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Abstract

Decisions feel daunting, as the weight of selecting one path over another engenders a
sense of unease and hesitation. This is a natural consequence of the fact that most
decisions in the real world involve uncertainty. A choice involves two or more altern-
atives and usually resolves in the selection of a subjectively preferable option. Very
often, however, decision-making requires consideration of multiple options and their
numerous possible outcomes, as well as determining what ’'preferable’ stands for. This
makes choices ‘risky” With this thesis, I studied the neural principles associated with
risk, and I tested fluctuations of risk-taking as predicted by a novel computational
model and social identity theory. In the first experiment, I used social stimuli as cues
and recorded trial-by-trial fluctuations in EEG to try and capture brain responses to
estimates of risk and risk prediction errors. The results reveal distinct spatio-temporal
EEG components associated with the computation of risk and violations of expected
risk. In the second experiment, I tested mediators of trial-by-trial risk-seeking. More
specifically, independent of participants’ risk propensities in real life, I implemented a
task to drive risk-taking choice in some trials and risk avoidance in others. I showed
that in non-social contexts positive reward prediction errors can predict risk-taking,
and I found brain responses associated with this process. In the final chapter, I discuss
the same task in which I tried to induce risk-seeking with the addition of a social factor
aiming to test predictions from social identity theory. I showed that the mere online
presence of an in-group and an out-group member was enough to alter behaviour dur-
ing the task, although possible explanations can span from exploratory behaviour in
some groups of participants, to overall arousal or increased stress in the participants

while being observed. Together these experiments show the importance of incorporat-
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ing social factors into studies of decision-making, the benefit of computational methods
for a better understanding of risky decision-making and model-based neural responses,
and the importance of accounting for individual differences when studying value-based

choice.

iii



Contents

Abstract
Acknowledgements
Declaration
Abbreviations

1 Background
1.1 General decision-making . . . . . .. ... ..o
1.2 Learning and value . . . . . . ... .. ... ... .
1.2.1  Reinforcement learning . . . . . . . .. .. ...
1.2.2  Reinforcement learning and dopamine . . . . . . .. .. .. ..
1.2.3 Basal ganglia, rewards, and learning . . . . . . .. .. ... ..
1.3 Risky and social decision-making . . . . . . .. .. ... L.
1.3.1 Defining risk . . . . ... oo
1.3.2  Human studies with mean-variance dissociation . . . . . . . ..
1.3.3 The basal ganglia model of risk-taking . . . . . . ... ... ..

1.3.4 Social decision-making, risk, and learning . . . . . .. ... ..

ii

xii

xiv

XV

© oo ot ot W =

23

1.3.5  Social group membership, cortico-striatal inputs, and risk-seeking 29

1.4 The goals of this thesis . . . . . . . .. ... .. ... ... .......

2 Spatiotemporal Representation of Risk and Risk Prediction Errors
with Social Stimuli
2.1 Background . . . . . ...
2.2 Materials and Methods . . . . . . . .. ... ... L L

2.2.1 Participants . . . . . . ...

v

31



2.2.2 Risk and RiPE estimation . . . . . . . . . . .. ... ... ... 39

2.2.3 Stimuliand task . . . ... oo 43
224 Maintask . . .. o 45
2.2.5  EEG data acquisition . . . . .. ... 49
2.2.6 EEG data pre-processing . . . . . . . .. ... 49
2.2.7 Single-trial EEG analysis . . . . . ... ... ... ... .. .. 50
2.2.8 Bootstrapping-based exclusion . . . . . . . ... ... 52
2.2.9 Identifying risk-related EEG components . . . . . . ... .. .. 52
23 Results. . . . ..o 56
231 Currentrisk . . . . . ..o o7
2.3.2 Absolute RiPE . . . .. ... ... 57
2.3.3 Signed RiIPE . . . .. ... 58
2.4 DiScussion . . . ... 61

Risk-Seeking Driven by Stimulus Prediction Errors: Modelling and

EEG Results 66
3.1 Background . . . . .. ..o 67
3.2 Methods . . . . . . . 74
3.2.1 Participants . . . . . .. ..o 74
322 Task . . . 75
3.2.3 Theoretical analysis . . . . . .. ... ... L. 78
3.2.4 Additional materials . . . . . .. ... 84
3.2.5 Procedure . . . . ... 84
3.2.6 Dataanalysis . . . . .. .. ... o 85
3.3 Results. . . . . . 87
3.3.1 Behavioural results . . . . .. ... ... oo 88
3.3.2 Model comparisons . . . . ... ... Lo 92
3.3.3 PEIRS2-stimulus-PEs predicting risk-taking . . . . . . ... .. 96
3.3.4  Model-based EEG results. Signed Stimulus-PE . . . . . .. .. 97

3.3.5  Predicting risk-taking from EEG amplitudes at signed stimulus-PE 100

3.3.6  Exploratory analysis . . . . . . ... ... L. 101



3.3.7 Outcome-PEs . . . . . . . . 102

3.3.8 Relating stimulus-PEs to outcome-PEs . . . . . .. .. ... .. 103
3.4 Discussion . . . . ... 104
3.4.1 Cause of risk-taking . . . . . .. ... 104
3.4.2 Spatio-temporal brain patterns of stimulus-PEs . . . . . .. .. 108
3.4.3 Prediction errors post-stimulus and post-outcome . . . . . . .. 110
3.4.4 Limitatons and future directions . . . . . ... ... ... ... 112

4 Group Membership Bias and Stimulus Prediction Errors Influence

on Risk-Seeking 114
4.1 Background . . . . .. .. 115
4.2 Methods . . . . . . . 119
4.2.1 Social conditions . . . . . ... Lo 119
422 EEGanalysis . . . .. ... o 123
4.2.3 Behavioural analysis . . . .. ... ... o000 123
4.3 Results. . . . . . 124
4.3.1 Behavioural results . . . . .. .. ... oo 125
4.3.2 Model selection . . . . .. ... Lo 130
4.3.3 Model-based EEG results . . . ... ... ... ... ... ... 131
4.3.4 Exploratory Anxiety effects . . . . . .. ... ... ... 134

4.3.5 Response to wins and losses. Outcome-PEs in relation to social

condition . . . . . ..o 138

4.4 Discussion . . . . . . . 140
4.4.1 Social bias or exploration . . . . .. .. ... ... .. ..... 140

4.4.2 Risk-taking under stress, arousal, and anxiety . . . .. .. ... 143

4.4.3 Limitations and future directions . . . . . . . .. ... ... .. 146

5 General Discussion 148
5.1 Risk-processing and risk-seeking in social contexts . . . . . . . . . . .. 148
5.2 Encoding predicted risk separately from risk prediction errors . . . . . 149
5.3 Risk-seeking influenced by positive reward prediction errors . . . . . . 152

vi



5.4 Presence of others and anxiety on risky decision-making . . . . . . .. 154

5.4.1 Implications for addiction and gambling . . . . . . . .. .. .. 156

5.5 Limitations and future directions . . . . . . . . . . .. ... ... ... 157
5.6 Conclusion . . . . . . . . 158
Bibliography 160

vii



List of Tables

2.1 Computed values of each risk condition across trials. Shading represents
LDA training and testing levels. Blue shading shows each condition’s lowest

(light blue) and highest (darker blue) values. . . . . . ... ... ... ...

viii



List of Figures

1.1

1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10

3.1
3.2
3.3
3.4
3.5

A representation of different stages of perceptual and value-based decision-
making . ...
Dopaminergic structures associated with decision-making. . . . . . .. ..
Risky and social decision-making. . . . . . . ... ... ...
Risk and reward relationship. . . . . . . ... . ... o oL

A schematic representation of long-term potentiation and depression.

Values of pairs of stimuli. . . . . ... ... .. ... L.
Correlation plot of computed values. . . . . . .. ... ... ... .....
Computed levels of risky and safe trials. . . . .. ... ... .. ... ...
Example stimuli. . . . . .. .00 oo
Experimental timeline. . . . . ... ..o
Example of results of k-means clustering of average scalp topographies. . .
EEG-derived values of each risk variable across the four levels of trials.

Average discrimination (n = 40) and average topographies from best dis-
crimination points. . . . . . . . . ..
EEG amplitudes at all three conditions derived from trials used for training
the LDA (pink) and testing the resulting weights (black). . . . .. .. ..
Density plots of the time of onset of best points relative to the onset of the

stimulus. . . . .

Theoretical influence of situational stimulus PEs on cortico-striatal activity.

Dopamine influence on risk-taking. . . . . . ... ... ..o
Performance on the behavioural task across participants. . . . . . . . . ..
Four example slot machines with their associated reward distributions.

Timeline of the bandit task. . . . . . . . . . . . . ... .

X

10
12
18
22

41
41
43
45
48
54
26

29

29

60

69
71
74
76



3.6

3.7
3.8
3.9
3.10

3.11

3.12
3.13
3.14
3.15
3.16
3.17

3.18

3.19

4.1
4.2
4.3

4.4

4.5
4.6

4.7
4.8

A schematic of two instances of slot-machine combinations and the proposed

basal ganglia mechanism for each one (modified from Moeller et al., 2021). 79
Risky choices for both-high and both-low options. . . . . . ... .. ... 88
Learning curve for risk-taking during both-high and both-low combinations. 89
Reaction times to choose an option when presented with each pair of stimuli. 90
Pairs plot between risk-taking for each condition, anxiety scales, and risk-

propensity scale. . . . . ... 91

Model comparisons for the baseline condition. BIC and model-simulated

data. . ..o 94
Model comparisons for the baseline condition - 2. . . . . . . ... ... .. 95
Discriminator performance. . . . . . . .. ..o 98
Scalp topography from best peaks averaged across participants. . . . . . . 99
Scalp topographies from best peaks from a sample of participants. . . . . . 99
Y values (in micro-volts) plotted for each set of stimulus-PEs. . . . . . .. 100

Binned Y values in ascending order with boxplots of the probability of risky
choices. . . . . . L 101

Az (leave-one-out) discriminator performance for Signed and Absolute outcome-

PEs and topographic maps averaged across peak times. . . . . . . . .. .. 102
Correlations of topographic maps. . . . . . . . . . . .. .. ... .. .... 103
Image shown to the participants to assign them into social groups. . . . . 120

An example screen of a pre-recorded Zoom connection with a confederate. 122
Ratings on belief that the in-group and out-group members observed the
experiment. . . . ... Lo oL 125
Probability of risk-taking in both-high and both-low trials across the social
blocks. . . .. 126
Learning curves for the social conditions. . . . . . . . ... ... ... .. 127

Reaction times are shown as average values per pair of expected values for

each social condition. . . . . ... ... L 128
Average performance across blocks with standard error of the mean. . . . 129
Model comparisons for the full task. . . . .. .. .. ... ... ... ... 131



4.9

4.10

4.11

4.12

4.13

4.14

Discriminator performance and best maps. . . . . . . .. ...
Average Y values for trained and tested (grey) trials. . . . . . ... .. ..
Correlation plot of risk-taking during baseline and social conditions and
trait (TAI) and state (SAI) anxiety. . . . . . . ... ... ... ... ....
Percentage correct choices (of high EV within the different-means condition)
across blocks. . . . ..o
Average Y activation across blocks, anxiety levels, and EV-pairs for signed
stimulus-PEs. . . . . . o oo
Boxplots of maximum Az values between 150 ms and 350 ms post-feedback

onset for the two social blocks. . . . . . . . .. ...

pel



Acknowledgements

First and foremost, I want to thank my supervisor Prof Marios G. Philiastides for the
opportunity to embark on the PhD quest that had the misfortune to start with a world
pandemic. Thank you, Marios, for always being calm and patient with all the challenges
imposed by the circumstances and my learning process. Thank you for striking the best
balance between support and autonomy, and for focusing on collaboration rather than
imposing a hierarchy, helping me grow and learn by my own means. Thank you for
uplifting my confidence when I felt doubt and for all the fruitful, intellectual, and
stimulating conversations we had. Your professionalism, integrity, and dedication to
academic excellence have resonated with what I always valued most in research, and

why I commenced this PhD in the first place.

Thank you to all my previous supervisors who took part in my development as a
researcher. Thank you Simon Garrod, Lawrence Barsalou, and Peter Uhlhaas. Special
thank you to Dr Sara Sereno and Prof Edwin Robertson for the invaluable support and

suggestions throughout the years of my PhD.

Thank you, Candice C. Morey for your brief but extremely valuable supervisions. You

are truly an inspirational role model.

I want to thank my parents for helping me go to a great university and follow my

passion.

TarsHa, AHren, u Mnuana, Gmarofaps BU 3a Oe3cHMpHaTa IOJKpella M ONTHMHU3bM. Bue cre Haii-

II06pOT0 CCMGfICTBO, KOCTO YOBCK MOXKE Ja HUCKa.

Xii



I would like to thank the people who have been by my side all 10 years of my educa-
tion. Thank you, my wonderful girls, Zlatina, Nikoleta, Dimana. Thank you, Vladimir,
Theodor, Niya, Simeon, Petar, Martin, Desi, for carrying a bit of home and sharing it.
Thank you Alex V. for inspiring me to study abroad. And special thanks to Nikolay
for the never-ending philosophical discourse and wonder about the human condition.
Special thanks to Maryana Dancheva and all other high school teachers who had an

extremely positive effect on my personal development.

I also want to thank the people who were mostly part of the end of my PhD and
made everything full of life and enjoyment: Bianca, Laura, Eleonora, Jelena, Joana,
Sean, Sander, Mircea, Luca, Christopher, Christoph. Thank you, Madeline, for being
a mentee and a mentor for the last part of it. And thank you, Alex M.. for sharing this

love for dopamine, empathy, and for helping me have a calm and smooth ride.

xiii



Declaration

I declare that, except where explicit reference is made to the contribution of others,
that this dissertation is the result of my own work and has not been submitted for any

other degree at the University of Glasgow or any other institution.

