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Abstract 

Background  

Heart failure is a clinical syndrome with inter-relationships between numerous 

biochemical, physical, and imaging characteristics, and adverse outcomes. Patients with 

heart failure typically have poor prognosis, and previous prognostic models are limited to 

using only baseline measurements of these characteristics. In recent years there has been a 

rise in interest and usage of joint modelling. Joint modelling seeks to combine two or more 

models, typically containing longitudinal observations and time-to-event (survival) data. 

The purpose of which is to reduce bias and increase efficiency, allowing for these repeat 

measurements of longitudinal observations whilst accounting for correlation and 

measurement error. The inter-relationships within heart failure and properties of joint 

modelling make heart failure an excellent candidate for joint modelling. It is therefore the 

aim of this thesis to explore the use of joint modelling in heart failure and to see whether it 

can be used to improve prognosis. 

 

Methods 

This research comprised of a systematic review paired with an exemplar to introduce joint 

modelling and how joint models are currently being applied to heart failure; whilst also 

illustrating how joint modelling can be applied to clinical trial data. Following this, seven 

joint models were fit under a Bayesian framework, using data from a randomised control 

trial, and validated with data from different randomised control trials. These joint models 

were then compared to models fitted using current standards of prognostic model 

methodology to evaluate and assess how joint modelling can potentially improve model 

performance. Finally, a web application was developed to illustrate how these joint models 

can translate into real world applications. 
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Results 

On average the joint models performed better, in a statistical sense, than the traditional 

models (considered the current standard for prognosis) and performed adequately when 

validated with data from another randomised control trial. The web application effectively 

shows how these joint models can be used in practice and highlights the potential of the 

dynamic nature of joint models when used in a prognostic setting. 

 

Conclusion 

This thesis illustrates how joint modelling can improve on the current standard of 

prognostic models, adding repeated measurements and allowing for dynamic predictions 

over time, whilst outperforming the traditional models. However, with limitations around 

the use of latent parameters such as random effects, and the novel nature of these models 

with their limited use, it may be prudent to wait until these types of models mature, are 

evaluated further, and the statistical packages used to fit these models mature before 

implementing them in clinical practice. 
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Definitions/Abbreviations 

 
ACE-I: Angiotensin-converting enzyme inhibitor 

ACE: Angiotensin-converting enzyme 

Active Controlled: A trial design whereby the comparator of the investigational drug is 

an already established treatment rather than placebo 

ADHERE: The Acute Decompensated Heart Failure National Registry 

AF: Atrial Fibrillation 

AHA: American Heart Association 

AIC: Akaike Information Criterion 

AIDS: Acquired Immune Deficiency Syndrome 

ALTITUDE: Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Disease Endpoints 

ARB: Angiotensin Receptor Blockers 

ARNI: Angiotensin Receptor-Neprilysin Inhibitor 

ASTRONAUT: Aliskiren Trial on Acute Heart Failure Outcomes 

ATMOSPHERE: The Aliskiren Trial to Minimize Outcomes in Patients with Heart 

Failure 

AUC: Area under the ROC Curve 

b.i.d: bis in die (twice a day) 

BIOLINCC: Biologic Specimen and Data Repository Information and Coordinating 

Center 

Biomarker: Biological Marker 

BMI: Body Mass Index 

BNP: B-type natriuretic peptide 

C-Index: Concordance Index - A generalisation of the AUC, AKA. AUC-ROC 

CA125: Cancer Antigen 125 

CAD: Coronary Artery Disease 

CI: Confidence interval 

CKD: Chronic Kidney Disease 

COPD: Chronic Obstructive Pulmonary Disease 

Cox PH: Cox Proportional Hazards 

CRP: C-Reactive Protein 

CRT-D: Cardiac Resynchronization Therapy Devices 

CV: Cardiovascular 

DIC: Deviance Information Criterion 

DIG: The Effect of Digoxin on Mortality and Morbidity in Patients with Heart Failure 

Double Blind: Neither researcher nor patient know the assigned intervention 

Double Dummy: If a treatment in a trial requires different treatment forms (e.g., multiple 

dosage) the comparator arm will contain a placebo of these extra treatment forms to 

enable proper blinding.  

ECG / EKG: Electrocardiogram 

EDV: End-diastolic Volume 

eGFR: Estimated Glomerular Filtration Rate 

ELITE2: Evaluation of Losartan in the Elderly 

Endpoint: Event or Outcome of interest 

ESC: European Society of Cardiology 
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Event Driven: A trial design whereby the power needed for the trial is derived from the 

number of events 

GAL-3: Galectin-3 

GDF-15: Growth Differentiation Factor 15 

GFR Glomerular Filtration Rate 

GLMM: Generalized Linear Mixed Model 

HF: Heart Failure 

HFmrEF: Heart Failure with mid-range Ejection Fraction / Heart Failure with mildly 

reduced Ejection Fraction 

HFpEF: Heart Failure with Preserved Ejection Fraction 

HFrEF: Heart Failure with reduced Ejection Fraction 

HIV: Human Immunodeficiency Virus 

HR: Hazard Ratio 

HsTnT: High Sensitivity Troponin T 

ICD: Cardioverter-Defibrillators 

IN-CHF Italian Heart Failure Registry 

IQR Interquartile range 

JM: Joint Model 

KCCQ-OS: Kansas City Cardiomyopathy Questionnaire Overall Summary Score 

LCZ / LCZ696: Sacubitril/Valsartan 

LDH: Lactase Dehydrogenase 

LME: Linear Mixed Effects 

LMM: Linear mixed-effects models 

LOCF: Last Observation Carried Forward 

LPML: log pseudo-marginal likelihood  

LVAD: Left Ventricular Assist Device 

LVED: Left ventricular end-diastolic diameter 

LVEF: Left Ventricular Ejection Fraction 

LVES: Left ventricular end-systolic diameter 

MAGGIC: Meta‐Analysis Global Group in Chronic Heart Failure 

MCMC: Markov chain Monte Carlo 

MI: Myocardial Infarction 

miRNA: Micro ribonucleic acid 

MNAR: Missing Not at Random  

MRA: Mineralocorticoid Receptor Antagonists 

MRI: Magnetic Resonance Imaging 

NT-ProBNP: N-Terminal Pro-Brain Natriuretic Peptide 

NYHA: New York Heart Association 

PARADIGM-HF: Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure 

Parallel Group: Patients are randomised to one or more groups and continue in this 

group throughout the study 

PRAISE1: Prospective Randomized Amlodipine Survival Evaluation 

PRISMA: Preferred Reporting Items for Systematic Reviews 

PROBAST: Prediction model Risk Of Bias ASsessment Tool 

QOL: Quality of Life 

QRS: A combination of the Q, R and S waves from an Electrocardiogram 

RCT: Randomized Control Trial 
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Chapter 1 Introduction 

1.1 Foreword 

The purpose of this chapter is to introduce the background surrounding both heart failure and 

joint modelling to provide context and a foundation for the aims of this thesis. 

1.2 Heart Failure 

1.2.1 Definition 

The European Society of Cardiology (ESC) provides the following definition of heart failure: 

“Heart failure is not a single pathological diagnosis, but a clinical syndrome consisting of 

cardinal symptoms (e.g. breathlessness, ankle swelling, and fatigue) that may be 

accompanied by signs (e.g. elevated jugular venous pressure, pulmonary crackles, and 

peripheral oedema). It is due to a structural and/or functional abnormality of the heart that 

results in elevated intracardiac pressures and/or inadequate cardiac output at rest and/or 

during exercise.” [1] 

 

While the American Heart Association (AHA) defines heart failure as: 

“A complex clinical syndrome with symptoms and signs that result from any structural or 

functional impairment of ventricular filling or ejection of blood. “ [2] 

 

While these definitions differ, they agree that heart failure is a clinical syndrome with 

symptoms and possible signs resulting from structural and / or functional abnormalities in the 

heart. 
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1.2.2 Chronic and Acute Heart Failure 

Heart failure can either present over time with a history of signs and / or symptoms of cardiac 

dysfunction known as chronic heart failure; or with a rapid or progressive onset of signs and / 

or symptoms acute enough for the patient to present themselves for urgent medical treatment, 

known as acute heart failure. Whilst both chronic and acute are types of heart failure, they 

have distinct characteristics such as a difference in mortality and rehospitalisation rates and 

management [1]. This thesis will focus mainly on chronic heart failure. 

 

1.2.3 Functional Classification 

The New York Heart Association (NYHA) classification is still widely used as one of the 

most straightforward functional classifications of heart failure. NYHA categorises heart 

failure into one of four classes based solely on symptoms as shown in Table 1. 

Table 1 The definition of the four classes of NYHA classification adapted from The Criteria 
Committee of the New York Heart Association. 
Class Functional Capacity 

I Patients with cardiac disease, but without resulting limitation of physical activity. 

Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea, or 

anginal pain. 

II Patients with cardiac disease resulting in slight limitation of physical activity. They 

are comfortable at rest. Ordinary physical activity results in fatigue, palpitation, 

dyspnea, or anginal pain. 

III Patients with marked limitation of physical activity. They are comfortable at rest. 

Less than ordinary activity causes fatigue, palpitation, dyspnea, or anginal pain. 

IV Patients with cardiac disease resulting in inability to carry on any physical activity 

without discomfort. Symptoms of heart failure or of the anginal syndrome may be 

present even at rest. If any physical activity is undertaken, discomfort is increased. 

[3] 

Whilst still widely used NYHA classification relies exclusively on symptoms and newer 

evidence suggests it may be outdated and that there are numerous prognostic indicators of 

heart failure which are superior [4]. 
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1.2.4 Diagnosis of Chronic Heart Failure 

Whilst the presence of signs and or symptoms can be indicative of heart failure, they alone 

are not accurate enough to provide a diagnosis of heart failure. Instead, the ESC provides an 

algorithm for diagnosis of chronic heart failure, illustrated in Figure 1 starting with suspected 

heart failure and including tests for natriuretic peptides and echocardiography which not only 

provides a confirmatory diagnosis but categorisation of heart failure by left ventricular 

ejection fraction.  

Figure 1 Diagnostic algorithm for heart failure adapted from McDonagh et al. 

 

[1] 
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1.2.5 Left Ventricular Ejection Fraction 

Left Ventricular Ejection Fraction (LVEF) is widely used to phenotype heart failure. LVEF is 

expressed as a fraction of the stroke volume (SV) and the end diastolic volume (EDV) 

calculated as a percentage: 

 

𝐿𝑉𝐸𝐹 =
𝑆𝑉

𝐸𝐷𝑉
 ×  100 

[5] 

Both the ESC and AHA recommend echocardiography for ascertaining a patient’s LVEF [1], 

[2]. However, LVEF can be determined from a variety of techniques including magnetic 

resonance imaging (MRI) [6], computed tomography [7] and nuclear cardiac imaging [8]. 

 

Previously heart failure had two distinct phenotypes: Heart Failure with Reduced Ejection 

Fraction HFrEF (LVEF ≤40%) or Heart Failure with Preserved Ejection Fraction HFpEF 

(≥40%). However more recently both the AHA and ESC have recognised a third phenotype: 

Heart Failure with mid-range ejection fraction / Heart Failure with mildly reduced ejection 

fraction (HFmrEF). With this addition HFpEF now only encapsulates patients with a LVEF 

of ≥50% [1]. All three phenotypes are outlined in Table 2. This thesis will primarily focus on 

patients with HFrEF. 

 

Table 2 The three Phenotypes based on LVEF 

Phenotype LVEF % 

HFrEF ≤40% 

HFmrEF 41-49% 

HFpEF ≥50% 
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1.2.6 Epidemiology 

In Europe the prevalence of heart failure is estimated at 1-2 % of adults. However, this 

estimate is derived from studies which typically only include persons with diagnosed or 

recognised heart failure so the true prevalence may be higher [1]. While prevalence may be 

high due to an ageing population age-adjusted incidence in developed countries may be 

decreasing, suggesting better management of cardiovascular disease [1]. 

 

Common causes of heart failure include Coronary Artery Disease (CAD), hypertension, valve 

disease, arrhythmia, cardiomyopathy, congenital heart disease, infective, drug induced, 

infiltrative, storage disorders, endomyocardial disease, pericardial disease, metabolic, and 

neuromuscular disease. However, aetiology can vary with region; with CAD and 

hypertension being the most common cause in developed countries [9]. 

 

1.2.7 Prognosis 

Prognosis for patients with heart failure is typically poor with a considerably reduced quality 

of life. Although prognosis has improved in more recent years, this improvement is restricted 

to patients with HFrEF [1]. Mortality and overall prognosis can be dependent on factors such 

as sex and ejection fraction with females having a greater survival over males [10]. 

 

1.2.8 Co-Morbidities 

Heart Failure is often accompanied by both cardiovascular and non-cardiovascular co-

morbidities. Co-morbidities can be dependent on the aetiology; common cardiovascular co-

morbidities include arrhythmias such as atrial fibrillation, chronic coronary syndromes such 

as CAD, valvular heart disease including aortic stenosis, aortic regurgitation both mitral and 

tricuspid, hypertension, and stroke [1]. 



24 

 

 

Non cardiovascular co-morbidities include anaemia and iron deficiency, arthritis, cachexia, 

cancer, depression, diabetes, electrolyte disorders such as hypokalaemia, hyponatraemia and 

hypochloraemia, erectile disfunction, frailty, gout, hyperlipidaemia, infection, kidney 

disfunction, lipid-modifying therapy, lung disease, obesity, sarcopenia, sleep-disordered 

breathing, and thyroid disorders [1]. 

 

It is important to consider co-morbidities and underlying aetiology as these need to be 

considered for overall disease management [11]. Co-morbidities are also considered in 

selection criteria of studies such as clinical trials and need to be considered for 

generalisability of studies [12]. 

 

1.2.9 Treatment for Chronic Heart Failure 

Treatment and management of chronic heart failure will depend on the underlying aetiology 

and LVEF phenotypes. Evidence suggests that only patients with HFrEF have been shown to 

respond to treatment lowering mortality and reducing morbidity [1]. 

 

1.2.9.1 Treatment of patients with HFrEF 

Patients with HFrEF may benefit from pharmacotherapy which is recommended by the ESC 

prior to invasive treatment such as device therapy. The goal of treatment for patients with 

HFrEF is threefold: reducing mortality, preventing recurring hospitalisations due to heart 

failure (HF), and improvement in patient status i.e., clinical status, function capacity and 

quality of life (QOL) [1].  

Guidance on treatment for HFrEF is dependent on aetiology. The ESC provides guidelines 

for treatment of HFrEF starting with pharmacotherapy including angiotensin-converting 
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enzyme inhibitor (ACE-I) / angiotensin receptor-neprilysin inhibitor (ARNI), beta blocker, 

mineralocorticoid receptor antagonist (MRA), dapagliflozin/empagliflozin and loop diuretics. 

Following pharmacotherapy, the use of implantable devices such as Cardioverter-

Defibrillators (ICD) or pacemakers. After consideration of device therapy other therapies can 

be considered, but the level of evidence for these therapies and their efficacy is lacking or 

conflicting [1]. 

 

1.2.10 Natriuretic Peptides in Heart Failure 

As previously mentioned, natriuretic peptides are used in the diagnosis of heart failure, either 

BNP (Brain Natriuretic Peptide) or NT-ProBNP (N-terminal pro-B type natriuretic peptide). 

Both BNP and NT-ProBNP are circulating bio-makers. Originally identified in porcupine 

brain [13], Both BNP and NT-ProBNP are now acknowledged to be circulating markers, 

produced mainly in the cardiac ventricles as a result of pressure overload and ventricular 

stretch, with small amounts being produced by the atrium [14], [15]. 

 

Plasma levels of B-Type Natriuretic peptides in heart failure patients increase in levels 

proportionate to the level of systolic and diastolic myocardial dysfunction [15]–[17]. 

NT-ProBNP has a longer half-life than BNP; as a result, plasma levels of NT-ProBNP are 

generally higher and may provide better diagnostic indicators [16], [18]. Levels of B-Type 

Natriuretic peptides are known to rise with age [19], [20]. Evidence suggests that lower levels 

of both NT-ProBNP and BNP are found in patients with obesity; however, the mechanisms of 

these findings are unknown [21]. Latest ESC guidelines for heart failure suggest an NT-

ProBNP level ≥ 125 pg/mL or a BNP level ≥ 35 pg/mL are suggestive of heart failure [1]. 
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BNP and NT-ProBNP are generally considered interchangeable, which was recently 

illustrated by Rorth et al. using data from an RCT [22]. In the same study the authors 

observed differences in levels of BNP and NT-ProBNP in patients with atrial fibrillation and 

also showed that levels increased with both age and declining renal function [22].   

 

1.2.11 Renal Function in Heart Failure 

There is a known and well documented relationship between heart failure and renal decline 

[23]–[26]. CKD is also a known risk factor for heart failure which is also directly linked to 

renal decline [27], [28]. These factors make renal function in heart failure an important 

consideration in prognosis, as renal decline can lead to adverse events such as hospitalisation 

and death [25], [29] . 

Renal function is measured using Glomerular Filtration Rate (GFR) which is considered “the 

volume of water filtered out of the plasma through glomerular capillary walls into Bowman's 

capsules per unit of time” [30] as defined as in Equation 1. 

 

Equation 1 Equation for Measuring Glomerular Filtration Rate 

𝐺𝐹𝑅 (𝑚𝑙/𝑚𝑖𝑛)   =
𝑈𝑟𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑈𝑟𝑖𝑛𝑒 𝐹𝑙𝑜𝑤

𝑃𝑙𝑎𝑠𝑚𝑎 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

[31] 

The measurement of GFR in practice is considered inconvenient, costly, and technically 

difficult as it requires injection of a marker such as inulin, and then measuring how 

effectively the marker is filtered by the kidneys [32]. Therefore, the estimated Glomerular 

Filtration Rate (eGFR) is preferred. Which can be estimated using several validated 

equations; one of the most popular was developed by Levy et al. Noted in Equation 2, this 

formula uses serum creatinine, age, sex and if race is black to estimate the GFR in 

mL/min/1.73 m2 [33], [34]. 
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Equation 2 Formula for eGFR by Levy et al. 

𝑒𝐺𝐹𝑅 =  186 × 𝑆𝑒𝑟𝑢𝑚 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 (𝑚𝑔/𝑑𝐿)−1.154  × 𝐴𝑔𝑒−0.203  × 0.742 (𝑖𝑓 𝐹𝑒𝑚𝑎𝑙𝑒)  

× 1.212 (𝑖𝑓 𝐵𝑙𝑎𝑐𝑘) 

[33] 

 

Serum creatinine, age, sex, and race have all been shown to be associated with GFR, with age 

and creatinine having a negative effect on GFR. Both black race and the male sex increase 

GFR when compared against the female sex and nonblack races [34]. 

The ‘normal range’ of eGFR is that greater than 60 mL/min/1.73m2; however, the ‘normal’ 

range of creatinine is 0.8 - 1.4 mg/dL for adult men and 0.6 – 1.1 mg/dL for adult woman and 

due to the effects of age, race and sex a person could have a ‘normal’ range of eGFR but an 

‘abnormal’ range of creatinine and vice versa [34]. 

 

1.2.12 Prognostic Models in Heart Failure 

In general, a prognostic model can be defined as a model fit with multiple covariates to make 

predictions about a specific outcome of interest, dependent on a specified state of health for a 

stated period of time. Prognostic models can be applied to continuous, dichotomous and 

nominal / ordinal outcome measures. Models can also use continuous outcomes to predict the 

expected outcome of interest for an individual. Models for dichotomous outcomes predict the 

risk of the outcome of interest for an individual by a specified time; these models are also 

known as risk prediction models. The so called ‘holy grail’ of prognostic models are models 

that can predict subject specific outcomes, providing personalised predictions [35].  

 

Risk prediction prognostic models can be assessed using metrics measuring fit , 

discrimination and calibration. Goodness of fit references how well the model fits the data, 
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providing an indication of overall performance of the model. This is typically assessed using 

an information criterion such as Akaike Information Criterion (AIC) for frequentist models 

and Deviance Information Criterion (DIC) for Bayesian models, the former based on 

prediction error and the latter deviance at the posterior mean [36]. Discrimination is defined 

as how well a model’s predictions discriminate between subjects who had the outcome of 

interest and those who did not. Discrimination is typically assessed using the area under the 

curve of the Receiver Operating Characteristic (ROC) which plots sensitivity against 

specificity. Finally, calibration is used to examine the predicted and observed risks and 

should be examined across the range of predicted risks. Calibration can be assessed visually 

using a calibration curve which plots predicted risk vs observed risk [37], [38]. 

 

Risk prediction models in heart failure have previously been reviewed in a systematic review 

by Rahimi et al. identifying 64 models from 48 studies predicting death, hospitalisation for 

heart failure and a composite of death and hospitalisation for heart failure. Reporting a 

variety of data sources including patient data from medical records, prospectively collected 

data, and data from clinical trials. Using data from 1985 up until 2010 [36]. 

 

Di Tanna et al. in a more recent review developed upon the review by Rahimi et al. 

identifying 58 models from 40 studies predicting all-cause mortality, hospitalisation for heart 

failure, cardiovascular death, and composite endpoints. Data from these studies were noted as 

originating from longitudinal, experimental, and retrospective studies. The authors also used 

Prediction model Risk Of Bias ASsessment Tool (PROBAST) to assess the Risk of Bias 

(ROB) identifying only seven studies meeting the criteria to be considered suitable with 

minimal ROB, suggesting reporting around analysis, calibration, discrimination, and missing 

data needed improvement [37]. 
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Di Tanna et al. based their categorisation of the level of discrimination on Hosmer et al., 

However, shown in Table 3 and Table 4 the latest version of this text differs [38]. It is 

important to consider these differences when describing discrimination. The Di Tanna et al. 

definition only encompasses a range from <0.60 - ≥ 0.70 with only three categories whereas 

the Hosmer et al. definition ranges from 0.5 to ≥ 0.9 with five categories [37], [38]. 

 

Table 3 Level of Discriminatory Ability for Risk Prediction Models Adapted from Hosmer et 
al. 
AUC-ROC / C-Statistic Level of Discrimination 

= 0.5 No Discrimination (Flip of a Coin) 

> 0.5 < 0.7 Poor Discrimination (Slightly Better than a Flip of a 

Coin) 

≥ 0.7 < 0.8 Acceptable Discrimination 

≥ 0.8 < 0.9 Excellent Discrimination 

≥ 0.9 Outstanding Discrimination 

[38] 

Table 4 Level of Discriminatory Ability for Risk Prediction Models Adapted from Di Tanna et 
al. 
AUC-ROC / C-Statistic Level of Discrimination 

< 0.60 Poor Discrimination 

≥ 0.6 < 0.7 Moderate Discrimination 

≥ 0.7 Good Discrimination 

[37] 

 

A key issue raised in these reviews was calibration and discrimination. In more recent years, 

more focus has been put on the use of both calibration and discrimination when assessing 

prognostic models [39], [40]. Calibration is as important as discrimination to ensure that the 

model gives accurate predictions while not over or underestimating those predictions. Model 

performance must therefore be assessed on both discrimination and calibration. In their 
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earlier review Rahimi et al. only reported the use of c-statistic, whereas Di Tanna et al. 

reported both c-statistic and whether calibration was assessed. The models from the Di Tanna 

et al. review ranged from 0.61-0.84 with regards to c-statistic. However, as previously stated 

only seven studies met the PROBAST criteria for low ROB. 

 

As well as performance, it is also important to consider validation. Validation can either be 

internal or external with internal using techniques such as bootstrapping or cross fold 

validation and external using new data from another source to validate the model [41]. The 

method of validation may be limited by available data. The method of validation may be 

limited by available data. However, each type has a purpose in the development of prognostic 

models. Internal validation can be used to assess the optimism of the model because of 

overfitting. While external validation can be used to assess the generalisability of the model 

[38]. 

 

Further to the Di Tanna et al. review, a new prognostic model was published by Simpson et 

al., a study entitled Prognostic Models Derived in Paradigm-HF and Validated in 

ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity 

in Chronic Heart Failure (PREDICT-HF) [42]. However, as it was published after both 

reviews it was not included in either. Being one of the latest prognostic models it warrants 

separate review. 

 

PREDICT-HF used data from the Angiotensin–Neprilysin Inhibition versus Enalapril in 

Heart Failure (PARADIGM-HF) RCT [43] and validated models with data from the Aliskiren 

Trial to Minimize Outcomes in Patients with Heart Failure (ATMOSPHERE) RCT [44] and 

the Swedish Heart Failure Registry (SwedeHF) [45]. The authors used a complete case 



31 

 

analysis and used a stepwise approach to perform a multivariable analysis fitting a Cox 

Proportionate Hazards (Cox PH) model for each outcome. These outcomes included the 

primary composite endpoint of the PARADIGM-HF trial (death from cardiovascular causes 

and first hospitalisation for heart failure), all-cause mortality, and death from cardiovascular 

causes. 

 

Each prognostic model had different variables dependent on the outcomes of the stepwise 

analysis; These variables are shown in Appendix Table 1 along with the hazard ratios 

associated with these variables. 

 

The calibration of the models was assessed at 1 and 2 years, using baseline survival, the Cox 

PH model was used to predict survival, and then the quintiles from the predicted survival was 

compared against the observed survival. 

 

The models were validated with the ATMOSPHERE RCT, applying the ATMOSPHERE 

RCT data to the model and then comparing the c-statistics at one and two years against the 

original model. Using the same process, the all-cause mortality model was also validated 

using data from the SwedeHF cohort. The authors also conducted a sensitivity analysis using 

BNP over NT-ProBNP, once again comparing the c-statistic at one and two years. 

 

Finally, the authors also compared the models against the commonly known risk prediction 

models within heart failure including MAGGIC, SEATTLE and EMPHASIS-HF. The 

authors also provided a web-based calculator for risk prediction using PREDICT-HF model 

to aid in translation from research to clinical practice [45].[42] 
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Appendix Table 1 Illustrates the hazard ratios from each of the Cox PH models, with 

demographics around race and region having the highest HRs suggesting demographics 

influence negative outcomes in heart failure.  

 

The C-Statistics illustrated in Table 5 show the model fitted with the original data, using the 

composite endpoint performed best at both one and two years with a C-Statistic of 0.74 (0.71 

– 0.76) and 0.71 (0.70 – 0.75) respectively. Whilst at the lower end of the acceptable 

discrimination, the validation with the ATMOSPHERE trial data and use of calibration add a 

certain level of confidence to the results. With an external validation C-Statistic of 0.71 (0.69 

– 0.72) and 0.70 (0.68 – 0.71) at one and two years respectively, the model appears to 

perform only slightly worse with this external data. While the all-cause mortality model 

performed worse than the other two models both at one and two years with respect to C-

Statistic scoring a C-Statistic of 0.71 (0.69 – 0.74) and 0.70 (0.67 – 0.72) respectively. 

However, the C-Statistics when validated with the SwedeHF cohort on the all-cause mortality 

model showed a reasonable improvement at one and two years with a C-Statistic of 0.79 

(0.75 – 0.81) and 0.78 (0.75 – 0.80) respectively, moving the model into the upper end of the 

acceptable criteria for a risk prediction model. 
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Table 5 C-Statistics (95% CI) at one and two years from the Cox PH Prognostic Models from Predict-HF adapted from the PREDICT-HF Study 

 Composite CV Death All-Cause Mortality 

 1 Year 2 Years 1 Year 2 Years 1 Year 2 Years 

C-Statistic with  
Original Data 

0.74 (0.71 - 0.76) 0.71 (0.70 - 0.75) 0.73 (0.71 -0.75) 0.71 (0.69 - 0.73) 0.71 (0.69 - 0.74) 0.70 (0.67 - 0.72) 

C-Statistic with Atmosphere 
Data (Validation) 

0.71 (0.69 - 0.72) 0.70 (0.68 - 0.71) 0.71 (0.69 - 0.74) 0.70 (0.69-072) 0.71 (0.69 - 0.74) 0.70 (0.68 - 0.72) 

C-Statistic with SwedeHF 
Data (Validation) 

    0.79 (0.75 – 0.81) 0.78 (0.75 – 0.80) 

[42]
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Calibration of the model suggests it is well calibrated with the original data, with only 

minimal deviations between the predicted and observed quintiles, with the largest being the 

5th quintile from the cardiovascular death model at two years. 

 

The authors list limitations of their study, primarily around the use of RCT data for their data 

source, and possible selection bias, including the inclusion of only patients with HFrEF. 

However, they address this concern in part by their validation of the all-cause mortality using 

the SwedeHF cohort [46]–[48]. 

 

The, Di Tanna et al. review also stated that due to the time limitations restricted on their 

search both The Seattle Heart Failure Model [46] and the Meta-Analysis Global Group in 

Chronic heart failure (MAGGIC) [47] risk prediction models were excluded even though they 

have both been used to inform modern clinical guidelines [1], [2], [48], [49]. Whilst these 

models were evaluated in Rahimi et al., it is important to highlight them here, especially 

considering they were both used as comparison in the PREDICT-HF study. 

 

The earlier of the studies the Seattle Heart Failure Model published in 2006 and used data 

from six patient cohorts. The Prospective Randomized Amlodipine Survival Evaluation 

(PRAISE1) study which included 1125 patients (the primary data), The Randomized Enbrel 

North American Strategy to Study Antagonism of Cytokines (RENAISSANCE) RCT, 

Valsartan Heart Failure Trial (Val-HeFT), Evaluation of Losartan in the Elderly (ELITE2) 

RCT, The University of Washington (UW) prospective study and the Italian Heart Failure 

Registry (IN-CHF).  
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A stepwise approach was used to fit a Cox PH model. Included variables and their 

corresponding hazard ratios are shown in Appendix Table 2 and Appendix Table 3 the latter 

estimated from meta-analysis and clinical trials. 

 

Missing data was imputed using median values, with the exception of medication and devices 

where patients with missing data were assigned no device / medication. [49] 

The authors used a scoring technique known as the Seattle Heart Failure Model (SHFM) 

Score, which multiplied the 13 coefficients from the multivariable model and then summed 

them. This score was then applied to the validation data sets to obtain survival estimates at 1-

5 years for the individual patients from these data. Model accuracy was determined by 

comparison of the mean predicted survival against the recorded survival at 1-3 years. 

 

The model’s discriminatory capability was assessed using the AUC-ROC (C-Statistic) at one 

year for each dataset and the combined datasets as shown in Table 6. With combination of the 

PRAISE1, Val-HeFT, IN-CHF and UW allowing for comparison with the ADHERE and 

Toronto Models as shown in Table 7. 

 

The authors also provided a “web based calculator” to aid in the clinical usage of the model 

[46]. 

 

The Hazard ratios from Appendix Table 2 illustrate that NYHA Class has the largest effect of 

the demographics on survival. Statin usage had the largest effect of the medications, 

suggesting a preventative effect. Finally, cholesterol has the highest effect on survival out of 

the laboratory measures.  
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The variables derived from clinical trials and meta-analysis are shown in Appendix Table 3. 

They suggest that all medication and devices had preventative effects on survival, except for 

Biventricular pacemaker which had no effect when the patient was already on the device. 

 

The ROCs from the model and validation data sets shown in Table 6 suggest the model 

performed well with respect to discrimination. With ROCs ranging from 0.682 to 0.810, with 

the lowest discrimination falling in the higher end of the poor discrimination category and the 

highest discrimination falling in the lower end of the excellent discrimination category. 

 

The comparison ROCs shown in Table 7 show that the Seattle model outperforms both 

ADHERE and Toronto Models when using data combined from four datasets (PRAISE1, 

Val-HeFT, IN-CHF & UW).  

 

Calibration of the model was generally favourable as illustrated in Table 8 with some 

underestimation of mortality illustrated most at two and three years in the lower risk patients. 

Within the ELITE2 dataset it was observed that there was an overestimation of ~2% as 

highlighted at one year. The largest dataset (Val-HeFT) illustrated the model accurately 

predicted survival at one and two years. 

 

The authors acknowledge the limitations of the inclusion of medication and devices from 

clinical trials and meta-analysis i.e., published literature and state that this may make these 

variables less generalisable. They also state other limitations around generalizability 

specifically for patients who are hospitalised, and patients with chronic comorbidities such as 

cancer, dementia, cirrhosis and renal failure [50]. 
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 Table 6 AUC-ROC (C-Statistic) (95% CI) for All Datasets at 1 Year Adapted from. Levy et al. 

[46] 

Table 7 AUC-ROC (C-Statistic) (95% CI) at 1 Year Comparison against ADHERE and Toronto Models Adapted from Levy et al. 

[46] 

Table 8 Actual VS Predicted Survival (± SD) for 1, 2 and 3 Years for each Dataset Adapted from Levy et al. 
 PRAISE1 

(Derivation Dataset) 
ELITE2 UW RENAISSANCE Val-HeFT IN-CHF 

1-Year Survival 

Actual 74.3±1.4% 88.5±0.6% 86.5±2.8% 83.3±1.4% 91.0±0.4% 86.7±1.2% 

Predicted 73.4±0.5% 90.5±0.1% 86.5±1.0% 83.8±0.5% 90.9±0.1% 89.6±0.4% 

2-Year Survival 

Actual 56.0±1.8% 80.0±1.0% 79.7±3.3% 65.4±4.6% 81.6±0.6%  

Predicted 56.7±0.6% 82.4±0.2% 76.5±1.6% 72.3±0.7% 83.3±0.2%  

3-Year Survival 

Actual   71.8±3.7%  71.7±1.3%  

Predicted   68.6±1.8%  76.8±0.2%  

SD: Standard Deviation 

[49] 

 

AUC-ROC PRAISE (Derivation Dataset) ELITE2 UW RENAISSANCE VAL-HeFT IN-CHF All 6 datasets 

1 Year 
0.725 

(0.69 – 0.76) 

0.682 

(0.65 – 0.73) 

0.810 

(0.72 - 0.90) 

0.682 

(0.63 -0.73) 

0.694 

(0.68 – 0.72) 

0.749 

(0.70 – 0.80) 

0.729 

(0.714 – 0.744) 

AUC-ROC Seattle (PRAISE1, Val-HeFT, IN-CHF & UW) ADHERE Toronto 

1 Year 0.75 (0.73 – 0.77) 0.59 (0.57 – 0.61) 0.68 (0.66 – 0.70) 
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The later model, the MAGGIC Model developed in 2013 [50], used data from 30 studies. 

Using individual patient data from 30 cohorts, including 24 observational registries and six 

randomised control trials. The authors fit a multivariable piecewise Poisson regression 

model along with an integer score for predicting a patient’s risk of death within 3 years 

ranging from 0 (the best possible with a predicted risk of death at 3 years of 0.039) to 50 

(the worse possible, with a risk of death at three years of 0.985). 

 

The authors used multiple imputation techniques to handle missing data creating 25 

imputed datasets, fitting the model on each dataset and then pooling the models based on 

the imputed datasets. 

 

The final model included 13 variables, as described in Appendix Table 4. The calibration 

of the model was assessed using a comparison of predicted vs observed mortality at three 

years for 6 risk groups, grouped by integer score). The model results we stratified into two 

groups by ejection fraction, with the first group containing 21442 patients with an ejection 

fraction of less than 40, of which 8900 patients experienced death. The second group 

contained 17930 patients with an ejection fraction greater than or equal to 40, and of which 

6951 patients experienced death. 

 

The authors stated they believed there was no good generalisable dataset for external 

validation, but internal validation may be sufficient. It should however be noted that the 

MAGGIC risk score has since been validated on a prospective registry of patients with 

HFpEF by Rich et al. in 2018 [47]. 

 

The discriminatory ability of the model was assessed using plots for the distribution of the 

risk score for all patients and the association with the risk of death at three years with their 
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respective 95% CI. Along with a plot of the cumulative risk of death over 3 years in the 

previously mentioned 6 groups and corresponding 95% confidence intervals.  

The authors provided an “easy-to-use” website to allow clinical usage of the MAGGIC 

Score [50].  

 

The Rate Ratios from the MAGGIC models shown in Appendix Table 4, show that for 

each stratification of ejection fraction all variables are significant. With only the use of 

ACE-I/ARBs in the ≥ 40 % ejection fraction group of patients being considered 

statistically insignificant. Both groups have similar rate ratios for each of the variable with 

mostly marginal differences between the two. The largest rate ratio being NYHA Class IV 

for both groups. Within both groups the usage of beta blockers has one of the most 

preventative rates of mortality with it being more preventative in the > 40 % ejection 

fraction group. 

 

The predicted vs observed mortality at three years within the six groups shows that the 

model is well calibrated at three years with only marginal differences between the 

observed and predicted mortality, with groups 1-3 overestimating the mortality rate and 

groups 4 and 5 underestimating the mortality rate and group 6 only underestimating the 

mortality rate by an almost unobservable amount. 

 

The authors state the model has a powerful discriminatory ability of the model to predict a 

patient’s risk of mortality at 3 years and an excellent good-ness of fit. 

 

 One of the major limitations described by the authors was that of the missing data, 

because of the large number of included studies and subsequently patients, this was 

inevitable.  
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While the MAGGIC model did not include natriuretic peptides; The Rich et al. study 

illustrated a statistically significant improvement in the prognostic capability of the 

MAGGIC model when BNP was added. 

 

All three of the highlighted models assessed calibration, however there was not a 

consistency between the models of how this was assessed, suggesting the need for better 

consistency with respect to calibration. 

 

Both PREDICT-HF and Seattle used external validation whilst the authors of MAGGIC 

suggested external validation would be harder due to the generalisability of the model, 

however the MAGGIC model has since been validated in a HFpEF cohort [47]. 

 

PREDICT-HF was the only study to originally use natriuretic peptides in the form of NT-

ProBNP. 

 

Finally, all three models provided a web interface to aid in the clinical application of the 

models; this highlights the need for translation of prognostic models in heart failure to 

clinical practice. 
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1.3 Joint Modelling Longitudinal Repeat Measures and 
Time to Event Outcomes 

Briefly put, the term joint model is used to describe a model which combines two or more 

statistical models for a particular purpose such as efficiency, reduction of bias or to 

overcome a limitation of a singular model [51]–[53]. 

