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Abstract

As an emerging concept, the Metaverse has the potential to revolutionize social interaction in
the post-pandemic era by establishing a digital world for online education, remote healthcare,
immersive business, intelligent transportation, and advanced manufacturing. The goal is ambitious,
yet the methodologies and technologies to achieve the full vision of the Metaverse remain unclear.
In this thesis, we first introduce the three pillars of infrastructure that lay the foundation of the
Metaverse, i.e., Human-Computer Interfaces (HCIs), sensing and communication systems, and
network architectures. Then, we depict the roadmap towards the Metaverse that consists of four
stages with different applications. As one of the essential building blocks for the Metaverse, we
also review the state-of-the-art Computer Vision for the Metaverse as well as the future scope.
To support diverse applications in the Metaverse, we put forward a novel design methodology:
task-oriented cross-system design, and further review the potential solutions and future challenges.

Specifically, we establish a task-oriented cross-system design for a simple case, where
sampling, communications, and prediction modules are jointly optimized for the synchronization
of the real-world devices and digital model in the Metaverse. We use domain knowledge to
design a deep reinforcement learning (DRL) algorithm to minimize the communication load
subject to an average tracking error constraint. We validate our framework on a prototype
composed of a real-world robotic arm and its digital model. The results show that our framework
achieves a better trade-off between the average tracking error and the average communication
load compared to a communication system without sampling and prediction. For example, the
average communication load can be reduced to 87% when the average track error constraint
is 0.002◦. In addition, our policy outperforms the benchmark with the static sampling rate and
prediction horizon optimized by exhaustive search, in terms of the tail probability of the tracking
error. Furthermore, with the assistance of expert knowledge, the proposed algorithm achieves a
better convergence time, stability, communication load, and average tracking error.

Furthermore, we establish a task-oriented cross-system design framework for a general case,
where the goal is to minimize the required packet rate for timely and accurate modeling of
a real-world robotic arm in the Metaverse. Specifically, different modules including sensing,
communications, prediction, control, and rendering are considered. To optimize a scheduling
policy and prediction horizons, we design a Constraint Proximal Policy Optimization (CPPO)
algorithm by integrating domain knowledge from relevant systems into the advanced reinforce-
ment learning algorithm, Proximal Policy Optimization (PPO). Specifically, the Jacobian matrix
for analyzing the motion of the robotic arm is included in the state of the CPPO algorithm, and
the Conditional Value-at-Risk (CVaR) of the state-value function characterizing the long-term
modeling error is adopted in the constraint. Besides, the policy is represented by a two-branch
neural network determining the scheduling policy and the prediction horizons, respectively. To
evaluate our algorithm, we build a prototype including a real-world robotic arm and its digital
model in the Metaverse. The experimental results indicate that domain knowledge helps to reduce



the convergence time and the required packet rate by up to 50%, and the cross-system design
framework outperforms a baseline framework in terms of the required packet rate and the tail
distribution of the modeling error.
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Chapter 1

Introduction

1.1 Why the Metaverse?

The Metaverse, fueled by the information "Big Bang," stands out as a potent force driving digital
transformation and is poised to succeed the current network paradigm. Its boundless potential
extends to a complete restructuring of both physical and digital realms, with a particular emphasis
on shaping the architecture of future communication systems [1]. The concept of the Metaverse
was initially introduced in Neil’s book, Snow Crash [2], coinciding with the development of
virtual physical fusion technology. Specifically, it is recognized as a digital world that will
revolutionize the interactions among humans, machines, and environments by providing a shared,
unified, perpetual, and inter-operable realm for participants from all over the world [3]. The digital
world could be a purely virtual space or a digital mirror of the physical world that has the ability
to reprogram the physical world in real time. It lays the foundation for the evolution of different
vertical industries including education, entertainment, healthcare, manufacturing, transportation,
and immersive business. In fact, the contemporary landscape of communication technology is
witnessing a profound synchronic convergence with the digital transformation process. On the
one hand, the medium of transmission is transformed from simple formats (e.g., text, sound, and
picture) with limited options of user engagement (like, retweet) to a variety of forms and storage
of rich information (e.g., HD video, point cloud data, Non-Fungible Token (NFT), etc.) and
diverse operations (haptic control, teleportation). Meanwhile, digital transformation drives the
paradigm shift from the “digital island” represented by the typical standalone XR to a universal
and ubiquitous duality of things in every aspect of life [4].

The Metaverse aims to revolutionize social interaction by providing an immersive environment
for online activities. It can provide new opportunities for business, such as virtual real estate,
in-world advertising, and virtual product sales. It is also believed that Metaverse can promote
remote education by providing a personalized and immersive learning experience. Furthermore,
the Metaverse can enhance healthcare as it will offer new ways for healthcare services and support
virtual consultations, remote monitoring, and telemedicine. Finally, the Metaverse can be applied
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in factory automation by establishing a digital factory to monitor and reprogram the real-world
factory [5].

• Enhanced social interaction: The Metaverse could provide a more immersive and en-
gaging way for people to connect and socialize online. With the Metaverse, people could
interact with each other as if they were in the same physical space, even if they are
geographically dispersed [6].

• Developing Business Opportunities: The Metaverse could create new opportunities for
businesses, such as virtual real estate, in-world advertising, and virtual product sales. These
new opportunities could potentially create new revenue streams for companies.

• Promoting Education: The Metaverse could offer new ways to provide education and
training. It could provide immersive, interactive, and personalized learning experiences,
allowing students to learn at their own pace and in their own way. It could also facilitate
collaboration and communications between students and teachers, regardless of their
physical location [7].

• Enhance Healthcare: The Metaverse could offer new ways to deliver healthcare services
and support. It could enable virtual consultations, remote monitoring, and telemedicine,
allowing healthcare providers to reach more patients and provide more personalized care.

1.2 Task-Oriented Cross-System Design for the Metaverse

This ambitious vision brings significant challenges to the development of next-generation com-
munication networks. It is natural to raise the following questions:

Q1: Is the available infrastructure sufficient for the Metaverse?
To support an application in the Metaverse, the system needs to execute a sequence of

interdependent tasks. A task is an activity that needs to be completed within a period of time or by
a deadline, such as pose and eye tracking, positioning, haptic control and feedback, and semantic
segmentation [4]. The state-of-the-art infrastructure cannot meet the requirements of diverse
emerging applications and tasks in the Metaverse. Specifically, existing input/output systems, such
as the touch screen, keyboard, and mouse, are inconvenient in supporting new tasks. Thus, the new
HCI, including VR, AR, Tactile Internet, and brain-computer interface, will lay the foundation for
the Metaverse. Sensing and communication technologies play critical roles in providing timely
feedback and seamless connections in the Metaverse with a real-world counterpart. To reduce
infrastructure costs, a promising approach is to exploit widely deployed mobile networks for both
sensing and communications. Furthermore, the Sixth Generation (6G) networks will bridge new
HCI and sensing & communication systems. Due to the long propagation delay, executing all
tasks on a global server cannot meet the latency requirements of tasks. A new multi-tier network
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architecture that can efficiently coordinate computing, communications, and storage resources on
the end-user devices, edge/local servers, and global servers is essential to support interdependent
tasks in the Metaverse [8]. In summary, HCI, sensing, communication technologies, and network
architectures will serve as the three pillars of the Metaverse. Even with the above infrastructure,
supporting emerging applications in the Metaverse is not straightforward.

Q2: How to guarantee the KPIs of diverse applications/tasks in the Metaverse?
The highly integrated and multifaceted demands of applications in the Metaverse impose

stringent requirements on KPIs that are much more diverse than KPIs defined in the three typical
scenarios in the Fifth Generation (5G) mobile communication standard, i.e., Enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency communications (URLLC), and Massive Ma-
chine Type communications (mMTC) [9]. Furthermore, considering that one application consists
of multiple tasks, to meet the specific requirements of the application in the Metaverse, we should
analyze the KPIs at the task level, referred to as task-oriented KPIs. For example, to generate
haptic feedback, the system should meet the Just Noticeable Difference (JND) constraint, which
is the minimum difference between two force signals that is noticeable to users. The network
functions and communications KPIs in 5G networks are task agnostic and hence cannot guarantee
task-level KPIs.

The existing communication network design approach divides the whole system into multiple
sub-modules for separate optimization and cannot break the barriers among the sub-modules. As
a result, it is difficult to provide E2E performance guarantees. To support the Metaverse in 6G
mobile networks, we should revisit the following questions:

Q3: What are the issues with the existing design approaches? Do we need new design
methodologies in 6G?

To improve E2E performance, the design of the system between systems has been investigated
in the existing literature [10]–[12]. To guarantee control performance with stochastic wireless
channels and limited communication resources in mission-critical applications, a predictive
control and communication co-design system was introduced in [13], where the scheduling policy
and transmission power are jointly optimized. To achieve substantial gains in spectral, energy,
hardware, and cost efficiency with mMTC, Integral Sensing and communications (ISAC) was
developed in [11] to support sensing and communications simultaneously. Considering that end-
user devices have limited computing, communications, and storage resources, a cloud-edge-end
computing framework-driven solution was introduced in [12]. However, the cross-system design
problems are in general non-convex or NP-hard, and novel design methodologies for real-time
implementation are in urgent need.

Q4: Why Do We Need Task-Oriented Design for the Metaverse?
To realize the grand vision of the Metaverse, we can continue the never-ending race towards

wider bandwidth and higher frequency bands, optimizing existing communication architectures.
However, the wealth of personalized content in Metaverse that served as the catalyst calls for a
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more efficient communication resource utilization architecture that is capable of leveraging the
diversity of user demands. The richness of the Metaverse in terms of applications and transmission
media motivates us to rethink the three questions proposed in Shannon’s information theory,
especially the second and third questions, i.e., the task-oriented semantics of transmission and
its post-transmission effects [14]. The Metaverse’s interconnectedness, shared data storage, and
Artificial Intelligence (AI)-empowering technology provide us more opportunities to think rather
than reconstruct the underlying message, but to enable the receiver to make the right inference or
to take the right action at the right time and context. In this regard, designing the communication
system from a task-oriented perspective is logical and natural. The communication paradigm can
shift from guaranteeing the correct reception of each transmitted bit, irrespective of the meaning
conveyed by the transmitted bits, to focusing on transmitting bits that are key to accomplishing
the goals or tasks by analyzing the semantic context or relevant information [15]. However, how
to apply task-oriented design to the Metaverse is still nascent with many fundamental problems
yet to be investigated in sufficient depth.

Q5: Why Do We Need Cross-System Design for the Metaverse?
The communication system design alone cannot fulfill all the KPIs of the diverse applications

and tasks in the Metaverse. This is because the highly integrated and multifaceted demands of
Metaverse applications impose stringent requirements on KPIs that are much more diverse than
the KPIs defined in the three typical scenarios in the 5G mobile communication standard, i.e.,
eMBB, URLLC, and mMTC. Furthermore, as shown in Fig. 1.1, the three pillar technologies
of the Metaverse, i.e., HCI, sensing and communications, and network architecture are deeply
coupled, where the intermediate signaling processes including information generation, processing,
communications, and utilization (such as reconstruction, control, rendering, actuation). Existing
HCI, sensing, communications, and computing systems are developed separately [4]. This design
approach leads to sub-optimal solutions, brings extra communication overhead for coordinating
multiple tasks, and cannot meet task-oriented KPIs [16]. Cross-system problems are in general
very complicated and may not have well-established models. As a result, most of the existing
analytical tools and optimization algorithms are not applicable. To implement the cross-system
design methodology for Metaverse in 6G, the clear cross-system design framework, optimization
strategy, and fundamental trade-offs between system-level efficiency and performance need to be
investigated.

1.3 Pillars of the Metaverse

1.3.1 Human-Computer Interface

Traditional HCI relies on keyboards, mice, touch screens, etc., and only generates two-dimensional
video or audio signals. However, they are inconvenient to support diverse tasks in Metaverse, such
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Figure 1.1: Three pillars of the Metaverse, i.e., HCI, sensing and communications, and network
architecture.

as pose and eye tracking, positioning, haptic control and feedback, and semantic segmentation.
Different from existing input/output systems that are designed to process video and audio signals,
future HCI should be carefully designed to support these new tasks in the Metaverse.

• XR Head-Mounted Devices: The development of XR devices has greatly improved the
user experience by identifying the mobility of the head-mounted device and rendering
the three-dimensional (3D) video accordingly. Existing XR systems mainly focus on
downlink video streaming. To further enable eye contact and expression reconstruction
in the Metaverse, eye tracking, and 3D modeling techniques should be integrated into
XR systems. By predicting the moving direction of eyes, the XR system can render and
transmit the field-of-view to be requested by users. Thus, we can improve the trade-off
between data rate and latency in wireless XR.

• Tactile Devices: Tactile devices are essential for supporting haptic feedback in the Meta-
verse. With a large number of tactile sensors and actuators, it is possible to recognize
users’ poses and gestures. Once the user hits a virtual item in the Metaverse, the tactile
devices generate feedback to users via vibrations and resistance. Most existing tactile
devices cannot provide tactile feedback for the entire human body. Several issues remain
open in the development of whole-body tactile devices: 1) the battery lifetime of wearable
devices is limited; 2) low-complexity graph signal processing that takes the topology of
the sensors/actuators is not available; 3) the actuators should be controlled by engines and
algorithms to mimic the tactile experience, which remains an open challenge.
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• Brain-Computer Interface: The brain-computer interface can be used for emotion recogni-
tion and reconstruction in the Metaverse. Existing brain-computer interfaces suffer from low
classification accuracy and long processing delay. Due to these issues, the brain-computer
interface may not be able to work as the stand-alone HCIs in the near future, but it may
assist VR devices or tactile devices to improve user experience, as demonstrated in early
trials by Meta.

• Combination of Different Human-Computer Interfaces: Different HCIs have different data
structures, generate responses in different time scales, and may support different tasks in
one application. Developing a system that manages multiple HCIs brings unprecedented
challenges and is crucial for improving the user experience in the Metaverse. To enable
interactions among users with different types of devices, new standards are needed.

1.3.2 Sensing and Communications

Sensing and communication technologies enable timely state updates of real-world devices
and environments in the Metaverse. We expect the sensing and communication technologies
to provide: (1) Reconstructing the real environment into the virtual world to gain immersive
feelings undistinguished between the real and the virtual; (2) Understanding the environment and
empowering users with capabilities that they do not have in the real world; (3) Sharing information
anywhere, anytime, to gain the ability to communicate in an unobstructed and comprehensive
way. Thus, they are critical to the establishment of the digital world. We classify devices and
environments into two categories: devices with communication modules and environments
without communication modules.

• Devices with communication modules: Smart devices equipped with communication mod-
ules can update their states to the Metaverse. For example, a real-world robotic arm
measures the angles, speeds, forces, and torques of the joints and sends the states to a
server for reconstructing the digital robotic arm. As the number of devices increases, the
communication resources become the bottleneck of the Metaverse. Improving the trade-
off between the communication resource utilization efficiency and the synchronization
accuracy/information freshness is a challenging problem.

• Environments without communication modules: Some entities in real-world environments
do not have communication modules, such as trees, buildings, pedestrians, etc. To collect
their states in the digitally twinned Metaverse, we need a large number of external sensors
or cameras. For example, Instant-Nerf is a neural rendering model developed by NVIDIA
that can render 2D photos into 3D scenes in a few milliseconds [17]. To further understand
the environment, semantic segmentation is crucial [18]. Nevertheless, most of the existing
segmentation algorithms require a considerable amount of computation resources, and
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processing time remains the bottleneck of real-time interactions. Therefore, how to achieve:
(1) fast and compact while capturing high-frequency 3d model reconstruction (Sensing), (2)
accurate understanding of complex and changing Metaverse scenes (semantic segmentation
and object detection), (3) reconstructing models to meet stringent physical and functional
constraints is the main challenge.

• Joint Sensing-communication systems: Complex environmental perception and inference in
the Metaverse and ubiquitous communications make a paradigm that combined perception
and communications become one of the possible solutions. The cost of deploying and
operating a large number of sensors and cameras could be extremely high. By integrating
communications and sensing functionalities into widely deployed mobile networks, it is
possible to reduce the cost. Thus, the ISAC system is a practical approach that collects
real-world information for the Metaverse [11]. Note that there are tradeoffs between the
KPIs of different tasks and the resource utilization efficiency of ISAC systems, but a
universal design framework for different tasks is still missing.

1.3.3 Network Architecture

Developing the Metaverse on a global server for all the users and devices around the world would
be very challenging due to long communication delay and limited communication throughput. A
sequence of interdependent tasks should be executed at the central server, edge server, or end-user
device [19]. Thus, the 6G core networks need new network functions for task-level resource
management and task offloading.

Multi-tier computing is believed to be a promising architecture that can coordinate interde-
pendent tasks in the Metaverse by exploiting distributed computing, storage, and communication
resources in central servers, local servers, and end-user devices [8]. For the diverse applications
of the Metaverse and their respective characteristics, multi-tier network architectures can be used
to not only maximize user-personalized requirements but also take full advantage of the resources
available along its continuum. By distributing communications, computational, and storage
capabilities anywhere between the cloud and the user, the potential of a range of computation
and latency-intensive applications in the Metaverse will be unlocked [20]. For example, in VR
streaming services, two streams of 2D videos are transmitted to a head-mounted device, where
they are converted to 3D video. To reduce the weight of head-mounted devices, an alternative
approach is to render the 3D video on the local server equipped at the base station or the wireless
access point. In this way, we can remove the processing units from the head-mounted devices,
and improve the battery lifetime [21].

In addition, the stark contrast between the demanding computing and communication capacity
requirements of the Metaverse applications and the trend toward mobility and miniaturization on
the client side presents a serious challenge to the current network architecture. (1) It is infeasible
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to achieve the global Metaverse by deploying centralized architecture. (2) Diversity applications
in the Metaverse vary greatly for computing and communications, which means not all media
exchange needs real-time performance. Thus, by executing distributed deep learning algorithms
in the multi-tier architecture, the communication overhead for state updates can be reduced
significantly. Nevertheless, improving the overall performance with local observations or limited
information exchange brings significant challenges in distributed algorithm design and network
management.

Meanwhile, multi-tier computing raises new challenges in 6G core networks and Radio
Access Networks (RANs).

• Core Networks: 5G core networks manage resources and quality-of-service at the applica-
tion level. The session management function will create a new protocol data unit session
when there is a new service request. How to coordinate multiple tasks for one application
remains unclear. To address this issue, several promising techniques have been investi-
gated in the existing literature: 1) The authors of [22] developed a semantic-effectiveness
plane task-level information processing. 2) In [23], the authors built a knowledge pool
for reasoning-driven AI-native systems that enable online learning and fast inference of
different network functions.

• Radio Access Networks: Most new HCI and sensing & communication devices will access
to RANs for a better user experience and flexible deployment. As a result, 6G RANs should
support massive devices with diverse KPI requirements. To improve user experience in
real-time interactions, ISAC is a promising technology that exploits a shared multi-antenna
system and advanced signal processing algorithms for data transmission and environment
sensing [11]. In addition, a space-air-ground-sea integrated network is promising to enable
seamless connectivity for global interactions in the Metaverse [12]. As the tasks and
applications in the Metaverse evolve over time, Open-Radio Access Networks (O-RAN)
with programmable network functions can reduce the cost for network deployment and
upgrades significantly [23].

In summary, based on the above characteristics, we propose the task-oriented design frame-
work in the following, which helps us develop the infrastructure.

• Human-Computer Interface: Existing input/output (I/O) systems, such as keyboards,
mice, microphones, and monitors, are mainly designed to process texts, audio, and videos.
They are inconvenient to support fundamental tasks in Metaverse, such as pose and eye
tracking, positioning, haptic control and feedback, and semantic segmentation. Future
HCIs should be designed to support these tasks. Thus, we need a task-oriented design. As
mentioned in our manuscript, new HCIs, such as virtual reality glasses, tactile internet, and
brain-computer interface, will serve as one pillar of infrastructure.

8



CHAPTER 1. INTRODUCTION

• Sensing and Communications: To better support the above tasks in Metaverse, the servers
need to acquire information from users and environments promptly. Nevertheless, this
could be expensive regarding the costs of sensing devices as well as computation and
communication resources. Instead of simply updating 5G KPIs in 6G, we need to deploy
and allocate resources according to the task requirements. This is another motivation for
task-oriented design. Tasks in the Metaverse have unique sensing and communication
needs. Therefore, task-oriented sensing and communication design can help ensure that
the sensing and communication technologies used in the Metaverse are well adapted to the
tasks that users want to perform. The development of this technology can address key issues
such as efficient use of computational resources, improved processing times to alleviate
bottlenecks in real-time interactions, and savings in sensor deployment costs, which are
critical to achieving an immersive and seamless Metaverse.

• Network Architecture: 6G network will bridge the new HCI, sensing & communication
infrastructure, and the digital world on the server. Due to the long communication delay,
executing all the tasks in a global server is impossible. To address this issue, we need
to assign tasks to central servers, local servers, and end-user devices. In other words,
we need network functions to support task-level resource allocation and task offloading.
Meanwhile, to support massive devices with stringent task-oriented KPIs. From a task-
oriented perspective, based on flexibility and user customization requirements, network
architecture can be designed to leverage distributed computing, storage, and communication
resources in central servers, local servers, and end-user devices. This ensures that the
network is optimized for the tasks that users want to perform. The development of this
technology can improve network performance and efficiency, making it easier for users to
interact with the Metaverse.

1.4 Road Map Towards the Metaverse

In this section, we discuss the road map towards the full vision of the Metaverse as illustrated in
Fig. 1.2.

