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Abstract

Optimizing the deployment of Deep Neural Networks (DNNs) is hard. Despite deep learning
approaches increasingly providing state-of-the-art solutions to a variety of difficult problems,
such as computer vision and natural language processing, DNNs can be prohibitively expen-
sive, for example, in terms of inference time or memory usage. Effective exploration of the
design space requires a holistic approach, including a range of topics from machine learning,
systems, and hardware. The rapid proliferation of deep learning applications has raised de-
mand for efficient exploration and acceleration of deep learning based solutions. However,
managing the range of optimization techniques, as well as how they interact with each other
across the stack is a non-trivial task. A family of emerging specialized compilers for deep
learning, tensor compilers, appear to be a strong candidate to help manage the complexity of
across-stack optimization choices, and enable new approaches.

This thesis presents new techniques and explorations of the Deep Learning Acceleration
Stack (DLAS), with the perspective that the tensor compiler will increasingly be the center
of this stack. First, we motivate the challenges in exploring DLAS, by describing the expe-
rience of running a perturbation study varying parameters at every layer of the stack. The
core of the study is implemented using a tensor compiler, which reduces the complexity of
evaluating the wide range of variants, although still requires a significant engineering effort
to realize. Next, we develop a new algorithm for grouped convolution, a model optimization
technique for which existing solutions provided poor inference time scaling. We implement
and optimize our algorithm using a tensor compiler, outperforming existing approaches by
5.1× on average (arithmetic mean). Finally, we propose a technique, transfer-tuning, to re-
duce the search time required for automatic tensor compiler code optimization, reducing the
search time required by 6.5× on average.

The techniques and contributions of this thesis across these interconnected domains demon-
strate the exciting potential of tensor compilers to simplify and improve design space ex-
ploration for DNNs, and their deployment. The outcomes of this thesis enable new lines of
research to enable machine learning developers to keep up with the rapidly evolving land-
scape of neural architectures and hardware.
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1

1 | Introduction

Deep Learning, a subfield of machine learning characterized by the use of Deep Neural
Networks (DNNs), is increasingly the backbone of many modern Artificial Intelligence (AI)
applications. We are seeing widespread adoption in diverse domains, such as healthcare,
transport, and industrial systems; as well as significant research interest. In a variety of
problem spaces, DNNs are now able to exceed human performance [Red+16; Sil+16].

However, as the ambition of DNN-based solutions increases, so do the computational de-
mands [AH18; CPC17; Pat+21]. Although innovative methods from the machine learning
community continue to increase the algorithmic efficiency of solutions [HB20], collaborative
cross-disciplinary optimization efforts, across both machine learning and computer systems,
will be required to meet the increasing demands. We have already begun to observe ap-
proaches combining techniques from both machine learning and systems to co-design state-
of-the-art solutions, however there is significant scope for improvement.

As part of the systems stack, compilers play an essential role as efficient code generators in
both general purpose computing and increasingly in the context of DNN acceleration. Tensor
compilers, such as Apache TVM [Che+18b], are an emerging class of specialized compilers
for tensor programs such as DNNs, exploiting domain-specific knowledge to generate accel-
erated code for DNNs on a given hardware platform. As more DNN acceleration techniques
emerge: from new neural architectures, model optimization techniques, novel algorithms and
data formats, optimized systems software, and diverse hardware; it is critical that this increas-
ingly large design space can be effectively managed by practitioners working at the cutting
edge. This thesis posits that tensor compilers will increasingly become the ‘center’ of deep
learning acceleration efforts, as they are well suited for managing across-stack complexity.
This is because they act as the bridge between higher level machine learning concepts and
the software and hardware systems which DNNs are executed on. Tensor compilers can
generate efficient correct code for a given DNN deployment configuration, especially in the
face of increasing heterogeneity of hardware and other parameters such as DNN architec-
tures. They can also bring their own unique acceleration techniques such as auto-tuning and
auto-scheduling, which can generate more efficient code.
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1.1 The Deep Learning Acceleration Stack

The recent growth of deep learning has been partially facilitated by the availability of massive
computational power on clusters of computers, as well as improvements in algorithmic repre-
sentations [HB20]. When combined with a tendency to focus narrowly on inference accuracy
and the availability of large server-class GPUs, this has caused state-of-the-art DNN models
to explode in size [Pat+21]. This presents a large barrier to deploying many modern ma-
chine learning applications on constrained devices. Both machine learning researchers and
systems engineers have proposed innovative solutions to overcome this barrier, as discussed
in Chapter 3. However, these two communities are often disparate, and there may be missed
opportunities for collaboration. This section further motivates this need, and describes the
Deep Learning Acceleration Stack (DLAS) as a high-level context for the strategies devel-
oped by machine learning and systems communities. DLAS is then used throughout this
thesis to help structure discussion.

1.1.1 Motivation

Solutions from machine learning and systems communities are typically developed in iso-
lation, meaning that machine learning practitioners may not explore all the systems conse-
quences and techniques of their approach, and vice-versa. For instance, sparsity is regarded
by some in the neural network community as a silver bullet for compressing models, whereas
exploiting parallelism is generally seen as essential for neural network computations by sys-
tem architects. Challenging these isolated preconceptions reveals that sparsity does not al-
ways excel at reducing the number of operations during inference and parallelism does not
necessarily come with the speedups expected on DNN workloads.

The goal of characterizing DLAS is to make it clearer to both machine learning and systems
practitioners what the relevant contributors to performance for their DNN workloads are,
allowing greater opportunities for co-design and co-optimization. This is not to advocate
for machine learning experts to re-train as systems experts and vice-versa. Rather, the aim
is to provide a framework for reasoning, so that practitioners can understand the context in
which their area of expertise exists, and give a ‘checklist’ of other relevant performance con-
tributing factors to be aware of. By exposing the wide range of choices, and highlighting the
impact of across-stack interaction, we also hope to encourage better tooling, so that practi-
tioners can more easily experiment with perturbations. We believe that the most promising
approach to scalably managing this complexity over the coming decade will be reusable and
extensible tensor compiler infrastructure, such as Apache TVM [Che+18b], IREE [The19],
or MLIR [Lat+21]. This claim will be explored further throughout this thesis.
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This conceptualization of DLAS builds and expands on the characterization of the deep

learning inference stack [Tur+18a] with a much broader evaluation in Chapter 4, and an
updated description of the stack to reflect the developments in deep learning in recent years.
In addition, as techniques such as on-device federated learning emerge [Li+20a] and the
costs of DNN training continue to rise [Pat+21], a focus on inference is overly restrictive,
especially as many inference acceleration techniques can be leveraged for training.

1.1.2 Description of the Stack

We introduce the Deep Learning Acceleration Stack (DLAS) to act as a contextual overview
of the relevant domains touched upon by this thesis, with the stack spanning from the ma-
chine learning domain down to the hardware domain. Each layer can be tuned to optimize
different goals (e.g., accuracy, execution time, memory footprint, power), or to yield further
improvements in adjacent layers. However, for their potential to be fully realized, many
optimizations are required to be implemented using techniques across several layers. For
example, if we develop a new DNN operation, to achieve accelerated performance we may
need to develop an efficient algorithm and software implementation for a given hardware
platform. To help practitioners reason about their optimizations, DLAS contains the follow-
ing layers, with examples given in Figure 1.1, and greater detail given in Chapters 2 and 3:

1. Datasets & Problem Spaces: This is the top-level of the stack, which defines the prob-
lem and/or environment that the machine learning problem is required to solve.

2. Models & Neural Architectures: This layer encompasses specific DNN models and
families of DNN architectures, where a DNN architecture is defined by the operations
in the DNN and how they are connected, as well as the techniques used for training
these models quickly and accurately.

3. Model Optimizations: Approaches to reduce the size and costs of a DNN (e.g., in terms
of memory, inference time, energy), while attempting to maintain the accuracy.

4. Algorithms & Data Formats: DNN layers1 (e.g., convolutions) can be implemented
using various algorithms, with myriad trade-offs in space and time. Interlinked with
algorithms are data formats, i.e., how data is laid out in memory. These choices can be
consistent across a DNN model or vary per DNN layer.

5. Systems Software: Software used to run the DNNs, such as DNN frameworks, algo-
rithmic implementations, supporting infrastructure, programming paradigms, tensor
compilers, and code generators.

1Layers are units computation in DNNs, discussed more in Section 2.2, and should not be confused with
the layers of DLAS.
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Datasets &
Problem Spaces

Models &
Neural Architectures

Model Optimizations

Algorithms &
Data Formats

Systems Software

Hardware

ImageNet [Den+09], CIFAR-10 [Kri09],
GLUE [Wan+19a]; protein folding, pose estimation,
natural language understanding

CNNs, Transformers [Vas+17], GANs [Goo+20],
Diffusion; MobileNets [How+17; San+18],
ResNets [He+16], BERT [Dev+19]

Pruning (structured, unstructured), data-type quanti-
zation (int8, bfloat16, binary), grouped conv2d,
knowledge distillation [Tur+18b]

GEMM/direct/Winograd convolution, NCHW/NHWC
data layout, row/column-major, sparse data formats
(e.g., CSR, COO, BSR)

DNN frameworks, tensor compilers, programming
paradigms; TensorFlow [Aba+16], TVM [Che+18b],
CUDA [Nic+08], OpenCL [SGS10]

CPUs, GPUs, FPGAs, TPUs [Jou+17], reconfigurable
ASICs (e.g., MAERI [KSK18]); SIMD-units, cache
behavior, tensor cores

Figure 1.1: Overview of DLAS, split between machine learning and systems techniques,
with examples.

6. Hardware: Devices the DNN is deployed on, from general purpose hardware (e.g.,
CPUs, GPUs), to application specific accelerators (e.g., FPGAs, NPUs, TPUs). De-
vices can be more powerful server-class platforms, or more constrained edge-class
platforms. This layer also includes hardware features, such as SIMD-units, cache be-
havior, and tensor cores.

Although we have delineated the layers of the stack, it is critical to highlight that design
decisions made at each layer of DLAS can have a direct impact on adjacent layers. They can
also influence design decisions across the entire stack. In addition, a given layer may need
to be subdivided into sub-layers by a domain expert, and increased focus on co-design may
further blur the separation between these layers. However, we believe our six layer structure
strikes a balance between descriptiveness and simplicity.

In the future, practitioners will increasingly need to be aware of these across-stack inter-
actions, as Moore’s law scaling can no longer be relied upon by machine learning engi-
neers [HP18], and increased competition between hardware designers will require progres-
sively more innovative workload-aware approaches. Given the large design space available,
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we are still far from being able to holistically explore every design choice that DLAS de-
scribes, especially given the continuous development of novel machine learning and systems
techniques. This, and other challenges will be described in Section 1.2. Ultimately, the end
goal of using DLAS is to better enable this holistic exploration.

1.2 Challenges

From the outline of DLAS in Section 1.1, it is clear that challenges emerge both on indi-
vidual layers of the stack, and how these layers interact with each other. DLAS provides a
framework to aid us in reasoning about and achieving across-stack acceleration. However,
there are three significant challenges that must be overcome to realize this goal.

1.2.1 Identification of Unrealized Gains

In order to accelerate a workload, or better realize the performance improvements of an ac-
celeration technique, we first must be able to understand what our maximum potential perfor-
mance could be, or the ‘ideal’ speedup from a given technique. From there, we can compare
the observed performance and begin to isolate any slowdowns that may be occurring, i.e.,
the performance gap. The absolute performance limit is given by the target hardware, thus
a useful tool is the roofline model, an example of which is shown in Figure 1.2. Roofline
models show the limits of throughput on a given hardware platform, with applications being
bounded by either bandwidth or compute. Applications which have not touched the upper
bound may have potential to be accelerated, otherwise changes to the application or hardware
themselves may be necessary.

However, we can also identify unrealized gains with respect to a given optimization strategy
that has an ideal performance improvement, and compare that against the observed per-
formance. This ideal performance could be in terms of inference time, memory footprint,
energy, accuracy, or some other metric, and be computed from a simplified model of per-
formance, e.g., a technique reduces the number of operations in the model, and thus ideally
reduces the inference by the same proportion. For instance, we might expect that a given
model compression technique which reduces the number of operations in a model by 50%
will also reduce the inference time by 50%. However, perhaps we only observe a 10% reduc-
tion on a given hardware platform. Identifying disparities requires a certain level of expertise
and intuition that a given technique may be responsible for a slowdown, for example, is it the
hardware, the software, or an algorithm? And then, there is the question of how we identify
what the root cause of the performance regression could be, how it could be fixed, and how
we realize this solution. This may require exploring layers of DLAS that are not directly
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Figure 1.2: Example of a roofline model for some computing device, with three applications.
The upper bound on throughput is given by the solid lines, with applications with lower
arithmetic intensity being memory bound, and those with higher intensity being compute
bound. Apps 1 and 3 are already close to maximum throughput, but App 2 could be faster.

related to the original optimization strategy that may be contributing to this performance
regression. For example, the chosen compression technique may require a more optimized
algorithm, or even specialized hardware to realize its potential.

1.2.2 Exploitation of Across-stack Interactions

Once we have identified where the performance degradation is coming from, we need to
develop one or more approaches to accelerate our workload. However, as highlighted in
the previous challenge, there may be additional considerations in regard to how the solu-
tion will be implemented and integrated within the wider context of DLAS. For example,
a novel compression technique will need complementary algorithms, software support, and
may have varying requirements depending on the target hardware platform. The challenge
is how to navigate the design space, and myriad evaluation and development techniques.
How do we combine the varying skill sets and expertise required to arrive at a solution that
can adequately realize good performance for our workloads? Effectively exploiting across-
stack interactions is a critical challenge, and may require an iterative design, where we must
switch between and combine techniques at different layers of DLAS to better accelerate a
given application.

1.2.3 Efficient Design Space Exploration

If we want to produce an accelerated deep learning solution to a given problem, and want
to consider all possible aspects of DLAS, then the design space available is huge. It is not
tractable to explore every combination of parameters when designing a solution, especially if
we consider the DNN architecture to not be fixed, i.e., the operations defining the DNN could
be changed to produce a more accelerated solution. Even within individual components
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of the stack, for example, the algorithmic implementation of an expensive operation, we
have hundreds of plausible options [AG18; PPB19; Wen+19]. For compiler transformations
or DNN architecture design, we could potentially have many orders of magnitude more
choices. The best option could vary depending on the data sizes and stage of computation,
with all best options being highly hardware platform dependent, and interconnected with
other choices across DLAS. If we are to achieve the true end goal of DLAS, namely holistic
full-stack design space exploration (DSE), then we must ensure that exploration of the DSE
of the constituent components is as efficient as possible.

1.3 Contributions

This thesis presents techniques to accelerate DNNs, combining approaches from machine
learning and systems. At the core of the techniques are tensor compilers, specifically TVM
due to its maturity, however the approaches in this thesis can be applied to other tensor
compilers. As we will discuss, the position of this thesis is that tensor compilers are well
positioned to help tackle the challenges identified in Section 1.2. The key contributions of
the thesis are:

• A high-level discussion of the challenges of implementing one of the first across-stack
characterization of DLAS. Chapter 4 presents this as an experience study, where the
difficulties in engineering the evaluation framework and drawing conclusions from
the results are discussed, and how these motivate the challenges identified in Sec-
tion 1.2. The study itself is presented in Appendix A, including the experimental setup
and results evaluating the impact on accuracy and inference time when varying differ-
ent parameters of DLAS across two datasets, seven popular DNN architectures, four
model optimization compression techniques, three algorithmic primitives with sparse
and dense variants, untuned and auto-scheduled code generation, and four hardware
platforms. Overall, even small variations in DLAS parameters can change the infer-
ence time and accuracy results, and the sheer breadth of DLAS techniques available
makes it difficult to make definitive claims about performance given the small number
of parameters evaluated at each layer of DLAS.

• An accelerated algorithm to realize the potential performance improvements of an
underserved model optimization technique (grouped convolutions), where existing
solutions provided inference times significantly lower than the expected improve-
ments given the reduction in Multiply-Accumulate (MAC) operations. The solution
leveraged a tensor compiler to implement and further optimize the approach. Chap-
ter 5 motivates and details the approach, demonstrating experimentally that it scales
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well, improving against the existing CPU implementations from TVM, TensorFlow
Lite [Goo19], and PyTorch [Pas+19] by 3.4×, 4×, and 8× on average respectively
(using the arithmetic mean). This addresses the challenge of exploiting across-stack
interactions (Section 1.2.2) by integrating techniques from both algorithms and tensor
compilers to achieve state-of-the-art performance. As of 2021, this new algorithm was
accepted as the new default implementation for grouped convolution in TVM2.

• A novel approach to re-use information gained from auto-scheduling tensor compilers
on new programs, called transfer-tuning. Auto-scheduling is the processing of gener-
ating and tuning efficient code for a given DNN, which can give significant speedups,
at the cost of high search times. Chapter 6 details transfer-tuning, an approach which
can achieve a portion of these speedups at a fraction of the search time. Given a new
untuned DNN, transfer-tuning identifies promising schedules from previously tuned
DNNs, adapting them to be compatible with the new DNN, and choosing the best
schedules to compile with. A study on a server-class CPU using 11 widely used DNN
models achieves up to 88% of this maximum speedup achieved by auto-scheduling
from scratch (49% on average using the arithmetic mean), with a state-of-the-art auto-
scheduling system (Ansor [Zhe+20a]) requiring 6.5× more search time on average to
match it. We also evaluate on a constrained edge CPU and observe that the differences
in search time are exacerbated, with Ansor requiring 10.8× more time on average to
match our speedup, which further demonstrates its value. This addresses the challenge
of efficient DSE (Section 1.2.3), by giving accelerated DNN inference at reduced costs.

1.4 Publications

This thesis is based in part on ideas and results which have been described in previous pub-
lications. In addition, it includes works that are currently under review.

The exploration of DLAS in Chapter 4 and the Appendix A is currently under review, and is
expected to be published with the following title and co-authors:

1. Perry Gibson, José Cano, Elliot J. Crowley, Amos Storkey, and Michael O’Boyle,
“DLAS: Characterizing and Evaluating the Deep Learning Acceleration Stack.”, Un-

der Review.

The solution and results described in Chapter 5 were previously published in:

2. Perry Gibson, José Cano, Jack Turner, et al. “Optimizing Grouped Convolutions on
Edge Devices”. In: 2020 IEEE 31st International Conference on Application-specific

2https://github.com/apache/tvm/pull/6137
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Systems, Architectures and Processors (ASAP). 2020, pp. 189–196. DOI: 10.1109
/ASAP49362.2020.00039.

The transfer-tuning technique and complementary results described in Chapter 6 were first
published in:

3. Perry Gibson and José Cano. “Transfer-Tuning: Reusing Auto-Schedules for Efficient
Tensor Program Code Generation”. In: Proceedings of the International Conference

on Parallel Architectures and Compilation Techniques. PACT ’22. New York, NY,
USA: Association for Computing Machinery, Jan. 2023, pp. 28–39. ISBN: 978-1-
4503-9868-8. DOI: 10.1145/3559009.3569682. .

The experimental results in this thesis are reproductions of those in the above publications.
For each of these works, the core research contribution, experimental design, implemen-
tation, execution, and analysis were developed and performed by the first author, with co-
authors providing valuable discussion, feedback, and text review. This work is differentiated
from prior publications by further contextualizing them within the framework of DLAS, and
highlighting how they reinforce the core view of this work, namely of the tensor compiler as
the center of DLAS. The addition of background material (Chapter 2) and a literature review
(Chapter 3) also offer a more comprehensive overview of the relevant fields, and includes
references to new works that have been published after the above publications.

1.5 Complementary Publications

Other works which are relevant to this thesis, however do not in themselves represent a direct
contribution from the author, or fit into the core narrative, include:

1. Perry Gibson and José Cano. “Orpheus: A New Deep Learning Framework for Easy
Deployment and Evaluation of Edge Inference”. In: IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS). 2020, pp. 229–230. DOI:
10.1109/ISPASS48437.2020.00042.

2. Perry Gibson and José Cano. “Productive Reproducible Workflows for DNNs: A Case
Study for Industrial Defect Detection”. In: 4th Workshop on Accelerated Machine

Learning (AccML). 2022. DOI: 10.48550/arXiv.2206.09359.

3. Jude Haris, Perry Gibson, José Cano, et al. “SECDA: Efficient Hardware/Software
Co-Design of FPGA-based DNN Accelerators for Edge Inference”. In: IEEE 33rd In-

ternational Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD). Oct. 2021, pp. 33–43. DOI: 10.1109/SBAC-PAD53543.2021.00
015.

https://doi.org/10.1109/ASAP49362.2020.00039
https://doi.org/10.1109/ASAP49362.2020.00039
https://doi.org/10.1145/3559009.3569682
https://github.com/gicLAB/transfer-tuning
https://doi.org/10.1109/ISPASS48437.2020.00042
https://doi.org/10.48550/arXiv.2206.09359
https://doi.org/10.1109/SBAC-PAD53543.2021.00015
https://doi.org/10.1109/SBAC-PAD53543.2021.00015
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4. Jude Haris, Perry Gibson, José Cano, et al. “SECDA-TFLite: A Toolkit for Efficient
Development of FPGA-based DNN Accelerators for Edge Inference”. In: Journal of

Parallel and Distributed Computing 173 (Mar. 2023), pp. 140–151. ISSN: 0743-7315.
DOI: 10.1016/j.jpdc.2022.11.005.

5. Axel Stjerngren, Perry Gibson, and José Cano. “Bifrost: End-to-End Evaluation and
Optimization of Reconfigurable DNN Accelerators”. In: IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS). May 2022, pp. 288–
299. DOI: 10.1109/ISPASS55109.2022.00042.

6. Nikolaos Louloudakis, Perry Gibson, Jose Cano, et al. “Assessing Robustness of Im-
age Recognition Models to Changes in the Computational Environment”. In: NeurIPS

ML Safety Workshop. Dec. 2022. URL: https://openreview.net/forum?i
d=-7DjNGvdpx.

7. Nick Louloudakis, Perry Gibson, Jose Cano, et al. “Fault Localization for Buggy Deep
Learning Framework Conversions in Image Recognition”. In: Proceedings of the 38th

IEEE/ACM International Conference on Automated Software Engineering. ASE ’23.
New York, NY, USA: Association for Computing Machinery, Sept. 2023, pp. 1–5.

8. Wenhao Hu, Perry Gibson, and Jose Cano. “ICE-Pick: Iterative Cost-Efficient Pruning
for DNNs”. In: Neural Compression: From Information Theory to Applications –

Workshop @ ICML. 2023.

These publications are discussed in Section 3.7 as part of the related work.

1.6 Structure

The rest of this thesis is organized as follows:

Chapter 2 provides the relevant background, defining terminology and describing the ma-
chine learning and systems techniques used in this work, with a section dedicated to each
layer of DLAS.

Chapter 3 surveys the relevant literature, with each layer of DLAS given its own section.

Chapter 4 provides an exploration of DLAS, with a report of the experience of developing an
across-stack evaluation of the entire DLAS. This highlights both the engineering challenges,
and problems of drawing conclusions from the results. Details of the study are given in
Appendix A.

Chapter 5 introduces and describes a novel algorithm which accelerates grouped convolu-
tions, as well as leveraging compiler optimizations to enable further acceleration.

https://doi.org/10.1016/j.jpdc.2022.11.005
https://doi.org/10.1109/ISPASS55109.2022.00042
https://openreview.net/forum?id=-7DjNGvdpx
https://openreview.net/forum?id=-7DjNGvdpx
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Chapter 6 introduces a novel approach for accelerating the code for DNN inference gener-
ated by a tensor compiler, by reusing auto-schedules from other tensor programs.

Chapter 7 gives an overview of the main findings of this thesis, provides a critical review,
and outlines potential directions for further research.

1.7 Summary

The main goal of across-stack DNN acceleration is to enable more powerful applications at
reduced costs. However, as this chapter has introduced, achieving this goal requires over-
coming several significant challenges. These include difficulties in identifying unrealized
potential gains, the mix of expertise required to exploit across-stack interactions, and man-
aging the costs associated with DSE. The next two chapters discuss technical background
knowledge and related work. Subsequent chapters describe techniques developed as part of
this thesis to tackle these challenges.
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2 | Background

This chapter provides an overview of the techniques and theory from machine learning and
systems used in this thesis. This chapter follows the structure of the layers of DLAS (de-
scribed in Section 1.1), with Sections 2.1-2.3 covering the machine learning focused layers
of the stack, and Sections 2.4-2.6 covering the systems layers of the stack. Section 2.7 con-
cludes the chapter.

2.1 Datasets & Problem Spaces

As highlighted in Section 1.1, the Datasets & Problem Spaces layer defines the task that we
are attempting to solve using deep learning. Our problem spaces can be roughly divided into
supervised and unsupervised learning problems. For supervised learning, we have examples
of our inputs and the corresponding outputs. For example, this could be images as the input
data, and a class label of what the image contains as the output. The DNN learns the mapping
from inputs to their labels. Unsupervised learning is when we have no labels for our data,
and the goal of learning is to identify structure in the data. For example, we could have
images as the input data, but we must identify what features distinguish the images, and
suggest potential classes to group them by. There are other cases such as semi-supervised
learning problems, where we have labels for a subset of our data, however these cases exist
in the broader literature space, discussed in Section 3.1.

In this thesis, the main focus is on DNN models and techniques which target a small set
of popular supervised learning tasks, although many of the approaches can be applicable to
DNNs for other tasks. Typically, in learning tasks the data is divided into two sub-datasets:
training and testing. The former is used for training the model to learn from the data, dis-
cussed in Section 2.2.2. The latter is held-out, meaning that the model is not permitted to
learn from it. The purpose of splitting our data is so that the test dataset can be used as a less
biased metric of how well the model has learned from the data, i.e., the model has not just
memorized the training data, but instead has identified some generalizable patterns.

In our studies, we focus on two common image classification datasets: CIFAR-10 [Kri09]
and ImageNet [Den+09], where the task is to predict the class that a given image belongs
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to, from a predefined set of classes. The CIFAR-10 dataset is a small-scale dataset of square
RGB images of size 32×32 pixels, across 10 classes. The ImageNet dataset is a large-
scale dataset of square RGB images of size 224×224 pixels, across 1000 classes. Both
are commonly used for benchmarking DNN systems, although in recent years CIFAR-10
has arguably become a toy problem, similar to MNIST [Den12], since the upper-bound in
accuracy has already been reached by machine learning researchers [Pap23].

For both CIFAR-10 and ImageNet, a common accuracy metric is Top-1, where we report the
percentage of highest confidence guesses that are the correct label for our test images. Top-5

is another metric, where the top 5 guesses of the model are considered. In this thesis, we also
use some models trained for Natural Language Processing (NLP) tasks, with a wide range
of accuracy metrics depending on the particular task. However, we only investigate DNN
models used for NLP from the perspective of deployment costs, and therefore accuracy,
datasets, and specific tasks performed by these models are not relevant. We discuss NLP
datasets further in Section 3.1, for tasks such as language understanding, text summarization,
and question answering.

2.2 Models & Neural Architectures

Deep Neural Networks (DNNs) are a popular subclass of machine learning algorithms, im-
plemented as large tensor programs. There are a number of key topics relevant to this layer
of DLAS, which we will briefly introduce. These include defining neurons and neural net-
works (Section 2.2.1), how DNNs learn (Section 2.2.2), some relevant neural architectural
constructs (Section 2.2.3), as well as common DNN architectures (Section 2.2.4). For a
more comprehensive background in these topics, we refer the reader to a range of works
which discuss the foundations of the field [Agg18; Cho17; DWA21; GBC16].

2.2.1 Artificial Neural Networks

Artificial Neural Networks, or ANNs, are a class of machine learning models that are loosely
inspired by the structure and function of biological neural networks (e.g., animal brains).
ANNs consist of interconnected nodes, referred to as neurons or perceptrons, which are
organized in layers. Each neuron takes a set of inputs and processes them in some way,
typically using a weighted sum and producing an output value. A single neuron takes as
input an array of inputs x, and has a complementary array of weights w. Typically, the
output of the neuron is the dot product of the weights and inputs z =

∑m−1
i=0 wixi, where m

is the number of inputs to the neuron. A visualization of this is shown in Figure 2.1, with the
values of the weights (also known as parameters) being set by a learning algorithm, which
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Figure 2.1: An example of a single neuron with three inputs and one output.
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Figure 2.2: An example of a small, two layer neural network, with two inputs (marked with
x), three neurons in layer 1 (marked with h), two neurons in layer 2 (marked with f ), and
two outputs z.

attempts to best approximate the desired function, for example, to predict an output given an
input. We discuss learning algorithms more in Section 2.2.2.

A single neuron can be a powerful linear classification algorithm, however it is unable to
approximate every function, most notably XOR [MP69]. Therefore, this required combining
multiple neurons processing the same input with varying weights, and eventually sequences
of groups of neurons, with the output of one group of neurons being fed as input into another.
Groups of several neurons taking inputs from the same data are called a layer, and a sequence
of layers is called a neural network, as shown in Figure 2.2. Layers that are not the first or
final layer are called hidden layers and intermediate outputs that are passed between layers
are called activations. As the number of layers increases to three or more, we typically refer
to the system as a Deep Neural Network (DNN).

Modern DNNs can have dozens, or even tens of thousands of layers, with no upper limit
other than practical considerations (e.g., finite hardware resources). With a sufficient number
of layers and neurons, not only can a DNN approximate functions such as XOR, but have
been described as universal function approximators, i.e., they can learn to approximate any

bounded continuous function with arbitrary precision [Hor91; Lu+17b]. However, to learn
to approximate these functions we require data and a learning algorithm.
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2.2.2 Training and Learning

As highlighted in Section 2.2.1, the weights/parameters of DNNs are learned. When we
compute a function using our neurons and learned weights, we refer to this process as in-
ference. However, to learn the values of these parameters, such that they provide us with
useful outputs, we require a process known as training. We now briefly describe the relevant
concepts of training, as they pertain to supervised learning and this thesis.

Accuracy

Accuracy, as introduced in Section 2.1, is used to measure the performance of a given DNN
on a given task, and improving it is typically used as the main target of training. DNNs’
high accuracy on a range of tasks is one of the driving factors in their popularity. The metric
used for accuracy varies by task, e.g., the Top-1 metric for image classification introduced in
Section 2.1 measures the accuracy by the proportion of correctly labeled images.

During training, the DNN learns to improve the accuracy on the training dataset (optionally
using a validation dataset too), but to give a final evaluation of how successful our training
has been, the accuracy on the test dataset should be measured. The test dataset should never
be used for training as it could bias the result, since the model could just memorize the test
data, rather than demonstrate that it has identified more general patterns in the data. At the
beginning of training, the accuracy is expected to be low, and for it should gradually increase
as we apply a learning algorithm. When training, we usually represent the accuracy using a
loss function, which can be more fine-grained than accuracy, for example, by penalizing the
model for having low-confidence in its guess despite it being correct.

Backpropagation and Gradient Descent

Training a neural network involves adjusting the parameters of the neurons to minimize the
loss function(s). Typically, we randomly initialize the parameters of the network, with a
wide range of possible initialization schemes available [Bou+22], for example, sampling
from the unit normal distribution. In supervised learning, next we run inference with a batch
of training data, where a batch is a subset of the training samples, typically one to several
dozen. The batch’s output values from the model, and we should observe that the DNN’s
estimates are far from the target output. However, by using the loss function as a distance
metric of how far the random output is from our target output, we can use mathematical
techniques to reduce this distance, described below.

The operations of DNNs are necessarily differentiable, and thus we can get insight on what
changes could be made to the parameters to reduce our loss function. Differentiation allows
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us to calculate the gradients of the parameters with respect to our loss function, and then
we can use heuristics to adjust the parameters. Typically, the heuristics used favor gradients
sloping down towards a lower value of our loss function. Backpropagation is a widely used
approach for computing the gradients of multi-layer neural networks. In backpropagation,
we start at the final layer of a DNN, and using the loss function gradients, update our param-
eters to reduce the loss. We repeat the procedure moving backwards through each layer of
the DNN. Gradient computation provides only partial information about how to improve the
parameters of the model; note that we cannot determine in a single step the best values for
the parameters, only the direction we can adjust them to get a small local improvement.

Thus, many steps of adjustment are typically required to find parameters which give high
accuracy. Therefore, we can use an algorithm that will determine how much to adjust the
parameters by in each step, and vary it dynamically if required. Stochastic Gradient Descent
(SGD) and its variants are a key learning algorithm which helps to achieve this. The learning

rate is a critical parameter in these algorithms, defining the size of the changes made to the
parameters in each training step. It is usually adjusted dynamically, trending to smaller step
sizes as training continues. If the learning rate is too low, we may require significantly more
training steps to converge on our target solution. When we train DNNs, we generally run
inference using the full training dataset multiple times, with each iteration being known as
an epoch. An epoch is composed of one or more training steps, with each step taking a
batch of inputs, until the model has been trained on item in the training dataset. At the
end of an epoch, we evaluate the model’s final accuracy against the held-out test dataset.
Determining an appropriate learning rate at different stages of training is one of the key
challenges of training DNNs, with common optimizer variants such as Adagrad [DHS11]
and Adam [KB15] which attempt to more efficiently train the DNN.

Regularization Techniques

Neural networks are vulnerable to overfitting, which means that the model becomes over-
specialized on the training data and thus performs poorly on new data. Regularization tech-
niques are used to prevent overfitting and improve the “generalization performance” of the
network, meaning how accurate the model is on unseen data. Commonly used regularization
techniques include dropout [Sri+14], weight decay [KH91], and early stopping. Dropout
randomly disables some of the neurons during training to prevent them from co-adapting,
helping to ensure that the model learns a more robust representation of the data, which does
not rely on any one neuron. Weight decay adds a penalty term to the loss function to dis-
courage large weights, which may require more training epochs to correct if they are at sub-
optimal values. Early stopping halts the training process when the accuracy on a validation
set no longer improves significantly between epochs.
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Figure 2.3: An example of a DNN computation graph, with two convolutional (Conv), two
pooling (Pool), and two fully-connected (FC) layers. Note the skip connection, where the
output of layer 1 is used later in the model.

2.2.3 Common DNN Layers

We have discussed what neurons are, how groups of neurons are called layers, how com-
positions of layers are called a neural network, and how neural networks can be trained.
However, there is a large design space of how we configure a neural network’s architecture
before training begins. As a basic example, how many neurons and how many layers should
we use? We also do not need to connect every input to every neuron, for example, in Fig-
ure 2.2 we could remove the connections between x0 and h2, and x1 and h0. We also do
not need to have the function of a neuron to be a weighted sum, we could apply some other
function such as an average of the inputs, or returning the maximum value.

To simplify the design space, we typically consider DNNs at the granularity of the layer,
rather than the neuron. Different types of DNN layers are defined by varying connection
schemes between neurons, and the function each neuron computes. It is usually simpler to
define a whole layer as a single mathematical expression, rather than using the neuron ab-
straction. For example, we can define each layer of the neural network in Figure 2.2 as a
single matrix-multiplication. When we have defined our layers, another relevant factor is
how different layers in the network are connected together. Typically, this is done sequen-
tially, with the output of layer N being used as input into layer N + 1. However, it is also
common to have the network split into parallel branches that later have their outputs com-
bined. As computation graphs, DNNs are generally deterministic Directed Acyclic Graphs
(DAGs), where layers are nodes. Figure 2.2 is a sequential network, without any branches.
Figure 2.3 shows a more complex DNN with three types of layers, two of them featuring a
branched skip connection. The following sections will explain what each of these types of
layers compute and their properties.

Machine learning practitioners can either design the components of their DNN by hand,
for example, which layers to include and how many, or search for a configuration auto-
matically using a process known as Neural Architecture Search (NAS) (discussed more in
Section 3.2.2). This section describes some common DNN layer types relevant to this thesis,
and included in many popular DNNs.
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Fully-connected Layers

Fully-connected, also known as dense layers1, are characterized by every input being passed
to every neuron. The layers shown in Figure 2.2 are fully-connected. We can compute a
fully-connected layer as a matrix-multiplication by representing the inputs as a matrix X ,
for example, a matrix of size 1×2 in Figure 2.2. For each of the neurons, we could represent
their weights as a column of matrix W with one row for each neuron, a 2×3 matrix in our
example. Our output matrix would be computed as a matrix multiplication Z = X×W , thus
in our example Z would be of size 1×3, i.e., one output for each neuron. In Figure 2.2 each
neuron in layer 1 has one output, which is sent to the two neurons in layer 2. Fully-connected
layers are valuable because they allow us to express the relationship between every one of the
inputs in a very fine-grained manner. However, because of this they can be very expensive
in terms of the number parameters we need to learn and store.