 

Joint models of longitudinal repeated measurements and time to event outcomes which 

shall hereby be referred to as joint models have been used in clinical research as early as 

the 1990s with initial studies investigating the relationship between CD4 cell count and 

survival within human immunodeficiency virus (HIV) / acquired immunodeficiency 

syndrome (AIDS) studies [54], [55]. Models of this kind, jointly model a longitudinal 

process such as the profile of a biomarker and a time-to-event process, such as time to 

death. This joint modelling is often facilitated through such methods as shared random 

effects, that ‘link’ the two models [51], [56]. 

 

To introduce joint modelling, it is important to first introduce the individual components of 

a joint model, namely the time-to-event and repeated measurements components. 

 

1.3.1 Time-to-event (Survival) analysis 

Time-to-event or survival analysis is the analysis of data from a formally specified time 

point up until an event of interest or endpoint such as death. A common use for this kind of 

analysis is in clinical trials where data is stratified by treatment arm to detect a treatment 

effect on mortality or another endpoint [57]. 

 

Survival data is typically subject to censoring. Censoring occurs when the patient does not 

experience the event of interest, is lost to follow-up and their status is unknown or the 

patient is excluded from the study for other reasons [57]. 
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1.3.2 Repeated Measures in Survival analysis 

Repeated measures such as biomarkers are often routinely collected during clinical trials 

and can add prognostic value to survival analysis [58]–[60]. Limiting these measurements 

to a single time point such as the Last Observation Carried forward (LOCF) i.e., 

landmarks, can lead to loss of information and bias [61]. However, it is important to 

consider the nature of the repeated measures. Models such as the extended Cox PH (i.e., 

time-varying Cox PH) model allow for repeated measures in the form of time-varying 

covariates. However, the extended Cox PH model is only suitable for exogenous covariates 

and not endogenous covariates due to the underlying methodology and the step function 

approximation it relies on. Illustrated in Figure 2, the dashed line in the bottom panel 

represents the previously mentioned step function approximation which assumes that a 

time dependent covariate remains constant between visits and is measured without error 

and only changes at follow-up visits [52]. 
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Figure 2 Graphical Representation of an Extended Cox PH and Joint Model Showing How 
the Hazard Function Evolves Over Time in Comparison with the Longitudinal Outcome - 
Adapted from Rizopoulos D. 

 
            Time 

The top panel illustrates the hazard function (blue line), with the bottom panel illustrating 

the longitudinal trajectory, with the black dots indicating an observed measurement, the 

dashed line indicating the step function of a extended Cox PH model and the blue solid line 

representing the joint model approximation as defined by 𝑚𝑖(𝑡) (true unobserved outcome 

of the longitudinal process). 

[52] 

1.3.3 Exogenous and Endogenous Covariates 

When including time-varying covariates in models, it is important to know whether the 

covariate is exogenous or endogenous to inform the modelling approach. An exogenous 

covariate is a variable that is “outside the model” meaning while it may influence the 

endogenous variables, it itself is not influenced by endogenous variables or the model. 

Endogenous variables are therefore variables which are influenced by the model [62]; for 

example, in a model where there are environmental factors such as the weather and its 

effect on mental health, the weather would be a time-varying exogenous covariate. Which 

while it may affect the model, the model will not affect the weather. A common example 

of an endogenous covariate is a biomarker i.e., biological marker; as for a biomarker to be 

collected, the patient needs to be alive and thus in a survival model the outcome of the 

model affects the biomarker. Special consideration needs to be taken when including 
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endogenous covariates in a model to account for how the model effects the covariate [52], 

[62]. 

 

1.3.4 Biomarkers as Time-Varying Covariates 

A biomarker is not only an endogenous time-varying covariate but also subject to 

measurement error and biological variances. These properties make them hard to model as 

the model must be able to capture them effectively to minimise bias and improve model fit 

[52], [59]. 

 

1.3.5 Formation of Joint Models 

A joint model has two elemental components, a longitudinal component and a survival 

component; these components are often referred to as sub models. The longitudinal sub 

model models the longitudinal response (typically a biomarker). This model typically takes 

the form of a linear mixed effects model (LME) which is a synonym for a Linear Mixed 

Model (LMM) and contains both fixed and random effects [63]–[65]. The general form of 

these models is shown in Equation 3.  

Equation 3 General form of an LME 

{

 𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖 ,

 𝑏𝑖  ~ 𝑁{0, 𝐷),                  

 𝜀𝑖(𝑡) ~ 𝑁(0, 𝜎
2𝐼𝑛𝑖),      

  

[52], [63], [64] 

With 𝑦𝑖 denoting the longitudinal response for subject 𝑖. Both 𝑋𝑖 and 𝑍𝑖 are matrices of 

known design for the fixed effects (𝛽) and random effects (𝑏) regression coefficients 

respectively. 𝐼𝑛𝑖 represents the 𝑛𝑖-dimensional identity matrix. The model assumes that the 

random effects follow a normal distribution and have a mean of zero with a variance-

covariance matrix D. The model also assumes the random effects are independent of the 

error terms 𝜀𝑖 (which are assumed to follow a normal distribution with a mean of 0, with a 
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variance 𝜎2𝐼𝑛𝑖 ). The fixed effects 𝛽 can be interpreted in a manner akin to linear 

regression, with the assumption of 𝑝 covariates within the matrix of 𝑋, the coefficient 𝛽𝑗 

where 𝑗 = 1,… . , 𝑝 represents the change in the average longitudinal response 𝑦𝑖 when all 

other predictors are held constant. The interpretation of the random effects 𝑏𝑖 are that of 

how 𝑖th subject deviates from the population in terms of a subset of their regression 

parameters. 

 

Common random effects include random intercepts and random slopes. Random intercepts 

assume that for each subject with a subset of regression parameters their intercept deviates 

from the population. Random slopes assume for each subject with a subset of regression 

parameters their slopes i.e., the effect of time deviates from the population. In joint 

modelling, typically both random intercepts and random slopes will be used together [52], 

[66]. 

 

Figure 3 illustrates a graphical representation of an LME and highlights the use of both 

random intercepts and slopes, with both subjects deviating from the marginal longitudinal 

trajectory at both intercept and slope. 
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Figure 3 Graphical Representation of an LME Showing the Subject Specific Longitudinal 
Trajectories of two Subjects and the Marginal Longitudinal Trajectory - Adapted from 
Rizopoulos D 

 

The points represent longitudinal measurements (hypothetical). The dashed lines 

represents the fitted longitudinal trajectories (subject-specific). The solid blue line 

represents the marginal or population average longitudinal trajectories.  

[52] 

The survival component typically takes the form of a relative risk model also known as the 

proportional hazards model. These proportional hazards models assume a multiplicative 

effect of the covariates on the hazard of an event [52]. They can be formulated as shown in 

Equation 4. 

Equation 4 Formula for a Basic Relative Risk (Proportional Hazards) Model 

ℎ𝑖(𝑡 | 𝑤𝑖) =  lim
𝑑𝑡 →0

Pr(𝑡 ≤  𝑇∗ < 𝑡 + 𝑑𝑡 | 𝑇∗  ≥ 𝑡, 𝑤𝑖) / 𝑑𝑡 

                   = ℎ0(𝑡)exp{𝛾
⊤𝑤𝑖}, 

[52] 
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With the vector 𝑤𝑖
⊤ = (𝑤𝑖1, … , 𝑤𝑖𝑝)  representing covariates assumed to be associated 

with the hazard of each subject. Whilst 𝛾 represents the corresponding vector of regression 

coefficients. The function expressed as ℎ0(𝑡) is known as the baseline hazard or risk 

function for a subject having 𝛾⊤𝑤𝑖 = 0. 𝛾⊤𝑤𝑖 may or may not include an intercept 𝛾0 

dependent on whether the baseline risk function has a constant scale [52]. 

Equation 5 Formula for Relative Risk Model Written on a Log Scale 

log ℎ𝑖(𝑡 | 𝑤𝑖) = log ℎ0(𝑡) + 𝛾1𝑤𝑖1 + 𝛾2𝑤𝑖2 +⋯+ 𝛾𝑝𝑤𝑖𝑝, 

[52] 

When written on a log scale as shown in Equation 5, It can be observed that the regression 

coefficient for 𝛾𝑗 , for the predictor 𝑤𝑗 , represents the log hazard change at any fixed point 

in time 𝑡 if 𝑤𝑗 is increased by one unit when all other predictors remain constant. Equally, 

exp(𝛾𝑗) represents the hazard ratio for a one unit change in 𝑤𝑖𝑗 at any time point 𝑡 [52]. 

Up until this point these models are independent of each other. To define a joint model, 

both the longitudinal and survival processes need to be linked or joined. For this purpose, a 

joint distribution is used, based on the principle that the time-independent random effects 

noted as 𝑏𝑖 encompasses both the survival and longitudinal processes. This implies that the 

random effects not only account for the correlation between the repeated measures, 

providing conditional independence, but also the association between the event and 

longitudinal outcomes. There are also additional assumptions surrounding the decision of 

participants to withdraw from the study or present for a longitudinal measurement. The 

assumption being that this decision depends on the observed previous history (both 

baseline covariates and longitudinal measurements) but does not depend on the underlying 

latent / unobserved characteristics associated with prognosis [52].  

To define a joint model, the two independent models are redefined as sub models of the 

joint model. 
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For the survival sub model, a new term is introduced to measure the association of the 

level of the longitudinal marker and the risk of an event. This new term needs to account 

for the special features of the longitudinal marker as described earlier. Therefore, this new 

term represents the unobserved and true value of the longitudinal outcome at time point t 

and is represented as the term 𝑚𝑖(𝑡). It is important to note that this new term is different 

than that of the observed value at time point t for the 𝑖th subject known as 𝛾𝑖(𝑡), as the 

observed observation is deemed to be contaminated with measurement error at the time 

point t.  

Equation 6 Relative Risk Model Reformulated to Include 𝑴𝒊(𝒕) 

ℎ𝑖(𝑡 | 𝑀𝑖(𝑡),𝑤𝑖) =  lim
𝑑𝑡 →0

Pr(𝑡 ≤  𝑇𝑖
∗ < 𝑡 + 𝑑𝑡 | 𝑇𝑖

∗  ≥ 𝑡,𝑀𝑖(𝑡), 𝑤𝑖) / 𝑑𝑡 

                                = ℎ0(𝑡) exp{𝛾
⊤𝑤𝑖 +  𝛼𝑚𝑖(𝑡)},    𝑡 < 0, 

[52] 

To include this new term and therefore the association of  𝑚𝑖(𝑡) and the risk of an event, 

the relative model as defined in Equation 4 can be redefined as shown in Equation 6, 

quantifying the association of the term 𝑚𝑖(𝑡) and the risk of an event. In this model ℎ0(. ) 

represents the baseline hazard function, and the term 𝑀𝑖(𝑡) =  {𝑚𝑖(𝑠), 0 ≤ 𝑠 < 𝑡} 

represents the true and unobserved longitudinal process up until time point 𝑡. 𝑤𝑖 in this 

model is specified as a vector of covariates at baseline with corresponding vector of 

regression coefficients known as 𝛾. In this model rather than the use of the observed event 

time for the 𝑖th subject represented as 𝑇𝑖, the true event time for the 𝑖th subject represented 

by 𝑇𝑖
∗is used. Like 𝛾, the 𝛼 parameter provides the quantification of the effect of the 

underlying longitudinal outcome on the risk of an event. The parameter 𝛾 when 

exponentiated and expressed as exp (𝛾𝑗) represents the hazard ratio for a unit change in 

𝑤𝑖𝑗 at any time point 𝑡. The 𝛼 parameter on the other hand has a slightly different 

representation, in that when exponentiated and expressed as exp (𝛼) represents the hazard 

ratio relative to a unit increase in 𝑚𝑖(𝑡) at the same time point t. [52] 
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In joint modelling, the specification of the baseline hazard function is of importance and 

requires appropriate assumptions of the distribution. Depending on the method used to fit 

the joint model, various distribution options are available. The baseline hazard can be 

specified under the assumption of a commonly used parametric distribution such as the 

Weibull distribution or through use of a parametric yet flexible specifications such as a 

piecewise-constant or regression splines such as B-splines [52]. 

 

The longitudinal process represented in the survival sub model as 𝑚𝑖(𝑡), represents the 

true value of the covariate at time point t for the underlying longitudinal variable. To 

capture the longitudinal process in its entirety, accounting for the measurement error and 

the intermittency of the collection of the longitudinal marker at set time points known as 

𝑡𝑖𝑗 , 𝑚𝑖(𝑡) needs to be appropriately estimated and the complete longitudinal history 𝑀𝑖(𝑡) 

constructed for each subject. To accomplish this an LME can be used assuming a normally 

distributed outcome. 

Equation 7 Linear Mixed Effects Model 

{

𝑦𝑖(𝑡)  =  𝑚𝑖(𝑡) + 𝜀𝑖(𝑡),            

𝑚𝑖(𝑡) =  𝑥𝑖
⊤(𝑡)𝛽 + 𝑧𝑖

⊤(𝑡)𝑏𝑖 ,    

 𝑏𝑖  ~ 𝑁(0,𝐷),    𝜀𝑖(𝑡)~𝑁(0, 𝜎
2),

 

[52] 

Equation 7 shows the formulation of the linear mixed effect model, in this model the 

design vectors 𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) for fixed (𝛽) and random effects (𝑏𝑖) respectively along 

with the error terms 𝜀𝑖(𝑡) are all time dependent. The error terms are assumed to be 

normally distributed with a mean zero and variance 𝜎2 and both mutually independent of 

each other and independent of the random effects. The LME accounts for measurement 

error by assuming that 𝑦𝑖(𝑡) the observed level of the longitudinal outcome is equal to 

𝑚𝑖(𝑡) the true level of the longitudinal outcome and the error term. Through use of the 

time structure within the definitions of the design vectors for the fixed and random effects 
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𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) respectively, along with the subject-specific random effects, the 

construction of 𝑀𝑖(𝑡) for each subject is possible. Figure 2 illustrates the concept of how 

the true level of the marker (solid blue line of the bottom panel) is associated with the 

hazard of an event (the hazard function in the top panel). As previously stated, it also 

demonstrates the step function of an extended Cox PH Model (dashed line) and how this 

might be an unrealistic approximation of the longitudinal process [52]. 

 

As the longitudinal process is captured within 𝑀𝑖(𝑡), it is important that 𝑀𝑖(𝑡) provides an 

accurate estimation of the longitudinal process. It is therefore important to consider more 

elaborate structures of time in both design vectors for the fixed 𝑥𝑖(𝑡) and random 𝑧𝑖(𝑡) 

effects which could mean the addition of interaction terms or the consideration of non-

linearity by the inclusion of natural cubic splines [52]. 

Equation 8  Conditional Distribution of the Time-To-Dropout 

𝒑(𝑻𝒊
𝒐 | 𝒚𝒊

𝒐, 𝒚𝒊
𝒎; 𝜽)     =    ∫𝒑(𝑻𝒊

∗ | 𝒃𝒊; 𝜽) 𝒑(𝒃𝒊 | 𝒚𝒊
𝒐, 𝒚𝒊

𝒎; 𝜽) 𝒅𝒃𝒊 

[52] 

An important note regarding the use of an LME for the longitudinal outcome, is that it 

makes assumptions regarding the vector for the complete longitudinal response. One such 

assumption is that the responses would have happened even after the event or censoring. 

While this may be seen as problematic, when both the observed 𝑦𝑖
𝑜 and missing 𝑦𝑖

𝑚 parts 

of longitudinal response vector are taken into consideration, the dropout mechanism can be 

derived and as such is defined as the conditional distribution of the time-to-dropout given 

both the observed and missing parts of the longitudinal response vector. Simplified, this is 

shown in Equation 8, in which it can be observed that the time-to-drop out is dependent on 

the missing longitudinal response vector by means of the posterior distribution of the 

random effects. Essentially, this means that a joint model corresponds to a Missing Not at 

Random (MNAR) missing data mechanism, a key component to this being the random 

effects.  



51 

 

 

Equation 9 Formulation of Joint Model 

{
 𝒚𝒊(𝒕)     =      𝑿𝒊

⊤(𝒕)𝜷 + 𝒛𝒊
⊤(𝒕)𝒃𝒊 + 𝜺𝒊(𝒕)                                 

 𝒉𝒊(𝒕)     =     𝒉𝟎(𝒕) 𝒆𝒙𝒑[𝜸
⊤ +𝒘𝒊 +  𝜶{𝒙𝒊

⊤(𝒕)𝜷 + 𝒛𝒊
⊤(𝒕)𝒃𝒊}],

 

[52] 

 

With the definitions of both sub models, the joint model is therefore defined as shown in 

Equation 9 where both models share the same random effects.  

 

The estimation technique used in joint models depends on the approach chosen. The two 

common approaches implemented in popular statistics software such as R are the 

frequentist approach using a maximum likelihood method, along with a Bayesian approach 

using Markov Chain Monte Carlo (MCMC) algorithms, where maximum likelihood 

models are predicated on the maximisation of the log likelihood correspondent to both 

outcomes [67]. The latter samples from both the random effects and the posterior 

conditional distributions to fit the joint models [68]. Both approaches use an iterative 

approach and are therefore dependent on the model complexity, and can be both time and 

computationally expensive, especially when compared to more traditional models such as 

(extended) Cox PH models. 

 

1.3.6 Alpha Parameterisation 

As described previously, in the basic joint model, the alpha parameter in the survival 

outcome is represented by 𝑚𝑖(𝑡) which corresponds to the true level of the longitudinal 

outcome at time point 𝑡, however joint models allow for multiple representations of the 

alpha parameter(s) [52]. 
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1.3.7 Slope Parameterisation 

An additional parameterisation is the slope parameterisation represented as 𝑚𝑖
′(𝑡), which 

corresponds to the rate of change of the longitudinal outcome at time point  𝑡. The 𝑚𝑖
′(𝑡) 

parameter is estimated using the derivative of the fixed and random effects of the 

longitudinal outcome with respect to time. The 𝑚𝑖
′(𝑡) take the form as shown in Equation 

10. [55], [70][52], [67] 

Equation 10 Formula of the slope parameterisation 𝒎𝒊
′(𝒕) 

𝑚𝑖
′(𝑡) =  

𝑑

𝑑𝑡
𝑚𝑖(𝑡) =  

𝑑

𝑑𝑡
{𝑥𝑖

⊤(𝑡)𝛽 + 𝑧𝑖
⊤𝑏𝑖}. 

[52] 

Typically, both the slope and value parameters are included together; the basic formula for 

the survival component including both parameters are shown in Equation 11. Figure 4 

provides a graphical representation of both parameterisations when included in a joint 

model. 

 

Equation 11 Formula for Survival Component of a Joint Model Including Both Value and 
Slope Parameterisations 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝛾
⊤𝑤𝑖 + 𝛼1𝑚𝑖(𝑡) + 𝛼2𝑚𝑖

′(𝑡)},  

[52] 

The 𝑚𝑖
′(𝑡) parameter when exponentiated corresponds to the hazard ratio of a unit increase 

in the slope of the longitudinal outcome at any time point. When both 𝑚𝑖(𝑡) and 𝑚𝑖
′(𝑡) are 

both included in the model, 𝑚𝑖
′(𝑡) when exponentiated corresponds to the hazard of a one 

unit increase in the slope of the longitudinal outcome at time point 𝑡 for patients having the 

same level of the true longitudinal value at the same time point. The other components 

such as 𝛾⊤𝑤𝑖 have the same interpretation as in Equation 6 [52] . 
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Figure 4 Graphical Representation of a Joint Model Showing How the Hazard Function 
Evolves Over Time in Comparison with the Longitudinal Outcome with the Value and 
Slope Parameterisations - Adapted from Rizopoulos D. 

 
            Time 

The top panel illustrates the hazard function (blue line), with the bottom panel illustrating 

the longitudinal trajectory, with the black dots indicating an observed measurement, the 

short black lines representing the slope of the longitudinal trajectory and the blue solid line 

representing the joint model approximation as defined by 𝑚𝑖(𝑡) (true unobserved outcome 

of the longitudinal process). In this figure the hazard directly corresponds to the 

longitudinal process, with both the value and slope effecting the hazard function e.g. with a 

smaller value, the hazard increased. 

[52] 

 

1.3.8 Cumulative Effects (area) Parameterisation 

The cumulative effect parameterisation which is also known as the area parameterisation 

corresponds to the whole area under the longitudinal trajectory (𝑀𝑖(𝑡)) up until time point 

𝑡 whist also accounting for the length of time of the observation period [69]. This 

parameterisation takes the form of a function as shown in Equation 12. Alternatives of this 

“area” parameterisation do not allow for the accounting of length of time of the 

observation period [67], [68]. 

 



54 

 

Equation 12 Formula for the Survival Outcome Including the Area Parameterisation. 

ℎ𝑖(𝑡) = exp {𝛾
⊤𝑤𝑖 +  𝛼

∫ 𝑚𝑖(𝑠) 𝑑𝑠
𝑡

0

𝑡
} 

[69] 

Figure 5 Graphical Representation of a Joint Model Showing How the Hazard Function 
Evolves Over Time in Comparison with the Longitudinal Outcome with the Area 
Parameterisation - Adapted from Rizopoulos D. 

 
            Time 

The top panel illustrates the hazard function (blue line), with the bottom panel illustrating 

the longitudinal trajectory and the black dots indicating an observed measurement, the 

green area representing the cumulative effects parameterisation (area) and the dashed line 

represents the time point of interest and the blue solid line representing the joint model 

approximation as defined by 𝑚𝑖(𝑡) (true unobserved outcome of the longitudinal process). 

In this representation, the green area effects the hazard up until the time point of interest. 

 

Figure 5 shows a graphical representation of a joint model and the area parameter up until 

time point 𝑡, where the area is based on the trajectory of the true unobserved longitudinal 

outcome. The area parameter when exponentiated can be interpreted as the hazard for an 

event per one unit increase in the area under the profile of the longitudinal outcome [52], 

[69]. 
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1.4 Research Aim and Specific Research Questions 

The aim of this thesis is to explore the use of joint modelling and how it can be applied to 

prognostic modelling within heart failure, in order to answer the research questions: 

1) ‘Can joint modelling enhance the methodological toolkit and have utility in the 

development of prognostic models within heart failure?’. 

2) ‘Can prognostic models fitted with joint modelling outperform current standard 

prognostic models within heart failure?’ 
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Chapter 2 Joint Modelling of longitudinal 
processes and time-to-event outcomes in heart 
failure: systematic review and exemplar 
examining the relationship between serum 
digoxin levels and mortality. 

2.1 Foreword 

This section provides an introduction to how joint modelling is currently being applied to 

studies of heart failure. This builds a foundation for the research aims of this thesis. 

This introduction is in the format of a systematic review but is also paired with and 

exemplar to provide the reader with the basic principles of how a joint model can be fit 

using frequentist method using R statistical software.  

While this thesis focuses primarily on chronic heart failure with reduced ejection fraction, 

no such limitations were placed on the search criteria in this systematic review. This 

decision was made to provide a better overall picture on how joint modelling is being 

applied within heart failure. In order to not only evaluate more of the evidence base but to 

use that evidence base to aid in the formulation of the research aims and process. 

As stated previously the exemplar helps to provide the reader with the basic principles of 

how to fit a joint model. While this was achieved using a frequentist method the 

application is transferable to other methods such as Bayesian joint models. 

The exemplar uses commonly known and available data from a historic RCT to illustrate 

how this relatively new technique (joint modelling) can be applied to data from older 

clinical trials. 
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2.2 Title, authorship, and publication details 

This article has been published and is hereby reproduce under the terms of the Creative 

Commons CC-BY licence: 

Field, R.J., Adamson, C., Jhund, P. et al. Joint modelling of longitudinal processes and 

time-to-event outcomes in heart failure: systematic review and exemplar examining the 

relationship between serum digoxin levels and mortality. BMC Med Res Methodol 23, 94 

(2023). https://doi.org/10.1186/s12874-023-01918-4 

2.3 Abstract 

2.3.1 Background 

Joint modelling combines two or more statistical models to reduce bias and increase 

efficiency. As the use of joint modelling increases it is important to understand how and 

why it is being applied to heart failure research. 

2.3.2 Methods 

A systematic review of major medical databases of studies which used joint modelling 

within heart failure alongside an exemplar; joint modelling repeat measurements of serum 

digoxin with all-cause mortality using data from the Effect of Digoxin on Mortality and 

Morbidity in Patients with Heart Failure (DIG) trial. 

2.3.3 Results 

Overall, 28 studies were included that used joint models, 25 (89%) used data from cohort 

studies, the remaining 3 (11%) using data from clinical trials. 21 (75%) of the studies used 

biomarkers and the remaining studies used imaging parameters and functional parameters. 

The exemplar findings show that a per unit increase of square root serum digoxin is 

associated with the hazard of all-cause mortality increasing by 1.77 (1.34–2.33) times 

when adjusting for clinically relevant covariates. 

2.3.4 Conclusion 

Recently, there has been a rise in publications of joint modelling being applied to heart 

failure. Where appropriate, joint models should be preferred over traditional models 

https://doi.org/10.1186/s12874-023-01918-4
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allowing for the inclusion of repeated measures while accounting for the biological nature 

of biomarkers and measurement error. 

2.3.5 Keywords 

Joint Modelling, Heart Failure, Shared Parameter Models, Systematic Review, Digoxin, 

Mortality 

 

2.4 Background 

Heart failure is a condition where there are well documented inter-relationships between 

numerous physical, biochemical and imaging characteristics and outcomes. Many studies 

tend to examine these associations with outcomes using data from one point in time such 

as randomization in a trial or the start of a cohort study. This fails to account for changes in 

characteristics over time. Just as baseline values may be associated with outcomes, changes 

in variables are also associated with changes in outcomes e.g., falling levels of natriuretic 

peptides are associated with lower mortality. However, analysing the association between 

changes in variables and outcomes is often performed with traditional time to event models 

using change values and starting follow up for outcomes once change has occurred. More 

recently joint modelling, combining two or more statistical models to increase efficiency 

and reduce bias, has gained favour in the literature as a method of dealing with this issue. 

The most common type of joint modelling within medicine is the joint modelling of repeat 

measure longitudinal data (e.g., repeated measures of biomarkers over time) and time-to-

event data (i.e., survival data) which are linked through an association structure via shared 

random effects [51], [55], [56], [70]. This seeks to improve efficiency and reduce bias in 

respect of treatment effect, censoring and mortality when compared against traditional 

models. Joint models (JMs) of this type are formed of two sub models: a longitudinal 

model such as a linear mixed effect (LME) model (which allows the modelling of 
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longitudinal changes in biomarkers or other characteristics like blood pressure) and a 

survival model such as a Cox Proportional Hazards (Cox PH) model to model the outcome 

e.g., mortality. The LME model allows for both fixed and random effects accounting for 

non-independence of repeated measures from the same patient, whilst also allowing for 

unevenly spaced measurement occasions, biological variances, and measurement error 

[52]. The survival model allows for covariates and typically includes an association 

parameter representing the association between the longitudinal and survival process [51], 

[52], [56], [63], [71]. JMs which use data from randomized controlled trials (RCTs) can 

also model the overall treatment effect as well as the treatment effect on both the 

longitudinal and survival models [51] i.e., the effect on the characteristic and the effect on 

the outcome. This is analogous to other JMs which are used in the cardiovascular literature, 

for example in recurrent events analyses where models that examine the effect of a 

treatment on recurrent hospitalisations while also estimating a treatment effect for a 

terminal event such as death [72].  

 

Given the increasing use of JMs, the aim of this paper is to review the application of joint 

modelling in heart failure and to provide guidance on how to assess and interpret results of 

joint modelling. To achieve this, we conduct a systematic review to identify and critically 

review current applications of joint modelling within the heart failure population and then 

present a critical summary of how joint modelling can be applied to heart failure data sets 

with use of an illustrative example. We examine the association between changes in serum 

digoxin levels and mortality in the Effect of Digoxin on Mortality and Morbidity in 

Patients with Heart Failure (DIG) trial as prior studies have tried to examine the 

association between digoxin levels and outcomes and suggested that higher levels at one 

month following randomization may be associated with higher mortality [73] . 
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2.5 Methods 

2.5.1 Systematic Review: Joint Modelling Applications within 

Heart Failure 

Our systematic review was conducted following the Preferred Reporting Items for 

Systematic Reviews (PRISMA) framework [74] and the protocol is registered with 

PROSPERO, registration number: CRD42020210056. The aim of the review was to 

identify journal articles which employed joint modelling on an adult heart failure 

population to review how joint modelling was being applied to heart failure. 

 

2.5.1.1 Searches 

Our search strategy is provided in the Figure 11. Medline, Embase, Scopus and Google 

Scholar were searched, with the last search being conducted on 10th December 2021.  

2.5.1.2 Screening 

Articles were screened by two reviewers and full text was accessed for relevant articles. To 

capture all available articles no date limit was set and only English language articles were 

included. Only full text journal articles where joint modelling was applied to an adult heart 

failure population were considered for inclusion. Data were extracted by two reviewers.  

 

2.5.2 Exemplar: Joint Modelling of Serum Digoxin Concentration 

and All-Cause Mortality 

To demonstrate applications of JMs on heart failure data, the ‘The Effect of Digoxin on 

Mortality and Morbidity in Patients with Heart Failure’ (DIG) [75] trial was used. The 



61 

 

dataset was obtained from the Biologic Specimen and Data Repository Information and 

Coordinating Center (BIOLINCC) under application #9257. 

 

2.5.2.1 Statistical Methods 

Only data from patients on the treatment arm with at least one measurement of serum 

digoxin concentration (SDC) was used. SDC measurements were right skewed and 

therefore a square root (sqrt) transformation was applied. For this illustrative example, only 

patients with no missing covariates were included.  

The JM Package was used to fit all joint models, this package allows the fitting of joint 

models of longitudinal and time-to-event data in R under a maximum likelihood approach. 

[67]. 

Time must be modelled on the same scale for both models, and was modelled in the form 

of months (28 day calendar month) since randomisation; for SDC, time was taken as the 

specimen time. While the JM package allows for non-linear effects of time; for simplicity 

and ease of interpretation only linear terms were included. 

 

The JM package requires an LME as fitted by the ‘LME’ function from the nlme package 

for the longitudinal sub-model [67], [68]. For this example, both an unadjusted and 

adjusted LME model were fitted. With all models using sqrt SDC as the response variable. 

The unadjusted model included random intercepts as random effects. The adjusted model 

included the main effects of: estimated Glomerular Filtration Rate (eGFR), patient reported 

self-adherence, hours since last dose of the study drug and dose as fixed effects and 

included random intercepts and slopes for random effects.  Full model equations for the 

LMEs and all other models are included in Table 14. 
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Time-to-Event models for the JM package can be fit using either the ‘coxph’ or ‘survreg’ 

functions from the Survival package. For simplicity, Cox PH models fitted by the ‘coxph’ 

function were used. Like the LME both an unadjusted and adjusted model were fitted. The 

adjusted model containing the covariates of age, sex, ejection fraction, New York Heart 

Association class, history of hypertension, ischemic etiology of heart failure and body 

mass index. These covariates were selected on the basis of clinical relevance and prior 

knowledge of factors associated with outcomes in heart failure. The outcome examined 

was all-cause mortality. 

 

Four JMs were constructed from both the unadjusted and adjusted LMEs and Cox PH 

Models as previously defined. Table 9 summarises the formulation of the JMs. 

Table 9 Formulation of JMs Included in Exemplar 

JM LME Cox PH 
Time dependent 

parameter 

Time dependent slope 

parameter 

1 Unadjusted Unadjusted Y N 

2 Adjusted* Adjusted† Y N 

3 Adjusted* Adjusted† N Y 

4 Adjusted* Adjusted† Y Y 

* Adjusted for Estimated Glomerular Filtration Rate (eGFR), patient reported self-

adherence, hours since last dose of the study drug and dose 

† Adjusted for age, sex, ejection fraction, New York Heart Association (NYHA) class, 

history of hypertension, ischemic etiology of heart failure and Body Mass Index (BMI)   

 

As an additional analysis the JMs were compared against traditional models. The 

traditional models were Cox PH models using first and last measurements of sqrt SDC as a 

covariate and an extended Cox PH model including sqrt SDC as a time-varying covariate. 

All models were adjusted for the same clinical covariates as the adjusted time-to-event 

models from the JMs. The model fit of the JMs were compared against each other using 

the Akaike Information Criterion (AIC). Likewise, the model fit of the traditional models 

were compared against each other using AIC. All models were compared for performance 
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using a discrimination index: c-index for the traditional models and a dynamic 

discrimination index for the JMs. The dynamic discrimination index was obtained using 

the function ‘dynCJM’ from the JM package. Based on the time dependent discrimination 

index proposed by Antolini et al. the dynamic discrimination index in this context provides 

a single statistic to summarise the discrimination power of the model over the follow-up 

time and is calculated from a weighted average of time-dependent AUCs which is 

comparable to the well-known c-index. Like the c-index it does not take into account 

censoring [76], [77]. The parameter estimates and standard errors from the model were 

also compared. One hundred bootstrap samples were used to internally validate the 

comparison of the discrimination index. 

 

For descriptive purposes, categorical variables are represented as percentages, continuous 

variables are represented as median (IQR). JM association parameters are represented as 

hazard ratios (HRs) and 95% confidence intervals (CI). A time dependent association 

parameter is the hazard of all-cause mortality per one unit increase of sqrt SDC at any time 

point. A time dependent slope association parameter is the hazard of all-cause mortality per 

one standard deviation increase in the slope of sqrt SDC at a time point (known as the 

instantaneous or current slope). A p-value of less than 0.05 is considered statistically 

significant. 

All statistical analysis was conducted using R Version 4.0 [78] and JM package version 

1.4-8 [67]. 

 

Ethical approval was not required for this systematic review and exemplar. All methods 

were carried out in accordance with relevant guidelines and regulations. 
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2.6 Results 

2.6.1 Systematic Review: Use of Joint Modelling in Heart Failure 

Figure 6 shows the PRISMA flow diagram, with 28 studies meeting the criteria for 

inclusion. Table 15 outlines the data sources of the 28 studies which met the inclusion 

criteria, the earliest included study being published in 2014 and between 4-7 studies being 

published per year from 2017 to the last search (10th December 2021). 

From the included studies, 25 (89%) used data from cohort studies and the remaining 3 

(11%) studies used data from clinical trials. It is worth noting that 10 (36%) of the cohort 

studies used data from the Bio SHiFT study [79], likely because of the study design with 

its focus on repeated measurements of biomarkers. 

 

From the studies, 22 (78%) exclusively included patients with heart failure, 6 of which 

specified patients with heart failure with reduced ejection fraction (HFrEF). The remaining 

6 (22%) studies exclusively included patients with acutely decompensated heart failure. 

There were also studies which further selected patients on specific characteristics such as 

patients implanted with cardiac devices such as Cardioverter-Defibrillators (ICD) or 

Cardiac Resynchronization Therapy Devices (CRT-D), patients with advanced heart failure 

and patients who had undergone transcatheter mitral-valve repair. 
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Records identified from*: 
Databases (n = 4) 
Registers (n = 0) 

Records removed before screening: 
Duplicate records removed  

(n = 148) 
Records marked as ineligible by 
automation tools (n = 0) 
Records removed for other 
reasons (n = 0) 

Records screened 

(n = 214) 

Records excluded** 

(n = 132) 

Reports sought for retrieval 
(n = 82) 

Reports not retrieved 
(n = 0) 

Reports assessed for eligibility 

(n = 82) Reports excluded: 
Non-Journal Article (n = 20) 
Not the correct population (n = 4) 
Methodological Papers (n = 7) 
Does not use Joint Modelling  

(n = 14) 
Not enough information on Joint 
Model  (n = 10)   

Records identified from: 
Websites (n = 1) 
Organisations (n = 0) 
Citation searching (n = 0) 

Reports assessed for eligibility 
(n = 1) 

Reports excluded: 
(n = 0) 

Reports of included studies 
(n = 28) 

Identification of studies via databases and registers Identification of studies via other methods 
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Figure 6 Prisma 2020 Flow Chart 
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2.6.1.1 Rationale 

The most common rationale for using joint modelling was to assess the association of a 

biomarker with the hazard of an event. Other rationale included: joint modelling as a 

sensitivity analysis, reduction of bias due to censoring / mortality, comparison of 

prognostic models e.g., Weibull survival models and JMs, personalised prognostication 

using JMs, accounting for measurement error, different follow-up times and efficiency 

through combining data (i.e., smaller standard errors [52], [80]). 

