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Abstract 
Background 

Rheumatic and musculoskeletal diseases (RMDs) are autoimmune-mediated chronic 

diseases affecting the joints around the body, involving an inappropriate immune 

response being launched against the tissues of the joint. These devastating 

diseases include rheumatoid arthritis (RA) and psoriatic arthritis (PsA). If 

insufficiently managed – or indeed in severe cases – these diseases can 

substantially impact a patient’s quality of life, leading to joint damage, 

dysfunction, and disability. However, numerous treatments exist for these diseases 

that control the immune-mediated factors driving disease, described as disease 

modifying anti-rheumatic drugs (DMARDs). Despite the success of these drugs for 

patients in achieving remission, they are not effective in all patients, and those 

who do not respond well to first-line treatments will typically be given an 

alternative drug on a trial-and-error basis until they respond successfully. Given 

the rapid and irreversible damage these diseases can induce even in the early 

stages, the need for early and aggressive treatment is fundamental for reaching a 

good outcome for the patient. Biomarkers can be employed to identify the most 

suitable drug to administer on a patient-to-patient basis, using these to predict 

who will respond to which drug. Incorporating biomarkers into the clinical 

management of these diseases is expected to be fundamental for precision 

medicine. These may come from multiple molecular sources. For example, 

currently used biomarkers include autoantibodies while this project primarily 

focuses on discovering biomarkers from the metabolome. 

Methodology 

This project involved the secondary analyses of metabolomic and transcriptomic 

datasets generated from patients enrolled on multiple clinical studies. These 

include data from the Targeting Synovitis in Early Rheumatoid Arthritis (TaSER) 

(n=72), Treatment in the Rotterdam Early Arthritis Cohort (tREACH) (n=82), 

Characterising the Centralised Pain Phenotype in Chronic Rheumatic Disease 

(CENTAUR) (n=50) and Mayo Clinic - Hur et al. (2021) (n=64) – cohorts. The 
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metabolic findings' translatability across cohorts was evaluated by incorporating 

datasets from various regions, including the United Kingdom, the Netherlands, and 

the United States of America.  

These multi-omic datasets were analysed using an in-house workflow developed 

throughout this project’s duration, involving the use of the R environment to 

perform exploratory data analysis, supervised machine learning and an 

investigation of the biological relevance of the findings. Other methods were also 

employed, notably an exploration and evaluation of data integration methods.  

Supervised machine learning was included to generate molecular profiles of 

treatment responses from multiple datasets. Doing so showed the value of 

combining multiple weakly-associated analytes in a model that could predict 

patient responses. However, an important component, the validation of these 

models, could not be performed in this work, although suggestions were made 

throughout of possible next steps.  

Results and Discussion 

The analysis of the TaSER metabolomic data showed metabolites associated with 

methotrexate response after 3 months of treatment. Tryptophan and arginine-

related metabolites were included in the metabolic model predictive of the 3-

month response. While the model was not directly validated using subsequent 

datasets, including the tREACH and Mayo Clinic cohorts, additional features from 

these pathways were associated with treatment response. Included across cohorts 

were several tryptophan metabolites, including those derived from indole. Since 

these are largely produced via the gut microbiome it was suggested that the gut 

microbiome may influence the effectiveness of RMD treatments. Since RA and PsA 

were considered in this work as two archetypal RMDs, part of the project intended 

to investigate whether there were shared metabolic features found in association 

to treatment response in both diseases. These common metabolites were not 

clearly identified, although arginine-related metabolites were observed in models 

generated from the TaSER and CENTAUR cohorts in association with response to 

treatment in both conditions.  
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Owing to the limitations of the untargeted metabolomic approach, this work was 

expected to provide an initial step in understanding the involvement of arginine 

and tryptophan related pathways in influencing treatment response in RMDs. Not 

performed in this work, it was expected that targeted metabolomics would provide 

clearer insights into these metabolites, providing absolute quantification with the 

identification of these features of interest in the patient samples. It was expected 

that expanding the cohort sizes and incorporating other omics platforms would 

provide a greater understanding of the mechanisms of the resolution of RMDs and 

inform future therapeutic targets.  

An important output from this project was the analytical pipeline developed and 

employed throughout for the omics analysis to inform biomarker discovery. Later 

work will involve generating a package in the R environment called markerHuntR. 

The R scripts for the functions with example datasets can be found at 

https://github.com/cambest202/markerHuntR.git. It is anticipated that the 

package will soon be described in more detail in a publication. The package will be 

available for researchers familiar with R to perform similar analyses as those 

described in this work. 

  

https://github.com/cambest202/markerHuntR.git
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 tREACH Treatment in the Rotterdam Early Arthritis Cohort 
 TREM  Triggering receptor expressed on myeloid cells 
 Treg cells Regulatory T cells 
 tsDMARD Targeted synthetic DMARD 
 TTT  Treat to target 
 TYMS  Thymidylate synthase 
U        UBA1  Ubiquitin like modifier activating enzyme 1 

UPLC-MS/MS Ultra high-performance LC-MS/MS 
 US  Ultrasound 
 UTP  Uridine triphosphate 
V VAS  Visual analogue score 
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 VAX1  Ventral anterior homeobox 1 
 VEGF  Vascular endothelial growth factor 
 VLDA  Very low disease activity 
X XGB  Extreme gradient boosting 
  



 

 

18 

List of Tables 
TABLE 1.1. SUMMARY OF COMPOSITE SCORING SYSTEMS FOR RHEUMATOID ARTHRITIS*. ........................................................ 27 
TABLE 1.2. COMPARISON OF PSA AND RA. ADAPTED FROM VEALE AND FEARON (2014), MEROLA ET AL. (2018) AND BEN MRID ET 

AL. (2022). .................................................................................................................................................... 32 
TABLE 1.3. PSA DISEASE ACTIVITY CRITERIA FOR MINIMAL DISEASE ACTIVITY (MDA). ............................................................ 34 
TABLE 1.4. REVIEW OF CANDIDATE METABOLIC BIOMARKERS OF TREATMENT RESPONSE ACROSS STUDIES IN PATIENTS WITH RA. ..... 44 
TABLE 2.1. SUMMARY OF DATASETS ANALYSED THROUGHOUT PROJECT. ............................................................................... 47 
TABLE 2.2. COMMONLY USED SUPERVISED MACHINE LEARNING CLASSIFICATION ALGORITHMS .................................................. 66 
TABLE 3.1. EULAR CLINICAL RESPONSES AND DISEASE ACTIVITY CHANGES IN PATIENTS ............................................................ 78 
TABLE 3.2. DEMOGRAPHICS AND DISEASE ACTIVITY MEASURES OF PATIENTS IN TASER COHORT ................................................ 81 
TABLE 3.3. PERFORMANCE METRICS FOR THE ALGORITHM TESTING FOR THE GENERATION OF THE DISEASE-MEASURES MODEL. ........ 92 
TABLE 6.1. PATIENT DEMOGRAPHICS IN THE TREACH COHORT ........................................................................................ 164 
TABLE 6.2. PATIENT DEMOGRAPHICS, DISEASE ACTIVITY AND TREATMENTS RECEIVED IN THE MAYO CLINIC PLASMA METABOLOMICS 

STUDY BY HUR ET AL. (2021). .......................................................................................................................... 169 
TABLE 7.1. PATIENT DEMOGRAPHICS FROM CENTAUR STUDY ........................................................................................ 180 

 
List of Figures 
FIGURE 1.1. CHARACTERISTICS OF AN INFLAMED SYNOVIAL JOINT IN A PATIENT WITH RHEUMATOID ARTHRITIS ............................. 22 
FIGURE 1.2. PROPOSED MECHANISMS OF METHOTREXATE ON MODULATING IMMUNE CELLS .................................................... 38 
FIGURE 2.1. MA PLOTS AND THE EVALUATION OF THE NORMALISATION METHODS ................................................................. 55 
FIGURE 2.2. EXPLAINING THE VARIANCE OF THE FEATURES BY PATIENT FACTORS ..................................................................... 59 
FIGURE 2.3. OVERVIEW OF SUPERVISED MACHINE LEARNING STRUCTURES ............................................................................ 61 
FIGURE 2.4. ILLUSTRATING K-FOLD CROSS-VALIDATION ..................................................................................................... 63 
FIGURE 2.5. ILLUSTRATION OF RANDOM FOREST MODEL .................................................................................................... 67 
FIGURE 3.1.HISTOGRAMS OF DAS28-BASED RESPONSES TO TREATMENT AFTER 3 MONTHS ..................................................... 82 
FIGURE 3.2. PRINCIPAL COMPONENTS ANALYSIS RESULTS .................................................................................................. 83 
FIGURE 3.3. VIOLIN PLOTS SHOW THE INFLUENCE OF PATIENT FACTORS ON THE VARIANCE ACROSS THE WHOLE METABOLOME ........ 84 
FIGURE 3.4. EXPLAINING THE VARIANCE ACROSS SMOKING-ASSOCIATED METABOLITES ............................................................ 85 
FIGURE 3.5. VOLCANO PLOT SHOWING DIFFERENTIAL ANALYSIS OF BASELINE PEAKS FROM BOTH ION MODES ACROSS RESPONSE 

GROUPS .......................................................................................................................................................... 86 
FIGURE 3.6. PATHWAY ANALYSIS FROM MOST DIFFERENTIALLY ABUNDANT METABOLITES FROM TASER COHORT .......................... 87 
FIGURE 3.7. CORRELATIONS OF BASELINE METABOLOMIC SIGNALS AND 3-MONTH DAS28 ...................................................... 88 
FIGURE 3.8. BAR PLOT SHOWING THE RESULTS FROM THE FEATURE SELECTION FOR THE METABOLITES MODEL ............................. 90 
FIGURE 3.9. ROC CURVES SHOWN FOR THE ALGORITHM OPTIMISATION PROCESS ................................................................... 91 
FIGURE 3.10. MODEL’S PERFORMANCE FROM TASER METABOLOME .................................................................................. 93 
FIGURE 3.11. CORRELATION HEATMAP OF METABOLITES FROM THE MODEL .......................................................................... 94 
FIGURE 3.12.MODEL AGNOSTIC INTERPRETATION METHODS FOR THE FEATURES INCLUDED IN THE TASER METABOLITE MODEL ....... 95 
FIGURE 3.13. INFLUENCE OF PATIENT FACTORS ON THE VARIANCE OF THE MODEL'S METABOLITES IN THE TASER COHORT .............. 96 
FIGURE 3.14. BOXPLOT SHOWING KYNURENINE ABUNDANCE ACROSS THE SMOKING STATUS GROUPS ......................................... 97 
FIGURE 3.15. DIFFERENTIAL ABUNDANCE SHOWING ACTUAL CHANGES IN METABOLITES FROM THE TASER MODEL ....................... 98 
FIGURE 3.16. GENERATION AND COMPARISON OF METABOLITES, DISEASE MEASURES AND COMPOSITE MODEL .......................... 100 
FIGURE 3.17. PERFORMANCE METRICS OF TASER MODELS IN TEST SUBSET ......................................................................... 100 
FIGURE 3.18. TRYPTOPHAN METABOLISM TO INDOLEACRYLIC ACID. ................................................................................... 109 
FIGURE 4.1. MULTIVARIATE ANALYSIS OF THE TRANSCRIPTOMIC DATA FROM THE TASER COHORT ........................................... 115 
FIGURE 4.2. VOLCANO PLOT SHOWING DIFFERENTIAL ANALYSIS OF TRANSCRIPTOMIC DATA .................................................... 115 
FIGURE 4.3. RESULTS OF THE PATHWAY ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES FROM THE TASER TRANSCRIPTOMIC DATASET

 .................................................................................................................................................................. 116 
FIGURE 4.4. BOXPLOTS SHOWING DIFFERENTIAL EXPRESSION OF GENES ACROSS 3-MONTH DAS28-BASED RESPONSE GROUPS ...... 117 
FIGURE 4.5. CORRELATION ANALYSIS OF BASELINE TRANSCRIPTS AGAINST THE 3-MONTH DAS28 SCORES ................................. 118 
FIGURE 4.6. HEATMAP SHOWING CORRELATION COEFFICIENTS OF ASSOCIATED METABOLITES WITH THE TOP 100 GENES ............. 120 
FIGURE 4.7. CORRELATION PLOTS OF KYNURENINE ABUNDANCE AGAINST GENES OF INTEREST ................................................. 121 
FIGURE 4.8. TRANSCRIPTOMIC PROFILE OF 3-MONTH DAS28-BASED BINARY RESPONSE ....................................................... 123 

file:////Users/cameronbest/MRC_DTP_in_Precision_Medicine/Project/Writing/Submission/20230525_CBest_thesis.docx#_Toc135911812


 

 

19 

FIGURE 4.9. PATHWAY ANALYSIS INFORMING THE DEVELOPMENT OF THE TRANSCRIPTOMIC PREDICTIVE MODEL OF 3-MONTH DAS28-
BASED RESPONSE ............................................................................................................................................ 124 

FIGURE 4.10. GLOBAL INTERPRETATION OF THE FEATURES IN THE TRANSCRIPTOMIC MODEL ................................................... 125 
FIGURE 4.11. CORRELATION OF FEATURES FROM THE MODEL WITH THE 3-MONTH DAS28 CONTINUOUS SCORE ........................ 126 
FIGURE 4.12. DIFFERENTIAL EXPRESSION OF FEATURES FROM THE MODEL ACROSS THE 3-MONTH DAS28 RESPONSE GROUPS ...... 127 
FIGURE 4.13. CORRELATION HEATMAP OF GENES FROM THE REFINED MODEL AND CORRELATING PUTATIVE METABOLITES. ........... 128 
FIGURE 4.14. CORRELATION PLOTS OF INDO EXPRESSION WITH RELATED METABOLITES AND DISEASE ACTIVITY .......................... 130 
FIGURE 4.15. EXPLORING ARG1 EXPRESSION AND RELATIONSHIP TO RELATED METABOLITES .................................................. 131 
FIGURE 5.1. OPTIMISING NUMBER OF COMPONENTS FOR THE DIABLO MODEL ................................................................... 147 
FIGURE 5.2. DIFFERENCES IN THE TRANSCRIPTOMIC AND METABOLOMIC DATASETS .............................................................. 148 
FIGURE 5.3. CORRELATIONAL PLOT SHOWING THE RESULTS FROM THE PAIRWISE PLS MODELS ................................................ 149 
FIGURE 5.4. DIAGNOSTIC PLOTS FROM MIXOMICS MODEL ............................................................................................... 151 
FIGURE 5.5. PROJECTION OF SAMPLES IN SPACE DEFINED BY THE COMPONENTS IN EACH BLOCK ............................................... 152 
FIGURE 5.6. ARROW PLOT SHOWING THE PROJECTION OF THE SAMPLES IN SPACE DEFINED BY EACH BLOCK'S COMPONENTS .......... 153 
FIGURE 5.7. CIRCOS PLOT OF THE FEATURES ACROSS THE BLOCKS ...................................................................................... 154 
FIGURE 5.8. HEATMAP OF THE FEATURES FROM EACH BLOCK INCLUDED IN THE MODEL .......................................................... 155 
FIGURE 6.1. CORRELATIONAL ANALYSIS OF THE BASELINE METABOLITES WITH THE DAS28-ESR AT 3 MONTHS .......................... 165 
FIGURE 6.2. BOXPLOTS SHOWING THE DIFFERENTIAL ABUNDANCE OF THE METABOLITES AT BASELINE ACROSS THE 3-MONTH DAS28-

ESR-BASED RESPONSE GROUPS. ........................................................................................................................ 166 
FIGURE 6.3. SUPERVISED MACHINE LEARNING WORKFLOW AND RESULTS FOR GENERATION OF MODEL FROM TREACH METABOLOMIC 

DATA ........................................................................................................................................................... 168 
FIGURE 6.4. CORRELATIONS BETWEEN MAYO CLINIC STUDY’S BASELINE METABOLITES AND THE DAS28-CRP ........................... 170 
FIGURE 7.1. PCA SHOWS THE SAMPLES AT BASELINE, AND SAMPLES WERE LABELLED USING DISEASE MEASURES ......................... 181 
FIGURE 7.2. CORRELATING METABOLITES AT BASELINE WITH 3-MONTH DAPSA FROM CENTAUR COHORT ............................. 182 
FIGURE 7.3. DIFFERENTIAL ANALYSIS OF THE METABOLITES ACROSS THE 3-MONTH DAPSA GROUPS ........................................ 183 
FIGURE 7.4. SUPERVISED MACHINE LEARNING TO GENERATE A METABOLOMIC PROFILE OF BINARY 3-MONTH DAPSA RESPONSE ... 184 
FIGURE 7.5. PRECISION RECALL CURVE FOR THE METABOLIC MODEL GENERATED TO PREDICT THE 3-MONTH DAPSA-BASED RESPONSE

 .................................................................................................................................................................. 185 
FIGURE 7.6. MODEL-AGNOSTIC FEATURE INTERPRETATION PLOTS ..................................................................................... 186 
FIGURE 7.7. CORRELATIONS OF THE MODEL'S METABOLITES AT BASELINE WITH THE 3-MONTH DAPSA .................................... 187 
FIGURE 7.8. BOXPLOTS SHOWING DIFFERENTIAL ANALYSIS OF THE ABUNDANCES OF THE METABOLITES FROM THE CENTAUR MODEL

 .................................................................................................................................................................. 188 
FIGURE 7.9. INVESTIGATING THE SEPARATION OF SAMPLES USING PCA WITH LABELS BASED ON THE 3-MONTH DAPSA-BASED 

RESPONSE ..................................................................................................................................................... 189 
FIGURE 7.10. EXPLAINING THE VARIANCE OF THE CENTAUR MODEL'S FEATURES USING PATIENT FACTORS ............................... 190 
FIGURE 7.11. METABOLITE SET ENRICHMENT ANALYSIS RESULTS FROM METABOANALYST ...................................................... 191 
FIGURE 7.12. METABOLIC RATIO OF GUANIDINOACETATE: HOMOARGININE AND ITS ASSOCIATION WITH THE 3 MONTH DAPSA 

RESPONSE ..................................................................................................................................................... 192 
FIGURE 7.13. METABOLIC RATIOS OF SELECTED METABOLITES FROM THE MODEL AND THEIR CORRELATIONS AND ASSOCIATIONS WITH 

THE 3-MONTH DAPSA-DEFINED RESPONSE ......................................................................................................... 194 
FIGURE 7.14. CORRELATION PLOTS SHOWING CYTOKINE LEVELS AT BASELINE AGAINST THE BASELINE DAPSA SCORE IN PATIENTS WITH 

PSA ............................................................................................................................................................. 195 
FIGURE 7.15. CORRELATION HEATMAP FOR CYTOKINES AND METABOLITES ......................................................................... 197 
FIGURE 7.16. CORRELATIONS OF CYTOKINES OF INTEREST WITH ASSOCIATED METABOLITES .................................................... 198 
FIGURE 7.17. INVOLVEMENT OF IL-17C IN PSA AND PSORIASIS ........................................................................................ 199 
FIGURE 7.18. ENRICHED PATHWAYS FROM THE LIST OF METABOLITES THAT CORRELATED WITH THE PSA-ASSOCIATED CYTOKINES .. 201 
FIGURE 7.19. PRODUCTION OF GUANIDINOACETATE AND HOMOARGININE FROM ARGININE ................................................... 205 
FIGURE 7.20. NETWORK OF ARGININE METABOLIC PATHWAYS .......................................................................................... 207 
FIGURE 7.21. CENTRAL CARBON METABOLISM SUMMARY WITH METABOLITES FROM PSA TREATMENT RESPONSE MODEL HIGHLIGHTED

 .................................................................................................................................................................. 210 
FIGURE 8.1. METABOLIC NETWORK OF CONNECTED METABOLITES THROUGHOUT THE PROJECT ............................................... 223 

  



 

 

20 

1. Introduction  
1.1. Project Overview 

Rheumatic and musculoskeletal diseases (RMDs) encompass clinically related 

conditions, including rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial 

spondyloarthrits (ax-SpA), systemic lupus erythematosus (SLE) and gout (Saas, 

Toussirot and Bogunia-Kubik, 2022). RA and PsA are archetypal RMDs and are 

characterised by chronic inflammation targeting the tissue of the musculoskeletal 

system, including bone and cartilage, ultimately leading to joint damage and 

disability if the disease is not managed (Smolen et al., 2018; Coates et al., 2022). 

Patients suffering from RMDs may also experience extra-articular effects, including 

inflammatory bowel disease (IBD), pericarditis, vasculitis, neuropathies, pulmonary 

fibrosis and peripheral nodules developing in various locations, with patients at 

higher risk of early death, typically due to cardiovascular (CV) disease (Turesson et 

al., 2003). Psychologic and systemic bone diseases are also more common. 

While many treatments are available for patients with RMDs, these are developed 

based on group trial designs, thus, identifying the optimal treatment for an 

individual patient is challenging. The current convention involves a trial-and-error-

based approach which may ultimately be detrimental to the patient (Heutz and 

Jong, 2021). Patients may experience a poor long-term outcome due to the delay 

in receiving early disease management, leading to progressive joint damage, or 

accelerated co-morbidities. Determining the optimal treatment for the patient 

remains a fundamental challenge in rheumatology, where the ability to design a 

treatment strategy based on an individual’s needs would provide the best 

outcome. This thesis describes an approach to identify panels of molecules 

associated with successful treatment outcomes in patients with RA and PsA. The 

unearthing of these molecules, mainly derived from the metabolome, was 

expected to inform the discovery of biomarkers capable of predicting patient 

responses to treatment, thus, guiding optimal disease management and help 

develop the understanding of the molecular mechanisms involved in the resolution 

of inflammation.  
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It was anticipated that incorporating multiple omic datatypes into the analysis will 

expand the understanding of mechanisms of disease resolution owing to the 

richness of the molecular data and the mechanistic insights obtained through their 

interrogation. There has been considerable development in the technology and 

methods of data collection and processing which has provided the opportunity to 

more readily compile a multi-omic profile for the patient (Hasin, Seldin and Lusis, 

2017; Menyhárt and Győrffy, 2021; Fan et al., 2022; Xiao et al., 2022). Since the 

different omics platforms provide alternative views of the molecular processes 

that contribute to the phenotype, such as the transcriptome and the metabolome, 

their integration may enable a comprehensive perspective of these processes 

where a single approach may be limited (Hasin, Seldin and Lusis, 2017). 

By analysing metabolomic, transcriptomic and cytokine-derived data from patient 

samples, the influence of upstream and downstream processes on the mechanisms 

leading to changes in inflammation can be explored. For example, changes in the 

expression of genes encoding enzymes that modulate metabolic pathways may be 

uncovered, demonstrating pathway-wide perturbations that may offer novel 

therapeutic targets. Moreover, associations between cytokines and metabolites 

may indicate immunomodulatory effects of metabolites, thus revealing how 

alterations to metabolite levels may lead to perturbations in downstream 

inflammatory processes.  

1.2. Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, 

affecting 0.5-1% of the UK’s population (McInnes and Schett, 2017). It is a 

complicated, inflammatory disease causing progressive, pervasive damage to 

synovial joints, leading to disability in severe/poorly managed disease (Smolen et 

al., 2018). Characteristic events in established RA include localised inflammation, 

cartilage and bone damage, synovium hyperplasia, soft tissue swelling and pain, as 

depicted in Figure 1.1. In addition, life-limiting extra-articular symptoms can 

occur, including fibrotic diseases, atherosclerosis, lung disease, fatigue, cognitive 

impairment and depression, as well as an increased risk of developing certain kinds 

of cancer (Arts et al., 2017; Guo et al., 2018). 
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An inflammatory response against cells and tissues of synovial joints is mediated by 

the release of pro-inflammatory signalling molecules from immune cells, which 

migrate to the joint (Arango Duque and Descoteaux, 2014; Guo et al., 2018). The 

presence of autoantibodies in RA has been well described in the literature, 

including rheumatoid factor (RhF) and anti-citrullinated protein (ACP) antibodies 

(ACPAs), reflecting the autoimmune component of the disease (Derksen et al., 

2017; Guo et al., 2018; Waaler, 1940). Autoreactive specificities also develop 

against carbamylated and acetylated self-proteins suggesting a fundamental 

breakdown in tolerance to post-translationally modified self-proteins. Collectively 

these are termed as AMPAs (anti-modified peptide antibodies) (Volkov et al., 

2021). 

 

Figure 1.1. Characteristics of an inflamed synovial joint in a patient with rheumatoid 
arthritis. Adapted from (Akram et al., 2021). 

 

Though the clinical presentation of RA has been well-characterised, there is no 

current cure for the disease (Guo et al., 2018). This is partly because RA is highly 

heterogeneous in its clinical manifestation, molecular composition, and response 

to treatment (Cherlin et al., 2018). Notably, several molecules associated with the 
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disease, including AMPAs, can be detected years before symptoms emerge (de 

Brito Rocha et al., 2019). ACPAs are produced at mucosal sites distant from the 

synovial joints, including the lungs, gut and mouth (Guo et al., 2018). This finding 

may be significant as the exposure of such tissues to environmental factors, 

including smoke and silica dust, has been suggested to drive post-translational 

modifications, such as citrullination, ultimately leading to chronic joint 

inflammation as a critical step towards breaking immunotolerance owing to these 

protein modifications (Stolt et al., 2010). 

ACPA and RhF are associated with disease progression and severity and thus have 

been marked as prognostic biomarkers (albeit with variable clinical success) 

(Smolen et al., 2018). Indeed, ACPA-positive and RhF-positive patients were 

generally found to have higher disease activity and elevated levels of inflammatory 

cytokines (Sokolove et al., 2014). However, the association of ACPA with disease 

activity was disputed. It was reported that RhF was more strongly associated with 

disease activity as the ACPA titre did not appear to be associated with disease 

activity at baseline (Aletaha, Alasti and Smolen, 2015). Patients with RA may be 

seropositive or seronegative for these proteins, indicating the need for more 

robust biomarkers to characterise the disease and its subgroups.  

1.2.1. Joint Pathology 

While RA is now understood to be a systemic autoimmune disease reflected by 

elevated levels of circulating autoantibodies, immune cells and pro-inflammatory 

cytokines, the main focus of the disease is the synovial joints (McInnes and Schett, 

2007; Smolen et al., 2018). The synovium (synovial membrane) consists of soft 

tissue within the articular joint, enclosing the synovial cavity and extending to the 

tendon sheath. It contains synovial fluid — a yolk-like liquid rich in hyaluronic acid 

— which functions to lubricate the articular cartilage to reduce friction which 

would otherwise be damaging and also provides a blood supply to the poorly 

vascularised tissue within the joint, including the cartilage itself (Narvaez et al., 

2010).  

An important clinical feature of RA is synovitis (synovium inflammation) 

accompanied by pain and swelling (Alivernini, Firestein and McInnes, 2022). The 
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development of synovitis is an important event which drives RA pathology through 

the infiltration of lymphoid and myeloid cells into the synovium and the induction 

of osteoclasts from the bone, which play a critical role in bone resorption and 

erosion (Boutet et al., 2021). The synovial inflammation is reflected through the 

infiltration of leukocytes into the synovium. This is first seen with an increasing 

density of cells in the subintimal lining of the synovium, including memory CD4+ T 

cells, a small number of CD8+ T cells and antigen-presenting innate cells, such as 

macrophages, mast cells and dendritic cells. Accompanying the immune cell 

infiltration is angiogenesis, allowing the delivery of more cells into a usually 

immune cell-sparse tissue (McInnes and Schett, 2011; Narvaez et al., 2010; Orr et 

al., 2017). In addition, the intimal lining of the synovium begins to swell with the 

increasing number of synoviocytes (including FLS and macrophages), with an 

increasingly diverse population of cell subtypes (Culemann et al., 2019; Boutet et 

al., 2021; Kurowska-Stolarska and Alivernini, 2022). 

Single cell omics technologies have revealed new insights of distinct cell types in 

the synovium and the mechanisms contributing to the pathogenesis of RA (Boutet 

et al., 2021; Schonfeldova, Zec and Udalova, 2022). Moreover, these approaches 

have underlined the highly heterogeneous cell populations and subtypes found in 

the synovium, notably including macrophages, T cells and synovial fibroblasts (SFs) 

(Schonfeldova, Zec and Udalova, 2022). For example, using single-cell RNA 

sequencing (scRNAseq) on synovial tissue from patients with RA showed the 

involvement of subtypes of SFs in driving disease, with the increased expression of 

matrix metalloproteases (MMPs) being observed in a subtype of RA that correlated 

with disease activity (Micheroli et al., 2022). Other synovial tissue resident 

macrophage populations were characterised and play a role in healthy joint 

homeostasis, being linked to the resolution of inflammation in patients with RA 

(Alivernini et al., 2020). This subpopulation included cells expressing MerTK, 

CD206 and TREM2 (TREM2pos MerTKpos CD206pos). MerTKneg cells were found to be 

increased in the synovium of patients with active RA with MerTKneg CD206neg cells 

representing tissue-infiltrating macrophages which were involved in driving 

inflammation (Kurowska-Stolarska and Alivernini, 2022). The MerTKpos CD206pos 

cells also had differences in their lipid metabolism profiles, with increased 

expression of genes encoding enzymes that produce anti-inflammatory mediators.   
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These findings from scRNAseq underline the advancements made in characterising 

the cell populations in the synovium and understanding the mechanisms that 

modulate inflammation. Since macrophages undergo metabolic reprogramming 

based on their activation state, it is likely that cell population differences in the 

synovium will be linked to metabolomic differences across patients.  

The infiltration of immune cells into the synovium is accompanied by an increased 

release of pro-inflammatory cytokines, including IL-1, IL-6 and TNF, as well as 

proteases, for example, MMPs, which are effectors in damaging the cartilage and 

bone tissue (Orr et al., 2017). The release of MMPs, along with mediators of 

inflammation (including various eicosanoids), is characteristic of fibroblast-like 

synoviocytes (FLSs), a driver of joint damage in RA (Bartok and Firestein, 2010).  

The formation of the pannus represents an important event in established RA. The 

pannus is considered an extension of the synovial tissue which attaches to the 

surface of the articular cartilage and bone, spearheading the degradation of the 

tissue through the action of bone-resorbing osteoclasts, stimulated by pro-

inflammatory cytokines by macrophages and FLS (Pettit et al., 2006). The ability of 

the pannus to drive pathology in RA is compared to a localised tumour, invading 

and destroying the healthy tissue it comes in contact with (Bartok and Firestein, 

2010).  

In severe disease, degradation of cartilage and bone can lead to impaired joint 

mobility. However, current approaches to disease management allow many 

patients to avoid disease-related disability (Smolen et al., 2018). Nevertheless, the 

impact on quality of life remains an issue for patients, where symptoms can 

emerge rapidly, involving pain, swelling and tenderness of the joints even in early 

RA (Grassi et al., 1998). In RA, joints that are generally impacted include those of 

the hands (metacarpophalangeal/proximal interphalangeal joints)  and feet, along 

with the wrists, ankles, knees, elbows, shoulders and hips (Smolen et al., 2018).  

1.2.2. Disease Activity Measurements 

The diagnosis of RA is complicated by the similarity of the clinical symptoms of the 

disease with other musculoskeletal disorders, including Lyme arthritis, 

osteoarthritis, metabolic diseases, viral arthritis, psoriatic arthritis and peripheral 
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spondyloarthrits (Smolen et al., 2018). Moreover, due to the progressive nature of 

RA, clinical outcomes for patients are greatly improved when they receive an early 

diagnosis and are given treatment rapidly, highlighting the vital need for early 

diagnosis to ensure optimal patient outcome (Emery et al., 2002; Aletaha and 

Smolen, 2018). Yet, because RA is highly heterogenous in its clinical presentation 

and patient outcomes, no current diagnostic tool embodies the entirety of 

manifestations of the disease (Aggarwal et al., 2015). This has meant that patient 

diagnosis requires a case-by-case approach involving a rheumatologist guiding the 

diagnosis and subsequent management of the disease based on their examination 

of the individual patient (Aletaha et al., 2016; Smolen et al., 2018).  

While classification criteria exist for RA, these are generally designed to define 

homogenous populations of patients in clinical research, allowing for groups of 

patients with similar clinical characteristics to be compared. As such, while 

classification criteria can help guide the “diagnosis” of patients, they may result in 

patients being incorrectly diagnosed due to variations between groups of patients. 

This was demonstrated when the 1990 American College of Rheumatology (ACR) 

classification criteria for vasculitis was compared to the reference diagnoses by a 

physician of vasculitis, where the requirements only matched the reference 

diagnoses in 75% of cases (Rao et al., 1998).  

Despite the limitations of using classification criteria, providing measurable 

markers in patients with a given set of musculoskeletal symptoms, these may still 

be informative for characterising disease. The 2010 ACR/European Alliance of 

Associations for Rheumatology  (EULAR) classification criteria included the 

following: 

• At least one joint is involved based on a physical exam or imaging revealing 
synovitis. 

• RA-associated autoantibodies (RhF and ACPAs) detected from serology. 

• Elevated acute phase reactant (APR) response, including C-reactive protein 
(CRP) or erythrocyte sedimentation rate (ESR). 

• Symptoms last longer than six weeks. 

• There is no alternative diagnosis to explain synovitis (Aletaha et al., 2010). 
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Following diagnosis, measuring patient progression is typically done using 

composite disease activity (DA) measures. Composite measures arguably provide 

the greatest insight into pathological changes in a single score by combining 

different elements contributing to the pathology of disease (Aletaha and Smolen, 

2018). Recently, five composite measures of DA were recommended for clinical use 

by the American College of Rheumatology, which are summarised in Table 1.1 

along with the DAS44 measure, which was included in the Targeting Synovitis in 

Early Rheumatoid Arthritis (TaSER) trial (Dale et al., 2016; England et al., 2019).  

Table 1.1. Summary of composite scoring systems for rheumatoid arthritis*. 

 
* DAS28- disease activity score across 28 joints; ESR- erythrocyte sedimentation rate; CRP- C-reactive 
protein; TJC- tender joint count; SJC- swollen joint count; VAS- visual analogue scale; CDAI- Clinical 
Disease Activity Index; SDAI- Simplified Disease Activity Index; RAPID3- Routine Assessment of Patient 
Index Data with 3 measures; HAQ- Health Assessment Questionnaire; PAS- Patient Activity Scale. 

The DAS28 is a composite score considering the tender joint count (TJC), swollen 

joint count (SJC), the patient global visual analogue score and the ESR/CRP level, 

Administration 
Approach

Lab 
Requirement

Joint 
CountFormulaDisease 

Measure

Patient, 
physician and 

laboratory tools

YesYes0.56	&	 28)*+ + 0.28	&	 28-*+
+ 0.7	&	/0 1-2	34	+25
+ 0.014	&	89:;<0:	=/3>9/	?@-	

DAS28-
ESR/CRP

Patient, 
physician and 

laboratory tools

YesYes0.54	&	 2@A + 0.65	&	44-*+
+ 0.33	C	/0 1-2	34	+25
+ 0.00722	&	89:;<0:	=/3>9/	?@-

DAS44

Patient and 
physican tools

NoYes28)*+ + 28-*+ + 89:;<0:	=/3>9/	?@-
+ 8ℎEF;G;90	?@-
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providing a score between 0 and 9.4. Remission, low disease activity (LDA) and 

high disease activity (HDA) can be defined using this score. The DAS44, which 

predates the DAS28 score, involves measures taken across 44 joints, providing 

wider coverage of the disease status. However, the incorporation of joints in the 

feet and ankles may increase the variance of the scoring, owing to the reduced 

sensitivity typically experienced at these joints compared to those, for example, in 

the hands. Additionally, the DAS28 is used extensively in research and the clinic, 

mainly due to its ease of measurement with fewer joints considered. It is thus 

considered the benchmark of scoring systems in RA, used widely in clinical 

management of disease (Wells et al., 2009). However, the reliance of the DAS28 

score on acute phase reactants (APRs) – including CRP and ESR – may lead to 

inaccuracies in reporting changes in disease activity since they do not necessarily 

reflect articular disease (Kay et al., 2014; Orr et al., 2018; Felson et al., 2021). 

Since treatments for RMDs target different mechanisms, the use of DAS28 involving 

APRs may show overly optimistic results for drugs targeting inflammatory 

mechanisms, such as drugs that block IL-6 (for example, toclizumab) or TNF (for 

example, etanercept). As a result, alternative composite measures, demonstrated 

by the CDAI score, may be favourable since they does not rely on APRs and 

laboratory measures. Instead, the CDAI score captures joint counts and extra-

articular symptoms through global and physician VAS scores, thus providing a 

comprehensive measure of disease activity that is not influenced by APRs (Janke et 

al., 2022). 

1.2.3. Detecting Joint Inflammation and Damage 

In addition to the composite measures of disease, imaging techniques can provide 

insights into the structural and functional changes that take place during the 

course of RA disease progression in the joint, including magnetic resonance 

imaging (MRI), conventional radiography (CR) and ultrasound (US) (Baker et al., 

2017; Jimenez-Boj et al., 2007; Sudoł-Szopińska et al., 2017). Indeed, CR is 

recommended as the initial approach for imaging joint damage, where it can 

reveal structural changes associated with joint damage such as joint space 

narrowing (Sudoł-Szopińska et al., 2017). However, CR is limited in that it can only 

detect erosions after ~20% of the bone has been removed, and so more sensitive 
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techniques – including MRI and US – are required to detect lower degrees of 

erosion (Ejbjerg et al., 2006; Kgoebane et al., 2018).  

1.3. Psoriatic Arthritis 

Psoriatic arthritis (PsA) is a chronic inflammatory disease that similarly involves 

the immune system causing damage to joint tissue, affecting approximately 1% of 

the population (Veale and Fearon, 2018). As a heterogeneous disease, patients 

with PsA can experience lasting mild symptoms, while others may initially have 

mild inflammation of the joints but progress towards joint damage and 

dysfunction. Patients might also experience the emergence of extra-articular 

effects, with sites including the eye (uveitis), nail and skin (psoriasis), and the 

bowel (IBD) (Fraga et al., 2012; Coates and Helliwell, 2017; Bengtsson et al., 

2021). It is a complex disease involving articular and non-articular symptoms, with 

severe or poorly managed disease leading to an increased risk of early death, 

typically through CV disease (Coates and Helliwell, 2017). The complexity of PsA 

comes from the varied presentation of symptoms and difficulty in differentiating 

the disease from other RMDs including RA (Gossec et al., 2016).  

Up to one-third of patients with psoriasis develop PsA, indicating a strong link 

between these conditions (Scher et al., 2019). The following symptoms are typical 

in patients suffering from PsA with the severity ranging across patients: 

• Joint tenderness, stiffness, dysfunction, and deformity 

• Enthesitis (inflammation of tendon/ligament attachment site to bone) 

• Synovitis (inflammation of synovial tissue) 

• Osteitis (inflammation of the bone) 

• Dactylitis (inflammation of finger/toe) 

• Psoriasis (inflammation of the skin) 

• Nail changes  

• Uveitis (inflammation of the eye) 

• Bone oedema 

• Fatigue 
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Like other arthritis diseases, PsA substantially impacts a patient’s quality of life, 

affecting their motion, energy levels, and mental health. Patients may experience 

comorbidities, including obesity, CV disease, depression, and anxiety (S. Gupta et 

al., 2021). In a recent systematic review, it was found that 33% (95% CI: 17-53%) of 

patients with PsA suffered from anxiety, while 20% (95% CI: 8-35%) suffered from 

depression (Zhao et al., 2020).  

1.3.1. Diagnosing PsA 

The diagnosis of PsA relies on clinical examination by a rheumatologist and the 

identification of signs of inflammatory arthritis or enthesitis, including 

joint/enthesial tenderness and pain, supported by markers of inflammation such as 

ESR and CRP — although these may remain at normal levels in a significant 

proportion of patients (FitzGerald et al., 2021; Houttekiet et al., 2022). Like RA, 

no diagnostic test is available for PsA. 

Determining the type of arthritis can be done using several criteria, including 

observing the joints affected since there are differences in the pattern of joints 

affected in RA and PsA (Veale and Fearon, 2015). While patients with RA often 

have symmetric joint involvement, there is usually an asymmetry in the joints 

involved in PsA (Merola, Espinoza and Fleischmann, 2018). Diagnosing PsA relies on 

the patient experiencing joint inflammation and typically involves detecting 

psoriasis and eliminating other conditions that may lead to related symptoms, 

including RA. Classification criteria are generally only used in research to select 

patients with diagnosed PsA for clinical trials, meaning these criteria are not 

necessarily helpful in the initial diagnosis.  

The Classification criteria for Psoriatic Arthritis (CASPAR) advanced a classification 

system for PsA developed on the system laid out in the 1970s (Moll and Wright, 

1973; Taylor et al., 2006). While still used in the field, the Moll and Wright criteria 

were largely considered inadequate in their ability to distinguish PsA from RA, 

where the classification was based on the presence of inflammatory arthritis, a 

negative test for RhF, and pre-existing psoriasis in patients (Moll and Wright, 1973; 

Helliwell and Taylor, 2005).  
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In classifying PsA patients for trials, the CASPAR criteria have limitations in 

differentiating arthropathies for several reasons. Firstly, patients with RA are not 

all seropositive for RhF. In contrast, 5-13% of patients with PsA may be seropositive 

for RhF and APCA, albeit with a typically lower titre of autoantibody than RA 

(Punzi et al., 2007; Merola, Espinoza and Fleischmann, 2018). Additionally, since 

the classification depends on the presence of psoriasis, patients may be 

misclassified where psoriasis may be missed in hidden areas, such as in the hairline 

or the navel (Helliwell and Taylor, 2005). Another important limitation of the 

CASPAR classification is that the cohort from which it was generated included a 

small proportion of patients (<10%) with early PsA, defined as symptoms having 

emerged within two years. This means that the classification is most helpful with 

established PsA, and so the challenge persists when differentiating patients with 

early disease (Van den Bosch and Coates, 2018).  

1.3.2. Differentiating Psoriatic and Rheumatoid Arthropathies 

While sharing features as inflammatory arthropathies, PsA and RA differ in terms of 

their clinical, molecular and therapeutic aspects (Veale and Fearon, 2015). These 

differences are summarised in Table 1.2, with examples of treatments available 

for both conditions in the lowest panel. 

PsA and RA share inflammatory joint features, although these are now understood 

to vary, for example, in joint and tissue involvement. Moreover, further 

differences have been uncovered on a genetic and molecular level. For example, 

the main genetic risk factor for RA is the HLA-DRB1 alleles, while HLA-B/C-related 

alleles are associated with PsA features (particularly those with spinal 

involvement) (McInnes and Schett, 2011; Winchester et al., 2012; Mc Ardle et al., 

2015). Numerous additional polymorphisms have been found associated with PsA 

and RA, largely relating to the immune system and some of these are noted in 

Table 1.2 (Shi et al., 2020; Akhtar et al., 2021).  

The joint inflammation characterising these diseases was previously considered 

homogeneous, involving the same contribution of immune cells, chemokines and 

cytokines (Veale and Fearon, 2015). However, the differences in circulating 
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inflammatory markers between the diseases, including CRP, indicate that the 

inflammatory profile of each is not necessarily the same (Cunnane et al., 2000).  

Table 1.2. Comparison of PsA and RA. Adapted from Veale and Fearon (2014), Merola et al. 
(2018) and Ben Mrid et al. (2022). 

  
 

The different immune cell environments involved in each disease can be 

highlighted by the success of therapies that target different immune features, as 

described in Table 1.2. For example, the increased type-17 cells (encompassing 

those that produce IL-17A and IL-17F, TNF and CCL20, including TH17, natural killer 

cells and neutrophils) in the circulation of patients with PsA led to the testing of 

previously developed drugs that targeted the IL-23/IL-17 axis in psoriasis (Cua and 

Tato, 2010; McInnes et al., 2013; Boutet et al., 2018).  

Rheumatoid ArthritisPsoriatic ArthritisFeatures

• Largely symmetrical joint 
involvement

• Cervical spine involvement
• Bone erosion

• Psoriasis
• Asymmetrical joint involvement
• Enthesitis, dactylitis
• Distal interphalangeal and axial 

spine involvement
• Nail dystrophy
• Bone proliferation

Clinical

• HLA-DRB1
• Other associated genes: 

PTPN22, PAD14, CTLA4,IL2RA, 
DKK1, GRZB, MMP9, SPAG16 
TNFAIP3, IRAK1, IL6R, NFKBIE 

• HLA-B/C-related alleles
• Other associated genes: IL23R, 

IFNLR1, PTPN22, P4HA2, TNIP1, 
IL12B, TRAF3IP2, STAT2, IL23A

Genetic

• Often high RhF and ACPA in 
circulation

• Elevated CRP and ESR
• Elevated vascular growth factor 

expression in late disease
• Elevated IL-6 and TNFα

• Low (if any) RhF and ACPA
• Low CRP and ESR
• Elevated vascular growth factor 

expression in early disease
• Elevated IL-17A, IL-12/23 and TNFα

Molecular

• csDMARDs (e.g. MTX, 
sulfasalazine, leflunomide)

• TNF inhibitors (e.g. etanercept, 
infliximab, adalimumab)

• Abatacept (T cell inhibitor)
• Rituximab (CD20 inhibitor)
• Tocilizumab (IL-6 inhibitor)
• Baricitinib (JAK-STAT inhibitor)
• Iguratimod (NF-κB pathway 

inhibitor)

• csDMARDs (e.g. MTX)
• TNF inhibitors (e.g. etanercept, 

infliximab, adalimumab)
• Abatacept (T cell inhibitor)
• Ustekinumab (IL-12/23 inhibitor)
• Secukinumab (IL-17 inhibitor)
• Apremilast (PDE-4 inhibitor)
• Tofacitinib (JAK1/3 inhibitor)

Responses to 
Treatment
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Additionally, ustekinumab, secukinumab, izekizumab, sonelokumab and 

brodalumab have either proven efficacy against PsA or are being tested for PsA 

treatment, having been used in clinical practice/being tested in patients with 

psoriasis (McInnes et al., 2013; Lebwohl et al., 2015; Philip J Mease et al., 2017; 

Mease et al., 2018; Boutet et al., 2018). The resulting decrease in IL-17R 

stimulation can lead to reduced pro-inflammatory effects, including the activation 

of FLS, osteoclasts, neutrophils and monocytes, which contribute to joint damage 

by increasing inflammatory cytokine release and bone resorption (Kotake et al., 

1999; Hwang et al., 2004; Raychaudhuri, Raychaudhuri and Genovese, 2012).   