1.4.1 Establish Multi-tier Metaverse in Multi-tier Architecture

The first step toward the Metaverse is to build digital worlds. There are three types of digital
worlds: 1) an imaginary environment that does not have a real-world counterpart; 2) the digital
twins of a real-world environment; and 3) a digital world overlays on the physical world or even
has the ability to reprogram the physical world in real-time. To provide quick responses from the
Metaverse to users, we need to use the computing, storage, and communication resources of a
local server or end-user device. Then, the states of the user or its digital model are updated to

9



CHAPTER 1. INTRODUCTION

 Scenarios Applications Tasks Data formats

Just noticeable difference (JND)

Bilingual evaluation understudy 
(BLEU)

Video quality loss ratio

 Tracking error 

Classification accuracy

Task-oriented KPIs 

Repeatability/Matchability

Signal-to-distortion ration (SDR) 

 Structural similarity index (SSIM) 

Retrieval accuracy percentage

Node-based world similarity and 
edge-based word similarity

Establish digital twins of 
real-world devices and 

environments

Single-user activities in 
Metaverse

Local/Edge interactions in 
Metaverse

Global interactions in 
Metaverse

Modelling 

Monitoring and warning

 Induction 

3D reconstruction

Image retrieval

Semantic segmentation

Entertainment

Education 

Designing and planning

IoT maintainance

Autonomous driving 

Smart home

Telemedicine

Massively multiplayer 
online game

Immersive business

Visual localization

Pose and eye tracking

Object detection

Indoor positioning

Scene understanding

Sensing and communication

Users synchronization

Network coordination 

Texts

Audios

Images

Videos 

Point cloud data

Cartesian poses

Haptic feedback

Classification accuracy

Haptic control and feedback

Figure 1.2: Road map towards the full-vision of the Metaverse.

the global server for synchronization. The multi-tier network architecture lays the foundation for
building multi-tier digital worlds that support real-time interactions among users from all over
the world. Specifically, the raw materials for establishing a Multi-tier Metaverse come from a
multi-layered Metaverse virtual world. Depending on the application scenario, the information is
distributed in different ways for processing content. The interactive information in the Metaverse
can be delivered to the server for processing, while the rendering of the virtual scene can be
processed by the local Graphics Processing Unit (GPU) on the user end-device side.

To build the first type of virtual world (e.g., platforms for online gaming), we first create a
shared space with virtual roles that are controlled by human users. Then, we develop the rules for
information exchange that enable user interactions. For the second type of virtual worlds, we need
to simulate the physical and chemical properties of real-world environments (e.g., mass, density,
viscosity of fluid, and flammability). In addition, the synchronization between virtual worlds
and real-world environments plays a crucial role in real-time decision-making. For example, in
factory automation, the digital twins of the real-world factory can be used to monitor ongoing
manufacturing processes, predict potential faults, and send warning messages to administrators.

Simultaneously, the digital model of real-world objects is created in the virtual world. The
digital model is the prerequisite for achieving all types of interaction modalities. On the one
hand, the digital twins require the virtual world requires a shared sense of space, time, object
presence, and shared rules for information exchange and user interactions (e.g., avatar, gesture,
text, voice, etc.) [24]. On the other hand, the virtual world can reflect the properties of the real
world in real-time, including the object’s physical and chemical properties (e.g., mass, density,
viscosity of the fluid, and flammability) as well as all types of functions. The digital twins
(including both environments and objects) can be used to accelerate prototype design, monitoring,
decision-making, testing, and repair in industrial applications. Representative applications include
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the modeling of virtual environments, digital twins for monitoring and warning offshore energy
facilities conditions, and induction and prediction for operating the supply chain.

1.4.2 Single-User Activities in the Metaverse

For single-user activities, all the virtual objects and environments can be built on the end-user
device, e.g., a personal computer. With the help of various HCI, the user can interact with
everything in the digital world, where several applications in education, entertainment, design,
and planning become possible. Specifically, the single user can participate in a variety of single-
player activities and enjoy an immersive user experience. Based on the constructed scene, a
variety of applications in the Metaverse can be accomplished by relying only on the computing
and communication units of the standalone end devices without the assistance of servers. For
example, the user can wear clothing with massive sensors and devices (e.g., digital textiles, and
exoskeletons) and head-mounted wearable displays or mobile headsets (ultra-high-definition
VR glasses). Humans can 1) synchronize their actions with avatars representing users in the
virtual world, 2) operate with different virtual objects by different approaches (e.g., virtual
touch), and 3) create virtual content (e.g., NFT). Representative applications include immersive
entertainment such as Beat Saber [25], immersive teaching and learning, and design and creation
in the Metaverse. In summary, by synchronizing users’ actions with their digital models in the
Metaverse, the users can operate virtual objects and create virtual content (e.g., driving a vehicle
or painting).

Nevertheless, establishing a digital world on the end-user device is not easy, as the device has
limited computing and storage resources. Thus, the processing delay could be the bottleneck for
real-time interactions. In addition, high motion-to-photon values will send conflicting signals to
Vestibulo-Ocular Reflex (VOR) and then might cause dizziness or motion sickness. To address
this issue, low-complexity 3D reconstruction and segmentation algorithms are in urgent need.

1.4.3 Local Interactions in the Metaverse

In some private networks or local area networks, information is exchanged among devices and
users in a small area and is used collaboratively by multiple users and devices without the
involvement of the Internet. In these scenarios, all the devices and human users can interact with
each other via a local Metaverse. For example, in a smart factory, sensors monitor manufacturing
processes and update their states to the local server, where the digital twins of the factory
are built [5]. In the digital factory, it is possible to simulate the outcomes of different actions.
If an accident is detected in the simulation, the local server sends commands to actuators to
stop the processes in an anticipatory manner. Considering the Human-Robotics Collaboration
scenario, the information from multiple Internet of Things (IoT) devices and digital twins is used
collaboratively to improve productivity and maintenance efficiency. Simultaneously, operators
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can also interact with real-world objects and environments with parallel simultaneous actions
and states in the virtual worlds. The real-world objects and environment can be enhanced from
diversified perceptual degrees (e.g., images, holographic, and voice) via XR technology assists
(e.g., holographic see-through glasses, wearable and miniature projectors, and haptic controllers).
Another application scenario is the connected car, a local base station can integrate information
from multiple vehicles. By reflecting the information to AR/MR devices worn by nearby drivers,
pedestrian safety and driver experience can be improved [26]. Since the data are stored and
processed on a local server that is not connected to the Internet, this approach can protect users’
privacy and avoid security issues.

To enable real-time interaction in the local Metaverse, the latency, reliability, throughput, and
coverage of radio access networks are crucial. Although with high-frequency bands, it is possible
to improve throughput in a radio access network, wireless signals with high-frequency bands
are sensitive to blockages. To achieve ultra-high reliability, multi-connectivity is a promising
approach, where backup links can maintain service continuity.

1.4.4 Global Interactions in the Metaverse

The ultimate goal of Metaverse is to support global interactions for a large number of users
using different types of HCI. At this stage, remote healthcare, immersive business, and online
education will be possible. For example, unlimited numbers of users can access multiple shared
and persisted realms via heterogeneous interaction modalities powered by all types of XR
technology to collaborate in finishing diverse tasks (e.g., live meetings, live concerts, and live
tributes). Users can precept information from both the real world and virtual world, communicate,
create, and share virtual content via diverse tools, and interact with multiple users represented by
the Avatar in a synchronization way. Asynchrony will lead to inconsistent information received
by different users, resulting in inconsistent interaction between each other and affecting user
real-time manners. Representative applications include a variety of smart healthcare, massively
multiplayer online games and social networking, and immersive business.

With the development of AI technology, Metaverse is becoming more and more reliant on
the performance of deep learning models. However, most algorithms work well in small-scale
problems. To apply these algorithms in large-scale networks with diverse applications, scalability,
and generalizability are bottlenecks. The multi-tier Metaverse built upon the multi-tier network
architecture is a potential solution to address the scalability issue. On top of the multi-tier
architecture, deep learning or deep reinforcement learning algorithms can be executed in a
distributed manner. Further considering the diversity of applications and network topology, the
generalization ability of learning algorithms is critical for global interactions in the Metaverse.

In addition, latency remains one of the major issues for global interactions. Specifically,
propagation delay is inevitable in long-distance communications. Stochastic network congestion
leads to long queueing delays. In addition, the re-transmission scheme in the existing Transmission
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Control Protocol/Internet Protocol brings significant latency. Although some interesting ideas
have been put forward to achieve real-time interactions [27], the implementation in large-scale
networks remains a challenging goal. Based on that, the Tactile Internet is one of the potential
key enablers of global user interactions in 6G. The round-trip delay of Tactile Internet should be
less than 1 ms to provide a satisfactory user experience. Nevertheless, electromagnetic waves
can only travel around 300 km within 1 ms. In addition to the propagation delay, the coding delay
is inevitable with traditional source coding. One promising approach to handle coding delay is
to optimize the sampling, prediction, and communication systems jointly [27]. By adjusting the
sampling rate and prediction horizon by a deep reinforcement learning algorithm, it is possible to
improve communication efficiency. Although some interesting ideas have been put forward in
this area, hwo to achieve global interactions in the Metaverse still needs further investigation.

1.5 Computer Vision for Metaverse

1.5.1 Computer Vision

As one of the most popular and prominent interdisciplinary fields within artificial intelligence, the
expeditious progress of Computer Vision (CV) is actively playing as the building block, and trans-
forming every aspect of the Metaverse. This includes the framework of interpersonal interactions,
the IoT, as well as virtual and physical fusion, permeating diverse facets of contemporary society,
etc. 6G is recognized as the key enabler that combines with real-time CV and served as the key
infrastructure to host a range of emerging applications in the Metaverse e.g., connected vehicles,
remote control with avatars. These applications require us to generate timely feedback from the
environment through the real-time transmission of data in various CV formats (e.g., images,
videos, and point cloud data). However, real-time performance heavily depends on communication
networks when sensors and computing resources are separated at different devices or locations. In
addition, this gap is widening between the increased demand for communications due to the rapid
advancement of CV and the load capacity that can be provided by today’s communications. For
example, in VR/AR/XR/MR applications, low-latency and high-date-rate communications are re-
quired to offload compute-intensive tasks to edge servers [21]. In teleportation applications, where
a human operates machines remotely, reliable communications are needed to provide remote
viewing for the operation [28]. In the industrial Metaverse, the high-performance synchronization
of different entities (including machines, robots, environment, humans, materials, etc.) should be
guaranteed for a seamless and safe operation [27]. This has driven us to rethink the technology
path that can sustainably meet the growing communication demands of CV for the Metaverse.
This includes: (1) investigating various emerging communications-enabled CV applications in the
Metaverse. (2) re-examining the demands of CV for specific KPIs in communication systems, (3)
re-thinking whether the current communication design framework is compatible and supportive
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Table 1.1: CV KPIs [29]–[67]
Self-driving

Object
Detection

Image
Segmentation

Pedestrian
Detection

Trajectory
Prediction

Image
Classification

AP/mAP/mAPH
/IoU/mIoU

AP/mAP
/IoU/mIoU

Median IoU
MSE/MAE
/FDE/ADE

OA/F1 Score/
/Accuracy
/Precision

/Recall
Frame Per Second (FPS), Jitter of FPS, Task Completion Time

XR Application
Human Pose
Estimation

Image to Image
Translation

Human Motion
Forecasting

Gaze
Estimation

3D
Reconstruction

MOTA/AP
/mAP/MPJPE
/PCK/PCKh

IoU/mIoU
/MSE/PSNR

/SSIM
/MS-SSIM
/GAN Loss

MAE/MSE

AP
/Gaze Accuracy

/Gaze Direction Error
/Angular error

F1 Score/IoU
/Normal Consistency
/Chamfer-L1/ASD-V

/ASD-O

Frame Per Second (FPS), Jitter of FPS, Task Completion Time
Others

Human-Object
Interaction

Medical Image
Anomaly
Detection

Real-Time Neural
Rendering

Novel View
Synthesis

AP/mAP
/MPJPE/HOI
Classification

Accuracy

Dice Similarity
Coefficient

/Jaccard Index
/PSNR/MSE
/MAE/ROC

/AUC

/Precision
/Recall

/F1 Score
SSIM/LPIPS/PSNR

IoU/SSIM
/MS-SSIM

/PSNR/LPIPS
/FID

Frame Per Second (FPS), Jitter of FPS, Task Completion Time

of various potential CV design frameworks in the long term. 4) Review novel methodologies and
innovative technologies for the next-generation communication network that supports CV and
diverse Metaverse applications.

• The Gap between CV and Metaverse: CV plays a critical role in modeling digital avatars
and rendering 3D scenes to users in the Metaverse. For example, object Recognition and
Segmentation are the basis for understanding and interpreting digital environments, which
involves identifying and classifying different objects in the environment, as well as defining
their boundaries [69]. Modeling and rendering objects with high variability and complexity
requires highly robust and adaptive recognition algorithms. This field advances rapidly
due to the evolution of deep learning techniques. However, the existing communication
infrastructure does not have sufficient storage, computation, and network resources to
support large AI models for real-time CV.

• CV for Real-Time Applications: The performance of CV tasks is critical to ensure the overall
performance of emerging real-time Metaverse applications, e.g., connected vehicles [70],
XR applications with Avatar [71], teleoperation [72], etc. As shown in Table 1.1, the tasks
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Table 1.2: Communication KPIs [68]

Use case (high level)
Availability

(%)

Cycle
time
(ms)

Typical
payload

size
(bytes)

Device
number

Typical
service

area

Motion
control

Printing
machine

>99.9999 <2 20 100
100 m × 100 m
× 30 m

Machine
tool

>99.9999 <0.5 50 ∼20
15 m × 15 m
× 3 m

Packaging
machine

>99.9999 <1 40 ∼50
10 m × 5 m
× 3 m

Mobile
robots

Cooperative
motion control

>99.9999 1 40-250 100 <1 km2

Video operated
remote control

>99.9999 10-100 15-150000 100 <1 km2

Mobile control
panels with

safety functions

Assembly
robots or
milling

machines

>99.9999 4-8 40-250 4 10 m × 10 m

Mobile
cranes

>99.9999 12 40-250 2 40 m × 60 m

in connected vehicle applications include semantic segmentation, trajectory prediction, and
lane recognition. The performance of these tasks is measured by MSE [73], Peak Signal-to-
Noise Ratio (PSNR) [74], and Structural Similarity Index Measure (SSIM) [74]. The MSE
and PSNR metrics measure the per-pixel level similarity between two images, and SSIM,
on the other hand, measures the structural similarity between them. Average Precision
(AP) evaluates the precision in object detection tasks. In XR applications, typical tasks
are human position estimation, image-to-image transmission, human motion forecasting,
gaze estimation, 3D reconstruction, and rendering, which are measured by another set of
KPIs, such as Multiple Object Tracking Accuracy (MOTA) [75], Percentage of Correct
Keypoints (PCK) [62], and SSIM [74]. MOTA is a metric used to evaluate the overall
accuracy of a multiple object tracking system, various aspects, including false positives,
false negatives, identity switches, and mismatches. PCK evaluates the accuracy of keypoint
localization by calculating the percentage of correctly predicted key points within a certain
distance threshold compared to the ground truth key points. Traditionally, KPIs are used
to quantify the performance of specific tasks, such as in connected vehicles, semantic
segmentation, trajectory prediction, and lane recognition are required to perform. On the
other hand, standardized benchmarking involves evaluating the performance of CV models
or algorithms on widely accepted datasets, providing a common evaluation framework
that allows researchers and practitioners to compare their methods against others in the
field [76]. For instance, benchmarking in Car Learning to Act (CARLA) can be configured
to run a number of scenarios that combine different maps, sensors, and weather conditions,
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where developers can analyze and compare the performance of their autonomous driving
algorithms in a unified and standard way [77].

However, communication systems have not been given much consideration, either at the
task level or at the application level. In fact, uncertain communication channels, tight
channel resources, and constrained computation and storage space make it necessary to
jointly consider sampling, communications, computation, and storage loads [19]. The
global balance between different sub-tasks and trade-off between real-time performance
and accuracy performance is required for further investigation [78].

• Communications for Real-Time Applications It is well known that the 3GPP standard
categorizes the communication service into three main branches, i.e.,eMBB, mMTC,
and URLLC [9]. The URLLC has stringent requirements on latency (around 1 ms) and
reliability (up to 99.99999%). Based on that, more fine-grained investigations on the
Quality of Service (QoS) for communication systems in different vertical industries are
provided in the 3GPP standard [9]. For example, the scenarios that correspond most
directly to autonomous driving defined in the 3GPP standard [9], cooperative motion
control that requires > 99.9999 availability, 1ms cycle time (ms), 40-250 bytes typical
payload size, 100 device number, and < 1 km2 typical service area. Nevertheless, it
still cannot fulfill all the KPIs in emerging real-time CV applications like self-driving,
Virtual/Augmented Reality (VR/AR) [21]. It is expected that in the 6G, the communications
can enable KPIs in more diverse dimensions, such as peak data rate, Spectrum Efficiency
(SE)/throughput/Energy Efficiency (EE)/network availability/security as well as low Age
of Information (AoI)/jitter/round-trip delay [79].

• The Gap Between the KPIs of Communications and the Requirements of CV in those

overlapped scenarios: Although the 5G standard has defined the communication KPIs for
different application scenarios related to real-time CV applications, the accurate require-
ments of specifically real-time CV sub-tasks on future communications are still ambiguous.
The ambiguity is all-encompassing and becomes more urgent to resolve with the rapid
iteration of CV technology. In fact, the KPIs of general-purpose communication network
architecture is not defined for specific tasks. In other words, the traditional KPIs, e.g.,
latency, reliability, and throughput, cannot cover the diverse requirements of specific real-
time tasks [9]. This misalignment leads to significant challenges in future communication
system design. Specifically, the existing communication network design approaches divide
the whole system into multiple sub-modules for separate optimization and cannot break
the barriers among the sub-modules. As a result, it is difficult to provide E2E performance
guarantees for the 6G vision [80]. The impact of network resource allocation on KPIs of
real-time CV applications remains unclear, and there is no theoretical model or closed-form
expression that can quantify their relationships. To overcome this difficulty, we need to
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exploit new KPIs and novel design methodologies. Furthermore, relying solely on com-
munication system design is insufficient to tackle challenges in real-time CV applications,
as the overall system performance depends on numerous factors beyond communications.
These factors include sensing, sampling, computing (inference and rendering), storage, etc.
Thus, it is essential to adopt interdisciplinary approaches to address these challenges, where
the distinct characteristics of various real-time CV applications should be considered.

1.5.2 The-State-of-the-Art

Over the past few years, there has been a notable increase in both research and industrial
endeavors focused on enabling real-time CV applications. These endeavors encompass
various areas, such as network architectures, parallel computing, domain-knowledge-
assisted learning, scalability, and generalizability.

Multi-Tier Network Architecture

Multi-tier network architecture with distributed computing capability is believed to be a
promising approach. It provides CV applications access to a wide range of shared computing
resources in the network (including fog, edge, and cloud), and allows each application
to choose the most suitable resource (close to them) to meet its KPI requirements [8]. In
the multi-tier architecture, coordination across multiple tasks in core networks is required.
The authors in [23] built a knowledge pool for reasoning-driven AI-native systems that
enable online learning and fast inference of different network functions and tasks. In
addition, new radio access networks are required to improve the user experience in real-
time interactions. For example, ISAC is a promising technology that exploits a shared
multi-antenna system and advanced signal processing algorithms for data transmission
and environment sensing [11]. Space-air-ground-sea integrated networks aim to enable
seamless connectivity across different networks [12]. Further considering the evolution of
applications in the future, O-RAN offer flexibility in network deployment and upgrades as
the network functions are programmable [23].

Parallel Computing Architecture

To improve the real-time performance of CV applications, parallel computing is promising
in accelerating the training of neural networks, data analytics, simulations, and visualiza-
tions [81]. It has been demonstrated in [17] that the training time can be reduced by 100
times and the rendering can be done in milliseconds by using the small and self-contained
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framework [82] and the hash coding. In addition, high-performance real-time comput-
ing plays an essential role in building digital twins that incorporate real-time sensing,
communications, and control processes [83].

Domain-Knowledge-Assisted Deep Learning

Data-driven AI algorithms are powerful in real-time CV applications, as they do not
rely on theoretical models or assumptions. To improve the training efficiency and final
performance of AI algorithms, domain knowledge plays a key role in feature engineering,
sample selection, value function design, etc [79]. One of the most successful examples is
Neural Radiance Fields (NeRF) which uses domain knowledge to enhance its ability to
generalize to new viewing angles [84].

Scalibility and Generalizability

Most of the existing deep learning methods work well in small-scale CV problems. As
the scale of problems increases, the training/inference time increases rapidly. As shown
in [12] scalability remains an open issue in the context of Metaverse applications. To
support various tasks in different sensing and communication technologies, deep learning
algorithms trained on a data set should maintain good performance in different use cases
after a few steps of fine-tuning. The generalization capability is critical and has attracted
significant attention from the research community [85] [86].

1.5.3 Future Scope

Considering the wide variety of real-time CV applications and their diverse KPIs, it requires
considerable additional research efforts beyond what the communication community has
done so far. This proposed special issue aims to bring together leading researchers in
both academia and industry with diverse backgrounds to investigate cross-system design
methodologies and technologies for real-time CV applications. Thus, we have to

– clarify the CV tasks, communication KPIs, and research challenges in the context of
different real-time applications;

– investigate new network architectures and cross-system design methodologies to
address these research challenges;

– identify the potential issues and benefits of cross-system design and other related
technologies.
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The diverse KPIs of real-time CV applications and the complex integration of CV, edge
computing, and cloud computing via communication networks create unprecedented re-
search challenges for future communication system design, driving the need for novel and
task-specific communication technologies and design methodologies.

Network Architecture – Device, Edge, and Cloud for Real-Time CV

To support real-time CV applications, we need to exploit distributed computing, storage,
and communication resources in local devices, edge servers, and central cloud servers.
This motivates us to revisit network architecture, where the network functions are pre-
determined and are not flexible. As KPIs requirements may evolve over time, network
functions should be programmable and easily implemented with the available resources of
the network. Although huge AI models like ChatGPT are powerful in different tasks, they
require a considerable amount of storage and computing resources and can not support
real-time CV applications. To overcome this difficulty, designing small AI models that
can be implemented at the edge of the network is a promising direction. Meanwhile, the
deployment of network resources should be aligned with the requirement of AI models.

The architecture design also needs to incorporate the privacy issue since many CV applica-
tions involve privacy-sensitive data, for example, images and videos in hospitals or care
homes. Thus, it is important to train AI models in a distributed manner without exchanging
raw data, such as Federal Learning (FL), split learning, and multi-tenant learning. Mean-
while, the network architecture design should better support these learning frameworks.