 

2.6.1.2 Longitudinal data 

Table 10 summarises the longitudinal data used in the included studies; 21 (75%) studies 

used biomarkers with the most common biomarker being N-Terminal Pro-Brain Natriuretic 

Peptide (NT-ProBNP). Some studies included multiple biomarkers in longitudinal sub-

models, and some used multiple JMs of different biomarkers. The remaining studies used 

imaging parameters such as Left Ventricular Ejection Fraction (LVEF) and functional 

parameters such as health status, physical activity and depression for their longitudinal 

data. All but two studies specified their longitudinal sub-models as a linear mixed effects 

model.
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Table 10 Summary of Longitudinal Data of Included Studies 

Paper  
Primary Longitudinal 

Data Type 
Longitudinal Data List of Biomarkers  

Abebaw et al., 2021 [81] Biomarker Pulse Rate Pulse Rate  

Alvarez-Alvarez et al., 2021 [82] Imaging Parameters Left Ventricular Ejection Fraction  

Arnold et al., 2019 [83] Functional Parameters Health Status: KCCQ-OS  

Belay et al., 2021 [84] Biomarker Pulse Rate Pulse Rate  

Biegus et al., 2019 [85] Biomarker Meld-XI Creatinine, Bilirubin  

Bouwens et al., 2019 [86] Biomarker Cardiac Remodelling Biomarkers 
ST2, Gal-3, Gal-4, GDF-15, MMP-2, MMP-3, MMP-9, 
TIMP-4, PLC, AP-N, CASP3, CTSD, CTSZ, CSTB, NT-ProBNP  

Bouwens et al., 2020 [87] Biomarker Cell Adhesion Circulation Biomarkers 
SELP, SELE, CDH5, ICAM-2, PECAM-1, C1qR, CHI3L1, 
CNTN1, EPHB4, Ep-CAM, ITGB2, JAM-A  

Bouwens et al., 2020 [88] Biomarker Multiple Biomarkers 
CCL15, CC16, CCL24, CXCL16, FAS, IL-1RT1, IL-1RT2, IL-
17RA, IL-18BP, IL2-RA, IL-6RA, LTBR, TNF-R1, TNF-R2, 
TNFRSF10C, TNFRSF14, TNFSF13B  

Brankovic et al., 2017 [89] Biomarker Renal Markers Creatinine, eGFR, CysC, KIM-1, NAG, NAGL  

Canepa et al., 2020 [90] Biomarker Multiple Biomarkers SBP, Heart Rate, Haemoglobin, Creatinine, Uric Acid  

Castelvecchio et al., 2018 [91] Biomarker Natriuretic Peptides NT-ProBNP  

Freedland et al., 2021 [92] Functional Parameters Depression: PHQ-9  

Hurst et al., 2019 [93] Biomarker Serum Lactate Dehydrogenase LDH  

Kelly et al., 2020 [94] Functional Parameters 
Physical Activity reported by ICD or CRT-D 
(Accelerometer Measurement of >25mg) 

 

Klimczak-Tomaniak et al., 2020 [95] Biomarker 
Macrophage and Neutrophil Related 
Biomarkers 

M130(CD163), TRAP, GRN, SPON1, PGLYRP1, TFPI  

Liu et al., 2018 [96] Biomarker Growth-Differentiation Factor GDF-15  

Nunez et al., 2014 [80] Biomarker Red Blood Cell Distribution Width RDW  
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Nunez et al., 2017 [97] Biomarker 
Carbohydrate Antigen, Natriuretic 
Peptide 

NT-ProBNP, CA125  

Schreuder et al., 2021 [98] Biomarker Multiple Biomarkers  
NT-ProBNP, HsTNT, CRP, Creatinine, eGFR, CysC, NAG, 
KIM-1 

van Boven et al., 2017 [99] Biomarker MicroRNAs  
miR-1254, miR-22-3p, miR-423-5p, miR-486-5p, miR-
320a, miR-345-5p, miR-378a-3p  

van Boven et al., 2018 [100] Biomarker Multiple Biomarkers  NT-ProBNP, HsTNT, CRP  

van den Berg et al., 2019 [101] Biomarker Fibrinolysis Factors  PAI-1, tPA, uPA, suPAR  

van den Berg et al., 2019 [102] Imaging Parameters Echocardiographic Parameters   

van den Berge et al., 2021 [103] Imaging Parameters 
Remodelling Parameters: LVEF, LVED, 
LVES  

 

van Vark et al., 2017 [104] Biomarker Galectin-3  Gal-3  

van Vark et al., 2017 [105] Biomarker ST2  ST2  

Veen et al., 2021 [103] Imaging Parameters Tricuspid regurgitation   

Zhang et al., 2018  Biomarker Natriuretic Peptides  NT-ProBNP  

AP-N: aminopeptidase-N; CASP3: caspase-3, CSTB: cystatin-B, CTSD: cathepsin D, CTSZ: cathepsin Z; eGFR: estimated glomerular filtration rate, Gal-3: galectin-3, Gal-4: galectin-4, GDF-15: 
growth differentiation factor 15, HsTnT: highly sensitive cardia45c troponin T, MMP-2, 3, and 9: matrix metalloproteinase 2, 3, and 9, NT-proBNP: N-terminal pro–B-type natriuretic 
peptide, PLC: perlecan, ST2: suppression of tumorigenicity-2, TIMP-4: tissue inhibitor metalloproteinase 4, C1qR Complement component: C1q receptor, CDH5: Cadherin 5, CHI3L1: 
Chitinase-3-like protein 1, CNTN1: Contactin-1, Ep-CAM: Epithelial cell adhesion molecule, EPHB4: Ephrin type-B receptor 4, ICAM-2 Intercellular adhesion: molecule-2, ITGB2: Integrin 
beta-2, JAM-A: Junctional adhesion molecule A, PECAM-1: Platelet endothelial cell adhesion molecule 1, SELE: E-selectin, SELP: P-selectin, CCL15: C-C motif chemokine 15, CCL16: C-C motif 
chemokine 16, CCL24: C-C motif chemokine 24, CXCL16: C-X-C motif chemokine 16, FAS: tumour necrosis factor receptor superfamily member 6, IL-18BP: interleukin-18-binding protein, IL-
17RA: interleukin-17 receptor A, IL2-RA: interleukin-2 receptor subunit alpha, IL-6RA: interleukin-6 receptor subunit alpha, IL-1RT1: interleukin-1 receptor type 1, IL-1RT2: interleukin-1 
receptor type 2, LTBR: lymphotoxin b receptor, TNF-R1: tumour necrosis factor receptor 1, TNF-R2: tumour necrosis factor receptor 2, TNFRSF14: tumour necrosis factor receptor 
superfamily member 14, TNFRSF10C: tumour necrosis factor receptor superfamily member 10C, TNFSF13B: tumour necrosis factor ligand superfamily member 13B, CysC: cystatin C, 
estimated glomerular filtration rate: eGFR, NAG: N-acetyl-beta-D-glucosaminidase, KIM-1: kidney injury molecule, NGAL plasma and urinary neutrophil gelatinase-associated lipocalin, SBP: 
Systolic Blood Pressure, NT-ProBNP: N-terminal pro-B-type natriuretic peptide, PHQ-9: Patient Health Questionnaire-9, CD163 (M130): scavenger receptor cysteine-rich type 1 protein 
M130, TRAP: tartrate-resistant acid phosphatase type 5, GRN: granulins, SPON1: spondin-1, PGLYRP1: peptidoglycan recognition protein 1, TFPI : tissue factor pathway inhibitor, GDF-15: 
Growth-differentiation factor-15, RDW: Red Blood Cell Distribution Width, CA125 Carbohydrate Antigen 125, miRs: microRNAs, CRP: C-reactive protein, PAI-1: plasminogen activator 
inhibitor 1, tPA: tissue-type plasminogen activator, uPA: urokinase-type plasminogen activator, suPAR: soluble urokinase plasminogen activator surface receptor, LVEF: Left ventricular 
ejection fraction, LVED: left ventricular end-diastolic diameter, LVES: left ventricular end-systolic diameter. 
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2.6.1.3 Time-to-Event (Survival data) 

Many studies included multiple events for their survival data through use of a composite 

outcome or multiple JMs. Table 11 shows that composite outcomes were the most 

common, but the events of composite outcomes varied by patient population as shown in 

Table 16. The second most common event was all-cause mortality. Most models utilised 

Cox PH models for their survival sub-models with only two studies specifying a 

parametric Weibull model. 

 

Table 11 Survival End Points of Included Studies 

Endpoint 
Overall 
(N=41) 

All-Cause Mortality 12 (29.3%) 

Cardiovascular Mortality 4 (9.8%) 

Components of composite endpoint 2 (4.9%) 

Components of the composite endpoint, MI, PCI, CABG, CVA and 

all-cause mortality 
2 (4.9%) 

Composite 17 (41.5%) 

Default from Treatment 1 (2.4%) 

Development of Anaemia 1 (2.4%) 

Some studies included multiple JMs with different end points, so the total number of 

endpoints (41) is more than the number of included studies (27). 

 

2.6.1.4 Missing Data 

Common joint modelling packages such as JM and JMBayes allow for both uneven 

spacing and missing longitudinal measurements. Both these packages require all covariates 

from both longitudinal and survival sub-models to be complete. This common limitation 

resulted in 13 (46%) of the included studies using imputation methods to complete missing 

data.  
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2.6.1.5 JM 

All included studies modelled their JMs with R. The two most common packages being JM 

and JMBayes, with 7 (25%) studies using the JM package and 10 (36%) using JMBayes 

and another 3 (10%) studies specified both packages. Three studies used custom code, one 

study used the joineRML package and the remaining 3 (10%) did not specify the package 

used.  

The R Packages used show both use of frequentist and Bayesian analysis. While the 

frequentist method use the maximum likelihood approach and is more comparable to more 

traditional models the Bayesian approach typically relies on Markov chain Monte Carlo 

(MCMC) sampling algorithms and may improve analysis by using related historical 

information and allowing for more flexible estimation [106]. 

 

2.6.1.6 Presentation of Results 

Generally, the results from the JMs included the hazard ratio of the associated longitudinal 

outcome of interest on the time-to-event outcome; this was typically either the association 

of the value of the longitudinal outcome or the slope of the outcome on the time-to-event 

model. 

The longitudinal sub-model is often presented as a coefficient or a graph of the average 

change in the longitudinal outcome of interest over time, these graphs are commonly split 

into groups of subjects e.g., those who did or did not experience the time-to-event outcome 

of interest. An example of this is illustrated in Figure 7 from the Vark et al. study [105]. 
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Figure 7 Average Estimated Biomarker Pattern, Combined with Individual Biomarker Measurements. During Follow-up in Patients with and without the 
Primary Endpoint from the van Vark et al. Study 

 

Reprinted with permission from van Vark et al. © 2017 The American College of Cardiology Foundation [105]  
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Commonly used packages in R provide capability to visually represent a trajectory of the 

longitudinal measure and the resulting changes in survival probability as shown in Figure 8 

taken from Zhang et al. where the trajectory of the longitudinal measures (NT-proBNP) is 

plotted on the left and the survival probability with 95% confidence intervals are plotted on 

the right. This is useful when looking at individual patient trajectories, in their example 

Zhang et al. show how the probability of survival changes in response to changes of the 

trajectory of NT-proBNP and a narrowing of the confidence intervals can be observed with 

the increase of measurements of NT-proBNP [107]. These such plots while useful were not 

common amongst the included studies. 

 

Given this is a relatively new approach to analysing longitudinal data simultaneously with 

survival data studies often compare results from JMs against more traditional models such 

as a Cox PH model with only a singular measurement of the variable of interest.  
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Figure 8 Dynamic survival probabilities with 95% CI based on various measurements of 
NT- ProBNP for a patient whose values fell. 

 

Reprinted with permission from Zhang et al. © 2018 Elsevier B.V. All rights reserved. 

[107]. 

 

2.6.1.7 Joint Modelling Outcomes 

Generally, the JMs of the included studies performed favourably in terms of improving 

prognostication and identifying associations with adverse events. The Bio SHiFT study 

being the most common data source explored a variety of biomarkers and imaging 

parameters including cell adhesion circulating bio markers, fibrinolysis factors, renal 

markers, echocardiographic parameters, Micro Ribonucleic Acid (MiRNA’s), cardiac 

remodelling bio markers and macrophage and neutrophil related Biomarkers highlighting a 

variety of biomarkers and imaging parameters that were associated with the adverse events 
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[86]–[89], [95], [98]–[102]. Whilst many of the tested biomarkers and parameters 

produced positive results, Van den berg et al. suggested that repeated measures of imaging 

parameters such as LVEF do not add any more value than single parameters due to the lack 

of change in those parameters over the observation period [102]. While this suggestion 

may be true for the population of the Bio SHiFT study, both Alvarez-Alvarez et al. and 

Van den Berge suggested that for other heart failure populations repeated measurements of 

echocardiographic parameters such as LVEF can be useful, with Alvarez-Alvarez et al. 

investigating these parameters in a chronic heart failure population after CRT and Van den 

Berge exploring these parameters in an acute heart failure population [82], [103]. 

 

One of the key biomarkers which was explored in many studies was NT-ProBNP with 

Zhang et al., Castelvecchio et al. and Van Boven exploring its association with adverse 

events in a chronic heart failure population [91], [99], [107]. While these studies 

demonstrated the association between NT-ProBNP and adverse events, the Zhang et al. 

study suggested that the most recent value of NT-ProBNP had a similar predictive value as 

the serial measurements, but similar to the Van den Berg et al. study this may simply be 

due to the lack of change in values of NT-ProBNP within the study population and may not 

be generalisable [107]. 

 

Other key biomarkers which appeared in multiple studies were High sensitivity Troponin T 

(HsTnT), C-Reactive Protein (CRP), Cancer Antigen 125 (CA125), creatinine, 

Suppression of Tumorigenicity 2 (ST2), Galectin-3 (GAL-3) and Growth Differentiation 

Factor 15 (GDF-15) [85], [96]–[98], [100], [104], [105], [108], indicating that repeat 

measures of these markers are of interest within heart failure populations. Additionally, 

other less frequent markers included Lactase Dehydrogenase Trends (LDH) [93], Red 

blood cell Distribution Width (RDW) [80] and ambulatory markers such as Systolic Blood 

Pressure (SBP), heart rate and haemoglobin [81], [84], [90]. 
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Along with biomarkers, functional parameters were also of interest, with Kelly et al. taking 

a novel approach investigating the association of physical activity as reported by implanted 

devices i.e., by ICD or CRT-D [94] and Arnold et al. using the joint modelling of health 

status in the form of Kansas City Cardiomyopathy Questionnaire Overall Summary Score 

(KCCQ-OS) score and all-cause mortality as a sensitivity analysis to illustrate how 

censoring attenuated health status with respect to treatment effect [83]. 

 

Along with the echocardiographic parameters mentioned above imaging parameters were 

used in a total of four studies, using many of the parameters obtained from imaging such as 

LVEF, Left Ventricular End-Diastolic diameter (LVED), Left Ventricular End-Systolic 

diameter (LVES) and tricuspid regurgitation [103], [109]. 

 

2.6.2 Association between serum digoxin concentration and 

mortality 

2.6.2.1 Baseline Characteristics 

 Table 12 shows the baseline characteristics of included patients (n=2012), with a median 

age of 64 years, 22% of patients being women, median ejection fraction was 29% and 35% 

of patients died.  
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Table 12 Baseline Characteristics According to Patient Status (Dead / Censored) and 
Overall Sample (n = 2012) 

 
Dead 

(n=713) 

Alive/ Censored 

(n=1299) 

Overall 

(n=2012) 

Age    

    Median (IQR) 66.0 (13.0) 63.0 (13.0) 64.0 (13.0) 

Sex    

    FEMALE 151 (21.2%) 300 (23.1%) 451 (22.4%) 

    MALE 562 (78.8%) 999 (76.9%) 1561 (77.6%) 

Ejection Fraction    

    Median (IQR) 25.0 (13.0) 30.0 (13.0) 29.0 (13.0) 

NYHA Class    

    Class I 75 (10.5%) 215 (16.6%) 290 (14.4%) 

    Class II 345 (48.4%) 741 (57.0%) 1086 (54.0%) 

    Class III 265 (37.2%) 325 (25.0%) 590 (29.3%) 

    Class IV 28 (3.9%) 18 (1.4%) 46 (2.3%) 

History of 

Hypertension 
   

    FALSE 376 (52.7%) 727 (56.0%) 1103 (54.8%) 

    TRUE 337 (47.3%) 572 (44.0%) 909 (45.2%) 

Ischemic HF    

    ISCHEMIC 505 (70.8%) 939 (72.3%) 1444 (71.8%) 

    NON-ISCHEMIC 208 (29.2%) 360 (27.7%) 568 (28.2%) 

BMI    

    Median (IQR) 25.9 (5.91) 26.6 (5.97) 26.4 (5.76) 

 

  



77 

 

2.6.2.2 JM – Longitudinal Data sqrt SDC over time 

The coefficients from the longitudinal sub-model of JM 2 (Table 17) for time -0.004 (-

0.005 - -0.002) suggests that the sqrt root SDC decreases by 0.004 per month after 

adjusting for covariates. Figure 9 shows a representation of the predicted, and therefore 

adjusted, average trajectories of SDC over time from JM 2. Which is divided into patients 

who died during follow-up and those who did not, it suggests that patients who died had on 

average higher levels of SDC.  
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Figure 9 Average Trajectories of SDC by Patient Status as Predicted by JM 2 with Observed 
Values and Trajectories of SDC 

A.) 

 
B.) 

 
Figure 9a: Average Trajectories of SDC by Patient Status as Predicted by JM 2 with Observed 

Values and Trajectories of SDC on original axis scale, Figure 9b: Average Trajectories of SDC by 

Patient Status as Predicted by JM 2 with Observed Values and Trajectories of SDC on scaled axis 

scaled for readability. Average Trajectories were predicted using JM2 for patients whose status 

were either alive or dead based on mean and mode characteristics (covariates) of each stratum of 

patients (Alive or Dead). 
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2.6.2.3 JM – Hazard Ratios 

 Table 13 illustrates the results from the survival sub-models of the JMs in terms of a HR 

(95% CI) and p-value. All the JMs are time dependent relative risk models with a baseline 

risk function and as such the HRs can be interpreted similar to HRs from a proportional 

hazards model such as a Cox PH model. Focusing on the time dependent association 

parameter, the unadjusted model (JM 1) with a HR of 5.32 (3.07 – 9.22) suggesting a 5-

fold increase in the hazard of all-cause mortality per unit increase of sqrt SDC. This 

association is attenuated when adjusted for clinical covariates in JM 2 with a HR of 1.77 

(1.34 - 2.33). The time dependent slope parameter of JM 3 is above the significance 

threshold (p-value 0.092) indicating insufficient evidence to establish an association 

between the slope of sqrt SDC and all-cause mortality. Neither the HR for the time 

dependent parameter or the HR for the time dependent slope parameter of JM are above 

the significance threshold (p-values of 0.427 and 0.13, respectively) suggesting insufficient 

evidence to establish an association with either value or slope when the model is adjusted 

for both. The interpretation of the time dependent parameter of this model would be the 

hazard of all-cause mortality per unit increase of sqrt SDC for patients having the same 

slope. The interpretation of the time dependent slope parameter of this model would be the 

hazard of all-cause mortality per one SD increase in slope for patients having the same 

level of sqrt SDC.  
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Table 13 Event Summary of JMs Represented as Hazard Ratios 

 JM 1 (Unadjusted) JM 2 (Adjusted) 
JM 3 

(Adjusted Time Dependent Slopes) 

JM 4 
(Time Dependent and Time 

Dependent slopes) 

 Variable  HR P Value HR P Value HR P Value   

 Age  
  

1.02 (1.01-1.03)  <0.001  1.02 (1.01-1.03)  <0.001  1.02 (1.01-1.03)  <0.001  

 Male  
  

1.19 (0.99-1.43)  0.062  1.2 (0.99-1.45)  0.064  1.22 (1.01-1.47)  0.042  

 Ejection Fraction %  
  

0.97 (0.96-0.98)  <0.001  0.97 (0.96-0.98)  <0.001  0.97 (0.96-0.98)  <0.001  

 NYHA Class II  
  

1.22 (0.95-1.57)  0.115  1.2 (0.93-1.55)  0.171  1.22 (0.94-1.57)  0.131  

 NYHA Class III  
  

1.66 (1.28-2.16)  <0.001  1.63 (1.25-2.14)  <0.001  1.66 (1.27-2.17)  <0.001  

 NYHA Class IV  
  

2.26 (1.45-3.53)  <0.001  2.3 (1.43-3.72)  0.001  2.36 (1.48-3.76)  <0.001  

History of Hypotension  
  

1.15 (0.99-1.34)  0.07  1.16 (0.99-1.36)  0.06  1.16 (0.99-1.35)  0.063  

 Non-Ischemic HF  
  

1.07 (0.91-1.26)  0.428  1.07 (0.9-1.27)  0.455  1.08 (0.91-1.28)  0.386  

 BMI  
  

0.98 (0.97-1)  0.036  0.98 (0.97-1)  0.061  0.99 (0.97-1)  0.113  

 Association (sqrt SDC) 5.32 (3.07-9.22) <0.001 1.77 (1.34-2.33) <0.001   1.33 (0.66-2.65) 0.427 

 Association Slope * 
    

1.24 (0.97-1.59)  0.092  1.17 (0.96-1.42)  0.13  

 HR of all parameters except Association Slope reported as hazard of all-cause mortality per one unit increase at any point in time. 

 * HR of Association Slope reported as hazard of all-cause mortality per one standard deviation increase in the slope of sqrt 
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2.6.2.4 JM – individual patient trajectories. 

 Figure 10 shows the individual patient trajectories of a patient randomly selected (from 

patients with at least four measurements of sqrt SDC) at four different time points. These 

plots contain the longitudinal measurements of sqrt SDC as fitted by the JM on the left and 

the survival probability on the right, the dashed line indicating the last point the patient was 

known to be alive and the start of the survival curve, this point changes with each added 

measurement and as a result the survival curves are not directly comparable. However, 

these plots demonstrate how the measurements of sqrt SDC effects the survival probability 

and how the confidence intervals change over time with more measurements.  

 

Figure 10 Individual Patient Trajectory of sqrt SDC and Survival Probability from Randomly 
Sampled Patient as Predicted by JM 2 
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2.6.2.5 Additional (Comparative) analysis 

Results from the comparative analysis suggest that JM 2 had the best overall performance 

of the JMs with the lowest AIC, highest log likelihood and joint highest discrimination 

index of all models. The lower HR from the extended Cox PH model suggests that it 

underestimated the HR of the sqrt SDC parameter likely due to the nature of SDC as a 

time-varying covariate; SDC being an endogenous biological covariate subject to 

measurement error, biological variances, being able to change between measurements and 

finally requiring the subject to be alive at measurement. Underestimation of the association 

parameter has been previously demonstrated in simulation studies [110]. 

Internal validation of the discrimination index using 100 bootstrap samples showed that 

JM2 had a mean discrimination index of 0.66 (range 0.6 - 0.72) and outperformed the 

extended Cox PH model which had a mean discrimination index of 0.65 (range 0.62 – 

0.67) 71% of the time with respect to the discrimination index, and 66% of the time when 

compared to Cox PH last measurement model which had a mean discrimination index of 

0.65 (range 0.62 - 0.68). The full additional analysis is available in section 2.15. 

 

2.7 Discussion 

In 2016, a systematic review by Sudell et al. showed an increase in use of JMs of 

longitudinal and time-to-event data over time. However, only 3 identified studies used 

‘heart related’ data; the most common applications were to cancer and HIV/AIDS studies 

[111]. Developing on their search strategy, we identified 28 studies by systematic review 

applying joint modelling within an adult heart failure population. and with use of an 

illustrative example have shown how to fit an interpret a JM. We have also shown how a 

JM approach can be used to examine the association between a biochemical test and 

outcomes in patients with heart failure.  
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Open-source software packages available in R such as JM and JMBayes make joint 

modelling more accessible reflected by the 20 (71%) studies using these packages. While 

these packages limit the JMs by way of underlying methodology [67], [68], if this 

methodology is not suitable custom code may be written as illustrated by the Hurst et al 

study [93]. Both the JM and JMBayes packages also contain limitations around missing 

data in covariates. While the packages allow for missing longitudinal data, they do not 

allow for missing covariates in the sub models used to build the JMs. This results in the 

need to either use a complete case with regards to the covariates as shown in our exemplar 

or use imputation techniques such as multiple imputation as highlighted in the included 

studies.  

Due to the clinical nature of the included studies we found that studies often lacked details 

on the formulation of the JMs, e.g, the baseline risk function. Whilst this information could 

usually be derived by considering the packages used to fit the JMs, this information may be 

useful for reproducibility. We also identified that there was a lot of ambiguity around the 

origin of figures; whether or not they came from JMs or the individual components of the 

JMs e.g., a linear mixed effects model, modelled independently of the JM. We therefore 

suggest the need for clarity and transparency of the presentation of results from JMs. 

It is also important that the results are easily understandable to a general audience. For 

example, the HR of a time dependent association parameter is intuitive but the HR of a 

time dependent slope parameter less so. Clinicians will often consider trends of biomarkers 

in day-to-day decision making so understanding these association parameters are key to 

relating them to clinical practice.  

 

One driving motivation of the use of JMs was utilisation of repeated measures to inform 

prognosis and the comparison against a single measure. Most studies investigated 

biomarkers such as NT-ProBNP, CA125 and renal markers. However, JMs were not only 
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limited to biomarkers; with such studies as van den Berg et al. investigating 

echocardiographic parameters [102], Arnold et al. focusing on health status [83] and Kelly 

et al. exploring physical activity as reported by an implanted device [94]. The use of these 

data illustrates the robustness of joint modelling. Another key rationale was the use of joint 

modelling to reduce bias due to censoring and mortality. Bias of this nature often occurs 

because subjects who are sicker are more likely to experience the event of interest or 

withdraw from the study earlier than those who are healthier leading to fewer longitudinal 

measurements [56]. To overcome this joint modelling provides a framework that 

acknowledges the underlying relationship between the longitudinal and event process 

through the use of a joint distribution [52]. The Arnold et al. study illustrates this bias 

visually highlighting how censoring likely attenuated heath status with respect to treatment 

effect [83]. Further, we have highlighted the use of joint models to handle missing not at 

random data through use of a joint distribution [52]. 

 

Only three studies used data from RCTs [83], [85], [90], as previously mentioned joint 

modelling can be used to reduce bias with respect to treatment effect. Whilst this highlights 

a potential gap in the literature it should be noted that during screening, we identified 

numerous studies using joint modelling as a sensitivity analysis with results consistent to 

those from separate longitudinal and survival models but were excluded from review as not 

enough details about the models were included for full appraisal. 

 

Compared to cancer studies, there was a lack of focus on quality-of-life data with only one 

study including quality of life in the form of a Kansas City Cardiomyopathy Questionnaire 

and SF-36 scores [83], and one which included depression by means of patient health 

questionnaire 9 scores [92]. Whereas joint modelling with quality of life is much more 

prevalent in cancer studies [51], [83]. This highlights another area which may be of interest 

to future studies using joint modelling in heart failure. 
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The Bio-Shift Cohort made up 36% of studies primary data, illustrating how a study can be 

developed to fully use the capabilities of joint modelling; with frequent blood sampling 

and measurements of endpoints the study leads the way for further larger studies of this 

nature [79].  

 

From the studies using data from the Bio-Shift Cohort we identified 3 studies which only 

selected baseline and the last two measurements closest to the endpoint [86], [101], [112]. 

While justified to investigate the trajectories before and after an event it should be noted 

that this kind of analysis could lead to bias and should only be conducted with proper 

justification. 

 

Many of the included studies demonstrated how repeated measures added value with 

respect to both prognostication and model fit. The outcomes of the JMs illustrate how joint 

modelling can improve on traditional models and highlights the use of joint modelling to 

assess associations of various biomarkers, imaging parameters and functional parameters, 

and adverse outcomes as well as provide dynamic predictions. However, there were studies 

which stated repeat measurements did not add prognostic value or improve model fit. For 

example, Van den Berg et al. stated that repeated measurements of echocardiographic 

parameters were associated with adverse events but did not add prognostic value due to the 

lack of change in measurements over time [102]. Whist this may be true for the bio-shift 

cohort, both van den Berge et al. and Alvarez-Alvarez et al. illustrated that given the right 

context these repeat measurements can still add value [82], [103]. This highlights an 

important caveat regarding JMs, in that the cost may not outweigh the benefit of the JMs; 

whilst biomarkers are routinely collected at little added cost other parameters may be 

costly to collect and an understanding of the temporal patterns of these parameters prior to 

joint modelling is advisable. 
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Our exemplar shows how joint modelling can be applied to older studies in order to 

maximise information from data that was sometimes collected but unused in expensive 

clinical trials. We highlighted how they compare to traditional models and how they can 

compete and improve on these models while also providing new clinical insight. The HR 

of the extended Cox PH model when compared to JM2 and the last measurement Cox PH 

Model suggests that it underestimated the association parameter, as previously stated likely 

due to the nature of SDC as a covariate. Whilst the extended Cox PH allows for repeated 

measures it does not account for measurement error, biological variance or that SDC may 

vary between time points or after the last observed measurement; this underestimation has 

previously been demonstrated in in simulation studies [110]. Joint modelling while 

allowing for repeated measurements of SDC can handle the biological endogenous nature 

of SDC providing better inferences [52]. Our results suggest that higher values of SDC 

rather than the slope is associated with higher mortality in patients with heart failure. Our 

work extends the findings of prior studies that have tried to examine this association with 

landmark methods which do not perform as well as shown by our exemplar analysis. The 

implications of this finding are that for patients, their SDC level should be kept as low as 

possible while still maintaining adequate dosing and in patients with high SDC 

consideration may have to be given to reducing the dose. There is however an issue of 

reverse causality, sicker patients may be prescribed higher doses and consequently have 

higher SDC. However, higher SDC could still act as an indicator of risk and should alert 

clinicians to reassess the patient and consider other therapies for their heart failure.  

 

Our exemplar only included patients who had no missing covariate values. While this is 

satisfactory for an exemplar, it can lead to loss of information and possible bias in research 

studies and the best practice may be to use multiple imputation [113].However, it should 
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be noted that multiple imputation requires pooling for valid inference, which may cause 

issues with computational complexity and the need for pooling for dynamic predictions.  

 

Our internal validation using 100 bootstrap samples showed JM2 outperformed the 

extended Cox PH and Cox PH last measurement models with respect to the discrimination 

index most of the time (71% and 65% respectively) within the bootstrap samples providing 

validation to the prognostic performance of the JM. However, the range of the 

discrimination indices of JM2 is wider than both other models suggesting more variability 

of discrimination with the joint model within the bootstrap samples. While our exemplar 

used a dynamic discrimination index for prognostic comparison against traditional models, 

we found that there was little consistency in methods used to compare JMs against each 

other and traditional models, highlighting a need for consistency when evaluating JMs. We 

would suggest that any model specifications or parameters are clearly described to allow 

any comparisons to be made in future research.  

 

JM 3 in our exemplar included a slope parameter corresponding to the rate of change in 

sqrt SDC at a time point, known as the instantaneous or current slope. As previously stated, 

this parameter can be difficult to interpret and as such the JMBayes2 package offers the use 

of other slope parameters such as delta change i.e., change in the last month / year prior to 

the time point. This parameter should be easier to interpret and is likely to be more 

prognostic than currently used slope parameters [114].  

 

Both our review and exemplar highlight the various output and figures that can be 

produced from a JM and show how powerful joint modelling can be, with applications for 

prognostication, research of the association of repeat measurements of biomarkers and an 

endpoint, sensitivity analysis and more. 
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While joint modelling has a variety of uses, it may be most beneficial in the presence of 

informative censoring or dropout, when incorporating time-varying exogenous covariates 

such as biomarkers into survival models, and for prognostic modelling where dynamic 

predictions are useful. However Joint modelling can be computationally complex and take 

longer to fit than traditional models. It should also be noted that inferences may only be 

valid where the joint model has been correctly specified both with respect to the sub 

models and baseline hazard function. Joint models are also only valid when conducted on 

the same population, this is to say that both the longitudinal and time-to-event responses 

need to come from the same group of subjects. Joint models may not provide better 

prognostic inference where there is limited variability in the repeated measures such as 

shown by van den Berg et al. [102]. 

 

Our exemplar has some limitations such as the limited number of repeat measurements. 

This may have affected the power to estimate the slope association parameter and overall 

accuracy of the model.  

 

2.8 Conclusions 

In conclusion, this hybrid systematic review with exemplar highlights the rise in the use of 

JMs within heart failure, and our exemplar illustrates how JMs can be fitted to existing 

datasets adding value by utilising information from the repeated measures collected. This 

highlights why JMs are an increasingly popular alternative to traditional models such as 

Cox PH and Extended Cox PH. 
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2.15 Supplementary Material 

Table 14 Model Equations for All Models 

LME Models 

Unadjusted 

LME {
√𝑆𝐷𝐶𝑖𝑗 = 𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑏𝑖0 + 𝜀𝑖𝑗,

𝑏𝑖  ~ Ν(0, 𝐷), 𝜀𝑖𝑗  ~ 𝑁(0, 𝜎
2)

 

 

Adjusted LME 
{
√𝑆𝐷𝐶𝑖𝑗 = 𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝛽2𝑒𝐺𝐹𝑅𝑖𝑗 + 𝛽3𝑆𝑒𝑙𝑓 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑖𝑗 + 𝛽4𝐻𝑜𝑢𝑟𝑠 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝐷𝑜𝑠𝑒𝑖𝑗 + 𝛽5𝐷𝑜𝑠𝑒𝑖𝑗 +  𝑏𝑖0 + 𝑏𝑖1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖𝑗 ,

𝑏𝑖  ~ Ν(0, 𝐷), 𝜀𝑖𝑗  ~ 𝑁(0, 𝜎
2)

 

 

Cox PH Models 

Unadjusted 
Cox PH 

ℎ𝑖(𝑡) = ℎ0(𝑡) 

Adjusted PH ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 +
 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖) 

 

Joint Models 

JM1 

{

𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) +  𝜀𝑖 (𝑡)
                                                         =  𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖0 + 𝜀𝑖𝑗  ,

          ℎ𝑖(𝑡) =  ℎ0(𝑡) exp {𝛼𝑚𝑖(𝑡)}

    𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2) 

JM2 

{
 
 

 
 

𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) + 𝜀𝑖 (𝑡)

= 𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝛽2𝑒𝐺𝐹𝑅 + 𝛽3𝑆𝑒𝑙𝑓 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 + 𝛽4𝐻𝑜𝑢𝑟𝑠 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝐷𝑜𝑒𝑠 + 𝛽5𝐷𝑜𝑠𝑒 𝑏𝑖0 + 𝑏𝑖1𝑡 + 𝜀𝑖𝑗  ,      𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2),

 

ℎ𝑖(𝑡) =  ℎ0(𝑡) exp {
𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 +

 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 + 𝛼𝑚𝑖(𝑡)
} ,
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JM3 

{
 
 

 
 

𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) + 𝜀𝑖 (𝑡)

= 𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝛽2𝑒𝐺𝐹𝑅 + 𝛽3𝑆𝑒𝑙𝑓 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 + 𝛽4𝐻𝑜𝑢𝑟𝑠 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝐷𝑜𝑒𝑠 + 𝛽5𝐷𝑜𝑠𝑒 𝑏𝑖0 + 𝑏𝑖1𝑡 +  𝜀𝑖𝑗 ,      𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2),

 

ℎ𝑖(𝑡) =  ℎ0(𝑡) exp {
𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 +

 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 + 𝛼𝑚𝑖
′(𝑡)

} ,

 

JM4 

{
 
 

 
 

𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) + 𝜀𝑖 (𝑡)

= 𝛽0 + 𝛽1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝛽2𝑒𝐺𝐹𝑅 + 𝛽3𝑆𝑒𝑙𝑓 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 + 𝛽4𝐻𝑜𝑢𝑟𝑠 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝐷𝑜𝑒𝑠 + 𝛽5𝐷𝑜𝑠𝑒 𝑏𝑖0 + 𝑏𝑖1𝑡 +  𝜀𝑖𝑗 ,      𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2),

 

ℎ𝑖(𝑡) =  ℎ0(𝑡) exp {
𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 +

 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 + 𝛼1𝑚𝑖(𝑡) + 𝛼2𝑚𝑖
′(𝑡)

} ,

 

Comparative (Traditional) Models 

Cox PH First 
Measurement 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 +
 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 + 𝛾10𝐹𝑖𝑟𝑠𝑡 𝑆𝑞𝑟𝑡 𝑆𝐷𝐶𝑖) 

 

Cox PH Last 
Measurement 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 +
 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 + 𝛾10𝐿𝑎𝑠𝑡 𝑆𝑞𝑟𝑡 𝑆𝐷𝐶𝑖) 

 

Extended Cox 
PH 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝛾1𝐴𝑔𝑒𝑖 + 𝛾2𝑀𝑎𝑙𝑒𝑖 + 𝛾3𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾4𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾5𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾6𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 +
 𝛾7𝐻𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑖 + 𝛾8𝑁𝑜𝑛 − 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝐹𝑖 + 𝛾9𝐵𝑀𝐼𝑖 +  𝛼𝑆𝑄𝑅𝑇 𝑆𝐷𝐶𝑖(𝑡)) 
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2.15.1 Supplementary Results 

2.15.1.1 Additional (Comparative) analysis 

Table 18 shows the performance characteristics of the JMs and traditional models. JM 2 

had the best overall performance, with the lowest AIC (7273.89) and highest log likelihood 

(-3613.94) of the JMs and joint highest discrimination index of all models. The extended 

Cox PH model performed better than the traditional models with the lowest AIC 

(10217.12) and highest log likelihood (-5188.38). JM 1 had the worse overall performance 

of the JMs with the highest AIC, lowest log likelihood and lowest discrimination index. 

The two traditional models performed similarly to each other, with equal log likelihood 

and marginal differences in AIC and the last measurement model having a slightly better 

discrimination index of (0.65). This discrimination index of 0.65 shared by JM 2, the last 

measurement and extended Cox PH models suggest that the last measurement of SDC has 

a similar prognostic performance to repeated measurements of SDC. 

Table 19 shows the hazard ratios from the Cox PH models and JM 2. It shows a marginal 

difference between the hazard ratio of Sqrt SDC from the last measurement model (1.78) 

and the time dependent association parameter JM 2 (1.77). Both the extended Cox and first 

measurement model had lower hazard ratios for Sqrt SDC of 1.73 and 1.52 respectively. 

The extended Cox model appears to have underestimated the HR of the sqrt SDC 

parameter, likely due to the nature of SDC as a covariate; SDC is a biological endogenous 

covariate, which is to say it has special properties that need to be considered and respected. 