It is important to note the involvement of multiple tissue domains in PsA, whereby 

the disease manifests differently across affected tissues, including skin, peripheral 

and axial joints, and enthesis  (Coates et al., 2022). Given the prevalence of 

different cell types in the skin, synovial joints, and enthesis there is evidence of 

unique tissue-specific immunological profiles consisting of different proportions of 

innate and adaptive immune cells and chemokines/cytokines (Cheung et al., 2019; 

Najm et al., 2023).  

1.3.3. Management of PsA 

Since a treat-to-target (TTT) approach is increasingly used for treating PsA, 

quantifying the response to treatment is paramount for successfully managing the 

disease  (Dures et al., 2020). There are multiple disease activity measures in use 

for PsA, either focusing on a single domain such as skin or joint disease or as 

composite scores, including the following: Disease Activity in Psoriatic Arthritis 

(DAPSA); PsA Disease Activity Score (PASDAS), the Composite Disease Activity Index 

in PsA (CDAI), and the Group for Research and Assessment of Psoriasis and Psoriatic 

Arthritis (GRAPPA) composite score (GRACE) (Coates and Helliwell, 2016; Schoels 

et al., 2016; Dures et al., 2020; Helliwell et al., 2020). Considering the aims of 

managing PsA, the ultimate aim is for patients to reach the lowest state of disease 

across each of the domains of disease, including peripheral/axial arthritis, 

enthesitis, dactylitis and skin psoriasis (Coates et al., 2022). Part of this involves 

ensuring the maximum quality of life possible, retaining functionality and 

structural health where possible. Since patients with PsA may also have 

comorbidities, these also ought to be considered as part of the management of 
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disease, incorporating other specialists alongside rheumatologists as part of the 

clinical care team.  

The PASDAS and CDAI are composite measures of disease considering the articular 

and extra-articular components of PsA. Meanwhile, DAPSA focuses on joint disease, 

making it a more limited measure (Wervers et al., 2018). Since PsA has multiple 

domains, such as joint, skin, spine and entheseal involvement, fatigue, and quality 

of life measures, finding a composite measure that incorporates each has proven 

difficult (Mease et al., 2005; Coates et al., 2020). Nevertheless, the DAPSA 

remains useful where the treatment of PsA largely focuses on resolving joint 

symptoms, where the extra-articular symptoms are typically secondary targets 

(Wervers et al., 2018). 

Another composite measure, the Minimal Disease Activity (MDA) score, was 

reported as a more stringent treatment target for patients with PsA compared with 

the DAPSA-defined remission in a recent study (Coates, Fransen and Helliwell, 

2010; Coates et al., 2020). To achieve MDA, patients must satisfy five of the seven 

criteria in Table 1.3.  

Table 1.3. PsA disease activity criteria for Minimal Disease Activity (MDA). 

 
 

Patients who meet all seven of these criteria are graded as having Very Low 

Disease Activity (VLDA). Compared with the DAPSA-defined remission and low 

Score RequiredRemission Criteria

≤ 1Tender Joint Count

≤ 1Swollen Joint Count

< 1Psoriasis Area and Severity Score

≤ 15Patient Pain Visual Analogue Score

≤ 20Patient Global Disease Activity

≤ 0.5Health Assessment Questionnaire

≤ 1Tender Entheseal Points
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disease activity (LDA) it was found that VLDA and MDA were less commonly met as 

treatment goals, where patients meeting DAPSA-defined goals typically had higher 

levels of residual disease, likely owing to the extra-articular domains not 

considered in this measure (Coates et al., 2020). 

1.4. Treating RMDs: Precision Medicine 

Patients with RMDs are generally treated with combinations of glucocorticoids and 

DMARDs, such as methotrexate (MTX), sulfasalazine and thereafter with biologic 

and targeted synthetic DMARDs (tsDMARDs) (Smolen et al., 2023). These are often 

successful in driving patients towards remission. For many patients, especially 

those with early disease, remission can be achieved using a combination of drugs in 

an aggressive and tailored treatment strategy for the individual (Aletaha, Alasti 

and Smolen, 2016). This typically involves a stepwise escalation of these drugs to 

achieve the treatment target, for example, adding further DMARDs to the cocktail 

where the first-line drugs may fail to induce a satisfactory disease resolution. Such 

a strategy describes the TTT approach, described in the literature as favourable 

for patients' long-term quality of life (Möttönen et al., 2002; Verstappen et al., 

2007; Smolen et al., 2016). 

The TTT approach has several principles, including defining the target the 

treatment aims to achieve, often remission for patients with early RA (Smolen et 

al., 2016). With various drugs available, the aim is to treat the patient aggressively 

until the target is met, altering the course of treatment until the patient reaches 

this disease activity target.  

In RMDs, the failure to manage the disease with an early and aggressive campaign 

of treatment generally leads to a worse outcome for the patient due to progressive 

and irreversible damage to the joints and the risk of developing comorbidities, 

including CV disease and cancer (Turesson and Matteson, 2013; McInnes and 

Schett, 2017; Buleu et al., 2019). Patients with RA and PsA often receive MTX as a 

first-line treatment, a mainstay of RMD treatment (Cronstein and Aune, 2020). 

However, up to 40% of patients with RA treated with MTX do not respond 

successfully or experience intolerable side effects, and so require alternative 

treatments (Nam et al., 2017; Maciejewski et al., 2021). As a result, these patients 
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experience a delay in receiving successful treatment, which can be detrimental to 

their long-term outcome due to the progressing joint damage that may occur 

during the period of ineffective treatment.  

Incorporating a precision medicine approach into treating patients with RMDs holds 

great potential to improve patient outcomes. As a highly heterogeneous disease, 

RA, representing RMDs, may comprise a variety of distinct diseases, characterised 

increasingly on a clinical and molecular level, which, as a result, may require the 

establishment of  disease subgroup-specific treatments (Heutz and Jong, 2021). 

Given the ability to categorise subtypes of RA and the variety of treatments 

available, the potential for precision medicine in RA is considerable.  

Biological markers (biomarkers) play an important role in precision medicine and 

are largely driving precision medicine since they can be used for numerous 

purposes for the benefit of the patient (Vargas and Harris, 2016). Biomarkers may 

be used for several purposes: to characterise and understand disease on a 

molecular level; to follow the progression of disease; to diagnose patients early 

before symptoms arise; to predict patients’ prognoses; and to predict their 

responses to the available treatments (Gibson et al., 2012). It is feasible that a 

patient may go to the clinic with symptoms of RA, and a panel of biomarkers are 

measured from their blood, providing the clinician with an understanding of their 

specific subtype of RA and, therefore, what treatment would be most appropriate 

for their individual molecular needs.  

There is great potential in using biomarkers to improve how patients with RMDs are 

treated. Moreover, it was anticipated that in highly heterogeneous diseases like RA 

and PsA, the true power of precision medicine could be demonstrated. With the 

ability to characterise patient subgroups on a molecular level, it was expected that 

novel insights into the mechanisms of disease emergence, progression and 

resolution might be uncovered. Such mechanisms may point towards potential 

therapeutic targets and direct the development of a new generation of treatments 

informed by biomarker discovery. 



 

 

37 

1.5. Methotrexate: First-Line Treatment and a Precision 
Medicine Opportunity 

MTX is a conventional synthetic DMARD (csDMARD) that entered trials for treating 

RA in the early 1980s, with earlier studies indicating positive results with low doses 

compared to that typically used to treat cancers (Black et al., 1964; Hoffmeister, 

1972; Willkens, Watson and Paxson, 1980; Willkens and Watson, 1982). Since then, 

it has been a first-line treatment for RA for over 40 years (Weinblatt, 2013). MTX is 

an especially complicated drug, inducing its anti-inflammatory effects at a low 

dose compared to its anti-cancer effects, which occur at doses up to 1000 times 

greater than for its anti-inflammatory effects (Cronstein and Aune, 2020). 

However, where the anti-cancer effects of MTX arise due to reduced leukocyte 

proliferation as a result of anti-folate effects, this is not believed to be a main 

mechanism of the anti-inflammatory effects of MTX since the administration of 

folic acid to patients with RMDs does not result in a reduction of the therapeutic 

effects of the drug (Cronstein and Aune, 2020). Other mechanisms are at play 

when treating RMDs using MTX, reflecting its ability to target multiple mechanisms 

to achieve a beneficial therapeutic effect.  

MTX can be administered orally or parenterally for RA. The drug is found in a 

monoglutamated form upon administration, which is then converted to its more 

potent polyglutamated form within the cell (Cronstein and Aune, 2020). The 

monoglutamated MTX enters the cell via the transmembrane reduced folate carrier 

1 (RFC1), which transports folate and its derivatives across the membrane (Wang 

et al., 2001; Drozdzik et al., 2007). The polyglutamated MTX accumulates within 

the cell, potentially explaining the delay in its therapeutic effect in patients as the 

intracellular concentration of the active drug increases over time (Cronstein and 

Aune, 2020).  

Polyglutamated MTX is a potent inhibitor of several intracellular enzymes, 

including dihydrofolate reductase (DHFR), 5-aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) transformylase (ATIC), methylenetetrahydrofolate 

reductase (MTHFR) and thymidylate synthase (TYMS). It is thought that inhibiting 

these enzymes leads to several immunomodulatory effects, as summarised in 

Figure 1.2, along with the induction of long intergenic non-coding RNA-p21. 



 

 

38 

Perhaps the most important immunomodulatory mechanism of MTX involves the 

inhibition of the ATIC enzyme, which leads to an increase in the extracellular 

adenosine levels (Friedman and Cronstein, 2019).  

 

 

Since the ATIC enzyme mediates the conversion of AICAR to its metabolic product, 

formyl AICAR (FAICAR), the resulting increased levels of AICAR cause the inhibition 

of AMP deaminase (AMPDA) and adenine deaminase (ADA), leading to increased 

AMP and adenosine (Cronstein and Aune, 2020). The increased intracellular 

adenosine can then be released from the cell and act upon its receptors (Friedman 

and Cronstein, 2019). 

The increased extracellular adenosine is believed to induce a primarily regulatory 

effect by stimulating its four main receptors — A1, A2A, A2B and A3 — across a 

multitude of immune cells, including monocytes, macrophages, fibroblasts, 

neutrophils, dendritic cells, T cells subtypes and B cells (Antonioli et al., 2019). 

The Α2A receptor has immunomodulatory effects across immune cells, including 

 Figure 1.2. Proposed mechanisms of methotrexate on modulating immune cells. Adapted from 
Cronstein and Aune (2020). 
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macrophages, neutrophils and T-cells, as demonstrated by the increased 

production of the anti-inflammatory cytokine, IL-10, in immune cells following the 

A2A receptor activation (Haskó et al., 2008). Additionally, the stimulation of 

murine macrophages with adenosine resulted in a reduced release of the 

inflammatory cytokine, IL-12, which was similarly reduced when the adenosine 

uptake inhibitor, dipyridamole, was used (Haskó et al., 2000). Using a synthetic 

A2A receptor agonist reduced the release of TNFα from LPS-induced THP-1 cells, 

indicating an anti-inflammatory effect that was reversed with the pharmacological 

inhibition of the A2A receptor (Bshesh et al., 2002). The increased A2A receptor 

mRNA in activated murine CD4+ T cells was also associated with a decrease in the 

release of the pro-inflammatory IFN-γ (Lappas, Rieger and Linden, 2005). In 

addition, adenosine can induce the anti-inflammatory M2-like, or tissue resolving, 

macrophage phenotype while increasing the production of further anti-

inflammatory cytokines, including VEGF, and reducing TNF, IFN-γ, IL-4 and IL-12 

from CD4+ T-cells, known to be pro-inflammatory cytokines (Bshesh et al., 2002; 

Cronstein and Sitkovsky, 2017). 

The complexity of MTX’s mechanisms is partly reflected by the difficulty in 

developing biomarkers to predict how patients will respond to the drug. Recent 

work has aimed to discriminate treatment responses using measurements of 

cytokines, such as IL-1β, IL-4, IL-6 and TNF-α where these pro-inflammatory 

cytokines play an important role in driving the inflammation behind RMDs (Seitz, 

Zwicker and Villiger, 2003; Dervieux et al., 2006; Maillefert et al., 2010; Halilova 

et al., 2012). For example, high levels of cytokines, including TNF-α, may reflect a 

more severe inflammatory phenotype in patients, where TNF-α levels above 

20.1pg/ml were associated with a negative response after 6 months of treatment 

with MTX in a cohort of patients with active RA (Maillefert et al., 2010).  

1.6. Introducing Metabolomics  

Biomarkers that predict patient responses may be obtained from various omics 

platforms, including the metabolome (Puentes-Osorio et al., 2021). The 

metabolome describes the entirety of small molecules that can be measured in a 

biofluid, representing an advanced stage in the biochemical journey from the 

genome to the phenotype (Wishart, 2016). Due to the proximity of the 
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metabolome to the phenotype, it is an especially useful platform for understanding 

the interactions between the environment and the biochemicals modulating the 

phenotype (Rattray et al., 2018).  

The metabolome reflects a heterogeneous collection of compounds, including 

amino acids, small peptides, steroids, nucleotides, fatty acids, sugars, and 

xenobiotics derived from food and drug-products (Turi et al., 2018). For this 

reason, no single analytical technology can measure the entire metabolome. In 

fact, the complete set of metabolites found in the human body has yet to be fully 

discovered (Lu et al., 2017). This marks an important limitation of metabolomics, 

where the analysis of a given sample may include numerous 

unidentified/unmapped metabolites, sometimes termed the “dark matter” of the 

metabolome, including both biologically relevant and irrelevant compounds (da 

Silva, Dorrestein and Quinn, 2015). This is an essential consideration for 

untargeted metabolomics, which is the unbiased study of the detectable 

metabolites within a sample, including those not yet identified. Targeted 

metabolomics describes the pre-selection of known metabolites and their 

measurement, often involving the generation of standard curves using exogenous 

reference compounds to allow absolute quantification of the metabolites of 

interest (Roberts et al., 2012). 

1.6.1.  Generating the Metabolome 

Due to the biochemical/physical diversity of metabolites in any given sample, 

there are many options available for their measurement, including variants of 

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) 

(Miggiels et al., 2019). In untargeted and targeted metabolomics, the MS is 

typically coupled with another device to support the separation of the 

metabolites, involving a chromatography column, many types of which can be 

used. These include liquid chromatography (LC), gas chromatography (GC) and 

capillary electrophoresis (CE) (Gowda and Djukovic, 2014). Of these, the LC-MS 

method is commonly used in metabolomics studies.  

Incorporating chromatography can improve the analyte separation of metabolomics 

approaches, including the hypothesis generating untargeted methods and 
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hypothesis testing targeted methods. Doing so allows the measurement of a wide 

range of metabolites, including polar and non-polar compounds, depending on the 

type of chromatography column used. For example, non-polar compounds, such as 

lipids and many fatty acids, are most easily separated using the reverse phase 

column. Highly polar compounds can be separated using hydrophilic interaction 

liquid chromatography (HILIC) columns (Bajad et al., 2006; Gowda and Djukovic, 

2014). As a result, several chromatographic columns are required to measure all 

detectable metabolites. The samples may need to be analysed multiple times 

which generates a sizeable expense, reflecting one of the major limitations in 

generating a complete metabolome.  

Given the differences in the physicochemical properties of the metabolites, these 

elute from the chromatography columns at different rates, reflected as their 

retention time (RT). Once separated chromatographically, the compounds need to 

be ionised to be detected, typically done using an electrospray ionisation (ESI) 

source, producing ionised compounds that are passed through a magnetic field to 

the mass analyser, which then differentiates the compounds based on their mass: 

charge (m/z) ratio. Following the separation of these ionised compounds, they are 

passed through to a detector which then provides a mass spectrum, showing the 

intensities of the ions across the range of detected m/z ratios (Nash and Dunn, 

2019). In addition to the peaks representing biologically relevant metabolites, 

many of the peaks will include adducts and fragments produced due to the 

ionisation process, which may confound the metabolite identification (Chen et al., 

2021). Metabolite annotation is of great importance and is a research field in and 

of itself, with numerous computational methods having been developed to attempt 

to expedite and improve the process (Creek et al., 2012; Zhu, Liu and Hassoun, 

2020; Young, Wang and Röst, 2021; Bach, Schymanski and Rousu, 2022; Ebbels et 

al., 2023; Wandy et al., 2023).   

Using an LC-MS approach for metabolome generation, each compound has two 

primary measurements for identification and quantification: the RT and the m/z 

ratio. However, using untargeted metabolomics, only a relative quantitative 

measurement of the metabolites is provided, given the need for standard curves 

generated for each metabolite. The metabolite measurements are provided as an 
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abundance or peak intensity, with the peak intensity typically determined relative 

to the total ion count. Given the different efficiencies of the ionisation processes 

and the possible instrumentation differences, the metabolite measures may vary 

drastically across studies using different variations of the LC-MS platform (Lu et 

al., 2017). 

1.6.2.  Immunometabolism 

While metabolites were once considered to be mere by-products of cellular 

processes, they are increasingly understood to be important modulators of, for 

example, immune processes (Murakami et al., 2013; Mills et al., 2016; Wirthgen et 

al., 2018; O’Neill and Artyomov, 2019; Pucino et al., 2019; Pålsson-McDermott and 

O’Neill, 2020). In RMDs, where an inappropriate immune response against the 

tissue of the joints drives the pathology, the immunomodulatory effects of 

metabolites may offer clues as to the mechanisms of pathogenesis and resolution 

of inflammation in response to treatment.  

A prime example may be itaconate, a derivative of the TCA cycle with 

immunomodulatory effects and specifically harnessed by macrophages undergoing 

a shift in their inflammatory profile (O’Neill and Artyomov, 2019). Itaconate was 

found to have anti-inflammatory effects in LPS-stimulated macrophages via 

multiple mechanisms, including the inhibition of succinate dehydrogenase (SDH) 

which blocks succinate oxidation and the formation of reactive oxygen species 

(ROS) and the pro-inflammatory cytokine, IL-1β, along with promoting the 

activation of the anti-inflammation transcription factor, NRF2, by inhibiting the 

NRF2-regulating KEAP1 protein (Tannahill et al., 2013; Lampropoulou et al., 2016; 

Mills et al., 2018). Since an increase in itaconate in plasma samples from patients 

with RA during treatment was associated with a reduced DAS44 score, itaconate 

may be a useful biomarker of treatment response and have clinically relevant 

immunomodulatory effects (Daly et al., 2020).  

Metabolic changes in patients with RA and other inflammatory diseases may shed 

light on the mechanisms that modulate the disease activity, potentially offering 

opportunities for novel targets. Numerous studies have been performed to 

investigate the metabolic associations with disease state and treatment response 
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across inflammatory diseases (Cuppen et al., 2016; Bao et al., 2017; Anderson et 

al., 2018; Ren et al., 2019; Cussotto et al., 2020; Ge et al., 2020). For example, 

tryptophan metabolism may be perturbed across various diseases, including sepsis, 

cancer, obesity and other inflammatory diseases, such as RA 

(Changsirivathanathamrong et al., 2011; Wirthgen et al., 2018; Cussotto et al., 

2020; Lanser et al., 2020).  

The association of tryptophan metabolism to these diseases may relate to the 

increased activity of indoleamine-2,3-dioxygenase (IDO) during inflammation, 

specifically via the cytokine interferon-γ (IFN-γ), which gives rise to the anti-

inflammatory metabolite, kynurenine and its downstream products (Brown et al., 

1991). Novel therapeutics or treatment strategies may arise from a series of steps. 

Beginning with exploring metabolic changes in disease, subsequent steps then 

include understanding the mechanism by which such changes occur and how they 

may influence disease. This may be followed by discovering methods of exploiting 

these mechanisms. For example, immunomodulation may be achieved by 

increasing the production of tryptophan metabolites by blocking IDO, leading to 

the production of non-IDO-mediated intermediates. New drugs are emerging, 

including indoximod which is producing promising results in in clinical trials for 

various cancers (Liu et al., 2018; Zakharia et al., 2021).  

Metabolites at baseline that were found to be associated with treatment response 

may reveal molecular conditions that promote treatment efficacy, which could be 

harnessed across the patient population to improve global responses. This may 

involve, for example, therapeutically targeting key metabolic pathways using 

pharmacological inhibitors or supplementing patients with exogenous metabolites, 

such as in the management of osteoarthritis pain and joint injury in athletes with 

glucosamine (Reichelt et al., 1994; Ostojic et al., 2007).  

An important consideration when dealing with blood-based metabolite biomarkers 

is that there may be homeostatic processes that modulate the levels of the analyte 

other than those occurring in the local disease site. For this reason, it is difficult to 

know the source and influence of the metabolites detected in the circulation, 

yielding uncertainty around their clinical importance. Nevertheless, a robust 

association of a blood-derived metabolite with a changing disease state in response 
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to treatment may still provide an invaluable biomarker and point towards 

targetable mechanisms that were historically elusive (Bartikoski et al., 2022).  

1.6.3. Current Metabolomic Markers of Treatment Response 

Given the connection between the immune response and the metabolome, 

identifying predictive biomarkers from the metabolome may indicate possible 

immunomodulatory mechanisms. Using various statistical methods, several 

candidate predictive biomarkers for a number of therapies have been reported in 

the RA literature, as summarised in Table 1.4.  

Table 1.4. Review of candidate metabolic biomarkers of treatment response across studies in 
patients with RA. 

 

While other studies certainly exist whose results were not included in Table 1.4., 

the fact that there were few metabolites that consistently appeared across this 

sample of studies involving biomarkers associated with treatment response was 

noteworthy. However, there were some notable exceptions to this, including 

tryptophan and its derivatives, uric acid, histamine and taurine, which appeared in 

StudyPlatformTreatmentSample TypeMethod of AssociationMetabolite

Hur et al. (2021)LC-MSVariousPlasma
• Differentially abundant across 

high and low DAS28-CRP groups 
• Correlations with DAS28-CRP

6-bromotryptophan; 
bilirubin; biliverdin; glucuronate; 

N-acetyltryptophan; 
N-acetyltyrosine; serine; trigonelline

Gosselt et al. 
(2020)LC-MSMTXPlasma

• Differentially abundant at 
baseline across high and low 
disease activity after  3 months

• Multivariate logistic regression 
model

Homocysteine; taurine; ATP; GDP; uric 
acid; 1,3-diphosphoglyceric acid; 2,3-

diphosphoglyceric acid; glycerol-3-
phosphate

Cuppen et al. 
(2016)LC-MSTNF inhibitorsSerum

• Multivariate logistic regression 
model

Ethanolamine; lysine; sn-1-LPC(18:3-
ω3/ω6); sn-1-LPC(15:0)

Wang et al. 
(2012)

1H NMRMTXSerum
• Partial least squares 

discriminant analysis (PLS-DA)

Uric acid; taurine; uracil; TMAO; 
tryptophan; glycine; histidine; 

hypoxanthine; methionine; aspartate; 2-
oxoglutarate

Teitsma et al. 
(2018)MSMTX and 

tocilizumabSerum• PLS-DALysine; proline; 3-methylhistidine; PGE2; 
pipecolic acid; histamine

Kapoor et al. 
(2013)

1H NMRTNF inhibitorsUrine
• PLS regression
• PLS-DA

Histamine; glutamine; xanthurenic acid; 
ethanolamine; phosphocreatinine; 

thymine; creatinine; phenylactic acid; 
xanthine

Murillo-Saich et 
al. (2021)

1H NMRTocilixumabPlasma
• Orthogonal partial least square 

discriminant analysis (OPLS-DA)

Isobutyrate; 3-hydroxybutyrate; lysine; 
phenylalanine; sn-glyco-3-

phosphocholine; tryptophan; tyrosine

Takahani et al. 
(2019)CE-MSTNF inhibitorsSerum• OPLS-DABetonicine; glycerol-3-phosphate; N-

acetylalanine; hexanoic acid; taurine

Medcalf et al. 
(2021)GC/LC-MSMTXPlasma• Correlation with DAS28N-ethylisoleucine; 2,3-dihydrobutanoic 

acid; nornicotine
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more than one of these studies (Wang et al., 2012; Kapoor et al., 2013; Teitsma, 

Yang, et al., 2018; Gosselt et al., 2020; Takahashi et al., 2020; Murillo-Saich et 

al., 2021). Another important consideration is that semi-targeted metabolomics 

was performed in two of these studies, mentioned by Gosselt et al. (2020) and 

Medcalf et al. (2021), thereby limiting the number of metabolites being included in 

the analysis. The biomarkers described in Table 1.4. only include those for RA, 

while considerably fewer studies at the time of writing reported candidate 

predictive biomarkers in PsA and other RMDs.  

1.7. Gaps in the existing research 

While numerous metabolites are offered as candidate predictive biomarkers for 

treatment response in RMDs, as reflected by historical results in Table 1.4., very 

few validation studies have been performed to support their clinical use (Gibson et 

al., 2012). It was apparent that throughout this project, care ought to be taken 

when considering whether the supposed biomarkers of treatment response were 

indeed found to be similarly associated elsewhere. Doing so would provide 

evidence of some degree of robustness of the metabolites, supporting their 

development as biomarkers and clinically useful tools. The metabolome is 

especially sensitive to changes in lifestyle factors, such as diet, smoking status, 

exercise and age (Beuchel et al., 2019; Chen et al., 2022). As a result, it was 

important to deliberate on whether the biomarkers considered throughout this 

thesis were strongly associated enough with the response to treatment across 

demographics. Moreover, the relative quantitation used in many of the MS-based 

studies meant that the metabolite measurements were likely to be substantially 

influenced by differences in instrumentation factors, such as ionisation source, 

ionisation efficiency, chromatography column type, and chromatography column 

state. 

1.8.  Aims 

This project sought new biomarkers to predict the responses of patients with RMDs 

to commonly used treatments. In particular, biomarkers that predict how patients 

with RA respond to the first-line treatment, MTX, were explored throughout this 

thesis. Since other drugs are often used alongside MTX, a search for biomarkers 
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that could predict a general treatment response was also performed. Thus, a 

secondary aim was to explore the molecules that may modulate the inflammatory 

environment favouring successful patient treatment, pointing to opportunities for 

developing treatment-supplementary agents.  

Potential biomarkers that could be used to predict responses in PsA were also 

investigated. It was anticipated that where RMDs, including RA and PsA, are 

distinct diseases, the shared resolution of inflammation that characterises the 

response to treatment may point towards similar molecular pathways being 

implicated, showing shared mechanisms that may modulate how inflammation is 

alleviated across diseases.  

When considering the potential metabolic biomarkers in this work, part of the aim 

was to compare the findings with related studies. This was an especially important 

feature of the analysis owing to the apparent difficulties in translating the 

metabolites across studies performed in other research centres. 
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2. Methodology 
2.1. Datasets 

Secondary analyses were performed on metabolomic and transcriptomic datasets 

from clinical studies performed at multiple research centres. These datasets are 

detailed in Table 2.1, having been obtained from the University of Glasgow, 

Amsterdam University Medical Centre and the Mayo Clinic. All data were generated 

as part of studies that were performed in accordance with the Declaration of 

Helsinki and were approved by the respective ethics committees at each research 

centre (Dale et al., 2016; Gosselt et al., 2020; Hur et al., 2021). 

Table 2.1. Summary of datasets analysed throughout project. 

 
 

The metabolomic data from the University of Glasgow studies were generated at 

the Glasgow Polyomics facility. These included the TaSER and CENTAUR 

metabolomic data, while the TaSER transcriptomic data were generated at the 

School of Cardiovascular and Medical Science, University of Glasgow. These data 

were kindly made available by Dr James Dale (TaSER), Dr Flavia Sunzini, and Dr 

CENTAUR 
Metabolomics

Mayo Clinic 
(Hur et al.) 

Metabolomics

tREACH 
Metabolomics

TaSER 
Transcriptomics

TaSER 
MetabolomicsDescription

Untargeted 
metabolomics

Untargeted 
metabolomics

Semi-targeted 
metabolomics

Transcriptomics
Untargeted 

metabolomics
Data Type

University of 
Glasgow

Mayo Clinic
Amsterdam 
University 

Medical Centre

University of 
Glasgow

University of 
Glasgow

Research 
Institute

Psoriatic 
arthritis

Rheumatoid 
arthritis

Rheumatoid 
arthritis

Rheumatoid 
arthritis

Rheumatoid 
arthritis

Inflammatory 
Rheumatic 

Disease

LC-MS (pHILIC 
column and 

Orbitrap 
Exactive mass 
spectrometer)

UPLC-MS/MS 
(Waters 

ACQUITY and 
Q-Exactive 

mass 
spectrometer 
and Orbitrap 

mass analyser)

UPLC-MS (cHILIC 
column and 

Bruker Impact 
IITM Ultra-High 
Resolution Qq-
Time of Flight 

mass 
spectrometer)

Illumina 
HumanHT-12v4 

Beadchip 
Microarray

LC-MS (pHILIC 
column and 

Orbitrap Exactive 
mass 

spectrometer)

Analytical 
Platform

5064827272Sample Size

SerumPlasmaPlasmaWhole bloodPlasmaSample Type
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Neil Basu (CENTAUR), who supported and helped direct the project aims 

throughout the analyses of these data. 

The metabolomic data from the tREACH trial from Amsterdam UMC was kindly 

shared as part of a data transfer agreement with Professor Robert de Jonge 

following his laboratory’s recent publication (Gosselt et al., 2020).  

The study from the Mayo Clinic (MA, USA) was identified using an advanced search 

on PubMed with the following search terms: (plasma)) AND (rheumatoid arthritis)) 

AND (metabolome) AND (treatment response). The search revealed 17 articles, 

which were checked for data availability, study design and the inclusion of MTX as 

a patient treatment. Of these articles, the work by Hur et al. (2021) included 

openly available metabolomic data. Importantly, the clinical dataset was 

evaluated to ensure it was appropriate to include in this project based on the 

following criteria: 

• It included MTX-treated patients for an RMD, either RA or PsA 

• Metabolomic data was generated from blood (either serum or plasma) using 
a mass spectrometry platform, preferably, LC-MS. 

• It included baseline features measured before administering a new DMARD 
treatment for patients. 

• Disease activity was measured at an appropriate time point after the 
initiation of treatment, whereby a response in terms of changed disease 
activity could be quantified. 

• Disease activity was measured using DAS28-ESR/CRP. 

Professor Jaeyun Sung from the Mayo Clinic kindly supported the inclusion of their 

data in this project. 

2.2. Data Generation  

Since this project involved the secondary analysis of data generated from multiple 

studies, the analytical platform, study design, and processing steps used to 

generate the available data were evaluated. This helped support the comparison 

of the findings from each dataset and determine where translation of the results 

could be made. Additional details can be found in the associated articles 

mentioned in the following sections. For example, this work did not provide a 

complete description of the generation of the transcriptomic dataset that 
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contributed to the analysis in Sections 4 and 5. The original study was cited where 

complete details could be obtained. In particular, the generation and processing of 

the transcriptomic data was comprehensively described in Dr James Dale’s thesis 

(Dale, 2014). 

2.2.1. TaSER and CENTAUR Studies Metabolomic Data 

The metabolomic data from the TaSER and CENTAUR studies was generated from 

Glasgow Polyomics (University of Glasgow, UK) and were analysed using liquid-

chromatography mass spectrometry (LC-MS) (UltiMate 3000 RSLC (Thermo Fisher, 

San Jose, CA, USA)), using a type of hydrophilic interaction liquid chromatography 

(HILIC) known as a ZIC-pHILIC column (Merck SeQuant, Umea, Sweden) with an 

Orbitrap Exactive detection analyser (Thermo Fisher, San Jose, CA, USA). Both 

negative and positive electrospray ionisation (ESI) modes were used to generate 

the data and were combined. Further work that describes these methods in more 

detail can be found in Daly et al. (2020) and Blackburn et al. (2020). These 

datasets were generated at different times, meaning that further comparative 

analysis across these datasets was limited, owing to the relative quantitative 

measurement of the metabolites.  

The raw data were pre-processed, a necessary step due to the inherent challenges 

in handling the LC-MS-derived data. The pre-processing was performed by Dr Gavin 

Blackburn and Dr Ronan Daly at Glasgow Polyomics. Such steps included correcting 

for background noise, filtering poor-quality peaks (due to low signal intensity or a 

low number of detections across samples) and determining actual metabolite 

signals. The raw LC-MS files were previously converted to mzXML open format 

using MSConvert from the Proteowizard pipeline (Holman, Tabb and Mallick, 2014). 

The m/z data was centroided, and the centwave detection algorithm was used to 

extract unique chromatographic peaks from the mzXML files. The subsequent 

PeakML files were filtered with peaks that could not be reproducibly detected 

across filtered samples. These files were combined based on their m/z ratio and 

RTs using mzMatch.R. The combined PeakML files were then subjected to 

additional intensity filtering, noise filtering and gap-filling to produce a set of 

reproducible peaks. Instrumental drift was corrected using a Gaussian process 

regression algorithm modelled on the pooled samples developed and applied by Dr 
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Ronan Daly and Dr Gavin Blackburn, respectively, at Glasgow Polyomics. Peaks 

were manually checked for consistency and integrated using QuanBrowser (Thermo 

Fisher, San Jose, CA, USA) where appropriate. Τentative identifications were based 

on the Metabolomics Standards Initiative proposed minimum reporting standards, 

based on mass alone (Fiehn et al., 2007). Metabolite identifications were made 

where authentic reference standards were provided with matching RT and m/z 

ratios to the features detected.  

The peak set was then converted to mzML files and further analysed using IDEOM 

v8 (Creek et al., 2012). The output from the IDEOM analysis was used as the basis 

for the subsequent analysis performed in R versions 3.6.1-4.2.3 (R Core Team, 

2022), 

Identification of the metabolites was based on matching the m/z ratio and RT with 

the authentic reference standards provided by Glasgow Polyomics. Mass was 

determined with an accuracy within 3 ppm. Since most metabolites do not have a 

reference standard, many of the metabolites were only tentatively identified 

based on mass alone. The monoisotopic formula was estimated using the m/z ratio 

from peak signals that were likely to represent whole metabolites rather than 

adducts or fragments based on the mass spectrum generated. This was done by 

visual evaluation of the peaks using the PeakML Viewer. From this, multiple 

molecules with matching formula are often found. The most likely identity was 

subjectively determined using HMDB to guide the identification with known 

biological metabolites. The identification was therefore limited owing to this 

subjectivity, since only a fraction of metabolites had matching reference standards 

and fragmentation patterns were not widely observed. 

The peak signals from the mass spectrometer were also analysed for their quality, 

whereby the signal components were evaluated from the mass spectrum, including 

the peak shape, resolution, and signal-to-noise ratio. Problematic signals may 

occur owing to various factors, including ion suppression, co-elution of compounds, 

a saturation of the detector and also due to matrix interference, typically 

experienced with complex matrices, such as plasma or serum (An et al., 2020).  

Where internal standards were not available, metabolite annotations were made 

based on the mass alone of the feature, described as a putative identification at 
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Level 2 of the Metabolomics Standards Initiative (Fiehn et al., 2007). Metabolites 

that were identified using matching RT and mass to internal standards could be 

identified more accurately at Level 1 of the Metabolomics Standards Initiative.  

2.2.2. tREACH Study Metabolomic Data 

The metabolomic data from the tREACH study were obtained as a CSV file from 

Professor Robert de Jonge from Amsterdam UMC. The data were originally 

generated using a SeQuant cHILIC column (Merck, Darmstadt, Germany) coupled 

with a Quadrupole Time of Flight mass spectrometer (Bruker Daltoniks), with the 

positive and negative ESI modes being used. The raw files were analysed using the 

Bruker TASQ software version 2.1.22.3, described by Gosselt et al. (2021). These 

files were shared, although processing the files required the proprietary software 

which was not available. As such, only the identified metabolites from the tREACH 

metabolomic data were included. These consisted of features identified using the 

Small Molecule Pathway Database (SMPDB) (Jewison et al., 2014). 

2.2.3. Hur Study Metabolomic Data 

The metabolomic data from the Hur et al. (2021) study were generated from 

patient plasma samples using the ultra-high performance liquid chromatography-

tandem mass spectrometer (UPLC-MS/MS). The study was led by researchers at the 

Mayo Clinic (MA, USA). The LC-MS platform incorporated a Waters ACQUITY UPLC 

HILIC column and an Orbitrap Exactive detection analyser (Thermo Fisher, San 

Jose, CA, USA). Positive and negative ion modes were generated using a heated ESI 

source.  

As reported in the original publication, the raw data were pre-processed using 

Metabolon Inc’s (Durham, NC, USA) software (Hur et al., 2021)  The metabolites 

were identified based on their m/z ratioand RT match to Metabolon Inc’s library of 

authentic standards. This consisted of 3,300 commercially available compounds at 

the time of data generation. The RT index was principally used in identification. 

The mass accuracy was determined with a match within 10 ppm of the standards. 

This was compared to the more stringent threshold of 3 ppm for the m/z ratio 

being calculated at Glasgow Polyomics, which provided greater confidence in 

identifying the metabolites. However, a mass accuracy error of 5-10 ppm in 
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untargeted metabolomics is typical in the literature (Brenton and Godfrey, 2010; 

Hao et al., 2018). 

2.2.4. Bulk Transcriptomic Data Generation from the TaSER 
Study 

Dr James Dale kindly shared the transcriptomic data generated from the whole 

blood RNA samples. Initially, including 79 patient samples, this was reduced to 72 

to allow the pairing of the samples with those that also provided a plasma sample 

for the metabolomic analysis, thereby providing the opportunity to perform a 

multi-omic integration of the data for the same samples. Given the growing 

interest in the integration of omic platforms, the method for the integration was 

explored in later chapters to provide a more comprehensive view of the molecular 

features associated with treatment response.  

The whole blood sample preparation was reported previously, involving a 

standardised Illumina TotalPrep RNA Amplification procedure (Dale, 2014). The 

analysis used Illumina HumanHT-12v4.0 Beadchip microarray chips (Illumina Inc, 

San Diego, California, USA).  The PAXgene-collected RNA samples were processed 

using the method described by the manufacturer (Preanalytix, Qiagen Group, 

Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA).  

Using the Illumina Beadchip microarray technology allowed 25,400 genes to be 

picked up with the 47,321 probes on the microarray. Since single genes could be 

detected and quantified over multiple probes, it was likely that multiple isoforms 

of the genes were detected. This may be observed in genes with multiple alleles, 

such as the HLA-DRB1 alleles associated with RA-associated autoantibodies, such as 

ACPA (Balandraud et al., 2013). However, using RNA sequencing would provide a 

more complete list of genes and isoforms than the microarray technology used in 

this work. 

2.3. Data Processing 

2.3.1. Missing Values  

Across the multi-omics data, missing values were found when signals were not 

detected or quantified within the analytical limitations of the instrumentation 
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used. This can occur due to poor signal quality — for example, when pre-processing 

steps fail to remove incomplete signals, such as split signals in metabolomics. 

Values that were missing not at random (MNAR) may also arise when signals are 

below the lower limit of quantification (LOQ) (Wei et al., 2018). These signals may 

remain informative of low metabolite levels, so their substitution with very low 

values may deal with these missing values. However, this may skew the analysis 

with a distribution and standard deviation leaning closer towards zero. In this 

work, missing values were imputed using the half-minimum (HM) method, an 

approach taken by the MetaboAnalyst toolkit where the smallest values for each 

feature in the data were halved to impute for these missing values (Grace and 

Hudson, 2016; Wei et al., 2018). However, other methods, such as quantile 

regression imputation of left-censored data (QRILC) or random forest (RF) 

imputation, may also be favourable. The HM and QRILC methods are often used 

when the missing values are MNAR, meaning that the compound being detected 

may still exist within the sample but at a level that cannot be detected by the 

technology at hand, while RF imputation may be better employed when the 

missing values occur at random, owing to either technical or biological 

explanations (Karpievitch, Dabney and Smith, 2012; Wei et al., 2018). Features 

were removed from the analysis if they had missing values in >20% samples 

(Bijlsma et al., 2006). A representative script showing the code for the processing 

and analysis of the data was included in the Appendix.  

2.3.2. Normalisation 

Often with omics data, non-biological factors may cause an unmanageable degree 

of heterogeneity across features within the dataset, including batch effects and 

differences in sample concentrations (Sysi-Aho et al., 2007). Normalising the data 

is fundamental in preventing such factors from biasing the analysis. Since the aim 

of analysing these data was to compare the samples found in a dataset, the 

normalisation allowed the features to be distributed on a common range and let 

comparisons be made. When analysing the data, the varying ranges of values for 

the features can cause problems, introducing biases when important features have 

altogether different ranges of values from the other features. In metabolomics, 

such factors can include differences in the chromatography columns used, 
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different technicians/operators, and technical differences, such as ionisation 

efficiencies  (Karpievitch, Dabney and Smith, 2012). In addition, biological 

differences ought to be considered. For example, a small difference in the 

concentration of one feature may be biologically meaningful, but the same 

difference in another was not. Normalising the data helps to extract these 

meaningful differences by applying the same range to each feature.  

The datasets were normalised on a case-by-case basis after visual inspection of the 

distribution of the abundance/expression of the features across the samples. Prior 

to the normalisation, the data typically underwent a logarithmic transformation 

(Ejigu et al., 2013; Cook, Ma and Gamagedara, 2020). 

2.3.3. Comparison of Normalisation Methods 

The normalizeCyclicLoess function from the limma package was used where 

normalisation was required. The cyclic loess function was reported to reduce the 

variability consistently in a study comparing different methods for normalising 

metabolomic data, along with quantile normalisation and probabilistic quotient 

normalisation (PQN) (Li et al., 2016). 

The cyclic loess normalisation method extends the locally weighted scatterplot 

smoothing (loess) method. To understand this, when considering two samples, an 

MA plot can be generated to depict the differences of the features across two 

samples, plotting these in terms of the log fold change (y-axis) and the mean log 

expression (x-axis) of the features, as shown in Figure 2.1A using an artificially 

generated dataset. A curve can be fitted to these data, shown as a red line in 

Figure 2.1A, which shows the skewness of the data, reflecting the samples being 

assessed having varying distributions. The loess process smooths this curve in the 

MA plot by applying an adjustment to scale the points towards zero. Where only 

two samples are depicted in  

 

Figure 2.1, this process is repeated where the cyclic loess function cycles through 

every combination of samples and computes an adjustment for each pair. A final 

adjustment is applied across all samples, bringing the samples’ distributions to a 
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common range (Dudoit et al., 2002). For the two samples, the result of the 

normalisation is apparent in  

 

Figure 2.1B-C, where the MA plot is centred to zero following the cyclic loess and 

quantile normalisation process.  

 

Figure 2.1. MA plots and the evaluation of the normalisation methods and their effects on 
the distribution of features in an example dataset that the author artificially generated. 
Embedded within each plot is a boxplot reflecting the overall feature distribution and levels 
across the samples. Red lines are plotted to show the fitting of a smoothing curve to 
highlight the differences of the samples across their shared features. The deviation of the red 
line along the y-axis shows the skewness of the data and the magnitude of the difference 
between samples. A. Pre-normalisation MA plot with red line reflecting deviance between 
samples with boxplot showing difference between artificial samples. B. Post-cyclic loess 
normalisation MA plot, with the red line showing the effect of the loess algorithm in 
adjusting the differences between the samples to zero. C. Post-quantile normalisation MA 
plot. Similarly, the red line shows the difference across features between samples to be zero. 
The boxplots show the result of the normalisation across the two samples.  

 

The quantile normalisation process applies a more stringent but simpler method. 

Where the samples in a dataset have different distributions, the quantile 

normalisation process adjusts each sample to have the same quantiles and median 

values. Quantile normalisation involves taking the original data and ranking 
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features based on their values within each sample. The average of the features is 

then calculated, and the actual feature values are then replaced by this average 

within the rank-defined space (Zhao, Wong and Goh, 2020). The distributions of 

the samples for the respective methods are comparable, as shown in the top right 

panel.  

The cyclic loess method was selected after being evaluated in a preliminary 

analysis of the TaSER metabolomic data. The literature also supports the use of 

this method, although others were also evaluated as candidate methods with only 

marginal differences being observed (Cook, Ma and Gamagedara, 2020).  

2.4. Analysis 

A standard analytical workflow was established using the TaSER metabolomic 

dataset. This was used to analyse the additional datasets, producing results that 

could be compared. The steps involved in the workflow are described in the 

following section. The tidyverse and ggplot2 packages and base R functions were 

used throughout the project for data transformation, visualisation and analysis 

(Kuhn and Wickham, 2020). The workflow included multivariate analysis, 

univariate analyses, supervised machine learning methods and feature 

interpretation.  

