to other machine learnings

techniques like the PCA, SVM and ANN without any explicit pre-processing of

data to convert all categories of fault data into numbers. A team of engineers from

Yandex proposed the model in 2017 [171]. Gradient boosting is a good machine

learning tool for solving heterogeneous, noisy data and complex variables. It

uses binary decision trees as base predictors. It has robust characteristics of

reducing hyper-parameter tuning and lowering the data’s chances of overfitting.

It combines Gradient Boosting Decision Tree (GBDT) and categorical features,

focuses on categorical variables, and deals with gradient bias, and prediction shift

problems [172]. It helps to improve the robustness of the algorithms by putting

all sample data sets into the algorithm for training. When transforming the

characteristics of each sample, the target value of the model will be calculated

first before the sample, and subsequent weight and priority are added. Assuming

a data sample size in (3.1) is given as

D = {(Xj, Yi)}; j = 1, ...m, (3.1)

Where Xj = (x1j , x
2
j , ...x

n
j ) is a vector of n features and response feature Yi ∈

R, which can be binary (that is 1 or 0), and sample (Xj, Yi) identically and

independently distributed by an unknown distribution P (., .). The aim is to

train a function H : Rn → R which minimises the expected loss given in the

equation below in (3.2)

L(H) = EL(y,H(x)), (3.2)

Where L(., .) is a smooth loss function and (X, y) is a sample of test data

drawn from the training data D [172].

Special Features of the CatBoost Algorithm

• Handling Categorical Variables: CatBoost is specifically designed to

handle categorical variables often present in real-world data-sets. It uses
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an algorithm called “ordered boosting”, which can effectively handle cate-

gorical variables and convert them into numerical values before training the

model.

• Handling Missing Values: CatBoost can handle missing values in the

data set without imputation. This is particularly useful when working with

data-sets with a high percentage of missing values.

• Built-in Feature Selection: CatBoost has built-in feature selection ca-

pabilities, which can identify the most important features in the data-set.

This can help improve the performance of the model and reduce overfitting.

• Parallel Processing: CatBoost has built-in parallel processing support,

making it faster than other gradient-boosting libraries. This is particularly

useful when working with large data-sets.

• Handling Overfitting: CatBoost has a built-in mechanism to handle

overfitting, which is a common problem when working with decision trees.

This mechanism is based on randomising the input data before each itera-

tion and is known as “permutation importance.”

• Handling Different Types of Data: CatBoost can deal with different

kinds of data, like numerical, categorical, and text data.

• Model interpretability: CatBoost provides feature importance and par-

tial dependence plots, which help understand how the model makes predic-

tions.

• High performance: CatBoost is known for its high performance on clas-

sification and regression problems. It is often used in competitions and

real-world applications.

The CatBoost also helps improve the algorithm’s robustness by putting all

sample data sets into the algorithm for training. When transforming the char-

acteristics of each sample, the target value of the model will be calculated first

before the sample, and subsequent weight and priority are added. The CatBoost

classifier requires minimal data preparation and handles missing values for nu-

merical and non-encoded categorical variables. The classification accuracy is used

as a criterion to assess the result of fault classification.

However, the CatBoost algorithm has some limitations, including Limited

Support for Time Series Data: CatBoost is not specifically designed for time

series data, making it less suitable for problems that involve time series data.
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Limited Support for Handling Imbalanced Data: CatBoost does not

currently have built-in support for handling imbalanced data, making it less suit-

able for problems where the classes are highly imbalanced.

Limited Support for Handling High-dimensional Data: CatBoost is

not explicitly designed for high-dimensional data, making it less suitable for prob-

lems involving many features. It is worth noting that some of these limitations

can be overcome by using appropriate pre-processing, feature engineering, and

ensemble techniques. However, it’s essential to evaluate if the model best fits the

problem before using it and the necessary precautions were taken before selecting

the algorithm.

3.3.3 Training of Data-sets Using CatBoost Algorithm

About 93340 data-sets of four types of faults comprising 23340 data-set for each

fault case of a single line, double line to ground, three-phase to ground fault,

and no-fault condition, were generated from the fault detection model from Mat-

lab/Simulink. The data were divided into training and test data-sets of 70% and

30%, respectively. The CatBoost classifier was used as a machine learning tool

to train the data-set. The choice of the classifier was due to its performance and

ease of usage. Also, the classifier can handle categorical features automatically

without explicit pre-processing to convert all the categories of fault data into

numbers. It also has a robust characteristic of reducing hyper-parameter tuning

and lowering the chances of over-fitting the data. The machine learning trainer

was simulated with the following parameters:

Table 3.4: CatBoost Classifier training parameter
CatBoost model is fitted True
Iterations 1000
Depth 10
Loss function Multiclass
Leaf estimation method Newton
Class weight 0.001, 0.01, 0.9, 0.001
Random strength 0.1

The input data for the classifier are fault current and voltage of the transmis-

sion line model in Figure 3.2. Also, the parameters from Table 3.4 are used to

train the data, and the CatBoost classifier was employed as a machine learning

tool for the dataset. The CatBoost classifier is preferred because it is easy to

use, efficient and works well with categorical variables. It doesn’t require data

pre-processing to train. Also, it uses limited time to complete the training. For
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an effective fault management system, fast detection and classification of faults

are essential in power system protection. This technique is perfect in resolving

this compared to other methods with higher training time. The parameters were

carefully selected through parameter tuning and training to obtain better results

and ensure the data was fitted.

3.4 Results and Discussion

The parameter from Table 3.4 above is used to train the classifier, and the best

test accuracy was achieved at 748 iterations out of 1000, which is 99.54% with

an error of 0.46%. This result confirms that the classifier model works perfectly,

and the different types of faults were trained and classified with high accuracy.

The no-fault condition was trained separately, and an accuracy of 100% was

obtained. This was trained separately to attain a near-perfect classification due

to the complexity of the data-set. Table 3.5 represents the classifier’s confusion

matrix, which describes the precision, recall, F1-score, and support. An N × N

matrix is often used to evaluate the performance of the classifier model, where N

is the number of target classes. The matrix compares the target value with the

predicted machine-learning model and the error involved. The table shows that

the no-fault condition represents 0, the single line to ground fault is 1, the double

line to ground is 2, and the three-phase to ground fault represents 3. Class 0

was kept at zero because it was at no fault condition while others were trained.

The result shows that the model was well-fitted, and the four fault types were

well-classified.

Table 3.5: Confusion matrix for the fault classification

True Class

0 0 0 6955 0
1 0 4862 2051 0
2 0 0 7048 0
3 0 0 2013 5073

0 1 2 3
Predicted Class

The accuracy of the model is given as

Accuracy =
TP + TN

TP + FP + TN + FN
(3.3)

where TP = True positive, TN = True Negative, FP = False Positive and
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FN = False Negative. Also,

Precision =
TP

TP + FP
. (3.4)

It tells how many predicted cases were positive and determines whether the

model is reliable. In Table 3.5, the precision in single-phase to ground and three-

phase fault is 1, which shows the model works perfectly well. ’Recall’ shows how

many of the actual positive cases were predicted correctly and is given by

Recall =
TP

TP + FN
. (3.5)

The double line to ground fault was predicted correctly compared to other faults,

as shown in Table 3.5. Also, the F1-Score is the harmonic mean of Precision and

Recall and is given by:

F1 - Score =
2

1
Recall

+ 1
Precision

(3.6)

Table 3.6: Fault classification report
Fault type Classes Precision Recall F1-Score Support
A-G 1 1.00 0.70 0.83 6913
B-C-G 2 0.39 1.00 0.56 7048
A-B-C-G 3 1.00 0.72 0.83 7086
No fault 0 0 0 0 0

Micro Avg 0.61 0.81 0.69 21047
Macro Avg 0.80 0.81 0.74 21047
Weighted Avg 0.80 0.81 0.74 21047

True-positive indicates that the classifier predicted a true event, and the event

is true. In contrast, true-negative indicates that the classifier predicted a false

event, and the event is false. The classifier predicted that an event would occur,

but it was incorrect. Still, the event is not true, whereas a false-negative indicates

that the event was predicted incorrectly and was, therefore, false. The results

from the fault classification report in Table 3.6 also affirm that the classifier

produced perfect results. Therefore, it is a better classifier for training multi-

data sets than other results from the reviewed literature in this research.

3.5 Discussion

The CatBoost classifier produced exceptionally perfect results due to its accuracy

and precision compared to other methods used in many works of literature. In
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another research, sparse representation classification with random dimensionality

reduction projection technique was used to classify faults [173]. This method

generated results ranging from 93.9%, 96.8% and 98.8% for 10 dB, 20 dB and 30

dB, respectively, which vary according to fault type [79]. In [124], S-transform

and neural networks were used in fault classification, and the average classification

accuracy was 99.6%. Still, the research of [124] was based on three-phase fault

compared to four different fault types used in this paper. The Recursive Neural

Network (RNN) was used in [79], and about 500 fault data was used, and the

classifier failed to classify L-L and L-L-G fault types at 140 km.

Tables 3.7 and 3.8 compare the different machine learning techniques used in

fault classification based on the various methods and justify the algorithm’s use,

focusing on accuracy, speed, and strength. The CatBoost classifier produces a

better result than other classifiers, as seen in Table 3.7,

with an accuracy of 99.54%. The CatBoost technique was chosen for its

speed, accuracy and low training time to classify faults according to their cate-

gories. Also, it can handle multi-data-set of different fault currents and voltage

simultaneously.

However, it could classify the fault at some distance with an accuracy of

98.67%, so the classifier’s inability to classify all the different types of faults at

different locations made it unsuitable for proper fault classification techniques.

The CatBoost algorithm has proven to be a better machine learning tool in

fault classification and detection for data training and is highly recommended

for optimum, accurate output results.

Figure 3.8 shows a separate analysis of the performance of the CatBoost model

where the single-phase and three-phase fault performs optimally with an accuracy

of 100% while the recall value was higher for the double phase-to-ground fault.

The novelty of this paper is based on the use of the CatBoost classifier in

transmission line faults classification. Tables 3.7 and 3.8 enumerate some distinc-

tive features of the CatBoost classifier over other machine learning algorithms,

including overall accuracy of results of 99.54% and individual line faults accuracy

of 100% in three face fault classification and speed of execution at 58.5 s compared

with the SVM. The model can also handle multi-data-set, combines multiple cat-

egorical features, and overcome gradient bias. Also, it prevents data overfitting

and pre-processing during training compared to other techniques that use trial

and error for parameter tuning, unlike different machine learning algorithms like

SVM, K-NN, CNN and RNN.
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Figure 3.8: Performance of the different faults types

3.5.1 The Effect of Noise and Disturbance in the Pro-

posed Algorithm

Power Quality Disturbance (PQDs) and noise signals would cause adverse effects

on the classification of faults in transmission line accuracy. During feature selec-

tion and extraction, it is necessary to consider noise and signal disturbance con-

sidering the voltage swell, voltage sag, voltage interruption, voltage flicker, tran-

sient oscillation, harmonics and transient impulse. The proposed model compared

noise signals and PQDs with other articles. It was observed that the CatBoost

classifier performs better, with accuracy remaining at 99.54% both in noise and

noiseless signals. This shows that the method can effectively reduce the effects of

noise and disturbance on classification accuracy. In [175], the ANN technique was

used for classification with noiseless signal accuracy of 87.55% and 82.44% at 20

dB noise. Also, in [176], the DWT was used for feature extraction, and the SVM

was used for fault classification with an accuracy of 100% without disturbance

while 98% and 95.6% accuracy at 30 dB and 20 dB noise, respectively.

The proposed method’s novelty is the model’s ability to de-noise the signal for

optimal performance as seen in Figures 3.9 and 3.10. The current signal in the

three phase-to-ground faults is de-noised for optimal model performance before
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Figure 3.9: Fault Current with Noise Signal

it is integrated into the CatBoost classifier. In Figure 3.9, the base current rose

to 30 P.U, which causes a disturbance in the system but was reduced to 28 P.U

as seen in Figure 3.10. the4 process can continue to achieve a zero signal-to-noise

ratio in the system.

Figure 3.10: Fault Current With De-Noise Signal

Also, the power quality can be improved by this method for quality control

and online and offline fault classification with noise and noiseless data. This can

be applied in fault management and protection in high voltage transmission lines

and the distribution network, and the technique can help in fault management

and protection when noise and disturbances are inevitably present.
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3.6 Conclusion

Faults always affect the transmission line and cause significant damage to equip-

ment and disruption in power supply to the customers or end-users. These faults

occur due to bad weather conditions, faulty equipment and transient faults due

to human interference. Hence there is a need to model a system that will classify,

detect and isolate faults accurately with speed within the shortest detection time.

This paper proposed using CatBoost classifier as the preferred algorithm for

fault classification due to its high accuracy and ease of training. This technique is

achieved by designing a 330 kV, 500 km transmission line using Matlab/Simulink

to extract fault current and voltage to identify the fault phase for each faulty

voltage and current waveform. A 93340 fault data-set was used to train the al-

gorithm, which provides better accuracy of 99.54%. The classifier algorithms can

train categorical data with multi-data-set like SVM, ANN and XBoost classifier.

This paper has addressed the classification of a multi-dataset of faulty voltage

and current in transmission lines focusing on speed, accuracy and precision in

classifying faults for fast detection and isolation of faults. Also, the results will

serve as a guide on transmission line fault protection management systems and

design. After being compared to other methods used in other literature, the Cat-

Boost classifier was justified for the transmission line fault classification model.

This paper can be improved by varying the fault resistance to different values

from 0.01Ω to 50Ω and above. Also, the model can be optimised for real-time

data mining and training automatically for effective fault protection mechanisms.



Chapter 4

Fault Detection and Localisation

4.1 Introduction

Electric generation, transmission, and distribution are interrelated elements of

the electrical power system. The transmission line is a crucial power system that

transfers electricity from the generating station to the final users. These com-

ponents are connected via transmission lines, are prone to failure, and can only

be controlled remotely by complicated procedures [1]. Ageing machinery, light-

ning, human interaction, and severe weather conditions contribute to problems

on the transmission line. However, power quality is the most critical factor in

an electrical network. When a transmission line malfunctions, the power quality

diminishes, directly affecting power production [177]. Fault detection and locali-

sation are essential for protecting the network in a transmission line. Therefore,

adequate steps must be taken for maximum protection to avert system collapse.

