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Abstract
This thesis consists of two parts, more or less independent of each other but both
devoted to the study of open book decompositions of 3-manifolds and their relationship
to contact structures.

Right-veering diffeomorphisms are related to tightness of contact structures due to
a result of Honda, Kazez, and Matić but it is in general difficult to determine whether a
given diffeomorphism is right-veering. In the first part we prove that the right-veering
property can be detected in a combinatorial way.

In the second part, we explore properties of an operation of contact manifolds (with
a prescribed open book) called the binding sum. We show that even if the summands
are Stein fillable the result of the sum need not be, and indeed can be overtwisted. We
also provide an explicit computation of vanishing of the Heegaard Floer contact class
for an infinite family of such sums where the summands are Stein fillable.
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Chapter 1

Introduction

Although the study of contact geometry started in the late 1800s, recently it has
become a more popular area of study. It can be used to study symplectic manifolds, as
a symplectic structure on a manifold with boundary induces a contact structure on its
boundary, but also is an interesting object of study in its own right. Moreover, what
started as a geometric field began developing topological methods. One of the most
important, due to Giroux [19] and central to this thesis, establishes, in dimension 3, a
close relationship between contact manifolds and mapping class groups of surfaces. This
implies that 3-dimensional contact structures can be studied with purely topological
tools. It is therefore contact 3-manifolds that we will be studying, and the tools that
we will use are diffeomorphisms of compact surfaces with boundary, up to isotopy.
More precisely, we will study open books, which are a pair (Σ, φ) where Σ is a compact
surface with boundary and φ is a mapping class of Σ. In particular, we will focus on
two topics; the right-veering property, and binding sums.

§ 1.1 | Right-veering diffeomorphisms
There is a fundamental dichotomy in contact structures between those that admit an
embedding of a disc D2 whose boundary is tangent to the contact structure, called
overtwisted, and those that do not, called tight. Overtwisted contact structures, up
to isotopy, are known by work of Eliashberg [6] to correspond to homotopy classes of
plane fields, which are well understood. On the other hand, there is much we do not
yet know about tight contact structures. Thus being able to distinguish between tight
and overtwisted contact structures becomes an important problem.

A result of Honda, Kazez, and Matić [21] states that a contact structure is tight if
and only if all its supporting open books are right-veering. However, this property is
often difficult to verify, and arguments tend to be case specific. Our methods provide
a general combinatorial way to check the right-veering property. More precisely, we
show that a left-veering arc exists if an only if there exists a collection of regions,
which we call extended towers, with specific properties. This implies the existence of
an algorithm given by simply running a search along all possibilities. If the search
terminates without finding the desired collection, then the open book is right-veering.
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We note that this algorithm is very inefficient. A recent result of Baldwin, Ni, and Sivek
[2] characterised right-veering diffeomorphisms of surfaces with connected boundary
using an invariant coming from Knot Floer homology. However, this invariant can be
difficult to compute, and their proof relies on the relationship between Heegaard Floer
homology and Symplectic Floer homology proved by Lee-Taubes [29] and Kutluhan-
Lee-Taubes [27], and on computations of Symplectic Floer homology by Cotton-Clay
[4]. Our methods are more elementary, and we hope they can prove Baldwin, Ni, and
Sivek’s result without using Symplectic Floer homology; this is the subject of work in
progress. We also note that our result does not restrict to the connected boundary
case.

§ 1.2 | Binding sums
An operation of contact manifolds similar to the connected sum is the binding sum.
While the effect of the connected sum on the properties of contact structures is well
understood, the same cannot be said of the binding sum. Using a result of Klukas [26]
that allows us to obtain an open book for the sum in terms of the open books being
summed, we provide some examples that illustrate that properties such as tightness and
symplectic fillability are not necessarily preserved, and give an explicit computation
that shows vanishing of the contact class for an infinite family of sums where the
summands are Stein fillable and thus have non-vanishing contact class in Heegaard
Floer homology.

Thesis structure
Chapter 2 contains preliminary notions for the rest of the thesis. First, we introduce
contact structures on 3-manifolds and give some of its properties, the main ones being
tightness and various notions of fillability. Then we turn our attention to open books,
and outline their relationship with contact structures, culminating with the statement
of Giroux correspondence. Finally, we introduce Heegaard Floer homology and the
contact class, which we will use for computations in Chapter 4.

Chapter 3 is dedicated to proving that the right-veering property can be detected
using extended towers. We first show that in simple cases regions can detect left-veering
arcs. We then introduce extended towers as a way to generalise this situation, and we
prove inductively that they detect left-veering arcs.

Finally, Chapter 4 is devoted to defining the binding sum, exploring its proper-
ties, and computing the contact class for an infinite family of binding sums. This
computation also corrects an error in [24].



Chapter 2

Preliminaries

§ 2.1 | Contact structures
We start by providing an overview of contact structures in 3-manifolds, following Et-
nyre’s notes [10, 11], and Geiges’ book [15].

Let M be a smooth, oriented 3-manifold. A contact structure ξ on M is a maximally
non-integrable plane field. Equivalently, we may express ξ as ξ = kerα for some 1-form
α such that α ∧ dα > 0. Such a form α is called a contact form. Note that contact
forms for a given contact structure are not unique. Indeed, if α is a contact form for
ξ, and f is a non-vanishing smooth function, then α′ = fα is also a contact form for ξ.

Remark. These are sometimes referred to as positive contact structures, as opposed to
negative contact structures where α ∧ dα < 0. However we will only consider positive
ones and so we will refer to them simply as contact structures.

A classical result of Martinet states that every oriented 3-manifold admits a contact
structure [35]. We will now see two basic examples for M = R3.

Example 2.1.1. 1. Let M = R3 and ξ = ker(dz − ydx), where (x, y, z) are the
standard Cartesian coordinates on R3. Then α = dz − ydx is a contact form
because α ∧ dα = dx ∧ dy ∧ dz is a volume form for R3. Therefore ξ is a contact
structure, called the standard contact structure on R3 and denoted ξstd.

2. Let M = R3 and ξ = ker(cos rdz + r sin rdθ), where (r, θ, z) are cylindrical
coordinates. Then α = cos rdz + r sin rdθ is also a contact form since α ∧ dα =
(r+ sin r cos r)dr∧ dθ∧ dz = (1 + sin r cos r

r
)dvol and 1 + sin r cos r

r
is always positive.

We denote this contact structure by ξot.

We say that two 3-manifolds (M1, ξ1) and (M2, ξ2) are contactomorphic if there
exists a diffeomorphism f : M1 → M2 such that f∗(ξ1) = ξ2. We call such an f a
contactomorphism. Locally all contact 3-manifolds are contactomorphic (and the local
model is given by (R3, ξstd) from Example 2.1.1), this is known as Darboux’s Theorem.
A proof of this result can be found in [15]. Note that this implies that we can perform
the connect sum of two contact manifolds and the contact structures on the manifolds



CHAPTER 2. PRELIMINARIES 4

will glue together to a contact structure on the summed manifold. In Chapter 4 we
will explore a similar operation to the connect sum, called the binding sum.

Given a smooth manifold M , two contact structures ξ0 and ξ1 are said to be isotopic
if there exists a homotopy from ξ0 to ξ1 through contact structures, i.e a one-parameter
family {ξt | t ∈ [0, 1]} of plane fields with ξt a contact structure for t ∈ [0, 1]. If M
is closed, and ξ0 and ξ1 are isotopic contact structures on M , Gray’s theorem states
that there exists a one parameter family of diffeomorphisms {ft : M → M | t ∈ [0, 1]}
such that f0 = IdM and (ft)∗(ξ0) = ξt for all t ∈ [0, 1]. In particular, there exists a
contactomorphism f1 : (M, ξ0) → (M, ξ1). Gray’s theorem was originally proved by
Gray in [20], although a simpler proof using Moser’s trick can be found in [15]. The
theorem is not necessarily true if M is not closed, for example, Eliashberg in [8] showed
that it does not hold S1 × R2 (although he showed that it does hold in R3).

However, we will always work with closed 3-manifolds, and we will be interested in
contact structures up to isotopy. The two contact manifolds from Example 2.1.1, al-
though clearly diffeomorphic as smooth manifolds, are not isotopic or contactomorphic,
as proved by Bennequin [3]. Indeed, they are examples of a fundamental dichotomy of
contact structures, that of tight versus overtwisted.

Definition 2.1.2. Let (M, ξ) be a contact manifold. An overtwisted disc in M is
an embedded D2 such that its boundary is tangent to the contact planes. If such a
disc exists, the contact manifold (or the contact structure) is said to be overtwisted,
otherwise it is said to be tight.

The contact structure ξstd from Example 2.1.1 is tight, while ξot is overtwisted.
Overtwisted contact structures were completely classified by Eliashberg, who in [6]
proved that given a closed smooth 3-manifold M , the natural inclusion of overtwisted
contact structures into plane fields is a homotopy equivalence. This means that the
study of isotopy classes of overtwisted contact structures reduces to the study of homo-
topy classes of plane fields, which are well understood through the Thom-Pontryagin
construction (see [36]). Tight contact structures, however, are not as well understood,
and their classification remains an interesting problem.

This is not the only distinction we can make between contact structures, as we can
fit tight contact structures into a hierarchy which gives some measure of how rigid they
are.

A symplectic structure on a smooth 4-manifold X is a 2-form ω that is closed and
non-degenerate, that is, dω = 0 and ω ∧ ω > 0. We then call the pair (X,ω) a
symplectic manifold. Then, a contact manifold (M, ξ) is weakly symplectically fillable if
there exists a symplectic 4-manifold (X,ω) such that ∂X = M and ω|ξ > 0. If (X,ω)
is compact and such that ∂X = M and there exists a transverse vector field v pointing
out of X along M such that the flow of v dilates ω, then (M, ξ) is said to be strongly
symplectically filled by (X,ω).
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Finally, a Stein domain is a complex 4 manifold W together with a Morse function
ψ : W → R that is bounded below, and such that ωψ(v, w) = −d(dψ ◦ J)(v, w) –where
J is the complex structure– is non-degenerate. Suppose that a contact manifold (M, ξ)
is a noncritical level set, that is M = ψ−1(c) for c a regular value, and −(dψ ◦ J) is
a contact form for ξ. Then we say (M, ξ) is Stein fillable. Sometimes Stein fillable
contact manifolds are also called holomorphically fillable.

Example 2.1.3. The contact manifold (S3, ξstd) is Stein fillable, as it is the boundary
of the standard 4-ball in C2.

Then on one end of the hierarchy we have Stein fillable contact structures. These are
contained in the set of strongly fillable contact structures, which in turn are contained
in the set of weakly fillable contact structures, which are tight. However, none of these
inclusions are strict. Eliashberg showed in [9] the first example of a weakly fillable
contact structure on T 3 that is not strongly fillable, and Ding and Geiges [5] built
on this to provide infinitely many such examples on torus bundles over S1. Strongly
fillable contact structures that are not Stein fillable were discovered by Ghiggini [16].
There are also tight contact structures that are not fillable in any sense, these were first
discovered by Etnyre and Honda [12]. We can see this schematically below. Overtwisted
contact structures are not tight and thus also not fillable in any sense.

Stein fillable ⊊ Strongly fillable ⊊ Weakly fillable ⊊ Tight | OT

Another notion that we will use in Chapter 4 is the following. A contact manifold
(M, ξ) has Giroux torsion if it admits a (contact) embedding of a Giroux torsion domain
(T 2 × [0, 1], ker(cos(2πt)dx− sin(2πt)dy)) into (M, ξ). By a result of Gay [14] we know
that manifolds with Giroux torsion cannot be strongly fillable.

§ 2.2 | Open book decompositions
We now turn our attention to open book decompositions, also somewhat following
Etnyre’s notes [11]. They will be our main tool for studying contact manifolds. We
give some preliminary definitions and examples, and highlight their relationship to
contact structures.

Let M be a closed, oriented 3-manifold. An open book decomposition for M is a
pair (B, π), where B, called the binding, is an oriented link in M , and π : M \B → S1

is a fibration such that for every x ∈ S1, π−1(x) is the interior of a compact surface
with boundary Σx (called the page), such that ∂Σx = B.

Alexander showed that every smooth, closed and oriented 3-manifold admits an
open book decomposition [1].

Example 2.2.1. Let M = S3 = R3 ∪{∞}. Then the z axis union the point at infinity
is a knot K (in fact it is the unknot). Moreover, using again cylindrical coordinates
on R3 \ {z axis} = S3 \ K, the map π : S3 \ K → S1 given by π((r, θ, z)) = θ is a
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fibration whose fibres are half planes, which in S3 are the interior of discs with common
boundary K. Thus (K, π) is an open book decomposition for S3.

This construction is determined up to diffeomorphism by the diffeomorphism type
of the page and the return map of the fibration, and so we can specify an open book by a
pair (Σ, φ), where Σ is a compact surface with boundary and φ is a self-diffeomorphism
of Σ fixing the boundary pointwise. Indeed, from this data we can form the mapping
torus Σφ = Σ×[0,1]

(x,1)∼(φ(x),0) . This gives us a 3-manifold whose boundary is a disjoint union
of tori. Filling in these tori by attaching discs along {pt}×S1 we get a closed 3-manifold
Mφ that is diffeomorphic to the original manifold. The pair (Σ, φ) is called an abstract
open book, where we still refer to Σ as the page, and we will call φ the monodromy.
There is a subtle difference between open book decompositions and abstract open
books; in the former we can consider the binding and pages up to isotopy, while in
latter we can only do so up to diffeomorphism. However for our purposes we will not
need to distinguish between them and thus we will often refer to either as open books.

Remark. If φ, φ′ are isotopic diffeomorphisms of Σ then (Σ, φ) and (Σ, φ′) give diffeo-
morphic 3-manifolds, so we can allow isotopies when discussing abstract open books.
This means that we can consider the monodromy of an open book to be a mapping
class.

Definition 2.2.2. Let Σ be a compact surface with nonempty boundary. The mapping
class group of Σ, denoted MCG(Σ), is the group of isotopy classes of orientation
preserving diffeomorphisms of Σ that fix ∂Σ pointwise. Its elements are called mapping
classes.

Example 2.2.3. The open book decomposition for S3 from Example 2.2.1 has an
abstract open book description (D2, Id). Indeed, the pages are discs, and MCG(D2) is
trivial (see for example [13] for a proof, called the Alexander trick).

Definition 2.2.4. Let Σ = S1 × [0, 1] be an annulus, and define a diffeomorphism
τ : Σ → Σ by τ(θ, t) = (θ + 2πt, t). We call τ a positive Dehn twist. Its inverse τ−1 is
a negative Dehn twist.

More generally, we can define Dehn twists on any surface. Let a be a simple closed
curve in a surface Σ. Then a tubular neighbourhood of a can be identified with the
annulus a× [0, 1]. We can define the positive Dehn twist along a, denoted τa, by setting
τa to be a positive Dehn twist in the tubular neighbourhood of a and the identity
away from it. Its inverse is again called the negative Dehn twist along a and denoted
τ−1
a . The mapping class of these diffeomorphisms depends only on the isotopy class of

the curve a, and we will in general not distinguish between mapping classes and their
representatives. In particular, the mapping class of a Dehn twist will also be called
a Dehn twist. By a result of Lickorish in [31], the mapping class group of a compact
surface with boundary Σ is generated by Dehn twists along non-separating or boundary
parallel curves.
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Figure 2.1: The effect of a positive Dehn twist τ on the arc α.

We will now see that there is a relationship between open books and contact struc-
tures. We begin with the following definition.

Definition 2.2.5. A contact manifold (M, ξ) is supported by an open book decompo-
sition (B, π) of M if ξ can be isotoped through contact structures so that there is a
contact form α such that

• dα is a positive area form for each page of the open book.

• α > 0 on B.

It is a classical result of Thurston and Winkelnkemper in [42] that every open book
(Σ, φ) supports a contact structure on the manifold Mφ obtained from the mapping
torus construction as above. However, the relationship between open books and contact
structures is even closer. To explore it we first need to introduce the following operation
of open books.

Definition 2.2.6. Let (Σ, φ) be an open book decomposition, and let α be a properly
embedded arc in Σ, i.e an embedding of the unit interval in Σ such that the boundary
of the interval gets mapped to the boundary of Σ. Then the (positive) stabilisation of
(Σ, φ) is the open book (Σ′, τa ◦ φ) where

• The page Σ′ is the surface obtained by attaching a 1-handle to Σ along ∂α.

• The monodromy τa ◦ φ is the original monodromy (extended over the handle by
the identity) composed with a positive Dehn twist along a closed curve a, which
is the union of α with the core of the 1-handle.

We can see a stabilisation in Figure 2.2.

Example 2.2.7. Take the open book (D2, Id) from Example 2.2.3. Let α be a prop-
erly embedded arc in D2, and perform a positive stabilisation along α. The result of
attaching a 1-handle to D2 is an annulus, and the monodromy is now a positive Dehn
twist along the core of the annulus. Thus the stabilised open book is (S1 × [0, 1], τ).
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Figure 2.2: The effect of a stabilisation on an open book. Here both endpoints of the
arc α belong to the same boundary component, but they can also belong to different
boundary components.

There is an analogous definition for negative stabilisations replacing the positive
Dehn twist with a negative Dehn twist, but we will not need it. The importance of
stabilisations comes from the fact that they do not change the underlying 3-manifold,
as they correspond to a connected sum with S3 (thus Example 2.2.7 gives another
open book for S3). Moreover, as we shall see now, they also do not change the contact
structure supported by the open book. Negative stabilisations, on the other hand, do
change the contact structure (indeed they make it overtwisted).

We are finally ready to state the fundamental Giroux correspondence theorem.

Theorem 2.2.8. [19] There exists a one-to-one correspondence between contact struc-
tures up to isotopy and open books up to positive stabilisation.

Example 2.2.9. • The open book (D2, Id), which is an open book for S3, sup-
ports the contact manifold (S3, ξstd). By Giroux’s theorem this means that the
stabilised open book (S1 × [0, 1], τ) also supports (S3, ξstd).

• The open book (S1 × [0, 1], Id) supports the standard Stein fillable contact struc-
ture on S1 × S2.

The Giroux correspondence theorem means that contact 3-manifolds can be studied
by the means of surface diffeomorphisms. For example, we have the following result,
which can be found in [19] and [33] and that we will use in Chapter 4.