Immersive Technologies – VR/AR/XR/MR for Real-Time Human-Computer Interac-
tion

Supporting VR, AR, XR, and MR for real-time CV applications via wireless communi-
cations is becoming increasingly attractive in the 5G and the upcoming 6G era. These
applications involve many computing-intensive CV tasks, including complex environmen-
tal analysis, hand position estimation, object classification, and image-to-text translation,
which are difficult for mobile devices. By offloading those tasks to edge servers with much
stronger computing power, the systems can achieve a much better user experience [87]. In
particular, when CV applications involve long-distance communications and user interac-
tion/collaboration across different continents, latency becomes a key issue. The predication
technique (such as generative AI) is a promising candidate to address the challenge and
meet the required CV KPIs, for example, the performance of stable and high frames per
second for all users.
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Cross-System Design – Task/Goal-Oriented, Semantic, Context-Aware Communica-
tions for Real-time CV

Cross-system design is another promising direction in vertical industries, such as robotic
automation and MR. Note that cross-system problems are analytically intractable in general.
To tackle these problems, we should leverage the advances of data-driven deep learning
methods. For example, semantic communications or task/goal-oriented communications
focus on completing a specific task rather than conveying information bits.

Nevertheless, a lot of technical issues in cross-system design remain open. Specifically,
training deep neural networks for Joint Source and Channel Coding (JSCC) or other types
of semantic-aware and task-oriented communications requires a large amount of data
samples and computing resources, which are not feasible for mobile devices. Another
challenge is the generalization of the cross-system design. For example, in task-specific
update policy design, AI models usually need to be re-trained to handle new tasks.

Applications in Vertical Industries

Real-time CV lays the foundation for robotics and unmanned vehicles as it allows computers
or human operators to understand the environment and make decisions in real-time. For
example, in autonomous driving for future transportation, edge inference is a promising
technique to achieve excellent inference performance – including scene segmentation,
pedestrian detection, and trajectory prediction – via strong computer power at edge servers
and multiple data streams collected from different vehicles. Here, joint optimization and
trade-off across communications, computing, and real-time CV tasks are essential for
performance assurance, where large latency (delayed inference) has significant impacts on
driving safety.

In Simultaneous Localization And Mapping (SLAM) for extreme environments, including
mining, rescue and search, and nuclear decommissioning applications, multiple unmanned
aerial/ground vehicles (also called multi-agents) need to exchange/share images and other
sensing data for coordinated mapping and control. Poor communications and resource
management would significantly slow the mapping process.

In applications of digital twins for future manufacturing, for example, safety monitoring
and management, the system uses multiple cameras to detect and track objects (humans,
vehicles, materials, and machines) in real-time, analyze their relationship in the digital twins,
and activate alerts when needed. Here, the delayed CV outputs will cause asynchronization
between real-world objects and their representations in the digital twins and may lead to
the failure of the whole monitoring system.
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1.6 Challenges of Task-Oriented Cross-System Design for the
Metaverse

1.6.1 Data Structure

The data structure of a task depends on the HCI or environment sensing technologies. Traditional
speech and image signals are represented by time-series data and the red-green-blue (RGB)
model, respectively. Nevertheless, due to the diverse human-computer interaction modes in the
Metaverse, the data structure has also changed from being characterized by the existing standard-
ization gird measurements by calculating 1D-2D Euclidean distance to utilizing stereoscopic
and multidimensional features like graph signals. For example, spatial correlation is critical for
tactile signals and brainwave signals and relies on the topology of the sensors. The topology
information is useful in signal processing and may facilitate the execution of tasks. In addition,
the signals generated by a radar system or depth-sensing camera, such as point-cloud data are
converted into 3D tensors in the Euclidean space before they can be processed by convolutional
neural networks. This procedure causes additional computational overhead and processing delay.
To reduce overhead and improve the performance of a task, the authors of [88] developed a
PointNet to handle a range of tasks in environment sensing, such as 3D shape classification and
segmentation. Nevertheless, a widely accepted standard for data storage, processing, or communi-
cations is still missing in the Metaverse, and it will lay the foundation for immersive interactions
among human users, machine-type devices, and environments. Thus, as the great enabler for
enabling human-computer interaction, data structures face challenges in the Metaverse: (1) How
to characterize the features of different data for different applications in the Metaverse, and (2)
How to design the frame structure to cope with a variety of tasks that need further investigation.

1.6.2 Task-Oriented KPI

Diverse tasks in the Metaverse have stringent requirements on a range of KPIs, which are still
difficult to fulfill. For example, in image transmission tasks, an image is first compressed at the
transmitter side, then transmitted over the communication system, and finally reconstructed by
the receiver. The SSIM is used to quantify the image quality degradation caused by these steps.
In 3D reconstruction tasks, point-cloud data repeatability and matchability are the two commonly
used task-oriented KPIs for measuring the similarity of 3D structures. Another example is in
applications that require low-latency feedback, the user-experienced delay should be close to zero,
but the propagation delay could be up to dozens of milliseconds when the communication distance
is hundreds or thousands of kilometers. Furthermore, the KPIs defined in the 5G standard, such as
throughput, latency, and reliability, are not the same as the task-oriented KPIs as illustrated in Fig.
1.2. For instance, in haptic communications, it is natural to raise a question: Do we really need to
guarantee the 99.999% reliability in communication systems in order to achieve the target JND?
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There is no widely accepted standard for processing tactile and brainwave signals. The impact of
network resource allocation on task-oriented KPIs remains unclear, and there is no theoretical
model or closed-form expression that can quantify their relationships. To overcome this difficulty,
we need novel design methodologies.

1.6.3 Multi-Task Processing and Coordination

With the multi-tier network architecture, tasks of an application may be executed by the end-user
device, an edge/local server, or the cloud server. The offloading and coordination of multiple tasks
are not trivial since they are interdependent. Thus, the interdependence and causality between
tasks implicate tasks should be complicated sequentially. For example, in the tactile internet, the
task of perception and understanding as the goal motivation should be performed first, before
completing the task of generating feedback signals to the wearable device. Offloading tasks to
the edge or cloud provides a flexible solution to alleviate the communications and computation
constraints on the end-user devices. However, different tasks have different sequences, deadlines,
and priorities. Therefore, how to offload tasks and coordinate end-user devices, local servers, and
global servers to generate quick response scenarios is still an open question. For some highly
interactive applications in the Metaverse, the end-user device senses the behavior of the user
and then communicates with the local server, where the feedback is generated. Finally, the local
servers synchronize the states of users in a cloud server. Delays or packet losses in any of the tasks
will have a serious impact on the overall performance of the application. To provide a satisfactory
user experience in the Metaverse, we need to break the barriers among sensing, communications,
and computing systems, and jointly design the whole network.

1.6.4 Privacy, Security, and Trust

In the Metaverse, diverse HCI, in-depth use of AI, and high-frequency data exchange also raise
critical issues on privacy, security, and trust [89]. For example, scene reconstruction requires
access to the environment of the room. Brain-computer interface-driven tasks need to measure
and process human brainwave signals. As a result, traditional centralized and single-module
authentication, and data storage, and is no longer sufficient to meet the security challenges.
Decentralized learning algorithms that do not need to share raw data among users and servers are
promising. Even worse, most cross-system designs do not offer a performance guarantee in terms
of classification or regression accuracy. In addition, to provide more realistic scenes and a more
intelligent mechanism that facilitates task performance, intensive use of AI requires a variety of
high-precision privacy data collected from HCI. One potential solution is blockchain technology.
Blockchain technology provides a promising encryption and distribution solution. Based on that,
the Metaverse can be governed by community-led entities known as decentralized autonomous
organizations (DAOs), where all participants have the decision-making power to manage their
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assets. However, hacking incidents still occur due to the low level of standardization and the
continued lack of transparency. More diverse data encryption methods, data sharing protocols,
and cross-domain security and trustworthiness systems need investigation.

1.7 Potential Solutions

1.7.1 Cross-System Design

Existing HCI, sensing, communications, and computing systems are developed separately. This
design approach leads to sub-optimal solutions, brings extra communication overhead for coor-
dinating multiple tasks, and can hardly meet the task-oriented KPIs. To address these issues, a
cross-system design has been investigated in the existing literature. There are several existing
cross-system design approaches. (1) As shown in [22], when dealing with reconstruction tasks
including in-text sentences, sounds, images, and point cloud data, by joint source and channel
coding, it is possible to achieve a better quality of service at low signal-to-noise ratios. Never-
theless, complicated coding schemes may bring extra processing delay, which remains an issue
in ultra-low latency communications. (2) Considering the cost of deploying a large number of
sensors, integrating sensing into communication systems is a promising approach, as cellular
networks have been widely deployed [11]. By utilizing communication signals in environmental
sensing, cellular networks can support a variety of tasks, such as localization, object detection,
and health monitoring. (3) Given the fact that state observations are outdated in some tasks, the
Metaverse needs to respond to users’ actions in an anticipatory manner. To achieve this goal,
prediction and communication co-design is promising, especially for applications in the Tactile
Internet that require ultra-low latency [27]. It is worth noting that cross-system problems are, in
general, very complicated and may not have well-established models. As a result, most of the
existing analytical tools and optimization algorithms are not applicable.

1.7.2 Domain-Knowledge-Assisted Deep Learning

To solve the above cross-system design problems, data-driven deep learning methods are promis-
ing, as they do not rely on theoretical models or assumptions. However, straightforward applica-
tions of deep learning may not generalize well with diverse task-oriented KPIs and data structures
[90]. To address this issue, one should exploit domain knowledge in feature engineering, sample
selection, value function design, etc. When deep learning is adopted in task-oriented design, there
are three major issues. (1) Most of the existing deep neural networks work well in small-scale
problems. As the scale of the problem increases, the training/inference time increases rapidly.
In the Metaverse, there could be millions or billions of users and devices, and thus scalability
remains an open issue. (2) To support various tasks in different sensing and communication
environments, deep learning algorithms trained on a data set should achieve good performance
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in different use cases after a few steps of fine-tuning. This generalization ability is critical for
using deep learning in the Metaverse. (3) Most deep learning algorithms do not offer a perfor-
mance guarantee in terms of classification or regression accuracy. But the KPIs required by some
mission-critical tasks are sensitive to the outcomes of learning algorithms. Improving the safety
of deep/reinforcement learning algorithms by exploiting domain knowledge is a promising and
vital approach.

1.7.3 Universal Design

The Metaverse aims to provide better interactions among users with different cultural backgrounds
and health conditions (e.g., careers, nationalities, abilities or disabilities, etc.). Different users
may have different preferences, habits, and cognition. Meanwhile, they may use different types of
HCI devices with different data structures. The diversity of users brings significant challenges in
the design of the Metaverse, and the universal design is essential for the success of the Metaverse
by considering the diverse needs and abilities of all the users throughout the design process,
standardization, and government regulation. For example, a universal design platform named
Omniverse can meet user demands from different backgrounds (e.g., artists, developers, and
enterprises), whereas Universal Scene Description is promising to be the open and extensible
standard language for the 3D Internet to eliminate barriers among different user communities
[91]. Nevertheless, a lot of effort is still needed in the universal design.

In summary, cross-system design is promising to solve the challenges of task-oriented KPIs
and multi-task processing and coordination. Diverse tasks in the Metaverse have stringent re-
quirements on various KPIs, which are difficult to fulfill. Existing HCI, sensing, communications,
and computing systems are developed separately. This design approach leads to sub-optimal
solutions and brings extra communication overhead for processing and coordinating multiple
tasks. By cross-system design, the interactions between different systems can be exploited to
handle multi-task processing and coordination, thus guaranteeing the KPIs at the task level.

By exploiting domain knowledge on the HCI and sensing technologies, domain knowledge-
assisted deep learning has the potential to meet task-oriented KPIs for tasks with diverse data
structures. Straightforward applications of existing deep neural networks may not be generalized
well for different data structures from different HCI and sensing technologies, such as wearable
tactile devices, brain-computer interfaces, and joint sensing and communication technologies.
To guarantee task-oriented KPIs for diverse data structures, deep neural networks should have
strong generalization ability. We propose to use domain knowledge for feature engineering and
hyper-parameter selections in deep learning algorithms.

Universal design can address the challenge of data structures and task-oriented KPIs by con-
sidering users’ diverse requests and abilities throughout the design process, standardization, and
government regulation. For example, in the context of HCI or environment sensing technologies,

24



CHAPTER 1. INTRODUCTION

universal design can ensure that the network functions are compatible with a wide range of HCI
devices, especially for users with disabilities.

1.8 Future Work and Open Issues

• Scalability and Generalization Ability: Most of the task-oriented design methods work
well in small-scale problems. As the scale of the problem increases, the computation
overhead and processing time in both training and inference increase rapidly. In the
Metaverse, there could be millions or billions of users and devices, and thus scalability
remains an open issue [12]. In addition, to support various tasks in different sensing
and communication environments, deep learning algorithms trained on a data set should
achieve good performance in different use cases after a few steps of fine-tuning [79]. This
generalization ability is critical for using deep learning in the Metaverse.

• Green Communications: The Metaverse in 6G will require high levels of energy to power
the network and the devices used to access it [92]. This makes it difficult to rely solely on
renewable energy sources and requires a more complex approach to energy management.
In addition, The Metaverse in 6G will have a complex network architecture that spans
multiple layers, from edge computing to core networks. Designing an energy-efficient
network that covers all of these layers is a significant challenge.

• Privacy, Security, and Trust: Most task-oriented design methods do not offer a performance
guarantee in terms of classification or regression accuracy. But these KPIs required by some
mission-critical tasks are sensitive to the outcomes of learning algorithms. In the Metaverse,
diverse HCI, in-depth use of AI, and high-frequency data exchange also raise critical issues
on privacy, security, and trust [89]. For example, scene reconstruction requires access to
the environment of the room and the brain-computer-interface participated tasks need to
measure and process human brainwave signals. As a result, traditional centralized and
single-module authentication, data storage, and is no longer sufficient to meet security
challenges [93]. More diverse data encryption methods, data sharing protocols, and cross-
domain security and trustworthiness systems need investigation.
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Related Work

2.1 Task-Oriented Cross-System Design

The task-oriented cross-system design consists of different components including sensing, sam-
pling, compressing, feature extraction, reconstruction, task execution, etc. The task-oriented
KPI can be seen as feedback that can guide the design of these modules in real-time. Each
model takes the input information and task-oriented KPI as the basis to dynamically adjust the
parameters in the corresponding degrees of freedom. Thus, the task-oriented cross-system design
framework can benefit from two aspects. On the one hand, the gap between the task-oriented
KPI and the low-level KPI (e.g., throughput, latency, reliability) provides the opportunity to
save communication resources overhead. Meanwhile, the tasks KPI in the Metaverse provide
customized demands that provide a more satisfying and diverse customized user experience.

2.1.1 Sensing and Sampling

Excessive and unnecessary sensing data in the Metaverse can cause a waste of energy and
communication resources. Based on the task-oriented customization requirements, we can reduce
the communication overhead by designing sensing and sampling strategies. The AoI-based
update policy can be considered as the pioneering approach by connecting task performance
with the time elapsed by the information generating at the source [94]. However, AoI is an
intermediate performance metric that cannot fully capture the specific requirements of the task
and is unaware of the burstiness of the source. For example, when the state of an environment
or device is stationary, there is no need to update the state frequently. When the state changes
rapidly, the source should generate packets and update frequently. Thus, more straightforward
KPIs that quantified the packet importance from the source like MSE between the source and
destination are often used in the design of task-oriented communication systems. However, these
works often assume that the source generation follows specific distributions and expect that these
distributions are sufficiently complete to characterize the source characters [95]. Nevertheless,
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these assumptions are often difficult to sustain in complex application scenarios of the Metaverse.
Based on that, data-driven E2E reinforcement learning is expected to become a mainstream
approach, especially in the background of the large amount of data present and the involvement
of multiple users and intelligence.

2.1.2 Sampling and Feature Extraction

Sampling here refers to the communication system selecting the keyframes (e.g., words, pictures,
point-cloud data) and discarding the others that are not important for the tasks on the time scale.
Meanwhile, for each keyframe, feature extraction can be performed, which refers to detecting and
compressing the corresponding transmission format by extracting key information and filtering
out irrelevant or unimportant information for the task. Therefore, The transmitter can be designed
from the task-oriented perspective in both time and space dimensions, transmitting only selected
and compressed data thus saving energy and communication resource overhead. Benefiting
from the advancement of deep learning especially the popularity of CV, a more intelligent
and precise to extract feature information approach can be performed by using various SOTA
encoder-decoder models (GAN, VAE, ViT diffusion model). In addition, The development of
interpretability of machine learning including the principle of information bottleneck also brings
significant guidance on the extraction of key information [96]. With the guidance of task-oriented
KPIs, different generators and parameters are designed for information extraction.

2.1.3 Reconstruction

Reconstruction refers to interpreting and restoring data to a state where the task can be completed.
It is worth noting that the goal of data reconstruction is not to be as consistent as possible with
the data generated by the source but to satisfy the task. This is particularly important for the
Metaverse, where the computational and communication load required to reconstruct each sent
data from each user in its original form is difficult to estimate and therefore often infeasible. In
addition to the encoder-decoder-based model mentioned in the information extraction, neural
rendering is also seen as a promising reconstruction method. The potential of this method to
reduce communication resources compared to traditional methods based on radar point cloud
data scanning is evident. Dozens of multi-angle 2D images can be modeled in a few seconds to
produce a detailed 3D model [17].

2.1.4 Sampling-Communication Co-Design

AoI is a performance metric widely used in co-design communication systems and sampling
policies (also called state update policies) [97]–[99]. In [97], the authors optimized the sensing
and updating policy for an air pollution monitoring application by minimizing the weighted
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sum of the AoI and the total energy consumption of the device. By adjusting the weighting
coefficients of the AoI and tuning the energy consumption manually, it is possible to achieve
the target trade-off. To collect new data from power-constrained sensors in an Industrial Internet
of Things (IIoT) network, the authors of [98] optimized a scheduling algorithm by decoupling
the multi-sensor problem into single-sensor problems. In [99], the authors considered a status
update problem over an error-prone wireless channel, where the average cost of sampling and
communications was minimized subject to average AoI constraints.

Since AoI is an intermediate performance metric that does not fully capture the requirement
of a specific task and is not aware of the burstiness of the source, it is not a good metric [100]. For
example, when the state of an environment or device is stationary, there is no need to update the
state frequently. When the state changes rapidly, the source should generate packets and update
frequently. For this reason, different performance metrics and design frameworks have been
considered to improve sampling efficiency, e.g., goal-oriented communications [101] and mutual
information [102]. The authors of [101] developed a goal-oriented sampling and communication
policy for status updates over an unreliable wireless channel, where only effective samplings for
lowing real-time reconstruction errors were allowed to be transmitted to the actuator. The results
show that the proposed strategy can significantly improve effective updates and reduce the cost of
actuation errors. [102], instead, used the mutual information between the real-time source values
and the samples delivered to the receiver to optimize the sampling policy, proposing a transmitter
that maximizes the expected mutual information by sending a new packet once the latter is below
a threshold.

2.1.5 Prediction-Communication Co-Design

Prediction plays an essential role in reducing the user-experienced delay in URLLC. To reduce
round-trip delay in a VR application, the authors of [103] proposed to predict, pre-render, and
cache VR videos in an edge server, where Long Short-Term Memory (LSTM) and Multi-Layer
Perception (MLP) neural networks predict body and head motion, respectively. In [104], the
authors considered an AR robotic telesurgical application, where, with the help of prediction,
they could reduce the task completion time by 19% without increasing the manipulation error
rate. The authors of [105] jointly optimized the communications and packetized predictive
control system to minimize wireless resource consumption under the control outage probability
constraint. The results in [106] indicated that prediction and communication co-design could
achieve a better trade-off between reliability and latency than traditional communication systems
without prediction. The authors in [107] proposed a task-oriented prediction and communication
co-design framework in a haptic control scenario, where the goal is to minimize the required
radio resources subject to the low-latency and high-reliability requirements of various tasks.
Particularly, the just noticeable difference (JND) is used as the task-oriented performance metric
system [107].
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2.2 Multi-Tier Computing Architecture

To support diverse applications in Metaverse, a sequence of interdependent tasks should be
executed by some deadlines. In addition, task offloading is critical in the multi-tier network
architecture [12]. The 6G network should be capable of large-scale multi-tier synchronization
to enable the completion of diverse and resource-intensive KPIs in the Metaverse by leveraging
distributed computing, storage, and communication resources in local devices, edge servers, and
central servers [8]. Thus, 6G core networks need new network functions for task-level resource
management and task offloading.

2.2.1 Core Networks

The existing core networks manage resources and quality-of-service at the application level. The
session management function will create a new protocol data unit session when there is a new
service request. (1) Semantic-effectiveness (SE) Plane: To achieve ubiquitous connectivity and
support task-level KPIs in Metaverse, the core network should handle the semantics covering the
transmitted bits in a given application and use case. The authors of [108] introduced a semantic-
effectiveness (SE) plane as a core component of forthcoming communication architectures. This
SE plane enhances the protocol stack by offering standardized interfaces that allow for information
filtering and direct control of the protocol stack. (2) Reasoning-driven AI-native Network: To
achieve a sustainable and self-sufficient network in 6G, the authors of [23] introduced the
reasoning-driven AI-native systems, where the network can continuously accumulate knowledge
and use it to perform operations that would not be possible through excessive reliance on
existing data and re-training mechanisms. Thus, future 6G networks are able to leverage causality
and stochasticity in the data, discern underlying structures, infer logical relationships, and
mitigate semantic noise. (3) The communication network can be abstracted as a neural network
with noise and measured with the mutual information metric at the source and receiver [109].
This assumption is not always feasible in practice in the Metaverse where there are various
heterogeneous networks and the network performance is not always constant due to the user’s
decisions. The dynamic network system and the large number of users make the training of JSCC
significantly more difficult. Nevertheless, for scenarios where multiple people are online in the
Metaverse, scheduling based on a task-oriented communication system can significantly optimize
network performance and reduce network blocking. The user-centered network design implicitly
starts with various task-oriented metrics defined by users to design the network’s queuing policies
software-defined network, or network slicing.
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2.2.2 Radio Access Networks

Most of the new HCI and sensing & communication devices will be connected to RANs for a
better user experience and flexible deployment. As a result, RANs should support massive devices
with stringent KPI requirements. Nevertheless, 5G New Radio does not cover this scenario, where
interference may become the bottleneck. Furthermore, 6G RANs should support ISAC, which
may bring new challenges and opportunities to positioning enhancement, beam management, and
channel feedback.

