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Abstract 

Lameness in dairy cattle is a welfare concern that negatively impacts animal 

productivity and farmer profitability. Micro-Doppler radar sensing has been 

previously suggested as a potential system for automating lameness detection 

in ruminants. This thesis investigates the refinement of the proposed 

automated system by analysing and enhancing the repeatability and accuracy 

of the existing scoring method in cattle mobility scoring, used to provide labels 

in machine learning. The main aims of the thesis were (1) to quantify the 

performance of the micro-Doppler radar sensing method for the assessment of 

mobility, (2) to characterise and validate micro-Doppler radar signatures of 

dairy cattle with varying degrees of gait impairment, and (3) to develop 

machine learning algorithms that can infer the mobility status of the animals 

under test from their radar signatures and support automatic contactless 

classification. 

The first study investigated inter-assessor agreement using a 4-level system 

and modifications to it, as well as the impact of factors such as mobility scoring 

experience, confidence in scoring decisions, and video characteristics. The 

results revealed low levels of agreement between assessors' scores, with kappa 

values ranging from 0.16 to 0.53. However, after transforming and reducing 

the mobility scoring system levels, an improvement was observed, with kappa 

values ranging from 0.2 to 0.67. Subsequently, a longitudinal study was 

conducted using good-agreement scores as ground truth labels in supervised 

machine-learning models. However, the accuracy of the algorithmic models 

was found to be insufficient, ranging from 0.57 to 0.63. To address this issue, 

different labelling systems and data pre-processing techniques were explored 

in a cross-sectional study. Nonetheless, the inter-assessor agreement remained 

challenging, with an average kappa value of 0.37 (SD = 0.16), and high-accuracy 

algorithmic predictions remained elusive, with an average accuracy of 56.1 (SD 

=16.58). Finally, the algorithms' performance was tested with high-confidence 

labels, which consisted of only scores 0 and 3 of the AHDB system. This testing 

resulted in good classification accuracy (0.82), specificity (0.79), and 

sensitivity (0.85). This led to the proposal of a new approach to producing 

labels, testing vantage point changes, and improving the performance of 
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machine learning models (average accuracy = 0.7 & SD = 0.17, average 

sensitivity = 0.68 & SD = 0.27, average specificity = 0.75 & SD = 0.17). 

The research identified a challenge in creating high-confidence diagnostic 

labels for supervised machine learning-based algorithms to automate the 

detection and classification of lameness in dairy cows. As a result, the original 

goals were partially overridden, with the focus shifted to creating reliable 

labels that would perform well with radar data and machine learning. This 

point was considered necessary for smooth system development and process 

automation. Nevertheless, we managed to quantify the performance of the 

micro-Doppler radar system, partially develop the supervised machine learning 

algorithms, compare levels of agreement among multiple assessors, evaluate 

the assessment tools, assess the mobility evaluation process and gather a 

valuable data set which can be used as a foundation for subsequent studies. 

Finally, the thesis suggests changes in the assessment process to improve the 

prediction accuracy of algorithms based on supervised machine learning with 

radar data.  
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Chapter 1  

 

General Introduction 

Lameness is a common health problem for animals, especially dairy cattle, 

significantly affecting their productivity, welfare, and longevity. It can affect 

all cattle breeds and at any age, leading to economic losses because of reduced 

production  (Bicalho et al., 2007) and increased culling rates (Booth et al., 

2004). In addition to financial losses, lameness is often associated with pain 

and discomfort in animals (Coetzee et al., 2017), leading to poor welfare and 

decreased quality of life. Therefore, timely detection and treatment of 

lameness are critical for welfare and productivity. Early identification and 

appropriate treatment of lameness can prevent the condition from worsening 

and reduce the herd’s lameness rate (Nicole, 2007; Whay, 1999). Various 

methods are available for lameness detection, including visual observation, 

gait analysis, and automated monitoring systems. 

Radar technology has presented great potential for animal health monitoring 

(Busin et al., 2019a; Manteuffel, 2019; Shrestha et al., 2018; Wang et al., 

2020). Using radar allows for non-invasive, real-time detection of various 

physiological parameters such as respiration (Matsumoto et al., 2022) and 

movement patterns (Busin et al., 2019a). A micro-Doppler radar system could 

be particularly useful in situations where direct observation is challenging, 

such as in a herd with a large number of animals. Radar technology and 

automation can potentially reduce the need for human intervention and 

thereby minimise animal stress and disturbance and offer benefits in animal 

husbandry. 

This chapter aims to provide a brief overview of the existing literature on 

lameness in dairy cattle, the traditional ways of detection, and the benefits 

and limitations of implementing a radar-based sensing system to automate the 

process, as well as a brief explanation of the machine learning analysis 

approaches that will follow in the next chapters. The overall objective was to 

introduce the basic concepts and establish the rationale for this research 

project and its aims, which were (1) the quantification of the performance of 
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the micro-Doppler radar sensing method, (2) the characterisation and 

validation of the micro-Doppler radar signatures of dairy cattle with varying 

degrees of gait impairment, and (3) the development of machine learning 

algorithms that can classify the mobility status of the animals from their radar 

signatures. 

1.1 Lameness  

Cattle lameness is a clinical disorder or a sign rather than a disease (Adams, 

2014) that primarily affects the limbs, resulting in deviations from normal 

posture, gait, and locomotion (Ross & Dyson, 2010; Stashak, 2008; Weishaupt, 

2008; Wyn–Jones, 1988). It is associated with pain and discomfort and 

compromises other aspects of the animal, such as reproduction (Melendez et 

al., 2003) and milk yield (Hernandez et al., 2002). However, it is not a new 

concept as one of the earliest references describing the care of animals related 

to their feet and the first attempts at animal shoes is the "Hippiatrica," a 

collection of Greek and Roman veterinary texts dating back to the 4th century 

AD (McCabe, 2007). A few centuries later, manuals and books (e.g., Hunting, 

1895) were written about the care and health of animals' feet, focusing on 

horses and means of protecting the hooves. More recently, emphasis has been 

placed on lameness in cattle, and several studies have been conducted on 

prevention and treatment (Alawneh et al., 2012; Boelling & Pollott, 1998; 

Leach et al., 2010b, 2010a; Randall et al., 2015, 2016). The focus on animal 

welfare and lameness stems from the need for animals to serve for more 

extended periods, have increased production compared to previous years and 

because society's views on welfare have shifted significantly over time from 

one of indifference to one that recognizes the importance of treating animals 

humanely and protecting their wellbeing (Fraser, 2013). 

It is essential at this point to introduce the differences between normal gait 

and lameness. Normal gait refers to the regular walking pattern of an animal. 

It is characterised by a balanced, rhythmic movement of the limbs, with each 

foot landing smoothly on the ground and body weight shifting from one side to 

the other (Alsaaod et al., 2017; Tijssen et al., 2021). A normal gait is often 

determined by the individual's conformation and ability to maintain balance 
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and coordination during locomotion. The impact of conformation on an animal's 

gait is particularly relevant when considering cases of lameness, as underlying 

conformational abnormalities may cause deviations from a normal gait 

(Vermunt & Greenough, 1995). Conformation refers to the physical structure 

and shape of the body, including the skeletal structure, muscle development, 

and overall body proportions. Conformational abnormalities can sometimes 

lead to a deviation from a normal gait, but not all deviations result in lameness. 

For example, some animals may have a conformational abnormality, such as a 

long or short limb, that causes them to walk with a slightly different gait than 

normal. This deviation from normal gait may not necessarily cause lameness, 

as the animal may still be able to move without pain or discomfort. However, 

other conformational abnormalities can cause lameness or increase the risk of 

injury. For example, a cow with a rotated hoof may have an abnormal gait 

(Anees et al., 2022) that causes excessive stress on its joints or muscles, 

leading to an increased risk of injury and lameness. Understanding the 

relationships between normal gait, conformation, and lameness is vital for 

detecting the causes of diminishing welfare. 

1.2 Aetiology and consequences of lameness  

Lameness is a multifactorial condition, including production, nutrition, 

genetics, environment, and management practices. To research and mitigate 

its impact, navigation through complex interactions is necessary. A better 

understanding of the underlying mechanisms and their relationship with other 

health and welfare issues can help develop practical research questions and 

try to minimise the adverse effects. 

1.2.1  Economic impact and prevalence 

Lameness can be costly depending on the lesion type and severity. The total 

cost of lameness should be calculated, considering not only the expenses for 

the treatment but also the losses because of lameness. Several studies are 

concerned with calculating expenses due to lameness; some include the whole 

herd (Davis-Unger et al., 2017), and others focus on the individual level, 
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suggesting that this will help the breeder make better decisions about the 

welfare of each animal (Cha et al., 2010b). One study that estimated the cost 

of a generic lameness case found that average producer costs can range from 

$76 to $533 per cow (Dolecheck & Bewley, 2018). The calculation of costs 

included veterinary and pharmaceutical fees; the economic loss for the period 

during which the cow remains out of production; the reduction in milk 

production, reproductive capacity, in body weight; and finally, the decrease in 

the cow’s economically prosperous life, as it has been observed that lame 

animals end up in the slaughterhouse faster than non-lame cows (Booth et al., 

2004; Randall et al., 2016; Sogstad et al., 2007). Another study (Cha et al., 

2010b) reported the average cost per case of sole ulcer to be $216.07, $132.96 

for digital dermatitis and $120.70 for interdigital necrobacillosis. The analysis 

included costs related to milk yield, fertility and treatment. 

Prevalence in dairy cattle varies widely depending on the region, herd 

management practices such as foot bathing and housing condition, and 

diagnostic criteria. Studies have reported prevalence rates ranging from 1.2% 

to 60.5% in different countries (Table 1.1). Other factors affecting lameness 

prevalence rates include implementing prevention strategies, such as regular 

hoof trimming, providing proper housing and flooring, and controlling 

infectious diseases, which can help reduce the prevalence of the disease 

(Carvalho et al., 2005; Eicher et al., 2013; Refaai et al., 2013). 
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Table 1.1 Selected examples of lameness prevalence worldwide. 

Author & Year Location Prevalence 

(Kielland et al., 2009) Norway 60.5% +/- 21.2% 

(Von Keyserlingk et al., 
2012) 

North America (British 
Columbia, California, 

North-eastern US) 

27.9% +/- 14.1% (British 
Columbia),   
30.8 +/- 15.5% (California),   
54.8 +/- 16.7% (Nort-east US)   

(Sarjokari et al., 2013) Finland 21% 

(Brenninkmeyer et al., 
2013) 

Germany & Austria 50% 

(Pérez-Cabal & 
Alenda, 2014) 

Spain 13.8% 

(Chapinal et al., 2014) China 31% +/- 12 (range=7–51)  

(Solano et al., 2015b) Canada 21% (range 0 – 69%) 

(Foditsch et al., 2016) New York 14% 

(Rashad et al., 2022) Egypt 0 - 19% 

(Fabian et al., 2014) New Zealand 1.2 – 36% 

(Griffiths et al., 2018) England and Wales 31.6% (range 5.8 to 65.4%) 

1.2.2  Welfare 

Lameness in dairy cattle has been identified as a significant welfare concern 

due to the potential pain and discomfort it can cause the animals (Shearer et 

al. 2013) and the associated limitations on their mobility and access to food 

and water (Morton & Griffiths, 1985). The access limitations could potentially 

lead to a decline in body condition and weight loss (Huxley, 2013). Additionally, 

limited mobility increases the risk of accidents and further injuries (Van Der 

Tol et al., 2003). The overall behaviour of the cow is also affected, as 

evidenced by reduced activity levels and increased lying down durations (Ito 

et al., 2010; Westin et al., 2016). The five freedoms (Table 1.2), which provide 



25 

a framework for assessing the welfare of intensively farmed animals, 

emphasise the importance of ensuring that animals are free from pain, injury, 

and discomfort and can express their most normal behaviours (Farm Animal 

Welfare Council, 2009). 

 

Table 1.2 Five freedoms of intensively farmed animals' welfare. 

Freedom  

Freedom from hunger or thirst  by ready access to water and a diet to 
maintain health and vigour. 

Freedom from discomfort  by providing an appropriate environment 
including shelter and a comfortable resting 
area. 

Freedom from pain, injury, or 
disease  

by prevention or rapid diagnosis and 
treatment. 

Freedom to express (most) normal 
behaviour   

by providing sufficient space, proper  
facilities  and appropriate company of the 
animal’s own kind. 

Freedom from fear and distress  by ensuring conditions and treatment, which 
avoid mental suffering. 

 

1.2.3  Milk production 

Multiple studies have examined the link between lameness and milk yield in 

dairy cows, with varying results. While some studies have reported a reduction 

in milk yield following the diagnosis of lameness (Green et al., 2002; King et 

al., 2017; Olechnowicz & Jaśkowski, 2010; Warnick et al., 2010), the exact 

impact remains difficult to estimate accurately. Treatment of lameness has 

been observed to result in a decrease in milk yield, with reported milk loss 

ranging from 160 to 550 kg over a lactation period (Green et al., 2002). Other 

studies have reported losses of up to 424 kg per cow over a 305-day lactation 

period (Bicalho et al., 2008) and up to a 10% reduction in milk production 

compared to non-lame cows (Hernandez et al., 2002).  
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Several studies have investigated the genetic associations between milk 

production and lameness in dairy cattle. One study by Salleh et al. (2017) found 

a genetic correlation of 0.27 between 305-day milk yield and lameness. 

Another study by König et al., (2008) looked at the genetic relationships 

between four claw disorders and milk yield before and after diagnosis. The 

results showed a positive relationship between all claw disorders and milk 

yield, with estimates ranging from 0.08 to 0.44.  

1.2.4  Fertility 

Lameness has a profound impact on the productivity of dairy cattle, 

particularly on reproductive performance. It affects animals of all ages and 

lactation periods, but with a relatively higher incidence of lameness in early 

lactation and the dry period (Bicalho et al., 2007; Blowey, 2005; Calderón-

Amor et al., 2021; Daros et al., 2019). Studies have reported a significant 

increase in pregnancy loss in lame Jersey cows (11%) compared to healthy (5%) 

(Omontese et al., 2020). Lame cows have a reduced ability to conceive, with 

first-service conception rates reported to be as low as 20%, whereas healthy 

cows range between 40 and 50% (McNally et al., 2014; Melendez et al., 2003; 

Omontese et al., 2020). Lame cows have also been observed to be mounted 

less frequently and express fewer signs of oestrus (Walker et al., 2010), and 

are more prone to delayed cyclicity, lower ovulation rates, and decreased 

conception rates (Garbarino et al., 2004; Melendez et al., 2018). The duration 

of lameness has also been found to have a linear relationship with the odds of 

metritis, with cows being chronically lame during the dry period to be more 

susceptible (Daros et al., 2020). All these findings underscore the negative 

impact of lameness on reproductive performance, emphasising the importance 

of prompt intervention. 
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1.2.5  Culling rates 

Lameness has been associated with increased culling rates depending on the 

time of lameness detection and the time of culling (Booth et al., 2004; Cramer 

et al., 2009; Randall et al., 2016; Sogstad et al., 2007). Booth et al. (2004), 

reported that lameness was associated with a short-term increase in culling 

rate during early lactation (between 61 and 120 days in milk) and towards the 

end of lactation. The debilitating effect of lameness on reduced milk yield and 

fertility likely contributed to this increase. Interdigital necrobacillosis and sole 

ulcers were also found to have a negative impact on cow survival, with 

interdigital necrobacillosis having the greatest effect when diagnosed between 

61 and 120 DIM and culling occurred during the same period. However, in this 

study, no associations were found with other lesion types, such as digital 

dermatitis. Further studies in the literature presented similar results (Dohoo & 

Martin, 1984; Rajala-Schultz & Gro Èhn, 1999), but there were also studies with 

mixed (Collick et al., 1989; Milian-Suazo et al., 1989) or no effects (Beaudeau 

et al., 1994) of lameness on culling rates. The way of analysis, the models used, 

and the coefficients included possibly account for the differences. 

Nonetheless, there is no study showing a negative correlation between 

lameness incidents and culling rates. 

 

1.3 Factors affecting lameness  

Numerous biological, environmental, and management-related features have 

been identified as potential risk factors for lameness in dairy cattle. These 

factors can interact with each other, making the assessment of their individual 

and combined effects challenging. Understanding the aetiology of lameness in 

dairy cattle would benefit its detection, monitoring, and treatment. 
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1.3.1  Lesions and disorders 

Several types of lesions (Table 1.3) can be responsible when it comes to the 

complex of disorders that can cause lameness in cattle. These include 

infectious and non-infectious lesions on any part of the animal's leg. However, 

lameness is usually associated with lesions in the animals' hooves (Archer et 

al., 2010), especially in the hind legs (Clarkson et al., 1996a). Most lesion types 

are located in the hooves because the hooves are the weight-bearing structures 

that support the entire body weight of the cow (Shearer & Van Amstel, 2001). 

The hooves comprise a horned outer layer and a sensitive inner layer called the 

corium (Figure 1.1), which contains numerous blood vessels and nerves, and 

any damage or inflammation to the corium or the horn of the hoof can cause 

lameness and compromise the cow's ability to walk and stand (Amstel & 

Shearer, 2008). Additionally, hooves are constantly exposed to various 

environmental factors, such as mud, manure, and rough surfaces, which can 

lead to injuries, infections, and other hoof problems. 

Some of the most common hoof lesions causing lameness in dairy cattle are 

claw horn lesions, often caused by improper hoof trimming or inadequate 

housing conditions (Bergsten et al., 1998; Manske et al., 2003) . Two common 

non-infectious claw horn lesions are sole ulcers and white line disease (Archer 

et al., 2010). Sole ulcers are typically caused by excessive pressure on the sole, 

leading to erosion and inflammation (Bonser et al., 2003; Gregory et al., 2006). 

White line disease in cattle occurs when the inner layer of the hoof wall, 

becomes separated from the sole of the hoof. This separation creates a space 

where bacteria and fungi can grow, leading to infection and deterioration of 

the white line structure (Shearer & van Amstel, 2017b). The white line serves 

as a weight-bearing region for the animals and is particularly vulnerable to 

damage or disease due to its location (Figure 1.1) and the stresses it undergoes. 

These conditions can also be predisposed by metabolic disorders, such as 

rumen acidosis and laminitis, along with physiological changes during the 

transition period (Shearer & van Amstel, 2017a).  
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Figure 1.1 Plantar view of hoof anatomy. 

 

Lameness in dairy cattle can be caused by contagious infectious agents too. 

Among these, digital dermatitis and interdigital necrobacillosis are commonly 

observed in cattle. Digital dermatitis is a bacterial infection that causes pain 

and inflammation on the skin of the foot (Palmer & O’Connell, 2015). The 

disease is primarily seen in the hind feet, particularly between the heel bulbs 

proximal to the interdigital cleft, and appears as erosive, circumscribed areas 

of inflammation and epidermal proliferation. The bacterial aetiology of digital 

dermatitis is complex, and various microorganisms have been detected in the 

lesions (Beyi et al., 2021; Marcatili et al., 2016; Wilson-Welder et al., 2015). 

Treponema spp. are consistently observed in digital dermatitis lesions and are 

present in large numbers at the interface between necrotic and healthy tissue. 

Interdigital necrobacillosis is another bacterial infection that affects the soft 

tissues of the foot (Berry, 2001). The condition is caused by various bacteria, 

including Dichelobacter nodosus, Fusobacterium necrophorum, and 

Bacteroides melaninogenicus. Wet and muddy conditions are known to 

predispose cattle to interdigital necrobacillosis (Monrad et al., 1983), as the 

bacteria responsible for this infection thrive in these environments. Interdigital 
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necrobacillosis is characterized by severe inflammation and necrosis of the soft 

tissues of the foot, which can lead to severe lameness (Archer et al., 2010). 

Over 90% of lameness-causing injuries may originate in the lower leg (Clarkson 

et al., 1996b); however, dysfunctions in the animal's spine, nerves and 

musculoskeletal system can also affect movement and cause lameness (Callan 

& Garry, 2001; Shearer et al., 2012). A few orthopaedic disorders affecting the 

upper limb and causing lameness are carpal hygromas, tarsal cellulitis and hip 

dislocation (Chhatpar et al., 2012; Marchionatti et al., 2014; Nocek, 1997). In 

these cases, the detection of lameness is immediate with the appearance of 

the problem since it is in a prominent place and dramatically changes the 

animal's gait pattern. 

Table 1.3 Common hoof lesions in cattle. 

Lesion Description 

Sole ulcer Lesion located typically in the area between the 
sole and heel bulb at the rear of the pedal bone 
caused due pressure on the corium - non-infectious  
(Shearer & van Amstel, 2017b) 

Sole haemorrhages, bruises, 
hoof discolouration 

Red and yellow marks present on the sole areas 
caused due to pressure on the corium, leading to 
inflammation - non-infectious  (Archer, Bell, Huxley, 
et al., 2010) 
 

Fissures, cracks, separations Horn defects affecting the wall horn - non-infectious 
(Clark et al., 2004) 

White line disease The sole separates from the wall of the hoof and 
foreign materials penetrate and infect the area - 
non-infectious (Shearer & van Amstel, 2017b) 

Under-run sole A layer of sole, over a layer of keratinised sole 
caused by interruption of sole horn formation, 
followed by restoration of horn production - non-
infectious (Nocek, 1997) 

Digital dermatitis Skin infection caused by bacteria between the heel 
bulbs or palmar/plantar pastern area – infectious 
(Afonso et al., 2021) 

Interdigital necrobacillosis 
(Foul in the foot or Footrot) 

The skin between the claws becomes damaged and 
bacteria infect the soft tissue between the digits 
causing swelling and necrosis – infectious  
(Van Metre, 2017) 

Interdigital hyperplasia/growth Mass of tissue between the claws, the degree of 
lameness depends on the size of the lesion and the 
presence of infection of the digital tissue (Alsaaod 
et al., 2023) 
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1.3.2  Hoof trimming  

The hooves of cattle are complex structures that support the animal's weight 

and absorb the impact of movement on hard surfaces (Blowey, 2015). Hoof 

trimming in cattle is a critical management practice that helps prevent or 

detect early lameness incidents (Bergsten et al., 1998), as the trimmer can 

inspect the claws for signs of lesions and take appropriate action to prevent 

further damage and promote healing. However, only in recent years has the 

claw trimming profession been licenced by organisations such as the UK’s 

National Association of Cattle Foot Trimmers (NACFT).  

Studies have found associations between frequent hoof trimmings and reduced 

lameness prevalence (J. A. Hernandez et al., 2007; Manske et al., 2002b; 

Stoddard & Cramer, 2017). In a survey (Russell et al., 1982) on the incidence 

of lameness, they reported claw lesions in animals with irregularities in the 

shape of claws. They established a correlation between claw conformation and 

lameness occurrences. The findings of another study (Boettcher et al., 1998a) 

appear to agree that the shape of the claw can contribute to lameness 

susceptibility. Neichev et al., (1980) confirmed the positive effects in daily 

milk production when cows with overgrown hooves were trimmed and the 

reduction in the daily milk yield in the opposite case, where cows were left 

with overgrown hooves (Diaz & Bodurov, 1986). A negative correlation has also 

been mentioned between trimming and slipping, with a study (Phillips et al., 

2000) proving that recently trimmed cows are less likely to slip. Several more 

studies (Andersson & Lundström, 1981; Boelling & Pollott, 1998; Manson & 

Leaver, 1989) have been conducted, and the results reveal the importance of 

the hoof size and shape in mobility improvement.  

Trimming frequency has been the subject of a few studies. Although some have 

indicated that hoof trimming before dry-off (Thomsen et al., 2019) or during 

early lactation (Pedersen et al., 2022) may lower the likelihood of lameness, 

the findings are inconclusive. According to Shearer et al. (2001), hoof trimming 

once to twice per year is beneficial for the cattle, and in cases of clinical 

lameness, it might be necessary more frequently. In smaller ruminants such as 



32 

sheep and goats, routine hoof trimming is also suggested to be performed twice 

a year, but not more often if there is no reason to do so, as it is possible to 

increase the risk of lameness problems in the herd (Wassink et al., 2003). Other 

studies such as this by Maxwell et al., (2015) have suggested that trimming only 

lame first-lactation heifers between 50 and 80 days in milk (DIM) resulted in 

higher milk production relative to non-trimmed heifers. This approach was also 

deemed to be more cost-effective. Unfortunately, no specific evidence 

indicates the optimal frequency of claw trimmings. Most of the studies, though, 

agreed that routine inspection is vital for lameness control (Pedersen et al., 

2022; Sadiq et al., 2020; Shearer & Amstel, 2001).  The hoof trimming should 

comply with the farm's management system and the animals' needs (Manske et 

al., 2003). Some suggested periods, which tend to be the most effective in 

terms of overall management, according to studies, are the mid-lactation and 

the dry period because they will have less impact on the productivity and well-

being of the animal from a pain and stress perspective (Mason & Offer, 2007; 

Shearer & Amstel, 2001). This is because if the animals are not accustomed to 

being handled or restrained, trimming can release stress hormones such as 

cortisol, which can adversely affect overall health and well-being. Finally, 

regular inspections do not necessarily mean that claws must be trimmed. The 

main aim should be balancing the weight-bearing among the feet and claws 

(Raven, 2003). Attention should be given during the trimming to not remove 

excessive tissue (over-trim) as it could result in injuries to the animal’s hoof 

and lameness (Raven, 2003; Reicher, 1985). 

1.3.3  Space, Waking area and Bedding 

Healthy cows typically spend about 7 to 14 hours in a lying position daily (Cook 

et al., 2004a; Ito et al., 2009; Jensen et al., 2005), including approximately 4 

hours sleeping in small bouts throughout the day and 8 hours drowsing under 

normal conditions (Kull et al., 2019; Ternman et al., 2012). Thus, their living 

conditions should provide the necessary comfort and enable normal 

behaviours. When stalls are uncomfortable, animals tend to decrease their rest 

time, which may be a contributing factor to lameness (Ceballos et al., 2004). 

Several studies have been conducted on floor suitability (Flower et al., 2007; 

Phillips & Morris, 2000; Telezhenko et al., 2009; Telezhenko & Bergsten, 2005) 
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and its association with lameness occurrence. A few housing options for dairy 

cows include indoor free-stall or tie-stall barns, bedded pack barns and outdoor 

pasture-based systems. In free stalls, animals are housed in straw yards where 

they rest together or in cubicles with individual places. There is also a tie-stall 

system, an older animal tether, but it is considered to be opposed to animal 

welfare. 

Research has demonstrated the impact of different living conditions on animal 

health and behaviour. Hernandez-Mendo et al. (2007) and Somers et al. (2003) 

found that despite a reduction in nutrient intake that resulted in lower milk 

production, animals that grazed on pasture showed improvements in hoof 

health and gait. In a study by Frankena et al. (2009), gait disturbance was 

reduced in straw yards compared to cubicles in free-stall barns. However, 

other studies (Hultgren, 2002; Webster, 2001) have suggested that cubicles can 

increase clinical foot disturbances, resulting in smooth but thin heels that 

exacerbate claw horn lesions over time. Finally, research on tie stalls has 

highlighted the challenges that animals face in changing positions from lying 

to standing, as documented by Haley et al. (2000). 

Research has shown that the type of flooring on which animals walk can impact 

their locomotion and health. Phillips & Morris (2001) found that cows on 

slippery floors take frequent, small steps to maintain speed, while those on 

floors with more friction take longer steps. Concrete floors have been linked 

to adverse effects on limb health and physiology. Studies (Cook & Nordlund, 

2009; Murray, Russell, et al., 1996; Phillips & Morris, 2000; Rushen et al., 2007; 

van der Tol et al., 2002) have shown that concrete flooring reduces walking 

speed, alters limb angles, increases claw exposure, and raises the risk of 

lameness, leading to incidents of swelling of the carpal joints and negative 

changes in walking patterns. 

In contrast to concrete, rubber mats have emerged as a more suitable flooring 

option. Studies on rubber flooring have demonstrated its positive effects on 

claw health and heel erosions (Boyle et al., 2007; Cook & Nordlund, 2009). 

Furthermore, cows have been observed to exhibit a preference for spending 

more time lying on soft ground than on concrete (Rushen et al., 2007). Rushen 

et al. (2007), in their study on the impact of a softer flooring system on leg 
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injuries, highlighted that cows find it easier to switch between lying and 

standing postures on softer surfaces than on other types of flooring. 

Sand floors and mattresses in cubicles have been suggested as beneficial for 

lame cows, promoting recovery and reducing hock injuries, according to 

various studies (Bergsten & Telezhenko, 2005; Cook & Nordlund, 2009; Livesey 

et al., 2002). Rubber mats, negatively correlated with lameness appearance, 

can also be a suitable option for cows. Studies (Cook, 2003; Cook et al., 2004b) 

have shown that cows appeared comfortable on soft rubber bedding, with 

stride length and movement speed similar to those on pastures, as Jungbluth 

et al. (2003) observed. However, the preference for a specific type of floor 

does not necessarily mean that other types are unsuitable for cows, as noted 

by Cook et al. (2004b).  

The type of flooring is not the only factor affecting cow welfare, as the amount 

of space they have to move around in is also crucial. Research (DeVries et al., 

2004; Huzzey et al., 2006) has shown that aggression is linked to pen 

dimensions, feeding space per animal, and access to outdoor areas. When 

feeding space is reduced, aggression can increase significantly; for example, 

reducing manger width by 0.5m per cow doubled fighting between cows 

(DeVries et al., 2004). Narrow alleys and limited space allowances can also 

provoke aggression and cause injuries that can lead to lameness (EFSA, 2009). 

The optimal space for dairy cows depends on factors such as horn status, body 

size, and herd size, as overcrowding reduces lying times and can increase 

lameness (Menke et al., 1999; Rowlands et al., 1983). Neck-rail position and 

pen floor quality also play a significant role in lameness; inadequate floor 

quality coupled with a high neck-rail position can cause cows to spend more 

time standing, increasing the risk of lameness. However, when the diagonal 

between the neck rail and the rear border of the bed is over 1.95m, the risk of 

lameness is significantly reduced (Mülleder et al., 2004), in agreement with 

previous research (Murray, Russell, et al., 1996). 
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1.3.4  Nutrition  

Nutrition plays a vital role in the proper functioning of the body, the immune 

system and the treatment of diseases. Several studies (Cook, 2014; Laven, 

2006; Lean et al., 2013; Manson & Leaver, 1988c; Smart, 1985; Westwood et 

al., 2003) have been conducted over the years on the relationship between 

diet and lameness. 

A diet deficient in essential nutrients, such as protein, vitamins, and minerals, 

and trace elements can lead to poor bone development, decreased muscle 

mass, and impaired immune function, all of which can contribute to lameness. 

For example, copper deficiency has been associated with stiffness and 

lameness in calves (Smart, 1985), while cows with a history of lameness were 

found to have elevated levels of copper (Baggott et al., 1988). Zinc and 

phosphorus imbalances have also been linked to an increased risk of lameness, 

as these elements have been associated with sensitive limbs, more easily 

injured, and the hoof growth is abnormal (Smart, 1985; Underwood, 1971). 

Furthermore, the excessive use of certain chemical elements, such as fluorine 

and selenium, can interfere with the mineralization process of bones or lead 

to oxidative damage and cell death in joints, leading to weakened bones and 

joints that will make the animal more susceptible to lameness (Howell, 1983). 

Specific vitamins administration, such as biotin, can provide benefits in cows’ 

health and nutritional balance. Incorporating biotin into an animal's diet can 

aid in preventing lameness by maintaining keratin, as documented by Mülling 

et al. (2006). Moreover, Hedges et al. (2001) and Pötzsch et al. (2003) have 

highlighted the significance of biotin in reducing lameness, particularly in cases 

induced by white line disease. 

Another nutritional factor associated with lameness in dairy cattle is subacute 

ruminal acidosis (SARA). SARA is a condition that occurs when the pH drops to 

less than 5.8 for more than 330 minutes per day (Zebeli et al., 2008). The 

severity of SARA can be determined by how frequently this drop in pH occurs 

(Plaizier et al., 2008). The acidic environment can lead to the breakdown of 

the rumen epithelial barrier, allowing endotoxins to enter the bloodstream and 

the small blood vessels in the claws and lead to inflammation, circulatory 

disturbances, and ischemia (Danscher et al., 2010; Ossent & Lischer, 1998). 



36 

This inflammation could possibly damage the hoof and other tissues, causing 

haemorrhages and bruising of the corium, particularly underneath the flexor 

tubercle leading to lameness (Greenough, 2007). However this hypothesis has 

not been proven. 

Managing the feeding schedule and ensuring adequate nutrition for dairy cattle 

can prevent malnourishment and minimize the risk of lameness. Bicalho et al. 

(2009) observed a positive correlation between body weight and digital cushion 

thickness, emphasizing that cows with low body weight are more likely to 

develop lameness. Another study by Donovan et al., (2004) reported that 

sudden increases in energy intake during sensitive calving periods (i.e., just 

before or after calving) may also lead to lameness. Several studies have 

highlighted that increasing the frequency of feedings can lead to animal 

competition, reduced feed intake time, and increased standing time, 

ultimately leading to foot injuries and lameness (Huzzey et al., 2006; Olofsson, 

1999; Proudfoot et al., 2009) .   

1.3.5  Genetics 

Genetic selection for desirable traits, such as increased milk yield and meat 

quality, has inadvertently increased the incidence of lameness (Van Marle-

Köster & Visser, 2021). To reduce lameness in their herds, farmers have 

traditionally chosen indirect traits like conformation as a selection method 

(McDaniel, 1997). However, more recent research has shown that direct health 

traits such as foot lesion records are more valuable and practical for genetic 

selection (Egger-Danner et al., 2015). Studies have suggested that 

susceptibility to lameness has a substantial genetic component (Boettcher et 

al., 1998b; Buch et al., 2011; Häggman et al., 2013; Heringstad et al., 2018; 

Huang & Shanks, 1995b; Koenig et al., 2005; Malchiodi et al., 2017; Ødegård et 

al., 2013; Onyiro et al., 2008; Sánchez-Molano et al., 2019; van der Spek et 

al., 2013), with estimated heritability between 0.01 and 0.35. Although the 

results vary, candidate genes such as the OSR1 gene on BTA-11 that has been 

linked to conformation traits (Cole et al., 2011), the VWF gene on BTA-5 to 

foot angle (Kolbehdari et al., 2008), and BTA8 and BTA13 regions have been 

linked to sole ulcers and white-line disease with the candidate genes involved 
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in wound healing, bone growth, adipose tissue, and keratinization (Lai et al., 

2021). Inflammation response, immune function, and bone growth are also 

lameness contributors and can be genetically selected for prevalence 

reduction. Selection can also affect the recovery and healing process after 

lameness development as some animals might have a better hoof growth rate 

and quality of the new hoof tissue than others (van der Spek et al., 2013).  