Theorem 2.2.10. A contact 3-manifold (M, ξ) is Stein fillable if and only if it admits
a supporting open book decomposition (Σ, φ), where φ is a product of positive Dehn
twists.

Another result due to Honda, Kazez, and Matić [21] deals with detection of tight
contact structures via a property of mapping classes called right-veering. This property
will be defined in Chapter 3, and indeed is the focus of that Chapter.

Theorem 2.2.11. A contact manifold (M, ξ) is tight if and only if all of its supporting
open books are right-veering.
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§ 2.3 | The Heegaard Floer contact invariant
We now introduce Heegaard Floer homology with the aim of defining an invariant of
contact structures, usually referred to as the contact class. This invariant can provide
some information on tightness and fillability of contact manifolds, and we will compute
it for an infinite family of manifolds in Chapter 4.

Heegaard Floer homology is a package of 3-manifold invariants defined by Ozsváth
and Szabó in [37] and [38]. We will focus on the simplest version, called the “hat”
version and denoted ĤF , because the invariant of contact structures that we will use
lies in it. We will further simplify the discussion by not mentioning Spinc structures or
gradings, since we do not need them. Similarly, we will not worry about admissibility
of the Heegaard diagrams (which is a necessary condition for Heegaard Floer homol-
ogy to be well defined), because the diagrams we will use will come from open book
decompositions and will, by [23], be admissible. Finally, to avoid sign issues, we will
work with F2 coefficients.

Let M be a closed smooth 3-manifold. The construction of ĤF (M) starts with a
Heegaard diagram for M , for which we need to first define Heegaard decompositions.

Definition 2.3.1. A genus g handlebody U is a 3-manifold diffeomorphic to a neigh-
bourhood of a wedge of g circles in R3. Its boundary is a closed oriented surface of
genus g. A Heegaard decomposition of a closed 3-manifold M is then a decomposition
of M into two genus g handlebodies, M = U1∪ΣgU2, where Σg is the common boundary
of U1 and U2 (with the orientation induced by U1).

A Heegaard decomposition for a 3-manifold M can be encoded in the surface Σg

(called the Heegaard surface) by means of a Heegaard diagram.

Definition 2.3.2. A Heegaard diagram of a Heegaard decomposition M = U1 ∪Σg U2

is a triple (Σg,α,β), where

• Σg is the Heegaard surface of genus g.

• α = {α1, . . . , αg} ⊂ Σ is a g-tuple of pairwise disjoint simple closed curves,
bounding pairwise disjoint embedded discs in U1 and such that Σ\α is connected.
The curves are called the α curves.

• β = {β1, . . . , βg} ⊂ Σ is a g-tuple of pairwise disjoint simple closed curves,
bounding pairwise disjoint embedded discs in U2 and such that Σ\β is connected.
The curves are called the β curves.

We can recover the Heegaard decomposition (and thus the original manifold) by
forming the product Σg × [−1, 1], attaching discs to Σg × {−1} along the α curves and
to Σg × {1} along the β curves, and finally attaching 3-balls along the resulting S2

boundaries.
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Example 2.3.3. Since S3 is the union of two 3-balls along their common boundary
S2, we have a trivial Heegaard diagram for S3 where the Heegaard surface is a sphere
and there are no α or β curves.

Example 2.3.4. Let Σ1 = S1 × S1, α1 = {pt} × S1 and β1 = S1 × {pt}. Then
(Σ1, α1, β1) is a Heegaard diagram for S3.

By a result of Singer [41], any closed 3-manifold admits a Heegaard decomposition
(and thus a Heegaard diagram). Moreover, any two Heegaard diagrams for a 3-manifold
M are related by a sequence of moves called isotopies, handleslides, and stabilisations.
An isotopy corresponds to an isotopy of the α and β curves. A handleslide of a curve
αi over a curve αj is replacing αi with the curve αk such that αi, αj, αk bound a pair
of pants in in the Heegaard surface disjoint from the other α curves (analogously we
can do a handleslide of β curves). Finally, a stabilisation corresponds to a connect sum
with the Heegaard diagram from Example 2.3.4 (where the connect sum is performed
away from the α and β curves of both diagrams).

Now let (Σg,α,β) be a Heegaard diagram, and pick a point z ∈ Σg \ (α∪β), which
we will refer to as the basepoint. Then the tuple H = (Σg,α,β, z) is called a pointed
Heegaard diagram. There is an analogous notion of pointed isotopies, handleslides,
and stabilisations relating any two pointed Heegaard diagrams representing the same
(pointed) 3-manifold.

Now consider the space Symg(Σg) = Σ×g
g /Sg, where Sg is the symmetric group on g

elements (i.e Symg(Σg) is the space of unordered g tuples of points in Σg). The action
of the symmetric group is not free, but Symg(Σg) is nevertheless a smooth manifold,
and it inherits a complex structure from a complex structure in Σg (see [34] for a proof
of both of these facts). Moreover, since α and β are collections of pairwise disjoint
simple closed curves, they induce a pair of g-dimensional tori Tα = α1 × · · · × αg and
Tβ = β1 × · · · × βg inside Symg(Σg).

The Heegaard Floer chain complex associated to the pointed Heegaard diagram H
is the F2-vector space generated by intersection points x = (x1, . . . , xg) ∈ Tα ∩ Tβ,
with differentials counting holomorphic discs between these intersection points, and
is denoted ĈF (H). We now describe these differentials, for which we need to define
Whitney discs.

Definition 2.3.5. Let H be a pointed Heegaard diagram of a 3-manifold M , and
x,y ∈ Tα ∩ Tβ ⊂ Symg(Σg). A Whitney disc from x to y is a continuous map
u : D2 → Symg(Σg), where D2 is the unit disc in C, such that

• u(−i) = x and u(i) = y.

• u({z ∈ ∂D2 | Re(z) > 0}) ⊂ Tα and u({z ∈ ∂D2 | Re(z) < 0}) ⊂ Tβ.

We denote by π2(x,y) the set of homotopy classes of Whitney discs from x to y.
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Figure 2.3: A Whitney disc.

Recall that Symg(Σg) inherits a complex structure from a complex structure on Σ.
Now for ϕ ∈ π2(x,y), let M(ϕ) be the moduli space of holomorphic representatives
of ϕ. This space has an expected dimension called the Maslov index and denoted
µ(M(ϕ)) or µ(ϕ). Moreover it admits an R action by considering the unit disc as the
infinite strip [0, 1]× iR ⊂ C and then using vertical translations. Thus if µ(M(ϕ)) = 1,
the quotient M̂(ϕ) = M(ϕ)/R is a collection of points. For the differential we will use,
rather than M(ϕ), the moduli space M0(ϕ) of holomorphic representatives that miss
{z} × Symg−1(Σ), where z is the basepoint in H.

Definition 2.3.6. Let H = (Σg,α,β, z) be a pointed Heegaard diagram of a 3-
manifold M . For an intersection point x ∈ Tα ∩ Tβ, we define the differential by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

(#M̂0(ϕ))y

Ozsváth and Szabó showed in [37] that the sums in this differential are finite and
∂2 = 0, so (ĈF (H), ∂) is a chain complex. We write ĤF (H) for the homology of this
chain complex. Now start with a 3-manifold M , and let H be a Heegaard diagram for
M . Then one of the main results of [37] is that the isomorphism type of ĤF (H) does
not depend on the various choices made in the definition, for example, the choice of
pointed Heegaard diagram for M or the choice of complex structure on the Heegaard
surface. Moreover Juhász, Thurston and Zemke [25] show naturality of Heegaard Floer
homology, so we can assign to M a concrete group, and not just an isomorphism class.
Thus we can refer to this group as the Heegaard Floer homology of M , denoted ĤF (M).

This invariant is in general hard to compute, due to the difficulty of identifying
holomorphic discs in Symg(Σg). A useful tool for computations, which we will use in
Chapter 4, is the nicefying algorithm, defined by Sarkar and Wang in [40]. They show
that, using isotopies and handleslides, it is possible to modify a Heegaard diagram
into a nice diagram, which is one where every connected component of Σg \ (α ∪ β)
(except the one containing the basepoint) is either a rectangle of a bigon. Then, every
holomorphic disc in Symg(Σg) corresponds to a rectangle or a bigon in Σg, and thus
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ĤF (M) can be computed combinatorially.
We will now see that we can compute Heegaard Floer homology from an open

book decomposition, and we will use this to define the contact class c(ξ), following the
construction in [23]. The original definition of this invariant is due to Ozsváth and
Szabó in [39], but the equivalent definition of Honda, Kazez and Matić from [23] is the
one that we will use for computations in Chapter 4.

Recall that from an open book (Σ, φ) for M we can recover the 3-manifold by
constructing the mapping torus Σφ = Σ×[0,1]

(x,1)∼(φ(x),0) and filling in the boundary tori,
which is topologically the same as further quotienting by the relation (x, t) ∼ (x, t′)
for every x ∈ Σ, t, t′ ∈ [0, 1]. Then we can see a Heegaard decomposition of M , where
the handlebodies are H1 = Σ × [0, 1

2 ] and H2 = Σ × [1
2 , 1], and the Heegaard surface

is Sg = (Σ × {1
2}) ∪ (−Σ × {0}). Now take a basis {ai} for Σ. Then ai × [0, 1

2 ] are
embedded discs in H1 whose boundary is in Sg, and ai × [1

2 , 1] are embedded discs in
H2 whose boundary is also in Sg. Thus the α curves are αi = ∂(ai × [0, 1

2 ]) and the β
curves are βi = ∂(ai × [1

2 , 1]).
We now make some modifications to this so we can compute ĤF (M) directly on

the page of the open book and define the contact invariant. For every ai, let bi be an
arc isotopic to ai such that

• Its endpoints are obtained from the endpoints of ai by performing a small isotopy
along the boundary of Σ, in the direction specified by the boundary orientation.

• The arcs ai and bi intersect transversely in one point xi the interior of Σ, which
has positive intersection if we orient ai and give bi the induced orientation by the
isotopy.

Then if we define α′
i = ∂(ai × [0, 1

2 ]) and β′
i = ∂(bi × [1

2 , 1]), and the Heegaard
surface Sg = (Σ × {1

2}) ∪ (−Σ × {0}) as before, (Sg, α′
i, β

′
i) is still a Heegaard diagram

for M . We place the basepoint z in the interior of Σ × {1
2}, outside of the thin strips

of isotopy between ai and bi. Since the discs that we consider for the Heegaard Floer
differential must miss {z} × Symg−1(Sg), this effectively means that the intersection
of any holomorphic disc with Σ × {1

2} will be contained in the thin strips of isotopy.
Thus we can see all the holomorphic discs in the Heegaard Floer complex by simply
looking at the page of the open book, and moreover the points xi can be seen as the
boundary points of the properly embedded arcs of the basis (where we need to consider
both endpoints as the same point).

We are now ready to define the contact invariant. Instead of using (Sg, α′
i, β

′
i, z),

we will use the pointed Heegaard diagram (Sg, β′
i, α

′
i, z) (which is a diagram for the

manifold with reverse orientation) because the invariant for M lies on ĤF (−M). Let
x = (x1, . . . , xg). Then Honda, Kazez, and Matić show that x is a cycle in ĈF (−M),
and define EH(Σ, φ, {a1, . . . , ag}) to be the homology class of x. Moreover, they prove
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that EH(Σ, φ, {a1, . . . , ag}) agrees with the contact invariant c(ξ) defined by Ozsváth
and Szabó.

It is shown in [39] that this invariant vanishes for overtwisted contact structures
and is nonzero for Stein fillable ones. It is also nonzero for strongly fillable contact
structures (see [17]). However, it does not completely distinguish between overtwisted
and tight contact structures, since there are tight contact structures whose contact
invariant vanishes, for example, those with Giroux torsion, as shown in [18] (note that
this together with the result in [17] provides another proof of Gay’s result that contact
manifolds with Giroux torsion cannot be strongly fillable). We will provide an explicit
computation of this in Chapter 4.



Chapter 3

Right-veering diffeomorphisms

§ 3.1 | Introduction
In light of Theorem 2.2.11, we can study tightness of contact structures by looking
at the right-veering property of open books. An open book is right-veering if its
monodromy sends every properly embedded arc to the right (a precise definition will
be given in Section 3.2). Therefore existence of a single arc that is not sent to to
the right (a left-veering arc) is enough to guarantee overtwistedness of the contact
structure. However, it is often difficult to determine if such an arc exists. Indeed, if
we take a basis of the surface (a collection of arcs which cut the surface into a disc),
the images of these arcs under a diffeomorphism determine it up to isotopy; therefore
it would be reasonable to expect that the right-veering property would be encoded in
any such collection. However, it is possible to find monodromies that are not right-
veering and yet send each arc of some basis to the right. Looking at more arcs does not
necessarily solve the problem, as similar counterexamples can be found, for example,
when the collection of arcs we look at is a complete set, i.e a maximal collection of
pairwise disjoint and non-isotopic arcs.

Thus the usual approach to showing whether an open book is right-veering is to
either exhibit an arc that goes to the left, which is found in a non-systematic way, or
divide all arcs into different classes and then show that each class can only contain arcs
sent to the right. The main issue with this is that in both cases the argument is case
dependent.

We show that, given an open book (Σ, φ) and a basis B of Σ, a left-veering arc
induces a collection of objects, called extended towers, that are constructed using B
and its image under φ; with some specific properties. Conversely, the existence of such a
collection implies the existence of a left-veering arc, which moreover can be constructed
from the extended towers. This is a modification of the notion of consistency introduced
in [43] and [44] with the aim of detecting tightness.
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§ 3.1.1 | Strategy of the algorithm

First we show, in Propositions 3.2.12 and 3.2.16, that using regions we can detect
a left-veering arc and a fixable arc segment in a simple case, that is, when they are
contained in a 6-gon cut out by 3 arcs, two of which belong to our chosen arc collection.

In Subsection 3.4.1 we show that existence of a left-veering arc implies the existence
of a minimal left-veering arc, which can be divided into arc segments that are either
fixable or left-veering and are disjoint from our chosen arc collection except in endpoints
that are not on the boundary of the surface.

Then in Subsection 3.4.2 we prove that the regions in Propositions 3.2.12 and 3.2.16
form extended towers. This is our base case.

Our inductive step is then to show that an extended tower supported in an arc
collection with n arcs induces an extended tower supported in an arc collection with
n + 1 arcs, and conversely. Moreover, we show that the properties of the extended
tower are preserved. The proof of this inductive step is cumbersome and is broken
down into several Lemmas in Subsection 3.4.3 to account for the different cases.

Using this we show that if we have an arc collection that, together with a left-veering
arc, cuts out a disc, then the left-veering arc is detected by an incomplete extended
tower supported in the arc collection. Similarly, a fixable arc segment is detected by a
completed extended tower. This is the content of Theorems 3.4.18 and 3.4.19.

Finally, we show that in the case of the minimal left-veering arc not being disjoint
from our chosen basis, we can detect it with a collection of completed extended towers
and one incomplete extended tower. This constitutes our main result, Theorem 3.4.22.
This implies the existence of an algorithm to check the right-veering property because
one a basis is fixed, there exists a finite amount of regions to check.

We can see the strategy in Figure 3.1. Once we have a basis with arcs duplicated,
they cut Σ into a disc. Moreover, the arcs from the basis divide the minimal left-veering
arc γ into segments which are either fixable or left-veering, and disjoint from the basis
except at endpoints. First, Theorem 3.4.19 shows that γ1 being fixable is detected by a
completed extended tower supported in the arc collection that, together with γ1, cuts
out the disc P1 (which exists because the arcs in this arc collection belong to our chosen
basis, which cuts the entire surface into a disc), and similarly for γ2. Then, Theorem
3.4.18 shows that γ3 being left-veering is detected by an incomplete extended tower
supported in the arc collection that together with γ3 cuts out the disc P3.

§ 3.1.2 | Dictionary

Since a large amount of the terminology used in this Chapter is non-standard, we start
by gathering some of the new concepts that we will introduce into a “dictionary”, for
quick reference. The explanations given here are not meant to be precise definitions,
as these are presented throughout the Chapter, but rather provide some intuition as
to why they are needed.

The main objects we will use are extended towers, collections of regions that aim to
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Figure 3.1: A left-veering arc γ, which we want to detect using extended towers. The
arc is minimal with respect to the basis, which means that its image is itself up until
the point x and after that it goes to the left.

detect fixable arc segments and left veering arcs. Regions are immersed n-gons whose
boundary edges lie alternatively on arcs from a given arc collection an their images.
Vertices of these regions alternate between •-points (positive intersection points) and
◦-points (negative intersections points). In terms of Heegaard Floer homology, a region
gives a differential from the generator given by the ◦-points to the generator given by
the •-points.

Remark. It is important to remark that we will not always end up with a Heegaard
Floer object. However, we do in some simple cases, which is why an intuition based
on Heegaard Floer is provided for several of the definitions here.

Regions are positive if the boundary induced by the arcs and arc images is the
standard one, and negative otherwise.

These regions will be bounded by collections of arcs and their images, with the
particular property that the collection of arcs (together with an extra arc not belonging
to the collection) cuts out a disc from the surface. Moreover, to obtain a complete
characterisation of left-veering arcs we need to impose some further conditions on
these extended towers.

1. Repleteness (Definition 3.3.3): If it is possible to add a negative region to the
extended tower, then it must be added. A relation to Heegaard Floer homology
is the following. If a region R contributes to the differential of a generator x,
other regions contributing to the differential of x must also be considered.

2. Niceness (Definition 3.3.4): Positive regions are disjoint from the supporting arc
collection in their interior, and negative regions are disjoint from the image of the
supporting arc collection in their interior. This ensures that the definition of the
regions induced by arc-slides, central to the inductive step, is straightforward.

3. Nestedness (Definition 3.3.5): The extended towers are constructed level by level,
that is, we start with positive regions whose •-points are on the boundary. Then
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we get negative regions from the ◦-points of these positive regions, then more
positive regions from the •-points of these positive regions and so on. An analogue
coming from Heegaard Floer would be a chain of generators which kills the contact
class: First we start with generators whose differential includes the contact class
(positive regions), but potentially also more generators (negative regions). Then
we consider points whose differential includes these extra generators (positive
regions) and so on.

4. Completeness (Definition 3.3.7): Every interior vertex belongs to both a positive
and a negative region. This ensures that there exists a fixable arc segment (Def-
inition 3.2.15) because the fact that the regions cover the entire arc collection
means the arc segment cannot go to either right or left.