Ralitsa Angelova Kostova

Xiv



Abbreviations

ACC - Anterior Cingulate Cortex

AUC - Area Under the Curve

CS - Conditioned Stimulus

DA - Dopamine

dmPFC - dorso-medial Prefrontal Cortex
EEG - Electroencephalogram

EV - Expected Value

fMRI - functional Magnetic Resonance Imaging
IFG - Inferior Frontal Gyrus

LDA - Linear Discriminant Analysis

OFC - Orbito-frontal cortex

PE - Prediction Error

PCA - Principal Component Analysis
RL - Reinforcement Learning

RPE - Reward Prediction Error

RiPE - Risk Prediction Error

TD - Temporal Difference (learning)

US - Unconditioned Stimulus

VTA - Ventral Tagmental Area

vmPFC - ventro-medial Prefrontal Cortex
SD - Standard Deviation

SN - Substantia Nigra

XV



Chapter 1

Background

To understand risky decision-making in social and non-social settings, we need to un-
derstand the process of decision-making in general, what it encapsulates, how it can
be studied and then consider whether the same process generalises across contexts.
In its basic form in nature, decision-making entails some kind of action towards or
away from an object. Whether this is to obtain food or escape from a predator, better
decisions mean better chances of survival. In both animals and humans, better de-
cisions come with experience and the ability to deliberate about costs and benefits. As
such, decision-making processes are fundamentally intertwined with learning. It would
be futile if every choice is deliberated on the spot without any prior information or
memory. Subsequently, often instead of contemplating every decision, organisms use
innate impulses, generalise across situations and stimuli, form biases, and use heuristics
to derive the best course of action. Additionally, one can expect that simpler organ-
isms, like insects for example, do not possess cognitive abilities that let them deliberate
their choices, hence, would follow a more simplistic model of behaviour allowing the
study of fundamental processes and predictions. Most of these processes can be mod-
elled mathematically in humans and are theorised to form the basis for a completely
rational decision-maker, the ‘homo-economicus.” However, in the following pages, we
will see that decision-making by humans involves both rationalisations of choices, as

predicted by economics, but also emotional and social factors.
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The realisation by economists that human choices: 1) cannot be predicted based on ob-
jective variables, 2) are not the same given the same circumstances, and 3) are bound to
emotions, formed the basis of behavioural economics (Kahneman and Tversky, 1979).
On the other hand, with the advances in brain imaging, computational methods, and
findings from animal studies, neuroscience has contributed separately to the under-
standing of decision-making. Most recently, scientists from the fields of psychology,
economics, and neuroscience have focused on merging the separate theories and find-
ings of each field into a new paradigm of studying human behaviour, namely, neuroe-
conomics. The current work rests on the shoulder of an era of research trying to devise
the best theories to explain value, independent of whether it comes from primary re-
wards in animals such as food, or secondary rewards in humans such as social approval.
This multidisciplinary effort has produced many compelling computational models and
testable hypotheses which informed our experimental design, modelling of behaviour
and interpretation of electrophysiological results. I show results that support emerging
theories about short-term risk-seeking influenced by positive prediction errors. This
is consistent with theories about the interaction of networks in the basal ganglia and
prefrontal cortex. Further, the results revealed the spatio-temporal pattern in the brain
that encodes the different prediction errors leading to a choice. At the point of incor-
porating a social component into the experiment, I stumbled upon interesting findings
that can be explained by an interplay of social biases and dispositional traits. The com-
plexity of the behavioural and electrophysiological results points to the important task
of future decision-making experiments to incorporate measures of individual differences

and variable social conditions, as well as aiming for an interdisciplinary approach.

I based one of the experiments on a theory that proposes a division of risk into separate
components that can be studied independently from reward. The three risk components
that I found are suggested to drive learning under uncertainty and to be generalised
in the brain for social and non-social stimuli. A challenge posed by the design of the
experiment was the imminent trade-off between control over a study and its ecological

validity. Although I highly controlled the relationship between variables and the allowed
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behaviour in order to reduce the possibility of confounding factors and unexpected brain
responses, a lot of the natural vigour and motivation in the participants to attend to a
decision-making situation was sacrificed. Future studies aiming to reduce the decision-
making process to its base components should consider the importance of the complex
interplay between decision-making and motivation, attention, motor activation, cost of

effort, and related elements of behaviour.

1.1 General decision-making

Decision-making involves a few necessary stages to be complete, and to be informative
and functional for the organism. It also involves many brain areas that interact to inter-
pret sensory inputs, incorporate memories of previous experiences, and prepare a motor
response that is aligned with the best course of action. These stages have been concep-
tualised as the four-module decision-making process (Gold and Shadlen, 2007; Heekeren
et al., 2008; Rangel et al., 2008), with module being a separate unit with a specialised
function and occuring at a different stage during each decision-making episode. These
modules, also shown on Figure 1.1 are evidence representation, decision-making, action
selection, and outcome evaluation. When presented with a choice between two or more
options, an organism forms a representation of the alternatives, which could be between
objects moving left versus right (perceptual) or, for example, food such as chocolate
versus broccoli (value-based). The second stage encompasses decision-making, that is
the module determining the level of uncertainty of the evidence representation, dictat-
ing if the evidence is enough and if more attention is required. This decision is weighted
by information gathered from previous experience if any exists, and current represent-
ations. After the first two stages are complete, it is time for action selection, most
strongly related to an initiated motor response that already integrates a decision vari-
able formed during the first two stages. The decision variable dictates the preference
for one choice over another and drives motor response towards the relevant stimulus.

Although decision-making may seem complete by now, the first three stages can be
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utilised to extract information, adapt, and prepare for future similar decisions. This
leads to the fourth stage, outcome evaluation, which involves the detection of errors
conditional on provided external feedback or the fulfilment of an internal criterion. This
stage directly influences learning and the adjustment of the other modules. Although
conceptualising decision-making as a process with clear-cut stages facilitates testing, it
is accepted that stages can be shuffled. For example, valuation may come before action
selection or in parallel (Rangel et al., 2008). The four-stage framework was initially
developed for perceptual decision-making and later adopted by theories of value-based
decision-making with the appropriate re-conceptualisation of every stage relevant to

values as shown on Figure 1.1.

Value-based decision-making deals with choices between alternatives towards which
an organism can have different subjective interpretations and preferences. While per-
ceptual decision-making has been largely informed by psychophysics and psychometric
curves, and it can be predicted mainly from the properties of external stimuli, the sci-
ence of value-based decision-making does not have the privilege of objective measures
of preferences apart from the observed choice made by an organism. Although we can
expect that reducing the contrast of a moving object would reduce the ability of any
tested animal to distinguish the direction of movement (perceptual), we cannot say for
certain that if one monkey prefers a banana to a strawberry, another monkey would
show the same preference. This is why it is important to make clear what the concepts
of value, reward, and punishment entail, and how they can be operationalised to be

tested and measured within brain activity.
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Decision-Making Process

[ Perceptual Decision Making
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I . I
I Learning < |
! |
! |
' |
| - Action |
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Internal states .
| action? |
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Figure 1.1 A representation of different stages of perceptual and value-based decision-
making (modified from Rangel et al., 2008).

1.2 Learning and value

1.2.1 Reinforcement learning

Value is a determinant of how much something is worth, it is a concept encapsulating
the subjective system by which some object in the environment or action is regarded
as beneficial or costly for the organism. We expect organisms to prioritise options that

have a high subjective value. However, unlike perceptual decision-making, studying
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value-based decision-making poses the additional necessity to learn and then infer
what is a high-valued or a low-valued option for the studied human or non-human
participant. Moreover, there is an ensuing complexity in the valuation process that is
specific to the organism, the situation, and the conditions during which decisions are

made.

With the aim of understanding value-based decision-making, studies using animals
have started working with the simplest values, which are defined as primary rewards,
or primary reinforcers. At the beginning of the 1900s, Ivan Pavlov used dogs as test
subjects and paired the presentation of a primary reward (food) with the ring of a
bell (Akpan, 2020). The automatic response to food was increased salivation, while the
ring of the bell was defined as a neutral stimulus as it did not produce any particular
response in dogs. He discovered that after a few repetitions of presenting a neutral
stimulus, the bell, right before the delivery of food led to salivation even when it was
rung without the presence of food. The response to the unconditioned stimulus (food)
was transferred as well to the now conditioned stimulus (the bell), forming an ‘associate
strength. Shifting the focus from the passive reception of rewards to active behaviour
in response to a stimulus, Thorndike’s work in the 1800s laid the foundation for the
development of the Law of Effect, which states that behaviours that lead to positive
outcomes are more likely to be repeated. Later, B.F. Skinner showed that animals learn
to associate certain behaviours with either reward or punishment, which in turn can

lead to either reinforcement or avoidance of the behaviour.

Rescorla and Wagner were the first to summarise the accumulated evidence about
classical and operant conditioning under different contexts and stimuli combinations
under the theory of Reinforcement Learning (RL, Rescorla and Wagner, 1972). The
major tenet of RL is the idea that learning happens not by the co-occurrence of two
stimuli, but rather due to the event being unanticipated given the current associative
strengths. ‘Unanticipation’ infers there is some kind of expectation based on experience.

Forming estimates and predictions about the environment allows animals to not waste
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energy on unsatisfactory rewards and to invest effort in actions and objects that increase
their chances of survival. According to RL, these formed predictions can be updated if
there is a discrepancy or error between the expected and the obtained outcome. Hence,
learning is possible only if there is an error in expectations, namely, prediction error

(PE). Rescorla-Wagner rule formalises the above as in Eq. 1.1 and 1.2 (Schultz, 2017¢):

V(i+1)=V()+ a PE(1) (1.1)

PE(t)=A(t)—V(t) (1.2)

Where V is the reward prediction, « is the learning coefficient, ¢ is trial, and A is the
reward. An important assumption of RL is that V is based on some kind of statistic that
summarises the number of rewards that can be obtained in the current trial or context.
Although, in a few presentations of a reward, the expected reward at trial (t+1) is
simply the reward at trial (¢), after learning based on errors, the expected V starts to
regress to a mean of all possible rewards (Bush and Mosteller, 1951). As often used in
economics, this can be represented as a sum of each reward’s magnitude weighted by
its probability, that is the expected value (EV). Although, in the Rescorla-Wagner rule,
this estimate is considered over the full trial period (that is an experiment with a few
probes of behaviour), Sutton and Barto within their temporal difference (TD) learning
model (Sutton and Barto, 2018) considered the importance of intratrial variables that
contribute to choice and learning. This update on RL accommodated sequential cues
predicting a reward, an estimate of future rewards rather than just past ones, as well
as a more continuous view of time represented as discrete events throughout a trial

(Glimcher, 2011).
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RL and TD learning theories propose that rewards that are higher than predictions
will increase the associative strength between stimuli and drive learning. On the other
hand, rewards that are somewhat equal to expectations will not lead to an update of
estimates, whereas rewards that are worse than predicted decrease the associate CS-US

strength and reduce approach (Niv et al.; 2005; Niv and Montague, 2009).

Although within this PhD work, I implement brain imaging that does not involve
measuring single neurones or neurotransmitters, it is imperative to consider what are
the restrictions imposed by the mechanisms that give rise to the systems and responses
that we observe in behaviour and larger-scale brain imaging (Craver, 2005). Looking
for a signal in the brain that encodes value and value/reward prediction errors, single
neural recordings beginning in the 50s established the association of the above variables
with dopamine (DA) in the midbrain (Schultz, 2017a). Evidence, however, suggests that
dopamine is much more versatile than simply coding rewards, now being considered
also as a ‘teaching signal’ aiding the modification of behaviour when predictions are
violated (Schultz et al., 1997) and also related to motivation, approach, and exertion
of effort (Bissonette and Roesch, 2016; Salamone and Correa, 2012). Hence, due to the
heterogeneity of dopamine and dopaminergic neurones, responding both to rewarding
and aversive events (Lammel et al., 2014), it is important to always consider task design
and the scale and temporal dynamics under which dopamine neurones are studied. I will
first explain the anatomy of dopaminergic and DA-innervated areas and then elaborate

on the findings that relate them to decision-making in animals and humans.

1.2.2 Reinforcement learning and dopamine

Since the 1960s, in a series of experiments Prof Wolfram Schultz and colleagues used
single-unit recordings in monkeys and showed that dopamine neurones in the ventral
tegmental area (VTA) of macaques responded to primary rewards (liquid) with a re-
sponse of phasic bursts initiated about 50 — 110 ms after the onset of the stimulus and

lasting around 300 ms (Schultz, 1997). More interestingly, when a reward was paired
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with a preceding visual cue, dopamine neurones now stopped responding to the reward
and became active at the presentation of the cue. It was also observed that an omission
of a cue-predicted reward led to a dip in firing neurones, consistent with a negative
prediction error signal. Later it was concluded that consistent with TD learning theory,
the above dopamine responses indicate a prediction error driving learning, rather than
coding reward itself (Glimcher, 2011; Montague et al., 1996). Further studies showed
that dopamine neurones were also sensitive to changes in the probabilities of rewards,
an effect that was shown by the dopamine response being transferred to separate cues
predicting rewards with varying probabilities (Fiorillo et al., 2003). The results showed
that the average dopamine response at trials with cues predicting a more likely reward
was higher than that at cues predicting rewards with lower probabilities. This finding
that there may be separate neurones encoding different components predicted by util-
ity theory and necessary for a rational choice will come in handy in our later discussion

on competing theories of choice under uncertainty.

1.2.3 Basal ganglia, rewards, and learning

There are a few dopaminergic pathways in the brain, but the ones associated mostly
with decision-making are comprised of a few regions in the cortex and the basal ganglia,
extensively summarised by Mulcahy et al. (2020) and Sesack and Grace (2010). Some
of these structures are shown in Figure 1.2. The basal ganglia are subcortical nuclei
composed of the ventral striatum (nucleus accumbens, ventral pallidum, and olfactory
tubercle), the dorsal striatum (caudate nucleus and putamen), the globus pallidus,
the subthalamic nucleus and the substantia nigra. Adjacent to the substantia nigra
(SN) is the ventral tegmental area (VTA). Both produce dopamine, while the former
is involved in nigrostriatal dopamine pathways (from SN to striatum), the latter forms
the mesolimbic and mesocortical pathways (VTA to limbic and VTA to cortical areas,

respectively).
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Figure 1.2 Dopaminergic structures associated with decision-making. Substantia nigra
(SN), ventral tagmental area (VTA), and other areas to which dopaminergic pathways
project.

The basal ganglia (and degenerated cortico-basal connections) are implicated in several
neurological disorders such as Parkinson’s disease, Huntington’s disease, Tourette’s
syndrome, addiction, depression, anxiety, and obsessive-compulsive disorder (Fazl and
Fleisher, 2018; Macpherson and Hikida, 2019). The basal ganglia’s function is related

to motor control, learning, memory, reward processing and decision-making.