2.4.1. Multivariate Analysis of Whole Omics-Dataset 

Multivariate analysis was performed using principal component analysis (PCA) to 

investigate the variance across the samples based on the omics data. This was 

performed using the stats package in the R environment (R Core Team, 2020). Any 

effects on unsupervised clustering of the samples in the PCA by patient factors, 

including age, sex, smoking status, and the response to treatment, were assessed 

by labelling the samples based on these factors within the PCA plot.  

Through this approach, batch effects could also be assessed that may arise due to 

sample handling or processing. These were corrected using the limma package and 

the removeBatchEffect function prior to the normalisation (Ritchie et al., 2015).  
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2.4.2. Differential Expression/Abundance 

Univariate analyses were performed across the datasets to explore the association 

of the omic features with treatment-mediated states of inflammation resolution in 

patients. This was done through several methods, including differential analysis of 

these features across clinically relevant classes, such as identifying significantly 

different metabolites among patients with RA who have a good response to MTX.  

The differential analysis was performed using the limma package in R, initially 

designed to generate linear models for microarray data but also used for analysing 

other datatypes, including metabolomics (Ritchie et al., 2015). The limma package 

uses an empirical Bayes method, comparing the pre-designated groups of samples 

to produce a t-statistic to indicate which peaks change most substantially between 

the groups. Due to the increased prevalence of false positives through multiple 

testing, the false discovery rate (FDR) for the p-values was calculated by using the 

Benjamini-Hochberg (BH) adjustment, producing adjusted p-values that were used 

to guide the selection of features that were significantly different across the 

conditions of interest (Benjamini and Hochberg, 1995). The differential analysis of 

features of interest was largely performed using non-parametric testing due to the 

non-normal distributions of many of the features being investigated. This was 

mainly done using the Wilcoxon test, which provided a p-value to determine 

whether the difference in the abundance/expression of the features was due to 

chance.  

2.4.3. Correlation Analysis 

The features found to be differentially abundant/expressed were assessed for their 

correlations with disease activity using the corrplot and ggstatsplot packages in R 

(Patil, 2021; Wei and Simko, 2022). Since the data were generally not normally 

distributed, a non-parametric method was used for the correlation analysis which 

involved calculating the Spearman correlation coefficient. This uses a rank-based 

analysis rather than the absolute values of the two variables in the Pearson 

correlation.  

While correlation analysis helps explain the relationship between the features and 

the disease measures and the potential associations between the features, 
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additional statistical tools were used to understand the interactions between the 

features and the disease measures. For example, simple linear models were 

generated, regressing the disease measures (reflecting treatment response) to the 

baseline feature levels. These models were generated to investigate whether 

differences in the features at baseline impacted the disease activity in response t 

a treatment period. This was done using the lm function from the stats package 

and the purrr package in R (Henry and Wickham, 2020; Kuhn and Wickham, 2020; R 

Core Team, 2022). These tools helped to quantify the relationship between the 

variables with a p-value statistic and effect size (R-score) being generated. Due to 

the number of assessed features, the p-values were used to control for false 

positives by adjusting with the BH correction (Benjamini and Hochberg, 1995). An 

adjusted p-value cut-off of < 0.05 was used to determine the significant 

relationships between features and the disease measures.  

2.4.4. Explaining the Influence of Patient Factors on Feature 
Variance 

The influence of clinical factors on the variance across the features in each 

dataset was explored using the variancePartition package in R (Hoffman and 

Schadt, 2016). This involved a linear mixed model being generated for each 

dataset for the features of interest, which can help to understand the factors that 

impact the variation of the features.  

As shown in Figure 2.2, an example dataset was generated to demonstrate the 

value of the variancePartition tool. This involved a dataset of artificially generated 

p features and x samples, with patient factors, including sex, smoking status, age 

and BMI. By fitting a linear mixed model, variancePartition can explain the 

influence of the different patient factors on the overall variance of each feature 

(Figure 2.2A) and the overall variance across all features (Figure 2.2B) (Hoffman 

and Schadt, 2016). This was done by generating a multiple regression model and 

designating the factors to be included.  

For example, in Figure 2.2A, sex, BMI, and age explained much of the variance of 

features 1 and 2, while other factors were at play in explaining most of the 

variance of features 3-5. Across the five features, the boxplot in Figure 2.2B shows 
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that sex explained a median of ~15% of the variation observed. This is the case 

after the model corrected for the other factors. As a factor, BMI explained ~10% of 

the variance of the features after correcting for sex, age and smoking status. 

 

 
Figure 2.2. Explaining the variance of the features by patient factors. Example data 
generated by author. A. Bar plot showing each feature and proportional variance explained 
by factors. B. Boxplots depicting the average variance explained across features by the 
example factors. 

 

2.5. Pathway Analysis 

Pathway analysis was used as an additional tool to investigate the biological 

context of the treatment-associated features throughout this project. This 

involved investigating the overrepresentation of a pathway by its components, 

whether through differences in gene expression, cell abundances or metabolite 

production (Chicco and Agapito, 2022). Pathway analysis tools typically offer 

statistical methods that allow an analysis of whether the pathway was truly 

enriched or was overrepresented by chance. The features included in the pathway 

were mapped using databases, such as KEGG (Kanehisa and Goto, 2000; Chicco and 
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Agapito, 2022). An important consideration with pathway analysis for a 

metabolomic dataset is that it was designed for targeted metabolomics, whereby 

the identities of the metabolites were previously ascertained (Lu et al., 2023). The 

identities of metabolites need to be provided, which was only tentative for many 

of the metabolites in this work, thus limiting the overall value of this approach. 

The overrepresentation analysis (ORA) tool from Metaboanalyst was used for the 

metabolomics analysis in this work, specifically using the metabolite set 

enrichment analysis (MSEA) (Xia & Wishart, 2010; Chong et al., 2019). ORA often 

relies on features selected through differential analysis across conditions of 

interest. The list is then compared with the biological database, including all the 

known features across pathways. The comparison involves a statistical test to 

determine whether the list’s features are found across a pathway more than that 

expected simply by chance alone (Cavill et al., 2011). This involves the calculation 

of the enrichment ratio, with a reference metabolome provided to measure the 

pathway enrichment. From this, the pathways most enriched were ranked, with 

the number of features mapped to the pathway and the p-value and FDR 

calculated for each pathway.  

In addition, ShinyGO v0.77 was used for gene enrichment analysis as part of the 

transcriptomics analysis in Chapters 4 and 5 (Ge, Jung and Yao, 2020). The over-

representation of the pathways was determined by calculating the fold 

enrichment, taking the percentage of the list of genes from the differential 

analysis that was found in the pathway and dividing this by the percentage of 

genes found in the background list, thereby providing an effect size. A 

hypergeometric test was used to calculate a p-value distribution for the pathway 

analysis in ShinyGo, and the p-values were corrected using the FDR.  

2.6. Supervised Machine Learning 

This project aimed to identify molecules from multi-omic platforms that could be 

used as biomarkers to predict how patients with RMDs respond to first-line 

treatments. By incorporating a supervised machine learning approach into the 

workflow, the analytes weakly associated with treatment response could be 

combined within a predictive model where the sum of its parts was expected to be 



 

 

61 

more powerful than its constituent features. Rather than depending on just one or 

two biomarkers, this approach may provide a more robust clinical tool that gives 

insights into the different omics features and processes that may contribute 

towards the resolution of inflammation. The process involved specifying binary 

responses to treatment (Y), usually the DAS28 or DAPSA at 3 months, with the 

omics features being the predictors (X), shown in Figure 2.3. 

 
Figure 2.3. Overview of supervised machine learning structures, with each patient's label (Y) 
being predicted using the features (X) in the data. 

 

For example, in the TaSER trial, patients were categorised as either being in 

remission or having a good or poor response to treatment based on their DAS28-

based outcome after 3 months (Colebatch et al., 2013; Dale et al., 2016). The 

project aimed to develop models consisting of a panel of molecules associated 

with treatment response that was representative of the population of patients with 

RMDs. As such, the models were generated and tuned using subsets of the original 

data, thereby avoiding the overfitting of the models to the data they were trained 

on which was expected to make them reproducible across cohorts. This was done 

in different ways, with the size of the dataset being the main factor in deciding 

the method. For example, repeated k-fold cross-validation is usually used to 

evaluate the model generated using small datasets, where the samples need to be 
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used efficiently. In contrast, a train/test split (hold-out) can be used where many 

samples are included in the dataset. 

However, using various splits of a single dataset was not expected to be as rigorous 

a validation method compared with evaluating the model in an independent 

dataset. This was an additional approach explored throughout this thesis.  

2.6.1.  Train/Test Split (Hold-Out) 

Using the hold-out method, the original data is split into training and testing 

subsets and the models can be generated in the former and evaluated in the 

latter. While there is no consensus on the ratio used for the split, it is often a 

67:33, 70:30 or 80:20 that is used, reflecting the bias-variance trade-off. For 

example, the TaSER metabolome was split using the caret package with a 70:30 

ratio for the training and testing subsets (Kuhn, 2019).  

The createDataPartition function from the caret package was used to perform 

each split, applying random sampling in each binary response category being 

predicted to allow the training and testing subsets to be similarly balanced for 

these categories  (Kuhn, 2019). For each split, a random seed was set using the 

set.seed function to fix these sample subsets. The model generated on the training 

subset was subject to k-fold cross-validation, which will be described in the 

subsequent section. This provided an additional layer of protection against 

overfitting the model to the data.  

2.6.2. Repeated K-Fold Cross-Validation 

Repeated k-fold cross-validation is another method to evaluate the performance of 

a model trained on multiple, limited subsets of the available data, as 

demonstrated in Figure 2.4. This involves multiple models being created across 

groups (‘folds’) of the data, and an average of the models across the k groups can 

be calculated. After splitting the data into k groups, a model is trained to each 

minus one (where the last fold is used as an evaluation subset). Here, the light 

blue portion shows the data in each split used to train the model, while the dark 

portion shows the ‘testing’ data. The metrics were averaged upon testing the 
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models from each split, and the final model’s performance can be determined 

across these groups. 

 

Figure 2.4. Illustrating k-fold cross-validation. The dataset is split into k groups or ‘folds’, and 
a model is generated on the fold k minus one and evaluated on the fold k. New models are 
generated for each fold k created in the data splitting, and the model's performance is 
determined by taking the mean across the folds.  

 

It is common for a value of 10 to be used for the k parameter (Kim, 2009). To 

provide a more robust model, albeit more computationally expensive, the 10-fold 

cross-validation was repeated 10 times during the model tuning and 100 times 

during the final model generation.  

In essence, the repeated k-fold cross-validation helps to protect the models 

against generating rules to discriminate samples based on the noise in the data; 

instead, by incorporating this method, it was expected that only meaningful 

biologically/clinically relevant feature events were used. Using the repeated k-fold 

cross-validation method, the model could be trained and tested on the entirety of 

the dataset with increased confidence of its reproducibility in other cohorts. 

However, no method can guard against poor-quality data and so the following 

results chapters that used these methods may still include overfitted models and 

be influenced by noisy data. 
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2.6.3. Feature Selection 

Feature selection was performed on each dataset to determine the most 

influential features in predicting patient responses. These features were taken 

forward in the model development, removing redundant features that would not 

add to the model’s predictive ability. Using feature selection reduced the number 

of features incorporated into the model, providing a more efficient, less 

computationally expensive, and more pragmatic model. Reducing the number of 

features to only those most relevant in the model was expected to provide a more 

practical tool for predicting responses in the clinic and indicate the molecules 

potentially involved in modulating the inflammatory processes.  

There are several ways of performing feature selection. The recursive feature 

elimination (RFE) algorithm was used in this work since it is a robust method across 

datatypes and performs well compared to other simpler methods, at the cost of 

being computationally expensive (Pudjihartono et al., 2022). The RFE algorithm is 

described as a wrapper-type algorithm. Briefly, as a wrapper-type algorithm, the 

RFE uses another machine learning model — for example, a random forest (RF) 

algorithm. This algorithm recursively generates a model from the features in the 

dataset and ranks these based on their relative importance in the classification. 

The lowest ranked features are removed, and the model is regenerated from the 

remaining features, which is repeated until the optimal features remain (Guyon et 

al., 2002). The user can also designate this number. Like other hyperparameters in 

a model, this number goes through a tuning process. The number of features 

retained is selected based on the model's classification accuracy using that subset 

of features.  

Repeated k-fold cross-validation, a method of resampling described in the previous 

section, was used as part of the RFE feature selection process to reduce the risk of 

overfitting the model to the data. This was done by applying a 10-fold cross-

validation repeated 50 times. The RFE process was repeated 10 times, with 

different seeds being applied in each iteration to introduce variation into the 

process. The results from each iteration of the RFE process were then aggregated, 

and the features that appeared in at least half of these were kept, increasing the 

robustness of the results.  
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The rfe function from the caret packages was used for the feature selection in the 

R environment (Kuhn, 2019). Following the initial feature selection procedure, a 

filtering method was performed based on the coefficients calculated when the 

features were correlated to remove any redundant features (Grissa et al., 2016). 

Features that strongly correlated (correlation coefficient > 0.7) were assessed, and 

those with matching RTs were investigated further since these were likely 

different signals for the same feature. To reduce redundancy, one of the 

correlating features was removed based on its lower relative importance score.  

The number of features to be included in the model was selected using a scree 

plot-like cut-off. Cut-offs were selected where there was a substantial decrease in 

the relative importance scores in the feature selection graph, with features below 

this ‘shoulder’ having a much lower importance score, indicating less association 

with the binary classification. However, it was noted that using this subjective 

approach may introduce bias into the model, so care was taken to use the same 

rule for selection across the project.  

2.6.4. Model Generation 

Seven commonly used supervised machine learning algorithms were compared for 

their performance in predicting the treatment responses of patients from the 

baseline omics features, using the resampling techniques, typically using repeated 

k-fold cross-validation. These included the following: extreme gradient boosting 

(XGB); support vector machine (SVM); random forest (RF); naïve Bayes (NB); k-

nearest neighbour (KNN), logistic regression (GLM), and boosted logistic regression 

(GLMB), as described in Table 2.2. The selection of the optimal algorithm for a 

model was determined based on various performance metrics, primarily the area 

under the curve (AUC) for the receiver operating characteristic (ROC) curve and 

the Matthews Correlation Coefficient (MCC), both of which are described in Section 

2.6.8.  
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Table 2.2. Commonly used supervised machine learning classification algorithms and their 
method (engine) and tuning hyperparameters. 

 

2.6.5. Random Forest Overview 

The RF algorithm is a flexible and non-linear tool in supervised machine learning. 

As an algorithm commonly used throughout this project, a brief description of its 

process follows. 

As an ensemble algorithm, RFs are a supervised learning approach combining 

numerous decision trees and generating a single aggregated output from these 

(Breiman, 2001). To understand the RFs, decision trees, which are considered 

‘weak learners’, should be explained briefly. Decision trees are useful in 

classification problems, where, starting at an initial or root node, a dataset is split 

into two or more subgroups based on the features within the dataset. This is 

illustrated in ‘Tree 1’ in Figure 2.5, where the rules a decision tree uses to 

categorise samples as negative or positive are shown based on three nodes. 
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• Minimum number
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• Use kernel
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xgbTreeExtreme Gradient 
Boosting

• Kmax

• Distance
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• C
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svmRadialSupport Vector 
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• Noneglm Logistic regression
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• prune
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Figure 2.5. Illustration of random forest model. The random forest comprises numerous 
decision trees (the default is often 500). For binary classification, the decision tree splits the 
data's subgroups (bootstrap samples) based on the features that maximally discriminate the 
classes being investigated. The features most influential in this discrimination are at the top 
of the tree. The decision trees are aggregated, and the output prediction from the random 
forest is the majority vote of the entirety of the trees in the forest.  

 

The algorithm splits the data into subgroups at decision nodes, classifying the data 

based on the features that are the strongest predictors of the subgroups until all 

the nodes are exhausted. This occurs when the subgroups of data cannot be split 

any further, resulting in terminal nodes with a given classification, as 

demonstrated using an example dataset in Figure 2.5. The splitting procedure used 

here was based on the Gini index, which describes the probability that a particular 

node at the end of each tree is incorrectly classified when randomly selected. For 

this reason, a low Gini index is preferable, which gives a measure of the uniformity 

of the data at the node.  

By combining the outputs of many decision trees, RFs improve their robustness and 

are frequently used in machine learning for classification problems (Grissa et al., 

2016; L.-L. Zhao et al., 2019; Takahashi et al., 2020). Bootstrapping is used, where 

only a random fraction of samples is selected (with replacement) for each decision 
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tree in the random forest. This means that each decision tree is exposed to only a 

small handful of the samples in the training data, meaning that the choices used to 

categorise the samples may differ for each tree. By combining the trees, the most 

influential features in classifying the samples can be found, and a more robust 

model is produced. Indeed, by increasing the number of trees in the forest, the 

model becomes more robust and may offer greater accuracy in predicting the 

classes in new samples. 

Correlating trees within a forest can be a problem. Despite each tree being 

generated independently, the strong relationships between features in each 

dataset can lead to trees ending up with very similar structures, which leads to the 

challenge of variance needing to be tackled. To decorrelate the trees and to deal 

with the variance, the RF randomly selects subsets of the features to be included 

in each tree, leading to different groups of features being used by each tree 

(Hastie, Tibshirani and Friedman, 2016). The number of features in each tree can 

be tuned in the caret package (Kuhn, 2019). 

2.6.6. Naïve Bayes Overview 

The naïve Bayes (NB) algorithm is a simple and efficient classification method that 

was used throughout this work as the basis of the models used to predict patient 

responses following treatment using baseline molecular features. As such, the NB 

algorithm will be described briefly to provide an understanding of its function, as 

well as its advantages and disadvantages.  

The NB algorithm applies Bayes Theorem to a classification problem, where 

Equation 1 demonstrates its function:  

𝑃(𝐴|𝐵) = !"𝐵#𝐴$.!(')
!())

   

Equation 1. Bayes Theorem 

	Here, P(A|B) represents the probability of classifying a patient’s response, A, by 

the feature, B. This is referred to as the posterior probability and is dependent on 

the likelihood probability, P(B|A), multiplied by the prior probability, P(A), divided 

by the marginal probability, P(B).  In the classification problem in this work, the 

likelihood probability refers to the probability of the omics feature being of a 
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certain value when the patient response is known. The prior probability describes 

the probability of the response before any of the feature levels are known. 

Similarly, the marginal probability is the probability of the features being at a 

given level without an influence by the patient response classification.  

When multiple features are incorporated into the model, the algorithm 

accommodates these by multiplying them, as shown in Equation 2. This reflects the 

naïve component of the algorithm, which assumes that the features are 

independent (Lewis, 1998; Berry, 2006). In other words, the algorithm does not 

recognise any interactions or relationships between the features, which is noted in 

the literature as a common trait in real-world data. Nevertheless, the machine 

learning community have recognised that despite this assumption, the NB 

algorithm remains efficient even when this assumption is not met (Lewis, 1998; 

Rish, 2001).  

𝑃(𝐴|𝐵*…𝐵+) =
!"𝐵*#𝐴$!"𝐵,#𝐴$…!"𝐵+#𝐴$.!(')

!())
  

Equation 2. Naive Bayes algorithm with multiple features 

The NB algorithm is comparatively fast and efficient as it does not require training 

numerous hyperparameters, such as with the RF or XGB algorithms. Instead, it 

takes a probabilistic approach to predict the sample classes based on the features 

incorporated into the algorithm, considering these as independent of each other 

(Narayanan, Arora and Bhatia, 2013). However, the assumption of independence 

may result in a loss of information relating to the biochemical proximity of the 

metabolites which are typically highly correlated. Nevertheless, the NB 

consistently performed well and comparatively to the RF algorithm throughout 

preliminary analyses for this project.  

2.6.7. Feature Importance 

From the final models, feature importance was carried out to investigate which 

features were considered most important in influencing the accuracy of predicting 

the correct sample class. This involved using the varImp function from the caret 

package in the R environment (Kuhn, 2019). The varImp function assigned 

thresholds to the data to predict the sample classes for a binary classification 

problem. The receiver operating characteristic (ROC) curve was generated using 
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the computed sensitivity and selectivity. The importance of the features was 

determined in terms of the ROC area under the curve (AUC) value and these values 

were then scaled to show the relative changes.  

2.6.8. Final Model Generation and Evaluation 

The generation of the final model involved a 10-fold cross-validation repeated 100 

times. Different hyperparameters were tuned depending on the selected 

algorithm, as described in Table 2.2. These can be described as the inner 

mechanisms or settings that can be applied to the models during their training. 

The tuning procedure involved generating a vector of values for each 

hyperparameter for the given machine learning algorithm, which were then 

presented to the model as a grid with numerous combinations of each 

hyperparameter that the model can try out. The model selects the combination of 

hyperparameters from the grid based on its performance, measured in this work 

using the AUC-ROC. 

After hyperparameter tuning, the model was then evaluated, with the 

performance being determined using two metrics, the AUC-ROC and the Matthews’ 

Correlation Coefficient. The confusion matrix was first generated to assess the 

models, checking the predicted response of the samples against the actual 

response. This structure then provides a check for the types of errors being made 

by the model. The model performance can be determined by using a combination 

of these errors and the accuracy of the classification. From the confusion matrix, 

the accuracy of the model can be calculated, revealing the ability of the model to 

predict classes in terms of true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN). However, the accuracy and other metrics, such as 

the F1 score, will often overestimate optimistic predictions, which are observed 

when there is an imbalance in the classes in a dataset. A dataset can be 

considered balanced when there is an equal number of samples in both classes 

described. An imbalance can occur, for example, if there is a much higher 

proportion of good responders in the sample after 3 months than poor responders. 

Accuracy should generally be avoided as an evaluation metric due to the over-

prediction of the majority class in an imbalanced dataset.  
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The ROC curve involves the sensitivity (true positive rate, TPR) plotted against 1 

minus specificity (false positive rate, FPR). Each point on the ROC curve represents 

the balance between the sensitivity and specificity of the model across the range 

of threshold values, from zero to one (Flach and Kull, 2015). The user can select 

the model parameters that provide the most acceptable balance between these 

measures of model performance.  

A perfect model would have a curve going from the plot coordinates, 0,0 in the 

bottom left straight up to 0,1 in the top left, and then across to 1,1 in the top 

right, showing a high sensitivity which is maintained despite an increasing 

specificity. In other words, the model was intended to predict as many patient 

outcomes as possible (sensitivity) while avoiding incorrect predictions (specificity). 

An important advantage of the ROC curve is its intuitive visualisation of the 

model’s performance. It shows the curve alongside a diagonal line to demonstrate 

the successful prediction of the data classes compared to that occurring by 

chance. A ROC curve near the diagonal line, for example, with an AUC < 0.65, 

might reflect a poorly predictive model due to the prediction being only marginally 

better than a chance prediction. 

The ROC metric is best used when the classes are balanced, with the precision-

recall (PR) curve being better suited when there are extreme class imbalances, 

such as in the case of rare diseases, when 1 in 100,000 individuals may be in the 

positive class (Flach and Kull, 2015). This plots the precision (y-axis) against the 

recall (x-axis), where precision is the ratio of true positives to true and false 

positives. The recall is the ratio of true positives to the combined total of true 

positives and false negatives. The PR curve, therefore, ignores the potentially high 

number of true negatives and focuses only on the positives that are calculated. 

The ROC and PR curves were generated using the MLeval package in R (John, 

2021).  

The MCC provides an alternative metric, determining how similar the predicted 

sample classes are to the true sample classes by calculating a correlation between 

these sample class groups, shown in Equation 3. The MCC considers the TP, TN, FP 

and FN values, accommodating all components of the confusion matrix (Chicco and 

Jurman, 2020). 
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𝑀𝐶𝐶	 = 	 (𝑇𝑃 × 𝑇𝑁	– 	𝐹𝑃 × 𝐹𝑁)	/	√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
Equation 3. Matthews' Correlation Coefficient 

2.6.9. Feature Interpretation 

Various model-agnostic interpretation methods were employed to assess how each 

of the features included in the model influenced the probability of predicting a 

positive response to treatment. Such insights into the model’s workings can be 

valuable in understanding how the molecules included in the model may have a 

mechanistic role in the progression or resolution of disease.  

 These included a variety of global and local model-agnostic tools. Global 

interpretation methods are used to understand how a model uses the features to 

make predictions across the entirety of the data being assessed, while local 

interpretation methods are used to understand why one sample might be given a 

particular classification based on the features included (Molnar, 2019; Viana et al., 

2021). Global interpretation methods used in this work contain the partial 

dependence plots (PDPs) and accumulated local effects (ALE) plots. In contrast, 

the Shapley Additive Explanation Plot (SHAPP) was used as a local interpretation 

method, all generated using the DALEX package (Biecek, 2018; Molnar, 2019).  

Briefly, the PDPs can be used to understand the influence of a given feature on the 

probability of predicting a sample class in the provided data (Greenwell, Boehmke 

and McCarthy, 2018). In other words, the PDP provides a reflection of the rationale 

for how samples in an omic dataset might be classified using the model based on 

their molecular features. While the PDPs are most easily interpreted using a linear 

model, where there is a clear linear relationship between the feature and the 

probability of predicting a class, other models can also be used that do not 

necessarily show linear relationships, including RF and NB models (Molnar et al., 

2022).  

Interestingly in PDPs, a causal relationship can be drawn in the context of the 

model since the rules for classifying the samples are defined as a function of the 

features themselves (Molnar, 2019). However, care needs to be taken where this 

does not necessarily mean a causal relationship between the feature and the class 

label, as this relationship may exist only within the confines of the model itself.  
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While the PDPs help visualise the influence of features on the average prediction 

of the model, they are limited when dealing with correlated features (Molnar et 

al., 2022). In such a case, dependent features that are included to generate PDPs, 

for example, height and weight, the algorithm would generate unrealistic data 

points which can skew the plots (Apley and Zhu, 2020).  

The ALE plots are generally preferential over these as they are unbiased when 

dealing with correlated features (Apley and Zhu, 2020). Like the PDPs, for a range 

of values for a given feature, the ALE plots describe the influence of the feature in 

terms of the average prediction or the probability of predicting a given class in the 

dataset. These methods differ in interpreting the features. The ALE plot’s 

algorithm was designed to remove the influence of other features by calculating 

the differences in the average prediction for a feature’s effect across small 

intervals of the feature’s values. By doing so, the effect of correlation between 

features, which can lead to inappropriate feature values being incorporated into 

the PDP calculation, is ultimately cancelled out (Molnar, 2019; Apley and Zhu, 

2020; Molnar et al., 2022). 

A useful local interpretation tool is the SHAP plot. For a given predictive model, a 

SHAP plot can be derived from Shapley values, which describe the marginal 

contribution that the individual features in a model made to the overall prediction 

when all of the other features are considered in combination with each other 

(Molnar, 2019; Merrick and Taly, 2020). A SHAP plot defines a baseline value, 

which is the average prediction, including all features. The boxplots shown in the 

plot for each feature illustrate each feature's positive or negative contribution 

when added relative to the average prediction. Multiple orderings of the features 

are assessed, with 25 being the default number, with the Shapley value showing 

the average contribution of the feature across these permutations (Molnar, 2019).  

2.6.10. Comparing Models 

Models generated to predict patient outcomes were compared within the datasets. 

For example, multiple models were developed from the TaSER cohort, including a 

metabolite-based model, a patient factor-based model, and a composite model to 

predict patient responses in the cohort. The ROC curves generated from each 



 

 

74 

model’s evaluation were plotted simultaneously using the MLeval package, and the 

AUC-ROC and MCC values were compared. The ROC curves could be compared 

using DeLong’s statistical test to determine whether the ROC curves are 

statistically different.  



 

 

75 

3. TaSER Metabolomics 
3.1. Introduction 

3.1.1. Overview 

The first-line treatment of RA currently involves the use of conventional synthetic 

disease-modifying anti-rheumatic drugs (csDMARDs), the most common of which is 

MTX (Kerrigan and McInnes, 2020). Having been used in the clinic for over five 

decades, MTX is ineffective in up to 40% of MTX-naïve patients (Maciejewski et al., 

2021). In patients who do not respond optimally to MTX, an alternative strategy is 

required, often with the treatment being selected through a trial-and-error 

approach that ultimately delays the administration of an effective treatment (Ling, 

Bluett and Barton, 2018; Teitsma, Jacobs, et al., 2018).  The choice of agent is 

driven currently by application of guidelines and recommendations, for example, 

from EULAR, British Society of Rheumatology (BSR), National Institute for Health 

and Care Excellence (NICE) and the ACR.  

Providing early and aggressive treatment to patients offers the best opportunity to 

prevent long-term damage to the joints and improve the quality of life (Sweeney 

et al., 2016). To do so, a precision medicine-based approach involving the 

development of a molecular profile associated with treatment response would 

support the optimal administration of treatment to patients based on their 

molecular requirements.  

3.1.2. Aims 

Using the metabolomic data generated from baseline plasma samples from patients 

with RA in the TaSER cohort, this chapter investigated the metabolites that were 

associated with the clinical response to MTX. It was anticipated that response-

associated metabolites from this work would inform biomarker discovery to predict 

responses to treatment and therefore guide optimal therapy for patients with RA.  

This chapter sought to generate a metabolic model associated with MTX responses 

that could be used to predict the responses of future cohorts of patients with RA. 

This was intended to contribute towards a precision medicine approach to guide 

optimal therapy based on a patient’s metabolic profile. The chapter describes the 
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exploratory analysis, the generation of this metabolic profile and its evaluation, 

followed by an investigation of the influence of metabolites within the profile and 

their association with the changing disease activity. 

3.2. Methods 

The Methodology in Chapter 2 comprehensively describes the methods used 

throughout this project. Additional study-specific components of the analysis are 

reported in this section.  

3.2.1. Targeting Synovitis in Early Rheumatoid Arthritis 
(TaSER) Trial  

The metabolomic data generated from patient plasma samples involving individuals 

enrolled on TaSER trial were analysed in this work (Liu et al., 2018; Zakharia et 

al., 2021). The TaSER trial was initially carried out to investigate whether adding 

musculoskeletal ultrasound (MSUS) to diagnose and evaluate disease activity and 

thereby guide the escalation of therapeutics would improve the clinical outcomes 

for patients (Dale et al., 2016). The primary outcome for the trial was the patient 

response in terms of their disease activity score across 44 joints (DAS44), which 

was measured prior to treatment, after 3 months of treatment and after 18 

months.  

The TaSER trial recruited RA patients with active disease (n=79) using csDMARDs, 

including MTX (n=75) and sulfasalazine (n=4). Plasma samples were obtained at 

baseline, 3 months, and 18 months after treatment initiation. Only the baseline 

metabolomic data from the samples were used in this work. This allowed a 

baseline molecular profile predictive of the 3-month outcomes to be developed.  

Alongside these baseline samples, the 3-month disease activity measures were 

used (Dale et al., 2016). Of the 75 patients who received MTX in the trial, 3 were 

removed from the analysis due to missing disease activity measures over the 3 

months included in this work. Only the baseline metabolomic data of the remaining 

72 patient samples were considered here, along with the baseline and 3-month 

disease measures. The disease activity and quality of life measures included the 

following: 
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• disease activity score across 44 joints (DAS44) 

• disease activity score across 28 joints with ESR (DAS28-ESR) 

• erythrocyte sedimentation rate (ESR) 

• C-reactive protein (CRP) 

• health assessment questionnaire (HAQ) 

• swollen joint count (SJC) 

• rheumatology attitudes index (RAI) 

• patient general health assessment (GHVAS) 

• pain visual analogue scale (PVAS). 

The DAS28-ESR score was used as the primary measure of disease activity and 

treatment response in this work owing to its more popular use in clinical practice 

than the DAS44 score. In addition to these measures, patient data were of interest 

for the subgroup-based analysis and predictive model development, including 

those described in the literature as risk factors for RA (McInnes and Schett, 2007). 

These include age, sex, smoking status, autoantibody status and symptom 

duration. 

Patients followed a treatment protocol which began with an initial administration 

period of MTX at 20 mg per week. During monthly reviews with a clinician, the 

treatment was escalated based on the progression of the disease, measured in 

terms of the DAS28-ESR score alone or with an additional MSUS as part of the study 

group. Using a TTT approach, targets for the disease activity were set and 

doses/treatments were adjusted if these were not met 3 months since the previous 

treatment change (Dale et al., 2016). 

All patients had active RA at recruitment, where a DAS28 score < 3.2 was the 

threshold set for low disease activity at baseline, also described as the cut-off for 

a good response in Table 3.1 alongside other responses as recommended by EULAR 

(van Gestel et al., 1996; Jerram et al., 2008; Smolen et al., 2016). The DAS28 can 
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be calculated using a combination of several clinician-measured outcomes (for 

example, SJC and ESR) and patient-reported outcomes (for example, TJC, HAQ and 

GHVAS) (Balsa et al., 2004). The DAS28 can be used to define response, with a 

DAS28 < 3.2 and a reduction in DAS28 > 1.2 describing a good response (Fransen 

and van Riel, 2005; Jerram et al., 2008).  Remission can be defined with a DAS28 < 

2.6, although there is ongoing controversy regarding what measures should be used 

to define remission (van Gestel et al., 1996; Wells et al., 2009; Smolen et al., 

2016). 

Indeed, the DAS28 is not a perfect measure of disease state, as shown when 25% of 

patients with RA in a cohort with low disease activity defined using DAS28 < 3.2 

had symptoms reflecting active disease (Dale et al., 2014). The DAS28 scoring, 

whether utilising CRP or ESR measures, was reported as not providing a stringent 

enough measure of improving disease activity where patients may experience 

residual symptoms without passing the threshold of active disease (Hirabayashi and 

Ishii, 2013; Sheehy et al., 2014). There is, therefore, considerable debate 

surrounding how best to define a response to treatment (Jerram et al., 2008; 

Pisaniello et al., 2022). Therefore, the potential overestimation of remission based 

on DAS28-ESR scores was an important consideration in this work.  

Table 3.1. EULAR clinical responses and disease activity changes in patients based on the 
DAS28-ESR/CRP and DAS44 cut-offs. DAS cut-offs in brackets reflect alternative criteria for 
responses. 

 

Nevertheless, the DAS28 will be used as the primary measure to determine 

response to treatment in patients since this is the most common clinical measure 

of disease activity.  

Present DASImprovement in DASClinical Response
Disease Activity 

Measure
(> 5.1)< 0.6 (or > 0.6 to ≤ 1.2)None

DAS28
≤ 5.1 (or > 3.2) > 0.6 to ≤ 1.2 (or > 1.2) Moderate
≤ 3.2> 1.2Good 
< 2.6-Remission
> 3.7< 0.6 reductionNone

DAS44 < 2.4> 1.2 reductionGood
< 1.6-Remission
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3.2.2. Additional Details on Machine Learning Method 

While the TaSER metabolome was not considered a particularly large dataset, a 

holdout cross-validation approach was used, which would typically be saved for 

larger datasets. This involved the data being split into training and testing subsets. 

The supervised model was generated and tuned in the training subset, followed by 

its evaluation in the testing subset.  

This provided the opportunity to develop a supervised machine learning workflow 

using the training subset, which was used as the basis for analysing the data in 

later chapters. The workflow was optimised, involving testing different algorithms, 

feature selection methods, packages, and environments within the training subset 

of data without introducing bias into the final model’s performance. For example, 

by assessing multiple commonly used supervised machine learning algorithms 

within the training subset, it was apparent that the RF, NB and XGB algorithms 

performed well in predicting the 3-month response groups using the features 

provided. 

It is important to note that only the tentatively identified and putative metabolites 

were included in the modelling. This allowed greater ease with which the final 

model could be tested in other related datasets, where the same features could be 

largely detected. While there was an expected loss of information due to including 

only identified features, by removing the non-identified peaks there was an 

improvement in the performance of the final model, as well as its computational 

efficiency due to fewer features being included in the modelling. However, a 

parallel model was developed which included all features, regardless of their 

identification status, allowing the incorporation of non-identified peaks in a 

predictive model. This additional model was described in Supplementary Figure 3 

with the final all-peaks model consisting of seven features and performing poorly 

(AUC-ROC= 0.54, 95% CI = 0.28-0.80) compared with the annotated model 

described in the remainder of this chapter.  

3.2.3. Comparing Models 

The metabolite model generated to predict the DAS28-ESR-based patient response 

to treatment was compared with additional models generated from baseline 
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disease and clinical data, along with the baseline metabolomic data. Comparing 

the metabolite model with the disease measures model would first indicate 

whether the model could predict patient responses better than using only data 

describing clinical data and disease measurements at baseline. These 

measurements included risk factors for RA, including smoking status, age, 

autoantibody status, and baseline disease measurements. These typically predict 

which patients will likely respond to treatment or progress to greater disease 

severity. As such, comparing the different models would determine whether the 

metabolite model provides greater predictive ability than the existing markers.  

In addition, a composite model was generated by combining the metabolomic data 

and the disease measures, and this was compared with the metabolites and disease 

measures models. These models were generated using the same approach as the 

metabolite model, involving feature selection, hyperparameter tuning and 

algorithm selection. The performance of these disease measures models was 

compared with that of the metabolite models. A statistical test was performed to 

determine whether their respective performance in the test subsets was 

significantly different.  

Since the DAS28 was calculated using the ESR, SJC and TJC, these measures were 

removed from the model generation process. Additionally, dummy variables were 

used in place of the discrete factors to allow for these factors, such as sex, 

smoking status and autoantibody status, to be incorporated into the model. For 

example, patients could be classed as current, former or non-smokers regarding 

the smoker status factor. The same was true of the RhF status, where the dummy 

variable representing RhF-positive patients was incorporated into the model.   

3.3. Results 

3.3.1. Patient Data 

The baseline and 3-month disease activity and other patients were reported and 

are summarised in Table 3.2. The baseline disease activity was determined using 

the DAS28-ESR, with a baseline score of 5.0 (SD: ±1.2), which reduced to 3.0 (SD: 

±1.2) after 3 months.  
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Table 3.2. Demographics and disease activity measures of patients in TaSER cohort at 
baseline and after 3 months. The mean and standard deviation of disease activity measures 
were reported. 

 
 

3.3.2. Responses to Treatment 

The response to treatment was determined using the DAS28 score, with the final 

DAS28 at 3 months being the principal measure of response as part of a treat-to-

target strategy. The distribution of the DAS28 scores is shown in Figure 3.1, with 

the change in DAS28 (ΔDAS28) between baseline and 3 months in Figure 3.1A and 

the final score in Figure 3.1B. 
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Figure 3.1.Histograms of DAS28-based responses to treatment after 3 months. A. ΔDAS28 
over 3 months with red line marking change required to achieve low disease activity or a 
good response B) Final DAS28 after 3 months with the red line marking the remission 
threshold of the DAS28-ESR. The cut-offs were based on the EULAR recommendations for a 
good response (ΔDAS28) and remission (final DAS28). 

 

3.3.3. Multivariate Analysis of TaSER Metabolome at Baseline 

The results from the PCA of the baseline metabolome with the samples labelled 

based on their 3-month DAS28-ESR-based responses are shown in Figure 3.2. From 

the scree plot in Figure 3.2A, a shoulder was observed around PC3-4, indicating 

that PCs 1-3 were sufficient to explain the variance across the dataset. However, 

the low amount of variance described by each component meant that this 

approach was unlikely to be useful in understanding the influence of the 

metabolome across the samples and their response groups. The first PC (PC1) 

explained 8.4% of the variance across the samples, with PC2 describing 7% and PC3 

describing 5.4%, as shown in Figure 3.2B-C. 
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Figure 3.2. Principal components analysis results. A) Scree plot showing variance explained 
by each component. B. Scatter plots showing samples projected in space defined by PCs 1 
and 2 with DAS28 responses labelled. C.  Scatter plots showing samples projected in space 
defined by PCs 1 and 3 with the 3-month DAS28-based responses labelled. 

 

The PCA plots did not reveal a discernible global separation of the samples at 

baseline based on the metabolome when the samples were labelled based on 

patient responses at 3 months. There was, therefore, no evidence from this 

analysis of a whole-metabolome profile of these response groups. 

3.3.4. Explaining the Variance of the Metabolome  

The factors influencing the variance of the metabolome were investigated with the 

results shown in Figure 3.3, with age being the most influential factor in explaining 

the variance across the entirety of the metabolome. The very high percentage for 

the residuals factor highlights that most of the variance of the metabolome is 

explained by factors not reported within this dataset.  
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Figure 3.3. Violin plots show the influence of patient factors on the variance across the whole 
metabolome. Boxplots were superimposed to aid the visualisation of the distribution of the 
data. 

 

Each factor considered in this analysis explained a relatively low variance, with 

age explaining the highest median variance of ~5%. The influence of age on the 

metabolome is becoming clearer, with the recent development of the metabolomic 

data repository, MetaboAge DB, demonstrating the increasing volume of data that 

describes the relationship between ageing and a changing metabolome in healthy 

individuals (Bucaciuc Mracica et al., 2020). Indeed, the changes observed in the 

metabolome as individuals age may influence the emergence of diseases such as 

RA, where age is an established risk factor. 

Interestingly, as indicated in the violin plot in Figure 3.3, smoking status explained 

a large proportion of the variance of the metabolome of a handful of patients with 

a variance up to ~80% for some individuals. This was anticipated due to the 

detection of nicotine-derived or other smoking-associated metabolites in these 

samples. Therefore, a search was performed for such features, including 

tentatively identifying nicotine, 2-hydroxynicotine and cotinine. These are shown 
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in Figure 3.4, and as expected, smoking status considerably influenced the 

variance of these metabolites. The caveat to this, and the remainder of the 

analysis here, is that no associated fragmentation data were generated as part of 

the TaSER study. Such data would allow a more comprehensive investigation into 

the nicotine-derived metabolites while providing greater confidence in identifying 

these features.  

 

Figure 3.4. Explaining the variance across smoking-associated metabolites. A. Bar plot 
showing the influence of patient factors on metabolites in terms of the variance explained. B. 
Violin plots showing the average (median) variance explained across the metabolites of 
interest based on the patient factors. 

 

3.3.5. Differential Analysis of Metabolites Across Response 
Groups 

The results from the differential analysis of the metabolome features across the 

binary response groups are shown in the volcano plot in Figure 3.5. The response 

groups were defined based on the DAS28-ESR remission cut-off (3-month DAS28-ESR 

< 2.6), termed in this work as a good response with a poor response defined as 
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DAS28-ESR ≥ 2.6. Importantly, no significantly associated metabolites were found 

after the BH correction for multiple testing (Benjamini and Hochberg, 1995). This 

may reflect the subtlety of the metabolic changes across the groups, or the 

relatively large number of features compared with samples, which may hide 

biologically meaningful events after the p-value correction. 

 

Figure 3.5. Volcano plot showing differential analysis of baseline peaks from both ion modes 
across response groups. Analytes were coloured based on their unadjusted p-values with a 
cut-off of 0.05 being used. Only metabolites with at least a tentative identification based on 
mass were labelled where these had an unadjusted p-value < 0.05. 

 

The metabolites that were increased at baseline in the good responders included 

pyroglutamate, cytosine, pantothenate, indoleacrylic acid, N-acetylornithine, N-

acetylleucine, L-histidine, N-acetylputrescine, and uric acid. This group of 

metabolites had unadjusted p-values less than 0.05 and were showed only small 

difference in the metabolite abundances between the response groups. 

Nevertheless, the fact that the acetylated derivatives of ornithine and putrescine 

had slight increases in their abundance in the good responders may be biologically 

meaningful. For instance, these may be linked to increased arginase activity, 

which may be elevated in patients with RA compared with healthy individuals 

(Chandrasekharan et al., 2018).  
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Considering the lack of statistical significance and noting the small fold change of 

the metabolites, the features with a log fold change > 0.1 or < -0.1 were selected 

from the differential analysis. The features from this list that had at least 

tentative identifications underwent pathway analysis with the results in Figure 3.6.  

 

Figure 3.6. Pathway analysis from most differentially abundant metabolites from TaSER 
cohort  shown as dots representing the extent of the enrichment, in terms of enrichment 
ratio and significance. Plot was generated using the MetaboAnalyst MSEA tool for 
overrepresentation analysis.  

 

The most enriched pathways included purine metabolism, arginine and proline 

metabolism and the urea cycle, which included fumarate, glutamate, 2-

oxoglutarate, ornithine, guanidinoacetate and citrulline from the differentially 

abundant metabolites. However, care needs to be taken when interpreting these 

findings since the metabolite identification is often biased towards those that can 

be identified most easily where reference standards can be found, for example, 

amino acids. Nevertheless, the perturbations of the amino-acid pathways may be 

biologically meaningful and will be assessed alongside the additional findings 

B
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throughout this work. Additional pathways are still likely to be present and are 

expected to be uncovered with the use of larger reference libraries and the use of 

fragmentation methods to aid metabolite identification. 

3.3.6. Correlation Analysis of Baseline Metabolites 

All peaks were included in the correlation analysis, involving the baseline peak 

intensities being correlated against the 3-month DAS28 scores, with the results 

shown in Figure 3.7. Spearman correlation coefficients ranged from 0.23 to 0.33 in 

both positive and negative directions, with the strongest correlation shown for the 

peak with a m/z ratio = 85.064 and RT of 8.208.  

 
Figure 3.7. Correlations of baseline metabolomic signals and 3-month DAS28. For each 
signal, the relationship between the peak abundance at baseline and the disease activity at 
3-months was determined by calculating the Spearman correlation coefficient and p-values.  