Other studies have also concluded that breeds and genetic predisposition 

contribute to lameness incidence. For example, a study (Huang & Shanks, 

1995a) on factors affecting hoof health found that some breeds presented 

better claw score characteristics than others. In other studies, herds consisting 

of only Holstein Friesian had an increased risk of lameness (Barker et al., 2010). 

Brown Swiss cows had the most severe results for corkscrew claws, laminitis 

and sole ulcers. Guernsey had the worst scores for the white lines and heel 

erosion. The incidence of digital dermatitis was least favourable in Friesians; 

last, Jerseys cows had harder feet and were less lame (Chesterton et al., 1989). 

Although the genetic basis of lameness is complex, with multiple genes and 

environmental factors involved, farmers must consider both the prevention and 

treatment of lameness through genetic selection to ensure the long-term 

health and productivity of their herds. 

1.3.6  Animal, Social and Behavioural Factors 

Lameness in cows is associated with certain criteria that determine the well-

being of the animal, including the score of limbs and feet, hoof angle, and leg 

set. According to a study by Pérez-Cabal et al. (2006), cows with better 

conformation and structure in legs and hooves tend to be more productive and 

have longer lifespans than other cows. One more factor linked to lameness by 

Chesterton et al. (1989) is the colour of the claw. They described that animals 

with light-coloured feet were more likely to suffer from lameness. Other than 

the claws’ colour, an animal's weight can also indicate its susceptibility to 

lameness. Specifically, according to studies by Boettcher et al. (1998a) and  

Gudaj et al. (2012), heavier cows are more likely to develop clinical lameness. 

However, cattle with low body condition scores are also likely to develop 

lameness, as noted in studies by Randall et al. (2015) and Wells et al. (1993). 
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Essentially, both underweight and overweight cows are at risk for lameness, 

highlighting the importance of maintaining appropriate body conditions in 

cattle to prevent lameness incidents. 

Age is also an animal factor contributing to lameness occurrence, according to 

studies which explain that the risk of a lame animal increases with age 

(Dembele et al., 2006; Huang et al., 1995; Solano et al., 2015b). As cows age, 

the cumulative effects of previous injuries and the wear and tear on their joints 

can possibly lead to lameness. However, some studies suggest that young cows 

may be at higher risk of developing certain types of lameness. For example, 

digital dermatitis, a common claw disorder, tends to occur more frequently in 

younger cows (Manske et al., 2002a; Sogstad et al., 2005). The reasons for this 

are not entirely clear, but it may be related to the fact that young cows are 

still growing and developing, and their hooves are more susceptible to trauma 

and injury. Overall, while age can be a factor in the development of lameness, 

the specific risk factors can vary depending on the type of lameness and other 

environmental factors. 

The social dynamics within a herd can also play a role in the health of animals' 

limbs. For example, studies have shown that cows with higher hierarchical 

status are less likely to experience lameness than those with lower social 

standing (Olechnowicz & Jaskowski, 2011). Furthermore, cows that develop 

lameness can become marginalised by healthier cows in the herd, leading to 

further health issues and discomfort for the affected animal (Galindo & Broom, 

2002). This suggests that animal behaviour can contribute to lameness and vice 

versa. However, providing enough space for animals to engage in their natural 

behaviours can help mitigate this issue (DeVries et al., 2004; Huzzey et al., 

2006). 

1.3.7  Footbaths 

Lameness studies (Dolecheck & Bewley, 2018; Randhawa et al., 2008) have 

highlighted that the treatment costs of a lame cow are far more than 

implementing a simple prevention protocol such as footbaths. Footbaths are a 

preventative measure commonly used in the dairy industry to reduce the 

incidence of lameness in cattle. The process involves immersing the cow's 
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hooves in a solution containing disinfectants or other agents that help control 

bacteria and fungi growth and thus reduce the infectious lesions such as digital 

dermatitis (Robcis et al., 2023) and decrease up to 50% other lameness 

incidents in the herd such as digital skin lesions with regular footbathing 

(Randhawa et al., 2008). It is a cost-effective and straightforward method for 

improving the health and welfare of dairy cattle, with benefits such as the 

reduction of antibiotic treatments, which can have implications for 

antimicrobial resistance in animals and humans (Schwarz & Chaslus-Dancla, 

2001; K. E. Walker et al., 2023). 

1.4 Assessment and diagnosis of lameness 

1.4.1  Gold standard and methods of lameness detection 

The gold standard for cattle lameness detection is a trained and experienced 

veterinarian conducting a thorough clinical examination of the animal 

(Desrochers et al., 2001). The veterinarian will visually assess the gait and 

posture of the cow, as well as palpate the legs and feet to identify any areas 

of tenderness, swelling, or other abnormalities. In addition to the visual and 

manual examination, the veterinarian may also use diagnostic tools such as 

hoof testers, joint flexing, radiographs, or ultrasound to evaluate the animal's 

condition further. However, due to the large numbers of farm animals, this 

approach to detecting lameness is not economically beneficial or logistically 

practical. This is a key reason why other indirect assessment methods have 

been proposed and have been widely adopted for lameness detection. 

The most common method of lameness detection in herds of cattle is visual 

mobility scoring of the animals (Afonso et al., 2020). This method involves 

observing the animal’s gait, posture, and behaviour to determine any signs of 

abnormal mobility. An assessor, usually trained personnel, veterinarian or 

farmer, watches the animal as it walks or stands, looking for any signs of 

uneven or abnormal movement, such as limping, favouring a particular leg, 

uneven weight distribution, or arched back. Assessors may also look for other 

signs of lameness, such as changes in the animal’s overall posture and mobility, 

reluctance to move, or visible swelling or inflammation in the affected area. 
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Finally, a score is given to each animal that meets a category of the severity 

of impairment or describes specific characteristics that define a lameness case. 

1.4.2  Scoring systems  

Visual locomotion scoring systems are an indirect method to assess hoof and 

foot conditions because it relies on the observation of the gait and behaviour 

rather than direct examination of the feet and legs and are considered 

subjective as the evaluation depends greatly on the assessor (Van Nuffel et al., 

2015). Lameness scoring systems are generally based on numerical scales 

ranging from 3 to 9 levels (Lorenzini et al., 2017; Manson & Leaver, 1988c; 

Sprecher et al., 1997; Tranter & Morris, 1991; Wells, Trent, Marsh, & Robinson, 

1993; H. Whay, 2002; Winckler & Willen, 2001). These scores indicate the 

animal’s mobility, with lower scores typically denoting healthy mobility and 

higher scores indicating severe lameness. The scoring involves the assessor 

making observations of the animal’s locomotion and making a classification 

decision. Different scoring systems may employ varying scales or assign scores 

based on specific criteria, such as the presence of head nodding, uneven weight 

bearing, or stiffness in the animal’s gait. Despite their differences, mobility 

scoring systems share some commonalities. For example, they all rely on the 

subjective observation of the animal’s gait and behaviour and are designed to 

identify the degree of lameness in the animal and aid the diagnosis of the 

problem. Some systems are more widely adopted than others, potentially 

because they are simple and easy to understand or because of sector support 

and industry initiatives, with organizations or associations providing 

educational resources and training programs (Main et al., 2012). In addition to 

the original systems for evaluating cow mobility, various modifications have 

been proposed in studies to make the systems more reliable and repeatable 

(Haskell et al., 2006; Rajkondawar et al., 2006; Winckler & Willen, 2001). A 

brief description of a few of the most commonly used mobility scoring systems 

(Afonso et al., 2020)  in research follows. 

The locomotion scoring system of Manson & Leaver, (1988b) suggests the 

scoring to be carried out before the milking on a concrete floor with the 

animals being scored walking away from the assessor for 5 to 10 meters. The 
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system has nine levels ranging from 1 to 5 with 0.5 step, and the higher the 

score, the poorer the cow’s locomotion. Animals with a score > 3 are 

considered clinically lame and should be examined. This system is frequently 

used in literature, but complexity can arise from its multilevel nature (Channon 

et al., 2009a). Half of the scores relate to changes in gait and behaviour that 

precede clinical lameness, intending to detect lameness signs before they 

become clinically evident. Nonetheless, some definitions can be challenging to 

comprehend (e.g., “behaviour pattern affected” or “adverse effects on 

behaviour pattern”), necessitating extensive training. Whay (2002) 

recommended that an individual with prior knowledge and experience should 

instruct others to use the system. 

The system proposed by Whay et al. (1997) was first introduced for heifer 

locomotion assessment and consists of 6 levels ranging from 1 to 6; score 1 

stands for healthy cow, and score 6 indicates a cow “as lame as possible while 

upright”. It was conducted on a flat concrete floor, with the animal being 

assessed first while walking away from the assessor and then from the side of 

the walking animal tracking the hooves’ placement and head movement. The 

system offers a score (score 2 = imperfect locomotion) for cows with an 

abnormal gait but without apparent lameness signs, indicating distinct 

concepts in animal movement deviations and disorders, with an abnormal gait 

not necessarily translating as lameness. 

Sprecher et al. (1997) lameness scoring system focused on posture and gait. It 

has five levels ranging from 1 standing for normal to 5 severely lame with 

“inability or extreme reluctance to bear weight on one or more of the limbs” 

Cows with scores of 4 or 5 are recognised as clinically lame. It was the first 

system to introduce back posture into the assessment criteria, and they linked 

the observation of the arched-back posture with future reproductive 

inefficiency. 

The Agriculture and Horticulture Development Board (AHDB, 2015) dairy 

mobility scoring system is the U.K.’s most commonly used system for detecting 

lameness and assessing cow mobility. It was developed in 2007 and was called 

the “mobility scoring system” because the term “lameness” was not popular 

with farmers and was perceived negatively by the industry (Bell & Huxley, 

2009). It consisted of 4 levels, detailed in Table 1.4. 
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Table 1.4 Description of the AHDB mobility scoring system 

Category of score Score Description 

Good mobility 0 Walks with even weight 
bearing and rhythm on 
all four feet, with a flat 
back 
Long, fluid strides 
possible 

Imperfect mobility 1 Steps uneven (rhythm or 
weight bearing) or 
strides shortened; 
affected limbs or limb 
not immediately 
identifiable 

Impaired mobility 2 Uneven weight bearing 
on a limb that is 
immediately identifiable 
and/or obviously 
shortened strides 
(usually with an arch to 
the centre of the back) 
 

Severely impaired 
mobility 

3 Unable to walk as fast as 
a brisk human pace 
(cannot keep up with 
the healthy herd) signs 
of score 2 

 

 

Grimm & Lorenzini (Lorenzini et al., 2017) is one of the most recently proposed 

hierarchical locomotion scoring systems. It consists of 3 levels ranging from 1 

to 3. Score 1 stands for a sound cow, score 2 indicates an unsound cow and 

score 3 represents a lame animal with an irregular, uneven and asymmetric 

gait. It has only a few basic levels that make the assessment straightforward 

while separating animal mobility into three exclusive and exhaustive classes 

(Figure 1.2). 
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Figure 1.2 Three point locomotion score by Grimm and Lorenzini. From “Using a three 

point lameness scoring system combined with a clinical examination to increase the 

reliability of locomotion scoring” by Lorenzini et al., (2017).   

 

1.4.3  Features and characteristics of the mobility scoring 

systems  

Table 1.5 shows some of the most common mobility systems’ features. All the 

features mentioned in the various systems are characteristics that a lame 

animal can exhibit. However, not all cows express the same characteristics 

when they are in pain (Reinemann, 2007). Also, lesion severity and location 

affect the way the cows move differently (H. R. Whay et al., 1997). 
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Table 1.5 Animal characteristics used in locomotion scoring systems, a short 

description and a few indicative systems that consider these characteristics. 

Characteristics  Explanation  Indicative systems  

Arched back  Cow is shifting weight 
to relieve pressure on 
one or more limbs  

AHDB mobility (2007), 
Flower and Weary 
(2006)  

Head bob  Indicates that a cow is 
experiencing pain or 
discomfort when 
walking. It can also be 
a sign of balance issues 
or a neurological 
problem  

Flower and Weary 
(2006), Thomsen 
(2008)  

Weight distribution  

(Reluctance to bear 
weight)  

Uneven weight 
distribution can be a 
sign of lameness or 
other health issues, 
such as mastitis or a 
reproductive problem  

Manson and Leaver 
(1988), Sprecher (1997)  

Stride length  

(Short steps)  

Shortened stride can 
be a sign of lameness 
or pain  

AHDB mobility (2007), 
Sprecher (1997)  

Limb placement  

(Asymmetric gait, 
limbs’ abduction or 
adduction)  

A lame cow may drag 
its hooves to 
compensate for 
lameness problems in 
an uncoordinated and 
unbalanced manner, 
with each limb landing 
unevenly on the ground 

Manson & Leaver 
(1988), Flower & 
Weary (2006), AHDB  

 

1.4.4  Pain assessment & limitations of the visual assessment 

systems 

Studies have investigated farmers’ and veterinarians’ attitudes toward pain in 

cattle, finding that there is generally a high level of pain recognition but 

variation in perceptions, with most people not perceiving the same conditions 

as painful (Huxley & Whay, 2006; Laven et al., 2009; Remnant et al., 2017; 

Thomsen et al., 2012; Whay & Huxley, 2005). Some methods of pain assessment 

are more objective than others. For example, measuring variations in heart 

rate, cortisol levels, and respiratory rate are physiological parameters that can 
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contribute to a better understanding compared to measures such as 

vocalisation or facial expressions, that may be objectively quantifiable 

variables but their association to pain is ambiguous (Adriaense et al., 2020). 

Some methods considered more thorough, and in case of lameness, examining 

each individual cow by lifting the legs, trimming, and testing the hooves with 

either knives or pincers gives a more definitive picture of whether an animal 

has a lesion in the area being examined compared to solely gait visual 

assessment. Another reason this type of examination could be more effective 

in detection is that not all problems manifest with an immediate change in the 

animal’s mobility. Studies have shown that cows will not change their gait 

despite experiencing discomfort from certain lesions, unless the energy 

expenditure required for such changes is significant lower than maintaining 

their normal gait. (Tadich et al., 2010a).  

Observer’s characteristics influence the mobility scoring outcomes. A study by 

Polderman et al. (2001) has demonstrated that assessor training can impact 

scoring and lead to variations in cows’ mobility status between assessors. 

However, other studies in medical fields (Engel et al., 2003; Ford et al., 2000; 

van Tubergen et al., 2003) have contested these findings and have shown that 

training does not necessarily influence inter-rater agreement, suggesting that 

the consistency and production of objective scoring are not affected. Other 

observer characteristics, such as experience, have been investigated in the 

evaluation of cow body condition (Kristensen et al., 2006) and found that 

experienced evaluators are more likely to give scores with greater consistency 

among themselves (kappa >= 0.86) than non-experienced assessors. This study 

suggested that if multiple raters with varying experience levels are used, a 

valid but imprecise estimate of the actual population mean can be obtained. 

However, in another study, Garcia et al. (2015a) argued about the role of 

experience in relation to the interrater agreement. Their research found that 

even inexperienced assessors can achieve high agreement between their scores 

when evaluating cow mobility via video. 
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1.4.5  Technologically assisted & automated mobility assessment 

The growth in the number of farm animals, the increased demand for dairy 

products, the lack of time for farmers to monitor all the animals, and the need 

for objective and valid results are some of the reasons that make it necessary 

to develop technological systems for automating procedures such as lameness 

detection. In recent years, various methods based on different principles have 

been developed for the early detection of lameness. The primary common 

principle of the developed systems is to classify cattle lameness accurately. 

Some examples of automated methods that have been proposed for lameness 

detection are: 

• accelerometers that are attached to the animal and measure 

behavioural characteristics (Beer et al., 2016),  

• force–plate system recording the reaction forces of the animals’ gait as 

electric signals that change over time (Rajkondawar et al., 2002) 

• balance-platforms in robotic milking systems (Pastell & Kujalaf, 2007) 

• cameras and image analysis techniques for gait analysis (Poursaberi et 

al., 2010) 

• pressure sensitive mats estimating the location and time of contact 

points of the limbs on the mat (Maertens et al., 2012) 

• infrared cameras that scan for different heat levels at targeted points 

on the animal (Alsaaod & Büscher, 2012)   

• micro-Doppler radar which operates using electromagnetic waves and 

observe micro-changes in animal movements (Busin et al., 2019a) 

• Video surveillance system which identifies animals with an object-

tracking algorithm and uses reference points across frames to assign a 

mobility score (Anagnostopoulos et al., 2023) 

Table 1.6 provides more information on the mentioned automated systems 

regarding the validation methods, including the number of animals and 

assessors involved, the scoring system used, and whether hoof lesions were 

included as references. 
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Technology-assisted mobility systems have certain constraints that can limit 

their application or effectiveness. For example, studies that have used a single 

accelerometer attached to one limb of the animal might not be precise to 

detect lameness accurately, as altered gait manifests distinctly on the affected 

limb (Van Nuffel et al., 2013). Therefore, a second accelerometer may be 

necessary to obtain more indicative measures of lameness. However, 

incorporating an additional accelerometer can increase the cost of the 

monitoring system and its environmental impact. Another study by Pastell et 

al (2007) proposed a 4-balance system for automated lameness detection, but 

this system was only suitable for farms with milking robots. Other limitations 

include the impact of weather and ambient conditions on the system’s results. 

For instance, foggy weather can obstruct a camera and prevent it from 

performing optimally, while infrared cameras may require calibration due to 

variations in environmental temperature (Alsaaod et al., 2015).  

  



Table 1.6 Validation methods of selected automated systems for lameness detection. 

Automated system Scoring system Number of animals Number of 
assessors 

Reference Foot lesions Model validation 

Accelerometers (Beer et 
al 2016) 

Flower and Weary 12 healthy and 41 
lame cows 
(according to scores) 

3 experienced 
assessors – mean 
and rounded to 
the nearest 0.5 
point 
 

Video recordings Recorded but 
could not be 
predicted by the 
automated 
system 

- 

Force-plate system 
(Rajkondawar et al 2002) 

Sprecher et al., 
1997 

11 healthy, 12 
unhealthy 
(according to scores) 

3 investigators – 
the assigned 
values of two out 
of the three 
investigators had 
to match to 
constitute a score 

Scores (Not 
mentioned if live 
or video scoring) 

Not recorded cross-validation 
method, in which 
the model was 
repeatedly 
reconstructed 23 
times by eliminating 
a single data input 
at a time (jack–
knifing) and then 
recalculating the 
probabilities p1, p2, 
and p3 for the 
omitted animal. 
 

4-balanced platforms 
(Pastell & Kujalaf, 2007) 

Sprecher et al., 
1997 
 

9,942 measurements 
by 73 cows 
(72 sound, 17 lame, 
18 with pathologies) 

Not mentioned Mobility scoring 
and clinical 
examination 

Recorded and 
used in 
conjunction with 
the mobility 
scores 

Teaching with 37 
cows, validation 
with 36 cows 

Camera and image 
analysis (Poursaberi et 
al., 2010) 

3-point scale (Van 
Nuffel et al., 2009) 

66 lactating Holstein 
cows passed 

Not mentioned video Not recorded - 
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Pressure-sensitive mats 
(Maertens et al., 2012) 

Combination of 
kinematic 
variables from: 
Manson and 
Leaver (1988), 
Winckler and 
Willen (2001), 
Sprecher et al. 
(1997) systems ---
-scores using a 3-
point scale 
 

58 lame, 58 sound, 
58 mild lame cows 

One observer Video images Not recorded - 

infrared cameras 
(Alsaaod et al 2012) 

Presence or 
absence of 
lesions (0vs1) – 
no severity 
 

626 individual 
recordings from 24 
cows 

Not applicable clinical incidences 
/ recorded lesions 

Recorded - 

micro-Doppler radar 
(Busin et al., 2019) 

AHDB 4-level 
system (binarized-
AHDB) 
 

51 cows (31 ‘lame’ 
and 20 ‘healthy’) 

1 observer On-farm scoring Not recorded ‘leave-one-out-
cross-validation’ 
method 

Video surveillance 
(Anagnostopoulos et al. 
2023) 

AHDB 4-level 
system (and 
binarized-AHDB) 

6,040 cows 2 assessors On-farm scoring Recorded - 



1.5 Radar   

1.5.1  Radar basic principles and definitions 

Radar stands for Radio Detection And Ranging and is a system that requires 

certain core features to operate; a transmitter that emits waves 

(electromagnetic-, radio-, microwaves), an antenna that sends the waves 

towards a target through the air, an antenna that picks up the reflected waves 

from the target, a receiver and a processor that displays the received 

information (Skolnik, 2001) as in Figure 1.3. 

The basic principle of radar is to transmit a radio wave from the radar antenna, 

which then travels through space until it encounters an object in its path. The 

wave is reflected back to the radar antenna, and the time it takes for the wave 

to travel to the object and back can be used to determine the distance to the 

object (Folger, 2014).  

 

Figure 1.3 Radar system operation. The transmitter antenna sends out 

electromagnetic waves towards a target; the waves are then reflected back towards 

the receiver antenna displaying information about the target. 
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1.5.2  Carrier wave, radio wave & frequency 

A carrier wave is a continuous, typically sine wave that is used as a reference 

signal to transmit information and has a fixed frequency. The information to 

be transmitted is modulated by varying some aspect of the wave, such as its 

amplitude, frequency, or phase (Kingsley & Quegan, 1999). In a radar system, 

the carrier wave is used to transmit the radar pulse, which is the basic signal 

used to determine the range and velocity of a target by analysing the time 

delay and frequency shift of the reflected pulses. 

Carrier frequency is the specific frequency at which the carrier wave oscillates 

and is the number of emitted waves per second of a carrier wave, measured in 

Hertz. For example, if a radar has 50 carrier waves per second, the carrier 

frequency equals 50Hz. The frequency of the carrier wave (Equation 1.1) 

determines the wavelength (λ), which is the distance between two consecutive 

points on the wave that have the same phase. The amplitude is the distance 

between the origin and the crest or trough of a wave (Figure 1.4). 

Radio waves are a type of electromagnetic radiation travelling through space 

at the speed of light. The frequencies of a radio wave range from 3 Hz to 3·1012 

Hz, and the wavelength is between 0.1 mm to 100 000 km.  

 

Equation 1.1  The carrier frequency formula 

𝜆 = 𝑐/𝑓 

where λ is the wavelength, c is the speed of light, and f is the frequency. 
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1.5.3  Pulse width & pulse repetition frequency 

Pulse width refers to the duration of a radar signal transmitted by the radar 

system measured in units of time and is determined by the duration of the 

modulating signal that is used to generate the radar pulse (Melvin & Scheer, 

2010). It determines the range resolution of the system, which means the 

ability of the radar to distinguish between targets that are located at different 

ranges from the radar antenna. Range resolution is inversely proportional to 

the pulse width of the signal, with shorter pulse widths resulting in higher range 

resolution but lower signal power.  

Pulse repetition frequency (PRF) is the number of short bursts of 

electromagnetic energy transmitted by a radar system per second. The PRF 

determines the rate at which the radar transmits pulses, and the operating 

parameters affect the range resolution, target detection, and maximum range 

of the system (Hlawatsch & Auger, 2008). PRF is related to pulse width through 

the concept of range ambiguity (Equation 1.3), which occurs when the radar 

pulse is transmitted at a high PRF. 

 

Figure 1.4 A sinewave. The yellow colour represents a wavelength or a wave 
cycle. 
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1.5.4  Frequency Modulated Continuous Wave (FMCW) 

A traditional radar emits short pulses of radio waves and then awaits reflections 

from targets (Kingsley & Quegan, 1999). In contrast, a Frequency Modulated 

Continuous Wave (FMCW) radar transmits a continuous wave signal known as 

chirps, which is frequency modulated, resulting in a continuously changing 

carrier wave frequency over time (Atayants et al., 2014). As a result, an FMCW 

radar can attain high-range resolution, making it capable of distinguishing 

between objects that are in close proximity using the Doppler effect (Chen, 

2003). This is because the Doppler effect causes a change in the frequency of 

the reflected signal if the target is moving relative to the radar. 

 

Figure 1.5 The motion of a target relative to the radar. The motion toward or away 

from the radar is called radial velocity. Motion perpendicular to the direction of the 

radar is called tangential velocity. The combination of the two motions is the target’s 

velocity. 

 

The velocity of a target relative to the radar system, called radial velocity 

(Figure 1.5), can be determined from the Doppler shift of the reflected signal. 

The Doppler shift is the difference between the frequency of the transmitted 
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pulse and the frequency of the received pulse, and it is proportional to the 

radial velocity of the target (Equation 1.2). 

 

Equation 1.2 Doppler ambiguity calculation based on the pulse repetition frequency 

(PRF) shift 

𝑓𝑑 = ±
𝑃𝑅𝐹

2
 

Where fd is the maximum unambiguous Doppler frequency. 

  

1.5.5  Doppler & micro-Doppler effect 

Doppler effect refers to the change in frequency of the electromagnetic wave 

reflected by a moving object. The frequency shift is caused by the relative 

motion between the radar and the target, resulting in a change in the 

wavelength of the reflected signal (Evans & McDicken, 2000). If the target is 

moving toward the radar, the frequency of the reflected signal will be higher 

than the transmitted frequency and vice-versa. Analysing and comparing the 

transmitted and reflected signals’ shifts in frequency can determine the 

velocity of objects relative to the radar.  

Micro-Doppler is the analysis of Doppler shifts caused by the motion of the 

targets within the main target and is used to identify specific motion 

characteristics, such as rotations or vibrations (Chen, 2008). Targets 

performing movements or activities with micromotions have a unique and 

distinct micro-Doppler signature that can be used to perform detection and 

classification (Chen et al., 2014a). Particularly, micro-Doppler can identify and 

accurately classify individual components of an object/target, such as the 

movements of a person’s or animal’s limbs while doing a movement or activity 

(Fioranelli et al., 2015; Shrestha et al., 2017).  
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1.5.6  Radar radiation beam pattern 

The radiation pattern of a radar beam describes the directional properties of 

the electromagnetic waves emitted by the antenna. It is a graphical 

representation of the intensity of electromagnetic waves in different 

directions, depending on the type of antenna used in the system (Balanis, 

2016). For example, a parabolic dish reflector antenna (Rudge & Adatia, 1978) 

will have a different radiation pattern compared to a directional Yagi antenna 

(Alhalabi & Rebeiz, 2009), as in Figure 1.6. The radiation pattern of a radar 

beam plays a crucial role in determining the performance of the radar system, 

as the gain depends on the angle of arrival (Balanis, 2016; Huang & Boyle, 

2008). It affects the coverage area, resolution, and sensitivity of the radar and 

its ability to detect and track targets accurately.  

 

 

 

Figure 1.6 Parabolic and Yagi antennas schematic difference of their radiation beam 

pattern. 

 

The beam pattern of the antenna and the properties of the target can be used 

in the radar equation (Equation 1.3) to determine the minimum detectable 

signal power and the maximum detection range of the radar system. The radar 

equation takes into account various other factors, such as the transmitted 

power and the gain and the aperture of the antenna, and Equation 1.3 describes 

the attenuation of electromagnetic waves in free space: the shorter the 

wavelength, the greater the attenuation in free space. 
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Equation 1.3 Radar equation 

𝑃𝑅𝑥 = 𝑃𝑇𝑥

𝐺𝑇𝑥 ∗ 𝐺𝑅𝑥 ∗ 𝜆2 ∗ 𝜎0

(4𝜋)3 ∗ 𝑅𝑇𝑥
2 ∗ 𝑅𝑅𝑥

2 ∗ 𝐿 ∗ 𝑁
 

 

Where,  

PRx and PTx are the Rx (receiver) and Tx (transmitter) Power,  

GTx and GRx are the Tx and Rx antenna gain 

λ is the signal wavelength  

σ0 is the target radar cross-section 

RTx and RRx are the Tx – to-target and target-to – Rx distances 

L is the systems losses 

and N the noise power 

 

1.6 Limiting factors 

A limiting factor is signal noise, which is the result of all the electronic 

accessories that form the radar and other external sources (Kolawole, 2002). 

Signal noise in radar systems is unpredictable and can result from various 

factors such as thermal noise (Lange & Hammer, 1978) or flicker noise (Nguyen 

et al., 2007). The signal-to-noise ratio (SNR) measures the strength of the signal 

about the noise (Proakis & Salehi, 2002). In radar, a high SNR is desirable as it 

improves the detection of weak signals. However, achieving a high SNR can be 

challenging (Equation 1.3). To address this, digital signal processing techniques 

can be used to filter out unwanted noise and enhance the radar signals, leading 

to better detection performance (Mahafza, 2016).  

In addition to signal noise, clutter is another factor that can compromise the 

quality of radar signals. Clutter refers to unwanted echoes produced by 

external sources like rain or ground, which can interfere with radar outputs 

(Toomay & Hannen, 2004). There are several ways to mitigate clutter in radar 

systems, such as the moving target indicator (MTI) technique, which can help 

to separate valuable signals from unwanted clutter by comparing the received 
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signal from one pulse to the previous pulse. Constant signals are filtered out, 

and the signals that change from pulse to pulse are amplified (Mahafza, 2016). 

Alternatively, the employment of micro-Doppler analysis as a technique can be 

used to differentiate between useful and non-valuable signals (Chen et al., 

2014a). This approach can be efficient in situations where clutter is present 

and can help improve radar readings’ accuracy. 

The signal-to-noise ratio (SNR) and the signal-to-noise-and-clutter ratio (SNCR) 

are essential measures that influence the overall performance of radar 

systems. These metrics are closely related to the radar equation (Equation 1.3) 

used to determine the maximum range of a radar (Skolnik, 2001). To account 

for the impact of noise and clutter, the radar equation includes a noise term 

(Equation 1.3) that can be adjusted to reflect the presence of clutter in the 

environment. Modifying this term can improve the accuracy and reliability of 

range detection. The SNR and SNCR are particularly crucial for radar systems 

operating in challenging environments such as farms where clutter and noise 

are prevalent because of the presence of various sources of interference such 

as metallic objects, machinery and other moving animals. By using advanced 

signal processing techniques and high-quality electronic components, these 

metrics can be optimised and improve the overall performance of radar 

systems. 

In addition, to signal noise and clutter, the radar receiver’s noise, which is 

critical to the radar design parameters, can also impact the performance of 

radar systems (Skolnik, 2001). A radar loss budget can be used to mitigate the 

impact of the radar receiver’s noise. A radar loss budget is a technique used to 

identify and minimize the different sources of loss, i.e. hardware and 

propagation losses, within a radar system (Kolawole, 2002). It is a 

comprehensive analysis of the losses from the transmitter to the receiver and 

provides a detailed breakdown of each component’s contribution to the total 

loss. A radar loss budget aims to optimize the radar’s design parameters to 

ensure optimal performance. The loss budget analysis includes several factors, 

such as the radar’s antenna gain, the transmission line loss, the receiver noise 

figure, and other losses due to atmospheric absorption. Each of these factors 

contributes to the overall loss of the radar system, which impacts its 

performance. Using a loss budget analysis, the sources of loss can be identified, 

and steps to minimize their impact can be taken. This process can involve 



58 

selecting appropriate components, such as high-gain antennas and low-noise 

amplifiers (Pandey & Singh, 2015), and optimizing the radar’s operating 

parameters, such as the frequency and pulse width (Skolnik, 2001) 

1.7 Radar applications 

Radars are used for many reasons, and they have broad applications. Nearly 

every industry uses some form of radar. Radar was first invented to avoid ships 

colliding which each other with the Telemobiloscope invented by Hulsmeyer 

(Kendal, 2011). It was quickly taken over during the war for military 

applications and still is a valuable resource for field operations with smarter 

multifunction radars, but they are also used in agriculture and other areas. 

A few examples of the fields that radars are used in the present are   

• Biological research – e.g., tracking birds and insects. (Gauthreaux, 2003; 

Reynolds et al., 1997)  

• Air traffic control, aircraft landing (Li & Bar-Shalom, 1993; Soumekh, 

1996)  

• Weather-storm forecasting (Baron, 1998; Viswanathan et al., 1997)  

• Military (Olsen & Asen, 2017; Pitkethly, 1992)  

• Geology, ground analysis, and surface topography (Galagedara et al., 

2003; Mellett, 1995)  

• Speed radar-traffic radar (Muñoz-Ferreras et al., 2008 ; Teed et al., 

1993)  

• Biological radar (detects human body movements such as the heart) (Lv 

et al., 2015)  

• Movement detection (Li & Lin, 2008 ; Schleicher et al., 2013 ; Tupin & 

Couse, 2016)  

• Environmental monitoring (Albright, 2004; Koo et al., 2012)  

• Terrain Mapping (Graham, 1974; Madsen et al., 1993)  

• Ocean Mapping (Hasselmann & Hasselmann, 1991)  
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• Agriculture, crop classification, and fish (Hedgepeth et al., 1999 ; Mattia 

et al., 2003 ; Ulaby et al., 1982)  

1.8 Radar for animal monitoring 

In animal studies, the use of radar technology for animal tracking and 

behaviour analysis has been investigated, with a focus on applications in 

wildlife ecology and conservation. A few examples are the studies which 

investigated the use of weather radars to track the movements of bats (Pennisi, 

2011) and quantify the density of migratory birds (Buler & Diehl, 2009). The 

researchers found that radar technology was highly effective at detecting and 

tracking individuals and could provide insights into their behaviour and activity 

patterns. Other examples include animal identification, positioning and 

tracking changes in the locomotor behaviour of farm animals such as sheep, 

cows, and horses (Shrestha et al., 2018). 

In particular, using radar for diagnostic purposes is a relatively recent proposal  

(Busin et al., 2019a; Shrestha et al., 2017, 2018), motivated by research such 

as that of Fioranelli et al. (2015), which concerns the detection of human 

movements behind walls, saw the possibility of using the same technology in 

animals. The publication by Shrestha et al. (2018) was a proof of concept for 

detecting deviations from the typical locomotion of animals (horses, cows and 

sheep). The study by Busin et al. (2019), aimed to take the micro-Doppler radar 

sensing method and quantify its performance for lameness detection in dairy 

cows and sheep on farms. In both studies, they manually extracted features 

from the collected radar data. Then, an expert veterinarian classified the 

animals into lameness categories using the 4-level AHDB dairy mobility system, 

and they used the dichotomised scores (non-lame = scores 0,1 and lame =scores 

2,3) as labels to train the machine learning algorithms. In both studies, the 

authors used a supervised machine learning framework that could classify the 

animals as either lame or non-lame based on their radar micro-Doppler 

signatures following the process described in Figure 1.7. They converted the 

raw radar data into the range-time domain and then to range-Doppler data 

through two consecutive fast Fourier transformations. Then, they summed the 

range dimensions to produce spectrograms used for feature extraction. They 
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used a “leave-one-out-cross-validation” approach to train and test the 

classification algorithm, simulating the scenario where the algorithm is 

presented with an animal with an unknown mobility status on the farm. In the 

second paper (Busin 2019), they also tested the impact of different 

parameters, such as different classification algorithms (SVM and KNN 

classifiers) and the selection of features on the method’s performance. Both 

studies achieved more than 83% accuracy for cows’ mobility classification 

(Figure 1.8), demonstrating radar technology’s potential as a promising tool 

for automated lameness detection. 