Activation Functions

An activation function is a layer which can be applied to the output of each neuron, and
introduces non-linearity to the network. This is essential for learning complex functions.
Figure 2.4 shows some common activation functions, such as sigmoid, rectified linear unit
(ReLU) [NH10], and swish [RZL17]. The sigmoid function has a smooth S-shaped curve
and maps the input to a value between 0 and 1, making it suitable for binary classification
problems. The ReLU function is piecewise linear and sets all negative inputs to zero, making
it faster to compute. Swish multiplies the value of the sigmoid function by the input, and was
discovered through NAS, which is discussed more in Section 3.2.2. The choice of activation
function depends on the problem at hand and the architecture of the neural network, for
instance ReLU is typically cheaper than sigmoid, and is less prone to the vanishing gradient
problem (where the DNN’s weights get stuck during training). Alternatively, variations of
ReLU such as ReLU6 (Figure 2.4d) can improve accuracy in some cases, as does swish.

Convolutional Layers

Convolutional layers reduce the costs associated with fully-connected layers by reducing
the number of neurons included, as well as changing the connectivity between inputs and
neurons. At a high level, instead of a neuron having an individual weight for every incom-
ing input value, we reuse weights for multiple inputs. This is often visualized as a sliding

window, where a neuron scans over the input data. An example of this sliding window is
shown in Figure 2.5, where a 3×3 window slides over a 4×4 input matrix to produce a 2×2

1A term we avoid in this thesis to avoid ambiguity with dense computations, as contrasted with sparse
computations, discussed in Section 2.3.
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(a) Sigmoid (b) ReLU

(c) Swish (d) ReLU6

Figure 2.4: Common non-linear functions applied as activation functions in DNNs, with
the x-axis representing the input to the function (x), and the y-axis being the corresponding
output (ϕ(x)).

output matrix. Each application of the window produces a single output value. Therefore,
convolutional layers reduce the number of parameters required by using the same weights
for different input windows.

Convolutional layers are popular in image processing tasks, as they are effective at efficiently
identifying patterns in the images such as curves, lines, textures, etc. We typically have
multiple sliding windows, called filters, comprised of several neurons with their own weights,
which together identify a given pattern. The more filters we have, the more weights we need
to learn, and the more computations we need to perform in the layer. However, more filters
increase the number of patterns we can identify, and may contribute to a higher accuracy.
Algorithm 1 shows a simplified version of a convolution algorithm over 4D data.

Relevant configuration parameters for convolutional layers include the size of the filters,
padding, and strides used. Increasing the filter size results in more parameters and computa-
tions for each output value. In Figure 2.5 the filter size is 3×3. Padding is when we include
additional data, typically zeros, at the edge of the inputs. This can help ensure that our output
shape meets a given size, and that inputs near the edge of the input volume are given an ap-
propriate amount of processing. Strides is the step size that the filters make across the input
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(a) (b) (c) (d)

Figure 2.5: A visualization of the sliding window of convolutional layer. The 2×2 output is
shown above in green, and the 4×4 output is shown below in blue. In each step, we calculate
a single output value by multiplying and accumulating a 3×3 slice of our inputs with a 3×3
weight matrix. The same weight matrix is reused for calculating the other three outputs.
Figures adapted from Dumoulin and Visin [DV18] under an MIT license.

data, with higher strides typically meaning fewer computations are required. In Figure 2.5,
we have no padding and a stride size of one. Note that padding, strides, and filter size are not
necessarily symmetric, e.g., we could have 2×3 filters, padding on only the top of the input
data, or a larger stride along the width dimension.

Miscellaneous Layers

Other common and relevant layers include:

• Pooling layers such as max pooling and average pooling, which do not have learned
parameters, and instead reduce the amount of input data we have by taking groups of
input data and returning a single value, the maximum and average value for max and
average pooling respectively.

• Batch normalization layers [IS15], which are used in training to ensure that our output
data from other layers such as convolutions is normalized (i.e., zero mean and unit
variance), which can aid in training.

• Self-attention layers, used in Transformer [Vas+17] architectures, which aim to capture
the relationship between sequences of input tokens, regardless of distance. This allows
the model to selectively focus on different parts of the input, and is especially useful
in NLP tasks, where text can be represented as a sequence of tokens. For example, in
NLP a self-attention layer can help identify how different words in a sentence relate
to one another (i.e., grammar and semantics), and which words are most important for
determining the overall meaning.
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Algorithm 1 Direct Convolution in NCHW Layout
Require: Input tensor X of shape N × C ×Hin ×Win

Require: Filter tensor W of shape C ×M ×Hf ×Wf

Require: Strides Sh, Sw

Require: Output height Hout =
⌊
Hin−Hf

Sh
+ 1

⌋
Require: Output width Wout =

⌊
Win−Wf

Sw
+ 1

⌋
1: Initialize output tensor Y of shape N ×M ×Hout ×Wout with zeros
2: for n = 0 to N − 1 do
3: for m = 0 to M − 1 do
4: for hout = 0 to Hout − 1 do
5: for wout = 0 to Wout − 1 do
6: for c = 0 to C − 1 do
7: for hf = 0 to Hf − 1 do
8: for wf = 0 to Wf − 1 do
9: hin = hout × Sh + hf

10: win = wout × Sw + wf

11: Y [n,m, hout, wout] += (
X[n, c, hin, win]×W [c,m, hf , wf ]

)
return Y

2.2.4 Neural Architectures

Neural architectures are usually characterized by their inclusion of a given type of layer, or
a particular quirk of their topology. There is a wide range of neural architectures [Vee16],
however in this thesis the two most relevant ones are Convolutional Neural Networks (CNNs)

and Transformers, as they are widely used in a range of applications, as well as the evalu-
ations in this thesis. CNNs are characterized by their use of convolutional layers and are
commonly used for computer vision tasks. Transformer architectures are characterized by
their usage of self-attention [Vas+17], and are commonly used in NLP and computer vision
tasks. Section 3.2.1 discusses some popular and influential examples of these architectures,
and we highlight specific architectures evaluated in this thesis in the experimental setup of
the relevant chapters.

2.3 Model Optimizations

A common observation is that neural networks are overparameterized, and similar accu-
racies can be achieved with smaller models [FC19]. As a result, a wide range of model
optimization and compression techniques have been proposed in the machine learning com-
munity, which aim to reduce the size of a given DNN. Figure 2.6 shows some common
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(a) Dense Convolutions (b) Unstructured Pruning

(c) Structured Pruning (d) Data-type Quantization

Figure 2.6: A visual representation of different Model Optimization techniques: (a) shows a
slice of a typical DNN. Input on the left is computed with filters in the center, to produce out-
put on the right; (b) shows the same network slice with weight pruning applied. A subset of
parameters in the filters are forced to zero (visually represented with black holes) producing
sparse matrices; (c) shows the network slice with channel pruning applied onto the filters,
where there are fewer channels; (d) shows data-type quantization where the range of values
that a given parameter of a DNN has been reduced.

compression techniques, with an uncompressed (also known as dense2) convolution shown
in Figure 2.6a. Training is a computationally expensive process, potentially costing millions
of dollars [Bro+20], and consuming significant amounts of energy [Pat+21]. Therefore, this
makes it an attractive area for cost reduction. However, the model optimization techniques
discussed in this thesis prioritize inference. This is because inference is more likely to be
performed on more constrained hardware, where DNNs are deployed, as compared to the
high-end hardware typically used for training. In addition, if we consider wide-scale long-
term deployment, then inference will typically represent the majority of a DNN’s costs over
its lifetime, whereas training is an initial upfront cost.

For these reasons, this thesis focuses on techniques for inference acceleration. From a sys-
tems perspective, model optimization techniques do not necessarily provide speedups in-and-
of themselves, unless lower levels of the stack adequately support it. For example, hardware
supporting efficient computation using data-types with fewer bits, or algorithms and data
formats that exploit pruning to skip operations and reduce memory usage.

2.3.1 Pruning

Pruning is the technique of setting parameters in a network to zero, which if exploited can
reduce the computational or memory demands of a given DNN model, with potential accu-

2Not to be confused with fully-connected layers which are also referred to as ‘dense’ layers.
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racy loss. Blalock et al. [Bla+20] characterize four key dimensions that distinguish pruning
methods: Structure, Scoring, Scheduling, and Fine-tuning. We briefly discuss each of these
features as they are relevant to this thesis, and discuss more examples in Section 3.3.3.

• Structure: the level of granularity of the pruning. We have two main categories of
pruning: unstructured, where we prune individual parameters, as seen in Figure 2.6b;
and structured, where we prune groups of parameters such as neurons, blocks, filters,
or channels, as seen in Figure 2.6c.

• Scoring: how we decide which parameters to prune. We can prune parameters globally
or layer-wise. With global pruning, given some pruning target (e.g., 50% of parameters
should be pruned), the pruning algorithm will find the best parameters to prune across
the whole model, meaning that some layers will be more or less pruned than others.
For layer-wise pruning, we prune by a pre-defined amount per layer, e.g., every layer
will be pruned by 50%. Given our choice of global or layer-wise, we need to rank
the candidate parameters in some way to determine which are the least important, and
therefore are likely to have the lowest impact on accuracy if removed. A popular
approach is the L1-norm, where we prune parameters that have the lowest absolute
value, i.e., closest to zero. Other ranking approaches include gradient-based methods
and Taylor series expansion.

• Scheduling: how much we prune in each step. If we have a pruning target, for exam-
ple, 70%, we might prune all the parameters in a single step, also known at one-shot

pruning. Alternatively, we could prune a fraction of our target iteratively over several
steps, e.g., first we prune 5%, then 10%, and so on until we reach our 70% target.

• Fine-tuning: how we recover lost accuracy due to pruning. Once we have pruned our
model, we can retrain to recover lost accuracy using a method known as fine-tuning.
Typically, we will use a lower learning rate than if we were training from scratch,
ensure that our pruned parameters remain pruned, and tune for a small number of
epochs. If we are pruning iteratively, we may want to fine-tune after each pruning
step, however this can increase the time required significantly.

2.3.2 Quantization

Another compression technique is data-type quantization, which reduces the number of bits
used to represent parameters or data. A visualization of this is shown in Figure 2.6d, where
a continuous function is approximated with 9 distinct values. Typically, DNNs are trained
using the float32 data-type, however when they are deployed we can reduce the precision,
often with minimal accuracy penalties. Common quantized data-types include float16
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and int8, as well as emerging machine learning specific types such as bfloat16. In the
extreme case, we can reduce our representation to using a single bit, also known as binarized
neural networks, discussed more in Section 3.3.2.

For some types of data-type quantization it may be necessary to add additional operations
to the DNN, as for example, in many int8 DNNs we need to store the results of our com-
putation as int16 values, then rescale back into int8. This is because a sufficiently large
int8 value multiplied by another large int8 value will require more than 8-bits to be rep-
resented. float32 DNNs do not typically have this problem, since regularization means
that our values are rarely large enough. However, this also highlights the problem: DNNs do
not use the full range of values allowed by float32, meaning we are using more resources
than we require, which is inefficient.

Similar to pruning, it may be necessary to use some form of fine-tuning, or calibration, to try
and recover some of the lost accuracy. Calibration is the process of determining the values
to use as our rescaling factors, and we may use calibration alone or in combination with
fine-tuning of the model parameters.

2.3.3 Cheaper Operations

The most expensive layers in a DNNs usually have a high number of parameters or opera-
tions. For CNNs, the convolutional layers are likely to represent the majority of the memory
footprint and inference time, since it has a large number of Multiply-Accumulate (MAC)
operations and weights. Therefore, it is desirable if we can find alternative versions of these
layers which have similar representational capacity (and therefore accuracy), but with lower
costs. This may allow us to deploy our DNN on more constrained hardware platforms.

Grouped convolutions are a cheaper form of convolutional layers, where we divide our filters
between subsets of the input data. This reduces the number of MACs we need to perform and
the number of parameters we need to store. We denote these grouped convolutions as G(g)

where g is the number of groups, and standard convolutions as S. Grouped convolutions
allow for a trade-off between increased model compression against reduced accuracy as we
increase g. The compression scales linearly with g.

Consider a standard convolution as depicted in Figure 2.7(a): its input consists of Cin chan-
nels. Each of the Cout filters is convolved with all of these input channels to produce a single
Hout ×Wout output. These outputs are concatenated to give the Cout channel output of the
convolution. Each filter uses Cin ×Kh ×Kw parameters, where Kh ×Kw is the filter size.
As we have Cout filters in total, then the overall parameter cost is Cout × Cin ×Kh ×Kw.

Now, consider instead the case where half of our Cout filters are convolved with the first
half of our Cin input channels, and the other half of our filters are convolved with the second
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(a) Standard convolution.

(b) Grouped convolution (with 2 groups).

Figure 2.7: Standard vs. grouped convolutions: (a) In a standard convolution S, each fil-
ter is convolved with all of the input’s channels; (b) In a grouped convolution with two
groups G(2), half of the filters are applied to each half of the input for a 2× reduction in
parameters used. More generally, a grouped convolution with g groups uses g× fewer pa-
rameters than a standard convolution.

half of our Cin input channels, as depicted in Figure 2.7(b). The filters now only use half as
many parameters since each is now of size Cin/2×Kh×Kw. This is a grouped convolution
using two groups, and the total parameter cost and number of MACs is half of a standard
convolution. For g groups the parameter cost is reduced by a factor of g. The extreme case
where g = Cin is called depthwise separable convolutions [How+17; Sif14].

A disadvantage of grouped convolution is that it prevents information from different input
channels from mixing across groups. This can negatively impact accuracy. To counter this,
practitioners typically follow grouped convolutions with a pointwise convolution (i.e., a filter
size of 1×1), which incurs an additional Cout × Cout parameter cost.

2.3.4 Knowledge Distillation

Knowledge distillation is a model optimization technique which can complement other ap-
proaches to compression. It allows us to use large pre-trained models to help train smaller
models. Typically, we refer to the larger pre-trained model as the teacher and the smaller
model as the student. Attention transfer [Tur+18b; ZK17] is a common knowledge distil-
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lation technique, where the structure of the student and teacher networks are similar. In
attention transfer, during training we pass the student and the teacher the same inputs, and
store the intermediate activations of the teacher. Then, when we run backpropagation on the
student network, as well as trying to minimize the loss with respect to accuracy, we also try
and make the student’s activations match the teacher’s. The intuition for this technique is
that the teacher network has already learned an internal representation of the data which is
useful for high accuracy. Thus, if the student can mimic this representation, then it may learn
more quickly than if it were trained from scratch.

2.4 Algorithms & Data Formats

The layers of a given DNNs can be implemented in a variety of ways, as long as we still
get the same output. For example, for the fully-connected layer described in Section 2.2.3,
we highlighted that it can be computed as a matrix multiplication. Note that there are many
algorithms that we can use to implement a matrix multiplication, as well as many ways to
arrange data in memory. However, each algorithm will have varying trade-offs and optimal
cases. For example, some matrix multiplication algorithms are optimized for large matrices,
others for small ones; some are optimized for square matrices, others for rectangular ones;
we might order our data by columns, or by rows. The algorithms and data formats that we
use to compute our operations are important to enabling accelerated deployment, and their
behavior may be influenced by the size and shape of the data, the properties of the hardware
we are running on, as well as the choices around sparsity if we want to exploit pruning.

2.4.1 Data Layouts

An important component of DNN computation is data layout, which is how we order our
data in memory. The memory of the hardware device may have a different structure to our
tensor (e.g., 1D memory, but with 2D data). For 2D arrays, common formats include row-

major and column-major, with the former meaning that data in the same row is contiguous
in memory, and the latter meaning that data in the same column is contiguous in memory.
Similarly, for 4D data which is more relevant to CNNs, two common formats are NCHW and
NHWC, with N representing the batch size (i.e., number of input samples); and C, H, and W

representing the number of input channels, the input height, and input width respectively.
We may also tile our data, where we group our data in memory by a more complex criterion,
for example, by taking 2×2 squares of inputs from our larger tensor.
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2.4.2 Convolutional Primitives

For the CNNs models we evaluate in this work, the most important algorithm to optimize
is the one for convolutional layers, since they are generally the most compute and memory
intensive. Algorithms used in this work implementing convolutional layers include direct,
GEMM, and spatial pack convolution.

Direct convolution is one of the simplest algorithms, and is typically close to the textbook
definition of convolution seen in Algorithm 1. It does not reshape input data and weights,
which reduces memory overheads. The technique is called a sliding window, as shown in
Figure 2.5, since the filters of size Hf ×Wf ‘slide’ over the input data.

GEMM convolution reshapes 4D input data into a 2D array, potentially replicating elements
using a reshaping algorithm known as im2col. This means that the convolution can be com-
puted as a matrix multiplication (i.e., a GEMM function). Algorithm 2 gives a pseudocode
representation of the im2col function when our data is in the NCHW layout. GEMM is a com-
mon algorithm used in many domains, not just machine learning, therefore there are many
highly optimized GEMM algorithms and implementations which can be exploited, which
can amortize the overheads of generating the im2col matrix. In the case of a 1×1 pointwise
convolution, as described in Section 2.3.3, we can compute GEMM directly without the need
for an im2col matrix, which saves on reshaping costs.

Spatial pack convolution reshapes both inputs and weights into tiles, packed such that each
tile is ideally loaded once. The reshaping of weights can be performed offline, whereas input
reshaping must be performed during inference. Unlike GEMM convolution, the size of the
reshaped input data is the same size, and tiling the inputs and weights is intended to enable
exploitation of data reuse and SIMD vectorization, as discussed in Section 2.6.3. The spatial
pack convolution algorithm is elaborated on by Zheng and Chen [ZC18].

2.4.3 Sparsity

To achieve savings from the pruning introduced in Section 2.3.1, our algorithm must support
sparsity, i.e., exploiting the zeros generated by pruning to skip computation. In addition, our
data format should represent the sparse data in a more compressed form to reduce memory
usage. The data format should also complement the algorithm such that non-zero values can
be efficiently accessed. The computational savings are enabled by the fact that regardless
of the input value, a multiplication by zero will always be zero, will have no impact on the
final accumulated output, and thus can be skipped. We can achieve memory savings from
encoding consecutive zeros in a more compressed format.

In Chapter 4, we use the popular compressed sparse row (CSR) format, which represents 2D
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Algorithm 2 im2col function in CHW format

Require: Input tensor X ∈ RC×H×W

Require: Kernel size (Kh, Kw)
Require: Stride (Sh, Sw)
Require: Padding (Ph, Pw)

Calculate output dimensions Hout ← H+2Ph−Kh

Sh
+ 1

Wout ← W+2Pw−Kw

Sw
+ 1

K ← Kh ×Kw × C
M ← Hout ×Wout

Initialize output matrix Y ∈ RM×K

for c← 0 to C − 1 do
for h← 0 to Hout − 1 do

for w ← 0 to Wout − 1 do
for kh ← 0 to Kh − 1 do

for kw ← 0 to Kw − 1 do
m← (h×Wout) + w
j ← (c×Kh ×Kw) + (h×Kw) + w
horig ← h× Sh − Ph + kh
worig ← w × Sw − Pw + kw
if horig ≥ 0 and worig ≥ 0 and horig < H and worig < W then

Ym,j ← Xc,horig,worig

else
Ym,j ← 0

return Y

data using three arrays: 1. The non-zero elements of the parameters (data), 2. the original
column index of the corresponding parameters (indices), and 3. the first non-zero elements
in each row, as well as the final non-zero element (indptr). Using this format means that
we require up to three values to represent a single non-zero element, and hence, the use of
CSR only results in memory savings when at least two-thirds or more of the data is zeros.
Equation 2.1 shows a sparse matrix X , and Equation 2.2 shows its CSR representation.

W =

0 9 0 0

8 0 0 7

0 6 5 4

 (2.1)

data =
[
9 8 7 6 5 4

]
indices =

[
1 0 3 1 2 3

]
indptr =

[
0 1 3 6

] (2.2)

Sparse algorithms may have different trade-offs when compared to their dense counterparts,
as their data access patterns will be irregular. Therefore, the best algorithm in the dense case
may not be the best in the sparse case. In addition, the sparse data format may also be better
or worse in a given scenario, including how it interacts with a given sparse algorithm. Other
sparse data formats include BSR (block sparse row) and COO (coordinate list). These issues
are discussed more in Section 3.4.2.
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2.5 Systems Software for DNNs

Software is required to implement, execute, and optimize all of the above layers of DLAS.
Additionally, it acts as an interface with the underlying hardware. This software can be
high-level, such as the frontend for developing DNN solutions, or lower-level, such as back-
end software for code generation, which machine learning developers rarely interact with
directly, but are critical for correct and efficient execution.

2.5.1 DNN frameworks

DNN frameworks are the front-end for machine learning practitioners to develop, train, or
deploy their models. There are a range of popular DNN frameworks used, with a variety of
interfaces, strengths, and weaknesses. Some popular examples include: PyTorch [Pas+19],
TensorFlow [Aba+16], MXNet [Che+15], JAX [FJL18], and Keras [Cho15]. The interface
for using most of these frameworks is Python, however optional bindings for other languages
such as R, C++, and Julia exist for some frameworks. Listing 1 shows an example definition
of a single CNN layer in PyTorch, with a ReLU activation function. A full range of common
DNN layer definitions are expected to be available in DNN frameworks, so developers do
not need to define them manually.

Typically, each DNN framework has its own file format for representing models, which are
not necessarily interoperable. Motivated by this, ONNX has gained popularity as an inter-
change format [BLZ+19], where many frameworks can export to and import from ONNX
files. This has increased the portability of DNN models between DNN frameworks, making
it easier to deploy DNNs using frameworks other than the one they were trained. ONNX
defines a set of common DNN operations, a format for storing parameters, and a format for
structuring the data dependencies between operations (i.e., the computation graph). How-
ever, ONNX does not currently support every layer type from every DNN framework due to
the rapid evolution of new methods. As a result, converting DNNs which implement exotic
or novel operations can be challenging.

2.5.2 General Purpose Compiler Infrastructure

The hardware that we execute our software on is controlled using machine code and related
hardware signals. Therefore, to run our higher level code (such as C++ or Rust) on real hard-
ware we require a compiler. Compilers translate code from one language into another, which
includes translating higher level languages into lower level languages (e.g., assembly) that
are closer to machine code. Most commonly, we think of compilers as generating a binary
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import torch

class WeeNet(torch.nn.Module):
def __init__(

self, in_c: int, out_c: int, kdim: int, stride: int, pad: int
):

super(WeeNet, self).__init__()
self.layer1 = torch.nn.Conv2d(

in_c,
out_c,
kernel_size=(kdim, kdim),
stride=(stride, stride),
padding=(pad, pad),

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
out = torch.nn.functional.relu(self.layer1(x))
return out

model = WeeNet(*args) # initialize model
y = model(x) # run inference using input data x

Listing 1: Single-layer CNN definition in PyTorch, with a ReLU activation function.

containing machine code, i.e., instructions which can be used to control a CPU. Compilers
typically involve six stages:

1. Lexical analysis (Lexing): This stage groups the input program into distinct tokens,
such as variable names, operators, keywords, and literals.

2. Syntax analysis (Parsing): This stage processes the tokens produced by the lexer and
checks if they follow the basic rules defined by the language grammar, for example,
every if token must have a corresponding endif.

3. Semantic analysis: This stage interprets the output of the parser, and checks for se-
mantic correctness, such as ensuring that variables are declared before use, that func-
tion calls have the correct number and types of arguments, and that expressions have
valid data types.

4. Intermediate code generation: This stage generates an Intermediate Representation
(IR) of the program, which is a lower-level abstract representation that is more suitable
for further processing, optimization, and code generation.

5. Optimization: This stage transforms the intermediate code to optimize its perfor-
mance, either by making it consume fewer resources (such as memory) or by improv-
ing its execution speed. Optimizations can be local or global.

6. Code generation: This final stage translates the optimized intermediate code into low-
level machine code or assembly that can be executed directly by the target machine or
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platform. The code generator handles low-level details such as register allocation,
instruction selection, and memory management.

Common general purpose compilers include Clang and GCC. Regarding the IR, a notable
system is LLVM [Lat02], a collection of cross-platform compiler infrastructure and an in-
dustry standard, which is characterized by LLVM IR. As a program representation, LLVM
IR is designed to be self-contained and platform independent, and preserves some program
structure such as control-flow constructs and data-types, which can aid in optimization. Com-
pilers such as Clang translate higher level code into LLVM IR, and LLVM defines a range
of optimizations which can be applied to the IR. Part of LLVM’s success has come from
the reusability and relative ease-of-use for the development and application of optimization
passes. This has resulted in a wide range of programming languages and tools using LLVM
as a backend, so they can leverage its widely used and well-supported infrastructure. As pre-
viously highlighted, the IR preserves some program structure that is less evident in machine
code, such as higher-level data-types; and also allows optimizations to be more platform and
language independent, contributing to LLVM’s widespread adoption.

Compiler Optimizations

Compiler optimizations play a critical component of modern computing, by transforming the
code being generated to improve some desirable attribute, for example, increased throughout
or reduced memory footprint. Some common and relevant optimizations include loop un-
rolling, loop reordering, vectorization, dead code elimination (DCE), constant folding, and
common sub-expression elimination (CSE).

Loop unrolling refers to replacing for loops with the body of the loop repeated once for
each iteration. Listing 2 shows an example of a basic for loop that has three iterations.
Listing 3 provides an example of the same loop unrolled. We could see execution time
reductions due to the fact that we do not need to check our condition i < 3, and increment
our counter i every iteration. However, we could also increase execution time if a loop
has many iterations that could increase our binary size, and negatively impact our cache
performance. We can also employ partial loop unrolling, where we keep the for loop, but
reduce the number of iterations by a factor of N repeating the body of the loop N times.
This can help us achieve speedups even if a given loop has many iterations.

Loop reordering refers to changing the order of nested for loops. This can provide per-
formance improvements if the reordering better exploits the data layout and algorithm’s data
access patterns. For example, we could see performance improvements if the innermost loop
iterates over data which is contiguous in memory.
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for (size_t i = 0; i < 3; ++i)
c[i] = a[i] + b[i];

Listing 2: Unoptimized for loop

c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];

Listing 3: Unrolled for loop

Vectorization refers to replacing multiple sequential instructions involving an array of data
with single instructions that manipulate multiple elements of the array at once. Section 2.6.3
discusses the hardware features required to enable this optimization.

Dead code elimination (DCE) is the removal of parts of the program that do not change the
output, and may not even be executed. For example, we might be storing data to a variable
that is never used later in the program, or we could have a branch of an if condition that
will never trigger (e.g., if False). If we remove this ‘dead’ code, then we can reduce the
number of operations we need to perform, as well as the binary size.

Constant folding involves propagating knowledge of any constant values in the program.
For example, when calculating an index offset in a for loop, we may have an expression
(H × W), where H and W are constants. This optimization replaces the expression with a
third constant variable which is calculated ahead-of-time (AOT) by the compiler, so that we
do not need to reevaluate it at execution time.

Common sub-expression elimination (CSE) targets situations where there are expressions
that compute the same result. For example, we could have two statements, a1 = b + c × d,
and a2 = e+ c× d. CSE could add a third statement f = c× d, and update the two original
statements to a1 = b + f and a2 = e + f . This means that we only calculate c × d once,
which could potentially bring us savings.

A wide range of compiler optimizations are available, and the above are only a fraction of
them, chosen because they are common and more relevant to this thesis. A single compiler
optimization may not always result in performance improvements on its own, as multiple
passes may be required, with the order of passes potentially having an impact on perfor-
mance. Section 3.5 discusses this problem more generally.

AOT versus JIT

Some compiler optimizations exploit knowledge about the program’s structure, for example,
the number of iterations used in a loop, as leveraged by loop unrolling. If we have this
knowledge at compilation time, then we can exploit it immediately using an approach known
as ahead-of-time (AOT) compilation. This leverages optimizations such as those described
above, exploiting the fact that we have some of our variables and control-flow as constants.
This means that our code could be faster than if these components are left as variables.
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However, we may not know all the features of our program at compile time, for example, our
program could accept inputs of arbitrary size and shape. In this case, we may want to embed
parts of the compiler in our program, so that we can leverage Just-In-Time (JIT) compilation.
JIT is where we recompile parts of our program during execution time to optimize it based on
features of the input data. This recompilation can come with non-negligible costs (e.g., time,
memory), however these may be acceptable if the speedups achieved are sufficiently high.
In addition, if we cache our optimized code, then we can reuse it with reduced overheads if
we encounter data with similar features again.

2.5.3 Hardware APIs

Typically, CPUs are interfaced with using high-level programming languages such as C++,
which are compiled or interpreted into machine code. The programming paradigms for hard-
ware other than CPUs vary due to their distinctive architectures, as Section 2.6 will discuss,
which may require interfacing with them in different ways. For hardware accelerators like
Graphics Processing Units (GPUs), programming paradigms including CUDA [Nic+08] and
OpenCL [SGS10] provide a programming interface using a C-like programming language.
More specialized hardware accelerators such as Tensor Processing Units (TPUs) may define
their own programming interfaces, which may be less flexible due to their specialized nature.
Generally, when using hardware accelerators, we still require CPU-side host code to manage
accelerator calls and data transfers between the CPU and the accelerator, with data transfers
potentially being a significant bottleneck if not managed correctly.

2.5.4 Kernel Libraries

Kernel libraries are optimized subroutines for common or expensive operations (such as
GEMM), and are often exploited by DNN frameworks. Within DNN frameworks, they may
be responsible for executing expensive computations of the DNNs, such as convolutional
layers. An example of a kernel library is cuDNN [Che+14b], which is a collection of opti-
mized CUDA kernels and host code which executes common and compute-intensive DNN
operations for Nvidia GPUs. However, a key drawback of kernel libraries is that they often
fall behind the continuous innovation of new DNN architectures [BI19], which can lead to
suboptimal performance, and potentially discourage experimentation from machine learning
practitioners. They also may not be adequate in the face of increasing heterogeneity of hard-
ware platforms, with variants of every critical kernel being required to suitably exploit each
sufficiently unique platform.
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Figure 2.8: Overview of relevant components in modern tensor compilers

2.5.5 Tensor Compilers

An alternative to using optimized vendor libraries are tensor compilers, examples of which
include Apache TVM [Che+18b] and IREE [The19]. Tensor compilers exist at a higher level
of abstraction than other compiler infrastructure such as LLVM, with their purpose to rep-
resent and exploit domain-specific knowledge about the structure of potential optimizations
available for DNNs. They generate code for a specific DNN on a specific hardware backend,
and when leveraged correctly can outperform kernel libraries, especially for operations that
may be less popular or optimized.

Apache TVM is the main tensor compiler leveraged in this thesis, due to its maturity, state-
of-the-art performance, valuable features such as domain-specific languages to more easily
develop new optimized algorithms (Section 2.5.6), as well as native support for auto-tuning
the code (Section 2.5.7). Other relevant tensor compilers are discussed in Section 3.5.2,
although they still broadly implement the same key components as TVM.

Figure 2.8 gives a high-level sketch of the key components that one would expect to find
in a tensor compiler. They take a DNN Model Input, which is imported and optimized by
the Compiler Frontend. Next, the Compiler Backend generates and optimizes the code
that implements the particular layers and operations of the DNN model. Tensor compilers
often leverage mature lower level infrastructure such as LLVM when generating their code,
and do so after they have exploited and applied their domain-specific optimizations. Finally,
the optimized code is lowered3 into a representation that can be executed on the Target
Platforms. Details of tensor compiler frontends and backends are given below.

3‘Lowered’ meaning to compile from a higher level abstraction representation to a lower one.
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for ni in range(N): # GEMM
for mi in range(M):
for ki in range(K):

c[ni, mi] += (
a[ni, ki] * b[ki, mi]

)
for ni in range(N): # ReLU
for mi in range(M):
c[ni, mi] = relu(c[ni, mi])

Listing 4: Non-fused operators

for ni in range(N): # GEMM+ReLU
for mi in range(M):

for ki in range(K):
c[ni, mi] += (
a[ni, ki] * b[ki, mi]

)
c[ni, mi] = relu(c[ni, mi])

Listing 5: Fused operators

Compiler Frontend

The first step is for the frontend to convert the DNN Model Input into a standard format.
Often the DNN Model Input is pre-trained from another DNN framework such as PyTorch,
or is in the ONNX format, however tensor compilers can also define models natively. The
Model Importer reads the Model Input’s structure and parameters, and reproduces them
using the tensor compiler’s internal representation of a DNN.

This produces a computation graph, where the nodes are the atomic operations of the model,
such as convolutional layers. This computation graph will usually be without lower level
implementation details such as the algorithm used. An example of a DNN computation
graph is shown in Figure 2.3, where we have convolutional, pooling, and fully-connected
layers, as well as how they are connected together. Finally, graph-level optimizations will
be applied, which can use techniques such as DCE and CSE to remove redundant nodes in
the computation graph. The frontend may also leverage some domain-specific knowledge to
apply techniques such as operator fusion to the graph.

Operator Fusion refers to combining nodes in the graph together into a single operation,
which takes two main forms. The first combines the parameters of one operation with an-
other, completely removing it from the graph. An example of this is with batch normalization
and convolution: during inference we can simplify the operation sequence so that we are left
with just a convolution with updated parameters. The second form of operator fusion moves
the second operation into the loop nest of the first operation, so that the second operation is
applied, but without having to perform a second full traversal of the data. An example of
this is shown in Listings 4 and 5, where there is a GEMM followed by a ReLU. In the fused
version, we apply ReLU immediately after the final MAC operation has been performed for
a given c[ni, mi]. This means that it will still be in memory, which can bring significant
savings compared to the non-fused version, where it will need to fetch data later, at which
point it may have been evicted from the cache.
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Compiler Backend

After applying graph-level optimizations, the next stage is to use the compiler backend. The
resulting code can be executed on a target hardware platform, which efficiently implements
a given DNN. There are a variety of stages that can be exploited to realize and optimize
this code while it is being generated. Note that not every tensor compiler will necessarily
implement all of these stages, or may have additional ones. However, the stages presented
here are the most relevant in the context of this thesis.

Algorithmic primitive selection: choice of the high-level algorithm that is used to implement
each node in the computation graph. For example, for convolution we may choose one of the
algorithms described in Section 2.4 such as direct or spatial pack. This stage may also select
an algorithm implementation from a kernel library, rather than providing one from the tensor
compiler itself. When using a kernel library, it will most likely be treated as a black-box by
the tensor compiler, whereas in the latter case the tensor compiler backend will be able to
apply further optimizations to the code of the algorithm.

Hardware-specific optimizations: manipulates the code of the algorithm to enable features
like thread-level parallelism, SIMD-vectorization, and loop manipulations such as the ones
discussed in Section 2.5.2. They should exploit the features available on the target hardware,
for example, a multicore GPU would benefit more from higher degrees of parallelism. More
discussion of this is given in Section 2.5.6.

Lower-level IR: the output of hardware-specific optimizations, closer to executable machine
code, and may encode device specific features such as threads, blocks, or vectorization,
which will be substituted with the relevant instructions and hardware API calls at the Code

Generation stage.

Auto-tuning: automatically searches for additional optimizations for a given node and hard-
ware platform, as discussed in more detail in Section 2.5.7.

Profiling & Debug Tools: inserts extra code into the program to collect information about
the tensor program’s execution, for example, storing intermediate outputs to debug incorrect
output, or adding support for hardware counters that will report the resources such as the
number of CPU clock cycles used by a given layer.

Code Generation: converts the lower-level IR to a representation that can be executed or
optimized by the lower level compiler infrastructure. For example, we could convert from
the tensor compiler’s lower-level IR to LLVM IR, and then from LLVM IR to machine code.
We may also generate code which targets other backends such as CUDA or OpenCL.