In protecting the transmission line from destruction, the fault must be detected,

and the fault location must quickly be accurate for proper line isolation [163].

However, feedback from fault detection can significantly assist in fault localisa-

tion for fast clearing time and restoring power [164]. Identifying the fault location

of a transmission line in a power system is critical to facilitate quick response and

maintaining power supply reliability [178].

The detection and localisation of transmission lines have mainly been accom-

plished using traditional machine learning and deep learning techniques. The

traditional method uses a distance protection relay over current, and voltage

relays as a switching mechanism for fault protection [131, 179]. The use of

mobile robot [32, 133–135, 180] for transmission line monitoring and line de-

fect detection. Also, the fuzzy logic approach [56, 57, 84], Wavelet Transform

approach (WT) [46, 57], Neuro-fuzzy technique [84, 136], wavelet and fuzzy ap-

proach [56, 57, 62]. While the machine learning approach includes the Artifi-

67
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cial Neural Network (ANN) [99, 137, 160, 165, 166, 181], Support Vector Machine

(SVM) [1,138,162], Decision Tree (DT) [182]. These techniques have some draw-

backs like the WT is useful when time and frequency data are needed though

sensitive to noise and harmonics. It also requires a high sampling rate and is

time-consuming to get a referred wavelet. Also, the number of decomposition

is achieved by trials and is predominantly used for fault detection [55]. In [91],

the back-propagation neural network was used as an alternative fault detection

and localisation method. This can be used to design an effective distance relay

protection scheme for a long transmission line. However, the model has poor

accuracy in fault classification.

Many hybrid methods have been used to improve its fault detection and local-

isation performance, such as the S-transform and ANN [124]. This method was

used to identify transmission line defects, though it did not consider a multi-class

data set of fault data [124]. Also, the ANN and SVM were used in identifying

faults, and it needs a large volume of data for their training, making it complex

to handle and time-consuming. WT is also used in fault detection, though it

is difficult to differentiate between the various fault conditions [141]. Though

most of these methods have been used recently, there are some challenges. For

example, the Hilbert-Huang Transform (HHT) is inapplicable for high-frequency

signals and has high computational complexity [142].

Using Principal Component Analysis (PCA) in machine learning is a fast

and straightforward method that minimises re-projection error and is immune

to noise. However, If the number of dimensions exceeds the number of data

points, the convergence matrix will always be big, making it challenging to obtain

the convergence matrix [143]. The PCA is also used to map data from high

dimensional space to low dimensional subspace to decrease the dimensionality of

the data for a better understanding of the variance of the data. Research shows

that most of these techniques use a smaller dataset to train their algorithm,

giving high-accuracy results. Also, they use either single phase to ground fault,

or double phase to line fault data for their training [77,144,155]. With the focus

on machine learning and deep learning techniques, single Phase, double Phase,

and three phases to ground fault datasets will be used simultaneously to detect

and locate the fault in the transmission line.

DWT and DT [183] have poor performance for high-performance faults and

limited temporal resolution capabilities when considering fault location. Using

data mining and wavelets [150], Decision Tree (DT) and K-Nearest Neighbors

(KNN) are used, although they do not quantify fault location [151]. The S-

transform approach was only investigated in [152]. For fault identification and
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detection, morphology in mathematics and the Recursive Least-square (RLS)

method [112] are employed to identify fault characteristics based on mathemat-

ical morphology. This approach is difficult to maintain since it is employed in

incredibly intricate situations that are not home in nature. Another disadvantage

of the previously discussed approaches was their inability to focus more on fault

localisation. Localisation of faults facilitates rapid diagnosis and power restora-

tion during an outage by pinpointing the exact location of the problem.

Transmission line fault analysis normally requires three main activities for

a successful fault management system: fault sensing or detection, categorising

the problem into various categories, and identifying the spot to disclose the zone

where the fault occurred [163]. The extraction of fault features is being con-

sidered. First, this may be accomplished by modelling the network in MAT-

LAB/SIMULINK to extract fault instances from the transmission line. The next

step is to identify and localise the flaws using the data provided by the simulated

model and an ANN-trained classifier [112].

Because of the delay in fault detection and the increased role of communication

and computers in transmission systems [154], this study aims to offer a novel

ANN-based approach for rapid, reliable, and accurate fault identification and

localisation in transmission lines. Also, Detecting various types of faults, such as

voltage and current abnormalities, minimises the time delay in fault detection.

The suggested algorithm’s performance was assessed by simulating several errors

and training them with the ANN model, and the results were encouraging. In

addition, the suggested model will be used to develop transmission line fault

management and protection in power systems.

One of the technique’s significant disadvantages is the model’s inability to

train on non-numerical data. Therefore, interpreting the findings is always chal-

lenging as matching results with real-life circumstances and issue statements.

4.2 The Artificial Neural Network Technique

This section has been explained in section 2.6.1. Artificial Neural Networks

(ANN) in fault detection and localisation involve using a computational model

inspired by the human brain to analyse electrical power systems for faults. ANNs

offer a data-driven approach to these tasks, and their application can be sum-

marised as follows:

• Data Collection: The first step in using ANNs for fault detection and lo-

calisation is to gather relevant data from the power system. This data
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typically includes voltage and current measurements, which are acquired

from various locations in the system.

• Data Preprocessing: Raw data collected from the power system may be

noisy and require preprocessing. This step involves cleaning, filtering, and

transforming the data to make it suitable for ANN analysis.

• Training the Neural Network: ANNs are trained using historical data, in-

cluding normal and fault conditions. The network learns to recognise pat-

terns in the data associated with different fault scenarios. During training,

the network adjusts its internal parameters to minimise fault detection and

localisation errors.

• Feature Extraction: ANNs often employ feature extraction techniques to

identify relevant characteristics in the data. These features can help the

network differentiate between normal and fault conditions.

• Fault Detection: Once the ANN is trained, it can be applied to real-time

or recorded data to detect the presence of a fault. The network compares

the incoming data to the patterns it learned during training and identifies

deviations that indicate a fault.

• Fault Localisation: ANNs can also be used to estimate the location of a fault

in the power system. The network can triangulate the fault’s position based

on the differences in arrival times or magnitudes of fault-related signals by

analysing the data from multiple measurement points.

• Accuracy Assessment: The performance of the ANN model is assessed in

terms of accuracy, precision, and recall in fault detection and localisation

tasks. This helps evaluate the reliability and effectiveness of the network.

• Optimisation: Fine-tuning the ANN model may be necessary to improve

its accuracy and adapt it to specific system conditions. This may involve

adjusting network architecture, hyperparameters, or training data.

• Real-Time Application: In practice, ANNs can be deployed for real-time

monitoring of power systems, where they continuously analyse incoming

data to detect faults and estimate their locations. Rapid response is crucial

for minimising the impact of faults on the system.

• Integration with Protection Systems: ANN-based fault detection and lo-

calisation systems are often integrated with protective relays and control
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systems. When a fault is detected and located, the protection system can

take appropriate actions, such as opening circuit breakers to isolate the

faulted section of the system.

The multiple layers comprising one or more hidden neural layers can solve

various issues involving function approximation, pattern classification, system

identification, process control, optimisation, and robotics [92]. The multi-layer

typically has three classes of layers: an input layer, which is used to transfer

the input vector to the network; hidden layers of computation neurons; and an

output layer, which is made up of at least one computation neuron and produces

the output vector [93].

4.3 Methodology

The Artificial Neural Network technique needs many datasets for practical train-

ing obtained from the model in Figure 3.1. The parameters from Tables 3.1 and

3.2 are used to model the simulink in Figure 3.3. This model generates fault data

of single line to ground, double line to ground and three-phase to ground fault.

This data is used to train the machine learning using the ANN algorithm to check

for fault detection, classification and localisation. It will also be used to validate

the data for accuracy, Root Mean Square Error (RMSE) and precision of result

location.

Figure 3.1 depicts the three-phase, 330 kV transmission line model created and

installed. It comprises a 500 km long Nigerian 330 kV transmission line simulated

in Matlab/Simulink, as illustrated in Figure 3.2. The ground resistance chosen

is 0.01 Ω based on the IEEE ground resistance standard of 0–50 Ω for the ideal

circumstance [169]. Tables 3.1 and 3.2 illustrate the input data for modelling a

500 km, 330 kV, 50 Hz transmission line. Simulations were done by placing the

fault into the line 300 km distant. The parameters were carefully selected per the

IEC 60909 standard [170].

In addition, the fault line minimum value of 0.001 Ω and the incipient fault

angle (0° to 30°) were utilised to compute the maximum arc resistance value.

Because a larger resistance value might create overvoltage and current, the system

may be unable to detect small problems. This is why a low-ground fault resistance

is used to identify transient faults. As a result, the greater the fault resistance,

the lower the defect detection. A three-phase fault simulator mimics the failure

at a different position on the transmission line.

Table 3.1 shows the model’s parameters, where R1 and R2 are positive and

negative sequence resistance of phases 1 and 2. L1, L2 and L3 are positive and
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negative sequence inductance of phases 1, 2 and 3, while C1, C2 and C3 are

positive and negative sequence voltage of phases 1,2 and 3, respectively. R0, C0

and L0 are the zero resistance sequence, capacitance and inductance, respectively.

Twelve fault conditions were considered, and fault voltage and current data

were acquired separately. As shown in Table 3.3, they are a-g, b-g, c-g, a-b, b-c,

a-c, a-b-g, b-c-g, a-c-g, a-b-c, a-b-c-g, and no-fault. Where a = fault at phase A,

b = fault at phase B, c = fault at phase C, and g = the ground fault G.

To train for accuracy, precision, and speed, phase and zero-sequence current

fault and voltage data from simulated models may be utilised for fault classifica-

tion, identification, and detection. The machine learning data processing model

used for this paper is shown in Figure 3.3. The simulated model’s data must be

obtained and put into the trainer. The data is then analysed by searching for data

points outside the fitting end of the remainder of the data to determine whether

they may be ignored or considered [154]. The next step is to create features from

the data by putting it into a machine-learning algorithm to improve model perfor-

mance, model accuracy, and model interpretability and prevent over-drafting. A

confusion matrix will be shown to compare the design classification with the data

obtained. This is done before constructing and training the model. The next step

is to improve the model by deleting variables that are not associated, as shown

by the correlation matrix. The fault data type was created by a 500 km, 500

kV, and 50 Hz transmission line, and the dataset is divided into three categories:

training data, testing data, and validation data. Each dataset will be trained

before evaluation for ultimate performance, accuracy, and error validation.

4.3.1 Data Preparation and Extraction

The faulty data were extracted using a Simulink model from Figure 3.2, and the

waveform was generated from the model to show the frequency of fault occurrence.

The data was normalised to boost the speed of training on the feature on a

future basis. The rows and columns were normalised according to the formula in

equation 4.1

xi =
(xi −mx

(1))

σX
(4.1)

Wheremx
(1) represents the mean value of the row vector X and σX is the standard

deviation of the row vector X. The dataset consists of a 6 x 33336 matrix. The

dataset is divided into three sections, with 23336 fault data used for training,

5000 for testing and 5000 for data validation.

The graphs in Figures 4.1, 4.2, and 4.3 show the waveform to validate the
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presence of a fault in the network. The faulty current and voltage are gener-

ated and used for machine learning training to classify and locate faults in the

transmission line.

Figure 4.1: Three-phase to ground fault (a-b-c-g)

Figure 4.2: Double phase to ground Fault (a-b-g)

When a fault occurs, the power transmission line’s fault current becomes

abnormally high while the fault voltage falls low [184]. Figure 4.1 shows the

current and voltage waveforms of phases Va, Vb, Vc and Ia, Ib, Ic twisted owing to

a three-phase to ground fault, with their magnitudes quickly falling. Figures 4.1

and 4.2 also show distorted voltage and current for phases B, C, and A owing to

line failures. As a consequence of the issue, all of these waveforms show distortion;

the fault model’s switching time was set to 0.2 s, and the fault was placed 250

km from the transmission line.

Figures 4.1, 4.2, and 4.3 depict fault detection in four distinct fault types: no
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Figure 4.3: Single-phase to ground fault (a-g)

fault, single phase to ground fault, double line to ground fault, and three-phase to

ground fault. Using the fault current and voltage data obtained, machine learning

was used to train the data to identify, categorise, and pinpoint the transmission

line issue. Figures 4.1, 4.2, and 4.3 indicate a significant rise in current, while

Figures 4.1 show a voltage drop to zero, confirming the transmission line failure.

Figures 4.1, 4.2, and 4.3 confirm the occurrence of a transmission line fault. At

the same time, selecting 0.001 Ω as the minimal fault resistance allows the model

to identify transient faults. Raising the fault resistance reduces fault detection

and may result in incorrect data that affect electrical installations, leading to

system collapse, as seen in Figure 4.4 where the voltage signal stays constant but

the current signal increases.

Figure 4.4: Three-phase-to-ground fault at 100 Ω fault resistance.

When the fault resistance increases to 100 Ω, there is a corresponding increase

in the fault current, as seen in Figure 4.4. When it reduces to 50 Ω, there is
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Figure 4.5: Single-Phase-to-Ground Fault 50 Ω fault resistance.

a corresponding current increase in the faulty phase, but the voltage remains

constant, as seen in Figure 4.5. Therefore, the fault resistance must be very

small to extract accurate faulty current data for effective fault detection. Also,

when the fault resistance is too high, the model’s sensitivity to detect transient

faults will be very low, and the dataset extracted will not be reliable.

The training algorithm used for the dataset is implemented using the ANN

algorithm in the MATLAB application, and a sigmoid activation function was

selected based on the dataset for easy training. The faulty dataset for six diffident

fault conditions was used as the input data to train the algorithm.