5. Incompleteness (Definition 3.3.8): In every negative region there is a vertex which
also belongs to a positive region. In Heegaard Floer language this would mean
that the chain given by the collection of regions kills the contact class.

§ 3.2 | Preliminaries
We start with some definitions regarding open books, and we introduce the concept of
a region.

Definition 3.2.1. Let Σ be a compact surface with nonempty boundary. A properly
embedded arc is the image of an embedding α : [0, 1] ↪→ Σ such that α(0), α(1) ∈ ∂Σ.
An arc segment is the image of an embedding of the unit interval that is not necessarily
proper, i.e we do not require that α(0), α(1) ∈ ∂Σ.

Definition 3.2.2. Let (Σ, φ) be an open book. An arc collection in Σ is a set of
pairwise disjoint properly embedded arcs. An arc collection B such that Σ \ B is a disc
is called a basis.

The significance of bases comes from the fact that a mapping class is uniquely
determined by its action on any basis.

Definition 3.2.3. Let (Σ, φ) be an open book, and Γ an arc collection in Σ. If Σ \ Γ
contains an n-gon component with exactly one edge on each element of Γ, we say Γ
cuts out an n-gon.

Definition 3.2.4. Let α1, α2 be disjoint properly embedded oriented arcs in a compact
surface with boundary Σ, such that there is a boundary arc going from α1(1) to α2(0).
The arc-slide of α1 and α2 is (the isotopy class of) the arc β that starts at α1(0) and
ends at α2(1), such that α1, α2, and β cut out a 6-gon from Σ whose standard boundary
orientation coincides with the orientation from α1, α2, and −β.
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Figure 3.2: The arc-slide β of two arcs α1 and α2. Observe we need to reverse the
orientation of β to obtain an orientation of the boundary of the 6-gon.

Any two bases for Σ can be related by a sequence of arc-slides (see [23] for a proof
of this fact). We can also extend this definition to larger families of arcs; if a collection
of pairwise disjoint arcs {αi}ni=1 is such that there is a boundary arc going from αi(1)
to αi+1(0), then the arc β that starts at α1(0) and ends at αn(1) and cuts out a disc
from Σ (whose standard boundary orientation coincides with the orientation from αi

and −β) is called the arc-sum of {αi}ni=1.

We now give the notion of right-veering arcs as introduced in [21]. Our definition
is phrased in a slightly different way, in order to be consistent with the orientation
convention that we will use, but is equivalent to the one in [21].

Definition 3.2.5. Let (Σ, φ) be an open book decomposition, and let α be an oriented
properly embedded arc with starting point x. We will adopt the convention that its
image φ(α) is given the opposite orientation to α. We then say that α is right-veering
(with respect to φ) if φ(α) is isotopic to α or, after isotoping α and φ(α) so that they
intersect transversely with the fewest possible number of intersections, (α′(0), φ(α)′(1))
define the orientation of Σ at x. In this latter case we will say that α is strictly right-
veering. If α is not right-veering we say it is left-veering.

In Figure 3.3 we can see that intuitively a right-veering arc α is such that φ(α) is
to the right of α near the starting point once we have isotoped them so that they have
the fewest possible number of intersections.

Figure 3.3: A (strictly) right-veering arc α.

Although this definition only refers to the starting point of the oriented arc, we will
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usually say that an arc is right-veering to mean that both itself and the arc with oppo-
site orientation are right-veering (thus referring to both endpoints). However, when we
say than an arc is left-veering we only refer to its starting point. This is because one
left-veering oriented arc is enough for an open book to support an overtwisted contact
structure, by [21], so we only need to detect one.

Definition 3.2.6. Let (Σ, φ) be an open book decomposition. We say that φ is right-
veering if every oriented properly embedded arc in Σ is right-veering.

Sometimes we will say that the open book itself is right-veering when the mon-
odromy is right-veering.

Figure 3.4 shows that, to determine if an open book is right-veering, it is not enough
to check that every arc of a basis is right-veering. The page is a planar surface with
4 boundary components, and the monodromy is determined by the images of the arcs
from the basis.

Figure 3.4: A basis of right-veering arcs, and a (dotted) left-veering arc.

Definition 3.2.7. Let (Σ, φ) be an open book. We say that an arc γ is bigon free with
respect to an arc α if γ does not form any bigons with α. Similarly, we say that an arc
collection Γ is bigon free if for every α, β ∈ Γ, α does not form any bigons with φ(β).

Given an arc collection Γ, we can always isotope φ(Γ) so that Γ is bigon free, and
so we will always assume this is the case.

We now recall some definitions and notation from [44].

Definition 3.2.8. Let (Σ, φ) be an open book, Γ = {αi}ni=1 an arc collection, and
φ(Γ) = {φ(αi)}ni=1 its image under the mapping class φ (we orient φ(αi) with the
opposite orientation to the one induced by αi). A region R in (Σ, φ,Γ) (or supported
in (Σ, φ,Γ)) is the image of an immersed 2k-gon such that:

• The edges are mapped to Γ and φ(Γ) alternatively.
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• The orientations of the arcs and their images orient ∂R.

• Every corner is acute, i.e for every vertex x = αi ∩ φ(αj), in a neighbourhood of
x, R only intersects one of the 4 quadrants defined by αi and φ(αj) at x.

• The immersion restricted to the vertices of the 2k-gon is injective.

A point αi ∩φ(αj) is positive if the tangent vectors of αi and φ(αj) (in that order)
determine the orientation of Σ at the intersection point, and negative otherwise. More-
over, we will say a region is positive if the boundary orientation given by the orientation
of the arcs from Γ and φ(Γ) coincides with the usual counterclockwise orientation, and
negative otherwise.

We will denote positive intersection points by •-points and negative intersection
points by ◦-points. See Figure 3.5 for an example of a region with its positive and
negative points labelled. We will also denote the set of •-points (respectively ◦-points)
of a region A by Dot(A) (respectively Circ(A)), and the set of vertices Dot(A)∪Circ(A)
as V(A).

Figure 3.5: A region R, which is positive because the arcs orient ∂R counterclockwise.
We will use the convention that straight lines represent arcs and curved lines represent
their images under φ.

Definition 3.2.9. Let R be a region in (Σ, φ,Γ). We say that R is completed if there
exists another region R′, such that Circ(R′) ⊂ Circ(R), but the induced orientation of
∂R′ is the opposite orientation to the one in R. We will call this region the completion
of R. If no such region exists we say R is not completed.

Remark. A completion of a region need not use all of the arcs used in the region.

Now our setup differs slightly from the standard version of consistency as defined
in [43] and [44]. The reason for this is that, while Honda, Kazez, and Matić’s result
establishes a relationship between the right-veering property and tightness, the two
concepts are not equivalent, since for any overtwisted contact manifold we can find a
supporting open book decomposition that is right-veering. The technology in [43] and
[44] aims to detect tightness, while we aim to detect the right-veering property, and so
it is natural that there will be similarities as well as differences.
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Figure 3.6: On the left, a region R and its completion R′. On the right, a region R
which is not completed.

Definition 3.2.10. Let (Σ, φ) be an open book, Γ an arc collection in Σ, and α1, α2 ∈
Γ. Assume there exists a boundary component B of Σ which contains an endpoint
of α1 and an endpoint of α2. Then assume that φ(α1) is boundary parallel near B
until it intersects α2, and does not intersect any other α ∈ Γ before doing so. This
creates a triangle (with sides an arc segment of φ(α1), an arc segment of α2 and an arc
segment of B). We can see such a triangle in Figure 3.7. We will refer to this triangle
as a basepoint triangle. For an arc collection Γ, we denote the set of ◦-points that are
vertices of basepoint triangles by Circ∂(Γ).

Figure 3.7: A basepoint triangle (shaded).

Remark. If there is an arc image φ(α) that intersects a basepoint triangle disjoint from
α, it must do so forming a bigon. Note that since we assume that our collections are
bigon free then this cannot happen. We can generalise this situation for the case where,
instead of a basepoint triangle, we have a disc component of Σ\(Γ∪{α}) with a unique
edge on an arc α ∈ Γ (a basepoint triangle is the simplest case of such a disc, with an
edge on an arc, and the other two on the boundary and an arc image respectively).

Definition 3.2.11. Let Γ be an arc collection in an open book (Σ, φ), {φ(βi)}ni=1 a
subcollection of φ(Γ), and a an arc segment of an arc α ∈ Γ such that {φ(βi)}ni=1 ∪ {a}
cut out a disc D from Σ. Then we say a is restricted in Γ.

Similarly as in the previous remark, for a restricted edge a and associated disc D,
images of arcs disjoint from D cannot intersect the restricted edge because they would
then have to form a bigon. Clearly the edge of a basepoint triangle that lies on an arc
is restricted, with the disc D being the basepoint triangle itself.

Now we want to show that, in the case where the arc-slide of a pair of arcs –with
the opposite orientation– is left-veering, regions with an edge on a basepoint triangle
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can detect this left-veering arc. We will see later that this is a simple example of an
extended tower, and it will be the base case of our induction.

This means that we want to understand what possibilities there are for regions
when we look at three arcs {α0, α1, α2} that cut out a 6-gon from the surface. Call this
6-gon P . Then φ(P ) must also be a 6-gon. Now consider an arc collection C (which
may also include some of the arcs cutting out P ). When segments of two of the arc
images φ(αi), φ(αj) form opposite sides of a rectangle which is a connected component
of φ(P ) \ C, we will say that they are parallel (with respect to C) along those segments.

Proposition 3.2.12. Let α0, α1, α2 be properly embedded arcs that cut out a 6-gon P

from Σ, oriented counterclockwise, and assume α1 and α2 are right-veering. Then α0

is left-veering if and only if there exists a positive region R in {α1, α2} contained in P ,
with •-points on ∂Σ and where one of the edges is the edge of a basepoint triangle, that
has no completion.

Proof. First assume that α0 is left-veering, which means (since α2 is right-veering),
that it leaves P by intersecting α1 in a point z. Since α2 is right-veering, φ(α2) must
leave P by intersecting α1 in a point y. This in turn means that φ(α1) must leave P
by intersecting α2 (as it cannot intersect φ(α2)), creating the region R, with an edge
being an edge of the basepoint triangle formed by α2 and φ(α1). For a contradiction,
suppose that this region can be completed with a region R′, which must necessarily be
a rectangle (it cannot be a bigon because we are assuming our collections are bigon free,
and it cannot have more than 4 vertices because R only has 2 ◦-points). Moreover, the
edge of this rectangle on α2 is restricted, because it is an edge of a basepoint triangle.
This in turn means that the edge of the rectangle on α1 is restricted. Then the •-point
of R′ on α1 cannot be between z and y, because then φ(α1) would have to form a bigon.
This means that it would have to be between z and the other endpoint of α1 (that is,
α1(0)). But this means that φ(α0) intersects the restricted edge –a contradiction.

Conversely, assume that there exists a region R satisfying the above conditions, in
particular, it has no completion. Suppose for a contradiction that α0 is right-veering.
But then, since the image of P must be a disc, there must be an arc segment on α1

cutting out a disc with φ(α1) and φ(α2), so it must be a restricted edge with respect
to {α1, α2}. However this in turn means that R has a completion –a contradiction. So
α0 must be left-veering, see Figure 3.8.

For completeness, we include the case where all three arcs cutting out a 6-gon are
right-veering.

Proposition 3.2.13. Let α0, α1, α2 be properly embedded arcs cutting out a 6-gon P ,
oriented counterclockwise, and assume they are right-veering. Then we can find a non-
empty collection of regions in {α0, α1, α2} such that every positive region is completed
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Figure 3.8: The incomplete region R when α0 is left-veering.

by a negative region, and every interior •-point is a vertex of two regions (one positive
and one negative).

Proof. Suppose first that the image of each arc leaves P by forming a basepoint triangle.
Then we have an initial positive region R (a 6-gon) where the •-points are endpoints
of the arcs and the ◦-points are the intersection points where the arc images leave P .
To see that this is completed, observe that the image of P is again a 6-gon which is
the union of a completing region and the three basepoint triangles, and so we must
have a negative region with the same ◦-points as R and whose •-points are the other
endpoints of the arcs.

Now suppose that one arc image (we can assume it is φ(α2)) leaves P without
forming a basepoint triangle (so in this case, by intersecting α1). This forces the image
of α1 to leave P by intersecting α2 and creating a basepoint triangle. This immediately
gives a positive region R1. This region has a completion R′

1, because if it did not, α0

would have to be left-veering by Proposition 3.2.12. One of the •-points is a vertex of
the basepoint triangle formed by φ(α1) and the other one is either an endpoint of α1

or an interior point α1 ∩ φ(α1), let us denote it by x. In the first case we have that α0

is isotopic to φ(α0), as it cannot be left-veering because it would intersect a restricted
edge on α1 but it also cannot be strictly right-veering because α0 with the opposite
orientation would also have to be strictly right-veering and it would have to intersect
the restricted edge on α1.

For the second case we have that, after x, φ(α1) intersects α0 and then it must be
parallel to φ(α0) until their other endpoint (because the image of P must be a disc).
This gives another two regions, a positive one R2 where the •-points are x and an
endpoint of α0, and its completion R′

2, the part of φ(P ) where φ(α0) and φ(α1) are
parallel.

We have seen what regions arise in a 6-gon when all arcs are right-veering, and
when one of the arcs is left-veering. Eventually we want to detect a left-veering arc by
dividing it into segments that can be fixed by the monodromy and a segment that is
left-veering. Thus, now we turn our attention to arc segments that can be fixed by the
monodromy.
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Definition 3.2.14. Let (Σ, φ) be an open book. If two arcs α1, α2 that cut out a 6-gon
P with a third arc α0 (oriented counterclockwise) support a pair of regions {R1, R

′
1}

as in the second case of Proposition 3.2.13 (i.e there is a positive region R1 in P where
one of the sides is a side of the basepoint triangle, and it is completed by a region R′

1

with a •-point in the interior of α1) we say that α2 is φ-contained in α1 and we call
{R1, R

′
1} a positive splitting pair. We also call {R2, R

′
2} a negative splitting pair, and

we also say that α0 is φ-contained in α1.

Definition 3.2.15. Let Γ be an arc collection in an open book (Σ, φ), and x, y ∈
Γ ∩ φ(Γ) be two points (which could be on the boundary or interior points) that are
fixed by some representative of φ . Let γ be an arc segment starting in x and ending
in y. We say γ is fixable by φ if there is a representative of φ that fixes it relative to
∂γ.

This means that γ and φ(γ) bound a collection of bigons that intersect only on
points γ ∩ φ(γ), see Figure 3.9 for an example.

Remark. If both endpoints of an arc segment are fixed by φ, properties like being right-
or left-veering can be defined as for properly embedded arcs.

Figure 3.9: On the left, γ is fixable because we can isotope φ(γ) relative to its endpoints
to coincide with γ. On the right, γ is not fixable.

In practice, we want our fixed points to come from intersections α ∩ φ(α) where α
is an arc of a chosen basis.

Similarly to Proposition 3.2.12, if we have 3 arcs cutting out a 6-gon, we can use
regions to detect a fixable arc inside this 6-gon.

Proposition 3.2.16. Let (Σ, φ) be an open book, and let α0, α1, α2 be properly embed-
ded arcs cutting out a 6-gon P from Σ, oriented counterclockwise, and assume they are
strictly right-veering. Let γ be an arc segment contained in P starting on ∂Σ between
α2 and α0 and ending in an intersection point x = α1 ∩ φ(α1) in the interior of α1.
Then γ is fixable by φ if and only if {α1, α2} support a positive splitting pair {R,R′}
such that the •-point of R′ in the interior of Σ is x.

Proof. First assume that γ is fixable. Then the image of α2 must leave P by intersecting
α1, which means that the image of α1 leaves P by intersecting α2 (and forming a
basepoint triangle), giving the positive region R. Since we are assuming that α0 is
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strictly right-veering, this region must be completed by a region R′, giving the positive
splitting pair.

Figure 3.10: The regions R and R′ when γ is fixable.

Conversely, suppose that we have a positive splitting pair {R,R′}. Then γ cannot
be left-veering, because it would have to intersect the edge of R′ on α1, which is
restricted. However, by Proposition 3.2.13, after the splitting pair (that is, after the
interior •-point of R′) φ(α1) and φ(α0) must be parallel up to the boundary, which
means that they form a rectangle with α0 and an edge of a basepoint triangle on α1.
Thus the edge of this rectangle on α0 is also restricted. If γ were strictly right-veering
in its starting point, it would have to intersect this restricted edge. Thus γ must be
fixable by φ (strictly speaking, we might not have that φ(x) = x, however, in this case,
by the same argument, γ, φ(γ), and φ(α1) must bound a disc, and thus we may isotope
φ(x) by sliding it along φ(α1) to coincide with x and then γ is fixable).

Figure 3.11: Once we have R and R′, the image of γ cannot go to either side because
the edges on α0 and α1 are restricted.

§ 3.3 | Extended towers
We now introduce extended towers, which will be our main tool for detecting left-
veering arcs. They are inspired by the notion of towers introduced in [44]. However,
there are some differences. Towers were defined to detect tightness, and we aim to
detect left-veering arcs. Both concepts are related but not equivalent, and the new
features of extended towers reflect this. From now on, let Γ be an arc collection in a
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surface with boundary Σ, and α0 a properly embedded arc, disjoint from Γ, such that
Γ ∪ {α0} cuts out a disc P . Moreover, orient the arcs in the standard counterclockwise
orientation of ∂(P ).

Definition 3.3.1. For a given arc collection Γ in an open book (Σ, φ), we denote the
set of regions supported in Γ by R(Σ, φ,Γ). Moreover, for any collection of regions A,
the set of positive regions in A is denoted by A+, and, similarly, the set of negative
regions of A is denoted by A−.

Definition 3.3.2. An extended tower in (Σ, φ,Γ) is a (nonempty) collection T ⊂
R(Σ, φ,Γ) where Dot(T ) ⊂ (Dot(T −) ∪ ∂Σ), Circ(T ) ⊂ (Circ(T +) ∪ Circ∂(Γ)), and
for all pairs A,B ∈ T , no corner of A is contained in the interior of B. We say that Γ
supports T .

We can see an example of two extended towers in Figure 3.12. These will be our
primordial examples, and while we will provide other, simpler examples for some of
the properties later on, we will often come back to these ones to illustrate why all the
properties are needed. We will see later that the existence of the extended tower on
the left implies that the arc segment γ is fixable, while the existence of the extended
tower on the right implies that the arc α5 is left-veering.