These properties include: the need for the patient to be alive for the measurement, the 

measurement is subject to biological variances and measurement error, the measurement 

may only be observed at specific time points but may vary between these time points. This 

underestimation of the association parameter has previously been demonstrated in 

simulation studies such as those by Sweeting and Thompson [110]. Using one hundred 

bootstrap samples, the discrimination index of JM2, the Extended Cox PH and Cox PH last 



94 

 

measurement models were compared to internally validated the results of the 

discrimination index. From the 100 bootstrap samples JM 2 outperformed the extended 

Cox PH Model 71% of the time with respect to the discrimination index and 66% of the 

time when compared to the Cox PH Last Measurement model. The discrimination indices 

from JM2 within the 100 bootstrap samples had a mean of 0.66, median of 0.66 and range 

of 0.6 – 0.72, whilst the extended Cox PH model had a mean of 0.65, median of 0.65 and 

range of 0.62 – 0.67 and the Cox PH last measurement model having a mean of 0.65, 

median of 0.65 and range of (0.62 – 0.68). 
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Figure 11 Full search strategy 

Embase  (OVID) 

1. (joint adj3 model*).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

2. ((heart* or cardi* or myocard*) adj2 (failure* or incompet* or insufficien* or 

decompensat*)).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

3. exp heart failure/ 

4. 2 or 3 

5. 1 and 4 

Embase  (OVID) 

1. (joint adj3 model*).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

2. ((heart* or cardi* or myocard*) adj2 (failure* or incompet* or insufficien* or 

decompensat*)).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

3. exp heart failure/ 

4. 2 or 3 

5. 1 and 4 
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Medline (OVID) 

1. (joint adj3 model*).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

2. ((heart* or cardi* or myocard*) adj2 (failure* or incompet* or insufficien* or 

decompensat*)).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

3. exp heart failure/ 

4. 2 or 3 

5. 1 and 4 

Medline (OVID) 

1. (joint adj3 model*).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

2. ((heart* or cardi* or myocard*) adj2 (failure* or incompet* or insufficien* or 

decompensat*)).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 

word, candidate term word] 

3. exp heart failure/ 

4. 2 or 3 

5. 1 and 4 
 

Scopus 

( TITLE-ABS-KEY ( joint  W/3  model* )  AND  TITLE-ABS-KEY ( ( heart*  OR cardi*  OR  

myocard* )  W/2  ( failure*  OR  incompet*  OR  insuffcien*  OR  decompensat*) ) ) 

Scopus 

( TITLE-ABS-KEY ( joint  W/3  model* )  AND  TITLE-ABS-KEY ( ( heart*  OR cardi*  OR  

myocard* )  W/2  ( failure*  OR  incompet*  OR  insuffcien*  OR  decompensat*) ) ) 
 

Google Scholar (Through Publish or Perish) 

Title Words: "heart failure" 

Keywords: ("heart failure" AND "Joint Model") 

Google Scholar (Through Publish or Perish) 

Title Words: "heart failure" 

Keywords: ("heart failure" AND "Joint Model") 
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Table 15 Summary of Included Studies Ordered by Year 

Paper  Year  Primary Data Source (Study)  Primary Study 
Type 

Included Study 
Population Size 

Type of HF Specific Characteristics  

Nunez et al., 2014 [115] 2014  Custom COHORT  COHORT 1702  Acute   

Nunez et al., 2017 [116] 2017  Custom COHORT  COHORT 946  Acute   

Brankovic et al., 2017 [117] 2017  Bio SHiFT  COHORT 263  Chronic   

van Vark et al., 2017 [104] 2017  TRIUMPH  COHORT 475  Acute   

van Vark et al., 2017 [105] 2017  TRIUMPH  COHORT 475  Acute   

van Boven et al., 2017 [99] 2017  Bio SHiFT  COHORT 263  Chronic   

Zhang et al., 2018 [107] 2018  Custom COHORT  COHORT 1998  Chronic   

Castelvecchio et al., 2018 [118] 2018  Biomarker Plus  COHORT 143  Chronic  Ischemic  

Liu et al., 2018 [119] 2018  Custom COHORT  COHORT 173  Chronic  Ischemic, HFrEF 

van Boven et al., 2018 [100] 2018  Bio SHiFT  COHORT 263  Chronic   

Hurst et al., 2019 [120] 2019  Custom COHORT  COHORT 323  Chronic  Advanced Heart Failure  

Arnold et al., 2019 [121] 2019  COAPT  RCT 611  Chronic  HFrEF, Patients randomised to Transcatheter 
Mitral-Valve Repair vs standard therapy  

Biegus et al., 2019 [122] 2019  RELAX-AHF  RCT 1120  Acute   

van den Berg et al., 2019 [123] 2019  Bio SHiFT  COHORT 263  Chronic   

van den Berg et al., 2019 [102] 2019  Bio SHiFT  COHORT 106  Chronic HFrEF 

Bouwens et al., 2019 [101] 2019  Bio SHiFT  COHORT 263  Chronic   

Kelly et al., 2020 [124] 2020  Boston Scientific ALTITUDE 
registry 

COHORT 20927  Chronic  With ICD / CRT-D  
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Paper  Year  Primary Data Source (Study)  Primary Study 
Type 

Included Study 
Population Size 

Type of HF Specific Characteristics  

Bouwens et al., 2020 [86] 2020  Bio SHiFT  COHORT 263  Chronic   

Bouwens et al., 2020 [88] 2020  Bio SHiFT  COHORT 250  Chronic   

Klimczak-Tomaniak et al., 2020 
[125] 

2020  Bio SHiFT  COHORT 263  Chronic   

Canepa et al., 2020 [126] 2020  GISSI-HF  RCT 5469  Chronic HFrEF 

Veen et al., 2021 [127] 2021  EUROMACS  COHORT 2496  Chronic After LVAD Implantation  

van den Berge et al., 2021 [123] 2021  Custom COHORT  COHORT 111  Acute  New Onset HF  

Alvarez-Alvarez et al., 2021 [128]  2021  Custom COHORT  COHORT 328  Chronic After Cardiac Resynchronization therapy  

Schreuder et al., 2021 [129] 2021  Bio SHiFT  COHORT 250  Chronic   

Abebaw et al., 2021 [81] 2021 Custom COHORT  COHORT 302 Chronic  

Belay et al., 2021 [84] 2021 Custom COHORT  COHORT 271 Chronic  

Freedland et al., 2021 [130] 2021  Custom COHORT  COHORT 400  Chronic   

HFrEF: Heart Failure Reduce Ejection Fraction, ICD: Implantable Cardioverter-Defibrillator, CRT-D: implantable cardiac resynchronization therapy (CRT) defibrillator, LVAD: 
left ventricular assist device. 
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Table 16 Breakdown of Composite Components of Included Studies 

Composite Components  

All-Cause Mortality and HF Hospitalisation  

Cardiac Death, Heart Transplantation, Left Ventricular Assist Device Implantation and Hospitalisation for the Management of acute or Worsened HF  

Suspected Pump Thrombosis and Confirmed Pump Thrombosis  

LV assist device implantation, heart transplantation, or all-cause mortality  

Cardiac Death, Cardiac Transplant, LVAD Implantation and Hospitalisation for the management of Acute or Worsened HF  

All-Cause Mortality and Readmission for HF  

Hospitalisation for the Management of Acute or Worsened Heart Failure, LVAD Implantation, Cardiac Transplantation and Cardiac Death  

MACE: Major Adverse Cardiac Events (All Cause Death, MI, and First HF Rehospitalization)  

 

Table 17 Coefficients from the Longitudinal Sub model from JM2 

Variable Value Standard Error p-Value 

Intercept 0.9798  0.0153   <0.0001 

Specimen Time (Months) -0.0036   0.0006 <0.000 

eGFR   -0.0049   0.0002 <0.0001 

Self-Adherence: None -0.0570   0.0122 <0.0001 

Self-Adherence: Some -0.1498   0.0221 <0.0001 

Number of Hours Since Dose              -0.0016   0.0001 <0.0001 

Dose      1.1306   0.0503 <0.0001 
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Table 18 Performance Summary of Joint Models, Cox PH and Extended Cox PH models. 

 Measure 
Joint Model 1 

(Basic) 
Joint Model 2 

(Adjusted) 

Joint Model 3 
(Adjusted 

Time Dependent Slopes) 

Joint Model 4 
(Adjusted Time Dependent and 

Time Dependent Slopes) 

Cox PH Model 1 
(First Measurement) 

Cox PH Model 2 
(Last Measurement) 

Cox PH Model 3 
(Extended Cox) 

 AIC  10889.64  7273.89  10352.85  10355.42  10291.65  10277.86  10217.12  

 Log Likelihood  -5437.82  -3613.94  -5153.43  -5153.71  -5220.84  -5220.84  -5188.38  

 Discrimination 
 Index  

0.56  0.65  0.65  0.65  0.64  0.65  0.65  
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Table 19 Hazard Ratios and Standard Errors from Cox Models and JM2 
 

 

 

 

 
First Measurement 

Model 
Last Measurement 

Model 
Extended Cox Model 

Joint Model 2 

 Variable HR SE p-value HR SE p-value HR SE p-value HR SE p-value 

 Age  1.02 0.004 <0.001 1.02 0.004 <0.001 1.02 0.004 <0.001 1.02 0.004  <0.001  

 Male  1.18 0.094 0.079 1.19 0.094 0.06 1.18 0.094 0.079 1.19  0.094  0.062  

 Ejection Fraction %  0.97 0.004 <0.001 0.97 0.004 <0.001 0.97 0.004 <0.001 0.97  0.004  <0.001  

 NYHA Class II  1.21 0.128 0.14 1.21 0.128 0.138 1.20 0.128 0.157 1.22 0.128  0.115  

 NYHA Class III  1.65 0.134 <0.001 1.63 0.134 <0.001 1.62 0.134 <0.001 1.66  0.134  <0.001  

 NYHA Class IV  2.22 0.226 <0.001 2.27 0.226 <0.001 2.23 0.226 <0.001 2.26  0.227  <0.001  

 History of Hypotension  1.15 0.077 0.066 1.16 0.077 0.06 1.16 0.077 0.059 1.15 0.077  0.07  

 Non-Ischemic HF  1.07 0.085 0.456 1.06 0.085 0.499 1.05 0.085 0.529 1.07 0.085  0.428  

 BMI  0.98 0.008 0.033 0.98 0.008 0.033 0.98 0.008 0.038 0.98 0.008  0.036  

 Sqrt SDC 1.52 0.114 <0.001 1.78 0.113 <0.001 1.73 0.114 <0.001    

Time dependent association 
parameter for sqrt SDC* 

         1.77 0.140  <0.001  

*The time dependent association parameter for sqrt SDC gives the hazard of all-cause mortality per 1 unit increase in square root 

transformed SDC at any time point.  This HR can be compared with the HR for sqrt SDC from the Cox models. 
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Chapter 3 Data Source 

3.1 Foreword 

The aim of this chapter is to introduce the data source that will be used to construct joint 

models throughout the remaining chapters. Each of the chapters will briefly explain the 

data source. However, to allow for alternative format and continuity throughout the thesis, 

this chapter will introduce the data source in depth. 

 

Both the primary and validation data sources were chosen as they are both large, multi-

national randomised control trials which collected biomarker data alongside survival data 

making them suitable for joint modelling. Both trials are similar in design and sponsored 

by the same company (Novartis). At the time of this analysis, they were still two of the 

largest clinical trials within heart failure trialling the latest drugs, with the primary data 

source still being referenced by the ESC Heart Failure Guidelines [1]. 

 

3.2 Primary Data Source 

Data for all models was obtained from the Angiotensin–Neprilysin Inhibition versus 

Enalapril in Heart Failure (PARADIGM-HF) clinical trial. The PARADIGM-HF clinical 

trial was a two-armed, double-blind, parallel-group, event-driven, randomised control trial 

which randomised 8,442 chronic heart failure patients with an ejection fraction of ≤ 40% 

(HFrEF) and a NYHA class of II, III or IV to receive either 200mg dose of LCZ696 

(sacubitril/valsartan) twice daily or 10mg dose of enalapril twice daily, in addition to 

recommended therapy. The study’s primary outcome was a composite of hospitalisation 

for heart failure and death from cardiovascular causes. However, the trial was designed to 

identify any treatment difference in the rate of deaths by cardiovascular causes. 

The full trial design, inclusion and exclusion criteria have been described in detail 

elsewhere and is shown in Table 20 [134]–[136].[131]–[133] Briefly, other inclusion 
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criteria for the trial included a minimum age of 18 years for informed consent, a BNP ≥ 

100 picograms per millilitre (𝑝𝑔𝑚𝑙−1) or NT-ProBNP ≥ 400 𝑝𝑔𝑚𝑙−1 if the patient had a 

hospitalisation for HF within the last year, or a BNP ≥ 150 𝑝𝑔𝑚𝑙−1 or NT-ProBNP ≥ 600 

𝑝𝑔𝑚𝑙−1 without a hospitalisation for HF.  Patients needed to be receiving a stable dose of 

an ACE inhibitor or an ARB for a minimum of four weeks prior to screening, with a dose 

equivalent to enalapril 10 mg/day. Unless not tolerated or contraindicated, the patient 

should have also been receiving a stable dose of beta-blockers in the four weeks prior to 

screening. 

 

Exclusion criteria included an eGFR < 30 millilitres per minute per 1.73 metre squared of 

body surface area (mL/min/1.73𝑀2) at visits 1, 3 and 5 or a reduction of ARBs, 5% from 

visits 1 to 3 or visits 1 and 5. Symptomatic hypertension or a systolic blood pressure < 100 

mmHg at visit 1 or < 95 mmHg at visit 3 or 5. A Potassium level > 5.2 mmol/L at visit 1 or 

> 5.4 mmol/L at visit 3 or 5. Contraindication or history of hypersensitivity/allergy to ACE 

inhibitors, ARBs or similar drugs.  

 

The stopping criteria for the trial were: 

1. When a pre-specified number of patients (2410) had experienced the composite 

endpoint. 

2. A statistically significant result in efficacy in the interim analysis (based on the 

Lan-deMets alpha spending function applied to the actual number of patients who 

experienced the primary outcome). 

3. As the result of a critical safety concern at any of the interim safety analysis. 

 

Each ethics committee of the 1,043 study centres approved the trial, and all participants 

gave written informed consent.  
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The full trial timeline is illustrated in Figure 12. Prior to randomisation, the PARADIGM-

HF trial had a two-week, single-blind, run-in period at visit 2 where the majority of eligible 

patients received a treatment of enalapril 10 mg twice daily. This run-in period was 

followed by single-blind treatment of LCZ696 100mg twice daily for two weeks and up 

titrated to 200mg twice daily for another two to four weeks. Other medications for HF 

were continued during these run-in periods except ACE inhibiters and ARB. The primary 

purpose of this run-in period was to ensure that patients that underwent randomisation 

could tolerate the target doses of the study drugs and maximising the possibility of those 

patients to tolerate the drugs over the long follow-up period [134].  

 

Double-blind randomisation happened at visit 5; 8,399 patients were randomised at a 1:1 

ratio of either LCZ696 200mg twice daily (sacubitril/valsartan) or enalapril 10mg twice 

daily, with doses being adjusted for tolerability. Forty-three patients were excluded from 

the trial either because they were enrolled to sites which closed due to serious infractions 

of Good Clinical Practice or were randomised as a result of an error. 

 

For the first four months of the double-blind period, patients were followed up every two 

to eight weeks and then every four months, with further unscheduled visits when deemed 

necessary under the advisement of the investigator. 

 

As per protocol and the prior specification of rules for interval efficacy analysis, the trial 

was stopped early as the threshold for the beneficial use of LCZ696 was crossed. The trial 

was stopped with a median follow-up time of 27 months. LCZ696 showed a significant 

reduction in primary outcome (CV mortality or HF hospitalisation) with a HR of 0.80 95% 

CI (0.76 - 0.93), whilst also showing a significant reduction in all-cause mortality with a 

HR of 0.84 95% CI (0.76 – 0.93) [43]. 
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Table 20 Inclusion and Exclusion Criteria for the PARADIGM-HF RCT Adapted from McMurray et al. 

Inclusion Criteria: 

1. Patients must give written informed consent before any assessment is performed.  

2. Outpatients ≥ 18 years of age, male or female.  

3. Patients with a diagnosis of CHF NYHA class II-IV and reduced ejection fraction:  

• LVEF ≤ 40% at Visit 1 (any local measurement, made within the past 6 months using echocardiography, MUGA, CT 

scanning, MRI or ventricular angiography is acceptable, provided no subsequent measurement above 40%)  

• BNP ≥ 150 pg/ml (NT-proBNP ≥ 600 pg/ml) at Visit 1 OR BNP ≥ 100 pg/mL (NTproBNP ≥ 400 pg/ml) and a 

hospitalization for HF within the last 12 months  

4. Patients must be on an ACEI or an ARB at a stable dose of at least enalapril 10 mg/d or equivalent for at least 4 weeks before Visit 1  

• For this protocol doses of other ACEIs considered to be equivalent to enalapril 10 mg/d include captopril 100 mg/d, 

cilazapril 2.5 mg/d, fosinopril 20 mg/d, lisinopril 10 mg/d, moexipril 7.5 mg/d, perindopril 4 mg/d, quinapril 20 mg/d, 

ramipril 5 mg/d, trandolapril 2 mg/d, and zofenopril 30 mg/d.  

• For this protocol doses of ARBs considered to be equivalent to enalapril 10 mg/d include candesartan 16 mg/d, eprosartan 

400 mg/d, irbesartan 150 mg/d, losartan 50 mg/d, olmesartan 10 mg/d, telmisartan 40 mg/d, and valsartan 160 mg/d.  

5. Patients must be treated with a β-blocker, unless contraindicated or not tolerated, at a stable dose for at least 4 weeks prior to Visit 1 

(reason should be documented for patients not on CHF target doses per local guidelines, or in absence of that medication). 

Exclusion Criteria: 

1. Use of other investigational drugs at the time of enrollment, or within 30 days or 5 halflives of enrollment, whichever is longer 

2. History of hypersensitivity or allergy to any of the study drugs, drugs of similar chemical classes, ACEIs, ARBs, or NEP inhibitors as 

well as known or suspected contraindications to the study drugs  

3. Previous history of intolerance to recommended target doses of ACEIs or ARBs  

4. Known history of angioedema  

5. Requirement of treatment with both ACEIs and ARBs  

6. Current acute decompensated HF (exacerbation of chronic HF manifested by signs and symptoms that may require intravenous therapy)  

7. Symptomatic hypotension and/or a SBP < 100 mmHg at Visit 1 (screening) or < 95 mmHg at Visit 3 or at Visit 5 (randomization)  

8. Estimated GFR < 30 mL/min/1.73m2 as measured by the simplified MDRD formula at Visit 1 (screening), Visit 3 (end of enalapril run-

in), or Visit 5 (end of LCZ696 run-in and randomization) or > 25% decline in eGFR between Visit 1 and Visit 3 or between Visit 1 and 

Visit 5  

9. Serum potassium > 5.2 mmol/L at Visit 1 (screening) or > 5.4 mmol/L at Visit 3 or Visit 5 (randomization) 

10. Acute coronary syndrome, stroke, transient ischemic attack, cardiac, carotid or other major CV surgery, percutaneous coronary 

intervention (PCI) or carotid angioplasty within the 3 months prior to Visit 1  

11. Coronary or carotid artery disease likely to require surgical or percutaneous intervention within the 6 months after Visit 1  

12. Implantation of a cardiac resynchronization therapy device (CRTD) within 3 months prior Visit 1 or intent to implant a CRTD  
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13. History of heart transplant or on a transplant list or with left ventricular assistance device (LVAD)  

14. History of severe pulmonary disease  

15. Diagnosis of peripartum or chemotherapy induced cardiomyopathy within the 12 months prior to Visit 1  

16. Documented untreated ventricular arrhythmia with syncopal episodes within the 3 months prior to Visit 1  

17. Symptomatic bradycardia or second or third degree heart block without a pacemaker  

18. Presence of hemodynamically significant mitral and/or aortic valve disease, except mitral regurgitation secondary to left ventricular 

dilatation  

19. Presence of other hemodynamically significant obstructive lesions of left ventricular outflow tract, including aortic and sub-aortic 

stenosis  

20. Any surgical or medical condition which might significantly alter the absorption, distribution, metabolism, or excretion of study drugs, 

including but not limited to any of the following:  

• History of active inflammatory bowel disease during the 12 months before Visit 1.  

• Current duodenal or gastric ulcers during the 3 months prior to Visit 1  

• Evidence of hepatic disease as determined by any one of the following: AST or ALT values exceeding 2 x ULN at Visit 1, 

history of hepatic encephalopathy, history of esophageal varices, or history of portacaval shunt  

• Active treatment with cholestyramine or colestipol resins  

21. Presence of any other disease with a life expectancy of < 5 years  

22. Pregnant or nursing (lactating) women, where pregnancy is defined as the state of a female after conception and until the termination of 

gestation, confirmed by a positive hCG laboratory test (> 5 mIU/mL)  

23. Women of child-bearing potential, defined as all women physiologically capable of becoming pregnant, including women whose career, 

lifestyle, or sexual orientation precludes intercourse with a male partner and women whose partners have been sterilized by vasectomy or 

other means, UNLESS they are using two birth control methods. The two methods can be a double barrier method (if accepted by the 

local regulatory authority and ethics committee) or a barrier method plus a hormonal method  

• Adequate barrier methods of contraception include: diaphragm, condom (by the partner), intrauterine device (copper or 

hormonal), sponge or spermicide. Hormonal contraceptives include any marketed contraceptive agent that includes an 

estrogen and/or a progesterone agent. 

• Reliable contraception should be maintained throughout the study and for 7 days after study drug discontinuation.  

• Women are considered post-menopausal and not of child bearing potential if they have had 12 months of natural 

(spontaneous) amenorrhea with an appropriate clinical profile (e.g. age appropriate, history of vasomotor symptoms) or 

six months of spontaneous amenorrhea with serum FSH levels > 40 mIU/mL [for US only: and estradiol < 20 pg/mL] or 

have had surgical bilateral oophorectomy (with or without hysterectomy) at least six weeks ago. In the case of 

oophorectomy alone, only when the reproductive status of the woman has been confirmed by follow up hormone level 

assessment. 

[135]  



107 

 

Figure 12 Overall Study design and timeframe between study visits occurring during the active run-in and double-blind periods for the PARADIGM RCT 
adapted from McMurray et al. 

 
w: week, m: month. * Projected trial duration, actual duration of the trial was event driven. 

[135] 
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3.3 Validation Data Source 

Data to be used for validation purposes for all joint models was obtained from The 

Aliskiren Trial to Minimize Outcomes in Patients with Heart Failure (ATMOSPHERE) 

trial [44]. The ATMOSPHERE trial was a multicentre, double-blind, double-dummy, 

active-controlled, parallel-group, randomised control trial which randomised 7,016 patients 

with chronic heart failure with an ejection fraction of ≤ 35% and an NYHA class of II, III 

or IV at a 1:1:1 ratio to receive either enalapril at a dose of 5 or 10 mg twice a day, 

aliskiren at a dose of 150mg once a day, or a combination of enalapril (at a dose of 5 or 

10mg twice daily) and aliskiren (at a dose of 150mg once a day). The dosage of aliskiren in 

both the aliskiren and combination group was increased to 300mg two weeks after 

undergoing randomisation, with the enalapril arm receiving a sham adjustment. The 

study’s primary outcome was a composite of first hospitalization for heart failure and death 

from cardiovascular causes. 

 

The full trial design, including inclusion and exclusion criteria, has been described 

elsewhere and are shown in Table 21 [137], [139], [140].[134], [136], [137] Put briefly, 

other inclusion criteria of the trial included a minimum age of 18 years, a BNP 

concentration ≥ 150 𝑝𝑔𝑚𝑙−1 (or an NT-proBNP concentration ≥ 600 𝑝𝑔𝑚𝑙−1), unless 

hospitalised for heart failure in the previous 12 months, in which the criteria was lowered 

to a BNP concentration ≥ 100 𝑝𝑔𝑚𝑙−1 (or an NT-ProBNP concentration ≥ 400 𝑝𝑔𝑚𝑙−1). 

At the time of enrolment, patients needed to have been receiving a beta blocker and a 

stable dose of an ACE inhibitor equivalent to a dose of 10 mg of enalapril daily. 

 

Exclusion criteria for the trial included a systolic blood pressure < 95 mmHg at screening 

or < 90 mmHg at randomisation, symptomatic hypotension, an eGFR < 40 

mL/min/1.73𝑀2 at screening or < 35 mL/min/1.73𝑀2 at randomisation, or if the patient 
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experienced a decline of > 25% in their eGFR between screening and randomisation. Other 

criteria also included contraindication or a history of intolerance to ACE inhibitors and a 

potassium level ≥ 5.0 mmol/L at screening or ≥ 5.2 mmol/L at randomisation.  

 

Stopping criteria for the trial were: 

1. A prespecified number of patients (2318) experiencing the composite endpoint. 

2. A statistically significant result in efficacy, with a significance level of 0.005 (one-

sided). 

3. The data monitoring committee recommend stopping due to safety concerns. 

 

Each ethics committee of the 789 centres approved the protocol, and all participants 

provided written informed consent. 

 

The full trial timeline is illustrated in Figure 13. Prior to the randomisation of patients, the 

trial included a two-part, single-blind, run-in period. Patients who were already taking 

ACE inhibitors at a dose equal to 20mg of enalapril daily prior to the trial were eligible to 

bypass the first part of the run-in period and proceed to the second part directly. During the 

first part of the run-in period, patients received one to four weeks of enalapril twice daily at 

a dose of 5mg. Patients with an acceptable level of adverse events then proceeded to 

receive 10mg of enalapril twice daily for two to four weeks. At the end of the first part of 

the run-in period, patients were stratified into two groups - those who received 10mg twice 

daily (high-dose stratum) and those who did not (low-dose stratum). During the second 

part of the run-in period, patients received a 150mg dose of aliskiren once daily in addition 

to the enalapril. The purpose of this run-in period was to evaluate the tolerability of the 

study drugs and to ensure a maximum number of patients could be randomised, using 

stratified randomisation [44]. 

 



110 

 

Double-blind randomisation happened after the run-in period was completed at visit 4. In 

total, 7,064 patients underwent randomisation at a 1:1:1 ratio to receive either enalapril at a 

dose of 5 or 10mg twice daily, aliskiren at a dose of 150mg once a day, or a combination 

of enalapril (5 or 10mg twice daily) and aliskiren (150mg once a day). As mentioned 

previously, the dosage of aliskiren was increased to 300mg once a day in both arms 

receiving it, with a sham increase in the enalapril arm at two weeks. 

 

During the first four months of the double-blind period, patients were followed up every 

two to eight weeks and then every four months after. Dosage could be reduced if the 

patient could not tolerate the target dosage. 

 

Following the outcome of the early termination of the Aliskiren Trial in Type 2 Diabetes 

Using Cardio-Renal Disease Endpoints (ALTITUDE) due to ineffectiveness and safety 

concerns and the ensuing findings that patients treated with aliskiren who had diabetes had 

worse outcomes than those treated with a placebo in the Aliskiren Trial on Acute Heart 

Failure Outcomes (ASTRONAUT). A protocol amendment was implemented worldwide 

in 2013 leading to patients in the ATMOSPHERE trial who had diabetes at baseline or 

developed it during the trial to be censored and the study drug discontinued and treated 

with conventional therapy instead. 

 

The trial ended in July 2015 with a median follow-up time of 36.6 months. For each 

treatment group, there was no significant difference in treatment effect detected with a HR 

of 0.93 95% CI (0.85 – 1.03) for the primary composite outcome when comparing the 

combination therapy against enalapril. A HR of 0.99 95% CI (0.9 – 1.10) suggested there 

was also no significant difference in treatment effect on the primary composite outcome 

when comparing aliskiren and enalapril [44]. 
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Table 21 Inclusion and Exclusion Criteria for the ATMOSPHERE RCT Adapted from McMurray et al. 

Inclusion Criteria 

 

1. Outpatients ≥ 18 years of age, male or female. 

2. Patients with a diagnosis of chronic heart failure (NYHA Class II – IV): 

• LVEF ≤ 35% at visit 1 (local measurement, within the past 6 months assessed by echocardiography, MUGA, CT scan, MRI or 

ventricular angiography)  

• Elevated BNP at visit 1: BNP ≥ 150 pg/ml (according to local measurement).  

• OR 

• BNP ≥ 100 pg/ml (according to local measurement) and unplanned hospitalization for HF within the last 12 months prior to visit 

1. 

3. Patients must be treated with an ACE inhibitor at a stable dose (enalapril 10 mg daily at least or any other ACE inhibitor, e.g., ramipril, 

quinapril, lisinopril, fosinopril, perindopril, trandolapril; for at least 4 weeks prior to visit 1. 

4. Patients must be treated with a beta blocker, unless contraindicated or not tolerated, at a stable dose for at least 4 weeks prior to visit 1 

(for patients not on target dose, according to local guidelines, or in absence of that medication, the reason should be documented). 

5. Written informed consent to participate in the study and ability to comply with all requirements. 

Exclusion Criteria 

 

1. History of hypersensitivity to any of the study drugs including history or allergy to ACEi’s as well as known or suspected 

contraindications to the study drugs or previous history of intolerance to high doses of ACEi’s during up-titration process. 

2. Patients treated concomitantly with both ARB and aldosterone antagonist in addition to study drug at visit 1. 

3. Current acute decompensated HF (defined as an acute exacerbation of a chronic heart failure status manifested by typical signs and 

symptoms of HF like dyspnea, fatigue etc, that may require IV therapy with diuretics, vasodilators and/or inotropic drugs). 

4. Symptomatic hypotension and/or less than 95 mmHg SBP at visit 1 and/or less than 90 mmHg SBP at visit 4.  

5. Acute coronary syndrome, stroke, transient ischemic attack, cardiac, carotid or major vascular surgery, percutaneous coronary 

intervention (PCI) or carotid angioplasty, within the past 3 months prior to visit 1. 

6. Coronary or carotid artery disease likely to require surgical or percutaneous intervention within the 6 months after visit 1.  

7. Right heart failure due to severe pulmonary disease.  

8. Diagnosis of peripartum or chemotherapy induced cardiomyopathy within the 12 months prior to visit 1.  

9. Patients with a history of heart transplant or who are on a transplant list or with LVAD (left ventricular assistance device).  

10. Documented ventricular arrhythmia with syncopal episodes within past 3 months, prior to visit 1, that is untreated.  

11. Documented history of ventricular tachycardia or ventricular fibrillation without ICD producing significant hemodynamic consequences 

or considered life-threatening within the 3 months prior to visit 1. 
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12. Treatment with Vaughn Williams Type Ic anti-arrhythmic agents.  

13. Symptomatic bradycardia, or second or third degree heart block without a pacemaker.  

14. Implantation of a CRT (cardiac resynchronization therapy) device within the prior 3 months from visit 1 or intent to implant a CRT 

device.  

15. Presence of hemodynamically significant mitral and /or aortic valve disease, except mitral regurgitation secondary to left ventricular 

dilatation.  

16. Presence of hemodynamically significant obstructive lesions of left ventricular outflow tract, including aortic stenosis.  

17. Any surgical or medical condition which might significantly alter the absorption, distribution, metabolism, or excretion of study drugs 

including, but not limited to, any of the following:  

• Any history of pancreatic injury, pancreatitis or evidence of impaired pancreatic function/injury as indicated by, e.g. 

abnormal lipase or amylase.  

• Primary liver disease considered to be life threatening.  

• Renal disease likely to be life threatening or eGFR < 40 ml/min/1.73m2 as calculated by the MDRD formula at visit 1 or 

eGFR < 35 ml/min/1.73m2 as calculated by the MDRD formula at visit 4 or decrease of eGFR of more than 25% from 

visit 1 to visit 4. (according to local laboratory measurement).  

• Current duodenal or gastric ulcers, or gastrointestinal/rectal bleeding during the 3 months prior to visit 1.  

• Current treatment with cholestyramine and colestipol resins at visit 1.  

18. Serum potassium ≥ 5.0 mmol/L at visit 1 or ≥ 5.2 mmol/L at visit 4 (according to local laboratory measurement). 

19. History or presence of any other diseases (i.e., including malignancies) with a life expectancy of < 5 years.  

20. Current double-blind treatment in HF trials.  

21. Participation in an investigational drug study at the time of enrolment or within the past 30 days or 5 half-lives of enrolment whichever is 

longer.  

22. Any surgical or medical condition that in the opinion of the investigator would jeopardize the evaluation of efficacy or safety.  

23. History of noncompliance to medical regimens and patients who are considered potentially unreliable.  

24. Pregnant or nursing (lactating) women, where pregnancy is defined as the state of a female after conception and until the termination of 

gestation, confirmed by a positive Human Chorionic Gonadotropin (hCG) laboratory test (> 5 mIU/ml).  

25. Women of child-bearing potential (WOCBP), defined as all women physiologically capable of becoming pregnant, including women 

whose career, lifestyle, or sexual orientation precludes intercourse with a male partner and women whose partners have been sterilized by 

vasectomy or other means, UNLESS they meet the following definition of post-menopausal: 12 months of natural (spontaneous) 

amenorrhea or 6 months of spontaneous amenorrhea with serum Follicle Stimulating Hormone (FSH) levels > 40 mIU/m or 6 weeks 

post-surgical bilateral oophorectomy with or without hysterectomy OR are using one or more of the following acceptable methods of 

contraception: surgical sterilization (e.g., bilateral tubal ligation), hormonal contraception (implantable, patch, and oral), and double-

barrier methods (if accepted by local regulatory authority and ethics committee). Reliable contraception should be maintained throughout 

the study and for 7 days after study drug discontinuation.  
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26. Chronic long-term requirement for NSAIDs (high dose) or COX2 inhibitors, with the exception of aspirin at doses used for CV 

prophylaxis (≤ 325 mg o.d.).  

27. Current treatment with cyclosporine at visit 1.  

28. Treatment with any of the following drugs within the past 4 weeks prior to visit 1:  

• Direct renin inhibitor including aliskiren.  

• Intravenous vasodilators and/or intravenous inotropic drugs. 

[134]  
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Figure 13 Study design of the ATMOSPHERE RCT including run-in period and stratification adapted from McMurray et al. 

 
A 150: aliskiren 150mg, A 300: aliskiren 300mg, E 5 bid: enalapril 5 mg b.i.d, E 10 bid: enalapril 10 mg b.i.d. # Subsequent visits labelled sequentially from 11. ##Visit 778: 

final visit per patient scheduled upon decision to end study. 1Patients receiving a dose of ACEi of enalapril 10mg daily or any other ACE inhibitor with an equivalent dose 

with start at step 2, patients starting at step 1 will be up titrated to maximum recommended dose of enalapril at visit 2 where applicable. 2Patients receiving a dose of ACEi 

of enalapril 20mg or any other ACE inhibitor with an equivalent dose will start immediately on step 2 and skip visit 2. 3 Visit 2 is only applicable for patients starting with 

enalapril 10mg daily at V1. 

[134]
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Chapter 4 Joint Modelling of NT-ProBNP and a 
Composite Endpoint of Death from 
Cardiovascular Causes and First Hospitalisation 
for Heart Failure 

4.1 Introduction 

Heart failure is a clinical syndrome with well-documented interrelationships between patient 

characteristics and outcomes, including biomarkers and other physical characteristics. Given 

the rise in awareness and use of joint modelling within heart failure, it is informative to 

understand how joint modelling can be used for prognostic model development in heart 

failure. Joint models allow for covariates with repeated measurements, while accounting for 

correlation and correcting for measurement error, as well as allowing for dynamic and 

subject-specific predictions [51], [52]. Clinical trials within heart failure often collect repeat 

measurements of biomarkers such as NT-ProBNP as well as time-to-event data used in 

survival analysis, making them ideal for joint modelling. Currently, there are no identified 

prognostic models within the heart failure literature using joint modelling. Therefore, the aim 

of this research is to illustrate and critically appraise how joint modelling can be used for 

prognostic model development in heart failure. Further, using data from clinical trials, I will 

compare the performance of prognostic models that employ joint modelling with models that 

use current recommended approaches.  

 

The main objective of this research is to ascertain what value prognostic models using joint 

models can provide over current recommended approaches. 
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4.2 Methods 

4.2.1 Data Source 

As previously mentioned in Chapter 3, data was obtained from the PARADIGM-HF trial in 

which 8,399 patients were randomised to receive either LCZ696 at a dose of 200mg twice 

daily or enalapril at a dose of 10mg twice daily at a 1:1 ratio in a double-blind fashion. 

 

4.2.2 Statistical Analysis 

To address the aims of this research, specifically how joint models can be applied to heart 

failure with the possibility of providing better prognostic models, data were analysed, 

processed and cleaned prior to the fitting of joint models. For variable selection, a clinical 

approach using prior clinical knowledge and literature, was preferred over a stepwise 

approach. The dangers of a stepwise approach are well known. For example, they could lead 

to a known clinically important variable to be ‘unselected’ if statistical power is low or, 

alternatively, lead to overfitting [141]. While a sample size calculation is available for joint 

models, the formula is not suitable for this application as it cannot account for an interaction 

between treatment and time [138]. All joint models were fitted using the R package 

JMbayes2; while this package is still in development, it is based on the previously available R 

packages from the same author (JM and JMbayes) [67], [68], [114]. The JMbayes2 package 

uses a fully parametric Bayesian approach using Markov chain Monte Carlo (MCMC) 

sampling to fit joint models of longitudinal and time-to-event outcomes. While this package 

is still in development, it was chosen over the previous packages as it allows for better 

parameterisations of the longitudinal model within the survival model, for example the area 

parameter as discussed in Section 1.3.8, as well as calibration plots which are key 

performance indicators for prognostic models [39], [40]. The basic joint model is comprised 
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of a longitudinal component and a time-to-event (survival) component (often referred to as 

sub models), which are first fit and then supplied to the ‘jm’ function within the JMbayes2 

package to produce a joint model. 

 

4.2.3 Data Cleaning and Processing 

As stated, data were analysed and cleaned prior to analysis; this included analysis of variables 

and their distributions, recoding of categorical variables to factors and recoding of the 

original composite event variable so that 1 indicated an event and not whether the patient was 

censored. In addition, the various functions to fit the LME, Cox PH and joint models require 

data to be in a specified format(s), this meant ensuring the same group of patients were given 

to functions for the LME and Cox PH models and merging baseline covariates with the 

repeated measurements for the LME. Additionally, the new data argument for the various 

performance metrics required all covariates to be present with repeat measurements in a 

singular dataset. 