4.4 Results and Discussion

The ANN technique is used to classify and detect the fault in the network, and

a data size of 33336 was generated from Figure 3.2 and used for the algorithm’s

training. The data size was chosen based on the simulated faults result of the

voltage and current waveform. The data is divided into training, testing and

validation in 80%, 15% and 5%, respectively, to avoid over-fitting. The faulty

current and voltage phase values were used as input data, while the three-phase

value and ground phase were used as input layers. The sigmoid function is the

activation function, given in equation 4.2 below.

f(x) =
1

1 + e−x
(4.2)

Where x is the net input chosen through the trial and error method till the train-

ing is fitted, the selection of the sigmoid activation function was based on the

target input value of 0 and 1 and due to the normalisation of the dataset in
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Table 3.3. However, the tanH activation function was also used, but the accu-

racy was the same with a time of execution was 0.006 s. The activation function

helps to maintain the output or predicted value in a particular range with high

accuracy and efficiency of the model [185]. In backpropagation neural networks,

the Sigmoid is a non-linear AF that is frequently utilised. It is a bounded differ-

entiable real function defined for real input values and has smoothness to some

extent and positive derivatives everywhere. The sigmoid function introduces a

hybrid sigmoidal network with varied parameter configurations in different layers

and influences the pace of backpropagation learning. The error signal, oscillation,

and asymmetrical input problems can be diminished by controlling and adjusting

the sigmoid function parameter configuration at various levels [186].

A total of six input parameters, 15 input layers, 2 output layers and 4 output

result (L-G, L-L, L-L-G, and L-L-L-G) is used for the training. The algorithm

performance was analyzed, and the Mean Square Error (MSE), epoch and training

time were also considered.

A confusion matrix was used to evaluate the model’s performance, comparing

the actual target values with those predicted by the ANN model. It also gives

a holistic view of the model’s performance and the type of error involved in the

system. The result also explains the practical use of ANN in transmission line

faults management system plans.

Figure 4.6 shows the configuration used for the training, which consists of a

6-15-2-4 structure. This configuration was selected after a training series, and the

best data fitting was achieved, and the hidden layer was set at 15 to achieve the

best configuration. This consists of 6 input data (three-phase current and voltage

Ia, Ib, Ic and Va, Vb, Vc) and four output data (L-G, L-L, L-L-G, L-L-L/L-L-L-G)

are the same as a-g, b-c-g and a-b-c-g, which is used for the training.

Figure 4.6: ANN Training configuration for fault Detection.

The confusion matrix in Figure 4.7 summarises the model’s fault detection

prediction. It tests the dataset or validates data with expected values and makes
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predictions in each row. It also makes correct predictions of each class and the

number of incorrect predictions. The no-fault condition represents 1, the single

line to ground fault represents 2, the double line to the ground represents 3,

and the three phases to ground fault represent 4. About 33,336 fault data was

used for training with 100% accuracy and 0% confusion state. Meanwhile, 23,336

datasets were used to validate and train the fault data with 100% accuracy, as

seen in Figure 4.7

Figure 4.7: ANN Confusion Matrix for fault detection

The histogram in Figure 4.8 shows the error between the target and predicted

values after training the ANN network. The difference between the target and

the output has a zero error value of −0.00739, showing minimal error.

The network’s best validation performance was 0.17329 at 332 epochs, as

shown in Figure 4.8. This is a good performance because the network is fitted,

and the best-fit line is close to the train line, validation and test line because they

have related features that do effective training, as shown in Figure 4.9 below.

From Figure 4.10, the model has a maximum level of allowable failure of 6 at

338 epochs and a gradient of 2.1803 × 10−6. This graph shows that the model

is good because the network gradient performance is in perfect condition and

minimal due to its performance.

The ANN algorithm uses the confusion matrix to predict the true positive,

true negative, false positive and false negative for the model. At the same time,

the error histogram predicts the error in the trained data. Also, the network

performance shows the value of the train data, test data, validation data and the
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Figure 4.8: Error Histogram for the ANN Network

line of best fit. It also shows the validation failure of fault on the train data.

4.4.1 Fault Localisation Results

The model is also designed for fault localisation in the transmission line using

Simulink to generate a neural network classifier to predict the fault location. The

input parameters are the fault current and voltage of a three-phase line. The

input is then fed into the classifier to detect the fault location. These fault types

and locations are displayed on a screen for easy accessibility. Possible action is

taken for a fast and effective fault management plan, as seen in Figures 4.11, 4.12

and 4.13

In Figure 4.11, the line-to-line fault and the three-phase-to-ground fault were

detected at the 200 km distance of the transmission line.

Also, Figure 4.12 shows that fault was in zone 2,3 and 4 while zone 1 had no

fault. This method clearly shows the type of fault detected and the zone where

the fault is found. The network is segmented into zones and circuits for easy

identification. Figure 4.11 shows that the fault was situated in the circuit or line

2. This can be replicated in other fault conditions to detect and locate the exact

spot of the fault for easy isolation and power restoration.

This model outperforms others since it specifies the kind of fault and its

location at any given moment. This will enable the maintenance crew to clear

the faulty line faster and is useful in the transmission line fault management
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Figure 4.9: ANN network performance.

system.

Table 4.1: Fault Location at Different Distances.

Fault Type
Actual Fault
Distance (km)

Estimated Fault
Location (km)

% Error

Single Line to Ground
100 103.78 3.78
250 252.65 1.06
450 448.67 -0.30

Double line to Ground
100 101.67 1.67
250 253.98 1.59
450 452.10 0.47

Line To Line
100 100.98 0.98
250 252.77 1.11
450 450.98 0.22

Three Phase To Ground
100 100.87 0.87
250 252.10 0.84
450 451.98 0.44

The Fault location at different distances was considered as seen in Table 4.1,

which shows the actual distance and the estimated distance of fault location

at different points in the transmission line. The actual fault distance and the

estimated fault location were measured. The percentage error was determined

for each distance using line-to-ground, double-line-to-ground, line-to-line, and

three-phase-to-ground faults. The percentage error between the estimated and

actual distance is very low, confirming the model’s viability.
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Figure 4.10: Validation Failures

Figure 4.11: L–L and three-phase fault detected at 200 km distance.

4.4.2 Comparative analysis of the ANN technique for la-

tency and other machine learning techniques

Rapid and timely identification of faults aids in separating the damaged line, pro-

tecting the system from the dangerous repercussions of the faults. The adverse

effect may lead to power outages, damage to installation, and cost implications,

thereby affecting the economy. Furthermore, information from fault categorisa-

tion can enhance the prompt discovery of a faulty point, minimising the time

necessary to remove faults and swiftly restore electricity service. As a result,

many scientific investigations are being conducted to develop a robust, accurate,

rapid and timely strategy for detecting and localising the faults on transmission

lines [14].

Table 4.2 compares the execution timings of multiple fault localisation and

detection methods in the transmission line. In comparison, WPT and ANN take
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Figure 4.12: Fault location at three zones.

Figure 4.13: Fault location at line 1.

110 s, WT takes 4.000 s, PMU takes 0.800 s, while the ANN technique takes

0.0017 s to execute. Because it exceeds the competition in terms of speed with

a percentage error of 0.007%, the ANN is preferred for fault localisation and

detection.

4.4.3 Effect of Noise Signal on the Proposed Model

Noise signals reduce the accuracy of identifying and detecting transmission line

defects. Noise signals such as voltage sags, transients, harmonics, electromagnetic

interference (EMI), lightning strikes, power equipment, and voltage interruptions

must be considered while selecting and extracting fault characteristics.

The kind and strength of the noise signal determine the impact of noise on

fault detection and localisation. High noise may hide fault signals, making it

harder for fault detection algorithms to identify and localise defects effectively.

Moreover, noise may cause false alarms and mislead fault detection systems into

identifying non-existent defects or improperly localising them. This might lead
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Table 4.2: Comparison of percentage error and speed of execution of different
algorithms used for fault localisation.

Algorithm used Input used % Error
Time of
execution

WPT and ANN [83] Current signal 2.05% 110 s
Adaptive Network-Based
Fuzzy Inference System(ANFIS) [187]

Three-phase
current

0.07% 2.600 s

Radial Bias Function (RBF) [188]
Positive sequence
voltage and current
waveform

2.8% 0.530 s

Discrete WT [189]
Single-phase
voltage signal

1.67% 4.000 s

Linear discrimination principle [190]
Three phases
current and
voltage signal

2.66% 0.032 s

PMU [178] Voltage signal 4% 0.800 s

DWT & ANN [158] Current signal

12.78%
for ANN
and 0%
for DWT

0.15 s

Proposed ANN Solution
Voltage and
current signal

0.007% 0.0017 s

to unneeded maintenance or repair work, which can be expensive and time-

consuming.

Several strategies are utilised to reduce the influence of noise on fault iden-

tification and localisation. Filtering methods are used to eliminate noise from

signals, signal processing techniques are used to increase the signal-to-noise ratio,

and improved fault detection algorithms are used to differentiate between fault

signals and noise.

The DWT was employed for feature extraction, and the SVM was used for

fault classification in [176], with an accuracy of 100% when there is no disturbance

and 98% and 95.6% accuracy at 30 dB and 20 dB noise, respectively.

Figure 4.14 depicts the fault signal with noise, whereas Figure 4.15 depicts

the de-noised signal. To get a de-noise signal, it is recommended that noise be

removed using the DWT approach during fault extraction. The data gathered

from this approach will be employed in an ANN classifier for extremely accurate

results.

To get a de-noise signal, it is recommended that noise be removed using the

DWT approach during fault extraction. The data gathered from this approach

will be employed in an ANN classifier for extremely accurate results.

Figures 4.14 and 4.15 show a faulty signal with noise and a de-noise signal,
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Figure 4.14: . Fault signal with noise.

respectively. The model was examined for noise regularisation by adding noise

to the input vector during training and using the tanH activation function to

train the noise vector. The accuracy decreased substantially to 78%, as shown in

Figure 4.16, confirming that without de-noising the noise signal from the system,

it will drastically affect the output result, and the accuracy will drop.

4.5 Conclusion

This paper has investigated using artificial neural networks for fault detection

and localisation in the transmission line. A 330 kV, 500 km, 50 Hz three-phase

transmission line was modelled using Matlab/Simulink to generate the RMS value

of faulty voltage and current signals from the defective line. About 12 different

fault scenarios were considered, and 33,336 data samples of faulty current and

voltage were taken from various locations in the transmission line to detect faults

using ANN and to use the module for fault localisation. The different faults were

discussed, especially single, double, and three-phase. The data were trained for

accuracy, speed, and precision, achieving a 100% accuracy rate for fault detection

and a 99% accuracy rate for fault localisation at separate locations. The time

for fault detection is vital in fault protection, and this paper has focused on the

speed of execution for prompt fault detection. This technique produces excellent

results compared to conventional methods like SVM and DWT.

However, the ANN technique has some disadvantages, including a large vol-

ume of data required for optimal performance and difficulty in determining the
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Figure 4.15: Fault with De-noise signal.

proper network structure for the best performance of the model. This paper has

limitations: The fault data generated were only based on the minimum fault re-

sistance of 0.001 Ω. The fault angle can be varied by increasing or decreasing it

for optimal fault detection. Also, Noise was not considered during the simulation

though it was mentioned.

The results generated from this can also be recommended for designing effec-

tive fault management and protecting power systems.
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Figure 4.16: Regression Fit for the noise signal data.



Chapter 5

Optimal Relay Protection of TL

5.1 Introduction

The power system’s major and minor components are critical in transmitting

electricity from where it is made to the customer. However, the fault protective

relay is the most crucial and sensitive of all these components. These comprise

the overcurrent and overvoltage relay protection. When there are problems with

transmission lines, consumers lose power, which is inconvenient and could cost

them money. Damage to the power system or a power outage at the consumer’s

end could result in financial losses. When a failure occurs on the transmission

lines, it is critical to protect them [191].

Overcurrent protection is capable of operating under any fault condition. The

current pickup value of the relay must be higher than the maximum value of the

expected output or normal load flow. The overcurrent relay is commonly utilised

in radial transmission and distribution systems [192]. In the event of an abnormal

condition or fault, such as a short circuit, the protective relay de-energises the

defective component of the distribution power system, preventing the rest of the

system from being impacted [193]. The relays are introduced to prevent the

incidents mentioned earlier and their impact on customers. Properly coordinated

relays are critical for the power system network because improper coordination

can have significant implications for the electrical network, such as power outages,

equipment damage, and utility station faults. The current magnitude increases

when the power system malfunctions, causing network damage [194]. The fault

current is measured by the overcurrent relays and compared to predetermined

threshold values. When the current level exceeds the threshold, a trip order is

delivered, and the appropriate circuit breaker opens its contacts and isolates the

faulted area after a predetermined time delay. However, if the relay is faulty, it

will damage the installation or the system will collapse.

86
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Some literature has recently proposed tools to aid transmission and distribu-

tion system protection based on overcurrent relay settings. In [195], an approach

for fault calculation in imbalanced distribution systems was disclosed where the

primary protective devices and functions employed in distribution systems have

mathematical models. This method makes complete three-phase representations

possible, and the solution is achieved directly in phase coordinates. In [196], an

integrated optimising model for current relay coordination with challenging, prac-

tical limitations based on a gradient-based optimiser was analysed, and the model

was used to enhance the protection coordination of the transmission and distri-

bution network with some constraints such as false tripping actions. In [197,198],

this study describes a computational tool that was created to automatically cal-

culate the adjustments of all distribution network protection devices to acquire

the best technological application, optimise its performance, and make protection

studies easier. In [199], it presents a straightforward method in which two-phase

faults were diagnosed based on the negative sequence current value, and the oper-

ating conditions of the suggested criteria arising from negative and zero sequence

currents were automatically selected based on the three-phase short-circuit crite-

rion. However, the paper fails to introduce the controller operation of the circuit

breaker for adequate tripping of the transmission line. The methodology deter-

mines the protection settings and in another paper, [200], based on real-time

estimation of the Thevenin Equivalent Circuit (TEC). The estimation process

used the voltage and current values in the positive sequence, and a system of

nonlinear equations was solved repeatedly using the Gauss-Newton method. Ad-

ditionally, in [201], a new adaptive protection method to set online overcurrent

relays in distribution networks was implemented for the mis-coordination of the

overcurrent relay.

The connecting and disconnecting of transmission lines and their components

are critical to changing fault currents’ magnitude and flow direction. Change

in the network configuration also leads to a disturbance in the overcurrent relay

functionality. The fault current signal affects the power transformer and other

components when a fault occurs in the transmission line. Therefore, the circuit

breaker needs to open immediately to prevent damage to the installation. The

fault current magnitude is greater than the standard load current, so the relay

should be signed to operate and trip the circuit breaker for all currents above the

relay settings. The overcurrent relay needs a backup relay for proper coordination

such that if one fails to trip, the backup relay will trip automatically.