 

 

Figure 1.7 Radar signal processing chain followed in previous studies. Figure from 

“Evaluation of lameness detection using radar sensing in ruminants” by Busin V. et al., 

2019, Veterinary Record 185(18), p572. (DOI:10.1136/vr.105407) 
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Figure 1.8 The classification accuracy results of the two studies. Above (A) are the 

results from the study of Shrestha et al. 2018 using an SVM classification model, and 

below (B) are the results from Busin et al. 2019, where they used naïve-Bayes 

algorithmic classifier model and different time segment durations. Adapted from 

“Animal Lameness Detection With Radar Sensing”by Shrestha et al. 2018 and 

“Evaluation of lameness detection using radar sensing in ruminants” by Busin V. et al., 

2019 

1.9 Advantages and limitations of the proposed radar system 

The radar system proposed for lameness detection in cows offers several 

advantages over other methods. Firstly, it is non-intrusive, meaning it can 

detect lameness without physically interfering with the animal, reducing the 

potential for discomfort or distress. In contrast, methods like accelerometers 

require sensors to be attached to the animal, which can cause discomfort or 

affect natural movement patterns. Wearable devices also add to the farm’s 

expenses as they need to be increased with every animal increase. Secondly, 

the radar system can detect changes in an animal's gait pattern from a distance 

of more than 5 meters away from the animal and its limbs. This is not always 

possible with computer vision, providing more flexibility in monitoring animal 

movement. Lastly, the system is not affected by lighting conditions or weather 
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factors such as rain or fog, making it more robust, reliable, and ideal for farm 

environments. 

Like most developing systems, the radar system has some limitations so far. 

The previous studies established a proof of concept and evaluated the radar as 

a tool and the machine learning process for the analysis. However, both studies 

used only a small number of animals which may not represent the overall 

population; thus, the results may not be generalisable to other farms and new 

unseen cases. This is because the finite number of animals used may have been 

categorised across all levels of lameness classification according to the AHDB 

mobility system but may not have had all the different lesion types causing 

lameness present. Reducing the classification levels from four to two may have 

simplified the data and made it more manageable for analysis. However, the 

intermediate levels and some classification details were lost, making it more 

challenging to distinguish between different degrees of lameness. Another 

limitation concerns the ground truth on which the algorithms were trained. 

Both studies relied on one expert veterinarian to classify the animals into 

lameness categories, which can be subjective and may vary between experts. 

As previously discussed, visual lameness assessments are subjective, but it is 

widely used in practice and is considered a gold standard upon which machine 

learning is based on being trained. Other analysis techniques would be good to 

be considered in the future. These main limitations need further research to 

validate the radar system for automated lameness detection on farms. 

 

1.10 Machine learning 

Machine learning (ML) is a field of artificial intelligence that involves the 

development of algorithms and models that can learn patterns and make 

predictions or decisions from data without being explicitly programmed (Jung, 

2022). Machine learning aims to enable computers to automatically learn from 

data, identify patterns, and make accurate predictions or decisions. 

There are three main types of machine learning: supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, the 
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algorithm is trained on a labelled dataset, including input and corresponding 

output labels (Kotsiantis, 2007). The algorithm learns to recognise patterns in 

the input data associated with the output labels and can use this knowledge to 

classify new, unseen data. Unsupervised learning involves training an algorithm 

on an unlabelled dataset and allowing it to identify patterns and relationships 

(Albalate & Minker, 2013). Finally, reinforcement learning involves training an 

algorithm to make decisions based on rewards and punishments received from 

its environment (Kaelbling et al., 1996). 

Machine learning has a wide range of applications, including natural language 

processing (Sebastiani, 2002), image (Litjens et al., 2017) and speech 

recognition (Campbell et al., 2006) fraud detection (Ajdani & Ghaffary, 2021), 

autonomous vehicles (M. Chen et al., 2017), and predictive maintenance (Susto 

et al., 2015). In recent decades, machine learning has become increasingly 

important in fields such as healthcare (Jiang et al., 2017), finance (Fischer & 

Krauss, 2018), and marketing (Kim et al., 2001), where large amounts of data 

are generated, and there is a need for accurate predictions and decision-

making. 

1.10.1 Supervised ML 

Supervised machine learning algorithms are a type of artificial intelligence that 

can be trained to classify data based on input-output pairs and make 

predictions or decisions about new, unseen data by learning from labelled data 

(Alpaydin, 2014b, 2014a). For example, in the context of lameness detection 

using radar technology, supervised ML algorithms can be trained to classify 

radar data into lame and non-lame categories based on known examples of 

each, as in the study by Busin et al. (2019). 

A labelled dataset of radar data is needed to train a supervised ML algorithm 

for lameness detection. This dataset should include radar data collected from 

both lame and non-lame animals. The dataset is then split into two parts: 

training and testing sets. The training set is used to train the ML algorithm to 

recognise patterns in the radar data that are indicative of lameness, while the 

testing set is used to evaluate the accuracy of the trained algorithm on new, 

unseen data. 
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1.11 Classification process and algorithms 

Supervised machine learning classification involves training an algorithm to 

recognise patterns in input data and make predictions about the corresponding 

output labels. The classification process typically involves the following steps 

(Alpaydin, 2014a). 

The first step is to prepare the dataset for algorithm training. This includes 

collecting and cleaning the data, pre-processing if needed and splitting it into 

training and testing sets, typically in a 80/20 split, where 80% of the data is 

used for training and the remaining 20% is used for testing (examples Kagiyama 

et al., 2020; Ratzinger et al., 2018; Tran et al., 2019). The splitting process 

can be performed later depending on the validation and analysis programs. For 

example, in Matlab’s application for classification learning (MATLAB R2022b, 

2022), there is the option for n-fold cross-validation, where the data are split 

by the program n-times for the analysis. Then the relevant features or variables 

from the input data that will be used to train the algorithm are selected. This 

is important to ensure that the algorithm can learn the most relevant patterns 

to the problem being solved. The next step is to choose the appropriate 

algorithm or model for the classification task. This depends on the nature of 

the problem being solved and the characteristics of the data. The algorithm is 

trained using labelled training data. During training, the classifier learns to 

recognise the patterns in the input data associated with the corresponding 

output labels. And then, the performance of the trained model is evaluated 

using the testing data. This helps to determine the model’s accuracy in making 

predictions on new, unseen data. Depending on the outcomes, the algorithm’s 

parameters can be adjusted to improve its performance and repeat the 

classification testing and validation process. 

 

There are several algorithms used in supervised machine learning classification 

(Burkov, 2019), including: 

• Logistic Regression: A model that predicts the probability of a binary 
output based on the input features. 

• Decision Trees: A model that makes decisions based on a series of if-
then rules based on the input features. 
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• Random Forest: A model that uses multiple decision trees to make 
predictions. 

• Support Vector Machines (SVM): A model that finds the optimal decision 
boundary between different data classes. 

• Neural Networks: A model that consists of layers of interconnected 
nodes that learn complex patterns in the input data. 

• K-Nearest Neighbours (KNN): A model that makes predictions based on 
the input features of the k-nearest neighbours in the training data. It 
relies on the assumption that similar data points in the feature space 
have similar outcomes. The parameter k represents the number of 
considered neighbours. 

The choice of algorithm depends on the nature of the problem being solved 

and the characteristics of the data. Each algorithm has its strengths and 

weaknesses, and the performance of the algorithm can be improved by 

adjusting the parameters and tuning the model. 

1.11.1 Features and feature extraction  

A feature refers to a measurable aspect of a data point (Salau & Jain, 2019), 

and feature extraction is selecting, transforming, and combining raw data into 

a set of meaningful features to train a machine learning model. In supervised 

ML, where the models are trained on labelled data, the features are linked to 

the corresponding output labels. The algorithm identifies patterns based on 

the paired features-labels and updates the internal parameters to optimise the 

difference between the predicted and true labels (Goodfellow et al., 2016). 

To extract features from micro-Doppler radar data, one can use signal 

processing techniques to extract relevant features from the raw data. Some 

standard feature extraction techniques used in studies (Khalid et al., 2014) 

include time-frequency analysis like fast Fourier transformation and principal 

component analysis. These techniques can extract features such as the radar 

signal’s frequency content, amplitude modulation, and time-frequency 

distribution. Once the features have been extracted, they can be used to train 

a model to classify different types of targets based on their micro-Doppler 

radar signature. 
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1.11.2 Classifiers’ performance  

The performance of a classifier can be impacted by several factors, such as 

class imbalance (Japkowicz & Stephen, 2002), missing values (Rahman et al., 

2013) and overlaps in the classes (Alejo et al., 2013). Balanced, well-defined 

and complete datasets are important in supervised machine learning because 

they allow the algorithmic model to learn from all classes or categories equally, 

preventing bias towards the majority class (Batista et al., 2004). For example, 

in a binary classification problem, if the dataset is imbalanced and one class 

has significantly more observations than the other class, the machine learning 

model can become biased towards the majority class and may perform poorly 

on the minority class. This can result in poor generalisation performance and 

inaccurate new, unseen data predictions. Likewise, in multi-class classification 

problems, imbalanced datasets can lead to similar issues, meaning some 

classes may be underrepresented and not given enough attention during model 

training, resulting in poor performance in those classes. However, not all 

machine learning algorithms require balanced datasets. Some algorithms, like 

decision trees (Pérez et al., 2005) or Naive Bayes (Yang et al., 2013), can 

handle imbalanced datasets well, while others, like neural networks, may 

require balanced datasets or appropriate modifications to handle imbalanced 

datasets effectively (Ren et al., 2020). 

Other factors that may affect classifier performance include the presence of 

noise and outliers in the data (Johnson & Khoshgoftaar, 2022) which can 

introduce irrelevant or misleading information. Another factor is the choice of 

features used for training (Li et al., 2017) which should be relevant and 

informative and allow for discrimination between the different classes. 

Once the factors affecting classifier performance have been considered, it is 

essential to evaluate the performance of classifiers to determine their 

effectiveness and suitability for a given task. Depending on the task, several 

metrics can be used to assess the performance (Alpaydin, 2014a). Accuracy is 

one of the most common metrics. It measures the proportion of correct 

predictions made by the classifier out of all the predictions made. However, 

accuracy can be misleading in cases where the dataset is imbalanced, or the 

cost of misclassifying different classes is not the same. Another metric is 
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precision which measures the proportion of true positives (TP) out of all the 

positive predictions made by the classifier. Then, recall measures the 

proportion of predicted true positives (TP) from all the actual positives in the 

dataset. It is a good metric when the cost of false negatives (FN) is high. The 

F1-score is the harmonic mean of precision and recall and is a commonly used 

metric. Finally, the Receiver Operating Characteristic – Area Under Curve 

(ROC-AUC) is a metric that measures the performance of a classifier at 

different classes. Again, it is a good metric to use when the dataset is 

imbalanced or when the misclassification cost is not the same for all the classes 

(Fawcett, 2006). 

In this project, accuracy and confusion matrices will be primarily presented, 

although in some cases, F1-scores (true positives, true negatives, false 

positives, false negatives and ROC-AUC curves) are also presented. Accuracy 

and confusion matrices were used to evaluate classifier performance as they 

provide a straightforward and intuitive way to interpret the results. The 

accuracy metric offers a simple way to measure a classifier’s performance. At 

the same time, confusion matrices provide a more detailed view of the 

classifier’s performance by showing how well it can distinguish between 

different classes. In addition, confusion matrices allow for the calculation of 

additional performance metrics such as precision, recall, and F1 score, which 

can provide a more nuanced understanding of the classifier’s performance for 

each class. Overall, the two metrics were used to be easily interpretable for 

anyone, regardless of their background in machine learning. 

1.12 Labels  

A label is a predefined tag or identifier assigned to a data point indicating that 

it belongs to a particular class or category (Fieguth, 2022). It is a requirement 

for supervised machine learning classification, serving as the ground truth. For 

example, suppose we would like a model to recognise images containing 

different cow breeds. In that case, we should train it by providing images with 

all the breeds we wish to be identified and a representative label for each 

image. The more balanced the dataset, i.e., having a similar number of 

pictures containing each breed, and the more representative the label, i.e., 
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“black and white Holstein cow” instead of “Holstein”, the more valid and open 

to generalisation the results and the model will be. Labels are one of the most 

fundamental elements in supervised machine learning and the assignment 

process is essentially the behaviour (decision-making) which we want to be 

replicated.  

In medical fields such as radiology, experts typically interpret images/data and 

describe the findings providing information such as the presence or absence of 

specific features, the location and size of abnormalities, and the severity or 

stage of the condition (Zhang & Sejdić, 2019). While manual annotation by 

experts is considered the gold standard for creating labels, it can be time-

consuming and labour-intensive. To address this challenge, researchers have 

proposed alternative labelling methods, such as semi-automated approaches 

that use computer-aided detection (CAD) algorithms and natural language 

processing (NLP) techniques to extract labels from reports (Jun et al., 2018; 

Martín-Herrero, 2007; Pesce et al., 2019). Machine learning models fed with 

representative labels can process information in raw image data and 

automatically learn relevant patterns for prediction tasks like recognising, 

localising, and segmenting visual objects (Janiesch et al., 2021). Then, new 

unlabelled data is introduced during the test, and the algorithm looks for 

similarities in features and patterns and classifies them into a category. The 

importance of labels is significant, and they determine the results that the 

algorithm will produce. There have been cases in the past where unbalanced 

and poorly characterised data have had negative consequences (Grother et al., 

2019; Mehrabi et al., 2019). 

Finally, while the terms “ground truth” and “gold standard” are sometimes 

used interchangeably to address labels, they have different meanings in the 

context of machine learning. Ground truth refers to the labels we provide to 

the algorithm as a reference, while the gold standard represents the diagnostic 

method with the highest accuracy (Cardoso et al., 2014). 

1.12.1 Decision-making process  

There are a few steps in the decision-making process that someone does to 

reach a decision (Lunenburg, 2010; Schoenfeld, 2011). The first step is to 
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define what kind of decision needs to be made. Then one has to gather relevant 

information to make the decision. During the information gathering, all 

possible alternatives are identified. The decision-maker then weighs the 

evidence and chooses one of the pre-defined options. 

A practical example is the process of cattle mobility scoring. The assessor first 

defines the system used for scoring and what should look for in the animal’s 

mobility to evaluate. In this case, the general attitude is that the assessor 

should look for deviations from normal cow mobility. Then the assessor, after 

the visual examination (step: information gathering), considers all alternatives 

– which score corresponds to the animal’s condition under assessment and why. 

And finally, the assessor weighs the evidence (mobility vs scores) and decides 

whether the animal is lame or not and which score to assign. 

In theory, the described process might seem straightforward. However, in 

several steps through the process, many things deviate among individuals and 

are considered challenging (Hammond et al., 1998). For example, during the 

visual examination, an experienced assessor might see something that an 

inexperienced person will not notice, as research has shown that the process 

followed in visual examination and decision-making can differ according to 

experience (T. Donovan & Litchfield, 2013; Jaarsma et al., 2014). In addition, 

bias and perceptual adaptations could also affect the assessor’s decision 

(Witthoft et al., 2018). An example of perceptual adaptation is that a cow will 

be assessed as mildly lame when the assessor is not adapted, but the same cow 

might be reported as sound following prolonged viewing of severely lame cows. 

The availability of time during the decision-making process has been reported 

to affect the decision outcome too (Kahneman, 2011). Not everyone can 

process the same amount of information in a limited time. And the amount of 

information available could affect the decision. Prior research in the 

behavioural sciences has reported that humans tend to shorten the time of 

decision making usually following heuristic approaches as explained in the book 

“Thinking, fast and slow” (Kahneman, 2011). For example, the decision-makers 

follow a strategy where they compare the alternatives, and when one is 

eliminated, they don’t consider it an option anymore (Russo & Dosher, 1983) 

A final and essential consideration of the decision-making process is the 

consequences of the call (Semmel, 1979). For example, the assessor in the 
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beforementioned example of cow mobility scoring decides to assign a score 

that characterises the cow as lame. Then, some actions need to be taken to 

address the mobility problem. Either try to cure the animal by administering 

drugs, performing hoof trimming or surgery, or sending the animal to the 

slaughterhouse. The example can be generalised in all cases. A decision leads 

to action, and the assessor should be aware and responsible for the decisions. 

The same thought could make the decision-maker lenient or strict in their 

choices depending on their level of commitment (Juliusson et al., 2005), which 

affects the outcome. 

The decision-making process might be challenging to explain in detail. 

However, it feels natural and relatively easy in everyday life. And in most 

cases, a small degree of variability is acceptable, as it allows us to consider 

and explore options, we had not previously perceived (Kahneman, 2011). 

However, when the goal is to implement a complex decision-making process in 

a machine for decision support or diagnostic reasons, it is necessary to be as 

precise as possible so that the outcomes are not negatively impacted or 

uncertain (Jordan & Mitchell, 2015). 

1.13 Measurement of agreement 

Quantifying inter-assessor agreement is important in many fields, including 

healthcare and diagnosis (Dunn, 2004; Mulsant et al., 2002; Szklo et al., 2019). 

The purpose of calculating agreement is to evaluate the degree to which 

multiple assessors or measurements are consistent and reliable or to identify 

sources of variation.  

There are several methods for the calculation of agreement, and the choice 

depends on factors such as the type of data being analysed, the number of 

assessors, the levels of the measurement system and the questions being 

addressed. 

Some of the commonly used measures of agreement are detailed below: 
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1.13.1 Cohen’s kappa 

Cohen’s kappa (Cohen, 1960) is used to assess the level of agreement between 

two or more assessors. It takes into account the possibility of agreement 

occurring by chance and provides a more accurate measure of agreement than 

simply looking at the proportion of agreement (percentage agreement). The 

coefficient ranges from -1 to 1, where a score of 1 indicates perfect agreement, 

0 indicates agreement due to chance, and -1 indicates perfect disagreement. 

While there is no universally accepted method for interpreting kappa scores, 

one commonly used approach is the method proposed by Landis & Koch, (1977). 

Values of 0.81 or higher indicate almost perfect agreement, values between 

0.61 and 0.8 indicate substantial agreement, values between 0.41 to 0.6 

indicate moderate agreement, values between 0.21 to 0.4 indicate fair 

agreement, and values below 0.2 indicate poor agreement. Cohen’s kappa is 

calculated by comparing the observed agreement between assessors with the 

agreement expected by chance. The formula for calculating Cohen’s kappa is: 

Equation 1.4 Cohen’s kappa formula 

 

𝐾𝑎𝑝𝑝𝑎 =  (𝑃𝑜 –  𝑃𝑒) / (1 –  𝑃𝑒) 

 

Where  

Po is the proportion of observed agreement among assessors, and  

Pe is the proportion of agreement expected by chance and they are calculated 
as follows.  

 

Equation 1.5 Calculation formula of the proportion of observed agreement among 

raters 

𝑃𝑜=  
𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 + 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠
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Equation 1.6 Calculation formula of the proportion of chance agreement 

𝑃𝑒 =  
1

𝑁2
 ∑ 𝑛𝑘1𝑛𝑘2

𝑘

 

Where,  

k = categories 

N = observations 

nki = number of times rater i predicted category k 

 

Cohen’s kappa is commonly used in fields such as medicine (Kraemer et al., 

2002; McGinn et al., 2004) and psychology (Herjanic & Reich, 1997; Ruan et 

al., 2008; Vanasse et al., 2012), where multiple assessors are involved in the 

evaluation of the same subject or phenomenon. It provides a useful tool for 

assessing the reliability of ratings and can be used to identify sources of 

variation, but it has also been noticed to present some limitations. The kappa 

paradox, also known as the prevalence paradox, occurs when there is a 

significant disparity between the prevalence of a condition being measured and 

the prevalence of agreement among assessors (Feinstein & Cicchetti, 1990). 

This means that the prevalence of the measured condition can impact the 

interpretation of kappa scores, and assessors who produce similar marginal 

distributions need to have a higher agreement rate to achieve the same kappa 

value compared to assessors who produce different marginal distributions 

(Brennan & Prediger, 1981). This can result in low kappa scores, even when the 

assessors agree substantially in percentage calculations, which can be a 

limitation in situations where certain classes are more important or clinically 

relevant than others and may lead to an underestimation of the level of 

agreement in these cases. One other consideration when interpreting kappa 

scores is that the measure treats all classes equally distinct even in ordinal 

classification, meaning there is no greater agreement between a 1 and a 4 than 

between a 3 and a 4. 
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1.13.2 Fleiss’ kappa 

Fleiss’ kappa (Fleiss, 1971) is an extension of Cohen’s kappa and is used to 

assess the level of agreement between three or more assessors. The formula 

for calculating Fleiss’ kappa is: 

Equation 1.7 Fleiss’ kappa formula 

𝐾𝑎𝑝𝑝𝑎 =  (𝑃 –  𝑃𝑒) / (1 –  𝑃𝑒) 

Where  

P is the proportion of the averaged observed agreement among raters,  

and Pe is the proportion of agreement expected by chance alone, and they are 

calculated as in Equation 1.5 and Equation 1.6 respectively. 

As an extension of Cohen’s kappa, Fleiss’ kappa shares the same interpretation 

of the scores and limitations (McHugh, 2012). 

1.13.3 Interclass correlation coefficient (ICC) 

The ICC (Gwet, 2008) is based on the analysis of variance (ANOVA) and takes 

into account the variation between and within assessors. It is calculated by 

dividing the inter-assessor variance by the total variance (which includes both 

the inter- and intra-assessor variances), resulting in a value between 0 and 1. 

The ICC has three extensions: 

 

ICC(1) measures the consistency of ratings from a single assessor over multiple 

assessments. It is calculated by dividing the between-subject variance by the 

total variance. 

 



74 

Equation 1.8 ICC1 formula 

𝐼𝐶𝐶1 =  (𝑀𝑆𝑅 –  𝑀𝑆𝐸) / (𝑀𝑆𝑅 +  (𝑘 –  1)  ∗  𝑀𝑆𝐸 +  𝑘 ∗  (𝐶𝑅 –  𝐶)) 

Where: 

MSR is the mean square for the assessors 

MSE is the mean square error (or residual mean square) 

k is the number of assessors (or measurement methods) 

CR is the mean of the variances of the k assessor 

C is the variance of the true scores 

 

ICC(2) measures the consistency of ratings among multiple assessors who rate 

the same subjects or phenomena. It is calculated by dividing the between-

subject variance by the total variance. 

 

Equation 1.9 ICC2 formula 

𝐼𝐶𝐶2 =  (𝑀𝑆𝑅 –  𝑀𝑆𝑊) / (𝑀𝑆𝑅 +  (𝑘 –  1)  𝑀𝑆𝑊 +  𝑘  (𝐶𝑅 –  𝐶) / 𝑛) 

 

Where: 

 MSR is the mean square for the raters 

 MSW is the mean square error (or residual mean square) 

 k is the number of raters (or measurement methods) 

 CR is the mean of the variances of the k raters 

 C is the variance of the true scores 

 n is the number of subjects 

 

ICC(3) measures the agreement among multiple raters who rate the same 

subjects or phenomena, regardless of the rater or subject. It is calculated by 

dividing the between-subject and residual variance by the total variance. 
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Equation 1.10 ICC3 formula 

𝐼𝐶𝐶3 =  (𝑀𝑆𝑅 –  𝑀𝑆𝑊) / (𝑀𝑆𝑅 +  (𝑘 –  1)  𝑀𝑆𝑊) 

Where: 

 MSR is the mean square for the raters 

 MSW is the mean square error (or residual mean square) 

 k is the number of raters (or measurement methods) 

 

ICC values range from 0 to 1, with higher values indicating better agreement. 

The interpretation can also be based on Landis & Koch (1977), with values 

above 0.6 to be considered substantial. 

1.13.4 Pearson correlation coefficient 

The Pearson correlation coefficient measures the strength and direction of a 

linear relationship between two variables. It is commonly used to measure 

agreement between two sets of continuous data. It is calculated as the 

covariance ratio between the two variables to the product of their standard 

deviations. The resulting value, called the correlation coefficient I, ranges 

from -1 to +1, where -1 indicates a perfect negative correlation, +1 indicates 

a perfect positive correlation, and 0 indicates no correlation.  

Equation 1.11 Correlation coefficient formula 

𝑟 =  
(𝑛𝛴𝑥 −  𝛴𝑥𝛴𝑦) 

𝑠𝑞𝑟𝑡((𝑛𝛴𝑥2  −  (𝛴𝑥)2  ∗  (𝑛𝛴𝑦)2  −  (𝛴𝑦2))
 

Where: 

 r is the Pearson correlation coefficient 

 n is the number of paired data points 

 Σxy is the sum of the products of the x and y values 

 Σx is the sum of the x values 

 Σy is the sum of the y values 

 Σx2 is the sum of the squares of the x values 

 Σy2 is the sum of the squares of the y values 
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When using the Pearson correlation coefficient to measure agreement between 

two data sets, the variables should be calculated on the same scale and have 

a linear relationship (Mukaka, 2012). If the association is not linear, other 

measures of agreement, such as the intraclass correlation coefficient, may be 

more appropriate (Mcgraw & Wong, 1996). 

 

1.13.5 Kendall’s tau coefficient  

Kendall's tau coefficient, also known as Kendall's rank correlation coefficient, 

is a statistical measure of the correlation between two variables. It is 

commonly used to measure the degree of association between two rankings or 

ordered lists. Kendall's tau coefficient is a non-parametric measure, which 

means that it does not assume any specific distribution for the variables being 

measured. It ranges from -1 to 1, where a value of -1 indicates a perfect 

negative correlation, 0 indicates no correlation, and 1 indicates a perfect 

positive correlation. 

Equation 1.12 Kendall's tau formula 

𝜏 =
 (2 ∗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟 −  2 ∗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) 

(𝑛 ∗  (𝑛 −  1))
 

Where: 

τ is Kendall's tau coefficient 

Number of concordant pairs is the number of pairs of items that have 
the same order in both rankings 

Number of discordant pairs is the number of pairs of items that have 
opposite orders in the two rankings 

n is the total number of items being ranked 

 

Kendall's tau coefficient is calculated by counting the number of concordant 

and discordant pairs in the two rankings being compared. A pair of items is 

considered concordant if they have the same order in both rankings (i.e., they 
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are both ranked higher or lower in both rankings) and discordant if they have 

opposite orders in the two rankings (i.e., one is ranked higher in one ranking 

and lower in the other). Kendall's tau coefficient is then calculated as the 

difference between the number of concordant pairs and the number of 

discordant pairs, divided by the total number of pairs. 

  

1.14 Notes on terminology used in the thesis 

The fields of machine learning (ML), statistics, and computer science all involve 

using mathematical and computational tools to analyse data and make 

predictions (Fieguth, 2022). However, these fields often use different 

terminology to describe similar concepts, which can create confusion and make 

it challenging to communicate across disciplines. For example, the terms 

"binarise" (Merriam-Webster, n.d.-b) and "dichotomise" (Merriam-Webster, 

n.d.-c) are used to describe converting a continuous variable into a binary 

variable with only two possible values. However, the term "dichotomise" is 

more commonly used in statistics, while in machine learning and computer 

science, the term "binarise" is often preferred (examples:Jung et al., 2007; 

Murphy, 2012). Similarly, the term "regression" is commonly used in statistics 

to refer to a method for modelling the relationship between variables (Fox, 

1997), while in machine learning, the term "classification" is often used to 

describe a similar process of assigning objects to different classes (i.e., 

Alpaydin, 2014a). To effectively communicate across disciplines, it is essential 

to be aware of these differences in terminology and to clarify any 

misunderstandings that may arise. Terms corresponding to the ML field will be 

used in this thesis. 

Different terms are often used in the fields of psychology, medicine, and other 

areas that involve assessments or evaluations, to refer to the individuals who 

perform these tasks. These terms include "rater," "assessor," "evaluator," and 

others. While these terms are often used interchangeably, they can have 

slightly different connotations. 
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The term "rater" generally refers to an individual responsible for assigning 

scores or ratings to a particular set of objects, such as patients or tests 

(Merriam-Webster, n.d.-e). This term is often used in reliability studies, where 

the goal is to assess the consistency of ratings among multiple raters. 

The term "assessor" typically refers to an individual responsible for evaluating 

a particular attribute or quality of an object or individual (Merriam-Webster, 

n.d.-a), such as intelligence, skill, or physical health. This term is often used 

in the context of diagnostic assessments or performance evaluations. 

The term "evaluator" is a more general term referring to individuals who 

perform assessments or evaluations (Merriam-Webster, n.d.-d) in various 

contexts. For example, this term is often used in the context of program 

evaluations, where the goal is to assess the effectiveness of a particular 

intervention or program. 

While these terms can have slightly different meanings, they are often used 

interchangeably in practice. Regardless of the specific terminology used, 

assessments and evaluations generally aim to provide accurate and reliable 

information about the attributes or qualities of the objects or individuals being 

evaluated. In this thesis, the term “assessors” has been chosen and used 

throughout. 

 

1.15 Conclusion and aims of the thesis 

After reviewing the literature, several aspects related to the automation of 

cattle lameness detection and classification require further investigation, 

particularly regarding the transition from visual to technologically assisted 

decision-making. Therefore, the overarching objectives of this project are to 

quantify the performance of the micro-Doppler radar sensing method, 

characterize and validate the micro-Doppler radar signatures of dairy cattle 

with varying degrees of gait impairment, and develop machine learning 

algorithms capable of inferring the mobility status of the animals being tested 

from their signatures. This research aims to support the automatic, contactless 
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classification of cattle mobility status, improving the efficiency and accuracy 

of lameness detection in the dairy industry.  

The following 5 chapters of the document explain how the goals mentioned 

earlier were achieved. Each chapter is divided based on the chronological order 

the study was carried out and covers the related literature, methods used, 

results, and discussion. 
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Chapter 2  

 

Inter-assessor agreement of mobility classifications 

based on the AHDB scoring system 

2.1 Introduction 

The work presented in this chapter is part of a programme of work to develop 

an automated mobility classification system. After promising initial results with 

a micro-Doppler radar detection system using on-farm classification by a single 

assessor (Busin et al., 2019; Shrestha et al., 2018), we aimed to find a robust 

approach to labelling for the large numbers of observations needed for an 

effective automated system. It was recognised that using a single assessor for 

all labels could result in an idiosyncratic system if the same assessor was used 

throughout the study, or excessive variation if different assessors were used at 

different time points. These errors correspond to bias and noise, respectively, 

using the definitions of Kahneman et al., (2021) and applied to pathological 

diagnosis by Böer-Auer et al. (2022). It was expected that combining the scores 

of multiple assessors would improve the rigour of classification, but the best 

way of combining scores and the optimal number of assessors was not known. 

We initially set out with the hypothesis that it would be possible to aggregate 

scores from multiple assessors using the UK dairy industry standard AHDB 4-

level scoring system (https://ahdb.org.uk/knowledge-library/mobility-

scoring-how-to-score-your-cows;  accessed  January 31, 2023), and our primary 

aim was to confirm that inter-assessor agreement was adequate. However, 

unexpectedly low levels of inter-assessor agreement results led to additional 

studies to provide a more detailed investigation of some of the factors we could 

address to improve the quality of labels for our system. Therefore, this chapter 

reports on several linked studies that aimed to investigate inter-assessor 

agreement and the decision-making process for mobility classification. 

Research has shown the potential adverse effects of lameness on the animal. 

Reproductive capacity, physical condition, and milk production are all 

negatively affected (Archer et al., 2010; Bicalho et al., 2007; Booth et al., 
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2004; Green et al., 2002; Melendez et al., 2003; Mitev et al., 2011; Morris et 

al., 2011; Sogstad et al., 2007; S. L. Walker et al., 2010). Poor animal welfare 

because of lameness also affects the farmer as the financial burden can range 

from $2 to $982 per cow per year (Cha et al., 2010a; Dolecheck & Bewley, 

2018). Lameness prevalence (scores 2,3 of a 4-level system) in the UK has been 

reported to range from 0–79.2% in the past few years, but the figures should 

be taken with caution as farmers tend to underestimate mild cases of lameness 

in their herds (Leach et al., 2010a; Šárová et al., 2011a). 

In clinical practice, the diagnosis of lameness in cattle is recognised as being 

less effective than in horses because of the relative difficulty of conducting 

progressive functional anatomical examinations such as flexion tests, 

compression tests and nerve blocks (Desrochers et al., 2001). Nonetheless, the 

definitive diagnosis of lameness in individual cattle is based on detailed history 

taking and careful individual clinical examination, sometimes with the degree 

of mobility impairment being scored on one of several possible ordinal 

categorical systems (see Afonso et al., 2020 for the most common mobility 

classification systems in the UK). Translating such ordinal scoring systems to 

applications for large numbers of cows, potentially herds, such that each 

animal can be scored without being removed for detailed individual clinical 

examination is more challenging but is necessary for machine learning 

applications and current benchmarking schemes to ensure high welfare on 

farms. For example, the Tesco Sustainable Dairy Group require their suppliers 

to ensure that lameness prevalence in their herds remains below 20% Anon, 

2023; available at: https://www.tescoplc.com/sustainability/planet/farming-

agriculture/tesco-sustainable-dairy-group/, accessed January 31, 2023). This 

requirement is based on systems such as the Agriculture and Horticulture 

Development Board (AHDB) 4-level mobility scoring system, which is supported 

by the Register of Mobility Scorers (RoMS). The AHDB 4-level mobility system is 

the most widely used mobility assessment method for dairy cows in the UK 

dairy industry (Afonso et al., 2020), with RoMS being the regulatory body for 

anyone wishing to be trained and accredited on this system.  The AHDB system 

consists of 4 levels with distinct scores ranging from 0 to 4 and will be fully 

described in the following materials and method section. A RoMS accredited 

scorer is trained by evaluating 1000 cows via video and passing a 20-video 

evaluation test, which must be repeated annually at membership renewal. In 
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this way, an assessor is calibrated, and the process is theoretically 

standardized, that is, maintaining a scoring consistency over time. 

In recent years, there have been attempts to introduce technologies onto the 

farm routine to automate the mobility assessment process. Examples are the 

use of 2- or 3- dimensional cameras for video images analysis (Bahr et al., 2008; 

Gu et al., 2018; Kang et al., 2021), pressure-sensitive walkways measuring the 

ground reaction forces or balance (Maertens et al., 2011), and accelerometers 

worn by the animal as pedometers (leg-mounted) or as collars (neck-mounted) 

(Beer et al., 2016; M. Pastell et al., 2009; Shepard et al., 2010; Weigele et al., 

2018). Colleagues at the University of Glasgow have recently demonstrated 

good initial results using micro-Doppler radar (Busin et al., 2019a; Shrestha et 

al., 2018a), which is not affected by weather and lighting conditions and does 

not require wearable devices on the animal, thus avoiding potential animal 

discomfort and reducing the carbon footprint and a cost that increases with 

each increase in animal numbers. 