 

However, upon investigating the quality of this peak using the PeakML viewer tool, 

it was apparent that this was not a quality signal, and its m/z ratio did not match 

that of any known metabolite within the mass accuracy of 3 ppm used for the 

study. Since a similar pattern was seen across the other non-annotated peaks in 

this analysis, only those that could be tentatively annotated and had quality signals 
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were reported in detail. These included acetyl homoserine (R=-0.23, p =0.049), 

glycine (R=0.28, p=0.017), N-acetyl ornithine (R=-0.25, p=0.033) and 

pyroglutamate (R=-0.25, p=0.031), shown in Figure 3.7.  

 

3.3.7. Subgroup Analysis 

Further analysis was performed on subgroups defined using the established risk 

factors for RA. These included age, smoking status, sex, rheumatoid factor (RhF) 

status and ACPA status (Deane et al., 2017). 

The differential abundance of the metabolites at baseline was assessed within 

each of the subgroups, as were the correlations between the metabolites and the 

DAS28 measures (DAS28 after 3 months and final DAS28 after 3 months). The 

subgroups were defined as follows: 

• age: <= 50 years, > 50 years 

• sex: male; female 

• smoking status: current smoker, former smoker, non-smoker 

• RF status: positive, negative 

• ACPA status: positive, negative 

 

None of the metabolites were significantly associated with the disease activity in 

any subgroups (adjusted p-value < 0.05). Additionally, the subgroups were 

combined to produce a ‘high-risk’ individual, such as a post-menopausal (> 50 

years old) smoker with an autoantibody-positive status. However, a subgroup-

specific metabolomic profile of responses remained elusive since no metabolites 

were significantly associated with response, potentially due to the decreasing 

number of patients found within each individual/composite subgroup. A larger 

sample size was required to generate such a metabolomic profile with any 

confidence. 
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3.3.8. Developing a Baseline Metabolic Profile Associated with 
Treatment Response  

The previous sections revealed no robust associations between the individual 

metabolites and the 3-month treatment response. As such, a supervised machine 

learning approach was taken to investigate whether a combination of metabolites 

could be uncovered that were associated with the 3-month outcomes. This was 

expected to reveal a panel of metabolites that could be used to predict the 

outcome of future patients with a similar profile.   

3.3.9. Feature Selection 

The feature selection results, using the RFE algorithm, are shown in Figure 3.8, 

including pyroglutamate, L-kynurenine, indoleacrylic acid, pyrroline, cytosine, N-

succinyl L-citrulline, L-ornithine and 5-methylcytidine. 

 
Figure 3.8. Bar plot showing the results from the feature selection for the metabolites model. 
The metabolites were selected using the recursive feature elimination algorithm and were 
ranked using their relative importance for the classification of samples to response groups. 

 

It is notable that L-ornithine was selected for the model, where the acetylated 

derivative was one of the few correlating metabolites with the 3-month DAS28. 
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Both metabolites were identified through their shared m/z ratio and RT to the 

authentic standards. However, these metabolites did not correlate significantly 

with each other, indicating that the acetylated derivative was not directly 

reflective of levels of ornithine in the circulation.  

3.3.10. Algorithm Selection 

Seven commonly used machine learning algorithms were evaluated for use in the 

model, with the results shown in Figure 3.9 with the ROC curves being plotted. The 

extreme gradient boosting (XGB) algorithm was selected for the final model, with 

the best performance in terms of the AUC-ROC and the MCC, shown in Figure 3.9 

and Table 3.3. Within the training set, the XGB algorithm achieved an AUC-ROC of 

0.76 (95% CI: 0.63-0.89) and an MCC of 0.528 after a 10-fold cross-validation was 

repeated 10 times.  

 
Figure 3.9. ROC curves shown for the algorithm optimisation process, involving seven 
commonly used classification algorithms in supervised machine learning. The algorithms’ 
ROC curves were plotted together to allow a comparison of their performances and the AUC-
ROC values were used as primary metric for the selection. 



Table 3.3. Performance metrics for the algorithm testing for the generation of the TaSER metabolites model. Highlighted in green is the XGB 
algorithm which was used in the final model after comparing its performance metrics to the other algorithms tested. 
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3.3.11. ROC Curves and Performance Metrics 

The final model’s performance in the testing subset of data is reflected by the ROC 

curve in Figure 3.10A. Further performance metrics are shown in Figure 3.10B.  

With an AUC-ROC value of 0.77 (95% CI: 0.54-1.00) and an MCC of 0.575, the XGB 

model performed relatively well in its prediction of patient responses after 3 

months within the testing set. However, the wide CI shown for the AUC-ROC may 

reflect the high variance of the metabolite abundances across the response groups 

used in the classification. A larger sample size would provide greater confidence in 

this panel of metabolites in its prediction of patient responses. Nevertheless, these 

findings point towards the selected metabolites having a predictive ability and 

association with the clinical response. 

 
Figure 3.10. Model’s performance from TaSER metabolome in the testing subset of the data. 
A. ROC curve of model’s performance in testing subset B. Performance metrics of the final 
model. 

 

3.3.12. Feature Interpretation: Shared Pathways 

Model-agnostic interpretation methods are increasingly being used to understand 

the involvement of individual features within the model (Ribeiro, Singh and 

Guestrin, 2016). The correlations between the baseline metabolites included in the 

model are shown in Figure 3.11, where only weak correlations were observed 

between each pair of metabolites.  

Metabolites Model
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Figure 3.11. Correlation heatmap of metabolites from the model. Spearman correlation 
coefficients calculated for each metabolite pair. 

 

Several of the metabolites from the model can be mapped to a shared network of 

pathways involving arginine metabolism and the urea cycle, with the caveat that 

their identity was not confirmed. Among these metabolites included L-ornithine, 

N-succinyl L-citrulline and pyrroline, which were all positively correlated with each 

other. Since these metabolites collectively contributed to the metabolic profile 

associated with the response to MTX, the question arose whether changes to the 

activity of arginine metabolism and the urea cycle contribute towards a favourable 

molecular environment for the action of MTX in resolving inflammation. 

3.3.13. Model Agnostic Feature Interpretation Methods 

There were non-linear relationships for each metabolite included in the model at 

their baseline abundance with the probability of predicting a positive response, as 
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shown in the ALE plots in Figure 3.12A. The SHAPP in Figure 3.12B shows the 

additive contribution of the metabolites on the model, although this provides only 

an insight into influence at a given metabolite abundance so does not provide the 

same level of insight as the ALE plots. 

 

Figure 3.12.Model agnostic interpretation methods for the features included in the TaSER 
metabolite model.  A) Partial dependence and accumulated local effects plots. B) Shapley 
Additive Explanation Plot (SHAPP). 

 

Across their ranges of abundances across the cohort, higher levels of cytosine, 

indoleacrylic acid, L-kynurenine, and pyroglutamate were associated with a 

greater probability of predicting a good response. Meanwhile, lower levels of L-

ornithine, N-succinyl L-citrulline and pyrroline were associated with a lower 

probability of predicting a good response. The influence of N-succinyl L-citrulline 
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Contribution

5-Methylcytidine Cytosine Indoleacrylic acid

L-Kynurenine L-Ornithine N-Succinyl L-citrulline
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L-Kynurenine: 19.6
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Pyrroline: 20.75
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Indoleacrylic acid: 18.04
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on the model was not clear from these plots, potentially indicating only a marginal 

association with response.  

Figure 3.13. Influence of patient factors on the variance of the model's metabolites in the 
TaSER cohort. A. Bar plot of variance explained of each feature by patient factors B. Violin 
plot of variance explained of features by patient factors. 

 

The influence of established risk factors on the variance of the metabolites in the 

model was assessed using the variancePartition tool, with the results shown in 

Figure 3.13. Smoking status appeared to have a pronounced influence on the 

variance of L-kynurenine abundance in the cohort. This was explored further 

where the differential abundance of L-kynurenine across the current, non-smokers 

and former smokers showed a significant increase in non-/former-smokers 

compared to current smokers, as shown in Figure 3.14.  
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Figure 3.14. Boxplot showing kynurenine abundance across the smoking status groups. 
Plotted across smoking status groups are the p-values, calculated using Wilcoxon tests. 

 

The reduction in L-kynurenine in current smokers may be due to the suppression of 

IDO activity in smokers (Pertovaara et al., 2006). This smoking-induced reduction 

of L-kynurenine may be clinically important owing to the immunomodulatory 

effects described for this metabolite, possibly leading towards a greater 

inflammatory profile in patients (Mathai et al., 2016).  

Interestingly, a combination of the factors included in Figure 3.13 could explain 

only up to ~10% of the variance of most of the metabolites in the model, except 

for N-succinyl L-citrulline, which had virtually none of its variance explained by 

these factors. Compared to the other metabolites, tentatively identified N-succinyl 

L-citrulline had virtually none of its variance explained by patient factors which 

cast concern over its biological identification. It was uncertain whether the signal 

for this metabolite was actually an artefact detected from the instrumentation. 

The lack of influence that N-succinyl L-citrulline showed in the feature 

interpretation plots in Figure 3.12A also led to concern over its identification. 

Age appeared to be an important factor in explaining the variance of cytosine and 

indoleacrylic acid, pyrroline, and cytosine, as well as pyroglutamate and L-

ornithine, although to a much lower degree. Indeed, age-related changes to 
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tryptophan-derivatives, such as indoleacrylic acid, have been reported and may be 

attributed to changes in the microbiome over the lifespan (Ruiz-Ruiz et al., 2020; 

Wu et al., 2021).  Smoking status influenced the variance of L-kynurenine and L-

ornithine. In contrast, the RhF status and ACPA status contributed to the variance 

of pyroglutamate. As was seen with the similar analysis of the entirety of features 

included in Figure 3.3, there was a large contribution of the residuals on the 

variance of the metabolites in the model. The fact that these metabolites were 

detected in patients' circulation meant that numerous factors, including 

homeostatic processes and environmental factors, were likely to explain their 

variances across the samples.  

3.3.14. Actual Differences in Metabolite Abundance 

The actual changes of the metabolites from the model are shown in Figure 3.15, 

with their baseline abundances plotted in relation to the patients’ 3-month DAS28-

based response. As indicated in the univariate analysis performed earlier, only 

small differences were found in the abundances of these metabolites between the 

EULAR-defined response groups.  

Figure 3.15. Differential abundance showing actual changes in metabolites from the TaSER 
model across the 3-month DAS28-ESR response groups. 
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While the earlier univariate analysis did not highlight any significant changes 

across the features in the metabolome, there were some potentially meaningful 

differences in the metabolites in the model across the response groups. Herein lies 

the power of the model — the individual metabolites that were weakly associated 

with treatment response were combined to provide a predictive tool that was 

more robust than its parts. Nevertheless, care needs to be taken in interpreting 

these findings, where it was apparent from the plots in Figure 3.15 that there was 

substantial variance in the abundances of most of the metabolites in both response 

groups. Where the variances overlapped across the response groups for the 

metabolites, it may be questioned whether these would provide robust biomarkers 

of response even if included alongside others in a model. However, since only 

relative quantification was achieved for these metabolites, an important 

subsequent step would involve performing a targeted analysis of the samples to 

provide absolute measurements of these metabolites. However, this was not 

achieved as part of this project.  

Notably, only indoleacrylic acid and pyroglutamate had abundances significantly 

different across response groups, both being increased in good responders. 

Meanwhile, pyrroline was borderline significant, being increased in poor 

responders. Since pyrroline was correlated with and biologically linked to L-

ornithine and N-succinyl L-citrulline, the increased activity of the urea cycle — 

giving rise to increased ornithine, which can be converted to pyrroline — may act 

as a valuable biomarker of response. However, further doubt over the biology of 

what was tentatively identified as N-succinyl L-citrulline was raised where there 

was no apparent difference in its abundance across response groups. From the 

previous results involving this feature, it was increasingly apparent that it was 

likely included in the model because of background noise within the data which 

influenced the modelling process.  

3.3.15. Disease Measures and Composite Models 

This section aimed to determine whether the metabolite model offered a better 

predictive tool than the baseline disease measures that may be used in the clinic 

to predict patient responses. The comparison of the models is shown in Figure 3.16 

and Figure 3.17. 
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Figure 3.16. Generation and comparison of metabolites, disease measures and composite 
model. A-C. Feature selection for respective models. D. ROC curves of each model compared. 
E. DeLong's statistical tests for two ROC curves. 

 
Figure 3.17. Performance metrics of TaSER models in test subset. A. Metabolites model. B. 
Disease measures model. C. Composite model. 

 

Disease Measures Model 

Firstly, the features were selected using the same RFE algorithm as the 

metabolites model, with features included in the disease measures model shown in 

Figure 3.16B, including HAQ, PVAS, smoking status (current smoker), RAI and RF 

status (positive). The selected features were then used in multiple models that 

p-valueAUC-
ROC 2

AUC-
ROC 1Comparison

0.620.7750.68125Disease Measures 
vs Metabolites

0.9360.7750.7875Composite vs 
Metabolites

0.4540.681250.7875Composite vs 
Disease Measures

Metabolite Model Disease Measures 
Model Composite Model
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were tuned for their hyperparameters, and the best-performing algorithm was 

selected. After choosing the KNN algorithm as the best-performing algorithm, the 

model was adjusted and evaluated in the test subset, achieving an AUC-ROC of 

0.68 (95% CI: 0.42-0.94) and MCC of 0.444, with these results shown in Figure 

3.16B.  

Composite Model 

By combining the metabolomic data and patient/disease measures data into a 

single model, shown in Figure 3.16C. It was anticipated that a more robust model 

could be developed, using features from different data types to predict patient 

responses. As with the metabolites and disease measures models, the composite 

model was generated using the same train/test data split and with a similar 

workflow. The selected features included those observed in the two prior models, 

including HAQ, pyroglutamate, RAI, cytosine and pyrroline. The final model 

performed marginally better than the previous, with an AUC-ROC of 0.79 (95% CI: 

0.57-1.01) and an MCC of 0.714, as shown in Figure 3.16D. 

3.3.16. Comparison of Models 

Compared with the performance of the metabolites model (AUC-ROC: 0.77), the 

composite model (AUC-ROC: 0.79) appeared slightly superior when comparing the 

ROC curves, as shown in Figure 3.16D. However, Delong’s test for two ROC curves 

revealed no significant difference (p=0.936), with a table describing the statistics 

in Figure 3.16E. This statistical test showed no evidence that the composite model 

predicted the 3-month DAS28-based response better than the metabolites model. 

The disease measures model did not perform as well as the other two models 

(AUC-ROC: 0.68) although, again, the Delong’s test did not reveal any significant 

difference across the models’ ROC curves, shown in Figure 3.16E.  

Additional metrics were provided to compare these models, including MCC shown 

in Figure 3.17. This indicated that the metabolite model (MCC: 0.575) performed 

relatively well in predicting the responses compared to the other models, although 

the composite model appeared to perform better (MCC: 0.714). Nevertheless, 

based on the ROC curves, the metabolite model was just as accurate in predicting 
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the patient outcomes as the other models consisting of patient factors in the 

testing subset of the TaSER cohort.  

3.4. Discussion 

3.4.1. Summary of Key Findings 

The TaSER trial and the metabolomic analysis on its plasma samples provided an 

opportunity to develop a baseline molecular profile of RA patient responses to 

MTX. Since RA is an autoimmune disease with a critical immune component, the 

changing immune activity in response to treatment may be reflected by changes to 

the metabolism. For example, succinate, lactate and itaconate have been linked 

to altered immune cell activity and may be detected in the circulation of patients 

(Rubic et al., 2008; Lampropoulou et al., 2016; Hooftman and O’Neill, 2019; 

Pucino et al., 2019; Daly et al., 2020).  

It was hypothesised that differences in metabolite levels in the circulation at 

baseline would be observed in patients who experienced differing responses to 

treatment. These differences may reflect a molecular profile in patients with a 

greater propensity to respond to treatment, potentially due to establishing a 

metabolic environment favouring MTX's successful action. As a result, developing a 

predictive tool that measures multiple metabolites associated with response would 

provide a more precise medical approach to guide optimal treatment for patients 

based on their individual molecular needs. However, it may also provide insights 

into novel treatment strategies, such as supplementing MTX with exogenous 

immunomodulatory metabolites.  

From the analyses performed in this section, it was concluded that tryptophan and 

arginine related metabolic pathways were notably associated with the response to 

MTX treatment in the TaSER cohort. While the individual metabolites in the 

predictive model were weakly associated with the treatment response, it was their 

collective association within the model that proved to be most revealing of the 

metabolic pathways potentially associated with the response. However, given the 

tentative identifications for several of these metabolites, including N-succinyl L-

citrulline and indoleacrylic acid, re-running the samples using a tandem MS 

approach to generate fragmentation data would assist in identification of the 
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metabolites. Moreover, while promising in predicting patient outcomes in the 

TaSER cohort, these findings ought to be validated in an independent cohort and 

determine whether the metabolites are robust biomarkers for use across 

demographics and geographical regions. Nevertheless, the results described in this 

section mark an important first step in this project, not only in generating 

preliminary findings which describe metabolic associations with treatment 

response but also in developing an analytical workflow that was expected to be 

similarly useful in guiding biomarker discovery in other datasets.  

3.4.2. Considering Future Clinical Applications 

While a clinically helpful tool might involve a sample-to-lab-based approach, 

where patient samples would be analysed using a validated quantitative mass 

spectrometer-based approach, an alternative would involve a lab-to-sample 

approach (Steigmann et al., 2020). This would involve the tool being available at 

the point-of-care (POC) — in other words when a patient visits the clinic for initial 

diagnosis or monitoring.  

The development of such a tool is increasingly feasible where POC chip-based 

technologies have demonstrated accuracy and clinical value in diagnosing patients 

(Wu et al., 2018). For example, the Abbot i-STAT analyser uses chip technology to 

measure a variety of blood markers, including pH, lactate, blood gases, glucose, 

and creatinine, providing a measurement within two minutes with a handheld 

device that can be used at a patient’s bedside (NICE, UK). Opportunities for similar 

technologies can be found where patients with chronic diseases require regular 

biomarker monitoring. In this case, treatment decisions may be made based on a 

patient’s molecular profile. A recent technological development using a 

complementary metal oxide silicon chip platform measured four metabolites, 

including glutamate, choline, sarcosine and the total L-amino acids from the 

plasma of patients with prostate cancer (Annese et al., 2021). In its initial study, 

this technology could measure multiple metabolites from a patient’s plasma 

sample and performed well in detecting prostate cancer, with an AUC-ROC of 0.78, 

while also ticking off a number of the REASSURED criteria for a POC diagnostic tool 

(real-time, ease of sample collection, affordable, sensitive, specific, user friendly, 
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rapid and robust, equipment free and deliverable to the intended end users) 

(Annese et al., 2021; Otoo and Schlappi, 2022).  

Developing a similar tool to concurrently measure circulating metabolites in 

patients with inflammatory rheumatic diseases to guide their treatment would be 

the ideal culmination of this work, recommending treatment options for patients 

based on their metabolic profile.  However, the metabolic model requires further 

development at this early point in the process.  

3.4.3. Development of a Response-Associated Metabolomic 
Profile 

Single metabolites with clear differential abundances across study variables, such 

as patient responses, may be rare and provide a narrow view of the potential 

metabolic mechanisms that may lead to such responses. In a heterogeneous 

disease like RA, incorporating multiple markers into a model rather than using a 

single molecule may be more helpful, providing a more robust predictive tool and 

a more comprehensive picture of the molecular mechanisms potentially at play. 

This may be especially true if molecules found within the same biological pathways 

are included in the model.  

A predictive molecular profile to guide treatment strategies for patients with RA is 

urgently needed to improve outcomes and avoid the administration of treatments 

that not only produce unpleasant side effects but are often ineffective in 

controlling the disease. Previous work has indicated metabolic markers of 

responses to treatment in RA, and this work aims to expand on these previously 

reported findings (Cuppen et al., 2016; Gosselt et al., 2020; Hur et al., 2021; 

Maciejewski et al., 2021). For example, Gosselt et al. (2020) describe baseline 

levels of homocystine, uric acid, taurine, glycerol-3-phosphate and 1,3/2,3-

diphosphoglyceric acid being significantly different between sufficient (DAS28-ESR 

<= 3.2) and insufficient responders (DAS28-ESR > 3.2), which were used together in 

a RF model, being able to predict patient outcomes with an AUC-ROC of 0.81.  

Another study reported 33 baseline metabolites as being differentially abundant 

between patient response groups, defined using DAS28, therefore indicating an 

association with responses to treatment, including tryptophan, hypoxanthine, 
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methionine, N-acetyltryptophan, N-acetylcitrulline, N-acetylglutamine, carnitine, 

serine, lysine, palmitoylcarnitine, bilirubin and biliverdin (Hur et al., 2021). This 

paper revealed eight metabolites (bilirubin, biliverdin, 6-bromotryptophan, serine, 

trigonelline, N-acetyltryptophan, glucuronate and N-acetyltyrosine) as being both 

differentially abundant between the response groups and having an association 

with the DAS28-CRP, determined using a generalised linear model (Hur et al., 

2021). Where Hur et al. (2021) uncovered eight differentially abundant 

metabolites across response groups and linearly associated with the DAS28, no such 

results were found in this work. No baseline metabolites were found to be 

statistically differential or correlated with DAS28 after the first 3 months of 

treatment after correcting the p-values for multiple testing. However, Hur et 

al. (2021) do not explicitly mention adjusting the p-values from their analyses for 

multiple testing, so the associations of the metabolites with disease activity may 

include some false positives. Nevertheless, there were few shared features 

between this dataset and the TaSER metabolome in association with treatment 

response, although tryptophan-related metabolites were noted across both 

cohorts.  

Cuppen et al. (2014) developed a metabolomic model to discriminate between 

good and non-responders, using the DAS28 to define these responses to TNF-α 

inhibitors using baseline metabolites, including ethanolamine, lysine and several 

fatty acids, such as sn1-LPC(18:3-ω3/ω6) and sn1-LPC(15:0). By incorporating 

these metabolites alongside clinical measures in a predictive model, the model 

significantly improved the discrimination of patient responses compared with a 

patient factors-only model (p-value = 0.01) (Cuppen et al., 2016). This current 

work took a similar approach and combined the metabolic features alongside the 

patient factors, which initially seemed to improve the prediction of response 

classes but did not cause a significant improvement. 

3.4.4. Metabolite-Only Model  

A machine learning approach was taken to compile multiple metabolites that by 

themselves were not found to be individually associated with the patient 

responses. Using a feature selection process, eight metabolites were combined in 

an XGB model, successfully predicting the 3-month DAS28 binary response groups 
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within a testing subset from the TaSER patient cohort. These metabolites included 

pyroglutamate, L-kynurenine, indoleacrylic acid, pyrroline, cytosine, N-succinyl L-

citrulline, L-ornithine and 5-methylcytidine. However, throughout the analysis, 

concern over the inclusion of N-succinyl L-citrulline in the model was raised.  

3.4.5. Composite Model 

In addition to the development of the metabolomic model and the disease 

measures model, a composite model was generated via a distinct, parallel process 

consisting of disease measures and other clinical features alongside metabolomic 

data. These data had distinct formats, variances and ranges, presenting a clear 

challenge during their integration, including one of the datatypes dominating the 

other (Buescher and Driggers, 2016). Rather than concatenating the different 

datatypes and performing a single analysis, an alternative approach may be 

required, which will be explored in the following chapter using the example of 

integrating the TaSER metabolomic and transcriptomic datasets. 

In considering the metabolomic model, it was important to consider that high 

variances were observed for each metabolite, and the abundances of several of 

the metabolites were similar across response groups. For these reasons, the 

models generated with the disease measures may provide a more robust method of 

predicting patient responses in other cohorts, especially where the identity of 

several of the metabolites was not certain, such as N-succinyl L-citrulline. 

However, the fact that pyroglutamate, cytosine, and pyrroline were included in 

the composite model may mean this was a more appropriate model since these 

features were found to be significant/borderline-significant in their differential 

abundance across the response groups.   

Additionally, the inclusion of the baseline disease measures in the composite 

model may be advantageous in that disease measures would typically be measured 

in the clinic to evaluate the emergence and progression of the disease. The 

composite model offers a closer representation of what is seen in the clinic. The 

disease measures directly measure the disease activity, while the metabolic 

component reflects the molecular events that may contribute to successful 

treatment.  
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3.4.6. Model Comparison 

There is a trade-off between pragmatism and performance when considering the 

value of a clinical tool. For example, using only patient factors and disease activity 

measures at baseline to predict how a patient may respond to treatment may be 

practical since these are typically measured during a patient’s routine 

examination. However, the disease measures often introduce variance when, for 

example, multiple clinicians examine joint symptoms.  In this case, when 

measuring joint tenderness and pain, clinicians may inadvertently apply various 

degrees of pressure for the same joint, leading to inconsistent measuring. There is, 

therefore, value in introducing molecular technologies, such as an easy-to-use chip 

detection platform, where the technology has been developed and validated to 

accurately measure multiple molecules from a biofluid with minimal variance 

between replicates. Such technology, however, remains elusive and would likely 

require expensive and time-consuming processes of selecting the analytes to 

include for assay development and validation across demographics. This, 

therefore, reflects the balance between a clinically pragmatic tool and one that 

provides a robust response prediction.  

Other studies have sought to include patient factors in their molecular models to 

develop predictive models for RA patient responses to treatment (Gosselt et al., 

2021; Maciejewski et al., 2021). Indeed, the prediction of responses to MTX in 

patients with RA after 6 months of treatment was attempted with a machine 

learning approach, utilising the baseline lipidome (Maciejewski et al., 2021).  

In addition, a recent paper described the use of a machine learning approach to 

predict 3-month DAS28-ESR- based responses to MTX using six clinical features, 

including baseline tender joint count across 28 joints (TJC28), HAQ, BMI, smoking 

status, ESR and the prior use of DMARDs or corticosteroids (Gosselt et al., 2021). 

This model was comparable to that developed in this work involving the disease 

measures. The RF model generated by Gosselt et al. achieved an AUC-ROC value of 

0.76 (95% CI: 0.66-0.85). 
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3.4.7. Feature Interpretation and Roles in Disease 

The incorporation of model-agnostic interpretation methods revealed the influence 

of the metabolite features in the models in predicting patient outcomes. However, 

it is important to note that the additional analysis of the metabolites following the 

model development and evaluation revealed only subtle associations between the 

metabolites and disease activity changes. For example, only indoleacrylic acid 

(p=0.048) and pyroglutamate (p=0.0004) had significant differences in their 

baseline abundances across the response groups, with cytosine (p=0.054), 5-

methylcytidine (p=0.058) and pyrroline (p=0.06) being borderline-significant. 

Increasing the sample size to investigate whether these changes would be 

significant with a larger cohort would be helpful. Since an effect size can be 

obtained from these findings, performing power calculations could allow an 

appropriate number of samples to be determined. However, increasing patient 

numbers may also increase variance and reveal the lack of robustness of these 

findings.  

The following chapters will investigate whether the same metabolites were 

detected and associated with patient responses in other related datasets. These 

subsequent analyses will incorporate datasets generated during trials described in 

this section, including Hur et al. (2021) and Gosselt et al. (2020).  

3.4.8. Pyroglutamate 

Having been included in the metabolic model of response in this work, putatively 

identified pyroglutamate, also called 5-oxoproline, was increased at baseline in 

patients who experienced a good response to MTX in the TaSER cohort. However, 

the initial differential analysis noted that no metabolites had adjusted p-values < 

0.05, so this finding needs to be considered with caution. Additionally, it remains 

to be seen whether this is a real metabolite or a by-product from the ionisation 

process. Since no internal standard was available for pyroglutamate, this was only 

tentatively identified. The generation of fragmentation data would support the 

annotation of this feature with greater confidence. 

As a downstream metabolite of the antioxidant glutathione (GSH), pyroglutamate 

has been associated with oxidative stress, which results in a worse outcome for 
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patients with heart failure, where 5-oxoprolinase, the enzyme that converts 

pyroglutamate to glutamate and back to GSH may become dysfunctional and 

pyroglutamate accumulates (Sourdon et al., 2018; van der Pol et al., 2018). While 

there has been no apparent link between pyroglutamate and RA, increased 

pyroglutamate in the circulation may influence MTX activity, possibly contributing 

towards oxidative stress.  

3.4.9. Indoleacrylic acid 

Indoleacrylic acid was also found in the model and was similarly increased in its 

abundance in good responders, albeit with a great variance across each response 

group. Interestingly, indoleacrylic acid and L-kynurenine are derived from 

tryptophan, but they are generated via different pathways, shown in Figure 3.18. 

L-Kynurenine is produced when IDO is activated, often in response to inflammatory 

stimuli, for example, IFN-γ (Sorgdrager et al., 2019). The anti-inflammatory 

actions of kynurenine are believed to be due to its action upon the aryl 

hydrocarbon receptor (AhR), which plays an important role in modulating 

inflammatory processes. For example, the NRF2 transcription factor, associated 

with anti-inflammatory products, can be stimulated through the AhR activation 

(Kaiser, Parker and Hamrick, 2020). By blocking IDO — which is believed to 

modulate an immunosuppressive mechanism — new therapies are emerging for the 

treatment of cancers and autoimmune diseases, including RA, for example, by 

specifically inhibiting IDO2 (Prendergast et al., 2017; Liu et al., 2018; Zakharia et 

al., 2021; G. He et al., 2022).  

 
Figure 3.18. Tryptophan metabolism to indoleacrylic acid. 

 

Indoleacrylic acid is produced via the gut microbiome, with several species capable 

of metabolising tryptophan within the intestine (Roager and Licht, 2018). Like 

kynurenine, indoleacrylic acid was also found to exert anti-inflammatory effects 

Tryptophan Indolepyruvate Indolelactate Indoleacrylic
acid

3-Indolepropionic 
acid
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via the increased activity of NRF2 by AhR stimulation, while also reducing the 

release of pro-inflammatory cytokines, notably IL-1β and IL-6, from stimulated 

PBMCs (Wlodarska et al., 2017a; Ye et al., 2022).  

3.4.10. Hypothesis Related to the Gut Microbiome 

Since indoleacrylic acid and other tryptophan metabolites are generated primarily 

via the gut microbiome, this raises a question regarding the use of biotics to 

supplement treatment with traditional pharmacological agents. These may include 

probiotics, including specific strains of bacteria known to produce these 

metabolites being administered to patients to encourage this favourable anti-

inflammatory milieu (Wlodarska et al., 2017a; Han et al., 2021; Li et al., 2021) 

Along with many other species, gut bacteria can produce numerous compounds 

that can modulate the host immune system (Scher and Abramson, 2011). These 

include polysaccharides, such as polysaccharide A (PSA); short chain fatty acids 

(SCFAs), such as butyrate; pathogen/microbial-associated molecular patterns 

(P/MAMPs) and other metabolites, including indole-derived compounds (Negi et 

al., 2019; Li et al., 2021; J. He et al., 2022).  

Unfortunately, aside from the indole-based metabolite, none of these other gut 

microbiome-derived features were associated with the response to MTX in the 

TaSER study. The association of these features with disease activity changes in 

response to treatment will be explored in later chapters.  

3.4.11. Urea Cycle and Arginine Metabolism 

The pathway analysis following the differential analysis of the baseline 

metabolome across the 3-month DAS28-defined response groups indicated an 

altered urea cycle activity across these groups. Further investigation into this 

pathway and the involvement of the associated metabolites and genes encoding 

related enzymes was performed in the following chapter, involving an integration 

of the transcriptomic data from the TaSER study.  
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4. TaSER Transcriptomics and Metabolomics Integration 
4.1. Introduction 

4.1.1. Harnessing the Transcriptome and Metabolome 

The work described in this chapter involved a secondary analysis of the 

transcriptomic data generated from the TaSER trial and an integration of the 

metabolomic data from the same trial (Dale et al., 2016). This chapter intended to 

expand on the analysis from the previous chapter, involving an investigation into 

the transcriptomic features associated with treatment response and considering 

how the findings from each omic dataset may overlap in terms of their connected 

biology. This may shed light on the pathways associated with the response to 

treatment in patients with RA. 

It was anticipated that a more accurate and robust predictive model could be 

generated by integrating these datasets. Incorporating another omics platform 

would provide an alternative molecular perspective that would enhance the 

understanding of the mechanisms involved in the resolution of inflammation in 

response to treatment. For example, since the metabolic model in the previous 

chapter included tryptophan and arginine-derived metabolites, the genes that 

encode enzymes involved in these metabolic pathways were assessed in this 

chapter for their associations with disease activity changes in response to 

treatment. These included the genes encoding IDO and arginase (ARG), which have 

been associated with immune activity and inflammation in previous studies (Rath 

et al., 2014; Ogbechi et al., 2020).  

4.1.2. Integrating Omics Datasets 

The detection and measurement of the highly heterogeneous molecules on the 

journey from the DNA to the phenotype can be performed using a multitude of 

technologies and omics platforms. Since the data from the omics platforms are 

intrinsically linked — for example, the expression of genes that encode enzymes 

involved in metabolism — their integration can help to develop the understanding 

of the molecular mechanisms behind a phenotype (Yan et al., 2017; Subramanian 



 

 

112 

et al., 2020). Indeed, the phenotype of a complex disease like RA is likely driven 

by multiple features spanning the different omics platforms (Cavill et al., 2011).  

Mechanistic insights and predictive biomarkers may be uncovered by taking this 

approach, as demonstrated with the COMBINE study where genomic, 

transcriptomic, proteomic and clinical data were integrated to develop a tool 

predictive of response to anti-TNF drugs in patients with RA (Folkersen et al., 

2016). This study had a larger sample size than that of the TaSER cohort, consisting 

of 185 patients with RA and a healthy cohort of 61. However, a cohort consisting of 

thousands of patients would provide greater confidence that a molecular profile of 

response would translate to the population of patients with RA and not just a 

single cohort.  

In their analysis, Folkersen et al. (2016) only included analytes that were described 

in the literature as having an association with an anti-TNF response. This led to 

eleven molecules being chosen for the integrated model which limited the 

selection process, where molecules not previously associated with response were 

ignored, thus leading to some potentially valuable insights being missed. As such, 

this approach demonstrated a limitation of a biology-driven integration approach, 

where the prior knowledge of the biological mechanisms informs the process. 

Nevertheless, the authors reported that the final model consisting of the eleven 

molecules predicted the anti-TNF response after 3 months, with an AUC-ROC of 

0.815, demonstrating its ability to accurately predict responses (Folkersen et al., 

2016). 

A different approach was taken to integrate transcriptomic and metabolomic data 

to characterise the molecular differences between murine macrophages across 

activation states (Jha et al., 2015). The authors described the development of an 

untargeted integration method: concordant metabolomics integration with 

transcription, which utilised data from a Quadrupole Time of Flight mass 

spectrometer and HiSeq 2500 sequencer. Together with an in vitro method to 

validate their findings, the authors uncovered molecular profiles characteristic of 

the pro-inflammatory (M1-like) and anti-inflammatory (M2-like) phenotypes. One 

of the prime examples of the pathway-wide changes uncovered in the murine M1-

like macrophages involved the disruption to the TCA cycle, whereby the isocitrate 
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to α-ketoglutarate ratio was increased in M1-like macrophages (Jha et al., 2015). 

The elevated abundance of isocitrate, reduction of α-ketoglutarate and 

accompanying reduced expression of the IDH1 gene, which encodes the enzyme 

that links these two metabolites, revealed that this pathway was impacted upon 

M1 activation. Moreover, the authors describe the increased expression of the gene 

encoding IRG1 in M1-like macrophages, which produces itaconate from the TCA 

cycle, providing further evidence of the perturbed TCA cycle during pro-

inflammatory stimuli (Jha et al., 2015).  

This chapter deals with the expression of genes that may be linked with treatment 

response. For example, the IRG1 gene will be investigated for its association with 

disease activity, where the production of itaconate was reported to have 

immunomodulatory effects in vitro. By effectively harnessing an integrative 

approach, the association of the TCA cycle break and the resulting increase in 

itaconate with a pro-inflammatory phenotype contributed towards a great deal of 

research into the immunomodulatory effects of this pathway (Lampropoulou et al., 

2016; Domínguez-Andrés et al., 2019; Hooftman and O’Neill, 2019; O’Neill and 

Artyomov, 2019; Yu et al., 2019).  

4.1.3. Aims 

Following the development of a metabolic profile of MTX treatment response from 

the TaSER cohort, this chapter intended to develop a transcriptomic profile of 

treatment response from the same patients. Since the expression of genes may 

contribute towards changes in metabolic pathway activity, the genes associated 

with the metabolites mentioned in Chapter 3 were investigated.  

The primary aim of this chapter was to develop a predictive model of the 3-month 

DAS28-ESR-based response to treatment using the baseline transcriptome. An 

additional aim was to determine whether findings from the transcriptomic and 

metabolomic analyses — and their integration — enhance the understanding of a 

molecular environment in the circulation that favours or improves the response to 

treatment.  
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4.2.  Methodology 

In this chapter, the transcriptomic dataset was analysed using various 

computational methods, including those introduced and applied in the previous 

chapter. Additionally, pathway analysis was performed using the ShinyGo v0.77 

online tool, described in more detail in Section 2.5 (Ge, Jung and Yao, 2020). 

In addition, an integration of the transcriptomic and metabolomic datasets was 

performed. This involved concatenating the datasets and investigating the 

correlated features across these blocks by calculating the Spearman correlation 

coefficients for each pair of features. The immediate limitation of this approach 

was the sheer amount of data that could be analysed, so the correlational analysis 

focused on addressing only the transcripts of interest from the pathway analysis 

and investigating which metabolites correlated with these. Doing so provided 

insight into the potentially biologically related molecules from the different 

datasets. For example, the association of metabolites with genes involved in 

immune-related pathways may point towards the immunomodulatory roles of the 

metabolites, therefore informing mechanisms that may be meaningful in the 

context of the response to MTX in the TaSER trial cohort.  

4.3. Results 

4.3.1. Patient Data 

The baseline and 3-month demographics and clinical features of patients were 

reported, which were previously shown in Section 3.3.1.  

 
4.3.2. Multivariate Analysis 

A similar analytical approach was taken for the transcriptomic dataset as that used 

for the metabolomic data in the previous chapter. Like the metabolome analysis, 

there was no global separation of the samples based on the transcriptome across 

the response groups, as shown in Figure 4.1.  
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Figure 4.1. Multivariate analysis of the transcriptomic data from the TaSER cohort. A. Scree 
plot. B. Scatter plot showing patient samples were projected in space defined by PC1 and 
PC2, with labelling based on their 3-month DAS28-ESR-based responses. 

 

4.3.3. Differential Expression Across Response Groups 

The differential expression of genes across the treatment response groups was 

investigated, with the results shown in the volcano plot in Figure 4.2. 

 
Figure 4.2. Volcano plot showing differential analysis of transcriptomic data across 3-month 
DAS28-based binary response groups. Genes in blue had unadjusted p-values < 0.05 and 
genes in red had unadjusted p-values > 0.05. Annotated genes were those with unadjusted 
p-values < 0.001 or had absolute log fold change > 0.2 and unadjusted p-values < 0.005. 

 

Response

Good (DAS28-ESR < 2.6)

Poor (DAS28-ESR > 2.6)

Unadjusted p-value
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Based on the adjusted p-values, none of the genes at baseline were differentially 

expressed across the 3-month DAS28-based response groups. Like the metabolomic 

analysis, the high number of features compared with the relatively small sample 

size meant that the BH correction that was used was potentially too conservative 

and may have removed genes with meaningful differences across the response 

groups. As such, the features from the differential analysis with unadjusted p-

values < 0.05 were included in the subsequent pathway analysis with the caveat 

that these may include genes that were not truly differentially expressed across 

the response groups. 

As shown in Figure 4.3, several pathways implicated in the host response to viral 

infection were enriched, including RIG-I-like receptor signalling pathway, influenza 

A, measles, hepatitis C and coronavirus infection responses. Many of the genes 

were involved in multiple pathways. 

 
Figure 4.3. Results of the pathway analysis of differentially expressed genes from the TaSER 
transcriptomic dataset across response groups defined by the 3-month DAS28 score. 
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It is important to consider how concurrent infection during treatment may explain 

the enrichment of these immune pathways. However, infection was not included in 

the patient data so this could not be investigated further. Nevertheless, the 

involvement of the immune response in RA and its association with disease activity 

meant that it remained feasible that these pathways were related to the 

treatment response in patients. 

The genes contributing to the pathway analysis were then further analysed. Their 

differential expression across the response groups shown in Figure 4.4, as were 

their correlations with the DAS28 at 3 months, shown in Figure 4.5. Of these 

transcripts, only tumour necrosis receptor-associated factor 6 (TRAF6) gene was 

increased in poor responders (Figure 4.4) and positively correlated with the DAS28-

ESR score at 3 months (Figure 4.5). The other genes were increased in expression 

in the good responders and were negatively correlated with the DAS28-ESR at 3 

months.  

 
Figure 4.4. Boxplots showing differential expression of genes across 3-month DAS28-based 
response groups. Genes were those that contributed to pathway analysis 

Generally, patients with high expression of these features, except TRAF6, 

experienced good responses at 3 months. Interestingly, many of these features 

have inflammation-modulatory effects, including, for example, ADAR, IKBKE, IRF9, 
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CCL2, OAS1, STAT1 and STAT2 (Kasperkovitz et al., 2004; Patel et al., 2015; Jiang 

et al., 2020; Moadab, Khorramdelazad and Abbasifard, 2021).  

 

 
Figure 4.5. Correlation analysis of baseline transcripts against the 3-month DAS28 scores. 
Spearman correlation coefficients were calculated and plotted alongside the associated p-
values. Regression lines were included to depict the relationship. 

 

4.3.4. Metabolites Associated with Differentially Expressed 
Genes 

An investigation into the metabolites associated with the genes that were 

differentially expressed across the patient response groups was then performed, 

including several of the potentially immune-related genes. Due to itaconate and its 

production being linked with a pro-inflammatory phenotype in macrophages, 

described by Jha et al. (2015), IRG1 was assessed for its correlation with the 

DAS28-ESR score at 3 months. However, no meaningful association with treatment 

response was found for this gene.  

Taking the top 100 differentially expressed genes across response groups, a further 
correlation analysis was performed to examine the correlations between each of these genes 
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of interest and the metabolites. The results are shown in the heatmap in 

 

Figure 4.6. 
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Figure 4.6. Heatmap showing correlation coefficients of associated metabolites with the top 
100 genes from the differential expression performed using the limma package. 

 

Several of the metabolites found in the metabolic profile of treatment response 

from the previous chapter were correlated with the immune-related genes. 

Tryptophan-related metabolites, including 5-hydroxtryptophan, 5-

hydroxyindoleacetic acid and kynurenine and correlated with a group of genes, 

many of which may have a role in immunity, such as MX1, RSAD2, OAS1 and CCL2. 

These associations of tryptophan-related metabolites with genes involved in 

inflammatory processes may provide evidence of the involvement of these 

metabolites in regulating immune activity.  

For example, kynurenine correlated strongly with several of these genes, depicted 

in Figure 4.7 with IFI35 (R=0.48, p-value = 1.9x10-5), STAT1 (R=0.46, p-value = 

4.9x10-5) and STAT2 (R=0.51, p-value = 5x10-6). The involvement of STAT1 and 

STAT2 with IFN signalling pathways may point towards an immunomodulatory role 

of kynurenine, whereby it may be elevated in its production because of the 

increased activity of IDO, the enzyme involved in its production, in response to IFN 
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stimulation. The expression of genes encoding IDO1, IDO2 and TDO were assessed 

later with the results described in the targeted analysis in Section 4.2.10.  

 
Figure 4.7. Correlation plots of kynurenine abundance against genes of interest selected 
from heatmap in Figure 31. 

 

The association of these immune-related genes with several metabolites may allow 

these circulating metabolites to be used as surrogates of the IFN pathway activity 

and predict the MTX response with the changing immune activity. 

It was worth mentioning that, aside from PDHA2, which encodes a subunit of 

pyruvate dehydrogenase — involved in converting pyruvate to acetyl coenzyme A, 

which then enters the TCA cycle — no other known metabolism-related genes were 

differentially expressed. However, there remained to be clear correlations 

between metabolites and genes, largely relating to immune activity.  

It was expected that the increased immune activity would lead to an upregulation 

of immunomodulatory metabolites, such as itaconate, as a result of the metabolic 

reprogramming of immune cells (Mills and O’Neill, 2016; O’Neill and Artyomov, 

2019). Whether the metabolism-related genes are differentially expressed in 

localised tissue, such as the synovium, or are modulated in their expression within 

the gut microbiome, remains to be seen — but may help explain this disconnect 
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between the perturbed metabolite levels and the seemingly unchanged 

metabolism-related genes.   

4.3.5. Supervised Machine Learning 
 

A supervised machine learning approach was undertaken to determine whether a 

collection of transcripts could be used to predict the 3-month DAS28-based 

response.  

4.3.6. Initial Transcriptomic Model 

An initial model was generated within the training subset of the transcriptomic 

data. The transcripts were selected for the model via a purely statistical route 

using the RFE algorithm used for the model developed in the previous chapter. 

These genes included VAX1, PDHA2, BAPX1, NCKAP1 and FAM57A, as shown in 

Figure 4.8A. As per the workflow, algorithm selection was then performed, 

involving the selection of the NB algorithm as the best-performing and most 

computationally efficient, shown in Figure 4.8B. The final tuned model was 

evaluated within the testing subset, with the results shown in Figure 4.8C and 

Figure 4.8D, whereby the AUC-ROC of 0.82 (95% CI: 0.63 -1.01) and MCC = 0.611 

revealed a good performance. 