To protect the transmission lines against multi-phase faults, the overcurrent

protection criterion with a fixed current threshold and time-independent opera-
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tion on fault current value is frequently utilised. Usually, two of these protection

relays are currently deployed. The situation right now acting as the time-delay

short-circuit, and the initial line of defence overload prevention identified by the

I > symbol must adhere to the subsequent conditions as shown in equation 5.1,

Imin > Ipr > Ist, (5.1)

where Imin is the minimum short-circuit phase current of the transmission line

with I > protection, Ipr is the threshold value of the current protection, and

Ist is the steady state component of the highest load current of the line [199].

Such protection relays respond only to phase current values and are typically

definite minimum time (DMT) overcurrent relays configured to meet selectivity

requirements.

According to the literature reviewed above, this paper proposed the following

approaches:

1. The use of wavelet transforms to determine the threshold voltage and cur-

rent of faulty transmission lines;

2. A designed model to determine the tripping time and the operating time of

instantaneous over current relay at different fault-resistant values;

3. A protection scheme was designed to evaluate and determine the response

time of relays in different zones.

Contribution of the Proposed Algorithm

The proposed algorithm performs better than those mentioned in the literature

due to its speed in obtaining the threshold values for setting the overcurrent and

overvoltage relay. Additionally, fault signals are accompanied by noise. There-

fore, using the wavelet transform to determine the threshold current and voltage

helps denoise the signal to attain stability in the system. It also serves as a fast

gateway for instantaneous relay settings for optimal protection of transmission

and distribution line fault detection and isolation with the use of a circuit breaker.

5.2 Proposed Algorithm

The proposed model uses the discrete wavelet transform to generate the threshold

current and voltage for the overcurrent relay setting. This method is a fast

and reliable process to determine the pickup current, minimum and maximum
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threshold current and voltage for the fast and accurate detection of transient

or overcurrent faults in the transmission line. The proposed model improves

the relay protection level, reduces the operating time of the relay and better

coordinates between the primary and backup relay.

5.2.1 Wavelet Transform

Wavelet transform is a powerful signal processing technique that can determine

the threshold voltage and current values in power systems fault detection and

protection. Here’s how wavelet transform can be applied to this task:

• Signal Decomposition: Wavelet transform decomposes a signal into multiple

scales or levels. In the context of power systems, the voltage and current

waveforms are typically complex and contain information related to various

system events, including fault conditions.

• Feature Extraction: Wavelet transform helps extract relevant features from

the voltage and current waveforms at different scales or levels. These fea-

tures can include details about the transient behaviour of the signals during

fault events.

• Thresholding: After decomposing the signals and extracting features, a

thresholding technique can be applied to identify the significant compo-

nents of the signals. Thresholding involves setting certain coefficients or

components to zero based on their magnitude. The choice of thresholding

technique and threshold value is crucial and often depends on the specific

application.

• Denoising: By removing or setting to zero the insignificant components of

the signals through thresholding, wavelet transform can effectively denoise

the signals. This helps isolate the relevant fault-related information from

noise and disturbances in the signal.

• Fault Detection and Localization:** The processed signals with the thresh-

olding applied can be analysed to detect faults and estimate their locations.

The transformed signals are often more informative for these tasks, as they

emphasise transient features characteristic of fault conditions.

• Threshold Optimisation:** The choice of threshold values is essential in the

wavelet transform process. Optimising the threshold values may involve

experimentation and using signal-to-noise ratio (SNR) or other metrics to

ensure that fault-related information is retained while noise is minimised.
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• Performance Evaluation:** The effectiveness of using wavelet transform in

determining threshold voltage and current values for fault detection and

protection can be evaluated based on criteria such as detection accuracy,

fault location accuracy, and system stability under fault conditions.

Wavelet transform is particularly useful in scenarios where voltage and current

waveforms exhibit complex behaviour during fault events, and traditional meth-

ods may not be as effective in separating the relevant fault information from noise

and other disturbances. By decomposing the signals into different scales and ap-

plying thresholding, wavelet transform can enhance the accuracy and sensitivity

of fault detection and protection systems in power systems.

5.2.2 Data Acquisition

A 330 kV, 50 Hz, 500 km transmission line was modelled using MATLAB/SIMULINK,

and 11 different types of faults were induced in the model, and the fault current

data were collected and recorded, as shown in the table below. A wavelet trans-

form syntax was applied to obtain the maximum coefficient current for phases

A, B and C. [C, 1] = wavedec(x,n, wname), where wavedec is the function which

decomposes the signal. X is the signal generated, n is the wavelet layer, wname

is the name of wavelet type and C is the output wavelet decomposition vector,

while l is the number of coefficients by layer.

The voltage and current of the grid experience transients when faults occur.

Using a discrete wavelet transform to analyse these transients, the defect can be

categorised [44]. The zero sequence and phase transient currents are analysed to

determine the fault that occurred. Wavelet transform identifies the phase-related

fault by calculating the energy of transients linked to each phase and ground.

MATLAB/Simulink was used to simulate the model using the RLC load at

the receiving end, while the three-phase source block was used at the sending

end; 330 kV, 500 km, 50 Hz and a three-phase transmission line were used for

the model. The coefficient of each fault type was calculated and compared with

the threshold value by checking the maximum and minimum threshold values.

Table 5.1 shows the maximum coefficient value of the different fault types. In

contrast, Table 5.2 represents the maximum and minimum threshold values for

each current fault phase.



CHAPTER 5. OPTIMAL RELAY PROTECTION OF TL 91

Table 5.1: Faulty current and voltage data in kA and kV.

Fault Types
Coef
of Ia

Coef
of Ib

Coef
of Ic

Coef
of Va

Coef
of Vb

Coef
of Vc

ABC-G 533.0974 495.1115 575.3335 0.0000 0.0000 0.0000
ABC 395.1943 587.4911 474.7873 -0.0001 0.0000 0.0001
AB-G 338.5069 531.6202 32.9732 0.6655 -1.6882 1.0227
AC-G 306.5768 22.3418 620.4303 1.5501 -0.1691 -1.3810
BC-G 26.1066 608.8079 294.0561 -1.2685 1.6153 -0.3468
A-B 855.3816 385.9281 17.8156 -1.2792 1.6102 -0.3311
A-C 299.0803 19.8595 574.5684 -1.2897 1.6050 -0.3154
B-C 15.3783 420.5652 355.8047 -1.3001 1.5996 -0.2996
A-G 307.6007 39.5083 20.8305 -1.3103 1.5941 -0.2838
B-G 32.6032 199.6292 28.3545 -1.3205 1.5885 -0.2680
C-G 15.1679 28.6647 364.3873 0.4383 -1.6423 1.2040
No-Fault 10.6870 15.1958 23.0105 1.4530 0.0390 -1.4920

Table 5.2: Threshold value of current at different fault locations

Fault
Types

Threshold
of Ia

Threshold
of Ib

Threshold
of Ic

Threshold
of Ig

Max Min Max Min Max Min
ABC-G 18.6876
ABC 56.9488
AB-G 531.6202 32.9732 25.7012
AC-G 620.4303 22.3418 15.5710
BC-G 608.8079 26.1066 20.9355
A-B 855.3816 17.8156 28.2445
A-C 574.5684 19.8595 34.5217
B-C 420.5652 15.3783 16.8326
A-G 307.6007 39.5083 307.6007 20.8305 18.3399
B-G 199.6292 32.6032 199.6292 28.3545 24.7174
C-G 364.3873 15.1679 364.3873 28.6647 15.5710
No-Fault 23.0105 10.6870 23.0105 15.1958 23.0105 23.0105 13.0455
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5.3 Modelling of the High Sensitive Overcur-

rent Relay

This protection switchgear block contains a current transformer, a circuit breaker

(52) and an IDMT overcurrent relay (51P) that operate when the current exceeds

the relay’s predetermined value. This relay operates based on the IEC 60255

standard for normal inverse the Inverse Definite Minimum Time (IDMT) trip

characteristics, as seen in Figure 5.1. It also contains a phasor measurement unit

(PMU) and two Supply and Switching Units (SSU) connected to a separate bus

with 10 kA, 6 kA and 4 kA faults. These fault values are obtained from Tables

5.1 and 5.2. The input voltage was a 330 kV high-voltage transmission line, and

an output display of the relay status showed the tripping time and fault current.

Figure 5.1: Instantaneous overcurrent relay block model

The overcurrent relay activates when the fault current exceeds the relay pickup

current. The pickup current is calculated in operating time. The inverse definite

minimum time (IDMT) is the time taken before the circuit breaker trips when

an overcurrent is initiated in a circuit or the transmission line is also calculated.

The operating time is defined as a fixed parameter such that an instantaneous

overcurrent relay is produced when the operating time is set to zero [202]. This

can be illustrated in Figure 5.2 below and, to calculate the trip time, the IEEE

C37.112-1996 equation for the trip time used is given In equation 5.2 as:

t(I) = TD

(
A

( 1
Is
)p − 1

+B

)
, (5.2)

Where A is the time factor for the overcurrent trip, I is the actual current, Is

is the relay pickup setting, p is the exponent for inverse time, and B is the

time coefficient for the overcurrent trip. While the IEC 60255 IDMT trip curve
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equation is given by equation 5.3

t(I) = TMS

(
k

( 1
Is
)α − 1

)
, (5.3)

where α and k are the curve constants and seen in Table 5.3 below.

Figure 5.2: The IDMT Overcurrent Relay Curve

Table 5.3: IDMT curve constant.
Curve Type K α
Normal Inverse Curve 0.140 0.020
Very Inverse Curve 13.5 1
Extremely Inverse Curve 80 2
Long-Time Standard Curve 120 1

5.4 Results and Discussion

The threshold current or peak make current and the short circuit breaking current

can be calculated by finding the RMS symmetrical current i”k; the peak make

current for a single radial current is calculated using the peak factor k as shown

in equation 5.4 and 5.5.

ip = k
√
2i”k, (5.4)

where k = 1.02 + 0.98x10−3
(
X
R

)
.
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Peakfactor =
√
2

[
1 + sin

{
tan−1(

X

R
)

}
exp

{
−[π

2
+ tan−1(X

R
)]

X
R

}]
, (5.5)

where the X
R
is the system ratio at the fault point. The RMS current is given

by Irms total at 1
2
cycle (KA),

Irms =

√√√√I + 2exp

[
−

π
2
X
R

]
XIrms, (5.6)

at 1
2
cycle(KA) and X

R
=
(

XP
c

Rp
c

)
× f

fc
for single phase to Earth faults . f is the

normal frequency and fc is the equivalent frequency represented in equation 5.6.

The model generated the threshold current when the fault resistance was set

at 0.01 Ω, 50 Ω and 100 Ω, respectively. The response times of the three different

relays were also analysed, as seen in Tables 5.4 to 5.6.

Table 5.4: Threshold current at fault resistance of 0.01 Ω.
Fault Type Fault Resistance = 0.01 Ω
Three-phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 259 8.524 2.826
TMS (Seconds) 2.991 0.1421 0.04709
Trip Time (Seconds) 0.01 0.01 0.01
Double phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.9 13.25 4.424
TMS (Seconds) 2.991 0.2208 0.07373
Trip Time (Seconds) 0.01 0.01 0.01
Single line to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.8 16.43 5.478
TMS (Seconds) 2.99 0.2739 0.0913
Trip Time (Seconds) 0.01 0.01 0.01

The tripping time varied as the fault resistance changed from 0.01 Ω to 100 Ω

at different fault conditions. In Table 5.4, when the fault resistance was at 0.01

Ω, the trip time was 0.01 s at the three relays and all the fault conditions. At

the same time, it was quite different when the fault resistance changed to 50 Ω.

The trip time was reduced to zero seconds at a double line to ground and a single

line to ground fault at relays 1 and 3 with a variation in relay 2 of about 0.91

s as seen in Table 5.5. The time multiplier setting (TMS) for each of the relays

was set at 1 s, 2 s and 5 s, and the error after tripping was about 0.9 s, which is

minimal, as seen in Table 5.6 (0.98 s, 0.89 s and 0.96 s) for the three phases to

ground fault. This can be seen in Figure 5.3 A–C, where the TMS was set to 5
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Table 5.5: Threshold current at fault resistance of 50 Ω.
Fault Type Fault Resistance = 50 Ω
Three-phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.7 355.8 117.9
TMS (Seconds) 2.989 5.93 1.966
Trip Time (Seconds) 0.01 0.9198 0.01
Double phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.7 355.7 118.3
TMS (Seconds) 2.989 5.929 1.971
Trip Time (Seconds) 0.000 0.9193 0.000
Single line to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.5 355.5 118.5
TMS (Seconds) 2.987 5.925 1.975
Trip Time (Seconds) 0.000 0.9185 0.000

Table 5.6: Threshold current at fault resistance of 100 Ω.
Fault Type Fault Resistance = 100 Ω
Three-phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.2 353.9 117.9
TMS (Seconds) 2.985 5.899 1.966
Trip Time (Seconds) 0.000 0.9149 0.9039
Double phase to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358.1 353.8 118.3
TMS (Seconds) 2.984 5.897 1.971
Trip Time (Seconds) 0.000 0.9145 0.9035
Single line to ground fault Relay 1 Relay 2 Relay 3
Threshold Current (kA) 358 353.7 349.5
TMS (Seconds) 2.984 5.895 5.824
Trip Time (Seconds) 0.000 0.9136 0.9026

s, 2 s and 1 s, respectively.

A backup relay was added to the network for optimal system performance to

prevent feedback faults. In instances where relay 1 failed to operate, it sent the

signal to relays 2 and 3 for better coordination and protection.

The threshold current also varied as the fault resistance increased and was

slightly different in the different fault types, as seen in Table 5.6, where the

threshold current was an average of 358 kV in relay 1 and was slightly different

in relay 3 of the single phase-to-ground fault.

Transmission line faults can be identified with less accuracy when noise signals

occur. When choosing and extracting fault characteristics, noise signals such as

voltage sag, transients, harmonics, and voltage interruption must be considered.

In [176], the DWT was utilised for feature extraction, and the SVM was used

for fault classification, with 100% accuracy when there was no disturbance and
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Figure 5.3: Time multiplier settings at 1 second.

98% and 95.6% accuracy when there was 30 dB and 20 dB noise, respectively.

It is recommended that noise be removed using the DWT approach during fault

extraction to obtain a denoised signal.