As explained earlier, prediction errors require coding of some expected value or a ref-
erence point, which is violated by received rewards, leading to realised over- or under-
expectation. This ‘realisation’ results in an update of beliefs, hence, learning. Evidence
shows that learning happens faster and more efficiently with rewards that violate pre-
dictions more strongly, such as extreme values or under highly volatile environments
(Piray and Daw, 2021). A human fMRI study using drugs that either increased or
decreased dopamine in the striatum showed the influence of dopamine on learning the
estimated values of rewards, prediction errors, and its function in updating learning

accordingly (Pessiglione et al., 2006). There are also two types of prediction errors,
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one is the signed PE, or valence of the error, which can be better than expectations
(positive PE) or worse (negative PE). Most animal studies have linked reward PEs to
the ventral striatum and VTA. Unsigned PEs, on the other hand, are represented in
the magnitude of the error and are proposed to function as a surprise signal, modulat-
ing and orienting attention and the motor readiness of the organism (Bissonette and
Roesch, 2016). Correlates of unsigned PEs have been found in the insula, ventral stri-
atum, and locus coeruleus, and were also associated with noradrenaline (Sara, 2009).
Human fMRI studies have also shown correlations between the ventral striatum and
PEs for stimuli such as faces, money, food, or olfactory rewards (Abler et al., 2006;
Fouragnan et al., 2018; Hare et al., 2008; O’Doherty et al., 2003; Pagnoni et al., 2002).
A recent meta-analysis showed that the evidence points towards a ‘common currency’
of social compared to non-social PEs due to a large overlap of areas, with the excep-
tion of the dmPFC which was more active in response to PEs within social experiments

(Corlett et al., 2022).

The basal ganglia and dopamine are associated not only with rewards and errors but
also with the initiation and urgency of motor responses. Objects that have a value
usually lead to the initiation of an action, like approach or avoidance. Hence, the basal
ganglia regions are thought to be involved in both reward-coding and action selection
(Mink, 1996; Morris et al., 2006). Moreover, many motor structures have been associ-
ated with the valuation process of stimuli, establishing the close connection between
preferences and motor activation (Kiverstein and Miller, 2015). It is also suggested
that dopamine may have a dual role, coding both reward-related processes, but also the
value related to an ‘incentive salience,” or the signal that would bias a motor response
towards one stimulus compared to another (McClure et al., 2003). Overall, the basal
ganglia have been associated with value coding, action value coding, and prediction er-
ror coding. In the next section, we will see how these relate to risky decision-making in
non-social and social contexts, how the same structures may be responsible for coding
risk, and how dopamine’s functions for coding reward and uncertainty may interfere

with each other to produce biases in decision-making.
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1.3 Risky and social decision-making

1.3.1 Defining risk

Risky and Social Decision-Making

Risky Decision-Making Factors

Subjective risk,
uncertainty based on one’s
state of mind
Not buying a crop insurance
because ‘Il am feeling confident
about future crop yields.’

Objective risk,
difference between actual
loss and estimated loss
Buying a crop insurance
because thereis a large
variation in the estimated
probability to lose crops.

Risk-taking dependent on
state
Gain or loss domains
(Prospect theory)
Energy-depleted states
(Risk-sensitive foraging theory)

Risk measures
Measure of dispersion, standard
deviation, variance
(Modern portfolio theory)
Calculated a priori or based on
statistics of past experiences

Perceptual factors
Facial perception
Trustworthiness

Emotion judgment

Mere presence

In-group / out-group presence

Social evaluation
Arousal

Conforming to social assumptions and

requirements

Subjective risk bias in
the brain

Dopamine in the basal
ganglia
Risk-taking after positive
reward prediction errors

Learning about risk,
brain process
Risk Predictions and
Risk Prediction Errors

Game theory
Theory of mind
Cooperation /
Competition
History of opponent
decisions

12

Figure 1.3 Risky and social decision-making. Risk can be subjective and objective.

Subjective risk is influenced by mental states, objective risk depends on estimated
values of dispersion. The science is currently exploring these states and computed
values in the brain. Social factors influencing decision-making range from perception of
social cues and the mere presence of others, to cooperative and competitive decisions.
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There is no one single definition of risk, and there is a reason for it to mean one thing to
economists and insurance companies and another to the average person. In everyday
language, risk relates to some probability of loss, such as undertaking a behaviour
that can lead to physical harm or losing money. More broadly risk is related to the
uncertainty of an outcome. When outcomes are fluctuating risk is a measure of this
fluctuation, or the relative variation of actual loss from expected loss (Rejda et al.,
2005). Objective risk is specifically what is measured as such fluctuation, or what can
be deduced about potential losses. Subjective risk, on the other hand, depends on a
person’s state of mind, beliefs, and biases (Andersen et al., 2014). For example, it is
important for casinos to measure the probabilities of winning and losing with some
degree of variation that allows them to predict what are possible losses that they can
handle. While for the gambler, the client of the casino, it is important to believe that

there is some pattern, some elusive luck, that keeps the jackpot right around the corner.

Figure 1.3 includes some factors of subjective and objective risk, as well as factors that
take place in social decision-making which will come into focus later in this chapter.
Subjective risk is expressed as observed choices, it is malleable, and depends on fallacies
in probability estimates and beliefs, while objective risk is considered to be unalterable
and based on reality (Nobanee et al., 2021). More concretely, although it is well es-
tablished that cigarette smoking is a direct cause of some cancers (Hecht, 2006), hence
poses a high risk for health, cognitive dissonance may lead to smokers coming up with
case stories and examples of small samples of smokers who did not develop cancers in
their lives. Another example of subjective risk prevails in decisions is crop insurance. It
has been found that farmers are more likely to base their decisions of whether to buy
an insurance on their overconfidence about the future of crops yields, which decisions
were changed after they were primed with objective risk information (Fu et al., 2022).
Also, people judge risks as higher if they are less frequent but have a high number of
fatalities, compared to more frequent risks with low number of fatalities (Proske and
Proske, 2008). One example is the fear of flying (Oakes and Bor, 2010), although it is a

very low-risk mode of transport (Cobb and Primo, 2004). In such instances and many
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other risky behaviours, it is important to understand subjective risk perceptions and
how to steer them towards more objective estimates of risk. Next, I will outline some
existing measures of objective risk and explain the theories that try to explain risky

behaviour in humans, touching upon brain function.

The need to clearly define risk and estimate it from possible outcomes (wins and losses)
arose with the development of financial theories that aimed to maximise the portfolios
of investors. The conceptualisation of risk as variance or the standard deviation of a
distribution of variable rewards arose from normative economic theories, those that
prescribe what would be the most profitable or objectively desirable choice, given the
situation at hand. Harry Markowitz recognised that uncertainty can be measured by the
variability of outcomes in his modern portfolio theory, incorporating the mean-variance
approach (Markowitz, 1952; Steinbach, 2001). Ever since, this approach has been used
to create diversified portfolios, maximising returns to investors, and aiding financial
decisions depending on risk propensities. It was found that teaching the method of
mean-variance was more beneficial in improving decisions about portfolios compared

to reinforcement learning (Olschewski et al., 2021).

Nevertheless, under naturalistic circumstances, it was found that humans and animals
do not necessarily make choices that maximise expected values (Schuck-Paim et al.,
2004; Stauffer et al., 2015). A few issues arise when translating animal models into
research with humans. When it comes to animal studies, rats, monkeys, and other an-
imals can be (compared to humans) logical in their choices, predictable and consistent
across tasks. This observation has been attributed to extensive training of animals be-
fore their behaviour and neural responses are recorded (Schultz et al., 2021). Moreover,
animals are tested with what can be considered primary rewards such as sucrose, food,
or even stimulating drugs, and they are usually under energy-depleted states with the
aim to increase the value of even small amounts of rewards. The energy states of anim-
als have also been found to influence their rationality and compliance with economic

models (Schuck-Paim et al., 2004). On the other hand, humans are less constrained by
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the survival needs that animals experience and have more personality characteristics
that drive even more sophisticated preferences. This subjective interpretation of sim-
ilar rewards that vary across individuals and situations led economists to develop the
concept of utility, or the subjective value of goods (Malecka, 2020). As it recognises the
subjective value of rewards and provides a clear mathematical model of expectations,
utility theory has been essential in modelling the activity of dopamine neurones in
response to prediction errors in both animals and humans (Caplin and Glimcher, 2013;

Ferrari-Toniolo and Schultz, 2021; Phillips et al., 2007; Stauffer et al., 2014).

The above led many to reconsider the idea of a ‘rational human econ’ that makes their
decision by carefully calculating all possibilities, averages, and known variability of
the environment. It became more common to try to understand decision-making by
incorporating factors like impulsivity, affective states, emotions, and heuristics that
substitute carefully weighted costs and benefits (Finucane et al., 2000; Loewenstein
et al., 2001). These observations in decision-making led to the hypothesis of a dual
system by Kahneman (2012) and the somatic marker hypothesis (Bechara and Dam-
asio, 2005). Taking the affective response to loss aversion, prospect theory increased
the predictive power of economic models remarkably. According to the theory, humans
who are generally risk-averse may become risk-seeking in the context of potential losses
(Kahneman and Tversky, 2018). This effect has also been found in decision-making in
animals and has proven powerful in predicting decisions (Trepel et al., 2005). Gains
and losses were also found to have opposing effects on the BOLD activity of some
brain regions. An fMRI study found that most regions that coded gains had decreased
activity as the size of losses increased (Tom et al., 2007). These regions included the
striatum, the ventral ACC, the vimPFC, and medial OFC, which are also associated
with reward anticipation and valuation. I will focus on the overlap between reward and

risk processing regions later in this chapter, however, the more significant issue with
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drawing conclusions about risk here is that under prospect theory the propensity for
risk is only a consequence of the context of rewards and their probabilities rather than
a separate estimation of risks (Bossaerts, 2010). Nevertheless, evidence suggests that

at least under some circumstances risk is coded independent of rewards.

This brings us to another view of the computations underpinning decision-making un-
der uncertainty. Rather than using utility functions as in the case of utility and prospect
theories, some propose that the brain computes the moments of a reward distribution
separately from one another: expected value (average), variance, and skewness. This
view emphasises that in order to choose between risks, the brain estimates risk and
then incorporates these estimates into a prediction error algorithm related to Rescrola-
Wagner learning models, such as TD learning, and chooses risky options according to
current goals (Preuschoff and Bossaerts, 2007). Going back to the mean-variance ap-
proach, a few studies have incorporated EVs and variable SDs in their experimental

paradigms to study the representation of these statistics in the brain.

Due to its mathematical simplicity, and high optimisation of choice, the mean-variance
approach from portfolio theory (Markowitz, 1952) has been used extensively in animal
and human studies of decision-making under uncertainty and was found superior to
utility theory when it comes to risk learning (d’Acremont and Bossaerts, 2008). Exper-
iments that keep rewards constant and vary the standard deviation of different stimuli
show that risk can be encoded independently from rewards. Christopher Fiorillo and
his colleagues (Fiorillo et al., 2003, 2005; Fiorillo, 2011) studied the response of dopam-
ine neurones in relation to specifically variable rewards compared to safer rewards with
a similar expected value. The studies showed that dopamine responds to risky cues
more strongly compared to safe cues. Not only were animals behaviourally drawn to
different groups of rewards that varied by risk, but their dopaminergic neurones in
the orbitofrontal and posterior cingulate cortex were differentially active in a para-
metric fashion for different levels of risk (Fiorillo et al., 2005; Lak et al., 2014). The

interpretation that dopamine neurones code uncertainty has been questioned due to
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the asymmetrical dopaminergic coding of positive and negative PEs, and issues with
averaging across trials (Niv et al., 2005). Additionally, serotonin has also been extens-
ively linked to uncertainty coding and recently has increased as a target of research in
uncertainty (Grossman et al., 2022). Hence, although I focus on theories of dopamine,
it is likely that other neurotransmitters interact with dopamine to code risk and aid

orienting responses.

1.3.2 Human studies with mean-variance dissociation

Animal studies usually benefit from extensive training (that can take days) and energy
depletion through hunger and thirst which in turn leads to high motivation and fast
learning. This has also led some to believe that monkeys are more rational and smarter
than humans because they satisfy basic rationality requirements when their energy is
depleted (explained in 'Not smarter, just more constrained’ by Schultz et al., 2021). It is
also possible to implement some form of re-evaluation, where the preference for different
rewards is controlled and manipulated. This strategy is more difficult to implement
with humans because rewards of high value are rare (at least in the lab) and depleting
energy through starvation is not feasible. Naturally, most experiments use monetary
incentives, however, as I will elaborate on later, very small rewards can lead to low
ecological validity and unexpected behaviours. Another issue that arises from the use
of low-value rewards is the depletion of attention and motivation, which in turn can

deplete cognitive resources more easily.

To make learning simple, and avoid depletion of cognitive resources, experiments trying
to test the mean-variance approach have implemented an association of one stimulus
with either of two values with equal probabilities. If a coin is tossed, the probability of
each of its outcomes is 50%. However, assigning different rewards to each side of the
coin can result in more risky or less risky environments (O’Neill and Schultz, 2015).
For example, in one case we can assign £40 to heads, and £60 to tails, and in another

instance, heads can be £20 while tails be £80. Now the average of both cases is £50,
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however, the distance between the two possible outcomes is greater in the £20-£80
option. If the probability of a reward varies, the risk is greatest when the probability of
a reward is 0.5, whereas it decreases with a probability of a reward being 0 or 1 (Figure

1.4 - right). This is consistent with the conceptualisation of economic risk representing

uncertainty.
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Figure 1.4 Risk and reward relationship. Left - Reward probability distribution with
the expected value (EV) and variance. Right - Risk as a function of reward probability
(figures from Schultz, 2015). Risk is highest when rewards probability is at 0.5, while
it is lowest when reward probability is 0 or 1.

If processing risk is essential for making better decisions and we know that risk is
coded in the brain, the next step is to explore which components of risk representation
are informative for learning and decision-making and which are different or similar to
reward coding. If there is risk processing similar to reward representation, one would
expect that there will also be an error, the difference between expected and experienced
risk, or risk prediction error (RiPE). Going back to the example of insurances, for an
insurance provider it would be essential to measure the difference between expected
loss and actual loss, and especially what is the accuracy of this measure. For example,
if out of 10 000 houses about 100 burn every year, it is expected that one year there
will be 90 houses burning, and the following maybe 110 will burn (Rejda et al., 2005).
If the next year 95 houses burn, the risk prediction error is small. However, a certain
year 200 houses burn, then the risk prediction error is large and estimates have to be

adjusted.
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Studies have tested risk and RiPEs in humans with fMRI and purely probabilistic
designs, using cards, numbers, and symbols with differing probabilities. Preuschoff et
al. (2008) used a card game in the fMRI to expand on the animal literature on risk
and RiPEs. During the task, two cards were presented in sequence. Participants had to
guess if the second card would be higher or lower than the first card before seeing any
of the cards. In this way, the experiment achieved the ability to measure the evolution
of average expected reward, predicted risk, and deviation from the two values at two
time points (at the presentation of the first and then at the second card). The results
revealed a correlation between activation in the anterior insula and the model of risk,
and a different pattern of insula activation and the model of risk prediction error.
Moreover, insular activation resembled the modelled quadratic function of risk relative

to reward probabilities (shown in Figure 1.4 - right).

Another fMRI study used a version of the lowa Gambling Task with different expected
rewards and variances across 4 decks of cards (d’Acremont et al., 2009). Consistent
with previous results, a differential response was found for reward prediction errors (in

the striatum) and risk prediction errors (in the insula and inferior frontal gyrus).