These genes appear to have isolated functions, showing no known shared pathways 

or biological role. It should be noted, however, that there remains the possibility 

of hitherto unidentified connections between these genes.  

The main aim of this work was to develop a molecular tool that could be used to 

predict treatment response in patients with RA. A secondary aim was to identify 

possible molecular mechanisms at baseline that contribute to the resolution of 

inflammation which may explain how patients might respond differently to 

treatment. It was evident from the results of this initial model that taking a purely 

statistical approach while achieving the first aim of creating a predictive molecular 

tool misses the second aim of identifying the molecular pathways likely involved in 

the resolution of treatment. 
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Figure 4.8. Transcriptomic profile of 3-month DAS28-based binary response A. Feature 
selection using RFE algorithm within training subset. B. Algorithm selection with the 
selection of the NB algorithm. C. Receiver-operating characteristic (ROC) curve showing the 
performance of the model within the testing subset. D. Performance metrics. 

 

4.3.7. Incorporating Pathway Analysis into the Feature 
Selection 

Since the features from the model described in Figure 4.8 were seemingly 

unrelated in their biological roles, the feature selection process was expanded 

with pathway analysis being incorporated to guide the selection of transcripts 

included in the model. This involved taking the training data and selecting the 

genes that were differentially expressed (unadjusted p-value < 0.05) across the 

response groups.  

AUC-ROC = 0.82
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Figure 4.9. Pathway analysis informing the development of the transcriptomic predictive 
model of 3-month DAS28-based response. A. Top 100 differentially expressed genes across 
response groups in training data selected for pathway analysis. Bar chart shows the results 
from the pathway analysis in terms of fold enrichment. B. Results from the feature selection 
using the differentially expressed genes, those found in pathways from Figure A and with the 
RFE algorithm applied within the training subset. C. Receiver-operating characteristic (ROC) 
curve showing model performance within the testing subset. D. Performance metrics 
including confusion matrix with TP, TN, FP and FN shown.  

 

Using this list of differentially expressed genes, pathway analysis was then 

performed, and the genes that had common pathways were kept, resulting in 20 

genes. The pathways in which these were found are shown in Figure 4.9A, 

including several immune-related pathways, such as NOD-like receptor signalling 

and host immune responses to various viral infections. Feature selection was then 

performed using the RFE algorithm on the condensed training subset consisting of 

20 genes, with the results shown in Figure 4.9B. The selected features included 

TRAF6, STAT2, IKBKE, NLRP6, OAS1, CIITA and NLRP1. Comparing the features 

selected in Figure 4.9B with those in Figure 4.8A, the higher relative importance 

scores could be explained by the reduced number of features analysed using the 

RFE algorithm, therefore dividing the overall importance by fewer features. As 

with the model described in Figure 4.8, the NB algorithm was selected.  

The final model performed similarly to that generated using a purely statistical 

approach, with an AUC-ROC = 0.81 (95% CI: 0.61-1.01) and MCC = 0.556. It should 
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be noted that there was a slight imbalance in the number of patients with a good 

or poor response, which may mean the model’s performance was slightly 

exaggerated, considering the higher number of poor responders in the cohort. 

Importantly, using an integrated biological/statistical approach may be more 

helpful in uncovering an interrelated molecular profile of response that underlines 

the possible involvement of immune-associated pathways in modulating how 

patients with RA respond to treatment.  

4.3.8. Feature Interpretation  

Paying attention to the model generated using the integrated biological and 

statistical approaches, the features used in the model were assessed using model-

agnostic feature interpretation methods. The partial dependence plots (PDPs) and 

accumulated local effects (ALE) plots, describing global interpretation methods, 

are shown in Figure 4.10. 

For example, increased expression of CIITA, IKBKE, OAS1 and STAT2 in the cohort 

was associated with an increased probability of predicting a good response. In 

contrast, increased expression of NLRP1, NLRP6 and TRAF6 was associated with a 

higher probability of predicting a poor response.  

 

 
Figure 4.10. Global interpretation of the features in the transcriptomic model. Accumulated 
local effects (ALE) plot and partial dependence plots (PDPs) for each feature. 
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These results are most helpfully interpreted alongside the actual associations of 

the features with the continuous DAS28, shown in the correlation plots in Figure 

4.11. For example, NLRP1 (R=0.28, p-value = 0.015), NLRP6 (R=0.24, p-value = 

0.042), and TRAF6 (R=0.31, p-value = 0.0077) were positively correlated with the 

3-month DAS28-ESR. Increased expression of these genes was associated with a 

worse outcome in patients which was notable owing to the involvement of these 

genes in recruiting the NRLP1 and NLRP6 inflammasomes, activating NF-κB and 

ultimately driving inflammation by inducing the release of pro-inflammatory 

cytokines, including IL-1β (Grenier et al., 2002; Martinon, Burns and Tschopp, 

2002; Wang et al., 2020; Zheng, Liwinski and Elinav, 2020). Contrastingly, the 

increased expression of STAT2 (R=-0.29, p-value = 0.011) was associated with a 

lower DAS28-ESR after 3 months of treatment, whereas IKBKE (R=-0.19, p-value = 

0.11) and OAS1 (R=-0.21, p-value = 0.074 did not have significant correlations with 

the DAS28-ESR score at 3 months. 

 
Figure 4.11. Correlation of features from the model with the 3-month DAS28 continuous 
score with linear regression plotted. Spearman correlation statistics were calculated for each 
gene and its relationship with the 3-month DAS28-ESR score. 
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Since the modelling involved a binary classification of the patient responses, the 

differential expression of the genes included in the model was also performed, 

with the results shown in Figure 4.12. These results underline that while these 

transcripts may be associated with either a good or poor response to treatment, 

the differences in their expression across the groups were small, with sizeable 

variation and overlap of the expression of each of the genes across the groups. 

Considering these actual correlations and differences across the response groups, 

several of these genes were unlikely to be robust biomarkers owing to their weak 

associations with the DAS28-ESR and response groups. For example, CIITA, OAS1 

and IKBKE had relatively weak associations with the responses, indicating these 

would be unlikely to have value as individual biomarkers in future cohorts.  

 

Figure 4.12. Differential expression of features from the model across the 3-month DAS28 
response groups. Wilcoxon tests were performed to calculate a p-value statistic to compare 
the gene expression across the 3-month response groups. 

 

However, the association of NLRP1, NLRP6, STAT2 and TRAF6 across response 

groups and with the continuous DAS28-ESR score was more substantial. These 

genes were more convincing biomarker candidates to predict DAS28-ESR-related 
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outcomes. Nevertheless, the value of these transcripts was believed to be greatest 

as a collection of molecularly related biomarkers whose collective predictive 

ability was likely to be greater than the model’s constituent parts.  

4.3.9. Correlations of Model’s Features with Metabolites 

The metabolites that correlated with these genes from the model were assessed 

using a similar method as performed in the earlier section, with the results shown 

in Figure 4.13. 

 

Figure 4.13. Correlation heatmap of genes from the refined model and correlating putative 
metabolites. 

 

Interestingly, the metabolites were loosely clustered, largely driven by their 

correlations with NLRP1, TRAF6, CIITA, OAS1 and STAT2, albeit with fairly weak 

correlations, as indicated by the low coefficients in the legend of Figure 4.13. 

Itaconate and aconitate had a similar pattern across the genes, where they had 

positive correlations with CIITA (itaconate: R=0.34, p-value = 0.0036; aconitate: 

R=0.26, p-value 0.043), along with an inverse correlation with NLRP1 and NLRP6, 

although these were not significant correlations (p-value < 0.05). Other 

metabolites that clustered closely with itaconate included 1-methylhistamine and 
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3-methylhistidine, both being putatively identified. Since these tentatively 

identified metabolites had very similar RTs (1-methylhistamine: 9.39; 3-

methylhistidine: 9.31), it was likely that they were closely related. For example, 

their difference in m/z ratio might suggest that 1-methylhistamine was a 

decarboxylated product of 3-methylhistidine. Trimethylamine N-oxide was 

negatively correlated with NLRP6 (R=-0.26, p-value = 0.031) while being positively 

correlated with CIITA (R=0.27, p-value= 0.023).  

4.3.10. Targeted Analysis of the Integrated Datasets 

Finally, a targeted analysis was performed to investigate the expression of genes 

relating to metabolites of interest, focusing on those included in the model from 

the previous chapter. The features were investigated based on their involvement 

in tryptophan and arginine metabolic pathways. Genes whose products were 

involved in these pathways were searched for using databases, including HMDB, 

KEGG and UniProt and were assessed for their correlations with disease activity 

(Wishart et al., 2018; Kanehisa and Sato, 2020; UniProt Consortium, 2023). Of 

these, the INDO gene, which encodes the IDO enzyme, was correlated with 

kynurenine (R= 0.52, p-value = 3.9x10-6), shown in Figure 4.14A.  
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Figure 4.14. Correlation plots of INDO expression with related metabolites and disease 
activity. A. Correlation with L-kynurenine B. Correlation with indole acrylic acid. C. 
Correlation with DAS28-ESR score at baseline. 

Additionally, INDO negatively correlated with indole acrylic acid (R=-0.26, p-value 

= 0.031), shown in Figure 4.14B. The positive correlation of INDO with kynurenine 

showed an increased expression of INDO associated with an increased abundance of 

kynurenine. The production of indoles, including indole acrylic acid, may reflect an 

alternative fate of tryptophan involving microbial metabolism (Wlodarska et al., 

2017a). The negative correlation between INDO and indole acrylic acid was logical 

since increased INDO expression may lead to tryptophan’s metabolism towards 

kynurenine rather than the indole-based routes.  

Interestingly, while INDO was not correlated with the DAS28-ESR after 3 months, it 

correlated with the DAS28-ESR at baseline (R=0.27, p-value = 0.02), shown in 

Figure 4.14C. The increased INDO expression in patients who had a higher disease 

activity at baseline may indicate a greater drive towards kynurenine metabolism, 

which has complicated immunomodulatory effects, rather than towards indole-

based metabolism, several products of which were described as having anti-

inflammatory effects (Munn and Mellor, 2013; Wlodarska et al., 2017b; Z.-H. Zhao 

et al., 2019). The findings reported in Figure 4.14 may underline the biological 

connections between the features found in the transcriptomic and metabolomic 

datasets, paying particular attention to tryptophan-related pathways.  

This association of the kynurenine-related pathway with higher disease activity 

may be supported by the fact that kynurenine was positively correlated with many 

of the genes involved in immune processes found in the earlier pathway analysis, 

including ADAR, BST2, CCL2, and IRF9. It would be interesting to compare this with 

the expression of the genes involved in indole metabolism, but because these 

metabolites are produced largely in the gut microbiome, this was not possible 

using the whole blood transcriptome.  

Similar results were shown in arginine metabolism-related features. Arginine 

metabolism was investigated due to the presence of ornithine, pyrroline, and N-

succinyl L-citrulline in the metabolic model of response from Chapter 3 (albeit 

with the caveat of N-succinyl L-citrulline not likely to be truly associated with 
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response). However, it was noted that while pyrroline may be produced via 

ornithine, it is more often described in the literature as a component of Δ1-

pyrroline-5-carboxylate which is involved in proline metabolism, indicating that 

the pyrroline detected in this work may be a fragment of a larger molecule derived 

from proline (Chalecka et al., 2021).  

Genes whose expression related to arginine metabolism and were detected in the 

dataset included ARG1, ARG2, NOS1, NOS2, ASS1, ASL, and GATM. Notably, there 

was an increased expression of ARG1 in negative responders based on the 3-month 

DAS28-ESR (Wilcoxon test, p-value = 0.015), although there was a high variance of 

its expression across the good and poor response groups, as described in Figure 

4.15A.  

 
Figure 4.15. Exploring ARG1 expression and relationship to related metabolites. A. Boxplot 
showing differential expression of ARG1 gene across the 3-month DAS28-ESR based 
responders. B-D Correlation of ARG1 with related metabolites. B. L-Homoarginine C. 
Guanidinoacetate D. N-Acetylarginine. 

 

The correlations of ARG1 with related metabolites were assessed, including those 

found in the urea cycle, such as arginine, ornithine, citrulline, and 

arginosuccinate, but none of these was significantly correlated. Interestingly, 
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ARG1 was negatively correlated with homoarginine (R=-0.36, p-value =0.0018) and 

guanidinoacetate (R=-0.27, p-value = 0.024). These correlations may help in 

understanding the fate of arginine, where the increased ARG1 activity may divert 

arginine away from homoarginine and guanidinoacetate production, which occurs 

via AGAT. Since ARG1 did not correlate significantly with L-arginine, it was 

surprising that it was negatively correlated with the tentatively identified 

acetylated form of the metabolite, N-acetylarginine, shown in Figure 4.15D (R=-

0.26, p-value = 0.032). However, these correlations were not strong, so it was not 

clear whether they would be reproducible in other datasets.  

In fact, the associations (or lack thereof) between the arginine-related genes and 

treatment response were surprising. Since arginase, encoded by ARG1, is typically 

associated with an anti-inflammatory state, as demonstrated in vitro using M2-like 

macrophages, it was expected that it would be increased in good responders and 

NOS would be associated with a poor response to treatment. However, the latter 

gene was not significantly associated with either response group, nor were those 

encoding the ASS or ASL genes also involved in the urea cycle.  

4.4. Discussion 

The transcriptomic data from the TaSER trial was analysed using a similar workflow 

used for the metabolomic dataset from the same trial. One of the key outputs 

from this chapter was the demonstration of how the analytical workflow could be 

used across omics datatypes. From the transcriptomic analysis, one of the key 

findings was the discovery of the association of several immune-related genes with 

the patient response to MTX. The machine learning revealed TRAF6, STAT2, IKBKE, 

NLRP6, OAS1, CIITA and NLRP1 as a panel of genes whose expression was 

collectively predictive of treatment response in the cohort. Since these could be 

linked to the IFN signaling pathway it was suggested that it could modulate how 

patients with RA responded to MTX treatment. However, an important limitation 

was that these genes were not validated using qRT-PCR. The predictive model also 

required validation in an independent and related cohort which was not performed 

in this project. 



 

 

133 

The aim of the integration here was to develop a molecular profile that could be 

used to predict MTX response in patients with RA. A secondary objective of this 

work was to explore the molecular mechanisms involving altered gene expression 

and metabolite abundance in patients with RA who have different responses to 

MTX treatment. 

The analysis performed in this chapter largely focused on the transcriptomic data, 

with the later portion of the chapter involving a simple integration of these 

datasets. It was hoped that the analysis and integration of the transcriptomic data 

would complement the metabolites associated with MTX response from the 

previous section. However, only ARG1 and INDO were found as transcripts that 

were associated with treatment response and were related to the metabolites, 

being implicated in arginine and tryptophan metabolism. 

4.4.1. Uncovering Transcriptomic Features of Response 

The transcriptomic data from the TaSER trial, generated via whole blood samples 

of patients with RA, provided a rich source of information from various cell types 

found in the blood. Such cells included immune cells whose activity is perturbed in 

autoimmune diseases like RA, whereby inflammatory mechanisms may be 

influenced by circulating autoreactive immune cells  (Chaussabel, Pascual and 

Banchereau, 2010). The differential gene expression that was described in this 

work may alternatively describe a differential cell type abundance across the 

response groups. As a result, incorporating pathway analysis into the workflow was 

expected to provide insights into the possible immune-related pathways implicated 

in the resolution of inflammation via the response to MTX treatment in RA, 

including IFN signalling. These may point towards a different immune cell panel 

associated with the response groups.  

4.4.2. Developing a Transcriptomic Profile of Response 

An initial supervised machine learning model predictive of treatment responses in 

the TaSER cohort consisted of a collection of transcripts, including VAX1, PHDA2, 

BAPX1, NCKAP1 and FAM57A. These are largely isolated genes in that they do not 

directly share known biological functions with each other, although hitherto 

unidentified connections are possible. As demonstrated by these results, the 
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machine learning approach used here, involving a purely statistical method, 

prioritised the selection of the most statistically powerful features rather than 

those that may have the greatest biological value. However, these findings may be 

limited due to possible overfitting of the model to the data, thus making it unlikely 

to be of use in the population of patients with RA. 

The statistical method did not appear to contribute to the secondary aim of the 

project of uncovering mechanisms that may be involved in response to treatment. 

To this end, the incorporation of pathway analysis, reflecting current biological 

knowledge, was expected to provide insights into mechanisms involved in the 

resolution of the disease. These may offer new therapeutic targets that may be 

used to supplement existing treatment. Another model was generated using an 

integrated biological and statistical approach involving differential expression 

analysis, pathway analysis and the RFE algorithm for feature selection.  

The new model included a completely different set of transcripts from the original 

model. However, these transcripts were closer to the set of genes included in the 

first section of analysis in this chapter. The model included TRAF6, STAT2, IKBKE, 

NLRP1, NLRP6, OAS1 and CIITA, which predicted the responses of patients in the 

test subset of the cohort with a similar performance to the model generated using 

purely statistical means.  

4.4.3. Integrating Transcripts with the Metabolome 

The differential analysis and the supervised machine learning approach indicated 

that patients with RA who experienced different responses to MTX may have 

altered transcriptomic profiles involving immune responses focusing on IFN 

signalling. This was especially notable when a recent study showed that an 

increased IFN gene signature, including OAS1, ISG15, MX1 and other related genes, 

was associated with a worse outcome for patients with early RA (Cooles et al., 

2022). From these findings, the authors underlined the value of targeting IFNα 

signalling as a therapeutic strategy.  

Genes relating to IFN signalling that were associated with treatment response in 

this work included ADAR, BST2, CCL2, CIITA, IKBKE, IRF9, ISG15, NLRP1, NLRP6, 

OAS1, RIG, STAT1, STAT2, TRAF6. This included those in the predictive model and 
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those that had an association via differential expression across response groups or 

correlated with the DAS28-ESR score.  

As shown throughout this chapter, whole blood samples are a rich source of 

transcripts which may be derived from a diverse population of cell types. These 

may include immune cells, platelets and even bacteria, typically detected at low 

levels during infection or in diseases involving a dysfunctional intestinal barrier 

(McLaughlin et al., 2002; Amar et al., 2011; Sato et al., 2014; Païssé et al., 2016; 

Olde Loohuis et al., 2018).  

4.4.4. ADAR 

The expression of several of the genes from the model was previously reported as 

being associated with inflammatory processes, including CCL2 and STAT1, while 

others, such as ADAR, ISG15 and STAT2, were not inherently inflammatory but may 

play a role in modulating these processes (Kasperkovitz et al., 2004; Durfee et al., 

2010; Wright et al., 2015; Vlachogiannis et al., 2020; Moadab, Khorramdelazad and 

Abbasifard, 2021). For instance, the adenosine deaminase RNA specific (ADAR) 

gene was reported to be increased in the synovial fluid of patients with RA 

(Vlachogiannis et al., 2020). In the same study, the authors described the 

association of adenosine-to-inosine (A-to-I) RNA editing with the expression of 

inflammatory genes, including cathepsin S, encoding a protease which can cause 

increased activity of immune cells, and TNF receptor-associated factors (TRAFs). 

This was noteworthy where TRAF6 was similarly associated with the response to 

treatment in the TaSER cohort, albeit correlating with the DAS28 in the opposite 

direction.  

4.4.5. IRF9 and IKBKE 

Transcripts described as having inflammation-regulatory effects included IRF9 and 

IKBKE, both of which were elevated in good responders (Patel et al., 2015; Jiang 

et al., 2020). Only IKBKE, however, was included in the predictive model. The 

inhibitor of κB kinase epsilon (IKBKE) gene was reported as being a key regulator 

of NLRP3 inflammasome in macrophages, an important inflammatory mechanism 

that leads to the production of inflammatory cytokines, including IL-1β (Patel et 

al., 2015). The authors described how the expression of IKBKE was increased 
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following pro-inflammatory stimulation, leading to a regulatory effect via 

impairing NLRP3 inflammasome activation, which was curtailed in macrophages 

whose gene encoding IKBKE was knocked out. The inclusion of other 

inflammasome-related genes, including NLRP1 and NLRP6, was, therefore, of note, 

especially where the expression of these genes was increased in poor responders. 

At the same time, IKBKE was reduced in poor responders. The inverse relationship 

between these closely related transcripts may therefore point towards a 

dysregulated inflammasome in patients who do not respond well to treatment.  

4.4.6. TRAF6 

Additionally, the protein encoded by TRAF6 is also involved in immune activity, 

produced by several immune cells, notably including fibroblast-like synoviocytes 

(FLS) which are critical in driving the pathology of RA (Wang et al., 2020). The 

TRAF6 protein may play an important role in RA whereby it largely acts via 

activation of the NF-κB pathway, leading to an increased release of pro-

inflammatory cytokines, activation and differentiation of osteoclasts and causing 

immune cell infiltration of the synovium (Wang et al., 2020). Indeed, the TRAF6 

gene was highly expressed in cells found in the synovium, including FLS, 

macrophages and various T cell populations, while the authors also reported that 

TRAF6 also correlated with the severity of joint inflammation in patients with RA 

(R= 0.41, p-value = 0.006) (Zhu et al., 2012). TRAF6 was also shown to be 

important in driving arthritis in the collagen-induced arthritis (CIA) model, 

whereby the use of small interfering RNA against TRAF6 blocked its expression in 

the mice, which reduced the joint inflammation observed (Wang et al., 2015). 

Such is the potential importance of TRAF6 in RA that efforts have already been 

undertaken to block its activity (Brenke et al., 2018). Elevated expression of 

TRAF6 at baseline in patients with a poor response to treatment after 3 months 

may therefore be clinically meaningful, whereby such individuals would likely have 

an exacerbated inflammatory profile with increased osteoclast activity.   

4.4.7. CIITA 

Another important gene in mediating osteoclast activity is the CIITA gene, which 

encodes major histocompatibility complex (MHC) class II transactivator (MHC2TA) 
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(Swanberg et al., 2012). In particular, the CIITA was investigated for its 

involvement in driving osteoclast activity resulting in reduced bone density in 

osteoporosis. Here, the increased expression of CIITA was associated with lower 

bone mineral density in patients aged 75, while patients aged 25 did not show this 

association, therefore pointing towards age as an important factor in the loss of 

bone density (Swanberg et al., 2012). Indeed, the knockdown of the CIITA gene in 

mice resulted in reduced osteoclast differentiation, while mice over-expressing the 

gene had increased osteoclast differentiation and activity, linked to the onset of 

osteoporosis (Benasciutti et al., 2014). The fact that CIITA expression was 

increased at baseline in the good responders after 3 months of treatment was 

surprising due to its reported involvement in driving osteoclast activity and bone 

resorption. However, since the response to treatment in the TaSER study was 

defined using the DAS28-ESR, which focuses on joint inflammation and pain, and 

not the radiography of patients, patients who have a good response may also have 

a reduced bone density as a result of increased CIITA expression.  

4.4.8. STAT1 and STAT2  

Further genes of note include STAT1 and STAT2, which were mentioned in the 

differential analysis, with STAT2 being included in the modelling. These genes 

encode important proteins involved in modulating the immune response, often to 

viral infection, as depicted in the pathway analysis results (Tiwari et al., 2019). 

The products of these genes are co-localised with IRF9 in the same pathway, 

involving the response to the immune-activating cytokine, IFN, whereby the 

stimulation of the IFN receptor, IFNAR, leads to the formation of a complex 

consisting of STAT1, STAT2 and IRF9 (Honda and Taniguchi, 2006; Tiwari et al., 

2019). This complex can then migrate to the nucleus, thereby stimulating 

transcription factors that lead to increased expression of genes such as BST2, 

which may have a regulatory effect on the IFN response by triggering 

ubiquitination via E3 ubiquitin ligases, causing the degradation of proteins, notably 

including a product of RIG-I activity, also mentioned in this analysis (Jin et al., 

2017). While being a major molecular driver of the response to viral infection, an 

overactive or dysregulated IFN pathway may lead to the induction of 

autoimmunity, thereby linking the expression of the genes from the pathway 
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analyses with RA (Gota and Calabrese, 2003). Since these genes were associated 

with the response to treatment, it was hypothesised that the IFN pathway was a 

critical target for achieving a successful response to MTX.  

4.4.9. Transcriptomic Therapeutic Targets 

Since the expression of the genes discussed in this chapter may be associated with 

treatment response in the wider population, thus requiring further investigation, 

targeting their gene products may therefore be of therapeutic value. Such an 

approach could supplement the treatment of patients with conventional drugs like 

MTX. Indeed, small molecule inhibitors have been tested for several of the gene 

products, including bindarit, which blocks CCL2 (MCP-1), the experimental drug 

DMXD-011 (Domainex, UK), pralnacasan which targets caspase-1, the downstream 

effector of the NLRP1 and NLRP6 inflammasomes, and C25-140, which was shown 

to block the downstream signalling of TRAF6 (Mora et al., 2012; Miklossy, Hilliard 

and Turkson, 2013; Brenke et al., 2018; Xu et al., 2019). Many of these treatments 

were in development as anti-cancer therapeutics. A list of the genes, their known 

biological roles, and associated pharmacological agents are listed in 

Supplementary Figure 4.  

4.4.10. Correlating Metabolites 

The genes associated with patient responses to MTX from the differential analysis 

and the supervised machine learning modelling were then assessed for their 

relationships with features from the metabolomic data obtained from the same 

samples. The correlation heatmap provided a helpful overview of the metabolites 

that correlated with the immune-related genes. For example, kynurenine was 

negatively correlated with NLRP6, with a borderline-significant negative 

correlation with NLRP1. Additionally, there was an association of kynurenine with 

STAT2, STAT1, ADAR, BAST2, and ISG15. This was similar for itaconate and 

aconitate, along with several tryptophan-related metabolites, including 5-

hydroxyindole acetic acid and 5-hydroxytryptophan.  

Another study successfully used linear regression to investigate the connections 

between the serum metabolome and the synovial fluid transcriptome (Narasimhan 

et al., 2018). The authors reported that several metabolites —including alanine, 
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aspartate, glutamate-related metabolites, and ketone bodies — were associated 

with the expression of genes involved in driving inflammatory arthritis, including 

those encoding TNF and MMPs. Their findings highlighted the value of statistical 

methods and the incorporation of pathway analysis to integrate omics datasets to 

understand the molecular changes within the joint that could be targeted.  

In the same way, this work involving the transcriptomic and metabolomic datasets 

from the TaSER trial indicated where metabolites such as itaconate and kynurenine 

have potential as biomarkers of immune activity. These metabolites were 

correlated with genes involved in modulating immune-related pathways. Their 

altered levels in future patients may reveal important immune differences that 

may make an individual more or less susceptible to MTX. This integration of the 

two datasets from the TaSER trial showed potential in the development of a multi-

omic profile of treatment response, which may reflect altered immune activity 

which may be modulated by a variety of metabolites whose levels may be 

perturbed in the circulation.  
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5. TaSER Multivariate Integration 
 

5.1. Introduction 
 

The previous chapter integrated the transcriptomic and metabolomic datasets 

obtained from the TaSER trial using biological and statistical methods. Valuable 

insights were obtained from this analysis, where there were differences in the 

expression of genes associated with immune activity across response groups. This 

chapter describes an additional integration approach, thus exploring an alternative 

method of combining and analysing complex multi-omic datasets. By using a 

multivariate approach for the integration, it was anticipated that a multi-omic 

profile consisting of correlated and biologically related features would be 

uncovered that was associated with treatment response.  

5.1.1. Integration Methods 

The substantial variety of technologies used to generate omics data means that 

increasingly sophisticated integration methods are required to deal with the 

inherent challenges of dealing with highly heterogenous data (Gomez-Cabrero et 

al., 2014). Such challenges include handling the different sizes and formats of the 

data, along with the variances and the background noises specific to each data 

type. For instance, in terms of the number of features, the transcriptome can 

include more than ten times that detected during a typical metabolomics study. As 

a result, when using a simple statistical integration method, the transcripts would 

likely overwhelm the metabolites and so may hide meaningful results. There is an 

expectation that incorporating additional omics datatypes into an analysis will 

provide a more complete perspective of the mechanisms of disease. Another 

integration method was used with the intention of demonstrating how complex 

datasets can be robustly analysed and valuable insights could be revealed that 

were previously hidden.  

Data integration methods can be broadly classified as biology or data-driven, as 

described in a landmark paper for the field (Thomas and Ganji, 2006). The biology-

driven methods include pathway analysis, which involves tracking the molecular 
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events from the results of each dataset using pre-existing biological knowledge 

through databases like KEGG (Cavill et al., 2016).  

Pathway analysis and a conceptual data integration method are most typically 

favoured by biologists, where the tools and interpretation are most user-friendly. 

Many tools are available, including open-source and online tools, such as 

GraphOmics, MiBiOmics and MetaboAnalyst (Chong, Wishart and Xia, 2019; Wandy 

and Daly, 2021; Zoppi et al., 2021). While useful in mapping the features to known 

pathways, such tools may miss meaningful features, where they usually depend on 

prior knowledge and established databases, and so may struggle where a pathway 

is not fully characterised. Additionally, these tools rely on the features being 

identified and annotated using a standard approach, which may be limited during 

metabolomics analysis. This is partly due to the different metabolite aliases and 

the fact that multiple isomers can be detected, thus confusing the identification. 

Using purely statistical methods may therefore be more favourable, especially 

during an exploratory analysis where complete knowledge of the pathways may not 

exist. These include correlation-based, concatenation-based and multivariate 

methods (Cavill et al., 2016). Cavill et al. note that the multivariate method 

provided the most robust approach, despite requiring a more complicated 

interpretation than the other two. Correlation-based methods involve investigating 

how features across the datatypes may correlate. In contrast, the concatenation 

method combines the datasets into a single structure which can then be 

investigated as the researcher desires. A major flaw of these two simpler methods 

is especially apparent when integrating datasets with different structures and 

variances, such as the transcriptome and metabolome, where the features of one 

dataset vastly outnumber the other. 

5.1.2. Overview of the Multivariate Method 

Using the multivariate integration method allows the datasets to be treated as 

individual ‘blocks’ rather than being merged as with the alternative methods. This 

is beneficial because the differences in each dataset's variances, structures, 

ranges, and background noise do not affect how the other dataset is handled. In 

other words, each dataset remains independent. Multivariate methods involve 
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dimension reduction techniques, which can be either unsupervised, such as PCA, or 

supervised, for example, PLS-DA, both commonly used methods when analysing 

single omics data. When integrating the datasets, these tools can be used to 

generate artificial variables, or components, composed of a collection of related 

features from each dataset that may maximise the difference between sample 

classes. These components from each dataset can then be assessed for their 

correlations and a model generated using these components from each block, 

selected based on their ability to discriminate the samples as well as correlating 

across the datasets. This is the essence of the data integration analysis for 

biomarker discovery using latent variable approaches for omics studies (DIABLO) 

tool used in this work. The DIABLO tool extends the sparse generalised canonical 

correlation analysis (sGCCA) to balance out the correlations between the artificial 

components across the blocks and the model’s discriminative ability. By using this 

tool, the intention was to generate a model that could be used to uncover a multi-

omics molecular profile associated with the patient responses in the TaSER cohort 

while also revealing potentially connected multi-omic features (Cavill et al., 2016; 

Rohart et al., 2017; Singh et al., 2018). 

5.1.3. DIABLO in Action: Biomarker Discovery 
 

Given the ability of the DIABLO tool to not only discriminate sample groups but 

also to identify correlating features across the datasets that influence the 

classification of samples, this tool has been harnessed in several studies (Singh et 

al., 2018). For example, it was used to extract multi-omic molecular profiles of 

cerebrospinal fluid (CSF) samples from patients suffering from medulloblastoma 

(Lee et al., 2022). The study by Lee et al. (2022) used transcriptomics, 

metabolomics and lipidomics, which were generated using RNAseq and high-

resolution LC-MS/MS. From these data, a multi-omic profile of 19 transcripts, 28 

metabolites and 16 molecules from the lipidome was generated that could 

differentiate patients with medulloblastoma from healthy individuals. Importantly, 

the authors reported biological connections between the different datatypes. For 

example, S-adenosyl L-methionine was correlated with UFM1 and with LPC 17:0. It 

was reported that S-adenosyl L-methionine had cell-cycle modulatory effects, with 

the expression of UFM1 being associated with the regulation of the cell cycle. They 
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also reported how several metabolites and lipids were related via tumour hypoxia 

metabolic pathways.  

Like the work performed in this chapter, Lee et al. (2022) performed a differential 

analysis of each dataset used in the integration, which then informed the 

molecules to be taken forward, involving the selection of the top 100 features 

being incorporated into the integration. Refining the features prior to the 

integration would reduce the computational cost since the modelling can be 

especially time-consuming.  

In another example, the DIABLO tool complemented the analysis that led to the 

discovery of many potential osteoporosis biomarkers, a small number of which 

were found to have an influence on bone mineral density (BMD) (Qiu et al., 2020). 

The metabolomic dataset was generated from serum samples analysed using an LC-

MS platform. In contrast, the transcriptomic and methylomic datasets were 

generated via RNAseq and reduced representation bisulfite sequencing, 

respectively. Again, initial differential analysis was performed to refine the 

datasets to the features most associated with the sample class: high BMD and low 

BMD. By integrating these datasets using the DIABLO tool, the authors revealed a 

multi-omic molecular profile consisting of 74 genes, 75 methylated CpG sites and 

23 metabolites as prominent osteoporosis biomarkers. By performing further 

analyses involving pathway/network analysis using the STRING interaction tool, Qiu 

et al. (2020) then described the involvement of these biomarkers in various bone 

metabolism-related pathways (Szklarczyk et al., 2019). The authors demonstrated 

the value of applying multiple integration and analytical methods to uncover and 

further investigate biomarkers associated with the study conditions. For example, 

taking the results from the multivariate analysis and performing STRING interaction 

analysis allowed the numerous prominent osteoporosis biomarkers to be traced to 

shared biological pathways that may inform the disease's pathogenesis 

mechanisms.  

5.1.4. Aims 

The incorporation of a multivariate approach for the integration of the 

transcriptomic and metabolomic datasets from the TaSER cohort was expected to 



 

 

144 

expand on the findings reported from the previous chapters. The multivariate 

method was designed to uncover a correlated multi-omic profile capable of 

discriminating patient classes, such as response to treatment. The main aim of this 

chapter was to investigate the value of using the multivariate integration for 

developing a predictive multi-omic profile of treatment response. The secondary 

aim was to explore whether the multivariate approach uncover treatment 

response-related mechanisms.   

5.2. Methodology 

5.2.1. Integrating the Datasets: Multivariate Integration  

The multivariate-based method involved generating virtual variables from each 

omic block by combining linearly related variables to maximise their association 

with the sample classes. Applying a sparse assumption then allows the 

classification to be explained using only a handful of features from the components 

generated. An example of this is the sPLS-DA, of which a derivative was used in 

this analysis, involving the DIABLO tool from the mixOmics package (Rohart et al., 

2017; Singh et al., 2018). DIABLO was used to produce a multi-omic molecular 

profile consisting of correlated features that could be used to predict good and 

poor responders to MTX from the TaSER cohort. Investigating the correlated 

features between the datasets was expected to help inform biomarker discovery 

and understand the biology contributing to response.  

Briefly, like other dimension reduction methods, DIABLO reduces the features from 

each dataset to a smaller number of components consisting of statistically related 

features with assigned weights based on the covariance between the components 

and the category being predicted (Singh et al., 2018). Extracting the contents of 

the components from each dataset can then reveal the molecules that may be 

biologically related to the changing disease activity in patients. 

The DIABLO tool is, in essence, an extension of the multi-block sPLS-DA and the 

sGCCA to provide an integrative model with a predictive ability (Singh et al., 

2018). A regularised GCCA (RGCCA) is another dimension reduction technique, also 

known as a component-based technique, that extracts correlated components from 

multiple datasets with shared samples, therefore allowing the relationship 
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between datasets to be examined (Tenenhaus and Tenenhaus, 2011). The RGCCA 

can be extended with sparsity introduced through the application of a lasso-based 

weight which ultimately removes redundant features from the model and allows 

for feature importance to be performed (Lykou and Whittaker, 2010; Tenenhaus et 

al., 2014).  

5.2.2. Development of the Multi-Omic Integrative Model 

Before the model was generated using the DIABLO tool, a sPLS-DA was performed 

to investigate how the components from each dataset correlated with each other. 

This was done using the spls function from the mixOmics package. The top 

features from each dataset were selected in a pairwise fashion based on their 

ability to differentiate the response groups of their shared samples. Only the 

features that had a pairwise correlation coefficient > 0.5 were included (Singh et 

al., 2018). The features from the pairwise sPLS-DA model were then plotted in 

relation to the first two components of the model, showing their contribution to 

these artificial variables that could discriminate the response groups.  

The transcriptomic and metabolomics datasets from the initial analysis was used in 

the following integration analysis, and only peaks that could be at least tentatively 

identified based on their m/z ratio were included in the analysis. In addition, in 

keeping with the methods described in other studies that used the DIABLO tool, 

only the most differentially expressed/abundant features from each dataset were 

included in the analysis, leading to 219 transcripts and 50 metabolites included for 

the 72 samples. There was an inevitable loss of information from the metabolomic 

dataset due to the inclusion of only the putatively identified metabolites, but this 

was considered acceptable due to the reduced computational cost involved in the 

modelling and showing only biologically known features in the results, which could 

be further investigated. 

The model was tuned for several parameters, with the tune function in mixOmics 

being used for this. The number of components was tuned based on the 

classification error rate. The balanced error rate (BER) and the overall error rate 

(OER) were assessed, along with the distance metrics to estimate the error rate.  
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5.2.3. DIABLO: Model Development 

The first of the hyperparameters to be tuned was the design matrix, which was 

used to define how closely the transcriptomic and metabolomic datasets related. 

For example, it would be expected that datasets from the same source material, 

such as synovial fluid, and covering a short molecular distance between data 

types, such as between genomic and transcriptomic data, would have a high design 

matrix value of 0.8-1.0. However, since the transcriptomic and metabolomic data 

used here covered a greater distance in molecular terms, which was more 

complicated because they are derived from whole blood and plasma, respectively, 

there may be little connection between these blocks. To maximise the ability of 

the model to discriminate samples based on their response groups, therefore not 

prioritising the correlation between features, a design matrix value of 0.1 was 

selected (Tenenhaus and Tenenhaus, 2011; Tenenhaus et al., 2014).  

5.2.4. Tuning the number of components 

The number of components in the model refers to the number of orthogonal groups 

of features used in the classification. Ten components were initially assessed in 

the tuning stage, with the optimal number of components in the model selected 

based on the initial sPLS-DA model generated using a 10-fold cross-validation 

repeated 10 times. The optimal number of components was selected based on the 

classification error rate, shown as the overall error rate (ER) or the balanced error 

rate (BER), which report the classification accuracy of the model. As shown in 

Figure 5.1, the BER decreased to ~0.05 with two components when the maximum 

distance variable was used in the classification of the samples.  

The distance variable is the measure of the degree of separation across the sample 

groups using the components in the model. The maximum distance is a measure of 

the greatest distance between the two groups based on the Euclidean distance, 

whereas the centroid distance is the separation between the centroids (average 

point) of the two groups and the Mahalanobis distance is a measure of the 

difference between groups with the distribution of the data being considered 

rather than simply being the distance between two points (centroids).   
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Figure 5.1. Optimising number of components for the DIABLO model , with the error rate 
against the number of components used in the mixOmics model for tuning. Error rate was 
calculated across components with three methods of calculating the distance between 
sample groups: maximum distance (blue), centroids distance (orange) and Mahalanobis 
distance (grey). 

 

With two components, the features included in the model were then determined 

using a grid search that generated combinations of features from each block which 

were then tested using the BER as a performance metric to determine the panel of 

features to proceed with.  

 
 

5.3. Results 

5.3.1. Investigating Data Format, Ranges and Variances 

To compare the differences in the ranges, variances, and overall format of the two 

datasets from the TaSER trial, the data were concatenated using the shared 

sample identities in each. These differences are highlighted in Figure 5.2, where 
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Figure 5.2A includes boxplots for each patient sample, showing the range of 

abundances of the metabolites included in the dataset and the range of expression 

of each individual’s transcriptome. It was clear from Figure 5.2A that the 

measured metabolome and transcriptome had different dynamic ranges and 

variances.  

 
Figure 5.2. Differences in the transcriptomic and metabolomic datasets. A. Boxplots showing 
a range of abundances/expressions of features for each sample. B. PCA analysis of the 
features labelled based on the data type. 

 

A PCA was then performed, with the results in Figure 5.2B, which shows the spread 

and differences of the features from the metabolome and transcriptome. As can be 

seen in Figure 5.2B, the sheer number of genes in the transcriptome would be 

expected to overwhelm the metabolites, making the use of methods used in the 

previous chapters redundant. As such, it was logical to apply a statistical method 

that would handle each datatype, or block, independently of the other, thereby 

preventing the inherent differences in the datatypes from influencing the analysis.  

Metabolite

Data Type

Transcript
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5.3.2. Multivariate Approach: Non-Integrative Context of 
Distinct Datasets 

The results from the non-integrative approach involving the sPLS-DA generated for 

each block of data are shown in Figure 5.3, with the results from each block 

superimposed. The results indicated that the features from the transcriptome 

more strongly correlated with components 1 and 2 than the metabolome features. 

Loosely clustered groups of features from the transcriptomic data were positively 

correlated with components 1 and 2, with a smaller group that was negatively 

correlated to each component, primarily component 2. 

 

Figure 5.3. Correlational plot showing the results from the pairwise PLS models generated 
from the transcriptomic and metabolomic datasets from the TaSER trial. The inner ring 
shows a coefficient of 0.5 with the components, and the outer ring shows a coefficient of 1. 
Coefficients were calculated, showing features that correlated with the components.  

 

The metabolomic features were weakly correlated with the model’s components, 

with fewer features passing the coefficient of 0.3 for a correlation with these 

components, hence why few metabolites were included in the plot relative to the 

transcriptomic features. A coefficient of 0.3 was selected based on the 

approximate values observed for the correlation coefficients in the previous 

chapter between the metabolites and transcripts.  
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Correlations were likely to exist between the transcriptomic and metabolomic 

features, indicating there may be some relationship between features across the 

datasets, mainly those that contributed towards component 1. The correlation 

coefficients of the components defined by the top features from each dataset 

were then calculated, with the first components from the two blocks having a 

coefficient of 0.66 and the second component having a coefficient of 0.72 across 

the blocks.  

5.3.3. Applying the DIABLO Model  

Using the DIABLO model, the samples were projected into the space defined by the 

first and second components generated from the transcriptomic and metabolomic 

datasets, as shown in Figure 5.4. The samples were separated based on the 3-

month DAS28-based response groups with the 95% confidence interval ellipses 

around the coloured points reflecting the good and poor responders.  

As shown in Figure 5.4, the correlations between the transcriptomic and 

metabolomic data for the first (A) and second (B) components were weak (first 

component correlation coefficient = 0.60; second component correlation 

coefficient = 0.55), with greater discrimination between good and poor responders 

being shown for the first component. There was a smaller separation for the 

second component of the transcriptomic and metabolomic data, indicating that 

this could not distinguish the response groups using the second component from 

the transcriptomic and metabolomic datasets. 
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Figure 5.4. Diagnostic plots from mixOmics model. Correlation coefficients were calculated 
from the components in each plot. A. Component 1 from two blocks. B. Component 2 from 
two blocks. 

 

The samples were then plotted within the space defined by the components 

generated from the model from the metabolomic and transcriptomic datasets, 

shown in Figure 5.5.  
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Figure 5.5. Projection of samples in space defined by the components in each block. Samples 
were labelled based on the 3-month DAS28-based response. Each sample was plotted based 
on the coordinates for each dataset's two components included in the model. The 95% 
confidence interval ellipses encapsulated the response groups, with greater clustering 
observed using the transcriptome components than the metabolome, indicating a greater 
ability to discriminate the response groups from the transcriptomic block.  

 

The arrow plot in Figure 5.6 was then generated, showing a high variance between 

the blocks for the sample coordinates reflected by the long arrows. Even though 

the samples could be clustered relatively well based on the response label, the 

overlap of the samples from each response group indicated that the model might 

not provide a robust prediction of patient responses in future cohorts. 

Nevertheless, an impression of the multi-omic profile associated with response in 

the TaSER cohort could still be obtained, providing insights into the molecular 

events contributing to response to treatment.  
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Figure 5.6. Arrow plot showing the projection of the samples in space defined by each block's 
components. Each arrow comprises three points: the centroid marks the median position 
between the datasets, and the tips of the arrow mark the position of the sample based on 
the distinctive blocks.  

 

5.3.4. Feature Plots 

The collection of features used in the model across both components is shown in 

the Circos plot in Figure 5.7, which highlights the correlations between the 

transcriptomic and metabolomic features.  
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Figure 5.7. Circos plot of the features across the blocks. Correlations between the features 
from each block were shown, with a coefficient cut-off of 0.3 applied. Positive (green) and 
negative (red) correlations are shown across blocks. The outer line plots around the Circos 
plot show in which response group the mean expression/abundance of the features were 
highest. 

 

Finally, a clustered heatmap was then plotted, which showed the relative levels of 

each feature across the samples in the cohort, shown in Figure 5.8. The samples 

were clustered relatively well, with good and poor responders being mostly 

clustered together. However, the relative levels of the features did not appear to 

be drastically different across these clustered sample groups.  
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Figure 5.8. Heatmap of the features from each block included in the model. Samples were 
clustered based on Euclidean distances. The features were labelled in the rows, with their 
datatype noted on the y-axis, while the samples were labelled in the columns, with their 
respective responses shown on the x-axis. The clustering of the samples was based on their 
similar feature abundance/expression, determined using the Euclidean distance. 