(1) Integrated Sensing and communications (ISAC): Complex environmental perception
and inference and ubiquitous communications make the ISAC that combined perception and
communications become one of the potential enablers in the future [11]. By simultaneously
utilizing data for conveying information and sensing environment information, it can save
communications, computing, and storage resources, and achieve a more reasonable resource
allocation balance between communications and sensing. This scope, in particular, allows ISAC
to be deployed to serve the applications in the Metaverse. For instance, ISAC can enable real-
time tracking of user movements, enhancing immersion. Additionally, ISAC-related technology
such as massive MIMO and intelligent reflecting surfaces can provide ultra-high bandwidth for
Metaverse VR and AR applications [110].

(2) Space-Air-Ground-Sea Integrated Network (SAGSIN): To achieve a seamless and consis-
tent user experience within the Metaverse, it is imperative to have complete coverage that enables
global sensing and uninterrupted connectivity. SAGSIN deeply integrates space (e.g., satellites),
air (e.g., balloons, drones, unmanned aerial vehicles (UAVs)), ground (cellular/WiFi/wired net-
work), and sea layers, which can enable seamless connectivity across different parts of the
Metaverse, regardless of their locations or environments [111]. Besides, it can enable Metaverse
to leverage advanced network capabilities, such as edge computing, which can improve the
performance and responsiveness of Metaverse applications and services by processing data closer
to the user.

(3) Open-Radio Access Network (O-RAN): O-RAN can enable more efficient and cost-
effective deployment of wireless infrastructure, which is critical for providing reliable and
high-speed connectivity to support the requirements of the Metaverse [112]. The technology
allows network operators to use open interfaces and modular components from different vendors,
facilitating easier network upgrades and scaling. In addition, the interoperability offered by
O-RAN technology can also enable seamless connectivity across different network types and
domains, such as cellular, Wi-Fi, satellite, and edge computing, which is important for providing
ubiquitous and consistent user experiences in the Metaverse [113].
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2.3 Key Enabler for Metaverse

2.3.1 Digital Twins

In Digital Twins applications for future manufacturing, such as safety monitoring and manage-
ment, the system uses multiple cameras to detect and track objects (humans, vehicles, materials,
and machines) in real-time [114]. Then, learning algorithms can be used to analyze their rela-
tionship in the digital twin and generate safety messages. The delayed outputs will lead to a
mismatch between real-world objects and their representations in the Metaverse, which would
result in the failure of the whole monitoring system [115]. However, there is still a research
gap on how to exchange and synchronize data between digital twins and Metaverse platforms.
This includes data formats, protocols, and methods for real-time updates, ensuring the virtual
representations in the Metaverse accurately reflect their real-world counterparts [114]. In addition,
diverse communications, computing, and storage demands from different Metaverse applications
require refined resource allocation, and how to ensure scalability remains an open issue [116].

2.3.2 Extended Reality (XR)

: Supporting XR for Metaverse applications via wireless communication is becoming increasingly
attractive in the 5G and the upcoming 6G era. These applications involve computing-intensive
Metaverse tasks, such as complex environmental analysis, hand position estimation, object
classification, and image-to-text translation. Due to limited processing resources and battery
capacity, it is difficult to execute these tasks on mobile devices. By offloading those tasks to
edge servers with much stronger computing power, the systems can achieve a much better user
experience [87]. However, despite 6G’s promise of ultra-low latency, achieving real-time XR
interactions within the Metaverse requires further exploration [117]. Identifying and mitigating
latency bottlenecks in XR data transmission and processing is vital to avoid disorienting user
experiences. In addition, as XR devices capture and process sensitive user data, ensuring data
privacy and security becomes a pressing issue. Comprehensive research is required to develop
robust security measures that safeguard user data and identities within the Metaverse [118].

2.3.3 Semantic, Task-Oriented Communications for the Metaverse

The communication paradigm can shift from guaranteeing the correct reception of each single
transmitted bit, irrespective of the meaning conveyed by the transmitted bits, to focusing on the
transmission bits that are key to accomplishing the goals or tasks by analyzing the semantic
context or the relevant information [23]. One of the commonly employed design strategies in
semantic communication is the JSCC strategy, which involves the simultaneous training of source
and channel coding components. Recent research indicates that JSCC demonstrates superior
performance in handling reconstruction transmission tasks across various media, encompassing
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in-text sentences, sounds, images, and point cloud data. Notably, it exhibits significant advantages,
particularly in scenarios characterized by low signal-to-noise ratios [109]. However, Metaverse is
expected to handle large amounts of heterogeneous data from various sources and formats. How
to develop semantic data representation and ontology models that enable efficient data exchange,
integration, and interpretation within the Metaverse context still needs further investigation [119].

2.4 Timely and Accurate Modeling for the Metaverse

The concept of the Metaverse was initially introduced in Neil’s book, Snow Crash [2], coinciding
with the development of virtual physical fusion technology. Notable pioneering contributions
have been made in various applications of the Metaverse, including the game networking [120],
autonomous vehicles [121], IoT devices [122], and education [123]. In [120], the authors dis-
cussed the features and challenges of real-time online gaming in the Metaverse, where networking
technologies lay the foundation for immersive and real-time interactions. In the vehicular Meta-
verse, the authors of [121] proposed an auction-based mechanism to allocate physical and virtual
entities in the synchronization service market, where a synchronization scoring rule and a price
scaling factor are employed to improve the total score and protect participants from adverse
selection. In [122], IoT devices were deployed to sense and collect status information of physical
systems for establishing digital twins that mirror their real-world counterparts in real-time. The
Metaverse research agenda for advanced education was overviewed in [123], where enabling
technologies, application scenarios, and core ethical considerations are discussed. The above work
has yielded valuable insights that could be leveraged to advance the development of the Metaverse,
particularly with regard to the conception and refinement of forthcoming communication systems
and network architectures.

2.4.1 Resource Management for the Metaverse

The communications, computing, and storage resources in existing IT and networking infrastruc-
tures are insufficient to support emerging tasks in the Metaverse. A branch of existing studies
strove to address the challenges in task scheduling and resource allocation [124]–[126]. Con-
sidering that the arrival and departure processes of applications in the Metaverse are stochastic,
the authors of [124] formulated a semi-Markovian decision process and optimized the resource
allocation strategy to maximize resource utilization efficiency. In [125], the authors proposed a
novel decentralized Metaverse framework, where sub-Metaverses are deployed on mobile edge
computing servers. To minimize synchronization time, an iterative algorithm was developed
for computing and communication resource allocation. To incorporate federated learning into
industrial Metaverse, the authors of [126] developed a high-performance and efficient system to
address the learning forgetting issue in scenarios with non-independent and identically distributed
data and limited communication bandwidth. The above work revealed some fundamental tradeoffs
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between resource utilization efficiency and KPIs in the Metaverse. Nevertheless, finding the
optimal policy in the Metaverse remains a challenging issue due to its high complexity.

2.4.2 Task-Oriented Cross-System Design for the Metaverse

To fill the gap between communication KPIs and the KPI requirements of specific tasks, task-
oriented cross-system design is a promising approach. The authors of [127] considered an
Age-of-Loop metric for the remote control of autonomous guided vehicles and proposed a goal-
oriented wireless solution that adjusts the data rate to achieve high control accuracy. Their results
showed that with goal-oriented KPI, it is possible to achieve higher accuracy than commonly
used communication KPIs, such as Age-of-Information. In [96], the authors proposed a learning-
based communication scheme that optimizes feature extraction, source coding, and channel
coding in a task-oriented manner to achieve low-latency inference for image classification. The
experimental results of this work indicated that task-oriented communications achieve a better rate-
distortion tradeoff than baseline methods. More recently, the authors of [128] developed E2E task-
oriented resource management by integrating sensing, computing, and communication processes
into a joint design framework, where the artificial intelligence model is split and executed on
edge servers for low-latency intelligent services. To improve user experience in immersive
Metaverse applications, the authors of [129] proposed a user-centered joint optimization approach
to optimize frame generation location, transmission power, and channel access arrangement.
These studies indicated that by task-oriented cross-system design, it is possible to provide a better
user experience and achieve higher resource utilization efficiency. Note that the cross-system
problems are non-convex or NP-hard in general. Finding a near-optimal resource management
solution with low complexity remains a challenging issue.

2.4.3 Comparison of Existing Work in VR/AR/XR/MR

Supporting VR/AR/XR/MR for Metaverse applications via wireless communications is becoming
increasingly attractive in the 5G and the upcoming 6G era. These applications involve computing-
intensive Metaverse tasks, such as complex environmental analysis, hand position estimation,
object classification, and image-to-text translation. Due to limited processing resources and
battery capacity, it is difficult to execute these tasks on mobile devices. By offloading those tasks
to edge servers with much stronger computing power, the systems can achieve a much better user
experience [87]. However, despite 6G’s promise of ultra-low latency, achieving real-time XR
interactions within the Metaverse requires further exploration [117]. Identifying and mitigating
latency bottlenecks in XR data transmission and processing is vital to avoid disorienting user
experiences. In addition, as XR devices capture and process sensitive user data, ensuring data
privacy and security becomes a pressing issue. Comprehensive research is required to develop
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robust security measures that safeguard user data and identities within the Metaverse [118].
Compared with AR/VR applications, the novelty of the Metaverse is summarized as follows,

• Large Scale: The Metaverse aims to be a shared virtual world that encompasses a large
number of users and environments, while AR/VR applications are typically more focused
on specific use cases or applications.

• Integration with the Physical World: The Metaverse aims to seamlessly integrate virtual
and physical worlds, providing a more seamless and immersive experience for users. In
contrast, AR/VR applications are typically limited to virtual environments.

• Decentralization: The Metaverse is being designed as a decentralized network, relying
on peer-to-peer networks and blockchain technology to provide secure and transparent
interactions. This is a departure from the centralized, server-based architecture that is
commonly used for AR/VR applications.

• Economics: The Metaverse is being designed as a platform for digital commerce, enabling
users to buy, sell, and trade virtual goods and experiences. This is a departure from the
more limited economic models that are used in most AR/VR applications.

• Interoperability: The Metaverse is being designed as an open and interoperable platform
that allows for the seamless exchange of virtual assets and experiences between different
virtual environments. This is a departure from the closed, proprietary ecosystems that are
common in AR/VR applications.

2.4.4 Comparison of Existing Works in Digital Twins

The Digital Twins concept dates back to NASA’s Apollo program in 1970 when NASA built a
complete, high-caliber ground-based semi-physical simulation system to train astronauts and
controllers, including the simulation of a wide range of failure scenarios [130]. In 2003, the
Digital Twins were explicitly used by Grieves in his course on “product life cycle management,”
which defines it by physical product, virtual product, and their connection [131]. In 2012, NASA
clarified the concept of Digital Twins and defined it as “integrated multiphysical, multiscale,
probabilistic simulations of an as-built vehicle or system using the best available physical models,
sensor updates, and historical data” [132]. In the white paper on the Cyber-Physical Infrastructure
from the UK government, the digital twins are depicted as “Digital twins typically start life as
simulations or emulations, often modeling a real-life process before it exists.” [133]. Basically,
the digital twins are regarded as the “mirror” of the physical objects, where the data can be
directionally or bidirectionally updated across virtual space and physical space for Digital Twins.
Particularly, the digital models refer to the case where there is no update across the two spaces
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and use digital shadows to refer to the case where there is a one-directional update from the
physical space to the virtual space, as specified in [114].

Significant contributions have been made in the field of digital twins powered by 5G/6G.
The authors in [134] proposed a deep reinforcement learning approach to solve the placement
and migration problems of digital twins assisted by edge computing while minimizing the
synchronization delay between digital twins and physical objects. The work in [122] proposed
a resource allocation algorithm for synchronizing IoT devices with their digital models in the
Metaverse by using a game-theoretic framework. The authors in [135] proposed an edge continual
learning framework that can accurately synchronize a physical object with evolving affinity with
its digital twin. In particular, the digital twin is modeled as a Deep Neural Network (DNN) at
the wireless network edge to model an autonomous vehicle traversing a dynamic environment.
Instead of using a centralized framework, the authors of [122] proposed a framework that
jointly synchronizes Digital Twins and sub-Metaverses in a distributed Metaverse framework.
Nevertheless, diverse communications, computing, and storage demands from different Metaverse
applications require a refined resource allocation. Finding the optimal policy in the Metaverse and
ensuring scalability remains a challenging issue due to its high complexity. We have compared
our work with existing related works in Table 2.1.

Table 2.1: Existing Works on Digital Twins
Existing Cross-system Real-world Prototype User-Centralized Task-oriented Improved DRL Algorithm E2E
Works Design Implementation Metaverse KPI with Domain Knowledge Training
[134] ✓ ✓
[122] ✓ ✓
[136] ✓ ✓ ✓
[135] ✓
[137] ✓ ✓
[138] ✓ ✓ ✓
[139] ✓ ✓ ✓ ✓
[125] ✓ ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓

2.5 Summary of Contributions

In this thesis, we introduce the task-oriented cross-system design for the Metaverse in the
6G era. we aim to address the following fundamental issues: 1) What are the research gaps
between the 5G/6G networks and the Metaverse? 2) How to eliminate the gap between traditional
communication KPIs defined in the 5G standard and task-oriented KPIs in the Metaverse? 3)
How to implement task-oriented cross-system design in the Metaverse, including sampling,
communications, prediction, control, and rendering? 4) How to utilize task-oriented cross-system
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domain knowledge to guide the E2E training of Deep Reinforcement Learning (DRL) algorithms?
The main contributions of this work are summarized as follows:

• We holistically illustrate the three infrastructure pillars that the Metaverse will be built
upon, and depict the roadmap toward the full vision of the Metaverse. We comprehensively
review the challenges of task-oriented design in the Metaverse; To tackle these challenges,
we put forward potential solutions from a system-level perspective. We also review the
existing related work from different perspectives including task-oriented cross-system
design, multi-tier network architecture, as well as timely and accurate modeling in the
Metaverse.

• We establish a task-oriented cross-system design for a simple case, where sampling,
communications, and prediction modules are jointly optimized for the synchronization
of the real-world devices and digital model in the Metaverse. Specifically, the sampling
rate and the prediction horizon are jointly optimized to minimize the communication load
subject to a MSE constraint. To solve the optimization problem, we propose a Knowledge-
assisted Constrained Twin-Delayed Deep Deterministic (KC-TD3) algorithm by combining
DRL techniques with expert knowledge of sampling, communications, and prediction.
Specifically, the following learning techniques are applied to improve the DRL algorithm:
1) extension of double Q-Learning, 2) state-space reduction, 3) interdependent action
normalization, and 4) accelerated primal-dual policy optimization (APDO).

• We establish a task-oriented cross-system design framework for a general case, where
sensing, communications, prediction, control, and rendering are jointly considered for
modeling a robotic arm in the Metaverse. The scheduling policy and the prediction horizon
are jointly optimized to minimize the required packet rate to guarantee a modeling error
constraint. We propose a C-PPO algorithm by integrating domain knowledge into the
advanced Proximal Policy Optimization (PPO) algorithm. Specifically, 1) the Jacobian
matrix, which is widely used for analyzing the motion of robotic arms, is included in the
state of DRL to improve the training efficiency of C-PPO. 2) The Conditional Value-at-
Risk (CVaR) of the state-value function that characterizes the long-term modeling error
is applied to formulate the constraint. 3) A two-branch neural network is developed to
determine the scheduling policy and the prediction horizons.

• We build a prototype system including a real-world robotic arm and its digital model
in Metaverse, where the Nvidia Issac Gym platform is used. Extensive experiments are
carried out in the prototype to evaluate the proposed task-oriented cross-system design
approach. The experimental results show that our C-PPO outperforms several benchmark
algorithms in terms of convergence time, stability, packet rate, and modeling error, and the
cross-system design framework outperforms a baseline framework in terms of the required
packet rate and the tail distribution of tracking errors.
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The rest of this thesis is organized as follows. In Section 3.2, we propose the cross-system
design framework and formulate a joint design problem that includes sampling, communications,
and prediction components in one optimization problem. In Section 3.6, we develop the KC-TD3
algorithm to optimize the sampling and prediction policy while minimizing the communication
load. Section 3.8 describes the prototype we used to verify our method and Section 3.9 provides
performance evaluations. The Section 3.11 concludes the first technical work. For the second
technical work, in Section 4.1, we propose the task-oriented cross-system design framework
where all subsystems, i.e., sensing, communications, reconstruction, prediction, control, and
rendering, are elaborated in detail. In Section 4.3, we develop the C-PPO algorithm to optimize the
scheduling and prediction policy while minimizing the communication load under the constraint
of CVaR. Section 4.5 describes the prototype and provides performance evaluations. Section 4.6
concludes the second technical work. Finally, chapter 5 concludes the thesis and discusses the
open issues of task-oriented cross-system design for the Metaverse.
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Synchronizing the Real-World Device and
Digital Model in Metaverse - Simple Case

3.1 Introduction

Facilitated by the rapid development of AR, VR and MR, the metaverse is expected to change our
daily lives in different aspects, such as shopping, social interaction, healthcare [140], education [7]
and gaming [141]. One of the main challenges is providing an immersive and highly interactive
experience [142], which requires synchronization between the physical and virtual worlds to
ensure smooth user motion tracking and timely feedback. Indeed, poor synchronization can lead
to chaotic interactions and dizziness [143]. Besides, in mission-critical applications assisted by
the Metaverse, even slight out-of-synchronization between a real-world device and the digital
model may cause serious consequences [139].

The synchronization performance can be characterized by three key metrics: Motion-To-
Photon (MTP) latency, data rate, and packet-loss rate. MTP latency refers to the time between a
user’s action and the corresponding effect displayed in the virtual world [144]. In applications
that require haptic feedback, the required MTP should be less than 1 ms [145]. The data rate,
i.e. the maximum rate of data transfer across the network, is the bottleneck for most multimedia
applications [146], especially when a large amount of data is generated by multimedia sources
– e.g. High-Definition video, AR/VR/MR, gaming, massive sensor networks, etc. Further, the
packet-loss rate, i.e. the percentage of packets sent by a transmitter but not received by the
receiver, is crucial for mission-critical applications, such as remote robotic control, smart-factories
monitoring, and online healthcare [147].

It is very challenging to meet the three key performance metrics in practice. Although the
three use cases have been considered the 5G cellular networks, eMBB, URLLC and mMTC,
the requirements in metaverse cannot be fulfilled; indeed, while 5G New Radio would allow
a sub-millisecond delay in the radio access network, the E2E delay is still far from the MTP
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requirement [4]. Moreover, to support interactive applications globally, the Metaverse requires an
extremely high data rate, far beyond the capabilities of 5G networks at 50 Gbits per second [9].

Recently, researchers started to investigate interdisciplinary approaches beyond conven-
tional communication system designs. The existing literature has two branches of related work:
sampling-communication co-design [97]–[102] and prediction-communication co-design [103]–
[106]. (1) Sampling-communication co-design uses AoI, mutual information, or goal-oriented
semantics to down-sample the information/packets at the transmitter side; thus, the task is com-
pleted with fewer communication load after reconstructing the original information at the receiver
side. (2) Prediction-communication co-design, instead, predicts a device’s future state based on its
historical states; if the prediction horizon equals the communication delay, the user’s experienced
delay is zero [148]. In addition, if the communications present packet losses, the same approach
can infer the missing states.

Considering that sampling, communications, and prediction are closely interconnected and
interdependent, we argue that it is possible to improve the performance compared with the
above existing work by combining the three. For example, suppose that a predictor can estimate
missing information in a longer prediction horizon; in that case, the overall reliability is less
sensitive to packet losses in communications, and the sampling rate can be reduced. Nevertheless,
prediction and reconstruction errors may deteriorate the user experience; still, the impact on
the synchronization in the Metaverse remains unclear, and a coherent design framework that
combines sampling, communications, and prediction is not available in the existing literature.

In this work, we demonstrate how to synchronize a real-world robotic arm and its digital
model in the Metaverse by sampling, communications, and prediction cross-system design. We
establish a framework for minimizing the average communication load under the constraint of
the average tracking error between a real-world robotic arm and its digital model. Then, we
propose the KC-TD3 algorithm to adjust the sampling rate and the prediction horizon, where
expert knowledge and advanced reinforcement learning techniques are exploited. In addition,
we build a prototype of the proposed real-time robotic control system with a digital model in
the Metaverse. The results of our experiments show that the proposed cross-system framework
can significantly reduce the communication load in practical scenarios with communication
packet losses. Compared to several benchmarks, our KC-TD3 algorithm converges faster and can
guarantee the average tracking error constraint.

3.2 Cross-System Design Framework

In this section, we describe the proposed framework and formulate the cross-system design
problem as the foundation of our algorithm. As shown in 3.1, we consider the synchronization
between a real-world device and its digital model in the Metaverse. Specifically, a sensor of the
device first measures its trajectory. Then, the data are sampled, i.e. decimated, and transmitted to

39



CHAPTER 3. SYNCHRONIZING THE REAL-WORLD DEVICE AND DIGITAL MODEL IN
METAVERSE - SIMPLE CASE

Feedback link

Forward link

t

Trajectory

Real World Metaverse

t

Trajectory

t
Sensing

...

Sampling

Sampling 

rate 1 

Sampling 

rate 2 

Segment 

length 1

Segment 

length 2

... t ... t

Reconstruction

t...

Prediction

Figure 3.1: Proposed cross-system design framework to synchronize a real-world device and its
digital model in the Metaverse.

the Metaverse, where it can be reconstructed and used to predict the future trajectory. To reduce
the latency between the real-world devices and the digital model in the Metaverse, the digital
model of the device follows the predicted trajectory and feeds back the prediction results to the
real-world devices. Finally, the device compares its trajectory with the predicted one and adjusts
the sampling rate and the prediction horizon. As shown in Fig. 3.2, time is discretized into slots.
The E2E delays in the forward and feedback links of long-distance communication networks are
denoted by Dd and D f (slots), respectively. We assume that both delays are bounded by Dmax, i.e.
if the delay of a packet is longer than Dmax, it is dropped by the system.