Figure 3.12: Two extended towers which will be our primordial examples to showcase
the different properties that we will require.

Definition 3.3.3. An extended tower T in (Σ, φ,Γ) is replete if whenever there is a
region A ∈ R−(Σ, φ,Γ) which satisfies Circ(A) ⊂ Circ(T ) ∪ Circ∂(Γ), and T ∪ A is
again an extended tower, then A ∈ T . All extended towers will be assumed replete
unless otherwise stated.

The main difference with towers from [44] is that here we allow negative regions
with ◦-points in Circ∂(Γ) as well as Circ(T +). This is because we want to detect
left-veering arcs rather than tightness, and we can see an example of this difference in
Figure 3.17.

The importance of this definition can now be seen in the extended towers from
Figure 3.12. We wanted the extended tower {R1, R

′
1, R2, R

′
2, R3} on the right side of

the figure to correspond to the arc α5 being left-veering. However, if we do not impose
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the repleteness condition, we can also consider the extended tower {R1, R
′
1, R2, R

′
2, R3}

on the left side of the figure, and there the arc α5 is not left-veering (if it were, it would
have to intersect the edges on R′

3 or R′
1 which are both restricted). Therefore we need

to impose the condition that we have to add the region R′
3 to this extended tower if

possible.
We now impose some further restrictions on our extended towers so that they

completely characterise fixable and left-veering arcs.

Definition 3.3.4. An extended tower T in (Σ, φ,Γ), with Γ an arc collection as above,
is nice if for every region A ∈ T + we have A ⊂ P and for every region B ∈ T − we
have that int(B) is disjoint from φ(Γ). We will assume all extended towers are nice.

Remark. We want to consider only nice extended towers because extended towers that
are not nice come from collections where there are no left-veering arcs and no fixable
arcs. See for example the extended tower in Figure 3.13, it is not nice but conforms to
the definition of completed extended tower that we will see next (which is the one we
want to identify with fixable arcs, and indeed there is no fixable arc in Figure 3.13).
The extended towers in Figure 3.12 on the other hand, are indeed nice, and they do
correspond to a fixable arc segment and a left-veering arc.

Figure 3.13: The extended tower T = {R1, R2, R
′
1, R

′
2} supported in α1, α2 is not nice

because R1 is a positive region that is not contained in P .

Definition 3.3.5. Let Γ be an arc collection in an open book (Σ, φ) and T an extended
tower in Γ. We say T is nested if there exist nested subcollections of regions as follows.

• T +
0 = {R ∈ T + | Dot(R) ⊂ ∂Σ}.

• T −
0 = {R′ ∈ T − | Circ(R′) ⊂ T +

0 ∪ Circ∂(Γ)}.

• T +
i = {R ∈ T + | Dot(R) ⊂ T −

i−1 ∪ ∂Σ}.

• T −
i = {R′ ∈ T − | Circ(R) ⊂ T +

i ∪ Circ∂(Γ)}.

• T + = ⋃
i T +

i and T − = ⋃
i T −

i

We will assume all extended towers are nested, and we will refer to regions in T ±
i

as being in level i.
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Remark. For the arc collections Γ as above, a necessary condition for an extended
tower to be nested is the existence of a level 0 positive region. Indeed, without a level
0 positive region the only possibility for a level 0 negative region would be one where
all ◦-points are on basepoint triangles. However, this implies that the arcs supporting
this negative region cut out a disc, contradicting the conditions we required for Γ.

Therefore, we can see that the extended tower from Figure 3.13 is not nested as
there is no level 0 positive region. Observe that in terms of Heegaard Floer homology,
a level 0 positive region corresponds to a differential to the contact class. We can also
see an example of a nice extended tower that is not nested in Figure 3.14.

However, the extended towers in Figure 3.12 are indeed nested. There is a unique
level 0 positive region which is R1, and a unique level 0 negative region R′

1, because its
◦-points are on R1 and on a basepoint triangle. Then there is a unique level 1 positive
region R2 because the •-point that is not on the boundary belongs to R′

1, and a unique
level 1 negative region R′

2 because its ◦-points belong to R1 and R2. Finally, there is
a unique level 2 positive region R3 because the •-point that is not on the boundary
belongs to R′

2. On the right hand side there are no more regions, but on the left hand
side there is a level 2 negative region R′

3 because its ◦-points belong to R2 and R3.

Figure 3.14: An extended tower that is not nested, because there is no level 0 positive
region.

Definition 3.3.6. Let T be an extended tower in (Σ, φ,Γ), and let x be an interior
point of some α ∈ Γ that is a vertex of a region in T . We say that x is two-sided if it
is a vertex of exactly two regions of T (one positive and one negative).

Definition 3.3.7. Let T be an extended tower in (Σ, φ,Γ = {αi}ni=1), where Γ ∪ {α0}
cuts out a disc P for some properly embedded arc α0 disjoint from Γ, and the arcs are
oriented labelled counterclockwise. We say that T is completed if every interior vertex
of T is two-sided, with the exception of a single •-point y0 ∈ α1 ∩φ(α1), which we call
a connecting vertex.
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Figure 3.15: A simple example of a completed extended tower, which is also nice
and replete, where the only interior vertex that is not two-sided is the •-point y0 ∈
α1 ∩ φ(α1).

This is a much more restricted notion than that of completed tower in [44]. The
reason for this is we want completed extended towers to correspond exactly to fixable
arc segments, and to determine them uniquely. It is also clear that completed extended
towers are those where every point of every arc α2, . . . , αn (as long as they are all strictly
right-veering) belongs to a region, and every point on α1 from y0 to α1(1) also belongs
to a region.

Once again, if we return to our primordial example in Figure 3.12, we can see that
the extended tower on the left is completed. Indeed, every interior vertex is two-sided
with the exception of a vertex α1 ∩ φ(α1), and the arc segment γ is fixable. However,
the extended tower on the right is not completed, as there are interior ◦-points on R2

and R3 that are not two-sided. In this case there is no fixable arc segment (and indeed
the arc α5 is left-veering).

Definition 3.3.8. Let T be an extended tower in Γ. We say that T is incomplete if
for every negative region A ∈ T −, there exists a vertex x ∈ Dot(A) that is two-sided,
i.e. there exists a positive region B ∈ T + such that x ∈ Dot(B).

Once again returning to our primordial example in Figure 3.12, the extended tower
on the right is incomplete, because every negative region has a •-point which is two-
sided. The one on the left, however, is not incomplete since the region R′

3 is a negative
region without any two-sided •-points.

This mirrors the definition of incomplete tower from [44], because the property it
aims to detect, a left-veering arc, implies overtwistedness. The additional conditions
imposed to extended towers are what distinguishes this from the definition of incom-
plete tower. We can see this in Figure 3.17, where {R} forms an incomplete tower.
Indeed, the open book is known to support an overtwisted contact structure (see [32]
and [30]). However, as an extended tower, it is not replete, since we can add the region
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Figure 3.16: A simple example of an incomplete extended tower, because there is only
one negative region R′

1, which shares a •-point with R2, and the ◦-points x and z are
not two-sided.

R′ because one of its ◦-points is a vertex of R and the other one is a vertex of a base-
point triangle, and the extended tower {R,R′} is not incomplete, because R′ does not
share any •-points with a positive region. Thus this extended tower does not imply
the existence of a left-veering arc, and indeed this open book is right-veering by [30].

Figure 3.17: The region R forms an incomplete tower but is not a replete extended
tower because we can add the region R′.

Remark. As evidenced by Figure 3.17, we can have extended towers that are neither
completed nor incomplete, for instance, if not every interior vertex is two-sided but
there exists a negative region with no •-points in common with any positive region.
An extended tower where every interior •-point is two-sided is also neither completed
nor incomplete. It will follow from our discussion later that in this case the arc α0 is
fixable, but we want to detect fixable arc segments rather than arcs and so we exclude
this case from our definition of completed extended tower.

In Figure 3.18 we can see two extended towers that are neither completed nor
incomplete. On the left, T1 = {R,R′} is not incomplete because the negative region
R′ does not have any •-point in common with the unique positive region R, but is also
not completed because there is a •-point that is not two-sided and is not of the form
α∩φ(α). On the right, T2 = {R1, R

′
1, R2, R

′
2} is not completed nor incomplete because
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every interior vertex is two-sided, and R′
2 does not share a •-point with a positive

region.

Figure 3.18: Two examples of extended towers which are neither completed nor incom-
plete.

§ 3.4 | Results
In this section we prove that we can detect a left-veering arc using extended towers.
First we show existence of a special type of a left-veering arc that will be easier to
detect.

§ 3.4.1 | Minimal left-veering arcs

Definition 3.4.1. Let (Σ, φ) be an open book, and let B be a basis for Σ. Let γ be a
properly embedded arc, which we may assume intersects the basis. This divides γ into
a collection of arc segments γ1, . . . , γn, labelled and oriented following the orientation
of γ, which intersect B only on their endpoints. We say γ is shortened with respect to
B if γ1, . . . , γn−1 are fixable. If γ is left-veering, we call it a shortened left-veering arc
with respect to B.

Note that a shortened arc γ as in Definition 3.4.1 is left-veering if and only if γn is
left-veering.

Lemma 3.4.2. Let (Σ, φ) be an open book, and let B be a basis for Σ. Suppose there
exists a left-veering arc γ in (Σ, φ). Then there exists a shortened left-veering arc γ′

with respect to B.

Proof. We may assume φ(γ) is bigon free with respect to B ∪ γ. We define the arc γ′

as follows. Let x ∈ γ ∩ B be the first intersection point with the basis such that, after
x, γ and φ(γ) exit the disc cut out by the basis by intersecting different arcs α1 and
α2 respectively. Then take the arc γ′ that is the same as γ up to x and ends in the
starting point of α2 without having any more intersections with B or the arc segment
of γ up to y. Clearly γ′ is shortened with respect to B. To show that it is left-veering,
take the arc γ′ and isotope it slightly so that it lies to the left of γ. Then its image
is fixable and to the left of the image of γ up to x. Suppose for a contradiction that
γ′ is right-veering. Then φ(γ′) must intersect φ(γ) so that φ(γ), φ(γ′), and ∂Σ bound
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a disc. Moreover, this would have to be the image of a disc bounded by γ, γ′, and
∂Σ. However, this gives a contradiction because γ and γ′ are (by construction) disjoint
before γ intersects α1 so they cannot bound a disc, as we can see in Figure 3.19.

Figure 3.19: If γ′ were right-veering, the image of the darkly shaded subsurface would
have to be the lightly shaded one, a contradiction. Note that in this case γ is an arc
and not an arc image even though it is not represented with a straight line.

Definition 3.4.3. Define a length of an arc γ with respect to a basis B by the (un-
signed) number of intersections of γ with all the arcs of B. Out of all shortened
left-veering arcs, we call one which minimises this length a minimal left-veering arc
with respect to B.

Note that a minimal left-veering arc minimises this distance for all left-veering arcs
and not just shortened ones.

We will be interested primarily in minimal left-veering arcs. Moreover, when we
have a 2n-gon P cut out by {αi}ni=0 with α0 left-veering, we can assume there are no
left-veering arcs contained in P , because otherwise we can find a subset of the arcs
cutting out a 2m-gon (for m < n) with a left-veering arc, and we can work with this
subset instead. In particular, we can assume that the image of α0 leaves the 2n-gon by
intersecting α1. This is because if it leaves P by intersecting some other arc, say αk,
then the arc β0 that is obtained by consecutive arcslides of α0 over α1, . . . , αk−1 must
be left-veering, by the same argument we made in Lemma 3.4.2, and then we can focus
on the 2(n− k)-gon cut out by αk, αk+1, . . . , αn, and β0, which will have the property
we want.

§ 3.4.2 | Base Case

In this subsection we show using methods from Section 3.2 that extended towers detect
left-veering arcs and fixable arc segments in 6-gons. This will be the base case of our
induction.
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Proposition 3.4.4. Let (Σ, φ) be an open book. Let α0, α1, α2 be properly embedded
arcs cutting out a 6-gon P , oriented counterclockwise, and assume α1 and α2 are right-
veering. Then α0 is left-veering if and only if {α1, α2} support an incomplete extended
tower that is nested, nice, and replete.

Proof. First suppose that α0 is left-veering. Then Proposition 3.2.12 gives a (positive)
region R whose interior is disjoint from {α1, α2}. Since again by Proposition 3.2.12
there are no negative regions, T = {R} forms an incomplete extended tower that
moreover is replete and nice, and R is on level zero since the •-points of R are on the
boundary, so T is nested.

Now suppose that there exists an incomplete extended tower T supported in {α1, α2}.
We want to show that T = {R}, with R the region from Proposition 3.2.12, which
shows that α0 is left-veering. There must be a region in T +

0 , and for T to be nice it
must be the region R from Proposition 3.2.12. Now, if there exists a negative region R′

in T −
0 , then again by Proposition 3.2.12 every point on α2 belongs to a region, so there

can be no more positive regions. But now R′ does not have any •-points in common
with a positive region, so T is not incomplete –a contradiction. So there does not
exist such a negative region, and thus T = {R}, and then by Proposition 3.2.12 α0 is
left-veering.

Proposition 3.4.5. Let (Σ, φ) be an open book. Let α1, α2, α0 be properly embedded
strictly right-veering arcs cutting out a 6-gon P , oriented counterclockwise. Let γ be an
arc segment contained in P starting between α2 and α0 and ending in the interior of
α1. Then γ is fixable by φ if and only if {α1, α2} support a completed extended tower
that is nested, nice and replete, and whose connecting vertex coincides with γ ∩ α1.

Proof. First suppose that γ is fixable. Then we have the regions R and R′ from
Proposition 3.2.16 forming the splitting pair, and we can see that they form a completed
extended tower which is nested, replete and nice, and the unique connecting vertex is
γ ∩ α1.

Conversely, suppose that there exists a completed extended tower T which is nice
and replete. By the same reasoning as in Proposition 3.4.4, the positive region R from
Proposition 3.2.16 must be in T . Since T is completed, there must be a negative region
R′ with the same ◦-points as R. As one of the ◦-points in this negative region is on the
basepoint triangle on α2, one of the •-points of R′ is on the boundary (because there
can be no other intersection points between the ◦-point on the basepoint triangle and
the boundary as our arc collections are bigon free). Now every point of α2 belongs to a
region, so there can be no more regions in T . This means that for T to be completed
the other •-point of R′ must be an interior point α1 ∩ φ(α1), which means that the
regions in T are the regions from Proposition 3.2.16 (i.e the splitting pair), so γ is
fixable.
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§ 3.4.3 | Inductive Step

We now have that a left-veering arc is detected by an incomplete extended tower if it
cuts out a 6-gon (with the correct orientation) with two arcs from the basis. We want
to extend this by induction to the case where the left-veering arc cuts out an n-gon
with arcs from the basis. Similarly, we have that completed towers detect fixable arc
segments when the arc segment is contained in a 6-gon cut out by three arcs, two of
which are from our basis, and we want to extend to the case where the arc segment is
contained in a n-gon, with n− 1 arcs in our basis. To show this, let us first introduce
some notation to be used throughout this subsection.

Let α0, α1, and α2 be properly embedded arcs that cut out a 6-gon P , where the
arcs are labelled counterclockwise. Also let Γ be an arc collection such that there exists
an arc β disjoint from Γ with C = Γ ∪ {β} cutting out a disc P ′ with disjoint interior
with P , and α0 ∈ Γ. Again, we will orient this arc collection with the counterclockwise
orientation. Moreover, assume that α0 is not the first arc in Γ (i.e the next one to β as
we go counterclockwise through the boundary of the disc cut out by C). This is because
we want to detect fixable arcs with an endpoint on the first arc of the collection Γ, so
we do not want this point to change. Let Γ′ = (Γ\{α0})∪{α1, α2}. Then C ′ = Γ′ ∪{β}
cuts out a disc P ∪ P ′. Orient the arcs in this collection again counterclockwise (this
agrees with the previous orientation).

The idea is that, given an extended tower T in Γ, we can slide its regions over
α0 to α1 and α2 to obtain an extended tower T ′ supported in Γ′, that will have the
same properties as T . We can see a simple example with completed extended towers
in Figure 3.20.

Figure 3.20: The regions for the new extended tower are obtained by sliding the regions
from the old extended tower

To make this operation more precise we now define two maps, which we will call slide
maps and denote by s±. Given an extended tower T supported in Γ, where Γ is an arc
collection as above, these maps will send the set of vertices of the positive (respectively
negative) regions of T (denoted by V (T ±)) to intersection points Γ′ ∩ φ(Γ′). These
points will determine regions that form the extended tower T ′ supported in Γ′ that
will have the same properties as T . Note that most points will be two-sided and thus
will be both in T + and T −, which means that they will have an image under s+ and
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an image under s−. Most of the time these will agree. In fact, the only time they will
not agree will be when a component of P ∩ φ(P ) is a 6-gon.

Definition 3.4.6. Let x ∈ V(T +). Then s+(x) is defined as follows.

1. If x does not lie on α0 or φ(α0), s+(x) = x.

2. If x lies on the intersection of φ(α0) with some other arc β from Γ, then s+(x) is
the intersection point y of β with φ(α1) or φ(α2) such that the segment between
x and y is contained in β ∩ φ(P ).

3. If x lies on the intersection of α0 with the image of some other arc β from Γ, then
s+(x) is the intersection point y of φ(β) with α1 or α2 such that the segment
between x and y is contained in φ(β) ∩ P .

4. If x lies on the intersection of α0 with its image, then s+(x) is the intersection
point y of αm with φ(αl) (where m and l can be 1 or 2 and not necessarily equal),
obtained by first going along α0 to φ(αl), and then along φ(αl) to y, such that
this path is contained in P ∩ φ(P ).

We illustrate the different cases in Figure 3.21, where we can see that, while the def-
inition may seem arbitrary, for an intersection point x ∈ Γ ∩ φ(Γ) we are essentially
choosing “the closest point” to x that belongs to Γ′ ∩ φ(Γ′).

Proposition 3.4.7. The map s+ is well defined.