For example, box A in Figure 5.8 highlights a group of features of which a 

reasonable proportion was increased in the good responders, albeit subtly. These 

included pantothenate, indole acrylic acid, uric acid, N-acetylornithine, N-acetyl 

Columns
Negative
Positive

Rows
Transcripts
Metabolites

A

B

C D

A

B

C D

Good (< 2.6)
Poor (> 2.6)

Pantothenate
HBA1
Indole acrylic acid
Uric acid
THSO7A
FLM0411
LASS3
N-Acetyl ornithine
OR10W1
CACNA1D
Thymine
Citrate
OR6V1
OR1S1
MS4A13
ATP6V1B1
FOXD4L4
N-Acetyl putrescine
VAX1
Guanidinoacetate
L-Histidine
Glycine
L-Homoarginine
IC0SLG
KPNA1
WDR26
HTRA1
NUP98
SNTB2
DBX1
FAM57A
ACSL6
LYPD5B
FAM57B
KJF21A
CYSLTR2
ORM2
EDN3
Pyrroline
GOLPH4
RGS3
L-Kynurenine
Cytosine
ECGF1
FRMD3
UBA7
RSAD2
MX1
STAT2
BST2
SCO2
TMEM140
BATF2
OAS1
N(6)-Methyllysine
Dihydrothymine
5,6-Dihydrouridine
2-Phenylglycine
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putrescine, guanidinoacetate, and HBA1, LASS3, FOXD4L4 and VAX1, among others. 

Again, including mostly subtle changes in their abundance/expression across the 

responders, the features in box B appeared to be elevated in the poor responders, 

including pyrroline, FAM57A, FAM75B, HTRA1 and ACSL6. Several of the 

metabolites were related, including N-acetylornithine, N-acetyl putrescine, 

guanidinoacetate, pyrroline and L-homoarginine, along with L-kynurenine and 

indole acrylic acid. These metabolites were mentioned throughout this thesis. 

However, none of the associated genes from the related pathways were included 

in these analyses. These findings were not surprising having considered the results 

from the previous chapter and how the statistical approach was not expected to 

necessarily reveal biologically related analytes.  

Interestingly within box C was a smaller cluster in box D showing features that 

were found to largely characterise a subgroup of good responders. The DAS28-ESR 

of the two patients in this group (T031 and T044) were checked as it was expected 

these would be near the cut-off of 2.6 for a positive response, which was 

confirmed where T031 had a score of 2.62, and TO44 had a score of 2.78. The 

features that characterised this box included kynurenine, cytosine, STAT2, BST2, 

ECGF1, FRMD3, UBA7, RSAD2, MX1, SCO2, TMEM140, BATF2 and OAS1. Several of 

these features were found in the metabolic and transcriptomic models described in 

the previous chapters. These results suggested that the inclusion of these features 

in the model may be driven by the influence of a small subgroup of patients who 

had high relative levels of these features. These features may only be helpful as 

biomarkers in a small proportion of patients with RA.  

5.4. Discussion 

Integrating multiple omics datasets generated from the same patients can provide 

valuable perspectives on the molecular mechanisms involved in disease that may 

be missed if the datasets were analysed individually. The application of integration 

methods in the analysis of the TaSER metabolomic and transcriptomic datasets was 

expected to reveal a molecular profile associated with treatment response. The 

previous chapter explored a simple integration approach, using concatenation and 

correlations of the features from each dataset. This chapter utilised a more 
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complicated multivariate method involving the mixOmics package (Singh et al., 

2018).  

5.4.1. Unpacking the Final Model 

The final model consisted of 61 features, of which 16 (26%) were from the 

metabolomic dataset. Many of these features were associated with the MTX 

response from the previous chapters, including STAT2, BST2, OAS1, cytosine, L-

kynurenine, and indole acrylic acid. Additional features related to these were also 

included, including other transcripts that provided further evidence of the 

involvement of IFN signalling, such as MX1 and RSAD2, which are both IFN-induced 

genes. Other metabolites related to those already explored and included in the 

multivariate model were homoarginine, guanidinoacetate, N-acetylornithine, N-

acetylputrescine, pyrroline, pantothenate and dihydrothymine. In particular, the 

inclusion of homoarginine and guanidinoacetate in the model was notable since 

these were explored in detail in the later chapter reporting on the metabolomic 

data generated from patients with psoriatic arthritis (PsA), another RMD.  

However, the value of the multi-omic multivariate method in identifying new 

biomarkers of response may be limited. This was demonstrated in the heatmap in 

Figure 5.8  by the lack of a strong discriminatory profile of molecules that 

characterised the response of patients to MTX. However, the value of these 

findings may lie in the more subtle differences observed, such as in the collection 

of features that appeared to characterise the subgroup of positive responders in 

box D of Figure 5.8. The inclusion of kynurenine and cytosine, as well as several 

genes that may implicate IFN signalling in association with the positive response in 

these patients, may be biologically meaningful. For example, kynurenine 

production can be induced via IFN signalling through the increased activity of the 

IDO enzymes that metabolise tryptophan (Gustafsson et al., 2020). In another 

study, the production of kynurenine-related metabolites, notably xanthurenic acid 

and 3-hydroxyanthranilic acid, was associated with the increased IFN pathway 

activity in patients with osteoporosis, therefore linking kynurenine metabolism 

with the inflammation that may lead to bone-related disease (Apalset et al., 

2014).  
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5.4.2. Evaluating the Multivariate Integration Approach 

The aim of this chapter’s analysis was to search for molecules from different omics 

platforms that inform predictive biomarker discovery, done so using a multivariate 

integration. One of the benefits of the multivariate method was that it allowed the 

datasets to be treated as individual entities, not being combined in such a way 

that may lead to favouring the results from either of the datasets (Cavill et al., 

2016). Furthermore, by first generating artificial components of features that 

maximised the discrimination of the sample classes in each dataset, followed by 

investigating the correlations between these components, the molecules that were 

statistically related could be extracted and explored. The value of this was that 

new biological pathways could be uncovered that explain the differences between 

the sample classes, including the processes that lead to a good or poor treatment 

response.  

However, while effective at revealing the features most strongly associated with 

the differences between the sample classes, the effect of noise and overfitting to 

the data can mean that entirely unrelated molecules can be incorporated into the 

final model. This may lead to a model that is not reproducible across other 

datasets and may lack value despite the initial promising results. The same 

concern was raised in the previous chapter, where the generation of a supervised 

machine learning model from the transcriptomic dataset led to a high-performing 

model that consisted of biologically sparse molecules. Integrating a biological 

approach into this method was beneficial and gave greater confidence in the 

model’s robustness. A similar approach in this work may benefit, where a 

multivariate approach not only discriminated sample classes and revealed 

correlating features across datasets but also used prior biological knowledge to 

guide the selection of features. Embedding a pathway analysis tool, such as the 

ShinyGo or Metaboanalyst tools, into existing multivariate techniques may 

therefore be feasible for the development of an upgraded tool. 

An alternative approach to the integration of the datasets may be to apply 

multiple tools within a pipeline. For example, the value of the multivariate 

method was that it revealed correlating features in a model that successfully 

discriminated sample classes. By starting the pipeline with this method, followed 
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by subsequent pathway analysis on these features, using an existing tool, like 

GraphOmics, it is anticipated that a biologically connected and correlated panel of 

molecules could be determined that could be used to guide predictive biomarker 

discovery (Wandy and Daly, 2021).  

The development of more sophisticated and biologically informed statistical 

methods is expected to cause the field to flourish, where the creators of the Multi-

Omics Graph Convolutional Networks reported their novel approach as progressing 

the field in comparison to related tools such as DIABLO (Wang et al., 2021). Their 

use of graph convolutional networks (GCNs), a type of deep learning approach, 

may surpass the use of the multivariate methods used in DIABLO, where GCNs work 

especially well with complex graph-based data, which includes biological multi-

omic datasets.  
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6. Multi-Centre Metabolomics of Treatment Response in RA  
6.1. Introduction 

6.1.1. Overview 

The prevalence of RA varies around the world, with a recent meta-analysis noting 

the highest prevalence being reported in Australia (2% of the population), whilst 

rural parts of South Africa were reported to have close to zero reported cases 

(0.0026%) (Brighton et al., 1988; Almutairi et al., 2021). Such a range in 

prevalence may reflect the reported differences in the diagnosis of individuals 

with RA in developed and developing countries, as well as between urban and rural 

areas, where those in rural areas are more likely to have a late diagnosis and 

greater disease burden (Hodkinson, Tikly and Adebajo, 2014; Almoallim et al., 

2021). Across Europe and North America, the prevalence also varies, with 0.54% 

(95% CI: 0.50- 0.59) and 0.7% (95% CI: 0.57- 0.86), respectively (Almutairi et al., 

2021). Since RA is a disease with genetic and environmental factors, the 

differences in geography and culture may drive this variance. However, care in 

interpreting the rates is needed, with the age and sex being other important risk 

factors in the disease (Finckh et al., 2022). For example, exposure to industrial 

waste, smoking and lifestyle habits, including diet, are all risk factors for the 

emergence of RA, which may explain a higher prevalence of the disease in 

industrialised countries  (Smolen et al., 2018; Finckh et al., 2022).  

6.1.2. Treatment response metabolic profiles in other research 
centres 

Two metabolomic datasets were obtained to evaluate the TaSER metabolic profile 

of treatment response and to continue investigating the metabolites associated 

with response. Doing so was expected to develop the understanding of the role of 

the metabolome in contributing towards a successful response to treatment, 

including MTX and other commonly used treatments. These datasets were obtained 

via an advanced search using PubMed, described in the Section 6.2.1, and 

represented independent populations from that investigated in the TaSER trial 

(Gosselt et al., 2020; Hur et al., 2021). The analysis by Gosselt et al. was 

performed on the Treatment in the Rotterdam Early Arthritis Cohort (tREACH), 
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involving plasma samples from patients being analysed using an LC-MS platform. A 

semi-targeted approach was taken, providing a dataset of semi-quantified 

metabolites since they were measured relative to exogenous metabolite reference 

standards (Gosselt et al., 2020). The tREACH metabolomic dataset was kindly 

shared by Professor Robert de Jonge and Dr Helen Gosselt from Amsterdam UMC. 

The work by Hur et al. (2021) involved plasma samples from patients with RA being 

analysed using a UPLC-MS/MS platform described in their recent publication. This 

metabolomic dataset was publicly available as part of their publication and its 

analysis in this thesis was supported by Professor Jaeyun Sung.  

Both studies revealed unique panels of metabolites that were associated with the 

change in disease activity with the response to treatment in their cohorts. These 

studies, therefore, provided insights into the metabolites that may contribute 

towards the resolution of inflammation in RA in response to treatment. In the 

original publications, the authors of these studies did not report the similar 

response-associated metabolites as that obtained from the TaSER trial. These 

findings were mentioned in Section 3.4.3 as part of the discussion of the metabolic 

profile of MTX-response in the TaSER trial. 

6.1.3. Aims 

This chapter intended to firstly investigate the reproducibility of the TaSER 

metabolic profile of treatment response in cohorts of patients with RA from other 

regions and countries, namely the Netherlands and the USA. Additionally, using the 

workflow developed throughout this project, a secondary analysis of the datasets 

included in this chapter was performed to determine whether there were similar 

trends across these datasets generated in the Netherlands and the USA. It was 

anticipated that differences would exist between the cohorts owing to lifestyle 

factors and the differences in the instrumentation used to generate the data, but 

common metabolic features would be identified relating to the resolution of 

inflammation with treatment. 
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6.2. Methods 

6.2.1. Identifying the Datasets 

A secondary analysis was performed on the datasets generated from the studies 

described by Gosselt et al. (2020) and Hur et al. (2021). An advanced search 

identified these studies using PubMed, with the following search terms: 

(rheumatoid arthritis) AND (metabolomics) AND (predictive biomarkers) AND 

(blood). Having read through the first dozen studies, the datasets included in these 

were pursued for further analysis.  

The metabolomic data generated from samples from the tREACH trial provided the 

initial section of this chapter (Gosselt et al., 2020). Important to note, the 

metabolomic data was semi-quantitative, whereby single concentrations of each 

reference standard were run alongside samples, making comparisons with datasets 

from other institutes and studies difficult. This was mentioned in the original 

publication. Only metabolites with matching standards based on their m/z ratio 

and RT were included in the analysis, drastically reducing the dataset's number of 

features. 

Following the tREACH metabolomic analysis, the metabolomic data generated at 

the Mayo Clinic as part of the work by Hur et al. (2021) was then analysed. This 

study involved an untargeted approach to measuring the metabolome, using a 

UPLC-MS/MS platform. Compared with the tREACH dataset, this provided a greater 

coverage of metabolites including those that could be found in the TaSER dataset. 

This provided another group of patients with RA whose response to treatment was 

measured along with a baseline metabolome. 

Since these data were previously analysed and reported in work by Gosselt et al. 

(2020) and Hur et al. (2021), this chapter involved independent analyses involving 

the application of the workflow developed in the chapter describing the TaSER 

metabolomics. Additionally, the treatment response-associated features from the 

previous chapters were assessed in this chapter in other patient cohorts to 

determine the robustness of these findings.  

The results from these metabolomic analyses were expected to reiterate those 

found in the prior publications and so only novel findings were reported in detail. 
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These were only discussed where similar results were generated and where they 

underline the reproducibility of the analytical workflow used in this project. 

6.2.2. Defining Treatment Response  

The DAS28-ESR was used to track changes to disease activity in response to 

treatment, with the tREACH and Mayo Clinic studies reporting good responses when 

patients had DAS28-ESR at 3 months < 3.2. However, since the analysis of the 

TaSER dataset applied the more stringent cut-off for remission to define the binary 

classes of responses (DAS28-ESR < 2.6), the same threshold was used in this 

chapter. It was expected that there would be differences in the metabolites 

associated with these response groups compared with the results described in the 

original publications.  

6.2.3. Notes on the Mayo Clinic Dataset and Treatments Used 

The study performed at the Mayo Clinic (Rochester, MA) involved patients with 

active RA, satisfying the criteria described by EULAR and ACR (Aletaha et al., 

2010; Hur et al., 2021). Patients (n=64) had plasma samples taken at baseline and 

again after a period of 6 to 12 months, which were then analysed via UPLC-MS/MS 

by Metabolon Inc. (Durham, NC, USA). The original dataset included a further 12 

samples as a validation set. However, these samples were taken at a single time 

point, and no information was provided on the treatments used, so these samples 

were not included in this analysis.  

Patients received a variety of treatments, including csDMARDs, like MTX, 

sulfasalazine and hydroxychloroquine, or biologics, including TNF-inhibitors, such 

as etanercept, infliximab, adalimumab and certolizumab. As a result, incorporating 

this dataset provided an opportunity to investigate whether there was a common 

metabolic profile in the circulation that was associated with general treatment-

agnostic response in RA. It was anticipated that similar metabolites would be 

associated with successful treatment, regardless of the drug used, whereby the 

presence of particular metabolites may be beneficial in resolving inflammation 

associated with RA, along with other RMDs. However, given the different molecular 

targets of each drug, such as nucleotide syntheses, adenosine release, TNF activity 
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or B/T cell signalling molecules, like CD20 or CD80/86, it was also expected that 

different levels of metabolites would provide more favourable environments.  

6.3. Results 

6.3.1. tREACH Cohort: Demographics 

Patients (n=82) enrolled on the tREACH study had various clinical factors and 

disease activity measures recorded, including the DAS28-ESR score at baseline and 

after 3-months of treatment, as shown in Table 6.1. At baseline, patients had a 

mean DAS28-ESR of 4.91 (SD: ± 1.20), which reduced to 3.05 (± 1.35) after 3 

months. After 3 months of treatment, 39 (51.2%) patients achieved remission, as 

per EULAR definitions. 

Table 6.1. Patient demographics in the tREACH cohort at baseline and after 3 months. 
Included are patient factors and disease activity measures. 

 
 

6.3.2. Correlations of Baseline Metabolites and 3-Month DAS28 
Response 

The metabolites at baseline that correlated with the DAS28-ESR score at 3 months 

were investigated, although the correction for multiple testing led to no 

significantly correlated metabolites being identified. The metabolites that 

Demographics n = 82
Female Sex, n(%) 59 (71.95%)
Age (y) 51.28 ± 14.55
BMI 26.23 ± 5.11
Current Smoker, n(%) 27 (32.92%)
Anti-Citrullinated Protein Antibody Positive, n(%) 48 (58.52%)
Rheumatoid Factor Positive, n(%) 44 (53.65%)
Disease Activity Measures Baseline 3 Months
Disease activity score across 28 joints with ESR (DAS28-ESR) 4.91 ± 1.20 3.05 ± 1.35
EULAR Remission Response (DAS28-ESR < 2.6) - 39 (51.21%)
Erythrocyte sedimentation rate (ESR) 26.47 ± 20.74
C-reactive protein (CRP) 16.35 ± 25.36
Health Assessment Questionnaire (HAQ) 37.96 ± 189.65
Tender joint count across 28 joints (TJC28) 7.88 ± 5.68
Swollen joint count across 28 joints (SJC28) 7.20 ± 5.54
Rheumatology attitudes index (RAI) 8.54 ± 6.27
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correlated with DAS28-ESR with unadjusted p-values < 0.05 are shown in Figure 

6.1. These metabolites had weak correlations with the disease measure, making it 

uncertain whether these were meaningful associations. Indeed, it was unlikely that 

these metabolites would hold much value as individual biomarkers of response. 

 
Figure 6.1. Correlational analysis of the baseline metabolites with the DAS28-ESR at 3 
months. Spearman correlation coefficients and p-values plotted for each metabolite.  

 

Homocystine and taurine were both included in the original metabolic model from 

Gosselt et al. (2021), while the other metabolites, including 6-

phosphogluconolactone, leucine and proline were not discussed in detail in the 

study. Aside from 6-phosphogluconolactone, these were negatively correlated with 

the DAS28-ESR at 3 months, where patients with higher levels of these metabolites 

at baseline generally had lower DAS28-ESR scores at 3 months.  

6.3.3. Differential Analysis of Metabolites Across Response 
Groups 

The binary classification based on the 3-month DAS28-ESR was used to investigate 

the differential abundance of the baseline metabolites, with the results shown in 
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Figure 6.2. Like the correlational analysis, none of the metabolites were significant 

across the two groups after adjusting for multiple testing using the BH correction. 

However, using a less stringent approach with a threshold based on an unadjusted 

p-value < 0.05 revealed several metabolites that were potentially differentially 

abundant across response groups, including fumarate, phosphoenolpyruvate, and 

ribose 5-phosphate, threonine, and valine.  

 

Figure 6.2. Boxplots showing the differential abundance of the metabolites at baseline 
across the 3-month DAS28-ESR-based response groups. 

 

6.3.4. Attempting to Validate the TaSER Metabolic Model 

The metabolic model from the TaSER trial that was generated to predict 3-month 

DAS28-ESR-defined responses was then assessed for its reproducibility in another 

related but different cohort. The TaSER model consisted of pyroglutamate, 

kynurenine, indoleacrylic acid, pyrroline, cytosine, N-succinyl L-citrulline, 

ornithine and 5-methylcytidine. The tREACH cohort was selected to evaluate the 

performance of the TaSER metabolic model owing to the fact it was generated 

similarly to the TaSER dataset, using LC-MS, and the patients had early RA and 

were primarily treated with MTX. However, the initial correlational and 



 

 

167 

differential analyses did not reveal any of the same metabolites as those shown in 

the TaSER metabolic model. As a result, it was not expected that the TaSER 

metabolic model would accurately predict the treatment responses of the patients 

in the tREACH cohort.  

Additionally, despite both using LC-MS, the differences in the instrumentation 

involved meant that differences in the ranges and variances were observed across 

the datasets from TaSER and tREACH. This meant that the model from TaSER could 

not be directly applied to the tREACH dataset. Moreover, the tREACH dataset did 

not contain many of the metabolites included in the TaSER model because only 

metabolites with matching reference standards were included in the tREACH 

dataset. As a result, the TaSER model was not directly evaluated using the tREACH 

dataset. It should be noted that a similar approach was also applied to the dataset 

generated by Hur et al. (2021), but this proved to be similarly poor in terms of its 

reproducibility, and so was not described at length in this work.  

6.3.5. Developing a Metabolic Profile of 3-Month DAS28-ESR 
Response 

 

Moving forward, the tREACH metabolomic data was then used to generate a new 

model using the same approach in the TaSER model's generation. As shown in 

Figure 6.3, the tREACH metabolome was used to generate a model, predicting the 

good (DAS28-ESR < 2.6) and poor responders (DAS28-ESR > 2.6), with the number of 

patients in each group shown in Figure 6.3A. Using the RFE, a panel of metabolites 

was selected for the model, including homocystine, R5P, fumarate, IMP, leucine, 

UTP, valine, taurine, 1,3-diphosphoglyceric acid and GDP, shown in Figure 6.3B.  

The model included several metabolites mentioned in the original work’s 

modelling, including homocysteine, taurine, and 1,3-diphosphoglyceric acid, 

therefore providing evidence that the workflow performed as expected (Gosselt et 

al., 2020). 

The final tuned model predicted the patients’ responses well, with an AUC-ROC of 

0.81 (95% CI: 0.72-0.90) and an MCC of 0.585. It should be noted that the repeated 



 

 

168 

k-fold cross-validation was used as the primary resampling method rather than the 

holdout method used in the TaSER analysis.  

 
Figure 6.3. Supervised machine learning workflow and results for generation of model from 
tREACH metabolomic data. A. Number of samples whose patients achieved good or poor 
responses at 3 months. B. Results from the RFE-feature selection C. ROC curve showing 
performance of final model having undergone 10-fold cross-validation repeated 100 times. 
D. Additional performance metrics from the model evaluation. 

 

No shared metabolites were included in the TaSER and tREACH response-associated 

metabolite models. This suggested that a metabolic profile associated with MTX 

response in patients with RA may be very loosely associated in the first place, 

indicating weak associations between the metabolites and the patient outcomes. 

Alternatively, or indeed in addition to this, the models may have been overfitted 

to their data, making them unable to be reproduced across different cohorts of 

patients. A larger sample size would help to determine this, reducing the impact of 

noise that may be influencing the selection of features within the models.  

Good 
(DAS28 < 2.6)

Poor 
(DAS28 > 2.6)

3-Month DAS28-ESR Response
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6.3.6. Mayo Clinic Sung Metabolomics: Demographics 

The patients whose samples were included had active RA at baseline, with a mean 

DAS28-CRP of 3.08 ± 1.31, and after 6-12 months, the mean DAS28-CRP was 3.04 

± 1.39, as described in Table 6.2. There was, therefore, very little change in the 

mean disease activity of patients over the study period, although 31 (48.44%) of 

patients achieved remission, based on the DAS28-CRP < 2.6, as per EULAR 

guidelines.  

Despite having more features than the tREACH dataset, and therefore being more 

likely to include the metabolites mentioned in the TaSER metabolic model, the 

metabolomic dataset from Hur et al. (2021) could not be used to fully evaluate the 

TaSER model as had been initially hoped. This was due to the treatment responses 

of patients being measured after 6 or 12 months — not the 3-month period of 

treatment as in TaSER and tREACH. Additionally, since patients were treated with 

MTX in TaSER, the involvement of other DMARDs, notably the biological drugs, 

meant that a like-for-like comparison could not be performed. 

Table 6.2. Patient demographics, disease activity and treatments received in the Mayo Clinic 
plasma metabolomics study by Hur et al. (2021). 

 

Demographics n = 64
Female Sex, n(%) 44 (68.75%)
Age (y) 62.73 ± 10.50
BMI 30.56 ± 5.66
Current Smoker, n(%) 7 (10.93%)
Anti-Citrullinated Protein Antibody Positive, n(%) 44 (68.75%)
Rheumatoid Factor Positive, n(%) 36 (56.25%)
Disease Activity Measures Baseline 6-12 Months 
Disease activity score across 28 joints with CRP (DAS28-CRP) 3.08 ± 1.313 3.04 ± 1.39
EULAR Remission Response (DAS28-CRP < 2.6) - 31 (48.44%)
Treatment
Methotrexate (MTX) 48 (75%)
Sulfasalazine 6 (9.38%)
Hydroxychloroquine 14 (21.88%)
Biologic 32 (50%)
TNF-inhibitor 23 (35.94%)
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Nonetheless, the secondary analysis of the Mayo Clinic’s metabolomic dataset was 

expected to provide valuable insights into the metabolites associated with 

treatment response.  

6.3.7. Correlations of Baseline Metabolites and Treatment 
Response 

The same approach as in previous chapters was taken to investigate the 

metabolites at baseline that correlated with the DAS28-CRP after a treatment 

period, with the results shown in Figure 6.4. Most metabolites had correlation 

coefficients in a similar range to those from TaSER and tREACH, which indicated 

relatively weak global metabolite correlations with the disease activity following 

treatment.  

 
Figure 6.4. Correlations between Mayo Clinic study’s baseline metabolites and the DAS28-
CRP after treatment (all treatments). Spearman correlation coefficients and p-values 
calculated for each metabolite’s correlation with the DAS28-CRP score after a period of 
treatment. 

 

Interestingly, several metabolites (and their acetylated forms) appeared more than 

once across these datasets, including glucuronate, indole propionic acid (IPA), and 
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ornithine. The correlations of these metabolites with the DAS28-CRP score after a 

6-12-month period of treatment are shown in Figure 6.4 alongside the other 

correlating metabolites.  

For example, tryptophan (R= -0.36, p-value = 0.0039), N-acetyltryptophan (R= -

0.31, p-value = 0.001), IPA (R= -0.25, p-value = 0.044) and 6-bromotryptophan (R= 

-0.42, p-value = 0.00058), were all detected and negatively correlated with the 

DAS28-CRP, indicating that they were elevated in patients at baseline in patients 

who went on to have a positive response to treatment or had a relatively low 

DAS28-CRP at the time of measurement. The fact that tryptophan strongly 

correlated with both 6-bromotryptophan (R=0.65, p-value < 2.2x10-16) and N-

acetyltryptophan (R=0.43, p-value = 3.9x10-7) indicated that these latter 

metabolites were likely adducts of tryptophan. IPA was negatively correlated with 

DAS28-ESR, also appearing in the PsA dataset which potentially indicated changes 

to tryptophan metabolism along the indole-pathway. This is downstream from 

indole acrylic acid, which was tentatively identified and correlated with DAS28-ESR 

in the TaSER study, therefore indicating indole pathway differences associated 

with treatment response across RMDs. 

In addition, the presence of SCFAs was noteworthy — for example, 2-amino 

butyrate was negatively correlated with the DAS28-CRP (R=-0.26, p-value = 0.037). 

SCFAs were briefly mentioned in Section 3.4.11, whereby the potential 

involvement of the gut microbiome in modulating immune activity was discussed 

following the discovery of tentatively identified indole acrylic acid in association 

with the TaSER cohort response to treatment. SFCAs are largely produced by the 

gut microbiome, along with the indole-derived metabolites. They may be involved 

in regulating the immune response by stimulating the differentiation of Treg cells 

and impairing the activity of osteoclasts, which is important in driving bone 

pathology in RA (J. He et al., 2022).  

Since these metabolites are largely produced via the gut microbiome, these 

findings indicate that certain species of bacteria may be involved in producing an 

anti-inflammatory environment that supports successful responses to treatment in 

RA. 
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6.4. Discussion 

6.4.1. Limitations of the Multi-Centre Analysis 

The multi-centre analysis reported in this chapter provided the opportunity to 

investigate the robustness of the metabolic profiles of response to treatment in 

cohorts of patients from different geographical regions. These included the West 

of Scotland (TaSER trial), the Netherlands (tREACH trial) and the USA (Hur et al. 

study, Mayo Clinic).  

The intention for the multi-centre approach was initially to evaluate whether a 

metabolic profile of response to treatment in patients with RA that was developed 

in the TaSER cohort was reproducible in other related cohorts of patients. 

However, it was apparent early in this process that applying the metabolic profile 

of response from one dataset to another would be challenging. This was due to 

sources of variation across the metabolomic datasets generated by each research 

centre. For example, while variations of the same LC-MS platform were used at 

each centre, these differed in terms of the chromatography column, the mass 

spectrometers, the pre-processing steps (including data normalisation), and the 

downstream analytical workflows used to generate the output data. A consistent 

panel of metabolites associated with treatment response was not ultimately found 

across the cohorts. The findings in this chapter indicated that a robust biomarker 

profile from the metabolome that can predict the patient responses to treatment 

was unlikely to be found with high accuracy across cohorts. A more reliable 

approach to this investigation would involve analysing all the samples across 

cohorts using the same analytical platform, hence removing the instrumentation 

and operator as sources of variation. 

Since untargeted metabolomics provides a relative quantification of the 

metabolites from a given sample, the comparison of the same metabolite from the 

same sample across research centres can often show very different measurements. 

This can be attributed to the fact that the metabolite’s measurement — without a 

standard curve to provide an absolute quantification — is determined based on its 

peak intensity relative to either the authentic standard provided for the 

metabolite or the total ion count. In addition, the measurement of a metabolite 

can be heavily influenced by various instrumentation factors, such as the ionisation 
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efficiency and the sensitivity of the mass spectrometer’s detector, hence causing 

shifts in the total ion count. This means the instrumentation itself, along with the 

operator, can have a substantial and meaningful influence on the measurement of 

the metabolome. 

As such, the initial application of the TaSER model to the tREACH dataset, for 

example, had to be approached differently, involving an attempt to develop 

another model using the same features as that from TaSER within the tREACH 

dataset. This was also attempted with the Hur et al. dataset. However, this was 

not possible owing to differences in the features included in the data, and where 

the same metabolites appeared across the datasets, these had different dynamic 

ranges and variances, meaning they were not consistently measured across the 

cohorts.  

These issues with the multi-centre approach underline the inherent challenges 

with the metabolomics approach. Using targeted metabolomics may mitigate 

against these challenges of reproducibility across datasets where quantification of 

the identified molecules can be done using agreed-upon metabolite standards. 

However, the targeted approach would first require determining the metabolites 

to measure, therefore requiring an initial untargeted approach for the hypothesis 

generation stage (Schrimpe-Rutledge et al., 2016).  

6.4.2. Findings from the tREACH and Mayo Clinic Metabolomic 
Analyses 

Following the failed attempt to validate the TaSER metabolic model in these 

additional datasets, the analytical workflow used for previous datasets was then 

applied to those included in this chapter. The publications that reported the 

findings from these datasets followed a similar approach, involving supervised 

machine learning to investigate the metabolites that contributed to the binary 

classification of the patient responses to the treatment (Gosselt et al., 2020; Hur 

et al., 2021). However, there was little in the way of overlapping metabolites that 

helped characterise responders from non-responders in the cohorts of patients 

with RA. For example, the metabolic profile of response generated from the 

tREACH metabolomic data included homocystine, ribose-5-phosphate, fumarate, 
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leucine, valine, and 1,3-diphosphoglyceric acid, along with IMP, UTP and GDP. 

Meanwhile, the TaSER metabolic profile of MTX response consisted of L-

kynurenine, cytosine, 5-methylcytidine, pyroglutamate, pyrroline, L-ornithine, N-

succinyl L-citrulline and indoleacrylic acid. 

While the original study reported similar metabolites in their analysis, supporting 

the methodology's robustness, these metabolites did not appear in the results from 

the other datasets. Indeed, the potential for the influence of geographic/cultural 

factors and lifestyle differences may mean that no shared metabolic profile of 

response can be found across different regions. As such, the validation of the 

findings from each of these datasets may be limited in that it can only be done in 

metabolomic data generated from the same demographic as the original model 

was developed upon. However, this obviously limits the value of any clinical tool 

that emerges from this work since it would be useful for only a small proportion of 

geographically limited patients. While precision medicine would consider these 

potential geographic differences to deliver the optimal treatment for the 

individual based on their molecular, clinical and environmental circumstances, the 

high cost of generating metabolic profiles of response across a multitude of regions 

would likely make the campaign largely unattainable and have little value for 

understanding the metabolic mechanisms that contribute to the response of 

treatment.  

However, the Mayo Clinic metabolomics revealed several metabolites of interest 

that were mentioned in other chapters in this thesis, including glucuronate, IPA 

tryptophan and ornithine. One of the advantages of using this dataset was that 

there was a reasonably high number of tentatively identified metabolites. 

Contrastingly, the semi-targeted approach used for the tREACH metabolome meant 

that only metabolites selected by the authors were included in the analysis. 

Tryptophan and IPA are related via indole-based metabolism, involving metabolism 

by the gut microbiome. These metabolites were found to be negatively correlated 

with the DAS28-CRP after a 6–12 month period of treatment. Since these 

metabolites were therefore increased in patients with lower disease activity at 

these time points, they may point towards changes in the gut microbiome, 
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producing favourable metabolites that may have immunomodulatory and anti-

rheumatoid arthritis effects (Negatu et al., 2020; J. He et al., 2022). 

Additionally, ornithine was negatively correlated with the DAS28-CRP, which was 

also seen with N-acetylornithine in the TaSER metabolome, whereby it negatively 

correlated with DAS28-ESR at 3 months. Additional arginine-related metabolites 

were associated with the reduced disease activity in analysing the PsA metabolome 

in a later chapter, including homoarginine and guanidinoacetate, making arginine 

metabolism a pathway of interest in these RMDs. Moreover, the PsA metabolomic 

analysis also showed a positive correlation of glucuronate with disease activity 

after 3 months. Since glucuronate was similarly correlated with DAS28-ESR in the 

Mayo Clinic study, this may point towards a perturbed xenobiotic processing 

pathway, where glucuronate, while being involved in glucose metabolism, is better 

known for its involvement in the removal of drugs and other xenobiotics from the 

body, a process called glucuronidation (Silva et al., 2003). This was discussed in 

more detail in the next chapter, in Section 7.4.4. 
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7. CENTAUR Metabolomics  
7.1. Introduction 

7.1.1. Background 

Patients with PsA are often treated using similar drugs for RA, including MTX, 

sulfasalazine and TNF inhibitors, such as etanercept (Gossec et al., 2020). As with 

RA, patients with PsA require early and successful treatment to manage their 

symptoms and improve their long-term outcomes. Perhaps related to the difficulty 

in diagnosing PsA, there is a noticeable lack of validated biomarkers for PsA, with 

clearly fewer studies being performed to obtain candidate biomarkers from the 

omics platforms that could be used to predict treatment responses in PsA.  

This chapter intended to explore the metabolome of patients with PsA as a source 

of novel biomarkers associated with the response to treatment. The metabolomic 

data was generated from serum samples obtained via the CENTAUR trial involving 

patients with PsA treated using various DMARDs. Where the TaSER trial primarily 

involved patients treated using MTX, the analysis described in this chapter 

incorporated the treatment of patients using several different DMARDs, similar to 

the Mayo Clinic cohort from the previous chapter. As a result, a metabolic profile 

associated with a treatment-agnostic response was investigated here, providing 

insights into the metabolites that were associated with the resolution of 

inflammation in patients with PsA. Since this chapter introduces PsA as an 

additional RMD, a secondary aim of this chapter was to investigate the shared 

metabolites associated with treatment responses that were expected across these 

diseases. 

As described earlier, there are marked differences between PsA and RA, involving 

different clinical presentation, genetic and molecular components and differences 

in the treatments used and how patients respond (Veale and Fearon, 2015). Given 

the distinction between these diseases, the metabolome from the patients with 

PsA from the CENTAUR cohort was investigated and compared with the 

metabolomes generated from cohorts of patients with RA described in previous 

chapters.  
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The DAPSA score was used as a primary measure of disease activity in the CENTAUR 

study and was therefore used to define the responses to treatment after the 3-

month period of treatment in this work. Alongside DAPSA, the fibromyalgia (FM) 

score, SJC66, TJC68, CRP, PVAS, and GVAS were reported. In this chapter, the 

continuous DAPSA score at 3 months or binary classes based on the DAPSA score 

were used to explore the metabolites at baseline associated with the response to 

treatment.  

7.1.2. Aims 

The metabolomic analysis of the serum samples from patients with PsA enrolled in 

the CENTAUR study was performed in this chapter. The main aim was to 

investigate the metabolic features associated with the response to treatment in 

PsA. The metabolites associated with treatment response in the PsA cohort were 

compared to the other metabolite panels described in this project.  

Since this chapter introduces PsA as an additional RMD, a secondary aim of this 

chapter was to examine whether shared metabolic features were associated with 

the response to treatment across these RMDs.  

The use of similar DMARDs in RA and PsA for the effective control of disease led to 

the hypothesis that the common resolution of inflammation might be linked with 

shared metabolic pathways that may influence the efficacy of these treatments. 

However, differences were reported in terms of the clinical presentation and the 

molecular component across these diseases, described in Section 1.3.2. 

Investigating differences and similarities in metabolites across diseases may reveal 

those that modulate the treatment-associated resolution of RMDs and provide new 

opportunities for targeting these pathways. For example, the targeting of 

tryptophan metabolism — mentioned in the analysis of the TaSER cohort — using, 

for example 1-methyltryptophan, may alter the environment that regulates the 

response to treatment and supplement MTX treatment. 

7.2. Methodology 

A comprehensive methodology describing the analytical workflow for this work was 

described in Chapter 2. Since this metabolomic analysis for the CENTAUR dataset 
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consisted of an additional unique component, specifically the analysis of cytokines 

in the serum samples of patients, a brief description of this method was provided 

below.  

7.2.1. CENTAUR Study Overview 

The CENTAUR study was performed to investigate and characterise the pain 

pathways involved in PsA, involving neuropathic and nociceptive pain. Since pain 

and joint inflammation were of interest as part of the CENTAUR study, the DAPSA 

composite score was used, providing a comprehensive measure of the articular 

disease and the resolution of joint-based disease in response to treatment. 

Patients enrolled on the CENTAUR study (n=50) were subject to several inclusion 

criteria, including the following:  

- Patients had active disease having been defined using the CASPAR criteria. 

- Clinical examination revealed evidence of ongoing inflammation (synovitis). 

- Patients were due to be treated using a new immunosuppressant drug as 

part of their disease management. 

Patients were initially referred by their direct care team in the rheumatology 

department, which they had been attending. Having not achieved successful 

management of their disease, patients were due to be switched to an alternative 

DMARD. As a result, patients were not DMARD-treatment naïve at baseline. 

The study’s primary aim was to investigate and characterise the phenomenon of 

centralised pain in patients with PsA. Clinical examinations and measurements of 

pain, including fibromyalgia (FM) score and the DAPSA, were taken at baseline, 3 

months, and 6 months, along with blood samples at these time points. Due to the 

focus on pain pathways in the original study, the DAPSA score was used as the 

primary disease activity measure, concentrating on joint-based pain. Patients also 

underwent brain MRI scans and quantitative sensory testing performed by Dr Flavia 

Sunzini which was not reported in this work.  

Serum samples from patients were prepared by Dr Flavia Sunzini using a standard 

protocol (Luque-Garcia and Neubert, 2007). These were then analysed via the LC-

MS platform at Glasgow Polyomics, with further detail provided in Section 2.2. 



 

 

179 

Only the baseline samples were analysed to measure the metabolome prior to 

patients receiving the new treatment, therefore allowing for an investigation into 

metabolites associated with subsequent treatment response. The treatment 

response was defined using the 3-month DAPSA score, with a binary classification 

of patients being established, where patients were considered to have a good 

response with a 3-month DAPSA score ≤ 14 and a poor response with a DAPSA score 

≥ 28. Patients with DAPSA scores between 14 and 28 were considered to have a 

partial/limited response to treatment. 

7.2.2. Additional Component to Workflow: Cytokine Analysis 

The serum samples were subject to further analysis to measure the levels of a 

panel of cytokines selected for their involvement in inflammatory processes and in 

processes relating to FM and related pathologies in PsA. For example, molecules 

that regulate and modulate hunger may be important factors in PsA, along with 

the association of fatigue and the neurological component of the disease (Cañete 

and Mease, 2012; Baker et al., 2017; Conaghan et al., 2020). Indeed, several 

cytokines were previously linked with the pathology of psoriasis and PsA, including 

the following: IL-1β, ΙL-2, ΙL-10, IL-12,  IL-17, IL-22, IL-23, IFN-γ and TNF-α (Nestle 

et al., 2005; Nograles et al., 2008; Tonel et al., 2010; Zaba et al., 2010; Lynde et 

al., 2014).  

The cytokines were detected using the MSD platform, involving the MESO QuickPlex 

SQ 120MM analyser (Meso Scale Diagnostics, LLC, Rockville, Maryland, USA). The 

MSD S-plex immunoassay was used to measure IL-17A and IL-1β, while the U-plex 

immunoassay was used to measure the remaining cytokines, as performed by Dr 

Flavia Sunzini. The raw data were kindly shared by Dr Flavia Sunzini and analysed 

alongside the patient and metabolomic data within the R environment.  

7.3. Results 

7.3.1. Patient Demographics 

The disease activity measurements of patients from the CENTAUR trial were taken 

at baseline and after 3 months, with the 3-month DAPSA being used to determine 
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the response to treatment. The patient demographics and disease activity 

measures obtained from the CENTAUR trial are shown in Table 7.1.  

Table 7.1. Patient demographics from CENTAUR study with clinical factors and disease 
measurements at baseline and 3 months. 

 
7.3.2. Multivariate Analysis 

The results from the PCA of metabolite profile with 3-month DAPSA scores are 

shown in Figure 7.1. The samples were plotted in the space defined by PCs 1 and 

2, and the samples were labelled based on the DAPSA score at 3 months. 

As was the case for the baseline metabolome from the TaSER cohort there was no 

global metabolomic profile associated with the 3-month response to treatment. To 

examine whether any specific features were associated with treatment response, 

the individual metabolites were then investigated for their associations with the 3-

month DAPSA score. 

n= 50Patient
23 (52.3%)Female Sex, n(%)

49 ± 11.50Age (y)

29.77 ± 4.43BMI

4 (9.1%)Current Smoker, n(%)

3 MonthsBaselineDisease Activity Measures
31.38 ±

20.32
41.64 ± 20.68

Disease Activity in Psoriatic Arthritis 

(DAPSA)

12.59 ± 5.81Fibromyalgia (FM) score

0.59 ± 0.70C-reactive protein (CRP) (mg/dl)

4.54 ± 5.00
Swollen joint count across 66 joints 

(SJC66)

16.44 ± 14.91
Tender joint count across 68 joints 

(TJC68)

5.44 ± 2.22Pain visual analogue scale (PVAS)

4.58 ± 2.64Global visual analogue scale (GVAS)
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Figure 7.1. PCA shows the samples at baseline, and samples were labelled using disease 
measures. A. Scree plot. B. Samples projected in space defined by PC1 and PC2, with 3-month 
DAPSA-based response used to label samples.  

 

7.3.3. Metabolites Associated with the 3-Month Response 

The metabolites correlated with the 3-month DAPSA were explored, correlating 

the baseline metabolite abundances against the 3-month DAPSA. Initially, only the 

metabolites with an adjusted p-value < 0.05 were included, but no significantly 

correlated metabolites were found after the correction. As a result, a less 

stringent selection was performed, using an unadjusted p-value of 0.05, with the 

results shown in Figure 7.2, with the caveat that these metabolites may not be 

truly correlated with the 3-month DAPSA score. Nevertheless, the correlation 
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coefficients of the metabolites in Figure 7.2 indicate there may indeed be 

associations between these metabolites and the 3-month DAPSA score.  

 
Figure 7.2. Correlating metabolites at baseline with 3-month DAPSA from CENTAUR cohort. 
Spearman correlation coefficients and associated p-values were calculated and plotted 
alongside the regression lines.  

 

Care may need to be taken in interpreting these findings since these metabolites 

were only tentatively identified based on the mass alone matching known 

biological molecules from HMDB. In particular, the m/z ratio and potential 

molecular formulae generated for these metabolites also matched several other 

molecules. As a result, these may be identified as other metabolties. Their true 

identities were not determined, given the lack of authentic standards for these 

compounds and fragmentation data that would otherwise support the 

identification.  

Tentatively identified guanidinoacetate and IPA were negatively correlated with 

the 3-month DAPSA and were elevated in patients with a lower DAPSA after 3 

months of treatment. In particular, IPA was of interest due to its involvement in 

tryptophan metabolism, a pathway described in the literature as having 

immunomodulatory effects in vitro (Krishnan et al., 2018; Cussotto et al., 2020). 

Despite only tentative identification of these metabolites being possible with this 

work, their appearance (or that of related metabolites) in the analysis of 
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metabolomic data from other cohorts provided greater confidence that these 

analytes had an association with treatment response.   

Next, the differential abundance of the metabolites across the 3-month DAPSA 

groups was investigated. The results from the differential analysis are shown in 

Figure 7.3.  

 
Figure 7.3. Differential analysis of the metabolites across the 3-month DAPSA groups. A. 
Volcano plot B. p-value histogram showing the distribution of p-values across the features. 
Significantly different features across the conditions would be reflected by a high number of 
low p-values, shown as a peak to the left of the plot. 