The trajectory of the device is measured by the sensor in each time slot. We can subdivide
raw sensor measurements into sequences, which we call segments; we denote the k-th segment
by T (k) = {τk(i) | i = 1, . . .Wk}, where τk(i) are sensor readings and Wk is the length of the
segment T (k). We assume that the length of each segment is larger than the communication
delay. As such, the k-th segment can arrive at the receiver by the end of the (k+1)-th segment.
Thus, we have the following constraint

Wk ≥ Dmax. (3.1)

Since the raw trajectory samples are highly correlated in the time domain – and thus the
data packets – they are highly redundant. For this reason, to reduce the communication load,
we can subsample the raw data from the sensor and then transmit it to the cloud server via the
long-distance communication network. Each trajectory segment is sampled at a fixed rate r(k).
Let T̃ (k) = {τ̃k(i) | i = 1, . . .nk} be the sampled trajectories of the k-th segment, where nk is the
number of packets sent by the transmitter.
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Figure 3.2: The timing sequence of the proposed cross-system design framework (The senor
belongs to the real-world device for data generation and the transmitter belongs to a local server;
The receiver and functions for construction and predication are deployed at the cloud server that
operates the Metaverse).

After the reception, the cloud server reconstructs the original trajectory from the sampled
one – we denote it by T̄ (k) = {τ̄k(i) | i = 1, . . .Wk} – and, given the last historical trajectories
T̄ (1),T̄ (2), . . .T̄ (k), predicts the future trajectory of the device, i.e. T̂ (k+1) and T̂ (k+2)
of length Wk+1 and Wk+2, respectively. As such, the prediction horizon needs to be

H(k+2) =Wk+1 +Wk+2. (3.2)

Considering that the communication delay in the feedback link does not exceed Dmax, which is
shorter than Wk+2, the device obtains T̂ (k+2) by the end of the (k+2)-th segment, T (k+2).
By measuring the average tracking error, which is defined as the MSE between the true trajectory,
T (k+2), and the predicted trajectory, T̂ (k+2), the system can adjust the sampling rate and
the length of the (k+3)-th segment Wk+3. According to (3.2), by adjusting the length of each
segment, we adjust the prediction horizon. Besides, the sensing data of the real-world device are
displayed to the user by different equipment (e.g., High-Definition Screen, AR, VR, glasses) via
local communication networks (e.g., High-Definition Multimedia Interface (HDMI), or other
outputs ports).
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3.3 Sampling, Reconstruction, and Prediction

3.3.1 Sampling

The transmitter only sends the sampled packets to the receiver, residing on the remote server.
Denoting the number of samples of the k-th segment by nk, the sampling rate of the k-th segment
is given by

r(k) =
nk

Wk
. (3.3)

As a result, the sampled trajectory can be obtained as follows,

τ̃k (i) = τk

(⌊
Wk

nk

⌋
· (i−1)+1

)
, i = 1, ...,nk. (3.4)

where ⌊·⌋ represents the floor function.

3.3.2 Reconstruction

In digital signal processing, there are several up-sampling methods for state reconstruction,
such as inverse fast Fourier transform, repetitions of the last received state, linear interpolation,
and barycentric interpolation [149]. Without loss of generality, due to its wide adoption, and
its simplicity, we adopt linear interpolation [150]. The relationship between the reconstructed
trajectory and the sampled trajectory is given by

T̄ (k) = fI(T̃ (k);θI), (3.5)

where θI are the parameters for the interpolation function.

3.3.3 Prediction

We utilize a MLP that takes the historical trajectory as its input and generates the predicted one.
The relationship between the input and output of the predictor in the tk+1-th slot can be expressed
as

[τ̂k+1 (tk+1−Wk+1 +1) , ..., τ̂k+1 (tk+1 +Wk+2)]

= fP(τ̄ (tk+1−Lin−Wk+1) , τ̄ (tk+1−Lin−Wk+1 +1) ,

..., τ̄ (tk+1−Wk+1) ;θP), (3.6)

where Lin is the length of the historical trajectory and θP represents the MLP parameters.
We ignore the subscript k of the τ̄ since the input of the predictor includes multiple trajectory
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segments. It is worth noting that the value of Lin is determined by the temporal correlation of the
trajectory and does not depend on the length of the k-th segment, Wk.

3.4 Tracking Error and Communication Load

3.4.1 Tracking Error

The tracking error of the k-th segment, denoted by e(k), is given by

e(k) = MSE(T (k),T̂ (k))

=
1
|Wk|

Wk

∑
t=1

(τk(i)− τ̂k(i))
2, (3.7)

where τk(i) is the trajectory measured at the i-th time slot in the k-th segment, and τ̂k(i), for i =

1, ...,Wk, is the prediction trajectory.

3.4.2 Communication Load

We assume that the communication load is proportional to the packet rate of the system. For
example, in Orthogonal Frequency-Division Multiplexing (OFDM) communication systems
(adopted in the 4-th generation and 5-th generation cellular networks), the time-frequency
resource blocks occupied by a packet are determined by the packet size and the channel gain [9].
If the packet size and channel gain are stationary, the average resource blocks allocated to a device
are proportional to the packet rate (i.e., the sampling rate in our system). Since the number of
packets to be transmitted for the k-th segment is nk, the required radio resource blocks to transmit
the k-th segment of the trajectory are proportional to nk. Therefore, to minimize the required
radio resource blocks for this service, we minimize the sampling rate subject to a constraint on
the MSE in (3.7).

3.5 Problem Formulation

To reduce the communication load subject to the MSE constraint, we optimize the sampling rate
and the prediction horizon. The problem can be formulated as follows,

min
H(k),nk

lim
N→+∞

1
N

N

∑
k=1

r(k) (3.8)

s.t. lim
N→+∞

1
N

N

∑
k=0

e(k)≤ Γc, (3.8a)
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where N represents the number of segments and Γc is the required average-MSE threshold;
this latter is dependent on specific applications and is considered fixed for both training and
deployment.

3.6 Constrained Deep Reinforcement Learning for Optimizing
Sampling, Prediction, and Communications

The problem (3.8) is a sequential decision problem and can be re-formulated as a Constrained
Markov Decision Process (CMDP). To solve the problem, we integrate expert knowledge into the
primal-dual Deep Deterministic Policy Gradient (DDPG) algorithm and develop the KC-TD3
algorithm.

3.6.1 CMDP Formulation

State: The state observed by the device by the end of the k-th segment (the tk-th time slot)
includes the last two trajectory segments measured by the device, T (k−1) and T (k), and those
predicted by the cloud server, T̂ (k−1) and T̂ (k). The predicted trajectory segments depend
on the reconstructed historical trajectory T̄in(k) = τ̄(tk−Lin−Wk−Wk−1), ..., τ̄(tk−Wk−Wk−1).
As shown in (3.4) and (3.5), T̄in(k) is determined by the true trajectory from the (tk−Lin−Wk−
Wk−1)-th slot to the (tk−Wk−Wk−1)-th slot, as well as the sampling rate and the prediction
horizon.

Action: The action to be taken by the end of the k-th segment includes the length of the
(k+1)-th segment, Wk+1, and the number of samples to be transmitted nk+1 (equivalent to the
sampling rate (rk+1)). Thus, the action is denoted by ak = (Wk+1,nk+1). For convenience, we
denote two actions as a pair denoted by ak = [a1

k ,a
2
k ], where a1

k =Wk+1 and a2
k = nk+1. Based on

this definition, we have a1
k ∈ {Dmax, ...,Wmax} and a2

k = 1, ...,a1
k .

Instantaneous Reward and Cost: Given the state and action at the end of the k-th segment,
the instantaneous reward is the negative of the sampling rate and the cost is the MSE of the
(k+1)-th segment. According to (3.3) and (3.7), we have rk =−r(k+1) and ck = e(k+1).

Policy: The agent follows a deterministic policy denoted by µ : ak = µ (sk|θ), where θ

represents the parameters of the policy.
Long-Term Reward and Long-Term Cost: Following the policy µ (·|θ), the long-term

discounted reward is given by

Rµ(·|θ) = E[∑
∞

k=0 γ
krk], (3.9)
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where the γ is the discount factor. Similarly, the long-term discounted cost under the policy µ(·|θ)
is given by

Cµ(·|θ) = E[∑
∞

k=0 γ
kck]. (3.10)

CMDP Formulation: The goal is to find the optimal policy µ∗(·|θ ∗) that maximizes the
long-term reward Rµ(·|θ) subject to the constraint on the long-term cost Cµ(·|θ). Thus, the problem
can be reformulated as follows:

µ
∗(·|θ ∗) =arg max

µ(·|θ)
Rµ(·|θ) (3.11)

s.t. Cµ(·|θ) ⩽
Γc

1− γ
. (3.11a)

To utilize DRL to solve the problem, we first prove that the transitions of the system follow an
MDP (see the proof in Appendix A). The Lagrangian function of the constrained optimization
problem is defined as follows [151],

Γ(µ(·|θ),λ ) = Rµ(·|θ)−λ (Cµ(·|θ)− Γc

1− γ
), (3.12)

where λ is the Lagrangian multiplier. Then, the constrained problem can be converted to the
following unconstrained problem,

(µ∗(·|θ ∗),λ ∗) = argmin
λ⩾0

max
µ(·|θ)

Γ(µ(·|θ),λ ). (3.13)

3.6.2 Preliminary of Primal-Dual DDPG

Primal-dual DDPG is an off-policy method to solve Constrained Markov Decision Processes
(CMDP) [152]. It combines the DDPG algorithm with the primal-dual method to find the optimal
policy and the dual variable. The policy, the long-term reward, and the long-term cost are
represented by three neural networks, and we denote them by µ (·|θ), QR (·|φ R) and QC (·|φC),
where θ , φ R, and φC are the parameters of these three neural networks, respectively.

During the training process, the corresponding action generated by the actor-network is given
by

ak = clip
(
µ (sk|θ)+ clip(ε,−c,c),aLow,aHigh

)
, (3.14)

where ε is the White Gaussian Noise with distribution ε ∼N (0,σ), [aLow,aHigh] is the action
space, and

clip(x,c1,c2) = min(max(x,c1) ,c2) . (3.15)
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After taking action ak at the k-th step (i.e., selecting Wk and nk in the last time slot of the k-
th trajectory segment in our system), the system observes the instantaneous reward and cost,
and transits from sk to sk+1. The transition is denoted by Dk

∆
= ⟨sk,ak,rk,ck,sk+1⟩, which is

stored in the replay memory, M . In each training step, a number of transitions (mini-batch)
are randomly selected from replay memory M and are used to optimize θ , φ R, and φC. We
denote Dki = ⟨ski,aki,rki,cki,ski+1⟩ , i = 1,2, ...,Nbatch as the i-th transition in the k-th episode of
the training stage, where Nbatch is the batch size. To optimize the critic and cost neural networks,
the Bellman equation is utilized. The target reward and cost functions can be expressed as follows:

QR (ski,aki) = r+ γQR (ski+1,µ (ski+1|θ)|φ R) , (3.16)

QC (ski,aki) = r+ γQC
(

ski+1,µ (ski+1|θ)|φC
)
. (3.17)

Then, the long-term reward and long-term reward cost neural networks are updated by using
the mean-squared Bellman error (MSBE) loss function which is derived as follows

L
(
φ

R)= (3.18)

1
Nbatch

Nbatch

∑
i=1

[(
QR (ski,aki)−QR (ski,aki|φ

R))2
]
,

L
(

φ
C
)
= (3.19)

1
Nbatch

Nbatch

∑
i=1

[(
QC (ski,aki)−QC

(
ski,aki|φ

C
))2

]
.

In primal-dual DDPG, the actor policy is updated by maximizing the Lagrangian function in
(3.12), where the long-term reward and the long-term cost are replaced by the critic network and
the cost network, respectively, i.e.,

max
θ

E
[
QR (ski,aki)−λQC (ski,aki)

]
. (3.20)

After that, the dual variable λ is updated by gradient descent to minimize the Lagrangian
function according to

λ
(k+1) =

[
λ
(k)
i +βk

(
QC
(

ski,µ (ski|θ)|φ
C
)
− Γc

1− γ

)]+
, (3.21)

where βk is the step size and [x]+ = max{0,x}.
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3.7 KC-TD3 Design

The straightforward application of primal-dual DDPG in our problem can cause several issues (to
be discussed in the following). To improve the performance in the training process of primal-dual
DDPG, we propose to exploit advanced reinforcement learning techniques and expert knowledge
on sampling, communications, and prediction including 1) extension of double Q-Learning,
2) state-space reduction, 3) interdependent action normalization, and 4) APDO. The resulting
approach is KC-TD3.

3.7.1 Extension of Double Q-Learning

The overestimation bias of the critic network will lead to poor performance when optimizing the
actor-network [23]. Similarly, with primal-dual DDPG, if the cost network is underestimated,
the constraint cannot be satisfied. To address the first issue, two critic networks are trained to
approximate the state-action value function in double Q-Learning, where the target value of
the Bellman equation is the smaller one of the two critic networks. Thus, the target state-action
reward value QR (ski,aki) is expressed by

QR (ski,aki) = r+ γ min
i=1,2

QR
φR

i

(
ski+1,µ (ski+1|θ)|φ R

i
)
, (3.22)

where QR
φR

i
is the estimated state-action value function from the i-th critic network with parameter

φ R
i . As an extension of double Q-Learning, the target cost values are also estimated by two cost

networks, which can be expressed as follows:

QC (ski,aki) = r+ γ max
i=1,2

QC
φC

i

(
ski+1,µ (ski+1|θ)|φC

i

)
, (3.23)

where QC
φC

i
is the estimated state-action cost function of the i-th cost network with parameter φC

i .

3.7.2 State-Space Reduction

The original state s(k) consists of two trajectory segments measured by the device, Tin(k−1) and
Tin(k), and that predicted by the cloud server, T̂in(k−1) and T̂in(k). However, the dimension of
the state is dynamic since the length of each trajectory segment depends on the action Wk. One
possible approach is to replace the trajectory segments with the input of the prediction algorithm,
T̄in, which relies on the measured trajectory segments and determines the predicted trajectory
segments. Although the dimension of T̄in is fixed, it can be large when the correlation time of the
trajectory is large (up to a few seconds) and the state generation rate is high (1000 samples/s in
our prototype). This may lead to a long training time and require a large number of samples. To
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Figure 3.3: Illustration of proposed KC-TD3 architecture.

improve the learning efficiency, we replace the original state with the MSE in (6),

ṡk = e(k) . (3.24)

In this way, we can reduce the input of the actor-network to a scalar.

3.7.3 Interdependent Action Normalization

Considering the aforementioned action in Section 3.6.1, we design the action with two elements,(
a1

k ,a
2
k

)
, where a1

k ∈{Dmax, ...,Wmax} and a2
k = 1, ...,a1

k . The feasible region of the second element
depends on the first element, we normalize a2

k by using Wk (inverse normalization by a1
k), i.e.,

ȧ2
k =

a2
k

Wk
. (3.25)

With this normalization, we have ȧ2
k ∈ [0,1]. Thus, we can use a sigmoid function in the output

layer of the actor-network.

3.7.4 APDO

The dual variable updating procedure only utilizes on-policy samples, which leads to low sampling
efficiency. To address this issue, we proposed to apply APDO [152], where the dual variable
is updated by the dual gradient ascent every dλ iteration. With this approach, historical data
samples stored in the replay buffer are utilized to update λ and help improve sample efficiency
and convergent speed.
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3.7.5 KC-TD3 Training Architecture

The proposed KC-TD3 structure can be implemented in the real-world system with the archi-
tecture in Fig. 3.3, which mainly consists of a device (such as a robotic arm), local computing
resource (a desktop/local server connected to the robotic arm), the communication network, and
the Metaverse.

3.7.6 Communication Network Initialization

The delay, Dmax, and the packet loss probability, ploss, in the communication network are mea-
sured in the initialization stage. With linear reconstruction in (3.5), we need at least two samples
to reconstruct each trajectory segment. Otherwise, the system is in the outage. We denote the
outage probability by ζ . For a given requirement on the outage probability, such as 10−5, and
a packet loss probability in the communication network (up to 10 % in our experiments), the
minimum number of samples the transmitter should update for each segment is denoted by Nmin.
To meet the outage probability requirement, Nmin can be obtained from the following expression,

pNmin
loss +Nmin pNmin−1

loss (1− ploss)≤ ζ . (3.26)

3.7.7 Training Algorithm

The details of the algorithm can be found in Algorithm 1. With the observed average tracking
error, the agent at the device takes actions according to the output of the actor network. Then,
the average tracking error of the next trajectory segment is measured and saved in the replay
memory. After that, the transitions in the replay memory are randomly selected to optimize the
critic and cost networks (referred to as one iteration of the gradient descent optimization). Finally,
the actor-network and the dual variable λ are updated every da and dλ iterations, respectively.

3.8 Prototype Design and Data Collection

3.8.1 Prototype Design

We build a prototype1 as shown in Fig. 3.4, where a virtual robotic arm needs to synchronize
with a physical robotic arm in the real world. This is essential for many future use cases, such as
education, healthcare, Industry 4.0, etc.

Physical Robotic Arm in Real World: An industrial-grade robotic arm system, Franka
Emika Panda [153], is used in our prototype. It has seven Degrees of Freedom (DoF) with the

1In our prototype, we simplify the system by considering the one-way synchronization from a single physical
robotic arm to a virtual robotic arm, and test our cross-system design framework and KC-TD3 algorithm. The
proposed cross-system design can be extended to multi-user cases.
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Algorithm 1 KC-TD3
Input: Initialize parameters of actor, critic and cost networks, θ , φ R

1 , φ R
2 , φC

1 , φC
2 . Measure the

latency and packet loss probability in the communication network, Dmax and ploss. Obtain
the minimal number of samples the device needs to update for each trajectory segment from
(3.26).

Output: Optimal λ ∗and optimal policy µ∗(·|θ ∗).
1: Initialize the target networks: θarg← θ , φ R

arg,1← φ R
1 , φ R

arg,2← φ R
2 , φC

arg,1← φC
2 , φC

arg,2← φC
2 .

2: Initialize the Lagrangian multiplier λ = 0, actor update delay da, dual variable update delay
dλ .

3: for episode m = 1,... do
4: Observe the average tracking error ṡk.
5: Generate an action based on (3.14) and execute the action.
6: Observe the reward, cost, the next state, and store ⟨ṡki,aki,rki,cki, ṡki+1⟩ in memory M .
7: for j in range (from 1 to the maximal number of updates) do
8: Randomly sample a batch of transitions ⟨ṡki,aki,rki,cki, ṡki+1⟩ from M .
9: Updating QR-functions by one step of gradient descent based on (3.16), (3.18).

10: Updating QC-functions by one step of gradient descent based on (3.17), (3.19).
11: if j mod da = 0 then
12: Update the actor policy by one step of gradient ascent based on (3.20).
13: end if
14: if k mod dλ = 0 then
15: Update dual variable by one step of gradient ascent based on (3.21).
16: end if
17: Update target network by:

φ
R
arg← ρφ

R
arg,i +(1−ρ)φ R

i ;

φ
C
arg← ρφ

C
arg,i +(1−ρ)φC

i ;

θarg← ρθarg +(1−ρ)θ ;
i = {1,2}.

18: end for
19: end for

speed limit of the end-effector at 2 m/s. The robotic arm receives the target end-effector position
from a controller and then conducts inverse-kinematics calculations to map the target end-effector
position to the seven joint angle positions of the robotic arm. After that, the robotic arm applies a
propotional-integral-differential (PID) controller [154], which converts the joint angle positions
to a series of commands on the angular velocity of each joint. At the same time, the robotic
system outputs the actual angle position of each joint every 1 ms, which is the data used in our
KC-TD3 algorithm.

Virtual Robotic Arm in the Metaverse: Unity software is used to generate the virtual robotic
arm in the Metaverse [155]. Specifically, we construct the digital model of the physical robotic
arm, Franka Emika Panda, with the same number of DoFs deployed on a cloud server. The virtual
robotic arm needs to obtain the angle position of each joint in real-time. Such that the virtual
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Figure 3.4: Our prototype system (the movements of a physical robotic arm and the visual display.
The digital model in the Metaverse to be synchronized is in the remote which is not shown in the
graph).

Parameters Values

Slot duration 1 ms

Transmission time interval T 1 ms

Time delay bound Dmax 10 ms

The range of segment length T (k) 10 ms to 100 ms

The range of sampling rate n(k) 20 Hz to 1000 Hz

Experimental time 2×104 ms

Table 3.1: System Parameters for Performance Evaluation

robotic arm can be synchronized with the physical robotic arm. In the communication system, our
prototype uses User Datagram Protocol (UDP) to connect the virtual robotic arm to the physical
one. Besides, the sensing data of the robotic arm are displayed to the user by High-Definition
Screen via HDMI.

3.8.2 Data Collection

As shown in Fig. 3.5, a human operator controls the physical robotic arm via a motion capture
system [156], drawing a “star” shape in the air for 20 seconds. Specifically, six OptiTrack Prime-
13 motion capture cameras are deployed in a 4×4 m2 area, where the human operator holds a
tool with seven passive markers [156]. The motion capture system constructs the seven markers
as a rigid body and outputs the position (3 DoFs) and orientation (3 DoFs) of the rigid body at the
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Figure 3.5: Illustration of our data collection via an experiment, where a human operator controls
the physical robotic arm to draw the “star” shape in the air (The demonstration video of our data
collection is available at ˆ_ https : //youtu.be/LCqSGtkrgug)

.

frequency of 120 Hz. The robotic arm receives the position and orientation as the target position
of its end-effector. By controlling the angles of the seven joints, the physical robotic arm is able
to move its end-effector toward the target position. In this way, the end-effector of the robotic
arm tracks the human operator’s hand trajectory in real-time. In this work, we use the data of the
first joint from the base to demonstrate our design, where the system parameters are provided in
Table 3.1.

3.8.3 Operations Complexity Discussion

Overall, the complexity of the experimental manipulation was not high. With the designed
algorithm, the user’s movements were smoothed to a certain extent, which could allow the user
to adapt to the controls and complete the movements in a short period of time. In addition, we
used the same real-world control platform in [157]. In the experiment, 30 participants for the
interactive control experiments, all of whom were using the platform for the first time. Approval
from the Institutional Review Board (IRB) has been granted under IRB #4392. Prior to the
experiments, participants are given a 5-minute window to acquaint themselves with the platform
through the operation of the robotic arm. The results show that the operators can successfully
perform a series of tasks including writing the letters “S”, “W”, “Z” and “ABC”, drawing the
curves including “Circle”, “Five-pointed Star” and “Triangle” in the air and perform the basic
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Figure 3.6: Normalized average communication load in each episode.

operations such as “Pointing”, “Pushing” and “Stirring”. The results illustrate that our operation
complexity is acceptable for a wide range of operators.