Automated systems are generally based on supervised machine learning, which 

depends on annotated data (labelled data) that have been classified into 

distinct categories to produce an output (Cunningham et al., 2008). For a 

machine to learn to distinguish classes, there must be an accurate 

correspondence between labels and data, and each of the classes should be 

adequately represented in the training data and ideally classified according to 

a gold standard. Labelling is provided by mobility scores, which fall short of 

the gold standard of detailed individual animal clinical examination as they are 

likely subject to bias and noise, and wide variation among assessors’ scores 

have been observed previously in lameness studies (Channon et al., 2009b; 

Schlageter-Tello et al., 2015b), rendering the label acquisition process 

challenging. 

Variation arises from multiple factors, including the experience and confidence 

of the observers, and the training they have received. A study by Kristensen et 

al. (2006) has shown that for a cattle mobility assessment, experienced 

evaluators agree with each other in classification more than less experienced 

evaluators. However, another study by Garcia et al. (2015) reported no great 

differences between experienced and inexperienced observers for lameness 

scoring. Pre-assessment training has also been shown to be an important factor 
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in some studies (Polderman et al., 2001) but not in others (Engel et al., 2003; 

Ford et al., 2000; van Tubergen et al., 2003). Another feature that could affect 

the decision-making and, consequently, the agreement among observers is 

whether there is discussion among them during the evaluation process 

(Brenninkmeyer et al., 2007). Finally, the confidence one might have in a 

decision has been linked to the familiarity of an event or a process, which acts 

as a heuristic or cue to assist a judgement (Fitzsimmons et al., 2020). However, 

confidence in a decision does not imply decision accuracy (Grimaldi et al., 

2015; Sen & Boe, 1991). 

One approach to evaluating the validity of labels is to compare the output to a 

gold standard – in a dairy cattle mobility assessment study, the best reference 

would be a thorough physical examination of the animal’s mobility by a 

veterinarian. Since this is a logistically challenging way to evaluate a large 

herd, another more accessible way is to calculate intra- and inter-assessor 

agreement of their mobility evaluation scores, with the assumption that higher 

levels of agreement suggest a greater likelihood of accurate evaluations. The 

inter-assessor agreement can be calculated by comparing assessors’ scores 

under the same conditions for the same animals, which according to Cohen 

(1960), can provide insight into the consistency of the assessment process. The 

intra-assessor agreement is calculated by comparing assessors’ scores for the 

same animals at different time points under the same conditions (Gwet, 2008). 

A common way to measure agreement is by calculating percentage agreement 

((number of agreement scores/ the total number of scores) * 100). However, 

this method does not consider the agreement that may occur by chance, thus 

potentially overestimating the agreement between assessors, as it will produce 

higher agreement values. Cohen’s kappa is a measure of agreement, which 

accounts for imbalances in class distribution and considers the chance 

agreement between assessors (Cohen, 1960; McHugh, 2012). It presents some 

limitations; for example, agreement results are affected by the number of 

classes into which the assessors should classify the data. That is, in a variable 

that takes a discrete value (0 or 1 / YES-NO), the agreement is expected to be 

higher compared to a variable that would be classified into classes with more 

levels (e.g.,  9-point mobility system by Manson & Leaver, 1988). The 

prevalence and the frequency of the assessor's choices to assign a score to a 

specific level can also affect the kappa values. This phenomenon is called the 
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first kappa paradox and should be considered when interpreting the results or 

setting a threshold. It is present when the examined subjects tend to be 

classified to one of the possible outcomes, either due to the nature of the 

outcome itself and its high prevalence or because at least one of the assessors 

tends to assign more frequently to one specific outcome (Zec et al., 2017). 

Nevertheless, kappa statistics are widely used in research, and the main 

advantage is that high kappa values correspond to highly repeatable and 

accurate agreement strength.  

This study aimed to evaluate and quantify inter-assessors’ agreement of 

mobility classifications based on the AHDB scoring system, with the overarching 

aim to produce reliable labels for machine learning systems. The objectives 

were to test the agreement of multiple assessors' scores and examine other 

factors, such as assessors' confidence in decision-making and the role of 

experience, which may contribute to the improvement of labels and, 

therefore, to the automation of lameness detection. 
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2.2 Materials and Methods 

This project adhered to the ethical guidelines established by the University of 

Glasgow and received local ethical approval (Ethics licence EA06 19), despite 

not involving any procedures regulated under the Animals (Scientific 

Procedures) Act 1986. 

Data collection 

The study started with on-farm, real-time assessments and progressed to 

remote video assessments, as a means of dealing with Covid-19 constraints and 

a desire to obtain more flexible expert contributions. For this reason, the study 

consists of assessments carried out with different media (live and camera), and 

the participating assessors differed. 

2.2.1  Farm visits, participating animals and evaluations 

Two farms in central Scotland milking exclusively Holstein-Friesian cows were 

selected for herd evaluation (Farm A, Farm B). A total of 3 visits were made - 

2 visits to Farm A and 1 to Farm B (Table 2.1). On the first visit to Farm A, 49 

milking dairy cows were assessed on-site using the AHDB mobility classification 

system, and videos were recorded. During the second visit to farm A, 52 milking 

dairy cows were assessed on-site only. The visit to Farm B was conducted solely 

for video recording of 69 cows.  

All the milking cows of Farm A on each visit day were included in the study, 

and the first 69 milked animals of Farm B were used, to reduce the level of 

interference in the farm operations. All cows presented were scored, without 

exception.  
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Table 2.1 Sites, type of each assessment, the total number of animals assessed, and 

the dates of each farm visit. 

Site Type of assessment Number of animals Date 

Farm A On-farm + video 49 13-02-2020 

Farm A On-farm 52 04-03-2020 

Farm B Video 69 01-09-2020 

 

2.2.2  Video recordings 

A rugged camera (Kodak PlaySport Zx5 Full HD 1080P) was used to capture 

video of the cows walking through a concrete-floored race after exiting the 

milking parlour. A temporary race (6.9 m length x 1.65 m average width) was 

created for the study on Farm A, with steel fencing panels, extending beyond 

the permanent exit passage from the dairy, which had solid walls on either side 

and in which cattle could not be seen from the side (Figure 2.1 A). The panels 

were installed five days before each visit to accustom the animals. The race 

running through the centre of one of the buildings on Farm B was a permanent 

installation, used by the animals routinely. For flexibility and a wider field of 

vision, a person operated the camera from 1 – 5 m on the side of the race 

rather than using a fixed camera. The video recordings were processed with 

'mp4compress/mute-video' (FileConverto Network, 2020) and 'video online 

cutter' (123apps LLC, 2020.) to remove sound and to obtain clips of every cow, 

with no overlap with another animal. 
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Figure 2.1 Figure A shows the permanent race with solid walls on the farm. Figures B 

and C are consecutive snapshots of the temporarily constructed race we used to 

capture videos for assessing the animals. The vantage-point of the person who 

recorded the animals is the same vantage-point from which the live assessment took 

place. 

 

2.2.3  On-site assessments 

Prior to the visit, training was provided by scoring online videos of 

representative of each class, publicly offered by the AHDB (i.e., 

https://www.youtube.com/watch?v=rFj72vqUwlU, accessed February 2020). 

During visits to Farm A, two experienced veterinarians and three veterinary 

students (collectively, the “assessors” in this study) were provided with the 

AHDB template mobility score form (https://ahdb.org.uk/knowledge-

library/dairy-mobility-scoresheet, accessed February 2020) and scored all the 

cows individually following the guidelines of the Agriculture and Horticulture 

Development Board (AHDB) system. In each on-site assessment, the assessors 

scored the animals simultaneously and independently, standing one meter 

apart from each other, without any discussion or sharing of scores.  

https://www.youtube.com/watch?v=rFj72vqUwlU
https://ahdb.org.uk/knowledge-library/dairy-mobility-scoresheet
https://ahdb.org.uk/knowledge-library/dairy-mobility-scoresheet
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2.2.4  Video assessments 

The edited videos were saved into a PowerPoint document with detailed 

instructions and a description of the system the assessors should use to rate 

the videos from Farm A and B. Each slide showed one cow moving along the 

race, and a table for the assessors to complete:   

(1) the score for the cow  

(2) the assessor’s confidence in the score  

(3) a second score in cases where they responded negatively to the 

preceding question about their confidence 

(4) how many times they watched the video before making a decision 

(5) any comments on why they could not provide a score.   

Figure 2.2 A shows the slide with the instructions included in the shared 

PowerPoint file, and Figure 2.2 B provides an example of the slides with the 

video and the table the assessors were asked to complete. 

The assessors involved in the on-farm and video scoring performed the 

assessments at least one month apart to avoid bias, such as recall of the 

animals and previously assigned scores. 



89 

 

Figure 2.2 (A) Instructions of the shared PowerPoint file for the video assessments, 

and (B) a selected representative example of one slide with the table the assessors 

were asked to fill. 

 

B 

A 
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2.2.5  Participating assessors 

In total, 13 assessors provided scores, with between 5 and 8 assessors providing 

scores for each site and mode (Table 2.2). The same assessors were not 

retained for all study elements due to logistic challenges, including the Covid-

19 pandemic. 

 

 

Table 2.2 Number of assessors participating in each evaluation, their experience and 

occupation. Experienced assessors have performed mobility scores on farms and are 

active veterinarians, hoof trimmers, and registered mobility scorers. Vet students 

were familiar with the mobility scoring process and lameness identification in theory 

but had performed fewer than five assessments in practice.  

Assessors Occupation 
Experience in 
mobility 
scoring 

Assessments 
Farm A 
on-site 1 

Farm A 
on-site 2 

Farm A 
Video 

Farm B 
Video 

1 
Bovine 
Veterinarian 

Experienced ✓ ✓ ✓ ✓ 

2 
Bovine 
Veterinarian 

Experienced ✓ ✓ ✓ ✓ 

3 
Bovine 
Veterinarian 

Experienced ✓    

4 Vet. student Inexperienced ✓    
5 Vet. student Inexperienced ✓ ✓   
6 Vet. student Inexperienced ✓ ✓   
7 Vet. student Inexperienced  ✓   

8 
Bovine 
Veterinarian 

Experienced   ✓ ✓ 

9 
Bovine 
Veterinarian 

Experienced 
(Registered 
mobility scorer) 

  ✓ ✓ 

10 
Bovine 
Veterinarian 

Experienced   ✓ ✓ 

11 
Bovine 
Veterinarian 

Experienced   ✓ ✓ 

12 
Bovine Hoof 
trimmer 

Experience 
(NACFT * 
member, 
Category 1 
qualifications) 

   ✓ 

13 
PhD Student 
in Animal 
Sciences 

Experienced 
(Registered 
mobility scorer) 

  ✓ ✓ 

*National Association of Cattle Hoof Trimmers in the UK (https://nacft.co.uk/) 
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2.2.6  Mobility scoring system 

Mobility scoring was performed using the AHDB system (AHDB, 2020., 

https://ahdb.org.uk/), the most widely accepted system in the United 

Kingdom farm sector. It is a 4-scale system from 0 to 3, where 0 represents a 

sound cow and three a severely lame cow. The presentation and interpretation 

of the system follow in Table 2.3. 

Table 2.3 Presentation of the four-level AHDB - Dairy mobility scoring system, which 

was used for the initial video scoring of the cows 

 

 

 

Category of score Score Description of cow behaviour 

Good mobility 0 Walks with even weight bearing and rhythm on 

all four feet, with a flat back. Long, fluid 

strides possible. 

Imperfect mobility 

 

1 Steps uneven (rhythm or weight bearing) or 

strides shortened; affected limb or limbs not 

immediately identifiable 

Impaired mobility 2 Uneven weight bearing on a limb that is 

immediately identifiable and/or obviously 

shortened strides (usually with an arch to the 

centre of the back) 

Severely impaired 

mobility 

 

3 Unable to walk as fast as a brisk human pace 

(cannot keep up with the healthy herd).  Lame 

leg easy to identify – limping; may barely 

stand on lame leg/s; back arched when 

standing and walking. Very lame. 



92 

Scoring system transformations 

We transformed the four-level AHDB system for statistical analysis into  

(1) a binarised-AHDB system by collapsing from a 4 to a 2-level score, with 

0 and 1 becoming 0, and 2 and 3 becoming 1 

(2) a convergent-AHDB system was created from those observations for 

which the assessors provided more than one score each (ie were not 

100% confident – Farm A second scores 113 / total scores 315 ). 

a. Where all assessors had the same first choice score (very rare), 

that was the convergent score. 

b. The modal first choice score was selected as the convergent score 

if it was also nominated as the second choice by the other 

assessors. 

c. Where there was no unique modal first choice score, the second 

choice scores were considered for all assessors, and the modal 

first and second choice score was chosen as the convergent score. 

d. Where there was no clear modal score, but two scores were 

equally common, it was randomly allocated to the higher or lower 

score – the first allocation being by coin-flip and subsequently by 

alternation. 

An example of the convergent system is presented in Figure 2.3. 
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Data handling and statistical analysis 

All collected data were manually transferred from paper in the case of on-farm 

assessment or from PowerPoint files for video assessment into excel 

spreadsheets. Files were stored on a PC hard drive with backups to an external 

hard drive and the University of Glasgow's OneDrive cloud. All files used in R 

program analysis were converted from .xlsx files to .csv files. The files were 

restricted access, and only the project supervisors and I could access the saved 

files. 

All statistical analysis was performed in R (R Core Team, 2020) using the ‘IRR’ 

(Gamer et al., 2019) and ‘ggplot2’ (Wickham, 2016) packages. 

All the available data were used. Percentage agreement and kappa statistics 

were obtained for agreement among, between and within the assessors. Data 

from the video evaluation, including the assessor’s confidence, their comments 

and the number of video views, were used in regressions to quantify their 

relationships with the scores and with the level of agreement. 

Figure 2.3 Generation process of the Convergent scoring set out using the second given 

scores in case of uncertainty. 
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2.2.7  Inter-assessor agreement 

We calculated inter-assessor agreement between and among assessors using 

the scores from the AHDB-4-level, the convergent-AHDB, and the binary 

transformed scores of these two systems (binary-AHDB and binary-convergent-

AHDB) for the on-site and video assessments. We analysed the agreement using 

kappa statistics ('kappa2’ function for pairwise comparisons and 'kappam.fleiss' 

function for comparison of multiple assessors). 

2.2.8  Intra-assessor agreement for Farm A Live vs Video 

assessment 

We were able to calculate intra-assessor agreement after having the same 

animals evaluated by the same two assessors (Assessors 1 and 2) on the farm 

and after one month via video. We again used kappa statistics and percentage 

agreement to calculate their agreement. 

For the calculations, we enabled zero tolerance, meaning that assessors must 

have given the same score for an agreement to be reached. The interpretation 

of the kappa statistics was based on Landis & Koch (1977)-Table 2.4.  

Table 2.4 Landis and Koch (1977) kappa indices interpretation. 

Kappa Strength of agreement 

<0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost perfect 
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2.2.9  Generalised linear models (GLM) 

We used a generalized linear model to quantify the associations between score 

(AHDB, binarized AHDB, Convergent-AHDB, binarised-convergent-AHDB) as the 

dependent variable and the comments (comment = 1, no comment =0), the 

confidence (yes=1, no =0), and the number of video views before each decision 

(numeric) as potential explanatory variables.  

𝑌 = 𝛽0 + 𝛽1𝑋 

Where, 

Y = the dependent categorical variable – the scores 

β0 = intercept 

β1 = the coefficient of the variable 

X = the variable (confidence (Yes/No) or number of views or comments 
(Yes/No)) 

 

Models with the lowest Akaike information criterion (AIC) values were selected. 

Bonferroni adjustment for multiple testing was used (familywise error rate 

(0.05) / the number of tests). 

Comments were also analysed according to whether the comments addressed 

the characteristics and attributes of the cow or the video, as in Table 2.5.  
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After the categorisation and classification, we included the comments in the 

generalized linear model and the equation transformed as follows: 

𝑌 = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 

Where, 

Y = the dependent variable – the scores 

β0 = the intercept, which is always a constant in the model 

β1,2 = the coefficients of each respective variable 

X1 = other comments 

X2 = comments about video characteristics 

Table 2.5 The comments were classified into two categories; comments on the video 

characteristics and the way of presentation that did not serve the ease of the evaluation 

and thus affected the confidence in the score, and other comments. 

Video attributes/characteristics Other comments 

Cow running - not walking Comments about lameness 

localisation in the limb (i.e., 

lame in front right leg) 

Stopping many times during the clip Udder size 

Short clip duration Limb movement 

Limbs not in the frame Arched back 

Visual obstructions (i.e., rails hiding body 

parts) 

Behaviour - exploratory, weird 

Slippery surface  
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2.2.10 Role of experience in agreement 

We were interested in the effect of experience on the inter-assessor 

agreement, so we combined the kappa values of the two on-farm assessments 

to obtain more observations and then visually checked their distribution with 

the “descdist” function (Delignette-Muller & Dutang, 2015) in R, and we 

performed a Shapiro test of normality (data samples <50). We then performed 

a parametric (t-test) and a non-parametric (Kruskal Wallis) test on the groups 

of interest (experienced vs experienced, inexperienced vs inexperienced, 

experienced vs inexperienced) to determine whether experience affects the 

agreement. 

  



98 

2.3 Results 

2.3.1  Inter-assessor agreement 

Table 2.6 lists the results of inter-assessor comparisons (kappa Fleiss) for each 

assessment using the AHDB-4-level scoring system, with agreement among 

assessors with the same experience in cow mobility assessment. Average 

pairwise Cohen’s kappa and percentage agreements with standard deviations 

are presented for comparison. The best agreement was achieved between the 

two registered mobility scorers (RoMS) for Farm B video assessment (kappa = 

0.53; per cent agreement = 65.22%), corresponding with a moderate level of 

agreement according to Landis & Koch (1977). The remaining kappa values 

ranged from 0.16 to 0.39, showing slight to a fair agreement. The highest 

percentage agreement (69.81%) was observed among the three veterinary 

students on the second visit to Farm A. We observed only slight differences in 

the results between Fleiss's kappa directly applied to the assessors' scores and 

the averaged Cohen's kappa of the pairwise comparisons, as seen in Table 2.6. 

Meanwhile, increased percentage values were reported after averaging scores 

and recalculating agreement, such as Farm A Visit1 Video, which from 2.13% 

agreement in the first calculation transformed to 41.9%. 
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Table 2.6 Inter-assessor agreement (kappa statistics and percentage agreement) for the 

assessments using the AHDB mobility scoring system. Comparisons with kappa Fleiss and 

pairwise comparisons with Cohen’s kappa were made among all assessors of each 

assessment and assessors based on scoring experience, i.e., veterinary students or 

veterinarians.  

Location Assessment 
type 

Number of 
assessors 

Kappa  % 
Agreeme
nt 

Average 
pairwise 
Cohen’s 
kappa 
(SD) 

Average % 
agreement  
(SD) 

Farm A 

Visit-1 

ON-FARM 3 (vet 

students) 

0.29 34.69 0.29 

(0.1) 

47.8 

(11.53) 

Farm A 

Visit-1 

ON-FARM 3 (vets) 0.19 34.69 0.22 

(0.17) 

50.79 

(6.97) 

Farm A 

Visit-1 

ON-FARM 6 (all) 0.21 14.29 0.21 

(0.12) 

49.1  

(6.19) 

Farm A 

Visit-2 

ON-FARM 3 (vet 

students) 

0.24 69.81 0.24 

(0.18) 

47.8 

(11.53) 

Farm A 

Visit-2 

ON-FARM 2 (vets) 0.39 58.49 0.39 58.49 

Farm A 

Visit-2 

ON-FARM 5 (all) 0.27 16.98 0.28 

(0.10) 

50.19  

(6.6) 

Farm A 

Visit-1 

VIDEO 7 (all) 0.16 2.13 0.20 

(0.13) 

41.90 

(10.1) 

Farm A 

Visit-1 

VIDEO 2 (ROMS) 0.37 55.1 0.37 55.1 

Farm B VIDEO 8 (all) 0.33 8.96 0.33 

(0.1) 

51.27 

(8.46) 

Farm B VIDEO 2 (ROMS) 0.53 65.22 0.53 65.22 
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2.3.1.1 On-site assessments 

The results of the pairwise comparisons for the two on-site assessments of the 

same cows on Farm A are presented in Table 2.7. When the AHDB-4 level 

system was used for analysis, kappa results showed fair agreement after 

averaging the pairwise kappa indices for both visits. After converting the four-

level system to binary, the kappa results improved, giving moderate 

agreement, and the percentage agreement increased from 50-51% to 80-85%. 

Table 2.7 Average kappa values (SD), and percentage agreement of the two different 

scoring systems for pairwise comparisons of the two on-site assessments of the same 

cows at farm A. 

 AHDB (4-level) AHDB (Binarised) 

Kappa (SD) % Agree (SD) Kappa (SD) % Agree (SD) 

Farm A on-site 

Visit 1 

0.21 (0.12) 51.16 (6.92) 0.45 (0.21) 85.45 (5.15) 

Farm A on-site 

Visit 2 

0.33 (0.1) 50.19 (6.61) 0.5 (0.11) 80.75 (3.74) 

 

2.3.1.2 Video assessment 

Table 2.8 shows the average kappa values and percentage agreement of 

pairwise comparisons for both farm video assessments. The assessors were the 

same individuals, with the addition of one experienced evaluator. Regarding 

kappa statistics, the binarised-converged-AHDB system had the highest indices, 

followed by the binarised-AHDB system. The AHDB-4-level mobility system 

produced only a slight (0.17) and fair (0.33) agreement for the two farms. The 

percentage agreement followed the same trend as the kappa values, meaning 

the highest score was observed in the binarised-convergent-AHDB system, 

followed by the binarised -AHDB, then the convergent- AHDB and lastly, the 

AHDB-4-level system. 
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Table 2.8 Average kappa values, percentage agreement and standard deviation (SD) 

of the three different scoring systems for pairwise comparisons of the two video 

assessments. 

 AHDB – 4-
levels 

Binarised-
AHDB 

Convergent-
AHDB 

Binarised- 
Convergent-

AHDB 

Kappa 
(SD) 

% 
Agree 
(SD) 

Kappa 
(SD) 

% 
Agree 
(SD) 

Kappa 
(SD) 

% 
Agree 
(SD) 

Kappa 
(SD) 

% Agree 
(SD) 

Farm 
A 

video 

0.20 

(0.13) 

41.90 

(10.1) 

0.37 

(0.19) 

71.39 

(9.23) 

0.36 

(0.12) 

54.12 

(9.74) 

0.58 

(0.13) 

80.84 

(6.79) 

Farm 
B 

video 

0.33 

(0.1) 

51.27 

(8.46) 

0.53 

(0.12) 

77.76 

(7.1) 

0.44 

(0.09) 

59.51 

(7.39) 

0.67 

(0.15) 

84.74 

(7.85) 

 

2.3.2  Intra-assessor agreement 

2.3.2.1 Farm assessment 

Because the same two assessors (Assessors 1 and 2) evaluated the same animals 

at different time points (on-site and video), we could calculate the intra-

assessor agreement. The results revealed only a slight agreement for Assessor 

2 (Kappa: 0.18, Agreement: 49%) and a fair agreement for Assessor 1 (kappa: 

0.23, Agreement 46.9%). That means the assessors’ scores differed when 

scoring the same animal on-farm and on video. Both intra-assessor and 

percentage agreement indicate more than a 50% discrepancy between the two 

evaluations of the same animals. 
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2.3.3  Relationship of confidence, video comments and video 

viewing times to scores 

2.3.3.1 Farm A Video 

Fewer viewing times were associated with higher scores for Assessors 11 and 

13 (Figure 2.4). Conversely, Assessor 8 was more likely to give a high score in 

cases where they watched the video more times. 

 

Figure 2.4 Coefficients and p-values from the generalized linear models for the 

associations between the individual AHDB scores and the (1) views, (2) comments, and 

(3) confidence for the Farm A video assessment. Colours represent the coefficients of 

each assessor, the shapes represent the coefficients of each category (views, 

comments and confidence), and the red dotted vertical line points to the p-

value=0.05. Observations below the dotted vertical line are considered statistically 

significant.   
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In the two videos for which all assessors declared a high confidence level, the 

difference between the highest and the lowest scores given by assessors was 

three levels – i.e., the same cow confidently rated as 0 and 2 on the four-level 

scale.  

 

After classifying the comments into two categories and using them in the 

generalized linear model as covariates against the scores, Assessors 2, 8, and 

13 were shown to have statistically significant and positively correlated results 

for the comments they made about cows (Table 2.9). The comments were 

mainly about the localisation of the lesions and other animal characteristics 

(Table 2.5). Assessor 11 was the only one with a significant negative correlation 

between their scores and the video characteristics, meaning they were likely 

to comment about the video attributes and assign a lower score. Assessor 11’s 

comments about the video were about the animal running instead of walking. 

Table 2.9 GLMs coefficients and p-values of the categorised comments for Farm-A. 

Assessors Cow 

comments 

coefficient 

Cow 

comments P-

value 

Video 

comments 

coefficient 

Video 

comments P-

value 

R1 -0.24 0.51 0.17 0.63 

R2 0.70 <0.001 -0.12 0.59 

R8 1.19 <0.001 0.28 0.62 

R9 -0.17 0.87 0.64 0.34 

R10 0.32 0.26 -0.43 0.20 

R11 -0.34 0.40 -1.47 0.01 

R13 0.74 0.01 -0.52 0.18 
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2.3.3.2 Farm B Video 

The number of video views of Assessor 11 was negatively associated with their 

scores, as shown in Figure 2.5. The views of all other assessors did not 

significantly associate with their scores. 

In the video scoring of Farm B, all assessors scored 11 of the 69 cows 

confidently. However, in only four cows out of 11, there was full agreement on 

the AHDB 4-level score. The assessors agreed on the severely impaired animals 

– assigning a score 3. Only Assessors 2 and 13 had a significant association 

between their stated confidence and their assigned scores. Assessor 2 tended 

to be confident when assigning a low score, whereas Assessor 13 had higher 

confidence with higher scores. 

 

Figure 2.5 Generalized linear model coefficients and p-values from the video 

assessment of Farm B.  The individual AHDB scores were compared to the (1) views, 

(2) comments, and (3) confidence of each assessor. The red dotted vertical line 

represents the p-value 0.05. The colours represent each assessor’s coefficient point. 
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The comments of Assessor 13 were about the length of the video and that they 

would have preferred to be able to see the animals for longer. 

 

2.3.4  Role of experience in agreement 

The ‘descdist’ function and the Shapiro test (p=0.69) showed that the kappa 

values were normally distributed (Figure 2.6). The results of both tests we 

performed produced p-values greater than 0.05 (average p-value of t-tests for 

the three groups = 0.99 and Kruskal Wallis p-value = 0.76), meaning that there 

were no significant differences between groups, and thus experience had no 

effect on the inter-assessor agreement. 

  

Table 2.10 Results of the GLMs for the categorized comments and the AHDB scores 
for Farm-B. 

Assessors Cow 

comments 

coefficient 

Cow 

comments 

P-value 

Video 

comments 

coefficient 

Video 

comments 

P-value 

R1 - - 0.79 0.412 

R2 0.87 0.002 -0.5 0.209 

R8 - - - - 

R9 0.65 0.55 - - 

R10 - - 0.06 0.855 

R11 - - 0.55 0.3 

R12 1.21 0.0000089 0.41 0.464 

R13 -0.47 0.068 -0.69 0.009 

 



106 

 

Figure 2.6 Boxplot of the kappa values of the three groups of interest divided by 

experience. The plot shows no statistically significant differences between the groups; 

thus, the experience level did not play a significant role in the inter-assessor 

agreement. 
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2.4 Discussion 

This project followed our group’s previous work with micro-Doppler radar, in 

which encouraging accuracy (>80%) was obtained using on-farm scoring by a 

single assessor (Busin et al., 2019; Shrestha et al., 2018). We wished to expand 

on those studies with longitudinal and larger cross-sectional studies. Prior to 

commencing these studies, we sought to confirm that the labelling was 

unbiased by the person undertaking the assessment and was repeatable among 

assessors. We hypothesised that accurate and repeatable labels would be 

obtained using agreed or consensus scores from multiple assessors and wished 

to determine the minimum number of assessors and the best way of obtaining 

consensus. Adaptively due to covid-19 pandemic, we planned to use video 

recording to allow multiple assessors to rate all the cows, with the additional 

benefit of minimising the logistical challenge of having multiple assessors on 

the farm interfering with normal cow behaviour. The initial findings of poor to 

fair inter- and intra-assessor agreement were unexpected and created further 

questions, which we tried to address in the experimental design. The main 

finding was variation among assessors’ scores when they used the AHDB system 

to evaluate cow mobility on two farms by visual on-site and video assessments. 

After analysing the inter-assessor agreement levels with the AHDB scorings, we 

observed high variation, with kappa values ranging from 0.16 - 0.53 (Table 2.6). 

These findings are consistent with other studies on cow mobility assessment 

using visual observations. For example, in Thomsen et al. (2008) study, inter-

assessor agreement ranged from 0.24 to 0.68 using a 5-level visual rating 

system. Several other studies have presented kappa values below or near the 

0.60 threshold, which indicates substantial agreement when assessing mobility 

and other relevant traits such as leg scores (Channon et al., 2009a; Croyle et 

al., 2018; Dahl-Pedersen et al., 2018; Holzhauer et al., 2005; Katzenberger et 

al., 2020; Schlageter-Tello et al., 2015a). However, some other studies on 

lameness presented pairwise kappa values that were substantial or nearly 

perfect (i.e., Barker et al., 2010; Garcia et al., 2015). For example, in the 

study of Barker et al. (2010), the kappa values ranged from 0.67 to 0.93. Still, 

while presenting the results of agreement using the kappa statistic in a binary 

system, Barker et al. 2010 did not provide details about the dichotomisation of 

levels or other information about the statistical analysis of the inter-assessor 
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agreement. In short, the agreement of the present study is at the same levels 

as those reported in most of the literature, showing only up to a moderate 

agreement between visual observation assessors. 

The conversion of the four-level system to binary and convergent increased the 

agreement as expected. Other studies have dichotomised systems with 

multiple levels to estimate and improve inter-assessor agreement 

(Brenninkmeyer et al., 2007; March et al., 2007). The better performance when 

the number of classes is lower is due to the need for lower discrimination 

(Knierim & Winckler, 2009). The evaluator needs to decide between only two 

options, which, depending on the desired result, may offer advantages over a 

system with more levels that might have finer divisions but also have more 

chances of producing more score discrepancies between two or more assessors. 

One study (Garcia et al., 2015) showed better inter-assessor agreement at the 

lower (1,2) and higher (4,5) levels of a 5-level system as opposed to the middle 

classes (2,3 or 3,4), where differentiation may be more challenging. Another 

study by Schlageter-Tello et al. (2014), merging a 5-level lameness detection 

system into fewer levels with all possible combinations, also found difficulty 

among experienced assessors in identifying cows with slight variations in 

mobility. In the same study (Schlageter-Tello et al., 2014), the best results 

were obtained when the system was dichotomised. The present study also had 

the best agreement results in dichotomised systems, and the dichotomy 

precisely in the middle of the levels (0 and 1 vs 2 and 3) was logically chosen 

following the line of the AHDB system, suggesting additional actions for animals 

with scores greater than or equal to 2. The overall number of classification 

levels affects the kappa statistical analysis method, generally giving better 

results when fewer levels are used. But even lowering the levels of a system 

does not necessarily guarantee higher kappa values, which is why one should 

also state the per cent agreement of the evaluations to provide a complete 

picture of the assessments. 

We asked the reviewers whether they were confident in the scores they gave, 

and the confidence level was not significantly associated with the inter-

assessor agreement. Even when high confidence was claimed, the agreement 

was poor. Of all the cows evaluated at both visits (118 cows in total), all 

assessors had the same positive confidence level in their score on only 13. Even 

in those cases where all assessors gave their score with confidence, the scores 
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were the same only for score level 3, indicating that for severely lame cows, a 

confident agreement is more likely. 

Most scores, and thus inter-assessor agreement, were not significantly or 

consistently affected by comments, video viewing times, or video 

characteristics. These results suggest that the videos and the way the cows 

were captured in the videos were not consistently identified as a problem by 

the assessors, and thus the difference in the inter-assessor agreement is 

probably not due to these causes. Video cow mobility assessment is commonly 

used for scientific research (Garcia et al., 2015; Schlageter-Tello et al., 2015a) 

and industry and is consistent with the examination and calibration testing 

methods used by RoMS. Studies have found no statistically significant 

differences in assessors' agreement between live/live, live/video, or 

video/video mobility assessments (Bernardi et al., 2009; Channon et al., 

2009a). However, in our study, the two assessors' intra-assessor agreement for 

live/video was only fair (average kappa = 0.21 and average per cent agreement 

= 48%). We expected better inter-assessor agreement when using the videos 

for mobility assessment, as assessors had the same vantage point and could 

watch each video multiple times to reach a decision and even return to the 

video after assigning a score if they changed their minds. However, live on-

farm assessment gives the advantage of being able to follow and monitor the 

animal potentially for longer and see it from more angles and not only the side, 

as in our study. 

Experienced and inexperienced assessors had a similar agreement. Pre-

assessment training may be important, but there appear to be conflicting 

results from the literature. In one study (March et al., 2007)  on the effect of 

training on the inter-assessor agreement of lameness, even limited practical 

experience improved agreement and proposed intensive training procedures 

with animals and the presence of an experienced observer to achieve further 

improvement. Other studies have also concluded that training positively 

affects inter-assessor agreement (Gibbons et al., 2012; Vanhoudt et al., 2019). 

However, contrary results have also been published in medical literature, 

showing no difference before and after training implementation (van Tubergen 

et al., 2003). Other studies on the effect of training in the inter-assessor 

agreement of lameness scores produced ambiguous results (Engel et al., 2003; 

Garcia et al., 2015). For example, Engel et al. (2003) found that further 
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training affected the results but only sometimes positively, as some observers 

underestimated or overestimated some cows' conditions; at the same time, 

assessors improved their agreement in extreme lameness cases. Although our 

study did not extensively assess how training affects the agreement among and 

between assessors, we found that the two registered mobility scorers had the 

highest pairwise agreement compared to the mean, and it is a factor that 

deserves further investigation. Finally, it should be noted that our study only 

involved a limited sample size, so the results should not be generalised. 