 

Again, a p-value adjustment was applied to correct for false positives, but no 

metabolites remained significant after this, leading to a low unadjusted p-value 

being used. This cut-off is displayed in the volcano plot in Figure 7.3A. The p-value 

histogram in Figure 7.3B highlighted that there were few metabolites that were 

significantly different across the response groups, where there was a low 

occurrence of p-values < 0.05 in the dataset. From the volcano plot, 

guanidinoacetate was slightly increased in the good responders, supported by the 

correlation plot in Figure 7.2, where the same metabolite was negatively 

correlated with the 3-month DAPSA score. However, these results as a whole were 
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not convincing owing to the weak associations shown and high variance of the 

metabolite abundances observed across the sample groups. 

7.3.4. Developing a Metabolomic Profile of 3-Month DAPSA 
Response 

The supervised machine learning workflow developed using the TaSER cohort was 

applied to the metabolomic data from the CENTAUR study. Patients were 

designated into response groups based on their 3-month DAPSA score, with a good 

response as DAPSA ≤ 14 and a poor response defined as DAPSA ≥ 28. The number of 

patients in each group is shown in Figure 7.4A.  

 
Figure 7.4. Supervised machine learning to generate a metabolomic profile of binary 3-
month DAPSA response. A. Number of patients included in the good and poor response 
groups based on the 3-month DAPSA score. B. Results of the RFE-based feature selection 
process, with the top features and their respective relative importance scores shown. C. ROC 
curve showing the trained model’s performance in predicting patients' responses in the 
testing subset with 10-fold cross-validation repeated 100 times. D. Table showing additional 
performance metrics and several true positive (TP), false positive (FP), true negative (TN) and 
false negative (FN) predictions.  

 

The results from the feature selection are shown in Figure 7.4, involving the 

selection of metabolites that were together able to predict whether samples came 

Good (≤ 14) Poor (≥ 28)
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from patients with a good (3-month DAPSA ≤14) or poor (3-month DAPSA ≥ 28) 

response to treatment. These included guanidinoacetate, homoarginine, 

homocitrulline, lysine, glucuronate, itaconate, carnitine, pyruvate, and lactate, as 

shown in Figure 7.4B. Interestingly, several of these relate to arginine metabolism 

–also mentioned in the TaSER metabolic model in Chapter 3 — including 

guanidinoacetate, homoarginine, homocitrulline, and lysine.  

As shown in Figure 7.4C and Figure 7.4D, the model performed well with an AUC-

ROC value of 0.85 (95% CI: 0.67-1.03) and an MCC of 0.629. However, as can be 

seen in Figure 7.4D, a reasonably high number of false positives (FP) were 

predicted owing to the slight imbalance in the number of low DAPSA and high 

DAPSA scores, reflecting good and poor responders, respectively. Given the 

imbalance and the potentially over-optimistic evaluation of the model using the 

ROC curve and the AUC-ROC value, the AUC-precision recall (AUC-PR) was likely a 

better evaluation of the model, with an AUC-PR value of 0.70 being reported, as 

shown in Figure 7.5. 

 
Figure 7.5. Precision recall curve for the metabolic model generated to predict the 3-month 
DAPSA-based response of patients with PsA to treatment. The grey horizontal line (no-skill 
line) represents the adjustment based on the imbalance across sample classes, and the 
performance of the model is calculated relative to its distance from this line.  
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The PR curve may be more helpful in understanding the model's performance, 

where the associated curve incorporates a ‘no-skill’ horizontal line. This was due 

to the imbalance of the classes, where there were more patients with a high 

DAPSA (poor response to treatment) in this sub-cohort.  

 

 
Figure 7.6. Model-agnostic feature interpretation plots A. Accumulated local effects and 
partial dependence plots B. SHAP plot. 

 

Model-agnostic feature interpretation plots were generated to investigate the 

causative influence of each metabolite on the model’s predictive capacity, as 

shown in Figure 7.6. It was apparent that higher abundances of guanidinoacetate, 

homoarginine, itaconate, homocitrulline and lysine were more influential on the 

model's probability of predicting a good response to treatment. On the other hand, 

higher levels of lactate, glucuronate, and pyruvate were associated with a greater 
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probability of predicting a poor response to treatment. These effects are shown in 

the ALE plots and PDPs in Figure 7.6A. They are also indicated in the SHAP plot in 

Figure 7.6B, reflecting the additive influence of each feature on the prediction by 

the model.  

 
Figure 7.7. Correlations of the model's metabolites at baseline with the 3-month DAPSA. 
Regression lines plotted and Spearman correlation coefficients were calculated for each 
metabolite’s relationship with the DAPSA score at 3 months.  

 

The actual abundances of the metabolites selected for the model and their 

associations with the DAPSA score at 3 months and the response to treatment are 

shown in Figure 7.7 and Figure 7.8. From the analysis shown in Figure 7.7, 

guanidinoacetate and homoarginine were correlated with the DAPSA. Despite not 

being below the p-value threshold of < 0.05, glucuronate, itaconate, and pyruvate 

indicated some association with the 3-month DAPSA score, which was investigated 

further. It should be noted that all the patients were included in this analysis 

rather than just the patients with extreme DAPSA scores.  

The correlational analysis was repeated in the subgroup of patients who had 

received MTX as part of their treatment. Only homoarginine was correlated with 
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the MTX-mediated response, with a similar trend as that shown in Figure 7.7 (R=-

0.52, p-value = 0.0066). This was shown in Supplementary Figure 6. 

 

Figure 7.8. Boxplots showing differential analysis of the abundances of the metabolites from 
the CENTAUR model. Only the extreme response groups were included: good response 
(DAPSA ≤ 14) and poor response (DAPSA ≥ 28). Wilcoxon tests were used to generate the p-
value statistic for each metabolite across the response groups. 

 

Likewise, the differential analysis of these metabolites, shown in Figure 7.8, 

indicated that homoarginine, homocitrulline and pyruvate were differentially 

abundant across the 3-month DAPSA poor and good response groups. Glucuronate, 

guanidinoacetate and lysine were borderline significant. This analysis only included 

the sub-group of patients from the CENTAUR cohort who achieved LDA/remission 

(DAPSA ≤ 14) or had HDA (DAPSA ≥ 28) after 3 months, referred to throughout as 

having a good or poor response, respectively. 

Several metabolites reported in Figure 7.8, including glucuronate, 

guanidinoacetate, homoarginine, homocitrulline, lysine and pyruvate, showed 

some potential as biomarkers of treatment response. However, the other 
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metabolites in the model without a clear association with treatment response may 

indicate a limitation of the machine learning process. This may occur owing to 

their selection due to high noise in the dataset which can occur with complex 

matrices like human serum. Additionally, since the cohort was relatively small, the 

effect of background noise was likely more pronounced than in a larger cohort.  

The model’s ability to separate the samples was further scrutinised using a PCA. 

Compared with the earlier PCA involving the entire metabolome, there was a 

greater separation of the response groups using the model’s features only. 

However, while loose clustering of the response groups could be seen in Figure 

7.9A, the overlapping samples from each group indicated that the model’s ability 

to predict the responses of future cohorts may be limited. Since the response 

groups were mostly separated across PC1, the contribution of the metabolites in 

defining this component was assessed, with the results shown in Figure 7.9B. From 

this, lysine, homoarginine and guanidinoacetate were most influential in defining 

PC1.   

 

Figure 7.9. Investigating the separation of samples using PCA with labels based on the 3-
month DAPSA-based response. A. PCA of samples with only the features from the metabolic 
model included. B. Features included in the model were ranked for their importance in 
defining PC1, the component that provided the greatest separation of the response groups.  
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In addition to investigating how the circulating metabolites are associated with the 

response to treatment, the influence of different clinical factors on the variance of 

each of the model’s metabolites was investigated with the results shown in Figure 

7.10. Notably, age influenced the variance across all metabolites except itaconate, 

although this was particularly low (< ~5%) for homocitrulline, shown in Figure 

7.10A. This was considerably higher for homoarginine and carnitine, where age 

explained ~15% of their variance. BMI also explained ~20% of the variance of 

guanidinoacetate and ~5% of homoarginine, homocitrulline, lysine and pyruvate. 

Alcohol proved influential in explaining ~5% of the variance of itaconate, 

guanidinoacetate and ~10% of the variance of carnitine. As shown in Figure 7.10B, 

of the patient factors, age was the most influential factor on the variance of the 

features in the model. 

  
Figure 7.10. Explaining the variance of the CENTAUR model's features using patient factors. 
A. Bar plot showing the influence of the patient factors on the variance of the metabolites 
included in the metabolic model of treatment response. B. Violin plot showing the average 
variance explained by the patient factors across all the metabolites considered.  
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7.3.5. Pathway Analysis 

From the tentative identifications, several metabolic pathways may be implicated 

in the metabolic profile for the 3-month DAPSA-defined response. Given the 

inclusion of homoarginine, guanidinoacetate, pyruvate, lactate and itaconate, such 

pathways may include arginine and central carbon metabolism. The top 50 

tentatively identified metabolites from the differential abundance analysis were 

taken forward for pathway enrichment analysis using the online Metaboanalyst tool 

(Chong, Wishart and Xia, 2019).  

Figure 7.11. Metabolite set enrichment analysis results from Metaboanalyst. The enrichment 
ratio described the ratio between observed metabolites and expected hits in the pathway 
(Chong, Wishart and Xia, 2019). 
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From this analysis using the differentially abundant and tentatively identified 

metabolites, the most enriched pathway was glycine and serine metabolism, shown 

in Figure 7.11. This pathway includes pyruvate, ornithine, arginine, citrulline, and 

2-oxoglutarate. Also noteworthy were the urea cycle and arginine and proline 

metabolism; the latter included guanidinoacetate, proline, 2-oxoglutarate, 

ornithine, arginine and citrulline. However, since metabolites intersect across the 

pathways, care needs to be taken in considering the importance of these results, 

since the same metabolites were likely to appear in multiple pathways. 

7.3.6. Metabolic Ratios 

As shown in Figure 7.12A, the abundance ratio of guanidinoacetate and 

homoarginine, both metabolites included in the final DAPSA-response associated 

mode, was assessed for its correlation with the 3-month DAPSA.  

 
Figure 7.12. Metabolic ratio of guanidinoacetate: homoarginine and its association with the 
3 month DAPSA response. A. Correlation  of ratio with continuous DAPSA score at 3 months 
with regression lines B. Boxplots showing increased ratio in negative responders 
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The correlational analysis showed that patients with a higher guanidinoacetate: 

homoarginine (GA: HA) ratio tended to have a higher 3-month DAPSA score, 

indicating a worse response to treatment (R=0.44, p-value = 0.012). Interestingly, 

the same metabolic ratio was associated with the cardiovascular mortality rate in 

patients undergoing renal transplantation, again suggesting an immunomodulatory 

role (Hanff et al., 2019). Using ratios of metabolites was helpful since they provide 

a pathway-wide measure and can be more informative than using a single 

biomarker. This was demonstrated in a recent study where increased kynurenine: 

tryptophan ratio was associated with SARS-CoV2 infection (Lionetto et al., 2021). 

Interestingly, the ratio of this same pair of metabolites has also been associated 

with RA, which may be due to the immunomodulatory roles of each metabolite (de 

Vries et al., 2017; Kor et al., 2022).  

The boxplot in Figure 7.12B further reveals this association of the GA: HA ratio 

where only patients with extreme DAPSA scores (≤ 14 or ≥ 28) after 3 months were 

plotted. It was shown that a higher GA: HA ratio tended to be found in patients 

with higher disease activity, reflecting a poor response to treatment (p-value = 

0.019). A lower GA: HA ratio at baseline may therefore indicate a good response to 

treatment after 3-months, regardless of the treatment used.  

Since the metabolic model described in this chapter included pyruvate, lactate, 

itaconate, and glucuronate — linked via central carbon metabolism — the ratios of 

each pair of metabolites were calculated and assessed in relation to the DAPSA 

score at 3 months, as shown in Figure 7.13. Additionally, binary response groups 

were generated using the extreme ends of the DAPSA scores in the cohort and the 

association of these ratios with the good and poor responders, as shown in Figure 

7.13Β, Figure 7.13D, and Figure 7.13F. From these figures, it was apparent that, 

generally, patients with higher ratios between the selected metabolites had lower 

DAPSA scores. The differential analysis shown in the boxplots showed a similar 

trend, where a higher itaconate: pyruvate ratio was found in good responders (p-

value = 0.0082), shown in Figure 7.13B, similar to the trend shown for the 

itaconate: glucuronate ratio (p-value = 0.033) and the homoarginine: lactate ratio 

(p-value = 0.0023). The strongest association was found between the 

homoarginine: lactate ratio and the 3-month DAPSA, shown in Figure 7.13E (R=-
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0.56, p-value = 0.00094). However, because homoarginine was already found to 

have a strong correlation with the 3-month DAPSA as an individual metabolite, it 

was unclear how much more value using its ratio with lactate would provide.  

 
Figure 7.13. Metabolic ratios of selected metabolites from the model and their correlations 
and associations with the 3-month DAPSA-defined response to treatment. A, C, E. 
Correlations of each metabolite pair with the DAPSA at 3 months. B, D, F. Boxplots showing 
the differential analysis of the metabolite ratios across good and poor responders. 

 

7.3.7. Cytokine Analysis and Association with Disease Activity 

Results from the serum cytokine analysis are shown in Figure 7.14. The cytokines 

measured at baseline were evaluated to identify those correlated with the 

baseline DAPSA score, therefore reflecting higher levels of inflammation in the 

patients prior to receiving the novel DMARD. 

Cytokines that correlated with the DAPSA score at baseline included eotaxin-3 (R=-

0.33, p-value = 0.037), ghrelin (R=-0.62, p-value = 0.0046), GROα (R=0.0.43, p-

value = 0.0049), IL-13 (R=-0.51, p-value = 0.0092), IL-17D (R=-0.35 p-value = 

0.026), and leptin (R=0.36, p-value = 0.022). Additionally, IFN-γ was borderline-

significant for its correlation (R=-0.29, p-value = 0.065) and may be biologically 

meaningful. Since IL-17D and IFN-γ represent cytokines described in the literature 

as having an association with the pathology and severity of PsA, the fact these 
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were correlated with the DAPSA at baseline was noteworthy. Additionally, eotaxin-

3 and GROα (CXCL1) had particularly strong correlations with the baseline DAPSA 

score. CXCL1 is a pro-inflammatory chemokine whose expression is induced by 

numerous inflammatory cytokines, including IL-1β and TNF-α, via activating the 

inflammation-mediating transcription factor, NF-κB, and is implicated in recruiting 

neutrophils to sites of inflammation (Sawant et al., 2016). As expected, the strong 

positive correlation between CXCL1 and DAPSA at baseline indicates higher 

inflammation in patients with high DAPSA at baseline. The negative correlation of 

eotaxin-3 with the baseline DAPSA was surprising since eotaxin-3 is also involved in 

inflammation and the recruitment of eosinophils, although it is primarily 

associated with the allergic immune response. Other eotaxin cytokines were not 

measured in this analysis. 

 
Figure 7.14. Correlation plots showing cytokine levels at baseline against the baseline DAPSA 
score in patients with PsA. Regression lines are plotted to aid the visualisation of the 
association. Spearman correlation coefficients and p-values plotted for each cytokine. Beta-
NGF- beta nerve growth factor; EPO- erythropoietin; GROalpha- growth-regulated alpha 
protein; PP- pancreatic polypeptide.   
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Leptin was positively correlated with the 3-month DAPSA score (R=0.36, p-value = 

0.022), generally elevated in its circulating levels in patients with a worse 

response to treatment, shown by the increased DAPSA. Leptin was reported in the 

literature as being an important driver of several immune cell populations, 

including macrophages, dendritic cells and T-cells, as well as mediating the 

production of pro-inflammatory cytokines, IL-1, TNF-α, ΙL-17, IL-23 (Gabay et al., 

2001; Mounessa et al., 2016; Ziegler et al., 2019). While beyond this project's 

scope, the increasingly understood link between obesity and psoriasis/PsA may 

underline the importance of leptin in mediating the inflammatory processes that 

drive the disease (Hwang et al., 2021).  

7.3.8. Associations Between Cytokines and Metabolites 

Within the panel of cytokines generated in work performed by Dr Flavia Sunzini, 

the following were specially assessed for their associations with the metabolomic 

features: IL-1α, IL-1β, IL-1RA, IL-6, IL-10, IL-12 subtypes, IL-17 subtypes, IL-23, 

TNF subtypes, IFN subtypes, ghrelin and leptin. Their correlations with the 

metabolites were assessed and visualised as a heatmap in Figure 7.15.  

Several notable correlations shown within the heatmap were explored further to 

demonstrate a proof of concept, indicating the strong relationships between the 

cytokines and metabolites at baseline. Given the clustering patterns and their 

biological connection, IL-1RA and IL-1β were included in the subsequent analysis, 

along with IL-17C, which showed strong correlations with several metabolites. 

Guanidinoacetate was selected due to its strong correlations with inflammatory 

cytokines and involvement in the metabolic model of treatment response in 

Section 7.3.4. At the same time, hypoxanthine and urate, being biologically 

related, shared a similar correlation with IL-1β, making these especially 

interesting, with the results shown in Figure 7.16.  
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Figure 7.15. Correlation heatmap for cytokines and metabolites. Clustering was based on the 
Euclidean distances calculated between their Spearman correlation coefficients. 
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Figure 7.16. Correlations of cytokines of interest with associated metabolites. Regression 
lines plotted along with the Spearman correlation coefficient and p-values.  

 

Strong correlations were observed between guanidinoacetate and IL-1RA (R=-042, 

p-value = 0.0071) and IL-17C (R=-0.54, p-value = 0.0021). Since guanidinoacetate 

was increased in good treatment responders, shown in Section 7.3.4, these inverse 

relationships with the pro-inflammatory and psoriasis-associated cytokines, IL-1RA 

and IL-17C, may indicate the increased use or consumption of guanidinoacetate by 

IL-17-mediated immune processes, therefore linking this metabolite to disease-

related processes. These inverse correlations with pro-inflammatory cytokines, 

shown in Figure 7.16A and Figure 7.16B, suggest that guanidinoacetate may be 

potentially useful as a biomarker of disease activity in PsA and the prediction of 

treatment response.  

In addition, hypoxanthine correlated strongly with IL-1β (R=0.51, p-value = 

0.00079), as did uric acid (R=0.53, p-value = 0.00034), shown in Figure 7.16C and 

Figure 7.16D, respectively.  As hypoxanthine is converted to uric acid via xanthine 
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oxidase, their similar correlations with the pro-inflammatory cytokine IL-1β may 

indicate increased activity of this enzyme and overall purine metabolism 

associated with increased inflammation.  

Since patients with PsA and psoriasis may also experience gout owing to 

hyperuricaemia, the fact that IL-1β was positively correlated with uric acid in this 

work may serve as a proof of concept that these are biologically and clinically 

relevant pathways (Tripolino et al., 2021; Widawski et al., 2022). This was 

discussed further in the next section. 

 
Figure 7.17. Involvement of IL-17C in PsA and psoriasis. A. Correlation of IL-17C with TNFβ. 
Β. Differential levels of IL-17C between patients with and without diagnosed psoriasis as a 
comorbidity. 

 

Although the involvement of IL-17C in PsA is relatively less understood than other 

members of the IL-17 cytokine superfamily, it has been described to behave 

similarly to other known subtypes  (Brembilla, Senra and Boehncke, 2018). 

However, the production of IL-17C was found to be especially increased in patients 

with psoriasis, involving increased gene expression giving rise to IL-17C (Johansen 

et al., 2010). This increased production of IL-17C in the skin of psoriasis patients is 
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reduced by anti-TNF treatment, indicating the involvement of TNF signalling in 

mediating IL-17C production. However, these inhibitors targeted only TNF-α 

(Johnston et al., 2013). In our data, a strong correlation was shown between IL-

17C and TNF-β (R=0.52, p-value = 0.0035), shown in Figure 7.17A. Additionally, 

when patients in the CENTAUR study were split into subgroups based on the 

previous/current diagnosis of psoriasis, the IL-17C level was significantly increased 

in patients who reportedly had psoriasis (Wilcoxon test, p-value = 0.04) (Figure 

7.17B). 

Finally, the metabolites correlated with at least two PsA-associated cytokines from 

the list of 88 cytokines measured were taken forward for metabolite set 

enrichment analysis (MSEA) using the Metaboanalyst tool (Chong, Wishart and Xia, 

2019). As shown in Figure 7.18, the MSEA indicated several significantly enriched 

pathways, including glycine and serine metabolism, the urea cycle, arginine 

metabolism and polyamine metabolism. Since arginine metabolism was mentioned 

in the previous section, involving homoarginine and guanidinoacetate being linked 

with the response to treatment in RA, the results from the cytokine-associated 

MSEA were especially noteworthy, where these arginine-related pathways were 

correlated with changing inflammation-modulating cytokines.  
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Figure 7.18. Enriched pathways from the list of metabolites that correlated with the PsA-
associated cytokines. Metabolite set enrichment analysis using the MetaboAnalyst tool. 

 

7.4. Discussion 

7.4.1. Value and Limitations of the Response-Associated 
Metabolic Profile 

The metabolomic data from the CENTAUR study — where patients with PsA had 

serum samples taken prior to their treatment with a new DMARD — provided an 

opportunity to investigate the metabolic features associated with treatment 

response in another RMD. Patients enrolled in the CENTAUR study were referred by 

their local rheumatology department and received prior treatment that had not 

successfully managed their disease. The subsequent analysis in this work was 
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performed to investigate the metabolites associated with the successful response 

to treatment based on the 3-month DAPSA score, regardless of the new DMARD 

used to achieve this.  

A panel of metabolites combined using a supervised machine learning approach 

was associated with treatment response in the patients with PsA from the 

CENTAUR cohort. Included in the model were homoarginine, guanidinoacetate, 

pyruvate, lactate, glucuronate, homocitrulline, itaconate, carnitine and lysine. 

While homoarginine, guanidinoacetate, glucuronate, and pyruvate were correlated 

with the 3-month DAPSA score or were differentially abundant across the DAPSA-

defined response groups, the other metabolites were found to have limited 

associations with the general treatment response. The fact that these were 

included in the model may reflect a limitation of the study and the use of the 

machine learning approach for this relatively small sample size.  Additionally, the 

inclusion of various treatments in the cohort meant there was an inevitable loss of 

drug-specific metabolic associations observed.   

The model generated from the PsA cohort was developed to predict the 3-month 

DAPSA-based responses of patients using a collection of metabolites measured 

from baseline serum samples. Cut-offs for LDA (good) and HDA (poor) were used to 

create a binary classification model of more extremes of response, which 

performed reasonably well with an AUC-PR value of 0.70 and MCC of 0.629. The 

metabolites from the model were then assessed for their collective ability to 

separate the samples using the PCA. The loose clustering of the samples based on 

their respective responses within these plots indicated that the model would likely 

have low accuracy in other cohorts. However, this was largely expected given the 

attempt to evaluate the TaSER model in independent cohorts and its lack of 

robustness across cohorts. Increasing the sample size in a subsequent study was 

expected to be of benefit in increasing the confidence in the associations between 

the metabolites and treatment response across patient cohorts.  

While the DAPSA score at 3 months was the primary measure of the treatment 

response in patients in the CENTAUR study, other measures may generate better-

performing models in that they may be more reproducible and applicable across 

patient cohorts. For example, a model could be generated that was associated 
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with a measure describing a single disease domain, such as the swollen joint count, 

or a more comprehensive measure, such as PASDAS, that incorporates more 

domains of PsA. The panel of metabolites from these models may provide 

additional valuable insights into the possible mechanisms involved in supporting 

treatment response in terms of the different features of the disease.  

A logical next step in this work includes performing targeted analysis on the 

metabolites in the model to identify them relative to authentic reference 

standards along with the generation of fragmentation data using an LC-MS/MS. The 

absolute quantification of the metabolites would support the translation of the 

model across cohorts and allow its validation in external datasets.  

Despite providing only an early stage in the biomarker discovery process, this 

chapter provided insight into tentatively identified metabolites that were 

associated with the 3-month DAPSA response. It was expected that an exploration 

of the immunomodulatory roles of the metabolites would follow this work, thus 

supporting the pursuit and development of biomarker strategies for clinical 

management of RMDs. 

7.4.2. Hypothesis Related to the Gut Microbiome 

IPA was negatively correlated with the DAPSA score at 3 months in the CENTAUR 

cohort with its upstream derivative indole acrylic acid being similarly associated 

with the DAS28-ESR at 3 months from the TaSER cohort. Indole-based metabolites 

are products of tryptophan's microbial metabolism, produced by species of 

bacteria found in the gut microbiome (Ye et al., 2022). These bacteria include 

Bacteroides, Clostridium and Peptostreptococcus strains (Negatu et al., 2020; Han 

et al., 2021). In fact, Clostridium sporogenes was reported as the only bacteria 

strain that produces IPA (Dodd et al., 2017). Since other studies have shown 

intestinal dysbiosis in psoriasis, it was feasible that the reduction of bacterial 

species that produce beneficial immunomodulatory metabolites, such as 

tryptophan-derived metabolites, may result in a change in systemic inflammation 

in patients with PsA (Chen et al., 2020). For example, the Bacteroidetes phylum 

was decreased in patients with psoriasis compared with healthy controls in 

multiple studies, along with Prevotella, while species belonging to the Firmicutes 
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phylum were increased in psoriatic patients (Huang et al., 2019; Shapiro et al., 

2019; Chen et al., 2020).   

It should be mentioned that IPA was only tentatively identified in this dataset, not 

having been matched to an internal reference standard, and so these findings need 

to be carefully interpreted. Nevertheless, variations in the abundance of IPA in the 

cohort of patients, as depicted in Figure 7.2 with the correlation of IPA with the 3-

month DAPSA, may indicate patients had meaningful differences in their gut 

microbiomes, which led to perturbations in immunomodulatory metabolites being 

released into their circulation.  

While there are known differences in the clinical presentation, molecular 

characterisation and therapeutic approaches between RMDs, an altered gut 

microbiome that influences a common inflammatory component may exist across 

autoimmune conditions (Miyauchi et al., 2023). The gut microbiome may be an 

important source of common metabolites associated with response across RMDs. By 

modulating the levels of bacteria that produce immunomodulatory metabolites, 

biotics could be used to supplement existing treatments of IRDs and other 

autoimmune diseases.  

Following the findings relating to the indole-based metabolites across the TaSER 

and CENTAUR datasets, investigating the sources of metabolites detected in the 

circulation would be a logical next step. To assess the gut microbiome as a root of 

the metabolites, an investigation into the strains of bacteria found in the guts of 

patients who experience variable responses to treatment may be performed as a 

next step (V. K. Gupta et al., 2021; Wang et al., 2022). Such datasets already exist 

and could be obtained for subsequent analysis, although this was beyond this 

project's scope. For example, Gupta et al. (2021) performed shotgun metagenome 

sequencing on 32 patients with RA, with baseline and 6–12-month follow-up 

samples being analysed.  

The patients were treated with various drugs, including csDMARDs (MTX, 

sulfasalazine) and bDMARDs (infliximab, and adalimumab). The authors reported 

that patients who experienced an improvement in their disease activity, based on 

the minimum clinically important improvement (MCII) measure, had meaningful 
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differences in their gut microbiomes, including overall microbiome diversity, 

where patients with a better outcome after 6-12 months typically had a greater 

diversity of species in their gut (V. K. Gupta et al., 2021). For example, the 

Bacteroides vulgatus species was increased in patients who met the MCII criteria, 

while the Ruminococcus genus was increased in those who did not meet the MCII. 

By harnessing the data generated by Gupta et al. (2021), it would be helpful to 

investigate whether patients who had a good outcome following treatment had 

differential levels of bacteria species known to produce the metabolites of interest 

in this work, including IPA and other indole-based compounds.  

7.4.3. Disruption to Arginine Metabolism 

The metabolic model for treatment response in patients with PsA revealed 

putatively identified metabolites related to arginine metabolism. These included 

homoarginine and guanidinoacetate, which are both produced via the conversion 

of arginine, as well as lysine, which is used in the production of homoarginine via 

arginine: glycine amidinotransferase (AGAT), depicted in Figure 7.19. 

Guanidinoacetate is produced via AGAT, which also creates L-ornithine (Edison et 

al., 2007). Using the same enzyme, homoarginine can be produced, involving the 

incorporation of lysine and arginine to produce homoarginine and ornithine (Davids 

et al., 2012). From guanidinoacetate, creatine can be produced using a 

methyltransferase enzyme, giving rise to urea and sarcosine.  

 
Figure 7.19. Production of guanidinoacetate and homoarginine from arginine. Adapted from 
Kanehisa and Sata (2020). Highlighted metabolites were included in the PsA metabolic 
model that was developed to report the 3-month DAPSA-based responses of patients.  
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Guanidinoacetate and homoarginine were negatively correlated with the 3-month 

DAPSA score (homoarginine: R = -0.53, p = 0.0023; guanidinoacetate: R=-0.36, p = 

0.042), while lysine was not significantly correlated with the DAPSA score. Higher 

levels of guanidinoacetate and homoarginine at baseline were indicative of a 

better response to treatment in the cohort. Since the GA: HA ratio was reported in 

the literature as associated with an increased risk of death in individuals with a 

kidney transplant, the same ratio was assessed here for an association with the 

DAPSA-based response (Hanff et al., 2019). This was especially important to note, 

as patients with PsA are at greater risk of early death due to CV disease. Indeed, 

there was a correlation between the GA: HA ratio at baseline and the 3-month 

DAPSA (R = 0.44, p = 0.017) and a significant difference was found for the 

distinction between low DAPSA (≤ 14) and high DAPSA (≥ 28), showing that a high 

GA: HA ratio was associated with a poor response to treatment based on the 3-

month DAPSA score.  

In the CENTAUR cohort, homoarginine and guanidinoacetate were generally 

reduced in their abundance in patients with higher 3-month DAPSA scores, which 

may point towards reduced AGAT activity in poor responders. This underlines the 

value of multi-omics analysis, whereby transcriptomics would provide insight into 

gene expression changes that control AGAT activity. Patients suffering from RMDs, 

primarily RA but also PsA, are at greater risk of developing CV disease (van Halm et 

al., 2009; Zhu, Li and Tam, 2012). In fact, in vivo work performed elsewhere 

showed that mice that lacked AGAT through genetic knockout showed impaired 

heart function compared to WT mice, which was linked to reduced homoarginine 

production (Faller et al., 2018). In addition, low homoarginine levels in the plasma 

of patients suffering from ischaemic stroke were associated with a worse outcome, 

indicating a potentially protective mechanism of homoarginine (Choe et al., 2013). 

Importantly, other arginine-related metabolites were included in the metabolic 

profile of MTX response in patients suffering from RA in the TaSER trial. These 

included ornithine and N-succinyl L-citrulline, which were associated with a 

response within the model, although concerns were noted surrounding the identity 

and true involvement of N-succinyl L-citrulline. The arginine metabolic pathways 

were located using the KEGG tool and are summarised in Figure 7.20 (Kanehisa and 
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Sato, 2020). The analysis of the transcriptomic data from the TaSER trial showed 

how the gene encoding arginase (ARG1) was increased in its expression at baseline 

in patients who had a poor response to MTX after 3 months. This may have 

indicated an increased metabolism of arginine and homoarginine towards 

ornithine, although it was noted that ornithine was not significantly associated 

with response by itself. The same was true of homocitrulline since it did not 

correlate significantly with the 3-month DAPSA score. Despite a p-value < 0.05 for 

its differential abundance across the response groups, the high variance observed 

meant it was not likely to be a meaningful association with response. 

Since arginine metabolism was noted in both RA and PsA for its association with 

the response to treatment, the increased ARG1 expression shown in patients with a 

poor response to MTX in RA was considered alongside the decrease in homoarginine 

and guanidinoacetate in the poor responders with PsA. However, it was described 

in the TaSER transcriptomic analysis that the increased ARG1 in poor responders 

was contrary to what was expected, owing to its association with the anti-

inflammatory M2-like macrophage phenotype that was reported during in vitro 

studies (Rath et al., 2014).  

Figure 7.20. Network of arginine metabolic pathways. Adapted from Kanehisa and Sata 
(2020). 
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The cytokine analysis and MSEA provided further evidence of the involvement of 

arginine metabolism in association with inflammatory processes. The key cytokines 

known to be involved in PsA, including IL-17 subtypes, IL-1β, IL-22, IFN-γ, and TNF-

α, were assessed for their correlations with the patient metabolomic features. 

From this, it was found that guanidinoacetate was negatively correlated with IL-

17C and IL-1RA, as shown in the earlier section, as well as IL-17A and leptin. In 

addition, homoarginine was also correlated, albeit weakly, with several other pro-

inflammatory cytokines.  

The correlation between guanidinoacetate and IL-17A, and IL-17C may be 

meaningful as these have been linked to PsA and psoriasis pathogenesis (Nograles 

et al., 2008; Lynde et al., 2014; Brembilla, Senra and Boehncke, 2018). While the 

understanding of IL-17C’s role in disease is not fully understood, it was strongly 

correlated with TNF,  increased in the circulation of patients in this work who also 

suffered from psoriasis and was reported to be increased in the skin of patients 

with psoriasis, supporting its likely involvement in influencing the pathology of PsA 

(Johnston et al., 2013).  

The literature describes IL-17A in PsA more substantially than other IL-17 family 

members, including IL-17C, where it describes an important involvement of IL-17A 

in PsA pathology. The production of IL-17A by various cells, including TH17 cells, 

leads to inflammation and bone damage (McGonagle et al., 2019). The use of the 

IL-17A inhibitor, ixekizumab, tested in the SPIRIT-P1 trial, reduced the disease 

activity of patients with PsA (Mease et al., 2017). Additionally, the phase 3 trials 

for secukinumab, another IL-17A inhibitor, initially approved for clinical practice 

for managing psoriasis, showed significant improvement in the disease activity in 

patients with PsA (Langley et al., 2014; Mease et al., 2018). As such, there was a 

clear and established role of IL-17A in PsA, leading to the use of anti-IL-17A drugs 

being developed for its management.  

In this current work, IL-17A did not correlate with the baseline CRP, DAPSA or FM 

scores, which was expected to indicate its association with disease activity in 

patients. However, given the increasingly understood tissue-specific immunological 

profiles in PsA, the lack of association of IL-17A with the joint disease reflected by 

DAPSA may be due to its prominent involvement in the skin-related disease and not 
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the joint (Siebert, Millar and McInnes, 2019). This is, therefore, an important 

example of how tissue-specific differences in the immunological profile may not 

necessarily be represented in the blood. Using other composite measures that 

cover more PsA disease domains would be a helpful addition to this work.  

The association of arginine metabolism with the differing disease activity and pro-

inflammatory cytokine profile was logical, where, in macrophage models, the fate 

of arginine was closely linked to the inflammatory phenotype of the cells (Rath et 

al., 2014). For example, the pro-inflammatory M1-like phenotype can be 

characterised by increased nitric oxide synthase (NOS) activity, giving rise to ROS. 

In contrast, the anti-inflammatory M2-like phenotype was conversely characterised 

by arginase activity (Rath et al., 2014). The differential activity of the urea cycle, 

potentially involving the altered behaviour of NOS or arginase, may lead to an 

altered immune profile, reflected by changes to these PsA-cytokines.   

7.4.4. Disruption to Central Carbon Metabolism 

In addition to the changes to arginine metabolism, central-carbon metabolites 

were differentially abundant, picked out as part of the pathway analysis or 

included in the treatment-response metabolic model. This included lactate, 

glucuronate, itaconate and pyruvate. However, aside from pyruvate, which had a 

stronger association with the treatment response, these metabolites showed weak 

associations with the 3-month DAPSA. These metabolites can be linked by central 

carbon metabolism, whereby glucose is metabolised along different pathways, 

including glycolysis, to give rise to pyruvate, or the uronic pathway, which 

produces glucuronate, as shown in Figure 7.21. 

The uronic pathway acts as an alternative metabolic pathway of glucose, producing 

glucuronate, a metabolite that contributes to the formation of proteoglycans, 

intermediates for the pentose phosphate pathway, and supports the excretion of 

compounds via the urine or bile (Ho et al., 2019). Their conversion to a 

glucuronide conjugate can support the excretion of drugs in the blood. Here, 

glucuronate is attached to the exogenous compound, which usually reduces the 

drug's pharmacological activity while also enhancing the body’s ability to excrete 

the drug by increasing its solubility in water (Silva et al., 2003). Tentatively 
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identified glucuronate had a borderline-significant correlation with the 3-month 

DAPSA correlation (R=0.34, p-value = 0.058), which indicated it might be increased 

in patients with a worse response to treatment. It may be possible that increased 

glucuronate leads to increased excretion of certain drugs used in PsA treatment, 

thereby leading to reduced efficacy and increased disease activity. This requires 

further study, however, focusing on drugs where glucuronate is involved in their 

excretion.  

 

 
Figure 7.21. Central carbon metabolism summary with metabolites from PsA treatment 
response model highlighted. Adapted from Kanehisa and Sata (2020). 

 

Moreover, the correlation of glucuronate with DAPSA was notable since 

glucuronate was described in the literature as a marker for predicting a worse 

overall state of health as an individual ages. As such, glucuronate may be a marker 

of ageing itself, where it was described in the literature as being significantly 

correlated with age across multiple populations (Ho et al., 2019). In this work, age 

was an important factor in driving the variance of glucuronate. However, no 
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significant correlation was shown between age and glucuronate when these were 

assessed (not shown). The similar correlation of glucuronate with the DAS28-ESR 

score at 3 months in the cohort from the Mayo Clinic, described by Hur et al. 

(2021) was notable, suggesting that glucuronate may indeed be a shared 

metabolite associated with the resolution of RMDs.  

Since the GA: HA ratio was associated with the 3-month DAPSA, the same approach 

was taken with the other metabolites in the model. Each possible pair of 

metabolites was assessed as a ratio for their relationship with the DAPSA-based 

outcomes. These included itaconate: pyruvate, itaconate: glucuronate and 

homoarginine: lactate. Along with the GA: HA ratio, these three additional 

metabolite ratios were also associated with the DAPSA at 3 months, indicating 

potential as predictive tools for the response to treatment in PsA. 

Having been included in the model and discussed in the TaSER metabolomics 

chapter, itaconate was of interest as a metabolite contributing to this cohort's 

predictive model for treatment response. However, it was clear from the 

correlation and differential analyses that itaconate was not a robust marker of 

DAPSA in this cohort. Nevertheless, the itaconate: pyruvate/glucuronate ratios 

were associated with the DAPSA at 3 months, and so there may still be potential 

for its use in a predictive tool for the response.  

The fact that itaconate, pyruvate, lactate and glucuronate share a similar 

pathway, relating to the products of glucose metabolism and the TCA cycle, may 

indicate a pathway-wide perturbation that provides a favourable metabolic 

environment for PsA treatments to exert their effects. The itaconate: 

pyruvate/glucuronate ratios may be key in understanding this environment, where 

the metabolism of glucose towards itaconate via the TCA cycle rather than towards 

lactate or glucuronate may result in a more favourable environment due to the 

apparent anti-inflammatory effects that were observed during in vitro/vivo studies 

(Lampropoulou et al., 2016; Mills et al., 2018). Indeed, the change in itaconate 

between baseline and 3 months negatively correlated with the change in disease 

activity (DAS44) in patients with RA in the TaSER trial over the same period (Daly 

et al., 2020).   
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7.4.5. Gout and PsA 

Finally, it was worth briefly discussing the cytokine and metabolome analysis 

findings, whereby strong correlations were shown, especially for hypoxanthine and 

uric acid with IL-1β. These findings may be important in considering the 

relationship between PsA and gout, whereby patients with PsA and psoriasis may 

concurrently suffer from gout (Widawski et al., 2022). Elevated levels of 

monosodium urate cause gout (MSU) crystals forming in the joints and inducing 

inflammation, with IL-1 implicated in mediating the disease (So, Dumusc and Nasi, 

2017; Tripolino et al., 2021). In the CENTAUR cohort, IL-1β was positively 

correlated with uric acid which may suggest concurrent gout in patients with PsA.  

Treating patients with PsA and gout with allopurinol, an inhibitor of xanthine 

oxidase, which converts hypoxanthine to xanthine and uric acid, may therefore be 

an option in improving patient outcomes, where residual disease following DMARD 

treatment may feasibly be due to symptoms caused by hyperuricaemia. Indeed, 

studies have investigated the efficacy of allopurinol treatment in patients with PsA 

and psoriasis (Feuerman and Nir, 1973; Goldman, 1981; Luis-Rodríguez et al., 

2021). Of these studies, the most recent reported a reduction in the expression of 

pro-inflammatory cytokines, namely TNF-α and IL-6, following the treatment of 

patients with asymptomatic hyperuricaemia with allopurinol, indicating a possible 

anti-inflammatory effect that arises by blocking uric acid production  (Luis-

Rodríguez et al., 2021). 

However, elevated uric acid in the circulation may also be a biomarker for 

metabolic syndrome (encompassing PsA), thus raising a question over the link with 

gout (Raya-Cano et al., 2022). Nevertheless, targeting elevated uric acid with 

drugs like allopurinol may still be helpful in treating metabolic syndrome, although 

Raya-Cano et al. (2022) highlighted the need for further studies to explore the 

involvement of uric acid in metabolic syndrome with greater confidence.  

7.4.6. Considering the Shared Metabolites Across RMDs 

This chapter investigated the metabolomics of PsA and the response to various 

treatments in patients suffering from the disease. The primary aim was to identify 

metabolites that could be used to inform biomarker discovery to predict patient 
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responses to treatment. Since various treatments were used in the CENTAUR study, 

the panel of metabolites included in the response profile were not associated with 

any specific treatment. A secondary aim of the PsA metabolomic analysis was to 

investigate whether common metabolites were associated with a general 

treatment response in patients with RMDs, focusing on PsA and RA in this work.  

The metabolic profile generated using a supervised machine learning approach, of 

patient responses to treatment in PsA included homoarginine, guanidinoacetate, 

pyruvate, lactate, glucuronate, homocitrulline, itaconate, carnitine and lysine. 

Unlike the similar molecular profiles generated in previous chapters, this one was 

developed to report either good (LDA/remission) or poor (HDA) response to 

treatment, leaving a subgroup of moderate/partial patients between these 

extreme responses. While this reduced the sample size,  the resulting metabolic 

profile was potentially informative of the metabolites that may regulate the 

response to treatment in these groups. Indeed, two clear groups of biologically 

related metabolites were uncovered in the modelling, including arginine 

metabolism related and central-carbon metabolism-related features.  

Since arginine-related metabolites were tentatively reported to be associated with 

the MTX response in patients with RA in the TaSER study, these findings may 

support the notion of common metabolites being associated with the resolution of 

inflammation across RMDs. However, an investigation into the metabolites 

correlated with the MTX response showed no additional metabolites relating to 

arginine metabolism. Only homoarginine was correlated with the MTX response 

with a similarly strong response, indicating that the patients treated with MTX 

likely drove the inclusion of homoarginine in the final metabolic model predictive 

of treatment response.  

It was clear throughout the project that larger sample sizes would increase the 

confidence in these findings, and further validations in related datasets were 

required. As a result, this and the analysis reported in the previous chapters may 

indeed point towards a shared component of metabolites associated with 

treatment response in RA and PsA. Still, it was clear that additional analyses 

involving metabolomic datasets covering other RMDs, such as gout and axial 

spondyloarthrits, are required to improve upon these results.  
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To shed more light on these similarities and differences across the RMDs, further 

analyses should be done using the multiple omics platforms available. While not 

included in this thesis, later studies led by clinicians at the University of Glasgow, 

such as the Hippocrates trial, will provide further data to be analysed, including 

metabolomics. However, as hinted at throughout this work, the metabolomic 

analysis would most likely benefit from the parallel analysis of other omics 

datasets, such as transcriptomics and proteomics from the same samples. 

Additional data, such as the cytokine data described in this chapter, would also be 

beneficial in building up the multi-omic molecular profile associated with patient 

responses to treatment. Therefore, the analysis in this work should be taken as a 

steppingstone to uncovering further the molecular understanding of the features 

associated with treatment response. For example, given the multiple domains 

involved in PsA, it would be valuable to investigate the levels of the metabolites of 

interest and their immunomodulatory effects across different tissue types 

implicated in PsA. Such a molecular profile is believed to exist, but only a 

fragment of the puzzle may be found in the metabolome. Since a tissue-distinct 

immunological profile is reported in PsA, it is feasible that the different immune 

cells influencing disease across the tissue compartments would vary in their 

metabolic appetites.   
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8. Conclusions 
8.1. Overview 

This thesis has sought to investigate the metabolomics of treatment response in 

patients with RMDs, focusing on RA and PsA as archetypal diseases. Since patients 

with RMDs often require a stepwise escalation of treatment as part of a treat-to-

target approach, predicting how patients will respond to the first-line and 

subsequent treatments is invaluable for improving their long-term outcomes. 

Where the project began by searching for metabolic biomarkers that could predict 

the 3-month response to MTX in patients with RA from the TaSER trial, this 

expanded to include patients treated with other drugs, as well as patients with PsA 

who received similar DMARDs.   

The overarching aim throughout this work was to identify metabolites associated 

with treatment responses in these diseases — these were intended to inform the 

discovery of biomarkers that could be used to predict the probability of a patient’s 

successful response to treatment. As a secondary aim, the project sought to 

explore whether the metabolites associated with the general treatment response 

indicated any involvement of the metabolites in providing a favourable molecular 

environment in which the various treatments can best take effect. This was 

especially true in the PsA chapter, where the various drugs used meant a 

treatment-agnostic metabolic profile of response was generated. The metabolic 

profiles generated throughout the project may contribute to the understanding of 

the potentially shared metabolic features associated with the resolution of 

inflammation across these RMDs.  