Most recently, Lauffs et al. (2020) tested the 2-card sequential game in an EEG and
pupillometry study and found a two-component response following card presentations.
The first component was interpreted as the salience of the stimuli (P1*, ~ 180 ms),
while the second one (P3, ~ 300 ms) was inferred to reflect the risk prediction error.
Intriguingly, the first salience component was not simply generated in visual areas, but
also in temporal cortices, suggesting insula activation. The pupil activity correlated
with the two-component EEG response, suggesting an underlying noradrenergic activ-
ity (Reimer et al., 2016). This study laid the foundations for the temporal decoding
of risk prediction error in the human brain and suggested that risk and RiPEs serve a

‘surprise’ function during uncertainty coding.
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In a more naturalistic setting it was shown that human behaviour is also influenced by
the deviations of expected and experienced risks (RiPEs). Vavra et al. (2018) showed
that in the ultimatum game, the decision to reject an unfair offer was influenced dif-
ferentially by the mean and the variance of the distribution of offered rewards. The
behavioural results showed that the mean of offered rewards affected the threshold
at which rewards were accepted while the variance affected the strictness with which
these rewards were accepted. Expectations of greater variation in offers increased the
likelihood of accepting offers, and especially lower ones. Offers with lower variance were
accepted less often. Hence, decisions about whether to play or not were influenced by
the uncertainty in the outcome and preceding expectations. This study did not only
show that RiPEs could influence decisions, but they did so in a social task where

rewards were dependent on another person.

The above studies, using the mean-variance approach, show that risk predictions and
errors are computed separately in the brain with both temporal and spatial differ-
ences. Additionally, risk prediction errors within a social game were shown to influence
decision-making. Currently there are no neuroscience studies that have tested risk pro-
cesses, such as predicted risk and errors, within social contexts. Next, I will turn to
outline theories of increased trial-by-trial risk-taking and later I will discuss the lit-
erature that currently aims to clarify whether there is one unifying system for risky
decision-making in general, or whether there is a separation of networks for social and

non-social choices under uncertainty.

1.3.3 The basal ganglia model of risk-taking

The structures within the basal ganglia show activity that aligns with the principles
of reinforcement learning models, such as coding of prediction errors via midbrain
dopamine neurones (Morris et al., 2006; Schultz, 1997). Given an operant conditioning
environment, when an organism performs different actions and is rewarded differentially

for them, it is considered that separate values are assigned to each action according to
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the associated rewards (Wunderlich et al., 2009). For both reward values and action
values, the substantia nigra transmits signals to the striatum associated with positive
and negative PEs (Reynolds et al., 2001). These associations signalled from the SN are
then coded by the ventral striatum (nucleus accumbens and olfactory tubercle) and
the dorsal striatum consisting of the caudate nucleus and putamen (Lau and Glimcher,
2008; Morris et al., 2006; Samejima et al., 2005). And the link between the dorsal
striatum and action values was found to be causal (rather than only correlational) via

the use of optogenetic stimulation (Tai et al., 2012).

Figure 1.5 shows a schematic representation of the long-term potentiation connections
(blue) between the substantia nigra (SN) and the striatum. According to the basal
ganglia learning model, approach and avoidance depend on learning action values,
coded by dopamine within two pathways: Go and No-Go (Bogacz, 2017). After learn-
ing of stimulus-outcome contingencies is complete, dopamine plasticity between the
SN and the Go pathway in the striatum is increased by positive reward PEs (green),
while negative reward PEs activate dopaminergic neurones within a No-Go pathway
(red). The SN-striatal pathway exerts a net facilitatory effect on the thalamo-cortical
connections, enhancing or inhibiting behaviour (Gilbertson and Steele, 2021). Acting
on the thalamus and motor areas, positive RPEs and increased Go signalling aid ap-
proaching behaviours, while negative RPEs and enhanced No-Go connections lead to

a lack of approach (inhibition).

Fluctuating levels of dopamine in the basal ganglia are crucial for exploration and ex-
ploitation switching in healthy behaviour under uncertainty (ibid.). However, increased
dopamine levels within the striatum have been related to the severity of gambling dis-
orders (Joutsa et al., 2012) and up to 13% of people treated for Parkinson’s disease
with dopamine agonists experience pathological gambling (Dodd et al., 2005; Driver-
Dunckley et al., 2003; Santangelo et al., 2013; Zhang et al., 2021). A recent study with
healthy volunteers found increased risk-taking with a tonic increase of dopamine with

levodopa compared to placebo, although the drug effect depended as well on baseline
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dopamine levels (Hirschbichler et al., 2022). Moreover, the Go and No-Go pathways
are populated by D1 and D2 dopamine receptors, respectively, and different variants
of genes that express as higher D1 or D2 receptors lead to better Go or No-Go learning
(Frank et al., 2007). These studies point to the notable importance of the basal ganglia

and tonic dopamine levels in trait and state risk-taking.
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Figure 1.5 A schematic representation of long-term potentiation and depression.
Dopaminergic pathways from the substantia nigra to the striatum, respectively act-
ing on the Go (green) and No-Go (red) pathways, leading to approach or avoidance.
Blue arrows indicate long-term potentiation, or learned positive and negative outcomes
through positive and negative PEs.

The striatum is influenced by connections from the SN (D1 and D2 pathways) and VTA,
but also from areas like the OFC and vimPFC (Ferry et al., 2000; Philiastides et al.,
2010a). This influence from the cortex on the striatum has been shown to modulate the
way PEs are normalised (Park et al., 2012). In other words, cortico-striatal connections
were shown to be crucial for the adaptive coding of moment-to-moment rewards with
the OFC being sensitive to the contextual distribution of rewards (Padoa-Schioppa,
2009). The activation of the medial PFC in rats was associated with changing environ-

ments that require higher cognitive demand and signalling appropriate behaviour via
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projections to the ventral striatum (Howland et al., 2022). This is consistent with fMRI
studies suggesting that the dmPFC is related to action selection and goal-directed de-
cisions rather than initial decision variables (Larsen and O’Doherty, 2014). Another
area with connection with the striatum and associated with information-seeking be-
haviour when uncertainty is present is the anterior cingulate cortex, ACC (Monosov,
2020). The ACC has been shown to code PEs and to track the volatility of the environ-
ment, and its projections to the ventral striatum have been suggested to influence the
estimate of rewards and the rate of learning (Behrens et al., 2007). The OFC, dmPFC,
and the ACC, are only some of the prefrontal areas innervating the striatum and are
thought to have a top-down influence on decision variables and action selection. Within
the second reported experiment, I aimed to test the theory, compare competing models,
and provide a spatiotemporal outline of stimulus-PEs with EEG. Another influence on

cortico-striatal connectivity may be a social context which we will explore next.

1.3.4 Social decision-making, risk, and learning

Observing our everyday lives, it does not take much to consider the truthfulness in
the saying by Aristotle that humans are social animals. The social brain hypothesis
proposes that primates’ unproportionally large brain-to-body size ratio is the result of
a demand from complex social interactions (Dunbar, 1998). And the social world is
indeed an inseparable part of human existence. We use others’ behaviours and their
opinions as reference points when making decisions (Parks and Sanna, 2018; Wood and
Hayes, 2012), we possess the ability to mirror other’s motor actions (Iacoboni, 2009),

and we are influenced by others’ feelings of pain, joy, surprise, and anger (Decety, 2010).

Social cognitive neuroscience arose as a field to combine social psychology and neur-
oscience, aiming to reveal the brain processes related to social interactions from per-
ception to decision-making and determining whether these processes are the same or
different from non-social contexts (Ochsner and Lieberman, 2001). Most research on

social decision-making started from the realisation that social factors do matter for
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economic decisions, leading to the development of ‘game theory’ (Sanfey, 2007). Game
theory aims to understand the mechanisms that take place when people make decisions
in the presence of others. This can range from the mere presence of another person to
games of cooperation and competition, but they all entail one’s need to understand
other people in order to gather relevant information for improved decision-making.
Understanding others may start with the most basic cue of their current state which
is the facial expression, or it can be informed by more complex information like what
was their most recent decision. Our ability to infer the intentions and actions of others
is termed Theory of Mind (ToM, Premack and Woodruff, 1978) and it is an essential
component of Game theory as it explains the ability to make decisions acknowledging
the state of the other ‘player.” To be able to ‘mentalise’ another’s mental state, to put
oneself in another’s shoes, requires the capacity to imagine someone else’s goals, mo-
tivations, and affective states. Under more complex situations we use our knowledge
of social norms, or what would be an appropriate action for most people in the current
culture. We also need to consider that another person may be feeling in a different way
and behave unpredictably depending on their current state. This is when we refer to

the face for cues.

We often underestimate how important facial features are in social interactions because
they are such an integral part of our lives. In an experiment with a trust game scenario
participants were found to rely more on facial cues, rather than previous payoffs, and
were faster and more accurate in their decisions when presented with faces compared
to simply numerical payoffs (Jaeger et al., 2019). Although the participants reported
that they relied more on the numerical payoffs, the data showed otherwise. Babies
as young as 6 months show a preference for faces, indicating discriminability between
faces and other objects (Ludemann and Nelson, 1988). In a study with adults, faces
were shown for 50 ms, 100 ms or 500 ms, and were then masked. During masking,
the participants answered ’yes/no’ on whether the face was trustworthy and then they
indicated their confidence in the choice. It was shown that adults were able to detect

facial trustworthiness even when faces were presented for only 100 milliseconds, the
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equivalent of ’a single glance at a face’ (Todorov et al., 2009). Others have shown that
the trustworthiness ratings of the faces of presidential candidates can predict voting
outcomes (Ballew and Todorov, 2007; Sussman et al., 2013); and un-trustworthiness
of faces can influence legal decisions and lead to faster guilty verdicts (Porter et al.,
2010). These results show that, although underappreciated, faces are a big factor that

can bias social decision-making.

Risky decisions during games of poker are also influenced by different facial expressions.
In a study with online poker, the faces of the opponents were presented to participants
who previously rated the face images on a trustworthiness scale (Schlicht et al., 2010).
Although threatening faces did not lead to altered decisions compared to baseline,
participants made more mistakes when presented with faces with positive expressions.
These results show that although opponents were not physically present during the
game, simple cues such as face images could influence risky decisions. These findings
point out that facial expressions and their perceived trustworthiness can be considered
cues that reduce uncertainty. The study by Jaeger et al., 2019 showing that participants
relied on facial cues rather than numerical payoffs, but did not report so, suggests
that social ‘shortcuts’ to decisions may be automatic and implicit, which is consistent
with previous findings (Rezlescu et al., 2012). Similarly to non-social decision-making,
a dual system was proposed that includes automatic and controlled processes within
social contexts (Bargh et al., 2012; Lieberman, 2007). For example, the finding that the
amygdala (usually responding to emotional content) may be activated differentially by
fearful compared to happy facial expressions, without clear awareness about the stimuli

suggests a fast automatic process (Williams et al., 2004).

Another study integrated social and utilitarian factors in a risky decision-making task in
which the participants were presented with pairs of faces with different probabilities of
rewards. The results showed that when participants selected a happy face rather than a
sad or angry face, they were biased and put more weight on the positive outcomes, while

they put less weight on the positive outcomes following angry or sad faces (Averbeck
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and Duchaine, 2009). These results show that faces are used as additional, intuitive
cues in valuation processes. The next question is how facial cues get integrated into
resolving uncertainty when making decisions. Are faces coded as value-inducing cues
like non-social objects, and additionally can faces reduce uncertainty if they happen to

be accurate cues of rewards?

The perception, evaluation, and interpretation of faces is the first point of social judg-
ment and resolving uncertainty, hence, using faces as stimuli can be the ground for
bridging social and non-social neural and computational processes in response to risk.
Through empirical evidence, two main schemas have been developed to explain the
neural underpinnings of social versus non-social decision-making in general, one pro-
posing a ‘common currency’ and the other a ‘social-specific cognition’ (Ruff and Fehr,
2014). The first one (the extended common currency schema) proposes that there is
a general mechanism which interprets and assigns value to both social and non-social
factors, even though perceptual information may come from separate networks. The
second one (social-valuation specific schema) proposes that the computational prin-
ciples of social and non-social factors and valuation are similar in structure but occur
in separate networks that evolved and specialised with the demands of a social envir-

onment.

Although there are clearly specialised areas for social stimuli (like the fusiform face
area and mirror neurones), currently, there is an overarching consensus that social
rewards and risks are coded in identical networks with non-social ones (Rilling and
Sanfey, 2011; Ruff and Fehr, 2014). It is crucial to bear in mind that social specificity
may depend on the different levels of description (Lockwood et al., 2020). For example,
social decisions 1) may pose notably different goals than other types of decisions, 2)
may use distinct algorithms from non-social situations, and 3) may differ in their neural
implementation. The scope of this work does not cover the differentiation between
the levels, however, within the reported experiments I aimed to add the lowest level

of influence from social components to build on previous non-social findings or to
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maximize our ability to compare social to non-social processes. I did this in such a way
that I would reduce the influence of implementation of different goals and strategies
under social conditions (in experiment 1), and if indeed different algorithms were used
during non-social compared to social contexts, I could capture this in behavioural and

neural levels (as in experiment 2).

Prediction errors are one example where the two domains overlap. A meta-analysis
showed that areas including the dorsal and ventral striatum, pallidum, vIPFC, orbito-
frontal cortex, and insula appear to overlap in social and non-social tasks testing PEs
(Corlett et al., 2022). Nevertheless, more activation was found in the dmPFC during
social tasks, which region is also related to cognitive (as opposed to affective) theory
of mind (Abuz-Akel and Shamay-Tsoory, 2011), and was found to be selective for pre-
dictions about other’s beliefs and own reward prospects in social contexts (Elliott and
Deakin, 2005; Jamali et al., 2021). Overlaps were also confirmed by an EEG study,
showing that violation of social norms results in altered feedback-related negativity
(FRN) in EEG, which was consistently associated with non-social PEs, suggesting
that not only spatially but also temporally social prediction errors may be processed

like non-social ones (Harris and Fiske, 2010).