3.9 Performance Evaluation

In this section, we first evaluate the training performance of our KC-TD3 and then compare the
performance of the proposed sampling, communications, and prediction cross-system design
framework with different benchmarks.

3.9.1 KC-TD3 Training Performance

The average KC-TD3 training performance and standard deviation are illustrated in Figs. 3.6-3.8.
In each training experiment, we provide the results in 800 episodes. Then, we repeat the same
experiment 10 times. In Fig. 3.6, we provide the normalized average communication load, where
the communication load without sampling is 100 %. In Figs. 3.7 and 3.8, the average tracking
error and the value of the dual variable are presented. The results in Figs. 3.6-3.8, show that
the KC-TD3 algorithm converges to a stable policy after 300 episodes. The normalized average
communication load is 13%, and the average tracking error is MSE = 0.007◦, which satisfies the
average tracking error constraint.
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Figure 3.7: Average tracking error in each episode.

0 100 200 300 400 500 600 700 800
Number of episode

0.0

0.2

0.4

0.6

0.8

D
ua

l v
ar

ia
bl

e 

Average of KC-TD3
std of KC-TD3

Figure 3.8: Dual variable in each episode.
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Figure 3.9: Normalized average communication load in each episode.
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Figure 3.10: Average tracking error in each episode.
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Figure 3.11: Dual variable in each episode.

3.9.2 Ablation Study on Expert Knowledge

In Figs. 3.9-3.11, we illustrate the impacts of different expert knowledge on the training perfor-
mance of the proposed KC-TD3. When only partial expert knowledge is available, we obtained
three benchmarks: (a) KC-TD3 without extension of double Q-Learning; (b) KC-TD3 without
state-space reduction; (c) KC-TD3 without interdependent action normalization. From Figs.
3.9-3.11, we observe that the proposed strategy with full expert knowledge has the best perfor-
mance in terms of stability and convergence. It also achieves the lowest communication load
(in Fig. 3.9), and satisfies the average tracking error constraint (in Fig. 3.10). By comparing the
proposed KC-TD3 algorithm with the three benchmarks, we can obtain the following insights:
(1) without the extended double Q-Learning, the algorithm can hardly meet the average tracking
error constraint; (2) without state-space reduction, the algorithm cannot converge to the optimal
solution, where the average tracking error is far below the constraint at the cost of a higher
communication load. (3) Without the interdependent action normalization, the obtained policy
can meet the average tracking error constraint, but it does not minimize the communication load.

56



CHAPTER 3. SYNCHRONIZING THE REAL-WORLD DEVICE AND DIGITAL MODEL IN
METAVERSE - SIMPLE CASE

5 10 15 20 25 30 35 40
Number of samples in a segment (n)

0

20

40

60

80

N
or

m
al

iz
ed

 a
ve

ra
ge

 c
om

m
un

ic
at

io
n 

lo
ad

 (%
)

Prediction horizon = 20
Prediction horizon = 38
Prediction horizon = 56
Prediction horizon = 74
Prediction horizon = 92

Figure 3.12: Normalized average communication load under different prediction horizons and
sampling numbers.
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Figure 3.13: Average tracking error under different prediction horizons and the number of
samples.
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Baseline
Exhaustive

search
KC-TD3

Average tracking error constraint = 0.002◦

Normalized average

communication load (%)
100% 27% 27%

Average tracking error (◦) 0.016 0.0020 0.0019

Average tracking error constraint = 0.007◦

Normalized average

communication load (%)
100% 13% 13%

Average tracking error (◦) 0.016 0.0070 0.0069

Table 3.2: Performance Comparisons of Different Design

3.10 Validation of the Sampling, Communications, and Pre-
diction Cross-System Design Framework

Fixed Sampling Policy

We first evaluate the performance of a benchmark policy with a fixed sample rate and prediction
horizon. Specifically, Fig. 3.12 shows the normalized average communication load versus the
number of samples in each segment. The results show that the normalized average communication
load grows as the number of samples in each segment increases, but decreases as the prediction
horizon increases. This means that a higher sampling rate (the ratio of the number of samples in
each segment to the duration of the segment, which is half of the prediction horizon) leads to a
higher communication load.

We further provide the average tracking errors with different sampling rates in Fig. 3.13. The
results show that the average tracking error decreases dramatically as the number of samples in
each segment n increases from 2 to 10. When n > 10, the average tracking error is nearly constant.
In addition, a longer prediction horizon leads to a higher average tracking error. Therefore,
the number of samples in each segment and the segment length should be optimized to obtain
the minimum normalized average communication load subject to the average tracking error
constraint.

3.10.1 Overall Performance

Fig. 3.14 compares the tracking errors of different design approaches, where the delay bound
is Dmax = 50 ms and the average tracking error constraint is MSE = 0.007◦. The “Baseline”
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Figure 3.14: Instantaneous tracking error of Baseline, exhaustive search, and proposed KC-TD3,
where the E2E latency is 50 ms and the average MSE constraint is 0.007◦.
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latency is 50 ms and the average MSE constraint is 0.007◦.
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approach transmits all samples to the receiver with the communication load of 100% and there is
no prediction at the receiver side. The “Exhaustive search” approach is obtained by searching
a fixed sampling rate and a fixed prediction horizon that minimizes the normalized average
communication load subject to the constraint on the average tracking error. We propose it here
only as a performance benchmark since it is not feasible for a practical online application. The
instantaneous tracking errors achieved by the proposed strategy and the above two approaches
are provided in Fig. 3.14, which shows that the proposed KC-TD3 can significantly reduce the
instantaneous tracking error. This means that the synchronization between the virtual robotic arm
and the physical one can be effectively improved.

Table 3.2 compares KC-TD3 with “Baseline” and “Exhaustive search” approaches. Compared
with the “Baseline” approach, KC-TD3 reduces the normalized average communication load
by 73% and improves the average tracking error by 87.5% (when the average tracking error
constraint is 0.002◦). When the average tracking error constraint is 0.007◦, KC-TD3 reduces the
normalized average communication load by 87% and improves the average tracking error by
56.2% compared with the “Baseline” approach. Besides, the normalized average communication
load and the average tracking error achieved by KC-TD3 are the same as the “Exhaustive search”
approach.

Furthermore, we compared our policy that dynamically adjusts the sampling rate and pre-
diction horizon according to the MSE with the exhaustive search approach that optimizes a
static sampling rate and a static prediction horizon. The exhaustive search approach represents
an optimal method that cannot be achieved online due to resource constraints. In Fig. 3.15, we
provide the comparison results of the CCDF of the tracking error. The results indicate that the
CCDF achieved by “Exhaustive search" has a longer tail compared with the CCDF achieved by
KC-TD3. This means that by adjusting the sampling rate and the prediction horizon dynamically,
KC-TD3 can effectively reduce the tail probability of the tracking error.

Fig. 3.16 further demonstrates the trade-off between the normalized average communication
load and the average tracking error achieved by KC-TD3, where different packet loss probabilities
in the communication system are considered, i.e., ploss = 0,1%, and 10%. The results reveal a
trade-off between the normalized average communication load and the average tracking error.
In addition, with a smaller packet loss probability, it is possible to achieve a better trade-off
between the normalized average communication load and the average tracking error. Furthermore,
compared with the “Baseline” approach, KC-TD3 can reduce up to 75% of normalized average
communication load subject to a 0.002◦ average tracking error constraint even when the packet
loss probability in the communication system is as high as 10%.
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Figure 3.16: Trade-off between normalized average communication load and average tracking
error with different packet loss probabilities ploss = 0, 1% and 10%.

3.11 Conclusions

In this work, we demonstrated how to synchronize a real-world robotic arm and its digital model
in the metaverse by sampling, communications, and prediction co-design. We established a
framework for minimizing the average communication load under the constraint of the average
tracking error between a real-world robotic arm and its digital model. Then, we proposed
the KC-TD3 algorithm to adjust the sampling rate and the prediction horizon, where expert
knowledge and advanced reinforcement learning techniques are exploited. In addition, we built a
prototype of the proposed real-time robotic control system with a digital model in the metaverse.
The results of our experiments showed that the proposed cross-system design framework can
significantly reduce the communication load in practical scenarios with communication packet
losses. When the tracking error constraint is stringent (MSE = 0.002◦), our policy degenerates
into the policy in the existing sampling-communication co-design framework. When the tracking
error constraint is mild (MSE = 0.007◦), our policy degenerates into the policy in the existing
prediction-communication co-design framework. Furthermore, compared to several benchmarks,
our KC-TD3 algorithm achieves better convergence time, stability, communication load, and
average tracking error.
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Chapter 4

Synchronizing the Real-World Device and
Digital Model in Metaverse - General Case

As a digital world that mirrors the physical world and generates feedback for human users
in real-time, the Metaverse can blur the lines between the physical and digital worlds and
revolutionize how humans communicate and interact with each other [4]. To achieve this goal,
timely and accurate modeling of real-world devices/humans in the Metaverse is critical for user
experience. The communications and computing latency and digital model distortion will lead
to chaotic interactions and user dizziness [143]. For some mission-critical applications assisted
by Metaverse, such as remote healthcare and factory automation, slight out-of-synchronization
between a real-world device and its digital model may cause serious consequences [139].

While 5G networks have significantly improved latency, reliability, data rate, and connection
density, they still fall short of satisfying the demands of the Metaverse [9]. One of the examples
is that 5G New Radio can achieve 1 ms latency and 10−5 packet error probability in the RANs,
but does not guarantee end-to-end delay and reliability. Jitter is another issue that can lead to
inaccurate modeling, which may be caused by 5G RANs and 5G core networks. Furthermore,
there is a mismatch between communication KPIs, i.e., latency, reliability, jitter, and throughput,
and the KPIs requirements of diverse tasks in the Metaverse, such as modeling error, haptic
feedback distortion, and semantic segmentation errors, which will lead to poor user experience
and low resource utilization efficiency.

On the other hand, the performance of modeling in the Metaverse is not solely determined by
communication networks. Other systems, including sensing, prediction, control, and rendering,
can also have significant impacts on E2E latency and accuracy. Designing these systems separately
results in strictly sub-optimal solutions and may fail to meet the task-oriented KPI requirements.
Thus, cross-system design has been investigated in the recent literature, such as prediction and
communication co-design [10], [106] and sampling and communication co-design [95], [158].
They have shown significant gains in the cross-system design, but they have also revealed potential
issues. For example, cross-system models could be analytically intractable, and the complexity of
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Figure 4.1: Proposed task-oriented cross-system design framework for modeling a robotic arm
in the Metaverse, where sensing, communications, reconstruction, predication, control, and
rendering are considered.

cross-system problems can be much higher than problems in separate design approaches. Thus,
novel methodologies are needed for cross-system design.

The first step toward cross-system design is to formulate a problem that takes the relevant
systems into account. Nevertheless, it could be difficult to obtain closed-form expressions of the
objective function and the constraints as some of the KPIs are analytically intractable. Although
we can use some approximations to formulate the problem, it is generally non-convex or NP-
hard. This motivates us to develop data-driven deep learning approaches, where the policy to be
optimized is represented by a neural network. DRL is a promising method for training the neural
network. For example, PPO is developed to optimize policies with a discrete action space [159].
More recently, the primal-dual method and Constraint-Rectified Policy Optimization (CRPO)
were introduced into DRL for solving constrained problems [152], [160]. It is worth noting that
a straightforward implementation of DRL algorithms may not work [161]. Integrating domain
knowledge from relevant systems into DRL algorithms is essential for the success of DRL [79] in
practical applications.

4.1 Task-Oriented Cross-System Design Framework

In this section, we propose a task-oriented cross-system design framework for timely and accurate
modeling in the Metaverse. The specific goal is to build a digital model of a real-world robotic
arm for real-time monitoring and control.

The framework is shown in Fig. 4.1, where the real-world robotic arm with multiple joints is
controlled by a user (a student or a trainee) for some tasks for example training in healthcare. The
trajectory (the angles of all the joints) of the real-world robotic arm is measured by the built-in
sensors. Then, the trajectory is sampled and transmitted to the Metaverse in a cloud server, where
the sampled data are used to reconstruct the historical trajectory and predict the future trajectory.
Here, the digital model in the Metaverse is controlled by the predicted trajectory rather than the
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reconstructed trajectory to compensate for delays caused by different components across systems.
Finally, the digital model in the Metaverse is rendered and presented to another user (an expert or
a trainer) via a computer screen or AR/VR headset. It is worth noting that each joint has its own
state, and the states of the joints are interdependent. They need to collaborate with each other to
accomplish the task. In addition, the total communication resources shared by all the joints are
limited. Thus, it is possible to extend our system into multi-sensor scenarios.

The E2E MTP latency is defined by the delay between the movement of the real-world robotic
arm and the movement of its digital model in the Metaverse. Thus, it includes communication
delay, computation delay, control delay, and rendering delay. By optimizing the prediction horizon
and the scheduling policy1, we minimize communication overhead subject to constraints on the
modeling accuracy and the MTP latency.

Fig. 4.2 illustrates the timing sequence of the proposed framework. The data is generated
from the built-in sensors at the physical robotic arm. Then, the communication module conducts
scheduling and sends the selected data to a computer server via a network. The server conducts
data reconstruction and prediction and then controls the digital model of the robotic arm. Finally,
the digital model was rendered2 and presented to a human (trainer) via a VR headset (or a screen).
In the following, we will introduce each component:

4.1.1 Sensing and Communications

Time is discretized into slots with a duration of ts. The built-in sensors measure I joint angles
in each time slot. Let T (t) = [τ1(t), ...,τI(t)] be the trajectory of the real-world robotic arm,
where τi(t), i = 1,2,3, ..., I, is the angle value of the i-th joint measured in the t-th time slot. We
consider a scheduling policy in the communication system, where the indicator, xi(t), represents
whether the i-th joint is scheduled for data transmission in the t-th time slot, i = 1, ..., I. If
the i-th joint is not scheduled, then xi(t) = 0. Otherwise, xi(t) = 1, and one packet will be
transmitted to the Metaverse. The decision of the scheduler in the t-th time slot is denoted by
X(t) = [x1(t),x2(t), ...,xI(t)]. The total number of packets to be transmitted in communication
systems in the t-th time slot is given by ∑

I
i=1 xi(t).

4.1.2 Reconstruction

To reconstruct the trajectory from sampled data, we use the linear interpolation and extrapolation
method, which is widely used in the existing literature and can be easily implemented in our
system [150]. The indicators of packet arrivals in the t-th time slot at the Metaverse are denoted
by yi(t), i = 1,2, ..., I. If a packet from the i-th joint arrived at the Metaverse in the t-th time slot,
then yi(t) = 1. Otherwise, yi(t) = 0. From the arrived packets, the set of joint angles obtained by

1The scheduling policy determines which joints will be scheduled for data transmission.
2To simplify the system, we assume that the rendering takes place at the server and the human user (trainer)

directly interacts with the digital model via HCIs.
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Figure 4.2: The timing sequence of the proposed framework, where the modeling accuracy and
the MTP latency need to be satisfied.

the Metaverse in the t-th time slot is denoted by S(t) = {τi(t) | yi(t) = 1, i = 1, ..., I}. In a certain
time slot t0, the cloud server reconstructs the trajectory of the robotic arm from the received joint
angles in a historical observation window with a duration of Wl time slots. The reconstruction
algorithm is given by

T̄ (t0) = Fl(S(t),θl | t ∈ [t0−Wl, t0−Wl +1, ..., t0−1]), (4.1)

where T̄ (t0) ∈R1×I is the reconstructed trajectory, Fl(·,θl) is the reconstruction function, and θl

is the interpolation and extrapolation parameters.

4.1.3 Prediction

To compensate for the MTP latency, we propose to use the attention-mechanism-based predictor,
referred to as Informer, to predict the future trajectory from the historical trajectory [162]. The
lengths of the input and output trajectories are denoted by Wp and H. The values of Wp and H are
determined by the auto-correlation coefficient of the trajectories [163]. We denote the prediction
results for trajectory in the t-th time slot by T̂ (t) = [τ̂1(t), τ̂2(t), ..., τ̂I(t)]. In a certain time slot
t1, the prediction algorithm can be expressed as follows,

[T̂ (t1 +1),T̂ (t1 +2), ...,T̂ (t1 +H)] = Fp([T̄ (t1−Wp),T̄ (t1−Wp +1), ...,T̄ (t1)],θp),

(4.2)
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where Fp(·,θp) is the prediction function and θp represents the parameters of this function. The
loss function of the prediction algorithm is MSE between the output trajectory and the ground
truth, which is given by

Lp =
1
H

H

∑
n=1

(
T̂ (t1 +n)−T (t1 +n)

)2
. (4.3)

We will optimize the prediction length Z(t) = [z1(t),z2(t), ...,zI(t)],zi(t) ≤ H for each joint in
our cross-system design framework, which will be introduced in the next section.

4.1.4 Control

There are different algorithms we can use to control the virtual robotic arm in Metaverse [164].
Without loss of generality, we utilize the joint-space position control and Proportional–Derivative
(PD) controller [165]. Considering the limitations of the control frequency and the processing
time, the target angle for each joint will be generated by the control algorithm and subsequently
executed for every Nc time slot, which is denoted by T̃ (t) = [τ̃1(t), ..., τ̃I(t)]. In the t2-th time
slot, for each joint i, the target joint position τ̃i(t2) to be executed within the Nc time slots can be
expressed as

τ̃i(t2) = kp · (τ̂i(t1 + zi(t))− τ̃i(t2−Nc))+ kd · (
dτ̂i(t1 + zi(t))

dt
− dτ̃i(t2−Nc)

dt
), (4.4)

where kp and kd are the proportional and derivative parameters of the PD controller, respectively.

4.1.5 Rendering

In computer graphics, rendering refers to the process of generating controllable and photo-realistic
images and videos of virtual scenes [166]. In our system, the processing time of each image is
denoted by Nr time slots. In other words, the monitor or AR/VR glasses refresh the images at
a refresh rate of 1/(Nrts) (times/second). The relationship between the trajectory of the digital
model and the trajectory displayed to the user is given by

Ť (t) = Fr(T̃ (t),θr), (4.5)

where Fr(·,θr) is the rendering function and θr represents the parameters for rendering.
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Figure 4.3: Orientation of the end effector to the base coordinate system O .

4.2 KPIs and Communication Load

4.2.1 Task-Oriented KPI

The end effector of a robotic arm could be a gripper, a drill bit, or a sensor, depending on the
specific task. We assume that the real-world end effector has seven degrees of freedom, and the
pose of the end effector is denoted by

P(t) = [lx,r(t), ly,r(t), lz,r(t),qx,r(t),qy,r(t),qz,r(t),qw,r(t)]. (4.6)

Specifically, lx,r(t), ly,r(t), lz,r(t) are the coordinates of the end effector in a three-dimensional
Cartesian coordinate system. [qx,r(t), qy,r(t), qz,r(t), qw,r(t)] is the quaternion representing the
orientation of the end effector [167]. Quaternions are preferred over other representations, such as
Euler angles or rotation matrices, in our context because of their compact representation and their
ability to avoid a particular limitation associated with 3D rotation systems, known as gimbal lock,
which can cause a loss of degrees of freedom [168]. Please see Appendix C for more information.

As shown in Fig. 4.3, the unit vector of the rotation axis, ηηηc(t) = [ac(t),bc(t),cc(t)], and
angle of rotation, ψη(t), can be characterized by qx,r(t), qy,r(t), qz,r(t), and qw,r(t). In particular,
the rotation axis is located in the coordinate system defined by three imaginary unit basic vectors,
ui, uj, and uk, which follow special multiplication rules [167]. The relationship among the
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quaternions, ηηηc(t), and ψη(t) is expressed by

qx,r(t) = sin(
ψη(t)

2
) ·ac(t),

qy,r(t) = sin(
ψη(t)

2
) ·bc(t),

qz,r(t) = sin(
ψη(t)

2
) · cc(t),

qw,r(t) = cos(
ψη(t)

2
). (4.7)

Similarly, the quaternions of the virtual-world robotic arm follow the same rules.
From the I joint angles, P(t) is obtained from the forward kinematics according to

P(t) = Ff (T (t)), (4.8)

where Ff (·) maps the joint angles to the pose of the end effector (positions and orientations).
The expression of (4.8) depends on the structure and configuration of the robotic arm. Like P(t),
the pose of the end effector displayed to the user also has seven degrees of freedom, denoted
by P̌(t) = [lx,v(t), ly,v(t), lz,v(t),qx,v(t),qy,v(t),qz,v(t),qw,v(t)]. A task-oriented KPI is defined as
the Euclidean distance between P(t) and P̌(t),

e(t) = ω1 · ∥(lx,r(t), ly,r(t), lz,r(t)),(lx,v(t), ly,v(t), lz,v(t))∥2 (4.9)

+ω2 · ∥(qx,r(t),qy,r(t),qz,r(t),qw,r(t)),(qx,v(t),qy,v(t),qz,v(t),qw,v(t))∥2,

where ∥ · ∥2 is the L2-norm defined as ∥ · ∥2 ≜
√

∑(·)2, and ω1 and ω2 are the weighting
coefficients. The first term is the position error and the second is the orientation error. Depending
on the accuracy requirements of different tasks in the Metaverse, ω1 and ω2 can be set to different
values.

4.2.2 Communication Load

The Orthogonal Frequency-Division Multiplexing (OFDM) communication system is considered
in our framework for it is widely deployed in cellular networks. The number of time and frequency
resource blocks allocated to a packet is determined by the channel gain and the packet size. We
assume that the channel gain and the packet size are two stationary random variables. The average
number of resource blocks required in each slot is proportional to the average packet rate. To
improve resource utilization efficiency, defined as the average number of resource blocks per slot,
we minimize the average number of packets transmitted in each slot.
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4.3 Problem Fomulation

In this section, we formulate an optimization problem that minimizes the communication load
subject to a constraint on the CVaR of modeling error by optimizing the scheduling policy and the
prediction horizon. In the cross-system design framework, there is no closed-form relationship
between the KPIs and the optimization variables. To solve this problem, we develop a DRL
algorithm by integrating domain knowledge into the advanced PPO algorithm.