Proof. Case 1 is immediate. Case 2 is well defined because if φ(α0) intersects an
arc then either φ(α1) or φ(α2) must also intersect that arc because φ(P ) is a disc.
Moreover, there is a unique segment from x to y contained in β ∩ φ(P ). Case 3 is the
same as Case 2 but with the roles of the arcs and arc images reversed. Finally, in Case
4, the same argument as for Case 2 shows that either φ(α1) or α2 intersect α0, and
there is a unique segment between x and φ(αm) contained in P ∩ φ(P ). Then, φ(αm)
must exit P by intersecting either α1 or α2, and going along φ(αm) gives y.

Figure 3.21: The different cases for s+, where the point xi is of case i in Definition
3.4.6. The dashed arrows indicate the action of s+.
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Observe that for the first two cases, both x and s+(x) belong to an arc that is not
in P , and for the last two cases x belongs to α0 and s+(x) belongs to either α1 or α2.
We now define s− similarly.

Definition 3.4.8. Let x ∈ V(T −). Then s−(x) is defined as:

1. If x does not lie on α0 or φ(α0), s−(x) = x.

2. If x lies on the intersection of α0 with the image of some other arc β from Γ, then
s−(x) is the intersection point z of φ(β) with α1 or α2 such that the segment
between x and z is contained in P .

3. If x lies on the intersection of φ(α0) with some other arc β from Γ, then s−(x) is
the intersection point z of β with φ(α1) or φ(α2) such that the segment between
x and z is contained in β ∩ φ(P ).

4. If x lies on the intersection of α0 with its image, then s−(x) is the intersection
point z of αm with φ(αl) (where m and l can be 1 or 2 and not necessarily equal),
obtained by first going along φ(α0) to αm, and then along αm to z, such that this
path is contained in P ∩ φ(P ).

Observe that if we reverse the roles of the arcs and arc images, that is, we take our
arc collections to be φ(Γ) and φ(Γ′), and their images to be φ−1(φ(Γ)) and φ−1(φ(Γ′)),
and we also reverse their orientation (so that the negative regions become positive
regions), then the definition of s− is the same as the definition of s+ using the original
arc collections. This also means, by Proposition 3.4.7, that s− is well defined.

Also note that, away from P ∪φ(P ), the slide map does not change the intersection
point. Moreover, if x is a positive (respectively negative) intersection point then s+(x)
and s−(x) will also be positive (respectively negative).

Finally, the slide maps are injective, so they give a bijection onto their image, and
then we can refer to the inverse of these maps. We will use this to show that extended
towers in Γ′ also induce extended towers in Γ.

Now we want to show that using the maps s+ and s− we can construct an extended
tower T ′ supported in Γ′ that has the same properties as T . The properties that will be
preserved will be being nested, being completed/incomplete (or neither), being replete,
and being nice. We will focus on the local effect of the slide maps on a neighbourhood
of P , and a neighbourhood of φ(P ) (because outside these neighbourhoods the slide
maps do not change anything). In particular, this means that if a positive (respectively
negative) region R is supported in Γ and the image of each of its vertices under s+

(resp. s−) is itself, then R is also supported in Γ′. If R is not supported in Γ′, the local
effect of the slide map on the vertices will induce one (or more) regions supported in
Γ′.
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We will need to check several things. First, that the induced regions form an
extended tower, and then, that the properties of being nested, replete, nice, and com-
pleted or incomplete (or neither) are preserved.

First we will separate two cases, when α2 is φ-contained in α1 and when α0 is φ-
contained in α2. The reason for this is that in these cases the image under the slide
maps of a boundary point is an interior point (a boundary point is never two sided
so we need to consider this separately). We will not consider the case where α1 is
φ-contained in α0, because then the slide maps send an interior point to two boundary
points (which are never two-sided). However, we do not need this case.

Lemma 3.4.9. Suppose that α2 is φ-contained in α1. Then if T is an extended tower
in Γ, there is an extended tower T ′ supported in Γ′ with the same properties as T .
Conversely, if T ′ is an extended tower supported in Γ′, there is an extended tower T
supported in Γ with the same properties as T .

Proof. First let T be an extended tower in Γ. We will now see how each region in T
induces a region supported in Γ′

First, away from P and φ(P ) any region R ∈ T is unchanged since it is already
supported in Γ′, and so the region induced by the slide maps is R itself. For any region
with an edge on the interior of α0, observe that an arc image intersecting α0 must
leave P by intersecting α1, and so the images of any vertex on α0 under the slide maps
coincide, and is on α1. Then, we obtain the region R′ by simply adding or removing
rectangles. Similarly, for a region with an edge on φ(α0), we can see reversing the role
of arcs and arc images that any arc intersecting φ(α0) must also intersect φ(α1), and
so the image under the slide maps of a vertex on φ(α0) lies on φ(α1), and again the
induced region is obtained by simply adding or removing rectangles. We can see this
in Figure 3.22. Observe that each region Ri ∈ T corresponds to a unique region R′

i in
Γ′ (sometimes Ri = R′

i), so we define T ′ = {R′
i | Ri ∈ T } ∪ {R1, R2}, where {R1, R2}

is the splitting pair of {α1, α2}.

Figure 3.22: The regions obtained by adding or removing rectangles, when α2 is φ-
contained in α1, and the splitting pair. The dashed arrows indicate the action of the
slide maps.



CHAPTER 3. RIGHT-VEERING DIFFEOMORPHISMS 38

Let us now check the properties of T ′. The positive regions are by construction
contained in P and thus disjoint from Γ′ in their interior, and we can see by switching
the role of arcs and arc images that the interior of the negative regions is disjoint from
φ(Γ′), so the extended tower is nice. It is also replete, because we cannot add any
negative regions with ◦-points in Circ(T ′) ∪ Circ∂(Γ), since T is replete and we have
already used the ◦-point in the basepoint triangle of α1 and α2 for the splitting pair of
regions.

The positive region from the splitting pair is a level 0 region, and so is the negative
region from the splitting pair. This will imply that some of the regions may go up one
level (for example, if there was a level 0 region with a •-point on α0(1), the induced
region is now a level 1 region because it as an interior •-point that is also a vertex of a
level 0 negative region), but if T was nested then so is T ′, as we can construct it level
by level from the levels of T .

Finally, being completed, incomplete, or neither comes from which vertices are
two-sided. For interior points that are the image of an interior point x, they will be
two-sided if and only if x is two-sided. So we only need to check the boundary point
y = α0(1) (recall α0 is given its orientation from being an arc of Γ) because its image
z = s+(y) is an interior point (the image of the other endpoint α0(0) is not an interior
point so we do not need to check if it is two-sided). But z is two-sided because we have
included the positive splitting pair of regions in {α1, α2} in T ′. Thus if T is completed
then T ′ is completed, and if T is incomplete then so is T ′.

For the converse, notice that the only points in an extended tower that do not have
an inverse image are in the splitting pair of {α1, α2}. Now, if we assume that T ′ is
not supported in just {α1, α2}, then z = s+(α0(1)) is an interior •-point that must be
two-sided, so there must be a region R′ that is not supported in {α1, α2}. But then
we get a region R supported in Γ. Moreover, note that every point in α2 belongs to
a region, and so every other region in T ′ has vertices that have an inverse image on
Γ. Moreover, every vertex is two-sided if and only if the preimage is. Notice that we
do get an extended tower by taking the regions induced by these points because the
preimage of z is on the boundary, so even though the negative region which has z as a
vertex does not induce a negative region in T , it does not have to, precisely because z
is on the boundary.

Lemma 3.4.10. Suppose that α0 is φ-contained in α2. Then if T is an extended
tower in Γ, there is an extended tower T ′ supported in Γ′ with the same properties as
T . Conversely, if T ′ is an extended tower supported in Γ′, there is an extended tower
T supported in Γ with the same properties as T .

Proof. The argument is the same as for Lemma 3.4.9, except now the arc images
intersecting α0 all intersect α2, and the arcs intersecting φ(α0) all intersect φ(α2).
Now we need to check the boundary point y = α0(0), which is the one that is sent
to an interior point. But now we the regions that we include in T ′ are the negative
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splitting pair of {α1, α2} (if the •-point α0(0) belongs to a region) so its image is two-
sided, and it does not affect the properties of the extended tower. Moreover, the regions
from the splitting pair now belong to higher levels (specifically, if the positive region
containing α0(0) is on level i, then the regions from the splitting pair are on level i+ 1.
Indeed, the positive region has a •-point on the boundary and another one on a level
i region so it is on level i + 1, and the negative region has a ◦-point on Circ∂(Γ′) and
another one on a level i + 1 positive region). The rest of the regions are on the same
levels as before, so T ′ is also nested if T is nested.

For the converse again the argument is the same using the negative splitting pair
instead of the positive one.

Now suppose none of the arcs {α0, α1, α2} is φ-contained in any of the others,
that is, the image of α0 leaves P by intersecting α1 and the image of α2 leaves P by
intersecting α0. Again the slide maps are the identity away from a neighbourhood of
P , and a neighbourhood of φ(P ). Therefore, we will distinguish three cases, depending
on how φ(P ) intersects P .

As before, T ′ will be a collection of regions induced by the regions in T . However,
in the previous cases every region in T corresponded to a unique region supported in
Γ′ that was obtained by adding and removing rectangles. Now, the slide maps might
“break up” regions into several other regions as vertices connected by an edge in α0,
or φ(α0), could be mapped to different arcs, or arc images. In this case the following
definition will be useful.

Definition 3.4.11. Let T be an extended tower in (Σ, φ,Γ). Two regions R1, R2 ∈ T ±

are said to be connected by a region R ∈ T ∓ if there exist points x ∈ Dot(R)∩Dot(R1)
and y ∈ Circ(R) ∩ Circ(R2). We will then refer to the region R as a connecting region.

Connecting regions supported in {α1, α2} might not have all of their vertices be
images of a vertex in T (so they are not induced by regions in T the way the regions
in the previous Lemmas were), but we will include them in some cases to preserve
properties of T . Similarly, we might need to add negative regions (whose •-points are
not images under the slide maps of vertices in T ) to ensure the resulting extended
tower is replete.

Lemma 3.4.12. Suppose that P ∩φ(P ) is just the basepoint triangles. Using the maps
s+ and s− we can construct regions giving an extended tower T ′ supported in Γ′ that
has the same properties as T .

Proof. Unlike before, given a region R ∈ T , the image of its vertices under the slide
maps might not induce a unique region in Γ′. We construct the extended tower T ′

as follows. For any region R ∈ T ±, if the set of vertices s±(V (R)) induces a unique
region R′ supported in Γ′, set R′ ∈ T ′. So suppose that it does not, that is, points from
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s±(V (R)) lie on two different regions R′
1 and R′

2 connected by a third region R′
3. First

assume that R is a negative region. Then if there are two-sided •-points x, y ∈ V (R)
such that s−(x) ∈ R′

1 and s−(y) ∈ R′
2, we set R′

1, R
′
2, R

′
3 ∈ T ′. If every two sided point

in R has its image in R′
1, then set R′

1 ∈ T ′ (but not R′
2 or R′

3). Now assume that R is
a positive region. We do the same as before but with ◦-points. If there are two-sided
◦-points x, y ∈ V (R) such that s+(x) ∈ R′

1 and s+(y) ∈ R′
2, we set R′

1, R
′
2, R

′
3 ∈ T ′. If

every two sided ◦-point in R has its image in R′
1, then set R′

1 ∈ T ′, but not R′
2 or R′

3.
Finally, if after having done this there is a negative region R′

1 supported in Γ′ such
that all its ◦-points are vertices of positive regions in T ′ or ◦-points on a basepoint
triangle, set R′

1 ∈ T ′. This ensures that T ′ is replete. Further, if there exists a positive
region R′

3 with its •-points being on α1(1) or •-points of R′
1, set R′

3 ∈ T ′. This last
case only happens if there is a ◦-point x ∈ α0 in a positive region R ∈ T that is not
two-sided, but its image s+(x), which is a vertex of a positive region R′, is two sided
after applying this rule. We will see later (Figure 3.25) that this ensures that if T is
incomplete then so is T ′.

We now show what the induced regions are.
If P ∩ φ(P ) is just the basepoint triangles, for every interior intersection point

x ∈ T on α0 (which will also be on an arc image φ(β) with β ̸= α0)), we have that
s+(x) = s−(x) and moreover the image under the slide map is obtained by going along
φ(β) until it leaves P . We can then see that, for a positive region R with vertices x, y
on α0, there are two options.

The first option is that s+(x) and s+(y) lie on the same arc, which means that the
local effect of the slide map on R is just extending it by a rectangle.

The second option is that s+(x) lies on α1 and s+(y) lies on α2. Then the local
effect of the slide map on R is extending it by a 6-gon, where the extra sides are given
by α1 from s+(x) to its endpoint, an edge of the basepoint triangle, and α2 from the
◦-point on the basepoint triangle to s+(y), see Figure 3.23. Moreover, observe that this
will only happen once.

For a negative region R with vertices x, y on α0, there are again two options.
The first option is that s−(x) and s−(y) lie on the same arc, which means that

the local effect of the slide map on R is just removing a rectangle. We can see this,
together with the positive regions, in Figure 3.23. Observe that in all these first cases
the levels are preserved.

The second option is that s−(x) lies on α1 and s−(y) lies on α2. In this case, R
must have boundary along another arc image intersecting α1 and α2 so that R is a
disc. Moreover, because s−(x) lies on α1 and s−(y) lies on α2, we do not have a unique
induced region now, but two regions R′

1 and R′
2, one with an edge on α2 between s−(y)

and a •-point b and another one with an edge on α1 between a ◦-point a and s−(x),
connected by a positive rectangle R′

3 with vertices a, b, the ◦-point on the basepoint
triangle, and the boundary point on α1. We can see this in Figure 3.24. Notice that
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Figure 3.23: Obtaining the new regions by adding or removing rectangles (or a 6-gon
in the case of R3). The dashed arrows indicate the action of s±. Here we do not a
priori know if the ◦-point on the basepoint triangle is two-sided, we deal with this case
later.

a, b, and the point on the basepoint triangle are not images of any point in T under
the slide maps but these, together with the analogous case in φ(P ) instead of P , will
be the only cases of this.

Because the rectangle R′
3 connects R′

1 and R′
2, both a and b are two-sided. Again,

note that there can only be one region R ∈ T of this form, otherwise we would have
vertices in the interior an edge of of another region, contradicting the definition of
extended tower. We now consider the levels of the regions. Assume the region R is on
level i. Then, since not all ◦-points of R′

1 come from vertices of R, R′
1 will be on level

j with j ≤ i. Then, R′
3 will be on level j + 1, and R′

2 will be on level max{j + 1, i}.

Figure 3.24: Dividing a negative region into two negative regions R′
1 and R′

2 connected
by a positive rectangle R′

3.

As for the neighbourhood of φ(P ), we obtain regions in the same way by reversing
the role of the arcs and arc images, and changing the orientation of the arcs. Note
that this switches the roles of α1 and α2 (in particular, when we are extending a region
by a 6-gon the point on the boundary that we use is on α2 and not α1, but note that
neither of these points comes as the image under the slide maps).

Finally, if there is a vertex x ∈ α0 in a positive region R ∈ T that is not two sided,
but s+(x) is two sided because otherwise T ′ would not be replete, then s+(x) is a vertex
of a negative region R′

1 supported in Γ′. Then we must have that s+(x) lies on α2, and
P divides what would be a region (but is not) making x two-sided, and R′

1 is a region
that makes s+(x) two-sided, see Figure 3.25. Then we also have that the region R′

3 has
as its •-points the point α1(1), which is on the boundary, and the point b, which is a
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•-point on a negative region of T ′, so R′
3 ∈ T ′. Notice that here the region R′

1 is on
the same level as R′, and the region R′

3 is on the level above R′
1.

Figure 3.25: The point x is not two-sided but s+(x) is, because R′
1 is a region. However,

this induces a positive region R′
3 and now b is a two-sided •-point in R′

1.

We will now see how the properties of T are preserved.

As before, because of the way the induced regions are constructed, the result is an
extended tower, which moreover is nice. It is also replete by construction.

Also, our discussion on the levels of the regions implies that if T is nested then so
is T ′. Being completed (or incomplete or neither) will depend on which vertices are
two-sided.

Let us now see how the vertices being two-sided (or not) determines whether their
images are two-sided. Again we will focus on a neighbourhood of P and the analogous
result for a neighbourhood of φ(P ) will follow from reversing the role of arcs and arc
images.

First suppose that T is completed. This means that every interior vertex is two-
sided, except for the connecting vertex y0. But by construction this means that the
images of these interior vertices in Γ′ are two-sided, except from y0 (we imposed that
α0 is not the first arc in Γ so s−(y0) = y0). Moreover the vertices a and b from the
connecting region, if there is one, are also two-sided.

There only remains to show that the ◦-point on the basepoint triangle formed by
φ(α1) and α2 is two-sided. Since T is completed, α0(1) is the vertex of a positive region
in T , which means that α2(1) = s+(α0(1)) is the vertex of a positive region in T ′. Note
that not every arc image intersecting α0 leaves P by intersecting α2, since initially
φ(α0) intersects α1 by hypothesis. Since every point in α0 belongs to a region, because
T is completed, there must be a region where the arc images forming the edge on α0

must leave P by intersecting different arcs. If this region is negative, it must split into
two negative regions in T ′ connected by a (positive) rectangle which has the ◦-point on
the basepoint triangle as one of its vertices (see Figure 3.24). If the region is positive,
then it is extended by a 6-gon as in Figure 3.23, and one of the vertices is immediately
the ◦-point on the basepoint triangle. Therefore the ◦-point on the basepoint triangle
is a vertex of a positive region. To see that it is also a vertex of a negative region,
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reverse the roles of arcs and arc images. Since T is completed, every point in φ(α0)
belongs to a region. But then there must be a region where the arcs forming the edge
on φ(α0) leave φ(P ) by intersecting different arc images. If this region is positive, it
must split into two positive regions connected by a (negative) rectangle which has the
◦-point on the basepoint triangle as one of its vertices, see Figure 3.26.

Figure 3.26: When there is a positive region such that the arcs forming the edge on
α0 leave φ(P ) by intersecting different arc images, there are three induced regions
R′

1, R
′
2, R

′
3 and the connecting region R′

3 uses the basepoint triangle.

If the region is negative, then it is extended by a 6-gon, and one of the vertices
is immediately the ◦-point on the basepoint triangle. Therefore the ◦-point on the
basepoint triangle is a vertex of a negative region.

Figure 3.27: When there is a negative region such that the arcs forming the edge
on α0 leave φ(P ) by intersecting different arc images, the induced region R′ uses the
basepoint triangle.