 

4.2.4 Covariate Selection 

Both the longitudinal and survival components used in a joint model allow for covariates; for 

both, clinically relevant covariates were selected. These covariates were selected based on 

prior research and clinical knowledge, both as described in Chapter 1 and in conjunction with 

my clinical supervisor. Neither the PARADIGM nor the ATMOSPHERE trials were missing 

any covariates which were identified as being clinically relevant by prior research and 

clinical knowledge. 
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4.2.5 Missing Data 

While joint models allow for uneven and missing longitudinal measurements as explained 

previously in Chapter 2. All covariates for both sub models must be complete. Data were 

incomplete for 66 patients; due to this being less than 1% of the data available, a complete 

case analysis was chosen. Excluding those 66 patients with missing data. 

 

4.2.6 Longitudinal Sub Model 

JMBayes2 requires the longitudinal sub model  to be either a Generalised Linear Mixed 

Model (GLMM) fitted by the function ‘mixed_model’ from the ‘GLMMadaptive’ package or 

a Linear Mixed Effects Model (LME) fitted by the function ‘lme’ from the ‘nlme’ package. 

Because this analysis is focused on a continuous outcome, an LME was required. An LME 

contains a response variable and allows for fixed and random effects. 

 

4.2.6.1 NT-ProBNP 

The response variable for the LME was NT-ProBNP; NT-ProBNP is known to be associated 

with clinical outcomes in heart failure research and has previously been used in prognostic 

models [36], [42]. As values of NT-ProBNP are known to have a wide range and were 

observed to be skewed, a natural logarithm transformation was applied to the NT-ProBNP 

values. As stated in Section 1.3, joint models make assumptions around normality in the 

response variable specifically with respect to the random effects therefore necessitating this 

transformation [52]. 
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At least one measurement of NT-ProBNP was available for all patients who underwent 

randomisation; however, because the trial included a run-in period and due to the trial design, 

6,218 (75%) patients only had a value of NT-ProBNP at the screening visit, because the 

screening visit is before both run-in and randomisation (the start point for the LME) these 

values would not otherwise be included, in the interest of maximising the use of data the 

decision to include the values for these 6218 patients and recode them as month zero (the 

start of the LME).  

 

4.2.6.2 Time (Fixed Effect) 

LMEs allow for the uneven spacing (across time) of values of the response variable, and 

because the sample date of the value of NT-ProBNP was available, time was modelled in the 

form of months since randomisation. Calculated from the difference between the sample date 

and the randomisation date, using a 28-day calendar month. Sample date was preferred over 

scheduled visit date to provide a more accurate model; taking advantage of the ability to use 

uneven measurements across time usage of specimen time allow accurate estimation of the 

true value of log NT-ProBNP by the LME, which in turn provides a better estimation of the 

longitudinal trajectory of NT-ProBNP for the joint models.  

 

The association of the values of the natural logarithm-transformed NT-ProBNP, hereby 

known as log NT-ProBNP, and time were observed to be non-linear; therefore, the decision 

was made to include time non-linearly using restricted natural cubic splines; this was 

achieved using the ‘ns’ function of the ‘splines’ package. Due to computational difficulties 

with convergence, likely due to the imbalance of data at the start of the study, the boundary 

knots of the spline were manually specified using quantile values. 
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4.2.6.3 Covariates (Remaining Fixed Effects) 

As previously stated, covariates were specified using prior clinical knowledge, these included 

age, atrial fibrillation, BMI and treatment effect. Typically, because of randomisation, 

treatment effect is only modelled as the effect of treatment over time [69]. However, to 

account for the use of screening values, the decision was made to include both the main effect 

of treatment and the effect of treatment over time. An intercept term was included by default 

in the LME, this intercept is the mean predicted value of NT-ProBNP when all other 

variables are zero. 

 

4.2.6.4 Random Effects 

The LME was fit using both random intercepts and random slopes as random effects. The 

random slopes included non-linear effect of time using the same restricted natural cubic 

splines described earlier. 

 

4.2.6.5 Model Formulation 

Equation 13 denotes the formulation of the LME sub model. 
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Equation 13 Formulation of the LME sub model 
 
The intercept term of the model is represented by 𝜷𝟎, with the fixed effects being represented by 𝜷𝒏 and the 

function 𝒇𝒏 representing the natural cubic spline. The random effects consisting of the random intercept 𝒃𝒊𝟎 

and random slopes 𝒃𝒊𝒏𝒇𝒏 (which incorporates the natural cubic spline) are assumed to be normally distributed 

with a mean of 𝟎 and a variance co-variance matrix 𝑫. The error term represented by is assumed to be 

normally distributed with a variance of 𝝈𝟐. 

4.2.6.6 Model Fitting 

To fit the LME the formatted data was passed to the LME function, specifying the response 

variable as log NT-ProBNP, the time variable using the ns function to specify a restricted 

cubic natural spline, the interaction of the natural cubic spline and treatment, as well as the 

other covariates using the fixed argument. The random effects were specified as random 

intercepts and slope using the random argument. To aid in convergence the optimiser was 

manually specified as optim, which is a general-purpose optimization method based on 

Nelder–Mead, quasi-Newton and conjugate-gradient algorithms, this is known from 

experience to aid in convergence over the default optimisation method and is specified using 

the lmeControl argument [139]. 

 

4.2.7 Survival Sub Model 

The survival model for the JMbayes2 package needs to be a survival model fitted using either 

the ‘survreg’ or ‘coxph’ functions of the survival package, the former allowing for parametric 

survival models and the latter allowing for Cox PH models. To avoid incorrect specification 

{
  
 

  
 

log𝑁𝑇𝑃𝑟𝑜𝐵𝑁𝑃𝑖𝑗 = 𝛽0 + 𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) + 𝛽2𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) + 𝛽3𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)

+ 𝛽4𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗
+ 𝛽5𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 + 𝛽6𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 + 𝛽7𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗

+ 𝛽8𝐴𝑔𝑒𝑖𝑗  +  𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖𝑗  +  𝛽10𝐵𝑀𝐼𝑖𝑗
+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖𝑗 ,

𝑏𝑖  ~ Ν(0,𝐷), 𝜀𝑖𝑗 ~ 𝑁(0, 𝜎
2)
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of the distribution, a Cox PH model was preferred over a parametric model. This decision is 

supported by the literature, as illustrated in Chapter 2 where 82% of studies using joint 

modelling in heart failure opted to use a Cox PH model as their survival sub model. 

 

4.2.7.1 Covariates 

As previously stated, covariates were selected on prior clinical knowledge, and in the case of 

the survival sub model, the covariates were the same as the original trial in its survival 

analysis. These covariates included treatment, age, sex, region, BMI, eGFR, ejection fraction, 

NYHA classification, whether the patient had diabetes, SBP, heart rate, whether the patient 

had a history of atrial fibrillation, hospitalisation for heart failure, myocardial infarction, or 

stroke. 

 

4.2.7.2 Event (End Point) 

The primary outcome of the original trial was used for the event of interest in the survival sub 

model; this was a composite of first hospitalisation for heart failure and death from 

cardiovascular causes. 

 

4.2.7.3 Model Formulation 

Equation 14 denotes the formulation of the survival sub model. 
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Equation 14 Formulation of the Survival Sub Model 
ℎ𝑖(𝑡) = ℎ0(𝑡) exp ( 𝛾1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖

+ 𝛾4𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 + 𝛾5𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖
+ 𝛾6𝑅𝑒𝑔𝑖𝑜𝑛 𝐴𝑠𝑖𝑎, 𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝑎𝑛𝑑 𝑂𝑡ℎ𝑒𝑟 𝑖 + 𝛾7𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒𝑖
+ 𝛾8𝐵𝑀𝐼𝑖 + 𝛾9𝑒𝐺𝐹𝑅𝑖 + 𝛾10𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖
+ 𝛾12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾14𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖
+ 𝛾15𝑆𝐵𝑃𝑖 + 𝛾16𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒𝑖 + 𝛾17𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖
+ 𝛾18𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖
+ 𝛾19𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖  
+  𝛾20𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖  +  𝛾21𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠𝑖) 

ℎ𝑖(𝑡) represents the hazard of the composite event at time point 𝑡. With ℎ0(𝑡) representing the baseline hazard and 𝛾𝑛 

representing the covariates. 

 

4.2.7.4 Model Fitting 

To fit the Cox PH model the cleaned and formatted data was passed to the coxph function 

from the survival package using the data argument. The model was specified in the format of 

the month of when the event occurred, or the patient was censored, and a status indicator of 

whether the event occurred; as well as the other previously specified covariates using the 

formula argument. 

 

4.2.8 Joint Models 

As joint modelling allows for multiple alpha parameterisations, three joint models were fit to 

explore how best to represent the association between the biomarker and the survival 

outcome. Described in section 1.3.6, and chosen for their suitability for a prognostic model; 

these models included the previously specified sub models, the LME and Cox PH models. 

The first joint model (Joint Model 1) included a value parameterisation; this measures the 

association between the value of log NT-ProBNP and the composite endpoint (event). The 

second joint model (Joint Model 2) included both value and slope parameterisations 

measuring the association of both the value of log NT-ProBNP and the slope, i.e., rate of 

change of NT-ProBNP and the composite endpoint. The third and final model (Joint Model 
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3) included the area parameterisation; this measures the association of the area under the 

longitudinal profile of NT-ProBNP and the composite endpoint. All models were fit using the 

jm function from the package JMbayes2, which fits a joint model with a piecewise hazard 

function using quadratic B-splines with ten hazard segments. 

 

The formulae for the joint models are shown in Table 22, As all the models are only 

differentiated by their alpha parameters the models are represented by the base model and 

their individual alpha parameters. 

 

4.2.8.1 Model fitting 

To fit the joint models, the fitted LME and Cox PH models were passed to the jm function, 

using the Mixed_objects and Surv_object arguments respectively; along with the type of 

parameter for the model specified in the functional_forms argument. 
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Table 22 Formulae for Joint Models 

Joint Model 1 

(Value) 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝑦
𝑖
(𝑡) =  𝑚𝑖(𝑡) + 𝜀𝑖 (𝑡) 

=  𝛽
0
+ 𝛽

1
𝑓
1
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) +  𝛽

2
𝑓
2
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽

3
𝑓
3
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)

+ 𝛽
4
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍

+ 𝛽
5
𝑓
1
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 +  𝛽

6
𝑓
2
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 +  𝛽

7
𝑓
3
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 

+ 𝛽
8
𝐴𝑔𝑒 +  𝛽

9
𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠 +  𝛽

10
𝐵𝑀𝐼 

+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 +  𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 +  𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 +  𝜀𝑖,      𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2),

 

  ℎ𝑖(𝑡)  =  ℎ0(𝑡) 𝑒𝑥𝑝

{
 
 
 
 

 
 
 
 

 𝛾
1
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖

+ 𝛾
4
𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎

𝑖
+ 𝛾

5
𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎

𝑖
+  𝛾

6
𝑅𝑒𝑔𝑖𝑜𝑛 𝐴𝑠𝑖𝑎, 𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝑎𝑛𝑑 𝑂𝑡ℎ𝑒𝑟 

𝑖

+ 𝛾
7
𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒

𝑖
+ 𝛾

8
𝐵𝑀𝐼

𝑖
+ 𝛾

9
𝑒𝐺𝐹𝑅

𝑖
+  𝛾

10
𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑖

+ 𝛾
11
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼

𝑖
+  𝛾

12
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼

𝑖
+ 𝛾

13
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉

𝑖

+ 𝛾
14
𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠

𝑖
+ 𝛾

15
𝑆𝐵𝑃

𝑖
+ 𝛾

16
𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒

𝑖
+ 𝛾

17
𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠

𝑖

+ 𝛾
18
𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠

𝑖
+ 𝛾

19
𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠

𝑖
 

+ 𝛾
20
𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠

𝑖
 +  𝛾

21
𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠

𝑖
+  𝛼𝑚𝑖(𝑡)

+ {𝐴𝑙𝑝ℎ𝑎 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑠)} }
 
 
 
 

 
 
 
 

,

𝑙𝑜𝑔 ℎ0(𝑡) =  𝛾ℎ0, 0 +  ∑ 𝛾ℎ0,𝑞 𝐵𝑞(𝑡, 𝑣),

𝑄

𝑞=0

 

Joint Model 1 Alpha 

Parameter (Value) 
𝛼𝑚𝑖(𝑡) 

Joint Model 2 Alpha 

Parameter (Value + 

Slope) 

𝛼𝑚𝑖(𝑡) + 𝛼2𝑚𝑖
′(𝑡) 

Joint Model 3 Alpha 

Parameter (Area) 𝛼
∫ 𝑚𝑖(𝑠) 𝑑𝑠
𝑡

0

𝑡
 

The longitudinal outcome at time point 𝑡 is represented by 𝑦𝑖(𝑡), and comprises of the true and unobserved value of log NT-ProBNP at time point 𝑡 (𝑚𝑖(𝑡)), and the error term 𝜀𝑖 (𝑡) . This error term is 

assumed normally distributed with a mean of 0 and a variance of 𝜎2. The intercept term for the longitudinal outcome is represented by 𝛽0. The remaining 𝛽 parameters represent the coefficients of the 
covariates, where the natural cubic spline is represented by the function 𝑓𝑛. 𝑏𝑖𝑛 represent the random effects. The hazard of the composite outcome at time point 𝑡 is represented by ℎ𝑖(𝑡). The baseline 
hazard function of the model is represented by ℎ0(𝑡) which is comprised of a piecewise hazard function, which includes quadratic B-splines and 10 baseline hazard segments. With 𝐵𝑞(𝑡, 𝑣) relating to the 𝑞-th 

basis function of the B-spline with knots 𝑣1- 𝑣10, and a vector of spline coefficients (𝛾ℎ0). The remaining 𝛾𝑛 parameters being the covariates of the survival component. The slope parameter 𝑚𝑖
′(𝑡) corresponds 

to the rate of change of the longitudinal outcome at time point 𝑡 and is estimated using the derivative of the fixed and random effects of the longitudinal outcome with respect to time. The area alpha 
parameter represented by a function corresponds to the area under the whole longitudinal trajectory accounting for the observation period. 
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4.2.9 Model Performance: Prognostic Accuracy, Fit and Calibration 

The JMbayes2 package provides measures of performance including time-varying receiver 

operating characteristics (ROCs) using the function tvROC, time-varying AUCs using the 

function tvAUC, a time-varying Brier score using the function tvBrier and time-varying 

calibration curves using the function calibration_plot. In the current context these time-

varying ROCs and AUCs are an extension of traditional ROCs and AUCs and provide a 

metric for discrimination given information on the longitudinal marker up until a specified 

time point and predicting the survival outcomes at a given, later time point [140], [141]. 

Similar to this, both the time-varying Brier score and time-varying calibration curves extend 

on the traditional Brier score and calibration curve in a similar way in order to provide 

accuracy and calibration measures. These measures were used to assess the joint models for 

prognostic accuracy and fit. For all measures, two time points were selected based on 

commonly used time points in heart failure prognostic models; these were at month 12 (one 

year), using only longitudinal data at baseline (time 0), and month 24 (two years), using 

longitudinal data up until month 12 (one year). The joint models were also compared against 

each other using these measures along with the deviance information criterion (DIC), log 

pseudo-marginal likelihood (LPML) for both marginal and conditional formulations, as well 

as hazard ratios and corresponding (CIs). The DIC can be interpreted like any other 

information criterion in that a smaller value indicates a better fit. The LPML can be 

interpreted like the log likelihood of a frequentist model in that a larger value indicates a 

better fit. For both DIC and LPML, the marginal value relates to fit for the overall population, 

whereas the conditional value relates to the subject-specific or individual fit. 
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4.2.10  External Validation 

As previously mentioned in Chapter 3, external validation was performed using data obtained 

from the ATMOSPHERE trial, which randomised 7,016 patients to either enalapril at a dose 

of 5 or 10 mg twice a day, aliskiren at a dose of 150mg once a day or a combination of 

enalapril (at a dose of 5 or 10mg twice daily) and aliskiren (at a dose of 150mg once a day) at 

a 1:1:1 ratio in a double-blind, double-dummy fashion. 

 

Data were recoded to the same format as the data from the PARADIGM trial, including the 

transformation of NT-ProBNP using a natural logarithm, use of the same covariates, same, 

endpoint, and replicating the sample month format (time variable) for date of log NT-ProBNP 

measurement. Treatment was recoded as enalapril, which included the enalapril arm, and 

LCZ, which included the other two arms. 

 

The time-varying accuracy and fit measures described previously allow the use of new data to 

validate the joint models. The formatted data from the ATMOSPHERE trial were provided to 

the time-varying AUC, time-varying ROC, time-varying Brier score and time-varying 

calibration curve functions using the newdata argument. This argument allows the predictions 

from the joint model to be made on new data in this case the ATMOSPHERE data. Following 

this, the measures were computed at the same time points as used for the previous model fit 

and accuracy measures. Finally, these measures were then assessed and compared with the 

model fit and accuracy measure stated previously. 
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4.2.11  Comparative Analysis 

To illustrate the differences in the joint models and current recommended prognostic models, 

the joint models were compared against Cox PH models - a landmark Cox PH model, which 

included the same covariates at the survival sub model and included the last available value 

of NT-ProBNP (LOCF), and an extended (time-varying) Cox PH model using these same 

covariates and including NT-ProBNP as a time-varying covariate. These models were fit 

using the coxph function from the survival package, with the LOCF model using only the last 

observation of log NT-ProBNP, and the time-varying Cox PH model using the time-varying 

measurements of log NT-ProBNP. A time-varying Cox PH model requires the data to be split 

into time periods based on the sample dates of the measurements of log NT-ProBNP, with the 

status of an event reflecting whether the event occurred within that period of time. 

 

The JMbayes2 package only allows a limited number of methods for accuracy and 

performance measures. For this reason, the decision was made to compare the models using 

the hazard ratios and confidence intervals (CIs) and the use of time-varying ROCs and AUCs 

under the formulation defined by Heagerty et al. and implemented using the risksetROC 

function from the risksetROC package in R [142], [143]. For both Cox PH models, time-

varying ROCs and corresponding AUCs were obtained at 12 and 24 months. 

 

For descriptive statistics, continuous variables are summarised with medians and quartiles 

[Q1, Q3] and the distribution of categorical variables expressed as percentages. Association 

parameters from joint models are expressed as hazards ratios and corresponding 95% (CIs). A 

time-dependent association parameter is the hazard of the composite event per one unit 

increase in log NT-ProBNP at any time point. A time-dependent slope association parameter 

is the hazard of the composite event per one unit increase in the slope of NT-ProBNP at any 
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time point. A time-dependent area association parameter is the hazard of the composite event 

per one unit increase of the area of the longitudinal profile of log NT-ProBNP at any time 

point. 

P-Values less than 0.05 will be considered statistically significant. All statistical analysis was 

performed using R Version 4.0 [144] and JMbayes package version 0.1-81 [114]. 

 

4.3 Results 

4.3.1 Baseline Characteristics 

Table 23 shows the baseline characteristics of included patients (N = 8333), with a median 

age of 64 years, 22% of patients being female and the majority of patients being enrolled 

within Central and Western Europe. As reported in the main trial, there were only minimal 

differences in distributions of baseline characteristics between the arms of the trial. 
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Table 23 Baseline Characteristics of Included Patients 

Characteristic 
LCZ 

(N=4154) 
Enalapril 

(N=4179) 
Overall 

(N=8333) 

Age, years    

Median [Q1, Q3] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 

Sex    

Female 874 (21.0%) 949 (22.7%) 1823 (21.9%) 

Male 3280 (79.0%) 3230 (77.3%) 6510 (78.1%) 

Region    

Central Europe 1388 (33.4%) 1425 (34.1%) 2813 (33.8%) 

Latin America 705 (17.0%) 713 (17.1%) 1418 (17.0%) 

North American 307 (7.4%) 288 (6.9%) 595 (7.1%) 

Pacific Asia/Pacific and Other 743 (17.9%) 736 (17.6%) 1479 (17.7%) 

Western Europe 1011 (24.3%) 1017 (24.3%) 2028 (24.3%) 

BMI kg/m²     

Median [Q1, Q3] 27.5 [24.4, 31.2] 27.5 [24.5, 31.2] 27.5 [24.4, 31.2] 

eGFR mL/min/1.73 m2    

Median [Q1, Q3] 66.0 [54.0, 79.0] 66.0 [54.0, 79.0] 66.0 [54.0, 79.0] 

Ejection Fraction %    

Median [Q1, Q3] 30.0 [25.0, 34.0] 30.0 [25.0, 34.4] 30.0 [25.0, 34.1] 

NYHA Class    

Class 1 180 (4.3%) 207 (5.0%) 387 (4.6%) 

Class 2 2974 (71.6%) 2903 (69.5%) 5877 (70.5%) 

Class 3 967 (23.3%) 1042 (24.9%) 2009 (24.1%) 

Class 4 33 (0.8%) 27 (0.6%) 60 (0.7%) 

Diabetes    

No 2714 (65.3%) 2731 (65.4%) 5445 (65.3%) 

Yes 1440 (34.7%) 1448 (34.6%) 2888 (34.7%) 

SBP mmHg    

Median [Q1, Q3] 120 [110, 130] 120 [110, 130] 120 [110, 130] 

Heart Rate beats per minute    

Median [Q1, Q3] 71.0 [64.0, 80.0] 72.0 [64.0, 80.0] 71.0 [64.0, 80.0] 

Prior History of Atrial Fibrillation    

No 2652 (63.8%) 2617 (62.6%) 5269 (63.2%) 

Yes 1502 (36.2%) 1562 (37.4%) 3064 (36.8%) 

Ischemic Heart Failure    

No 1668 (40.2%) 1674 (40.1%) 3342 (40.1%) 

Yes 2486 (59.8%) 2505 (59.9%) 4991 (59.9%) 
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Characteristic 
LCZ 

(N=4154) 
Enalapril 

(N=4179) 
Overall 

(N=8333) 

Prior History of Hospitalisation for Heart Failure    

No 1567 (37.7%) 1533 (36.7%) 3100 (37.2%) 

Yes 2587 (62.3%) 2646 (63.3%) 5233 (62.8%) 

Prior History of Myocardial Infarction    

No 2353 (56.6%) 2379 (56.9%) 4732 (56.8%) 

Yes 1801 (43.4%) 1800 (43.1%) 3601 (43.2%) 

Prior History of Stroke    

No 3800 (91.5%) 3811 (91.2%) 7611 (91.3%) 

Yes 354 (8.5%) 368 (8.8%) 722 (8.7%) 

NT-ProBNP pg/mL    

Median [Q1, Q3] 1420 [779, 2880] 1450 [790, 2940] 1440 [784, 2910] 

 

 

4.3.2 Number of Measurements of NT-ProBNP 

Table 24 shows the number of repeated measurements of NT-ProBNP, with the majority of 

patients (76%) having a singular measurement and the remaining patients (24%) having two 

or more measurements. 

 

Table 24 Number of Repeat Measurements of NT-ProBNP for Included Patients 

 

4.3.3 Longitudinal Profile of NT-ProBNP 

Figure 14 shows the longitudinal profile of log NT-ProBNP of 42 randomly sampled patients 

(stratified by number of measurements), illustrating some patients (e.g., 1135_00013) who 

showed non-linearity of NT-ProBNP over time, and a wide range of log NT-ProBNP taking 

into consideration the transformation into the log scale. With the log scale in mind, the non-

linearity would be amplified on the original scale. 

1 2 3 4 

6336 (76%) 882 (11%) 1109 (13%) 6 (<1%) 
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Figure 14 Longitudinal Profile of log NT-ProBNP for 42 Randomly Sampled Patients 
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4.3.4 Longitudinal Outcome from Joint Models 

 

Table 25 shows the parameter estimates from the longitudinal outcome of the joint models for 

all meaningfully interpretable variables; because natural splines are not interpretable as 

coefficients, both the natural spline function of sample month (time) and the interaction of 

treatment with the natural spline function have been excluded. All variables were considered 

statistically significant, with treatment of LCZ and BMI having a negative effect on log NT-

ProBNP, and having a prior history of atrial fibrillation and age having a positive effect on 

log NT-ProBNP. While statistically significant, both age and BMI show only a small effect 

on log NT-ProBNP, however as NT-ProBNP is represented on a log scale and time is in 

months, scale may be an influencing factor on effect size. There are only small differences in 

the variables between the models; for the main effect of treatment with LCZ the coefficient 

ranged from 0.220 to 0.235 showing only a maximum point difference of 0.015. The 

coefficient for age did not show a point difference between models, however the 95% CIs 

showed a 0.001 between Joint Model 1 and Joint Models 2 and Joint Model 3, this is 

reflected by the minimally higher differences in P-Values with Joint Model 1 and Joint Model 

3 having a higher P-Value of 0.003 and 0.002 respectively when compared to Joint Model 2 

with a P-Value of 0.001. The coefficient for patients with atrial fibrillation shows only a 

difference in 0.001 between Joint Model 3 and Joint Models 1 and Joint Model 3, with Joint 

Model 1 having a slightly higher P-Value of 0.007 compared to 0.001 of Joint Model 1 and 

Joint Model 3. The coefficient for BMI shows no difference in point estimate or P-Value 

between the joint models and only a small difference in 95% CIs between the models. These 

differences suggest that there may only be small differences between the joint model for the 

longitudinal outcome, but that the confidence and significance may vary, however scale 

should be taken into consideration when interpreting these coefficients. 
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While the coefficients of the natural splines can’t be meaningfully interpreted because they 

only represent parts of a function, Figure 15 illustrates the predicted average trajectories for 

each treatment by each joint model. These trajectories were predicted using the median and 

mode characteristics for each stratum of patients, i.e., by treatment assignment, illustrating 

the change of log NT-ProBNP over time. All models show similar trajectories, with Joint 

Model 2 having overlapping 95% CIs past month eight. On average, the figures suggest that 

the LCZ treatment group had lower levels of NT-ProBNP, and each treatment group had a 

change in mean log NT-ProBNP around month three, with the enalapril group showing an 

increase in the mean and the LCZ group showing a decrease. 
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Table 25 Parameter estimates (95% CI) from the Longitudinal Outcome of the Joint Models for meaningfully interpretable variables. 
 Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

Variable Estimate (95% CI) P-Value Estimate (95% CI) P-Value Estimate (95% CI) P-Value 

Treatment - LCZ 
-0.226 

(-0.321 – -0.014) 
< 0.001 

-0.220 

(-0.314 – -0.134) 

< 0.001 -0.235 

(-0.310 – -0.156) 
< 0.001 

Age 0.004 (0.001 – 0.007) 0.003 
0.004 

(0.001 – -0.006) 

0.001 0.004 

(0.001 – 0.006) 
0.002 

Atrial Fibrillation - 

Yes 
0.253 (0.192 – 0.313) 0.007 

0.253 

(0.195 – 0.311) 

< 0.001 0.254 

(0.194 – 0.310) 
< 0.001 

BMI -0.043 (-0.048 – -0.037) < 0.001 
-0.043 

(-0.048 – -0.038) 

< 0.001 -0.043 

(- 0.048 – 0.038) 
< 0.001 

The parameter estimates for both the natural splines of the sample month and the interaction of the natural splines with treatment are excluded as 

the values cannot be meaningfully interpreted but are instead illustrated in Figure 15. 
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Figure 15 Average Trajectories of log NT-ProBNP by Treatment Group with Observed Values 
and Trajectories of NT-ProBNP 

A.) Average Trajectories of log NT-ProBNP by Treatment Group from Joint Model 1 (Value) with Observed Values 

and Trajectories on NT-ProBNP 

 
B.) Average Trajectories of log NT-ProBNP by Treatment Group from Joint Model 2 (Value + Slope) with Observed 

Values and Trajectories on NT-ProBNP 

 
C.) Average Trajectories of log NT-ProBNP by Treatment Group from Joint Model 3 (Area) with Observed Values and 

Trajectories on NT-ProBNP 

 
Average trajectories were predicted by the respective joint models, using the mode and median characteristics of 

each stratum of patients (treatment group). 
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4.3.5 Survival Outcomes from Joint Model 

Table 26 shows the hazard ratios with 95% (CIs) and p-values for the different covariates in 

the three joint models, illustrating only minor differences. One covariate of note is that of the 

treatment effect on the survival outcome. With a range of 1.01-1.06 suggesting a limited 

treatment effect on survival. The survival treatment effect is also considered statistically 

insignificant in each of the models. This is not to say that there is no treatment effect, as this 

treatment effect has already been illustrated in the main trial. Instead, it suggests that the 

treatment effect is captured within the longitudinal process and that the parameterisation of 

the longitudinal process, i.e., the 𝛼 or association parameter is a mediator for the treatment 

effect. Indeed, the association parameter estimates suggest an association between log NT-

ProBNP and the composite outcome (first hospitalisation for heart failure and death from 

cardiovascular causes). The association parameter estimate for Joint Model 1 (Value) 

suggests that per unit increase of log NT-ProBNP, the hazard of the composite event almost 

doubles, with a HR of 1.93 (1.73 -2.13). When the model is adjusted for both slope and 

values, as in Joint Model 2, the HR attenuates slightly, with a HR of 1.8 (1.44 - 2.05), 

suggesting a 1.8 times increase in hazard of the composite endpoint per unit increase of log 

NT-ProBNP for patients who had the same slopes. The slope parameter estimate of this 

model is not considered statistically significant. The association parameter estimate of Joint 

Model 3 (Area) is similar to Joint Model 1 (Value), with a HR of 1.9 (1.76 - 2.05), suggesting 

that per unit increase in the area under the trajectory of log NT-ProBNP, the hazard of the 

composite endpoint increases by 1.9 times.  
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Table 26 Hazard Ratios (95% CI) for Variables in the Three Joint Models 

 Joint Model 1 - Value Joint Model 2 – Value + Slope Joint Model 3 - Area 

Variable HR (95% CI) P-Value HR (95% CI) P-Value HR (95% CI) P-Value 

Treatment - LCZ  1.01 (0.84 - 1.23)  0.934  1.04 (0.87 - 1.28)  0.728  1.06 (0.87 - 1.25)  0.514  

Age 1 (1 - 1.01)  0.956  1 (1 - 1.01)  0.894  1 (1 - 1.01)  0.928  

Sex - Male 1.28 (1.14 - 1.44)  < 0.001  1.28 (1.14 - 1.43)  < 0.001  1.28 (1.15 - 1.44)  < 0.001  

Region - Latin America  0.99 (0.85 - 1.15)  0.852  1 (0.86 - 1.16)  0.991  0.98 (0.85 - 1.15)  0.821  

Region - North American  1.03 (0.86 - 1.22)  0.749  1.03 (0.86 - 1.24)  0.726  1.03 (0.87 - 1.23)  0.719  

Region - Pacific Asia/Pacific and Other  1.09 (0.93 - 1.26)  0.261  1.1 (0.95 - 1.28)  0.194  1.08 (0.94 - 1.26)  0.295  

Region - Western Europe  0.92 (0.81 - 1.04)  0.18  0.92 (0.81 - 1.05)  0.21  0.92 (0.81 - 1.04)  0.193  

BMI 1.02 (1.01 - 1.03)  < 0.001  1.02 (1.01 - 1.03)  < 0.001  1.02 (1.01 - 1.03)  < 0.001  

eGFR  1 (0.99 - 1)  0.004  1 (0.99 - 1)  0.002  1 (0.99 - 1)  0.004  

Ejection Fraction % 0.98 (0.97 - 0.99)  < 0.001  0.98 (0.97 - 0.99)  < 0.001  0.98 (0.97 - 0.99)  < 0.001  

NYHA Class 2  1.23 (0.96 - 1.56)  0.105  1.24 (0.96 - 1.6)  0.093  1.25 (0.96 - 1.61)  0.084  

NYHA Class 3  1.56 (1.2 - 2.01)  0.001  1.6 (1.23 - 2.08)  < 0.001  1.59 (1.19 - 2.07)  0.003  

NYHA Class 4  1.67 (1.02 - 2.74)  0.042  1.71 (1.02 - 2.79)  0.041  1.72 (1.04 - 2.84)  0.033  

Diabetes - Yes  1.37 (1.25 - 1.5)  < 0.001  1.37 (1.26 - 1.5)  < 0.001  1.38 (1.25 - 1.5)  < 0.001  

SBP 1 (1 - 1)  0.294  1 (1 - 1)  0.34  1 (1 - 1)  0.304  

Heart Rate  1.01 (1 - 1.01)  0.002  1.01 (1 - 1.01)  < 0.001  1.01 (1 - 1.01)  0.002  

History of Atrial fibrillation – Yes 1.05 (0.94 - 1.16)  0.394  1.06 (0.95 - 1.19)  0.279  1.05 (0.95 - 1.18)  0.346  

Ischemic Heart Failure - Yes 0.99 (0.87 - 1.12)  0.874  0.98 (0.87 - 1.12)  0.784  1 (0.88 - 1.13)  0.95  

Prior Hospitalisation for Heart Failure - Yes  1.38 (1.26 - 1.52)  < 0.001  1.38 (1.25 - 1.51)  < 0.001  1.38 (1.26 - 1.53)  < 0.001  

Prior History of Myocardial Infarction - Yes  1.2 (1.07 - 1.36)  0.002  1.2 (1.07 - 1.36)  0.006  1.2 (1.06 - 1.36)  0.001  

Prior History of Stroke - Yes  1.1 (0.95 - 1.27)  0.185  1.11 (0.95 - 1.28)  0.178  1.11 (0.95 - 1.27)  0.18  

Value of log NT-ProBNP  1.93 (1.73 - 2.13)  < 0.001  1.8 (1.44 - 2.05)  < 0.001    

Slope of log NT-ProBNP   0.5 (0.08 - 2.45)  0.479    

Area of log NT-ProBNP     1.9 (1.76 - 2.05)  < 0.001 

 

  



139 

 
 

 

Table 27 Marginal and Conditional Performance Statistics of Joint Models 
 Marginal Conditional 

Statistic Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

DIC 43419.22 47301.98 39253.35 70926.80 56671.85 71299.12 

LPML -25624.85 -26060.13 -23622.82 -43948.67 -36000.15 -44637.90 

 

Figure 16 Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data at Month 0 and Predicting Survival 
Probability at 12 Months 

A.) Joint Model 1 – Value: Time-Varying ROC, AUC 

and Brier Score at Month 12 using Longitudinal 

Data at Month 0 

B.) Joint Model 2 - Value and Slope: Time-Varying 

ROC, AUC and Brier Score at Month 12 using 

Longitudinal Data at Month 0 

C.) Joint Model 3 – Area: Time-Varying ROC, AUC 

and Brier Score at Month 12 using Longitudinal 

Data at Month 0 

   
Time-Varying AUC: 0.69  

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 
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Figure 17 Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data up until Month 12 and Predicting Survival 
Probability at 24 Months 

A.) Joint Model 1 – Value: Time-Varying ROC, AUC 

and Brier Score at Month 24 Using Longitudinal 

Data up until Month 12 

B.) Joint Model 2 - Value and Slope: Time-Varying 

ROC, AUC and Brier Score at Month 24 using 

Longitudinal Data up until Month 12 

C.) Joint Model 3 – Area: Time-Varying ROC, AUC 

and Brier Score at Month 24 using Longitudinal 

Data up until Month 12 

   

Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.08 

Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.08 

Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.08 

 

Figure 18 Calibration Curves for Joint Models at Month 12 using Longitudinal Data at Month 0 
A.) Joint Model 1 – Value: Calibration Curve at Month 

12 using Longitudinal Data at Month 0

 

B.) Joint Model 2 – Value and Slope: Calibration 

Curve at Month 12 using Longitudinal Data at 

Month 0

 

C.) Joint Model 3 – Area: Calibration Curve at Month 

12 using Longitudinal Data at Month 0
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Figure 19 Calibration Curves for Joint Models at Month 24 using Longitudinal Data up until Month 12 
A.) Joint Model 1 – Value: Calibration Curve at Month 

24 using Longitudinal Data up until Month 12 

 

 

B.) Joint Model 2 – Value and Slope: Calibration Curve 

at Month 24 using Longitudinal Data up until Month 

12

 

C.) Joint Model 3 – Area: Calibration Curve at 

Month 24 using Longitudinal Data up until 

Month 12 

 
 

  



142 

 
 

 

Figure 20 Dynamic Predictions from Joint Model 4 for a Randomly Sampled Patient with Measurements of NT-ProBNP and Corresponding Survival Probability 

A.) Observation 1, NT-ProBNP Measurement at Month 0 and Corresponding Survival Probability 

 

 
Survival at 24 Months: 0.74 (0.85 - 0.62) 

B.) Observation 2, NT-ProBNP Measurements at Months 0 and 1 and Corresponding Survival 

Probability 

 

 
Survival at 24 Months: 0.78 (0.85 - 0.7) 

C.) Observation 3, NT-ProBNP Measurements at Months 0, 1 and 1.5 and Corresponding Survival 

Probability 

 
Survival at 24 Months: 0.81 (0.88 - 0.74) 

D.) Observation 4, NT-ProBNP Measurements at Months 0, 1, 1.5 and 8 and Corresponding 

Survival Probability 

 
Survival at 24 Months: 0.84 (0.89 - 0.77) 

NT-ProBNP is represented by the blue line with confidence interval, the dashed line represents the last time the patient was known to be alive, and the red line 

represents the survival probability with confidence interval. 
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4.3.6 Joint Model Performance 

Table 27 shows the marginal and conditional DICs and LPMLs for each of the joint models. 

For marginal fit, both the DIC and LPML suggest that Joint Model 3 (Area) provides the best 

fit, with the highest LPML (-23622.82) and lowest DIC (39253.35). This suggests that Joint 

Model 3 (Area) provides a better fit for the data for the overall population. These results also 

suggest that Joint Model 2 (Value and Slope) performed worst out of the joint models with 

respect to marginal fit, with a marginal LPML of -26060.13 and LPML of 47301.98. On the 

other hand, the DICs and LPMLs for the conditional fit suggest that Joint Model 2 provides 

the best fit for individuals with a DIC of 56671.85 and LPML of -36000.15. The differences 

in DICs and LPMLs between the joint models for the conditional fit are greater than those 

differences in the marginal fit. 