The previous sections cover all the main components in a typical tensor compiler. The
following sections discuss some specific features seen in the TVM compiler in more detail,
which make it a particularly effective tensor compiler.
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A = te.placeholder((m, n), name="A")
B = te.placeholder((m, n), name="B")
C = te.compute(

(m, n), # output shape
lambda i, j: A[i, j] * B[i, j],
name="Hadamard"

)

Listing 6: An example of an algorithm
implementation in TVM.

sch = te.create_schedule([C.op])
# split the inner loop into two
no, ni = sch[C].split(
C.op.axis[1], factor=32

)
# apply SIMD-vectorization
sch.vectorize(ni)

Listing 7: An example of a schedule im-
plementation in TVM.

2.5.6 Compute Schedules

Compute schedules is a programming paradigm for tensor compilers which decouples the
high-level description of an algorithm from the description of how it should be optimized
for a given hardware platform. It has been seen in systems such as Halide [Rag+17],
TVM [Che+18b], and RISE/ELEVATE [Hag+20]. Developers express their algorithms us-
ing a relatively simplified representation (e.g., NumPy-style syntax), which makes it easier
to interpret and debug its behavior. The schedule is a separate function which defines the
transformations to the algorithm’s code, usually expressed in a domain-specific scheduling
language. The schedule defines which optimization choices are applied, such as decisions
about the intermediate storage and the order of computation, and to which parts of the algo-
rithm they are applied. Often, there are several schedules defined for different platforms, for
example, one for CPUs and one for GPUs, using the same algorithm definition.

The separation between high-level algorithm and platform specific transformations can allow
clearer reasoning about the performance impact of optimizations, while ensuring that the
semantics and readability of the algorithm is preserved. This is contrasted to defining the
algorithm and its optimizations in the same code, as seen in system programming languages
such as C, C++, and Rust. In these cases the original algorithm may be obfuscated by its
optimizations. Additionally, as previously highlighted, a single algorithm can have multiple
schedules for different cases, such as hardware architectures or kernel properties. This is
seen in TVM, which defines different schedules for the same algorithm for CPUs, GPUs,
and specialized hardware accelerators [Mor+19; SGC22]. Listing 6 shows an example of
an implementation of matrix element-wise multiply in TVM. A complementary schedule for
this kernel is shown in Listing 7, which optimizes the code by splitting the innermost loop
and applying vectorization.

A well-designed schedule is key to achieving accelerated performance. Even small changes
in the schedule can yield large changes in the speed of the generated code, sometimes by
orders of magnitude. However, writing optimized schedules by hand requires domain ex-
pertise, including understanding of the algorithm’s design [Gib+20] and the behavior of the
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target hardware [ZC18]. In addition, an optimized schedule may not necessarily be efficient
for all instantiations of the target algorithm. For example, if the schedule was optimized as-
suming that the size of the inner loop would always be small, it may experience slowdowns
in cases where the inner loop is large. In this case, optimizations which were used to exploit
this assumed kernel characteristic might not help, and may even hinder performance.

2.5.7 Auto-tuners and Auto-schedulers

Tensor compilers can be taken even further by automatically tuning the code for a given
layer instance and hardware platform, also known as auto-tuning. This can improve the
performance beyond what is achieved by generic optimizations, which may only optimize
for common cases, leaving the majority of cases unoptimized. As a basic example of auto-
tuning, consider the loop unrolling example in Listing 3. If the number of loop iterations is
low, then loop unrolling may give performance improvements. However, if the number is
high, then we may see a performance degradation, due to increased code size. Determining
this threshold can vary based on the cost of the loop body and the hardware being used.
An auto-tuner can take the code for a given kernel of a given size, and test its performance
using different optimization configurations, e.g., if loop unrolling increases or decreases
performance. We can imagine this approach being applied to many other optimizations,
such as loop reordering. Many works have demonstrated that auto-tuning techniques can
outperform human experts [Ash+18; LC20].

Auto-schedulers are a special case of auto-tuners for systems using the computer schedule
paradigm. This allows us to automatically explore the full space of transformations exposed
by a scheduling language, and potentially achieve higher speedups. However, this can also
increase the size of the search space significantly, when compared to an auto-tuner which
explores a pre-defined set of optimization parameters.

An example of an auto-tuner used in this thesis is AutoTVM [Che+18a], and an example
of an auto-scheduler is Ansor [Zhe+20a], both of which are defined for TVM. AutoTVM
explores predefined ‘tuning knobs’ defined by the creator of a given schedule, with possible
configuration choices including checking if we unroll a loop, or the tile size to use. An-
sor does not require a handwritten schedule, and only requires the instantiation of a given
algorithm (which we refer to as a kernel, especially in Chapter 6) to begin optimizing it.

Much like NAS (introduced in Section 2.2.4, and discussed more in Section 3.2.2), the two
key factors for auto-tuners and auto-schedulers are: 1. The search space described, since
a larger space will be more likely to include faster tunings, but will be more expensive to
search; and 2. the search strategy, which will determine how expensive the search process
is, and now likely we are to find a good tuning in our space. The size of the search space
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for AutoTVM is determined by the number of tuning knobs defined for a given handwritten
schedule. The search space for Ansor can be orders of magnitude larger, since it can compose
together an arbitrary number of schedule primitives.

Both AutoTVM and Ansor use cost models to estimate how fast a proposed configuration
will be on the target hardware. This can help them exclude variants which are likely to
perform poorly, reducing the search time. Also, for their search strategies, they can leverage
evolutionary algorithms, which make small changes to their best performing programs rather
than randomly jumping around their search space. However, Ansor can find more optimized
schedules much faster than AutoTVM, since it has a more efficient search strategy coupled
with a search space which is less constrained. The net result of this is that Ansor finds a
better schedule in less time than AutoTVM.

2.6 Hardware for DNNs

Ultimately, DNNs must be executed on physical hardware, which will dictate the upper limit
of their throughput (see the roofline model shown in Figure 1.2). For a given deployment,
we may be limited to a given device, and thus must operate within the constraints available.
Alternatively, we may have several devices available, and thus will want to choose the best
device in terms of some metric of success, such as throughput, maximum supported model
size, cost, or energy consumption. This section introduces the classes of devices relevant to
this thesis, as well as some of their hardware features which can be exploited by other layers
of DLAS. For a more comprehensive background on hardware as it pertains to deep learning,
we refer the reader to the following overviews [CPJ21; Dhi+22; Hoo21].

2.6.1 Devices

Hardware that DNNs commonly execute on includes general purpose computing devices
such as CPUs and GPUs, as well as more specialized accelerators such as TPUs and other
ASICs such as MAERI [KSK18] and Eyeriss [Che+17; Che+19]. CPUs are generally com-
plex independent processing cores, typically with one to several dozen cores on a single
chip. GPUs are generally simpler interdependent processing cores, typically with dozens to
several thousand cores on a single chip. Both CPUs and GPUs define Instruction Set Archi-
tectures (ISAs) which are an abstract software interface to the underlying hardware, defining
the data manipulations that the hardware can perform. Examples of instructions include
data handling and memory operations (such as loading and storing), arithmetic operations
(such as addition and multiplication), and control flow operations (such as conditions and
branching). The specific instructions available vary by device, with CPU ISAs relevant to
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this thesis being x86-64 and Arm-V8, and a range of GPU ISAs which are more diverse and
less documented. These instructions are usually generated by a compiler, however they can
be handwritten by the intrepid.

More specialized accelerators are designed specifically with DNNs in mind, such as Tensor
Processing Units (TPUs) and Neural Processing Units (NPUs). These accelerators may or
may not have their own ISAs, but given their specialized nature they will usually define sig-
nificantly fewer instructions, with a single instruction potentially representing the equivalent
of thousands of CPU instructions, since it may be executing a more coarse-grained operation
such as a GEMM. More details of hardware accelerators are given in Section 3.6, as the core
contributions of this thesis are using CPUs and GPUs.

Key metrics that should be considered regarding DNN-processing hardware include through-
put and energy consumption. If we are designing the hardware, then we must also consider
the area of the chip, which strongly correlates with cost.

2.6.2 Edge versus Cloud

The range of applications and modes of DNN usage have varying computational require-
ments. The edge/cloud dichotomy has emerged as a way of delineating between two classes
of hardware platforms, with edge referring to devices at the edge (or near it) of computer
networks, such as smartphones and Internet of Things (IoT) devices, typically with fewer
computational and networking resources; and cloud referring to devices in data-centers such
as rack-mount servers with high-end GPUs, typically with more computational and network-
ing resources. Typically, training is performed in the cloud, as we require a large amount of
processing power, which powerful server-class GPUs or TPUs are well suited for.

The cloud is also ostensibly a more desirable inference deployment platform for similar
reasons. However, the data which we want to process in AI applications is typically at the
edge. If network connectivity or latency is limited, then sending data from the edge to be
processed in the cloud may not be practical, with network scaling issues as the number of
connected edge devices increases [CR19], and there may also be data privacy and security
concerns sending data to the cloud [KTZ19]. Therefore, we may be required to run at the
edge, which further motivates efficient acceleration using the techniques within DLAS, given
the more constrained nature of the hardware.

2.6.3 Hardware Features

General purpose hardware such as CPUs and GPUs are Turing-complete, meaning they can
theoretically execute any computational function. However, they may be more or less ef-
ficient for some computations, with varying hardware specialisms that accelerate different
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classes of computations. At a high-level, key concepts around the speed of a computation
include: how fast a single instruction can be executed, how fast data can be read from or
written to memory, and how much parallelism can be and is exploited.

Multicore Processing

If a single chip has more than one processing unit that can work in parallel, this can reduce
the time needed for programs which can be split into parallel threads of computation. Many
DNN computations can be parallelized, however often still require communication between
cores, for example, we may need to combine the outputs calculated by each core for our
final result. As discussed in Section 2.6.1, CPUs typically have fewer cores (one to sev-
eral dozens) which are more complex, and GPUs typically have more cores (four to several
thousand) which are less complex. However, this comparison mostly illustrative, to indicate
that GPUs are typically designed around higher levels of parallelism. In practice the design
CPUs and GPUs is different enough such that a direct comparison in number of cores is not
fair or sufficiently informative. Computer scientists typically use Amdahl’s law [Amd67] to
calculate the theoretical speedups from leveraging parallelism, which compares parts of the
program which can be parallelized against parts which cannot. Programs which are highly
parallel, with regularity between computation units, may be better suited for GPUs, whereas
less parallel programs may be better suited for CPUs, since individual CPU cores are typi-
cally faster than GPU cores.

Some CPU architectures are heterogeneous, for example, Arm big.LITTLE, where relatively
lower power slower processor cores (LITTLE) are coupled with relatively more powerful and
power-hungry ones (big). Applications can choose which cores to use for different tasks,
which can help reduce overall all power consumption, while still allowing higher throughput
computation when required.

Memory System

Another important aspect of hardware is the memory system. Computation requires fast
access to the data being computed upon, however there are practical limitations regarding
how large and how fast our memory systems can be. Therefore, conventional computation
devices have a memory hierarchy: with fast, small data storage (caches) being close to the
processor cores, and larger, slower memories being higher up in the hierarchy. Data inside
processor registers (L0) is the fastest to access, and we will typically have multiple levels
of caches above that, with L1 being the fastest and smallest, usually with one for each core,
with larger, slower levels of cache such as L2 and L3 being shared between cores. Nearer
the top of the memory hierarchy we have large main memory, which has comparatively high
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access times. It is critical for performance optimization to have a program use data as much
as possible once it has been loaded into cache, since if it is evicted, and then is required again,
we can incur high latency costs loading it from a higher level of the memory hierarchy.

As well as direct programmer/compiler control of the order data is loaded and used in a pro-
gram, cache systems also have their own internal policies to determine which data should be
retained, and which should be flushed. Often these policies are implemented in hardware,
with examples including least recently used (LRU) and dynamic re-reference interval pre-
diction (DRRIP) [Jal+10]. Cache policies can vary significantly between devices, and may
be opaque to the user. Therefore, efficient algorithms and systems software need to account
for this behavior, which may require trial-and-error to model accurately.

A related issue to the memory system is data-transfer between a host CPU and a hardware
accelerator, which can be a critical bottleneck to efficient processing. In this case, we can
think of an accelerator as our processor core, and the CPU as part of its memory hierarchy,
with a similar optimization target of ensuring that we keep data transferred over the slow
host-device data buses in the accelerator for as long as possible.

SIMD processing

In DNNs, we are regularly working with linear algebra operations such as matrix multipli-
cation. Conventional hardware instructions compute on single items of data at a time, for
example, adding two numbers together and storing the result. Single instruction, multiple
data (SIMD), or vector, instructions allow more than one element of data to be loaded or
computed upon using a single instruction. For example, we might have a vectorized addition
instruction which loads multiple pair of numbers at once, and computes the sum of each
pair, returning a set of multiple outputs. As a more concrete example, the Intel SIMD in-
struction MOVAPS (_mm_load_ps as a vector intrinsic for C/C++ programmers) loads four
float32 values in a single instruction, which in theory represents a 4× speedup compared
to loading them one-by-one. Practically, micro-architectural considerations means that this
speedup may vary. However, for some classes of programs, SIMD instructions can enable
an additional level of parallelism to complement multicore processing, and may bring signif-
icant speedups. Different architectures may support varying maximum SIMD lengths, e.g.,
Intel’s AVX instructions support up to 256 bits, with AVX-512 supporting up to 512 bits;
whereas Arm Neon supports up to 128 bits.

Data Types

As discussed in Section 2.3.2, DNNs are typically trained using float32 data types, which
generally have well optimized data paths for CPUs and GPUs. Different hardware may have
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varying support and levels of optimization for different data-types, such that data types with
fewer bits may not necessarily be faster to compute. Some devices may not have support
for a given data-type at all, and it can only be computed upon using some emulation using
a supported type. For example, some CPUs compute on float16 data using float32

instructions, potentially incurring additional overheads compared to using float32 data. In
comparison, a GPU may have explicit float16 instructions, meaning that using float16
data would be faster than the equivalent computation using float32. Also note that since
many of the operations of DNN tend to be dot-products (see Section 2.2.1), this can mean that
data-type of the accumulated value may need to be larger than the data-type of the product
operands. For example, in the case of DNNs using the int8 data-type, often we require at
least int16 values to accurately store our accumulated value.

2.7 Summary

This chapter provides background on the DLAS techniques relevant to this thesis, spanning
across machine learning and systems. These topics are evolving rapidly, due to the high in-
terest from both research and industry communities. For instance, many new and significant
DNN architectures appear every year, and novel computing hardware targeted to DNNs also
emerge with similar frequency. The following chapter surveys the wider research literature
relevant to this thesis, further contextualizing DLAS as well as highlighting publications
which have similar approaches to the techniques developed in this thesis.
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3 | Related Work

This chapter provides a survey of the literature in areas relevant to this thesis. Similarly to
Chapter 2, it is structured following the layers of DLAS. In addition, Section 3.7 discusses
the complementary publications highlighted in Section 1.5.

3.1 Datasets & Problem Spaces

The datasets and problem spaces targeted by deep learning based solutions are generally
assumed to be static when designing an application. In research there is a wide range of
common datasets which are used to evaluate performance on a variety of tasks, and are
often used as standard benchmarks to compare solutions against each other. The website
paperswithcode.com ranks state-of-the-art solutions to these learning tasks, and can
be a valuable reference for this rapidly evolving and highly competitive domain. Here are
some examples of popular public datasets and benchmarks where DNN-based solutions can
be effective and appear often in the literature. This is not an exhaustive list, but it provides
an idea of the breadth and variety of datasets for which DNNs can be an effective solution,
and how state-of-the-art systems can be more fairly compared against each other.

• Image Classification: ImageNet [Den+09], CIFAR-10 [Kri09], MNIST [Den12],
Fashion-MNIST [XRV17], SVHN (Street View House Numbers) [Net+11].

• Natural Language Processing (NLP): GLUE [Wan+19a], SQuAD [Raj+16; RJL18],
IMDb Reviews [Maa+11], BookCorpus [Zhu+15].

• Object Detection: COCO [Lin+14], PASCAL VOC [Don+21c], DOTA [Xia+18],
Open Images [Kra+17].

• Image Generation: Flickr-Faces-HQ [KLA19], CelebA [Liu+15], Animal FacesHQ
(AFHQ) [Cho+20a], MetFaces [Kar+20b].

• Autonomous Driving: CARLA (Car Learning to Act) [Dos+17], nuScenes [Cae+20],
Waymo Open Dataset [Ett+21; Sun+20a].

https://paperswithcode.com/datasets
paperswithcode.com
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• Healthcare: AlphaFold Protein Structure Database [Var+22], ChestX-ray8 [Wan+17],
IGSR [Fai+20].

• Games: Gym [Bro+16], Minecraft, Starcraft, Atari, Chess, Go, DOTA 2.

• Speech & Audio: LibreSpeech [Pan+15], TIMIT [Gar+93], Google Speech Com-
mands [War18], VoxCeleb [NCZ17].

Commercial products often use private datasets, which makes it difficult to evaluate them
fairly. Furthermore, contemporary systems such as GPT-4 [Ope23] have the issue of using
essentially all data available to them, via extensive automated web crawling. Thus, ensuring
that the test dataset is independent and has not leaked into the training data poses a chal-
lenge. In the case of GPT-4, they validate using the company’s internal codebases, as this is
something they feel more confident would not have been included in the training dataset.

We can modify our dataset to make it better suited for a given deployment or to help the
training process in some way. For example, techniques such as data augmentation, which
has the effect of simulating having a larger dataset, and can help the model learn a more
robust representation of our distribution. For image data, an example of this is applying
transformations such as random rotations, crops, and flips. Alternatively, we may want to
change our data in some way so that it can reduce the costs of our DNN solution. For
example, we could make our images smaller, or switch from detecting full-color images to
grayscale [XR19]. However, these techniques may have a negative impact on accuracy, but
if we adjust the neural architectures accordingly we could potentially reduce the inference
costs linearly as the images are scaled down, and by up to 3× in the case of RGB-to-grayscale
transformations [Pm+19].

Moreover, the ways in which we generate and process the data can be a significant contributor
to the efficiency or success of the solution. Semi-supervised learning addresses the issue of
limited labeled data, with a vast range of methods being employed [Yan+22]. For example,
GPT-4 is trained on its own output [Ope23], generating critique of its generated text that is
then used to improve the model further. A related problem for data generation is found in
reinforcement learning, a problem domain where the model (or agent) must perform actions
in an environment that maximize some goal. In this case, the agent must learn the dynamics
of the environment given its actions. However, the cost of exploration can be very high.
Thus, semi-supervised learning methods can be an approach to help learn the dynamics
of the system, while reducing the cost of data that needs to be collected or labelled. For
example, VPT [Bak+22] significantly improves the state-of-the-art for Minecraft agents by
leveraging a dataset of unlabeled videos of gameplay, which is used to pre-train the model.
This addresses two core problems: 1. The amount of quality labelled data is relatively small
for the complexity of the task, and 2. allowing the system to learn all the dynamics from
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active gameplay can be prohibitively expensive. Therefore, using this data the model requires
less training in a real reinforcement learning environment.

Overall, there has been relatively limited exploration of this layer of DLAS compared to
other layers, with most solutions taking the dataset as an immutable given. Moreover, in
the research community, to fairly compare DNN solutions it is necessary to not change the
learning task too much. However, given the wide range of datasets available, the possibility
of training models using a mix of datasets (e.g., using transfer learning), and additional
techniques listed above, this layer of DLAS is far from static.

3.2 Models & Neural Architectures

As mentioned in Section 2.2, there is a huge range of DNN layer types and architectures
which we can leverage to solve a particular learning task [Vee16], with only a subset of them
explored in this thesis. Section 3.2.1 gives a list of some significant DNN model architec-
tures which have emerged over recent years. One notable aspect of DNN-based solutions
to problems is that we need not consider the neural architecture as fixed. We can co-design
our neural architecture using some other aspect of DLAS, for example, to fit the constraints
of a given hardware platform. Architectures can designed by hand with this co-design per-
spective, however another approach involves Neural Architecture Search (NAS), a field of
AutoML [HKV19] where we automatically search for a DNN design that meets certain crite-
ria, such as accuracy or throughput. Although not directly explored in this thesis, we discuss
some relevant NAS works in Section 3.2.2, since it fits into the broader themes of this work.

3.2.1 Significant Model Architectures

Section 2.2.4 highlighted two common classes of DNN architecture evaluated in this thesis:
CNNs and Transformers. The relevant details of specific models will be discussed in the
experimental setup of each chapter. This section highlights some popular DNN models that
have been influential or have seen wide usage in research and industrial deployment. These
include CNNs, Transformers, and more. We note relevant across-stack optimizations which
the developers of a given model may have leveraged. Other popular architecture classes
include graph neural networks (GNNs), generative adversarial networks (GANs) [Goo+20;
Kar+20a], recurrent neural networks (RNNs), and diffusion models [Rom+22; Soh+15].
The distinction between different classes of architectures can be ill-defined, given that some
architectures may share some attributes with other architecture types. For example, both
GANs and diffusion models may still include convolutional layers.

The following lists some significant DNN architectures:



3.2. Models & Neural Architectures 47

• LeNet-5 [Lec+98]: One of the earliest successful CNN architectures designed for
handwritten digit recognition (MNIST [Den12]). It features three convolutional layers
and two fully-connected layers.

• AlexNet [KSH12]: A breakthrough CNN that significantly outperformed previous
state-of-the-art models for the ImageNet dataset [Den+09].

• VGG (Visual Geometry Group) Networks [SZ14]: A family of CNNs which increased
their depth through small (3×3) convolutional filters.

• Inception (GoogLeNet) [Sze+15]: A CNN which introduced the Inception module,
which splits the network into parallel branches of layers (as introduced in Section 2.2.3).
This allows the network to learn multiscale features by having different branches use
varying filter sizes.

• ResNets [He+16]: A family of CNNs which introduced residual connections (skip con-
nections), which reuses outputs from earlier layers later in the network. This process
allows deeper networks to be trained.

• Capsule Networks [SFH17]: A DNN that introduces a novel structure called capsules

to model hierarchical relationships between features, with the goal to improve robust-
ness against viewpoint changes for computer vision tasks, for example, if an object is
rotated. The novel structure was initially poorly supported by kernel libraries [BI19].

• MobileNets [How+17; San+18]: CNNs targeting edge-class hardware such as mo-
bile phones. They leverage the depthwise separable convolution model optimization
technique discussed in Section 2.3.3.

• DenseNets [Hua+17]: A family of CNNs that concatenates the outputs of multiple
layers together via skip-connections, which increases feature reuse and thus accuracy.

• Transformer [Vas+17]: A novel architecture for NLP bringing the ‘self-attention’
mechanism, becoming the basis for a new family of Transformer architectures (e.g.,
BERT, GPT). See Section 2.2.3 for a brief explanation of self-attention.

• EfficientNets [TL19]: uses blocks discovered via NAS (see Section 3.2.2) with a novel
scaling factor, enabling multiple sizes of model with increasing accuracy as the model
size increases. Also leverages grouped convolutions as discussed in Section 2.3.3.

• BERT [Dev+19]: A Transformer-based architecture for NLP which uses context from
both before and after a given token to better understand its meaning.

• MobileBERT [Sun+20b]: a compressed version of BERT using bottlenecking and
knowledge distillation similar to Moonshine [CGS18] (see Sections 2.3.3 and 2.3.4).
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• GPT (Generative Pre-trained Transformers) [Bro+20; Ope23; Rad+18; Rad+19]: a
family of transformer models popular in a range of language tasks. The models are in-
creasingly large scale, meaning that for the latest and largest version (GPT-4), model-
specific tuning was prohibitively expensive. In this case, authors trained smaller mod-
els to predict the behavior of the full-scale model.

• YOLO (You Only Look Once) [Red+16; RF17; RF18]: a family of object detection
models. The original YOLO unified the two tasks of classification and localization
into a single architecture, targeting realtime inference, with newer versions further
improving detection accuracy.

• BigGAN [BDS19]: A generative model based using a GAN architecture capable of
producing high-quality, high-resolution images.

3.2.2 Neural Architecture Search

As introduced in Section 2.2.3, NAS automatically generates a neural architecture which
aims to be accurate, as well as potentially targeting other metrics such as a low parameter
count, or low inference times on a given hardware platform. The search space explored can
vary, for example, NAS could vary the number or size of layers, which layer types to use, how
layers are connected, or explore new types of layers. An appropriately designed search space
is essential for NAS to successfully find a performant solution, and the cost of navigating this
search space can be a critical bottleneck. For example, NASNet [Zop+18] generates blocks
of layers, filters them using reinforcement learning, and stacks them together to form DNN
models. However, they report that this process required over 3 days over 450 GPUs.

There have been some recent compiler-NAS works, which leverage techniques from the com-
piler community to reduce the size of the search space, or explore it more efficiently. This
can reduce NAS search time, and produce more accurate and compact DNN architectures.
For example, we can represent changes in the configuration of network layers as program
transformations [TCO21], or in the case of αNAS [JPR22] represent the search space as an
abstract space of program properties.

Hardware-aware NAS looks to improve the NAS feedback loop by incorporating information
about the target hardware platform into the search process. MnasNet [Tan+19] generates
models for mobile devices, running inference of candidate models on the target hardware to
evaluate their latency. FBNet [Wu+19a] outperforms models generated using MnasNet while
reducing search costs by around 420× by using gradient-based methods to avoid evaluating
every model architecture on real hardware. TinyNAS [Lin+20] reduces the size of the search
space by representing the resource constraints of the target device, so models that cannot
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fit are not evaluated. EdgeNAS [Luo+20] uses an accurate learning-based hardware latency
estimator to reduce the costs of candidate architecture evaluation.

Weight-sharing based NAS methods, such as ENAS [Pha+18], Once-for-All [Cai+20], Con-
volutional Neural Fabrics [SV16], and SMASH [Bro+17], are particularly attractive for de-
ployments across multiple heterogeneous hardware environments, as opposed to a single
platform. The principle is that rather than searching for a specialized architecture and train-
ing from scratch for every deployment, they instead train a single large network with a struc-
ture from which smaller subnetworks can be generated. These subnetworks should ideally
perform well on the target problem without training from scratch, or at most require a modest
number of additional training epochs.

3.3 Model Optimizations

There is a wide range of model optimization techniques in the machine learning commu-
nity, which can reduce the size and costs of increasingly large DNN architectures. This
section provides an overview of some related works in the DNN optimization literature, in
the areas of cheaper operations (Section 3.3.1), quantization (Section 3.3.2), and pruning
(Section 3.3.3). For an overview of the wider context and field of model optimization tech-
niques, beyond the topics directly touched upon by this thesis, we refer the reader to a vari-
ety of survey works on this rapidly developing area [Che+18c; Che+20; Cho+20b; Den+20;
Sze+20]. Similar to the broader field of data compression, reducing the size of our DNN
models reduces the representational capacity, and in-principle the maximum accuracy that it
can achieve. However, as the Lottery Ticket Hypothesis identifies [FC19], most DNNs have
a large amount of redundancy in their parameters, and thus an effective model optimization
technique can achieve significant compression with very little accuracy penalty.

3.3.1 Cheaper Operations

It is widely recognized that many modern DNNs are over-parameterized [Han+15], which
means that models are larger than they need to be. A focus on achieving state-of-the-art
results has led to bloated network architectures with diminishing returns when new param-
eters are added [Hua+19]. For example, given that most of the energy consumption and
execution time in CNNs is dedicated to convolution [LSC18], it is desirable to reduce con-
volutional over-parameterization for use in resource-constrained settings. As highlighted
in Section 2.3.3, one popular method to exploit parameter redundancy is to split standard
convolutions into groups along the channel dimension, and the approach has featured signif-
icantly in the network compression literature [CGS18; How+17; Hua+18; Ioa+17; San+18;



3.3. Model Optimizations 50

Tur+20]. As the number of groups is increased, the parameter cost of a grouped convolu-
tion decreases at the expense of representational capacity. In the extreme case where there
are as many groups as convolutional channels we obtain depthwise convolutions. In Mo-
bileNets [How+17; San+18] for example, the authors replace standard convolutions with
pairs of depthwise convolutions and pointwise (1×1) convolutions, the latter of which al-
lows for channel mixing to restore capacity. The technique is known as depthwise separa-
ble convolutions [Sif14]. Similarly, Moonshine [CGS18] takes the standard block used in
ResNets [He+16] consisting of two standard convolutions, and replaces each convolution
with a grouped and pointwise pair. The number of groups can be varied to trade off accuracy
against the number of parameters.

For Transformers, much like with CNNs, there have been a number of similar compres-
sion techniques applied. Some Transformers include convolutional layers, and have used
depthwise separable convolutions as a cheaper alternative [So+21]. Additionally, the con-
cept behind depthwise separable convolutions has been adapted for the self-attention opera-
tion [Li+22c], along with other techniques, to reduce the cost of the attention mechanism by
exploring alternative cheaper versions [Cho+23; Kat+20].

However, translating parameter and MAC reductions into better hardware performance re-
mains difficult. Many frameworks transform convolution into GEMM in order to exploit
pre-existing, highly optimized subroutines [Che+14b], which may not be composable with
any dimensionality perturbations caused by the cheapening process. Although tensor com-
pilers promise performance portability for custom convolutions [Bag+19; Che+18b; Vas+18;
Ven+19], they have been shown to lack the generality required to adopt such radical neural
architecture changes to a vast hardware landscape [BI19]. However, with the recent devel-
opment of auto-schedulers, tensor compilers have been shown to provide optimized code
generation for more novel operations [Zhe+20a].

Another approach for making operations cheaper is temporal reuse, where the DNN is passed
multiple inputs in sequence, for example, frames of a video. Temporal reuse exploits the fact
that in some cases there will be similarity between subsequent inputs, for example, in video
there may only be small changes between frames. Therefore, we can cache and reuse com-
putations from parts of previous inputs that are similar. Approaches to exploit temporal reuse
may require additional specialized hardware, but with the potential for significant energy or
inference time reductions [CSO22; Li+22b; RAG18].

3.3.2 Quantization

As discussed in Section 2.3.2, we can reduce the range of values which parameters or ac-
tivations can take, for example, by using a data-type that has fewer bits than the typical
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float32. Quantizing a network can result in a reduction in accuracy, however there is a
range of approaches to mitigate this penalty, such as with post-training calibration discussed
in Section 2.3.2; or quantization-aware training, where we emulate the impact of quantiza-
tion during training to make the network more resistant to accuracy loss [Jac+18]. Quanti-
zation can offer advantages such as reduced memory footprint, reduced memory bandwidth
requirements, and better energy efficiency.

Quantizing neural networks using lower-precision data-types was seen as far back as the
1990s [Bal+91; FCC90], with 8-bit weights being a popular level of compression [She+18;
VSM11], and some works compressing further [HMD16]. The extreme is 1-bit quantized
networks, often refereed to as binary nets or BNNs [CBD15; Hub+16]. Examples in-
clude XNOR-Net [Ras+16], with hardware implementations which exploit it including Yo-
daNN [And+16] and BRein [And+17b]. Ternary quantization [Li+22a] can potentially im-
prove the quality of BNNs, by adding an extra bit so we can represent ±1 and 0. Leveraging
sparsity enables us to remove the overhead of this additional bit.

Another approach to quantization is power2 quantization for int-like data types, which en-
sures that weights are limited to powers of two. Specifically, positive and negative versions of
non-fractional powers, and zero, i.e., {. . . ,−22,−21,−20, 0, 20, 21, 22, . . .}. power2 quan-
tization is notable, since it means that we can replace our multiplication operations with bit-
shifts, since they are computationally equivalent in this case. If this is properly exploited by
the hardware, bit-shifts can be significantly cheaper in terms of cycles or energy, thus mak-
ing power2 quantization an attractive technique for DNNs [GMG16; Lee+17; MLM16;
Yao+22]. A bit-shift is when we move the bits representing a given datum to the left or
the right by a given number of places, padding with 0s. For example, if we left shifted the
nibble 0101 by one position, it would become 1010, with the original bits underlined. This
bit-shift is equivalent to multiplying the nibble by 2.

To fully leverage quantization the data-types should be supported natively by the underlying
ISA, so that we can actually run our computations more efficiently, rather than converting
our data to a supported type at execution time. Motivated by this, there are some emerging
data-types specifically targeting DNNs which have been implemented in recent generations
of hardware. For example, the bfloat16 format (Brain Floating Point), found in some
modern Intel processors, Google TPUs, and the ARMv8.6-A instruction set. The format
uses 8 exponent bits, 7 mantissa bits, and 1 sign bit, and has the same dynamic range as
float32. However, for MACs involving bfloat16, float32 values are typically used
for more accurate accumulation, similar to int8 computations discussed in Section 2.6.3.

For training, higher precision may be needed, and float32 remains the standard. Nvidia
have adopted the TensorFloat-32 type in some of their GPUs, which is claimed to
accelerate training by up to 10× compared to float32, while still achieving comparable
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accuracy. Similar to bfloat16, 8 bits are used for the exponent, 1 for the sign, however
the mantissa is expanded to 10 bits. In contrast to bfloat16, TensorFloat-32 is used
as the accumulation type, rather than the storage type. Both techniques take advantage of
the fact that many neural network weights are small (predominantly in the range [-1, 1]),
and thus we can dedicate more of the data-type’s representational capacity to values closer
to zero, and reducing precision for larger values.

A complementary approach to quantization is mixed precision, where we have different lev-
els of quantization throughout the DNN. This can help us achieve a more optimized trade-off
between accuracy and inference time. As a rule-of-thumb, earlier layers in the DNN require
more bits to maintain accuracy on the target dataset than later layers, however develop-
ing more robust approaches to determining the ideal trade-offs between compression and
accuracy using mixed-precision is an active area of research [CWC21; Lou+20; Uhl+20;
Wan+19b]. In addition, there is a number of challenges for mixed precision quantization
such as generating efficient code for each of the data-types [Zha+20]. As tensor compilers
continue to mature, we may see reduced friction in adopting mixed precision techniques.

3.3.3 Pruning

As highlighted in Section 2.3.1, pruning is where we set some our DNN parameters to zero,
with four key dimensions that distinguish pruning methods: Structure, Scoring, Scheduling,
and Fine-tuning. For Scoring, we discussed the L1-norm method, which is commonly used
and prunes parameters based on their absolute values. However, other methods exist such as
adding ‘importance coefficients’ which are learned during training [Mol+19], or measuring a
given parameter’s contribution to the model’s gradients or activations [LAT19]. Scheduling

refers to how much we prune in each step, with iterative scheduling requiring fine-tuning
after each step to maintain accuracy [Han+15; Tur+18a; ZG17]. However, fine-tuning after
every iterative pruning step can be expensive. Therefore, one-shot methods look to prune
and fine-tune in a single step, which requires more careful selection of the parameters to
prune [Liu+19; SA20]. Some works have explored pruning during the first training run of a
DNN, rather than pruning a pre-trained dense model [Bel+18; Evc+20].

A related issue to parameter pruning is ephemeral sparsity, such as activation sparsity. If we
use activation functions such as ReLU, a non-trivial number of activations will be zero or
close to it. However, this sparsity pattern will vary per-input, meaning that it will change
dynamically depending on our input data. Thus, if we want to exploit activation sparsity, we
will need to carefully co-design our algorithms, systems software, and potentially hardware
to achieve any speedups. Dynamic sparsity also excludes many AOT compilation speedups,
since the sparsity pattern changes for every input. We discuss some works which exploit
activation sparsity in Section 3.6.2.
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Finally, note that the field of pruning is large, and this section has only provided a brief
overview of the relevant topics in the area. We refer to reader to several surveys on the topic
for a broader overview of pruning [Bla+20; Hoe+21; Lia+21; Xu+20].

3.4 Algorithms & Data Formats

In this section, we discuss some popular or promising works in the literature regarding algo-
rithmic primitives for DNNs, both dense (Section 3.4.1) and sparse (Section 3.4.2). We also
discuss the inter-linked topic of data formats in Section 3.4.3.

3.4.1 Dense Algorithms

For convolutional algorithms, which are usually the most expensive in CNNs, a wide range
of primitives are available to implement a given layer. Anderson and Gregg [AG18] charac-
terize five main families of convolution algorithms.