Now assume that T is incomplete. Let R ∈ T −. Then there exists a •-point x in
R that is two-sided. If the vertices of R induce a unique region in T ′ then s−(x) is
a two-sided •-point. If they induce two regions R′

1, R
′
2 connected by a positive region

R′
2, as in Figure 3.24, there are three cases to consider.

First, if all the •-points in R that are two-sided have their images in R′
1, by con-

struction we do not add R′
2 or R′

3 to T ′ and so the property that negative regions have
a •-point that is two-sided is preserved. The result is still a replete extended tower
because the vertex a is not a vertex of a positive region anymore, so we are not forced
to add R′

2 to make T ′ replete, and there are no interior •-points in R′
2 that are only

vertices of positive regions, by hypothesis.
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Second, if some •-points in R have their images in R′
1 and some in R′

2, the property
that negative regions have a •-point that is two-sided is immediately preserved.

Third, if all the •-points in R that are two-sided have their images in R′
2, note

that the vertex b which is a •-point in R′
1 is now two-sided, and so the property that

negative regions have a •-point that is two-sided is preserved.
Finally, assume that a ◦-point in α0 is not two-sided, but its image is, as in Figure

3.25. Then recall that R′
1, R

′
3 ∈ T ′. Therefore, again the point b is a •-point in the

negative region that is two-sided, so the property that negative regions have a •-point
that is two-sided is preserved.

Therefore if T is incomplete T ′ is incomplete, and we are done.

Lemma 3.4.13. Suppose that the intersection of P ∩ φ(P ) is the basepoint triangles
and a collection of rectangles. Using the maps s+ and s− we can construct regions
giving an extended tower T ′ supported in Γ′ that has the same properties as T .

Proof. This case is done in exactly the same way as Lemma 3.4.12. Notice that now
in the case where x ∈ φ(α0), s±(x) are not obtained by following an arc image to its
intersection with α1 or α2 but by following two sides of a rectangle (which is part of
the intersection P ∩ φ(P )). However, locally this only amounts to adding or removing
this rectangle from the regions. Moreover, note that in this case we still have that
s+(x) = s−(x) for all points where both maps are defined.

Lemma 3.4.14. Suppose that the intersection P ∩ φ(P ) contains a 6-gon. Using the
maps s+ and s− we can construct regions giving an extended tower T ′ supported in Γ′

that has the same properties as T .

Proof. The construction of T ′ is done in the same way as Lemma 3.4.12. Let A be
the 6-gon contained in P ∩ φ(P ). We only need to focus on the regions given by the
intersection points in A, because all the others have been covered by Lemmas 3.4.12
and 3.4.13. There are two cases; either φ(α0) intersects α0 as an edge of A, or it does
not.

First assume it does, and call this intersection point x. Then s+(x) ̸= s−(x) (if
they are both defined), but for a region R (either positive or negative) we will see that
the induced region R′ is obtained by adding and removing rectangles, see Figure 3.28
for an example.

Now, this case is further divided into two cases. First, if φ(α1) also intersects α0,
then the orientation of the arc images forces x to be a •-point, as we can see in Figure
3.29. This means that x is a vertex of a negative region R2, and we get an induced
negative region R′

2 supported in Γ′.
Now if x is two-sided, it is also a vertex of a positive region R′

1. We also have a
positive rectangle R′

3 using α1, α2, a side of the basepoint triangle, and either φ(α1) or
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Figure 3.28: The case where s+(x) ̸= s−(x). Here y = s+(x) and z = s−(x). The
dashed arrows indicate the action of s±. The regions R′

1, R
′
2 are obtained from R1, R2

by adding and removing rectangles.

φ(α2) (depending on which one does not intersect α0). Moreover, one of the vertices of
this region is s−(x). This region can be completed with a rectangle R′

4 using the part
where φ(α1) and φ(α2) are parallel, and one of the vertices of this region is s+(x). This
means that both s+(x) and s−(x), together with the new points we have introduced
(including the ◦-point on the basepoint triangle) are two-sided. In particular if T was
completed, so is T ′, because all new points introduced are two-sided. Similarly, if T
was incomplete, so is T ′, because both the negative regions that we have introduced
have •-points in common with a positive region. We can see these regions in Figure
3.29.

Figure 3.29: The regions induced by a positive region R1 and a negative region R2 with
a vertex on x. The dashed arrows indicate the action of s±.

If x is not two-sided, then T cannot have been completed. So assume it was incom-
plete. Then R2 has some •-point y in common with a positive region, which means
that R′

2 has some •-point in common with a positive region, and now by construction
we do not include R′

3 and R′
4 in T ′, because R′

4 does not have any •-points in common
with a positive region in T ′. However the result is still an extended tower, which is
nice and replete, using the same argument as in Lemma 3.4.12. Moreover, the property
that negative regions have a •-point that is two-sided is preserved.

To see that T ′ is nested, suppose that R2 is on level i. Then R1 is on level j, with
j > i (because one of its •-points is a vertex of a level i region, but it might have other
vertices belonging to regions on higher levels). Then, R′

2 is also on level i, R′
3, is on

level i+ 1, and R′
4 is also on level i+ 1. Therefore, R′

1 is on level max{j, i+ 2}.



CHAPTER 3. RIGHT-VEERING DIFFEOMORPHISMS 46

Second, if φ(α2) intersects α0, then the orientation of the arc images forces x to
be a ◦-point. This means that it is a vertex of a positive region R1, which induces
a positive region R′

1 supported in Γ′. Now, s+(x) is two-sided because we can use
the negative region R′

4 where φ(α1) and φ(α2) are parallel, and this in turn gives a
positive rectangle R′

3 as before, where one of the vertices is s−(x). This means that the
interior •-point that we introduced in R′

4 is two-sided, so the property that negative
regions have a •-point that is two-sided is preserved, so if T is incomplete then so is
T ′. Moreover, if T is completed, every interior vertex, in particular x, is two-sided,
which means that it is a vertex of a negative region R2, which induces a negative region
R′

2, which means that s−(x) is two-sided, and T ′ is completed. We can see this case in
Figure 3.30. Similarly as before we can find the levels of these new regions, and thus
T ′ is nested.

Figure 3.30: The regions induced by a positive region R1 and a negative region R2 with
a vertex on x. The dashed arrows indicate the action of s±.

So now assume that φ(α0) does not intersect α0 as an edge of A. This means that
it intersects α1 and α2. Moreover, the segment of φ(α0) that is an edge of A can
only be a part of a negative region R. But since this region cannot intersect φ(P ),
the intersection with P must be a rectangle. But since there is no intersection points
with α0 there is no action of the slide maps, and the induced region is simply given by
extending using a 6-gon. We can see this region in Figure 3.31. There only remains to
show that, if T is completed, the ◦-point on the basepoint triangle is two-sided, that
is, it is the vertex of a positive region. But if T is completed, every point on α0 is part
of a region, and thus there must be a region in T with a vertex between α0(0) and
the intersection between φ(α2) and α0, and a vertex between the intersection point of
φ(α1) and α0 and α0(1). Now notice that, because the region R intersects P , such a
region must necessarily be positive, otherwise we would have a corner of a region in
the interior of a region, contradicting the definition of extended tower. But then the
induced region supported in Γ′ uses the ◦-point on the basepoint triangle, and we are
done.

Again as before we can assign a level to these regions, so T ′ is nested.
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Figure 3.31: If φ(α0) does not intersect α0 we can extend this region using a 6-gon
(like we did for positive regions in P , see Figure 3.23).

We are only left to show that if we have an extended tower T ′ supported in Γ′,
there is an extended tower T supported in Γ with the same properties as T ′.

Recall that the slide maps do not provide a bijection between vertices in T and
vertices in T ′, because there are new vertices in T ′ that we have added. However,
both s+ and s− are injective, and so form a bijection with their image. Moreover, the
vertices without an inverse are those that lie on endpoints of a segment disjoint from
α0 contained in an arc image, or a segment disjoint from φ(α0) contained in an arc.
Also, in the definition of the slide maps the extended tower T is only used to specify
the domain (we only consider vertices of regions in T ).

Thus, given an extended tower T ′ supported in Γ′, we can define a set of intersection
points of Γ ∩ φ(Γ) as follows.

Let R′ ∈ T ′+ and x a vertex of R′. If the inverse of the slide map makes sense, that
is, there exists a vertex y ∈ Γ∩φ(Γ) such that s+(y) = x, then define y = (s+)−1(x) the
preimage of x. We proceed analogously with negative regions and s−. Now consider
the set of all such preimages, i.e V(T ′) = {y ∈ Γ ∩ φ(Γ) | s+(y) or s−(y) ∈ V (T }.

Lemma 3.4.15. Let T ′ be a completed (respectively incomplete) extended tower in Γ′,
which is not just supported in {α1, α2}. Then the set V(T ′) induces an extended tower
T supported in Γ that is completed (respectively incomplete).

Proof. For regions whose entire set of vertices has a preimage we are done in the same
way as the previous lemmas. So we only need to focus on regions that have one or
more vertices without a preimage under s±. We distinguish several different cases.

The first case is when the region is supported in {α1, α2}. There are two options for
this. The first one is when the region connects two regions which are not just supported
in {α1, α2}, we will deal with this more generally in the second case. If it does not,
then the same reasoning as in Lemma 3.4.5 implies that it must be part of a splitting
pair (otherwise T would not be nested), but Lemma 3.4.5 already shows how to get
the extended tower T in this case.
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The second case is a vertex belonging to an arc image (different from φ(α1) and
φ(α2)) that intersects α1 and α2. In this case we see that the arc image provides
an edge for a positive region as in the previous case. Moreover, this means that the
positive region must be connecting two negative regions, and the points of these regions
that do have preimages will give a negative region in Γ. Essentially we are merging
the two negative regions, which is the opposite operation to dividing a region into two
connected by a third region as we had done in the previous Lemmas. The level of the
new region will be the highest of the levels of the two original regions (this might also
increase the level of positive regions with •-points in the merged region) so T ′ is still
nested.

If there are not two regions but just one, then we have a vertex that is not two-sided,
but then the preimage of a vertex from the positive region is not two-sided as in Figure
3.25 (in particular neither of the extended towers can be completed, so assume that
T ′ is incomplete). Moreover this means that we do not add a negative region to T , so
this would not affect whether every negative region in T has a two-sided •-point. This
could now result in a positive region with •-points that do not belong to a negative
region. In this case, we also do not add this region to T to make sure T is an extended
tower. Now this could result in a negative region with ◦-points that do not belong to a
positive region. We can carry on this procedure, but it must (at the latest) terminate
when we reach level 0, where we would have an extended tower T = {R}, with R a
positive region, so T is nested, replete, nice, and incomplete.

The third case is analogous to the second one, and happens when both φ(α1) and
φ(α2) intersect an arc βj. Observe that, as before, we can relate this case to the second
one by interchanging the roles of Γ′ and φ(Γ′).

Because all the vertices are inverse images under the slide maps, the resulting
collection of regions T is an extended tower which moreover must be nice. To see
whether it is replete, let A ∈ R(Σ, φ,Γ) such that Circ(A) ⊂ Circ(T ) ∪ Circ∂(Γ), and
T ∪ A is again an extended tower. Take s−(V (A)). These vertices must also give
negative region(s) in Γ′, so V (A) is the inverse image of vertices of T ′ and thus is in
T , so T is replete.

Now suppose that T ′ is completed. Then all its interior vertices are two-sided, but
this implies that all interior vertices of T are two-sided, so T is completed.

So suppose that T ′ is incomplete, and let R be a negative region in T . We want to
show that it has a two-sided •-point. Take s−(V (R)). These points are by construction
vertices of regions in T ′. The only case where a •-point of a region in Γ′ being two-sided
does not imply that its preimage is two-sided is when P ∩ φ(P ) contains a 6-gon. So
suppose we have a negative region R supported in Γ with a •-point x ∈ α0 ∩φ(α0) that
is not two-sided, and an induced region R′ supported in Γ′ such that y = s−(x) that
is two-sided. This means that y is the vertex of a connecting region R′

1 that connects
R′ to a negative region R′

2, which is a rectangle where φ(α1) and φ(α2) are parallel.
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But now, because x is not two-sided, R′
2 has no two-sided •-points (it only has two, a

boundary point, and the point z that would be s+(x) if x were two-sided, and none of
them can be two-sided). This means that either T was not incomplete, or R′

2 is not in
T ′. But if R′

2 is not in T ′, since T ′ is replete R′
1 also cannot be in T ′. But this means

that s−(x) is not two-sided –a contradiction. We can see this in Figure 3.32.

Figure 3.32: If x is not two-sided but y = s−(x) is, then T cannot have been incomplete
as R′

2 does not have any •-points in common with any positive region.

There only remains to show that this procedure does not yield an empty extended
tower. For a contradiction, assume that it does. Then, there is a positive region R in
T ′ that does not induce a positive region in Γ. At least one vertex of R must not have
an inverse image under s+. Moreover, R cannot be a connecting region contained in
P , in this case R does not come from a positive region in Γ (it connects two regions
induced by a negative region in Γ) but one of those is in a lower level than R so we
can find a positive region in a lower level that also cannot induce a positive region in
Γ (if we assume that the induced extended tower is empty). Thus the only way this
can happen is if we have R and a negative region R′ that is not a connecting region,
that is, there is not another positive region connected to R by R′ (notice that we have
encountered this case before with the roles of positive and negative regions reversed).
For this to happen, we must have that a vertex x of this region lies either on φ(α1) or
φ(α2) and the intersection of the discs cut out by Γ ∪ {β} and φ(P ) contains a 6-gon,
see Figure 3.34 for an example.

Suppose x is a ◦-point. Then necessarily it lies on φ(α2) ∩ βi, for some βi ∈ Γ.
But now the negative region R′ does not have any common •-points with any positive
region, as it has its other •-point on the boundary. Indeed, if it does not, we can show
T ′ is not nested. Suppose that the other •-point is not on the boundary. Then either
it is not two-sided, in which case we are done because T is not incomplete, or it is
the vertex of a positive region R′

1. Notice that the other ◦-point of R′ must also be a
vertex of a positive region R′

2. Then, there must be another negative region R′
3 where

φ(α1) and φ(α2) are parallel, until the boundary (if it is not until the boundary we can
repeat this argument). Now let us look at the levels of the regions. Let i be the level
of R′. Then R′

1 is on level j with j > i, as they share a •-point. Similarly, R′
2 is on

level k with k ≤ i, as they share a ◦-point. Then the same argument shows that R′
3 is



CHAPTER 3. RIGHT-VEERING DIFFEOMORPHISMS 50

on level l with l > k, and j ≤ l. But then we have k ≤ i < j ≤ l < k, a contradiction.
Thus, the other •-point of R′ is on the boundary. We can see this situation in Figure
3.33.

Figure 3.33: We cannot have multiple regions where φ(α1) and φ(α2) are parallel
because then the extended tower would not be nested. Going from R′ to R′

1 and then
R′

3 would increase the level, but going to R′
2 and then R′

3 would decrease it..

This means that R′ has no common •-point with any positive region so T ′ is not
incomplete. Moreover, if T is completed, then it must be supported in {α1, α2} because
there is a point in φ(α1) that is not two-sided –a contradiction. We can see this in
Figure 3.34.

Figure 3.34: If T ′ induces an empty extended tower, then it cannot have been incom-
plete because R′ has no common •-point with any positive region but also cannot have
been completed unless it is supported in {α1, α2} because there is a point in φ(α1) that
is not two-sided.

Now suppose that x is a •-point. Then the negative region R′ has a ◦-point y
that is not two-sided (and not on a basepoint triangle), contradicting the definition of
extended tower, see Figure 3.35.

Recall that our setup is an arc collection Γ such that there exists an arc β with
Γ ∪ β cutting out a disc from the basis. Now let α0 be an arc in Γ that is not the next
one to β as we go along the boundary of the disc cut out by Γ ∪ {β}, and α1, α2 arcs
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Figure 3.35: The point y is a ◦-point of a negative region but not a positive region.

disjoint from this disc such that together with α0 they cut out a 6-gon P . Combining
the previous Lemmas, we have proved the following Propositions.

Proposition 3.4.16. Let T be an extended tower in Γ. If α1 is not φ-contained in
α0, then there is a (nice and replete) extended tower T ′ in Γ′ = (Γ \ {α0}) ∪ {α1, α2}
which is completed (respectively incomplete) if T is.

Proposition 3.4.17. Let T ′ be an extended tower in Γ′. If α1 is not φ-contained
in α0, then there is a (nice and replete) extended tower T in Γ which is completed
(respectively incomplete) if T ′ is.

§ 3.4.4 | Main Results

Using the base cases and the inductive step we can now show that a collection of arcs
Γ detects a left-veering arc β if Γ ∪ {β} cuts out a disc (with the correct orientation),
by which we mean that Γ supports an incomplete extended tower if and only if β is
left-veering. Similarly, Γ also detects fixable arc segments.

Theorem 3.4.18. Let {αi}ni=0 be a collection of properly embedded arcs cutting out
a (2n + 2)-gon P , oriented counterclockwise, and assume {αi}ni=1 are right-veering.
Moreover, suppose no arc contained in P is left-veering. Then α0 is left-veering if and
only if Γ = {αi}ni=1 supports a replete and incomplete extended tower T .

Proof. We argue by induction on the number of arcs in our collection. The case n = 3
is given by Proposition 3.4.4. Now assume the result is true for k arcs, with k < n.
In the 2n-gon at least one arc image φ(αi0) will leave P by intersecting αi0+1 (because
each arc image cuts a smaller subsurface inside P so we can apply an innermost disc
argument), creating a basepoint triangle. If αi0 ̸= α1 then we can apply Propositions
3.4.16 and 3.4.17, and there exists an incomplete extended tower T supported by Γ if
and only if there exists an incomplete extended tower T supported by {α1, . . . , αn} \
({αi0 , αi0+1}) ∪ {β}, that is nice and replete, where β is the arc-sum of αi0 and αi0+1.
But by induction this happens if and only if α0 is left-veering.