 

Figure 16 shows the time-varying ROCs and corresponding AUCs and Brier scores for the 

joint models at month 12 using data at time point 0 (baseline). Each of the models perform 

similarly with a time-varying AUC of 0.69, a time-varying Brier score of 0.10 and only minor 

differences in time-varying ROC curves. The time-varying AUCs at month 12 suggests that 

the joint models’ performance is below the general guidelines used for acceptable 

discrimination [16] at 12 months, instead falling at the top end of the poor discrimination 

category. Similarly, as seen in Figure 17, each model performs equally at 24 months using 

longitudinal data up until month 12 with respect to time-varying AUC and time-varying Brier 

score, with a time-varying AUC of 0.67 and a time-varying Brier score of 0.08, suggesting a 

marginal loss in accuracy but a better overall discrimination. The time-varying AUC at 24 

months using longitudinal data until month 12 is again below the general guidelines for 

acceptable discrimination. 
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While there is not a widely accepted good or bad range for the Brier score, generally, the 

lower the score the better, and it can be used to compare model accuracy with the same data. 

As such, the joint models appear to perform equally as well as each other at 12 months, using 

baseline data with a Brier score of 0.10 at the lower end of possible Brier scores. The models 

also perform equally at 24 months, using data up until 12 months with a better time-varying 

Brier score of 0.8. 

 

The calibration curves for the joint models at month 12 using data at baseline, as shown in 

Figure 18, show Joint Model 1 (Value) as being well calibrated, whereas Joint Model 2 

(Value and Slope) exhibits minor signs of poor fit near the higher end of the predicted 

probabilities. Inversely, Joint Model 3 (Area) shows minor signs of issues with fit nearer the 

higher end of predicted possibilities. This suggests that Joint Model 1 (Value) is the better 

calibrated model at month 12 using baseline data; however, this is only one time point. At 24 

months using longitudinal data up until month 12 (shown in Figure 19), Joint Model 1 

(Value) shows a slight issue with fit at the higher end of the predictive probabilities, as does 

Joint Model 2 (Value and Slope). Joint model 3 (Area) has a worse calibration than itself at 

12 months using longitudinal data at baseline and the other joint models at month 24 using 

longitudinal data up until month 12, suggesting a larger number of issues with calibration at 

the higher end of the predicted probabilities. 

 

4.3.7 Dynamic Predictions from Joint Models 

Figure 20 illustrates the dynamic predictions of a randomly sampled patient by Joint Model 2 

(Value and Slope) chosen for its better subject specific (conditional fit); at four different time 

points. This shows the observed levels and predicted trajectories of NT-ProBNP on the 

original scale. While the 95% CIs on the longitudinal side are quite wide, this is possibly due 
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to scale and range of the observed measurements of NT-ProBNP. The 95% CIs on the 

survival side narrow with added measurements, likely as there is more data available. The 

survival probability increases with the measurements, as the predicted trajectory of NT-

ProBNP stabilises and the patient has survived for longer. The trajectory suggests an increase 

in predicted NT-ProBNP until month three; however, the relative increase of the predicted 

trajectory of NT-ProBNP does not appear to have as much effect on survival, possibly due to 

the patient surviving longer at each measurement and the relatively stable predicted profile of 

NT-ProBNP. 

 

4.3.8 External Validation of Joint Models 

Figure 21 illustrates the external validation time-varying ROCs, AUCs and Brier scores, 

using data from the ATMOSPHERE trial to provide external validation. The time-varying 

ROCs at 12 months using data from baseline are very similar. Joint Model 2 (Value and 

Slope) showing minor differences, which is highlighted in the corresponding time-varying 

AUC. With Joint Model 2 (Value and Slope) having a lower time-varying AUC of 0.68, 

minimally lower than Joint Model 1 (Value) and Joint Model 3 (Area) with a time-varying 

AUC of 0.69, this once again suggests the joint models perform just below the acceptable 

level of discrimination. The time-varying Brier score is similar to the original data, with each 

model performing equally with a score of 0.10, which is at the lower end of possible Brier 

scores, at 24 months using longitudinal data up until month 12 from the ATMOSPHERE 

trial. Figure 22 shows an improvement for time-varying AUCs for both Joint Model 2 (Value 

and Slope) and Joint Model 3 (Area), with all models showing an improvement in time-

varying Brier score of 0.09, suggesting the models perform better at month 24 using data 

from the ATMOSPHERE trial and its longitudinal data until 12 months. 
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Inversely, the time-varying calibration curves at 12 months using ATMOSPHERE data at 

baseline show deviation from the ideal validation curve shown in Figure 23, with Joint Model 

1 (Value) and Joint Model 3 (Area) having similar curves and Joint Model 2 (Value and 

Slope) showing slightly more deviation; however, this deviation is minimal. The time-

varying calibration curves at month 24 using longitudinal data up until 12 months illustrate 

further deviation from the ideal fit, with Joint Model 1 (Value) and Joint Model 2 (Value and 

Slope) performing similarly and Joint Model 3 (Area) performing better. 
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Figure 21 External Validation Time-Varying ROC Curves and Corresponding Time-Varying AUCs and Brier Scores for Joint Models using Longitudinal Data at 
Month 0 and Predicting Survival Probability at 12 Months using Data from the ATMOSPHERE Trial 

A.) Joint Model 1 – Value: External Validation Time-

Varying ROC, AUC and Brier Score at Month 12 

using Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial 

B.) Joint Model 2 - Value and Slope: External 

Validation Time-Varying ROC, AUC and Brier 

Score at Month 12 using Longitudinal Data at 

Month 0 Data from the ATMOSPHERE Trial 

C.) Joint Model 3 – Area: External Validation Time-

Varying ROC, AUC and Brier Score at Month 12 

using Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial 

   
Time-Varying AUC: 0.69  

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.68 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 
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Figure 22 External Validation Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data up until Month 12 and 
Predicting Survival Probability at 24 Months 

A.) Joint Model 1 – Value: External Validation Time-

Varying ROC, AUC, and Brier Score at Month 24 

using Longitudinal Data until Month 12 Data from 

the ATMOSPHERE Trial 

B.) Joint Model 2 - Value and Slope: External 

Validation Time-Varying ROC, AUC and Brier 

Score at Month 24 using Longitudinal Data until 

Month 12 Data from the ATMOSPHERE Trial 

C.) Joint Model 3 – Area: External Validation Time-

Varying ROC, AUC and Brier Score at Month 24 

using Longitudinal Data until Month 12 Data from 

the ATMOSPHERE Trial 

   
Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.09 

Time-Varying AUC: 0.70 

Time-Varying Brier Score: 0.09 

Time-Varying AUC: 0.70 

Time-Varying Brier Score: 0.09 
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Figure 23 External Validation Calibration Curves for Joint Models at Month 12 using Longitudinal Data At Month 0 
A.) Joint Model 1 – Value: External Validation 

Calibration Curve at Month 12 using Longitudinal 

Data at Month 0 Data from the ATMOSPHERE 

Trial  

 

 

B.) Joint Model 2 – Value and Slope: External 

Validation Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial  

C.) Joint Model 3 – Area: External Validation 

Calibration Curve at Month 12 using Longitudinal 

Data at Month 0 Data from the ATMOSPHERE 

Trial  

   
 

Figure 24 External Validation Calibration Curves for Joint Models at Month 24 using Longitudinal Data up until Month 12 
A.) Joint Model 1 – Value: External Validation 

Calibration Curve at Month 12 using Longitudinal 

Data at Month 0 Data from the ATMOSPHERE 

Trial  

 

 

B.) Joint Model 2 – Value and Slope: External 

Validation Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial  

 

C.) Joint Model 3 – Area: External Validation 

Calibration Curve at Month 12 using Longitudinal 

Data at Month 0 Data from the ATMOSPHERE 

Trial 
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Table 28 Hazard Ratio (95% CI) and P-Values from the Cox PH Models 

 Cox PH Last Measurement Extended Cox PH 

Variable HR (95% CI) P-Value  HR (95% CI) P-Value  

Treatment - LCZ  0.83 (0.76-0.91)  <0.001  0.83 (0.76-0.91)  <0.001  

Age 1 (1-1.01)  0.865  1 (1-1.01)  0.924  

Sex - Male 1.28 (1.14-1.44)  <0.001  1.27 (1.13-1.43)  <0.001  

Region - Latin America  0.98 (0.85-1.14)  0.794  1.02 (0.88-1.18)  0.831  

Region - North American  1.04 (0.87-1.24)  0.683  0.98 (0.82-1.18)  0.851  

Region - Pacific Asia/Pacific and Other  1.08 (0.93-1.25)  0.337  1.12 (0.96-1.3)  0.145  

Region - Western Europe  0.92 (0.81-1.04)  0.192  0.9 (0.79-1.03)  0.125  

BMI 1.02 (1.01-1.03)  0.001  1.02 (1.01-1.03)  0.001  

eGFR  1 (0.99-1)  0.005  1 (0.99-1)  0.004  

Ejection Fraction % 0.98 (0.97-0.99)  <0.001  0.98 (0.97-0.99)  <0.001  

NYHA Class 2  1.21 (0.95-1.55)  0.124  1.17 (0.92-1.5)  0.2  

NYHA Class 3  1.53 (1.18-1.98)  0.001  1.5 (1.16-1.94)  0.002  

NYHA Class 4  1.71 (1.04-2.81)  0.035  1.78 (1.08-2.93)  0.023  

Diabetes - Yes  1.37 (1.25-1.5)  <0.001  1.36 (1.24-1.49)  <0.001  

SBP 1 (1-1)  0.309  1 (0.99-1)  0.201  

Heart Rate  1.01 (1-1.01)  0.002  1.01 (1-1.01)  0.005  

History of Atrial fibrillation – Yes 1.09 (0.99-1.21)  0.08  1.08 (0.97-1.19)  0.153  

Ischemic Heart Failure - Yes 1 (0.88-1.13)  0.977  0.98 (0.86-1.11)  0.768  

Prior Hospitalisation for Heart Failure - Yes  1.37 (1.25-1.51)  <0.001  1.35 (1.22-1.49)  <0.001  

Prior History of Myocardial Infarction - Yes  1.21 (1.07-1.36)  0.002  1.22 (1.08-1.38)  0.001  

Prior History of Stroke - Yes  1.1 (0.95-1.28)  0.183  1.1 (0.95-1.27)  0.223  

Log NT-ProBNP  1.61 (1.54-1.69)  <0.001  1.63 (1.55-1.71)  <0.001  
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Figure 25 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 12 
A.) Time-Varying ROC and AUC at 12 Months 

for the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 12 Months 

for the Extended Cox PH Model 

  
Time-Varying AUC at 12 Months: 0.67 Time-Varying AUC at 12 Months: 0.67 

 

Figure 26 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 24 
A.) Time-Varying ROC and AUC at 24 Months 

for the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 24 Months 

for the Extended Cox PH Model 

 
 

 

Time-Varying AUC at 24 Months: 0.67 Time-Varying AUC at 24 Months: 0.67 
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4.3.9 Comparative Analysis 

Table 28 shows the HRs and corresponding 95% CI and P-Values for both Cox PH models, 

the last measurement model, and the extended Cox PH model. Only minor differences in HRs 

between the models are observed, but the extended Cox PH has a slightly higher HR for Log 

NT-ProBNP, suggesting that a unit increase of Log NT-ProBNP increases the hazard of the 

composite event increases by 1.63 times, whereas the last measurement model suggests a 

slightly lower association, with the hazard of the composite event increasing by 1.61 times 

per unit increase in Log NT-ProBNP. With both still suggesting a strong association of Log 

NT-ProBNP and the composite endpoint. There are also only minor differences in most HRs 

when comparing the Cox PH models against the joint models, with the only major differences 

in treatment with LCZ and Log NT-ProBNP. The treatment effect of LCZ is considered 

statistically significant in the Cox PH models, suggesting a treatment with LCZ lowers the 

hazard of the composite event by 0.83 times. The joint models also give a bigger hazard ratio 

for Log NT-ProBNP (between 1.8 and 1.93). Both could possibly be explained by the direct 

treatment effect on Log NT-ProBNP and how Log NT-ProBNP is likely to be a mediator, as 

explained previously. 

 

The time-varying ROCs and time-varying AUCs of the two Cox PH models shown in Figure 

25 and Figure 26 suggest that the models perform equally with each other with respect to 

discrimination at 12 and 24 months. However, when the time-varying AUCs are compared 

against the joint models, the Cox PH models perform worse at 12 months, with an AUC of 

0.67 for both models compared to the 0.69 of the joint models, and equally with the joint 

models at 24 months, with an AUC of 0.67. 
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4.4 Discussion 

With the recent rise in awareness and use of joint modelling in heart failure clinical research, 

it is important to explore their use, not only to assess the association of a biomarker with an 

endpoint, but how and why they may be used for prognostic models and if and how they 

improve on the current methodology used in prognostic models. To do this, three joint 

models were fit to two clinical trial data sets using different parameterisations of association 

parameter and compared against each other and two traditional models. 

 

Results from all the models suggest an association with Log NT-ProBNP and the composite 

endpoint of first hospitalisation for heart failure and death from cardiovascular causes. Whilst 

this association has been demonstrated in the past, these joint models add to the evidence 

base and suggest that the treatment effect of the active drug (LCZ) from the PARADIGM 

trial is mediated through the biomarker NT-ProBNP. All the joint models show a statistically 

insignificant treatment effect on the survival outcome of the model, whilst showing a 

treatment effect on the longitudinal side. Unfortunately, because the focus of this work was to 

build and assess a prognostic model and due to the non-linearity of measurements of NT-

ProBNP, it is not possible to determine the overall treatment effect as illustrated by J. Ibrahim 

et al., as this overall treatment effect requires treatment coefficients from both the survival 

and longitudinal components of the models [51], and as the longitudinal model included 

natural splines and an interaction of these splines with treatment, these coefficients are not 

directly interpretable and therefore not applicable for this application. 

 

Joint Model 1 (Value) and Joint Model 3 (Area) both suggest a near double increase in the 

hazard of the composite event per unit increase in their respective association parameter 

estimates. However, due to the previously mentioned treatment effect on NT-ProBNP, the 



154 

 

treatment effect must be taken into consideration when interpreting these results, making it 

more difficult to interpret. 

 

The average longitudinal profile of NT-ProBNP, illustrated in Figure 15, shows that for the 

average patient of each treatment there is a difference in treatment over time on NT-ProBNP. 

However, because joint models include random effects and therefore, subject-specific 

trajectories, these results vary depending on the specific patient. 

 

The longitudinal coefficients from the joint model suggest that all the chosen clinical 

covariates are considered statistically significant, with both treatment and BMI having a 

negative effect on NT-ProBNP and age and a history of atrial fibrillation having a positive 

effect on NT-ProBNP, with only minor differences between the joint models. 

The survival outcomes from the joint models show only minimal difference in the hazard 

ratios apart from the association parameters, as discussed previously.  

 

Joint Model 3 (Area) performed the best with regards to marginal fit with an LPML of -

23622.82 and DIC of 39253.35. However, Joint Model 2 (Value and Slope) performed the 

best with regards to conditional fit with an LPML of -36000.35 and DIC of 56671.85. 

Illustrating an improvement of 19% for the LPML and 20% in DIC when compared to the 

conditional fit of Joint Model 3. When comparing the marginal fit, Joint Model 3 has an 

improvement of 9% in LPML and 17% in DIC to Joint Model 2 (Value and Slope). For a 

prognostic model focused on personalised/subject-specific prognosis, the trade-off in 

marginal fit against the improvement in conditional fit may mean that Joint Model 2 (Value 

and Slope) is the better performing model. 
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This better conditional fit is of note, as while the association slope parameter estimate of this 

model is considered statistically insignificant, possibly due to the limited number of repeated 

measurements, the better condition fit may suggest that some patient specific slopes are 

important. This gives warrant to the use of a clinical approach rather than a stepwise 

approach to model selection, as a stepwise approach may have excluded this model due to the 

apparent statistical insignificance of the slope parameter. 

 

In terms of prognostic performance with regards to the time-varying ROCs, time-varying 

AUCs and time-varying Brier scores, both at 12 months using longitudinal data at month 0 

and 24 months using longitudinal data at month 12 suggest that the joint models performed 

equally, with time-varying AUCs of 0.69 at 12 months using longitudinal data at month 0 and 

0.67 at 24 months using longitudinal data up until month 12. While this discrimination is just 

short of the acceptable range, the Brier score and calibration curves suggest that the model is 

well calibrated at these two time points, the Brier score encapsulating discrimination and 

calibration to provide an accuracy metric and may provide a better overview of the model 

performance than the time-varying AUCs. 

 

Validation with data from the ATMOSPHERE trial suggests that the models perform as well 

with external data, at 12 months using longitudinal data at month 0, with respect to 

discrimination, with only Joint Model 2 (Value and Slope) performing marginally worse with 

a time-varying AUC of 0.68 compared to the time-varying AUC of 0.69 with the original 

data. The calibration curves suggest a worse calibration but not by much, as reflected in the 

time-varying Brier score being the same (0.10) at this time point. The time-varying AUCs at 

month 24 using longitudinal data up until month 12 suggest that Joint Models 2 and 3 

perform marginally better with respect to prognosis, with a time-varying AUC of 0.70, 
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whereas Joint Model 1 (Value) performs equally with a time-varying AUC of 0.69. The 

calibration of the models appears worse, with the Brier score for all joint models increasing 

from 0.8 to 0.9. Overall, the validation with the ATMOSPHERE data suggests the models 

perform as well with external data. This performance with external data may suggest that the 

joint models provide a good fit for the validation data. However, it may also be due to 

similarities in the inclusion and exclusion criteria of the two trials. 

 

The comparative analysis with the two Cox PH models suggests the joint models may 

outperform the Cox PH models at 12 months and perform equally at 24 months; however, 

because of the way the joint models predict outcomes based on longitudinal data, this may be 

a case of comparing apples with oranges, and the time-varying AUCs may not be 

comparable. 

This analysis highlights the difficulties in comparing the Cox PH models against the joint 

models and therefore, is limited in its ability to say which is better.  

 

Other prediction models such as PREDICT-HF have used the same patient population and 

outcomes as the joint models presented in this study [45]. They assess their models using the 

C-statistic at 12 and 24 months and while these are the same time points, the authors did not 

report how they calculated these statistics at these time points. Importantly, the C-statistic 

when calculated at specified time points has been shown to be problematic as it can fail to 

account for the event status at these specified points. Which may lead to overestimation of the 

discriminatory ability of the model [145].  Therefore comparison between the two metrics 

(time-varying AUC / C-statistic) while possible is unlikely to be meaningful.  
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Overall, the joint models perform adequately and may provide good prognostic models. The 

dynamic and subject-specific predictions are where joint models are more useful over the 

Cox PH models, with the joint models allowing for both. The dynamic predictions allowing 

for the use previous and repeat measurements of NT-ProBNP adding the potential to better 

inform prognosis. However, the subject-specific predictions are based on the random effects 

which are, by definition, latent variables, meaning they cannot be measured and rely on the 

premise that these unseen properties provide enough information to provide accurate subject-

specific predictions.  

 

This analysis has some limitations, such as the use of screening values of NT-ProBNP for 

patients missing values of NT-ProBNP at randomisation. There is also an imbalance of data, 

as the number of patients with more than one measurement of NT-ProBNP is less than the 

number of included patients. The use of the sample date rather than the scheduled visit date 

breaks the original intention-to-treat design of the original trial and therefore, may introduce 

bias. Another possible issue is that of inclusion and exclusion criteria of the original trial may 

not be as translatable to the general population; for example, the data is limited to patients 

with HFrEF, however this is a limitation of the data itself and therefore out of the scope of 

this current research. It is also worth mentioning that the JMBayes2 package, whilst based on 

the JMBayes package, is still in development and only provides limited accuracy measures, 

which, while appropriate for joint models, makes it difficult to compare against other types of 

models. Finally, whilst the JMbayes2 package provides a function for calibration curves these 

curves do not include (CIs) which would provide for a better interpretation of calibration.  
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Chapter 5 Joint Modelling of eGFR and a 
Composite Endpoint of Death from 
Cardiovascular Causes and First Hospitalisation 
for Heart Failure 

5.1 Foreword 

This chapter is like that of Chapter 4 and therefore takes the same style and may repeat on 

what has previously been stated. This repetition has been rephrased but included to allow this 

chapter to be read independently of Chapter 4. 

 

5.2 Introduction 

There are interrelationships which are well documented between outcomes and patient 

characteristics, within the clinical syndrome of heart failure. These characteristics include 

physical characteristics and biomarkers. With the previously mentioned rise in use and 

awareness of joint modelling in heart failure and lack of existing prognostic models using 

joint modelling in heart failure; it is informative to understand how joint modelling could be 

applied to heart failure and how it may improve on current prognostic modelling techniques. 

As previously mentioned in Chapter 1, joint models allow for repeated measurements for 

covariates, whist also correcting for measurement error and accounting for correlation 

between measurement occasions; and also allow for subject-specific and dynamic predictions 

[51], [52]. Repeat measurements of biomarkers including composite markers such as eGFR 

are often collected during clinical trials along with time-to-event data, which is used within 

survival analysis. Except for the prognostic model developed in Chapter 4, there are no 

known prognostic models which employ joint modelling identified within the heart failure 

literature. Therefore, the aim of this chapter like the previous, is to demonstrate the 

application of prognostic models using joint models in heart failure and to critically appraise 
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them. Additionally, I will use data from clinical trials to compare the performance of joint 

models for prognostication against the currently recommended approaches.  

 

5.3 Methods 

5.3.1 Data Source 

As noted in Chapter 3, data from the clinical trial known as PARADIGM-HF was used. 

PARADIGM-HF randomised patients 8,399 patients at a 1:1 ratio in a double-blind fashion 

to receive either enalapril at a dose of 10mg twice daily or LCZ696 at a dose of 200mg twice 

daily. 

 

5.3.2 Statistical Analysis 

To address the aforementioned research aims, data were analysed, processed and cleaned 

before the fitting of joint models. No formal sample size calculation was applied due to 

limitations of the available formula [138]. The R package JMbayes2 was used to fit all joint 

models. As previously stated, this package is still in active development, and is based on the 

R packages JM and JMbayes [67], [114] by the same author. As stated earlier the JMbayes2 

package fits joint models using a fully parametric Bayesian approach using MCMC sampling. 

Although this package is still in development, it was used as it includes the ability to produce 

calibration plots, which are important indicators of performance of prognostic models [39], 

[40]. The package also allows for more flexible functional form representation of numerical 

covariate effects as previously mentioned.  

The basic joint model is comprised of two components: a longitudinal and time-to-event 

component; these are fit individually and then provided to the jm function within the 

JMbayes2 package and refit as a joint model. 
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5.3.3 Data Cleaning and Processing 

Data needed to be analysed and cleaned prior to the analysis. This comprised the analysis of 

variables and their distributions to ensure there were no outliers, duplicated or improbable 

values, as well as the manipulation of categorical variables to ensure they were in the correct 

format and easily human readable. This also included the recoding of the event indicator to 

ensure that 1 indicated the participant experienced the event. Additionally, the data was 

reformatted to be compatible with the various functions used to fit the sub models and 

models. This included making sure the same group of patients was provided to both sub 

models as well as merging baseline covariates with the longitudinal data. The performance 

metrics required all covariates and the repeated measurements to be in one dataset. 

 

5.3.4 Covariate Selection 

Both components of the joint model; longitudinal and survival allow for modelling of 

covariate effects. For the same reasons stated in Chapter 4, for both components, covariates 

were chosen based on prior clinical knowledge as described in Chapter 1 and in conjunction 

with my clinical supervisor. No covariates identified through these means were missing from 

either dataset. 

 

5.3.5 Missing Data 

Joint models allow for uneven and missing longitudinal measurements, however in each of 

the sub models (longitudinal and survival) all covariates must be complete. For 55 patients’ 

data were incomplete for covariates; because this is less than 1% of the available data a 

complete case analysis was chosen. 
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5.3.6 Longitudinal Sub Model 

The longitudinal sub model needs to be either an LME fitted by the function ‘lme’ from the 

‘nlme’ package or a GLMM fitted by the ‘mixed_model’ function from the ‘GLMMadaptive’ 

package as required by the JMbayes2 package. Due to the use of a continuous response 

variable an LME was required, allowing for both fixed and random effects. 

 

5.3.6.1 eGFR 

eGFR was chosen as the response variable for the LME, as explained in Chapter 1, declining 

renal function has a well-documented relationship with heart failure and for that reason it was 

chosen as the response variable in this analysis. eGFR was observed to be skewed and 

therefore was transformed using the natural logarithm. This transformation is required due to 

assumptions of normality in the random effects [52]. 

 

5.3.6.2 Time (Fixed Effect) 

The response variable of an LME can be unevenly spaced (with respect to time). Sample date 

was available for eGFR and used to calculate time in months since randomisation using a 28-

day calendar month. This was preferred to scheduled date to provide a more accurate model. 

Evaluation of longitudinal profiles of log eGFR from randomly sampled patients showed that 

some of their profiles exhibited signs of non-linearity over time. Therefore, it was decided to 

include time non-linearly through the use of restricted natural cubic splines; the ‘ns’ function 

from the ‘splines’ package was used. Due to computational complexity the boundary knots 

were manually specified using quantile values. 
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5.3.6.3 Covariates (Remaining Fixed Effects) 

Stated previously, the remaining covariates were selected using prior clinical knowledge, 

which included treatment effect, age, sex, atrial fibrillation, SBP, NYHA and the presence of 

diabetes. As patients underwent randomisation, treatment was only included as the effect of 

treatment over time (as modelled by the natural splines) as per common guidance [69].  By 

default, the LME included an intercept term (the predicted mean when all other variables are 

zero). 

 

5.3.6.4 Random Effects 

For the random effects of the LME both a random intercept, and random slopes were 

included. With the random slopes incorporating the nonlinear effect of time modelled by the 

previously mentioned restricted natural cubic spline. 

 

5.3.6.5 Model Formulation 

The formula for the LME is denoted in Equation 15.  

Equation 15 Formula for LME sub model 

{
  
 

  
 

log 𝑒𝐺𝐹𝑅𝑖𝑗 =  𝛽0 +  𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
) +  𝛽

2
𝑓
2
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
) +  𝛽

3
𝑓
3
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
)

+ 𝛽
4
𝑓
1
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
) 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 +  𝛽5𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗

)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 +  𝛽6𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗

+ 𝛽
7
𝐴𝑔𝑒𝑖𝑗 +  𝛽8𝑆𝑒𝑥𝑖𝑗 +  𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖𝑗 +  𝛽10𝑆𝐵𝑃𝑖𝑗 +  𝛽11𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖𝑗

𝛽
12
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖𝑗 +  𝛽13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖𝑗 + 𝛽

14
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖𝑗

+ 𝑏𝑖0 +  𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
+  𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝜀𝑖𝑗 ,

𝑏𝑖 ~ Ν(0, 𝐷), 𝜀𝑖𝑗 ~ 𝑁(0, 𝜎
2) }

  
 

  
 

 

With 𝛽0 representing the intercept term, and 𝛽𝑛 representing the fixed effects and the natural cubic spline represented by the function 𝑓𝑛. Both 

random effects the random intercept 𝑏𝑖0 and random slopes 𝑏𝑖𝑛𝑓𝑛 (incorporating the natural cubic spline) are assumed normally distributed with a 

mean 0 and variance-covariance matrix 𝐷. The error term 𝜀𝑖𝑗 is assumed to be normally distributed with a variance of 𝜎2. 
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5.3.6.6 Model Fitting 

In order to fit the LME, the formatted data was provided to the lme function; the response 

variable was specified as log eGFR, and time was specified using the ns function specifying a 

restricted natural cubic spline. This time variable along with the interaction of it with 

treatment and the remaining covariates were supplied to the lme function using the fixed 

argument. The random slopes and intercepts were supplied via the random argument. The 

optimisation algorithm was manually specified as optim, which is a general-purpose 

optimising method which is based on Nelder-Mead, quasi-newton and conjugate-gradient 

algorithm, specified using the lmeControl argument, this optimiser is known to aid 

convergence [139]. 

 

5.3.7 Survival Sub Model 

The JMbayes2 package requires that the survival model be one fitted by either the function 

‘coxph’ or ‘survreg’ from the survival package. The former allowing the fitting of a Cox PH 

model and the latter allowing a parametric survival model. A Cox PH model was preferred to 

avoid incorrect specification of the distribution. 

 

5.3.7.1 Covariates 

As previously stated, covariates were chosen based on prior clinical knowledge and were the 

same as the original trial’s survival analysis, with the addition of log NT-ProBNP. Covariates 

included treatment, age, sex, region, BMI, eGFR, ejection fraction, NYHA classification, 

whether the patient had diabetes, SBP, heart rate, whether the patient had a history of atrial 

fibrillation, hospitalisation for heart failure, MI, or stroke. 
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5.3.7.2 Event (End Point) 

The endpoint or event of interest was the primary outcome of the original trial. A composite 

of death for cardiovascular causes and first hospitalisation for heart failure. 

 

5.3.7.3 Model Formulation 

The formula for the survival sub model is denoted in Equation 16. 

Equation 16 Formula of the Survival Sub model 
ℎ𝑖(𝑡) = ℎ0(𝑡) exp ( 𝛾1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖 +
 𝛾4𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 + 𝛾5𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 +
 𝛾6𝑅𝑒𝑔𝑖𝑜𝑛 𝐴𝑠𝑖𝑎, 𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝑎𝑛𝑑 𝑂𝑡ℎ𝑒𝑟 𝑖 + 𝛾7𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒𝑖 + 𝛾8𝐵𝑀𝐼𝑖 +
 𝛾9𝐿𝑜𝑔 𝑁𝑇-𝑃𝑟𝑜𝐵𝑁𝑃𝑖 + 𝛾10𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 +
 𝛾12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾14𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖 + 𝛾15𝑆𝐵𝑃𝑖 +
 𝛾16𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒𝑖 + 𝛾17𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖 + 𝛾18𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖 +
 𝛾19𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖  +
 𝛾20𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖  +  𝛾21𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠𝑖) 
 

The hazard of the composite event at time point 𝑡 is represented by ℎ𝑖(𝑡). The baseline hazard represented by ℎ0(𝑡), with 𝛾𝑛 

representing the covariates. 

 

5.3.7.4 Model Fitting 

To fit the Cox PH model, the formatted and cleaned data was passed to the coxph function 

from the survival package using the data argument. The model specified as time to the month 

at which the patient was censored, or the composite event occurred, along with a status 

indicator of whether the patient experienced the composite event. This was specified along 

with the previously detailed covariates using the formula argument. 

 

5.3.8 Joint Models 

Joint Modelling allows for different alpha parameterisations i.e., the association parameter in 

the survival sub-model. Three models were fit with different parameterisations, chosen for 

their suitability for prognostic models; these models included the aforementioned sub-models 

both the Cox PH model and the LME model. Joint Model 1 included a value alpha 

parameterisation. Joint Model 2 included a slope and value alpha parameterisation. Finally, 
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Joint Model 3 included an area alpha parameterisation. The value alpha parameterisation 

measures the association with the value of log eGFR and the composite event. The slope 

alpha parameterisation measures the association of the rate of change of log eGFR and the 

composite end point. The area parameterisation measures the association of the area under the 

trajectory of log eGFR and the composite endpoint. 

 

All models were fit using the JMbayes2 package through use of the jm function fitting a joint 

model with a piecewise baseline hazard function, with quadratic B-splines and 10 baseline 

hazard segments. 

 

The formulae for all the joint models are shown in Table 29, each joint model contains the 

same longitudinal and survival components, except for the alpha parameter which is therefore 

listed separately for each model. 

 

5.3.8.1 Model Fitting 

To fit the joint models, the previously fit LME was passed to the jm function using the 

Mixed_object argument, similarly the Cox PH model was passed using the Surv_objects 

argument. Additionally, the parameterisation of the longitudinal component within the survival 

component was specified using the functional_forms argument. 
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Table 29 Formulae for Joint Models 

Base Joint Model 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑦𝑖(𝑡) =  𝑚𝑖(𝑡) + 𝜀𝑖 (𝑡) 
= 𝛽0 + 𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽2𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽3𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)

+ 𝛽4𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽5𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽6𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 
+ 𝛽7𝐴𝑔𝑒 +  𝛽8𝑆𝑒𝑥 + 𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠 + 𝛽10𝐵𝑀𝐼 

+ 𝛽11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼 +  𝛽12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼 + 𝛽13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉

+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝜀𝑖 ,      𝜀𝑖(𝑡)~ 𝑁(0, 𝜎
2),

 

  ℎ𝑖(𝑡)  =  ℎ0(𝑡) 𝑒𝑥𝑝
{
 
 

 
 

 𝛾1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖 + 𝛾4𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 + 𝛾5𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖
+ 𝛾7𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒𝑖 + 𝛾8𝐵𝑀𝐼𝑖 + 𝛾9𝐿𝑜𝑔 𝑁𝑇-𝑃𝑟𝑜𝐵𝑁𝑃𝑖 + 𝛾10𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖

+ 𝛾11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖
+ 𝛾14𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖 + 𝛾15𝑆𝐵𝑃𝑖 + 𝛾16𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒𝑖 + 𝛾17𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖 + 𝛾18𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖
+ 𝛾19𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖  +  𝛾20𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖  +  𝛾21𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠𝑖

+ {𝐴𝑙𝑝ℎ𝑎 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑠)} }
 
 

 
 

,

𝑙𝑜𝑔 ℎ0(𝑡) =  𝛾ℎ0, 0 + ∑𝛾ℎ0,𝑞 𝐵𝑞(𝑡, 𝑣),

𝑄

𝑞=0

 

 
Joint Model 1  

Alpha Parameter 

(Value) 

𝛼𝑚𝑖(𝑡) 

Joint Model 2 

Alpha Parameter 

(Value + Slope) 

𝛼𝑚𝑖(𝑡) + 𝛼2𝑚𝑖
′(𝑡) 

Joint Model 3 

Alpha Parameter 

(Area) 

𝛼
∫ 𝑚𝑖(𝑠) 𝑑𝑠
𝑡

0

𝑡
 

Where  𝑦𝑖(𝑡) is the is the longitudinal outcome at time point 𝑡, comprising of the true and unobserved value of log eGFR at time point 𝑡 (𝑚𝑖(𝑡)) and error term 𝜀𝑖 (𝑡) . 𝛽0 is the intercept term for the 

longitudinal outcome. The 𝛽 parameters in the longitudinal models are the coefficients for the covariates, with the natural cubic spline represented as the functions 𝑓𝑛. The Random effects of the longitudinal 

outcome are represented by 𝑏𝑖𝑛. The error term of the longitudinal outcome is assumed to be normally distributed with a mean of 0 and a variance of 𝜎2. ℎ𝑖(𝑡) is the hazard of the composite event at time 

point 𝑡. With ℎ0(𝑡) representing the baseline hazard function, comprised of a piecewise hazard function, with quadratic B-splines and 10 baseline hazard segments. Where 𝐵𝑞(𝑡, 𝑣) relates to the 𝑞-th basis 

function of the B-spline with knots 𝑣1- 𝑣10 and 𝛾ℎ0 being a vector of spline coefficients. The covariates of the survival components are represented by the remaining 𝛾𝑛. The 𝑚𝑖
′(𝑡) slope parameter 

corresponds to the rate of change of the longitudinal outcome at time point 𝑡 estimated using the derivative of the fixed and random effects of the longitudinal outcome with respect to time. The area 

parameter corresponds to the whole area under the longitudinal trajectory, which accounting for the observation period, and is represented as a function. 
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5.3.9 Model Performance: Prognostic Accuracy, Fit and Calibration 

This analysis takes advantage of the functions available in JMbayes2, these include time-

varying ROCs and AUCs produced by the functions tvROC and tvAUC respectively, as well as 

the time-varying Brier score and time-varying calibration curves, produced by the functions 

tvBrier and calibration_plot respectively. These metrics extend on the original metrics using 

the longitudinal data up until a specified time point and predicting the future survival outcome 

[52], [142] and are interpreted like the original metrics however they provide metrics at specific 

time points. These measures were used to assess the prognostic accuracy and fit. Each of the 

measures was calculated at month 12, first using covariates only measured at baseline, and then 

using longitudinal covariate data up until 12 months. 

 

All three of the joint models were compared against each other using LPML and DIC as well 

as comparing hazard ratios and 95% CIs. LPML being like the log likelihood of a frequentist 

model and can be interpreted as such, with a larger value indicating a better fit. A DIC is 

interpreted like any other information criterion with a lower value indicating a better fit. For 

both metrics, the conditional value relates to subject specific fit whereas the marginal value 

relates to the population level fit. 

 

5.3.10 External validation 

As stated in Chapter 3, model validation was achieved using data obtained from the 

ATMOSPHERE randomised control trial. In which 7016 patients were randomised at a 1:1:1 

ratio to receive either a combination of enalapril (twice daily at a dose of 5 or 10mg) and 

aliskiren (once daily at a dose of 150mg), or enalapril twice daily at a dose of 5 or 10mg, or 

aliskiren once daily at a dose of 150mg). The trial used a double-blind, double dummy 

method. 
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Data from the ATMOSPHERE trial needed to be recoded into the same format as the data 

from the PARADIGM trial including the transformation of both eGFR and NT-ProBNP using 

the natural logarithm. Time was modelled on the same scale (months since randomisation 

using a 28-day calendar month). Treatment was recoded into enalapril and LCZ the former 

containing the enalapril arm and the latter containing the remaining arms. 

To evaluate the models using the validation data, the time-varying metrics (AUC, ROC, Brier 

score and calibration curves) were used, supplying the ATMOSTSPHERE data to the 

newdata argument of the functions. This argument allows the validation using a new dataset, 

which is used for predictions based on the original joint models. As with the original data, the 

measures were calculated at month 12 using baseline data and month 24 using longitudinal 

data up until time point 12. 

 

5.3.11 Comparative Analysis 

The joint models were compared against Cox PH Models (the current standard for prognostic 

models) to illustrate how joint models differ. Two Cox PH models were fit, one using the LOCF 

method and one using an extended Cox PH model (also known as the time-varying Cox PH 

model). Due to the previously mentioned limited performance metrics the comparison of the 

joint models with the Cox PH models was done using time-varying AUCs and ROCs and by 

comparison of the hazard ratios and corresponding CIs. The time-varying AUCs and ROCs for 

the Cox PH models were calculated using the function risksetROC from the risksetROC 

package which is defined by the formula by Heagerty et al., [142], [143].  