• The direct family is characterized by a simple six-deep loop nest, as described in Sec-
tion 2.4.2 and Algorithm 1. Direct convolution has been revisited in recent studies,
including JIT-based recompilation [Geo+18] and alternative data layouts [ZFL18].

• The im2 family is characterized by using the im2col transformation described in Al-
gorithm 2, followed by a GEMM. This means that we can leverage the plethora of
accelerated GEMM algorithms such as Strassen’s algorithm [Str69], which has been
explored in the context of DNNs [CX14]. However, there is a variety of accelerated
GEMM algorithms for different scenarios.

• The kn2 family is similar to the im2 family since it uses GEMMs, however it does not
construct the im2col matrix, which can reduces the memory overheads. However, an
additional processing stage is required to combine the partial outputs [VAG17].

• The Winograd convolution family maps the data into the frequency domain [LG16].
This means that multiplications can be computed as additions. However, there are
overheads in mapping and unmapping data into the required space. In addition, the
algorithm has varying definitions depending on parameters such as filter size, and there
may not be an implementation available for every configuration.

• The fft family use Fourier transforms to apply convolution, transforming the inputs and
filters, and applying a pointwise multiplication [MHL14; Vas+14].
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GEMM convolution, i.e., the im2 family, is especially popular on GPUs since its is highly
parallelizable, and there is a wide range of optimized kernel libraries which implement it,
such as OpenBLAS [XQY12] and ATLAS [CPD01]. TVM’s default approach to standard
convolution on the CPU is an algorithm known as spatial packed convolution (SPC) [ZC18].

Note that in this thesis we have used the same algorithm for all layers of a given model, in
a given evaluation. However, we could also vary the algorithm used per-layer, which could
bring significant performance speedups [AG18; PPB19; Wen+19]. We might also expect
some layer shapes and properties to be better suited to one algorithm or another on a given
target platform, such that different algorithms are used for each layer in a given DNN. For
example, for pointwise convolution, i.e., when the filter size is 1×1, im2col is the identity.
Therefore, GEMM convolution is much cheaper to compute. However, for another layer,
memory could be more constrained on the target platform, and an im2 algorithm may be
suboptimal, since the transformed inputs could use up too much memory. As we will discuss
in the Section 3.4.3, we must also account for the fact that there may be transformation costs
for passing data between algorithms which have their own data formats. Thus, we need to
consider these interactions when choosing algorithms for adjacent DNN layers.

3.4.2 Sparse Algorithms

Sparse versions of many of the algorithms discussed in Section 3.4.1 exist or can be de-
veloped. For example, some works have found sparse direct convolution to be a fast al-
gorithm on CPUs [Par+17b]; and sparse versions of Winograd convolution have been ex-
plored [LPT17]. However, the latter case requires additional co-design with techniques from
the Model Optimizations layer of DLAS, since we are not directly pruning parameters, in-
stead we are pruning the given parameter’s representation in Winograd space.

Other works have focused on sparsity on GPUs, generally opting for sparse GEMM convo-
lution [Gal+20]. Given GEMM is used extensively across scientific computing workloads,
there is a wide range of algorithms supporting various cases where either one of the two
matrices are sparse [ASA16; Koa+16], or both are [Gao+23; Gus78].

3.4.3 Data Formats

Although NCHW is the main dense data format explored in this thesis (for 4D image data),
primarily in the interests of tractability in the face of a huge number of variables across
DLAS, there is a range of other data formats for both 4D image data, and other classes of
inputs. For example, there is NHWC and CHWN for 4D image data, or tile based approaches
which split one or more of the 4 dimensions in some way; or for 5D video data we might
add a depth dimension D to represent time. For tasks which are not computer vision, we may
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not necessarily have names for the data format. Regardless, the format will be defined by
how data is ordered in memory, and will still be an important consideration for accelerated
deployment, potentially being better or worse suited for a given hardware platform.

The data layout can be tightly coupled with the algorithmic primitive used for a given layer,
and like the algorithm, we do not need to keep the same data layout between layers. However,
this may incur layout transformation costs, which should be considered when choosing a so-
lution [AG18; PPB19; Wen+19]. Inference speed is an important factor to consider, however
some data formats or conversion between them can incur memory overheads. Therefore,
some approaches such as TASO [Wen+20]1 look at optimizing memory usage, with infer-
ence speed as a secondary objective.

There is a wide range of formats for representing sparse tensors, summarized by the TACO
project [CKA18]. Much like dense data formats, there may be overheads in converting
between sparse data formats at runtime [CKA20], and a number of tensor compiler tools are
emerging [Bik+22; CKA20; Kjo+17; Ye+23] to help manage the complexity, heterogeneity,
and range of sparse representations, algorithms, and data sizes.

3.5 Systems Software for DNNs

There is a wide-range of software which can be relevant to the performance of DNNs, such as
kernel libraries, tensor compilers, and auto-tuning and auto-scheduling systems. This section
discusses relevant works in this area, however does not cover all areas of software which may
be used in DNN deployment. This includes software which may still influence performance,
but is not yet a primary bottleneck or optimization front for DNNs such as operating systems,
firmware, or networking protocols in the case of multi-device collaboration.

3.5.1 Kernel Libraries

There is a huge range of kernel libraries implementing optimized routines for DNNs tar-
geting varying hardware platforms. Nvidia’s cuDNN [Che+14b] is a popular library for
Nvidia GPUs, while miOpen [Kha+19] and the Arm Compute Library [Arm17] are for Arm
GPUs and CPUs respectively. oneDNN [Int20] provides cross-platform optimized kernels
for CPUs and GPUs, as does the triNNity library, which implements over 70 different al-
gorithmic variants for CNNs [And+17a]. Other kernel libraries that are worth highlighting
include CLBlast [Nug18], OpenBLAS [XQY12], and SYCL-DNN [Tan+22].

When targeting common operations and data-sizes, kernel libraries can provide state-of-the-
art performance on platforms that they support. However, as discussed in Section 2.5.4,

1Not to be confused with TASO (Tensor Algebra SuperOptimizer) [Jia+19].
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kernel libraries’ focus on common cases that can lead to significant performance degrada-
tion with workloads they have not been optimized for [BI19]. This can be a severe limitation
in the quickly developing world of DNN research, as it increases the costs of exploring new
operations. Recent kernel libraries have been looking more at performance portability and
cross-platform support [Int20; Tan+22], and it is likely that the line between tensor com-
pilers and kernel libraries will blur in the future. For example, Collage [Jeo+23] leverage’s
TVM’s integration of kernel libraries to select the best backend for each layer. Often this
is TVM’s native code generator, however in some cases a kernel library implementation is
preferable. This interoperability is partially enabled by the DLPack format [Chi+17], which
is a standardized cross-platform data structure for N-dimensional arrays leveraged by several
projects including TVM, PyTorch, TensorFlow, and NumPy. This reduces the overheads of
switching between backends.

3.5.2 Tensor Compilers

As discussed in Section 2.5.5, tensor compilers can be a powerful tool for accelerating DNNs,
and the position of this thesis is that they are playing an increasingly important role in manag-
ing the range of optimization choices available across DLAS. They exist at the intersection
of many topics, since they can be extended to be responsible for a myriad of techniques
across DLAS, such as managing sparsity, quantization the algorithms and data formats, gen-
erating and tuning efficient code, and managing the interfaces with hardware. TVM is the
main tensor compiler used in this thesis, since it is relatively mature and has a variety of
features which make it amenable to the studies undertaken, such as the ease of defining
new algorithms, and state-of-the-art auto-tuning [Che+18a] and auto-scheduling infrastruc-
ture [Sha+22; Zhe+20a]. However, there is a range of other tensor compilers available, some
of which pre-dated or were contemporary with TVM, and others which have emerged during
the development of this thesis.

• Halide [Rag+17]: popularized the compute schedule programming paradigm (as dis-
cussed in Section 2.5.6), and served as one of the initial building-blocks of TVM.
Its focus is on tensor programs for image processing (e.g., applying blurs and other
filters), and thus does not provide all the domain-specific acceleration for DNNs avail-
able in TVM [Che+18b], such as support for models from multiple DNN frameworks,
optimized DNN operator schedules, etc.

• TACO [Kjo+17]: an early tensor compiler which differentiated itself from contempo-
rary kernel libraries by supporting a wider range of tensor programs while achieving
competitive performance. It has support for dense and sparse computations [CKA18],
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with a range of sparse data formats supported. It has recently added support for auto-

scheduling sparse computations [AKA22].

• Tensor Comprehensions (TC) [Vas+18]: includes a domain-specific language for rep-
resenting tensor program kernels, as well as a JIT-runtime. They use a polyhedral IR
(see Section 3.5.5), as well as an auto-tuner. The project was formally archived in
2021, and had its last commit in 2019 (git hash fd01443).

• RISE/ELEVATE [Hag+20]: two well-defined functional languages for compute decla-
ration and scheduling respectively. ELEVATE’s schedule primitives are more compos-
able than TVM’s imperative programming style, and on some benchmarks outperforms
TVM’s handwritten schedules. However, the system is still a research compiler and is
not currently production ready.

• Tiramisu [Bag+19]: a tensor compiler designed around the polyhedral model (see Sec-
tion 3.5.5). It has four levels of IR and defines its own scheduling language to write
optimizations. It also has its own auto-scheduling system [Bag+21], and supports
dense and sparse computations. However, its auto-scheduling system has not been for-
mally compared against Ansor, and only supports a limited number of backends (x86
CPUs, Nvidia GPUs, and Xilinx FPGAs).

• TensorRT [Nvi16]: designed by Nvidia specifically for generating optimized code for
their GPUs. Its main focus is on graph-level optimizations, such as operator fusion,
node scheduling, and efficient memory footprint management. It has native quantiza-
tion support, to make it easier for developers to quantize their models.

• MLIR (Multi-Level IR) [Lat+21]: a compiler framework building upon the ideas of
LLVM. It provides tools for defining domain-specific dialects, and translations (or
lowerings) between dialects. Dialects represent program structure of varying levels
of granularity and specificity, for example, the linalg dialect represents linear alge-
bra operations such as matrix multiplications, whereas the affine dialect represents
lower-level structures such as nested for loops. Therefore, MLIR is a compiler frame-
work designed to enable the development of domain-specific compilers, providing a
range of dialects and translations, with the goal of making it easier to define custom
dialects that are relatively interoperable. The motivation for this is well-founded, as al-
though there is a wide range of domain-specific compilers available (including tensor
compilers), most are defined using their own bespoke IRs and toolchains, leading to
significant fragmentation and repeated implementation of equivalent features. MLIR
hopes to make interoperability and reuse between domain-specific compilers such as
tensor compilers easier, and there are ongoing discussions in the TVM community to
explore a transition to using MLIR as part of TVM’s backend infrastructure.
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• XLA [Tea17]: originally a compiler for TensorFlow, it has been adapted into an MLIR
dialect featuring the HLO (high level optimizer) IR and a range of hardware-specific
optimizations. Integrated as backend for the popular TensorFlow [Aba+16] DNN
framework, as well as JAX [FJL18], it targets CPUs, GPUs, and TPUs. It includes
auto-tuning support, and its design prioritizes large-scale inference, for example, large
batch sizes of high-end hardware, and therefore has relatively poor performance at
smaller scales [Li+21].

• IREE [The19]: built using MLIR, it is still in the early stages of development, with
some initial results showing that it can generate very efficient runtimes for embedded
CPUs [Liu+22]. It does not currently have the wealth of hand-optimized schedules
that TVM has, nor any auto-tuning or auto-scheduling support. However, it has the
advantage of existing in the MLIR ecosystem, and thus may benefit in the long term
from the network effects of MLIR.

• PlaidML [ZB19]: a polyhedral-based tensor compiler from Intel, featuring an IR called
Stripe. PlaidML represents programs using a nested polyhedral model, which means
that it can hierarchically model different levels of abstraction for applying for opti-
mizations, for example, device-level, DRAM-level, SRAM-level, or SIMD-level. The
authors argue that this representation makes supporting niche hardware accelerators
easier. The compiler has been transitioning to using MLIR, and has a embedded
domain-specific language similar to TVM. By integrating with Keras, it can accelerate
DNN training, a feature which is still under development in TVM.

• nGraph [Cyp+18]: focused on graph-level optimizations, such as how to partition
graphs, nGraph uses kernel libraries for all layer implementations. It supports CPUs,
Intel’s Nervana hardware accelerators, and GPUs via integration with PlaidML.

• Glow [Rot+19]: uses instruction-based expressions to specify constant memory re-
gions (e.g., inputs, weights, outputs), and locally allocated regions such as intermedi-
ate outputs and transformed inputs. This differentiates it from other tensor compilers
in this list, which tend to use polyhedral or compute schedule programming models.
The two classes of memory regions allows Glow to determine which transformations
it can make. However, this programming model has been observed to make it harder
to add new operators, and Glow is missing components which other tensor compilers
include, such as thread parallelism support on CPUs and support for external kernel
libraries [Li+21]. As a result, Glow’s performance is not currently competitive with
state-of-the-art tensor compilers [Li+21].



3.5. Systems Software for DNNs 59

Graph-level Optimizations

As discussed in Section 2.5.5, graph-level optimizations such as operator fusion can be an
important optimization which tensor compilers can apply. Most systems, such as TVM and
TensorRT use predefined rules to combine layers, for example, fusing batch normalization
layers or element-wise operations such as activation functions. DLGR [Ma22] specifies a
larger set of graph-level optimization rules than TVM, which developers can use to gener-
ate more complex graph-substitutions and potentially achieve higher speedups. However,
by defining rules manually, these techniques may still lose out on potential speedups from
graph-level optimizations not generated by the rules.

It has been shown that the task of optimizing DNN computation graphs is NP-hard [Fan+20],
however this has not stopped more flexible graph-level optimization systems being developed
which improve performance compared to using rigid transformation rules. Approaches such
as FusionStitching [Lon+18; LYL19] construct a search space of possible fusion patterns,
since we may have a wide range of choices to make; and TASO (Tensor Algebra Super-
Optimizer) [Jia+19]2 automatically generates graph transformations, and uses a cost-based
backtracking search with high correctness guarantees.

3.5.3 Auto-tuning & Auto-scheduling

Auto-tuning frameworks, especially for compute-schedule based systems like TVM, are a
popular area of research. AutoTVM [Che+18a] takes hand-engineered schedules for oper-
ations and explores parameter tunings across a space defined by the schedule author, such
as tiling sizes, unrolling factors, and others. However, it should be noted that AutoTVM
and other parameter-based auto-tuners likely have lower maximum speedups than auto-
schedulers such as Ansor, since pre-defined ‘tuning-knobs’ inherently constrain the search
space, potentially excluding many performant schedules.

Methods to efficiently explore tuning search space vary, including approaches such as gra-
dient boosting [CG16], genetic algorithms, and Chameleon [Ahn+20] which improves the
search strategies of AutoTVM by leveraging reinforcement learning. To improve auto-tuning
parameter selection for systems like AutoTVM, One-Shot Tuner [RPS22] leverages a pre-
trained cost-model to reduce search costs. In ATF [Ras+21], the authors look at more ef-
ficient auto-tuning techniques with a focus on modeling interdependencies between tuning
parameters. WBTuner (white-box tuner) [Lee+19] exploits the internal program states to
achieve better tuning.

Regarding auto-scheduling, FlexTensor [Zhe+20b] is an auto-scheduling system similar to
Ansor, although it relies on more handwritten templates, thus seeing worse performance on

2Not to be confused with TASO [Wen+20], an approach to select convolutional primitives.
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some benchmarks. LIFT [SRD17] explores the use of rewrite rules on high level represen-
tations of programs to generate OpenCL code, although it does not explore its large search
space as efficiently as Ansor. Tiramisu’s auto-scheduler approaches auto-scheduling uses a
DNN-based cost model [Bag+21] rather than Ansor’s tree-boosting based model. In terms
of performance, it has not yet been evaluated against Ansor.

The emerging MetaSchedule system [Sha+22] allows auto-scheduler search spaces to be
modularly expanded to include niche hardware features such as tensor cores. As mentioned
in Section 3.5.1, Collage [Jeo+23] tunes by choosing which backend to use for each DNN
layer, for example, using TVM for some layers and cuDNN for others. A more extreme
case of layer-partitioning is seen with Neurosurgeon, which allows collaborative processing
between server and edge devices [Kan+17]. With Neurosurgeon, some layers of the DNN
are executed on an edge device and others on the cloud. This approach can bring significant
energy and inference time reductions compared to an all-cloud or all-edge approach.

From the wider compiler literature, beyond tensor compilers, MiCOMP [Ash+17] clusters
LLVM optimizations into sub-sequences, and finds orderings for them, since as highlighted
in Section 2.5.2 the ordering of optimization passes can have a significant performance im-
pact. Like many tuners, MiCOMP uses latency information of candidate programs to in-
form optimization decisions. However, other helpful metrics can include hardware coun-
ters [Cav+07], instruction counts [Coo+05], and the polyhedral model which attempts to
minimize the dependence distance of statements [Ben+10].

3.5.4 Re-use of Optimized Code

The main contribution of Chapter 6 is a technique called transfer-tuning, which reuses opti-
mized schedules on new tensor programs. However, the reuse of bundles of optimizations has
been explored in other works beyond tensor programs. For example, Martins et al. [Mar+16]
looks at similarities between C functions to cluster them into groups and applies compiler
passes based on group membership, representing programs using the DNA symbolic repre-
sentation [SC10]. In transfer-tuning there is more domain-specific knowledge that we can
leverage, since we are in the space of tensor programs with well-defined operations. Compi-
lerGym [Cum+22] exposes LLVM compiler optimizations to reinforcement learning agents
via the OpenAI Gym [Bro+16], a popular toolkit for reinforcement learning. Like Martins
et al. [Mar+16], its focus is on more general purpose program optimization and does not
exploit domain-specific knowledge of tensor programs.
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3.5.5 Polyhedral Compilation

A significant part of the compiler community is focused in exploring compiler design from
the perspective of the polyhedral model [Ben+10; VBC06]. This model represents pro-
grams as a series of constraints and attempts to optimize them for these constraints. Tensor
compilers such as PlaidML [ZB19], TC [Vas+18], and Tiramisu [Bag+19] are based on
the polyhedral model. Works such as PolyDL [Tav+21] use ideas from polyhedral com-
pilation to generate efficient DNN kernels. Even systems such as Ansor take cues from
polyhedral techniques, for example, by having common metrics such as reuse distance in
its cost model; or recent techniques which use polyhedron scanning algorithms to signifi-
cantly reduce the search space size for auto-scheduling convolutions, while still achieving
high speedups [Tol+23].

An issue with many polyhedral-based systems comes from the complexity of modern hard-
ware, where it can be difficult to represent an accurate model of the hardware being deployed
to. It is for this reason that approaches which use real hardware trials to dynamically build
a model have been so successful, for instance Ansor. However, it is clear that techniques
from polyhedral compilation continue to be relevant, and further synthesis of polyhedral
techniques into the tensor compiler space may unlock further performance gains.

3.5.6 Sparse Computation

Many tensor compilers support sparsity, with several emerging works. TVM has some sup-
port for sparsity, extended in Chapter 4, and has a new emerging sparsity abstraction called
SparseTIR [Ye+23]. MLIR has a sparsity focused dialect [Bik+22], which should make sup-
porting sparse computations easier in MLIR-based compilers such as IREE. The TACO com-
piler has support for a range of sparse data formats [CKA18], as does Tiramisu [Bag+19].

3.6 Hardware for DNNs

As DNNs increasingly become a key component of a range of applications, the motivation
to develop hardware which better supports it grows, especially as Moore’s law and Dennard
scaling [Den+74] slows, meaning that improvements to hardware must become more tar-
geted [HP18]. Approaches to improve hardware for DNNs include adding DNN-targeted
extensions to existing general purpose hardware; creating DNN specific accelerator devices;
or to better support heterogeneity in DNN architectures, developing reconfigurable DNN
accelerators. The following sections discuss some key works across these topics.



3.6. Hardware for DNNs 62

3.6.1 General Purpose Hardware

A range of GPU and CPU hardware extensions have emerged in recent years to make DNN
processing more efficient on them. For example, on Nvidia GPUs tensor cores were first
introduced in the Volta architecture [Mar+18] and operate on the unit of sub-tensors (e.g.,
4×4 GEMMs), rather than computing over individual values. Tensor core extensions are
applicable to workloads beyond DNNs, since GEMMs are used in a wide-range of applica-
tions, however their main focus is on DNNs, with Nvidia even leveraging them in consumer
products, running Deep Learning Super Sampling (DLSS) in tensor cores to increase the
quality of video game graphics workloads. Future AMD GPUs will include a Wave Matrix
Multiply-Accumulate (WMMA) instruction, which is documented to support 16×16×16
tensors using float16 and bfloat16 instructions. bfloat16 has been highlighted in
Section 3.3.2, and is a DNN-specific datatype. As well as being added to GPUs, bfloat16
is also being added to CPUs, such as newer Intel processors. On Intel processors, they are
specifically targeted by large SIMD instructions, with the AVX-512_BF16 extension which
allows up to 32 bfloat16 to be used in a single operand. In addition, certain CPUs are
being developed with support for even smaller bitwidths [Ask+23; Ott+20].

To better understand the behavior and interactions of other layers of DLAS with the hard-
ware, it may be valuable to explore hardware counters which give statistics such as cache
misses, core utilization, and more. Apache TVM has support for the PAPI library [Ter+10],
which provides an extensible interface to a variety of performance counters across device
classes. This can help developers understand the bottlenecks in their designs, and so that
they can better target their optimizations.

Like many other layers of DLAS, we can split the components hardware layer into multi-
ple sub-layers, which may be helpful for better understanding or improving our workload’s
performance. For example, the system’s memory hierarchy can be a topic of study on its
own, and more intelligently exploiting it can lead to significant performance improvements.
If we have a heterogeneous non-hierarchical memory system, a critical question for systems
designers is which memory type different data should be placed. The fastest memory is typ-
ically limited in size, and some emerging memory technologies have varying specialisms,
such as reads being much faster than writes. There are some works exploring this question
for dynamic scientific workloads [PB14], although for conventional DNN processing much
of the memory usage can be known and planned ahead-of-time. However, some workloads
may require runtime object placement heuristics, such as DNNs with more dynamic behav-
ior, e.g., neural networks that exploit activation sparsity or graph neural networks. Processing
in memory (PIM) [Asi+23] devices allow us to run some computations without moving data
to a central processing unit, which exposes a large set of performance trade-offs to explore.
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3.6.2 DNN Accelerators

A wide-range of fixed function accelerators for DNNs have seen commercial success, such
as the TPU [Jou+17], Apple Neural Engine, and Qualcomm Cloud AI 100; as well as a
wide range of research architectures, such as DaDianNao [Che+14a], ShiDianNao [Du+15],
Origami [CB17], and more [Har+21; Har+23; Mor+19; Xi+20]. These accelerators may
target a single type of DNN layer such as convolutional or fully-connected, a mix of layers,
or run the whole DNN.

However, it is important to consider that there are limits in the possible improvements that
any given style of accelerator can achieve [FW19]. These limits and how to avoid hitting
them too early should be acknowledged by chip designers. Some constraints include lower
limits in CMOS size, and upper limits of chip area for different technologies and budgets.
However, with the optimization fronts of deep learning workloads being across-stack, design
stagnation due to these limits is unlikely to occur for several generations of devices.

Reconfigurable Hardware

An emerging topic is reconfigurable hardware, which includes fully reconfigurable fabrics
such as FPGAs (which is often used as a development platform for accelerators), as well
as ASICs for DNNs which may have some level of reconfigurability, for example, via pro-
grammable network-on-chips (NoCs) which allow programmatically controlled alterations
to the dataflow within the accelerator. This reconfiguration can be performed to better suit a
particular DNN or DNN layer, achieving better inference time or energy consumption.

There is a variety of reconfigurable FPGA designs which target specific DNN architectures,
such as FINN [Umu+17], VTA [Mor+19], DNNBuilder [Zha+18], FP-DNN [Gua+17], and
others [Wei+17]. Some approaches co-design the FPGA accelerator design and DNN archi-
tecture, using a form of hardware-aware NAS [Don+21b; Hao+19; Jia+20; Li+20b].

For reconfigurable ASIC designs, examples include Eyeriss V1 [Che+17] and V2 [Che+19],
FlexFlow [Lu+17a], and MAERI [KSK18]. These differ from a full FPGA fabric by lim-
iting what components of the accelerator can be reconfigured, for example, we might only
allow the data-flow to be changed keeping the processing elements unchanged. This can
allow much higher clock speeds and energy efficiency when compared to FPGA designs.
STONNE [Muñ+21] is a cycle-accurate simulator for reconfigurable DNN accelerators, with
Bifrost [SGC22] as an interface to STONNE via TVM (see Section 3.7.4). Since recon-
figurable DNN accelerators are still maturing as a technology, this can be valuable for re-
searchers who want to more efficiently explore the design space.
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Sparsity-aware Hardware

There are a number of hardware accelerator designs which exploit sparsity. From the per-
spective of sparse weights, accelerators include Eyeriss V1 [Che+17] and V2 [Che+19]
(which also support dense computations), Cambricon-X [Zha+16], and SIGMA [Qin+20]
(which can also be used for training). EyerissV2 also supports sparse activations in addi-
tion to sparse weights, as do SparTen [Gon+19] and SCNN [Par+17a]. Accelerator designs
which focus on sparse activations exclusively include Cnvlutin [Alb+16], cDMA [Rhu+18],
and Spartan [Don+21a] (specifically for training).

Simulators

Software simulation of hardware is a common practice in hardware design, as it allows
cheaper prototyping and can provide insights into the internal performance of a design that
is not available on real hardware, such as the internal state of otherwise opaque subcom-
ponents. SCALE-Sim [Sam+19; Sam+20] is a cycle accurate simulator for systolic arrays.
As highlighted earlier, STONNE [Muñ+21] is a cycle-accurate simulator for reconfigurable
DNN accelerators. SECDA [Har+21; Har+23] is an FPGA design methodology that uses
SystemC simulation, described more in Section 3.7.3. SMAUG is a DNN accelerator simu-
lator [Xi+20] which uses gem5-Aladdin [Sha+16] to simulate the full system, including the
accelerator and the host CPU and its memory system. This gives high fidelity information
about the performance, however comes at high evaluation costs. More specifically, it can take
several hours to evaluate a single image with ResNet50 [He+16]. MGPUSim [Sun+19] is a
high-performance simulator for multiple GPUs, and can be used to model the performance
of DNNs and other workloads, especially when exploring the impact of micro-architectural
changes to the GPU. Written in Golang, it is a relatively efficient simulator running most
simulated processes asynchronously across many CPU threads. This reduces the impact of
one of the main disadvantages of DSE using simulators, namely the high evaluation time.

3.7 Complementary Publications

The following chapters discuss core contributions of this thesis, including a characterization
of DLAS (Chapter 4), an algorithmic and compiler based approach to accelerate an under-
served DNN compression technique (Chapter 5), and a novel approach to reduce the search
costs associated with tensor compiler auto-scheduling (Chapter 6). However, other com-
plementary works have been produced during the development of these core contributions,
which exist in the wider context of DLAS, but do not constitute contributions of this thesis.
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3.7.1 Orpheus DNN Inference Framework

Orpheus was a DNN inference research framework [GC20] created to make it easier to ex-
plore techniques across DLAS, and to tackle the challenges described in Section 1.2. Its goal
was to reduce the codebase complexity relative to production quality DNN frameworks such
as TensorFlow and PyTorch, which also had to support training. By reducing the complexity,
the aim was to make it easier to prototype novel DNN acceleration techniques. Written in
C++, Orpheus takes ONNX models as input and only implements inference. Orpheus was
able to achieve better inference times for some DNN models compared to other frameworks,
such as ResNet18, ResNet50 [He+16], and InceptionV3 [Sze+16]. It implements a range
of algorithms for convolutional and fully-connected layers, along with optimized AVX and
Neon SIMD-intrinsic implementations of these kernels.

As the upper limits of easily achievable performance were reached, Orpheus added a JIT
compilation system to unlock further acceleration. However, this made it clear that the most
promising optimization fronts in DNN acceleration were from a compiler perspective, some-
thing which the emerging TVM tensor compiler excelled at. Thus, development on Orpheus
was put on-hold indefinitely due to this conclusion, and the challenges and significant re-
search contributions of this thesis were approached using Apache TVM.

3.7.2 Productive Reproducible Workflows for DNNs

The position of this thesis is that tensor compilers can improve productivity and the ease of
design space exploration for developing and accelerating DNN-based applications. However,
there is other supporting infrastructure required for developers to effectively develop their
solutions. While scaleable production quality tools of this type are readily available, their
use within the research community is not widespread, suggesting researchers may be missing
out on potential productivity gains.

Motivated by this, our work ([GC22]) presents a case study producing an end-to-end AI
application for industrial defect detection. The paper describes the high level deep learning
libraries, containerized workflows, continuous integration/deployment pipelines, and open
source code templates leveraged during the case study’s development. It also discusses the
value which each of these supporting tool brought to the development process.

The final output of the case study was 62 DNN models for defect detection, the best of
which achieved competitive results, matching the performance of other ranked solutions
on the three target datasets (DAGM2007 [WSS16], KolektorSDD [Tab+19], and Kolek-
torSDD2 [BTS21]). One of the core enabling tools was the Bonseyes AI Asset template
system [Lle+17], shown in Figure 3.1. AI Assets encapsulate all the code and dependencies
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Figure 3.1: Simplified representation of the features provided by the Bonseyes AI As-
set template system, adapted (with permission) from the AI Asset Generator documenta-
tion [Ass22].

required to develop an AI solution, providing pre-defined code for many common activities,
such as benchmarking, report generation, model conversion, and inference.

The work highlights the value that exploiting such tools and systems can bring, even for
research. It details how the solutions were developed, and presents the best results in terms
of accuracy and inference time on a server class GPU, as well as inference times on a server
class CPU, and a Raspberry Pi 4 CPU.

The work does not directly leverage tensor compilers, however the infrastructure and work-
flows it describes were used to help develop some of the solutions in the thesis. By reducing
the overheads in setting up and developing the AI application, the workflows described in
the paper can free up developer time for exploring more DNN acceleration options, and thus
contributes to tackling the efficient DSE challenge described in Section 1.2.3.

3.7.3 SECDA: Efficient Hardware/Software Co-Design of FPGA-
based DNN Accelerators

SystemC Enabled Co-design of DNN Accelerators (SECDA) [Har+21], and its follow-up
SECDA-TFLite [Har+23], introduced a hardware-software co-design methodology and soft-
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Figure 3.2: The SECDA methodology, figure obtained from the original publica-
tions [Har+21; Har+23]. Components in the dashed lines correspond to the design in simu-
lation and components in the dotted lines correspond to the design running on real hardware.
The Application Framework and Accelerator Driver software are common to both.

ware toolkit respectively for creating DNN accelerators using FPGAs. The methodology
is shown in Figure 3.2, with the core idea being to reduce the costs associated with itera-
tive design for accelerators. By leveraging SystemC [IEE12], a C++ library for system and
hardware design, SECDA helps developers design their hardware using a low-cost SystemC-
enabled simulation. When they have sufficiently optimized their hardware design, they can
synthesize the design using an FPGA using the same code.

This ‘single source’ paradigm is enabled by SystemC, which can be compiled to both a sim-
ulation, or into a real hardware implementation on an FPGA, depending on the compilation
configuration. Although hardware synthesis has a relatively higher cost (many minutes, com-
pared to seconds for simulation), this allows designers to identify data-transfer overheads and
other bottlenecks not evident in simulation. Specifically, these overheads can come from the
Accelerator Driver code, which is responsible from transferring data from the host CPU to
the accelerator. As Figure 3.2 shows, the Application Framework (e.g., a DNN library) and
the Accelerator Driver are common between simulation and hardware execution, which also
reduces the development costs of comparing simulated and real hardware execution.

SECDA is effective at tackling the DSE challenge described in Section 1.2.3 from the per-
spective of hardware-software co-design. SECDA-TFLite applies the SECDA methodology
to develop an open source software toolkit within TensorFlow Lite, providing accelerator
designs for CNNs and Transformers. By reducing the cost of the design loop for hardware
design, SECDA tackles the efficient design space exploration challenge in Section 1.2.3.
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Figure 3.3: High-level overview of Bifrost’s design, adapted from the original publica-
tion [SGC22]. Simulation and mapping configuration can be performed manually, or op-
tionally auto-tuned using information from simulated execution to optimize the parameters.

3.7.4 Bifrost: Tensor Compiler Integration with Reconfigurable
DNN Accelerators

Bifrost [SGC22] is a software tool which integrates the STONNE simulator [Muñ+21] with
TVM, which allows DNNs to be more easily evaluated in simulated reconfigurable DNN
accelerators. Previously, the process of evaluating a new model in STONNE was a manual
and error-prone process, which could only import the model from PyTorch. In addition,
the configuration of the accelerator had to be written by hand, which increased the costs of
evaluating a range of configurations.

As shown in Figure 3.3, to help tackle these weaknesses, Bifrost leverages TVM’s model
loading infrastructure to make it easier to import DNNs from other DNN frameworks. This
approach also allows more models to be supported, because DNN layers which are not sup-
ported by the chosen STONNE accelerator can be executed in TVM using other backends
such as the CPU. Bifrost also defines utilities for configuring STONNE accelerators, in-
cluding validation of parameters. It also integrates AutoTVM to find the mapping for some
reconfigurable accelerators automatically. By combining the insights available from using
a cycle-accurate hardware simulator, with the flexibility and tuning capabilities of a tensor
compiler like TVM, Bifrost helps exploit across-stack interactions, contributing to further
solutions to the challenge in Section 1.2.2.

3.7.5 Assessing Robustness of DNN Models

These two works [Lou+22; Lou+23] explore DNN deployment from a software testing per-
spective, which is increasingly necessary as DNNs are seeing increased usage in safety-
critical systems, such as autonomous vehicles. Understanding the types of errors that can
occur when deploying DNNs can help developers anticipate them, and tool developers mit-
igate them. Figure 3.4 gives an overview of possible sources of DNNs errors, with much



3.7. Complementary Publications 69

Figure 3.4: Motivating figure showing the potential sources of error in DNN deployment
scenarios. Note that many works look at the problem for only a machine learning perspective,
i.e., is the model robust to noise. However, there are many other factors that could introduce
errors, especially from a systems perspective.

of the existing research exploring model robustness, for example, against adversarial in-
puts [Cha+18]. These works take a more systems-oriented approach, exploring the impact of
changing the software and hardware environment of the DNNs. They use TVM as an evalu-
ation framework, since it can import DNNs from most popular DNN frameworks, allowing
a more easily controlled environment. TVM also allows the generation of code for a range
of hardware platforms, exposes a range of debugging tools, and gives the user fine-grained
control of code generation configuration, such as the code optimizations applied.

The first part of the work [Lou+22] found that definitions of the same DNN architecture from
different DNN frameworks could have significant differences both in terms of output, and
inference time. A followup work [Lou+23] found that the conversion process between DNN
frameworks could introduce errors which could change the output labels in some cases. By
developing a rigorous testing framework, the works helped identify robustness issues, either
in terms of inference time or accuracy. Many of these problems were due to unexpected
software errors, the mitigation of which may also help with the challenge described in Sec-
tion 1.2.1, since when they were corrected, performance can improve.

3.7.6 ICE-Pick: Iterative Cost-Efficient Pruning for DNNs

As discussed in Sections 2.3.1 and 3.3.3, pruning can significantly reduce the number of
parameters used in a DNN, and if sparsity is exploited, this can also reduce the inference
time significantly. However, pruning can suffer from the challenge in Section 1.2.3, i.e.,
DSE can be prohibitively high. One of the largest contributors to these search costs is the
fine-tuning time required to recover lost accuracy. Therefore, ICE-Pick [HGC23] proposes
a technique to significantly reduce the amount of fine-tuning required when pruning, while
still ensuring that accuracy is maintained.