5.4.1 Validation of the Result Using the Threshold Cur-

rent and Voltage with Other Models for the Sensi-

tivity of TMS

Two scenarios were created in Figures 5.4 and 5.5 to show when three phase-to-

ground faults were initiated to bus A and B, and the relay was applied in bus B

while bus A was without a relay. In the implementation of the proposed model in

Figure 5.4, the circuit breaker tripped at 0.05 s and was restored at the maximum

threshold current. When the relay was initiated, the line tripped at 0.04 s, and

the operating time delay was 0.035 s, as seen in Figure 5.5.

The application of the instantaneous overcurrent relay has reduced the oper-

ating time drastically, thereby protecting the entire system from collapsing. The

threshold value is an easy way to detect faults and prevent transmission line fault

protection tripping delays. The overshoot at Bus B/l1 in Figure 5.5 shows that

the maximum threshold coefficient was at the highest with 620.4303 kA as seen

in Table 5.2 (AC-G). Additionally, the minimum threshold was the lowest at the

no-fault condition with 10.6870 kA.

The instantaneous overcurrent and voltage relay function model is shown in

Figure 2.6 of relay 1. The trip time for the current is shorter (Figure 2.6a)

compared to the voltage, while the time delay was at zero seconds in each case.

This shows a better tripping time than the model without the relay setting, as

seen in Figure 2.4. In addition, the fault current trip time was 0.05 s, while

the voltage trip time was 0.35 s, as opposed to 0.04 s in Figures 2.4 and 2.5.

The reduction of the tripping time was due to the introduction of instantaneous



CHAPTER 5. OPTIMAL RELAY PROTECTION OF TL 97

Figure 5.4: Fault at bus A without the relay.

Table 5.7: Percentage accuracy of the proposed model at bus A.

Fault Type
Trip time Without
proposed Model (Sec)

Trip Time With
Proposed Model (Sec)

% Increase in
Accuracy

L-G 0.25 0.03 85.00
L-L-G 0.38 0.05 99.87
L-L-L-G 0.10 0.04 60.00

overcurrent and voltage relay settings with the help of the threshold voltage and

current of the model.

Figure 5.6 represented the initial condition when the trip time was 0.35 s

without setting the instantaneous overvoltage relay at bus B. However, it reduced

to 0.05 s when the model was implemented, as shown in Figure 5.5 above.

In Figure 5.8, the reference tripping time of the three-phase-to-ground fault

at relay 2 shows that the line tripped at 0.2 s without applying the proposed

model.

The performance of the proposed model is shown in Table 5.7 with a percent-

age increase in the tripping time without the application of the model compared

to the proposed model, and it shows that at bus A, the double line to ground

fault shows 99.87% with a difference of 0.33 s. The same also applies to three

phase-to-ground faults and single phase-to-ground faults.

The differences in the various fault condition tripping times were computed to

find the percentage increment of the tripping time of the normal system without
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Figure 5.5: Application of relay at bus B.

Figure 5.6: The overcurrent and voltage relay function at relay 1 before setting.

the threshold value. The proposed model is shown in Equation 5.7 below.

Pi =
TA − TB
TA

× 100, (5.7)

where Pi is the percentage increment of the tripping time of the relay, TA is the

tripping time without the threshold value, and TB is the tripping time using the

proposed model.

At bus B relay 1, there were significant changes in the tripping time with the

double-line-to-ground fault of 84.38% and a difference of 0.27 s, as seen in Table

5.8. The proposed model improved the tripping time and reduced the time delay

of the relay to sense a fault signal and trip, compared to [203], which focused on
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Figure 5.7: Overvoltage Trip at Bus B.

Figure 5.8: Three phases to ground fault at relay 2.

the selection and reliance of backup relays to trip in a fault condition.

5.4.2 Comparison of the Proposed Algorithm with the

Deep Learning-Based Results

The deep learning-based method was compared with the proposed algorithm for

accuracy and tripping time. In [204], an artificial intelligence search algorithm

and a genetic algorithm were employed to find the optimal relay setting coordi-

nation time. The result shows that the tripping time varied from 0.10 s to 0.69 s

at different fault levels. The operating time varied from 0.28 s to 6.3 s at different

Table 5.8: Percentage accuracy of the proposed model at bus B.

Fault Type
Trip time Without
proposed Model (Sec)

Trip Time With
Proposed Model (Sec)

% Increase in
Accuracy

L-G 0.10 0.03 70.00
L-L-G 0.32 0.05 84.38
L-L-L-G 0.20 0.04 80.00
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fault locations. In [205], the Radial Bias Function Neural Network (RBFNN) to

learn and detect short-circuit fault current was implemented in the microproces-

sor of a digital relay on a distribution feeder to detect short-circuit faults using

inverter-based distributed energy resources. The offline training time was 0.414 s,

the detection time was 0.0136 s, and the trip time was 0.5 s. In [206], a directional

overcurrent relay was used at different setting groups to detect faults at various

locations. The optimal coordination of directional overcurrent relays in clusters

was obtained using a machine learning algorithm and a genetic algorithm with

heuristic adjustment. The operating time was 497.4069 s. The tripping times

were set at 0.282 s and 0.593 s for different clusters. In [207], a dual-path mixed-

domain residual threshold network was used for fault diagnosis in bearings, the

soft threshold function was employed as the nonlinear transformation layer, and

dilated convolution was used to create a dual-path neural network to identify

the critical features in the signal without using any signal denoising algorithms.

The algorithm’s accuracy was about 99.97% on Gaussian noise and 99.98% on

real noise. On the other hand, this paper focused on feature extraction at vari-

ous noise levels and thresholds for machine learning training. Still, the difference

lies in the direct application of the proposed model without the combination with

other algorithms, as seen in [207], where the channel attention mechanism, spatial

attention mechanism, and residual structure were all combined in the dual-path

mixed-domain residual threshold network. The soft threshold function was used

as the nonlinear transformation layer, and dilated convolution was used to make

a dual-path neural network. This was done so that the signal’s most essential

parts could be found without using algorithms to remove noise.

Compared to the literature, the data extraction stage is simpler with the

help of the threshold current and voltage. It does not require another medium

to extract the threshold value; thus, it produces fast and accurate results for

the relay setting without needing relay coordination. Additionally, the wavelet

transform can de-noise fault signals so that it can be applied to every kind of

noise signal.

5.5 Conclusions

This paper has proposed using the threshold voltage and current value as a stan-

dard for coordinating and setting the instantaneous overcurrent relay protection.

The simulated result was analysed to confirm the model’s viability in calculating

the high-voltage transmission line relay’s tripping, delay, and operating times. It

also analyses or detects the maximum and minimum threshold voltage and cur-
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rent suitable for optimising the relay and circuit breaker for optimal performance.

This technique helps reduce the delay and improve the relay’s tripping time. One

of the constraints of this technique is the inability to optimise the threshold cur-

rent for different current and voltage types. However, this technique discriminates

poorly in distinguishing between fault currents at different points when the fault

impedance between two points is small.

Additionally, coordinating is challenging and necessitates changes as the load

increases and the optimisation of the model to accommodate different voltage

inputs synchronously. This process can be used for all fault types. Therefore, it

has a superior and effective tripping time compared to other techniques in the

literature.



Chapter 6

Load Frequency Control in TL

using PID-PSO

6.1 Introduction

Load Frequency Control (LFC) is used in electric power systems to maintain a

comparatively consistent frequency, distribute the load among the generators,

and manage tie-line exchange schedules. The power system desperately needs

load frequency control because the transmitting frequency must correspond to

the generating and load frequency, which must synchronise to prevent faults on

the transmission line. If the typical frequency is 50 Hz or 60 Hz and the system

frequency drops below 47.5 Hz or rises over 52.5 Hz on a 50 Hz frequency band,

the turbine blades will likely be harmed, and the generator may stall [208]. The

two main variables that vary when there is a transient power demand are area

frequency and tie-line power exchange. [209]

The primary objective of LFC is to keep the power system’s frequency con-

stant by adjusting the power generation to match the power consumption. The

LCF system consists of the primary and the secondary control. The Primary

Control is responsible for quick response to sudden changes in power consump-

tion by adjusting the power generation to match it. It operates on a time scale

of seconds. It is typically implemented using governors on power generators. At

the same time, the secondary control is responsible for maintaining the balance

between power generation and consumption over a longer time scale of minutes to

hours. It is typically implemented using Automatic Generation Control (AGC),

which adjusts the power output of generators to meet the load demand. The LFC

system works by continuously monitoring the power system frequency. When the

frequency deviates from the nominal value, the primary control system quickly

responds by adjusting the power output of the generators to bring the frequency

102
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back to the little value. The secondary control system then takes over and ad-

justs the power output to keep the frequency at the nominal value over a longer

time scale. Load Frequency Control is essential for maintaining the stability of

the power system and ensuring that the power supply is reliable. It helps to

prevent power outages and blackouts by quickly responding to changes in power

consumption and adjusting the power generation to match it. In power systems

with multiple power generators, the LFC system is typically implemented using a

central control system that coordinates the actions of the individual generators.

The LFC system can also be implemented using advanced control methods such

as Model Predictive Control (MPC) and artificial intelligence-based methods.

A modest variation in load power in a single-area power system that runs at a

fixed frequency results in an imbalance of power between supply and demand. The

first solution to this mismatch issue is removing kinetic energy from the system,

which leads to a decline in system frequency. The old load’s power consumption

reduces as the frequency steadily drops. When the newly added load is diverted

by lowering the power required by the old load and power linked to kinetic energy

is eliminated, substantial power systems may achieve equilibrium at a single point.

Without a doubt,a balance is reached at the expense of frequency decrease. To

maintain this balance, the system takes some control action; governor activity is

unnecessary. In such a situation, the frequency is significantly reduced.

The critical component of a power system that ensures continuous power

delivery to the customer is load frequency control. Automatic Generation Control

(AGC) technically accomplished power system frequency control. To maintain

sensible load and generation balance, frequency control splits the load across

generators and adjusts the tie-line power to predetermined levels [208].

Different literature has discussed the LFC in transmission lines using conven-

tional methods to stabilise the load frequency of the power system. In [210], it

suggests a novel PSO-based multi-stage fuzzy controller for solving the LFC is-

sue in a restructured power system. This control technique was adopted because

of power systems’ rising complexity and changing structure. This newly devel-

oped control strategy combines the fuzzy PD and integral controllers with a fuzzy

switch to achieve the desired level of robust performance, such as frequency reg-

ulation, load demand tracking, and disturbance attenuation. These occur under

load fluctuation for various plant parameter changes and system nonlinearities.

A PSO-based method automatically modifies membership functions to save

design effort and improve fuzzy system control. The PSO method suggested

in this study is simple to implement and requires no extra processing complex-

ity. Experimenting with this approach yields reasonably promising results. The
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capacity to leap out the local optima, convergence accuracy and speed is signifi-

cantly improved, resulting in high precision and efficiency. However, the settling

time and the overshoot were high, reducing the controller’s performance.

In [211], a hybrid generation system consisting of solar photovoltaic, wind

turbine generators, geothermal power plant, and electric vehicle aggregators to

improve the stability of the system by implying the Genetic Algorithm (GA) and

the PID controller to reduce the settling time and overshoot.

Large frequency oscillations occur when the Load Frequency Controller (LFC)

system does not correct the imbalanced power [212]. To that purpose, an artifi-

cial neural network (ANN) based on particle swarm optimisation (PSO) is being

proposed to modify the settings of the PID controller in the MG structure. The

simulation results show that using PSO-based ANN makes the system stable in

the minimum amount of time. Also, the amplitude of frequency oscillations,

overshoot, and settling time is minimised. These error values determine the area

control error input signal to the PID controller unit, the primary purpose of

which is to minimise the error at the output. As a consequence of the preced-

ing explanation, the PSO methodology produces much better results than the

fuzzy and trial techniques since the fuzzy approach takes a long execution time

to execute many linguistic rules in a multi-area system simultaneously. Second,

obtaining the suitable language rule matrix to achieve the required outcomes is

time-consuming. A high number of iterations is necessary to get ideal values of

PID gains via a trial technique [213].

In [214], it advocated improving load frequency management using a PID

controller and a Static Synchronous Series Compensator (SSSC). Particle Swarm

Optimisation (PSO) determines the optimal parameters for the PID controller.

Though it was only used for one area of LFC, it is limited to specific algorithms.

Also, [215] suggested an optimisation approach that combines the best aspects of

three optimisation techniques: the Firefly Algorithm (FA), Particle Swarm Opti-

misation (PSO), and Gravity Search Algorithm (GSA) to accomplish automated

load frequency management of the multi-source power system, the suggested tech-

nique was employed to set the parameters of a Proportional Integral Derivative

(PID) controller. The integral time absolute error was employed as the goal func-

tion. Moreover, the controller was calibrated to guarantee that the multi-source

power system’s tie-line power and frequency remained within acceptable parame-

ters. Recently, the Multi-Verse Optimisation approach produced improved tuning

of the fractional order Proportional Derivative Proportional Integral (PDPI) con-

troller for LFC, both with and without the HVDC connection [216].

In [217], a nature-inspired stochastic evolutionary algorithm was presented to
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attain the best LFC. An inter-phase power controller [218] or a Flexible Alter-

nating Current Transmission System (FACTS) controller can enhance the power

quality of a two-area power system.

In [219], it evaluates the viability of integrating wind turbines into conven-

tional power production, and a PSO and Model Predictive Control (MPC) tech-

nique is presented for LFC with wind turbines. The particle swarm optimisation

algorithm is integrated to lessen the computational cost of executing the MPC

strategy. The control quality is repeatedly optimised using the cost function of

MPC as the objective function of PSO. Moreover, simulations confirmed the ef-

fects of physical restrictions like the Generation Rate Constraint (GRC) and the

governor’s dead zone [220]. The results show that this approach performs quickly

and dynamically. However, the Control strategy may result in slow iterative

operation or local optimal solution problems.

In [221], a PSO for a single-area power system based on load frequency control

(LFC) is described. The goal was to develop a PSO-optimised self-tuning PID

controller for controlling a specific region of linked power systems. According

to the comparative study, the suggested controller may provide the optimum

dynamic response for a step load change compared to a standard Proportional-

Integral (PI) controller.

in [222], the type 2 Fuzzy PID controller was used for frequency control of

the power system with distributed sources, and the accuracy of the system was

94.71%. Due to the low inertia of the microgrid, the virtual inertia control was

not considered in the paper.