 

Descriptive statistics for the distribution of categorical variables are expressed as percentages, 

with continuous variables being summarised with medians [Q1, Q3]. The association 

parameters from the joint models are represented by hazard ratios with corresponding 95% CI. 
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The time dependent association value parameter represents the hazard of a composite event 

given a unit increase in log eGFR at any given time point. The time dependent association slope 

parameter represents the hazard of the composite event given a one unit increase in the slope 

of the trajectory of log eGFR at any given time point. The association area parameter represents 

the hazard of the composite event given a unit increase in the area under the longitudinal profile 

of log eGFR at any given time point. 

 

P-Values are considered statistically significant if below the threshold of 0.05. All statistical 

analysis was performed using JMbayes2 package version 0.1-81 [114] and R version 4.0 [144]. 

 

5.4 Results 

5.4.1 Baseline Characteristics 

The baseline characteristics of the 8344 included patients are shown in Table 30, with a median 

age of 64 years and 22% of patients being female. As with the main trial there are only minimal 

differences between the arms for the distributions of baseline characteristics. 

 

Table 30 Baseline Characteristics of Included Patients. 

Characteristic 
LCZ 

(N=4158) 

Enalapril 
(N=4186) 

Overall 
(N=8344) 

Age, years    

Median [Q1, Q3] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 

Sex    

Female 872 (21.0%) 949 (22.7%) 1821 (21.8%) 

Male 3286 (79.0%) 3237 (77.3%) 6523 (78.2%) 

Region    

Central Europe 1390 (33.4%) 1429 (34.1%) 2819 (33.8%) 

Latin America 708 (17.0%) 711 (17.0%) 1419 (17.0%) 

North American 307 (7.4%) 290 (6.9%) 597 (7.2%) 

Pacific Asia/Pacific and Other 739 (17.8%) 735 (17.6%) 1474 (17.7%) 
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Characteristic 
LCZ 

(N=4158) 

Enalapril 
(N=4186) 

Overall 
(N=8344) 

Western Europe 1014 (24.4%) 1021 (24.4%) 2035 (24.4%) 

BMI kg/m²    

Median [Q1, Q3] 27.5 [24.4, 31.2] 27.5 [24.5, 31.2] 27.5 [24.4, 31.2] 

Ejection Fraction %    

Median [Q1, Q3] 30.0 [25.0, 34.0] 30.0 [25.0, 34.5] 30.0 [25.0, 34.1] 

NYHA Class    

Class II 179 (4.3%) 207 (4.9%) 386 (4.6%) 

Class II 2981 (71.7%) 2906 (69.4%) 5887 (70.6%) 

Class III 967 (23.3%) 1046 (25.0%) 2013 (24.1%) 

Class IV 31 (0.7%) 27 (0.6%) 58 (0.7%) 

Diabetes    

No 2715 (65.3%) 2736 (65.4%) 5451 (65.3%) 

Yes 1443 (34.7%) 1450 (34.6%) 2893 (34.7%) 

SBP mmHg    

Median [Q1, Q3] 120 [110, 130] 120 [110, 130] 120 [110, 130] 

Heart Rate beats per minute    

Median [Q1, Q3] 71.0 [64.0, 80.0] 72.0 [64.0, 80.0] 71.0 [64.0, 80.0] 

    

Prior History of Atrial Fibrillation    

No 2652 (63.8%) 2622 (62.6%) 5274 (63.2%) 

Yes 1506 (36.2%) 1564 (37.4%) 3070 (36.8%) 

Ischemic Heart Failure    

No 1667 (40.1%) 1675 (40.0%) 3342 (40.1%) 

Yes 2491 (59.9%) 2511 (60.0%) 5002 (59.9%) 

Prior History of Hospitalisation for Heart Failure    

No 1565 (37.6%) 1536 (36.7%) 3101 (37.2%) 

Yes 2593 (62.4%) 2650 (63.3%) 5243 (62.8%) 

Prior History of Myocardial Infarction    

No 2350 (56.5%) 2381 (56.9%) 4731 (56.7%) 

Yes 1808 (43.5%) 1805 (43.1%) 3613 (43.3%) 

Prior History of Stroke    

No 3804 (91.5%) 3817 (91.2%) 7621 (91.3%) 

Yes 354 (8.5%) 369 (8.8%) 723 (8.7%) 

NT-ProBNP pg/mL    

Median [Q1, Q3] 1630 [887, 3160] 1600 [888, 3310] 1610 [888, 3230] 

eGFR mL/min/1.73 m2    

Median [Q1, Q3] 66.0 [54.0, 79.0] 66.0 [53.0, 79.0] 66.0 [54.0, 79.0] 



171 

 

5.4.2 Number of Measurements of eGFR 

Table 31 shows the number of repeat measurements of eGFR for the included patients. With 

the majority of patient having between 6-10 measurements (42%) and 11-15 measurements 

(43%). 

Table 31 Number of Repeat Measurements of eGFR for Included Patients 

 

 

5.4.3 Longitudinal Profile of eGFR 

Figure 27 illustrates the longitudinal profiles of 42 randomly sampled patients (stratified by 

number of measurements), these profiles indicate some patients such as 1183_0004 showed 

signs of non-linearity in values of log eGFR over time. As eGFR has been transformed into a 

log scale, the non-linearity of eGFR in these profiles over time would be amplified on the 

original scale. 

1-5 6-10 11-15 16-20 21+ 

736 (9%) 3520 (42%) 3611 (43%) 432 (5%) 45 (<1%) 
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Figure 27 Longitudinal Profiles of log eGFR 
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5.4.4 Longitudinal Outcome from Joint Models 

Parameter estimates from the longitudinal outcome from the joint models are shown in Table 

32 for all meaningfully interpretable variables. Variables with natural splines were excluded 

as they cannot be meaningfully interpreted directly from the parameter estimates, instead they 

are illustrated graphically in Figure 28. All variables apart from the NYHA Class variable are 

considered significantly significant with a P-Value of less than 0.001. The variables age, 

having atrial fibrillation and having diabetes all have a small negative effect on log eGFR, 

with being of the male sex, and a unit increase of SBP both having positive effects on log 

eGFR. It should be noted that a higher eGFR is considered better, and therefore a negative 

effect would be worse for the patient. It is important to highlight that eGFR is on a log scale 

and time is modelled in months therefore this should be taken into consideration when 

interpreting these values, and as such the scale of the effects may be higher than the model 

appears to represent them as.  

 

There are only small differences between the models with respect to both coefficients and 95 

% CIs, for example, age has only a difference of 0.001 in 95% CIs between the models, and 

being of the male sex, has only a difference of 0.001 in the parameter estimate and 0.001 in 

95% CI for joint model two compared to Joint Model 1 and Joint Model 3. There are only 

differences in p-values for the NYHA class variables, however none of these variables are 

considered statistically significant. 

 

The coefficients of the natural splines cannot be meaningfully interpreted as they only 

represent parts of the spline function. However, the natural splines can be graphically 

represented as illustrated in Figure 28 which illustrates the average predicted trajectories of 

log eGFR by each of the joint models, with the y axis for log eGFR being scaled for 
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readability. All the models show similar average trajectories of log eGFR with eGFR 

declining on average in each treatment group, and a larger treatment effect as time 

progresses. However the overlapping 95% CIs suggest a lack of certainty around a difference 

in treatment effect on log eGFR over time on average. 
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Table 32 Parameter Estimates (95% CI) from the Longitudinal Outcomes of the Joint Models for the Meaningfully Interpretable Variables 
 Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

Variable Estimate (95% CI) P-Value Estimate (95% CI) P-Value Estimate (95% CI) P-Value 

Age 

-0.010 (-0.011 - -0.009) < 0.001 -0.010 (-0.011 - -0.009) < 0.001 

-0.010  
(-0.011 - -0.009) < 0.001 

Sex - Male 0.041 (0.025 - 0.057) < 0.001 0.040 (0.024 - 0.057) < 0.001 0.041 (0.025 - 0.057) < 0.001 

Atrial Fibrillation - Yes 

-0.030 (-0.045 - -0.016) < 0.001 -0.030 (-0.045 - -0.016) < 0.001 

-0.030  
(-0.045 - -0.016) < 0.001 

SBP 0.001 (0.001 - 0.002) < 0.001 0.001 (0.001 - 0.002) < 0.001 0.001 (0.001 - 0.002) < 0.001 

NYHA Class II 0.001 (-0.03 - 0.032) 0.940 0.001 (-0.03 - 0.033) 0.934 0.001 (-0.03 - 0.032) 0.934 

NYHA Class III -0.011 (-0.045 - 0.023) 0.523 -0.011 (-0.045 - 0.023) 0.507 -0.011 (-0.045 - 0.023) 0.525 

NYHA Class IV 0.020 (-0.069 - 0.111) 0.666 0.020 (-0.069 - 0.110) 0.658 0.020 (-0.069 - 0.111) 0.667 

Diabetes - Yes 

-0.049 (-0.063 - -0.034) < 0.001 -0.048 (-0.062 - -0.034) < 0.001 

-0.049  
(-0.063 - -0.035) < 0.001 

Parameter estimates for variables including natural splines are excluded as they cannot be meaningfully interpreted, instead they are illustrated in Figure 

28. 
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Figure 28 Average Trajectories of log eGFR by Treatment Group with Observed Values and Trajectories of 
log eGFR Scaled for Readability

A.) Average Trajectories of log eGFR by treatment group from Joint Model 1 (Value) with Observed Values and Trajectories Scaled for Readability. 

 
B.) Average Trajectories of log eGFR by treatment group from Joint Model 2 (Value and Slope) with Observed Values and Trajectories Scaled for 

Readability. 

 
C.) Average Trajectories of log eGFR by treatment group from Joint Model 3 (Area) with Observed Values and Trajectories Scaled for Readability. 

 
The average trajectories we predicted using the respective joint models, using the mode and median characteristics of each stratum of 

patients (the treatment group). The y axis log(eGFR has been scalled for readability). 
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5.4.5 Survival outcomes from Joint Models 

Table 33 shows the HRs with 95% CIs and corresponding P-Values for the three joint 

models. There are only minor differences in the hazard ratios between the models, with the 

greatest difference being the log NT-ProBNP and the log eGFR parameters. With Joint 

Model 2 having a lower hazard ratio at 1.45 when compared to the 1.48 from Joint Model 1 

and 1.49 from Joint Model 3. The log eGFR parameters also have differences, with the value 

parameter of Joint Model 1 having a lower HR of 0.42 (0.36 - 0.5) than both the value 

parameter of Joint Model 2 with a HR of 0.49 (0.41 – 0.58) and Joint Model 3 with an area 

parameter with a HR of 0.48 (0.41 – 0.58). This suggests that the hazard of the composite 

event decreases by 0.42 times per unit increase in log eGFR at any time point when using 

Joint Model 1. Whereas Joint Model 2 suggests the hazard of the composite event decreases 

by 0.49 times per unit increase in log eGFR at any time point for patients with the same 

slope. Finally, Joint Model 3 suggests a decrease in the hazard of the composite event of 0.48 

per unit increase in area under the longitudinal profile of log eGFR at any time point. It can 

be observed that the slope parameter, while significant is exceptionally small and therefore 

uninterpretable, this means while the slope may have a significant effect it is almost 

unmeasurable. All alpha parameters are below the significance threshold  suggesting log 

eGFR is significantly associated with the hazard of the composite event. 

 

Except for Joint Model 2, the joint models share the same significant parameters, with the 

history of atrial fibrillation being significant in Joint Model 2. A variable of interest that is 

not considered significant is age as clinically a unit increase in age should have a significant 

effect on the hazard of adverse outcomes such as the composite outcome. One possible 

reason for age not being considered statistically significant is the inclusion of it in the 

longitudinal sub-model. 
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Table 33 Hazard Ratios (95% CI) from the Survival Component of the Three Joint Models 

 
Joint Model 1 (Value) 

Joint Model 2 (Value and 

Slope) 
Joint Model 3 (Area) 

Variable HR (95% CI) P-Value HR (95% CI) P-Value HR (95% CI) P-Value 

Treatment LCZ 0.81 (0.73 - 0.9)  < 0.001  0.82 (0.74 - 0.92)  < 0.001  0.81 (0.73 - 0.89)  < 0.001  

Age  1 (0.99 - 1)  0.055  1 (0.99 - 1)  0.197  1 (0.99 - 1)  0.22  

Sex – Male 1.34 (1.2 - 1.49)  < 0.001  1.32 (1.18 - 1.48)  < 0.001  1.32 (1.18 - 1.49)  < 0.001  

Region Latin America  1.03 (0.9 - 1.2)  0.668  1.02 (0.88 - 1.18)  0.828  1.04 (0.91 - 1.21)  0.54  

Region North American  0.92 (0.77 - 1.1)  0.357  0.9 (0.76 - 1.06)  0.21  0.94 (0.79 - 1.11)  0.485  

Region Pacific Asia/Pacific and Other  1.14 (0.98 - 1.31)  0.091  1.13 (0.97 - 1.31)  0.105  1.15 (1 - 1.32)  0.054  

Region Western Europe  0.87 (0.77 - 0.98)  0.022  0.86 (0.75 - 0.98)  0.025  0.88 (0.78 - 1)  0.047  

BMI 1.01 (1 - 1.02)  0.01  1.01 (1 - 1.02)  0.016  1.01 (1 - 1.02)  0.007  

Ejection Fraction 0.98 (0.98 - 0.99)  < 0.001  0.98 (0.98 - 0.99)  < 0.001  0.98 (0.98 - 0.99)  < 0.001  

NYHA Class II  1.24 (0.97 - 1.63)  0.081  1.25 (0.99 - 1.62)  0.061  1.24 (0.98 - 1.58)  0.075  

NYHA Class III  1.58 (1.24 - 2.13)  < 0.001  1.6 (1.25 - 2.11)  < 0.001  1.59 (1.22 - 2.05)  < 0.001  

NYHA Class IV 1.91 (1.14 - 3.18)  0.016  1.93 (1.13 - 3.15)  0.012  1.89 (1.12 - 3.07)  0.024  

Diabetes – Yes 1.32 (1.2 - 1.45)  < 0.001  1.29 (1.17 - 1.41)  < 0.001  1.34 (1.22 - 1.47)  < 0.001  

SBP 1 (1 - 1)  0.218  1 (0.99 - 1)  0.114  1 (1 - 1)  0.228  

Heart Rate  1.01 (1 - 1.01)  0.003  1.01 (1 - 1.01)  0.002  1.01 (1 - 1.01)  0.002  

History of Atrial fibrillation – Yes 1.1 (1 - 1.21)  0.056  1.12 (1.02 - 1.23)  0.02  1.09 (0.99 - 1.21)  0.081  

Ischemic Heart Failure – Yes 0.99 (0.88 - 1.12)  0.89  0.99 (0.87 - 1.12)  0.823  0.99 (0.87 - 1.13)  0.894  

Prior Hospitalisation for Heart Failure - Yes  1.37 (1.24 - 1.51)  < 0.001  1.39 (1.26 - 1.54)  < 0.001  1.37 (1.25 - 1.51)  < 0.001  

Prior History of Myocardial Infarction - Yes 1.19 (1.05 - 1.34)  0.003  1.21 (1.07 - 1.36)  0.001  1.19 (1.05 - 1.35)  0.006  

Prior History of Stroke - Yes  1.08 (0.93 - 1.25)  0.313  1.1 (0.95 - 1.26)  0.211  1.09 (0.94 - 1.25)  0.255  

Log NT-ProBNP  1.48 (1.41 - 1.54)  < 0.001  1.45 (1.39 - 1.52)  < 0.001  1.49 (1.42 - 1.57)  < 0.001  

Value of log eGFR 0.42 (0.36 - 0.5)  < 0.001  0.49 (0.41 - 0.58)  < 0.001    

Slope of log eGFR   < 0.01* < 0.001    

Area of log eGFR     0.48 (0.41 - 0.58) < 0.001 

* The HR from the model was less than 0.01 when rounded to two decimal places.  
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Table 34 Marginal and Conditional Performance Statistics of Joint Models 
 Marginal Conditional 

Statistic Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

Joint Model 1 

Value 

Joint Model 2 

Value + Slope 

Joint Model 3 

Area 

DIC -41264.18 -41353.59 -41227.16 -68820.58 -69086.27 -68867.06 

LPML 20684.51 20806.83 20683.34 27927.59 28052.39 27996.73 

 

Figure 29 Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data at Month 0 and Predicting Survival 
Probability at 12 Months 
A.) Joint Model 1 – Value: Time-Varying ROC, 

AUC and Brier Score at Month 12 using 

Longitudinal Data at Month 0 

B.) Joint Model 2 - Value and Slope: Time-

Varying ROC, AUC and Brier Score at Month 

12 using Longitudinal Data at Month 0 

C.) Joint Model 3 – Area: Time-Varying ROC, 

AUC and Brier Score at Month 12 using 

Longitudinal Data at Month 0 

   
Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.70 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 
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Figure 30 Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data up until Month 12 and Predicting Survival 
Probability at 24 Months 
A.) Joint Model 1 – Value: Time-Varying ROC, 

AUC and Brier Score at Month 24 Using 

Longitudinal Data up until Month 12 

B.) Joint Model 2 - Value and Slope: Time-

Varying ROC, AUC and Brier Score at Month 

24 using Longitudinal Data up until Month 12 

C.) Joint Model 3 – Area: Time-Varying ROC, 

AUC and Brier Score at Month 24 using 

Longitudinal Data up until Month 12 

   
Time-Varying AUC: 0.66 

Time-Varying Brier Score: 0.08 

Time-Varying AUC: 0.66 

Time-Varying Brier Score: 0.08 

Time-Varying AUC: 0.66 

Time-Varying Brier Score: 0.08 

 

Figure 31 Calibration Curves for Joint Models at Month 12 using Longitudinal Data at Month 0 
A.) Joint Model 1 – Value: Calibration Curve at 

Month 12 using Longitudinal Data at Month 0 

 

B.) Joint Model 2 – Value and Slope: Calibration 

Curve at Month 12 using Longitudinal Data at 

Month 0 

 

C.) Joint Model 3 – Area: Calibration Curve at 

Month 12 using Longitudinal Data at Month 0 
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Figure 32 Calibration Curves for Joint Models at Month 24 using Longitudinal Data up until Month 12 
A.) Joint Model 1 – Value: Calibration Curve at 

Month 24 using Longitudinal Data up until 

Month 12 

 
 

B.) Joint Model 2 – Value and Slope: Calibration 

Curve at Month 24 using Longitudinal Data up 

until Month 12 

 

C.) Joint Model 3 – Area: Calibration Curve at 

Month 24 using Longitudinal Data up until 

Month 12 
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Figure 33 Dynamic Predictions from Joint Model 1 for a Randomly Sampled Patient with Measurements of eGFR and Corresponding Survival Probability 
A.) Observation 1, eGFR Measurement at Month 0 with Corresponding Survival Probability 

 

 
Survival at 24 Months: 0.85 (0.89 - 0.80) 

B.) Observation 3, eGFR Measurements at Months 0, 0.5 and 1 with Corresponding Survival Probability 

 
Survival at 24 Months: 0.85 (0.88 - 0.80) 

C.) Observation 8, eGFR Measurements at Months 0, 0.5, 1, 1.5, 2, 3, 4 and 8 with Corresponding 

Survival Probability 

 
Survival at 24 Months: 0.90 (0.92 - 0.87) 

D.) Observation 10, eGFR Measurements at Months 0, 0.5, 1, 1.5, 2, 3, 4, 8, 13, and 17 with 

Corresponding Survival Probability 

 
Survival at 24 Months: 0.96 (0.97 - 0.94) 

 

eGFR is represented by the blue line with 95% CI, the dashed line represents the last time the patient was known to be alive, and the red line represents the 

survival probability with 95% CI. 
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5.4.6 Joint Model Performance 

The marginal and conditional DICs and LPMLs for each of the joint models are shown in 

Table 34. Both DIC and LPML for Joint Model 2 suggest that this joint model performs best 

with regards to marginal fit, with an LPML of 2086.83 and a DIC of -41353.59 which are the 

highest and lowest respectively out of all the joint models. Similarly, the DIC and LPML for 

Joint Model 2 suggests that this model also performs best with regards to conditional fit, 

having the lowest DIC of -69086.27 and highest LPML of 28052.39.  

 

The time Varying ROCs, AUCs and Brier scores for the Joint Models at month 12 using 

longitudinal data at baseline are shown in Figure 29. Joint Model 1 and Joint Model 3 

perform equally with respect to time-varying AUC and Brier score with time-varying AUCs 

of 0.69 and time-varying Brier scores of 0.10, whereas Joint Model 2 performs slightly better 

with a time-varying AUC of 0.70 but the same time-varying Brier score of 0.10. The models 

only show minor variance in the time-varying ROCs. The time-varying AUCs of Joint Model 

1 and Joint Model 3 suggest the models perform just below the acceptable threshold for 

acceptable discrimination instead falling into the top end of the poor discrimination category 

[38]. However, the time-varying ROC of Joint Model 2 suggests it is within the acceptable 

threshold for a prognostic model. 

 

The time-varying ROCs AUCs and Brier scores shown in Figure 30 show similar 

performance between the joint models at month 24 using longitudinal data up until month 12 

with Joint Model 2 and 3 performing the same, with a time-varying AUC of 0.67 and a time-

varying Brier score of 0.08, with Joint Model 1 having a time-varying AUC of 0.66 and the 

same time-varying Brier score of 0.08. These metrics suggest a drop in discrimination with 

respect to time-varying AUC from the 12-month metrics using longitudinal data at baseline 



184 

 

but an increase with respect to Brier score in which the Brier score improved by 0.02. The 

time-varying AUC suggesting the discrimination of the models at 24 months using 

longitudinal data up until month 12 are still in the poor discrimination category. 

The calibration curves shown in Figure 31 for the joint models at month 12 using baseline 

longitudinal data suggest that Joint Model 1 and Joint Model 3 are well calibrated at this time 

point, whilst Joint Model 2 shows signs of deviation nearer the higher end of the 

probabilities, suggesting minor fitment issues. 

Figure 32 shows the calibration curves for all the joint models at month 24 using longitudinal 

data up until 12 months, with all models showing issues around fit nearer the higher 

probabilities suggesting issues with the fit of the models. All models performed worse in fit 

than at the previous time point of 12 months using baseline data. 

 

5.4.7 Dynamic Predictions from Joint Models 

Dynamic predictions from a randomly sampled patient at 4 points in time from Joint Model 1 

(chosen for its better conditional fit) can be seen in Figure 33. Showing both observed 

measurements of eGFR and predicted trajectory of eGFR on the left, and the corresponding 

predicted survival probability on the right. From these dynamic predictions it can be observed 

that the confidence intervals are narrower where there are more measurements closer to the 

predicted trajectory. The first two time points (month 0 and 1) the patient has the same 

predicted probability of survival of 0.85 at 24 months. However, this increases to a survival 

probability of 0.90 at 24 months at month 8, and whilst eGFR did decrease the patient had 

survived longer. The survival probability at 24 months at time point 17 increases to 0.96 once 

again likely to the patient surviving longer, as well as predicted trajectory of eGFR appears to 

be stabilising nearer the timepoint of interest. 
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5.4.8 External Validation 

Figure 34 and Figure 35 show the time-varying ROCs, AUCs and Brier scores for the joint 

models at 12 months using baseline longitudinal data and 24 months using longitudinal data 

up until time point 12 using data from the ATMOSPHERE trial respectively. For both time 

points there is no difference in time-varying ROCs or AUCs between the models. With the 

models having a time-varying AUC of 0.67 and Brier score of 0.10 at month 12 using 

baseline data and 0.65 and 0.09 respectively at month 24 using longitudinal data up until time 

point 12.  The time-varying ROCs only show minor differences between models. These 

results suggest that the model performance was worse at 24 months using longitudinal data at 

time point 12 than it was at month 12 using baseline data from the ATMOSPHERE 

validation dataset with both the validation and original data. The difference is only 0.02 for 

the time-varying AUC of Joint Model 1 and Joint Model 2 at both time points. Both between 

time points and with the original data at the same time points, but this is enough to move the 

models from the upper limit of the poor discrimination category and further away from the 

acceptable category. The difference in time-varying AUC for Joint Model 3 is 0.02 between 

time points and between the original data at month 24 using longitudinal data up until month 

12. However, the difference at month 12 using baseline data is 0.03 from the original data; 

enough to move the model from the acceptable discrimination category into the poor 

discrimination category. The Brier scores suggest the models perform slightly better at the 

second time point with a lower Brier score of 0.9 but this is only a minor improvement and is 

possibly due to the amount of data available, as both the time-varying AUC and calibration 

curves suggest a worse prognostic performance. The models have the same Brier score at 

month 12 using baseline data from ATMOSPHERE as the original data and a 0.01 decrease 

in time-varying Brier score at month 24 using data up until month 12, suggesting a worse 

discrimination at the second time point compared to the original data, and while the time-
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varying Brier score at the first time point may suggest the models perform equally with the 

original data and the ATMOSPHERE data, this is contraindicated by time-varying AUCs and 

calibration curves. The calibration curves at 12 and 24 months using the ATMOSPHERE 

data illustrated in Figure 36 and Figure 37 respectively show similar fit between the models. 

With Joint Model 2 appearing to have the best fit at 12 months, and minor differences at 

between the models at 24 months. However, they show a worse fit when compared to the 

original data. With the models showing signs of underprediction, which are exacerbated for 

the higher risk patients. 
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Figure 34 External Validation Time-Varying ROC Curves and Corresponding Time-Varying AUCs and Brier Scores for Joint Models using Longitudinal Data at 
Month 0 and Predicting Survival Probability at 12 Months using Data from the ATMOSPHERE Trial 
A.) Joint Model 1 – Value: External Validation 

Time-Varying ROC, AUC and Brier Score at 

Month 12 using Longitudinal Data at Month 0 

Data from the ATMOSPHERE Trial 

B.) Joint Model 2 - Value and Slope: External 

Validation Time-Varying ROC, AUC and 

Brier Score at Month 12 using Longitudinal 

Data at Month 0 Data from the 

ATMOSPHERE Trial 

C.) Joint Model 3 – Area: External Validation 

Time-Varying ROC, AUC and Brier Score at 

Month 12 using Longitudinal Data at Month 0 

Data from the ATMOSPHERE Trial 

   
Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.10 

Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.10 
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Figure 35 External Validation Time-Varying ROC Curves and Corresponding Time-Varying AUCs for Joint Models using Longitudinal Data up until Month 12 and 
Predicting Survival Probability at 24 Months 
A.) Joint Model 1 – Value: External Validation 

Time-Varying ROC, AUC, and Brier Score at 

Month 24 using Longitudinal Data until Month 

12 Data from the ATMOSPHERE Trial 

B.) Joint Model 2 - Value and Slope: External 

Validation Time-Varying ROC, AUC and 

Brier Score at Month 24 using Longitudinal 

Data until Month 12 Data from the 

ATMOSPHERE Trial 

C.) Joint Model 3 – Area: External Validation 

Time-Varying ROC, AUC and Brier Score at 

Month 24 using Longitudinal Data until Month 

12 Data from the ATMOSPHERE Trial 

   
Time-Varying AUC: 0.65 

Time-Varying Brier Score: 0.09 

Time-Varying AUC: 0.65 

Time-Varying Brier Score: 0.09 

Time-Varying AUC: 0.65 

Time-Varying Brier Score: 0.09 
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Figure 36 External Validation Calibration Curves for Joint Models at Month 12 using Longitudinal Data At Month 0 
A.) Joint Model 1 – Value: External Validation 

Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial  

 

 

B.) Joint Model 2 – Value and Slope: External 

Validation Calibration Curve at Month 12 

using Longitudinal Data at Month 0 Data from 

the ATMOSPHERE Trial  

C.) Joint Model 3 – Area: External Validation 

Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial  

   

 

Figure 37 External Validation Calibration Curves for Joint Models at Month 24 using Longitudinal Data up until Month 12 
A.) Joint Model 1 – Value: External Validation 

Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial  

 

 

B.) Joint Model 2 – Value and Slope: External 

Validation Calibration Curve at Month 12 

using Longitudinal Data at Month 0 Data from 

the ATMOSPHERE Trial  

 

C.) Joint Model 3 – Area: External Validation 

Calibration Curve at Month 12 using 

Longitudinal Data at Month 0 Data from the 

ATMOSPHERE Trial 
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Table 35 Hazard Ratio (95% CI) and P-Values from the Cox PH Models 

 Cox PH Last Measurement Extended Cox PH 

Variable HR (95% CI) P-Value  HR (95% CI) P-Value  

Treatment - LCZ  0.81 (0.75-0.89)  <0.001  0.82 (0.72-0.92)  0.001  

Age 1 (0.99-1)  0.516  1 (0.99-1)  0.468  

Sex – Male 1.29 (1.15-1.45)  <0.001  1.35 (1.15-1.59)  <0.001  

Region - Latin America  1.04 (0.9-1.2)  0.621  1.28 (1.05-1.55)  0.013  

Region - North American  0.93 (0.78-1.11)  0.437  0.75 (0.57-0.97)  0.032  

Region - Pacific Asia/Pacific and Other  1.15 (0.99-1.33)  0.068  1.15 (0.94-1.41)  0.166  

Region - Western Europe  0.88 (0.78-1)  0.056  0.84 (0.7-1)  0.05  

BMI 1.01 (1-1.02)  0.004  0.99 (0.98-1.01)  0.462  

Ejection Fraction % 0.98 (0.97-0.99)  <0.001  0.98 (0.97-0.99)  <0.001  

NYHA Class II 1.24 (0.97-1.59)  0.09  1.06 (0.77-1.46)  0.722  

NYHA Class III 1.58 (1.22-2.05)  0.001  1.6 (1.14-2.25)  0.006  

NYHA Class IV 1.92 (1.16-3.15)  0.011  1.13 (0.5-2.56)  0.762  

Diabetes - Yes  1.33 (1.21-1.46)  <0.001  1.16 (1.02-1.32)  0.023  

SBP 1 (0.99-1)  0.201  1 (0.99-1)  0.348  

Heart Rate  1.01 (1-1.01)  0.002  1 (1-1.01)  0.204  

History of Atrial fibrillation – Yes 1.11 (1-1.22)  0.04  1.02 (0.89-1.17)  0.77  

Ischemic Heart Failure - Yes 0.99 (0.88-1.12)  0.9  1.09 (0.92-1.29)  0.339  

Prior Hospitalisation for Heart Failure - Yes  1.38 (1.26-1.52)  <0.001  1.04 (0.92-1.18)  0.53  

Prior History of Myocardial Infarction - Yes  1.2 (1.07-1.36)  0.003  1.17 (0.99-1.37)  0.067  

Prior History of Stroke - Yes  1.11 (0.96-1.28)  0.173  1.1 (0.9-1.34)  0.362  

Log NT-ProBNP 1.5 (1.43-1.58)  <0.001  1.45 (1.36-1.55)  <0.001  

Log eGFR 0.59 (0.52-0.67)  <0.001  0.5 (0.42-0.61)  <0.001  
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Figure 38 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 12 
A.) Time-Varying ROC and AUC at 12 Months for 

the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 12 Months for 

the Extended Cox PH Model 

  
Time-Varying AUC at 12 Months: 0.67 Time-Varying AUC at 12 Months: 0.66 

 

Figure 39 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 24 
A.) Time-Varying ROC and AUC at 24 Months for 

the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 24 Months for 

the Extended Cox PH Model 

 
 

 

Time-Varying AUC at 24 Months: 0.67 Time-Varying AUC at 24 Months: 0.66 
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5.4.9 Comparative Analysis 

The HRs, 95% CIs and corresponding P-Values from the comparative Cox PH models are 

shown in Table 35. There are some differences between the models, with a minor difference 

of 0.01 for the treatment effect suggesting the models agree on a hazard of 0.81-0.82 times of 

the composite event for patients receiving the LCZ treatment, which is also in agreement with 

the joint models. Age per year increase in baseline age follows the joint models showing no 

significant effect. On the other hand, there are significant differences in region, with the 

Extended Cox PH model suggesting a significant association with patients, from the Latin 

America, North America, and Western Europe, whereas the Last Measurement Cox PH 

model suggests no significant differences in any region with Western Europe missing the 

significance cut off by 0.006. Both models differ from the joint models which suggest a 

significant difference from the Western Europe region, but the hazard ratios from the last 

measurement model for the region variables match more closely to those from the joint 

models. Again, there are differences between the two Cox PH models when it comes to the 

NYHA class variables, with differences in patients with NYHA class II and NYHA class IV 

of 0.18 and 0.79 respectively.  There are also differences in significance of NYHA class III 

and NYHA class IV with both classes being considered statistically significant in the Last 

Measurement Cox PH model, and not in the Extended Cox PH Model. As with region the 

HRs from the Last Measurement Cox PH model for the NYHA Class variables more closely 

match the joint models than the Extended Cox PH model. Along with the previously 

mentioned variables, diabetes, having a history of atrial fibrillation, having a history of prior 

hospitalisation for heart failure, and a prior history of myocardial infarction are all other 

variables with differences in both HR and statistical significance, With differences ranging 

from HRs from 0.03 for a prior history of myocardial infarction and 0.38 for prior history of 

heart failure and as with previous variables the Last Measurement Cox PH model matches 
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more closely to the joint models with regards to HRs than the Extended Cox PH model. 

However, there are minimal differences between the HRs of Log NT-ProBNP and Log eGFR 

of 0.05 and 0.09 respectively with no difference in P-Value. These differences and the fact 

the Last Measurement Cox PH model is more closely matched with the joint models, suggest 

there may be a loss of power with the added repeated measurements of log eGFR in the 

Extended Cox PH Model. The log eGFR HRs in both Cox PH models are higher than the 

joint models showing a difference between the Cox PH Models and the joint models of 

upwards of 0.08. 

 

The time-varying ROCs and AUCs shown in Figure 38 and Figure 39 show only a minor 

difference in AUC between the two Cox PH models at month 12 with the Extended Cox PH 

performing slightly worse with and AUC of 0.66 compared with 0.67 for the Last 

Measurement Cox PH model. This suggests only minimal differences in prognostic accuracy 

between the Cox PH models and between the two time points of the Extended Cox PH 

model. When compared with the joint models, the joint models perform better at month 12 

with an AUC for Joint Model 1 and Joint Model 3 of 0.69 and Joint Model 2 of 0.70 

compared to the 0.67 of the Last Measurement Cox PH Model and 0.66 of the Extended Cox 

PH model. However, the Last Measurement Cox PH Model outperforms all models at time 

point 12 with a time-varying AUC of 0.67 compared to 0.66 of all other models. This 

suggests that the joint models may be prognostically more accurate at 12 months than the 

Cox PH models, but that the Last Measurement Cox PH model may perform slightly better at 

24 months. 
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5.5 Discussion 

There is a need to not only explore the use of joint modelling for assessing the association of 

a biomarker and an endpoint. But to understand how and why joint models might be useful as 

prognostic models. As well as to explorer whether they can improve on the current 

methodology, considering the rise in usage and awareness of joint models. For this purpose, 

three joint models were fit using different parameterisations of the association parameter, 

using data from two clinical trials. Then compared against both themselves and two 

traditional models. 

 

All models suggest a statistically significant association between log eGFR and the 

composite event of cardiovascular death and first hospitalisation for heart failure. This further 

adds to the evidence base, suggesting a link between renal decline and adverse events in 

patients with heart failure. 

 

The HR for treatment effect from the survival component from the joint models as well as the 

Cox PH models were within 0.02 of the original trial, suggesting the models agree with the 

original findings that patients who were assigned to the LCZ treatment were significantly less 

likely to experience the composite outcome. However, as with Chapter 4 it was not possible 

to derive the overall treatment effect from the joint models because of the inclusion of the 

interaction of treatment and the natural cubic spline of time in the longitudinal component. 

Both Joint Model 2 and Joint Model 3 suggest nearly a 50% decrease in the hazard of the 

composite outcome per unit increase of log eGFR / unit increase in the area under the 

trajectory of log eGFR respectively. Joint Model 1 suggests a lesser decrease of 42% per unit 

increase in log eGFR. However, these values may not indicate the true treatment effect as 
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they cannot account for any treatment effect on the longitudinal component as previously 

discussed. 

 

Average trajectories of log eGFR shown in Figure 28 show little difference in the treatment 

effect for the average patient over time. However, due to the use of subject specific 

trajectories using random effects these results may vary between patients. 

 

The coefficients from the longitudinal component, show that all the clinically selected 

variables except for NYHA class are considered statistically significant with age, the 

presence of atrial fibrillation and diabetes having a statistically significant negative effect on 

log eGFR, whereas being male, or having a unit increase in SBP have a statistically 

significant positive effect on eGFR with only minor differences in coefficients between the 

joint models. 

 

The marginal and conditional performance metrics indicate that the joint models perform 

similarly to each other with Joint Model 2 performing best with regards to both marginal and 

conditional fit; with Joint Model 3 performing the worst out of the models, with respect to 

marginal fit and Joint Model 1 performing worse with respect of conditional fit.  

 

With respect to model prognostic performance, all models performed similarly except for 

Joint Model 2 at month 12 using baseline data in which it outperformed the other models 

with a time-varying AUC of 0.70. However, the model performed the same with respect to 

the time-varying Brier score, scoring 0.08 equal to the other models at this time point. Joint 

Model 1 and Joint Model 3 miss the cut-off for acceptable performance by 0.01 at month 12 

using baseline data and by 0.03 at month 24 using longitudinal data up until month 12. 
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However, the time-varying Brier scores at both time points and calibration curves (more so at 

the first time point) suggest that the models may perform better overall than the time-varying 

AUCs suggest. Joint Model 2, with a time-varying AUC of 0.70 at month 12 using baseline 

data enters the lower end of the acceptable category for prognosis. 