The core idea of ICE-Pick borrows some concepts from transfer-learning, where we ‘freeze’
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Figure 3.5: Overview of ICE-Pick, figure taken from original paper. First, less sensitive
layers are frozen (Stage 1), then for each layer we prune, then fine-tune the model (Stage
2). The learning rate is adjusted dynamically, and fine-tuning is halted if our accuracy loss is
lower than our threshold. This early halting, coupled with layer freezing, can save significant
tuning time.

layers of the DNN during fine-tuning if they are unlikely to change much. This can reduce
training costs, since we do not need to calculate all the gradients. In addition, ICE-Pick uses
an ‘accuracy loss threshold’ during fine-tuning, where for a given fine-tuning step, if the
accuracy loss is below a certain value, then fine-tuning stops early. These two approaches,
when combined, can save up to 87.6% of the overall pruning time while maintaining accu-
racy. Figure 3.5 gives an overview of the technique, which shows how a single pruning step
is performed using the ICE-Pick technique. In Stage 1, we identify and freeze less sensitive
layers in the DNN, then in Stage 2 we iteratively fine-tune the model dynamically adjusting
the learning rate as required. There are four cases where the learning rate is adjusted, with
varying adjustments being made according to the level of pruning and accuracy loss. In the
fourth case, when the accuracy loss is sufficiently low fine-tuning stops early, which can
further reduce the overall time required.

3.8 Summary

In this chapter we gave an overview of the relevant techniques of DNN acceleration across
DLAS. The pace of innovation is significant, as deep learning continues to garner interest as
a solution to a wide range of problems. As discussed, there is already a range of techniques
which look at tackling the key challenges identified by this thesis. However, given the size of
DLAS, there is still significant scope for further research. In addition, it is still intractable to
tackle the full DLAS as a holistic optimization space. The next chapter presents a case study
choosing a variety of techniques from DLAS to demonstrate the importance of across-stack
interactions. Further chapters tackle more targeted problems in DLAS.
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4 | Exploring the Deep
Learning Acceleration Stack

In Section 1.1, we introduced DLAS, as a conceptual view of the relevant domains which
are critical for accelerated DNN deployment. In this chapter, we further motivate the need
for DLAS with a study into the impact of varying a small number of parameters at each
layer. These parameters include two datasets, four models, three optimization techniques,
three algorithms, two compilation techniques, and four hardware devices. To the best of
our knowledge, this is the first study which examines a full vertical slice of DLAS. Other
studies have focused on fewer layers of DLAS, with a wider evaluation of each layer. For
example: models, DNN frameworks, and hardware platforms [Had+19]; datasets, models,
and compression techniques [Bla+20]; and models, tensor compilers, and hardware plat-
forms [Li+21]. Due to the limited range of parameters evaluated at each layer of DLAS, the
study itself does not uncover significant new observations about the behavior of particular
DLAS techniques. Therefore, the details of this study are given in Appendix A, with this
chapter discussing how it highlights and motivates the challenges identified in Section 1.2.

4.1 Discussion

To realize an across-stack evaluation of DLAS requires significant engineering effort to allow
a unified and consistent exploration framework, that fairly explores varying combinations of
DLAS parameters. The particular parameters evaluated are listed below, and how they were
implemented are given in more detail in Appendix A.1, with some of the most significant
challenges discussed in Section 4.1.1.

• Datasets & Problem Spaces: CIFAR-10 [Kri09] and ImageNet [Den+09].

• Models & Neural Architectures: MobileNet (V1 [How+17] and V2 [How+17]), VGG-
16 [SZ14], ResNet18 and ResNet50 [He+16], DenseNet161 [Hua+17], and Efficient-
NetB0 [TL19].
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• Model Optimizations: Two methods of quantization (int8 and float16), two meth-
ods of pruning - channel-wise structured pruning, and unstructured pruning (which we
call ‘weight pruning’).

• Algorithms & Data Formats: Direct, general matrix multiplication (GEMM), and spa-
tial pack convolution algorithms, both sparse and dense implementations.

• Systems Software: Apache TVM as the main evaluation framework, with both untuned
and tuned (using Ansor [Zhe+20a]) variants of each model configuration.

• Hardware: CPUs: Intel i7, Arm Cortex-A73; GPUs: Nvidia AGX Xavier, Arm Mali-
G72 (more details given in Table A.1).

Overall, the study required extending the Apache TVM compiler with new algorithmic prim-
itives, adding new functionality to its limited sparse computation support, and fixing various
bugs. In addition, pipelines for training, pruning and fine-tuning, deploying and evaluating,
as well as auto-tuning the models on a range of hardware platforms had to be developed.
This highlights a sub-problem of the efficient DSE challenge (Section 1.2.3), namely that
software tooling is still maturing for DNN deployment, such that exploring varying combi-
nations of DLAS parameters may require additional implementation by the user before the
evaluation can take place. Naturally, this increases the cost of DSE. Similarly, despite the
collection of inference time results for nearly 800 unique DNN deployment configurations,
making definitive and generalized claims about the behavior of different layers of DLAS is
difficult. This is because only a small number of parameters at each layer of DLAS were
chosen. Section 4.1.2 discusses some of these issues, and what we can infer from the results.

4.1.1 Barriers to Evaluation

There were a number of technical barriers which made providing a full evaluation of DLAS
prohibitively expensive in terms of engineering effort. The study endeavored to choose com-
mon acceleration techniques from across DLAS, and despite this many of these techniques
were not available in the core TVM software stack. For example, for implementing algorith-
mic primitives for the convolutional layers, TVM only provided implementations for direct
and spatial pack convolution, meaning that to realize GEMM convolution, a new implemen-
tation of im2col had to be created within TVM’s embedded domain specific language. Note
that TVM was chosen specifically because compared to other frameworks, it had the widest
support for the DLAS parameters of interest, and relatively lower costs for adding parameters
which were not supported.

Similarly, for sparse versions of these algorithms, TVM initially only supported 3×3 con-
volutions with a stride of one. Therefore, custom sparse implementations of each of the
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three algorithms had to be written, and TVM’s code generator was adapted to support sparse
convolutions of any size and shape. It should be noted that this support only extends to a
single sparse data format, namely CSR, described in Section 2.4.3. If we wanted to support
additional sparse data formats, for example, coordinate list, block sparse row, or compressed
sparse column, then we would need further extend TVM, as well as re-implement each of
our sparse algorithms. To tackle the challenge of code generation for varying sparse data
formats, the MLIR sparse dialect [Bik+22] was developed, which reduces the costs of ex-
ploration. However, this is only available in the context of MLIR, which is not interoperable
with TVM, and currently has no DNN evaluation framework which is sufficiently mature
enough allow an across-stack DSE such as the study undertaken in this chapter, at least not
as easily as with TVM.

For quantization, not all DNN models using int8 worked correctly. For example, for Ef-
ficientNetB0 TVM assumed that for a quantized multiplication operation only the left-hand
operand would be pre-quantized. However, the structure of EfficientNet violated this as-
sumption, which necessitated a bug-fix which we pushed upstream1. For DenseNet161,
another bug stopped int8 inference from being achieved, due to there being a mix of data-
types for a concatenation operation2, but we were unable to fix this issue. From an accu-
racy perspective, EfficientNetB0 had the highest drops for int8 quantization out of any
model. We understood this to be due to EfficientNetB0’s architecture not being amenable
to post-training quantization. These issues were highlighted and corrected by EfficientNet-
Lite [Liu20], which removes the squeeze-and-excitation networks, and replaces the swish
activation functions with ReLU6 activations [How+17] (Figure 2.4d).

For evaluating auto-scheduling, there were several issues that increased the difficulty of eval-
uating all of the parameter configurations, and in some cases these issues meant that some
results could not be collected. For instance, the cost of tuning is very high, and for the largest
models on the most constrained hardware platforms, this was prohibitively expensive. On
the HiKey platform, to tune each configuration of the large models required over 140 hours.
With fifteen configurations for each model, this made collecting auto-scheduled results for
these models on the HiKey platform impractical.

Another auto-scheduling issue was for sparse computations, which was not fully supported
by TVM. Normally, TVM can generate the auto-schedule for a given computation auto-
matically, with no addition setup steps required by the user. However, for auto-scheduled
computations, TVM could not do this, and development of so called ‘sparse sketch rules’
was required for each of our sparse algorithms to enable auto-scheduling. Sparse sketch
rules manually define the starting point for the auto-scheduler, rather than this starting point

1https://github.com/apache/tvm/pull/14286
2https://discuss.tvm.apache.org/t/bug-qnn-type-mismatch-in-broadcastrel

-for-8-bit-quantized-model/14518

https://github.com/apache/tvm/pull/14286
https://discuss.tvm.apache.org/t/bug-qnn-type-mismatch-in-broadcastrel-for-8-bit-quantized-model/14518
https://discuss.tvm.apache.org/t/bug-qnn-type-mismatch-in-broadcastrel-for-8-bit-quantized-model/14518
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being inferred automatically. The sparse sketch rule solution worked for the CPU, however
on GPUs TVM was unable to support auto-scheduling of sparse computations in the versions
of TVM we evaluated. This is because the auto-scheduler has two conflicting requirements:

1. cross-thread reduction, requiring the partial sums (such as those used in convolutions)
to be computed across multiple GPU threads simultaneously.

2. loops parallelized over threads which request a static number of threads.

Both of these conditions cannot be satisfied, since the size of our reduction loop for our
algorithms varies depending on how many non-sparse elements there are in a given portion
of the computation. Thus, we could not tune pruned models on the GPU in our evaluation,
since it cannot be easily supported by TVM without significant changes to its core design.

A final issue we experienced with the auto-scheduler was on the AGX Xavier GPU platform,
where the auto-scheduler did not produce any speedups. This problem was investigated
extensively, including debug tracing, and remote auto-scheduling from other platforms. We
hypothesize that the version of the CUDA libraries provided on the AGX Xavier GPU had a
silent error which neither TVM or our own investigation were able to identify.

4.1.2 Observations and Caveats

In our evaluation (Appendix A.2) we observed many variations across the the experimental
configurations. For example, the best algorithmic primitive in terms of inference time varied
not only by hardware platform, but also by DNN model, and compression technique. This
can be seen in Table A.3, where for instance, on the HiKey CPU, GEMM convolution is
the fastest algorithm for VGG-16, however when it is quantized to int8, direct convolution
is fastest, and the fastest configuration for this model and hardware platform overall. This
can be compared to MobileNetV2, where GEMM convolution is the fastest algorithm for
int8, however GEMM convolution using the weight pruning compression technique was
the fastest overall. Since the evaluation is deep, but not wide3, we cannot make any gen-
eralized observations about the behavior of a given DLAS technique, for example, which
algorithmic primitive gives the lowest inference time on a given platform in the majority of
cases. In fact, the lack of the ability to make generalized claims highlights the core the-
sis of this chapter: across-stack interactions of machine learning and systems optimizations
can be non-trivial, hard to understand without significant data gathering (which can be pro-
hibitively expensive, see the DSE challenge in Section 1.2.3), and bringing in additional
features may significantly accelerate or impede a given technique in unexpected ways. This

3Meaning that we evaluate of the layers of DLAS (depth), but only a limited number of parameters at each
layer (width).



4.1. Discussion 75

is evidenced by the size of the study in Appendix A, with over 800 unique deployment con-
figurations, with some configurations requiring dozens of hours to evaluate (as discussed
in Section 4.1.1). Despite the ambitious size of the study, we do not include every popular
technique such as Winograd convolution, and Transformers, since the combinatorial increase
would make the study impractical to undertake.

In addition, even within our small set of DLAS parameters, there were simplifying assump-
tions which we made which arguable reduced the utilization of the chosen hardware plat-
forms. The details of these hardware platforms are described in Appendix A.1.5, but include
a Arm CPU, an Intel CPU, an Nvidia edge GPU, and an Arm edge GPU. Aspects of the
hardware that could be better utilized include the big.LITTLE architecture (introduced in
Section 2.6.3) of the Arm CPU, since we only leveraged the big cores, hyper-threading on
Intel CPU, since we ran one thread per core, or leveraging both the CPU and GPU in parallel
for the Nvidia and Arm platforms, since we only used one device for the computation in each
experiment. However, across-stack optimizations would be required to exploit these features
properly, otherwise it is likely that they would introduce a performance penalty [LCO18;
Wan+20]. We also did not leverage the Nvidia GPU’s 64 tensor cores in addition to its 512
general purpose CUDA cores. Though TVM supports tensor cores, it requires manual sched-
ule re-design for each algorithm. MetaSchedule [Sha+22] can expand auto-scheduler search
spaces to include hardware features such as tensor cores, which could allow us to more easily
investigate this dimension, but this would have required additional engineering integration
effort in an already ambitious evaluation.

Our experimental methodology makes assumptions about the metrics of interest, and if we
varied the way data is collected, it could change the inference times significantly. For the
experiments, we used a batch size of 1, took the median of 150 runs, and disregarded the
first warm-up run. Although this is a common deployment and evaluation scenario, it is
important to be aware that this is not the only one, and experimental design should reflect
which deployment case is being considered when evaluating models [Tan+13; Wu+19b]. For
instance, for edge deployment we may expect the batch size to be small, whereas on the cloud
it may be large. Increased batch sizes mean increased memory requirements and inference
latency, but also potentially higher throughput. For the use of 150 runs, disregarding the first
run, there could be deployment scenarios where we are more interested in the performance
of these initial warm-up runs, before the cache behavior becomes more regular.

Overall, even for the small number of DLAS parameters explored across the layers of the
stack, the combinatorial explosion means that there is a significant amount of data to collect,
and conversely the exclusion of a wide range of DLAS parameters means that this data does
not give us conclusive information on the impact of different acceleration techniques. At
most, we can make highly conditional statements, such as “for this given model, evaluated
on this hardware platform, using this implementation of this algorithmic primitive, and this
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compression technique, we observe that it achieved a lower inference time than the same
configuration using a different compression technique.” A deeper evaluation varying only
one or two parameters of DLAS is more tractable, and is the approach which we take in
Chapters 5 and 6. However, as this study reveals, exploring all dimensions of DLAS is
prohibitively expensive (see the DSE challenge in Section 1.2.3), and effectively exploiting
across-stack interactions can be a complex undertaking (see the challenge in Section 1.2.2).

4.2 Summary

This chapter presented a retrospective of a study which explored the impact of varying a
small number of parameters at each layer of DLAS. In our study, we find a variety of across-
stack interactions and a variety of scenarios where ideal performance improvements were
not achieved due to lack of full exploitation across the stack. Our work does not purport
to propose solutions to all of these limitations, rather highlights some of the complexities
which emerge in deep learning acceleration and presents a conceptual framework for prac-
titioners to approach their studies in the future. We believe this can be achieved through
closer collaboration across the layers of the stack to enable more holistic co-design and co-
optimization. For example, we may be able to sample from weight-sharing NAS systems
(discussed in Section 3.2.2), and for a given hardware platform, generate a DNN which has
very high performance in terms of some metrics of interest such as accuracy, inference time,
or power consumption. This sampling could consider the impact of varying multiple DLAS
parameters such as algorithmic primitives, systems software, and compression techniques
simultaneously, and generate a more performant solution than varying just one technique
alone. Such broad co-design and co-optimization is still impractical, however the remainder
of this thesis makes contributions which bring this goal closer.
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5 | Accelerating Grouped
Convolutions

Many model optimization techniques revolve around replacing the standard convolutions in
a neural network with grouped convolutions [CGS18; How+17; Hua+18; San+18], as dis-
cussed in Section 2.3.3. These allow for substantial savings in memory and compute with
minimal loss of accuracy, and are becoming increasingly prevalent. However, when evaluat-
ing the implementation of grouped convolutions present in current state-of-the-art deep learn-
ing frameworks such as PyTorch [Pas+19], TensorFlow Lite [Goo19], and TVM [Che+18b],
we observe that the measured inference times are significantly higher than the expected ones,
given the rate of compression provided by grouped convolutions.

In this chapter, we identify that this gap is due to a suboptimal algorithm design, and propose,
implement, and evaluate a new solution using the TVM tensor compiler: Grouped Spatial
Pack Convolution (GSPC). The primary contributions of this chapter can be summarized as:

• We propose a new algorithm for grouped convolutions, GSPC, and implement it in
TVM with a hand-optimized schedule, exposing auto-tuning parameters of the sched-
ule (such as tile size) using AutoTVM [Che+18a].

• We evaluate the performance of GSPC using three DNN models on the CPU of three
edge devices, using our handwritten schedule and auto-tuning.

• We compare GSPC against implementations of grouped convolutions present in widely
used deep learning frameworks, and we show that our solution outperforms them.

• We quantify the performance gap between the theoretically expected inference times
and the measured ones.

The chapter is organized as follows: the first Section 5.1 gives some motivation for our
solution based on experimental observations. Then in Section 5.2 we discuss our GSPC
solution and the details of our implementation in TVM. Section 5.4 shows our experimental
setup and a performance evaluation of several networks with grouped convolutions on three
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edge devices, discussing the time/accuracy trade off, analyzing different implementations on
TVM and comparing GSPC with other existing implementations of grouped convolutions.
Finally, Section 5.5 concludes the chapter.

5.1 Motivation

As discussed in Section 2.3.3, leveraging grouped convolutions can allow us to reduce the
number of parameters and MACs used in CNNs. Figure 5.1 shows the difference between
group convolution and standard convolution. We would ideally expect that using g groups
would correspond to a g× speedup when compared to an equivalent standard convolution.
However, this is a theoretical saving, and thus in this work we explored if this translates
to real reductions in inference time. Figure 5.2 shows an initial experiment where we run
WideResNet models (trained on CIFAR-10 [Kri09]) using standard (S) and grouped convo-
lutions (G) on the CPU of a HiKey 970 board for three DNN deployment frameworks. Note
that we use G(g) to denote a grouped convolution using g groups. As we can see, none of
the frameworks provides the theoretical expected behavior, that is: 1. Models using grouped
convolutions should execute in less time than the model implementing standard convolutions
(S), since the overall number of Multiply-Accumulate (MAC) operations decreases when us-
ing groups (see Section 2.3.3); 2. As the number of groups increases (i.e., 2, 4, 8, etc.),
the number of MACs decreases and thus the execution time should also decrease, with an
expected linear decrease as g grows.

As highlighted in Sections 2.4.2 and 3.4.1, there are a number of popular algorithms that im-
plement standard convolutional layers in DNNs, with a myriad of trade-offs. For example,
direct convolution is the simplest conceptually requiring no data reshaping, and processes
data using the sliding window that the convolution operation is often described as. Other ap-
proaches like GEMM convolution reshape and sometimes expand inputs or weights, which
can reduce inference time by improving the locality of data. However, the increase in mem-
ory footprint and the computational cost of the reshape stages can reduce the improvement
in inference time provided by the improved locality. Compared to standard convolutions,
for grouped convolutions, the algorithms available and their potential trade-offs have been
explored less in the literature.

In TVM, the algorithm used for grouped convolutions on CPUs is grouped direct convolu-
tion1. This is a variant of the standard direct convolution algorithm, and similarly has the
advantage of requiring no additional memory footprint. However, without any reshaping
of data or weights, it can suffer from poor data locality and thus performance can be sub-
optimal, especially for large layers since parameters may need to be reloaded from higher

1As of 2021, our GSPC was accepted as the default CPU algorithm in upstream Apache TVM.
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(a) Standard convolution.

(b) Grouped convolution (with 2 groups).

Figure 5.1: Standard vs. grouped convolutions: (a) In a standard convolution S, each fil-
ter is convolved with all of the input’s channels; (b) In a grouped convolution with two
groups G(2), half of the filters are applied to each half of the input for a 2× reduction in
parameters used. More generally, a grouped convolution with g groups uses g× fewer pa-
rameters than a standard convolution.

levels of cache. For this reason, direct convolution is generally only used as the algorithmic
primitive for standard convolutional layers in certain contexts, for example, when memory
is particularly constrained. However, the effectiveness of this algorithm when adapted for
grouped convolutions may have different considerations, especially for varying values of g.

We observe in Figure 5.2 that TVM’s grouped direct convolution scales well as the number
of groups increases, and outperforms both PyTorch and TensorFlow Lite for large values of
g. This scaling makes sense since the increased g reduces the number of MACs for grouped
convolutional layers in the model. However, we observe that relative to the S model in TVM,
the time for G(2), which reduces the number of MACs by 60%, is 4× slower. Given the poor
performance of G(2), it is clear that an alternative approach to grouped convolutions is re-
quired to realize the potential performance improvements derived from the reduction in the
number of MACs. Motivated by the poor performance of grouped convolutions shown in
Figure 5.2, we propose a new solution called Grouped Spatial Pack Convolution (GSPC),
which has the potential to outperform existing implementations and approach the theoreti-
cally optimal performance level of grouped convolutions.
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Figure 5.2: Inference time for WideResNet models using standard (S) and grouped convolu-
tions (G) on the CPU of the HiKey 970 board for three common deep learning frameworks.
No framework shows the expected behavior, defined as: i) faster execution than standard
when using grouped convolutions, G(g) where g is the number of groups; ii) the time de-
creases as the number of groups increases.

5.2 Grouped Spatial Pack Convolutions

The GSPC algorithm is defined for the NCHW data layout2. We modify and extend the spa-
tial pack convolutions (SPC) algorithm [ZC18], which does not cover grouped convolutions.
Like SPC, GSPC reshapes data, kernels, and outputs to exploit data locality for the computa-
tion. Our extension splits and computes data along an additional outer dimension for groups.
Since there is no data dependency between groups, this outer dimension can be leveraged
to efficiently divide data between processing cores. We will describe the algorithm in more
detail in Section 5.2.1. As we will discuss in Section 5.2.2, we implement the algorithm us-
ing TVM’s compute schedule language, as it is portable across a wide variety of platforms,
and can generate code which achieves state-of-the-art performance on many common deep
learning benchmarks. We favored implementing the GSPC algorithm in TVM, since the
predictable scaling of its default grouped convolution suggests that TVM’s code generator
would be more likely to give us reasonable scaling, as well as providing tensor compiler
features such as auto-tuning.

5.2.1 General Description

At a high level, GSPC consists of four stages, takes two input volumes (input data and the
weights/kernels), and produces one output volume. We expect a 4D input data volume of
size NCinHinWin, 4D kernels (weights) of size CoutCin/gKhKw, and a 4D output volume of
size NCoutHoutWout.

2Input and output data are 4D arrays in row-major order, where N is the batch size, C is the number of
channels, and H and W are height and width.
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GSPC reshapes the input, weight, and output data to improve locality. The reshape has two
values which represent tile size: TO and TI , the former for tiling across output channels and
the latter for tiling across input channels. Note that data in the same tile is related, and thus
can enable further optimizations such as vectorization. We define KPG to be the number of
kernels per group (i.e., Cout/g), and CPG as the number of input channels per group (i.e.,
Cin/g). The four stages of the GSPC algorithm are:

• Reshape 4D kernels into a new 7D volume:

CoutCin/gKhKw → g⌊KPG

TO

⌋⌊CPG

TI

⌋KhKwTITO

• Reshape 4D padded input data into a new 6D volume:

NCinHinWin → gN⌊CPG

TI

⌋HinTIWin

• Perform the grouped convolution using the 7D weights and 6D inputs, storing the
output in a temporary 6D volume. The computed 6D volume is:

gN⌊KPG

TO

⌋HoutWoutTO

• Reshape the 6D output volume to the desired 4D shape:

gN⌊KPG

TO

⌋HoutWoutTO → NCoutHoutWout

The kernel reshaping stage can be computed ahead-of-time and stored on disk in lieu of the
default layout, since it does not depend on the input data. By reordering our weights and
inputs, we can improve the memory locality of our computation, which can reduce the cost
of loads for elements being computed on. Similarly, accumulating the convolution on a 6D
intermediate array and reshaping to 4D output is preferable to accumulating directly onto 4D
as improved locality can improve cache behavior. The tile sizes are constrained by CPG and
KPG dimensions, since these are the dimensions over which we tile:

0 < TO ≤ KPG

0 < TI ≤ CPG

(5.1)

However, the ideal values for these tiles which minimize inference time can vary. In the
description of the stages of GSPC, note that the inner dimension of the reshaped kernels and
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the intermediate outputs is TO. The SIMD lane size for the target CPU can be a reason-
able default for TO, since data in the inner dimension is adjacent in memory and can thus
be easily vectorized, however auto-tuning for each layer could discover if there is a better
configuration of these schedule parameters.

Figure 5.3 illustrates the GSPC algorithm with a basic example. We use tile sizes TO =

TI = 2, as these are the maximum values allowed by the constraints in Equation 5.1 for this
example. The initial data layout is shown on the left, with the channels split by group for
clarity. The 6D and 7D volumes are shown flattened. We observe how the input data and
kernels are reshaped to improve data locality. Even in the original data layout, data is divided
between groups and the GSPC reshape stages maintain this division. The MAC operations
can be ordered to reduce the number of loads for each tile. In this example, each input value
is used twice, thus computing these MACs in sequence could be a load-efficient approach.
The outputs reshaping stage is trivial in this case due to the small output size, and thus from
a 1D memory perspective the reshape is the identity. In the case of depthwise convolution,
output reshaping is also the identity, which saves N × Cout ×Hout ×Wout copy operations.

Algorithm 3 describes GSPC for the NCHW layout. The strides hyperparameter is defined
with Sh, Sw. Note that the number of input and output channels should be divisible by the
number of groups, so we can evenly split data between the groups. The costs of GSPC’s
relatively complex index arithmetic are reduced by TVM’s ahead-of-time compilation for
each layer size. This means that expressions involving constants are simplified using con-
stant folding and CSE (see Section 2.5.2), which greatly reduce the number of computations
required during inference.

The main loop of kernel reshaping (lines 2-4) is nested with a depth of seven, with each
loop representing a dimension of the reshaped kernel volume. The same is true for inputs
reshaping (lines 6-8), with a nested loop depth of six. The main convolution loop (lines 10-
18) is over the six dimensions of the temporary output volume, with an additional three loops
over CPG and the kernel dimensions. These loops can be reordered to improve performance,
but again the best ordering may need to be determined via auto-tuning.

5.2.2 Implementation

We implement GSPC in TVM, as it can generate efficient code for tensor programs, provides
the best time for the S model, and scales well as g increases, despite the poor performance
of G(2). We leverage TVM’s compute schedule programming paradigm, described in Sec-
tion 2.5.6. Our high level algorithm is described following to Algorithm 3, using TVM’s em-
bedded domain-specific language. Our hand-tuned schedule applies a number of optimiza-
tions such as loop reordering, thread parallelism, loop unrolling, and SIMD-vectorization.
These are intended to maximize data-reuse and parallelism.
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Algorithm 3 Grouped Spatial Pack Convolution (GSPC)
X : inputs of shape NCinHinWin

W : kernels of shape CoutCin/gKhKw

TI , TO: Tile sizes (constrained by equation 5.1)
KPG ← Cout

g , CPG ← Cin
g

Kernels Reshaping
1: Allocate W ′ of dimension g⌊KPG

TO
⌋⌊CPG

TI
⌋KhKwTITO

2: for Dimensions of W ′ : j, k, c, h, w, ci, co do
3: w ←W [c× TO + co+ j ×KPG ][c× TI + ci][h][w]
4: W ′[j][k][c][h][w][ci][co]← w

Inputs Reshaping
5: Allocate X ′ of dimension gN⌊CPG

TI
⌋HiTIWi

6: for Dimensions of X ′ : j, n, C, h, c, w do
7: x← X[n][C × TI + c+ CPG × j][h][w]
8: X ′[j][n][C][h][c][w]← x

Perform Convolution
9: Allocate Y ′ of dimension gN⌊KPG

TO
⌋HoWoTO

10: for Dimensions of Y ′: j, n, occ, oh, ow, ocv do
11: y ← 0
12: for c = 0 to CPG do
13: for kh = 0 to Kh do
14: for kw = 0 to Kw do
15: x← X ′[j][n][⌊ icTI

⌋][oh× Sh + kh][c mod TI ][ow × Sw + kw]

16: w ←W ′[j][occ][⌊ icTI
⌋][kh][kw][c mod TI ][ocb]

17: y += x× w

18: Y ′[j][n][occ][oh][ow][ocb]← y

Outputs Reshaping
19: Allocate Y of dimension NCoutHoutWout

20: for Dimensions of Y : n, c, h, w do
21: y ← Y ′[⌊ c

KPG
⌋][n][⌊ c

TO
⌋ mod ⌊KPG

TO
⌋][h][w][(c mod TO) mod KPG ]

22: Y [n][c][h][w]← y

Tuning the parameters exposed by our GSPC schedule includes varying the tile sizes, and
optionally unrolling the Kw loop of the convolution stage. There may be scope for addi-
tional improvements to the GSPC schedule, which could further reduce inference time. For
example, a potential optimization could investigate the impact of interleaving portions of
the reshaping and computation stages to reduce the footprint of the intermediate arrays by
reusing a subset of their memory. In early 2020, when GSPC was developed, auto-scheduling
systems like Ansor [Zhe+20a] were not available, therefore they are not included in the eval-
uation. This extension will be considered in future work.
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5.3 Experimental setup

In this section, we describe our experimental setup for evaluating the effectiveness of GSPC.
Section 5.3.1 describes the DNNs and datasets used, and Section 5.3.2 describes the hard-
ware platforms evaluated.

5.3.1 Datasets and Networks

We consider two datasets widely adopted for image classification tasks, CIFAR-10 [Kri09]
and ImageNet [Den+09], and we use the float32 type to represent data values. We eval-
uate three DNN models, WideResNet-40-2 and ResNet34 which are good representatives of
residual network types, and MobileNetV2 which is a widely used model for edge devices.
Some relevant details of these models include:

• WRN-40-2: a Wide Residual Network (WRN) [ZK16] with 40 layers and a width-
multiplier of 2 that requires 2.2 million parameters. We use a CIFAR-10 classification
definition of the network.

• ResNet34: a Residual Network [He+16] with 34 layers that requires 21.8 million pa-
rameters. We use an ImageNet classification definition of the network.

• MobileNetV2 [San+18]: a DNN with 53 layers optimized for edge platforms that re-
quires 3.5 million parameters. By default, the architecture uses depthwise separable
convolutions (i.e., the maximum number of groups). We use an ImageNet classifica-
tion definition of the network.

For WRN-40-2 and ResNet34, we take pretrained versions of the DNNs and define versions
of models where the standard convolutions are replaced by a grouped convolution followed
by a pointwise standard convolution, as discussed in Section 2.3.3. For MobileNetV2, we
define versions of the model where the number of groups decreases, and an S model where
the grouped and pointwise convolution are replaced by a single convolution. We consider the
following grouped convolutions: G(g) ∀ g ∈ {2, 4, 8, 16, N}, where N is the number of input
channels to each convolution. Note that although pointwise convolutions incur a parameter
cost, their inference time is negligible relative to grouped convolutions. This is because the
operation is equivalent to a matrix multiplication over inputs and parameters, where we can
perform GEMM convolution without reshaping the inputs, and given the lower number of
parameters, we also have relatively fewer MACs.

For WRN-40-2 and ResNet34, for each value of g, models were trained with attention trans-
fer [ZK17] (see Section 2.3.4) on 1 and 4 Nvidia TITAN X GPUs for 200 and 100 epochs
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respectively. For training, we use Stochastic Gradient Descent (SGD) with momentum 0.9
to minimize cross-entropy loss, learning rate of 0.1, and a weight decay of 5×10−4 and
1×10−4 for WRN-40-2 and ResNet34 respectively. For MobileNetV2, since there was not a
pretrained S model to use for attention transfer, we trained each value of g from scratch on
1 Nvidia TITAN RTX GPU for 150 epochs using SGD with momentum 0.9, a learning rate
of 5×10−2, and a weight decay of 4×10−4.

5.3.2 Hardware Platforms

Table 5.1 lists the platforms used in this chapter. There are two edge boards (HiKey 970,
Raspberry Pi3B) that include both a CPU and GPU, however in this work we focus on CPU
evaluation, and we leave GPU investigations for future work. We also analyze a standard
desktop Intel i7 CPU. Therefore, we evaluate Arm and Intel processors that implement two
different ISAs with frequencies ranging from 1.2GHz to 3.2GHz. Note that the CPU of the
HiKey board implements the big.LITTLE architecture (4 big cores + 4 LITTLE cores), but
in this work we only use the big cores. Finally, the memory hierarchy varies significantly
across platforms, for example, the Intel i7 features an L3 cache, whereas the other CPUs do
not. All these features give us a diverse set of configurations for evaluation.

5.4 Evaluation

In this section, we evaluate GSPC using the three DNNs, and three CPU devices as described
in Section 5.3. Section 5.4.1 shows how the accuracy, number of parameters, number of
MACs, and inference times using GSPC. Next, Section 5.4.2 performs a deeper analysis of
GSPC against baseline TVM, investigating ideal versus observed performance and exploring
the impact of auto-tuning the schedule. Finally, Section 5.4.3 compares the performance of
GSPC against other DNN frameworks.

5.4.1 Speed versus Accuracy Analysis

Tables 5.2, 5.3, and 5.4 show the inference time in milliseconds for all the DNN models con-
sidered using standard (S) and grouped (G) convolutions for WRN-40-2, ResNet34, and Mo-
bileNetV2 respectively when running on the three platforms under study3 using our GSPC
implementation in TVM. The tables also show the total parameter cost, the number of MACs,

3Note that all times are for single thread execution, since we verified that threads affect quite differently the
performance of each platform, thus not providing a completely fair comparison. We leave the threads analysis
for future work.
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Table 5.2: Inference time in ms for WRN-40-2 models with standard (S) and grouped (G)
convolutions when running on the platforms in Table 5.1.

Model
Model Info Inference Time

Params MACs Top-1 Desktop HiKey RPi3

S 2242.26K 328.30M 4.79 8.23 65 811
G(2) 1357.68K 198.15M 4.87 9.20 51 530
G(4) 813.36K 118.52M 5.00 5.84 34 307
G(8) 541.20K 78.71M 5.05 4.65 24 199
G(16) 405.12K 58.80M 5.13 4.51 20 158
G(N) 292.22K 44.83M 6.57 2.14 16 122

Table 5.3: Inference time in ms for ResNet34 models with standard (S) and grouped (G)
convolutions when running on the platforms in Table 5.1.

Model
Model Info Inference Time

Params MACs Top-1 Desktop HiKey RPi3

S 21.79M 3.67G 26.73 107 1096 7466
G(2) 13.22M 2.25G 26.13 99 636 5700
G(4) 8.14M 1.39G 26.58 62 426 3334
G(8) 5.60M 0.97G 27.24 41 304 2344
G(16) 4.34M 0.75G 27.99 34 259 1749
G(N) 3.13M 0.56G 30.16 23 204 1285

Table 5.4: Inference time in ms for MobileNetV2 models with standard (S) and grouped (G)
convolutions when running on the platforms in Table 5.1.

Model
Model Info Inference Time

Params MACs Top-1 Desktop HiKey RPi3

S 44.05M 5.56G 26.03 166 1207 13770
G(2) 23.75M 2.92G 25.90 135 776 7603
G(4) 13.59M 1.60G 26.34 75 733 4608
G(8) 8.52M 0.95G 26.84 47 495 2625
G(16) 5.98M 0.62G 27.06 37 429 1808
G(N) 3.50M 0.31G 28.20 15 134 812
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and the Top-1 error for each DNN model. The number of MACs for each convolutional layer
is obtained with the following formula:

MACs =
N × Cin × Cout ×Kh ×Kw ×Hout ×Wout

g
(5.2)

where N is the batch size (N = 1 for all experiments), Cin is the number of input channels,
Cout is the number of output channels, and Hout and Wout are the height and width of the
layer’s output respectively. Kh × Kw is the kernel size of each convolution, and g is the
number of groups.

As we can see in the tables, the reduction in the number of parameters, and thus the number of
MACs, derived from using grouped convolutions provides between ~4-17× of speedup in the
inference time across platforms and DNNs, the Raspberry Pi device and the MobileNetV2
network being the combination that provides the highest improvements. We also observe that
on the desktop the inference time for G(2) is not reduced with respect to the corresponding
S model as on the other two platforms, it even increases for WRN-40-2. However, the time
decreases for every subsequent G model. This observation suggest that the schedule is not
less optimized for the Intel x86-64 architecture of the desktop. In TVM, the schedules can be
optimized for a given hardware architecture and the default S model is taking advantage of
this, as we checked that it has schedules for both Intel and Arm architectures. However, we
optimized the schedule of our GSPC code primarily for the HiKey platform, as we performed
most of our experiments on it. Optimizing GSPC for the Intel architecture should provide
better times for the G models, but we leave this optimization for future work.