Another issue that compromises the reproducibility of the scores is the lack of 

exclusive and exhaustive classes within the mobility system. For example, the 

AHDB mobility system, at level score 3, states that a cow should be classified 

in this category if she "cannot keep up with the healthy herd". This phraseology, 

which is also a guideline for the assessment, introduces two issues; first, the 

evaluation is done individually for each animal, so it cannot be applied, and 

second, the assessment is comparative with the rest of the herd, which means 

that animals seen first at the time of the evaluation could be treated 

differently score-wise compared to animals that appeared at the end. 

Therefore, the system needs consistent guidelines and specifications to ensure 

that the mobility assessment is performed invariably and reliably, regardless 

of who performs it or where it is performed. When the classes or levels are 

unclear and vague, achieving high levels of agreement and repeatability or 

comparing result scores across different studies is challenging and potentially 

unreliable. 

In addition to a system being open to subjective interpretation, assessors have 

been shown to have personal preferences for which traits and characteristics 

of the cow's mobility they choose to focus on during the evaluation (Garcia et 

al., 2015), which is an additional factor that directly affects levels of 

agreement. Other factors that act on the assessors, such as environmental 

stimuli, like time pressure, attentiveness, distractions during the assessment 

and biases, have also been proven to influence decision-making processes 

(Hall, 2002; Klapproth, 2008; Maule et al., 2000; Sheng et al., 2022). Generally, 

a human assessor can be influenced by several factors when evaluating and 

making decisions, which in turn shows the usefulness and necessity of a support 

mechanism such as an artificial intelligence system that will produce consistent 

results regardless of unrelated inputs. 
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The study's results highlight the challenge of obtaining high inter- and intra- 

assessor agreement and repeatability among assessors in dairy cows' mobility 

scoring using the AHDB system.  

 

 

2.5 Conclusions 

In conclusion, we achieved our initial aim to examine agreement among 

multiple assessors and found variation in scores when the AHDB mobility 

assessment system was used. We also found that training (RoMS), experience, 

and confidence in the scoring decision did not contribute to a better 

agreement. The variation and, thus, the uncertainty in the actual status of the 

animal makes it challenging to obtain ground truth labels for automated 

lameness detection using machine learning. However, transforming the scores 

(convergent-AHDB) and reducing the levels offer hope for better label 

performance. Based on these findings, it seems necessary to continue the 

search for high-confidence mobility labels that accurately describe the animal's 

state and use them as ground truth in machine learning for automating 

lameness detection. 
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Chapter 3  

 

Improving confidence in cattle mobility scores as 

labels for machine learning: Analysis of video-based 

assessments and relationship with physical 

examination lesions - A longitudinal study Part 1  

3.1 Introduction 

This study seeks to improve animal welfare by introducing automation in 

modern farm production units. Various automated systems have been installed 

on farms over the past few years, such as robotic milking systems (M. Pastell 

et al., 2006) and automatic cattle feeders (Wilson et al., 2018), to improve 

productivity and efficiency, produce accurate information, and reduce labour 

costs. Although smart farming, which uses artificial intelligence systems, is a 

relatively new concept, it is becoming increasingly prevalent and rapidly 

advancing. This study aimed to find accurate labels to train machine learning 

and artificial intelligence to detect lameness effectively and promptly. By 

following the same cows over time, a longitudinal study will increase 

confidence in the automatic detection and classification of lameness, allowing 

for the detection of patterns and changes in the individual animals as well as 

the overall herd population, providing a comprehensive picture of mobility 

which can then be generalised to other herds. 

Lameness is an important cause of poor welfare in dairy cows, and along with 

fertility and mastitis, are the main reasons for early culling (Enting et al., 1997; 

Leach et al., 2010c). Nevertheless, lameness has not received the same 

attention as the other issues, as farmers tend to underestimate the prevalence 

and severity of lameness incidents in their herds (Leach et al., 2010a; Šárová 

et al., 2011b). Foot lesions account for most lameness cases (Murray, 

Downham, et al., 1996), although not all foot lesions always result in mobility 

alterations (Manske et al., 2002a). Nevertheless, failure to prevent or detect 

lameness early, either in the hoof or upper leg, can cause severe problems for 
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animal welfare and financial loss through subtle adverse changes in animals' 

health. Recent research has shown that a farmer's total loss arising from a 

lameness incident can reach up to $533 per animal per year (Dolecheck & 

Bewley, 2018), with productivity (Green et al., 2002) and fertility (Garbarino 

et al., 2004) being impaired in severe cases without early treatment. 

Therefore, a robust, timely, and effective detection system should benefit 

both the animal and the farmer. 

Several automated sensor-based systems for lameness detection, including 

long-distance pedometers, force platforms, and accelerometers (Byabazaire et 

al., 2019; Chapinal & Tucker, 2012; Rajkondawar et al., 2002; Pastell et al., 

2009; Taneja et al., 2020), have been applied and tested in diverse farm 

environments. All are promising but also have a downside. Some disadvantages 

of applications that have been described are, for example, in the case of 

camera use, the need for relative lighting since darkness or light refraction can 

affect visibility and, therefore, results (Poursaberi et al., 2010). Force 

platforms require the animal to stand still (Mokaram Ghotoorlar et al., 2012) 

or to be handled to collect the necessary data, which can be a time-ineffective 

process in an everyday farm routine. Another disadvantage concerns the 

equipment (i.e., accelerometers, pedometers) that needs to be attached to 

the animals and replaced or increased with every increase in animal numbers, 

thus expanding the costs and the carbon footprint. These are a few motivations 

for adopting radar technology for farm applications and lameness detection. A 

radar such as the recently proposed micro-Doppler system (Shrestha et al., 

2018) has the advantages of not requiring physical contact with the animals 

and not being dependent on specific lighting or environmental conditions to 

collect valuable data. At the same time, the system has been tested on humans 

and animals (cows, sheep, horses), proving that it is possible to detect and 

classify mobility patterns with outstanding results (overall accuracy >80%) 

(Busin et al., 2019; Fioranelli et al., 2019; Shrestha et al., 2017; Shrestha et 

al., 2018). However, like other technological systems that use supervised 

machine learning-based algorithms, this system's challenge is the requirement 

for reliable labels. 

Labels are necessary for algorithms based on supervised machine learning, but 

they have a few potential issues. First, humans generate labels, meaning that 

a certain degree of bias and subjectivity are usually involved in the process. 



114 

Subjectivity and bias lead to variation in the labels generated by different 

assessors (see Chapter 2), impacting the performance of the machine learning 

algorithms (Lebovitz et al., 2021). Second, the performance of the algorithms 

is highly dependent on the quality and representativeness of the input training 

data. Models trained with labels generated from a small population without 

full representation usually perform poorly with new and diverse data. Third, 

limited datasets, with insufficient labelled data available to train machine 

learning algorithms, generally lead to limited performance and potential 

overfitting of the algorithms (Bashir et al., 2020). One example of a poor 

performance model is from the medical imaging field; in the study of Brinker 

et al. (2019), they presented a model with high accuracy in detecting 

melanomas trained in primarily white males, but when tested with dark skin 

patients (Kamulegeya et al., 2019), the diagnostic accuracy was reduced by 

almost half. Another example of poor labels comes from a study by Hendrycks 

et al. (2018) in which, in image classification algorithms, even a small amount 

of incorrect annotated labels used during the training decreased the accuracy 

and led to overfitting; thus, the model could not generalise on other data 

producing the desired results. All these considered, paying attention to the 

training data's quality and the impact that labels can have on the performance 

of machine learning models is a necessity if the goal is a valid, accurate and 

reproducible outcome. 

Selecting labels as the ground truth requires consideration of their relevance, 

accuracy, and consistency. However, a significant challenge arises when 

uncertainty exists regarding the validity of a label. In such cases, identifying 

appropriate labels could become a complex task. Several studies (Galati et al., 

2022; Liu et al., 2021; Wang et al., 2021) focus on selecting reliable ground 

truth labels when there is uncertainty, which is especially true in the diagnostic 

medical field. In medical diagnosis, experts often encounter a significant 

degree of uncertainty, rendering incorporating artificial intelligence (AI) tools 

particularly attractive as objectivity and assistance in decision-making will be 

introduced. The main problem is that for a model to learn to predict and 

classify, it needs to be trained; training is usually done using human-generated 

labels, which are not always reliable. However, despite the uncertainty and 

the lack of agreement between assessors, modern technological developments 

have changed the landscape for generating reliable labels. Especially in the 
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field of diagnostic radiology, which is pioneering in the field of AI, where ML-

based tools claim to produce high-quality results and even outperform experts 

in some cases (Galati et al., 2022; Gulshan et al., 2016; Wang et al., 2017). 

Lameness detection and classification in cattle is also a medical diagnosis task. 

The gold standard for detecting lameness in cattle is the individual physical 

examination during which the animal's limbs are lifted and carefully examined, 

its mobility is assessed, and its medical history is taken into account, including 

previous lameness incidents and hoof trimmings (Desrochers et al., 2001). The 

limitation to this gold standard is that the process is time-consuming and 

logistically impracticable when a herd consists of a few hundred animals. For 

this reason, evaluations have been created that are indirectly based on 

detecting lameness problems through the visual observation of the cows' 

walking patterns. There is a standard way of walking, and everything deviating 

from that is considered a mobility issue. However, it has been observed that 

there are differences in the perception of lameness characterisation among 

different assessors, which renders automation the next rational measure 

towards an objective, standardised and prompt way of detection and 

monitoring. In this light, we aimed to identify a reliable method to generate 

labels that accurately reflect animal mobility conditions and can be used to 

develop a supervised machine learning-based AI tool. The objectives were to 

combine observation and analysis systems to assess mobility, using video 

recordings shared with expert assessors in conjunction with clinical 

examination of animal hoof pathology, to strengthen confidence in labels. By 

designing this longitudinal study, we would like to observe changes in gait 

patterns over an extended period of time and gain insights from multiple 

sources of information into the developmental processes of lameness at the 

individual and herd levels. 
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3.2 Materials and methods 

3.2.1  Data collection and handling 

The study did not include any procedures regulated under the Animals 

(Scientific Procedures) Act 1986 but was carried out in accordance with the 

University of Glasgow guidelines and with local ethical approval (Ethics licence 

EA06 19). 

This chapter is the first part of a longitudinal study in which, in addition to the 

data we recorded and presented here, data were recorded using a radar system 

which will be presented in detail and analysed in Chapter 4. This part describes 

the methodology employed for generating labels (cow mobility scoring), which 

will be utilised as labels (ground truth) in the subsequent chapter for analysing 

the data acquired by radar. 

3.2.2  Farm visits and video recordings 

We conducted nine fortnightly visits to a farm in central Scotland from April to 

September 2021 (Figure 3.1). During the visits, an operator using the Kodak 

PlaySport (Zx5 Full HD 1080P) camera recorded all milking cows from the side, 

walking individually along a 7 m long by 1.5 m wide temporary railed extension 

to the farm’s solid-walled passageway at the exit of the milking parlour. The 

operator had approximately a 5 m distance from the passageway, with freedom 

to move and track cows as they passed by. 

The recorded videos were embedded in a PowerPoint file (see Chapter 2) and 

shared with between three to four assessors selected following the studies in 

Chapter 2, all of whom were experienced in scoring cow mobility, and one 

being certified registered mobility scorer (RoMs - https://roms.org.uk/).  

 

 

 

https://roms.org.uk/
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Figure 3.1 Timeline of the farm visits (video and radar data collection) and the hoof 

trimmings (HT). 

 

3.2.3  Animals 

The same 50 Holstein Friesian dairy cows were video recorded on each visit 

resulting in 393 videos being retained for scoring after eliminating unsuitable 

videos in which it was impossible to evaluate the cows, e.g., a cow standing 

still and not moving forward. In addition, ear tags (identification numbers) and 

lactation numbers were recorded for each animal. 

Cows’ lactation numbers ranged from 1 to 10, with a mean of 3 (SD=2). 

Nineteen cows had calved, on average, 3.4 (SD=2.5) months before the 

commencement of the experiment. Twelve cows calved during the study, 

averaging 2.2 (1) months post the commencement date. And 19 cows calved 

after the end of the study, within 1.9 (0.9) months after the last recording. 
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3.2.4  Physical examination of the hooves 

The farm's trained hoof trimmer conducted 50 examinations before the study 

commenced. Following this, a qualified hoof trimmer (National Association of 

Cattle Foot Trimmer member -NACFT, Category 1) performed monthly hoof 

examinations (Figure 3.1). In total, we obtained 180 instead of 200 

observations over the four visits because a few animals were not available 

during all examinations (i.e., animals were calving). 

During the examination, the hoof trimmers placed each animal in the crush and 

lifted each leg, cleaning the hooves and correctively trimming where needed. 

The intervention in the claws was minimised, trying not to affect the animal 

adversely. In most cases, the hoof trimmer used only a brush and a bucket of 

water to clean the hoof with minimal use of trimming knives. The researcher 

recorded lesions on the hooves, such as sole haemorrhages, hoof 

discolourations, cracks, separations, interdigital growths, stones, under-run 

soles, white line, sole ulcers (Figure 3.2 B), and digital dermatitis (Figure 3.2 

A). Lesions were not scored for severity. 

We then sorted the hoof examination data into two categories for statistical 

analysis.  

► Healthy: no problems with the hooves or showed signs of only small 

haemorrhagic spots (superficial and up to 2mm in diameter) during the 

examination which could be easily removed using the knife (score 0).  

► Unhealthy: one or more lesions that, due to the size or appearance, may 

compromise the cow’s mobility, such as white line disease, sole ulcer, 

digital dermatitis, stones, cracks, and under-run sole (score 1). 
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3.2.5  Mobility Assessments 

The recorded videos were shared after each visit with expert assessors: 3 

assessors for visits 1-5 and 4 assessors for visits 6-9. The fourth assessor was 

included in the process because they were familiar with the herd and would 

help resolve disagreements where there were discrepancies between the three 

assessors, lending greater confidence to the outcome. The AHDB-Dairy 4-level 

mobility system was used throughout the evaluations, with scores ranging from 

0 (non-lame) to 3 (severely lame). Before each evaluation, assessors were 

presented with calibration videos of cows in each level (AHDB 0-3). They were 

also asked to record a second score in cases where they were not certain of 

their first evaluation. After independently scoring all videos from each visit, 

the assessors convened to discuss each video from that visit in turn and agreed 

A B 

Figure 3.2 Two hooves classified as score 1 (unhealthy). Photo A shows digital 

dermatitis and photo B a sole ulcer lesion and block placement on the healthy claw. 
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on a consensus score for each cow, thus creating a consensus score set, as 

shown in Figure 3.3. 

 

 

 

 Figure 3.3 The process followed for creating labels. The cows' videos were shared 

with each assessor for individual evaluation, and then everyone scored the videos 

together, creating the listed labels. 
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3.2.5.1 Modified scoring systems  

After collecting all the data, individual and consensus scores, we created four 

additional scoring sets, resulting in six systems in total, as listed and described 

in Table 3.1.  

Table 3.1 The table presents the six scoring sets we used for the statistical analysis 

and their abbreviations that will be used in the rest of the chapter. All generated 

systems were retrospectively created based on the AHDB mobility system, which was 

used for the initial evaluation of the cows through the videos. 

Scoring Set System’s 
levels 

Description Abbreviation 

Individual 
AHDB scores 

AHDB 4-level 
system (0-3) 

3 or 4 assessors scored all 
animals individually using the 
AHDB system 

IndivAHDB 

Convergent-
AHDB scores 

AHDB 4-level 
system (0-3) 

When scoring independently, the 
assessors had the choice to 
assign a second score when they 
were not certain about their 
first decision. We selected the 
scores with the greater 
agreement 

ConvAHDB 

Consensus-
AHDB scores 

AHDB 4-level 
system (0-3) 

All assessors convened in a 
group, and they agreed on 
consensus scores for each animal 

ConsAHDB 

Binary-AHDB 
individual 

scores 

Binarised-
AHDB system 

(0 and 1) 

We merged scores 0/1 and 2/3 
from the individual assessment 
into 0 (non-lame) and 1 (lame), 
respectively 

IndivBin 

Binary-
convergent-
AHDB scores 

Convergent- 
Binarised - 

AHDB system 

(0 and 1) 

We merged scores 0/1 and 2/3 
from the convergent scoring set 
into 0 (non-lame) and 1 (lame), 
respectively 

ConvBin 

Binary-
consensus-

AHDB scores 

Consensus- 
Binarised - 

AHDB system 

(0 and 1) 

We merged scores 0/1 and 2/3 
from the consensus scoring set 
into 0 (non-lame) and 1 (lame), 
respectively 

ConsBin 
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3.2.6  Statistical analysis 

3.2.7  Lameness prevalence 

We calculated the lameness prevalence of the herd from each assessor’s scores 

and for each visit. We then averaged the scores and estimated the average 

lameness prevalence. The prevalence was calculated according to the formula 

in Equation 3.1 

Equation 3.1 Formula of lameness prevalence calculation 

𝐿𝑎𝑚𝑒𝑛𝑒𝑠𝑠 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑚𝑒 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 (𝑠𝑐𝑜𝑟𝑒𝑠 2 𝑎𝑛𝑑 3)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙𝑠
  

 

We also plotted each cow's consensus scores across the nine visits to make it 

easier to visually distinguish cows with the same continuous scores from 

animals whose scores changed during the study. 
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3.2.8  Assessors’ agreement 

Inter-rater agreement was determined using the statistical package "irr" 

(Gamer et al., 2019), with Cohen's kappa (function: “kappa2”) for the pairwise 

comparisons and Fleiss' kappa for the comparisons among all the assessors 

(function: “kappam.fleiss”). The agreement was expressed as a percentage 

agreement for all the assessors. In all comparisons, zero tolerance was allowed, 

meaning that assessors must have given the same score for 100% agreement to 

be reached. The interpretation of the agreement was based on Landis & Koch, 

(1977), assuming substantial agreement when the kappa value is >0.61.  

 

Table 3.2 Landis & Koch (1977) Kappa interpretation. 

Kappa Strength of agreement 

<0 Poor 
0.01 – 0.20 Slight 
0.21 – 0.40 Fair 
0.41 – 0.60 Moderate 
0.61 – 0.80 Substantial 
0.81 – 1.00 Almost perfect 

 

3.2.9  Associations of scores with hoof examinations  

We used generalised linear models (GLM) in R (function "glm") to quantify 

associations between the consensus scores and the hoof examination 

outcomes. Lactation number was included in the models as a covariate because 

the prevalence of lameness is expected to be higher in older cows (Bran et al., 

2019). The scores were the dependent variables in the model, while the hoof 

examination results from the closest visits before and after the mobility 

assessment were explanatory variables, as in the model in Equation 3.2.  
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Equation 3.2 Formula of the generalised linear model with the scores and the hoof 

examinations. 

Y = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 + 𝛽3𝛸3 

Where: 

Y = the dependent variables - scores (consensus and average individual scores 

of each system) 

β0 = the intercept  

β1,2,3 = the weights of X1,2,3 variables, respectively 

X1 = Hoof trimming outcomes from the visit before the mobility assessment 

X2 = Hoof trimming outcomes from the visit after the mobility assessment 

X3 = Lactation number 

 

For the interpretation of the GLM outcomes, we used the Bonferroni 

adjustment for multiple testing correction (familywise error rate (0.05) / the 

number of tests). We considered 25 tests, so achieving statistical significance 

at α = 0.05 according to the Bonferroni criterion would require a P-value < 

0.05/25 = 0.002. 

Hoof trimming recordings were also used as dependent variables in a Bayesian 

generalized mixed-effects model using the "brms" and "rstanarm" packages in 

R (Bürkner, 2017; Goodrich et al., 2023). A separate model was used for each 

of the four hoof trimmings, with each model featuring fixed effects for scores 

and lactation numbers, as well as random intercepts for the assessors and 

cows and random slope for the scores within each assessor.  
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3.3 Results 

3.3.1  Lameness prevalence 

The prevalence of lameness (scores 2 and 3) was calculated for each assessor 

separately and plotted with the mean, as shown in Figure 3.4. Variation was 

high between assessors suggesting that depending on who evaluates the herd 

may yield different results. In the last farm visits, the assessors were more 

consistent in their evaluations of the prevalence of lameness in the herd. For 

example, in Farm Visit 8, the average prevalence was 0.66, which was closer 

to the mean value, and the standard deviation (SD) was 0.06, indicating that 

the scores were more tightly clustered around the average. 

 

Figure 3.4 Lameness prevalence of the herd during the longitudinal study (nine 

scorings) for each assessor in dashed lines and the average in the black line. Rater 4 

assessed visits 6 to 9, thus, the data points cover only the particular visits. 
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Figure 3.5 shows the agreed scores assigned by all assessors to each cow in the 

consensus evaluation throughout the study. In several cases, such as in cow 

411, the status appeared to alternate from visit to visit between scores 1 and 

2. In contrast, only a few cows (e.g., cows 12, 35) had a constant mobility state 

throughout. 

 

 

Figure 3.5 Consensus AHDB scores for each cow during the study. Only a few cows had 

a constant score for all visits; some were not assessed in all visits as only milked 

animals were enrolled. 
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3.3.2  Assessors’ agreement 

Assessors’ agreement was calculated for all systems for which we had 

individual ratings, namely IndivAHDB, ConvAHDB, IndivBin, and ConvBin. The 

results of the comparisons are shown in Table 3.3. 

When the AHDB system was used for assessment, the kappa indices ranged from 

0.04 to 0.4 across visits. There was an improvement in values when the 

convergent-AHDB 4-level system (ConvIndiv) was used, agreement ranging from 

0.45 to 0.88, which according to Landis and Koch, indicates a moderate to 

almost perfect agreement. The results of the almost perfect agreement were 

produced on the seventh and eighth visits when we used three of the four 

assessors in the calculation. An expected increase in kappa indices was 

observed when the above systems were converted to binary. The highest value 

(0.97) occurred at the seventh visit for the ConvBin system among the three 

assessors. The agreement for IndivBin was better compared to IndivAHDB, but 

the values were much lower than the four-level ConvAHDB system. 

3.3.3  Associations of scores with hoof examinations 

We found weak associations between consensus scores and physical hoof 

assessments. Across all analysis, most variables had tendency to a positive 

correlation; however, most produced a high p-value (p>0.02 Bonferroni 

corrected value). Some exceptions were found between scores from visit 2 with 

recorded lesions in HT2 and scores from visit 9 with lesions presence in HT4 for 

the consensus scores (Figure 3.6 A). In the binary consensus set (Figure 3.6 B), 

scores from visit 6 with lesions presence in HT3 and scores from visit 9 with 

lesions presence in HT4 positively correlated with p-values 0.03 and 0.02, 

respectively. Lactation numbers did not appear to play a statistically 

significant role or influence the associations.  

When we used the averages of assessors' scores in the generalized linear model, 

we found a few statistically significant (where<0.05) associations between 

them and some hoof examinations. As shown in figure 3.5.A there was a 

positive correlation between scores of Visit 5 and the second hoof examination 
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records (HT2 p=0.023). A positive association was also observed between Visit 

6’s scores with lesions from HT3 and scores from Visits 8,9 with lesions from 

HT4 when the convergent and binary convergent sets were used, as shown in 

Figures 3.5 B and D. The remaining associations with hoof pathology 

examinations were not statistically significant. Regarding lactation numbers 

and scores, the generated values did not suggest a linear association between 

the variables, meaning that the scores did not consistently increase or decrease 

according to the animals' age. 

When hoof trimming outcomes (HT1, HT2, HT3, HT4) were used as dependent 

variables with the Bayesian models, we considered the assessor's AHDB 

individual scores and the cows' lactation number as fixed effects and cows and 

assessors as random, with the addition of a random slope for scores within each 

assessor. For HT1, the intercept mean was -8.2, with scores and lactation 

numbers mean coefficients of 0.0 and 1.8, respectively. Similarly, HT2 

exhibited an intercept mean of -0.3, with assessors' scores and lactation 

number mean coefficients of 0.3 and 0.4. Moving on to HT3, the intercept 

estimate was -1.5, with mean estimates of 0.2 and 0.6 for scores and lactation 

numbers, respectively. In HT4, the intercept estimate was -0.1, with scores 

and lactation numbers mean estimates of 0.4 and 0.9. Random effects for cows 

and assessors indicated individual variability with varying intercepts in all 

models. All models also displayed excellent convergence with Markov chain 

Monte Carlo diagnostics. 
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A

 

 

Figure 3.6 Coefficient plots of the generalised linear models for the two scoring 

systems against the HT before and after each visit and the cows’ lactation number 

as per Equation 3.2. Each plot represents the different scoring systems used in the 

model; A: AHDB Consensus system B: Binarized AHDB Consensus system. The 

coloured horizontal lines represent the 0.95 confidence intervals for the 

coefficients. 



Figure 3.7 Generalized linear models for averaged scores vs Hoof Examination before and after, plus Lactation Number as per the Equation 

3.2 with dependent variables A: average AHDB scores, B: average convergent-AHDB scores, C: average binarised-AHDB scores, D: average 

binarized-convergent-AHDB scores. 
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Table 3.3 Inter-rater agreement (kappa indices and percentage agreement in the parenthesis) among all assessors in each visit evaluation using 

four scoring systems (AHDB, Convergent, Binary AHDB, Binary Convergent).  

Number 
of 
assessors 

SCORING 
SYSTEM 

VISIT1 VISIT2 VISIT3 VISIT4 VISIT5 VISIT6 VISIT7 VISIT8 VISIT9 

4 IndivAHDB      0.23 

(24.4) 

0.35 

(37.2) 

0.24 

(29.5) 

0.38 

(41.9) 

4 ConvAHDB      0.75 

(73.3) 

0.74 

(72.1) 

0.61 

(63.6) 

0.67 

(67.4) 

4 IndivBin      0.36 

(40) 

0.46 

(65.1) 

0.33 

(45.5) 

0.17 

(39.5) 

4 ConvBin      0.82 

(82.2) 

0.79 

(79.1) 

0.69 

(72.7) 

0.70 

(72.1) 

3 IndivAHDB 0.10 

(18.6) 

0.21  

(25) 

0.30 

(38.1) 

0.04 

(18.6) 

0.27 

(35.6) 

0.26 

(42.2) 

0.40 

(51.2) 

0.17 

(36.4) 

0.26 

(41.9) 

3 ConvAHDB 0.50 

(55.8) 

0.77 

(79.5) 

0.79 

(81) 

0.45 

(51.2) 

0.77 

(80) 

0.88 

(91.1) 

0.88 

(90.7) 

0.60 

(70.5) 

0.66 

(74.4) 

3 IndivBin 0.14 

(39.5) 

0.48 

(61.4) 

0.50 

(62.8) 

0.08 

(32.6) 

0.33 

(51.1) 

0.37 

(53.3) 

0.53 

(48.8) 

0.24 

(50) 

0.38 

(55.8) 

3 ConvBin 0.50 

(67.4) 

0.84 

(88.6) 

0.87 

(90.7) 

0.53 

(65.1) 

0.82 

(86.7) 

0.91 

(93.3) 

0.97 

(97.7) 

0.69 

(79.5) 

0.71 

(79.1) 
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3.4 Discussion 

We sought to quantify the relationship between mobility evaluations on video 

recordings of cows with the presence of lesions in their hooves and, in doing so, 

to establish which method of combining multiple ratings was most closely related 

to pathology. The overarching aim was to improve on single-assessor judgements 

as labels for machine learning. We calculated the agreement among assessors 

using the AHDB 4-level mobility system and three modified systems (binarised-

AHDB, convergent-AHDB, binarised-convergent-AHDB) derived from it, which were 

also used in Chapter 2. Agreement results were below moderate for the AHDB 

system. However, they were improved when modifications of that system were 

used, with the best performance occurring in the binarised-converged AHDB 

(ConvBin) system (kappa = 0.97, Visit 7). The same assessors gathered and scored 

all videos, giving a consensus score. Finally, we compared averaged scores from 

individual evaluations and the consensus scores with the physical examination of 

the cows and their lactation number. The results of the comparisons showed weak 

associations between scores, physical examinations, and lactation numbers. 

Inter-assessors agreement varied significantly by visit and by use of different 

scoring systems. The AHDB 4-levels, one of the UK's most widely used assessment 

systems (Afonso et al., 2020), introduced variations to the assessment. The 

converged set we created from the assessors’ second scores gave substantial 

results, which are convenient for agreement comparisons. However, in practice, 

when evaluating an animal on-farm, we need a single accurate and prompt label 

on which to base the next decision and action (e.g., calling the hoof trimmer, 

handling the lame animal, or in our case, training machine learning using the 

score/label as the ground truth). When we reduced the system’s levels, the 

agreement results were promising, reaching an almost perfect agreement. We 

expected a significant improvement since the chances of agreement increased in 

a binary system compared to a four-level system. Similar results to our study on 

the agreement among assessors were produced in other studies when they ran an 

agreement analysis between assessors with reduced scoring levels (March et al., 

2007; Schlageter-Tello et al., 2014). Still, while a binary system seems to deliver 
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desired levels of agreement, it sacrifices precision since animals that may be 

slightly lame are lumped into the same category as severely lame animals. 

Variation in assessor scores causes variation in the estimates of herd lameness 

prevalence. The assessors started with differences at the first evaluation and 

appeared to agree more on the state of the herd towards the last scorings. This 

may signal a form of calibration in how they scored the animals after the first five 

visits, which may be the time they required to become familiar with the evaluation 

process. Additionally, general discussions between assessors about herd 

prevalence (not in individual scorings) may have reduced extensive discrepancies. 

In this study, the mobility status of each cow may be better indicated by 

calculating the average score value given by all the assessors. This is because, 

taking the average score of multiple assessors, all the ratings are given equal 

importance, which helps to avoid any potential biases (Jones 2000). However, in 

this study, we chose to use consensus over average as outlier scores from 

individual assessors could skew the results, and we considered that scores agreed 

by the majority would be more representative. Our objective through group 

scoring (consensus) was to find the best possible label for each cow, aiming to 

improve the accuracy of these assessments. 

We expected to find significant associations between scores and physical 

examinations since research has shown that mobility problems are mainly caused 

by hoof lesions (Archer et al., 2010; Murray et al., 1996) and studies such as 

Brenninkmeyer et al. (2013) and Solano et al. (2015a) found correlation between 

lameness and hock lesion prevalence. At the same time, we expected that the 

likelihood of lameness is associated with increasing age (Bran et al., 2019). 

However, our results showed only weak and inconsistent associations between the 

scores, the pathologies, and the cows' ages for both consensus and averaged scores 

when we used the AHDB 4-level and binarised-AHDB systems. There were only a 

few exceptions when the convergent-AHDB and binarised-convergent-AHDB sets 

were used in the equations, where we found positive associations between the 

two scoring sets with the last two hoof examinations. When the AHDB individual 

scores were used as explanatory variables, they were found to be ineffective in 

predicting the hoof trimming outcomes. The weak association outcomes agree 

with the studies of Flower & Weary (2006), Logue et al. (1994), and Tadich et al. 

(2010b), which found that pathologies such as white line lesions and sole 
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haemorrhages (which were also the most prevalent pathologies found in our study) 

are not related to poor mobility scores. These lesions might cause discomfort to 

the animal, but they will only change the cow's gait if they are severe (Tadich et 

al., 2010b). Another explanation for the lack of consistent association between 

scores and hoof pathologies is that the deviation in mobility could be due to lesions 

not located in the hooves. An example is septic arthritis, a lesion in the cow's 

upper leg that can cause severe lameness (Desrochers, 2017) and, thus, 

locomotion alterations. However, in this study, we only examined hoof 

pathologies. Conformation is another reason for the absence of scores - hoof 

pathologies association. The deviation from the typical gait pattern could result 

from natural causes (i.e., born this way), and the animal could be perceived as 

lame without having any lesions or affecting its welfare. Finally, another 

justification for the poor association to be considered is that the visual mobility 

system may not be sensitive enough to detect subtle changes in animal movement 

patterns when they have a lesion at an early stage, which other researchers have 

suggested (Kofler et al., 2011; Manske et al., 2002a; Tadich et al., 2010b). 

Combined, the above reasons in addition to the limited population size could 

account for our study’s poor association results. 

The lack of consistent associations between scores and hoof pathologies did not 

support the original goal of increasing confidence and reducing uncertainty about 

the mobility status of the examined cows. Nevertheless, we were able to identify 

which of the proposed mobility scoring systems yielded the highest levels of 

agreement between multiple assessors and achieved near-perfect agreement. 

These longitudinal study results are satisfactory to continue research examining 

and improving the automatic radar lameness detection system, providing 

alongside hope for a way to generate valid labels with a high inter-assessor 

agreement in situations of uncertainty for use with supervised machine learning 

algorithms. 

  



135 

3.5 Conclusions  

In the present study, we attempted to quantify the associations between hoof 

pathologies and scores derived from the visual assessments, concluding that there 

are no consistent associations. We justify the results by arguing that there was no 

effect of pathologies on gait patterns or that the observation system was 

insufficiently sensitive to capture the recorded pathologies. However, although 

we did not increase confidence in the mobility ratings through physical 

examination, we did increase confidence by obtaining sufficient score sets with 

substantial to perfect agreement to test with machine learning algorithms, which 

leads us to the following study where the use of micro-Doppler radar system will 

be added to data acquisition and analysis to automate lameness detection in dairy 

cows. 
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Chapter 4  

 

Cattle mobility scorings as labels for the classification of 

micro-Doppler radar data using supervised machine 

learning - A longitudinal study Part 2 

4.1 Introduction 

Lameness in dairy cows is a prevalent mobility disorder manifested by deviance 

from the typical gait pattern, resulting in impaired welfare, reduced production, 

and cost of treatment (Dolecheck & Bewley, 2018; Garbarino et al., 2004; Green 

et al., 2014). Therefore, monitoring and rapid lameness diagnosis are essential to 

avoid adverse effects and maintain the animal’s welfare status. However, the 

most common method in massive lameness screenings (herd assessment) is visual 

scoring systems that are labour-intensive, time-ineffective, and not highly 

repeatable (Schlageter-Tello et al., 2014). Automating the lameness detection 

process could improve animal monitoring and accurate lameness classification 

(Afonso et al., 2020), improving welfare and profitability. 

Several automatic lameness detection methods have been proposed in recent 

years as a solution to the identified challenges (Byabazaire et al., 2019; Chapinal 

& Tucker, 2012; Taneja et al., 2020). Automating lameness detection in livestock 

could possibly detect lameness more accurately or in less time than humans (Kühl 

et al., 2020), reducing the likelihood of misdiagnosis. The need for manual 

monitoring would be reduced, saving time and labour costs, and animal welfare 

would be increased by reducing the risk of discomfort and maintaining productivity 

levels. Finally, the data collection and analysis would be enhanced when an 

automated system is involved as it has the potential of continuously monitoring, 

finding patterns, and assisting the farmers in improving management practices. 