Deep reinforcement learning has also been used for load control in micro-

grids where a partially observable Markov decision process was used in privacy

protection of load control as seen in [223].

6.1.1 The Main Contribution of the proposed model

The PSO-PID controller’s key contribution to Load Frequency Control (LFC)

enables efficient real-time tweaking of PID parameters to keep system frequency

and tie-line power flow within acceptable bounds.

PID controllers have traditionally been employed in LFC systems, but deter-

mining proper PID settings may be difficult, particularly for large-scale power

systems. Large-scale power systems involve complex dynamics, multiple inter-

connected components, and diverse operating conditions, making it challenging

to find optimal PID settings that provide stable and reliable control. System

uncertainties like generator characteristics, line parameters and load variations

can affect the output. Also, system complexity and interconnection and oscil-
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lation can affect the system. The PSO method optimises the PID parameters

effectively by leveraging on a group of potential solutions and repeatedly refining

them towards an optimum solution. However, modelling, simulation, optimisa-

tion, advanced control techniques, expert knowledge, and iterative refinement can

help achieve suitable PID settings that provide stable and reliable control in such

systems as applied in the proposed model.

The PSO-PID controller in LFC can also manage power system non-linearities

and uncertainties, which may impact system frequency and tie-line power flow.

The PSO algorithm enables real-time tuning of PID parameters, ensuring that

the LFC system can swiftly respond to changes in the power supply.

Compared to typical PID controllers, the PSO-PID controller in LFC provides

a more efficient and resilient solution for regulating system frequency and tie-line

power flow within acceptable limits in power systems.

The conventional controller is required to construct the automated load fre-

quency control system. The PID controller has several flaws. These flaws include

requiring a long time to restore the frequency and power deviation to their nom-

inal values and experiencing excessive frequency variation error.

The proposed model uses an isolated power system generation with the con-

ventional energy source. The model was designed using the PSO-PID controller

to optimise the load frequency using the ITAE cost function to determine the

improved controller and the cost function of the PSO-PID algorithm compared

with the conventional approach.

6.2 The Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an intelligent evolutionary algorithm in-

spired by the social behaviour of flocking birds or schooling fish. Kennedy and

Eberhart presented the PSO approach for the first time in 1997 [224, 225]. PSO

algorithm can provide high-quality solutions in less time and with more steady

convergence characteristics than other stochastic approaches such as genetic al-

gorithm [221,226].

In an n−dimensional space, let the position and individual i be represented

as vectors Xi = (xi, ..., xin) and Vi = (vi, ...vin) in a PSO algorithm. Let

Pbesti = (xi
pbest, ...xin

pbest) (6.1)

and

Gbesti = (xi
gbest, ...xn

gbest) (6.2)
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equation 6.1 and 6.2 be individual igbest positions so far and their neighbours’

best position so far, respectively. Utilising this information, the PSO algorithm

modifies the updated velocity of individual i using equation 6.3

V − ik + 1 = ωVi
k + c1r1 × (Pbesti

k −Xi
k) + c2r2 × (Gbesti

k −X i
k) (6.3)

Where,

Vi
k is the velocity of individual i at an iteration k. ω is the inertia weight param-

eter,

c1, c2 is the acceleration coefficients,

r1, r2 represents the random numbers between 0 and 1,

Xi
k is the position of individual i until iteration k.

Pbesti
k is the best position of individual iteration and

Gbesti
k is the position of the group iteration.

The value of c1, c2 and ω are predetermined and generally, the weight ω is shown

in equation 6.4

ω = ωmax − (ωmax − ωmin)×
iter

Itermax

(6.4)

Where,

ωmax, ωmin is the initial and final weights,

Itermax is the maximum iteration number,

iter current iteration number

The moves from the individual position of the current to the next velocity

modified in equation 6.3 is shown in equation 6.5

Xi
k+1 = Xi

k + Vi
k+1 (6.5)

PSO’s improved PID controller is intended for LFC and tie-power control. The

objectives are to manage the frequency and inter-area tie-power with adequate

oscillation damping while achieving good performance. The optimal values of

the KP , KI and Kd parameters for a PID controller are quickly and precisely

determined in this work utilising a PSO. In a typical PSO run, an initial pop-

ulation is produced at random. The original population is known as the 0th

generation. Each member of the initial population has a unique performance in-

dex value. The PSO then generates a new population based on the performance

index information. The system must be simulated to acquire the performance

index value for each person in the present population. The PSO then uses the

reproduction crossover and mutation operators to create the next generation of

humans. These methods are continued until the population has converged and
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the optimal parameter value has been identified [227].

Figure 6.1: The model flowchart for PSO

Figure 6.1 represents a flowchart model of the PSO step-by-step algorithm

implementation. Set the parameters for the PSO algorithm, such as the number

of particles, maximum iterations, and inertia weight. Then , set the particle posi-

tions and speeds at random inside the search space. Estimate the fitness function

for each particle using the LFC problem, and the fitness function should represent

the system’s performance, such as frequency deviation and tie-line power devi-

ation. Then, update each particle’s own best position and fitness. Update the

swarm’s overall best position and fitness, and the PSO method is used to update

the velocity and location of each particle. The new velocity and location should

fall inside the scope of the search. This system is repeated until the maximum

number of iterations is achieved, or a good solution is discovered by using the

best control action for the power system to keep frequency and tie-line power
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variations within acceptable limits.

6.3 System Model

The load frequency control strategy’s primary goal is to offer consumers high-

quality, dependable electricity within an integrated system. Variations in active

power cause the system’s frequency to fluctuate. As a result, a control technique is

developed to regulate load frequency regulation using control loops. Two typical

techniques, transfer function and state variable, are used to convert the power

system model into a mathematical model by making sure appropriate assumptions

[228–230].

Figure 6.2: Transfer Function Model of a Power Station [231]

A section of the transfer function model of the Delta Power Station Nigeria is

designed as shown in Figure 6.2, and the primary sections are explained below.

Generator Model

The generator equation has been derived from the swing equation in [232] as

shown in equation 6.6

∆ω(s) =
1

2Hs
[∆Pm(s) + ∆Pgs(s)−∆Pe(s)] (6.6)

Where,

∆Pm is the change in mechanical power

∆Pgs is the power from the generating station

∆Pe net change in the electrical load demand and

H is the generator inertia constant.
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Load Model

The power system includes assistive and inductive loads that are frequency-

independent and dependent. As a result, the net change in load power may be

defined as the sum of frequency-sensitive and frequency-insensitive load changes

[233]. Some of the factors that affect the electric load include:

Meteorological factors: Weather, climate, temperature, humidity, and solar

radiation.

Temporal or calendar factors: the hours of the day, the days of the week, the

seasons, and so forth.

Economic factors such as industrial development, GDP, and so on.

Unexpected Factors: Sporting Activities, Festivals, etc.

Client Factors: Consumption type, building size, electric appliances, work-

force count, etc. This is represented in equation 6.7 below

∆Pe(s) = ∆PL +D∆ω (6.7)

Where ∆PL is the frequency-independent load change while D∆ω is the sensitive

load frequency change and D is the ratio of percentage change in load to the

frequency. The interaction between load variation and frequency fluctuation may

be represented in equation 6.8 as expressed below

∆PL(freq) = D∆ω =
∆PL(freq)

∆ω
(6.8)

Turbine or Prime Mover Model

It is the source of mechanical power, which derives its energy from the combustion

of coal or gas or nuclear fission. The turbine’s transfer function may be expressed

as the ratio of the change in mechanical output power ∆Pm(s) to the change in

steam valve position ∆Pv(s) given in equation 6.9

GT (s) =
∆Pm(s)

∆Pv(s)
=

1

1 + Sτt
(6.9)

Where τt is the turbine time constant.
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Governor Model

The speed governor operates as a comparator [234] as expressed in equation 6.10

below

∆Pg(s) = ∆Pref −
1

R
∆ω(s) (6.10)

Where ∆Pg is the power output of the governor, ∆Pref is the reference set power,

and Ris the speed regulation. Equation 6.11 expresses the relationship between

governor input and valve opening, as shown below.

∆Pv(s) =
1

1 + sτg
∆Pg(s) (6.11)

Where τg is the governor time constant in seconds.

6.3.1 The Proportional Integral Derivative (PID) Con-

troller

PID controllers are commonly used in industrial control systems as a control loop

fed back. It computes the difference between the measured process variable and

the intended set point. PID settings are fine-tuned to guarantee good closed-

loop performance. It is used to increase dynamic performance and lower steady-

state error [231]. The gains are automatically achieved by turning the model in

MATLAB Simulations to obtain (Kp, Ki, Kd). Where Kp decreases the rise time,

Kd reduces the overshoot and the setting time, and Ki eliminate the steady-state

error. In [235], the area control error theory associated with the PID control

system is as follows in equations 6.12, 6.13, and 6.14 below

Pout = Kpe(t) (6.12)

Iout = Ki

∫ t

0

e(t)dt (6.13)

Dout = Kd
d

dt
e(t) (6.14)

Where Kp is the Proportional gain

Ki is the integral gain, and

Kd is the derivative gain.

The transfer function of the controller is shown in equation 6.15 below

GPID(s) = Kp +
Ki

s
+Kds (6.15)
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and the control signal for maintaining the system frequency is shown in equation

6.16.

U(s) = −GPID(s)× ACE(s) (6.16)

ACE is the area control error of the system, and U is the governor’s input signal

for managing the valve output based on the power system’s load demand. The

ACE = B × ∆ω and B are the bias factors, as B = 1
R
+ D and Dω is the

frequency deviations.

6.4 Modelling of the Proposed power system

The proposed model is the Delta thermal generating station, a part of the Nigeria

transmission line model, as seen in Figure 2.4. The network was modelled with

the following specifications, as shown in Table 6.1 below:

Table 6.1: System parameters
Parameters Specification

Normal Frequency (Hz) 50 Hz
Turbine-rated Power (PL) 300 MW
The turbine time constant (Tt) 0.5 seconds
Governor time constant (Tg) 0.2 seconds
Governor speed regulation (R) 0.05 PU
Generator inertia constant (H) 5 seconds
Load variation (D) 0.8

Figure 6.3: System Model with PID controller

The Simulink model for frequency control was generated using the transfer

functions of the modelled power network using the MATLAB/Simulink environ-

ment. The PID controller gain value was optimised and implemented using a
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distinct PSO technique-coding mfile in MATLAB. The nominal system parame-

ter values were taken from Table 6.1 to normalise the frequency and modelled as

shown in Figure 6.3 with the introduction of the PID controller. The governor

speed regulation R is 0.05 PU, so 1
R
is 20.

The controller gain value is determined by selecting the objective function

in which ITAE was used as a desired output. Then, initialise a population of

particles where each particle represents a potential set of controller gain values

of 0.9994, 0.7741 and 0.1858 for Kp, Ki and Kd, respectively, with the velocity

vector. Then, evaluate the fitness performance of each particle by calculating

the objective function value based on the controller gain values. Update the

particle velocity and position to determine its best position and global best. These

processes are repeated in multiple iterations to decide the termination condition,

extract the best solution, and implement the controller. It is important to note

that the success of the PSO algorithm in determining optimal controller gain

values depends on factors such as the complexity of the control problem, the

choice of the objective function, and the proper tuning of PSO parameters like

swarm size, inertia weight, acceleration coefficients, termination criteria.

6.5 Methodology

The proposed algorithm uses the PSO algorithm to determine the controller gain

value of Ki, Kp and Kd, which are achieved by turning in MATLAB simulation

to eliminate the steady state error, to decrease the rise time and to reduce the

overshoot and settling time respectively.

The proposed system is modelled and simulated as shown in Figure 6.4. First,

it was modelled without the PID controller, and the PID controller was included

to normalise the load frequency. A two-area thermal energy network was added

to the design to maintain stability and control with good oscillation damping.

The PSO algorithm was introduced by initialising an array of particles with

random positions to normalise the inequality constraints of the different particles.

Verify the fulfilment of the equality criteria and, if necessary, revise the output

and evaluate the fitness function of each particle. Compare the current value of

the fitness function to the particle’s prior best value. If the current fitness value

is smaller, assign the current fitness value and the current positions. Determine

the current global minimum fitness value among the current position to compare

the present value with the previous to ascertain the best-fit value.

The effect of the gain values (proportional gain, integral gain, and derivative

gain) in a PID controller can significantly impact the behaviour and stability of
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Figure 6.4: Complete Simulated Model with PID controller

the power system. Here are the effects of PID gain on a power system are as

follows:

• Stability: The proportional gain (P) influences the system’s stability. Higher

proportional gain can lead to faster responses to control errors but may also

increase the risk of oscillations or instability. Lower proportional gain re-

sults in a more stable system but can lead to slower responses.

• Load Variations: PID controllers in power systems must adapt to load

variations and disturbances. The gain values should be set to ensure the

system can respond to such changes effectively without excessive overshoot,

oscillations, or instability.

• Accuracy: Proper tuning of PID gain values is critical for achieving the

desired accuracy in regulating parameters like voltage and frequency. Well-

tuned PID controllers can maintain these parameters within acceptable lim-

its under various operating conditions.

• Transient Response: The integral and derivative gains (I and D) influence

the system’s transient response. A higher integral gain can reduce settling

time but may lead to overshoot and oscillations. The derivative gain can

dampen oscillations and improve the transient response, but if set too high,

it can also introduce noise and instability.

This has influenced the performance of the model by increasing the accuracy and

stability of the load frequency, as seen in Figure 6.14 for stabilisation of frequency

variation.
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6.6 Results and Discussion

The system was modelled using the designed parameters in Table 6.1 to design

the model in Figure 6.4, the system was implemented using MATLAB, and the

mfile code was executed for the PSO algorithm. The system was modelled using

the designed parameters in Table 6.1 to design the model in Figure 6.4, the

system was implemented using MATLAB, and the mfile code was implemented

for the PSO algorithm. The PID controller was tuned by minimising the ITAE

for optimal performance. The optimised parameters were used to determine the

effectiveness of the proposed technique.