Related to the accuracy of the models, we see in Tables 5.2, 5.3, and 5.4 that the increase
in Top-1 error can vary from almost 2% for WRN-40-2 to 3.5% for ResNet34 when we
compare the S and G models. We also see that the overall error is much higher for the models
using the ImageNet dataset (~30% vs ~7%), since a 1000-way classification is harder than
a 10-way one. Therefore, these results provide different options to the user for selecting a
model based on the time/accuracy trade off. The best solution for a given application will
depend on its specific requirements and the hardware platforms available. For example, if the
target platform is more constrained like the Raspberry Pi, it could be better to sacrifice some
accuracy in favor of speeding up the inference time. However, for a more powerful platform
like the desktop it can be better to maximize accuracy, as all times are below 166ms.
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(a) WRN-40-2

(b) ResNet34

(c) MobileNetV2

Figure 5.4: Inference time in ms for DNN models with standard (S) and grouped (G) con-
volutions when running on the CPU of the HiKey 970 board. We compare the measured
and expected times of our GSPC and the default TVM implementation for both tuned and
untuned versions of the code.
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5.4.2 TVM Analysis

Figure 5.4 shows the Measured versus the Expected4 inference time for all the models con-
sidered for the three DNNs under study when running on the HiKey 970 platform. We
compare GSPC with the default implementation of grouped convolutions in TVM, and we
consider the tuned and untuned versions of the code in both cases. Note that the times in
Tables 5.2, 5.3, and 5.4 correspond to GSPC untuned times. We only report the tuned infer-
ence time on the HiKey 970, since the auto-tuning process is very time-consuming, with an
estimated search time of multiple weeks on the Raspberry Pi board. Our key observations in
Figure 5.4 are as follows:

• GSPC improves the times of the default TVM implementation of the G(2)-G(16) mod-
els for the three DNNs for both tuned and untuned versions of the code. However, for
G(N) the default TVM implementation is slightly better than GSPC (~5-22% across
DNNs) for the untuned version. We believe that this is due to the overhead created by
the reshaping stages of GSPC, which for G(N) are maximized relative to the compu-
tation time. We leave for future work to investigate this problem further.

• When we consider the tuned versions of G(N), GSPC provides better times than the
default TVM implementation (~3-34% across DNNs). However, note that for Mo-
bileNetV2 the tuned times that we obtained for the default TVM implementation were
worse than the untuned ones for all G models. For this reason, in Figure 5.4c the tuned
times for default TVM with G(N) are the same as the untuned ones. We could not
find an explanation for this strange result, but reproduced the behavior multiple times.

• There are differences between the expected and measured times for both tuned and
untuned versions across all G models. This performance gap is ~7-99% for untuned
and ~27-72% for tuned versions respectively. Note that the expected times are theoret-
ical estimations based on the structure of the code for the standard convolution, which
should not be considered as true optimal values. In some cases, it can be possible to
outperform the expected time (see G(2) in Figure 5.4b), for reasons such as more data
fitting in a lower level of cache. In this case, we incur reduced overheads for fetching
data since it is closer to where it is required.

Overall, our GSPC implementation is on average 3.4× faster than the default TVM version
for all the tuned/untuned G models, when using the arithmetic mean.
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5.4.3 Frameworks Comparison

Figure 5.5 shows the inference time on the CPU of the HiKey board of GSPC and other
implementations of grouped convolutions in current deep learning frameworks for a varying
number of groups of our three DNNs, We report tuned versions of both GSPC and default
TVM. The other frameworks analyzed are PyTorch [Pas+19] and TensorFlow Lite [Goo19].

As we can see, GSPC provides the best results for all the G models of the three DNNs, clearly
outperforming the default TVM and the other two frameworks, up to 8× and 4× better
than PyTorch and TensorFlow Lite respectively. To the best of our knowledge, in terms of
inference time GSPC is the most efficient implementation of grouped convolutions on CPUs
available. We also observe that TensorFlow Lite performs much better than PyTorch for all
the G models of WRN-40-2 and for the G(2)-G(16) models of ResNet34, whereas PyTorch
is better for G(N) of ResNet34 and all the G models of MobileNetV2. However, none
of these frameworks scale as expected for the G models according to the number of MAC
operations, where for example, we expect G(2) to be around half of the inference time of S,
G(4) to be around half of G(2), etc.

5.5 Summary

In this chapter we proposed Grouped Spatial Pack Convolution (GSPC) as a new and more
efficient implementation of grouped convolutions. We have implemented GSPC in TVM,
which provides state-of-the-art performance on CPUs, providing a hand-optimized schedule
and auto-tuning parameters. We evaluated three DNNs implementing grouped convolutions
for two datasets on three edge devices with varying hardware architectures. We also com-
pared our implementation against existing solutions in current deep learning frameworks,
outperforming them in all settings. Finally, we observed that even though DNNs using GSPC
significantly improve their performance, there is still a gap between the expected inference
time and the observed one.

4Computed from the inference time of the S model on a given platform by obtaining the time of a single
MAC operation and then extrapolating.
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(a) WRN-40-2

(b) ResNet34

(c) MobileNetV2

Figure 5.5: Inference time in ms for DNN models with standard (S) and grouped (G) convo-
lutions when running on the CPU of the HiKey 970 board. We compare the tuned version of
GSPC and default TVM against PyTorch and TensorFlow Lite.
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6 | Reusing Auto-Schedules for
Efficient Tensor Program Code
Generation

As we have highlighted throughout this thesis, tensor programs such as DNNs can be com-
putationally expensive. As discussed in Section 2.5.7, an emerging approach to accelerate
DNNs is using auto-schedulers, such as Ansor [Zhe+20a], which generate efficient code for
a given DNN model and hardware platform via extensive automated program transforma-
tion exploration. This approach can produce state-of-the-art inference time performance on
a range of platforms and programs, and in particular can show improvement compared to
existing approaches on novel operations such as capsule 2D convolution [SFH17].

However, this tuning process can be very time-consuming and specific to a given kernel of a
given size. To help tackle these two challenges, in this chapter we introduce transfer-tuning,
a novel approach which can improve execution performance for a given tensor program with
reduced tuning time. Transfer-tuning exploits the similarity between kernels containing the
same operations with varying data sizes, such that we can reuse schedules from other tensor
programs. Therefore, we can achieve performance improvements while reducing the search
time costs associated with auto-scheduling. Transfer-tuning’s main value comes in use-cases
where tensor program deployment requires performance efficiency but has reduced resources
to perform costly auto-scheduling.

The rest of this chapter is organized as follows: Section 6.1 gives some motivation regarding
the overheads involved in auto-scheduling and introduces how transfer-tuning tackle this,
Section 6.2 describes the key components of transfer-tuning and how it is enabled by the
features of the compute schedule programming paradigm. Section 6.3 presents a range of
experimental evaluations demonstrating and implementing the principles of transfer-tuning,
and Section 6.4 concludes the chapter.
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Figure 6.1: Inference time speedup and auto-scheduling search time when running Ansor
on an Intel Xeon E5-2620.

6.1 Motivation

Figure 6.1 shows the tuning time required and speedups achieved by the Ansor auto-scheduler
for a number of widely used DNN models on a common server-class CPU, an Intel Xeon
E5-2620. We observe that the maximum speedup varies between models, and the search
time can be several hours, which is a large upfront cost, especially as the number of models
or platforms increases. If a range of applications are to be deployed on a given platform,
this upfront cost may be further exacerbated, especially if the platform is more constrained,
and thus make the potential performance improvements of auto-scheduling impractical to
achieve, since tuning costs may be too high.

To reduce tuning time we could sacrifice potential performance improvements by stopping
early or only tuning a subset of the kernels. However, Ansor gets its improvements by
evaluating a vast array of possible schedules, and both early stopping and tuning a subset
of kernels may miss performant schedules. Our main observation is that many applications,
such as DNNs, feature high similarity between kernels in terms of the types of operations
they compute and the sizes of their tensors. For example, most DNNs contain a limited
set of operations such as convolutional, dense, and pooling layers. The DNN models in
Figure 6.1 contain 22 unique kernel types (which we call kernel classes), with every model
having at least one kernel class in common with every other model, and often many more.
Thus, if we have already found performant schedules for some tensor program, perhaps we
could reuse this information on other tensor programs which contain similar kernels. This
observation motivates the contribution of this chapter, however let us further discuss the
practical underpinnings of auto-schedulers to make this clearer.
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Auto-schedules, such as those provided by Ansor [Zhe+20a], can yield state-of-the-art per-
formance on a number of tensor programs (such as DNNs) and hardware devices by auto-
matically generating optimized schedules. Figure 6.2a shows an example of a simple com-
putation Directed Acyclic Graph (DAG) for a tensor program, such as a DNN, with default
untuned kernels. Each node of the graph represents a unit of computation, also known as a
kernel. The colors of the nodes represent the kernel classes, meaning the types of operations
contained within (e.g., DNN layer types such as convolutional layers), with there being three
classes of kernels in this example and four kernels in total. The shapes of the nodes represent
the size of the data computed in the kernel, which in this example varies between kernels.
This illustrative example shows how we can accelerate the inference time by running auto-
scheduling individual kernels. Figure 6.2b shows that we can speed up the inference time by
2× at the cost of a tuning search time of 36, where all values are for illustrative purposes.

However, it should be noted that auto-scheduling can be a very time-consuming process, as
shown in Figure 6.1, where the tuning search time can be on the order of several hours for
a whole DNN model. This depends on the complexity of the tensor program, the number
of schedule variants chosen to evaluate, and the resources available of the target hardware
device. The high cost of search can be a bottleneck to deployment, since if we want to
get the best inference time for a given DNN model we must spend a long period of time
exploring the schedule space. Approaches to reduce search time include: reducing the time
we allow the tuner, as shown in Figure 6.2c; tuning a subset of the model’s kernels, as shown
in Figure 6.2d; or some combination of the two. These trade-offs allow users to sacrifice
potential improvements in performance for reduced tuning search time.

Our main observation in Figure 6.2 is that kernels of the same class (where class is repre-
sented as color) may produce auto-schedules with similar properties. This is because they
define the same high-level algorithm over varying data sizes. A question that emerges from
this observation is ‘Can an auto-schedule for one kernel be reused for another kernel of the

same class?’ If so, a further question is ‘How different will the optimizations found via auto-

scheduling be between two different kernels of the same class?’ The answer to the second
question will vary depending on the structure of the computations defining the class. Fac-
tors such as access patterns and costs of the loop body are likely to play important roles. In
addition, the architecture of the target platform that the auto-schedule exploits is also likely
to be important, since the organization of the memory hierarchy and features such as SIMD-
instruction size may make some optimizations more or less relevant. Perhaps having some
data size dimensions being similar (such as the extent of the innermost loop) could be more
important than others (such as the extent of the outermost loop).

Therefore, answering the first question, we define the process of reusing an auto-schedule for
a given kernel on a different kernel as transfer-tuning. In Figure 6.2e we show an illustrative
example of transfer-tuning, where we reduce tuning search time by reusing auto-schedules.
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(a) Kernels of a tensor program, 4 kernels of 3 classes, where classes define the same operations over
varying input sizes (e.g., convolutions).

(b) Inference time and tuning costs when kernels are fully tuned.

(c) Inference time and tuning costs when tuning with reduced time.

(d) Inference time and tuning costs when tuning fewer kernels.

(e) Inference time and tuning costs when using transfer-tuning to reuse the auto-schedule of Kernel 1
with Kernel 2.

Figure 6.2: Illustrative example of the costs and benefits of different approaches of auto-
scheduling for a tensor program.
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We reuse the auto-schedule for Kernel 1 with Kernel 2 to reduce the inference time without
requiring any additional tuning. We also use the auto-schedule of Kernel 1 with itself, which
we refer to as the ‘native schedule’. This makes the overall search time lower than our full
tuning in Figure 6.2b. Note that we should expect some penalty when running Schedule
1 with Kernel 2 compared to running a native auto-schedule for Kernel 2, since a native
schedule will exploit the specific data sizes of the computation to find optimizations for the
target hardware and data size specific optimizations (see Schedule 2 in Figure 6.2b). This
kernel specific information would not be exploited by using Schedule 1 for Kernel 2, as the
schedule is tuned for Kernel 1. Therefore, in Figure 6.2e we observe that for Kernel 2, the
transfer-tuned schedule achieves an accelerated execution time of 5, whereas when executed
with Schedule 2 in Figure 6.2b, it is faster, with an execution time of 3.

The target of transfer-tuning is to improve the inference time of the overall tensor program,
while being cheaper than running an auto-scheduler. The trade-off between search time and
performance improvement is interesting to explore and exploit, as long search times may
not always be acceptable. For example, a developer of AI applications for smartphones may
not have the resources to provide auto-scheduling for their DNN model for the wide range of
heterogeneous devices their app will be deployed on. Similarly, it will be unlikely that smart-
phone users be willing to wait several hours for the DNN model to auto-schedule on their
device. Therefore, in this case transfer-tuning could provide some performance speedups
in a shorter period of time. This reduced search time may also translate to reduced energy
usage, as auto-scheduling is an energy intensive process that can saturate all CPU cores.
However, in this work we focus purely on the inference time performance improvements of
transfer-tuning, compared against the reduced search costs.

6.2 Transfer-Tuning

This section builds upon the initial observations and research questions of Section 6.1 to
build a more concrete underpinning and conceptualization of transfer-tuning. First, in Sec-
tion 6.2.1 we discuss some of the types of optimizations used by tensor program auto-
schedulers, how transfer-tuning is possible, and its potential benefits. Then in Section 6.2.2,
we further discuss the idea of kernel classes introduced in Section 6.1 and how they are a
key part of transfer-tuning. In Section 6.2.3 we explore some of the behaviors of transfer-
tuning on a full DNN model (ResNet18), and finally in Section 6.2.4 we discuss some other
practical considerations for transfer-tuning.
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6.2.1 Principles of Transfer-Tuning

Before delving into transfer-tuning, it is important to briefly review the concepts of schedules
and auto-schedules, introduced in Section 2.5. Let us consider an operation such as a matrix-
multiplication, which has a fixed loop structure but may have varying data sizes, as shown in
lines 1-5 of Algorithm 4.

There are a variety of code transformations which can be applied to this operation, some of
which are applicable to all instantiations of the operation and others which are specific to
a particular input matrix size. For instance, transformations which are data-shape agnostic
include unrolling a loop to its maximum depth, as introduced in Section 2.5.2. Data-shape-
specific transformations such as loop-splitting transformations that may only apply to a spe-
cific loop size. In the case of unrolling, no matter how many iterations are in a loop, the
transformation can be applied as long as we know the number of iterations ahead-of-time, it
is a valid regardless of if there are 3 iterations or 300,000. However, the performance benefit
of the transformation will vary depending on the number of iterations, with relevant factors
including the architecture of the underlying hardware (e.g., the features of its cache) and
properties of the computation such as the cost of the loop body.

In contrast, for data-shape-specific transformations, we may not have this flexibility. Taking
loop-splitting as an example, if we have a loop over the range (0, N) where N = 32, we
could apply a loop splitting optimization defined as Split(N, 4, 8) that breaks the loop
into two loops in the ranges (0, 4) and (0, 8), which would allow us to traverse the full 32
elements. If we try to apply this optimization to a similar loop where N = 128, then splitting
it into the two prior ranges would produce invalid code, since we will not be able to cover
the full space of the loop. However, if we reformulate our transformation such that we
apply it as Split(N, (N/8), 8) our transformation becomes valid for all programs where
{N ∈ N : 8 | N} (i.e., when N is divisible by 8).

Therefore, some transformations can be applied to a kernel regardless of the data-shape,
others can be reformulated to be valid for more than one data-shape, and some may not be
valid for any data-shape other than the one they were originally defined for. The performance
benefits of these transformations may be data-shape dependent, for example, a loop unrolling
that brings benefit for a small loop range could bring a penalty for a larger loop range.
However, we argue that even with large data-shape differences some of these transformations
can potentially improve performance, as compared to a generic schedule.

As discussed in Section 2.5.7, the process of auto-scheduling takes a set of kernels repre-
senting operations in a tensor program (such as a DNN) and iteratively explores the space
of transformations that we can apply to each of them. Transfer-tuning involves applying a
schedule produced for a given kernel via auto-scheduling to a different kernel, with poten-
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tially varying data shapes. The technique exploits the fact that many schedule transforma-
tions can be formulated to be data-shape agnostic, meaning that we can adapt schedules for
kernels that they were not tuned for.

Observe two examples of auto-schedules for our row-major square matrix-multiply as de-
fined in Algorithm 4, for two data sizes. Auto-scheduled kernels, such as kernels containing
convolutional layers, can be verbose, difficult to interpret, and intuitions as to why they pro-
vide good performance may be unclear. This is because they are automatically generated
to exploit hardware performance dynamics that may not be evident, such as cache behavior.
Even for this relatively simple operation the schedules have many steps.

For our example, we have two instances of a schedule for varying sizes of our operation:
C1 = A1B2 which multiplies two 512×512 matrices, and C2 = A2B2 which multiplies
two 1024×1024 matrices. We use Ansor to produce auto-schedules for the two kernels,
observing an improvement of 246× and 308× for C1 = A1B2 and C2 = A2B2 respec-
tively compared to using an unoptimized schedule on the Intel Xeon E5-2620 CPU. The
auto-scheduling of the two kernels produces different schedules since they have different
sizes. Additionally, auto-scheduling in Ansor is non-deterministic due to the use of genetic
algorithms to mutate schedules, and a stochastic learned cost model to reduce evaluation
costs; thus differences in the auto-schedule may emerge even when re-running Ansor for
the same kernel. Lines 6-17 and 18-35 of Algorithm 4 show a simplified representation of
auto-schedules generated for C1 = A1B1 and C2 = A2B2 respectively. Next, we briefly
explain the schedule primitives used in this example, which are a subset of all the primitives
available to Ansor and by extension, transfer-tuning:

• Split([range], [factor]): split a loop range into inner and outer ranges.

• Reorder([set of ranges]): specify a reordering of a set of nested loops.

• Fuse([range], [range]): fuse two consecutive loop ranges into a single range.

• Parallel([range]): mark an axis to be used for multithreaded computation.

• Unroll([range], [max unroll factor]): unroll a loop range up to a maximum depth.

• Vectorize([range]): apply SIMD vectorization to a loop range.

• ComputeAt([output tensor], [axis]): move a loop body computation such that it is
computed at a given axis.

Applying transfer-tuning to these GEMM computations, i.e., using the schedule generated
for C1 = A1B1 with C2 = A2B2 and vice-versa, we observe that we still produce valid code,
obtain inference time performance within 5% of the native tuning for both kernels, and a
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Algorithm 4 Auto-schedules for a GEMM operation
A : input matrix of size N ×K
B : input matrix of size K ×M
C : output matrix of size N ×M

Unmodified row-major matrix-multiply computation
1: for n← 0 to N do
2: for m← 0 to M do
3: C[n][m]← 0 ▷ Initialize output value to zero
4: for k ← 0 to K do
5: C[n][m] += A[n][k]×B[k][m]

Simplified auto-schedule where N = P = K = 512

6: No, Ni ← Split(N, 8)
7: Noo, No ← Split(No, 1) ▷ note No redefined
8: Nooo, Noo ← Split(Noo, 16)
9: Mo,Mi ← Split(M, 8)

10: Moo,Mo ← Split(Mo, 1)
11: Mooo,Moo ← Split(Moo, 16)
12: Ko, Ki ← Split(K, 1)
13: Reorder(Nooo,Mooo, Noo,Moo, Ko, No,Mo, Ki, Ni,Mi)
14: FNM ← Fuse(Nooo,Mooo)
15: Parallel(FNM)
16: Unroll(FNM , 512)
17: Vectorize(Mi)

Simplified auto-schedule where N = P = K = 1024

18: No, Ni ← Split(N, 32)
19: Mo,Mi ← Split(M, 256)
20: Reorder(No,Mo, Ni,Mi)
21: N̂ ← Ni, M̂ ←Mi

22: Create Local Cache Buffer D of size N̂ × M̂
23: N̂o, N̂i ← Split(N̂ , 1)
24: N̂oo, N̂o ← Split(N̂o, 16)
25: N̂ooo, N̂oo ← Split(N̂oo, 2)
26: M̂o, M̂i ← Split(M̂, 8)
27: M̂oo, M̂o ← Split(M̂o, 4)
28: M̂ooo, M̂oo ← Split(M̂oo, 8)
29: Ko, Ki = Split(K, 4)
30: Reorder(N̂ooo, M̂ooo, N̂oo, M̂oo, Ko, N̂o, M̂o, Ki, N̂i, M̂i)
31: ComputeAt(D,Mo)
32: FNM ← Fuse(No,Mo)
33: Parallel(FNM)
34: Unroll(FNM , 64)
35: Vectorize(M̂i)
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speedup of nearly 270× when compared to the unmodified computation without a schedule.
The core difference in the auto-schedules produced for C1 = A1B1 and C2 = A2B2 is that
the latter uses a temporary cache buffer to store intermediate results, as seen on Line 22.
Other differences are the unroll factors chosen by the auto-scheduler, 512 for A1B1 as seen
in Line 16 and 64 for A2B2 as seen in Line 34. Note that in this case, when applying
transfer-tuning all the transformations being applied are still valid, since both computations
are defined with the same initial loop structure and no transformation is strongly dependent
on a given data size.

6.2.2 Kernel Classes

We briefly introduced the idea of kernel classes in Figure 6.2, where we can reuse auto-
schedules between kernels if they contain the same operations. We now discuss the concept
in more detail. Kernels are the units of computation which we pass to the auto-scheduler,
for example, in DNNs a kernel may be a layer, or a set of layers that can be composed
together. Often kernels can contain several operations, especially when they can be fused
to encompass the same loop structure, such as in the case of many activation functions like
ReLU. Fusion of loop nests is discussed more in Section 2.5.5.

In this chapter, we implement transfer-tuning using TVM, and defer to the graph partitioning
into kernels generated by TVM for a given DNN model. We use TVM’s partitioning, since
the choices it makes are reasonable, such as combining activation functions and bias addi-
tions with larger layers such convolutional layers, and leads to state-of-the-art performance
in many benchmarks [Che+18b]. Other partitioning schemes, and their relative advantages
and disadvantages, are discussed more in Section 3.5.2. The purpose of having distinct ker-
nels, rather than treating the whole program as a single function to be optimized, is that it
allows the kernels to be optimized independently and in parallel. We define a kernel class

to be a set of kernels that share the same sequence of operations, regardless of their data
sizes. For example, one kernel class could be characterized by containing only convolutional
layers, another by containing a composition of fully-connected and ReLU layers, etc.

In Table 6.1 we observe the characteristics of the kernels in ResNet18 [He+16], a DNN de-
fined on the ImageNet dataset [Den+09]. Most kernels include a 2D convolutional layer,
some of which include an activation function, or a bias or a skip-connection addition. How-
ever, we also observe some pooling layers and a fully-connected layer. Some kernels are
repeated more than once in the model1, as represented by the ‘Use Count’ column. However,
for the purposes of auto-scheduling, repeated kernels are only tuned once, although a given
kernel may be given a higher proportion of the search time. Overall, in ResNet18 we identify

1Note that in ResNet18 the 18 refers to the total number of convolutional and fully connected layers.
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6 kernel classes, labeled A-F: with classes A, E, and F representing kernels featuring convo-
lutional layers; B and C being max-pooling and average-pooling layer kernels; and D being
the final fully-connected layer. We highlight that there are a variety of kernel classes fea-
turing convolutional layers (class labels A, E, and F), with kernels of class E also including
a bias addition followed by a ReLU activation, an overview of which we describe in Algo-
rithm 5. The operations of class E can be further decomposed into lower level loop structures
such as those describing the convolutional algorithm. This could be a direct convolution as
shown in Algorithm 1, or some other primitive. On the CPU, TVM uses the spatial pack

algorithmic primitive by default.

Along with the characterizing operations of its class, a given kernel is also defined by the
data size of its inputs and weights. A schedule for a kernel would apply transformations to
the code in a manner similar to the one seen in Algorithm 4, albeit with the transformations
being applied to a more complex initial loop structure. Much like the GEMM example in
Section 6.2.1, we observe that schedules can be reused between kernels of the same class
in ResNet18, even if they are defined with different sizes. Thus, we can run transfer-tuning
using a schedule of class E on another kernel of class E. In some cases the generated code
may be invalid, for example, if the schedule defines a loop splitting factor which is larger
than the loop itself. Attempting to apply a schedule from class E to another class, such
as one defined by a fully-connected (dense) layer of class D, would always be invalid as
the schedule would try to apply transformations to computations and loops not present in
the computation. In principle, kernel classes which have some operations in common (e.g.,
classes E and F) could have their schedules adapted to allow a form of transfer-tuning across
kernel classes. The exploration of this idea, as well as its impact on performance, are outside
the scope of this thesis.

6.2.3 Applying Transfer-Tuning

Now that we have discussed the principles of transfer-tuning, including how it works and why
kernel classes are relevant, next we look at how it performs using a real DNN model. We take
the ImageNet definition of ResNet18 and use the auto-schedules of ResNet50 generated by
Ansor, a model chosen because it is likely to have potential for a successful transfer-tuning
due to its similar structure.

First, we evaluate each of the 18 kernels of ResNet18 with all compatible schedules of
ResNet50. Figure 6.3 shows the inference time of all of these kernel/schedule pairs, running
as distinct programs. The purpose of this evaluation is to give us insights into which sched-
ules provide good performance improvements for each kernel. We also compare against the
performance of the kernel when it uses the default schedule provided by TVM, which we
refer to as ‘untuned’. Negative values represent kernel/schedule pairs which produced in-
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valid code, i.e., our schedule transformations for transfer-tuning did not make the schedule
sufficiently data-shape agnostic.

We observe that there are six kernel classes in ResNet18, with no schedules for classes F
found in ResNet50. For class F we use the default schedule provided by TVM, represented
as a black bar. For kernels of class A we have 4 compatible schedules to try from ResNet50,
kernels of class E can be compiled with 16 possible schedules, and for kernels of classes B,
C, and D note that we only have one compatible schedule each. For class E we observe that
some schedules on some kernels produce invalid code, which we represent with a value of
−1. There are 16 schedules of class E from which 7 produce invalid code for the kernels
of ResNet18, hence we do not represent them in the graph. We also observe significant
differences in inference time between schedules for some kernels, for example, for kernel 2
schedule A3 has over double the inference time of A4.

Taking the best schedule found via transfer-tuning for each kernel of ResNet18 and using
them when compiling the full model we can observe a speedup of 1.2×, as shown in the
leftmost bar of Figure 6.4a. The bar next to it shows that given the same search time Ansor
can only achieve a speedup of 1.01×. Speedup is relative to the default generic schedules
of TVM, which give good inference performance but do not perform any specific per-layer
tuning. Search time for transfer-tuning means the time for testing each kernel of the target
model with each valid schedule of the model chosen for transfer-tuning, and choosing the
best in terms of inference time. This search time (around 1.2 minutes for ResNet18) is shown
in Figure 6.4b. In addition, we compare how long Ansor requires to match our speedup,
which in the case of ResNet18 is 4.8× longer, or 5.8 minutes. This validates that transfer-
tuning can work in the context of a full DNN model. However, we chose the model to tune
with (ResNet50) arbitrarily. Thus, in Section 6.2.4 we give an overview of how we might
select a model in a more systematic manner.

6.2.4 Model Selection

In Section 6.2.3 we demonstrated the core concepts of transfer-tuning using the ResNet18
model tuned using schedules from ResNet50. This was a reasonable choice, since the model
architectures are similar (they belong to the same family of models). However, we need a
more robust approach to select the model we will use for transfer-tuning. In this section we
explore this design question using ten other models.

Selection heuristic

Table 6.2 shows a set of DNN models, their kernel classes, the frequency of kernels of each
class, and the proportion of the untuned inference time that kernels of a given class represent.
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For example, ResNet50 has 6 kernel classes representing 27 unique kernels (some kernels
are repeated in the model), with kernels of class E representing the majority of the untuned
inference time (67%), and kernels of classes B, C, and D representing a negligible proportion
of the inference time. For brevity, we do not include details of each class, however expensive
kernel classes tend to include convolutional layers or fully connected layers, while cheaper
classes tend to contain operations such as pooling layers.

When choosing a model we want to maximize the likelihood that it will provide a good
tuning for a target model. We hypothesized in Section 6.1 that perhaps similarities between
the kernels (e.g., having the same convolutional kernel size, or similar memory footprint)
could be used to predict how successful a given transfer-tuning for a kernel using a given
schedule would be. However, in our initial study we did not find any feature which had
strong predictive power. Thus, in this work we adopt a more coarse-grained approach which
chooses a model to tune from based on the number of available schedules of a given class,
and the proportional cost of that kernel class in untuned inference in the target model.

We define a selection heuristic which for a target model chooses a model to tune with which
maximizes the number of available tuned schedules, giving preference for kernel classes that
represent a higher proportion of the untuned inference time. To avoid models with very high
numbers of schedules dominating the heuristic, we increase the influence of the untuned
inference costs by squaring it and reduce the influence of the number of schedules in the
tuning model by taking the square root. This scaling approach is arbitrary, and other scaling
implementations are likely to exhibit similar behavior. Thus, we formulate our heuristic for
a given target model M , which has a set of kernel classes C, as choosing a tuning model T
which maximizes the following:

∑
c∈C

P 2
c

√
|WTc|, (6.1)

where Pc is the proportional cost of kernel class c in M , and WTc is the set of kernels of
class c in the candidate model T . Looking at Table 6.2, we can see for ResNet50 that the
model which maximizes Equation 6.1 is GoogLeNet, and the two versions of EfficientNet
maximize each other. For BERT and MobileBERT it is clear why they are chosen for each
other, as both contain kernels of class Q (containing only a ‘dense’ fully-connected layer op-
eration) representing 98% and 97% of the inference time respectively. These fully-connected
layer operations are the subcomponents of the self-attention mechanism used in Transformer
models, briefly discussed in Section 2.2.3.

However, this heuristic is not guaranteed to make optimal decisions. For example, the heuris-
tic chose GoogLeNet for ResNet50 in part because it had a high number of schedules for
class E, which represents 67% of ResNet50’s untuned inference time. This means that for
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each of the 16 kernels of class E in ResNet50 there are 49 schedules that may reduce the
inference time. However, in theory, the 9 schedules of class E in VGG-16 may be better at
reducing the overall inference time in ResNet50, even though there are fewer of them. This
is not observed in our experiments, but should be noted as a possibility. The heuristic could
be improved by accounting for this possibility if we had a better predictive model of which
schedules may perform well for transfer-tuning, to reduce the likelihood of disregarding per-
formant schedules. However, in this work we observe that the basic heuristic demonstrates
sufficient improvements to validate the core ideas of transfer-tuning.

Table 6.3 shows transfer-tuning’s maximum speedup by applying the top 3 models suggested
by the heuristic. As we can see, the trend is that the best speedup is achieved by Choice 1,
and the maximum speedup decreases with subsequent options. Note that for BERT and
MobileBERT, every other model ties for second and third place and gives no speedup, hence
we leave these entries blank (represented with ‘-’). This is because the only kernel class in
BERT and MobileBERT shared by other models is class D, which represents less than 0.1%
of their inference time. This is because both models are Transformers, whose most expensive
operations come from self-attention layers, rather than convolutional layers.

Alternative heuristics

In Figure 6.4 we provide an evaluation of the choices made by the heuristic described in
Equation 6.1, demonstrating that it can outperform tuning the DNN models from scratch
with Ansor. However, we could explore extensions to this heuristic which may allow greater
exploitation of transfer-tuning, improving the speedup and/or reducing the search time. For
example, the heuristic chooses a single model to transfer-tune from, however in principle we
could use all the tuned schedules we have available in Table 6.2. We evaluate the impact of
using all the available tuned schedules in Section 6.3.5. The caveat to consider is that this
could translate into a very high number of schedules to evaluate, which would increase search
time significantly. Thus, a more intelligent heuristic might discard schedules that are less
likely to improve performance, and prioritize kernel classes by the potential improvement
they could get, since we observe that the average speedups achievable by different kernel
classes vary. We will explore this, and other potential extensions to transfer-tuning in future
work, discussed more in Section 7.3.2.

6.3 Evaluation

In this section we evaluate the performance of 11 common DNN models, ResNet18 and
the 10 more shown in Table 6.2, applying transfer-tuning using auto-schedules from the
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Algorithm 5 High level definition of a kernel class with a convolutional layer, bias addition,
and ReLU activation.

1: Define placeholders for inputs X , weights W , and bias B
2: Pad the input X′ ← Pad(X)
3: Y ← Conv2d(X′)
4: Y ← Y + B
5: Y ← ReLU(Y )
6: Return Y

Table 6.3: Transfer-Tuning performance in terms of speedup using the top three choices from
the heuristic.

Model Choice 1 Choice 2 Choice 3

ResNet50 M7 (1.16×) M8 (1.0×) M3 (1.09×)
AlexNet M3 (4.6×) M7 (1.05×) M1 (1.03×)
VGG-16 M7 (1.19×) M1 (1.0×) M8 (1.0×)
MobileNetV2 M6 (1.20×) M5 (1.21×) M8 (1.19×)
EfficientNetB0 M6 (1.23×) M4 (1.08×) M8 (1.09×)
EfficientNetB4 M5 (1.13×) M4 (1.04×) M8 (1.03×)
GoogLeNet M1 (1.15×) M3 (1.04×) M8 (1.0×)
MnasNet1.0 M7 (1.26×) M1 (1.25×) M3 (1.18×)
BERT M10 (59×) -† -†

MobileBERT M9 (13×) -† -†

† Note that models M1-M8 tie for Choices 2 and 3 giving no speedup (i.e., 1.0×), hence
we leave these entries blank (represented with “-”).
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model selected using the heuristic described in Section 6.2.4 on an edge class CPU. In Sec-
tions 6.3.3, 6.3.4, and 6.3.5 we explore transfer-tuning on an edge platform, varying the
sequence length, and the impact of using a larger pool of schedules respectively.

(a) Speedup for transfer-tuning and Ansor given the same search time.

(b) Search time for transfer-tuning, and Ansor to match its speedup.

Figure 6.4: Transfer-Tuning results for several models on a server-class CPU (Intel Xeon
E5-2620).

6.3.1 Experimental Setup

In addition to ResNet18 discussed in Section 6.2 we evaluate ten more DNN models. The
first eight are CNNs defined on the ImageNet dataset [Den+09] for image classification, and
the final two are Transformer [Vas+17] models for natural language sequence classification.
The machine used to evaluate the models includes an eight core Intel Xeon E5-2620 CPU.
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Auto-scheduling, compilation, and inference are executed on the CPU, using one thread per
CPU core. For our baselines, we take the median inference time for each model over 10 runs,
compiled using TVM’s standard untuned schedules and the -o3 flag.

ResNet18 and ResNet50 [He+16] have 18 and 50 layers respectively and consist of residual
blocks. Each block contains two convolutional layers (that include between 64 and 2048
filters of size 3×3 and 1×1) and blocks are connected in a feed-forward manner.

AlexNet [KSH12] is a canonical CNN model and consists of 5 convolutional, 3 max-pooling,
and 3 fully-connected layers. Note that newer DNNs often use fewer fully-connected layers
to increase efficiency.

VGG-16 [SZ14] is a CNN with 13 convolutional layers and 3 fully-connected layers. Some
versions include batch normalization layers, but in TVM these are removed/fused for infer-
ence, see the discussion of operator fusion in Section 2.5.5.

MobileNetV2 [San+18] is a lightweight model with 53 layers, many of which feature depth-
wise convolutions which reduce the number of parameters and operations required. This
makes it ideal for constrained edge devices.

EfficientNet [TL19] is a family of models with a focus on scalability. The architecture of the
smallest model (EfficientNetB0) was found using neural architecture search (NAS) [ZL17],
and the accuracy of the model is improved by applying a novel scaling method which changes
the architecture to efficiently increase the number of parameters and operations. There are
sizes ranging from B0-B7, and in this evaluation we use EfficientNetB0 and EfficientNetB4.