Although a few automatic herd monitoring systems with an option for lameness 

detection are already available on the market, employing mainly camera systems 

and accelerometers attached to the animals, they have not been widely adopted 
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on farms yet (Van De Gucht et al., 2017). Automated systems can be expensive to 

purchase, install and maintain, making them potentially unaffordable for small-

scale farms (Gucht et al., 2018). A few systems can be complex to operate or have 

performance issues, i.e., accuracy and functionality can be affected by factors 

such as video data quality and farm lighting conditions (Russello et al., 2022). 

Finally, limited farmer awareness or consideration of the negative impacts of 

lameness (Leach et al., 2010b; Šárová et al., 2011a) might be another potential 

reason for the limited adoption of automated systems. 

Supervised machine learning (SML) requires each set of observations or signals 

from the sensors to be labelled with a ground truth state as a basis for the AI to 

learn and perform the classification task. In automated lameness detection based 

on supervised machine learning, data are manually labelled by one or multiple 

experts and used in the algorithm to recognise the patterns associated with 

lameness and make predictions on new observations. The goal is to minimise the 

difference between the algorithm's predictions and the input labels or ground 

truth. The problem with using manually labelled data is that the SML relies on the 

accuracy and consistency of these labels. If the labels are incorrect or 

inconsistent, the resulting outcomes might be biased, inaccurate or ineffective in 

recognising lameness patterns or generalising with new data. The variation and 

lack of repeatability (lack of inter- and intra-assessor agreement) involved in the 

visual assessment method used as ground truth and the uncertainty it creates has 

been noted in several studies (Afonso et al., 2020b; Engel et al., 2003; Schlageter-

Tello et al., 2014; Tadich et al., 2010).  

In two preliminary small-scale studies, we used micro-Doppler radar sensing for 

lameness detection in cows and other animals, with good specificity, sensitivity, 

and accuracy results (88%, 81%, >80%, respectively) (Busin et al., 2019; Shrestha 

et al., 2018). Micro-Doppler radar is a technology that emits electromagnetic 

pulses in the air and measures the pulse’s time of flight (TOF) from the radar to a 

target and back. When the pulses are reflected off a moving target with rotating 

or vibrating parts, it produces a distinct signature that can be used for detection, 

classification, and discrimination (Chen, 2008; Fioranelli et al., 2015). The non-

contact and non-invasive nature of radar detection makes it advantageous for 

farm applications, as the absence of wearable devices reduces the potential for 

animal stress and the non-routine handling (Z. Wang et al., 2022). Another 
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potential benefit of the radar is that its function and the produced results do not 

depend on the weather or light environment; it is not affected by rain, light 

refraction, fog or other weather and light conditions. Together with high 

resolution that enables detailed analysis of complex moving patterns, micro-

Doppler radar offers advantages over other motion detection methods. The overall 

benefits of micro-Doppler radar make it promising for a wide range of 

applications, including automated lameness detection in livestock (Shrestha et 

al., 2017), human movement analysis for medical applications (Hayashi et al., 

2021; Kao et al., 2013) and detection and tracking of small autonomous aerial 

vehicles (Gong et al., 2022). 

Previous chapters addressed the assessment and quantification of inter-assessor 

agreement using different scoring systems to classify cow mobility via video. A 

general conclusion was that binary scoring systems produced better results than 

the UK's most widely used four-level mobility system. The present study utilises 

all the scoring labels produced and described in the previous chapter to find which 

label-algorithm combinations provide more accurate predictions. Hence, we 

expected at least one system that has previously delivered acceptable levels of 

inter-assessor agreement (Cohen's kappa >0.6) would also deliver equally 

sufficient levels of accuracy when used as ground truth in machine learning 

classification models. 
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4.2 Materials and Methods 

Farms, visits, animals, video recordings and labels are described in detail in 

Chapter 3. Micro-Doppler radar signals were collected while these animals were 

video recorded during these visits. This chapter describes the second part of the 

longitudinal study, which concerns the training and validation of machine learning 

from the assembled data. 

4.2.1  Farm Visits and recorded animals 

Nine fortnightly visits were carried out on a central Scottish farm between April 

and September 2021. On each visit, we recorded the micro-Doppler signature of 

50 cows, the same animals that were video recorded in Chapter 3, and we 

obtained 393 radar signatures in total after eliminating signals with more than one 

cow being recorded at the same time. In cases with a recorded signal from the 

radar but no label from the evaluation process, the signal was not included in the 

analysis. This resulted in the total number of analysis samples for some evaluations 

being slightly less or more, as shown in Table 4.3. The farm facilities and the 

stations (radar (A), video recordings (C)) set up can be seen in Figure 4.1. 

4.2.2  Radar equipment and set up 

In this project, we used an FMCW radar system from Ancortek operating at 

5.8 GHz, with a bandwidth of 400 MHz and a pulse repetition frequency of 1 kHz. 

In a monostatic configuration, the radar was connected to two separate Yagi 

antennas, a transmitter and a receiver antenna. The transmitted power from the 

antenna was approximately 100 milliwatts, with an antenna gain equal to 

approximately 17 dBi (Decibels relative to isotropic) and a beam width of 24 

degrees in azimuth and elevation. The station with all the equipment was set up 

on the farm with a line of sight along a passageway after leaving the milking 

parlour (Figure 4.1 B). The antennas were placed on tripods 40 cm apart, at 1.5 

m high, with the transmitted signal directed at the animal’s rear, at its torso 
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height. A photo of the antennae set up, the corridor, the radar angle of view and 

the video vantage point can be seen in Figure 4.1. 

 

Figure 4.1 (A) Antennae set up, (B) the rear vantage point when a cow was walking in 

front of the antennae, and (C) the lateral vantage point of the video recordings. 
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4.2.3  Radar signal processing 

The radar signal data, a series of numbers stored in ".dat" format, was fed into an 

algorithm previously developed and used in the studies by (Busin et al., 2019a) 

and (Shrestha et al., 2018). 

The following steps were followed for the micro-Doppler signatures processing: 

• First, a waveform was generated from the raw data recorded from the 

intermediate frequency stage of the radar containing the backscattered 

signals. (Figure 4.2 B) 

• The data (complex in-phase and quadrature numbers - I&Q) was reshaped 

into a two-dimensional matrix with dimension 128×N, where 128 is the 

number of time samples per sweep, and N is the number of chirps in the 

frame. Dividing the waveform into chirps is a standard pre-processing 

before extracting the range information. 

• A Moving Target Indicator (MTI) filter was applied to remove static clutter 

caused by stationary objects in the environment. The MTI was implemented 

using an infinite impulse response (IIR) notch filter, removing common 

frequencies below a set threshold of 0.0075 from one pulse repetition 

interval to the next. 

• The range information was extracted by applying a Fast Fourier 

Transformation (FFT) - FMCW radar recorded signals were encoded into 

frequencies that are directionally proportional to the time of flight of the 

signal, ergo the distance of the target-generating range plots for each chirp 

— these plots were accumulated over time to form the range-time plot 

displaying the target's (cow) distance from the radar/antenna (Figure 4.2C) 

• A Short Time Fourier Transformation (STFT) using a 0.2 s Hamming sliding 

window with a 95% overlapping factor was chosen and implemented on the 

acquired range-time data matrix creating a range-Doppler image which 

contained information about the Doppler shift of the targets over time. 

Next, we summed together the range information in the range-Doppler 

image to obtain a slice of the Doppler time representation. The resulting 

spectrograms (Figure 4.2 D) displayed the movement and direction of the 

targets, indicating whether they were moving towards or away from the 
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radar, allowing for feature extraction, velocity analysis and activity 

classification.  
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Figure 4.2 Radar signal processing chain from the moment of data recording (A) to the generation of the spectrograms (D). The raw data were visualised 

as a waveform (B) and filtered before performing a fast Fourier transform (FFT), generating range–time plots (C). Then, micro-Doppler - time 

spectrograms were generated by completing a short-time Fourier transformation on the processed data. 
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4.2.4  Feature extraction 

For feature extraction, we divided all micro-Doppler signatures into 1.5-2 s 

segments from which we extracted numerical features. The numerical features 

represent the relevant information in the recorded signal, such as the mean and 

the standard deviations. We extracted twenty features from each micro-Doppler 

spectrogram for each cow, which we will then use for classification. More 

specifically, bandwidth and centroid are features based on the radar signal's 

frequency-domain characteristics. The singular value decomposition (SVD) belongs 

to the time-frequency domain features and is a mathematical technique used to 

decompose the spectrogram into its components, including the left (U) and right 

(V) eigenvectors, which are used as features for classification. The specific 

features were chosen because they have led to high accuracy results in similar 

studies using micro-Doppler radar (Busin et al., 2019a; Shrestha et al., 2017), as 

they can distinguish between targets and estimate their physical properties, such 

as the target's size, shape, and temporal behaviour. 

 

Figure 4.3 The 3D scatterplot with an example of three extracted features shows the 

distribution of values in space and their relationship to each other. Colours represent 

the algorithm's associations of the features with the 4-level Consensus scores/labels. 

Clutter (proximity of circles) indicates the challenge of differentiating between the 

features and the different level corresponding labels. 
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An example of a 3-Dimensional visual representation of three extracted features 

(example, with Bandwidth mean and SD, and Centroid mean) from our data is in 

Figure 4.3. By examining the data for patterns or clusters, relationships can be 

identified between the features. The list of all extracted features is detailed in 

Table 4.1  

 

 

Table 4.1 Extracted numerical features from the radar recordings for each cow. We 

considered 20 features from each spectrogram segment, representing a statistical 

moment such as mean or standard deviation. 

Parameters Extracted features 

Centroid mean Standard 
deviation 

skewness kurtosis 

Bandwidth mean Standard 
deviation 

skewness kurtosis 

Spectrogram segment mean Standard 
deviation 

skewness kurtosis 

First right (V) 
eigenvectors of the 

singular value 
decomposition (SVD) 
of the spectrogram 

segment 

mean Standard 
deviation 

Sum of pixels 
for matrices 

V 

Mean of the diagonal of 
the left matrix V 

containing eigenvectors 
of the spectrogram 

segment 

First left (U) 
eigenvectors of the 

singular value 
decomposition (SVD) 
of the spectrogram 

segment 

mean Standard 
deviation 

Sum of pixels 
for matrices 

U 

Mean of the diagonal of 
the left matrix U 

containing eigenvectors 
of the spectrogram 

segment 
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4.2.5  Video recordings and labels 

We used the video recordings and scores described and generated in the first part 

of the study (Chapter 3). The scores served as labels from the different scoring 

systems we used in this chapter are listed in Table 4.2. 

In some instances, not all assessors scored all the cows, resulting in varying total 

numbers of animals assessed. For example, this happened when two animals 

were evaluated simultaneously in a single video clip, and one assessor scored 

one animal while the other scored the second. In this case, the video was 

excluded from the consensus scoring, but the scores provided by assessors who 

evaluated both animals were still considered.  
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Table 4.2 Labels and their descriptions used for the algorithm training. We used four 

different scoring systems as developed and assessed in Chapter 3. 

Labels set Levels Labels Description 

AHDB 4 0 = good mobility    
1 = imperfect mobility 
2 = impaired mobility 
3 = severely impaired 
mobility 

Individual scores from 3 or 
4 assessors 

Binary 
(AHDB) 

2 0 = not lame 
1 = lame 

Individual scores from 3 or 
4 assessors merging the 4 
levels of the AHDB (0,1=0 
and 2,3=1) 

Convergent 4 0 = good mobility    
1 = imperfect mobility 
2 = impaired mobility 
3 = severely impaired 
mobility 

Individual scores from 3 or 
4 assessors 

Binary 
convergent 

2 0 = not lame 
1 = lame 

Individual scores from 3 or 
4 assessors merging the 4 
levels of the AHDB (0,1=0 
and 2,3=1) 

Consensus 4 0 = good mobility    
1 = imperfect mobility 
2 = impaired mobility 
3 = severely impaired 
mobility 

Agreed scores between 
assessors after discussion 

Binary 
Consensus 

2 0 = not lame 
1 = lame 

Agreed scores between 
assessors after discussion 
merging the 4 levels of the 
AHDB (0,1=0 and 2,3=1) 
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4.2.6  Test and validation data 

For classification, we used 90% of the data for the training and 10% for the 

validation test. Using randomly chosen subsets for training and testing, we 

repeated the process ten times (cross-validation process), recording the average 

accuracy of each test.  

4.2.7  Classification models 

We used the Matlab classification application to train and validate the 

classification models. We used several supervised ML classifiers, but only support 

vector machine (SVM) and k-nearest neighbour (KNN) results will be presented as 

they cover an overall complexity (with SVM being more computationally 

demanding but scaling well with large datasets and KNN being more simplistic but 

being slower with many observations). In particular, quadratic SVM and linear KNN 

have produced reliable results and work well with data like those we consider in 

the present study. 

The process followed while using the classification learning application is shown 

in Figure 4.4. 

 

 

Figure 4.4 Steps in the classification learning process. First, we selected the data for 

testing and validation, then the classifier choices, which models we would like to use for 

training (i.e., KNN, SVM), observing the accuracy results, and extracting all the valuable 

data. 
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4.3 Results 

4.3.1  Score distribution – labels 

During the study, the lameness prevalence (scores 2 and 3) in the herd based on 

the different scoring systems averaged 0.5. This means that at any given time, 

about half of the animals in the herd were lame (score 2 or 3). Most animals had 

scores of either 1 or 2 in the 4-level systems, while in the 2-level systems, they 

were almost equally distributed (Table 4.3). 

Table 4.3 Scores distribution of each system used and for each assessor 

System Assessors Scores Total 
 

 0 1 2 3 

 

AHDB 1 20 148 184 17 369 

2 29 165 168 15 377 

3 59 125 184 8 376 

Binarised AHDB 1 176 201 - - 377 

2 194 183 - - 377 

3 184 192 - - 376 

Convergent AHDB 1 23 169 177 8 377 

2 29 160 177 11 377 

3 26 178 168 4 376 

Binarised - Convergent 
AHDB 

1 192 185 - - 377 

2 190 188 - - 378 

3 204 172 - - 376 

Consensus AHDB all 24 144 189 18 375 

Binarised Consensus 
AHDB 

all 168 207 - - 375 
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4.3.2  Performance and accuracy of the KNN and SVM models 

4.3.2.1 Binary systems 

The prediction accuracies from the two models, when used with the binary labels, 

are listed in Table 4.4. Accuracy ranged from 0.57 to 0.64, with the highest 

accuracy observed in the KNN model using the binary consensus scores as labels. 

The average sensitivity and specificity of the binary systems were 0.6.  
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Table 4.4 Estimations of sensitivity, specificity, and accuracy of the SVM and KNN models for each binary system label. 

Assessors SVM KNN 

Binary AHDB Binary 
Convergent 

Binary 
Consensus 

Binary AHDB Binary 
Convergent 

Binary 
Consensus 

A1 A2 A3 A1 A2 A3 ALL A1 A2 A3 A1 A2 A3 ALL 

True 

positives 

58.3 56.1 55.9 56.7 56.5 55.7 59.9 61.9 58.9 57.9 64.2 56.2 59.4 58.2 

False 

positives 

41.7 43.9 44.1 43.3 43.5 44.3 40.1 38.1 41.1 42.1 35.8 43.8 40.6 41.8 

True 

negatives 

57.6 61.2 67.1 60.5 61.4 64.8 66.7 55.7 62 68.4 61.1 58.1 61.3 70 

False 

negatives 

42.4 38.8 32.9 39.5 38.6 35.2 33.3 44.4 38 31.6 38.9 41.9 38.7 30 

Sensitivity1 0.58 0.59 0.63 0.59 0.59 0.61 0.64 0.58 0.61 0.65 0.62 0.57 0.61 0.66 

Specificity2 0.58 0.58 0.6 0.58 0.59 0.59 0.62 0.59 0.6 0.62 0.63 0.57 0.6 0.63 

Accuracy3 0.58 0.59 0.62 0.59 0.59 0.6 0.63 0.59 0.6 0.63 0.63 0.57 0.6 0.64 

 Sensitivity = true positives/ (true positives + false negatives) 
2 Specificity = true negatives/ (true negatives + false positives) 
3 Accuracy = (true positives + true negatives)/count of all observations 
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4.3.2.2 Four-level systems 

The four-level systems produced poor results. The accuracies of the systems 

ranged from 48% to 55.6%. The highest accuracy (55.6%) was produced by the KNN 

model when using the AHDB convergent system’s labels of assessor 3. The 

accuracies for each system’s levels are listed in Table 4.5 

The classifications of each model can be seen in the confusion matrices in Figure 

4.5. The gradient of the colours indicates the percentages of the classifications; 

the darker the colour, the more animals were assigned to the specific class. The 

desired result would be dark blue diagonal tiles, meaning that all cows would be 

classified in the category indicated by the labels. The bold orange squares in the 

figure show the misclassification. 
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Table 4.5 Estimation of sensitivity, specificity and accuracy for KNN and SVM models with 

labels from the 4-level systems. The calculations were based on the predictions of the 

confusion matrices in figure 4.4. 

    KNN    SVM  

System Levels  Sens4 Spec5 Acc6  Sens Spec Acc 

Consensus 
AHDB  
4 levels 

0  0 1 0.94  0 0.99 0.93 

1  0.02 0.78 0.1  0.15 0.86 0.59 

2  0.98 0.05 0.52  0.91 0.23 0.57 

3  0 1 0.95  0 1 0.95 

          
AHDB 
Assessor1 

0  0 1 0.93  0 0.99 0.92 

1  0.02 0.97 0.6  0.16 0.81 0.6 

2  0.97 0.02 0.48  0.8 0.27 0.53 

3  0 1 0.95  0 1 0.95 

          
AHDB 
Assessor2 

0  0 1 0.92  0.03 0.99 0.92 

1  0.52 0.58 0.56  0.4 0.68 0.56 

2  0.63 0.53 0.57  0.72 0.44 0.56 

3  0 1 0.96  0.07 1 0.96 

          
AHDB 
Assessor3 

0  0 1 0.82  0.24 0.95 0.59 

1  0.06 0.89 0.61  0.05 0.9 0.62 

2  0.96 0.14 0.54  0.91 0.2 0.55 

3  0 1 0.98  0 1 0.98 

          
Convergent
AHDB 
Assessor1 

0  0.09 0.98 0.93  0.04 0.99 0.93 

1  0.57 0.5 0.53  0.38 0.69 0.55 

2  0.5 0.61 0.56  0.75 0.44 0.58 

3  0 1 0.98  0 1 0.98 

          
Convergent 
AHDB 
Assessor2 

0  0 1 0.92  0 0.99 0.91 

1  0.26 0.8 0.57  0.34 0.71 0.55 

2  0.84 0.28 0.54  0.76 0.4 0.57 

3  0 1 0.97  0 1 0.97 

          
Convergent 
AHDB 
Assessor3 

0  0 0.99 0.92  0.04 0.99 0.93 

1  0.65 0.47 0.56  0.46 0.61 0.54 

2  0.52 0.69 0.62  0.67 0.51 0.58 
3  0 1 0.99  0 1 0.99 

4 Sensitivity = true positives/ (true positives + false negatives). 
5 Specificity = true negatives/ (true negatives + false positives). 
6 Accuracy = (true positives + true negatives)/count of all observations. 
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Figure 4.5 Confusion matrices of the KNN and SVM for each label set. The blue colour 

tiles represent the correctly classified cases, and the orange represents the 

misclassification.  
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4.4 Discussion 

We aimed to use the labels from each cow mobility evaluation system we used in 

the previous chapter to train an AI-based algorithm that uses radar data. In this 

way, we expected to find the most suitable scoring system to use as ground truth 

in machine learning, producing reliable mobility predictions. Unfortunately, the 

results were not as expected since only low accuracies were obtained for the 

models and labels we used and, therefore, cannot be considered yet optimal for 

farm use as it is. 

Labels from the binary and multilevel scoring systems gave accuracy results 

between 40% and 64% in both KNN and SVM models. We do not consider these 

values good predictions since the outcome would not correspond to reality in 

almost half of the cases. Other studies used the same or similar radar system for 

data recordings, and their analysis results differed greatly from this study. For 

example, Busin et al. (2019) and Shrestha et al. (2018) had accuracy values of up 

to 88% for detecting and classifying dairy cow lameness. At the same time, studies 

on mobility detection in humans using micro-Doppler radar also had high 

classification accuracy rates (Li et al., 2020, 2021). We recognise that our study's 

main difference lies in how the animals were assessed (label generation). In the 

two studies (Busin et al., 2019a; Shrestha et al., 2017), the cows were scored live 

and from the rear of the animals by a single assessor, whereas multiple assessors 

in our study scored the cows from the side using video recordings of the cows. The 

second difference we identified was the uncertainty of the labels for use as ground 

truth, which is the major and possibly the main challenge in having accurate and 

reproducible machine learning results and process automation. In human mobility 

classification (Li et al., 2020; Li et al., 2023), the researchers had high confidence 

in the labels they used for ML training as they dictated to the participants the 

performed actions (i.e., gait and motion patterns). According to our previous 

studies, there is considerable variation among assessors regarding cow mobility 

scoring, hence uncertainty regarding the true label of a cow. Only a few animals 

maintained the same mobility score throughout the longitudinal study, for which 

we have confidence and may be promising markers for training a model. 

Therefore, a subsequent chapter will focus on only these animals for the model’s 

training.  
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Machine learning studies have often reported challenges in creating labels 

(Cruciani et al., 2018; Schröder et al., 2016). It is challenging to have a 

generalisable label, especially when there is no single objective source of truth. 

Examples of classification challenges have been presented in Chapters 2 and 3, 

where assessors perceived and interpreted the given data (videos of cows for 

scoring) differently and subjectively, making it impractical to create a ground 

truth. This difficulty also becomes apparent in the present study. For example, 

when we plotted three extracted features and used colours corresponding to the 

consensus labels (Figure 4.3), they appeared all clustered without clear class 

separations, making the lack of exclusiveness (categories within classification do 

not overlap) and exhaustiveness (all cases are covered or accounted for in the 

classification system) of the levels obvious. Animals also introduce difficulty in 

creating a generalisable label due to their unique gait and body structure that 

might deviate from a typical pattern but not adversely affect their well-being. 

Antithetically, because cows have been characterised as stoic animals (Weary et 

al., 2009), they may have a mobility problem and not exhibit any obvious sign of 

discomfort until severe. However, recorded hoof lesions were also used as labels 

with the ML algorithms, and the prediction characteristics (average accuracy 

58.3%) did not exceed the accuracy achieved by using assessors' scores as labels 

(this analysis is not presented here). These highlight the difficulty in the label 

creation and machine learning part of an animal attributes' classification, which 

applies to most systems that use supervised machine learning, not just the micro-

Doppler radar system. In all cases, supervised machine learning requires well-

defined and precise labels to produce results with high accuracy.  

Accuracy, however, is not always the most appropriate way to judge a 

classification model algorithm (Harrell, 2001). Accuracy, in this case, is the 

percentage of correct classifications among all classifications, and it is a 

straightforward and intuitive measure to assess each model's performance. 

However, suppose we have probabilities (0.2, 0.8) for a prediction outcome; then 

accuracy will be 80% if we classify everything in the second category and 

completely ignore the 20% chance that any result could be in the first category. 

On account of this, except for the probabilistic output, one needs to consider 

some more aspects, such as the consequences of the predictions (what happens if 

a cow is classified as healthy but is not?) and whether the classes are exhaustive 
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and exclusive enough for each level. When the thresholds of a system’s levels are 

unclear, a cow may be classified in more than one category, and the classification 

ends up depending on characteristics other than the animal, such as the assessor’s 

experience. Finally, cows cannot always be classified according to defined visual 

observation thresholds in mobility characterisation, which is basically what 

mobility assessment systems try to achieve. A cow can range from perfectly 

healthy to unable to take a step forward or anything in between. There is a 

continuum in movement and lameness characterisation, and the set thresholds are 

essentially cognitive shortcuts which must be passed to machine learning to 

produce valid results. The overall performance of machine learning tools needs to 

be considered, and a way to pass complex decision-making tasks related to 

mobility characterisation to a machine must be found to have a reliable accuracy 

outcome. 

This study was an attempt to examine the performances of labels and algorithms. 

Unfortunately, the predictions from the supervised machine learning classification 

models were not significantly reliable with the labels we used. In a future study, 

it would be helpful to make some changes either to the way the labels are 

collected or to the machine learning analysis so that we can observe different 

outcomes, for example, considering different features and classifiers. 

4.5 Conclusion 

This study addresses the challenge of creating cows’ mobility classification labels 

for use as ground truth in machine learning.  Labels from the binary systems 

performed better with machine learning models than the 4-level systems. 

Combinations of machine learning models and binary systems had no consistent 

difference in performance. There were many misclassifications, but it was not 

unexpected since the agreement among human assessors was low in most sets. 

There is a need for studies investigating early lameness cases and a way to have 

confidence in the assigned scores and then pass accurate labels to machine 

learning algorithms. 
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Chapter 5  

 

Validation and Enhancement of an AI Tool for 

Automated Lameness Detection: A Cross-Sectional Study 

with Alternative Labels and Pre-Processing Techniques 

5.1 Introduction 

This chapter aimed to improve an AI tool for automated lameness detection 

developed in Chapter 4. To follow up on the longitudinal study, a cross-sectional 

study was designed to collect data from a different cow herd and analyse it using 

the same method. The objective was to obtain additional evidence to test the 

system on a large number of animals, thereby testing its generalisability and 

acquiring data to improve its performance. Specifically, we investigated if the 

discouraging results of our previous studies (Chapters 3 and 4) were replicated in 

other farms with a larger number of animals. The chapter details our attempts to 

enhance the machine learning prediction outcomes through an alternative method 

of labelling and data pre-processing before loading them into the supervised 

machine learning classification model. 

Micro-Doppler radar has shown encouraging results for mobility classification in 

cattle (Busin et al., 2019; Shrestha et al., 2018) and humans (Fioranelli et al., 

2019), presenting advantages over other systems. Micro-Doppler systems offer 

benefits including high-resolution measures in range and velocity, real-time 

monitoring, low power consumption for classification of moving targets while also 

providing distance monitoring without interfering with targets' operations, 

immunity to environmental conditions, suitability for challenging conditions such 

as farms, and relative affordability as they do not need to be replaced or increased 

numbers over time, making them a valuable tool for monitoring mobility 

classification in various applications such as cattle lameness detection. 

A micro-Doppler radar acquires data on the motion and vibration of objects in the 

field of view of an antenna (Chen et al., 2014). The obtained data can then be 
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analysed using time-frequency analysis and machine learning (Chen, 2008). In 

machine learning and pattern recognition, the raw data are transformed into a set 

of features so the algorithms can use the data information. The feature extraction 

process is necessary to reduce the dimensionality of the data and any possible 

noise or irrelevant information that can negatively impact the algorithm's 

performance. Feature extraction methods include numerical, statistical, and 

dimensionality reduction techniques such as principal component- or linear 

discriminant analysis (Nisbet et al., 2018; Salau & Jain, 2019). The process 

depends on the problem and the requirements of the ML algorithm. In our study, 

using feature extraction and statistical learning instead of deep learning, where 

the algorithm automatically extracts features and classifies them in one step, 

ensures that an embedded platform can run both the signal processing and 

machine learning algorithms on a resource-limited platform. After extracting 

features from the raw data, the numerical information is used along with a set of 

labels in algorithmic classification models. The model outcomes, i.e., the 

predictions, depend highly on the link between the labels and the extracted 

features (Parsons, 2010). Labels, essentially, provide the ground truth that the 

algorithm is trying to predict and define the classes into which the data is to be 

divided. A problem is introduced in cases where the ground truth is uncertain, as 

in some of our previous studies. Similar limitations have been demonstrated in the 

literature, particularly in the broad medical field, where there is a high degree of 

uncertainty in label assignment, and artificial intelligence tools to aid decision-

making are becoming indispensable. A typical example comes from radiology and 

computer-aided detection (CAD). Until a few years ago, its usefulness was 

questioned due to poor results produced out of training with uncertain labels. A 

high number of apparently false positive results from CAD resulted in increased 

workload and associated costs (Oakden-Rayner, 2019). However, technology has 

advanced, and the interest in automation and computer-aided diagnosis and 

detection has increased again, increasing reliability in labels and producing 

encouraging results like those in the study by Rajpurkar et al. (2018). 

Since technology and automation is prevalent, and popularity is constantly 

increasing, significant initiatives have been made to improve and tackle 

limitations with labeling issues. Some examples of recent studies (Khetan et al., 

2017; Reamaroon et al., 2019; Shi & Wu, 2021; Zheng et al., 2021) suggest 
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different methods to deal with noisy or uncertain labels and describe techniques 

such as active learning, Bayesian model calibration and ensemble methods to 

adjust the predicted probabilities of a machine learning model so that they 

accurately reflect the labels' uncertainty. In our study, we used a pre-processing 

calibration technique described by (Li et al., 2023) in their closely related 

research which used the same micro-Doppler radar system for data acquisition as 

ours. Their results were optimistic, reaching up to 93.1% classification model 

accuracy using an adaptive thresholding method with a support vector machine 

(SVM) classifier for human activity recognition. Motivated by their encouraging 

results (prediction accuracy of more than 90%), we thought masking would be an 

appropriate and straightforward approach to improve our classification model's 

accuracy. 

Therefore, the present study aimed to investigate the effectiveness of different 

data labelling systems, some of which have been seen in our previous studies and 

some that we have not used before, as well as a data pre-processing technique to 

obtain reliable data with high accuracy from a supervised machine learning 

algorithmic model. A new labelling system developed by Lorenzini et al. (2017) 

was selected, as it has a few exclusive levels, presented promising results 

regarding the inter-assessor agreement, and was developed to assess animals that 

do not show lameness traits used in other mobility systems such as in Sprecher or 

AHDB. The study will present comparative results before and after applying the 

data pre-processing approach and comparisons of accuracy results using the 

different labelling systems. In this way, we hope for accurate and valid predictions 

that will benefit mobility classification automation and possibly establish a 

reference point for future studies in ML labelling and processing. 
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5.2 Materials and methods 

5.2.1  Farms and animals 

For this study, we dealt with two central Scottish dairy farms; from now on, they 

will be referred to as farms A and B. The visits to the two farms took place in April 

and July 2022, where we recorded 369 and 59 cows, respectively. During the 

afternoon milking, we obtained radar measurements from the cows' rear as they 

returned to their cubicles. Following this, we captured videos of each cow from a 

lateral distance of approximately 5 meters as they walked a passageway 

(approximately 7 meters long and 1.65 meters in average width) enclosed by steel 

rails. This enabled us to gather data for labelling purposes, similar to previous 

studies, and to acquire each animal's micro-Doppler signatures using radar. 

Because of a failure in video recording on Farm A, a second visit was conducted 5 

days later to collect videos of all cows from the same vantage point as the first 

visit. 

5.2.1.1 Labels – scoring 

The videos were recorded with the Kodak PlaySport Zx5 Full HD 1080P camera 

(same device as in previous studies). The videos were transposed into an Access 

Database file and were shared with three assessors used in previous chapters for 

evaluation. This study used more than one system to evaluate cows' mobility. 

First, assessors were asked to individually score the animals using the AHDB 4-

level mobility system; then, they met twice to produce the consensus scoring sets. 

Once, they evaluated based on the AHDB four-level system, and the second time, 

they used the three-level system proposed by Grimm and Lorenzini (Lorenzini et 

al., 2017) with scores as described in Figure 5.1.  
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Figure 5.1 Diagram of the 3-point locomotion score by Grimm and Lorenzini. Adapted 

from “Using a three-point lameness scoring system combined with a clinical examination 

to increase the reliability of locomotion scoring” by Lorenzini et al., (2017).  

 

As in previous chapters, the scores of the four-level systems were also converted 

to a binary system by combining the scores of 0,1 and 2,3.  

With the above systems, we had fourteen sets of labels to use in the classification 

algorithm for Farm A and five sets of labels for Farm B. More details follow in 

Table 5.1. 

There is a difference between the farms and the labelling systems used in each. 

Due to a significant difference in the number of videos and time constraints, we 

could not assess both farms using all the systems.  
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Table 5.1 After scoring and modifying the systems, we obtained scores from 14 

systems to be used as labels with the machine learning classifier. Not all systems 

were used for both farms due to limited evaluation time during the experiment. 

System Description Labels Farm 

AHDB (individual 
scoring) 

3 assessors – 4 levels 
scores 

0, 1, 2, 3 A 

AHDB average 
The rounded average of 
the individual scoring 

0, 1, 2, 3 A 

Binary AHDB (individual 
scoring) 

3 assessors – 2 levels 
scores 

0, 1 A 

Binary AHDB average 
The rounded average of 
the individual scoring 

0, 1 A 

Convergent (Individual) 
3 assessors – 4 levels 0, 1, 2, 3 A 

Convergent Binary 
(individual) 

3 assessors – 2 levels 0, 1 A 

Convergent (average) 
The rounded average of 
the individual scoring 

0, 1, 2, 3 A 

Convergent Binary 
(average) 

The rounded average of 
the individual scoring 

0, 1 A 

Grimm & Lorenzini 
(individual) 

3 assessors – 3 levels 1, 2, 3 A and B 

Grimm & Lorenzini 
Binary 

3 assessors – 2 levels 
(1,2 vs 3) 

0, 1 A and B 

Grimm & Lorenzini 
average 

The rounded average of 
the individual scoring 

1, 2, 3 A and B 

Grimm & Lorenzini 
Binary average 

The rounded average of 
the individual scoring – 

(1,2 vs 3) 

1, 2, 3 A and B 

Grimm & Lorenzini 
Consensus 

One score from 3 
assessors 

1, 2, 3 B 

Grimm & Lorenzini 
Consensus Binary 

One score from 3 
assessors (1,2 vs 3) 

0, 1 B 
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5.2.1.2 Statistical analysis – agreement (different ways) 

For the statistical analysis, we used further formulas than in previous studies to 

compare our results with other research. All analyses were performed in R (version 

3.212). 

We first calculated pairwise inter-assessor agreement for individual assessors. We 

used: 

• Cohen's kappa for pairwise and Fleiss's kappa for multiple assessors (kappa2 

and kappam.fleiss – (Gamer et al., 2019)) 

Equation 5.1 Cohen's kappa formula 

 

Cohen′s kappa =  
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒
 

 

Equation 5.2 Fleiss's kappa formula 

 

𝐹𝑙𝑒𝑖𝑠𝑠′𝑠 𝑘𝑎𝑝𝑝𝑎 =  
(𝑁 ∗ (𝑃0 − 𝑃𝑒))

𝑁 − 1
 

 

Where P0 is the relative observed agreement among assessors, Pe is the 

probability of chance agreement, and N is the number of assessors. 
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• First-order agreement coefficient (AC1) by Gwet (2008) 

Equation 5.3  AC1 formula 

AC1 =  
𝑃𝑎 − 𝑃𝑒𝛾

1 − 𝑃𝑒𝛾
  

 

Where Pα is the overall agreement probability including by chance/not by 

chance, and Peγ is the chance-agreement probability. 