As discussed earlier, studies have localised risk processing in both animals and humans
to the striatum, insula, and lateral orbitofrontal cortex (Rangel et al., 2008). Volatility
and prediction errors have also been associated with the ACC (Behrens et al., 2007). It
was proposed that the ACC is related to tasks that require online risk learning, while
the anterior insula and inferior frontal gyrus/lateral orbitofrontal cortices — during risk
judgments of known probabilities of rewards (Fitzgerald et al., 2010). However, this
dissociation is still to be confirmed with fMRI. The insula is active for social cues,
reward-related signals, and perception of internal physiological states (Rogers-Carter
and Christianson, 2019). It was associated with predictions of risk and errors (RiPEs)
in probabilistic tasks (Clark et al., 2008; Loued-Khenissi et al., 2020; Preuschoff et

al., 2008), and the integration of social sensory information, empathy and emotion
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recognition (Bernhardt and Singer, 2012; Terasawa et al., 2021). However, it’s worth
noting that these functions may not be exclusive to the insula and could also involve
the mid-ACC (Corradi-Dell’Acqua et al., 2016). The converging activation for social,
rewarding, and risky cues within the same regions suggests that there may be domain-
general processing, although no studies have examined the combined effect of risk
processing (including predicted risks and risk prediction errors) with social stimuli.
With my first experiment, I aimed to reveal the spatial and temporal profile of predicted
risk and RiPEs with EEG, while implementing social stimuli in the form of faces of
varying subjective trustworthiness. I compared the results to previous studies with

non-social stimuli.

Although action values based solely on expected rewards and risks (coded by dopam-
ine in the striatum) can be used to make decisions and can be used by scientists to
predict decisions, other factors such as social biases, exploration strategies, and op-
timistic thinking, all processed through prefrontal and anterior cingulate cortices may
influence typically ‘rational” decision-making (Rushworth and Behrens, 2008). Within
social contexts with the presence of faces of varying trustworthiness, there may be
better estimates of predicted risk, hence, lower risk prediction errors. For example, if
a face is perceived as highly trustworthy, the probability of making an error with it
would be lower than if the confidence in its trustworthiness is low, like in the case of
more neutral faces. We can expect there to be an additive effect of numerical outcomes
and social cues on lowering risk prediction errors. For example, more trustworthy faces
suggesting higher rewards and less trustworthy faces suggesting lower rewards, com-
pared to more neutral faces carrying a small difference between the rewards they lead
to. Faces can be a shortcut in decision-making that leads to the feeling (or more auto-
matic and unconscious processes) of ‘resolved uncertainty’ and can be a supplement to
numerical cues, which I explore in my first experiment. The second focus of the current
PhD was to test a model that aims to explain risky decision-making as stemming from
exposure to positive prediction errors. I introduced an additional component of a group

membership bias aiming to test its additional influence on risk-taking.
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1.3.5 Social group membership, cortico-striatal inputs, and

risk-seeking

Another powerful factor in decision-making in social circumstances, apart from initial
superficial cues about others, is the relationships of those we are surrounded by (Rilling
and Sanfey, 2011). In-group members are individuals who belong to the same group
as us, such as our family, friends, ethnic or cultural group, or any other group which
we identify with. Out-group members, on the other hand, are individuals who belong
to a different group than ours. Group membership bias, also known as in-group bias,
refers to the tendency of individuals to favour members of their own group (in-group)
over members of other groups (out-group, Myers, 2016). This bias can influence our

decisions and behaviours in subtle and sometimes unconscious ways.

Depending on the strength of the relationship between ourselves and groups, biases
may be translated into attitudes and behaviour. For example, there may be biased
judgments, such as giving more weight to the opinions or contributions of in-group
members (Ben-Ner et al., 2009a; Jannati et al., 2016) and being more lenient towards
their mistakes or shortcomings (Molenberghs et al., 2013). In terms of explicit beha-
viour, we tend to trust and cooperate more with in-group members (Fujino et al., 2020;
Plotner et al., 2015), as we perceive them as more similar to ourselves and therefore
more dependable. Additionally, we may be more likely to seek opinions and input from
in-group members and may be more influenced by their perspectives (Mackie et al.,
1990), leading to a biased decision-making process that may not consider the full range

of options or viewpoints.

Also, the degree of social influence is intricately linked with the need to feel part of
a group and to be approved, as is prominently revealed during adolescence. I will use
adolescence as an example as it is a period in which social influence, risk-taking, and

the maturation of cortico-striatal connections converge in a meaningful relationship.
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It is well-known that risk-taking increases in the transition between childhood and ad-
olescence and declines with the emergence of adulthood (Defoe et al., 2015). Compared
to adulthood and childhood, adolescents engage more in life-threatening behaviours like
alcohol and substance abuse, having unprotected sex, and driving recklessly or under
the influence of substances (Steinberg, 2008). A major reorganisation of cortico-striatal
areas during this period of life has been shown to be intricately linked with risk-taking
and impulsivity (Decker et al., 2016). From a neurocognitive perspective, the increase
in risky behaviour has been explained by the ‘dual systems model’ (also ‘maturational
imbalance theory’). This model posits that an increase in sensation-seeking, modu-
lated by the maturation of the socio-emotional system (ventral striatum and medial
prefrontal cortex), and a decrease of cognitive control by delayed maturation of cognit-
ive control systems (dorsal prefrontal, parietal and anterior cingulated cortices), results

in the observed behavioural change (Balter and Tamis-LeMonda, 2016).

In some cases when risk evaluation and self-monitoring are comparable to those of
adults, the emotional reward from risk-taking may be high enough to override rational
decision-making and behaviour (Gardner and Steinberg, 2005). Therefore, Steinberg
(2008) suggests, this is the reason why simply educating adolescents about the costs
of risky behaviour has been inefficient so far. Even if the risk is correctly evaluated
and considered, risk-taking may be observed due to other factors (Dahl, 2004; Defoe
et al., 2015; Reyna and Farley, 2006). One of those factors for adolescents may be the

presence of peers (Albert et al., 2013).

The social identity model of risk-taking proposes that shared group membership (being
surrounded by in-group members) attenuates risk perceptions, decreasing feelings of
uncertainty, and consequently increasing risk-taking (Cruwys et al., 2021). This was
timely shown and supported in the context of the pandemic. People were more likely
to rate activities such as sharing a drink, leaving a used tissue, and shaking hands with
someone as less risky when performed by in-group compared to out-group members

(Cruwys et al., 2020a). In experimental studies, where norms are not directly verbalized
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or there is reduced knowledge about the ‘in-group,” behaviour may be influenced by
just the presence of others. Mere presence (audience effect) has been long known to in-
fluence behaviour, especially in groups whose sensitivity to peer evaluation is increased
(Weigard et al., 2014; Wolf et al., 2015). If the only mediator is fear of social evaluation,
this means that in private setting people are going to show behaviour more like the
one before the specific social norms were introduced. Another suggestion is that mere
presence only leads to arousal and increased activation of emotional centres, which in
turn increases risk-taking, emotion-based decision-making and behaviour. In line with
this idea, neural change has been shown to occur in the presence of peers even when
no decision-making takes place (Somerville et al., 2013). With my last experiment, I
further aimed to test the proposed additive influence of in-group and out-group pres-
ence on risk-taking hypothesising that in-group presence would increase risk-taking on

top of positive stimulus-PEs.

1.4 The goals of this thesis

The previous sections summarised the theoretical background of value-based decision-
making and its association with dopamine and the basal ganglia. I focused on the
challenges and solutions to define risk and to develop the best model to capture risky
choices. And I reviewed studies that probed the brain for the correlates of risk-taking
in social and non-social tasks, showing the involvement of specific areas within the
prefrontal cortex and midbrain. Additionally, I introduced the involvement of social
influence on risk-taking and the importance of studying individuals through the lens

of a social world.
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Within this thesis, I introduce two experiments divided into Chapters 2, 3, and 4.
The primary goal of this work was to test risky decision-making by combining recent
paradigms and models of risk, compiled in an interdisciplinary manner from economics,
computational modelling, and animal work. I aimed to answer unresolved questions

about:

1. Whether risk and deviations from predicted risk (errors) are computed similarly
to rewards when a social component is introduced. And to disentangle these
computations by EEG.

2. If a recent model on risk-seeking driven by transient fluctuations of dopamine
can predict risky choices better than other established models from economics
and reinforcement learning. And if this prediction-error-influenced risk-seeking
can be predicted by single trial EEG fluctuations.

3. How the presence of in-group and out-group members affects uncertainty and
risk-seeking on top of the proposed effect of prediction errors. And do the neural
patterns observed during baseline compare to those recorded during social obser-

vation?

Ultimately, these projects make valuable contributions to the existing literature on hu-
man decision-making under risk. Through a comprehensive integration of recent meth-
odologies from animal studies, functional magnetic resonance imaging (fMRI), and
computational research, I present compelling evidence on how risk-related variables
manifest in electroencephalogram (EEG) measurements. Moreover, I address critical
inquiries regarding the neural and computational foundations of social neuroscience.
The first experiment confirms the presence of a brain process that codes risk and a
separate one that codes prediction errors related to risk in humans. Using social cues
mapped to numerical payoff and finding similar results to studies with non-social cues,
I supported the notion that both social and non-social rewards are encoded similarly
in the brain. Building upon an intriguing new theory of the basal ganglia, the second
experiment successfully replicates recent findings and shows computationally that risk-

taking may be the consequence of positive reward prediction errors. Significantly, I



1.4. The goals of this thesis 33

uncover the EEG correlates of stimulus-locked prediction errors that potentially drive
individuals to seek risks under some contexts. Conversely, the latter part of the second
experiment raises important inquiries about the impact of group membership bias on
risky decision-making. By exploring mental health factors, these final findings hold
substantial significance within the context of ongoing efforts to comprehend learn-
ing, gambling, addictions, and other conditions in which any stage of the four-module

decision-making process may be compromised.



Chapter 2

Spatiotemporal Representation of
Risk and Risk Prediction Errors

with Social Stimuli

This chapter outlines the background, findings, and discussion of our first experiment
aiming to test risk processing in the brain. Specifically, we aimed to test whether the risk
can be decoded separately from rewards and signed and unsigned risk prediction errors.
(Within the following chapters I will continue by using the plural first-person pronouns
as these experiments are the combined hard work of myself and my supervisor.) We
incorporated social stimuli in the form of faces that the participants rated prior to
the main task, and which were mapped onto numerical reward values. We further
used a design that was able to decouple risk from signed and unsigned risk prediction
errors and we found that there were separable EEG responses for the three risk-related
variables. These results are in line with previous fMRI and EEG findings and add
additional evidence to the theories of a common currency of social and non-social

decision-making.

34
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2.1 Background

Imagine that you are visiting a new city with a few different options to buy coffee. One
approach would be to stick with the high-street chains, to minimize the uncertainty
regarding coffee quality. Another approach would be to try a local boutique coffee shop
to improve your experience, but this move might also lead to possible disappointment
due to higher uncertainty in the shop’s bean quality. Living in complex ever-changing
environments, we are constantly faced with uncertainty when making choices. Although
a sensible strategy would be to aim for the highest-valued option, whether it is coffee,
money, or pleasurable experiences, the outcome of our choices is not always fully pre-
dictable. In the coffee shop example, it is not easy to predict if we will feel better from
a novel experience or from sticking with the familiar. The process of optimising our
decisions is believed to rely on a reinforcement-guided framework, whereby our expect-
ations are updated every time we encounter a new experience (Rescorla and Wagner,
1972; Sutton and Barto, 2018; Watabe-Uchida et al., 2017). Reward prediction errors
(RPEs) are formalised as the difference between experienced and expected rewards and
they serve belief formation and the ongoing comparison of beliefs against experiences
(Niv and Montague, 2009; Watabe-Uchida et al., 2017). The valence (sign) of RPEs
leads to either repeated behaviour (positive RPEs) or an avoidance response (negative
RPEs), while the magnitude of RPEs (unsigned RPEs) controls the speed of learning
(Ouden et al., 2012; Schultz, 2016a).

Most everyday choices, however, are not easy to weigh against previous experiences as
they pose varying levels of uncertainty. One may go for artisan coffee if one is interested
in ‘gambling’ with taste as the outcome is more variable. So, in this case, the choice is
not one between known outcomes but rather based on the tolerable degree of variation
around an average reward, also known as ‘risk’ (Bossaerts, 2010). In statistical terms,

risk can be represented as the standard deviation or the variance of a distribution of
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rewards (Steinbach, 2001). Several studies have used this definition and have shown
that under uncertainty, decisions can be informed by risk, independent of rewards
(d’Acremont and Bossaerts, 2008; Fiorillo et al., 2003; Kacelnik and Bateson, 1996;
Niv et al., 2012; Tobler et al., 2009).

It follows that learning about and updating our representations of the uncertainty of
rewards can add a behavioural advantage in novel or volatile environments. Just like
errors in estimating expected rewards, there can also be errors in the estimated variation
around these rewards. Similar to RPEs, risk prediction errors (RiPEs) are defined as the
mismatch between experienced and expected risk and can be used to update our future
risk estimates. RiPEs can be signed or unsigned with each component of this signal
(valence or magnitude) serving a potentially separate role in reducing uncertainty in

future choices (d’Acremont et al., 2009; Preuschoff et al., 2008).

Human fMRI studies, using purely probabilistic (non-social) decision-making tasks,
found correlates of expected risk and risk learning in the anterior cingulate cortex
(ACC), the anterior insula and the inferior frontal gyrus/lateral orbitofrontal cortices
(Behrens et al., 2007; Brown and Braver, 2007; Critchley et al., 2001; Fitzgerald et al.,
2010; Fukunaga et al., 2018; Payzan-LeNestour et al., 2013; Preuschoff et al., 2008).
Similarly, neural correlates of RiPE were found in the ventral striatum, the inferior
frontal gyrus (IFG), and the insula (d’Acremont et al., 2009; Preuschoff et al., 2008).
While fMRI studies enabled the identification of specific brain nodes encoding different

risk signals, they are limited in their ability to explain how these signals unfold in time.

A recent EEG study was the first to directly investigate the period of risk processing
signals in a purely probabilistic (non-social) scenario (Lauffs et al., 2020) and found
a P3 event-related potential component over central electrode sites covarying with
the magnitude of RiPE signals. In this study, RiPE signals were derived from the
errors in reward prediction on each trial, which poses the possibility that the measured

signals are instead a consequence of valuation (O’Neill and Schultz, 2010a). To address
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this caveat O’Neill and Schultz (2013) designed a task in which the expected reward
of the different options remained constant, while the standard deviation around this
expected reward (i.e., risk) was varied systematically across trials. RiPE signals were
then computed as the difference between the trial-wise risk and the overall risk across
all trials (expected risk). While this design enabled the identification of neurones in
the orbitofrontal cortex responding to unsigned RiPEs, it could not reveal signed RiPE
signatures, since they were confounded by the trial-wise estimates of risk (due to a fixed

value for overall predicted risk).

Here, we use a modified version of the task by O’Neill and Schultz (ibid.) designed to
properly decouple risk, signed and unsigned RiPE signals while doing so using socially
relevant stimuli (framed in the context of a trust game), rather than non-social gambles
as in the studies described above. We aimed to study the extent to which risk and RiPE
signals also emerge in the social domain and offer an account of how these signals
unfold in time, relative to one another. Based on recent evidence pointing to domain-
general reward processing in social and non-social decision-making (Arabadzhiyska
et al., 2021; Rilling and Sanfey, 2011; Wake and Izuma, 2017) and previous reports
showing fMRI correlates of risk in social contexts (Vavra et al., 2018; Xiang et al.,
2013), we hypothesized that socially-relevant risk and RiPE signals would manifest

similarly to previous non-social tasks.