GoogLeNet [Sze+15] (or InceptionV1) is a 22 layer model containing 9 so-called ‘inception’
modules. This technique allows a deeper model to be trained more efficiently.

MnasNet [Tan+19] is a model architecture designed for edge devices such as mobile phones
with an architecture generated using NAS. We evaluate the model using a depth multiplier
of 1.0, which contains 52 convolutional layers and a dense layer.

BERT [Dev+19] is a Transformer-based [Vas+17] model which excels in several NLP tasks.
It contains 12 layers, where a layer is a so called ‘transformer block’. We take a definition
of BERT for sequence classification tasks.

MobileBERT [Sun+20b] is a compressed model inspired by the BERT architecture. It has
24 layers and around 4.4× fewer parameters than BERT. For both BERT and MobileBERT
which can take variable length input, we fix the sequence length at 256, with a discussion of
the impact of varying the sequence length in Section 6.3.4.
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6.3.2 Comparing Transfer-Tuning with Ansor

Figure 6.4 shows the results of running transfer-tuning across the 11 models, with each model
being tuned using the model suggested by our heuristic described in Section 6.2.4. The only
exception to this is ResNet18, which was used as in illustrative example in Section 6.2.
As highlighted in Section 6.3.1, the results are collected on the Intel Xeon E5-2620 CPU.
Figure 6.4a shows the speedup achieved by transfer-tuning and Ansor given the same search
time. Figure 6.4b shows the search time required by transfer-tuning and how much time
Ansor requires to match transfer-tuning’s speedup.

For ResNet50 we observe a speedup of 1.16×, requiring 7.2 minutes to achieve. Given the
same search time, Ansor gets a speedup of 1.03× and requires 1.8× as much search time
to reach the same speedup. For AlexNet we observe a speedup of 4.6× which takes 1.7
minutes to achieve. The maximum search time for AlexNet is lower than ResNet50, as it
has a smaller number of kernels. Ansor given the same search time gets a speedup of 1.39×
and requires 3.1× more search time to reach the same speedup. For VGG-16, we observe a
speedup of 1.19× which takes 5.2 minutes to achieve. To achieve the same speedup Ansor
requires 2.6× as much time.

MobileNetV2 (tuned using schedules from EfficientNetB4) obtains a maximum speedup of
1.2×, which takes 1.8 minutes. Ansor given the same time gets a speedup of 1.12× and
requires 4.2×more search time to reach the same speedup. We also observe that over half of
its kernels (those of classes J and L), representing around 46% of the untuned inference time,
are not transfer-tuned by EfficientNetB4 since it does not contain them. This suggests that
there is further scope for improvement, for example, tuning using schedules from a model
which included those kernel classes could increase the maximum speedup obtained.

EfficientNetB0 (also tuned with EfficientNetB4) gets a maximum speedup of 1.23×, which
takes 12 minutes. The search time is much higher than most other models, since there are 58
kernels to evaluate with 764 unique kernel/schedule pairs. Ansor given the same time gets a
speedup of 1.03× and requires 2.15× as much search time to reach the same speedup.

For EfficientNetB4 (tuned with EfficientNetB0) the situation is similar to EfficientNetB0
with a high search time of 13 minutes due to having 69 kernels, or 775 kernel/schedule pairs
to evaluate. The speedup is 1.13× which is lower than EfficientNetB0, with Ansor requiring
2.23×more time to reach the same speedup. We observe that given the same time as transfer-
tuning Ansor sees a slowdown by 0.96× compared to the baseline. This is not unexpected,
as due to their stochasticity, auto-schedulers can sometimes hurt performance initially even
if they eventually converge on an improved schedule.

For GoogLeNet, we observe a speedup of 1.15× which takes 8.8 minutes to achieve. Like
the two EfficientNet models, a higher number of kernels (61) make the search time higher
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than other models. Given the same time, Ansor achieves a speedup of 1.08× and requires
5.3× more time to reach the same speedup.

As the final ImageNet model, MnasNet1.0 (tuned with GoogLeNet) achieves a maximum
speedup of 1.26×, taking 4.8 minutes. Given the same time, Ansor takes 1.08× and requires
2.5× as much time to achieve the same speedup.

Finally, BERT and MobileBERT see the most dramatic performance improvements of 59×
and 13× respectively. In addition, they see the largest relative difference in search time re-
quired compared to Ansor, 33× and 10× respectively. These higher performance improve-
ments are due to their inclusion of self-attention layers (see Section 2.2.3), which are com-
puted as GEMMs. Compared to the convolution operation, the untuned version of GEMMs
in TVM is less optimized, which means that it is easier to achieve higher performance im-
provements using tuning.

Overall, these results show that transfer-tuning can outperform the state-of-the-art Ansor
auto-scheduler when given a limited amount of search time. Figure 6.1 shows that each
model varies in the potential maximum speedup it can achieve, where we take the max-
imum speedup to be achieved using Ansor’s recommended2 20,000 schedule variants (or
iterations). Therefore, to compare the performance of our DNN models fairly we show the
proportion of this maximum speedup transfer-tuning achieves in Table 6.4. On average us-
ing the arithmetic mean, transfer-tuning achieves 49.1% of Ansor’s maximum speedup, with
VGG-16 being the lowest with 17.7% and BERT being the highest with 88.4% of the max-
imum speedup. Compared to the search time required by Ansor to explore 20,000 schedule
variants, transfer-tuning requires only 2.1% of this time on average. However, the values in
Figure 6.4b give a more informative comparison showing that to achieve the same speedup
as transfer-tuning, Ansor requires over 6.5× more time on average, with the lowest relative
difference being for ResNet50 (1.8×), and the highest being for BERT (33×).

6.3.3 Exploring a Constrained Edge Platform

To further validate transfer-tuning we evaluate our models on a Raspberry Pi 4B, a com-
mon low-power edge device with an Arm Cortex-A72 CPU. Such devices represent another
potential application of transfer-tuning, as they may not have the resources to undertake
auto-scheduling themselves. Ansor allows edge devices to be connected to a more powerful
server which runs auto-scheduling over RPC. However, this process can still be slow, may
not always be available, and is not scalable to deployment across large heterogeneous fleets
of devices, such as consumer smartphones.

2https://github.com/apache/tvm/blob/44549e623433dd10d9e97e442ef529fb44c
46c14/gallery/how_to/tune_with_autoscheduler/tune_network_x86.py#L207

https://github.com/apache/tvm/blob/44549e623433dd10d9e97e442ef529fb44c46c14/gallery/how_to/tune_with_autoscheduler/tune_network_x86.py#L207
https://github.com/apache/tvm/blob/44549e623433dd10d9e97e442ef529fb44c46c14/gallery/how_to/tune_with_autoscheduler/tune_network_x86.py#L207
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Table 6.4: Transfer-Tuning versus 20,000 Ansor iterations on the Intel Xeon E5-2620 CPU.

Model Speedup (%) Search time (%)

ResNet18 49.20 0.48
ResNet50 40.65 2.91
AlexNet 71.54 0.64
VGG-16 17.69 1.41

MobileNetV2 29.16 1.10
EfficentNetB0 80.14 5.34
EfficentNetB4 52.35 6.41
MnasNet1.0 44.18 2.40
GoogLeNet 48.00 2.00

BERT 88.41 0.08
MobileBERT 18.96 0.10

Mean 49.12 2.08

Figure 6.5a shows the speedups achieved on the Raspberry Pi 4, and Figure 6.5b shows
the search time required. We observe that the relative differences between transfer-tuning
and Ansor become exacerbated in terms of tuning time, with Ansor requiring over 10.8×
as much time to reach the same speedup on average (using the arithmetic mean), which is
significantly higher than the 6.5× difference observed on the x86 platform. In future work
we will explore if transfer-tuning is viable between hardware platforms.

6.3.4 Varying Sequence Length

Unlike ImageNet models, which take input data of fixed sizes (224×224), sequence models
such as BERT and MobileBERT can take variable input sizes, for example, a longer or
shorter sentence. However, from the perspective of Ansor varying the input size means
the whole model is different, since every single kernel has different data sizes to process.
In principle, auto-scheduling could occur with a given dimension being specified as being
dynamic. However, to date TVM has poor support for this and no support for this when
tuning3. In addition, this could potentially lose out on some AOT optimizations by keeping
the input size fixed.

Therefore, as an alternative view on transfer-tuning, we evaluate models of the same archi-
tecture but with different input sizes, namely BERT and MobileBERT for sequence lengths
of 128 and 256. In Section 6.3.2 we evaluated these models for a sequence length of 256,
therefore we must also tune versions of these models with sequence length 128. Figure 6.6
shows the results, with for example, ‘BERT-128’ representing the BERT model for sequence
length 128 being tuned using schedules from ‘BERT-256’.

3This changed with the introduction of DietCode [Zhe+22], which was not available during this study.
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(a) Speedup for transfer-tuning and Ansor given the same search time.

(b) Search time for transfer-tuning, and Ansor to match its speedup.

Figure 6.5: Transfer-Tuning results for several models on an edge CPU (Arm Cortex-A72).
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We observe that the improvement is greater applying tuning from a larger sequence length
to a smaller sequence length, 3.3× as much improvement on average. We also note that
compared to the results of Figure 6.4 (which shows BERT and MobileBERT with sequence
length 256 being tuned with each other), BERT in Figure 6.6 gets less of a speedup (3.87×
less) and MobileBERT gets approximately the same speedup (around 13×).

Varying input data sizes are common in sequence models such as BERT and MobileBERT.
However, CNNs for computer vision often have publicly available models trained on a com-
mon dataset (e.g., ImageNet), which are then later fine-tuned using transfer-learning on a
new dataset which may have a different input data size. Thus, this could represent another
use-case for transfer-tuning, which we also leave for future work.

Figure 6.6: Transfer-Tuning varying the sequence length of BERT models (Intel Xeon E5-
2620).

6.3.5 Alternative Heuristics

As discussed in Section 6.2.4, there is more than one way for transfer-tuning to select sched-
ules, and this can be an implementation detail to suit the needs of a given use-case. Through-
out the chapter we have demonstrated the core concepts and functionality of transfer-tuning
by implementing ‘one-to-one’ model transfer-tuning, described by our heuristic in Sec-
tion 6.2.4. This heuristic was devised from analytical observations about the features of
models and their kernel classes, and has demonstrated speedups successfully, as shown in
Table 6.3 and our wider results in Section 6.3.2. However, as discussed in Section 6.2.4, if
we have tuned schedules available for a set of DNN models, as an alternative approach we
could explore exploiting all of these schedules regardless of model.

Thus in this section we provide a brief evaluation of how transfer-tuning can be implemented
to deal with this possibility. For each of our models described Section 6.3.1, we take the pool
of schedules from Table 6.2 and make all of them available to the target model. Note that the
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concept of ‘models’ is irrelevant to the pool, and for every kernel in the target model transfer-
tuning picks the best schedule according to the standalone performance of its kernel.

We show the results of this evaluation in Figure 6.7. Our first observation in Figure 6.7b
is that the search time increases by around 2× on average, with the highest being ResNet18
with a 5.34× increase. An increase in search time is expected, since we increased the number
of kernel/schedule pairs we evaluate. However, because each model contains varying kernel
classes, this increase varies between models. For instance, BERT and MobileBERT see a
negligible increase in search time, as only kernels of class D are given new schedules to
explore. In situations with many kernel/schedule pairs, we could reduce the search time by
sampling a subset of schedules, either randomly or using some other selection heuristic.

Regarding speedup, we can make several observations from Figure 6.7a. First we see that
the maximum speedups achieved for AlexNet, VGG-16, and MnasNet1.0 increase when
compared to the ‘one-to-one’ method. For MnasNet1.0 the improvement is modest (1.27×
speedup compared to 1.26×), however for AlexNet and VGG-16 it is more significant: from
4.6× to 5.2× and from 1.19× to 2.0× respectively. This makes intuitive sense: either we use
the best schedules found in the one-to-one approach, or we have new schedules in the pool
that allow us to improve further. We observe that MobileNetV2 chooses the same schedules
as before and provides the same speedup.

However, contrary to this intuition, we observe that seven models see a reduced speedup. De-
spite the fact we are selecting the kernel/schedule pairs with the lowest standalone inference
time, our overall speedup when running the full model is lower than the initial one-to-one
approach in Figure 6.4, even though the kernel/schedules used in the one-to-one case gave
higher standalone inference times.

Our conclusion is that this is at least in part due the interaction between kernels when exe-
cuting in a full model. Although the performance of kernels running in a standalone manner
are a proxy to their performance in the context of a full tensor program, they do not cap-
ture all potentially relevant interactions. Our implementation of transfer-tuning assumes that
the fastest kernel running as a standalone program will also be the fastest when running in
the context of the full tensor program. This assumption of the independence of kernels is
also used by Ansor, which tunes all kernels as standalone programs, and combines the best
schedules together. It is clear that this assumption is sufficient for transfer-tuning to provide
improvements over Ansor, however the results in Figure 6.7 demonstrate that there may be
performance considerations of ‘inter-kernel’ relationships that are not captured by standalone
kernel evaluation. For example, the output data of one kernel may be used as the input data
for a subsequent kernel. The data access patterns of the first kernel will dictate the cache
placement of the output data, which will impact the read times of the data when it is used in
the second kernel. We can imagine an extreme case where the average reuse distance of the
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(a) Speedup for transfer-tuning using schedules from a single model, and a mixed pool of models.

(b) Search time for transfer-tuning using schedules from a single model, and a mixed pool of
models.

Figure 6.7: Transfer-Tuning using a schedule pool of several models on a server-class CPU
(Intel Xeon E5-2620).
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output/input data between kernels is at its maximum. This could significantly increase the
inference time of the second kernel.

Therefore, awareness and exploitation of this dynamic may enable further optimizations for
transfer-tuning and related methods. We leave a thorough exploration of inter-kernel re-
lationships for future work, however approaches could include per-kernel profiling when
running the full program, and evaluating kernels pairwise.

6.4 Summary

In this chapter we proposed transfer-tuning as a new approach to exploit similarities in ten-
sor programs to reuse efficient schedules found via auto-scheduling. We have discussed
how transfer-tuning is feasible in a compute/schedule programming paradigm, and explained
the key components necessary to accelerate tuning of a full model. We defined an imple-
mentation of transfer-tuning in TVM and evaluated the performance on eleven models on
a server-class x86 CPU, achieving 49.1% of the maximum speedup achieved by the Ansor
auto-scheduler on average (using the arithmetic mean), and with Ansor requiring over 6.5×
as much time to match our performance. We also evaluated transfer-tuning on a constrained
edge device, the Raspberry Pi 4B, showing that the gap between Ansor and transfer-tuning
is exacerbated, with Ansor requiring over 10.8× as much time to match our performance.

Transfer-tuning leverages the ideas of schedule based programming paradigms such as Halide
and TVM, as well as auto-scheduling introduced by Ansor. Other works have exploited
similarity between programs to make compilation optimization more efficient. However,
transfer-tuning’s novelty comes from leveraging this workload similarity in the domain of
schedule-based tensor compilers to reduce search costs. In future work, we will explore the
impact of across-kernel interactions, the viability of applying transfer-tuning across similar
kernel classes, and transfer-tuning across hardware devices.
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7 | Conclusions

This thesis presents new techniques which exploit and develop the emerging tensor compiler
paradigm as it applies to the Deep Learning Acceleration Stack (DLAS). These techniques
help to address the challenges identified in Section 1.2. Chapter 4 gives a vertical slice of
DLAS, demonstrating how a variety of techniques from across the stack can be combined, the
engineering effort required, and the highly inter-dependent interactions between techniques
that can occur. Chapter 5 addresses a specific issue observed from a Model Optimization
technique (grouped convolutions) not achieving the expected inference time speedups given
the reduction in MACs, and developing a novel algorithm and compilation pipeline to better
realize this performance improvement. Chapter 6 looks more deeply at the tensor compiler
itself, developing a new technique (transfer-tuning) to reduce the search time costs associated
with auto-scheduling.

This chapter is structured as follows: Section 7.1 summarizes the main contributions of
this thesis, Section 7.2 presents a critical analysis of the work, Section 7.3 describes future
research directions, and finally Section 7.4 provides concluding remarks.

7.1 Contributions

The challenges identified in Section 1.2 highlight types of friction which researchers and de-
velopers may encounter when exploring across-stack acceleration of DNN workloads. This
section summarizes the main contributions of this thesis and how they tackle these chal-
lenges, making a strong argument for the need for both across-stack optimization of, and a
compiler-centric perspective for DNN acceleration.

7.1.1 Exploration of Varying DLAS Parameters

The Deep Learning Acceleration Stack as described in Section 1.1 is a key concept used
throughout this thesis. There are a variety of parameters and techniques that can be applied
at each layer of DLAS, with more emerging frequently. However, many of these parame-
ters and techniques require support from other layers of DLAS to realize their potential, for



7.1. Contributions 122

example, exploiting pruning (a Model Optimization technique) requires appropriate sparse
algorithms and data formats which best utilize the target hardware. Chapter 4 explored some
interactions across DLAS by describing the experience of running a perturbation study with
a small number of parameters being varied at each layer. Exploring multiple DLAS param-
eters simultaneously exposes the lack of maturity of existing toolchains, and the need for
significant engineering work to more easily allow more effective DSE. Additionally, given
the combinatorial explosion from the wide range of DLAS parameters available, it is difficult
to make definitive claims about the effectiveness of a given acceleration technique. The study
itself is provided in Appendix A, and generated a large number of results and exposed sev-
eral instances of suboptimal performance under some combinations of parameters, as well
as unsupported configurations (such as auto-scheduled sparse computations on the GPU).

The results were collected using a modified version of TVM, further improving TVM’s suit-
ability as a way to perform design space exploration (DSE) for tensor programs, for example,
by allowing the algorithmic primitive to be more easily changed. These modifications will be
upstreamed to TVM upon publication, and go some way towards tackling the efficient DSE
challenge described in Section 1.2.3, by exposing new optimization choices to the compiler.
However, the cost of exploration is still high, both in terms of initial setup costs, and the
collection of experimental results, as addressed by transfer-tuning (see Section 7.1.3), with
the broader problem discussed more in Section 7.2.1.

7.1.2 Using a Tensor Compiler to Unlock the Potential of an Un-
derserved Model Optimization Technique

Grouped convolutions have been adopted in a range of DNN architectures (such as Efficient-
Nets [TL19] and Moonshine [CGS18]), which allows the number of MAC operations and
parameters in a model to be linearly scaled down, at the cost of some accuracy loss (see
Section 2.3.3). However, the performance improvement that grouped convolutions provides
was mostly theoretical, with real software implementations of grouped convolution showing
significant slowdowns compared to the expected performance improvements in terms of in-
ference time, given the theoretical reduction in the number of MACs. In the worst case, in
our initial evaluation in Section 5.1, we observed a model using grouped convolutions which
was around 10× slower than the expected speedup, with none of the DNN frameworks we
evaluated exhibiting behavior close to the expected performance scaling. This identification
of an unrealized gain is an example of addressing the challenge described in Section 1.2.1,
by comparing the expected speedup against actual performance. This of course requires hav-
ing a realistic expectation of the impact of a given optimization, and being able to compare
fairly against baselines and other solutions.

Motivated by this performance gap, Chapter 5 develops a novel algorithm to accelerate



7.1. Contributions 123

grouped convolution, implemented using TVM, with optional compiler auto-tuning support.
The inference time we achieved on the CPU outperformed PyTorch and TensorFlow Lite
by 8× and 4× on average respectively (using the arithmetic mean), and improved against
TVM’s existing approach by 3.4× on average. The solution (GSPC) also leveraged auto-
tuning to search for improved schedule parameters for each layer of a given DNN on a given
hardware platform. Auto-tuning parameters included the tile sizes used for different stages
of the algorithm and if loop unrolling was beneficial, and if so to what unrolling depth. The
chapter tackles the challenge described in Section 1.2.2 by exploiting across-stack interac-
tions to better realize the unrealized gains from grouped convolutions. The problem was
tackled in an across-stack manner by developing a new algorithm to exploit this Model Op-
timization technique, as well as using Systems Software in the form of TVM to develop
an optimized schedule, further accelerated by leveraging auto-tuning for specific hardware
platforms. Due to its performance improvements, GSPC was accepted as the new default
implementation of grouped convolution for CPUs in upstream Apache TVM in 2021.

7.1.3 Reuse of Auto-schedules to Accelerate Tensor Programs
with Reduced Search Costs

The promise of auto-scheduling systems, as described in Section 2.5.7, is to tailor code for
specific DNNs and hardware platforms. This can allow DNNs to have significantly improved
inference times, or some other semantic-preserving target such as energy usage. Practically,
these systems have shown impressive results, with Ansor outperforming state-of-the-art in-
ference times on Intel CPUs, Arm CPUs, and Nvidia GPUs by up to 3.8×, 2.6×, and 1.7×,
respectively [Zhe+20a]. However, these improvements do not come without a cost, namely
the high search times required. With the number of program variants recommended by the
Ansor developers, optimizing a typical DNN can take several hours when using a server-class
CPU. These search times can increase significantly as the device becomes more constrained,
for example, over 140 hours were required for some of our models in Chapter 4. These
problems are typical of the efficient DSE challenge described in Section 1.2.3, where we
have an acceleration technique for DNNs which comes with high search costs to achieve an
adequately performant solution.

This could be considered a small price to pay for significant acceleration, especially when
taken in the context of the high costs of training. However, there are two main issues with
this conclusion. First, we may be designing our neural architecture with a perspective of
optimized deployment costs, either by hand, or with NAS. We need an accurate estimate
of what the deployment costs of our architecture will be, and high overheads in optimizing
the candidate architecture using auto-scheduling makes this impractical. Secondly, we may
be deploying our DNN to a wide range of hardware platforms, for example, as part of an
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application run on end-user devices such as laptops and smartphones. It is unreasonable to
expect users to dedicate hours of tuning time on their device when the application is installed,
and application developers will not necessarily have access to every platform that users have.

Chapter 6 proposes a technique which can be used as a building block to tackle both issues.
Instead of tuning from scratch for every new tensor program, we keep a cache of previously
optimized schedules for other tensor programs, and adapt the schedules so that they are
compatible with our new program. We then explore which pre-tuned schedules are the best
for our new program. We describe the formulation of our technique ‘transfer-tuning’, with a
heuristic that selects a single DNN model from a pool of pre-tuned models to use as a source
of schedules. We show that compared to auto-scheduling from scratch, Ansor requires 6.5×
more search time on average (using the arithmetic mean) to match transfer-tuning’s speedups
on a server-class Intel CPU. We also evaluate transfer-tuning on a constrained edge CPU and
observe that the differences in search time are exacerbated, with Ansor requiring 10.8×more
search time than transfer-tuning on average.

The maximum speedup achievable by transfer-tuning is capped by the quality of the pre-
tuned schedules available. Therefore, it is unlikely that transfer-tuning can achieve the
maximum possible speedup, without using other techniques. However, transfer-tuning still
achieves speedups against TVM’s untuned baseline (which itself is competitive against other
state-of-the-art implementations [Che+18b]), with those speedups being achieved much faster
than Ansor. If we let Ansor auto-schedule for a longer period of time, then we would ex-
pect that it will always outperform transfer-tuning. However, if we take the best speedups
that Ansor can provide and the time required, overall transfer-tuning is able to achieve up-to
88.4% of Ansor’s speedup, in at most 6.4% of the search time. On average, across our 11
models, transfer-tuning achieves 49.1% of the maximum speedup in 2.1% of the search time.
By achieving high speedups at significantly reduced search costs, transfer-tuning tackles the
efficient DSE challenge described in Section 1.2.3.

7.2 Critique

This section presents a critical analysis of the techniques introduced in this research. It will
contextualize the strengths and weaknesses of the contributions, and evaluate its relevance in
the context of contemporary and subsequent literature.

7.2.1 Limited Systematic Full-stack Optimization

Chapter 4 provides a study highlighting the difficulties of systematic exploration of parame-
ters across DLAS. However, the work only discusses a characterization study which chooses
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a small number of parameters at each layer of DLAS, and does not perform the next step, i.e.,
responding to and exploiting the observations to further accelerate the workloads, and mak-
ing generalizable conclusions about the effectiveness of the techniques under study. This
means that although the work highlights that across-stack interactions can occur, and that
optimization techniques are not guaranteed to bring accelerated performance without wider
support, it does not address the problem of how each technique can be better realized. Solv-
ing this for particular observations could be publications in and of themselves, since each
may require a unique and novel solution.

In addition, there are several cases in the study where some combination of parameters did
not work. For example, DenseNet161 did not work in TVM with 8-bit quantization and
auto-scheduling sparse computations did not work on the GPUs. A bug fix was pushed to
upstream TVM to support 8-bit quantized EfficientNet1, and the sparse algorithms for 2D
convolution were all written from scratch. However, this still gives an incomplete picture of
the design space, since some of these problems appear to be tooling weakness and engineer-
ing problems, rather than fundamental challenges. It could be argued that as a characteriza-
tion, missing results highlight wider issues in the existing infrastructure, however this still
diminishes the contribution.

The issue of limited full-stack optimization is also seen in Chapters 5 and 6. Chapter 5
explores how a Model Optimization technique (grouped convolutions) can be accelerated
by appropriate algorithm design, and leveraging an optimizing tensor compiler. However,
the chapter leaves many unanswered questions regarding other aspects of DLAS, such as
the impact of data formats, other devices such as GPUs, or what level of grouped convo-
lution maximizes hardware utilization and accuracy while minimizing inference time. As
a result, although Chapter 5 achieves the goal of tackling the unrealized gains of grouped
convolutions, it would be stronger if it explored more dimensions of DLAS. Similarly, in
Chapter 6, the focus is on improving the efficiency of DSE for generating efficient code for
a given DNN and hardware platform. Questions about how this can be combined with other
techniques such as NAS and algorithmic primitives are left unexplored.

However, it is clear that exploring all of these DSE questions is prohibitively expensive, as
the challenge described in Section 1.2.3 highlights. Thus, for robust co-optimization search
to be explored, the costs must be further reduced at individual layers and intersections of
DLAS. Focusing on particular sub-problems can lay the foundation of more holistic acceler-
ation. With the overarching goal of across-stack acceleration, this thesis makes contributions
to make holistic acceleration more practical. However, it is still unfortunate that the studies
did not combine more features of DLAS to address this goal.

1https://github.com/apache/tvm/pull/14286

https://github.com/apache/tvm/pull/14286
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7.2.2 Relevance of Grouped Convolutions on CPUs

Chapter 5 developed and evaluated a new algorithm and auto-tuning configuration called
GSPC, on three CPUs. However, in the face of increasingly varied hardware for executing
DNNs, as discussed in Section 3.6, is a CPU analysis relevant? Increasingly, we observe
DNNs being deployed to GPUs and other hardware accelerators. Many devices, such as
microcontrollers and other IoT platforms only contain CPUs. However, newer generations
of devices are increasingly including hardware accelerators specifically for DNNs.

However, it can be argued that CPUs will continue to be a widely used compute platform, and
grouped convolutions are especially relevant on more constrained devices that are less likely
to have powerful accelerators. Therefore, an optimized CPU implementation of grouped
convolution brings value, especially when the development cycle and lifetime of hardware is
significantly longer than machine learning solutions. It should also be noted that by imple-
menting the algorithm in TVM’s compute schedule language, it can be evaluated on other
platforms such as GPUs.

7.2.3 Upper Limits of Transfer-Tuning

Chapter 6 presents transfer-tuning, an approach for reusing pre-tuned auto-schedules on new
DNNs on a given hardware platform. Given a set of pre-tuned auto-schedules, we can achieve
speedups for new tensor programs with a reduced search time. However, the maximum
speedup that transfer-tuning can achieve is limited by the quality of the pre-tuned schedules
available. If we want to improve the performance, we must introduce more pre-tuned sched-
ules. As Section 6.3.5 shows, evaluating additional schedules could increase the search time
required, and thus reduce the relative efficacy compared to tuning from scratch. Alterna-
tively, we could explore fine-tuning on our transfer-tuned schedules. Based on preliminary
exploration, it is currently unclear if fine-tuning transfer-tuning is a viable research direction,
and this thesis does not contribute any results demonstrating this.

A recent work that cites transfer-tuning [Tol+23] showed that they could significantly reduce
the search space for auto-scheduling convolutional layers using techniques from polyhedral
compilation. This reduced search costs by at least an order of magnitude without harming the
final speedup that auto-scheduling achieves. Reduction of these search costs also reduces the
motivation for approaches such as transfer-tuning. However, in the face of increasingly large
and varied DNN architectures, DNN deployment to constrained hardware, and significant
scope for reducing transfer-tuning’s search time, transfer-tuning is likely still relevant. Fu-
ture work on transfer-tuning should focus on reducing search times and increasing speedups
to ensure that the technique continues to bring valuable benefits. Transfer-tuning could also
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leverage similar techniques from polyhedral compilation to reduce its search times, and po-
tentially improve the available schedules.

Another issue highlighted by transfer-tuning, and especially in Section 6.3.5, is that assum-
ing that kernels are independent is too strong an assumption. Optimizing DNN operations as
separate programs makes sense in principle, however it is clear that there is an interdepen-
dence between kernels in the form of their inputs and outputs. Some works in the algorithm
selection literature (see Section 3.4) already account for this in the context of data format
transformation costs. However, transfer-tuning does not leverage these techniques, and thus
selects its schedules using the independence assumption, losing out on potential speedups.

7.3 Future Work

Throughout this thesis, we have highlighted how the layers of DLAS can expose significant
scope for across-stack acceleration, or may impede acceleration techniques from other layers
if an across-stack perspective is neglected. This work has made contributions in these topics,
while centering the tensor compiler as a key component to manage this increasing complex-
ity. This section outlines some promising directions for future research, in part enabled by
contributions of this thesis.

7.3.1 Grouped Convolutions Exploration

We could investigate the performance of GSPC on the big.LITTLE architecture and embed-
ded GPUs (e.g., Arm Mali) present in many edge devices. Additionally, we could explore
translation of other algorithmic primitives for standard convolution into grouped variants,
e.g., GEMM and Winograd convolution, and investigate their performance trade-offs across
different benchmarks and devices. Auto-scheduling, which emerged after the initial develop-
ment of GSPC, could push the performance even higher relative to the hand-optimized and
auto-tuned schedule presented in Chapter 5. Finally, considering energy consumption is also
an area for future research, since grouped convolutions are particularly relevant in scenarios
where power usage is an important factor, for example, IoT deployment.

7.3.2 Improved and Expanded Transfer-Tuning

Transfer-tuning in its proposed form has clear applicability, however there is also significant
scope for further improvement. The two main dimensions of what makes for a successful
transfer-tuning are the search time required and the speedup achieved for a given model on
a given hardware platform. From the search time perspective, the lower the search time, the
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more effective transfer-tuning is. The implementation of transfer-tuning described in Chap-
ter 6 compiles every available schedule with every candidate kernel, and evaluates it on real
hardware. Although this search process is cheaper than auto-scheduling from scratch, we
could further reduce the search time if we developed approaches to pre-screen schedules,
discarding schedules which are unlikely to give good speedups for a given kernel. These
approaches could look at features such as data shapes, and find a predictive mapping for
speedup estimation. In addition, there may be scope to enable ‘across-class’ transfer-tuning,
where we allow reuse of schedules on kernels which do not contain the exact same oper-
ations. For example, if our pre-tuned schedule was for a kernel containing a convolution
followed by a ReLU, transfer-tuning may still be successful if a different activation function
is used. By relaxing the ‘same kernel class’ constraint, we could increase the number of
potential schedules available to transfer-tuning.

From the speedup perspective, a higher speedup is more desirable, and the maximum speedup
that we can achieve is inherently limited by the pre-tuned schedules that we have available.
The maximum speedup is also limited by our hardware, as illustrated by the roofline model
shown in Figure 1.2. However, as discussed in Sections 6.3.5 and 7.2.3, we make the sim-
plifying assumption that kernels are independent sub-programs, rather than interconnected
parts of the same tensor program. Future work could explore this dimension, potentially
comparing the performance of pairs of kernels, and then finding a set of schedules which
finds a lower overall inference time. In addition, if we reduce the search time sufficiently,
it could become more attractive to consider pre-tuned schedules from a larger pool, which
would increase the probability of finding a good schedule for a given kernel.

7.3.3 Holistic Compiler-centric NAS

As discussed in Section 7.2.1, this thesis provides an across-stack characterization of some
common techniques present in DLAS, exposing some of the challenges inherent with achiev-
ing accelerated performance. It also tackles some specific problems in subcomponents of the
stack, such as slow grouped convolutions and expensive auto-scheduling.

In future work, accelerated deep learning solutions will be achieved by designing and effi-
ciently exploring an increasingly large design space of techniques from across DLAS. NAS
(as discussed in Section 3.2.2) is one of the highest levels of automated DSE in the con-
temporary DLAS literature, and demonstrates a relatively unique attribute of deep learning,
namely that we can develop radically different program structures to solve similar problems.
Coupled with the position of this thesis that tensor compilers are increasingly important for
DNN acceleration, NAS techniques which combine compiler approaches along with other
aspects of DLAS such as algorithm choices and hardware features are a rich vein for future
work. As Section 3.2.2 highlights, some works have already begun to explore narrow slices
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of this, however adding more parameters from across DLAS may enable even more efficient
and effective solutions. However, the challenge of efficient DSE from Section 1.2.3 remains,
and thus future work should also endeavor to manage the new bottlenecks which may emerge
as the design space increases. Tensor compilers can help significantly with this, since if they
are designed in a composable manner, they should be able to more gracefully manage the
combination of multiple DLAS techniques. These combinations may be as yet unexplored
in the literature, and poorly supported by more rigid infrastructure such as kernel libraries.
Therefore, future tensor compilers could help the design of machine learning systems break
out of their ‘rut’ as described by Barham and Isard [BI19], where highly optimized but in-
flexible kernels discourage exploration of more novel DNN architectures.

7.3.4 Improved Compiler-driven Mixed-precision

As highlighted in Section 3.3.2, mixed precision quantization is where we vary the data-type
used at different points in a DNN. For example, we may use float32 in earlier layers and
int8 in later layers. Mixed precision is an active area of research, since it can find a better
balance between accuracy maintenance and inference acceleration. Some mixed precision
works have already started to approach the problem from a systems perspective [Wan+19b].
However, the tensor compiler could play a significant role in future work. For instance,
much like the data layout transformation costs associated with varying algorithmic primi-
tives, there may be overheads going from one data-type to another. In addition, as shown
in Chapter 4, the most performant algorithm can also vary depending on the data-type used,
and a given data-type may not necessarily provide a speedup. However, unlike the explo-
ration of different algorithms per-layer [AG18; PPB19; Wen+19], varying the data-type may
also have consequences for model accuracy. A tensor compiler could help generate efficient
code for these cases, as well as exposing information about the design space to the developer.
However, a design challenge of this work is how to efficiently explore this space, especially
regarding accuracy estimation.

7.3.5 Compiler-centric Exploitation of Heterogeneous Hardware

As highlighted in Section 3.6, the improvements in computing hardware due to Moore’s law
and Dennard scaling are slowing down, meaning that we cannot necessarily expect future
iterations of general purpose hardware to improve as significantly as it did in the past. This
also means that to accelerate workloads such as DNNs, increasingly specialized and co-
designed hardware will be required. This requirement and trend has been described by some
as a ‘new golden age for computer architecture’ [HP18], i.e., computer architects will have
new challenges and opportunities for novel designs. Similarly, it has been said that we are
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entering a ‘new golden age of compiler design’ [Lat21], one which will require increased
exploitation of domain-specific knowledge and co-design. As both observations describe,
there is significant scope for impactful work in domain-specific hardware and compilers
over the coming years. At their intersection, as the variety of computing hardware available
grows, compilers are well placed to manage this increasing heterogeneity. If a platform
includes multiple hardware accelerators with varying properties and capabilities, how will
the compiler decide what parts of the DNN to run on which accelerator?