So now suppose that αi0 = α1, and there are no other cases where the arc images
create a basepoint triangle. Then every arc image φ(αi) must leave P by intersecting α1

(an arc image intersecting another arc would cut a smaller disc that does not contain α1
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and we could apply our innermost disc argument there). Then Γ supports an extended
tower T whose regions are all rectangles as follows. The level0 positive region R1 and
its completion R′

1 come from the fact that α2 is φ-contained in α1 (because otherwise
the arc-slide of α1 and α2 would be left-veering by Proposition 3.4.4. Then φ(α1) enters
P again and must exit by intersecting α3, because φ(α3) leaves P by intersecting α1.
This forms another rectangle R2, which must be completed by a rectangle R′

2. To see
this, suppose for a contradiction that R2 is not completed. Then, {R1, R

′
1, R2} would

form an incomplete extended tower supported in {α1, α2, α3}, and then by induction
their arc-sum (strictly speaking, the arc-sum with opposite orientation) would be left-
veering, which contradicts the assumption that no arc contained in P is left-veering.
The rest of the rectangles are obtained in the same fashion. This extended tower is
clearly nice and replete. To see that it is nested, observe that R1 is on level 0 (and so
is R′

1), and then the level increases by 1 with each positive region.

However, if the extended tower is incomplete, the last (positive) rectangle cannot
have a completion (otherwise the tower would be completed), and the same argument
as in Proposition 3.2.12 shows that α0 is left-veering. Conversely, if α0 is left-veering,
suppose for a contradiction that the extended tower is completed, that is, the last
positive rectangle does have a completion. But then the edge on α1 must be restricted.
However the fact that α0 is left-veering means that its image must intersect this edge
–a contradiction. We can see this in Figure 3.36.

Figure 3.36: On the left, if the incomplete tower is supported in a smaller collection of
arcs then their arc-sum β (with opposite orientation) is left-veering by induction. On
the right, the incomplete extended tower.

Theorem 3.4.19. Let {αi}ni=0 be a collection of properly embedded right-veering arcs
cutting out a (2n + 2)-gon P , oriented and indexed counterclockwise, and suppose no
arc contained in P is left-veering. Let γ be an arc segment contained in P starting
between αn and α0 and ending in the interior of α1. Then γ is fixable by φ if and
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only if Γ = {αi}ni=1 supports a completed extended tower T whose connecting vertex
coincides with γ ∩ α1.

Proof. We argue by induction on the number of arcs in our collection. The case n = 3
is given by Proposition 3.4.5. Now assume the result is true for k arcs, with k < n.
In the 2n-gon at least one arc image φ(αi0) will leave P by intersecting αi0+1, creating
a basepoint triangle (because each arc image cuts a smaller subsurface inside P ). If
αi0 ̸= α1 then we can apply Propositions 3.4.16 and 3.4.17, and there exists a completed
extended tower T supported by Γ if and only if there exists a completed extended tower
T supported by {α1, . . . αn} \ ({αi0 , αi0+1}) ∪ {β}, that is replete, where β is the arc-
slide of αi0 and αi0+1. But by induction this happens if and only if γ is fixable by φ.

So now suppose that αi0 = α1, and there are no other cases where the arc images
create a basepoint triangle. Then every arc image φ(αi) must leave P by intersecting
α1. Then the extended tower is a collection of rectangles, obtained as in Theorem
3.4.18, with the difference that now if the extended tower is completed then γ must be
fixable because it cannot go to either right or left, and conversely if γ is fixable then
the extended tower must be completed. We can see this last case in Figure 3.37.

Figure 3.37: The extended tower when the only basepoint triangle is formed by α1 and
α2.

Our aim is to detect a left-veering arc with a collection of extended towers, each of
which will detect a segment of the arc. However, in the setup we have so far, we only
detect arcs (or arc segments) with a starting point on the boundary. To get around
this, let C = {α0, . . . , αn} be an arc collection cutting out a (2n + 2)-gon P , oriented
and labelled counterclockwise. Now assume that there is a point x ∈ αn that is the
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endpoint of a fixed arc segment disjoint from P , so by Theorem 3.4.19 there exists an
extended tower with x as its connecting veretx. Let α′

n be the (oriented) arc segment
between αn(0) and x, and let α′

0 be the (oriented) arc segment that goes from x to
α1(0). Then C ′ = {α′

0, α1, . . . , αn−1, α
′
n} is a collection of arc segments that cut out a

(2n+1)-gon P ′. Moreover, at x, the tangent vector of α′
n followed by the tangent vector

of φ(α′
n) define the orientation of Σ (because x is the connecting vertex of a completed

extended tower) so in a slight abuse of notation we can say that the arc segment α′
n

is right-veering, and we can adapt the terminology and methods of extended towers to
C ′ (since the only properties we use in the results is that the arcs bound a disc and
are disjoint and right-veering). In particular Theorems 3.4.18 and 3.4.19 still hold. We
can see this situation in Figure 3.38.

Definition 3.4.20. Let T be an extended tower supported in the collection C ′ \ {α′
0}.

We say T is a partial extended tower, and x its starting point.

We will also say, in a slight abuse of notation, that such a partial extended tower
T is supported in Γ = {α1, . . . αn}.

Figure 3.38: The setup for a partial extended tower supported in {α1, α2, α3, α
′
4}. The

fact that x is the connecting vertex of an extended tower means that at x the tangent
vector of α′

4 followed by the tangent vector of φ(α′
4) define the orientation of Σ.

We are now almost ready to prove that we can detect the existence of a left-veering
arc from a basis of the surface, we just need one more definition. Notice that for our
results to work we need the arcs cutting out a disc to be distinct. However, if we
simply take a basis as our collection of arcs, this does not necessarily happen. We
solve this issue by duplicating every arc from the basis. This has the effect that when
a left-veering arc intersects the basis it actually intersects two (isotopic) arcs α and
β. Moreover, the segment of the left-veering arc before this intersection will cut out
a disc with a collection containing one of the arcs (say, α) and the segment after the
intersection will cut out a disc with a collection containing the other arc (say, β). Then
an extended tower in the first collection will have a connecting vertex on α∩φ(α) and
an extended tower in the second collection will have a starting point on β ∩ φ(β).
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Because we want to construct the left-veering arc from the extended towers, we want
to relate these two points.

Remark. We want to distiguish α and β even though they are isotopic because α could
also be an arc in the second collection, and we want each arc from the collection sup-
porting an extended tower to be distinct. Note though that we only need to duplicate
each arc from a basis because the disc cut by a basis has exactly two copies of each
arc, so each extended tower will have at most two isotopic arcs.

Definition 3.4.21. Let α and β be two isotopic properly embedded arcs. Then φ(α)
and φ(β) are always parallel and, for an intersection x ∈ α ∩ φ(α), then we have a
small rectangle contained in the intersection of the thin strip between α and β with its
image which has x as a vertex. We call the vertex of this rectangle y ∈ β ∩ φ(β) the
adjacent point to x.

Figure 3.39: The point y that is adjacent to the point x.

Theorem 3.4.22. Let (Σ, φ) be an open book, and Γ a basis for Σ with all arcs du-
plicated. Suppose that there exists a left-veering arc γ, which we can assume to be
minimal. Then there exists a collection of extended towers {Ti}Ni=1 (where N is the
number of intersections between γ and the basis) supported in (subcollections of) Γ
such that:

• T1 is a completed extended tower.

• Ti is a completed partial extended tower, whose starting point is the adjacent point
to the connecting vertex of Ti−1.

• TN is a incomplete partial extended tower, whose starting point is the adjacent
point to the connecting vertex of TN−1.

Conversely, if we have such a collection, then there exists a left-veering arc γ.

Proof. Cut Σ along the arcs Γ, making a disc, and orient them counterclockwise. Then
γ is fixable until it intersects one of the arcs (if it is disjoint from the basis then it will
cut out a disc with a subcollection of arcs from Γ and then Theorem 3.4.18 gives an
incomplete extended tower). Then Theorem 3.4.19 gives the first completed extended
tower T1. Then γ is again fixable from the adjacent point to this point until the next
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intersection with Γ (and also in the small rectangle between the adjacent points), and
now modifying Theorem 3.4.19 for the case where we have an arc segment with fixed
endpoints gives the first completed partial extended tower. Repeat until φ(γ) goes
to the left, and then modifying Theorem 3.4.18 gives the incomplete partial extended
tower.

For the converse, observe that both Theorem 3.4.19 and Theorem 3.4.18 are if and
only if statements, and the left-veering arc is constructed by joining all the fixed arc
segments given by the completed extended towers and the left-veering arc segment
given by the incomplete one. Observe that the small arc segments between adjacent
points necessary to connect all of the arc segments given by Theorems 3.4.19 and
3.4.18 are fixable because their endpoints are fixed points and they lie in the thin strip
between isotopic arcs.

Notice that the number of extended towers N in a collection detecting a left-veering
arc in the construction described by Theorem 3.4.22 coincides with the number of
intersections of the arc with the basis. Moreover, each of these points corresponds to
a point α ∩ φ(α) for some arc α in the basis. Once we fix a basis, the number of such
points is finite and gives an upper bound for N . Moreover, each extended tower is also
a finite collection of regions. Therefore, Theorem 3.4.22 implies the existence of an
algorithm that takes as input a basis of arcs and their images and either produces a
collection of extended towers giving a left-veering arc or terminates in a finite number
of steps, which means that the monodromy is right-veering.

As a last remark, note that, if we have a basis of right-veering arcs and we find
by this algorithm a left-veering arc, we have also computed that the Fractional Dehn
Twist Coefficent (FDTC) of the monodromy (with respect to the boundary component
where we find the left-veering arc) is 0, since existence of a right-veering arc and a
left-veering arc is enough to guarantee that the FDTC is 0 [21]. In cases with higher
FDTC, after composing with boundary twists, if we find a left-veering arc with a basis
of right-veering arcs, we can also compute that the FDTC is n for any integer n.
However, notice that we cannot compute it in all cases, since in the case where the
FDTC is not an integer we will only be able to provide a bound on it. Moreover, the
FDTC can be 0 in a monodromy that is right-veering, and in this case we would not
be able to compute it via our methods.

§ 3.5 | Examples
Theorem 3.4.22 does not make any assumptions on the number of extended towers
needed to detect a left-veering arc, and a natural question is whether multiple extended
towers are always needed, and, if the answer is affirmative, whether there is an upper
bound on the number of extended towers that does not depend on the choice of basis.
Example 3.5.1 shows that indeed some cases require multiple extended towers and the
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number of extended towers required can be made arbitrarily large. Recall that the arc
segments that form a left-veering arc γ are determined by the intersections of γ with a
basis, and each segment is detected with an extended tower. Therefore for any natural
number n we construct an open book which is not right-veering and a basis such that
each arc has more than n intersections with every left-veering arc.

Example 3.5.1. Let Σ be a planar surface with 4 boundary components {Ci}4
i=1,

and φ = τ1τ2τ3τaτ
−1
b (where τi represents a positive Dehn twist around the boundary

component Ci) as shown in Figure 3.40. Then (Σ, φ) is not a right-veering open book,
as the arc γ in Figure 3.40 is left-veering. However, any left-veering arc has to start
in the boundary component C4, and moreover has to intersect b before it intersects
a. In particular, this means that it has to intersect the arc δ going from C1 to C3,
and thus the curve c that separates C1 and C3 from C2 and C4. We choose a basis
B of right-veering arcs such that all arcs intersect c. For every natural number n,
let Bn = τnc (B). Then Bn is a basis which is also right-veering and every arc of Bn

intersects every left-veering arc more than n times. But this in turn implies that more
than n extended towers are needed for Bn to detect a left-veering arc.

Figure 3.40: On the left, the surface Σ with the curves involved in the monodromy,
and a left-veering arc γ. On the right, a basis B = {α1, α2, α3} such that every arc in
B intersects the curve c.

We note, however, that this procedure is not very efficient, since it produces an
extended tower for each intersection of the left-veering arc with the basis, and it would
in some cases be possible to reduce the number of extended towers needed to detect a
left-veering arc.

Example 3.5.2. Let (Σ, φ) be the open book from Example 3.5.1, and consider the
basis {α1, α2, β3} on the left-hand side of Figure 3.41. The left-veering arc γ has an
intersection point x with the basis.

By the procedure we have described, we double the arcs from the basis, and find
fixable arc segments and left-veering arc segments disjoint from the arcs in the (dupli-
cated) basis except at their endpoints. Thus, the fact that γ is left-veering is detected
in two steps. First we detect that γ1 is a fixable arc segment with a completed extended
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tower T1 supported in {α1, α2}, because they together with the dashed arc cut out a
disc P1 from Σ. This extended tower has x as its connecting vertex. Then, we detect
that γ2 is a left-veering arc segment with an incomplete extended tower T2 supported
in {β1, β2, β3}, because they together with γ2 cut out a disc P2 from Σ. This (partial)
extended tower has y, which is is the adjacent point to x, as its starting point. Thus
the arc γ, which is the union of γ1 and γ2, is left-veering. We can see this on the left
hand side of Figure 3.41.

However, we can also detect the fact that γ is a left-veering arc directly with a single
extended tower. This is because it cuts out a disc P together with α1, β1, β3, so these 3
arcs support an incomplete extended tower. However, the procedure we described will
not find it because the interior of P is not disjoint from the basis arcs. We can see this
on the right hand side of Figure 3.41.

Figure 3.41: On the left, the procedure we described uses two extended towers to detect
the fact the γ is left-veering. However, the disc P on the right implies that only one
extended tower is needed.



Chapter 4

Binding sums of contact manifolds

§ 4.1 | Introduction
We now explore properties of an operation of manifolds called the binding sum, which
is similar to the connect sum. Contact structures behave well under connect sums
because they preserve properties such as tightness and symplectic fillability (see [7]
and [45]). This is not the case for binding sums, in particular, properties such as
tightness, fillability, or non-vanishing contact invariant are not necessarily preserved
under this operation. We exhibit some examples of this, and then provide an explicit
chain in Heegaard Floer homology that shows vanishing of the contact invariant for
an infinite family of binding sums whose summands have non-vanishing contact class,
recovering a result of Wendl [46]. Along the way we correct a computational error in
[24].

While the connected sum of two manifolds consists of removing two balls from them
and gluing along the S2 boundary, the binding sum consists of removing two solid tori
and then gluing along the T 2 boundary.

More precisely, for i = 1, 2 let (Mi, ξi) be two closed contact 3-manifolds, and (Bi, πi)
open book decompositions supporting them. Let Ki be a component of the binding
Bi. Remove a standard tubular neighbourhood of these knots, which we can see as
the normal bundle νKi, and identify the resulting boundaries via a map that preserves
the fibres. Since the contact structure in a neighbourhood of a binding component is
standard (more generally, it is standard in a neighbourhood of any transverse knot,
see for example [26]), we can glue the contact structures and the resulting manifold
inherits a contact structure from the contact structures of the original manifolds.

Definition 4.1.1. This operation is called a binding sum and will be denoted by
M1 ⊞K1,K2 M2.

Remark. Observe that we can extend this definition to summing along several binding
components and not just one. Moreover, to avoid complicating the notation, we will
drop the subscripts Ki when it is clear which binding components are involved in the
sum.
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We can see from the construction that performing a binding sum interferes with
the fibrations of the open book decompositions, so we do not immediately get an open
book of the manifold M1⊞M2. Nevertheless, by a result of Klukas in [26] we can obtain
an open book decomposition of the summed manifold from the (abstract) open books
of the original manifolds. Indeed, given a binding component K, let K ′ be a transverse
knot that intersects each page of the open book exactly once near the boundary. Note
that since the monodromy is the identity in a neighbourhood of the boundary, this is
indeed a knot. Now change the monodromy of the open book near the boundary as
follows. Add a negative Dehn twist along a curve a that goes around the intersection
of K ′ with the page, a boundary parallel positive twist, and a negative twist along a
curve b that is boundary parallel but on the other side of the intersection of K ′ with
the page. Call the composition of these Dehn twists f . Clearly f is isotopic to the
identity, and thus for any open book (Σ, φ), the open book (Σ, φ ◦ f) is equivalent to
it, since φ and φ ◦ f represent the same mapping class. In the language of Klukas,
we say that K admits a navel, and clearly every binding component of an open book
admits a navel. The knot K ′ is then called the core of the navel. We can see this on
the left hand side of Figure 4.1.

Remark. Klukas’ setup is slightly more general than ours, since he considers knots with
arbitrary framing, and we will restrict ourselves to knots with 0 framing.

Klukas then shows that a binding component K is transversely isotopic to the core
of its navel. Therefore, for open books (Σ1, φ1), (Σ2, φ2) with binding components
K1, K2, instead of removing a neighbourhood of the binding components K1, K2 and
gluing around the resulting boundary torus, we can remove a neighbourhood of the
core of their navels K ′

1, K
′
2 and glue around the resulting boundary. But now on each

page this results in removing a neighbourhood of the intersection point of K ′
i with the

page, and gluing along the boundary circles. This means that the fibrations of the
open book decompositions are preserved, so we do get a new open book. The new page
Σ is the connect sum of the original pages, and the new monodromy is given by the
composition of (the natural inclusions of) φ1 ◦ f1 and φ2 ◦ f2. Note that f1 and f2 are
no longer isotopic to the identity after performing the connect sum, see the right hand
side of Figure 4.1.

Remark. In the case where we deal with abstract open books (as opposed to ambient
ones), we will denote the binding sum as (Σ1, φ1) ⊞ (Σ2, φ2). Again when it is clear
which binding components are involved in the sum we will drop them from the notation.

Note that the resulting contact manifold could depend on the choice of open books
for the original manifolds, as we can see from the following example.

Example 4.1.2. Summing two open books (D2, Id) (representing the standard Stein
fillable S3) gives the manifold determined by the open book (S1 × [0, 1], Id), which is
the standard Stein fillable S1 × S2. However, if we stabilize both open books to get
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Figure 4.1: On the left, neighbourhoods of the binding components together with
their respective navels. The black dots represent the intersections of the knots K ′

1, K
′
2

with the pages. On the right, the new open book near the binding components being
summed. Away from this neighbourhood the monodromy is the composition of the
original monodromies.

Hopf bands and sum those (along one boundary component), we get an open book that
is not right-veering and thus overtwisted by Theorem 2.2.11. We can see this case in
Figure 4.2.

Figure 4.2: On the left, the sum (D2, Id)⊞ (D2, Id) gives (S1 × [0, 1], Id). On the right,
(S1 × [0, 1], τ) ⊞ (S1 × [0, 1], τ) gives an open book that is not right-veering (because
the twists at the bottom cancel).