More importantly, if signed RiPE signals are indeed operationalized as the difference
between trial-specific risk estimates and the overall expected risk, then it can be pre-
dicted that momentary signals of experienced risk would be computed and emerge first,
followed by a later signature of signed RiPE. While signed RiPE signals are thought
to be involved in updating risk estimates (Preuschoff et al., 2008; d’Acremont et al.,
2009), unsigned RiPE likely control the speed of risk updating similar to the hypothes-

ized role of unsigned reward PEs in controlling the learning rate (the weight applied to



2.1. Background 38

the signed reward PE) in a reinforcement-guided framework (Mackintosh, 1975; Pearce
and Hall, 1980). As such, unsigned RiPEs could emerge near simultaneously with the
signed RiPE signal to drive adaptation to risk and learning, as shown previously for

reward updating (Fouragnan et al., 2015, 2018, 2017).

2.2 DMaterials and Methods

2.2.1 Participants

The final data reported here includes 40 participants (mean age: 25; SD = 9.19, fe-
male/male = 27/13). The participants had no diagnosed neurological or psychiatric
conditions and were asked to not consume alcohol or other psychoactive substances
the day before and on the day of the experiment. EEG data were originally collected
for 71 participants recruited through the online system for experiments in psychology
at The University of Glasgow. Eight of them were not used for the analysis as they
only took part in a pilot task that was significantly changed for the main experiment.
Five of them were excluded because of failure to report back the outcome of a trial in
more than 10% of trials. Four of them were excluded due to the excessive eye and/or
movement artifacts in the EEG data. The remaining 54 participants were included in
our multivariate single-trial linear discriminant analysis (LDA, see Methods section
Single-trial EEG analysis). Due to the nature of the task, which does not require an
active decision, or any behavioural response relevant to the selection of the stimuli
(see the Main task), we expected that some participants may fail to pay attention
and/or encode the relevant stimulus features, which would ultimately manifest as poor
discrimination performance along the relevant stimulus dimensions (e.g. low-vs-high
risk/RiPE/|RiPE|). We accounted for this initially by recruiting more participants
than would normally be sufficient for similar EEG studies and analysis techniques
(Fouragnan et al., 2015, 2017; Philiastides et al., 2010b). Furthermore, EEG discrim-

ination performance for 14 participants was not statistically different from chance, for
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all three signals of interest (as explained under the ‘Bootstrapping-based exclusion’
section), and they were therefore removed from the final analysis/results. The study
was approved by the College of Science and Engineering Ethics Committee at the Uni-
versity of Glasgow (300210143) and informed consent was obtained from participants

prior to the experiment.

2.2.2 Risk and RiPE estimation

During the main experiment, participants were presented with pairs of faces that were
associated with different social value estimates (£50/70, £40/80, £20/100, £60/60),
one of which was selected as the outcome of each trial. Figure 2.1 shows the spread of
values around the EV and the size of current risk and RiPE for each pair. Table 2.1
and Figure 2.3 show the values that resulted from the calculation of each risk variable
of interest following equations 2.1 to 2.3. The equations provided show the way we
calculated the expected value (EV — Eq. 2.1), the SD of all rewards (predicted risk —
Eq. 2.2), the difference between each reward and the average reward (current risk), and
the deviation of each reward from the SD (risk prediction error — Eq. 2.3), following
the approach of O’Neill and Schultz (2013). For each participant, we computed the
current risk, and the signed and unsigned RiPEs, which were used in our single-trial

participant-specific LDA analysis.
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Where n is the number of rewards, p is the probability of each reward, and x is the
amount of each reward in points. The Expected value (EV, Eq. 2.1) is the average of
all rewards. The current risk is the standard deviation of a pair of rewards on each
trial. For example, for the 50/70 pair the current risk would be (70 —50)-0.5 = 10.
The ‘risky’ pairs are 50/70 (low risk), 40/80 (medium risk), 20/100 (high risk). The
predicted risk is the SD of all rewards in the experiment (Eq. 2.2). As can be inferred
from equation 2.3, due to the fixed value of the predicted SD across the whole task,
it follows that the signed RiPE is correlated with the current risk (trial risk), and the
two signals cannot be distinguished. To tackle this and obtain a measure of RiPE that
is decorrelated to current risk, we introduced a set of trials in which the two possible
rewards are the same and equal to the average of all rewards in the task (60/60). Hence,
there was no variability, and the current risk was 0. This resulted in different values
for each risk variable on each trial set, as shown in Figure 2.2, Figure 2.3, and Table
2.1. Moreover, we introduced a different colour fixation cross to indicate a 60/60 trial
was entered, leading to the predicted SD at the fixations cross on these trials being

different from the overall predicted SD.
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Figure 2.1 Values of pairs of stimuli. Current risk is shown in yellow, RiPE is shown
in blue, and predicted is, which is constant within risky trials is shown with red.

Risk

Signed RIiPE

Unsigned RIiPE

Figure 2.2 Correlation plot of computed values.
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Pair category 60/60 50/70 40/80 20/100
Predicted risk 26.46 26.46 26.46 26.46
Current risk Low risk =10 | Medium risk =20
Signed RiPE 0 -6.46
Abs. RiPE 16.46 6.46 13.54

42

Table 2.1 Computed values of each risk condition across trials. Shading represents LDA
training and testing levels. Blue shading shows each condition’s lowest (light blue) and

highest (darker blue) values.
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Figure 2.3 Computed levels of risky and safe trials. The figure shows that the three
components can be distinguished.

2.2.3 Stimuli and task

The task was performed in an electrically shielded, soundproof booth with a small
amount of light from the ceiling. The stimuli were presented on an Nvidia 4k monitor
with a 120Hz frame rate, approximately 60 cm away from the participants. Psychopy
software v2020.2.3 (Peirce et al., 2019) was used to present the task and record be-
havioural responses. The task was presented on a black background (Figure 2.5), and
each pair of faces was centred in the middle of the screen. Responses were made with a

small gaming controller with 5 buttons connected to the computer with a USB cable.

Unlike previous work using abstract stimuli (i.e., non-social) to create associations with
expected rewards expressed as money or points, here we used socially relevant stimuli
obtained in the context of an economic game (i.e., trust game). Specifically, one day
before the experiment, each participant rated 28 photo-realistic images of faces (see
Figure 2.4. Example stimuli, Arabadzhiyska et al., 2021; Yu et al., 2012; Zhan et al.,
2019) in 5 blocks. The rating was based on a hypothetical scenario in which participants

were told the faces were photos of people who played in a Trust Game of two players
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(an investor and a trustee). Participants were told that all trustees received £200
from the investor and returned between £10 and £120, and the participant’s task
was to estimate how much each trustee returned. Hence, we consider the participant’s
subjective judgments of trustworthiness as a proxy of the economic outcome value in the
context of a one-shot money-incentivised game (Eckel and Wilson, 2003; Scharlemann
et al., 2001). To measure consistency, we used the standard deviation across the ratings
of individual faces across 5 blocks. From the 28 rated faces, for each participant, we
selected those with the most consistent ratings (lowest SD) on each of the points ranging
from £10 to £120, in increments of 10, resulting in 12 faces. Further, instead of using
all 12 faces per participant, we chose 7 faces which would represent values that allow
decorrelation between the variables of interest, hence, we chose one face associated with
each of the following values: £20, £40, £50, £60, £70, £80, £100. With this method,
we fulfilled our aim to obtain 7 faces for each participant which ranged from least to
most trustworthy, being associated with low or high amounts of points respectively,
and spanning the predetermined scale of rewards. For the main task, we represented
the pounds as points (50/70, 40/80, 20/100, 60) to be able to motivate the behaviour
to perform correctly and win ‘points’ that were later associated with a final payout

(see Main task).

All faces were adjusted for height and width in such a way that when presented in
a pair with any of the other 6 faces, there was no striking contrast between the two
faces. All faces ranged from 212 to 240 pixels in height and 136 to 180 pixels in width
and were presented on a black background (stimuli were up to degrees of visual angle:

2.82° height and 2.11° width).
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Figure 2.4 Example stimuli. Faces of various trustworthiness levels were used in the
task. Each participant initially rated 28 images of faces framed in the context of an
economic game. (See 2.2.3).

2.2.4 Main task

With a task preceding the main experiment, we aimed to strengthen the association
between the ratings each participant gave to each of the final 7 faces. As the faces were
rated at home one day before the experiment and were the final selection from a sample
of 28 faces, it was important to make sure the participants remembered well the ratings
they gave specifically for these 7 faces. The task consisted of each participant observing
their preselected set of 7 faces one at a time, presented repeatedly in a randomised order
while trying to remember and indicate the value of each face in points using a scale
with the 7 possible rewards (20, 40, 50, 60, 70, 80, 100). Each face was presented in
the middle of the screen with a discrete scale of 7 points. After selecting a point on the
scale, the participants received the message ‘correct’ or ‘wrong’ coloured in green or
red, respectively. As such, the task prompted learning through trial and error and was
finished after 14 consecutive correct answers. All participants succeeded in memorising

the faces in less than 10 minutes.

After memorising the values associated with the 7 faces, the main task was explained
to the participants, and more specifically the way the faces would be paired in relation
to their risk levels. During each trial, one face from a pair was highlighted and the
points won on that trial were the points associated with the selected face (as learned
during the preceding consolidation task). It was further explained to the participants

that there were overall seven faces, which were divided into pairs in such a way that
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each pair formed an opposition along the middle of 60 points. The faces representing
50 and 70 points were paired together, forming a pair with ‘low’ risk, the pair of faces
giving 20 or 100 points was categorised as ‘high risk’, and the ‘medium risk’ pair was
that of faces of 40 and 80 points. There was also a ‘zero’ risk condition in which a pair
was formed by the same face shown twice (60/60). After the participants understood

the possible pairs, they were shown an example of the main task.

The main task is represented in Figure 2.5. Each trial began with one of two cues
indicating if the current trial would be of ‘zero’ risk with the same faces, or a trial with
any of the other risky pairs. Risky pairs (indicated by a cue with a blue line around
all risky values) were any pairs that consisted of two different faces, whereas safe pairs
(indicated by a cue with a pink line around the average value) were pairs consisting
of the same face shown twice. We decided to use a different cue for zero-risk trials to
completely remove the risk prediction error. As the cue prepared the participant for
a trial with no risk, the overall standard deviation was expected to be reset to zero,
leading to no difference between expected and experienced risk when the facial cues
were presented. Otherwise, as in the risky set of trials, it can be expected that there is a
risk prediction error computed as the difference between the overall standard deviation

and the current risk of 0.

The cues stayed on the screen for a variable amount of time drawn randomly from
within the range of 1 second to 1.4 seconds. A pair of faces appeared on the screen
for a time in the range of 1.5 to 2 seconds, which is the period we expected risk and
RiPEs would be encoded (Lauffs et al., 2020; O’Neill and Schultz, 2015). After that
one of the faces was highlighted by an orange frame indicating the reward outcome (as
inferred by the selected face). The orange highlight frame stayed on-screen for a variable
duration between 0.8 and 1.25 seconds. Following this was a screen with a graphical
representation of two scales that aimed to prompt participants to pay attention to
which face was selected. Participants had to remember the value that was won from

the face selected on the previous screen and indicate both the level of risk that the face
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was part of (zero, low, medium, or high) and the specific value (20, 100, 40, 80, 50, 70,
or 60). The risk was selected first by moving a red dot left or right until the desired
level was indicated by the dot. Then a side button on the controller was pressed to
move to the second scale, where the dot automatically moved to the long horizontal
line representing the average and right in the middle of the two values associated with
the previous selection. So, for example, if the low risk was selected the red dot was then
moved to the middle between values 50 and 70. Next, the participants had to press the
‘up’ or ‘down’ buttons to make their final selection about the value they believed they
won. For example, they would press ‘down’ to select 50, and ‘up’ to select 70. In the case
of ‘zero’ risk, there was no active selection on the scale apart from participants pressing
the same confirmation button twice: once for the first scale, selecting ‘zero’ risk, and
a second time to confirm the value of 60. The red dot was first shown on the ‘risk’
scale and then in the middle of the ‘value’ scale. This was always the case, independent
of whether the left or right face was highlighted previously as the face was the same
and carrying the same reward of 60. With this procedure, there was no difference in
the number of buttons being pressed during the risky or zero-risk conditions. After the
value selection (or confirmation in the case of zero risk) was made, the trial finished,

and a new cue appeared on the screen.

There were 60 trials per risk level. This resulted in 240 trials per person, separated
into 15 blocks with breaks in between. On each trial, if there was no response on the
first scale by the participant moving the red dot left or right in less than 2 minutes, a
message ‘Too slow!” appeared on the screen and the next trial began. The whole task

(as shown in Figure 2.5) took approximately 35 minutes per person.
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The incentive for participants to strive to be correct (and pay attention) on all trials
was their knowledge that after the experiment had ended, a certain number of trials
were chosen randomly, and if their response was correct on all the chosen trials, the
final payment would be increased by the number of points indicated on those trials,
resulting in payment between £12 and £18. All participants were debriefed and received

payment according to the time spent in the lab (approximately £16).

ZERO LOW MEDIUM HIGH
s

Fixation

1-1.4sec Cue
1.5-2sec Observation
0.8 -1.25 sec Confirmation
- of points won New trial
TIME

‘

Figure 2.5 Experimental timeline. Each trial began with one of two cues indicating
if the current trial would be of ‘zero’ risk with the same faces, or a trial with any
of the other risky pairs. The cues stayed on the screen between 1 and 1.4 seconds.
A pair of faces appeared on the screen for a time in the range of 1.5 to 2 seconds,
after which one of the faces was highlighted by an orange frame lasting for 0.8 to
1.25 seconds. A graphical representation of all values appeared on the screen, which
prompted the participants to select the value they won (known form memory, see 2.2.4).
After selection, a new trial started.
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2.2.5 EEG data acquisition

An EEG system from Brain Products was used with a cap with 64 Ag/AgCl scalp
electrodes placed according to the international 10-20 system on an EasyCap (Brain
Products GmbH, Germany, EEGLAB BESA) with a ground electrode on the chin,
reference electrode on the left mastoid, and NFCz electrode in the middle of the fore-
head. The impedance of each channel was lowered below 20 kOhm, if possible, and to
a maximum of 50 kOhm. The EEG recording computer received experimental event
markers from the machine presenting the stimuli with Psychopy, via a parallel port.
Sampling was done at 1000 Hz with BrainAmp DC amplifiers (Brain Products, Gilch-

ing, Germany).