Figure 6.5: Load Frequency Without PID Controller

Figure 6.5 represents the base frequency of the base load without the PID

controller and when the PSO parameters have not been fine-tuned. There was an

overshoot of 49.6 Hz, which later changed to 49.55 Hz, causing a variation in the

load frequency. Also, in Figure 6.6, the PID controller was applied to the model

without the PSO algorithm. The frequency reluctantly moved to 50 Hz, and the

settling time was 5 to 10 seconds before normalising. The time delay affects the

power system and can lead to power loss; therefore, there is a need for a fast and

accurate settling time of the load frequency.

In Figure 6.7, the base load was also affected by dropping from 300 MW to 299

MW, and about 1 MW of electricity was lost due to a fault in the load frequency.

Also, when the total load frequency was increased to 350 MW, there was an

overshoot due to overcurrent, as seen in Figure 6.8.

The frequency variation deviated rapidly, as seen in Figure 6.9 without the
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Figure 6.6: Load Frequency With PID Controller

Figure 6.7: Base Load without PID Controller

PID controller and normalised with the introduction of the PID controller, as

seen in Figure 6.10. To maintain the load frequency with minimum time delay

and overshot, the PSO algorithm is introduced to the model.
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Figure 6.8: Load frequency with PID controller

Figure 6.9: Frequency Variation without PID Controller

6.6.1 Frequency Control Using The PSO Algorithm

The PSO algorithm was applied using MATLAB Code to Figure 6.4, increasing

the load to 360 MW for the changes. Also, the combined frequency changes, as

explained in the results.

In figure 6.11, the change in base load was changed due to load frequency

variation, but this was normalised using the proposed algorithm from 0.19 PU to

0.2 PU, as seen in Figure 6.12.

Also, the variation in load changes from 0.5 seconds in Figure 6.11 to 0.2

seconds in Figure 6.12. The change in the settling time made the proposed model
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Figure 6.10: Frequency Variation Using PID Controller

Figure 6.11: Change in Load(PU) without PID Controller

more reliable than the PID controller and, hence, faster in fault clearing time.

In figure 6.13, the combined frequency response of the PID controller and the

PSO algorithm shows that the proposed algorithm performance is better based on

the settling time and fault clearing time of zero seconds using the PSO algorithm.

Also, the frequency variation in PU was reduced from o.8 seconds in Fig-

ure 6.10 to zero seconds using the PSO and the PID controller in Figure 6.14.

The performance indices of the proposed model are measured by the ITAE,

which is 0.0005757. This is minimal as compared to [236] with 0.7741 for Kp,

0.9994 for Ki and 0.1850 for Kd. Also, the model’s system dynamic response is

tested by varying the load from 300 MW to 350 MW at a load variation of 0.2

PU.
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Figure 6.12: Change in Load(PU) with PSO-PID Controller

Figure 6.13: Combined Frequency Response using PSO-PID Controller

6.6.2 Comparing the PSO-PID controller algorithm with

other LFC Techniques

The PSO-PID controller algorithm was compared to other techniques, as shown

in Table 6.2. The algorithm was compared with the fuzzy controller with a

settling time of 15.4 s [237] as compared with the proposed algorithm of 0.00 s

settling time and a performance index of 0.0005757 ITAE. Also, the settling time

of the ANN SVM, ANFI, and ANN-PID controller is higher than the proposed

algorithm, as shown in Table 6.2. Compared to PI and PID controllers, the PSO-

PID controller has shown superior quick settling time, reduced overshoot and

undershoot, and fewer oscillations.
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Figure 6.14: Frequency Variation in PU using PSO-PID Controller

Table 6.2: Comparing the proposed model and the other algorithm used

Controller Used
Settling
time (s)

Controller
Error

Overshoot Reference

FUZZY Controller 7.20 0.2% 0.027 [237]
Fuzzy Controller 15.4 2.5% 2.33 [238]
PID controller 16.58 0.732 0.0206 [239]
ANN-PID Controller 6.5 0.04% 0.1090 [234]
Optimal ANN 50.0 0.06% 3.4 [240]
ANFIS controller 8.5 - -0.45 [241,242]
BESSO-PID Controller 10.4767 - 0.0001 [243]
DE-PID Controller 11.1892 - 0.001 [244]
PID-PSO Controller 2.93 0.055% 0.052 [245]
SVM Controller 10.5 7.09% 0.25 [246]
GA-PID Controller 21.8 0.0075 0.04 [211]
GA-PID Controller 5.0 0.50025 0.0 [247]
Proposed Algorithm
with PID

5.0 0.0005757 0.45

Proposed Algorithm
with PSO-PID

0.0 0.0005757 0.0

The PSO algorithm has a potential for premature coverage because the al-

gorithm has several parameters, such as the population size, inertia weight, and

acceleration coefficients, which must be appropriately selected to achieve opti-

mal performance. The performance of the PSO-PID controller in LFC may be

sensitive to the values chosen for these parameters, and sub-optimal parameter

settings could result in reduced controller performance or convergence to local op-

tima. Therefore, the proposed algorithm increases the iteration value to reduce

premature convergence for optimal results, as seen in Figure 6.15.

Other methods can be used to reduce frequency variation or control power
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Figure 6.15: Iteration of the PSO Algorithm

system and frequency stability, and these include

• Automatic Generation Control (AGC): AGC is a control system that ad-

justs the output of generators in response to variations in frequency to

maintain the balance between generation and load. When the frequency

falls, AGC may automatically boost the output of other generators to com-

pensate for the lost generation, restoring the frequency to its usual range.

• Load shedding: Load shedding is a control method used to minimise power

system demand during times of low generation or high demand. Load shed-

ding may be used to lower the load on the system and assist in restoring

the frequency to its normal range in the case of a frequency deviation. This

may include disconnecting individual loads or lowering the electricity usage

of specific consumers or areas.

• Reserve capacity: The generating capacity available to the system beyond

the predicted demand is called reserve capacity. Reserve capacity is cru-

cial because it acts as a buffer to absorb unforeseen occurrences like the

abrupt loss of a generator. By ensuring that the system has appropriate

reserve capacity, the frequency variation may be corrected rapidly without

jeopardising system stability.

• Interconnection with surrounding systems: Interconnection with neighbour-

ing power systems may offer new generation sources while also assisting in
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balancing energy supply and demand across a larger region. Interconnec-

tion with surrounding systems may give extra assistance to help restore the

frequency to its normal range in the case of a frequency deviation.

• Energy storage: Energy storage technologies, such as batteries or pumped

hydro storage, may be utilised to store surplus generating capacity and

release it as required. Therefore, it assists in maintaining system stability

by deploying energy storage to offer extra assistance to the system during

times of low generation.

Power system operators may use these steps to guarantee that the frequency

stays within a small range, reducing the danger of power outages or equip-

ment damage.

The novelty of this technique is the interconnection of hybrid generation plants

synchronised to a single grid and using the PID-PSO algorithm to control the load

frequency for optimal performance and to stabilise the generation and the load

frequency.

6.7 Conclusion

A novel particle swarm optimised LFC was examined in this work for autonomous

load frequency regulation of the Delta thermal generating station, a part of the

Nigeria transmission line model. The network was modelled without the PID con-

troller using the system parameters generated through a mathematical model, and

then the PID Controller was introduced for parameter turning. The mfile of the

PSO algorithm code was generated using MATLAB to generate the Kp, Ki and

Kd parameters. First, more adaptive tuning mechanisms for the PID controller

settings are obtained, and the system’s sensitivity is raised. It has been shown

that the suggested control algorithm is effective and improves system performance

significantly. As a result, the suggested PSO-PID controller is recommended for

producing high-quality, dependable electricity. Moreover, the PSO-PID algorithm

produces 0.00 s settling time and 0.0005757 ITAE. It’s essential to consider poten-

tial drawbacks like complexity and computational overhead carefully. Also, the

sensitivity to algorithm parameters, potential parameter convergence and limited

interpretability and assessment of their impact on the specific LFC application

before implementing a PSO-PID controller in a power system. Proper parameter

tuning, robustness analysis, and performance evaluation are crucial to ensure the

effective and reliable operation of the controller. The suggested controller algo-

rithm is relatively reliable and accurate in power system management and load



CHAPTER 6. LOAD FREQUENCY CONTROL IN TL USING PID-PSO 123

frequency control compared to conventional methods. This work can be improved

by including more generating stations synchronised into a single network.

The PSO-PID (Particle Swarm Optimisation - Proportional Integral Deriva-

tive) controller algorithm has several advantages over other conventional methods

in Load Frequency Control (LFC), including:

• Better performance: PSO-PID controller algorithm has been found to pro-

vide better control performance than conventional PID controllers in LFC

systems. This is due to the ability of PSO to optimise the PID parameters

to achieve the desired control objective.

• Robustness: PSO-PID controller algorithm is robust, and can handle varia-

tions in load and system parameters, which are common in power systems.

• Flexibility: PSO-PID controller algorithm can be easily adapted to dif-

ferent power system models and can be used to control different types of

generators.

• Fast convergence: The PSO algorithm has fast convergence compared to

other optimisation techniques, which makes it suitable for real-time control

applications.

• Easy to implement: The PSO-PID controller algorithm is easy to imple-

ment and does not require complex mathematical models or sophisticated

programming skills.

Overall, the PSO-PID controller algorithm has proven to be an effective and

efficient approach for Load Frequency Control (LFC) in power systems, offering

better control performance, robustness, flexibility, fast convergence, and ease of

implementation.



Chapter 7

Conclusions and Future Work

The contributions of this thesis are summarised in this chapter. In addition, the

opportunities for future research of this work are also identified and enumerated.

7.1 Conclusion

This section presents a chapter-by-chapter summary with other significant con-

tributions and implications of the research work carried out in this thesis.

Chapter 1 presents an overview of the research work carried out in the thesis.

The transmission line fault was discussed, and the types of faults that occur in the

transmission line were enumerated and explained in detail. The problem state-

ment outlines the main issues of the thesis, like the present state of the Nigerian

330 kV transmission line and the development of an effective protection system

that can detect, locate, and isolate faults quickly and accurately while minimis-

ing the impact on the power system. This requires a combination of advanced

sensing, computing, and control technologies and appropriate protection schemes

and strategies.

The research motivation and the core objectives, which involve modelling

the Nigeria 330 k transmission line, identify the different types of faults on the

network by classifying, detecting and localising the faults. Also, machine learning

analyses the data generated from the modelled system to detect and locate faults

for the optimum fault management system. were also discussed

Chapter 2 explains in detail the literature review of the thesis, focusing on a

brief introduction to the transmission line, types of faults and a brief introduction

to the Nigeria 330 kV transmission line. Also, an overview of fault detection, clas-

sification and localisation and the necessary protection techniques. Also, various

machine learning (ML) algorithms are applied in transmission line fault analy-

sis. They are compared with conventional techniques like the inspection robot,

124
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PMU, Fuzzy logic technique, distance relay protection technique, wave trans-

form technique and other hybrid techniques analysed. The ML techniques were

also compared with the conventional and hybrid methods. The core concept, es-

sential equations, and significant papers are presented and summarised for each

approach.

The Significance of the thesis is addressed in comparison to the current review

studies. Moreover, the benefits and limitations of machine learning methodologies

have been thoroughly examined and summarised to give a clear road map for

future study.

Overall, research contributions in modelling transmission line protection schemes

have significantly improved protection schemes’ efficiency, accuracy, and reliabil-

ity. These advances have played a critical role in ensuring power systems’ safety

and reliable operation.

Chapter 3 proposed the use of the CatBoost classifier as the preferred algo-

rithm for fault classification due to its high accuracy and ease of training. This

approach is accomplished by building a 330 kV, 500 km transmission line in Mat-

lab/Simulink and extracting fault current and voltage waveforms to determine

the fault phase for each defective voltage and current waveform. The system was

trained using a 93340 defect data set, with an accuracy of 99.54%. Classifier

algorithms such as SVM, ANN, and XBoost may train categorical data using

many data sets. This work addressed the classification of a multi-dataset of de-

fective voltage and current in transmission lines, emphasising speed, accuracy,

and precision in fault classification for quick fault identification and isolation.

The findings will also serve as a reference for transmission line fault prevention

management systems and architecture. The CatBoost classifier was justified for

the transmission line fault classification model after being compared to other ap-

proaches utilised in previous papers. The chapter also emphasises the effect of

noise signals on fault classification and how it can be reduced to optimal results.

Chapter Four analysed and investigated the use of artificial neural networks

for fault detection and localisation in the transmission line. A 330 kV, 500 km,

50 Hz three-phase the transmission line was modelled using Matlab/Simulink to

generate the RMS value of faulty voltage and current signals from the malfunc-

tioning line. Around 12 distinct fault situations were explored, and 33,336 data

samples of defective current and voltage were collected from various places along

the transmission line to identify faults using ANN and to utilise the module for

fault localisation. The various faults were explored, mainly single, double, and

three-phase. The data was trained for accuracy, speed, and precision, with a

defect detection accuracy of 100% and a fault localisation accuracy of 99% at
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independent sites. The time required for fault detection is critical in fault protec-

tion, and this study has concentrated on the execution speed required for rapid

fault detection. This methodology gives better results than traditional fuzzy logic

and DWT approaches.

Chapter Five explains the application of the threshold voltage and current val-

ues presented as a standard for coordinating and establishing the instantaneous

overcurrent relay protection in the transmission line. The simulated results were

analysed to establish the model’s validity in computing the high-voltage transmis-

sion line relay’s tripping, delay, and operational times. It also analyses or detects

the maximum and least threshold voltage and current that may be used to op-

timise the relay and circuit breaker for best performance. This strategy reduces

latency and improves relay tripping time. One of the technique’s limitations is

the difficulty in optimising the threshold current for varied current and voltage

types. Nevertheless, when the fault impedance between two sites is modest, this

approach discriminates poorly in differentiating between fault currents at various

places.