 

• Kendall's coefficient of concordance (Kendall, 1938) 

Equation 5.4 Kendall's tau formula 

 

 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙’𝑠 𝑇𝑎𝑢 =  (𝐶 –  𝐷 / 𝐶 +  𝐷) 

 

Where C is the number of concordant pairs and D is the number of 

discordant pairs. 

Cohen's kappa is one of the most popular statistics for inter-assessor agreement, 

but it is also considered too strict regarding the chance agreement (Bexkens et 

al., 2018; Feinstein & Cicchetti, 1990). The main differences between Cohen’s 

kappa and Gwet are that Cohen’s kappa is directly affected by prevalence and 

marginal probability, while Gwet remains less affected and relatively constant 

(Wongpakaran et al., 2013). The difference between kappa and Gwet statistics 

compared with Kendall's coefficient is that the first two calculate the absolute 

agreement between ratings while Kendall's measures the correlation between 

ratings. We used these different methods because there is no single standard for 

analysing inter-assessor agreement in the literature, and we wanted to be able to 

compare our values with those of other studies. Finally, an analysis of variance 

(ANOVA) among the three statistical methods was performed to examine if 

differences in observations were statistically significant.  
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5.2.2  Radar  

5.2.2.1 Radar setup  

The radar equipment is the same as described previously in Chapter 4: an FMCW 

radar system from Ancortek operating at 5.8 GHz, with a bandwidth of 400 MHz 

and a pulse repetition frequency of 1 kHz. We used the same two Yagi antennae, 

a transmitter, and a receiver, with approximately 100mW of transmitted power. 

The height of the antennas and the distance between them were the same as in 

every other experimental design, 1.5 m high and 40 cm distance between them, 

so the radar setup did not affect the results. The recording time for each cow was 

12 s (reduced compared to the longitudinal study of Chapters 3 and 4, which was 

45 s), trying to imitate the everyday time routines of cows exiting the milking 

parlour. We set up the equipment in critical locations within the premises of each 

farm, where we would be allowed to record the animals without disrupting daily 

routines (Figure 5.2). 

 

Figure 5.2 Micro-Doppler radar system set-up in farms A and B. The equipment (radar and 

antennas) was set up at critical points so as not to interfere with the daily routine of the 

farm and the animals. The antennas were pointing at the rear of the cows exiting the milking 

parlour. 
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5.2.2.2 Radar data processing 

We followed the same method as in chapter 4 (Figure 5.3) to process the radar 

data with MATLAB (MATLAB R2022b, 2022). We first applied a Hamming windowed 

fast Fourier transformation to each chirp creating a range-time map. Then, 

because the moving target and the surrounding objects reflect the transmitted 

radar wave, we applied a moving target indicator (MTI) filter to remove noise and 

static clutter. Then a short-time fast Fourier transformation followed by a 0.2 s 

Hamming window with a 95% overlapping factor, creating the micro-Doppler 

signature (Spectrogram).  

Figure 5.3 The steps followed in extracting numerical features for classification from the 

raw radar data with the masking application. First, a Fast Fourier Transformation followed 

by a Short Time Fourier Transformation were applied to the data to create range-time 

and then Doppler-time data. Then, the masking pre-processing operation and the feature 

extraction were performed. 

 

 

Because the spectrograms have a significant area of non-useful information 

(speckled blue colour - as shown in Figure 5.4 A), we wanted to exploit only 

relative information. Thus, we pre-processed the data by first converting the 

spectrograms to grayscale images Figure 5.4 B. Then, we applied a mask to the 

grey scale spectrograms to further filter the signal and focus on the region of 

interest. For the masking process, we compared the grey-scale micro-Doppler 

spectrograms to a set threshold created with an adaptive method for each 

spectrogram (further details on the threshold generation process can be found in 

Li et al. 2021 work). Then the spectrogram values were compared to the 
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threshold, and 0s and 1s replaced the signal values, so the final image was 

binarised - black and white (Figure 5.4 C). The development of the generated 

spectrograms following these steps can be seen in Figure 5.4. 

 

 

 

 

 

Finally, we extracted the features in Table 5.2 from the masked signals to use in 

machine learning classification. The selection of numerical features we chose to 

extract has been proposed and used in other studies (Li et al., 2021; Sharma et 

al., 2018), and we thought they would convey helpful information that could 

enhance the classification task. 

  

Figure 5.4 Mask pre-processing technique. The spectrogram (A) was first converted to a grey 

scale (B) and then was binarised, creating only black and white (0 and 1) figures (C), thus 

retaining only the spectrogram's area of interest with the most helpful information. 
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Table 5.2 Extracted features from the masked spectrograms. 

Category Features Brief description 

Radar 
spectrogram 
features 

Entropy,  

skewness,  

centroid (mean and SD),  

bandwidth (mean & SD),  

energy curve (mean, SD and 
trapezoidal numerical 
integration), 

singular vector decomposition 
(mean and SD of the first three 
vectors of components) 

These features are used 
to analyse radar data by 
extracting 
characteristics such as 
the randomness, 
asymmetry, centre of 
mass, bandwidth, and 
energy distribution of 
the signal, as well as 
the first three vectors 
of the Singular Vector 
Decomposition. 1 

Region of interest 
(ROI) features 

 Perimeter area, centroid, 
eccentricity, orientation, major 
and minor axis length 

These features are used 
to describe specific 
regions of an image by 
measuring the length of 
the boundary, the total 
area, the centre of 
mass, the elongation, 
the orientation, and the 
length of the major and 
minor axis of an ellipse 
that fits the region. 2 

Textural features Local binary pattern (LBP) of 
image, moment of image 

These features are used 
to describe an image’s 
texture by analysing the 
local texture patterns 
using Local Binary 
Patterns and measuring 
the statistical 
descriptors of the 
spatial distribution of 
the intensity values 
using Moment. 3 

1 (Mahafza, 2016) 
2 (Gonzalez & Woods, 2006) 
3 (Sonka et al., 2008) 
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5.2.3  Classification 

We used a quadratic support vector machine (SVM) with a 10-fold cross-validation 

method for classification. The selection of the quadratic polynomial kernel (SVM) 

was based on its consistently high accuracy demonstrated in various radar data 

classification studies using similar features. SVMs are effective in high-dimensional 

spaces with many features, as they can find linear and non-linear boundaries to 

separate classes (Hsu et al., 2008). SVM classifiers are also robust to outliers and 

are not biased towards the majority values, making the model accurately predict 

less common values in the classification (Cristianini & Shawe-Taylor, 2000). All 

computations were performed in the Matlab R2022b classification application. 

The results section will present the false positives and false negatives, positive 

and negative predictive values, and the classification models' specificity, 

sensitivity, and accuracy outcomes. Accuracy, specificity, and sensitivity were 

calculated according to Equation 5.5, 5.6, and 5.7, respectively. Receiver 

operating characteristic curve plots are included in Appendix A. 

Equation 5.5 Accuracy formula 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 Equation 5.6 Sensitivity formula 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

 

 



172 
Equation 5.7 Specificity formula 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

 

To assess if the masking pre-processing technique affected the classification 

accuracy of the ML predictions, a paired t-test was used, as we had measures of 

the same data before and after applying the masking. Since the sample size was 

not large enough (less than 20), we checked whether the differences between the 

pairs followed a normal distribution by performing a Shapiro-Wilk normality test. 
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5.3 Results 

5.3.1  Labels – scoring agreement 

After filtering out videos that were difficult to assess due to cows that were not 

in the frame long enough to be scored or two cows in the video simultaneously, 

325 videos from Farm A and 55 videos from Farm B were left for scoring. 

The results of the agreement levels among assessors are presented in Table 5.3 

and Table 5.4. Analysis with Cohen's kappa punishes the discrepancy between 

evaluators over the other two systems to a greater extent. Gwet (AC1) analysis 

produced higher values when used to calculate agreement with binary systems, 

while Kendall had higher correlation values in multilevel system analysis. The last 

two systems produced higher values for inter-assessor agreement than Cohen's 

kappa analysis. The best agreement for farm-A (Table 5.3) was achieved in the 

Binary Convergent system (0.79) and for farm-B (Table 5.4) in the Binary 

Constructed system from Grimm & Lorenzini (0.60) with the Gwet (AC1) statistical 

way of analysis. However, according to the ANOVA test, the differences among 

the different statistical analysis systems were not statistically significant (Figure 

5.5). 
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Table 5.3 Mean (and SD) of the pairwise comparisons between the three assessors for 

Farm A for each statistic. 

 Cohen’s 

Kappa  

AC1  

coefficient 

Kendall 

tau 

% 

Agreement 

AHDB 0.19  

(0.03) 

 

0.29  

(0.04) 

0.44  

(0.13) 

44.37  

(2.75) 

Binary Constructed 

AHDB 

0.27 

(0.07) 

 

0.52  

(0.16) 

0.34  

(0.02) 

70.47  

(7.12) 

Convergent 0.58  

(0.12) 

 

0.66  

(0.11) 

0.74  

(0.05) 

73.4  

(8.43) 

Binary Convergent 0.61  

(0.09) 

 

0.79  

(0.07) 

0.65  

(0.07) 

86.17  

(3.95) 

Grimm & Lorenzini 0.27  

(0.1) 

 

0.37  

(0.13) 

0.4  

(0.14) 

55.37  

(7.7) 

Binary Constructed 

Grimm & Lorenzini 

0.24  

(0.04) 

 

0.72  

(0.13) 

0.31  

(0.04) 

79.4  

(7.67) 
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Table 5.4 Average values and standard deviations of pairwise comparisons for Farm-B 

using three statistical analysis systems, providing a summary for comparing the 

performance of different scoring systems. 

 

 

 

 

 Cohen’s 

kappa 

AC1 

coefficient 

Kendall’s 

tau 

% Agreement 

Grimm & Lorenzini 0.38  

(0.12) 

0.42  

(0.13) 

0.48  

(0.17) 

58.83 

(7.82) 

Binary Constructed 

Grimm & Lorenzini 

0.45  

(0.20) 

0.60  

(0.10) 

0.48  

(0.18) 

77.17  

(7.83) 

Figure 5.5 Analysis of variance (ANOVA) results to determine differences among the three 

statistical analysis groups used in farms A and B. (“pwc” stands for pairwise comparisons). 
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5.3.2  Classification with and without data pre-processing 

The data pre-processing technique used, i.e., spectrogram masking, did not 

substantially affect the accuracy results of the classification models (Table 5.5). 

However, in some instances, accuracy was reduced after masking (i.e., Table 5.5 

Binarised convergent averaged Farm A - from 75.8 reduced to 68.9). Best accuracy 

was achieved with Binarised Averaged Grimm and Lorenzini for farm A with no 

masking and Binarised Consensus Grimm and Lorenzini for farm B after masking 

(Table 5.5). In individual scoring, Assessor 1 labels had some of the highest 

accuracies with and without masking. However, in the example of the confusion 

matrices for unmasked binarised Grimm and Lorenzini (Table 5.6), the accuracy 

for Assessor 1 is seemingly good (93.5), but the model classified almost all animals 

in only one of the classes (Figure 5.7). Conversely, the accuracy value of Assessor 

2 was lower (69.9) at the confusion matrix (Figure 5.7) but with a slightly better 

prediction distribution as a few data were classified in the second class. However, 

in this case, also, 97 animals were misclassified. The individual ROC curves 

corresponding to Tables 5.5 and 5.6 can be found in Appendix A. 

  



177 
Table 5.5 Comparison of accuracy results of models using different annotation systems 

before and after the data pre-processing (masking) for the two farms. 

 Unmasked 

Spectrogram 

Masked  

Spectrogram 

Farm A Farm B Farm A Farm B 

AHDB average 50.3 - 48.1 - 

Binary AHDB average 73.9 - 76.1 - 

Convergent Average 48.1 - 47.2 - 

Binary Convergent Average 75.8 - 68.9 - 

Grimm & Lorenzini Average 49.7 53.7 51.6 40.7 

Binary Grimm & Lorenzini 

Average 

87.3 51.9 85.7 51.9 

Grimm & Lorenzini Consensus - 37 - 31.5 

Binary Grimm & Lorenzini 

Consensus 

- 48.1 - 59.3 

  

Figure 5.6 No statistical differences were found in the accuracy t-test results for the two 

groups - before and after applying the masking pre-processing technique. (t = 0.73285, df 

= 9, p-value = 0.4823) 
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Unmasked Spectrogram Masked Spectrogram 

Assess1 Assess2 Assess3 Assess1 Assess2 Assess3 

Farm 

A 

AHDB 57.5 36.3 36.3 49.7 34.5 33.5 

Binary 
AHDB 

89.8 57.8 66.8 88.5 53.1 66.5 

Convergent 47.8 45.3 48.8 43.5 39.1 49.4 

Binary 
Convergent 

82.3 62.7 76.4 82.3 61.8 76.4 

Grimm & 
Lorenzini 

61.5 43.5 42.8 63.7 39.4 43.1 

Binary 
Grimm & 
Lorenzini 

93.5 69.9 81.6 94.1 67.4 83.8 

Farm 

B 

Grimm & 
Lorenzini 

48.1 51.9 35.2 44.7 42.6 40.7 

Binary 
Grimm & 
Lorenzini 

63 55.6 46.3 68.5 55.6 51.9 

 

  

Table 5.6 Comparison of models' accuracy results using each assessor's scorings for each 

system before and after data pre-processing (masking). 
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Figure 5.7 An example: Confusion matrices of models’ accuracy when using the Binarised 

Grimm and Lorenzini labels of Assessor 1 (left) and Assessor 2 (right). Model accuracy when 

using Assessor 1 labels was 93.5, and accuracy with  Assessor 2 labels was 69.9. Despite the 

greater accuracy of the one model, the model would always classify the data into only one 

category.  
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5.4 Discussion 

The study aimed to follow on previous research and use the developed supervised 

machine learning algorithm to test the system on a larger number of animals, 

thereby testing its generalisability and acquiring data to improve its performance. 

At the same time, we introduced an additional suggested annotation system for 

label generation and a pre-processing technique to improve ML classification. 

Unfortunately, the results we obtained were not as expected, with mainly low-

accuracy predictions from the algorithms, regardless of the application of the pre-

processing masking method. Inter-assessor agreement varied among the labelling 

systems and statistical computation methods but was consistently below any 

reasonably acceptable level (i.e., ideally, a false negative rate of less than 5% and 

a false positive rate of less than 10%) for an effective automated system. The 

binarised convergent-AHDB was the system that produced better overall results 

for the inter-assessor agreement, but the performance was not transferred in the 

ML predictions.  

We found a lack of consistency among the scores provided by the different 

assessors when we used Cohen’s kappa statistics to analyse the data. The highest 

strength of agreement (Cohen’s kappa 0.61) was produced when we compared 

scores from the binarised convergent-AHDB system in farm A. According to Landis 

& Koch’s (1977) interpretation, this is substantial agreement as it exceeds the 

value of 0.6. The results of the compared analysis are consistent with the results 

of other studies, such as Rutherford et al. (2009), which also had kappa values 

between 0.42-0.73 when using a binary system to assess cattle mobility. When we 

used the rest of the mobility assessment systems, the results were poor, in 

agreement with our studies described in previous chapters and with other research 

that analysis of agreement with the kappa statistic yielded low results (kappa 

among 3 assessors = 0.42 - Lorenzini et al., 2018). However, even if not 

statistically significant, when Gwet statistical analysis was used, there was an 

expected overall improvement in inter-assessor agreement values, as it is more 

stable than the kappa coefficient and "paradox-resistant", as Wongpakaran et al. 

(2013) have put it in their study. When the Kendall analysis was used, it 

consistently had higher values than the kappa statistics results. Still, it did not 

always have higher values than those produced by Gwet. Agreement with the 



181 
Kendall method ranged from 0.31 when using the scores from the binarised Grimm 

and Lorenzini system on farm A to 0.74 with the convergent-AHDB scoring system. 

Our results using the Kendall analysis with the Grimm and Lorenzini evaluation 

system were 0.4 for both farms. These values show that assessors' scores are 

positively but not highly correlated since tau < 0.5. Considering the percentage 

agreement using the Grimm and Lorenzini system, one can see that the assessors 

assigned the same score to only about half of the assessed animals. The highest 

percentage agreement (86.17) was produced with the binarised convergent-AHDB 

system, while the other systems had 44.7 to 79.4% agreement. These results, 

especially after the analysis with Kendall's tau, surprised us as they disagreed with 

the results of Lorenzini et al. (2017), where tau=0.7. While we followed the same 

methods to produce the results (i.e., video cow evaluation and their proposed 

three-level system), the inter-assessor agreement in our study was considerably 

lower. While Lorenzini et al. (2019) suggested that breed may affect the 

expression of lameness traits in cows, our study did not directly investigate this 

factor. Therefore, it remains unclear whether differences in breed composition 

and in assessors may have contributed to the discrepancies observed in our results 

compared to those in their study. The implications of these findings suggest that 

the choice of statistical analysis method does not play a critical role if the 

assessment system is not consistent and reliable. The study's results highlight the 

limitations of using specific evaluation systems in producing labels for machine 

learning and the need for further investigation into the factors that may affect 

the accuracy and reliability of cattle mobility assessments. 

When we used the individual scores of the three raters as labels in the ML model, 

we found differences between assessors and scoring systems. These results 

reproduce the same outcomes as in previous chapters, where there were 

variations and uncertainty for the most accurate assessment. The labels given by 

Assessor 1 yielded better accuracy when used as ground truth in the model than 

the other assessors' scores. However, although accuracy is a commonly used 

metric to evaluate machine learning models, it is not always the best since it does 

not always reflect the model's performance. In our analysis, the models perform 

well in one class but poorly in another class, and the overall accuracy may be high, 

but the performance of the model in the poorly performing class is not acceptable. 

There is not a single acceptable performance threshold; the acceptable levels of 
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false negatives and false positives for lameness detection may vary depending on 

several factors, such as the severity of the condition and the purpose of the 

detection. In general, it is desirable to have a high accuracy rate for detection, 

with around 5% false negatives and 10% false positives. These performance 

thresholds are based on the specific context and purpose of the lameness 

detection in our study, which would not cause unreliability or significant damage 

to the system user with the implications of misleading outcomes. However, in 

practice, we could accept a slight compromise between sensitivity (low false 

negatives) and specificity (low false positives) depending on the circumstances. 

This means that sometimes it may be acceptable to have a slightly higher rate of 

false positives or negatives depending on the situation. Classification of 

imbalanced data is the case with binary classification labels in our study, where 

the majority is gathered in only one data set class. Then the model would achieve 

relatively high accuracy by predicting the majority class each time. This happened 

in the cases where we used the Assessor's 1 labels - seemingly high accuracy but 

no or only minimal correct predictions for some of the classes. Studies have 

identified the problem of imbalanced data allocation concerning accuracy, which 

can result in a biased performance of models since classifiers prioritize error rates 

over data distribution (Patel et al., 2020; Tanha et al., 2020; L. Wang et al., 2021). 

Patel et al., (2020) have recommended some strategic solutions, including pre-

processing techniques, algorithm modifications, cost-sensitive and ensemble 

approaches, and feature selection. We implemented two of these methods (pre-

processing and feature selection) in our study, but the outcomes indicate that 

additional investigation is necessary. 

Systems with good inter-assessor agreement resulted in higher accuracy when 

used in the machine learning models with only a few exceptions. For example, the 

convergent- and binarised convergent-AHDB systems had some of the highest 

agreement values. However, the SVM machine learning models did not have a 

statistically significant difference with different labels. When an average or 

consensus score was used as labels in the model, accuracy results ranged from 

31.5 to 87.3, with only results from three models exceeding 73%. These values 

signal a poor connection between the labels we provided, the analysed data, and 

the patterns detected by the model. The poor model performance could mean 

that the labels are not representative of the data (i.e., errors or ambiguities in 
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the labels) or the data are noisy. There is much research on labelling 

misclassification that results in invalid predictions. A few examples from the 

medical literature (Brenner et al., 2016; Hubbard et al., 2017) demonstrated how 

diagnostic labelling misclassification could impact the accuracy of predictive 

models, leading to incorrect predictions and suboptimal treatment decisions.  

Data misinterpretation by the model because of the prevalence of only specific 

groups (i.e., cows with score-1 as a label in a binary system) could also be the 

case in our study. In most binary classifications, the model correctly classified 

cows in the majority class but misclassified most animals belonging to the other 

level. Similar issues have been reported in another recent study (Shahinfar et al., 

2021) using machine learning to predict cow lameness incidents. While some of 

the models used had high accuracy in that study, some classes' binary classification 

predictions were poor. Their justification for their suboptimal results was due to 

the unbalanced training dataset or the general complexity of lameness, which are 

some of the common challenges we also deal with in our study. 

Addressing the poor association between labels and data is essential, as it leads 

to incorrect prediction results that cannot be generalised. The two main 

approaches to improved predictions are improving the labels' quality and applying 

pre-processing techniques to the data. These two ways we followed in the present 

study: a labelling system that has shown promising inter-assessor agreement 

results and a masking procedure with radar data with high model accuracy 

outcomes. Despite using new labels and the data pre-processing technique, the 

results did not significantly improve compared to previous attempts. The new 

labels did not perform better than labels from other systems, and the masking 

approach did not improve the prediction accuracy of the models. Our hypothesis 

to explain the observed lack of performance in our study is that it may be 

attributed to the assessment process employed for label creation. Regarding the 

study by Li et al. (2023), where the masking pre-processing technique was first 

used, the main difference, apart from the study referring to human motion 

classification, is again in the labels. The data they worked with was a sample of 

people asked to do specific actions that the radar would record (Li et al., 2023). 

This means that the researchers had a solid reference and, therefore, ground truth 

to provide to the classification model. In our study, this was not the case, which 
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is quite common when dealing with a diagnosis with high uncertainty and even 

more when dealing with animals with no verbal and direct communication. 

While our video recordings of animals in farm B were conducted 5 days after the 

radar recordings, a comparative analysis of these videos with some from the initial 

visit suggested consistent mobility statuses among cows. However, we 

acknowledge the potential for altered mobility in the interim 5 days for certain 

cows, introducing a temporal limitation to the study’s observations. 

Considering all our approaches and efforts to improve the machine learning 

predictions, we wish to reflect on the elements that might have affected the 

process and the results—from the beginning, i.e., recordings of videos and radar 

signals, till the final model's outcome. The analysis of this process will be 

presented in detail in the following chapter, emphasising the evaluation process 

of the mobility status of the animals resulting in labels that do not match the 

patterns detected by the radar system. In this chapter, we tried to process all the 

parameters we could from the data we already had - that is, new labels for the 

already obtained videos and data pre-processing for improving the link between 

labels and data. The next step will include a different way of acquiring data for 

analysis, with the expectation of different results. 

5.5 Conclusions  

Automating lameness detection using standard visual mobility assessment systems 

as labels in machine learning did not yield satisfactory results in our study. 

Regardless of the analysis method and the system used, there was always a degree 

of variation between the assessors' decisions, leading to uncertainty about the 

animal's true state. Although the models produced an acceptable accuracy in some 

cases, a class imbalance in most predictions means poor performance. The 

techniques we used, namely different labels and data pre-processing, did not help 

to improve the results. Further studies are recommended, and we plan to address 

the issue in the following chapter. 

  



185 

Chapter 6  

 

Improving Automated Lameness Detection in Cattle 

using a rear assessing vantage point   

6.1 Introduction 

The previous chapters have highlighted the challenges associated with training 

machine learning models to accurately classify cow mobility. Although previous 

studies have reported satisfactory accuracy in predictions (Busin et al., 2019; 

Shrestha et al., 2018), our attempts to replicate and refine these methods did not 

perform well. Our objective was to enhance the automated detection of lameness 

in cattle by implementing pre-processing techniques and devising scoring systems 

to generate labels. Unfortunately, our prior efforts proved to be ineffective. This 

chapter aims to retrospectively evaluate our previous methodology and 

investigate potential causes of the unsatisfactory outcomes. We propose a novel 

approach for label generation and elaborate on the data acquisition process from 

the farm. Furthermore, we present three studies that provide a distinct 

perspective on the data and deliberate on potential directions for future research. 

Various factors (Figure 6.2) could affect the assessor’s classification and label 

assignment process and can be broadly categorised into four main areas:  

1- the environment in which the assessment takes place that can impact the 

assessor's decision-making,  

2- the nature and characteristics of the animal which can affect the severity 

and presentation of lameness,  

3- the assessment system used to classify lameness  

4- the assessors themselves, in terms of experience, training and mood.  

Understanding how these factors affect the classification process and decision-

making is essential for reflecting on previous studies' outcomes and developing 
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accurate and effective strategies for generating useful labels for automated 

machine learning classification.  

The environment and conditions prevailing on a farm can affect the outcome of 

the lameness classification. Firstly, weather conditions such as rain can affect the 

cow's gait; for example, a wet or muddy surface may make it more difficult for an 

animal to move in a typical way leading to a possible inaccurate assessment. 

Similarly, poor lighting conditions can make it difficult for the assessor to see the 

animal's movements clearly and contribute to misclassification. The assessor's 

vantage point can also affect lameness detection, with viewing distance and angle 

potentially exacerbating or minimising the appearance of gait abnormalities. 

Then, distractions, such as noise from machinery or other animals, and obstacles, 

such as herd mates or an uneven floor, can alter cows' behaviours and complicate 

the assessment. Finally, farms have demanding procedures and schedules to 

follow, and there is usually limited time for the mobility assessment process. A 

limited mobility assessment duration can impact the thoroughness of an 

assessment, potentially leading to rushed decisions on the scores. When 

individuals are required to decide within a limited timeframe, they tend to 

prioritize efficiency or opt for what appears to be the optimal choice, resulting in 

reliance on heuristics or cognitive shortcuts (Finucane et al., 2000). While utilizing 

heuristic approaches does not automatically entail incorrect decisions, it can 

potentially result in severe and systematic errors (Tversky & Kahneman, 1974) 

Various animal-specific factors can also influence the classification of lameness in 

cattle, such as the animal's age, breed, and conformation. For example, certain 

types of cattle breeds like Holstein Friesian (Chawala et al., 2013) have been 

shown to be predisposed to clinical lameness incidents more often than other 

breeds, which may need to be considered during assessment. Additionally, older 

animals may have joint or other health issues that could impact their gait, leading 

to potential misclassification. The animal's physical structure or conformation is 

also an element to consider during the assessment, as it can be misleading. 

Finally, the level of familiarity the animal exhibits towards the observer could 

affect the cues the assessor receives during the evaluation. The literature provides 

examples of the effect of human presence on the animal behaviour and production 

(Hemsworth et al., 2000; Lange et al., 2020; Titterington et al., 2022), which can 

lead to fear and stress. Thus, animals evaluated either in vivo or through video 
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recording might yield different results, with the behaviour in the presence of 

assessors varying and exhibiting stoic behaviours and masking signs of lameness 

(Hudson et al., 2008). Therefore, it is essential to consider the potential impact 

of these animal-specific factors and take measures to minimise them, such as 

reducing the stress on the animals during the assessment. 

The mobility system used for lameness classification typically involves a set of 

criteria used to evaluate the cow's gait and determine the presence and severity 

of lameness, which is another factor that influences the assessment outcomes. An 

exhaustive, exclusive, and coherent system that includes all relevant aspects such 

as gait, weight-bearing, swelling, and cow's other issues (i.e., metabolic 

disorders), and provides a cohesive picture of the cow's lameness which can all 

lead to a more accurate, precise, and unified understanding of the cow's condition 

and thus classification. An ideal system would be simple and efficient, easily 

adopted, consistent across different evaluators, not highly complex, and practical 

in a real-world setting. The accuracy and efficiency of a system can save time and 

resources by quickly identifying the problem, leading to a precise treatment and 

management of the lame animals.  

The human factor is the next and perhaps one of the most critical factors affecting 

lameness classification. The process is subject to various human characteristics, 

including bias, experience, training, attentiveness, and mood. For example, 

Garcia et al., (2015) reported that assessors preferred to use different cow 

characteristics during mobility evaluation, and these preferences were associated 

with the agreement probabilities. We also identified that assessors had preferable 

attributes, such as speed of the cow and ability to localise the lame limb, which 

carried more weight during the consensus scorings in our studies. Then, 

attentiveness is necessary to identify subtle signs of lameness, and human mood 

can affect this attentiveness. Mood and emotions can influence the way individuals 

interpret and respond to information (Kahneman et al., 2021; Lerner et al., 2015). 

For example, if the assessors experience stress or excitement, they may be more 

likely to make impulsive or irrational decisions about the lameness scoring, which 

they would not make under other circumstances. Finally, assessors with different 

experience levels might yield different classification outcomes (Kristensen et al., 

2006), whereas inadequate training might lead to inconsistencies and inaccuracies 

(Polderman et al., 2001).  
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Reflecting on the described factors (Figure 6.1), the processes followed (Figure 

6.2),  and reviewing the differences between our current experiments and  

previously published studies (Busin et al., 2019; Shrestha et al., 2018), we noted 

that the main difference was the use in the current studies of videos or live 

observation from a lateral vantagepoint, whereas in previous studies, a rear 

vantagepoint was used. To address this, we first chose to ensure the algorithms 

work, focusing on clear and confident examples (scores 0 and 3 from a 4-level 

mobility system) and to evaluate cows live and via video from a rear vantage point 

- the same perspective the micro-Doppler radar collects data. The studies 

presented in this chapter aimed to determine if changing the assessment vantage 

point would lead to improved results in automating lameness detection using 

micro-Doppler radar. 
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Figure 6.1 Factors affecting lameness classification related to the generation of labels for 

an ML system from human visual observations, categorised into four main areas; 

environmental factors, human factors, assessment systems, and animal factors. 

 

 

Figure 6.2 Points where errors may be introduced in the automation of the lameness 

classification process. 
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6.2 Materials and Methods 

The chapter describes 3 studies (Figure 6.3). Studies A and B used a subset of the 

data collected during the longitudinal study described in chapters 3 and 4. For 

study C, new data were collected on the same farm using the same animals as in 

studies A and B, more than 6 months later. 

6.2.1  Study A 

For study A, the data from the cows with the extreme 3-assessor-consensus scores 

from the 4-level mobility scoring system (scores of 0 or 3) at any of the nine visits 

were used to examine the algorithms’ performance. Thirty-nine cows were 

included: 18 with score 3 (severely lame) and 21 with score 0 (healthy). 

6.2.2  Study B 

For study B, videos collected from an action camera mounted on the tripod of one 

of the radar antennas during the longitudinal study were used. The camera’s 

vantage point was to the rear of the cows. The data collected by this camera had 

not been intended for analysis in the previous experimental procedures but was 

for backup to reference in case there was a problem with the radar signal such as 

unexpected reflections. Only videos from Visit 5 were used, with 45 evaluated 

animals. Visit 5 was chosen because it was in the middle of the nine assessments, 

were clear. The videos were evaluated by three assessors using the 4-level AHDB 

mobility scoring system. 

6.2.3  Study C 

For study C, we returned to the same farm in central Scotland in December during 

an afternoon milking and collected radar data and mobility scores of 45 cows from 

a live assessment by a single assessor (the same assessor as provided the scores 
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from the previously published studies – (Busin et al., 2019; Shrestha et al., 2018) 

from a rear vantage point, using the AHDB 4-level mobility system. The micro-

Doppler radar data signatures of each animal were collected in the same way and 

with the same tools as in chapters 4 and 5 (Frequency Modulated Continuous Wave 

radar operating at 5.8 GHz - bandwidth of 400 MHz and 1 kHz pulse repetition, 2 

Yagi antennas (17 dBi gain) and a transmitted power of 100 mW.  

 

  

Figure 6.3 Brief visual description of the mean, numbers of animals & assessors, and scoring 

systems used in the three studies. 
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6.2.4  Statistical analysis 

Statistical analysis for agreement quantification was performed only for study B 

in this chapter. We compared the scores given by the three assessors using Fleiss’s 

kappa and percentage agreement on 4-level scores and 2-level scores derived from 

merging scores 0,1 and 2,3 as in previous chapters. In the previous chapter, it was 

found that Kappa statistics had no significant difference compared to other 

statistical analysis methods, such as Gwet. The strictness of Kappa statistics 

ensures that a high level of agreement implies high confidence; hence, it was 

chosen for the current analysis. 

In all studies, accuracy, specificity and sensitivity for the algorithmic models’ 

performance were calculated using the following formulae. 

 

Equation 6.1 Sensitivity formula 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

Equation 6.2 Specificity formula 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

Equation 6.3 Accuracy formula 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
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6.2.5  Machine learning  

First, for study C, the same procedure as in chapter 4 preceded the classification 

to extract numerical features from the radar signals using the previously 

developed algorithm. Initially, a waveform was produced by processing the raw 

data. This was followed by the application of a pre-processing technique called 

Fast Fourier Transformation, which was utilized to extract range information, and 

then a Moving Target Indicator (MTI) was applied to remove static clutter by 

objects in the environment. Subsequently, a Short Time Fourier Transformation 

was employed, utilizing a 0.2 s Hamming sliding window with a 95% overlapping 

factor to extract Doppler-time signatures. Finally, numerical features were 

extracted from the resulting spectrograms for classification. 

Figure 6.4 Machine learning classification process described in 8 steps. First, features are 

extracted from the radar signal, combined with the labels, and then loaded into the 

classification application, then, the desired analysis features are selected, and the 

prediction accuracy results are generated.  
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Then, the Matlab Classification Learner Application (MATLAB R2022b, 2022) was 

used to train (test and validate) the support vector machine (SVM) or decision tree 

classifier models for the three studies. A 10-fold cross-validation technique was 

used in all the studies’ analyses for evaluating the models' performance as it 

provides a robust estimate and a good balance between accuracy and 

computational efficiency. The choice of classifiers and extracted features used in 

the signal analysis was based on results of previous chapters and published studies 

that used the same or similar experimental procedure with good results (e.g., 

Busin et al., 2019; Shrestha et al., 2018). The steps followed in the machine 

learning analysis are described in Figure 6.4. 
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6.3 Results 

6.3.1  Study A 

The SVM model's accuracy when we used only the extreme values of the 4-level 

AHDB system was 0.82, with a specificity of 0.79 and a sensitivity of 0.85. More 

details are shown in the confusion matrix in Figure 6.5 A.  

A scatter plot in the same figure (Figure 6.5 B) with two extracted numerical 

features as an example, presenting the model's correct/incorrect predictions for 

each level for the specific features. 

 

Figure 6.5 (A) confusion matrix of the SVM model when 4 features were used for 

classification. The used labels were scores 0 and scores 3 from the AHDB 4-level mobility 

system. The model’s accuracy was 82.1%. On the right (B) is the scatterplot of the model's 

predictions with two selected features (Centroid SD and Bandwidth mean) as examples. The 

data point colours represent the two classes (red for score 3 and blue for score 0), and the 

'x' marks represent the misclassifications. 
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6.3.2  Study B 

Table 6.1 and Table 6.2 show the distributions of the three assessors' AHDB and binarised 

AHDB scores after scoring the animals from the rear vantage point. In the binary system, 

animals were more evenly divided into the two levels. 