2.2.6 EEG data pre-processing

During recording, data were filtered online with an analogue band-pass filter of 0.0016
Hz to 250 Hz. Further offline pre-processing of the individual EEG data was done in
Matlab (ver. 2019b) and plotting and further analysis of the LDA results were done
in Matlab and R (R Team, 2021). The raw EEG data were explored via EEGLAB
v.2021.1 (Delorme and Makeig, 2004) in Matlab, identifying ‘bad channels’. Individual
channels were removed if they were with consistently high noise, observed as fluctu-
ations throughout the whole experiment period, and selected visually with EEGLAB.
No more than 5 channels were removed per participant. Moreover, we removed trials in
which the amplitude of the average signal across all channels was higher than the ab-
solute of 2.56 SDs above the mean. The maximum number of trials removed was 5. For
filtering the data further and removal of eye movement artifacts, we used an in-house
pre-processing pipeline (Franzen et al., 2020; Gherman and Philiastides, 2014). Filter-
ing the raw data included band-pass filtering at 0.5 - 40 Hz and re-referencing data
to the average. The presentation of the face pairs was the stimulus onset of interest

(second screen in Figure 2.5), the timing of which was informed by the time-precise
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event markers recorded in the raw EEG data. The filtered EEG data were epoched
by taking 100 ms prior to and 800 ms after the onset of the face pairs for all trials
and electrodes. The data were baseline corrected, defining the baseline interval as 100
ms before stimulus onset. Each participant completed an eye-calibration task which
included blinking repeated for a few seconds while fixated on a cross in the middle of
the screen and following a white cross on a black background moving up-down, left,
and right to the edges of the monitor. Further, linear components (sensor weights)
associated with eye blinks and horizontal and vertical eye movements were identified
using PCA and projected out of the EEG data from the main task (Franzen et al.,
2020; Parra et al., 2003).

2.2.7 Single-trial EEG analysis

We analysed the EEG data with single-trial multivariate linear discriminant analysis
(LDA) to obtain components that capture the neuronal activity with a better signal-
to-noise ratio compared to the original activity from single electrodes (Franzen et al.,

2020; Parra et al., 2003; Philiastides and Sajda, 2006; Sajda et al., 2009).

First, for each participant, all trials were divided into 4 levels or classes (as shown in
Table 2.1), according to the four possible values that each condition could take. We
selected only half of all trials (n = 120). In this way, we trained the classifier on part of
the data, namely, the two classes: highest and lowest per condition (Table 2.1 — dark
blue shading). We later tested the results on the rest of the trials (Table 2.1 — light

blue shading; explained under Identifying risk-related EEG components).

Finally, we performed three separate LDAs, aiming to examine the temporal and spa-
tial profile of the three conditions. The EEG data is denoted as x(t), that is the mul-
tidimensional data, with D channels, transformed into a single vector at time t. It is
indexed by the two classes of trials and weighted by a spatial filter (w) to produce a

one-dimensional discriminating component y(t):
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y(t)=wlx(r) = Zw'x’(t) (2.4)

T refers to the transpose operator and D refers to the number of EEG sensors. The
resulting spatial weighting vector y(¢) is a linear projection of the data, serving as a de-
cision boundary, maximally separating the EEG data according to the two pre-defined
classes, while minimizing the variance within the data corresponding to each class. The
discriminator maps amplitudes y;(¢) for the lowest and highest levels of each component
onto negative and positive values, respectively. The optimal w is obtained by a dis-
criminant function, formulated with logistic regression, determining the log-likelihood
of each class given the data x(¢), and an optimization algorithm based on iteratively
re-weighted least-squares (IRLS, Parra et al., 2005; Philiastides et al., 2010b). Further,
the spatial filter (w) was obtained by a sliding window approach in which each trial of
the epoched data is separated into short windows of 60 ms, centred around every 10 ms
from 100 ms before to 800 ms after the stimulus onset (-100 to 800). To quantify the
LDA performance, a Receiver Operator Characteristic (ROC) analysis was done, with
an area under the curve (AUC) denoted by A;. A Leave-one-out cross-validation was
used to avoid overfitting by using N-1 trials for training the spatial filter and testing it
on the left-out trials for all sliding time windows. A, values range from 0, through 0.5
(chance performance), to 1 (perfect separation), and indicate the probability of trials
being correctly mapped to the extreme levels of each component. To approximate the
sources of the discrimination for each component, we used a forward model found by
linearly predicting x(¢) from y(z), resulting in the spatial distribution of the normalized

correlation between the data and the component:

XY
T

S (2.5)

a =

This resulted in a which is a scalp projection subsequently plotted as a scalp topography

or a heatmap.
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2.2.8 Bootstrapping-based exclusion

We performed bootstrapping for each participant’s Az values to obtain an Az level
that would lead to an alpha cut-off of 0.05. The leave-one-out test was performed after
randomizing the truth labels of the discriminating classes 1000 times (previously shown
as a sufficient sample (Rousselet et al., 2019), resulting in a probability distribution
with Az values. For each participant, we found a bootstrapping threshold, which was
the cut-off Az value at 5% of both tails of the distribution, and then selected all Az
points that were above this value. For some participants, on all three components, there
were no significant Az values that were above their threshold in the time window 0 ms
to 700 ms locked to stimulus onset. We considered this as a sign that the participant
failed to pay attention to the task, failed to encode any of the variables, and were

excluded from the analysis.

2.2.9 Identifying risk-related EEG components

The LDA analysis was run on each risk variable (current risk, absolute RiPE, and
signed RiPE) separately. As shown in Table 2.1, on each trial, the risk variables can
hold one of four values, associated with the rewards on the current trial. To ensure the
LDA-resulting weights were not overfitting to the extreme conditions, we introduced
cross-validation by dividing trials within each risk component into training (Table 2.1 —
dark blue shading) and testing data sets (Table 2.1 — light blue shading). We applied the
spatial filter (w) on the ‘unseen/testing’ data consisting of the middle values for each
risk component (light blue shading on Table 2.1). For current risk, the lowest value was
0 (zero) while the highest was 40 (high risk), the middle two values 10 (low risk) and 20
(medium risk) were not used while training the classifier. For signed RiPE, the lowest
value was -16.46 (high negative), and the highest was 13.54 (positive), while the middle
values were -6.46 (low negative) and 0 (zero RiPE). The classifier for absolute RiPE was
trained on 0 (zero abs. RiPE) and the highest value of 16.46 (high abs. RiPE), while the
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middle two values comprised 6.46 (low abs. RiPE) and 13.54 (medium abs. RiPE). We
hypothesised that if the spatial filter of the data, y, is indeed specific to a component,
then we would observe a parametric effect across all 4 levels of the component, from
lowest to highest. This effect is quantified by a significant difference (in the predicted
direction) between the y’s at the middle two values. We used a paired-samples t-tests
for each risk condition, reporting p-values, mean differences and confidence intervals
(as difference = x 95% CI [low CI, high CIJ]). We further supply the results of a Bayes

Factor test with paired samples, obtained using the R function "ttestBF".

After obtaining the group-averaged Az values, we considered a broad window from 100
ms to 700 ms post-stimulus-onset, in which Az values were above chance performance
(0.5). We average the forward model estimates (a, Eq. 2.5) across participants at each
timepoint (every 10 ms) across the 100 ms — 700 ms offset window. Because for each
participant a risk component can occur at a different timepoint, we aimed to find this
timepoint per participant that is most consistent with the component of interest. We
could have picked the highest Az point per participant; however, the highest discrim-
ination performance may not be indicative of when the component occurs. Instead, we
looked for time points at which, first, the difference between the y’s at the two middle
values was highest and, second, a timepoint at which the scalp projection was closest

to the source representation (the group average a).

First, for each participant, we computed the difference between the two y-values of
the ‘unseen’ data and selected the top 20% of time points with the largest differ-
ences, independent of the direction of the difference (i.e., regardless of whether it was
in the predicted direction). Importantly, the time points in which we looked for the
largest differences were within the 100 ms to 700 ms window. Second, to obtain an
average scalp topography (map) for all participants, instead of averaging across an
arbitrary window around the peaks, we performed a k-means clustering analysis to
define the cut-off points of distinct scalp topographies around the average peaks. We

used a k-means clustering algorithm with a squared Euclidean distance metric on the
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intensities of a vector of group-averaged scalp topographies (a’s) across offset times.
The time range was different for each risk component and was limited by 100 ms prior
to the first prominent peak and 100 ms post the final prominent peak appearing before
700 ms post-stimulus onset. The number of different time windows with similar scalp
topographies, k, was optimised using silhouette values via the MATLAB evalcluster

function.

For example, as illustrated in Figure 2.6, we performed k-means on a window between
200 — 500 ms post-stimulus onset, because this window encapsulated the group peaks.
For signed RiPE the most consistent topographies around the highest Az values started
from about 280 ms and continues to 460 ms post-stimulus onset (yellow and green
clusters, Figure 2.6). In this example, we would average the scalp maps within the
window 270-460 ms and use this group average for further comparisons with individual-

specific scalp maps.
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Figure 2.6 Example of results of k-means clustering of average scalp topographies. Each
topographic map is the average of all maps within the same-coloured window on the
Az plot.

From the top 20% largest differences in y’s at the middle two levels of each risk condition
(as outlined above), we chose a time point with a scalp topography that had the best

correlation with the cluster-derived average of all participants.
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The above procedures resulted in a single point per participant that was considered
the ‘best’ time point to represent the component. We ran a t-test on the middle levels
(testing set trials, light blue shading in Table 2.1) using the y-values at the best time
points to test the hypothesis that there would be a significant difference in y-amplitudes
between the middle levels, showing the expected directional parametric modulation of
each risk component (as in Figure 2.3). All the above procedures were done separately
for current risk, signed RiPE, and absolute RiPE. Further, we compared the average

time points per risk condition via a density plot of stimulus-locked offset times.
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2.3 Results

The main aims of this work were to test for evidence for the three risk-related signals
that were proposed to be encoded by the brain, whether this can further be achieved
given our socially relevant stimuli, and if these components were present, to determine

the spatio-temporal profile of each one.

The cross-validation showed that each component was capturing EEG activity specific
for the related risk variable, as predicted by the relationship between raw computed
values as shown in Figure 2.7. Figure 2.8 shows the discrimination performance for each

risk component which for all three signals was above chance level (0.5 Az leave-one-out).
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Figure 2.7 EEG-derived values of each risk variable across the four levels of trials.
Top left window shows the original computed values (same as Figure 2.3). Dots are
individual participants.
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2.3.1 Current risk

The discrimination between the zero and highest risk had an average peak at 272 ms
(max AUC = 0.59) and continued to decline gradually, as shown on the top row of Fig-
ure 2.8. The best time points per participant were obtained as outlined in the Methods
section, and we did an analysis of the difference between the values of the discriminat-
ing components, y, for the middle two conditions of current risk. As shown in Figure
2.9 (left), the y values at each level of current risk are consistent with the expected
parametric effect as shown in Figure 2.3. The difference between the y-amplitudes at
the two testing sets of trials was significant (paired t(39) = 4.297, p < 0.001,

difference = -0.36, 95% CI = [-0.53, -0.18], BF = 220). Hence, the component amp-
litude at the medium current risk condition was significantly different from the low
current risk (in 75% of participants), confirming the parametric relationship between
the levels of risk and y-amplitudes. Shown in Figure 2.8 (top row, right), the average
scalp projections from the discriminating component for current risk indicate a signific-
ant difference between lowest and highest current risk values with a positive correlation
at left fronto-central electrodes and right frontal electrodes (positive correlation) and

a negative correlation at parietal sites of the right hemisphere.

2.3.2 Absolute RiPE

The unsigned/absolute RiPE discrimination (middle of Figure 2.8) on average peaked
at 280 ms (max AUC = 0.59). There was a significant difference in discriminator
amplitudes between low and medium unsigned RiPE (t(39) = 3.9, p < 0.001,

diff = -0.35 [-0.53 -0.17], BF = 75.9). As shown in Figure 2.9 (middle), the average
y-amplitude at zero absolute RiPE (‘60/60’) was higher than for the lower value of

absolute RiPE that was at trials ‘40/80" (for 80% of participants).
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The average scalp projection from participant-specific best peaks shown in Figure 2.8
middle row, is expressed in a negative correlation at fronto-central electrodes, and a

positive correlation at parietal electrodes.

2.3.3 Signed RiPE

The discrimination of the lowest and highest values of signed RiPE (bottom of Figure
2.8) contained multiple peaks between 270 and 480 ms, and 730 ms post-stimulus,
indicating greater temporal inter-participant variability (max AUC = 0.55). For this
component, we also found a significant difference after projecting the classification
vector, w, onto the middle two values for signed RiPE. Specifically, the average y
amplitudes at low negative signed RiPE trials (‘40/80’) was lower than the y amplitudes
at trials with zero signed RiPE (‘60/60’) in 75% of participants, t(39) = 5.9, p < 0.001,
diff = -0.33 [-0.44 -0.22], BF = 25412, also shown in Figure 2.9 - right.

The average scalp topography from best points at the level of signed RiPE (Figure 2.8
bottom right) showed an opposite pattern to unsigned RiPE, with a similar map but a
flipped dipole. The positive correlation is observed at fronto-central electrodes, while a
negative correlation occurs at occipito-parietal sites. This tendency suggests that the
source of unsigned and signed RiPE may be similar and with the reversed direction of

activation.
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Figure 2.8 Average discrimination (n = 40) and average topographies from best dis-
crimination points.
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Figure 2.9 EEG amplitudes at all three conditions derived from trials used for training
the LDA (pink) and testing the resulting weights (black).
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We also plotted the onset times of the best points derived from individual participants
as density plots as shown in Figure 2.10. Although there are big overlaps and no
significant difference between the three components, generally current risk is computed

earlier, followed by unsigned RiPE, and then by signed RiPE.
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Figure 2.10 Density plots of the time of onset of best points relative to the onset of the
stimulus.
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2.4 Discussion

We used a passive-observation task with socially relevant individual-specific cues as
rewards and proposed that risk coding and risk prediction errors will be reflected in
the EEG signal like previous non-social probabilistic tasks. Namely, we hypothesised
that if the risk is encoded separately from rewards and follows a reinforcement learning
profile like reward coding, we would find distinguishable components in terms of time
and EEG space. Our results show that predicted risk, signed and unsigned RiPEs were
indeed separable with EEG. First, we found spatio-temporal differentiated compon-
ents associated with risk coding, unsigned RiPE, and signed RiPE. Second, we showed
current risk coding to appear earlier than unsigned RiPE, followed by signed RiPE.
Finally, the above EEG components results were validated by establishing their mono-
tonic relationship with the levels of the three risk-related variables. These findings are
significant for the current efforts to delineate risk processes and relate them to learning

in complex uncertain environments.