4.3.1 Preliminary of PPO

PPO is an advanced reinforcement learning algorithm for solving problems with discrete action
space. We chose PPO as the baseline algorithm due to its simplicity, effectiveness, and high
sample efficiency compared to other reinforcement learning algorithms [169]. In addition, PPO
maintains a balance between exploration and exploitation and avoids drastic policy updates, which
is crucial for managing the complex dynamics of robotics and ensuring stable training [170].
We denote the state and action of PPO by st and at , respectively. The policy is a mapping from
the state to the probabilities of taking different actions, denoted by πθ (at | st), where θ are the
training parameters of the policy network. With PPO, the parameters of the policy are updated
according to the following expression,

θt+1 = argmax
θ

E
st ,at∼πθ

L (st ,at ,θt ,θ). (4.10)

The loss function L (st ,at ,θt ,θ) is given by

L (st ,at ,θt ,θ) =min
(

πθ (at | st)

πθt (at | st)
Aπθ (st ,at), (4.11)

clip
(

πθ (at | st)

πθt (at | st)
,1− ε,1+ ε,

)
Aπθt (st ,at)

)
,

where A(st ,at) is the advantage function defined as the difference between the state-action value
function, Qπθ (st ,at), and the state value function, V πθ (st),

Aπθ (st ,at) = Qπθ (st ,at)−V πθ (st), (4.12)

which estimates the advantage of taking action at in state st , over other possible actions in the
same state [171].

In the sequel, we develop our DRL algorithm by integrating domain knowledge into the PPO.
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(a) (b)

Figure 4.4: Three-link two-dimensional robotic arm model.

4.3.2 Knowledge-Assisted Problem Formulation

State

The state in the t-th time slot consists of two parts: the angles of the I joints and the Jacobian
matrix of the real-world robotic arm, i.e., st = {T (t),J (T (t))}. In robotics, the Jacobian matrix
is critical for analyzing and controlling the motion of robots. It characterizes the relationship
between the velocity of the end effector and the velocities of all joints [155],

∆P(t)
∆t

= J (T (t))
∆T (t)

∆t
, (4.13)

where ∆P(t)
∆t is the velocity of the end effector, and ∆T (t)

∆t is the angular velocities of I joints. In
the t-th time slot, the Jacobian matrix can be obtained from T (t) and the kinematic properties
of the robotic arm, e.g., D-H parameters [155]. By multiplying ∆t on both sides of (4.13), the
relationship between ∆P(t) and ∆T (t) is expressed as follows,

∆P(t) = J (T (t))∆T (t), (4.14)

where J (T (t)) shows how sensitive the modeling error of the end effector is to the errors of
the I joints. Thus, we take the Jacobian matrix as one part of the state to improve the training
efficiency of the DRL algorithm.
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Let’s take the three-link two-dimensional robotic arm as an example to show the Jacobian
matrix [164]. With the example in Fig. 4.4(a), the forward kinematics in (4.8) can be expressed
as follows,

P(t) =

lx,r(t)

ly,r(t)

φ(t)

=

L1 · cosτ1(t)+L2 · cos(τ1(t)+ τ2(t))+L3 · cos(τ1(t)+ τ2(t)+ τ3(t))

L1 · sinτ1(t)+L2 · sin(τ1(t)+ τ2(t))+L3 · sin(τ1(t)+ τ2(t)+ τ3(t))

τ1(t)+ τ2(t)+ τ3(t)

 ,
(4.15)

where L1, L2, and L3 are the lengths of the three links, respectively. As shown in Fig. 4.4(b), φ(t)

is the angle between x-axis and x′-axis in the clockwise direction. Then, the Jacobian matrix can
be obtained by

J (T (t)) =


∂ lx,r(t)
∂τ1(t)

∂ lx,r(t)
∂τ2(t)

∂ lx,r(t)
∂τ3(t)

∂ ly,r(t)
∂τ1(t)

∂ ly,r(t)
∂τ2(t)

∂ ly,r(t)
∂τ3(t)

∂φ

∂τ1(t)
∂φ

∂τ2(t)
∂φ

∂τ3(t)

 (4.16)

where J (T (t)) consists of all partial derivatives of P(t). Specifically, the first two rows of
the matrix are related to the partial derivatives of the position coordinates, while the last row is
related to the partial derivatives of the angle of the end effector which is shown in Fig. 4.4(b).
Thus, each element is calculated by

∂ lx,r(t)
∂τ1(t)

=−L1 · sinτ1(t)−L2 · sin(τ1(t)+ τ2(t))−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.17)

∂ lx,r(t)
∂τ2(t)

=−L2 · sin(τ1(t)+ τ2(t))−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.18)

∂ lx,r(t)
∂τ3(t)

=−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.19)

∂ ly,r(t)
∂τ1(t)

=−L1 · sinτ1(t)−L2 · sin(τ1(t)+ τ2(t))−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.20)

∂ ly,r(t)
∂τ2(t)

=−L2 · sin(τ1(t)+ τ2(t))−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.21)

∂ ly,r(t)
∂τ3(t)

=−L3 · sin(τ1(t)+ τ2(t)+ τ3(t)), (4.22)

∂φ

∂τ1(t)
= 1,

∂φ

∂τ2(t)
= 1,

∂φ

∂τ3(t)
= 1. (4.23)

From the above description, we can see that the modeling error of the end effector is more
sensitive to the error of the joint that is far away from the end effector and less sensitive to the
error of the joint that is close to the end effector. The robotic arm in our prototype has more than
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three joints and can move in a three-dimensional space. Thus, the Jacobian matrix could be more
complicated than the two-dimensional robotic arm in Fig. 4.4.

The state, including joint angles and elements of the Jacobian matrix, needs to be normalized
before feeding it into the neural network. We first find the maximum and minimum values of
each joint angle and each element of the Jacobian matrix from the data set. Then, these values are
employed to normalize the state within the range of (0,1).

Action

The action to be taken in the t-th time slot includes the joints to be scheduled, X(t), and the
optimal prediction horizons Z(t). Although the prediction horizon needs to be transmitted to the
server, Z(t) is an integer ranging from 1 to 500. Thus, the communication overhead for updating
Z(t) is negligible compared to the update of the joint angle with high precision. We denote the
action by at = [a[1]t ,a[2]t ] = [X(t),Z(t)], where the action of the i-th joint is denoted by a[1]t,i = xi(t)

and a[2]t,i = zi(t).

Instantaneous Reward and Cost

Given the state and the action taken in the t-th time slot, the instantaneous reward, denoted by
r(s(t),a(t)), is the communication load reduction compared with a benchmark that all joints are
scheduled in every time slot. The instantaneous cost c(s(t),a(t)) is set to e(t) in (4.9).

Table 4.1: Hyperparameters Settings
Network Name Function Input & Output Layer Name Units Activation

Policy Network

Input 1 7 - 32 Linear 32 ReLU
Input 2 42 - 32 Linear 32 ReLU

Integration 32 - 64 Linear 64 ReLU

Output 1
64 - 32 Linear 32 ReLU
32 - 7 Linear 32 /

Output 2
64 - 32 Linear 32 ReLU
32 - 7 Linear 32 /

Critic Network

Input 1 7 - 32 Linear 32 ReLU
Input 2 7 - 32 Linear 32 ReLU

Output
32 - 64 Linear 64 ReLU
64 - 32 Linear 32 ReLU
32 - 1 Linear 32 /

Cost Network

Input 1 7 - 32 Linear 32 ReLU
Input 2 7 - 32 Linear 32 ReLU

Output
32 - 64 Linear 64 ReLU
64 - 32 Linear 32 ReLU
32 - 1 Linear 32 /
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Policy

The policy is represented by a neural network, πθ (st), where θ represents the training parameters.
The network consists of multiple fully connected layers as shown in Fig. 4.5 and the settings of
DRL networks are shown in Table 4.1. In our study, the inputs to the policy networks include
two different states: the angles of joints and the Jacobian matrix of the real-world robotic arm.
The raw data of a joint angle has complete information and requires a complex neural network
for feature extraction. The Jacobi matrix provides information that has been processed based on
domain knowledge, and we can use a simple neural network for feature extraction. To handle
different types of input information, we designed the two-branch neural network. Meanwhile, the
two branches are designed to optimize two types of actions separately, i.e., the scheduling of a
joint and the prediction horizon.

Specifically, the first two layers are designed for feature extraction, where the input denoted
by {T (t),J (T (t))} is transformed into a more compact and informative representation that
captures the underlying patterns. Then, we decouple the neural network into two parallel branches.
The first branch is for the scheduling policy, π

[1]
θ

, and the second branch is for the policy of
optimizing prediction horizons, π

[2]
θ

. After that, two branches are concatenated in the final linear
layer. Followed by the Softmax activation function, the distribution of two actions, i.e., ρ

[1]
t

and ρ
[2]
t are generated. Finally, two actions, i.e., a[1]t and a[2]t are sampled from ρ

[1]
t and ρ

[2]
t ,

respectively.
Specifically, π

[1]
θ

maps the state st to the distribution of a[1]t,i , denoted by ρ
[1]
t ∈ R2×I . The i-th

column of ρ
[1]
t is defined as follows,

ρ
[1]
t,i ≜

(
Pr{a[1]t,i = 1}
Pr{a[1]t,i = 0}

)
. (4.24)

Similarly, π
[2]
θ

maps the state st to the distribution of a[2]t,i , denoted by ρ
[2]
t ∈ RH×I . The i-th

column of ρ
[2]
t is defined as follows,

ρ
[2]
t,i ≜

[
Pr{a[2]t,i = 1},Pr{a[2]t,i = 2}, ...,Pr{a[2]t,i = H}

]T
. (4.25)

Once the distributions are obtained, a[1]t,i and a[2]t,i can be sampled from (4.24) and (4.25), respec-
tively. Here, the probability of each action being sampled is based on the weight located in the
corresponding elements [172]. The policies of different joints are represented by DNNs with the
same structure. If there are more joints and sensors, they can reuse the DNN and fine-tune the
parameters with few-shot learning. In this way, we can address the scalability issue.
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Linear-Relu 2-4Linear-Relu 1

(a) Two-branch Neural Network.

Linear-Relu 1-4

(b) Fully-Connected Neural Network.

Figure 4.5: Structures of neural networks: (a) Two-branch neural network, (b) fully-connected
neural network.

Long-Term Reward and Cost

Following the policy πθ , the long-term reward and long-term cost are defined as

Rπθ = E[∑
∞

t=0 γ
tr(s(t),a(t)], (4.26)

Cπθ = E[∑
∞

t=0 γ
tc(s(t),a(t)], (4.27)

where γ is the discount factor [160]. To estimate the long-term reward and long-term cost, we can
use the state-value function or the state-action value function. The state-value function and the
state-action-value function of the long-term reward are defined as

V πθ
r (s) = E[∑

∞

t=0 γ
tr(s(t),a(t)) | s0 = s, πθ ], (4.28)

Qπθ
r (s,a) = E[∑

∞

t=0 γ
tr(s(t),a(t)) | s0 = s, a0 = a, πθ ], (4.29)

respectively. The advantage function is given by Aπθ
r (s,a) = Qπθ

r (s,a)−V πθ
r (s). Like the long-

term reward, the state-value function and the state-action-value function of the long-term cost are
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defined as

V πθ
c (s) = E[∑

∞

t=0 γ
tc(s(t),a(t)) | s0 = s, πθ ], (4.30)

Qπθ
c (s,a) = E[∑

∞

t=0 γ
tc(s(t),a(t)) | s0 = s, a0 = a, πθ ], (4.31)

respectively. The advantage function is given by Aπθ
c (s,a) = Qπθ

c (s,a)−V πθ
c (s).

Modeling Accuracy Constraint

To guarantee the long-term modeling accuracy constraint, a straightforward approach is to
evaluate Cπθ by using V πθ

c (s) or Qπθ
c (s,a). Note that the average long-term cost may not be

applicable for mission-critical tasks in the Metaverse. For example, in haptic communications,
users cannot recognize errors below a certain threshold, known as JND [173]. For mission-critical
tasks, we propose to use CVaR of Qπθ

c (st ,at) as the KPI. CVaR is a well-known risk measure
used in financial portfolio analysis that depicts the cost in the tail of the risk distribution [174].
The expression of CVaR of Qπθ

c (st ,at) is given by

CVaRα [Qπθ
c (st ,at)] = min

v∈R

(
v+

1
1−α

E
st ,at∼πθ

{
[Qπθ

c (st ,at)− v]+
})

, (4.32)

where (x)+ = max(x,0). α ∈ (0,1) is the confidence level, and Qπθ
c (st ,at) is equal to the average

of the worst-case α-fraction of losses under optimal conditions [175].

Problem Formulation

The goal is to find the optimal policy π∗
θ

that maximizes the long-term reward Rπθ subject to the
constraint on CVaR of the long-term cost Cπθ . Thus, the problem can be formulated as follows:

π
∗
θ =argmax

θ

Qπθ
r (st ,at) (4.33)

s.t. CVaRα [Qπθ
c (st ,at)]≤

Γc

1− γ
, (4.33a)

where Γc is the modeling error depending on the requirements of specific tasks in the Metaverse.

4.4 C-PPO Algorithm

To guarantee the modeling accuracy constraint, we develop a C-PPO algorithm by integrating
PPO and CVaR into the CRPO algorithm, which is a safe reinforcement learning algorithm with
convergence guarantee [160]. The basic idea of the CRPO algorithm is to maximize the long-term
reward when the constraint is satisfied and minimize the long-term cost when the constraint is
violated.
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The details of the C-PPO algorithm can be found in Algorithm 1. In the t-th step, we first
update the threshold of CVaR according to the current policy by the gradient descent,

v(k+1) = v(k)−β
∆CVaRα(v(k))

∆v(k)
, (4.34)

where β is the learning rate and it takes K steps of gradient descent to update the threshold,
k = 1, ...,K. Then, we validate whether the constraint can be satisfied or not. If the constraint
in (4.33a) is satisfied, we maximize Lr(st ,at ,θt ,θ) which is obtained by substituting Aπθ

r (st ,at)

into (4.11). Otherwise, we minimize Lc(st ,at ,θt ,θ) defined as follows,

Lc(st ,at ,θt ,θ) =min
(

πθ (at | st)

πθt (at | st)
Aπθ

c (st ,at), (4.35)

clip
(

πθ (at | st)

πθt (at | st)
,1− ε,1+ ε,

)
A

πθt
c (st ,at)

)
,

where Aπθ
c (st ,at) is obtained by Generalized Advantage Estimate (GAE) [171], [176]. With

C-PPO, the parameters are updated according to the following expression,

θt+1 =

θt +α∇θLr(st ,at ,θt ,θ), CVaRα [Q
πθ
c (st ,at)]≤ Γc

1−γ
,

θt−α∇θLc(st ,at ,θt ,θ), CVaRα [Q
πθ
c (st ,at)]>

Γc
1−γ

.
(4.36)

It is worth noting that the policy gradient and the CVaR gradient can be updated with different
learning rates. To guarantee a stable CVaR constraint when performing the policy gradient, we
update the threshold of CVaR with a higher frequency.

4.5 Prototype Design and Performance Evaluation

In this section, we demonstrate our cross-system prototype design as shown in Fig. 4.6. Based on
the prototype, we first evaluate the effectiveness of the proposed cross-system design framework
and then compare the performance with different benchmarks.

4.5.1 Prototype Design

Real-World Robotic Arm

We adopt an industrial-grade robotic arm system, Franka Emika Panda [153], in our prototype.
The robotic arm has seven DoF and can achieve up to 2 m/s end effector speed and ±0.1 mm
repeatability. In our prototype design, we use five DoF of the real-world robotic arm. The trainer
wearing optical markers controls the robotic arm via the state-of-the-art motion capture system
with six motion cameras, OptiTrack Prime-13 [177]. The reason why we use OptiTrack is because
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Algorithm 2 C-PPO
Input: initial the parameters of neural network including policy network θ0, initial state s0, step

length β

1: for t = 0,1,2, . . . ,T −1 do
2: Observe st and generate action from current policy πθt ([a

[1]
t ,a[2]t ] | st)

3: Transmit the packets based on action a[1]t
4: Reconstruct the trajectory based on received packets by (4.1)
5: Predict the trajectory based on action a[2]t by (4.2)
6: Store state st , action at , reward rt , cost ct , and next state st+1
7: for k = 1,2, . . . ,K do
8: Update CVaRα [Q

πθ
c (st ,at)] by (4.34)

9: end for
10: Compute the advantage function Aπθ

c (st ,at) and Aπθ
r (st ,at) based on (4.11), (4.35)

11: if CVaRα [Q
πθ
c (st ,at)]≤ Γc

1−γ
then

12: Take one-step policy update towards maximizing Lr(st ,at ,θt ,θ) : θt → θt+1
13: else
14: Take one-step policy update towards maximizing Lc(st ,at ,θt ,θ): θt → θt+1
15: end if
16: end for
Output: Optimal policy π∗

θ

1) It is a real-time motion capture system with high accuracy and low latency. This real-time
high-fidelity tracking is essential for maintaining accurate digital twins in the Metaverse and
for evaluating the performance of our task-oriented, cross-system design framework. The use of
OptiTrack also allows us to quantify the task-oriented KPI, i.e., average tracking error between
the real-world robotic arm and its digital model in the Metaverse.

2) The OptiTrack motion tracking system can be scaled to accommodate various tracking
volumes, from small studio setups to large outdoor environments. This scalability makes it
versatile and adaptable for different types of motion capture objects in the Metaverse.

3) Our proposed framework is not limited to the use of Optitrack as a motion capture device.
Flexible positioning and motion tracking systems can be used based on the practical accuracy
demands of Metaverse applications.

The robotic arm receives the target pose from the motion capture system and then maps
the pose to joint angles. After that, the robotic arm applies a proportional-integral-derivative
method [154] for control, which converts the joint angles to a series of commands. Meanwhile,
built-in sensors in the robotic arm measure joint angles, angular velocities, and inertial torque of
each joint [153].

Virtual Robotic Arm in the Metaverse

We establish the Metaverse in the Nvidia Isaac Gym [178], a cutting-edge robotics simulation
engine that uses state-of-the-art algorithms and physics engines to simulate the movement and
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Figure 4.6: Illustration of our prototype system. 1) Bottom left photo: A real-world robotic arm is
controlled by a human trainee, 2) Bottom right photo: A digital model of the robotic arm in the
Metaverse is rendered and presented to a trainer, 3) The diagram on the top of the two photos
shows the system functions implemented at the two sides.

behavior of robots in various environments. Meanwhile, we simulate the communication system
between the real-world robotic arm and the Nvidia Isaac Gym by introducing a Gaussian-
distributed communication latency. Its mean and standard deviation are set to 10 ms and 1 ms,
respectively.

4.5.2 System Setup

Parameters of the Prototype

For the prototype design, five joint angles of the real-world robotic arm are controlled by the
trainee and measured by built-in sensors in each time slot. The measured data of the real-world
and virtual-world robotic arms are recorded in the CSV format file. For the training process of
the predictor, informer, we set the prediction input length Wp to 2000 ms and output length H

to 500 ms. In Nvidia Issac Gym, we set the control interval Nc to 2 ms. The frequency at which
the robotic arm interacts with the virtual environment is 500 Hz. The method for calculating
the Jacobian Matrix can be found in Appendix B. The default parameters of the prototype and
learning algorithm are listed in Table 4.5.1, unless otherwise specified.
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Prototype Setup
Parameters Values
Duration of time slot 1 ms
Number of joints I 5
Input length of reconstruction function Wl 2000 ms
Input length of prediction function Wp 2000 ms
Prediction horizon of prediction function H 500 ms
Control interval Nc 2 ms
Refresh rate of image 1/Nrts 60 Hz
Experimental time 5×104 ms
Weighting coefficient of position ω1 0.5
Weighting coefficient of orientation ω2 0.5

Learning Setup
Parameters Values
Learning rate of actor-network 3×10−4

Learning rate of critic network 3×10−4

Learning rate of cost network 3×10−4

Batch size 256
Discount factor γ 0.99
Clip ratio in the loss functions of C-PPO ε 0.2
Total steps for updating CVaR K 500
Learning rate of constraint β 2×10−3

Confidence level of CVaR 1−αc 0.95

Table 4.2: System Parameters for Performance Evaluation

Benchmarks

We build our C-PPO algorithm and four benchmarks in the well-known DRL library Stable-

Baselines3 [176]. The legends of the benchmarks are “W2B”, “WJM”, “WCVaR”, and “WDK”,
respectively. (a) In W2B, the two-branch neural network is replaced with a fully-connected neural
network; (b) In WJM, the Jacobian matrix is not included in the state; (c) In WCVaR, the CVaR
of the modeling error is replaced with the average modeling error in the constraint; (d) WDK is
a simplified C-PPO without using any domain knowledge (i.e., the two-branch neural network,
Jacobian matrix, and CVaR of the modeling error). With the above benchmarks, we will illustrate
the impact of different types of domain knowledge on the performance of our C-PPO algorithm.

4.5.3 Evaluation of C-PPO Algorithm

As shown in Figure 4.6, the performance of C-PPO is evaluated by average packet rate, average
modeling error, and average CVaR. We train C-PPO with 800 episodes to show the trends in
performance changes. The average packet rate at the start point is defined as a baseline. The
average packet rate reaches 8 packets/second, which saves 83.3% communication load than
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the baseline. In addition, optimizing under the restriction of the constraint CVaR, the average
tracking error of the digital model achieves 0.0281, which is lower than the tracking error of
the baseline (0.0347), as shown in Figure 4.7(b). Meanwhile, the CVaR fluctuates around the
constraint bound. The results show that C-PPO converges after 250 training episodes. Meanwhile,
constraints and the average tracking error fluctuate slightly throughout training. In particular,
C-PPO is stable and effective, since it performs consistently better in all ten training repetitions.
It is also worth noting that although the prediction horizon needs to be transmitted to the server,
Z(t) is an integer ranging from 1 to 500. Thus, the communication overhead for updating Z(t) is
negligible compared to the update of the joint angle with high precision.