Finally, chapter six discussed a novel particle swarm-optimised LFC that was

examined in this work for autonomous load frequency regulation of the Delta

thermal generating station, a part of the Nigeria transmission line model. The

network was modelled without the PID controller using the system parameters

generated through a mathematical model, and then the PID Controller was intro-

duced for parameter turning. The mfile of the PSO algorithm code was generated

using MATLAB to generate the Kp, Ki and Kd parameters. First, more adap-

tive tuning mechanisms for the PID controller settings are obtained, and the

system’s sensitivity is raised. It has been shown that the suggested control algo-

rithm is effective and improves system performance significantly. As a result, the

suggested PSO-PID controller is recommended for producing high-quality, de-

pendable electricity. Moreover, the PSO-PID algorithm produces 0.00 s settling

time and 0.0005757 ITAE. It’s essential to carefully consider potential drawbacks

like complexity and computational overhead, sensitivity to algorithm parameters,

potential parameter convergence and limited interpretability and assess their im-

pact on the specific LFC application before implementing a PSO-PID controller

in a power system. Proper parameter tuning, robustness analysis, and perfor-

mance evaluation are crucial to ensure the effective and reliable operation of

the controller. Compared to the conventional method, the suggested controller

algorithm is relatively reliable and accurate in power system management and

protection load frequency control.
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7.2 Recommendation and Further Work

The section highlights recommendations and further research that will improve

performance on the techniques proposed in this thesis.

1. Transmission Line Fault Classification of Multi-dataset using CatBoost

Classifier.

• The CatBoost algorithm can be optimised for real-time data mining

and training automatically for an effective fault protection mechanism.

Considering optimising the method and techniques for real-time infer-

ence, ensuring low latency and high accuracy for fault classification

applications that require a timely response.

• In fault classification, imbalanced datasets are common, where some

fault classes may have fewer samples than others. Investigate tech-

niques to handle class imbalance, such as oversampling, under-sampling,

or utilising different sampling strategies like SMOTE (Synthetic Mi-

nority Over-sampling Technique) to improve the performance of Cat-

Boost.

• In the feature extraction or data accusation, The ground resistance can

be increased to see the impact on fault classification on the transmis-

sion line and the system’s behaviour concerning the current, voltage

and temperature of the surrounding environment.

2. The Use of Artificial Neural Network for Low Latency of Fault Detection

and Localisation in Transmission

• Real-time fault detection and location should be applied using the

ANN techniques such as online learning and adaptive neural networks

can be explored to enable continuous monitoring and quick response

to faults as they occur in real-world systems.

• Time-frequency analysis technique can be employed for quick and ac-

curate feature extraction, and selection should be focused on effectively

representing fault data for training using machine learning.

• Failure Mode and Effects Analysis (FMEA) method should be re-

searched further for identifying and prioritising systems, processes, or

faults. It entails assessing the consequences of each prospective failure,

calculating its chance of occurrence, and giving severity and detection

ratings. Fault localisation and detection efforts may be efficiently pri-

oritised by concentrating on high-risk failure scenarios.
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• Other power systems software like Power Factory, ETAP and PSCAD

can be used for data extraction rather than focusing only on MAT-

LAB/SIMULINK.

3. The use of Instantaneous Overcurrent Relay in Determining the Threshold

Current and Voltage For Optimal Fault Protection and Control In Trans-

mission Line.

• The reliability of an instantaneous overcurrent relay in transmission

line protection is paramount; therefore, it is necessary to conduct a

reliability analysis of the relay coordination scheme to assess its ef-

fectiveness in detecting and clearing faults. Utilise techniques such

as fault tree analysis, reliability block diagrams, or Monte Carlo sim-

ulations to quantify the reliability and availability of the protective

system.

• Perform sensitivity analysis to assess the impact of changes in system

parameters, relay settings, or fault characteristics on the coordination

scheme. Identify potential vulnerabilities or areas for improvement

and evaluate the robustness of the coordination scheme under different

operating conditions.

• It is also advised to Investigate the use of communication systems for

enhanced relay coordination in transmission lines. Communication-

assisted coordination techniques utilise real-time data exchange be-

tween relays and central control systems to improve fault detection,

localisation, and coordination accuracy.

4. Load Frequency Control in TL using PSO

• The proposed algorithm faces premature convergence; therefore, a con-

vergence speed controller should be applied to reduce the convergence

speed if it is too fast and increase it if it is too slow for optimal per-

formance. Also, particle stability analysis, redistribution mechanisms,

and random sampling control parameters can be employed for opti-

mum performance.

• The grid system is becoming hybrid and sophisticated; therefore, there

is a need to consider multi-grid connection systems in the design of the

LFC of the power system. Also, multi-machine dynamic equivalent

models could be examined instead of single machines for studies con-

cerning simplified dynamic equivalent models. This way, the frequency

variations through the system after a disturbance can be captured.
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• A historical database may be generated by applying one or more spec-

ified procedures to numerous simulated situations. This would enable

the development of an estimating tool capable of operating at a steady

state, similar to the one shown in [248].



Appendix A

7.3 Mathematical Modelling of a Long Trans-

mission Line

From Figures 1.1 and 1.2 let z be the series impedance per unit length

y be the shunt admittance per unit length

Z = zl = total series impedance

and Y = yl is the total shunt admittance.// The length dx of the line at a distance

x from the receiving end of the voltage and current at a distance x is V and I at

a distance X + dx, V +∆V and I +∆I respectively.

∆V = Iz∆x; ∆I = V y∆x (7.1)

from equation 7.1
∆V

∆x
= Iz;

∆I

∆x
= V y (7.2)

limit as ∆x→ 0 reduces to
δV

δx
= Iz (7.3)

and
δI

δx
= V y (7.4)

differentiating equation 7.3

δ2

δx2
− zyV = 0 (7.5)

The solution of equation 7.5 is given as

V = A exp(
√
yx.x) +B exp(−√

yz.x) (7.6)

from equation 7.4 and 7.6 let

Zc =

√
z

y
and γ =

√
yz = α + jβ (7.7)
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Where Zc is known as the characteristic impedance and γ is the propagation

constant. Equation 7.6 and 7.7 are rewritten as

V = Aeγx +Beγx (7.8)

I =
I

Zc

(Aeγx −Beγx) (7.9)

the receiving end voltage and current are determined at x = 0, V = Vr and

I = Ir. Substituting these values in equation 7.8 and 7.9

Vr = A+B

Ir =
1
Zc
(A−B)

A = Vr+IrZc

2
and B = Vr+IrZc

2
Substituting the values of A and B in equations 7.8

and 7.9, we obtain

V =
Vr+IrZc

2
eγx +

Vr+IrZc

2
e−γx (7.10)

and

I =
1

Zc

[
Vr+IrZc

2
eγx − Vr+IrZc

2
e−γx

]
(7.11)

The following formula clearly shows that V , and I (magnitude and phase) are

functions of distance x, receiving end voltage Vr and current Ir, and line parame-

ters, which means they change as we go from the receiving end to the transmitting

end. Furthermore, the quantities Zc and γ from equation 7.10 and 7.11 are com-

plex so,

Zc =
√

z
y
=
√

r+jωL
g+jωC

and for a lossless line, r = 0, g = 0

Zc =
√

L
C
. The propagation constant γ = α + jβ has the real part known as

the attenuation constant, and the quadrature component β is called the phase

constant and is measured in radians per unit length. So equation 7.10 becomes

V =
Vr + IrZc

2
eαx.ejβx +

Vr − IrZc

2
e−αx.e−jβx (7.12)

Since the current expression is identical to the voltage, the current may be con-

sidered the total of the incident and reflected current waves. The voltage and

current equations may be rearranged as follows:

V = Vr.
eγx + e−γx

2
+ IrZc

eγx − e−γx

2
= Vrcoshγx+ IrZcsinhγx (7.13)

I =
1

Zc

[
Vr
eγx − e−γx

2
+ IrZc

eγx + e−γx

2

]
(7.14)
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so,

I =
Vr
Zc

sinhγx+ Ircosh γx (7.15)

Rewriting these equations for x = l, where V = Vs and I = Is

Vs = Vrcosh γl + IrZcsinh γl (7.16)

Is = Vr
sinh γl

Zc

+ Ircosh γl (7.17)

Equation 7.16 and 7.17 relate the sending end voltage and current with the re-

ceiving end quantities. These quantities are related by the general equation

Vs = AVr +BIr (7.18)

Vs = CVr +DIr (7.19)

where A,B,C and D are such that

A = D and AD −BC = 1

Comparing the coefficient of the equation 7.14 and 7.15 with the 7.16 and 7.17

respectively,

A = cosh γl

B = Zcsinh γl

C = sinh γl
Zc

and D = cosh γl

Therefore, A = D = coshγl and

AD −BC = cosh2γl − Zc sinh γl.
sinh γl

Zc
= 1
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[36] T. Keli and J. Jáger, “Advanced coordination method protection relays

using non-standard,” IEEE Transactions on Power Delivery, vol. 23, no. 1,

pp. 52–57, 2008.

[37] M. S. Almas, R. Leelaruji, and L. Vanfretti, “Over-current relay model

implementation for real time simulation & hardware-in-the-loop (hil) vali-

dation,” in IECON 2012-38th Annual Conference on IEEE Industrial Elec-

tronics Society. IEEE, 2012, pp. 4789–4796.

[38] P. Gangadharan, T. Sidhu, and A. Klimek, “Influence of current trans-

former saturation on line current differential protection algorithms,” IET

generation, transmission & distribution, vol. 1, no. 2, p. 270, 2007.

[39] M. Biswal, “Adaptive distance relay algorithm for double circuit line with

series compensation,” Measurement, vol. 53, pp. 206–214, 2014.



BIBLIOGRAPHY 137

[40] S. Dambhare, S. Soman, and M. Chandorkar, “Adaptive current differential

protection schemes for transmission-line protection,” IEEE Transactions on

Power Delivery, vol. 24, no. 4, pp. 1832–1841, 2009.

[41] Q. Liu, Z. Wang, and Y. Xu, “Research on the influence of tcsc to ehv

transmission line protection,” in 2008 Third International Conference on

Electric Utility Deregulation and Restructuring and Power Technologies.

IEEE, 2008, pp. 2258–2261.

[42] V. Malathi, N. Marimuthu, S. Baskar, and K. Ramar, “Application of ex-

treme learning machine for series compensated transmission line protec-

tion,” Engineering Applications of Artificial Intelligence, vol. 24, no. 5, pp.

880–887, 2011.

[43] D. Guillen, M. R. A. Paternina, J. Ortiz-Bejar, R. K. Tripathy, A. Zamora-

Mendez, R. Tapia-Olvera, and E. S. Tellez, “Fault detection and classifica-

tion in transmission lines based on a psd index,” IET Generation, Trans-

mission & Distribution, vol. 12, no. 18, pp. 4070–4078, 2018.

[44] G. S. Navyasri, K. Deepa, V. Sailaja et al., “Fault analysis in three phase

transmission lines using wavelet method,” in 2022 6th International Con-

ference on Trends in Electronics and Informatics (ICOEI). IEEE, 2022,

pp. 248–254.

[45] A. Mukherjee, P. K. Kundu, and A. Das, “Transmission line faults in power

system and the different algorithms for identification, classification and lo-

calization: a brief review of methods,” Journal of The Institution of Engi-

neers (India): Series B, vol. 102, no. 4, pp. 855–877, 2021.

[46] A. Prasad and J. B. Edward, “Application of wavelet technique for fault

classification in transmission systems,” Procedia Computer Science, vol. 92,

pp. 78–83, 2016.

[47] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

[48] N. U. Gawali, R. Hasabe, and A. Vaidya, “A comparison of different mother

wavelet for fault detection & classification of series compensated transmis-

sion line,” Int. J. Innov. Res. Sci. Technol, vol. 1, no. 9, pp. 57–63, 2015.

[49] K. H. Kashyap and U. J. Shenoy, “Classification of power system faults

using wavelet transforms and probabilistic neural networks,” in Proceed-

ings of the 2003 International Symposium on Circuits and Systems, 2003.

ISCAS’03., vol. 3. IEEE, 2003, pp. III–III.



BIBLIOGRAPHY 138

[50] U. B. Parikh, B. Das, and R. P. Maheshwari, “Combined wavelet-svm tech-

nique for fault zone detection in a series compensated transmission line,”

IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1789–1794, 2008.

[51] V. Malathi, N. Marimuthu, and S. Baskar, “Intelligent approaches using

support vector machine and extreme learning machine for transmission line

protection,” Neurocomputing, vol. 73, no. 10-12, pp. 2160–2167, 2010.

[52] B. Bhalja and R. Maheshwari, “Wavelet-based fault classification scheme

for a transmission line using a support vector machine,” Electric Power

Components and Systems, vol. 36, no. 10, pp. 1017–1030, 2008.

[53] S. K. Shukla, E. Koley, and S. Ghosh, “A hybrid wavelet–apso–ann-based

protection scheme for six-phase transmission line with real-time validation,”

Neural Computing and Applications, vol. 31, no. 10, pp. 5751–5765, 2019.

[54] K. C. Wakhare and N. Wagh, “Review of various algorithms for protec-

tion of transmission line,” International Journal of Engineering Research

& TechnologyVol, vol. 4, pp. 346–351, 2015.

[55] F. B. Costa, K. M. Silva, B. A. Souza, K. M. C. Dantas, and N. S. D.

Brito, “A method for fault classification in transmission lines based on ann

and wavelet coefficients energy,” in The 2006 IEEE International Joint

Conference on Neural Network Proceedings. IEEE, 2006, pp. 3700–3705.

[56] O. A. Youssef, “Combined fuzzy-logic wavelet-based fault classification

technique for power system relaying,” IEEE transactions on power delivery,

vol. 19, no. 2, pp. 582–589, 2004.

[57] M. J. Reddy and D. K. Mohanta, “A wavelet-fuzzy combined approach for

classification and location of transmission line faults,” International Journal

of Electrical Power & Energy Systems, vol. 29, no. 9, pp. 669–678, 2007.

[58] L. Saikia, S. Borah, and S. Pait, “Detection and classification of power

quality disturbances using wavelet transform, fuzzy logic and neural net-

work,” in 2010 Annual IEEE India Conference (INDICON). IEEE, 2010,

pp. 1–5.

[59] H. Talhaoui, T. Ameid, O. Aissa, and A. Kessal, “Wavelet packet and

fuzzy logic theory for automatic fault detection in induction motor,” Soft

Computing, pp. 1–15, 2022.



BIBLIOGRAPHY 139

[60] P. Jayaswal and A. Wadhwani, “Application of artificial neural networks,

fuzzy logic and wavelet transform in fault diagnosis via vibration signal

analysis: A review,” Australian Journal of Mechanical Engineering, vol. 7,

no. 2, pp. 157–171, 2009.

[61] C. Jung, K. Kim, J. Lee, and B. Klöckl, “Wavelet and neuro-fuzzy based
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