In previous fMRI studies using financial uncertainty, perceptual uncertainty, and the
balloon analogue risk-taking task, risk correlates were found in the anterior insula, the
OFC, inferior frontal gyrus (IFG), the lingual gyrus, or the posterior cingulate cortex
(Burke and Tobler, 2011; Huettel et al., 2006; Payzan-LeNestour et al., 2013; Preuschoff
et al., 2008; Schonberg et al., 2012; Tobler et al., 2007). The above results are consistent
with lesion studies showing increased gambling, or maladaptive risky choices in patients
with insular or OFC lesions, while reward estimates were not impaired (Clark et al.,
2008). Our results confirmed these previous findings by showing that by keeping average
rewards constant, a brain response can be delineated that varies with different levels
of variance of the reward distributions. Therefore, in terms of the separation between
predicted rewards and risks, our results suggest that risk is separately coded from

rewards and that this can be tracked by EEG.
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Two fMRI studies found RiPE correlates in the anterior insula, inferior frontal gyrus,
and ventral striatum (d’Acremont et al., 2009; Preuschoff et al., 2008). In the duration
of 8 seconds post-stimulus, using fMRI, Preuschoff et al. (2008) showed that RiPE
signals appeared fast after stimulus onset (2 sec), whereas, predicted risk signals were
delayed (8 sec), which is contrary to our findings showing risk coding to appear first
followed by RiPEs. These discrepancies may be due to the different imaging modalities
being implemented in the two studies or due to the differences in experimental design,
especially given the long delays between trials in the fMRI study. Previous animal
studies showed that risk and RiPE signals take less than 1 second post-stimulus and
have an overlapping time signature (Fiorillo et al., 2005; Kobayashi et al., 2010). Hence,
fMRI, which depends on blood oxygenation levels and has a poor temporal resolution,
is ineffective in detecting such fast brain responses. Our analysis of EEG data showed
that risk components can be detected as fast as 800 milliseconds post-stimulus onset,
with peak onsets close in time but distinct. Using a brain imaging device with high
temporal resolution, such as EEG, is essential in distinguishing between these signals

that appear to arise almost simultaneously within the span of a decision-making trial.

An EEG study by Lauffs et al. (2020) used card stimuli to cue perceptual risk as par-
ticipants did not receive a reward depending on the values of the cards but rather on
their success in predicting if the second of two cards presented in succession would be
higher or lower. The cards ranged from 1 to 10 in value, the risk was measured as the
variance of the reward distribution, while RiPE was defined as the squared deviation of
the reward prediction error from the variance. This type of design aims to measure the
perception of the numerosity of sensory stimuli (Kobayashi et al., 2010, allowing depic-
tion of brain processes for internally represented objective mathematical variables. The
results showed that there were two components following the presentation of each card,
the earlier representing the salience of the stimulus, while the later one representing the
RiPE. Our results are consistent with the time of build-up of the RiPE signal, which in
the study by Lauffs et al. (2020) started around 300 ms post-stimulus onset, and for the

current study times of highest discrimination were 300 ms and 380 ms post-stimulus
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for unsigned and signed RiPE, respectively. Moreover, after source reconstruction, the
authors found the saliency-related ERP to be associated with visual cortices, but also
with the insula which was the main source for the second ERP component, related to
RiPE. This is consistent with the spatial projections of the components we found for
unsigned and signed RiPE, with the two showing flipped dipoles (in terms of sign),
but similar scalp topographies. This finding suggests that the two components may

originate in the same source but have a different direction of propagation of the signal.

The parametric effect we found in the current risk component is consistent with pre-
vious studies with monkeys showing increased firing of single neurones with increased
levels of uncertainty (Grabenhorst et al., 2019; O’Neill and Schultz, 2015), and the
monotonic effect of the components associated with unsigned RiPE is similar to previ-
ous animals studies (Kobayashi et al., 2010; O’Neill and Schultz, 2013) as well as fMRI
and EEG findings (Lauffs et al., 2020; Preuschoff et al., 2008). A previous animal elec-
trophysiology study, on which we based our paradigm of risk, showed risk and unsigned
RiPE coding in OFC single neurones of rhesus macaques (O’Neill and Schultz, 2013).
In the study, however, the signed RiPE was correlated with ‘current risk’ (trial risk)
that was subtracted from predicted risk (overall task risk). As predicted risk was con-
stant across the experiment, this meant that current risk and signed RiPE could not
be separated. This makes our study the first one to show a parametric effect of the

signed RiPE that is dissociated from both risk and unsigned RiPE.

We showed that the component associated with risk appeared before both signed and
unsigned RiPE components, which is consistent with the suggestion that risk processes
are separate from reward evaluation but may follow a similar pattern. The temporal
profile of the three signals is expected. As the RiPE is derived from the evaluation of
current risk, it can be assumed that risk is required to occur first in order to update the
prediction error values. Similar to rewards, the unsigned RiPE is likely equivalent to a
surprise signal, influencing the adjustment of a learning rate. While the signed RiPE

aids the adjustment of a value function signifying whether predictions are better or
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worse than expected (O’Neill and Schultz, 2010a). The unpredictability of an outcome
is measured by the variance. As such, using information about both the magnitude
of the variance relative to the expectations (to update learning rates) and the sign of
the error (to update future choices), both signed and unsigned RiPEs may be crucial
in an uncertain environment (Rushworth and Behrens, 2008). In our experiment, we
found the unsigned RiPE appeared before the signed RiPE which may be similar
to a two-component response in reward processing that has been shown before with
the magnitude or surprise being encoded first followed by the valence of the stimulus
(Schultz, 2016b). Future studies should determine if the unsigned RiPE is computed
before the signed RiPE, or if the two occur almost simultaneously, although driving
separate learning functions. Recent accounts on signed and unsigned reward prediction
errors suggest that they may have different functions for learning depending on the time
they occur during a trial (after the cue or after the feedback, Rouhani and Niv, 2021).
Hence, the involvement of RiPEs learning can be studied with designs that separate
them into post-cue and post-feedback errors. According to current evidence, they may
have different effects on learning under volatility and stochasticity (Behrens et al.,
2007). Or in other words, different types of RiPE may drive learning rates relative to

recent or distant past experiences, or relative to the rate of change of the environment.

One limitation of the current design is the passive observation of stimuli selection and
the absence of choice leading to rewarding outcomes. We implemented this procedure
aiming to evaluate risk processing in relation to computational models and to isolate
risk perception as much as possible from signals related to the preparation of a motor
response (Bortoletto et al., 2011; Hsu et al., 2009; Preuschoff et al., 2006). This led to
small effect sizes, expressed in the low discriminator performance and large attrition
of participants whose threshold did not reach 50% accuracy of the discriminator. We
requested participants to find and select the rewards they won on every trial, which re-
quired attention, and we instructed them that the points they won would be converted
into pounds, which aimed to increase motivation. However, weaker effects may be due

to a few factors including the lack of active participation leading to the outcomes, the
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low value of the payoffs, and the secondary association between the presented social
stimuli and the underlying rewards. Although previous studies have made efforts to dis-
sociate motivation and salience from reward and risk coding (Preuschoff et al., 2006),
motivation and attention are important aspects of goal-directed behaviours influencing
transient dopamine levels (Brown et al., 2020; Roesch and Olson, 2004; Salamone and
Correa, 2002). Hence, it is possible that decreased motivation and attention in our
previous tasks may have led to weaker signals of risk processes. Another explanation is
that risk signals are generally lower than those of rewards, as found previously with an-
imal electrophysiology (Schultz, 2010). Future studies should explore the risk processes
in a similar way that reward PEs were studied in the context of pure decision vari-
ables, goal-directed value, and action values (Rushworth and Behrens, 2008). Given our
single-trial analysis combined with the leave-one-out cross-validation and our second-
ary validation establishing the parametric effects of the components, we are confident
that the components we report code the expected risk and the signed and unsigned
RiPE signals. However, without active choice and goal-directed decision-making, com-
bined with weaker risk signals in general, one can expect small effects, especially when
measured on the scalp as in the case with EEG. We suggest that future studies, aiming
to implement our methods of passive risk perception, should control for different levels
of motivation by implementing higher levels of rewards in terms of individual-specific

utilities.

To conclude, our results show that there are three distinguishable components in the
EEG signal in terms of their spatial and temporal profile. Moreover, consistent with
non-social, probabilistic studies, we show that risk and RiPEs are coded at different
time points after the onset of social stimuli, with specific spatial projections similar
to previous non-social studies. Therefore, these results point toward a common system
that is responsible for components of both social and non-social decision-making under

uncertainty.



Chapter 3

Risk-Seeking Driven by Stimulus
Prediction Errors: Modelling and

EEG Results

In the previous chapter, we showed spatio-temporal EEG patterns of risk-coding with
face stimuli. We focused on recording errors associated with risk calculations. Now, we
turn our attention to another type of error that may occur during the course of a trial

as risky decisions unfold.

Recent research has suggested that trial-by-trial risk-taking might be influenced by cue-
locked prediction errors, which can introduce biases into decision-making, influencing
the likelihood of engaging in more or less risky choices. To delve into this further, I
will first present a theory based on the mechanisms underlying dopamine functions in
the basal ganglia, which predicts risk-taking behaviour. Subsequently, I will report the
results of an experiment that tested this theory, comparing it to alternative risk-seeking
models. Notably, the experiment encompassed both a non-social and a social condition,
yielding significant findings that warrant separate discussions. Within this chapter, I
will outline the non-social (baseline) behaviour, modelling, and EEG results and in the

following chapter 4, I will elaborate on the social domain.
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3.1 Background

Decision-making and learning models often rely on hypothesised rigid estimates of the
environment to explain predictions that organisms hold. However, rewards (or more
generally outcomes) are usually drawn from distributions which impose variability. In
recent years, theories of Distributional Reinforcement Learning have started to influ-
ence modern computational models of learning (Bellemare et al., 2017; Dabney et al.,
2020; Lowet et al., 2020; Zhao et al., 2020), and this is not surprising, given that un-
der uncertainty it is adaptive and energy efficient to form an estimate of a ‘cloud’
of rewards, rather than trying to take account of each individual case or only hope
for ‘the middle estimate’ Distributions can be informative estimates for an uncertain
environment because apart from an average, they provide information about the vari-
ance. The uncertainty of options can be defined by the variance of rewards (Platt and
Huettel, 2008), and under different conditions animals and humans decide to go for
more uncertain or safer options (Kacelnik and Bateson, 1996). Dopamine (DA) levels
have been linked to seeking exploration and preferences for uncertainty. In terms of
structures, risky decision-making has been linked to the prefrontal cortex (PFC), the
striatum, the cingulate cortex, the orbitofrontal cortex, the nucleus accumbens, and
the basolateral amygdala (Platt and Huettel, 2008). The amygdala has been associated
with increased risk preference with higher activation especially when executive function
is compromised (Brand et al., 2007). A dopaminergic circuit between the basolateral
amygdala and the nucleus accumbens was found to be related to a preference for larger
uncertain rewards, yet biases arising in the amygdala are modulated by top-down con-
trol from the prefrontal cortex (PFC) (Jenni et al., 2017). These findings point out the
complex interaction between cortico-striatal structures to code risk, and cortico-limbic

connections to drive risk-aversion or risk-seeking.
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Mikhael and Bogacz (2016) put forward a model that implicates cortico-basal ganglia
connections and tonic dopamine levels as the main causes of trial-by-trial risk-taking.
Action values are associations between actions and rewards, and have been proposed
to be coded by differences in the synaptic weights of a direct (Go) pathway and an
indirect (No-Go) pathway, populated by D1 and D2 dopamine receptors, respectively
(Gerfen and Young, 1988; Mink, 1996). Mikhael and Bogacz (2016) proposed that the
same pathways can code the mean of reward distributions, with increased neuronal
firing, as well as the variance. In their paper, they denoted the synaptic weights of
D1-populated (direct) and D2-populated (indirect) pathways on a certain trial as G(t)
and N(t), respectively. They further suggested that although the average action value
is coded by the difference in G(t) and N(t) (as proportional to the EV of the action),

the uncertainty is coded by the sum of G(t) and N(t).

Figure 3.1 presents a schematic of cortico-striatal Go and No-Go connections. Two
stimuli predicting a range of rewards that are either more desirable on average (green

bubble), or less desirable (red bubble) bias the Go and No-Go pathways, respectively.
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Stimulus PE

Background brain from S

Figure 3.1 Theoretical influence of situational stimulus PEs on cortico-striatal activity.
Go and No-Go pathways are shown in green and red, respectively. As explained in
Chapter 1, they are influenced by learned weights from previous experience (via blue
pathways from SN). In this example, the No-go pathway is influenced by a group of
stimuli that are undesirable (in the red bubble) while the Go-pathway is activated by
the desirable group (green bubble). The stimulus-PE is a result of the presentation of
the red or the green bubble, and influences the No-Go or Go pathways, respectively.

Let us consider a separate situation in which an organism is presented with two stimuli.
One stimulus is risky in that it predicts a distribution of rewards that has a higher
variance (or a standard deviation), compared to a second safe stimulus that predicts
a distribution with a lower SD. The basal ganglia risk-taking model proposes that the
risky stimulus will be chosen over the safe one if the choice is preceded by a positive
reward prediction error (Moeller et al., 2021). This preceding PE, termed the stimulus-
PE, is not the carried-over PE from a previous choice, but rather the difference between
the average value of all stimuli, and the stimuli presented at the current instance/trial
(Mikhael and Bogacz, 2016). For example, an animal does not expect to find food,

however, two sources of food are found, one risky, and one safe. Simply the presence
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of food has already increased expectations (as it is better than not finding food at
all), and the stimulus-PE is positive, which in turn would lead to a choice of the risky
option. In some sense, this can be considered as an ‘optimism’ bias in an uncertain

environment.

The mechanism behind risk-taking due to high PEs is explained in detail by Mikhael
and Bogacz (2016), and I will only summarise it briefly. An important prerequisite is
the finding that tonic dopamine has an influence on the direct and indirect pathways
in which an increase in dopamine leads to the excitation of D1 and inhibition of D2
pathways (and action initiation), while a decrease in dopamine leads to the opposite
pattern (and action inhibition). This has been supported by studies with genetics,
Parkinson’s disease patients, and voltammetric and electrophysiological studies (Dodd
et al., 2005; Frank et al., 2007; Gilbertson et al., 2020; Salamone et al., 2022; Salamone
et al., 2005).

Figure 3.2 represents two contexts, one system with high tonic dopamine levels (top
panel), and another with low tonic dopamine (bottom panel), while the blue and orange
pathways show two possible learned actions of lower risk/SD (bl