Some works described in Section 3.5, such as Collage [Jeo+23] and Neurosurgeon [Kan+17],
have begun to explore this question for CPUs and GPUs. However, future work may need
to tackle the problem with an even wider range of devices, including reconfigurable hard-
ware (see Sections 3.6.2 and 3.7.4) which comes with its own challenges around generating
efficient mappings, as well as efficient management of data-transfers between devices. It
has also been argued that the isolation of layers of the systems stack can lead to so-called
‘hardware and software lotteries’ [Hoo21], where certain workloads are favored in terms of
practicality by the quirks of the most optimized hardware and software libraries available. A
similar dynamic has been observed with DNNs [BI19]. This can have a significant influence
in the direction technology develops, and may come with high opportunity costs if not ade-
quately modeled. More flexible and extensible compiler infrastructure and reduced barriers
for hardware design may help alleviate this problem.

7.4 Summary

This thesis explores and develops across-stack deep learning acceleration techniques, en-
abled by tensor compilers. The outcomes demonstrated in this thesis open new lines of
research, in the already fertile landscape of DNN acceleration. The preliminary results are
promising, with some of the contributions of this thesis (such as GSPC) being integrated into
production ready open source systems. By further developing the idea of the Deep Learning
Acceleration Stack (DLAS), the work underlines a conclusion which many practitioners in
the machine learning and systems communities have also observed: to be fully effective,
DNN acceleration techniques require careful co-design, combining approaches from multi-
ple domains. The overall position of this thesis is that the tensor compiler will increasingly
become the center of DLAS, and act as key tool in realizing this co-design. As innovations
continue to emerge from both machine learning and systems communities, the increasingly
large design space needs to be managed in a scalable and efficient manner. Tensor compilers
are well suited for this task, since they can represent the logical requirements of different
techniques, thus helping ensure that generated code is coherent. They also provide their own
advantages such auto-scheduling code, and reducing the required binary size compared to a
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general purpose library. However, tensor compilers are still in their infancy, and although
they are increasing in popularity, it will require continued collaboration and innovation from
the tensor compiler community and beyond to fully realize their potential.
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A | DLAS Characterization Study

A.1 Experimental Setup

Our experiments are intended as a vertical slice of DLAS, which demonstrates the design
choices available and interactions that occur. We have sought to follow best practices in
experimental design where possible. However, since this work is a characterization study,
we do not optimize for every factor that may influence a given result. For example, our
results comparing convolutional primitives are not necessarily a definitive claim on which
algorithm is the best in a given circumstance. That would require focused optimization
factoring in all layers of the stack, which would necessitate solving all three challenges in
Section 1.2 simultaneously. Additional techniques from the literature that could be used to
further optimize performance, as well as discussion of the trends and issues observed in the
results, are given in Section 4.1.

A.1.1 Models & Neural Architectures

We investigate two datasets for image classification: CIFAR-10 and ImageNet, both in-
troduced in Section 2.1. For CIFAR-10, we use model definitions from an open-source
PyTorch-based library [kG23], which we train from scratch. We consider four architec-
tures based on ResNet18 [He+16], MobileNetV1 [How+17], MobileNetV2 [San+18], and
VGG-16 [SZ14]. ResNet18 and VGG-16 are larger models, and MobileNets V1 and V2 are
designed to be more resource efficient. To train the models we used SGD to minimize the
cross-entropy loss (averaged across all data items), which penalizes the network for making
incorrect classifications. We used a 1cycle learning rate scheduler [ST18], with momentum
0.9, weight decay 5×10−4, and an initial learning rate of 5×10−2, trained for 200 epochs.

For ImageNet, we use pre-trained models from the TorchVision repository [mc16]. We con-
sider four architectures: DenseNet161 [Hua+17], EfficientNetB0 [TL19], ResNet50 [He+16],
and MobileNetV2 [San+18]. ResNet50 and DenseNet161 are larger models, whereas Mo-
bileNetV2 and EfficientNetB0 are designed to be more resource efficient. The models are
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pre-trained, with the training configurations described in the TorchVision documentation1.

A.1.2 Model Optimizations

We explore three approaches to compression: 1. global L1 unstructured pruning, which we
call ‘weight pruning’ (Figure 2.6b); 2. global L1 structured pruning over convolutional chan-
nels, which we call ‘channel pruning’ (Figure 2.6c); and 3. data-type quantization exploring
float16 and int8 types (Figure 2.6d).

Our pruning techniques explore the impact of increasingly higher compression ratios, thus
for our evaluation of inference time and for each model and pruning technique, we select
the pruning level which has the highest compression ratio before a significant accuracy drop.
To implement our pruning, we leverage the PyTorch Lightning library [FT19], a wrapper
of PyTorch which simplifies the pruning interface. We apply pruning iteratively, starting
with the pre-trained unpruned dense models, and prune a fraction of the weights. To reduce
accuracy loss, at each pruning step we apply fine-tuning, where we use training data to
adjust the non-pruned weights to compensate for lost accuracy. For weight pruning, we
start by pruning at 50%, then increase in step sizes of 10%, additionally pruning at 95%
and 99%. For channel pruning, we start by pruning at 5%, then increase in step sizes of
5%, additionally pruning at 99%. In total, each pruning technique gets the same number
of fine-tuning epochs, however we perform channel pruning in a more fine-grained way to
compensate for its more coarse-grained approach to removing weights. For the CIFAR-10
models we use: 210 epochs of fine-tuning, shared evenly between each pruning step; an
initial learning rate of 5×10−2; and SGD with momentum 0.9, a weight decay 5×10−4, and
the 1cycle learning rate scheduler [ST18]. For the ImageNet models we use: 140 epochs
of fine-tuning, shared evenly between each pruning step; an initial learning rate of 1×10−3;
and SGD with momentum 0.9, weight decay 5×10−4, and the cosine annealing learning rate
scheduler [LH17]. We store a copy of each model after every pruning step.

For data-type quantization we use TVM’s native conversion tool. To recover the accuracy
for int8, we use ONNXRuntime’s [ONN18] post-training quantization tool. We perform
calibration using the validation dataset to set rescaling constants. We use ONNXRuntime’s
default static quantization parameters using the QInt8 weight type QOperator quantiza-
tion format. For float16, as we show later in our results, there is no accuracy loss, thus
we do not perform any additional steps to recover lost accuracy.

1https://pytorch.org/vision/stable/index.html

https://pytorch.org/vision/stable/index.html
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A.1.3 Algorithms & Data Formats

We evaluate three algorithmic primitives for the convolutional layers: 1. direct, 2. GEMM,
and 3. spatial pack convolution. We use both dense and sparse versions of these algorithms,
which we implement or extend within TVM v0.8.0. The same high level algorithm imple-
mentation is used for both CPU and GPU, thanks to TVM’s ‘compute schedule’ program-
ming paradigm described in Section 2.5.6. All of our algorithms use the NCHW data layout,
and for both weight and channel pruning we use the CSR sparse data format (described in
Section 2.4.3).

A.1.4 Systems Software

For our algorithms defined in TVM, we implement a minimal schedule such that the gener-
ated code exploits thread parallelism, and code can be generated correctly. However, since
TVM’s performance comes from having optimized schedules for each algorithm, unopti-
mized algorithms may give an unrealistic indication of the best algorithm in each setting.
Thus, rather than hand optimize the schedule for every algorithmic variant that we explore,
and risk introducing bias from inconsistent levels of optimization, we also leverage the Ansor
auto-scheduler [Zhe+20a] to generate optimized schedules for each DNN layer.

For our CPU code generation, we use TVM’s LLVM backend with AVX and Neon SIMD
extensions for our Intel and Arm based CPUs respectively. Our untuned schedules do not
define explicit vectorization and Ansor can automatically apply vectorization as one of its
schedule primitives. For GPU code, we generate OpenCL and CUDA kernels for our Arm
and Nvidia GPUs respectively, with CPU-side host code being similarly optimized.

For our auto-scheduling (or ‘tuned’) experiments, we allow Ansor to explore up-to 20,000
program variants, with early stopping permitted if no speedups have been observed after
1,000 variants. Auto-scheduling sparse computations is not fully supported by TVM. Thus,
we employ an approach in TVM called ‘sparse sketch rules’, where we describe a start-
ing point for the auto-scheduler to begin schedule generation. This works for the CPU,
however TVM is unable to support auto-scheduled sparse computations on GPUs in the ver-
sions of TVM we have evaluated. This is because the auto-scheduler has two conflicting
requirements: 1. cross-thread reduction, requiring partial sums to be computed across GPU
threads simultaneously; and 2. loops parallelized over threads which request a static num-
ber of threads. Both of these conditions cannot be satisfied, since the size of our reduction
loop for our algorithms varies depending on how many non-sparse elements there are in a
given portion of the computation. Thus, we cannot tune pruned models on the GPU in our
evaluation, since it cannot be easily supported by TVM.
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A.1.5 Hardware

Table A.1 shows the hardware platforms used in our experiments. For CPU experiments, we
use a workstation machine featuring an Intel i7, and the HiKey 970 development board. The
i7 has 6 cores, but due to hyper-threading 12 threads are exposed2. By default, TVM uses
one thread per core, a default we follow in our experiments. The HiKey board has an Arm
big.LITTLE architecture, meaning that it has 4 more powerful cores (A73@2.4GHz) and 4
less powerful cores (A53@1.8GHz). For our experiments, we use only the A73 (big) cores,
which is the default for TVM. In principle, with appropriately configured load balancing
between cores, using all cores could bring a performance improvement. However, this is
outside the scope of this work, and as discussed in Section 4.1.2, exposes further across-
stack considerations. For our GPU experiments, we leverage the GPUs of the HiKey 970
and an Nvidia AGX Xavier.

A.1.6 Evaluation Methodology

When we have chosen all of our parameters for a given experiment, we then must evalu-
ate the model and collect the inference time results. On both our CPU and GPU experi-
ments, we ensure that devices are single-tenant and repeat experiments to mitigate poten-
tial interference from background processes. We run each experiment 150 times, using
TVM’s time_evaluator function with a single input image (i.e., batch size 1). For
auto-scheduling, we run our search across 20,000 program variants once per experiment and
evaluate the optimized binary 150 times. We report the median inference time, disregarding
an initial warm-up run.

A.2 Evaluation

For our evaluation, we split the results between CIFAR-10 (Section A.2.1) and ImageNet
(Section A.2.2). We first analyze the accuracy impact of our optimization techniques, then
choose maximally compressed models for each technique which maintain accuracy. We
analyze the inference performance of these models using varying configurations on our CPUs
and GPUs. Section 4.1 gives a high-level discussion of the results.

2Hyper-threading is Intel’s approach to simultaneous multithreading).
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(a) Weight pruning (CIFAR-10) (b) Weight pruning (ImageNet)

(c) Channel pruning (CIFAR-10) (d) Channel pruning (ImageNet)

(e) Data-type quantization (CIFAR-10) (f) Data-type quantization (ImageNet)

Figure A.1: Accuracy and compression trade-offs for our CIFAR-10 (a/c/e) and ImageNet
(b/d/f) models: (a/b) shows the accuracy of each model after iterative weight pruning of
the convolutional layers, and fine-tuning the model; (c/d) shows a similar setup for channel
pruning; and (e/f) shows float16 and int8 quantization accuracy, with int8 accuracy
shown before and after calibration.

A.2.1 CIFAR-10

Accuracy

The accuracy of our models with varying levels of compression can be seen in the first
column of Figure A.1. For our four models, the baseline (dense) top-1 accuracy on CIFAR-
10 is shown in Table A.2. We observe that for unstructured pruning (Figure A.1a), the
accuracy is maintained for all models until 95% pruning, at which point all models see a
drop in accuracy at 99%. However, the drop in accuracy for MobileNetV1 and V2 is much
more significant, likely because they have fewer total parameters.

We also observe this trend in the structured pruning (Figure A.1c), where VGG-16 and
ResNet18 maintain their accuracy for longer than MobileNetV1 and V2. However, for all
models the drop in accuracy is much sooner compared to weight pruning, with the elbow of
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the graph appearing at 50% pruning for the MobileNet models, and 80% for VGG-16 and
ResNet18. We also observe that after the elbow the drop is much more significant, to around
10% accuracy or equivalent to random guessing.

For our data-type quantization in Figure A.1e, we observe almost no change in accuracy for
float16 across the four models. The output is not bit-wise identical, which means that a
very small number of images have a different classification, however at most this represents
a 0.03% difference in top-1 accuracy. For uncalibrated int8 quantization all models see
a drop in accuracy, with MobileNets V1 and V2 seeing the highest drops, to 10.0% and
16.4% respectively. However, with calibration all models recover a large amount of their
accuracy, with MobileNetV1 losing the most accuracy at 1.7%. We take the elbow points
for each model using both pruning strategies to use in our inference experiments, with the
elbow points chosen in Table A.2, and evaluate float16 and int8 in all cases.

Inference – CPU (untuned)

The left and right columns of Figure A.2 show the untuned performance of our CIFAR-10
models when running on the CPUs of the HiKey and i7 platforms respectively, with varying
compression strategies and convolutional primitives. The overall trends, including the fastest
combination of parameters under different settings, are shown in Table A.3. Focusing on our
dense float32 models (the baseline used throughout our experiments), we observe that
on the HiKey GEMM is the fastest algorithm for all models, however on the i7 direct is the
fastest.

For our weight pruning models, sparse GEMM consistently outperforms the baseline, and
in some cases gets the best performance for a given model on a given CPU. For example,
MobileNetV2 on both CPUs, and MobileNetV1 and ResNet18 on the HiKey. For sparse
spatial pack, on both CPUs only MobileNetV2 sees a speedup, and the most significant
slowdowns are for ResNet18 and VGG-16. For sparse direct, on the HiKey both ResNet18
and VGG-16 see significant slowdowns, and MobileNetV1 only sees a small speedup. If
we take the best baseline time for each model, we can compute an expected speedup given
the compression ratio of each model optimization technique. For example, on the HiKey for
MobileNetV1, with a pruning rate of 95% we would expect a 20× speedup. However, we
only achieve a speedup of 2.6× for our best weight pruning algorithm (GEMM), i.e., 13.0%
of our expected speedup. On average, for weight pruning, we achieve 11.5% and 21.8% of
the expected speedup on the HiKey and i7 respectively.

For the channel pruning models, we again see that sparse GEMM consistently gets speedups,
and is the best for all cases on both CPUs. Direct and spatial pack are less consistent.
The elbow points for our models (see Table A.2) show that channel pruned models are less
compressed than our weight pruning models, which means that we would expect the latter
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to always be slower than the former. However, we observe several cases where a channel
pruning model is faster, namely for all VGG-16 variants, except for GEMM on the HiKey,
which is slightly slower. On average, for channel pruning, we achieve 77.9% and 83.9% of
the expected speedup on the HiKey and i7 respectively.

For our float16 results, we observe a slowdown when compared to the float32 baseline
in every case, with the best algorithm varying between direct and GEMM between both
models and CPUs. For our int8 results, we generally observed a speedup relative to the
baseline, except for the spatial pack implementation which is slower in all but one case
(MobileNetV1 on the HiKey). In some cases, int8 gives the best time overall, for example
on VGG-16 for the direct and GEMM algorithms for the HiKey and i7 respectively. This
trend of int8 being fastest is not consistent, for example on MobileNetV2, where weight
pruning with GEMM is faster than int8 on both CPUs. This trend is not consistent between
CPUs, for example for MobileNetV1, int8 (with GEMM) is the fastest approach on the i7;
whereas weight pruning (with GEMM) is the fastest on the HiKey. Compared to the baseline,
we would naively expect a speedup of 4×, since we are reducing the number of bits from 32
to 8. On average, we achieve 33.6% and 157.2% of the expected speedup on the HiKey and
i7 respectively.

Overall, on the HiKey GEMM convolution with weight pruning comes out as the best solu-
tion except for VGG-16, where direct with int8 quantization is 1.05× faster. On the i7,
GEMM with int8 quantization is the fastest except for MobileNetV2, where GEMM with
weight pruning is 1.35× faster.

Inference – CPU (tuned)

Figure A.3 shows the tuned performance of our CIFAR-10 models when running on the
HiKey and i7 CPUs, in the left and right columns respectively. Comparing to the untuned re-
sults in Section A.2.1, we observe that tuning has created some significant differences in the
relative performance of our experiments, beyond reducing the inference time significantly,
with overall trends shown in Table A.3. Focusing on our dense (baseline) models, we ob-
serve that spatial pack is now the best algorithm in every model on both CPUs, except for
VGG-16 on the HiKey where direct is slightly faster.

For weight pruning, we observe that sparse direct is now the best weight pruning algorithm
in every case on both CPUs. In the untuned case, this is only the case for MobileNets V1
and V2 on the HiKey. Sparse direct also outperforms the best dense algorithm (spatial pack)
in almost every case, with equal performance on the i7 for MobileNetV2. This is to con-
trast against the sparse GEMM and spatial pack algorithms, which are consistently slower
than their dense counterparts, reversing the trend for untuned sparse GEMM. On average, we
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(a) MobileNetV1 on HiKey (b) MobileNetV1 on Intel i7

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Intel i7

(e) ResNet18 on HiKey (f) ResNet18 on Intel i7

(g) VGG-16 on HiKey (h) VGG-16 on Intel i7

Figure A.2: Experiments comparing the compressed CIFAR-10 models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the i7 and HiKey
CPU platforms, without auto-scheduling.
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(a) MobileNetV1 on HiKey (b) MobileNetV1 on Intel i7

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Intel i7

(e) ResNet18 on HiKey (f) ResNet18 on Intel i7

(g) VGG-16 on HiKey (h) VGG-16 on Intel i7

Figure A.3: Experiments comparing the compressed CIFAR-10 models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the i7 and HiKey
CPU platforms, using auto-scheduling.
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achieve 9.5% and 6.9% of the expected speedup on the HiKey and i7 respectively, signifi-
cantly lower than the untuned proportion, which was 77.9% and 83.9% respectively.

For channel pruning, sparse direct is also the best algorithm, and we still observe that in
the case of VGG-16 channel pruning is faster than weight pruning in most cases, despite in
theory having more operations to compute. On average, we achieve 39.8% and 26.6% of the
expected speedup on the HiKey and i7 respectively; again, lower than untuned.

For our float16 results, we observe that although there are speedups, we are still slower
than the baseline in every case, and these differences are exacerbated when compared to the
untuned results. The speedups of int8 on the i7 have disappeared with tuning, with an
average slowdown of 2.0×.

Inference – GPU (untuned)

The left and right columns of Figure A.4 shows the untuned performance of our CIFAR-10
models when running on the HiKey and Xavier GPUs respectively, with overall trends shown
in Table A.4. On the Xavier, dense direct convolution is consistently the fastest; whereas on
the HiKey it is the best for MobileNetV2 and ResNet18, but GEMM and spatial pack are
faster for MobileNetV1 and VGG-16 respectively. We also note that the HiKey’s inference
time on the GPU is much higher than on the CPU. For example, the baseline direct for
MobileNetV1 is almost 7× slower when using the GPU.

For our pruned experiments, we see speedups most consistently using spatial pack, which
is different from the CPU where we almost always saw a slowdown. On the HiKey, we see
speedups relative to the baseline in multiple cases, and even the fastest possible variant in
some cases, such as for channel pruning with spatial pack for VGG-16. In terms of our
expected speedup, for the HiKey and Xavier respectively, for weight pruning we achieve
7.4% and 2.2%, and for channel pruning we achieve 41.1% and 26.0%.

For float16, unlike the CPU, we observe speedups for several cases when compared to
our baseline float32. However, the behavior is not consistent across models, algorithms,
or devices. For example, on the HiKey using GEMM with MobileNetV1 (Figure A.4a),
float16 provides a slowdown, whereas for other models we observe a speedup, as well
as for the same case on the Xavier. Our most significant slowdowns for float16 is for
MobileNetV1 and ResNet18 on the HiKey (Figures A.4a and A.4e) using spatial pack. On
the Xavier, float16 provides a speedup in all cases except for direct convolution where we
observe small slowdowns. On average float16 achieves 51.9% and 49.4% of its potential
speedup on the HiKey and Xavier respectively. The exception to this trend is MobileNetV2
using direct convolution, where we see a small speedup of 1.08×. For int8 quantization
we observe slowdowns for all instances of direct convolution, speedups for all instances of
GEMM, and speedups for all cases of spatial pack except for MobileNetV1 on the HiKey.
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(a) MobileNetV1 on HiKey (b) MobileNetV1 on Xavier

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Xavier

(e) ResNet18 on HiKey (f) ResNet18 on Xavier

(g) VGG-16 on HiKey (h) VGG-16 on Xavier

Figure A.4: Experiments comparing the compressed CIFAR-10 models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the HiKey and
Xavier GPU platforms, without auto-scheduling.
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(a) MobileNetV1 on HiKey (b) MobileNetV1 on Xavier

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Xavier

(e) ResNet18 on HiKey (f) ResNet18 on Xavier

(g) VGG-16 on HiKey (h) VGG-16 on Xavier

Figure A.5: Experiments comparing the compressed CIFAR-10 models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the HiKey and
Xavier GPU platforms, using auto-scheduling.
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Inference – GPU (tuned)

Figure A.4 shows the tuned performance of our CIFAR-10 models on GPUs, with overall
trends shown in Table A.4. As noted in Section A.1.4, we cannot provide tuned results for
our sparse models on the GPUs. For float32 inference on the HiKey we observe that the
inference times for all algorithms are relatively similar, except for VGG-16 where spatial

pack is significantly slower. If we take the normalized mean inference time, direct is the
best for the HiKey. The HiKey GPU is also still slower than HiKey CPU (tuned), with the
best baseline result being 3.1× slower on average. For the Xavier, direct convolution is
the best performing algorithm in all cases. However, if we compare to the untuned case
we see that we do not get any improvement when tuning the Xavier. We discuss this issue
in Section 4.1.1. For quantization on the HiKey, taking the best result for each model, we
achieve 58.9% and 44.4% of the expected speedup on average for float16 and int8

respectively; the Xavier achieves 49.0% and 28.4% of its expected speedups.

A.2.2 ImageNet

Accuracy

For our four models, the baseline (dense) top-1 accuracy on ImageNet is shown in Table A.5.
EfficientNetB0 has the highest accuracy, which may be surprising given it has fewer param-
eters than ResNet50 and DenseNet161. However, EfficientNetB0 is more recent and thus
exploits a number of newer machine learning techniques to improve its parameter and train-
ing efficiency (see Section 3.2.1).

The top-1 accuracy on ImageNet of the models with varying levels of compression can be
seen in the second column of Figure A.1. We observe a similar trend to our CIFAR-10
models, namely the smaller models (EfficientNetB0 and MobileNetV2) lose their accuracy
more quickly than the larger models (DenseNet161 and ResNet50). We also observe that all

models lose more accuracy earlier when compared to our CIFAR-10 pruning. This suggests
that our CIFAR-10 models are more overparameterized.

For data-type quantization we observe a similar trend as CIFAR-10, namely a negligible
difference in accuracy for float16. For ResNet50, we see a large drop in accuracy for
uncalibrated int8 quantization and recovering to around a 3.0% reduction in top-1 accuracy.
For MobileNetV2, we observe a huge drop in accuracy for the uncalibrated model, down
to around 0.09%, recovering to around a 6.6% reduction in top-1 accuracy. This drop in
accuracy was much higher than we expected, especially compared to the CIFAR-10 version.
Therefore, we also tried importing the Keras [Cho15] definition of MobileNetV2, however
observed the same behavior.



A.2. Evaluation 149

For EfficientNetB0, we also observe a huge drop in accuracy to 0.08%, however the recov-
ery is much smaller than MobileNetV2’s, reaching only 0.43% accuracy. However, this is
due to features of the architecture which make it less suitable for quantization which we
discuss in Section 4.1.1. For DenseNet161, we cannot run the int8 model in TVM due to
an unsupported quantized operation. This excludes it from collection of uncalibrated accu-
racy and inference time results. However, we can still collect calibrated accuracy results in
ONNXRuntime, where we lose only 1.9% of accuracy.

Inference – CPU (untuned)

Figure A.6 shows the untuned performance of our ImageNet models when running on the i7
and HiKey CPUs, with overall trends shown in Table A.6. Focusing on our baseline dense
models, we observe that in all cases on the HiKey GEMM gives the best performance, which
matches its behavior as seen in CIFAR-10 (Section A.2.1). For the i7, GEMM is fastest
for our large models (ResNet50 and DenseNet161), however direct is fastest for our small
models (MobileNetV2 and EfficientNetB0); on CIFAR-10 direct was consistently the fastest
on this CPU.

For weight pruning, we find that by taking our best performing variants as before, we achieve
30.3% and 41.8% for the HiKey and i7 respectively; significantly higher than for CIFAR-10.
For channel pruning, this is 60.2% and 84.2% respectively, which is 16.7% less than CIFAR-
10 for the HiKey, and 0.3% more for the i7. For both weight and channel pruning, we find
that the only algorithm which consistently provides a speedup relative to dense is GEMM.

For quantization we see similar trends to CIFAR-10, namely a slowdown using float16,
and a speedup using int8. For int8, we achieve 25.0% and 73.0% of the expected speedup
on the i7 and HiKey respectively, lower CIFAR-10.

Inference – CPU (tuned)

Figure A.7 shows the tuned performance of our ImageNet models when running on the i7
CPU, with overall trends shown in Table A.6. We note that tuning on the HiKey CPU (and
GPU) was not practical, since the two variants we attempted took over 140 hours each, so
we do not include any of the 57 variants required for each device. For the dense case on
the i7, we see that spatial pack is consistently the best, matching our observed trends on
tuned CIFAR-10. For our pruned models, we do not see any cases where pruned models are
faster than a dense float32 implementation. This is contrasted with CIFAR-10, where we
observe this behavior in every case.
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(a) EfficientNetB0 on HiKey (b) EfficientNetB0 on Intel i7

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Intel i7

(e) ResNet50 on HiKey (f) ResNet50 on Intel i7

(g) DenseNet161 on HiKey (h) DenseNet161 on Intel i7

Figure A.6: Experiments comparing the compressed ImageNet models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the i7 and HiKey
CPU platforms, without auto-scheduling.
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(a) EfficientNetB0 on Intel i7 (b) MobileNetV2 on Intel i7

(c) ResNet50 on Intel i7 (d) DenseNet161 on Intel i7

Figure A.7: Experiments comparing the compressed ImageNet models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the i7 CPU plat-
form, using auto-scheduling. HiKey results are not included due to impractically high tuning
time.
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Inference – GPU (untuned)

Figure A.8 shows the untuned performance of our ImageNet models on the GPUs, with
overall trends shown in Table A.6. On the Xavier for the dense float32 case, we observe
that spatial pack is the best algorithm for the larger models (ResNet50 and DenseNet161),
and direct is the best for the smaller models (MobileNetV2 and EfficientNetB0). On the
Hikey, for the smaller models GEMM was the best, and for the larger models direct was the
best. However, on the HiKey dense ResNet50 and DenseNet161 experiments using spatial

pack crashed with the error CL_INVALID_WORK_GROUP_SIZE. This means that in one
or more layers of these models TVM is exceeding the number of work items our GPU can
support (see the OpenCL specification for more details [SGS10]). If we run auto-tuning,
TVM can configure the work group size and other GPU parameters, which could avoid this
issue. However, we did not observe this on the Xavier, which has more hardware resources
available.

Sparse spatial pack using weight pruning was consistently the best pruned model across
both GPUs, however only outperformed the baseline in one case, ResNet50 on the Xavier.
On the Xavier, the sparse direct experiments did not halt, even allowing hours for a single
run. GPU memory utilization was at its maximum, suggesting some inefficiency in this
algorithm/hardware combination. Again, auto-tuning may make this variant viable, however
we cannot tune sparse models on GPUs using current versions of TVM (see Section A.1.4).

Quantization tends to give speedups compared to dense float32. Overall, the int8 quan-
tized model performs the best on the Xavier, with the direct algorithm being the fastest in
this case. On the Hikey, float16 GEMM is marginally better for EfficientNetB0 and Mo-
bileNetV2, and weight pruning spatial pack is best for ResNet50 and DenseNet161.

Inference – GPU (tuned)

As discussed in Section A.2.2, collecting tuned results for the HiKey GPU was not practical.
In addition, we again observed no speedup on the Xavier when tuning, hence we do not
include the graphs, since they are identical to the Xavier results shown in Figure A.8.
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(a) EfficientNetB0 on HiKey (b) EfficientNetB0 on Xavier

(c) MobileNetV2 on HiKey (d) MobileNetV2 on Xavier

(e) ResNet50 on HiKey (f) ResNet50 on Xavier

(g) DenseNet161 on HiKey (h) DenseNet161 on Xavier

Figure A.8: Experiments comparing the compressed ImageNet models chosen from obvious
elbows of accuracy, with varying algorithmic primitives, benchmarked on the HiKey and
Xavier GPU platforms, without auto-scheduling.
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Glossary

accuracy Performance on a given task (e.g., number of correctly identified images). 2, 3, 5,
7, 13, 15, 16, 18, 19, 23–26, 46–52, 66, 69, 70, 73, 76–78, 86, 89, 112, 122, 125, 129,
133, 135, 137–139, 141, 145, 146, 148–152, 155

activation function Non-linear differentiable applied to the outputs of some DNN layers.
18, 19, 29, 30, 52, 59, 102, 128

Ansor An auto-scheduling system within the Apache TVM tensor compiler. 8, 38, 39, 57,
59–61, 84, 94–96, 100, 104, 105, 108, 111, 113–116, 118, 120, 123, 124, 134

auto-scheduling The process of automatically generating an optimized schedule for a given
kernel. 1, 8, 55–61, 64, 73, 74, 84, 94–100, 102, 112, 114, 115, 120, 121, 123–128,
130, 134, 135, 141, 142, 145, 146, 151, 152, 155

big.LITTLE Heterogeneous CPU architecture from Arm, coupling relatively lower power
slower processor cores (LITTLE) with relatively more powerful and power-hungry
ones (big). 41, 75, 86, 127, 135

CIFAR-10 A popular small-scale image classification dataset. 4, 12, 13, 44, 78, 85, 132,
133, 135, 137–142, 144–146, 148, 149

co-design Developing a solution which combines techniques from two or more domains. 1,
2, 4, 46, 52, 54, 63, 66, 67, 76, 130

grouped convolution A special case of convolutional layers, which reduces the number of
MACs and parameters required. 7, 8, 10, 24, 25, 47, 50, 77–81, 85, 87, 89, 91, 92,
121–123, 125–128

im2col Rearranges blocks of data into columns, potentially replicating data, to make it more
amenable to matrix-multiplication. Often used in GEMM convolution. 27, 28, 53, 54,
72
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ImageNet A popular image classification dataset. 4, 12, 13, 44, 47, 85, 89, 102, 104, 111,
114, 115, 117, 132, 133, 135, 138, 148–152, 154, 155

inference Mode of operation of a neural network, where we pass it some input and get an
output. 2, 3, 5, 7, 8, 11, 15, 16, 22, 24, 27, 35, 40, 45, 48, 50, 52, 55, 58, 60, 63,
65, 66, 69, 72–78, 80–82, 84–86, 89–98, 100, 104–109, 112, 113, 118, 120–123, 125,
128, 129, 133, 135, 139, 140, 144, 148, 149

kernel A sub-program that implements a given algorithm. 33, 37, 38, 57, 61, 65, 94–96,
98–100, 102, 104–108, 110, 113, 115, 117, 118, 120, 127–129

kernel library A library of optimized kernels for a given set of tasks and hardware plat-
forms. 33, 34, 36, 47, 54–56, 58, 129

knowledge distillation Using a pre-trained larger model to train a more compressed model.
4, 25, 47

learning rate The size of the parameter changes when training a neural network, usually
adjusted dynamically, trending to smaller step sizes. 16, 23, 70, 86, 132, 133

loop unrolling A compiler optimization which replaces loops with the body repeated N

times. 31, 32, 82, 99, 123

ONNX An open source format for AI models, often used as an interchange format between
DNN frameworks. 29, 35, 65, 133, 149

quantization Reducing the range of values that a datum can take. 4, 22–24, 49, 51, 52, 56,
57, 125, 133, 138–140, 144, 148, 149

recursion Defining a problem in terms of itself. 158

ReLU A common activation function, which sets all negative values to zero. 18, 29, 30, 35,
52, 73, 102, 104, 110, 128

roofline model A visuzalization of the peak performance we might expect of a kernel given
the memory and compute limits of the hardware. 5, 6, 39, 128

supervised learning A learning task where we have example input data and output data,
and we must learn the mapping between them. 12, 15

tensor A multi-dimensional array. 26
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tensor compiler A domain-specific compiler for tensor programs. 1, 3, 7–9, 11, 34–38, 50,
52, 55–61, 64–66, 68, 71, 80, 121, 125, 127–131

tensor program A class of software designed for manipulation and calculation with tensors.
1, 13, 36, 56, 57, 60, 82, 94, 96, 98, 122, 124, 126, 128

training Mode of operation of a neural network, where we run a learning algorithm with
training data to update the parameters of the model to better complete some task. 3,
12, 15–17, 20, 22, 23, 26, 40, 45, 46, 49, 52, 58, 65, 86, 123

Transformer A neural architecture characterized by the self-attention mechanism. 4, 20,
21, 46, 47, 50, 67, 75, 107, 108, 111

Winograd convolution A class of algorithms implementing convolutional layers, which
compute in Fourier space. 4, 53, 54, 75, 127
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Acronyms

AI Artificial Intelligence 1, 40, 63, 65, 66, 98,

AOT ahead-of-time 32, 52, 81, 99, 115,

ASIC Application-specific Integrated Circuit 4, 39, 63,

CNN Convolutional Neural Network 4, 21, 24, 26, 27, 29, 30, 46, 47, 49, 50, 53, 55, 67, 78,
111, 112, 117,

CPU Central Processing Unit 4, 8, 33, 36, 37, 39–43, 54, 55, 57, 58, 62, 64, 66, 67, 72, 74,
75, 77, 78, 80, 82, 86, 90, 92, 93, 95, 98, 100, 104, 111–116, 119, 120, 123, 124, 126,
130, 134–136, 139–142, 144, 148, 149, 151, 152,

CSE common sub-expression elimination 31, 32, 35, 82,

CSR compressed sparse row 4, 27, 28, 73, 134,

DAG Directed Acyclic Graph 17, 96,

DCE dead code elimination 31, 32, 35,

DLAS Deep Learning Acceleration Stack 2–10, 12, 13, 29, 39, 40, 43, 44, 46, 54, 56, 62,
64, 65, 70–72, 74–76, 121, 122, 124, 125, 127–130, 132,

DNN Deep Neural Network 1–4, 6–8, 11–19, 21–24, 26, 29, 33–36, 39–56, 58–74, 76–78,
85, 86, 89–96, 98, 99, 102, 104, 105, 108, 109, 111, 112, 114, 117, 121–130, 134,

DSE design space exploration 7, 8, 11, 64–67, 69, 72–74, 76, 122–125, 128, 129,

FPGA Field Programmable Gate Array 4, 57, 63, 64, 67,

GEMM general matrix multiplication 4, 27, 33, 35, 40, 50, 53, 54, 62, 72, 74, 78, 85, 100,
101, 104, 114, 127
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GPU Graphics Processing Unit 2, 4, 33, 36, 37, 39–43, 48, 51, 54, 55, 57, 58, 62, 64, 66,
72, 74, 75, 85, 86, 122, 123, 125–127, 130, 134, 135, 144–146, 148, 149, 154, 155,

GSPC Grouped Spatial Pack Convolution 77–86, 89–93, 123, 126, 127, 130,

IoT Internet of Things 40, 126, 127,

IR Intermediate Representation 30, 31, 36, 57, 58,

ISA Instruction Set Architecture 39, 40, 51, 86,

JIT Just-In-Time 33, 53, 57, 65,

MAC Multiply-Accumulate 7, 24, 25, 35, 50, 51, 78, 79, 82, 85, 86, 88, 89, 92, 121, 122,

NAS Neural Architecture Search 17, 18, 38, 46–48, 63, 76, 123, 125, 128,

NLP Natural Language Processing 13, 20, 21, 44, 47, 112,

SECDA SystemC Enabled Co-design of DNN Accelerators 66, 67,

SGD Stochastic Gradient Descent 16, 86, 132, 133,

SIMD Single instruction, multiple data 4, 27, 36, 42, 58, 62, 65, 82, 96, 100, 134,

TPU Tensor Processing Unit 4, 33, 39, 40, 51, 58, 63,
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