However, due to the complexity of the metabolomic data analysis and the 

difficulty translating the findings across cohorts of patients, there remained an 

underlying uncertainty about the true clinical impact of the results throughout this 

thesis. As such, there remains a demand to validate these findings: doing so in the 

laboratory, investigating the immunomodulatory effects of the metabolites of 

interest using immune cell models, also validating the results in related clinical 

datasets, as attempted across the TaSER and tREACH cohorts.  
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Overall, the results from this thesis contributed to the research on a metabolomics 

approach for discovering predictive biomarkers in RA and PsA. These contributions 

are summarised in the following sections. Aside from the results from these 

analyses, one of the most valuable outputs from the project was the analysis 

workflow, which was developed and refined throughout. This provided a standard 

method for analysing each dataset obtained throughout the project. A 

representative script including the major processing and analytical steps was 

included in the Appendix. 

8.2. TaSER Metabolomics 

The TaSER metabolome provided a foundation for this work, being the initial 

dataset from which the analytical workflow was developed. Given the weak signals 

and associations observed with treatment response when using univariate analyses, 

a supervised machine learning approach was incorporated to reveal a panel of 

metabolites collectively associated with the MTX response. The model included 

pyroglutamate, kynurenine, indoleacrylic acid, pyrroline, cytosine, N-succinyl L-

citrulline, ornithine and 5-methylcytidine. While several of these were only 

tentatively identified, including indoleacrylic acid and N-succinyl L-citrulline, this 

collection of metabolites may have pointed towards the involvement of tryptophan 

and arginine metabolic pathways being linked to a successful response in patients 

with RA to MTX.  

The metabolic model was compared with models generated from the patient 

factors, including risk factors for RA and baseline disease measurements. This 

comparison showed the metabolic model performed just as well as the other 

models. However, this comparison raises an important consideration of the value 

of these findings in a clinical setting where the ease of incorporating a metabolic 

biomarker tool in the clinic is likely a limiting factor. Since disease activity 

measures and patient factors such as smoking are routinely recorded during 

routine clinical care, using these in a model to guide treatment would not place 

additional strain on an already stretched clinical team. Developing a clinically 

useful tool needs to be simple, quick to use for the clinician and able to provide 

clear and accurate results. Given the similar performance of the metabolic model 

to the disease measures model, it may not be practical for its inclusion in the 
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clinical setting until it demonstrates higher predictive performance across various 

cohorts with different demographics, something that was not achieved in this 

work.  

The true benefit of the metabolic model generated in this chapter — and those 

that followed — was in uncovering the circulating metabolites that may modulate 

how patients respond to treatment. As such, measuring these metabolites in 

patients when they first present with symptoms may be useful in providing optimal 

treatment and potentially supplementing this with exogenous metabolites or 

pharmacological agents that target the metabolic pathways of interest.  

8.3. TaSER Transcriptomics and Integration 

The transcriptomic data generated from the whole blood microarray sequencing 

provided an alternative dimension to interrogate the TaSER cohort for potential 

biomarkers of treatment response. It was eagerly anticipated that an expression 

profile associated with responses to MTX would reveal changes to the genes 

involved in metabolic pathways. However, immune-related genes were those 

predominately found to be differentially expressed across the response groups, 

therefore pointing towards an exacerbated immune response in the poor 

responders, as might be expected. An important consideration from this chapter 

was whether prior biological knowledge ought to be included in the analysis. It was 

found that doing so provided a predictive model that performed just as well as the 

model generated using a purely statistical approach. 

Including transcriptomic and metabolomic datasets from the same samples led to 

an initial integration using a simple correlational approach. Given the inclusion of 

several immune-related genes in the model, an investigation into the correlated 

metabolites was launched, potentially indicating those that might be involved in 

regulating the immune response. There were several strongly correlated genes and 

metabolites, although the biological relationship between these remained 

uncertain.  
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8.4. TaSER Multivariate Integration 

Following the simple integration of the transcriptomic and metabolomic datasets, 

a more complex approach involving a statistical method, specifically a multivariate 

approach, was undertaken. The analysis used the mixOmics package in R, using the 

DIABLO tool within this environment. The multi-omic molecular profile developed 

to discriminate between good and poor responders to MTX from the TaSER cohort 

included many of the features in the previous chapters. Despite generating a 

multi-omic response profile, this was limited in its discriminatory capacity, failing 

to reveal highly distinct response groups characterised by the model’s features. It 

did point out, however, where the correlating features across the blocks of data 

were found, although the simpler approach taken in the previous chapter meant 

this approach did not extensively progress the response-associated molecular 

profile. 

Given the technological advancements in the generation of omics data and the 

analytical methods, often including complicated machine learning methods, the 

integration of omics datasets is becoming more important in understanding the 

influence of different molecular dimensions on the sample classes. However, the 

field of data integration is rapidly developing, leading to numerous methods with 

advantages and disadvantages. The DIABLO method was used as a multivariate 

method reported in other studies as effective in pulling out a panel of correlating 

features (therefore potentially biologically connected) and capable of 

discriminating sample classes. Had the multivariate approach been used as an 

initial tool in the analysis before that described in the previous chapters, it would 

likely have been of greater value than following these since it did not reveal many 

novel features that were not considered elsewhere. This section of the analysis 

was inconclusive about the value of the multivariate approach, especially when 

used in a relatively small sample size.  

8.5. Multicentre Metabolomics 

There are multitudes of data generated across research centres worldwide, and 

the workflow developed in this project was applied to the analysis of two datasets 

generated from cohorts of patients with RA from the Netherlands and the USA.  
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From this and other chapters, there was increasing evidence that metabolites that 

may be derived from the gut microbiome were perturbed in patients who had 

different responses to treatment. Whether this implicates the gut microbiome in 

modulating treatment efficacy is uncertain. However, it was feasible that changes 

to key populations of bacteria may lead to differences in immunomodulatory 

metabolites or may also lead to changes in the metabolism of the drugs 

themselves, particularly those that were orally administered. It was important to 

note that the Mayo Clinic study involved patients treated with a variety of drugs, 

therefore extending the focus of this thesis from an MTX-specific response to a 

general treatment response.  

An important limitation of the metabolomic analysis across research centres was 

evident from this chapter. One of the intentions of using datasets generated from 

other research centres was to determine the reproducibility of the metabolic 

model of MTX response from the TaSER cohort. However, as described in this 

chapter, the model was not translatable owing to differences in the generation of 

the metabolomic data and the metabolites included. Where a similarly untargeted 

approach was used by the Mayo Clinic study, from whom the second metabolomic 

dataset was obtained, similar differences in the data structures made it difficult to 

compare findings. This chapter underlined the limitation of using data generated 

using untargeted metabolomics and only a relative quantification.  

For a reliable comparison to be made, a targeted approach with authentic 

reference standards for all of the metabolites to be analysed should be performed. 

However, targeted analysis for the conceivable number of metabolites to 

investigate is considerably more expensive. As a result, there are far fewer 

publicly available metabolomic datasets whose analytes were measured with 

absolute quantification. This chapter attempted to use some of the available data 

to examine shared metabolites across cohorts without this targeted approach and 

so demonstrates the obvious limitations of doing so.  

8.6. CENTAUR Metabolomics 

This chapter involved the analysis of the metabolome from serum samples from 

patients with PsA who were enrolled on the CENTAUR study led by Dr Flavia 
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Sunzini. This analysis provided the opportunity to investigate the metabolomics of 

another RMD, to explore whether there were common metabolites across diseases 

associated with treatment response. Indeed, the similar inflammatory component 

between RA and PsA meant that it was expected that similar metabolites might be 

associated with the resolution of inflammation between these diseases. 

Interestingly, following the workflow developed from the TaSER metabolomic 

analysis, a panel of metabolites at baseline were associated with the treatment 

response involving guanidinoacetate, homoarginine, pyruvate, lactate, 

glucuronate, homocitrulline, itaconate, carnitine and lysine. The collection of 

these metabolites indicated that arginine-related and central carbon metabolic 

pathways might be perturbed in patients with variable responses to treatment. 

Since arginine-related metabolites were mentioned in previous chapters, this 

chapter might support the notion that perturbed arginine metabolism is associated 

with treatment response.   

The primary aim of this thesis was to identify metabolic biomarkers that could 

ultimately be used to guide treatment options for patients. The involvement of 

patient cohorts who received multiple treatment types meant a general 

treatment-response-associated metabolic profile could be generated. While early 

in the search for metabolic biomarkers for treatment response, taking this profile 

forward for further development may prove valuable for patients, where the 

metabolic mechanisms that drive a treatment-agnostic resolution of inflammation 

may help to understand how best to treat patients.  

Additional trials investigating the metabolomics of PsA are underway, but 

unfortunately, the samples were not analysed in time to be included in this thesis. 

Running these samples at Glasgow Polyomics may provide the additional datasets 

required to validate the findings from this PsA cohort.  

8.7. Summary 

The secondary analyses of the metabolomic and transcriptomic data from clinical 

trials involving patients with RA and PsA were performed throughout this project. 

While challenges included the identification of the metabolites and reproducibility 

of the results across datasets, these findings contributed to the field by pointing 
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towards a panel of diverse metabolites associated with treatment responses in 

patients with RA and PsA. Metabolites associated with treatment response 

throughout the project are shown in a summary metabolic network in Figure 8.1. 

The metabolites from the analysis were also plotted on the entire metabolomic 

network, as shown in Supplementary Figure 7. 

The fact that several metabolites described in the literature as being derived 

primarily from the gut microbiome were included in this panel across the datasets 

may indicate the involvement of the gut microbiome in mediating successful 

treatment. This, therefore, highlights a potential therapeutic target that could 

supplement existing treatments using safe and established pharmacological agents, 

such as antibiotics and probiotics, to alter the balance of the microbiome towards 

that of a positive responder. One future direction for this work may involve closely 

examining the gut metagenome of patients with RMDs and investigate the bacteria 

strains and species associated with treatment response, similar to the work 

performed by Gupta et al. (2021).  

These results may be considered preliminary, where the complete identification of 

the metabolites using fragmentation data and their validation in other related 

datasets was not performed in this work. Given the increasing number of publicly 

available datasets and the sophisticated analytical tools being developed, these 

results are expected to be verified soon. Doing so will ultimately help characterise 

the successful response to treatment on a metabolic level, and it is not unfeasible 

that integrating these results with other omics datasets will only increase the 

understanding of the mechanisms at play in the resolution of inflammation. The 

advancement of precision medicine in inflammatory rheumatic diseases will greatly 

benefit from further investment in the generation, analysis, and integration of 

metabolomic (and other omic) data.   

8.8. Improving the Design of Future Studies 

Throughout the project, it was apparent that larger study sizes would likely be of 

benefit in increasing the confidence that the findings could be applicable to the 

population represented by the cohorts. The project involved secondary analyses of 

data generated from studies whose cohort sizes were not selected from power 
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calculations. Now that effect sizes between response groups have been measured, 

these power calculations can be performed to determine a suitable cohort size for 

a future study to ensure it would be statistically powered. 

From the analysis performed throughout the project, there may be important 

geographical effects on the metabolome of patients across regions. As such, there 

may be benefit in limiting enrolment of patients to geographically restricted areas 

to reduce variation caused by geography and lifestyle factors. For example, a 

future study that recruits patients from around the UK would likely increase the 

variation observed in the metabolome of patients in the treatment response 

groups. Increasing sample sizes while recruiting patients from defined regions may 

control for the influence of geography on the metabolome and allow for omic 

profiles of response to be generated without these potentially confounding effects.  

Finally, the generation of omics profiles specific to each possible DMARD available 

would be of greatest benefit. The studies used in this project included patients 

being treated using various drugs, leading to a loss of potentially valuable 

information that may result from a treatment-specific panel of response-

associated metabolites. These panels of metabolites may indicate mechanisms that 

contribute towards the resolution of disease in response to individual drugs, 

shedding light on potentially new therapeutic targets.   

8.9. Impact of COVID-19 

The COVID-19 pandemic struck approximately 5 months into my PhD programme. 

During these early months, I began my training in the laboratory, aiming to 

investigate the immunomodulatory effects of possible biomarkers of treatment 

response, including itaconate. However, the ensuing lockdown led to a change in 

direction, resulting in a purely bioinformatics-based project and the secondary 

analyses of existing datasets. A further result of the pandemic was the involvement 

of my primary supervisor in the Lighthouse Laboratories. As a result, I was awarded 

a 3-month extension which allowed me to continue my project with greater 

supervision and feedback.



 

 
Figure 8.1. Metabolic network of connected metabolites throughout the project with colour-coded labels for the cohort from which they were 
derived
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10. Appendix 
Supplementary Figures 
 

 

Supplementary Figure 1.. Differential abundance of peaks at baseline across 3-month DAS28 
response groups. 

Feature logFC AveExpr t P.Value adj.P.Val B
Pyroglutamate 0.2662 20.2103 3.4339 0.0010 0.5319 -2.1012
Peak_189.131_17.096 0.4944 20.3852 3.3019 0.0015 0.5319 -2.2974
Peak_188.127_17.098 0.4742 20.5454 3.2601 0.0017 0.5319 -2.3584
Peak_109.064_10.492 0.3355 20.4523 2.9690 0.0040 0.9089 -2.7702
Peak_117.068_9.607 -0.1456 20.6621 -2.6618 0.0095 0.9089 -3.1758
Peak_180.021_10.637 -0.3570 20.2718 -2.6167 0.0108 0.9089 -3.2326
Peak_97.967_11.819 0.6017 25.0049 2.5840 0.0117 0.9089 -3.2735
Peak_122.048_6.911 0.3626 19.4063 2.5551 0.0127 0.9089 -3.3091
Peak_156.073_10.433 0.2553 20.4443 2.4556 0.0164 0.9089 -3.4297
Cytosine 0.3896 19.6993 2.3720 0.0203 0.9089 -3.5280
Peak_270.068_8.347 -1.6812 16.1610 -2.3670 0.0206 0.9089 -3.5338
Peak_149.105_8.046 -0.3772 20.1825 -2.3640 0.0207 0.9089 -3.5373
Peak_188.069_7.065 0.2556 18.4249 2.3605 0.0209 0.9089 -3.5413
Peak_157.074_7.037 0.4358 18.2465 2.3087 0.0238 0.9089 -3.6008
Peak_173.08_10.394 0.3929 20.1635 2.2939 0.0246 0.9089 -3.6175
Peak_195.053_7.083 -1.3001 20.7395 -2.2848 0.0252 0.9089 -3.6278
Peak_203.127_9.108 -0.4570 20.3569 -2.2408 0.0281 0.9089 -3.6770
Peak_232.024_7.079 -2.4247 19.1179 -2.2247 0.0292 0.9089 -3.6948
Peak_194.115_5.525 -0.2376 19.9045 -2.1797 0.0325 0.9089 -3.7440
Peak_312.078_6.947 -1.7687 19.4118 -2.1748 0.0328 0.9089 -3.7492
Peak_220.058_8.875 -0.8449 15.6428 -2.1603 0.0340 0.9089 -3.7649
Peak_105.079_13.488 -0.2582 20.8440 -2.1499 0.0348 0.9089 -3.7761
Pantothenate 0.5558 17.4762 2.1358 0.0360 0.9089 -3.7912
Peak_233.036_10.793 0.6950 18.7176 2.1325 0.0363 0.9089 -3.7947
Peak_139.1_5.384 0.4272 19.5414 2.1308 0.0364 0.9089 -3.7965
Peak_198.075_8.519 -0.7140 20.5690 -2.1118 0.0381 0.9089 -3.8167
Peak_349.077_8.545 -1.5276 20.3774 -2.0898 0.0401 0.9089 -3.8398
Peak_110.067_10.338 0.1709 20.2847 2.0646 0.0425 0.9089 -3.8661
Peak_166.041_10.639 0.4073 20.2398 2.0602 0.0429 0.9089 -3.8706
Peak_270.067_8.209 -1.2243 20.0871 -2.0508 0.0438 0.9089 -3.8803
Pyrroline -0.1284 20.5706 -2.0372 0.0452 0.9089 -3.8942
Peak_271.178_6.894 -0.1901 20.7411 -2.0364 0.0453 0.9089 -3.8951
Peak_357.106_7.991 -1.4943 16.1603 -2.0338 0.0456 0.9089 -3.8978
Peak_256.095_8.182 0.7917 18.6458 2.0321 0.0457 0.9089 -3.8995
Peak_327.095_8.538 -1.5675 20.3687 -2.0303 0.0459 0.9089 -3.9014
Peak_285.194_5.686 -0.3497 20.6885 -2.0297 0.0460 0.9089 -3.9020
Peak_238.084_8.032 0.8118 20.0506 2.0123 0.0478 0.9089 -3.9197
Peak_195.053_7.092 -1.1991 20.6780 -2.0117 0.0479 0.9089 -3.9203
Peak_197.09_10.437 -0.1625 20.7057 -1.9974 0.0495 0.9089 -3.9347
Peak_178.998_9.017 -0.2194 20.3596 -1.9970 0.0495 0.9089 -3.9352
Peak_212.069_6.891 0.2126 18.3209 1.9774 0.0517 0.9089 -3.9549
Peak_344.122_8.539 -1.2019 20.4473 -1.9666 0.0530 0.9089 -3.9656
Peak_192.027_11.625 0.3738 22.2998 1.9648 0.0532 0.9089 -3.9674
Peak_183.036_8.347 -1.1952 15.4406 -1.9640 0.0533 0.9089 -3.9682
Peak_116.067_9.618 -0.1162 20.6199 -1.9618 0.0536 0.9089 -3.9704
Peak_345.125_8.531 -1.3355 20.2532 -1.9563 0.0542 0.9089 -3.9759
Peak_248.143_7.603 0.8695 19.9785 1.9549 0.0544 0.9089 -3.9773
Peak_203.049_10.612 -0.1290 20.6321 -1.9364 0.0567 0.9089 -3.9955
Peak_156.006_11.042 -1.0546 16.2782 -1.9355 0.0568 0.9089 -3.9963
Peak_319.162_7.588 1.0563 18.9976 1.9294 0.0575 0.9089 -4.0023
Peak_238.141_5.859 -0.1766 20.1330 -1.9273 0.0578 0.9089 -4.0043
Peak_150.109_8.021 -0.5262 19.8504 -1.9232 0.0583 0.9089 -4.0084
Peak_350.081_8.539 -1.1949 20.0636 -1.9063 0.0605 0.9089 -4.0248
Peak_194.043_10.991 -0.3231 21.5591 -1.8801 0.0640 0.9089 -4.0500
Peak_186.053_7.041 0.1874 18.3588 1.8408 0.0697 0.9089 -4.0873
N-Acetylornithine 0.3948 19.8352 1.8383 0.0700 0.9089 -4.0897
Peak_138.032_5.504 -1.1060 17.7826 -1.8321 0.0710 0.9089 -4.0954
Peak_130.082_9.439 0.2578 20.5451 1.8144 0.0737 0.9089 -4.1120
Peak_247.14_7.603 0.5571 20.7908 1.7931 0.0771 0.9089 -4.1316
Peak_116.059_10.867 -0.1403 19.7970 -1.7856 0.0783 0.9089 -4.1385
Peak_138.011_11.413 -0.2057 19.7869 -1.7842 0.0785 0.9089 -4.1398
Peak_162.053_10.34 -0.2073 20.3457 -1.7785 0.0794 0.9089 -4.1450
N-Acetylputrescine 0.2001 19.6418 1.7725 0.0804 0.9089 -4.1504
Peak_251.053_5.573 0.0975 16.9263 1.7698 0.0809 0.9089 -4.1529
Peak_198.112_12.644 0.2564 20.4516 1.7681 0.0812 0.9089 -4.1544
Peak_151.03_8.83 0.4185 20.0233 1.7626 0.0821 0.9089 -4.1594
Peak_207.111_9.755 0.1605 17.8717 1.7527 0.0838 0.9089 -4.1684
N-Acetylleucine 0.4001 20.1394 1.7306 0.0877 0.9089 -4.1882
Uric acid 0.1842 26.1543 1.7236 0.0890 0.9089 -4.1944
L-Histidine 0.1574 23.1960 1.7187 0.0899 0.9089 -4.1987
Indoleacrylic acid 0.7419 17.5803 1.7119 0.0911 0.9089 -4.2047
Peak_199.121_8.321 0.1924 20.5653 1.7014 0.0931 0.9089 -4.2140
Peak_190.069_15.437 0.1385 20.7522 1.6884 0.0956 0.9089 -4.2253
Peak_246.137_7.605 0.5771 20.7215 1.6781 0.0976 0.9089 -4.2343
Peak_156.073_10.346 0.1259 20.5396 1.6768 0.0978 0.9089 -4.2354
Peak_201.111_8.704 -0.3346 20.7414 -1.6759 0.0980 0.9089 -4.2361
3-Hydroxyquinine -0.6796 18.0189 -1.6743 0.0983 0.9089 -4.2376
Peak_249.057_5.669 0.0679 17.4454 1.6712 0.0989 0.9089 -4.2403
Peak_248.054_9.197 -0.1745 19.9875 -1.6604 0.1011 0.9089 -4.2495
Peak_155.977_10.131 -0.2040 20.6181 -1.6543 0.1023 0.9089 -4.2547
Peak_213.935_10.002 -0.2456 20.5170 -1.6513 0.1029 0.9089 -4.2573
Peak_141.079_7.227 0.5181 20.1290 1.6483 0.1035 0.9089 -4.2598
Peak_118.057_11.084 0.1968 20.1536 1.6447 0.1043 0.9089 -4.2629
Peak_141.079_7.335 0.5164 20.1980 1.6437 0.1045 0.9089 -4.2637
Peak_116.06_9.607 -0.1019 20.6558 -1.6407 0.1051 0.9089 -4.2663
Peak_391.977_10.13 0.2920 18.5028 1.6322 0.1069 0.9089 -4.2735
Peak_115.063_7.497 0.2094 19.9358 1.6320 0.1069 0.9089 -4.2737
Peak_150.041_10.504 -0.2156 20.7013 -1.6297 0.1074 0.9089 -4.2756
Peak_389.98_10.131 0.2919 18.5100 1.6226 0.1089 0.9089 -4.2816
L-Aspartate 0.1756 19.9414 1.6202 0.1095 0.9089 -4.2837
Peak_317.184_8.026 -0.4284 20.2374 -1.6128 0.1111 0.9089 -4.2898
Peak_393.976_10.134 0.2525 18.7664 1.6121 0.1112 0.9089 -4.2904
Peak_195.053_5.838 -1.0689 16.0938 -1.6042 0.1129 0.9089 -4.2970
Peak_208.98_10.082 -0.2246 20.5476 -1.6023 0.1134 0.9089 -4.2986
Peak_109.064_10.341 0.1185 20.5142 1.6018 0.1135 0.9089 -4.2990
Peak_398.073_10.646 -0.2630 20.2456 -1.5954 0.1149 0.9089 -4.3043
Peak_159.053_10.138 0.2919 18.6567 1.5936 0.1153 0.9089 -4.3058
Peak_356.001_10.134 0.3303 18.4940 1.5890 0.1163 0.9089 -4.3096
Peak_168.979_10.638 0.0990 20.4977 1.5866 0.1169 0.9089 -4.3116
Fructosamine -0.1066 20.2237 -1.5850 0.1172 0.9089 -4.3129
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Supplementary Figure 2. Extended feature selection from metabolites model associated with 
3-month DAS28 response 

 

Supplementary Figure 3. Generation of a predictive model using all signals from the TaSER 
metabolome for comparison with the annotated-only metabolic model generated in the 
TaSER Metabolomic Chapter. A. Metabolites selected for inclusion in the model using RFE. B. 
Algorithm selection showing the KNN algorithm being the best performing. C. Final model 
evaluation in test subset showing poor performance. D. Performance metrics in test subset.  

Peaks Model
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Supplementary Figure 4. Immune-related genes from TaSER transcriptomics pathway 
analysis.  

 

 



 

 

260 

 
Supplementary Figure 5. Multivariate analysis of samples with features selected based on 
ratios with strongest correlation to DAPSA at 3 months 

 

 
Supplementary Figure 6. Correlation of homoarginine with MTX response in a subgroup of 
MTX-treated patients. Spearman correlation coefficients were calculated alongside the p-
value. 
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Supplementary Figure 7. Entire metabolomic network with metabolites of interest from 
these analyses plotted in black.  
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Representative Script 
 
# ---------------------------------- 
# ---------------------------------- 
# The following was intended to give an overview of the steps included in the processing and 
analysis of the 
# data across the project. 
 
## Note the data wrangling/transformation that takes place between the following steps 
## Not all wrangling steps were included to maintain clarity of the key processing and 
analysis steps  
# ---------------------------------- 
# ---------------------------------- 
 
## Processing data ## 
# Removing features with high proportion (80%) of samples with NAs # 
number_samples <- length(omic_df$Samples) 
omic_df <- as.data.frame(t(omic_df[-1])) 
omic_df$Prop_Zero <- (rowSums(is.na(omic_df))/number_samples)*100 
 
omic_df <- omic_df %>% 
  filter(omic_df$Prop_Zero < 20) 
 
## Imputing for missing values (missing not at random) using half minimum imputaion ## 
# imputation function: Take the missing values for each feature  
# where these are expected to be missing due to levels below quantification # 
replacezero <- function(x) "[<-"(x, !x|is.na(x),  
                                 min(x[x>0],  
                                     na.rm=TRUE)/runif(1,min=2)) 
 
omic_df <- as.data.frame(apply(omic_df, 1, replacezero)) # apply the function to the omic 
dataframe 
 
## Remove batch effects ## 
batch <- samples_df$Batch 
omic_df <- removeBatchEffect(omic_df, batch=batch, covariates=NULL) 
 
## Normalise using cyclic loess function where high variation observed across features in 
dataset 
## Metabolomic data ## 
omic_df <- normalizeCyclicLoess(omic_df) 
 
### Transcriptomic data ### 
## Normalisation of transcriptomic data ## 
BSData = readBeadSummaryData(dataFile = dataFile, 
                             qcFile = qcFile, controlID = "ProbeID", 
                             skip = 0, qc.skip = 0, qc.columns = list(exprs = "AVG_Signal", 
                                                                      Detection = "Detection Pval")) 
BSData.quantile = normaliseIllumina(BSData, 
                                    method = "quantile",  



 

 

263 

                                    transform = "log2") 
omic_df = data.frame(exprs(BSData.quantile), 
                 type = "Quantile", 
                 allpositive = allpositive) 
 
## Aggregate probes using limma's avereps function 
omic_df <-avereps(omic_df, ID=omic_df$Probe_ID) 
 
### Exploratory Data Analysis ### 
## Principal Component Analysis ##  
pca_omic <- omic_df # ensure numeric only 
scaled_intensities <- scale(pca_omic) 
scaled_intensities[do.call(cbind, lapply(scaled_intensities, is.nan))] <- 0 
scaled_intensities<- as.data.frame(scaled_intensities) 
pca_data <- prcomp(scaled_intensities) 
pca_coord <- data.frame(pca_data$x) 
var_explained <- pca_data$sdev^2/sum(pca_data$sdev^2) 
var_explained[1:5] # observe amount of variance for first 5 PCs 
 
# generate scree plot 
scree <- fviz_eig(pca_data)  
 
# generate PCA plot 
ggplot() +  
  geom_point(size=2, alpha=0.7,  
             aes(x=PC1,y=PC2, colour= Response, fill= Response))+ 
  labs(x=paste0("PC1: ",round(var_explained[1]*100,1),"%"), 
       y=paste0("PC2: ",round(var_explained[2]*100,1),"%"), 
       colour='Response', 
       fill= 'Response')+ 
  geom_hline(yintercept = 0, 
             colour='navy', 
             linetype='dashed')+ 
  geom_vline(xintercept = 0, 
             colour='navy', 
             linetype='dashed')+ 
  theme_minimal()+ 
  theme(legend.key.size = unit(01, 'cm'),  
        legend.key.height = unit(1, 'cm'), 
        legend.key.width = unit(1, 'cm'),  
        legend.title = element_text(size=16), 
        legend.text = element_text(size=12))  
 
## Differential Analysis ## 
# visualise the number of samples in each condition of interest 
omic_df%>%  
  ggplot(aes(x=Condition, fill=Condition)) + 
  geom_bar()  
 
# differential analysis function using the limma package 
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limma_fun <- function(matrix_AB, no., var1, var2){ 
  Group <- factor(colnames(matrix_AB), levels = c(`var1`, `var2`)) 
  design <- model.matrix (~Group) 
  colnames(design) <- c('var1', 'var1vsvar2') 
  eset <- matrix_AB 
  fit <- lmFit(eset, design) 
  fit <- eBayes(fit) 
  toptable <- topTable(fit, coef = 'var1vsvar2', adjust = 'BH', number = no.) 
  toptable <- as.data.frame(toptable) 
  toptable$Feature <- rownames(toptable) 
  toptable <- toptable[,c(ncol(toptable),1:(ncol(toptable)-1))] 
  toptable$Sig <- ifelse(toptable$adj.P.Val <0.05, '< 0.05', '> 0.05')  
  toptable$Sig_Names <- ifelse(toptable$Sig =='< 0.05' ,toptable$Feature, '') 
  return(toptable) 
} 
 
# p-value histogram 
qvals <- function(limma_table){ 
  pi0 <- 2*mean(limma_table$P.Value > 0.05) 
  lfdrvals <- lfdr(limma_table$P.Value, pi0) 
  qobj <- qvalue(limma_table$P.Value) 
  hist(qobj) 
} 
 
number_of_features <- length(prelimma_omic[1]) 
 
limma_omic_DA <- limma_fun(prelimma_omic, number_of_features, 'Condition_1', 
'Condition_2') 
 
# volcano plot 
limma_omic_DA%>% 
  ggplot(aes(x=logFC, y=-log10(P.Value))) + 
  geom_point (size=3,alpha=0.7, 
              aes(colour=Sig,  
                  group=Sig)) + 
  theme_minimal() + 
  labs (x='LogFC', 
        y='-Log p-value', 
        colour='Unadjusted \np-value')+ 
  geom_text_repel(aes(x = logFC, y = -log10(P.Value), label = Sig_Names_2), 
                  box.padding =1, 
                  size=5, 
                  max.overlaps = Inf, 
                  position = position_jitter(seed = 1), 
                  arrow = arrow(length = unit(0.0035, "npc"))) + 
  geom_vline(xintercept = c(-0.2,0.2), linetype='dashed')+ 
  geom_hline(yintercept = -log10(0.05), linetype='dashed')+ 
  geom_text(aes(x=-1.5, y= -log10(0.05)),  
            label='unadjusted p-value = 0.05', 
            vjust=2.1, colour='dark grey')+ 



 

 

265 

   
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.25)))+ 
  scale_color_brewer(palette = "Set1",direction=-1) 
 
## Correlation analysis ## 
ints_nested <- omics_df %>% 
  group_by(Feature) %>% 
  nest() 
 
ints_unnested <- omics_df %>% 
  unnest(cols=c()) 
identical(omics_df, ints_unnested) 
ints_lm <- ints_nested %>% 
  mutate(model = purrr::map(data, ~lm(formula = Feature_Level~Disease_Activity, data 
= .x))) 
model_coef_nested <- ints_lm %>% 
  mutate(coef=map(model, ~tidy(.x))) 
model_coef <- model_coef_nested %>% 
  unnest(coef) 
model_perf_nested <- ints_lm %>% 
  mutate(fit=map(model, ~glance(.x))) 
model_perf <- model_perf_nested%>% 
  unnest(fit) 
best_fit <- model_perf %>% 
  top_n(n=4, wt=r.squared) 
bestest_fit <- with(model_perf,model_perf[order(-r.squared),]) 
best_augmented <- bestest_fit %>%  
  mutate(augmented = map(model, ~augment(.x))) %>%  
  unnest(augmented)  
best_augmented$adj_p <- p.adjust(best_augmented$p.value, method='BH') 
 
# Plot the features that correlated with disease activity measure with adjusted p-value < 0.05 
# if no features shown then use unadjusted p-value < 0.05 with caveat of non significance. 
best_augmented %>% 
  filter(adj_p < 0.05) %>%  
  ggplot(aes(x = Disease_Activity, y=Feature_Level)) + 
  geom_point(size=1, alpha=0.7) +  
  stat_cor(vjust=1, hjust=0, 
           size=5)+ 
  geom_smooth(method='lm', 
              colour='red')+ 
  facet_wrap(~Feature, scales = "free_y")+ 
  theme( 
    strip.text.x= element_text(#face = "bold", 
      size=16), 
    title=element_text(size=16), 
    axis.title = element_text(size=14,face='bold'), 
    axis.text = element_text(size=12)) 
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## Supervised machine learning ## 
# Generating an omic profile associated with the classification of samples across conditions 
of interest 
 
# For holdout cross validation, split omic_df into training and testing subsets 
# example below uses 70:30 train:test split # 
set.seed(42) 
index <- createDataPartition(omic_df$Condition, p = 0.7, list = FALSE) 
train_data <- omic_df[index, ] 
test_data  <- omic_df[-index, ] 
 
# Feature selection using recursive feature elimination # 
# stringent function 
ft_sel <- function(train_df){ 
  for (i in 1:10){ # run the RFE process 10 times   
    profile_function <- function(Profile_number){ 
      options(warn=-1) 
      subsets <- c(1:10)  
      set.seed(42) 
      # 10-fold cross validation repeated 10 times for each run 
      ctrl <- rfeControl(functions = rfFuncs, 
                         method = "repeatedcv", 
                         number = 10,  
                         repeats=10, 
                         verbose = FALSE) 
       
      profile <- rfe(x=train_df[,-1], y=train_df$Condition, 
                     sizes = subsets, 
                     rfeControl = ctrl) 
       
      profile <- profile$variables 
      profile <- profile %>% 
        arrange(-Overall) %>% 
        distinct(var, .keep_all=TRUE) %>% 
        filter(Overall > 1) # filter features with relative importance > 1 
       
      profile_df <- profile %>% 
        group_by(var) %>% 
        nest() %>% 
        mutate(Profile=1)  
    } 
    profile <- profile_function(i) 
    assign(paste0("profile_test", i), profile) 
  } 
  df <- do.call(rbind, mget(ls(pattern = "profile_test"))) 
   
  df_2 <- df %>% 
    group_by(var) %>% 
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    filter(n() >= 5) %>% # from each of the runs, select features that are included in at least 
half of the runs 
    unnest() 
  df_2 <- df_2 %>% 
    aggregate(.~var, mean, na.rm=TRUE) %>% 
    mutate(Round_overall=round(Overall,1)) %>% 
    arrange(-Overall) 
} 
 
ft_sel_results <- ft_sel(train_data) 
 
ft_sel_results %>% 
  ggplot(aes(x=Overall, y=reorder(var, Overall)))+ 
  geom_col(aes(fill=Overall))+ 
  geom_text(aes(label = round(Overall, 2)), 
            vjust=0.8, 
            hjust=1.2, 
            color="white", 
            size=6) + 
  #scale_color_colorblind()+ 
  scale_fill_continuous(low='light green', high='navy')+ 
  theme_minimal()+ 
  theme(legend.position = 'none', 
        axis.title.y = element_text(size = 20), 
        axis.title.x = element_text(size = 20), 
        axis.text.y = element_text(size = 20), 
        title=element_text(size=22) 
  )+ 
  labs(x='Relative Importance', 
       y='Feature') 
 
# Keep only selected features 
train_data_2 <- train_data %>%  
  dplyr::select(Condition, ft_sel_results$var) %>% 
  as.data.frame() 
 
# Algorithm Selection 
# Function for algorithm tuning and selection 
multi_mods_test <- function(){ 
  control <- trainControl(method="repeatedcv", 
                          number=10, 
                          repeats=10, 
                          summaryFunction=twoClassSummary, 
                          savePredictions = TRUE, 
                          classProbs = TRUE, 
                          verboseIter = TRUE, 
                          search = 'random') 
  # train the SVM model 
  set.seed(42) 
  modelSvm <- caret::train(Condition~., data=train_data_2, 
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                           method='svmRadial', 
                           metric='ROC', 
                           tuneLength=10, 
                           trControl= control) 
   
  # train the LogM model 
  set.seed(42) 
  modelglm <- caret::train(Condition~., data=train_data_2, 
                           method='glm', 
                           metric='ROC', 
                           tuneLength=10, 
                           trControl= control) 
  # train the LogM model 
  set.seed(42) 
  modelglm_boost <- caret::train(Condition~., data=train_data_2, 
                                 method='glmboost', 
                                 metric='ROC', 
                                 tuneLength=10, 
                                 trControl= control) 
  # train the RF model 
  set.seed(42) 
  model_rf <- caret::train(Condition~., data=train_data_2, 
                           method='ranger', 
                           metric='ROC', 
                           tuneLength=10, 
                           trControl= control) 
  # train the XGBoost model 
  set.seed(42) 
  model_xgb <- caret::train(Condition~., data=train_data_2, 
                            method='xgbTree', 
                            metric='ROC', 
                            tuneLength=10, 
                            trControl= control) 
  # train the KNN model 
  set.seed(42) 
  model_knn <- caret::train(Condition~., data=train_data_2, 
                            method='kknn', 
                            metric='ROC', 
                            tuneLength=10, 
                            trControl= control) 
  # train the naive Bayes model 
  set.seed(42) 
  model_naivebayes <- caret::train(Condition~., data=train_data_2, 
                                   method='naive_bayes', 
                                   metric='ROC', 
                                   tuneLength=10, 
                                   trControl= control) 
   
   
  # collect resamples 
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  results <- resamples(list(SVM = modelSvm, RF= model_rf, LRM=modelglm,GLMB = 
modelglm_boost, 
                            XGBoost =model_xgb, KNN=model_knn, 
                            Naive.Bayes= model_naivebayes)) #LRM= modelLRM)) 
   
   
  # summarize the distributions 
  summary(results) 
  # boxplots of results 
  plott <- bwplot(results) 
  comp_roc <- evalm(list(modelSvm,  
                         model_rf,  
                         modelglm,  
                         modelglm_boost, 
                         model_xgb,   
                         model_knn, 
                         model_naivebayes), 
                    gnames=c('KNN', 'NB', 'RF','LRM','GLMB', 'SVM', 'XGB')) 
   
  ml_eval_output <- as.data.frame(comp_roc$stdres) 
  ml_eval_output$Measure <- rownames(ml_eval_output) 
  ml_eval_output <- back_2_front(ml_eval_output) 
  ml_eval_output <- flextable_only(ml_eval_output) 
  listt <- list(comp_roc, ml_eval_output) 
  return(listt) 
} 
 
# Compare algorithms 
alg_sel <- multi_mods_test() 
met_table <- alg_sel[[2]] 
met_roc <- alg_sel[[1]]$roc 
met_prg <- alg_sel[[1]]$prg 
 
 
# Select final model and increase number of repeats in cross validation to 100 
# Model generation 
set.seed(42) 
fit_control <- trainControl(method="repeatedcv", 
                            number=10, 
                            repeats=100, 
                            summaryFunction=twoClassSummary, 
                            savePredictions = TRUE, 
                            classProbs = TRUE, 
                            verboseIter = TRUE, 
                            search = 'random') 
 
set.seed(42) 
omic_model <- caret::train(Response~., data=train_data_2, 
                           method='xgbTree', 
                           metric='ROC', 
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                           tuneLength=15, 
                           trControl= fit_control) 
 
ggplot(omic_model) # check the trained model's initial performance 
 
# Evaluate model's performance in the training subset using the ML_eval package 
train_results <- evalm(omic_model) 
train_roc <- train_results$roc 
train_prg <- train_results$prg 
 
# Evaluate final tuned model in testing subset 
# testing subset 
# function 
model_performance <- function(model, test_df){ 
  predictions <- predict(model, test_df) 
  confusionMatrix(predictions, test_df$Condition) 
  con_matr <- confusionMatrix(predictions, test_df$Condition) 
  con_stats <- con_matr$overall 
   
  pr <- prediction(as.numeric(predictions), as.numeric(test_df$Condition)) 
  prf <- performance(pr, measure = "tpr", x.measure = "fpr") 
  auc <- performance(pr, measure = "auc") 
  auc_val <- auc@y.values[[1]] 
  result.predicted.prob <- predict(model, test_df, type="prob") # Prediction 
  result.roc <- roc(test_df$Good, result.predicted.prob$Good) # Apply the positive class e.g. a 
'Good' response 
  list_pred <- list(model, con_stats, result.roc, con_matr) 
  return(list_pred) 
} 
 
test_performance <- model_performance(omic_model, test_data) 
test_roc <- test_performance[[3]] 
test_roc$auc 
 
# Feature Interpretation using the DALEX and DALEXtra packages 
model_explainer <- DALEX::explain(model = omic_model,   
                              data = omic_df[, -1], 
                              y = omic_df$Condition,  
                              type='classification') 
 
## attempt accumulated local effects plots to explain interaction of features in the plot 
pdp_model <- model_profile(explainer = model_explainer, 
                       type = "partial", 
                       variables = names(omic_df)[2:ncol(omic_df)]) 
ld_model <- model_profile(explainer = model_explainer, 
                       type       = "conditional", 
                       variables = names(omic_df)[2:ncol(omic_df)]) 
ale_model <- model_profile(explainer = model_explainer,  
                        type='accumulated', 
                        variables = names(omic_df)[2:ncol(omic_df)]) 
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shapleys_model <- predict_parts(explainer = model_explainer,  
                             type='shap', 
                             new_observation =  omic_df,  
                             B=25) # the B=25 is the number of random orderings of the explanatory 
variables 
 
pdp_model$agr_profiles$`_label_` = "partial dependence" 
ld_model$agr_profiles$`_label_` = "local dependence" 
ale_model$agr_profiles$`_label_` = "accumulated local" 
 
partials <- plot(pdp_model, ld_model, ale_model) 
 
breakdown <- model_explainer %>%  
  predict_parts(new_observation = omic_df) %>%  
  plot() 
 
SHAP <- plot(shapleys_rf) 
 
# Explain the variance 
# include only the selected features 
omic_df_cut <- omic_df %>%  
  dplyr::select(c(Sample, ft_sel_results$var)) 
 
# Select patient factors of interest 
patient_factors <- patient_metadata%>% 
  dplyr::select(Sample,Age, Sex, aCCP.Status, RhF.Status, Smoking.Status ) 
 
form <- ~ Age + (1|Sex) + (1|aCCP.Status) + (1|RhF.Status) + (1|Smoking.Status)  
 
varPart <- fitExtractVarPartModel(omic_df_cut, form, patient_factors) 
 
vp <- sortCols(varPart) 
explain_each <- plotPercentBars( vp[] ) + 
  theme(text=element_text(size=16)) 
var_plot <- plotVarPart( vp )+ 
  theme(text=element_text(size=16)) 
 
 
# Model comparison 
# generate the above objects for each model of interest 
test_roc_model_1$auc 
test_roc_model_2$auc 
test_roc_model_3$auc 
 
roc_comp <- rbind.data.frame(test_roc_model_1, 
                             test_roc_model_2,  
                             test_roc_model_3) 
 
# Plot the ROC curves for each model as a single figure 
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roc_comparison <- roc_comp%>% 
  ggplot(aes(x = One_Minus_Spec, y = Sensitivity, group_by=Model)) + 
  geom_path(aes(colour=Model), size=1)+ 
  geom_abline(linetype='solid', colour='grey') + 
  coord_equal()+ 
  theme_minimal()+ 
  labs(x='False positive rate', 
       y='True positive', 
       colour='')+ 
  theme(panel.grid.major = element_blank(),  
        panel.grid.minor = element_blank(), 
        panel.border = element_rect(colour = "black", fill=NA, size=1), 
        legend.text = element_text(size=16), 
        axis.title = element_text(size = 16), 
        axis.text = element_text(size = 16)) 
 
# Statistical testing for difference between models' performance 
#delong 
 
roc_comparison_1 <- roc.test(test_roc_model_1, test_roc_model_2) 
roc_comparison_2 <- roc.test(test_roc_model_1, test_roc_model_3) 
roc_comparison_3 <- roc.test(test_roc_model_2, test_roc_model_3) 
 
 
roc_table_1 <- (cbind.data.frame(roc_comparison_1$roc2$auc, 
                                 roc_comparison_1$roc1$auc, 
                                 round(roc_comparison_1$p.value,3))) 
names(roc_table_1) <- c('AUC-ROC 1', 'AUC-ROC 2', 'p-value') 
roc_table_2 <- (cbind.data.frame(roc_comparison_2$roc2$auc, 
                                 roc_comparison_2$roc1$auc, 
                                 round(roc_comparison_2$p.value,3))) 
names(roc_table_2) <- c('AUC-ROC 1', 'AUC-ROC 2', 'p-value') 
roc_table_3 <- (cbind.data.frame(roc_comparison_3$roc2$auc, 
                                 roc_comparison_3$roc1$auc, 
                                 round(roc_comparison_3$p.value,3))) 
names(roc_table_3) <- c('AUC-ROC 1', 'AUC-ROC 2', 'p-value') 
roc_table_complete <- rbind.data.frame(roc_table_1, roc_table_2, roc_table_3) 
rownames(roc_table_complete) <-  c('Model 1 vs Model 2', 
                                   'Model 1 vs Model 3', 
                                   'Model 2 vs Model 3') 
 
plottt <- roc_table_complete %>% 
  kable() %>% 
  kable_styling(bootstrap_options=c("striped", "hover", "responsive")) 
ggplot() + 
  theme_void()+ 
  annotate(geom='table', 
           x=1, y=1,  
           label=list(roc_table_complete)) 
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