Table 6.1 Score distribution of AHDB scores of the three assessors from the rear vantage 

point evaluation. 

AHDB - Rear Score 0 Score 1 Score 2 Score 3 

Assessor 1 18 8 15 3 

Assessor 2 14 14 15 1 

Assessor 3 4 21 18 1 

 

 

Table 6.2 Score distribution of binarised AHDB scores of the three assessors from the rear 

vantage point evaluation. 

Binarised AHDB - Rear Score 0 Score 1 

Assessor 1 26 18 

Assessor 2 28 16 

Assessor 3 25 19 

 

Pairwise inter-assessor agreement when scoring animal mobility from the rear 

ranged from 0.21 to 0.43 for the AHDB 4-level system and from 0.33 to 0.57 for 

the binarised AHDB system. According to (Landis & Koch, 1977), these kappa 

scores translate as fair to moderate strength of agreement. Both kappa and 

percentage values are listed in Table 6.3. 

Table 6.4 shows the results of estimating the models' accuracy, sensitivity, and 

specificity using each assessor's binary-transformed-AHDB scores as labels from 

the evaluation of the rear vantage point. 
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Table 6.3 Agreement results of the pairwise comparisons with kappa statistics and 

percentage agreement. 

 AHDB Binarised AHDB 

Cohen’s 

kappa 

% Agreement Cohen’s 

kappa 

% Agreement 

Assessors 1-2 0.214 45.5 0.33 68.2 

Assessors 1-3 0.258 45.5 0.487 75 

Assessors 2-3 0.431 61.4 0.575 79.5 

Average 0.30 50.8 0.46 74.23 
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Table 6.4 Estimation of Decision Tree models' specificity, sensitivity, and accuracy with 

twenty extracted numerical features from Visit 5 of the longitudinal study and each 

assessor's labels from the Binarised AHDB rear assessment. 

Binarised  

AHDB - REAR 

Assessor 1 Assessor 2 Assessor 3 

True positives 25 18 18 

True negatives 14 7 11 

False positives 1 10 7 

False negatives 4 9 8 

Specificity 0.93 0.7 0.61 

Sensitivity 0.96 0.41 0.69 

Accuracy 0.89 0.57 0.66 

 

The produced outcomes of the 4-level scores from the individual assessments used 

as labels are presented in Figure 6.6. All three assessors scored only a small 

number of cows with a score of 3, and none of the severely lame cows was 

correctly predicted by the machine learning model.  Assessor 3 appeared to 

achieve higher accuracy for each class than the other assessors. 
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Figure 6.6 On the left side of the page are presented the tables with the estimations of 

accuracy, sensitivity and accuracy of the models’ classes when the AHDB 4-level score of 

each assessor was used. On the right of the page, the confusion matrices of the models for 

each assessor are shown respectively. The scores/labels were derived from the rear-side 

evaluation of cows, and 20 numerical extracted features were used for the classification. 
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6.3.3  Study C 

When we used as labels the scores from the 4-level system of a single assessor 

who evaluated the cows from the rear vantage point, the accuracy of the SVM 

model was 52.3%. After the binary conversion of the scores, the accuracy results 

were 86.4% using a decision tree classifier and four numerical features (Bandwidth 

mean & SD, Centroid mean & SD) for the predictions. Machine learning correctly 

classified most animals according to the labels (Figure 6.7). 

Figure 6.7 Confusion matrices from the models' predictions with the 2- and 4-level systems 

used as labels. On the left, a Tree model produced 86.4% accuracy with the binary labels; 

on the right, an SVM model had 52.3% accuracy with the 4-level labels. 
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6.4 Discussion 

The aim of this chapter was to optimise the parameters of the lameness detection 

automation process and enhance the accuracy of machine learning predictions. 

We initially examined the algorithms and extracted features using highly reliable 

labels to identify whether the problem was attributed to the machine learning 

analysis or the ground truth. Based on the results of study A, we concluded that 

the algorithmic model and features functioned satisfactorily and were consistent 

with the findings of other studies (Busin et al., 2019; Shrestha et al., 2018). Hence, 

we hypothesised that the inadequate performance in previous chapters was due 

to the labels used as ground truth. Despite attempts to improve the results using 

a 4-level and 3-level mobility assessment system and their modifications (binarised 

systems) in previous chapters, we could not achieve the desired outcomes. 

Therefore, we chose to alter the vantage point from which the evaluation was 

conducted, sifting from assessing the cows from their side to the cow's rear. Both 

studies, B and C, followed the same procedure, evaluating cows’ mobility from 

their rear, utilising either video or live evaluations on the farm, and the results 

were satisfactory. 

It is not uncommon for machine learning models to exhibit differential 

performance across label categories. A study by Lam et al. (2018) is an example 

from the medical literature, where image classification algorithms demonstrated 

high accuracy in discriminating between extreme categories of diabetic 

retinopathy diagnosis but struggled with intermediate categories. However, the 

difficulty of distinguishing middle levels is not unique to machine learning. The 

difficulty has first been observed in assessors who seem to have trouble 

differentiating intermediate levels (Schlageter-Tello et al., 2014). Since ground 

truth is based on labels produced this way, the same problem applies to artificial 

intelligence. In Study A, our classification algorithm performed well when 

restricted to only two extreme label categories but poorly when all four categories 

or a binary transformation of the 4-level system was employed. These outcomes 

could potentially be explained by factors, such as insufficient data and label 

ambiguity (Domingos, 2012). However, our longitudinal and cross-sectional 

studies, which involved several hundred samples with the algorithms, failed to 

produce desired results. While the sample size may seem substantial, it is crucial 
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to acknowledge the potential concern regarding data sufficiency. We recognise 

that in the realm of data analysis, larger sample sizes are often desirable for 

robust conclusions. In our case, the unexpected outcomes prompted us to 

reevaluate the data collection process and labelling methods. Therefore, our 

realisation that the crux of the issue lies in the labelling process and not 

necessarily in the volume of data collected. Our labelling methodology involves a 

visual observation-based assessment that is susceptible to uncertainty, making it 

challenging for both the assessors and the ML model to distinguish between 

different label categories. This is due to factors such as the overlap between 

animal characteristics across different categories (the visual assessment system 

falls short in providing exhaustive and exclusive label categories) and variability 

in how human experts classify animals. 

There are ways to improve the performance of a supervised machine learning-

based classification algorithm. The previously followed methods were the 

features-model selection and pre-processing techniques, but we did not receive 

any improved prediction outcome. Another way of performance enhancement is 

label refinement as some studies (Jacquin et al., 2019; Lallich et al., 2002) have 

suggested. In our previous chapters, we explored ways to refine the labelling 

process, such as using different scoring/labelling systems and modifications of 

them, gathering experts' opinions, and using other criteria for assigning animals 

to different levels, but no significant improvements were observed. This led us to 

studies B and C, where we chose to go back to the way of label acquisition and 

change the vantage point, we observed the animals. Initially, with study B, we 

noticed a positive change and improvement in results in terms of classification 

and accuracy. A good classification and separation were observed between the 

intermediate classes (labels from scores 1 and 2), but a lack of animals in the 

extreme classes (scores 0 and 3) implied an unbalanced class distribution. After 

level reduction and conversion to a binary format, overall improvement was 

observed in classification and prediction accuracy. Particularly, when the labels 

provided by Assessor 1 were utilised in our study, the machine learning algorithms 

displayed a high degree of accuracy, specificity, and sensitivity, with values above 

85%. This indicates a strong correlation between the ground truth and the 

classification patterns generated by the machine learning system. However, when 

the labels from the other two assessors were employed, the predictions were 
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superior to other times but not as good as those obtained with assessor 1's labels. 

These findings align with the inter-assessor agreement evaluation, where it was 

observed that assessor 1's ratings differed from those of assessors 2 and 3, while 

the latter two displayed a higher level of agreement in their scores. Further 

studies are required to evaluate more animals and achieve a balanced distribution 

of scores at all levels to confirm these results. 

In study C, we achieved improved results compared to previous studies by scoring 

animals from their rear side. Although the 4-level system did not display high 

accuracy, its performance was better since some animals were correctly classified 

at all levels. Previously, in Chapter 4, accuracy ranged from 0.58 to 0.6 using the 

AHDB binarised system from a lateral vantagepoint of scoring. Here in study C, 

after converting the system into a binary format, the two-level labels generated 

sufficiently good results with a classification accuracy of 86.4% and a well-

distributed set of predictions. The results can be directly compared to other 

published studies with a similar accuracy value range (Busin et al., 2019; Shrestha 

et al., 2018). Although there is the limitation of only one assessor evaluating the 

animals, which was the concern we had at the beginning of the project, the 

improved results emphasise that the low-performance issue of the system 

primarily stems from the label acquisition method. Further studies are necessary 

to reach a definitive conclusion. Nevertheless, both studies, B and C, show a 

better connection between mobility patterns detected by machine learning with 

labels generated from a rear evaluation of cows. 

While using a classification system based on visual observations as a gold standard 

is a widely accepted practice, it is essential to continuously evaluate and critique 

its performance to ensure its validity and reliability. In the case of the AHDB 4-

level mobility classification system, several issues have been identified that call 

into question its effectiveness as a ground truth for machine learning. One major 

issue is the ambiguity of the classification system, which leads to unclear and 

inconsistent results. For example, the levels are not well-defined, and overlaps 

between classes make it difficult for assessors to assign animals accurately to a 

particular level. Furthermore, there is a lack of clear guidance on performing the 

mobility assessment, contributing to further confusion and inconsistency among 

assessors. This ambiguity is problematic because it undermines the accuracy and 
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reliability of the system, which in turn affects the effectiveness of any machine 

learning algorithm trained on these labels. 

Another problem is the low inter- and intra-rater agreement among assessors using 

the system. This means that different assessors may assign different levels to the 

same animal, leading to inconsistent and unreliable data. While some degree of 

variability in assessments is expected, the level of disagreement among assessors 

using this system is a cause for concern. This highlights the need for a more 

standardised approach that can produce consistent and reliable results. The 

shortcomings of the 4-level mobility classification system have significant 

implications for animal welfare. Lameness in cattle is a severe concern, as it can 

lead to pain, discomfort, and decreased mobility, which in turn can affect an 

animal's overall well-being. Using an unreliable and inconsistent gold standard 

classification system not only undermines the accuracy of research studies but 

also hinders efforts to address and alleviate the problem of lameness in livestock. 

Given these concerns, it is essential to review the gold standard and consider 

alternative approaches that are more effective in detecting and assessing animal 

lameness. This could involve a more rigorous and standardised approach to 

mobility assessment, including more objective measures such as statistical 

analysis from the evolution of the gait parameters and the use of semi-supervised, 

self-supervised or unsupervised learning methods.   

Considering the limitations mentioned, adopting an alternative method employing 

a different vantage point for evaluating lameness appeared advantageous. As 

such, in this chapter, cows were assessed from their rear rather than their lateral, 

and these evaluations were used as inputs for machine learning training. This 

alternative approach exhibited promise and appeared to overcome some of the 

prior limitations by presenting a different perspective that was better aligned with 

the attempt for automated detection of lameness using micro-Doppler radar 

technology. 

6.5 Conclusions 

In conclusion, the hypothesis was tested that evaluating cows in a short time and 

from the recommended evaluation lateral vantage point may not be sufficient for 
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accurate predictions from a supervised machine learning model. The study results 

suggest that the algorithms worked well with the extreme – clearly defined levels, 

indicating that the problem was in the labels. The studies also revealed that 

changing the assessment vantage point from lateral to rear improved classification 

results, indicating that ML algorithms were better linked with the data. Overall, 

the findings of this study highlight the importance of carefully considering the 

quality of the labels used in machine learning. Further research can build on these 

findings and explore the potential of using alternative ways of assessments to 

enhance automated lameness detection accuracy in cows.  
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Chapter 7 General Discussion 

7.1 Aims and objectives of the thesis 

Lameness is a significant issue that affects the welfare and productivity of cattle 

and can cause substantial economic losses for stakeholders. A micro-Doppler radar 

sensing system has been previously explored for automatically identifying 

lameness in cattle (Busin et al., 2019; Shrestha et al., 2018). The primary 

objective of this project was to develop, refine, and optimise the proposed system 

incorporating supervised machine learning techniques to analyse and interpret 

micro-Doppler signals collected from the animals, enabling it to identify subtle 

changes in gait and posture associated with lameness. Ultimately, this project 

aimed to provide a reliable, cost-effective, and non-invasive tool for automating 

lameness detection. 

7.2 Summary of results 

In Chapter 2, we aimed to investigate the agreement among assessors in 

evaluating lameness in dairy cattle to ensure that the algorithm used in previous 

studies, which relied on a single assessor, was objective. The findings revealed a 

significant variation in the scores of different assessors, including experienced and 

trained mobility scorers in the AHDB mobility assessment system. As a 

countermeasure, various modifications were made to the assessment system to 

increase the agreement levels, such as merging and binarising levels and using 

second-given scores. Despite these modifications, high agreement was not 

achieved. Several other studies have examined the evaluation of mobility systems 

and the agreement among assessors with varying levels of experience and training 

(Channon et al., 2009a; Croyle et al., 2018; Dahl-Pedersen et al., 2018; Holzhauer 

et al., 2005; Katzenberger et al., 2020; Schlageter-Tello et al., 2015a). Most of 

these studies reported high levels of agreement (kappa values > 0.6), and only 

Thomsen & Baadsgaard (2006) have found lower levels (kappa values ranged from 

0.4 to 0.88), similar to the present study’s results. Differences in the study 



207 
designs, such as assessors talking to each other about the scores during the 

evaluation or extensive training of all assessors at the same time, might have 

played a role in the different outcomes. This chapter highlights the difficulty of 

obtaining objective scores for lameness evaluation and identifies a problem with 

the current assessment system, as even experienced assessors had low agreement 

levels. 

Chapters 3 and 4 described a longitudinal study that aimed to improve the inter-

assessor agreement levels in evaluating lameness in dairy cattle and use the scores 

as labels in machine learning training. The study used the same assessment 

systems as in the previous chapter (AHDB and modifications), adding a hoof 

physical examination to increase confidence in the decisions. The inter-assessor 

agreement was poor with the original 4-level system (average kappa for the AHDB 

system = 0.22, SD = 0.11) but improved (kappa for the convergent binarised AHDB 

ranged from 0.5 to 0.97) when the modified systems were used. Despite this 

improvement, applying the high-agreement scores as input labels for the 

supervised machine-learning classification produced unsatisfactory results 

(accuracy ranged from 0.57 to 0.63). The performance of the 4-level system was 

poor, and the reduced-level (binary) systems gave the impression of better results 

due to the classifier's tendency to classify most animals at the majority level. This 

means that the majority of the scores matched one of the two levels, resulting in 

higher estimated accuracy since the classifier accurately predicted most animals 

within that category. However, this led to a high frequency of false negatives or 

false positives. This situation resembles the problem of uncertain labels in medical 

diagnosis studies (Dimitrovski et al., 2015; Hao et al., 2020) and other fields 

(Bouveyron & Girard, 2009; He et al., 2011; Shin et al., 2018), where a classifier 

needs to be trained, but the labels include levels of uncertainty or inconsistency 

rendering unreliable predictions. Finally, there was no association between the 

scores and evidence of hoof pathology or attributes of the assessors and their 

agreement levels, results consistent with other studies (Flower & Weary, 2006; 

Logue et al., 1994; Tadich et al., 2010b). 

In Chapter 5, we attempted to improve the classification predictions of machine 

learning by employing a different labelling system and a pre-processing technique. 

Although these approaches had shown promising results in other studies (Li et al., 

2023; Lorenzini et al., 2017), our results were unsatisfactory. The scoring system 
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did not yield high agreement among assessors (average kappa = 0.37, SD = 0.16) 

when statistically analysed, and the pre-processing technique did not produce 

statistically significant results compared to the non-pre-processed data. While our 

study's machine learning overall accuracy was high in some cases (i.e., accuracy = 

93.5 binarised Grimm & Lorenzini scores by Assessor 1), we encountered the same 

issue as the previous chapter: correctly classifying cows at the majority level but 

poor performance at the other levels. We considered that the method of obtaining 

labels, through the way of assessment instead of the scoring system (i.e., 

assessment via short video clips from the animals’ side instead of the AHDB/Grim 

& Lorenzini scoring system), was the root cause of this issue and we continued the 

investigation through three studies described in Chapter 6. 

In Chapter 6, we initially verified that the algorithm performed well (accuracy = 

0.82, specificity = 0.79, sensitivity = 0.85) with high certainty labels, i.e., scores 

0 and scores 3 derived from the 4-level AHDB system, using data collected 

previously in Chapter 3. Then, we conducted two studies to evaluate the mobility 

of animals using a different vantage point by assessing cows from their rear, which 

corresponded with the vantage point for radar signal collection. With this change, 

we observed improved classification results (average accuracy = 0.7 & SD = 0.17, 

average sensitivity = 0.68 & SD = 0.27, average specificity = 0.75 & SD 0.17) and a 

better link of the labels with the data. The results were promising, suggesting that 

assessing animals from their rear can improve the classification predictions of 

machine learning algorithms with micro-Doppler radar data. 

7.3 Visual Assessment and Micro-Doppler Radar for Lameness 

Detection 

Lameness detection is a crucial aspect of animal welfare, and visual assessment 

has been the most common method used by farmers and veterinarians. During a 

visual examination, observers typically evaluate the animals' movements while 

walking, paying close attention to limb placement, stride length, arching of the 

back, and gait symmetry, depending on the scoring system. Mobility scoring 

systems, such as the AHDB dairy mobility and Grimm and Lorenzini systems we 

used in this project, are often utilised to provide a standardised approach to 
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lameness detection in herds. However, the requirement for a human observer to 

decide on the state of the animal by observation makes these systems rather 

subjective, potentially influenced by the observer's biases, mood, skills and 

experience. Additionally, visual assessments require considerable time and 

resources, particularly in large herds, which can limit their practicality and can 

be logistically difficult. In recent years, there has been increasing interest in using 

objective measures, such as accelerometers, pressure plates, and computer vision 

systems, to supplement or replace subjective visual assessments. These objective 

measures offer the potential for more consistent and reliable evaluations of 

lameness, but their widespread adoption in practical settings remains limited due 

to various challenges, including cost and practicality. 

Our suggestion, Micro-Doppler radar, which measures the Doppler shift in 

reflected signals, has the potential to provide objective and automated lameness 

detection and be cost-effective and environmentally sustainable. The system 

requires only one-time installation costs and the standard ongoing expenses (i.e., 

electricity, server storage), usually covered by the manufacturer subscriptions, 

making the radar system a potentially financially feasible solution for long-term 

lameness detection. Using the non-invasive radar system could also help reduce 

the farm's environmental impact by avoiding the need for additional resources and 

materials for wearable devices. The system has the potential to monitor cows 

daily without disrupting the regular farm routine. And finally, unlike other 

methods, such as systems that use cameras, the micro-Doppler radar is not 

affected by weather conditions or other factors that may impact visibility, thus 

providing consistent and reliable animal health monitoring. If trained well, 

machine learning algorithms can analyse radar-generated data and identify 

abnormal gait patterns with high accuracy, providing quick, consistent, and 

reliable assessments of lameness, which can help improve animal welfare and 

reduce production losses. However, this technology is still developing, as in this 

project, and there are still challenges to overcome, including the need for 

accurate labels for training and validation. 
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7.4 Labels and machine-learning classification 

Using machine learning algorithms for mobility classification in dairy cattle has 

previously shown promising results (Busin et al., 2019; Shrestha et al., 2018). This 

project employed supervised machine learning approaches, utilising feature 

extraction and pre-processing techniques to train and classify mobility patterns. 

Models such as support vector machines (SVM), K-nearest neighbours (KNN), and 

decision trees were used for classification throughout the project. These models 

were trained and validated on data obtained from micro-Doppler radar systems, 

which were used to detect and track cattle movement patterns from their radar 

signatures. However, initially, incorporating veterinary knowledge and state-of-

the-art lameness detection techniques as labels in the machine learning model did 

not yield promising results. In fact, these inputs resulted in poor prediction and 

classification accuracy. Similar problems concerning the use of labels with 

uncertainty and machine learning are described in the studies conducted by Algan 

& Ulusoy (2019) and Shi & Wu (2021). In their systematic review of methodologies 

to handle label uncertainty in machine learning (Algan & Ulusoy, 2019), the 

authors examined various approaches such as active learning, crowd labelling, 

Bayesian methods, and self-supervised learning. The first three methods involve 

acquiring labelled data samples through either algorithmic selection or 

crowdsourcing-based annotation and modelling probability distributions to 

estimate class probabilities. The self-supervised learning approach enables 

learning from unlabelled data by designing tasks that require the model to 

understand the input data and then perform classification tasks. The second paper 

(Shi & Wu, 2021) proposes a method for training a medical image segmentation 

model using noisy labels. The authors propose a two-stage approach where a 

model is trained on clean data and used to transfer the knowledge to a second 

model trained only on noisy labels. The authors demonstrate that their method 

outperforms several state-of-the-art methods for training segmentation models 

with noisy labels on various medical image datasets.  Although both studies are 

about image classification, the task the algorithms are asked to perform is similar 

to the classification of radar data. Both studies highlight the importance of 

addressing label uncertainty in machine learning, and the proposed methods could 
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potentially work well with our data and will be considered for the future 

continuation of the current project. 

In supervised machine learning, accurate and representative labels are crucial to 

ensure the model's predictions are reliable. To achieve this, labels must accurately 

reflect the class of the data, capturing essential features while minimizing 

individual variations and noise. Machine learning algorithms may fail to produce 

accurate classification results without high-quality ground truthing, leading to 

potentially biased or unreliable outcomes. Two familiar sources of inaccuracy in 

ground truth data are lack of standardization and uniformity in label definition 

and a lack of exclusive and exhaustive classes (Chawla, 2010; Vuttipittayamongkol 

et al., 2021).  

One example highlighting these issues pertains to the scoring criteria for lameness 

severity in the widely used AHDB dairy mobility system, which was created to 

address concerns about the welfare of dairy cows and the economic impact of 

lameness (AHDB 2015, https://ahdb.org.uk/about-ahdb, accessed in March 2023). 

Specifically, there is ambiguity in the interpretation of score 3, which involves 

evaluating an individual cow's mobility relative to the rest of the herd. This 

criterion may be challenging to apply consistently and objectively, as the 

assessment is made individually for each cow. In this project, we encountered and 

identified limitations in the subjectivity derived from the visual assessment, 

leading to discrepancies between and within assessors bringing to attention the 

lack of standardization and uniformity. Additionally, the system may not be 

sensitive enough to detect early stages of lameness or subtle changes in gait 

indicating pain or discomfort in cows. Although the AHDB dairy mobility scoring 

system offers potential for assessing cow mobility, it has limitations, including 

discrepancies in labels generated by different assessors. This inconsistency may 

compromise its reliability as a ground truth for machine learning. However, 

implementing the system from a rear vantage point could help address these issues 

and improve its usefulness. 

The choice of the extracted features and the validation techniques used can also 

impact the classification model’s performance, as some studies (Karabulut et al., 

2012; Szeghalmy & Fazekas, 2023; Tougui et al., 2021) have demonstrated. These 

three studies investigated and compared validation and feature selection methods 

https://ahdb.org.uk/about-ahdb
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and suggested that careful consideration of the approaches is essential for 

ensuring reliable and accurate diagnostic applications in the context of machine 

learning. The features can be selected manually or automatically, and their 

quality and relevance to the classification task are critical determinants of the 

model's accuracy. If the extracted features are determined not to be relevant to 

the classification task, the model will not be able to differentiate between 

classes, resulting in poor classification accuracy. If the extracted features are too 

complex or too many, the model may overfit the training data and perform poorly 

on new, unseen data.  

In addition to selecting the appropriate features, the choice of validation 

technique can also affect classification accuracy. For example, suppose we use a 

simple hold-out validation technique, splitting the data into training and testing 

sets. In that case, the model's performance may depend on the specific samples 

in the training and testing sets. If the algorithm is sensitive to the particular 

training samples, the model may overfit or underfit the training data, resulting in 

poor performance on the testing set. If a more advanced validation technique is 

used, such as the 10-fold cross-validation we used throughout the project, we can 

obtain a more reliable estimate of the model's performance, which is less sensitive 

to the specific samples in the training and testing sets. This can help us select the 

appropriate algorithm and its implementation, as we can compare the 

performance of different algorithms across multiple folds of the data. Having a 

larger dataset can partially mitigate the problems of overfitting or underfitting, 

as it provides more diverse examples for the model to learn from, reducing its 

sensitivity to specific training samples. However, it's important to note that 

increasing the dataset size does not solve the issue of incorrect or inaccurate 

labels. If the training data contains labels not corresponding to the truth, adding 

more data will not fix this problem. In such cases, it is necessary to address the 

quality and accuracy of the labels. 

The subjective nature of the visual scoring and the importance of objective labels 

for machine learning training have practical implications for the livestock farming 

industry. The current project highlights the need for alternative systems or a re-

assessment of the current evaluation criteria. Fortunately, we also found an 

improvement when changing the vantage point of assessment, suggesting that 

scorings conducted from a rear vantage point can provide practical advantages, 
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link better with the micro-Doppler data, and improve the accuracy of lameness 

detection. 

7.5 Impact 

One of the impacts of this research is the generation of an extensive data set of 

cattle mobility radar data from different farm facilities. The data collected from 

the longitudinal study described in Chapters 3 and 4 concern data of the same 

animals we monitored for six months. We plan to make these datasets or part of 

them publicly available, allowing other researchers to access and facilitate new 

research questions, enable meta-analyses, and possibly provide a long-term 

impact in the lameness field. 

This project has also allowed an interdisciplinary collaboration between University 

of Glasgow departments: the School of Biodiversity, One Health and Comparative 

Medicine and the James Watt School of Engineering. Combining these disciplines 

led to the developing of new and innovative ideas about automating lameness 

detection and supported addressing complex and multidimensional problems such 

as transferring human knowledge and the decision-making process of diagnosis to 

machine learning. 

Finally, the research discussed in this thesis has helped to increase our 

understanding of how radar can recognise animal activity, particularly in 

identifying signs of lameness. This has involved addressing challenges discussed in 

previous chapters and developing new methods to overcome them. Overall, this 

project has expanded our knowledge of the potential uses of radar technology for 

animal monitoring and introduced the idea of automated lameness detection using 

micro-Doppler radar. 

7.6 Challenges faced during the project 

One of the main challenges was the unexpected variability among the assessors’ 

scores, which resulted in the need to focus on creating accurate labels. This 

highlights the importance of developing clear and consistent labelling protocols to 
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ensure the accuracy and reliability of data used for machine learning. While this 

was an important step to make the system more rigorous and reliable, it also 

shifted the focus away from other aspects of the study, potentially limiting the 

scope of the results.  

Another limitation was the Covid pandemic, which appeared a few months after 

the project started and lasted most of the duration. Although difficult to quantify, 

the impact on mental health resulting from the pandemic has undoubtedly been 

a significant challenge. While the impact on the practical aspect of the project 

was indirect (i.e., video scoring instead of live scoring), adapting to new 

circumstances may have introduced additional variability or limitations in the 

data. This highlights the importance of adapting to unexpected circumstances and 

implementing appropriate measures to maintain the integrity of the data.  

7.7 Lessons Learned: Reflections on Opportunities for 

Improvement 

Upon reflection on the choices and results obtained in the project, there were 

identified areas for improvement if the study were to be repeated. Firstly, a multi-

angle approach for capturing videos of the animals would be implemented to 

provide a more comprehensive perspective of the cows' gaits and movements. It 

could help identify asymmetries that may not be apparent from a single angle, 

and it would help reduce environmental factors' impact on gait assessment, such 

as uneven ground or lighting conditions, which may affect the visibility of 

lameness from a single angle. This would potentially improve the accuracy and 

reliability of visual lameness scoring by minimising observer bias, as different 

angles may highlight particular features or characteristics of the animal's gait. 

Including a more extensive sample of undoubtedly healthy and severely lame 

animals would also be implemented. This choice would enable the ML model to be 

sufficiently trained with the necessary data and subsequently tested with cases of 

mild to moderate lameness (i.e., AHDB scores between 1 and 2 on the 4-level 

system). Training the model on a broader range of data, possibly including lesion 
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data, could improve the generalisability of the model to new lameness cases and 

enhance its usefulness and practical application in diverse farm environments. 

Finally, alternative machine learning methods, such as unsupervised or semi-

supervised learning, would be investigated as part of potential improvements to 

the study. The main advantage of the unsupervised ML approach is that it does 

not require labelled data for the training and can be used to identify patterns or 

structures that might not be easily identified through manual feature extraction 

and visual assessment methods. 

7.8 Future Directions 

The research project has received funding and a grant, allowing the investigator 

and the supervisory team to continue the research. In addition, a collaboration 

with a European university specialising in artificial intelligence and biomedical 

applications for human and veterinary medicine has been established. This 

collaboration provides access to well-equipped laboratories for experimental and 

computational work using radar sensing systems, which will be used in the ongoing 

research project. The two main objectives of the future plan are to improve the 

accuracy and reliability of the lameness detection system. First, applying an 

unsupervised machine learning technique to compare the outcomes with this 

thesis's findings, aiming to determine which labels (assessors or hoof 

examinations) are more reliable. This would help reduce the variability in the 

labelling process and increase the system's accuracy. Secondly, we will attempt 

to define a gait signature for each cow, and the gait parameters will be extracted 

to monitor changes over time. The researchers will explore how these variations 

are associated with abnormal mobility, which will improve the understanding of 

the early stages of lameness in cows. By developing a gait signature for each cow, 

the researchers can track changes in their mobility over time, allowing for early 

detection of lameness before it becomes visually apparent. This will enable 

prompt intervention and treatment, improving animal welfare and reducing the 

financial costs for farmers. 
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7.9 Conclusions 

Lameness assessment is a crucial task in managing the welfare and productivity of 

dairy cows, but the current visual assessment methods, which typically involve 

scoring the animals from the side using a multi-level system, have been shown to 

lack consistency among and within assessors. Our study found that this 

inconsistency is extended in machine learning predictions when the scores are 

used in training, despite attempts to improve agreement through binarisation, 

transformations of the data (convergent scores), and pre-processing techniques. 

However, changing the vantage point from the side to the rear of the cow for 

assessment showed promising results regarding machine learning training and 

classification. Moreover, we observed that using labels from animals with 

indisputable lameness status, such as healthy or severely lame, improved machine 

learning classification. Nevertheless, our results suggest that further research is 

needed to explore the effectiveness of the suggested evaluation vantage point 

and to involve a larger number of healthy and severely lame animals. Future 

research should explore the suggested approaches further. 
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Appendix A  

Receiver operating characteristic curves (ROC) from the SVM models validation 

corresponding to Table 5.6. Each figure includes three plots (A1, A2, A3) 

representing each assessor's (Assessor 1, 2, 3) scores. The different mobility 

scoring systems used as labels are shown on each page.  A perfect ROC curve would 

be one that reaches the top-left corner of the plot, indicating a sensitivity of 1 

(no false negatives) and a specificity of 1 (no false positives). The Area Under the 

Curve (AUC) is a quantitative measure of the overall performance of a 

classification model. A perfect model would have an AUC of 1.0. The closer the 

AUC is to 1.0, the better the model's ability to discriminate between positive and 

negative instances. 

Figure A.17 to Figure A.25 correspond to the results presented in Table 5.5. 
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Figure A.1 Farm B – Grimm & Lorenzini scores- extracted features without the pre-

processing technique (unmasked).  
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Figure A.2 Farm B – Binarised Grimm & Lorenzini scores (scores 0 & 1 / scores 3) - 

extracted features without the pre-processing technique (unmasked). 

A1 A2

 

A3 



220 

 

Figure A.3 Farm B – Grimm & Lorenzini scores- extracted features after the pre-

processing technique (masked). 
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Figure A.4 Farm B – Binarised Grimm & Lorenzini scores- extracted features after the 

pre-processing technique (masked). 
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Figure A.5 Farm A – AHDB (4-levels) scores- extracted features without the pre-processing 

technique (unmasked). 
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Figure A.6 Farm A – Binarised AHDB (2-levels) scores- extracted features without the pre-

processing technique (unmasked). 
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Figure A.7 Farm A – Convergent AHDB (4-levels) scores- extracted features without the 

pre-processing technique (unmasked). 
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Figure A.8 Farm A – Binarised convergent AHDB (2-levels) scores- extracted features 

without the pre-processing technique (unmasked). 
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Figure A 9 Farm A – Grimm & Lorenzini (3-levels) scores- extracted features without the 

pre-processing technique (unmasked). 
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Figure A.10 Farm A – Binarised Grimm & Lorenzini (2-levels) scores- extracted features 

without the pre-processing technique (unmasked). 
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Figure A.11 Farm A – AHDB (4-levels) scores- extracted features after the pre-processing 

technique (masked). 
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Figure A.12 Farm A – Binarised AHDB (2-levels) scores- extracted features after the pre-

processing technique (masked).  
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Figure A.13 Farm A – Convergent AHDB (4-levels) scores- extracted features after the 

pre-processing technique (masked).  
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Figure A.14 Farm A – Binarised convergent AHDB (4-levels) scores- extracted features 

after the pre-processing technique (masked).  
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Figure A.15 Farm A – Grimm & Lorenzini (3-levels) scores- extracted features after the 

pre-processing technique (masked). 
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Figure A. 16 Farm A – Binarised Grimm & Lorenzini (2-levels) scores- extracted features 

after the pre-processing technique (masked).  
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Figure A.17  ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the Grimm & Lorenzini 3-levels consensus scoring for 

farm B assessment. 

 

 

 

Figure A.18 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the binarised Grimm & Lorenzini (scores 1,2 vs 3) 

consensus scoring for farm B assessment.  
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 Figure A.19 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged Grimm & Lorenzini individual scoring for 

farm B assessment. 

 

 

Figure A.20 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged binarised Grimm & Lorenzini individual 

scoring for farm B assessment.  
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Figure A.21  ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the binarised AHDB consensus scoring for farm A 

assessment.  
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Figure A.22 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged convergent AHDB scoring for farm A 

assessment. 

 

  

Figure A.23 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged binarised convergent AHDB scoring for farm 

A assessment. 
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Figure A.24 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged Grimm & Lorenzini scoring for farm A 

assessment. 

 

 

  

Figure A.25 ROC curves from the validation SVM models and the unmasked (A) - masked 

(B) data. Labels retrieved from the averaged binarised Grimm & Lorenzini scoring for 

farm A assessment. 
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