Ablation Study of C-PPO Algorithm

The performance of the C-PPO and the four benchmarks are illustrated in Fig. 4.6. In general,
our C-PPO achieves the best performance in terms of convergence time, average packet rate, and
average modeling error. The results in Fig. 4.7(a) show that the C-PPO can reduce the required
average packet rate by around 50% compared to the benchmark without domain knowledge,
WDK (from 17 packets/second to 8 packets/second). By comparing C-PPO with WJM, we can
see that the Jacobian matrix can reduce the convergence time by 50% (from 800 episodes to
400 episodes). In Fig. 4.7(b), we evaluate the average modeling errors achieved by different
algorithms. From C-PPO and WCVaR, we can observe that by using CVaR as the metric of
the modeling error, the average modeling error is reduced from 0.041 to 0.032 (around 20%
reduction), where the modeling error is defined in (4.9). The results 4.6(c) show that C-PPO,
W2B, and WJM can guarantee the constraint on CVaR of the modeling error, that is, the dashed
horizontal line. The other two benchmarks do not consider CVaR, and hence are not shown in
this figure. From the performance of W2B in all these figures, we can see that the two-branch
neural network converges faster than the fully-connected neural network and achieves better
performance in terms of the average packet rate and average modeling error.

4.5.4 Validation of Cross-System Design Framework

Dynamic scheduling in C-PPO

In Fig. 4.7(a), we provide an example to show how the proposed C-PPO algorithm changes the
packet rates according to joint angles. The packet rates are represented by the grayscale intensity.
As the grayscale intensity increases from white to black, the packet rates increase from 0 to 23
packets/second. The results imply that packet rates are correlated with fluctuations in joint angles.
Besides, the joint that is far away from the end effector has higher average packet rates than the
joint that is close to the end effector. This is because the modeling error of the end effector is less
sensitive to modeling errors of the joints that are closer to it.
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Dynamic prediction horizon in C-PPO

The effect of Z(t) has already been demonstrated in the existing literature [179], [180]. The
latency in the communication systems is stochastic, so we need to adjust the prediction horizon
to compensate for the communication latency. In this way, we can reduce the modeling error in
the Metaverse. In addition, we also provide the diagram of Z(t) along with the trajectories of
the real-world robotic arm. As shown in Fig. 4.7(b) in the response letter, the alteration of the
prediction horizon is depicted through variations in grayscale intensity, where darker intensities
correspond to higher packet rates across the prediction horizon that spans from the 1st to the
500th packet. The results of the study indicate a notable correlation between the prediction
horizon and the fluctuations observed in the joint angles. Moreover, it is observed that joints
situated farther from the end effector exhibit longer predictive spans compared to those located in
closer proximity to the end effector. This discrepancy is attributed to the reduced sensitivity of
the end effector’s modeling errors to perturbations in the joints near it.

CVaR

The CCDF of the long-term cost is presented in Fig. 4.8. The results show that with the probability
of 98.5%, the long-term cost is below the required threshold, which is set to 25 in the experiment.
In addition, the probability (98.5%) is higher than the confidence level (95%). The result also
indicates that the proposed C-PPO can significantly reduce the tail probability (i.e., the probability
that the long-term cost is higher than the required threshold) of the long-term cost.

Performance Comparison

We compare our proposed cross-system design framework with a baseline framework: there is
no prediction, and all joints transmit data packets in every time slot. In Fig. 4.9, we show the
trajectories of the real-world robotic and two digital models obtained from our cross-system
design framework and the baseline framework. The results show that with prediction, the cross-
system design framework can model the virtual-world robotic arm in a timely manner. Without
prediction, the user can recognize the modeling error caused by communication latency. In
Fig. 4.10, we further illustrate the CCDF of modeling errors in the two frameworks. The results
demonstrate that the cross-system design framework outperforms the baseline framework in
terms of the tail distribution of the modeling error. Besides, with the baseline framework, all the
joints transmit packets in every time slot. The packet rate is 5000 packets/s, which is much higher
than the cross-system design framework.

4.5.5 Discussion of Error Impact on Different Scenarios

The error of a robotic arm operation can significantly impact various application scenarios,
including welding and other industries. For example, in welding applications, accuracy is crucial
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to ensure precise and consistent welds. A highly accurate robotic arm can follow predefined
paths with minimal deviation, resulting in higher-quality welds and better structural integrity. The
error tolerance may be very low, often in the range of ±0.1 mm to ±0.5 mm [181]. In Medical
applications such as robotic-assisted surgery, the accuracy of operation is also critical, where
accurate operations of robotic arms can assist surgeons in performing intricate tasks with minimal
invasiveness, reducing the risk to patients. The error tolerance is extremely low, typically within
the range of sub-millimeters, such as ±0.1 mm [182]. In warehouse automation for picking
and placing items, the acceptable error tolerance may vary based on the size and nature of the
products, but it could be in the range of ±1 cm to ±5 cm [183]. In our experiment setup.In our
experiments, our mean square error is set to the range of automatic sorting and packing in an
automated warehouse storage scenario, which illustrates the effectiveness of our algorithm. In
addition, our designed framework has strong generalizability and can be used to set different
accuracy constraints according to the different application scenarios described above.

4.6 Conclusions

In this work, we established a task-oriented cross-system design framework to minimize the
required packet rate to meet a constraint on the modeling error of a robotic arm in the Metaverse.
To optimize the scheduling policy and the prediction horizons, we developed a C-PPO algorithm
by integrating domain knowledge into the PPO. A prototype was built to evaluate the performance
of the C-PPO and the cross-system design framework. Experimental results showed that the
domain knowledge helps reduce the required packet rate and the convergence time by up to 50%,
and the cross-design framework outperforms a baseline framework in terms of the required packet
rate and the tail distribution of the modeling error.
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Figure 4.6: Performance Evaluation.
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Figure 4.6: Ablation Study.
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Chapter 5

Conclusions and Open Issues

5.1 Conclusions

In this thesis, a transformative potential to reshape social interactions in the post-pandemic era of
the Metaverse was comprehensively depicted. Despite its ambitious objectives, the realization
of the Metaverse’s comprehensive vision remains intricate due to the existing uncertainties sur-
rounding methodologies and technologies required for its full implementation. Based on this, this
thesis contributed to the advancement of the Metaverse concept by establishing a comprehensive
framework for its development. The groundwork was laid through the identification of three foun-
dational infrastructure pillars: Human-Computer Interaction (HCI), sensing and communication
systems, and network architectures. These pillars form the bedrock upon which the progression
toward the Metaverse is built.

The research journey progressed further by delineating a roadmap with distinct stages, each
featuring applications that reflect the Metaverse’s transformative potential. Crucially, the study
explored the pivotal role of Computer Vision in realizing the Metaverse, accentuating its current
state-of-the-art and outlining future directions for exploration. To address the challenge of con-
structing a functional Metaverse, a novel design methodology called task-oriented cross-system
design was introduced. The methodology was demonstrated through concrete examples, where
optimization efforts were directed towards achieving synchronization between real-world devices
and digital models in the Metaverse. In these instances, the integration of domain knowledge
proved instrumental, enabling the development of deep reinforcement learning algorithms that
effectively balanced tracking accuracy with communication load.

Furthermore, the thesis extended its focus to encompass a broader scope involving multiple
modules, including sensing, communications, prediction, control, and rendering. By adopting
an advanced reinforcement learning algorithm, PPO, and incorporating domain knowledge, the
task-oriented cross-system design was elevated through the creation of a C-PPO algorithm. The
experimental validation of this framework demonstrated its prowess in reducing the convergence
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time and required packet rates, confirming its superiority over baseline frameworks in terms of
modeling accuracy and efficiency.

In essence, this research underscored the complex yet promising landscape of the Metaverse.
By offering a structured approach to tackle its multifaceted challenges, from foundational infras-
tructure to application-specific optimization, the study contributes significantly to the collective
understanding and eventual realization of the Metaverse’s revolutionary potential. However, as a
nascent concept, the journey towards the Metaverse’s full realization is ongoing, inviting further
research and collaboration to address the remaining uncertainties and unlock the transformative
benefits it promises to bring to society.

5.2 Open Issues

5.2.1 Multi-tier Architecture for the Metaverse

The 6G network should be capable of achieving large-scale multi-tier diverse KPIs in the
Metaverse by leveraging distributed computing, storage, and communication resources in local
devices, edge servers, and central servers [8]. A hierarchical communication network architecture
is required for applications such as mining automation, monitoring of forest fires, and remote
control, where real-time feedback is essential. This architecture involves the synchronization of
edge servers to infer the specific feedback, which allows users to interact with the edge with a
satisfied experience [184]. However, how to quickly and effectively schedule different resources
for different tasks in the Metaverse needs further investigation.

5.2.2 Integrated Sensing and Communications for the Metaverse

The task-oriented cross-system design between sensing and communications - ISAC - is one
of the potential enablers in the future [11]. By utilizing the same radio frequency band and
hardware resource, ISAC has the potential to access wider frequency bands and reduce the
system’s cost. This makes ISAC suitable for Metaverse applications. For example, ISAC can
be used to track the movements of users in real-time and translate their actions and gestures
to the corresponding actions in the virtual environment [185]. This provides a more natural
and immersive user experience compared to traditional input devices such as keyboards or
joysticks. In addition, combined with state-of-art technologies, such as massive MIMO and
Intelligent Reflecting Surface (IRS) [186], ISAC can provide ultra-high bandwidth for AR/VR
users. However, ISAC still faces many challenges for Metaverse applications, such as energy
efficiency, spectrum management, and interference management, which can be addressed via
novel task-oriented cross-system designs.

91



CHAPTER 5. CONCLUSIONS AND OPEN ISSUES

5.2.3 Semantic-Aware, Task-Oriented Communications for the Metaverse

Recently, semantic-aware, task-oriented communications - attracts significant attention from
academia and industry, which is expected to break through some key communication challenges
by leveraging the advances of deep machine learning. In principle, this technology advocates the
paradigm shift from today’s communications that deliver information bits (irrespective of the
meaning conveyed by the transmitted bits) to future communications that deliver the meaning
and complete tasks [187]. It deeply couples communications and its applications, which requires
cross-system design. For example, JSCC is one of the typical semantic communication design
strategies that jointly train the source and channel coding. It has been shown in [23] that JSCC is
superior in reconstructing in-text sentences, sounds, images, and point cloud data. In particular, it
can achieve significant performance gains at low signal-to-noise ratio circumstances. However,
most of the current JSCC research activities are limited in the areas of data reconstruction and
image retrieval (CV) - the tasks that are well-defined and can be achieved by existing neural
networks with explicitly derivable objective functions [23]. Other challenges include (1) Large
computation cost: Training deep neural networks for JSCC or other types of semantic-aware and
task-oriented communications requires a large amount of computational resources, which is not
feasible for mobile devices; (2) Generalization: Switching tasks or contexts usually require to
train new neural networks, which impedes the wide adoption of this technology for a variety of
tasks in the Metaverse. Thus, how to design JSCC and other task-oriented methods for real-world
applications in the Metaverse is still an open question.

5.2.4 Wireless Networked Control Systems

The task-oriented cross-system design between communications and distributed control systems
- Wireless Networked Control System (WNCS) - is an important topic for the industrial Meta-
verse. The basic idea is to use the wireless network to connect the essential elements of one
or multiple closed-loop control systems, such as sensors, actuators, and controllers, and other
HCI devices, including tablet, AR/VR devices [188]. This allows the flexible configuration of
industry automation for a variety of tasks, such as remote sensing, monitoring, maintenance, and
fast reconfiguration of production line/modules, across different sectors, including intelligent
transportation, digital healthcare, Industrial 4.0, power and energy [189].

Sensing, communications, and control in WNCS are deeply coupled and therefore need to be
co-designed to achieve the overall system performance [190]. Unlike traditional communications
designed primarily for consumable markets that optimize the peak and average system perfor-
mance while treating the extreme cases as outages, the future telecommunication for industrial
markets is significantly different with the focus on handling extreme cases and corner events.
Thus, the cross-system design is essential to deliver the overall system performance, such as
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reliability, safety, and robustness. These require overcoming many design challenges in 6G, such
as modeling, design, optimization, testing, and verification.

5.2.5 URLLC, Tactile Internet, and Internet of Skills

The task-oriented cross-system design that uses domain knowledge outside the communication
system is essential to deliver true URLLC services. Currently, URLLC is well recognized as an
essential requirement to enable a wide range of real-time applications and emerging concepts,
such as tactile Internet or Internet of Skills [180]. The 5G standard has defined URLLC as one
of the three core features. Researchers and engineers have made significant efforts aiming at
the ultra-low latency and high-reliability requirements, i.e., around 1-millisecond latency and
up to 99.99999% reliability, for 5G New Radio [79]. However, there is still no guarantee of the
system-level end-to-end performance that includes other factors, such as signal processing delay,
computing delay, operating system delay, and the time delay in activating actuators. Thus, the
cross-system design is a promising solution to address the URLLC challenge by leveraging the
domain knowledge [90] For example, it has been demonstrated in [27] that the high-performance
synchronization between a physical robotic arm and its digital counterpart in the Metaverse can
be achieved by exploiting domain-knowledge from signal processing and robotics systems.

To bridge the gap between the diverse KPI requirements in the Metaverse and the next-
generation URLLC (xURLLC) in 6G, researchers and engineers need to develop novel design
methods and innovative technologies. They need to be capable of integrating cross-domain
knowledge, including sensing, communications, control, and rendering, to ensure high reliability
and low latency for future Metaverse applications.
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Appendix A

Proof of Markov Poperties

According to the definition, the k-th state includes, T (k− 1), T (k), T̂ (k− 1) and T̂ (k). As
shown in (3.6), the predicted trajectory segments, T̂ (k− 1) and T̂ (k), depend on the recon-
structed historical trajectory, i.e.,

T̄in(k)

= [τ̄(tk−Lin−Wk−Wk−1), ..., τ̄(tk−Wk−Wk−1)].

Further considering sampling and reconstruction in (3.4) and (3.5), T̄in(k) is determined by the
actions and trajectory from the (tk− Lin−Wk−Wk−1)-th slot to the (tk−Wk−Wk−1)-th slot.
Therefore, T (k−1) and T (k) in the k-th state are determined by the states and actions in the
past (tk−Lin−Wk−Wk−1) slots, which are available at the transmitter (the agent).

Similarly, the (k+1)-th state depends on the states and actions in the past (tk+1−Lin−Wk+1−
Wk) slots, which are highly overlapped with the states and actions from the (tk−Lin−Wk−Wk−1)-
th slot to the tk-th slot. The new trajectory information by the end of the (k+1)-th state includes
[τ(tk+1−Wk+1), ...,τ(tk+1)] and the k-th action is ak. The dimension of the input of the prediction
algorithm, Lin, is the de-correlation time of the trajectory. Thus, [τ(tk+1−Wk+1), ...,τ(tk+1))]

only depends on the trajectory [τ(tk−Lin−Wk−Wk−1), ...,τ(tk)] (with the assumption Wk+1 <

Wk +Wk−1) 1 and action ak. In Fig. A.1, we illustrate the relationship between de-correlation time
and the length of the historical trajectory (observation horizon). Given the k-th state-action pair,
if the observation horizon is longer than the de-correlation time of the system, the (k+1)-th state
does not depend on the states and actions before the (tk−Lin−Wk−Wk−1)-th slot. According to
the definition of the Markov decision process, the Markov property holds in our problem.

1This assumption holds in most cases in our system since the prediction horizons of two consecutive segments
are highly correlated and do not vary rapidly.
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Appendix B

Calculation of Jacobian Matrix

For notational simplicity, the notations used in the appendix are different from the notations used
in the main text.

To obtain the Jacobian matrix defined in Section 4.3.2, one approach is to compute the
partial derivatives with respect to each joint angle. The computation complexity of this approach
could be high, and we introduce a low-complexity numerical method in this appendix to obtain
the Jacobian matrix [155]. For a robotic arm with I rotation joints, the Jacobian matrix can be
obtained from the following expression,

J =



0
0R

0
0
1

× (0
I ξ − 0

0ξ ) 0
1R

0
0
1

× (0
I ξ − 0

1ξ ) . . . 0
I−1R

0
0
1

× (0
I ξ − 0

I−1ξ )

0
0R

0
0
1

 0
1R

0
0
1

 . . . 0
I−1R

0
0
1




∈ R6×I,

(B.1)

where × is the cross product operation defined by: a = [x1,y1,z1], b = [x2,y2,z2], a× b =

[y1z2− y2z1, x2z1− x1z2, x1y2− x2y1]
T, 0

I−1R ∈ R3×3 is the rotation matrix that describes the
rotation of the coordinate frame {I−1} in the coordinate frame {0} which is the base coordinate
and 0

I−1ξ ∈ R3×1 is the translation vector that describes the translation of the origin of the
coordinate frame {I − 1} in the coordinate frame {0}. In robotics, a coordinate frame is a
system of reference used to describe the position and motion of robots in space. As shown in
Fig. B.1, the rotation center of a joint is commonly used as the reference point for setting up the
coordinate frame {i}. Then, by concatenating the rotation matrix and the translation vector, the
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Figure B.1: The coordinate frame {i} and D-H parameters.

transformation matrix of 0
I−1T is expressed as

0
I−1T =

[
0
I−1R 0

I−1ξ

[0,0,0] 1

]
∈ R4×4, (B.2)

which describes the relative position and orientation of coordinate frame {I−1} with respect to
the coordinate frame {0}.

One way to obtain the transformation matrix is to derive the D-H parameters [155]. D-H
parameters provide a systematic way to describe the position and orientation of each link and joint
in the robot in the joint space which is widely used by industrial manufacturers. The relationship
between D-H parameters and transformation matrix i−1

i T can be expressed by

i−1
i T =


cosθi −sinθi 0 ai−1

sinθi cosαi−1 cosθi cosαi−1 −sinαi−1 −sin(αi−1)di

sinθi sinαi−1 cosθi sinαi−1 cosαi−1 cos(αi−1)di

0 0 0 1

 . (B.3)

As shown in Fig B.1, θi is the angle value of i-th joint, αi−1, ai−1, di are the constant parameters
determined by the mechanical system. Then, the transformation matrix 0

i T between coordinate
frames {0} and {i} can be obtained by the forward kinematic chain [155],

0
i T = 0

1T 1
2T 2

3T · · · i−1
i T (B.4)

97



Appendix C

Foundation of Quaternion

Specifically, imaginary basis vectors follow the multiplication rules as

uuu2
i = uuu2

j = uuu2
k =−1, uuuiuuujuuuk =−1 (C.1)

uuuiuuuj =−uuujuuui = uuuk, uuujuuuk =−uuukuuuj = uuui, uuukuuui =−uuuiuuuk = uuuj. (C.2)

As shown in Fig. 4.3, according to the unit vector of the rotation axis ηηηc and the rotation angle
ψη , the quaternion can be obtained by

qqq = Fq(ac,bc,cc,ψη)

= sin(
ψη

2
) ·ac ·uuui + sin(

ψη

2
) ·bc ·uuuj + sin(

ψη

2
) · cc ·uuuk + cos(

ψη

2
). (C.3)

Joint a (m) d (m) α (rad) θ (rad)

Joint 1 0 0.333 0 θ1

Joint 2 0 0 −π

2 θ2

Joint 3 0 0.316 π

2 θ3

Joint 4 0.0825 0 π

2 θ4

Joint 5 -0.0825 0.384 −π

2 θ5

Joint 6 0 0 π

2 θ6

Joint 7 0.088 0 π

2 θ7

Table C.1: D-H Parameters of Franka Emika Panda Robotic Arm

In our prototype, the Franka Emika Panda robotic arm is used. The corresponding D-H
parameters are shown in Table C [191]. Thus, by substituting the D-H parameters into (B.4), we
can obtain 0

i T , 0
i R and 0

i ξ , i = 1,2, ..., I. Then, by substituting 0
i R and 0

i ξ , i = 1,2, ..., I, into (B.1),
we can obtain the Jacobian matrix J . This completes the calculation of the Jacobian matrix.
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Table 5.2: Summary of Main Symbols

Symbol Explanation
ts Duration of time slot
I The number of joints

T (t) Trajectory of the real-world robotic arm in the t-th time slot
τi(t) Angle value of the i-th joint measured in the t-th time slot
xi(t) Whether the i-th joint is scheduled to transmit in the t-th time slot
X(t) Decision of the scheduler in the t-th time slot
yi(t) Indicators of whether packet arrivals in the t-th time slot
φ(t) Angle between x-axis and x′-axis
Wl Historical observation window for reconstruction

T̄ (t0) Reconstructed trajectory in the t0 time slot
Fl(·,θl) Function of reconstruction

θl Parameters of reconstruction
Wp Input length of the prediction
H Output length of the prediction

Fp(·,θp) Function of prediction
θp Parameters of the prediction function
Lp MSE loss of prediction

T̂ (t) Prediction trajectory in the t-th time slot
τ̂i(t) Prediction trajectory of the i-th joint in the t-th time slot
Z(t) Optimal prediction horizon
zi(t) Optimal prediction horizon of the i-th joint
Nc Time interval of control command generation
Nr Processing time of each image
kp Proportional parameter of PD controller
kd Derivative parameter of PD controller

T̃ (t) Control results in the t-th time slot
τ̃i(t) Control result of the i-th joint in the t-th time slot

Fr(·,θr) Function of rendering
θr Parameters of rendering function

Ť (k) The rendered trajectory
P(t) Pose of real-world robotic arm in the t-th time slot
ηηηc(t) Unit vector of rotation axis
ψη(t) Angle of rotation
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Symbol Explanation
Ff (·) Forward kinematics of real-world robotic
P̌(t) Pose of virtual-world robotic arm in the t-th time slot
e(t) Modeling error in the t-th time slot

ω1, ω2 Weighting coefficients of the modeling error
πθ Scheduling and prediction policy
θ Parameters of policy

at,i
[1],at,i

[2] Action of the i-th joint taken in the t-th time slot
Ṡ(t) Set of angles received by the Metaverse

ρ t,i
[1],ρ t,i

[2] Distribution of action in the t-th time slot
Lc, Lr Loss functions of policy network
A(s,a) Advantage function

Qπθ (s,a) State-action value under policy
V πθ (s) State value function
J (·) Jacobian matrix

L1, L2, L3 Length of joint links
r(st ,at) Instantaneous reward
c(st ,at) Instantaneous cost

at Action taken in the t-th time slot
Cπθ Long-term cost
β Learning rate of CVaR
st State
v Multiplier of CVaR

Γc Constraint of modeling error
Rπθ Long-term reward
γ Discount factor

CVaRα(·) CVaR function
1-α Confidence level of CVaR
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