§ 4.2 | Examples
If one of the open books has more than one binding component, and we do not perform
the binding sum on all boundary components, the result can be an overtwisted structure
(with vanishing contact invariant), even if the original manifolds are Stein fillable (with
non-vanishing contact invariant), due to the fact that, by Klukas’ construction, we may
obtain an open book that is not right-veering. We can see this in Example 4.1.2, but
it is a more general phenomenon, as we can see in the following example.

Example 4.2.1. If we sum two open books (Σ1, Id) and (Σ2, φ), where Σ1 is any
surface which has a boundary component not used in the sum, we get a left-veering arc
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by connecting the non summed boundary component with a summed one, due to the
negative twist at the bottom of Figure 4.1. Note that (Σ1, Id) is Stein fillable (it is the
standard Stein fillable contact structure on #k(S1 × S2)), and the construction does
not depend on φ, so we can choose it to support a Stein fillable contact structure by
taking it to be the identity, or a product of positive Dehn twists (by Theorem 2.2.10).

Figure 4.3: On the left the two open books (Σ1, Id) and (Σ2, φ) being summed, together
with their corresponding navels. On the right, the open book for the binding sum and
a left-veering arc γ.

It would then seem that this happens only when we have an arc that is fixed by
the monodromy, which then becomes left-veering after performing the binding sum.
However, this is not true.

Example 4.2.2. Stabilise the sum from Example 4.2.1 enough to make it right-veering
(this can always be done by [21]). Stabilisations do not change the contact manifold,
so we still have an overtwisted contact structure. Then, we observe that, if none
of the components being summed was a disc (so the left-veering arc happens in a
boundary component that was not used in the sum), the stabilisations are performed
away from the part of the open book where we have performed the binding sum and,
in particular, these two operations commute. This means that we can start with an
open book where no arc fixed by the monodromy becomes left-veering (and indeed the
open book is right-veering) and obtain an overtwisted contact structure.

Another example is the following.

Example 4.2.3. If the open books are (A, τn) and (A, τ 2), where A is an annulus,
the result is an example of a right-veering, non-destabilizable, overtwisted open book
shown by Lisca in [32] (note that if we use (A, τ) instead of (A, τ 2) we once again get
something that is not right-veering). We can see this open book in Figure 4.4.

Remark. Observe in this last case, unlike in Example 4.2.2, none of the open books
involved are stabilisations (and the monodromies are not the identity), and yet by The-
orem 2.2.10 we are summing two Stein fillable open books, but we obtain an overtwisted
one.
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Figure 4.4: Binding sum of (A, τn) and (A, τ 2).

§ 4.3 | Non-symmetric sums
All of the examples we have studied until now involved having some boundary com-
ponents of the original open books that are not used in the sum. However, even if we
perform the binding sum on all binding components we might end up with a manifold
that has vanishing contact invariant. For example, a manifold has Giroux torsion if
and only if it can be expressed as the binding sum of three open books, two of which
are (S1 × [0, 1], Id) (see [26]), so if the third is a Stein fillable open book, or indeed one
with non-vanishing invariant; we have a sum of manifolds with non-vanishing invariants
giving a manifold with vanishing invariant (since manifolds with Giroux torsion have
vanishing invariant by [18]).

It is not true, however, that the result of a binding sum is always overtwisted or has
vanishing invariant. We know by work of Wendl (see [46] and [26]) that if we sum two
copies of the same open book (a symmetric sum) with the identity as monodromy along
all boundary components, the result is a Stein fillable contact structure; while summing
two different surfaces (a non-symmetric sum), still with the identity as monodromy,
along all boundary components give contact manifolds with vanishing contact invariant.

Wendl’s result used J-holomorphic curves, and we want to understand this from the
open book perspective, using Klukas’ result about the neighbourhood of the binding
in the binding sum. Many of the examples are too complicated to solve, but we are
able to give a chain in an infinite family of sums, namely, summing a genus g > 0
surface with two boundary components with an annulus, where both monodromies are
the identity.

First consider the sum of two open books (A, Id) where A is an annulus, with
the sum being performed on both boundary components. The result is an open book
supporting a Stein fillable contact structure on T 3 [26], and so it has non-vanishing
contact invariant. The open book is given in Figure 4.6, and Figure 4.5 gives the
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diagram for the surface that we will use, together with a basis of arcs and its image
under the monodromy.

Figure 4.5: On the left, the two annuli with the navels corresponding to all boundary
components. On the right, the result of the binding sum.

Now, if we add a boundary component, the resulting partial open book has vanishing
contact class because it is the partial open book corresponding to a neighbourhood of
a Giroux torsion domain (see [24] and [22]), and we know by [18] that it has vanishing
invariant.

We will adopt the following convention for denoting generators of the Heegaard
Floer complex (which coincides with the one in [24]). Each generator will be denoted
by a tuple where the i-th component will be an intersection point lying in αi (the arcs
of the basis), where α1 is the horizontal arc, α2 is the arc immediately below α1 and
the rest are ordered from top to bottom. The number in that component will denote
the position of the intersection point in αi, with the order going from right to left in
α1 and from top to bottom in the rest. In particular the contact class c(ξ) is the point
(1, 1, 1, 1, 1).

Now, we can apply the Sarkar-Wang algorithm to obtain a nice diagram (see Figure
4.9), thus turning the problem of finding the differentials into a combinatorial problem,
since the only possible domains are rectangles and bigons. Assisted by the computer,
the chain we obtain is then the following:

There is a rectangle going from (1, 2, 2, 1, 1) to (1, 1, 1, 1, 1), and the only other
domain coming out of this point is a bigon to (1, 3, 2, 1, 1). Next, there is a rectangle
from (2, 4, 2, 1, 1) to (1, 3, 2, 1, 1), and the only other domain coming out of it is a bigon
to (3, 4, 2, 1, 1). Then, there is a rectangle from (6, 4, 5, 1, 1) to (3, 4, 2, 1, 1), and the only
other domain coming out of it is a rectangle to (9, 1, 5, 1, 1). Then, there is a rectangle
from (9, 1, 4, 2, 1) to (9, 1, 5, 1, 1), and the only other domain coming out of it is a bigon
going to (9, 1, 3, 2, 1). Next, there is a rectangle going from (9, 15, 2, 2, 1) to (9, 1, 3, 2, 1),
and the only other domain coming out of it is a bigon going to (9, 14, 2, 2, 1). Then
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Figure 4.6: The open book for (A, Id) ⊞ (A, Id), with arcs forming a basis and their
images. The top and bottom of the diagram, as well as the left and right, are identified.
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Figure 4.7: The partial open book of a neighbourhood of a Giroux torsion domain as
shown in [24]
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there is a rectangle from (9, 11, 2, 5, 1) to (9, 14, 2, 2, 1), but now there are two other
domains coming out of it, a rectangle going to (16, 4, 2, 5, 1) and a rectangle going to
(3, 5, 2, 5, 1). Now there is a bigon from (2, 5, 2, 5, 1) that goes to (3, 5, 2, 5, 1), and
the only other domain coming out of it is a rectangle going to (1, 6, 2, 5, 1). We then
consider the point (17, 4, 2, 5, 1), which has a bigon to (16, 4, 2, 5, 1) and a rectangle
to (1, 6, 2, 5, 1), but also a rectangle to (18, 3, 2, 5, 1). Next, there is a bigon from
(18, 2, 2, 5, 1) to (18, 3, 2, 5, 1), and the only other domain coming out of it is a rectangle
to (18, 1, 1, 5, 1). Then, there is a rectangle from (18, 1, 1, 4, 2) to (18, 1, 1, 5, 1), and the
only other domain coming out of it is a bigon to (18, 1, 1, 3, 2). Next, there is a rectangle
from (18, 1, 10, 2, 2) to (18, 1, 1, 3, 2) and the only other domain coming out of it is a
bigon to (18, 1, 9, 2, 2). Finally, there is a rectangle from (18, 1, 5, 6, 2) to (18, 1, 9, 2, 2)
and there are no other domains coming out of this point. We can see the first few
domains in this chain in Figure 4.9. The intersection points that are the sources of
a domain are labelled as ◦-points and the points that are the targets are labelled as
•-points.

Note that this is not the chain given in [24]. Indeed, the chain there ends with
the point (9, 11, 2, 3, 2), and it is claimed that the only domain coming out of it is a
rectangle to (9, 12, 2, 2, 2). However, there also rectangles going to (16, 4, 2, 3, 2) and
(3, 5, 2, 3, 2), and so this chain does not work. Juhász and Kang also give an upper
bound of 2 for the spectral order of a neighbourhood of a Giroux torsion domain based
on this computation. Our computation yields the same upper bound, although it is
conjectured that this can be improved to 1 (see [24] and [28]).

In the original diagram, the explicit chain killing the contact class is the following:
There is an embedded annulus from (2,2,3,1,1) to (1,1,1,1,1). The only other do-

main coming out of (2,2,3,1,1) is a disk going to (3,1,3,1,1). Next, there is an embedded
annulus from (3,6,2,3,1). The only other domain coming out of (3,6,2,3,1) is an im-
mersed annulus going to (5,1,1,3,1). Finally, there is an embedded annulus going from
(5,1,3,4,2) to (5,1,1,3,1) and no other domains come out of (5,1,3,4,2). This means that

∂((2, 2, 3, 1, 1)+(3, 6, 2, 3, 1)+(5, 1, 3, 4, 2)) = (1, 1, 1, 1, 1)+2(3, 1, 3, 1, 1)+2(5, 1, 1, 3, 1) =
(1, 1, 1, 1, 1) because we are working with F2 coefficients.

Using this chain, we can show an explicit chain that causes vanishing of the contact
class for an infinite family of binding sums. Let Σg,n denote the compact surface of
genus g and n boundary components.

Theorem 4.3.1. The chain killing the contact class in the partial open book of Figure
4.7 also appears in the open book for the binding sum (Σg,2, Id)⊞ (A, Id) for any g > 0,
where the sum is performed on both boundary components, and also kills the contact
class in it.

Proof. Observe that the domains in this partial diagram will also be in the diagram for
T 3, since we can see the last boundary component as the first one by an identification.
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The reason why the contact invariant does not vanish in this open book is that there
are more domains coming from the rest of the arcs in the basis once we have gone
back to the top. However, these are the only extra domains. This means that, if we
do not use domains that require the identification of top and bottom, we can get a
chain killing the contact class. But now adding genus on the bottom part of the open
book means that there will be no domains that use both top and bottom. Thus, the
chain we used before also kills the contact invariant in this case. But now observe
that adding genus to the open book in this manner amounts to adding genus to one of
the summands in the binding sum, and we can add arbitrarily large genus. Figure 4.8
shows the case where the genus is one, and we can see that all the domains that we
computed before are present in this open book, and there are no new ones.
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Figure 4.8: An open book for the non-symmetric sum (Σ1,2, Id) ⊞ (A, Id), where the
identifications are as before but we also need to identify the boundary of the rectangle
at the bottom left of the figure, which we do in a standard way for a torus by identifying
top and bottom and left and right. The two extra arcs needed to complete to a basis
are omitted for simplicity.
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Figure 4.9: Nicefied diagram for the partial open book for the neighbourhood of a
Giroux torsion domain, together with the first four domains.



Bibliography

[1] J. W. Alexander. Note on Riemann spaces. Bulletin of the American Mathematical
Society, 26, 370–372, 1920.

[2] J. Baldwin, Y. Ni, and S. Sivek. Floer homology and right-veering monodromy.
arXiv:2204.04093, 2022.

[3] D. Bennequin. Entrelacements et équations de pfaff. Astérisque 107–108, 87– 161,
1983.

[4] A. Cotton-Clay. Symplectic Floer homology of area-preserving surface diffeomor-
phisms. Geometry & Topology, 2009.

[5] F. Ding and H. Geiges. Symplectic fillability of tight contact structures on torus
bundles. Algebraic & Geometric Topology 1, 153–172., 2001.

[6] Y. Eliashberg. Classification of overtwisted contact structures on 3-manifolds.
Inventiones Mathematicae, 1989.

[7] Y. Eliashberg. Topological characterization of Stein manifolds of dimension > 2.
International Journal of Mathematics 1, 29–46., 1990.

[8] Y. Eliashberg. Classification of contact structures on R3. International Mathe-
matical Research Notices, 87–91., 1993.

[9] Y. Eliashberg. Unique holomorphically fillable contact structure on the 3-torus.
International Mathematical Research Notices, no. 2, 77–82., 1996.

[10] J. Etnyre. Introductory lectures on contact geometry. arXiv:math/0111118, 2002.

[11] J. Etnyre. Lectures on open book decompositions and contact structures.
arXiv:math/0409402, 2005.

[12] J. Etnyre and K. Honda. Tight contact structures with no symplectic fillings.
Inventiones Mathematicae 148, pp. 609–626., 2002.

[13] B. Farb and D. Margalit. A Primer on Mapping Class Groups. Princeton Univer-
sity Press, 2011.



BIBLIOGRAPHY 72

[14] D. Gay. Four-dimensional symplectic cobordisms containing three-handles. Ge-
ometry & Topology. 10, 1749-1759, 2006.

[15] H. Geiges. Contact geometry. Handbook of Differential Geometry vol. 2, pp 315-
382, 2006.

[16] P. Ghiggini. Strongly fillable contact 3-manifolds without Stein fillings. Geometry
& Topology 9, pp. 1677–1687., 2005.

[17] P. Ghiggini. Ozsváth-Szabó invariants and fillability of contact structures. Math-
ematische Zeitschrift, no. 1, 159-175, 2006.

[18] P. Ghiggini, K. Honda, and J. Van-Horn Morris. The vanishing of the contact
invariant in the presence of torsion. arXiv:0706.1602, 2007.

[19] E. Giroux. Géométrie de contact: de la dimension trois vers les dimensions
supérieures. Proceedings of the International Congress of Mathematicians, Vol.
II, 405–414, 2002.

[20] J.W. Gray. Some global properties of contact structures. Annals of Mathematics
(2) 69, 421–450, 1959.

[21] K. Honda, W. H. Kazez, and G. Matić. Right-veering diffeomorphisms of compact
surfaces with boundary. Inventiones Mathematicae, 2007.

[22] K. Honda, W. H. Kazez, and G. Matić. The contact invariant in sutured floer
homology. Inventiones Mathematicae, 2009.

[23] K. Honda, W. H. Kazez, and G. Matić. On the contact class in Heegaard Floer
homology. Journal of Differential Geometry, 83(2):289 – 311, 2009.

[24] A. Juhász and S. Kang. Spectral order for contact manifolds with convex boundary.
Algebraic & Geometric Topology 18 (2018) 3315–3338, 2018.

[25] A. Juhász, D. P. Thurston, and I. Zemke. Naturality and Mapping Class Groups
in Heegaard Floer Homology. Memoirs of the American Mathematical Society,
273(1338):1–185, 2021.

[26] M. Klukas. Open book decompositions of fiber sums in contact topology. Algebraic
& Geometric Topology 16 (2016) 1253–1277, 2016.

[27] C. Kutluhan, Y. Lee, and C. Taubes. HF=HM, I: Heegaard Floer homology and
Seiberg-Witten Floer homology. Geometry & Topology, 2010.

[28] C. Kutluhan, G. Matić, J. Van Horn-Morris, and A. Wand. Filtering the Heegaard
Floer contact invariant. arXiv:1603.02673, 2019.



BIBLIOGRAPHY 73

[29] Y. Lee and C. Taubes. Periodic Floer homology and Seiberg-Witten-Floer coho-
mology. Journal of Symplectic Geometry, 2012.

[30] Y. Lekili. Planar open books with four binding components. Algebraic and Geo-
metric Topology, 2011.

[31] W. B. R. Lickorish. A representation of orientable combinatorial 3- manifolds.
Annals of Mathematics 76, 531–540, 1962.

[32] P. Lisca. On overtwisted, right-veering open books. Pacific Journal of Mathemat-
ics, Volume 257, No 1, 2012.

[33] A. Loi and R. Piergallini. Compact Stein surfaces with boundary as branched
covers of B4. Inventiones Mathematicae 143, 325-348, 2001.

[34] I.G. MacDonald. Symmetric products of an algebraic curve. Topology, 1(4):319–
343, 1962.

[35] J. Martinet. Formes de contact sur les variétés de dimension 3. Proceedings of
Liverpool Singularities Symposium II. Vol. 209. Lecture Notes in Mathematics.
Berlin: Springer-Verlag, pp. 142–163., 1971.

[36] J. Milnor. Topology from the differentiable viewpoint. The University of Virginia
Press, Charlottesville, 1965.

[37] P. Ozsváth and S. Szabó. Holomorphic disks and three-manifold invariants: prop-
erties and applications. Annals of Mathematics (2) 159, 1159–1245., 2004.

[38] P. Ozsváth and S. Szabó. Holomorphic disks and topological invariants for closed
three-manifolds. Annals of Mathematics (2) 159, 1027–1158., 2004.

[39] P. Ozsváth and S. Szabó. Heegaard Floer homology and contact structures. Duke
Mathematical Journal 129, pp. 39-61, 2005.

[40] S. Sarkar and J. Wang. An algorithm for computing some Heegaard Floer ho-
mologies. Annals of Mathematics (2) 171, 1213-1236, 2010.

[41] J. Singer. Three-dimensional manifolds and their Heegaard diagrams. Transactions
of the American Mathematical Society, 35(1):88–111, 1933.

[42] H. Winkelnkemper W. P. Thurston. On the existence of contact forms. Procceed-
ings of the American Mathematical Society 52, 345-347, 1975.

[43] A. Wand. Tightness is preserved by Legendrian surgery. Annals of Mathematics
182, 723-738, 2014.

[44] A. Wand. Detecting tightness via open book decompositions. Geometry & Topol-
ogy Monographs, 2015.



BIBLIOGRAPHY 74

[45] A. Weinstein. Contact surgery and symplectic handlebodies. Hokkaido Mathe-
matical Journal 20, 241–251., 1991.

[46] C. Wendl. A hierarchy of local symplectic filling obstructions for contact 3-
manifolds. Duke Mathematical Journal, 162(12):2197 – 2283, 2013.


	Thesis cover sheet
	2023OrbegozoRodriguezphd
	Introduction
	Right-veering diffeomorphisms
	Binding sums

	Preliminaries
	Contact structures
	Open book decompositions
	The Heegaard Floer contact invariant

	Right-veering diffeomorphisms
	Introduction
	Preliminaries
	Extended towers
	Results
	Examples

	Binding sums of contact manifolds
	Introduction
	Examples
	Non-symmetric sums