 

When validated with the ATMOSPHERE dataset the joint models, perform worse at both 

time points, with a decrease in time-varying AUC of 0.02 at both time points (month 12 using 

baseline data and month 24 using longitudinal data up until month 12), this is except for Joint 

Model 2 which saw a decrease in time-varying AUC of 0.03 at the first time point. However, 

the time-varying Brier score is the same at the first time point for all joint models (0.10) 

when using the ATMOSPHERE data to that of the original data. With an increase in time-

varying Brier score at the second time point of 0.01 from the original data. The calibration 

curves also suggest a slightly worse fit with the ATMOSPHERE validation data set at both 

time points. This validation suggests that overall, the models perform slightly worse with the 

validation data, which may suggest these models are less generalisable. 

 

The comparison with the Cox PH models suggests that the Cox PH model perform worse at 

12 months with a difference in AUC of 0.02 in all models except Joint Model 2 with a 

difference of 0.03. On the other hand, the Last Measurement Cox PH model performs better 

than the joint models by 0.01 at month 24, whereas the Extended Cox PH model performs 

equally with Joint Model 1 at month 12 but worse than Joint Model 2 and Joint Model 3. 

 

The Extended Cox PH exhibits issues with the HRs and P-Values when compared against 

both the Joint Models and the Last Measurement Cox PH Model. This may be explained by a 

lack of power due to the sheer number of repeat measurements, possibly suggesting the 
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Extended Cox PH model is not suited to larger datasets with respect to repeated 

measurements. 

 

While the joint models performed better than the Cox PH Models, the prognostic 

performance may not be considered adequate, especially at 24 months with a time-varying 

AUC of 0.66 on the original data. When considering the worse performance with external 

data, this may suggest that log eGFR could be a less suited biomarker for a prognostic joint 

model within heart failure, if the model is to be used at 24 months. The calibration with the 

ATMOSPHERE data suggests that the model does not perform well with this external 

dataset. While this may suggest the model is less generalisable, this may be an issue with the 

recoding of the treatment arms of the ATMOSPHERE trial and not the model itself, therefore 

this should be taken into consideration when interpreting these results.  This analysis may 

suggest that the extended Cox PH models may not perform as well with larger time-varying 

covariates as suggested by the differences in hazard ratios and significance levels of the 

covariates in the survival component. 

 

This analysis has some limitations. For example, the use of sample data breaks the intention 

to treat design of the original trial which has the potential to introduce bias. The use of 

randomised control trials while providing an accurate source of data, it limits the population 

to the original trials including the limitation of patients to those with HFrEF. This may limit 

the generalisability of the models; however, being a limitation of the data itself, this is out of 

the scope of the current research. The JMbayes2 package is still in development and has 

limited accuracy measures, making it difficult to compare the joint models against other 

models. There is also the issue that because of the way the time-varying ROCs and time-

varying AUCs are calculated, they may not be comparable to the time-varying ROCs and 
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AUCs of the Cox PH Models, meaning that they may be comparing apples to oranges. 

Finally, the calibration curves lack confidence intervals which may aid in interpretation of the 

curves. 
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Chapter 6 Multivariate Joint Modelling of NT-
ProBNP and eGFR, and a Composite Endpoint of 
Death from Cardiovascular Causes and First 
Hospitalisation for Heart Failure 

6.1 Foreword 

This chapter builds on both Chapter 4 and Chapter 5. As a result, this chapter is styled 

similarly and may repeat previous statements. This repetition has been included but rephrased 

to ensure this chapter can be read independently. 

 

6.2 Introduction 

The well documented interrelationships between patient characteristics and outcomes within 

the clinical syndrome of heart failure have been mentioned previously. For context, these 

characteristics can include biomarkers and physical characteristics. Along with this 

relationship, the rise in awareness as well as the use of joint modelling within the area of 

heart failure makes it informative to understand how joint models can be applied for 

prognosis in heart failure. As previously stated, joint models allow for the repeated 

measurements of covariates whilst accounting for correlation and measurement error and 

allowing dynamic and subject specific predictions [51], [52], [146]. The traditional joint 

models can be extended further to allow for multiple longitudinal responses. This may allow 

for more accurate predictions over traditional joint models. As modelling multiple 

longitudinal responses together through shared random effects, adds the potential to further 

account for individual variability and therefore improve predictions [52], [69], [146].  RCTs 

often collect multiple biomarkers and time-to-event information making them an excellent 

candidate for prognostic models using multivariate joint modelling. Except for the prognostic 

models developed in Chapter 4 and Chapter 5, there are no known prognostic models using 
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joint modelling or multivariate joint modelling within heart failure. This presents a novel 

opportunity to apply multivariate joint models to heart failure data and evaluate their value to 

the field. Given this opportunity, and the potential to produce better predictions, the aim of 

this chapter is to demonstrate the application of multivariate joint models with the purpose of 

prognostication within heart failure, and critically appraise them. To this end, I will use data 

from RCTs to compare the performance of multivariate joint models to the current 

recommended approaches. 

The specific aim of this chapter is therefore to evaluate the value a multivariate joint model 

can add to prognostic models compared to the current recommended approaches. 

 

6.3 Methods 

6.3.1 Data Source 

As mentioned in Chapter 3, data from the PARADIGM RCT was used. This was a double-

blind randomised control trial which assigned 8,399 patients to either LCZ696 at a dose of 

200mg twice daily or enalapril at a dose of 10mg twice daily. 

 

6.3.2 Statistical Analysis 

To address the previously mentioned aims, data needed to be analysed, processed, and 

cleaned prior to the fitting of the multivariate joint models. No known sample size calculation 

is available for multivariate joint models, so was not possible for this analysis. To fit the 

multivariate joint models the R Package JMbayes2 was used. This package is still in 

development and is based on two packages by the same author, JM and JMbayes. JMbayes2 

uses a fully parametric approach to fit joint models including multivariate joint models using 

MCMC sampling. While the package is still in development, it allows for more functional 
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forms, and calibration curves which were not present in the previous packages, with the latter 

being an important tool for measuring the performance of prognostic models [39], [40]. 

 

The multivariate extension of joint models is comprised of two components, the time-to-

event and the longitudinal component, the latter encompassing two (or more) outcomes. 

These components are fit individually (the longitudinal outcomes fitted independently of each 

other), and then are refitted into a joint model using the JM function from the package 

JMbayes2. 

 

6.3.3 Data Cleaning and Processing 

Data were analysed and cleaned prior to analysis as previously stated. Including the analysis 

of variables and their distributions to examine for outliers, duplicate and improbable values, 

and manipulation of categorical variables ensuring they were human readable and in the 

correct format. Alongside this, data for the functions to fit the sub models i.e., LMEs and Cox 

PH models needed to be in a specified format. This meant ensuring the same group of 

patients were provided to these functions, and merging baseline covariates with the repeated 

measurements. In addition to this, the various performance metrics required all covariates to 

be present in the dataset provided to the newdata argument of the functions. Finally, both 

longitudinal outcomes needed to be for the same patients at the same time points. 

 

6.3.4 Covariate Selection 

Both components and all three sub-models (the two longitudinal and one time-to-event) allow 

for covariates. For all three of these models, covariates were selected on a clinical basis for 

the same reasons as Chapter 4, using prior knowledge and in conjunction with my clinical 

supervisor. No identified clinically relevant covariate were missing from either dataset. 
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6.3.5 Missing Data 

Multivariate joint models, whilst allowing for missing longitudinal measurements, the 

JMbayes2 package requires all covariates to be present and the longitudinal measurements be 

at the same time point. As a result of these limitations, data were incomplete for 167 patients. 

As this is less than 2% of available patients, a complete case analysis was preferred, 

excluding those 167 patients with incomplete data. 

 

6.3.6 Longitudinal Sub Models 

JMbayes2 requires the longitudinal sub models to be either an LME fitted by the function 

‘lme’ from the ‘nlme’ package or a GLMM fitted by the function ‘mixed_model’ from the 

‘GLMMadaptive’ package. As both models used continuous outcomes, an LME was 

required. These LMEs contain a single outcome and allows for fixed and random effects. 

 

6.3.7 Longitudinal Sub Model One – NT-ProBNP 

The longitudinal component is broken up into two sub models, each of which is an LME. The 

first is for the NT-ProBNP biomarker, which will be the response variable. As previously 

stated, and illustrated in Chapter 1, NT-ProBNP is associated with clinical outcomes within 

heart failure. It has also been previously used in prognostic models including the models 

demonstrated in Chapter 1 [36], [42]. Due to the previously mentioned assumptions around 

normality and the wide range that NT-ProBNP is known to have, it was necessary to 

transform the measurements of NT-ProBNP; this was achieved by using the natural 

logarithm. 
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While all patients who underwent randomisation had at least one measurement of NT-

ProBNP, due to the trial design, 75% of patients had only a single measurement of NT-

ProBNP at the screening visit. The decision was made to use these measurements from the 

screening visit and carry them forward to the randomisation visit in the interest of 

maximising data. 

 

6.3.7.1 Time (Fixed effects) 

The response variable of an LME is allowed to be unevenly spaced with respect to time. 

However, as stated previously in this chapter the ‘jm’ function used to fit multivariate joint 

models requires both longitudinal measurements to be coded at the same point in time. While 

measurements of NT-ProBNP and eGFR were collected at scheduled visit times, the actual 

dates of the measurements varied between the two biomarkers; as such, when the data was 

merged and there were differences in sample dates, one date had to be chosen over the other. 

While scheduled visit dates could have been used, as Chapter 4 and Chapter 5 both used 

sample dates, for continuity one sample date was chosen over the other and used.  

 

For the purpose of this analysis, the sample date from the measurements of eGFR were 

chosen. This sample date was in the form of months (28-day calendar month) since 

randomisation. 

 

Similar to Chapter 4, some values of log NT-ProBNP, were observed to be non-linear over 

time and for this reason, time was included using a natural cubic spline, using the ‘ns’ 

function from the ‘splines’ package. The boundary knots where manually specified using 

quantile values to avoid convergence issues, again likely the result of the imbalance of data at 

the start of the study. 
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6.3.7.2 Covariates (Remaining Fixed Effects) 

Covariates for the LMEs were specified using prior clinical knowledge. These variables 

included age, atrial fibrillation, BMI, and treatment effect. Due to the use of screening values, 

treatment effect was included as both the main effect of treatment and the effect of treatment 

over time. By default, an intercept term was included in the LME, an intercept term is the 

mean predicted value of log NT-ProBNP while all other variables are held constant at zero. 

 

6.3.7.3 Random Effects 

Both random intercepts and random slopes (including the non-linear effect of time described 

previously) were included as random effects in the LME.  

 

6.3.7.4 Model Formulation 

The model formulation for the log NT-ProBNP shown in Equation 17. 

 

6.3.7.5 Model fitting 

The LME was fit in the same way as Chapter 4, with the response variable (log NT-ProBNP), 

restricted natural cubic spline as specified using the ns function, interaction of this spline with 

treatment and the remaining specified covariates to the fixed parameter of the lme function. 

Equation 17 Formulation of the LME sub model for log NT-ProBNP 

{
  
 

  
 

log𝑁𝑇𝑃𝑟𝑜𝐵𝑁𝑃𝑖𝑗 =  𝛽0 + 𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) + 𝛽2𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) + 𝛽3𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)

+ 𝛽4𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗
+ 𝛽5𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗) 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 + 𝛽6𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 + 𝛽7𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗

+ 𝛽8𝐴𝑔𝑒𝑖𝑗  +  𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖𝑗  +  𝛽10𝐵𝑀𝐼𝑖𝑗
+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖𝑗 ,

𝑏𝑖  ~ Ν(0,𝐷), 𝜀𝑖𝑗  ~ 𝑁(0, 𝜎
2)

 

 

Where 𝛽0 is the intercept term, the remaining 𝛽𝑛 are the fixed effects including the natural cubic spline as a function 𝑓𝑛 of the specimen time.  

𝑏𝑖𝑛 are the random effects including both the random intercept 𝑏𝑖0 and the 𝑏𝑖𝑛𝑓𝑛 representing the random slopes incorporating the natural 

cubic spline. Where the random effects are assumed to be normally distributed with a mean of 0 with a variance-covariance matrix 𝐷.  𝜀𝑖𝑗 

represents the error term, which is assumed to have a mean of 0 and a variance of 𝜎2. 
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The random slopes and intercepts were also specified using the random parameter of the 

function, and the optimiser set to the same general-purpose optimization method based on 

Nelder–Mead, quasi-Newton and conjugate-gradient algorithms, optim using the lmeControl 

argument [139]. 

 

6.3.8 Longitudinal Sub Model Two – eGFR 

 

For the same reasons as Chapter 5, eGFR was chosen for the second sub model, in which 

eGFR was used as the response variable. These reasons include the well documented 

relationship with declining renal function in heart failure. As with Chapter 5, the values of 

eGFR were observed to be skewed and for this reason eGFR was transformed using the 

natural logarithm. This transformation was necessary to satisfy the normality assumption of 

the random effects [52]. 

 

6.3.8.1 Time (Fixed Effect) 

Due to the limitations of the JMbayes2 packages, as previously stated the measurements of 

each longitudinal process need to be at the same time points. For this reason, sample date was 

chosen, and time modelled in the form of month from randomisation (28-day calendar 

month). While this limitation is present, there is still the option of modelling time within the 

sub model using natural cubic splines. As some of the longitudinal profiles of log eGFR 

showed signs of non-linearity over time, time within the LME was modelled non-linearly 

using the previously mentioned ‘ns’ function and as with the previous model, the boundary 

knots were manually specified using quantile values. 
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6.3.8.2 Covariates (Remaining Fixed Effects) 

As with the previous model, the remaining covariates were selected based on prior clinical 

knowledge and included treatment effect, age, sex, atrial fibrillation, SBP, NYHA and the 

presence of diabetes. Only the effect of treatment over time (modelled using the natural cubic 

spline) was included in the sub model due to randomisation, as is standard practice [69]. As 

with the earlier model, by default an intercept term was included, which is the predicted mean 

when all other covariates are zero. 

 

6.3.8.3 Random Effects 

Like that of the previous model, the random effects included a random intercept, and random 

slopes which included the non-linear effect of time as modelled by the restricted cubic spline. 

 

6.3.8.4 Model Formulation 

The model formulation for this sub model is noted in Equation 18. 

 

 

Equation 18 Formulation of the LME sub model for log eGFR 

{
  
 

  
 

log 𝑒𝐺𝐹𝑅𝑖𝑗 =  𝛽0 +  𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
) +  𝛽

2
𝑓
2
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
) +  𝛽

3
𝑓
3
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
)

+ 𝛽
4
𝑓
1
(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒

𝑖𝑗
) 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 +  𝛽5𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗

)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗 +  𝛽6𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖𝑗

+ 𝛽
7
𝐴𝑔𝑒𝑖𝑗 +  𝛽8𝑆𝑒𝑥𝑖𝑗 +  𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖𝑗 +  𝛽10𝑆𝐵𝑃𝑖𝑗 +  𝛽11𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖𝑗

𝛽
12
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖𝑗 +  𝛽13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖𝑗 + 𝛽

14
𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖𝑗

+ 𝑏𝑖0 +  𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗
+  𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝜀𝑖𝑗 ,

𝑏𝑖 ~ Ν(0, 𝐷), 𝜀𝑖𝑗 ~ 𝑁(0, 𝜎
2) }

  
 

  
 

 

 

The intercept term is represented by 𝛽0 and the remaining fixed effects represented by 𝛽𝑛 with the natural cubic spline being represented by the 

function 𝑓𝑛. The random effects represented by 𝑏𝑖𝑛 incorporating the random intercept 𝑏𝑖0 and random slopes 𝑏𝑖𝑛𝑓𝑛 (including the natural cubic 

spline). These random effects are assumed to be normally distributed with a mean 0 and a variance-covariance matrix 𝐷. The error term 

represented by 𝜀𝑖𝑗 is assumed to have a mean of 0 with a variance of 𝜎2. 
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6.3.8.5 Model Fitting 

To fit the second LME, the same process was used as described in Chapter 5. The response 

variable of log eGFR, previously specified covariates, restricted natural cubic spline (fit using 

the ns function), and its interaction with treatment being passed to the fixed parameter of the 

lme function. Along with the random intercepts and slopes being passed to the random 

parameter, and the setting of the general-purpose optimization method based on Nelder–

Mead, quasi-Newton and conjugate-gradient algorithms optim using the lmeContol parameter 

to aid convergence. 

 

6.3.9 Survival Sub Model 

The survival sub model needs to be either a Cox PH model or a semiparametric survival 

model fitted by the functions ‘coxph’ and ‘survreg’ of the `survival` package respectively. 

The survival sub model for this analysis is comprised of a Cox PH model, chosen to avoid 

misspecification of the baseline hazard function. 

 

6.3.9.1 Covariates 

The covariates were based on prior clinical knowledge and were the same as the original 

trials’ survival analysis. These covariates included age, BMI, ejection fraction, heart rate, 

NYHA classification, region, sex, SBP, treatment, whether the patient had diabetes, whether 

the patient had a history of atrial fibrillation, hospitalisation for heart failure, myocardial 

infarction, or stroke. 

 

6.3.9.2 Event (End Point) 

The endpoint was a composite outcome of death for cardiovascular causes and first 

hospitalisation for heart failure. This was also the primary outcome of the original trial. 
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6.3.9.3 Model Formulation 

The formula for the survival sub model is noted in Equation 19. 

Equation 19 Formular of the Survival Sub model 
ℎ𝑖(𝑡) = ℎ0(𝑡) exp ( 𝛾1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖 + 𝛾4𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 +

 𝛾5𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 + 𝛾6𝑅𝑒𝑔𝑖𝑜𝑛 𝐴𝑠𝑖𝑎, 𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝑎𝑛𝑑 𝑂𝑡ℎ𝑒𝑟 𝑖 + 𝛾7𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒𝑖 + 𝛾8𝐵𝑀𝐼𝑖 +

𝛾9𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾10𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖 + 𝛾13𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖 +

 𝛾14𝑆𝐵𝑃𝑖 + 𝛾15𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒𝑖 + 𝛾16𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖 + 𝛾17𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖 +

 𝛾18𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖  +  𝛾19𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖  +  𝛾20𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠𝑖  

Where ℎ𝑖(𝑡) represents the hazard of the composite event at time point 𝑡.  ℎ0(𝑡) represents the baseline hazard and the 

covariates are represented by 𝛾𝑛. 

 

6.3.9.4 Model Fitting 

Like Chapter 4 and Chapter 5 the Cox PH model was fit using time to the composite end 

point or at the point the patient was censored in months. This was passed along with an 

indicated of whether the patient experienced the composite event and the remaining 

covariates using the formula argument of the coxph function from the survival package. 

 

6.3.10 Joint Models 

While joint modelling allows for different alpha parameterisations; because the longitudinal 

outcomes for both eGFR and NT-ProBNP have been modelled in Chapter 4 and Chapter 5 

respectively, for this analysis the functional forms were chosen based on the best performing 

functional forms from the previous analyses. Performance was judged on the performance 

metrics for conditional fit, as conditional fit is more likely produce a better prognostic model, 

especially if the goal was personalised predictions. This meant that only one joint model was 

fit within this analysis, including both the value and slope parameters for log NT-ProBNP 

and log eGFR. These parameters have been previously defined but briefly, the value 

parameter(s) measures the association of the value of each longitudinal outcome and the 
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hazard of the composite event, and the slope parameter measures the association of the rate of 

change of each longitudinal outcome. 

 

The joint model was fit by passing the two LMEs and the Cox PH models to the ‘jm’ function 

and specifying the functional forms using the ‘functional_forms’ argument of the function. 

The joint model was fit using a piecewise baseline hazard function, with quadratic B-splines 

and 10 baseline hazard segments. 

The formula for the multivariate joint model is shown in Equation 20. 
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Equation 20 Formula for the multivariate joint model 

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝑦𝑖1(𝑡) =  𝑚𝑖1(𝑡) + 𝜀𝑖1 (𝑡) 
= 𝛽0 + 𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽2𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽3𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)

+ 𝛽4𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍

+ 𝛽5𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽6𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽7𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 
+ 𝛽8𝐴𝑔𝑒 + 𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠 + 𝛽10𝐵𝑀𝐼 

+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝜀𝑖1,      𝜀𝑖1(𝑡)~ 𝑁(0, 𝜎
2),

 
𝑦𝑖2(𝑡) =  𝑚𝑖2(𝑡) + 𝜀𝑖2 (𝑡) 

= 𝛽0 + 𝛽1𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽2𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒) + 𝛽3𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)

+ 𝛽4𝑓1(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽5𝑓2(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 + 𝛽6𝑓3(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒)𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍 
+ 𝛽7𝐴𝑔𝑒 + 𝛽8𝑆𝑒𝑥 + 𝛽9𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠 + 𝛽10𝐵𝑀𝐼 

+ 𝛽11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼 + 𝛽12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼 +  𝛽13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉

+ 𝑏𝑖0 + 𝑏𝑖1𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖2𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝑏𝑖3𝑓1𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑇𝑖𝑚𝑒 + 𝜀𝑖 ,      𝜀𝑖2(𝑡)~ 𝑁(0, 𝜎
2),

 

  ℎ𝑖(𝑡)  =  ℎ0(𝑡) 𝑒𝑥𝑝
{
 
 

 
 

 𝛾1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐿𝐶𝑍𝑖 +  𝛾2𝐴𝑔𝑒𝑖 + 𝛾3𝑀𝑎𝑙𝑒𝑖 + 𝛾4𝑅𝑒𝑔𝑖𝑜𝑛 𝐿𝑎𝑡𝑖𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖 + 𝛾5𝑅𝑒𝑔𝑖𝑜𝑛 𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑖
+ 𝛾7𝑅𝑒𝑔𝑖𝑜𝑛 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐸𝑢𝑟𝑜𝑝𝑒𝑖 + 𝛾8𝐵𝑀𝐼𝑖 + 𝛾9𝐿𝑜𝑔 𝑁𝑇-𝑃𝑟𝑜𝐵𝑁𝑃𝑖 + 𝛾10𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖

+ 𝛾11𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝑖 + 𝛾12𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼𝐼𝑖 + 𝛾13𝑁𝑌𝐻𝐴 𝐶𝑙𝑎𝑠𝑠 𝐼𝑉𝑖
+ 𝛾14𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑌𝑒𝑠𝑖 + 𝛾15𝑆𝐵𝑃𝑖 + 𝛾16𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒𝑖 + 𝛾17𝐴𝑡𝑟𝑖𝑎𝑙 𝐹𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖 + 𝛾18𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖
+ 𝛾19𝑃𝑟𝑖𝑜𝑟 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐻𝑒𝑎𝑟𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑌𝑒𝑠𝑖  +  𝛾20𝑃𝑟𝑖𝑜𝑟 𝑀𝑖𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐼𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛 𝑌𝑒𝑠𝑖  +  𝛾21𝑃𝑟𝑖𝑜𝑟 𝑆𝑡𝑟𝑜𝑘𝑒 𝑌𝑒𝑠𝑖

+ 𝛼𝑚𝑖1(𝑡) + 𝛼2𝑚𝑖1
′ (𝑡) +  𝛼𝑚𝑖2(𝑡) + 𝛼2𝑚𝑖1

′ (𝑡) }
 
 

 
 

,

𝑙𝑜𝑔 ℎ0(𝑡) =  𝛾ℎ0, 0 +  ∑𝛾ℎ0,𝑞 𝐵𝑞(𝑡, 𝑣),

𝑄

𝑞=0

 

Where 𝑦𝑖1(𝑡) and 𝑦𝑖2(𝑡) are the longitudinal outcomes at time point 𝑡, composed of the corresponding true and unobserved values of the makers, NT-ProBNP and eGFR at time point 𝑡 

(𝑚𝑖1(𝑡), 𝑚𝑖2(𝑡)) and their corresponding error terms 𝜀𝑖1 (𝑡)  and 𝜀𝑖2 (𝑡) ,each longitudinal outcome having an intercept term 𝛽0 and corresponding coefficients for the fixed effects 𝛽𝑛 . The 

natural cubic splines represented as by the functions 𝑓𝑛. The error terms for both longitudinal outcomes are assumed to be normally distributed with a mean 0 and variance 𝜎2. The random 

effects in the longitudinal outcomes are represented by 𝑏𝑖0 for the random intercept and 𝑏𝑖𝑛𝑓𝑛 for the random slopes incorporating the natural cubic spline of time as the functions 𝑓𝑛. The 

hazard of the composite event being represented by ℎ𝑖(𝑡), comprising of the baseline hazard function ℎ0(𝑡) and coefficients for the covariates  𝛾𝑛. The baseline hazard function being 

comprised of a piecewise hazard function, with quadratic B-splines, with 10 baseline hazard sections. In which 𝐵𝑞(𝑡, 𝑣) corresponds to the 𝑞-th basis function of the B-spline with knots 𝑣1-

 𝑣10 and 𝛾ℎ0 being a vector of spline coefficients. 
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6.3.10.1 Model Fitting 

The multivariate joint model was fit using the jm function from the jmBayes2 package. To fit 

the model, both longitudinal outcomes fit as the earlier described LMEs were passed to the 

Mixed_objects parameter. The Cox PH model was passed to the Surv_object argument and 

the parameterisation of each of the longitudinal outcomes in the survival outcome was passed 

using the functional_forms argument. 

 

6.3.11 Model Performance: Prognostic Accuracy, Fit and 
Calibration 

Taking advantage of the functions available in the joint modelling package JMbayes2, this 

analysis uses time-varying AUCs and ROCs using the functions tvAUC and tvROC 

respectively along with the time-varying Brier score and time-varying calibration curves 

produced by the functions tvBrier and calibration_plot respectively. Although previously 

discussed, briefly, these metrics extend on the traditional metrics providing time-dependent 

metrics by using longitudinal data up until a given time point and then predicting the survival 

outcome at a specified time-point [69], [142]. These metrics are interpreted similar to the 

original metrics with the exception that they are assessed at specified time points. These time 

points were defined as month 12 using longitudinal data at baseline and month 24 using 

longitudinal data up until month 12. 

 

The marginal (population level) and conditional (subject specific) fit were compared using 

the LPML and DIC, the LPML being similar to the log likelihood of a frequentist model, a 

larger value indicating a better fit, the DIC being similar to any other information criterion, a 

smaller value indicating a better fit. 
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6.3.12 External Validation 

As previously stated in Chapter 3, external validation was conducted using data from the 

ATMOSPHERE RCT. This trial randomised 7016 patients to receive either enalapril at dose 

of 5 or 10mg twice daily, aliskiren at a dose of 150mg once a day or a combination of both 

enalapril (at 5 or 10mg twice daily) and aliskiren (at a dose of 150mg once a day). The study 

was conducted in a double-blind double dummy fashion. 

 

Data from the ATMOSPHERE RCT was required to be formatted in the same way as the data 

from the original trial, to achieve this, both biomarkers NT-ProBNP and eGFR were log 

transformed. Time was modelled in the same fashion, specimen time in months from 

randomisation (28 calendar month). The treatment arms were recoded to both enalapril and 

LCZ, the former containing the enalapril arm and the latter the remaining arms. 

 

Evaluation of the models using the data from the ATMOSPHERE RCT was achieved by 

comparison of the time-varying metrics (AUC, ROC, Brier score, and calibration curves). 

These metrics were calculated using the fitted multivariate joint model specifying the 

ATMOSPHERE data into the newdata argument of the time-varying metric functions. As 

with the original data, these scores were calculated at 12 months using baseline data, and 24 

months using data up until month 12. These metrics were then compared against those 

obtained using the original data. 

 

6.3.13 Comparative Analysis 

As a comparative analysis, the joint models were compared against the current standard for 

prognostic models (Cox PH models). To achieve this, two Cox PH models were fit, one using 

the LOCF method and one using an extended Cox PH model. These two models were then 
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compared against the joint model using time-varying AUCs and ROCs, obtained from the 

risksetROC function from the risksetROC package (which uses the formula defined by 

Heagerty et al., [142], [143]) along with a comparison of the hazard ratios and Cis. 

 

Descriptive statistics for the distributions of continuous variables are described as medians 

(Q1, Q3), and described as percentages for categorical variables. The time dependent 

association parameters from the joint model are expressed as an HR with corresponding 95% 

CI, indicating the hazard of the composite event per unit increase of the corresponding 

longitudinal marker (Log NT-ProBNP / Log eGFR) at any timepoint. Likewise, the 

association slope parameter is expressed as a HR and 95% CI, indicating the hazard of the 

composite event per unit increase in slope of the corresponding longitudinal marker (log NT-

ProBNP / log eGFR) at any time point. 

 

P-Values below the threshold of 0.05 are considered statistically significant. All statistical 

analysis was conducted using R Version 4.0 [144] and JMbayes2 package version 0.1-81 

[114]. 
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6.4 Results 

6.4.1 Baseline Characteristics 

Baseline characteristics of the included 8232 patients are shown in Table 36. With 22% of 

patients being female and having a median age of 64 years. As reported in the original trial, 

the differences between the arms for the distributions of baseline characteristics are minimal.  

Figure 40 illustrates the baseline measurements of both biomarkers by treatment. To assist in 

showing the co-variation in the two biomarkers, loess curves for each treatment group have 

been added to the scatterplot. The visual inspection and the Pearson correlation coefficient of 

-0.09 indicate minimal correlation between the two biomarkers at baseline.  
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Table 36 Baseline Characteristics of Included Patients 

Characteristic 
LCZ 

(N=4096) 
Enalapril 
(N=4136) 

Overall 
(N=8232) 

Age, years 

Median [Q1, Q3] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 64.0 [57.0, 72.0] 

Sex 

Female 862 (21.0%) 937 (22.7%) 1799 (21.9%) 

Male 3234 (79.0%) 3199 (77.3%) 6433 (78.1%) 

Region 

Central Europe 1371 (33.5%) 1409 (34.1%) 2780 (33.8%) 

Latin America 691 (16.9%) 697 (16.9%) 1388 (16.9%) 

North American 304 (7.4%) 288 (7.0%) 592 (7.2%) 

Pacific Asia/Pacific and Other 735 (17.9%) 732 (17.7%) 1467 (17.8%) 

Western Europe 995 (24.3%) 1010 (24.4%) 2005 (24.4%) 

BMI kg/m² Ejection Fraction % 

Median [Q1, Q3] 27.5 [24.4, 31.2] 27.5 [24.5, 31.2] 27.5 [24.4, 31.2] 

Ejection Fraction % 

Median [Q1, Q3] 30.0 [25.0, 34.0] 30.0 [25.0, 34.3] 30.0 [25.0, 34.0] 

NYHA Class 

Class II 178 (4.3%) 206 (5.0%) 384 (4.7%) 

Class II 2936 (71.7%) 2869 (69.4%) 5805 (70.5%) 

Class III 952 (23.2%) 1034 (25.0%) 1986 (24.1%) 

Class IV 30 (0.7%) 27 (0.7%) 57 (0.7%) 

Diabetes 

No 2672 (65.2%) 2699 (65.3%) 5371 (65.2%) 

Yes 1424 (34.8%) 1437 (34.7%) 2861 (34.8%) 

SBP mmHg 

Median [Q1, Q3] 120 [110, 130] 120 [110, 130] 120 [110, 130] 

Heart Rate beats per minute 

Median [Q1, Q3] 71.0 [64.0, 80.0] 72.0 [64.0, 80.0] 71.0 [64.0, 80.0] 

Prior History of Atrial Fibrillation 

No 2611 (63.7%) 2590 (62.6%) 5201 (63.2%) 

Yes 1485 (36.3%) 1546 (37.4%) 3031 (36.8%) 

Ischemic Heart Failure 

No 1646 (40.2%) 1652 (39.9%) 3298 (40.1%) 

Yes 2450 (59.8%) 2484 (60.1%) 4934 (59.9%) 
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Characteristic 
LCZ 

(N=4096) 
Enalapril 
(N=4136) 

Overall 
(N=8232) 

Prior History of Hospitalisation for Heart Failure 

No 1537 (37.5%) 1520 (36.8%) 3057 (37.1%) 

Yes 2559 (62.5%) 2616 (63.2%) 5175 (62.9%) 

Prior History of Myocardial Infarction 

No 2320 (56.6%) 2350 (56.8%) 4670 (56.7%) 

Yes 1776 (43.4%) 1786 (43.2%) 3562 (43.3%) 

Prior History of Stroke 

No 3746 (91.5%) 3770 (91.2%) 7516 (91.3%) 

Yes 350 (8.5%) 366 (8.8%) 716 (8.7%) 

NT-ProBNP 

Median [Q1, Q3] 1420 [776, 2880] 1450 [790, 2930] 
1440 [782, 

2910] 

eGFR 

Median [Q1, Q3] 66.0 [54.0, 79.0] 66.0 [53.0, 79.0] 66.0 [54.0, 79.0] 

 

 

Figure 40 Baseline NT-ProBNP against eGFR by Treatment with Loess Curves and Pearson 
Correlation Coefficient 

 
Pearson Correlation Coefficent: -0.09 
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6.4.2 Number of Measurements of NT-ProBNP and eGFR 

Table 37 shows the number of repeat measurements of NT-ProBNP and eGFR. With the 

majority of patients having a single measurement (75%). With a minimum number of one 

measurement and a maximum of 4 measurements. 

 

Table 37 Number of Repeat Measurements of NT-ProBNP and eGFR for Included Patients 

 

 

6.4.3 Longitudinal Profiles of NT-ProBNP and eGFR 

The longitudinal profiles of log NT-ProBNP and log eGFR for 42 randomly sampled patients 

(stratified by number of measurements) are illustrated in Figure 41 and Figure 42. 

 

6.4.3.1 NT-ProBNP 

Some of the patients’ longitudinal profiles of NT-ProBNP shown in Figure 41, such as 

0333_00014, show signs on non-linearity of (log) NT-ProBNP over time. As this is on a log 

scale, the non-linearity would be amplified on the original scale. The figure also shows the 

wide range of NT-ProBNP taking into consideration the log scale. 

 

6.4.3.2 eGFR 

Like those of (log) NT-ProBNP, the longitudinal profiles of (log) eGFR over time shown in 

Figure 42, illustrate that some patients, such as 1122_00023, exhibit signs of non-linearity 

and this would also be amplified on the original scale.  

1 2 3 4 

6174 (75%) 215 (3%) 857 (10%) 977 (12%) 



218 

 

 

 

Figure 41 Longitudinal Profile of log NT-ProBNP for 42 Randomly Sampled Patients 
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Figure 42 Longitudinal Profile of log eGFR for 42 Randomly Sampled Patients 
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6.4.4 Longitudinal Outcomes from Joint Model 

Parameter estimates for all meaningfully interpretable variables from the longitudinal 

outcomes from the joint model are shown in Table 38 and Table 39. Variables which 

included a natural cubic spline have been omitted as they are not directly interpretable 

instead, they are visually represented in Figure 43 and Figure 44. 

 

6.4.4.1 NT-ProBNP 

Illustrated in Table 38 are the meaningfully interpretable parameters, all the parameter 

estimates for the log NT-ProBNP longitudinal outcome are considered statistically 

significant. Both treatment with LCZ and BMI have a negative effect on log NT-ProBNP 

while age and the presence of atrial fibrillation have a positive effect on log NT-ProBNP. 

Whilst significant, all the parameter estimates show only small effects on log NT-ProBNP 

with age having the smallest effect of 0.003 and treatment having the largest effect of -0.262. 

However it should be noted that time is represented in months and NT-ProBNP is being 

represented on a log scale, both of which could influence the effect size. While parameters 

which included natural splines are not able to be meaningfully interpreted as they represent 

parts of a function. They can be graphically illustrated such as in Figure 43 which shows the 

average predicted trajectories of log NT-ProBNP for each treatment group for the average 

patient (using median and mode characteristics) from the multivariate joint model, along with 

the observed trajectories of NT-ProBNP. This figure suggests that the LCZ treatment group 

had a lower log NT-ProBNP on average, with a change in log NT-ProBNP at month 3 for 

both treatments, but with a lack of certainty with overlapping 95% CIs after month eight. 
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6.4.4.2 eGFR 

Meaningfully interpretable parameters are illustrated in Table 39, all parameter estimates for 

the log eGFR longitudinal outcome apart from NYHA class are considered statistically 

significant, with age, the presence of atrial fibrillation and the presence of diabetes having a 

negative effect on log eGFR. Male sex and SBP have a positive effect on eGFR. As with the 

log NT-ProBNP longitudinal outcome, the effect size for all variables is quite small, with the 

male sex having the highest effect size of 0.041 and SBP having the smallest 0.001, but once 

again like the NT-ProBNP outcome, eGFR is also represented on a log scale and time is 

represented in months which could have also affected the parameter effect sizes. As with the 

NT-ProBNP longitudinal outcome, the parameters with natural cubic splines cannot be 

meaningfully interpreted. Figure 44 however, shows the trajectories of log eGFR for the 

average patient (predicted using the median and mode characteristics) in each treatment 

group from the multivariate joint model, along with the observed trajectories, scaled for 

readability. This figure suggests that on average there was a decrease in eGFR until month 

five and then a slight increase in eGFR. However, the trajectories along with the overlapping 

95% CIs suggest a lack of difference in treatment effect on these average trajectories.  

While the trajectories of log NT-ProBNP appear similar to those from Figure 15 of Chapter 4, 

the trajectories of log eGFR appear to differ from Figure 28 of Chapter 5, possibly as a result 

of the removal of values of log eGFR to satisfy the need to have values of both biomarkers at 

the same time. 

  



222 

 

Table 38 Parameter Estimates (95% CI) from The Longitudinal Outcome for NT-ProBNP from 
The Joint Model for Meaningfully Interpretable Variables 

Variable Estimate (95% CI) P-Value 

Treatment – LCZ -0.262 (-0.397 - -0.135) < 0.001 

Age 0.003 (0.001 - 0.005) 0.016  

Atrial Fibrillation – Yes 0.258 (0.202 – 0.312) < 0.001 

BMI -0.045 (-0.050 - -0.040) < 0.001 

The parameter estimates for variables which include the natural cubic spline have been 
omitted as they are not directly interpretable but instead are illustrated by Figure 43. 

 

Table 39 Parameter Estimates (95% CI) from The Longitudinal Outcome for eGFR from The 
Joint Model for Meaningfully Interpretable Variables 

Variable Estimate (95% CI) P-Value 

Age -0.010 (-0.011 - -0.009) < 0.001 

Sex - Male 0.041 (0.023 – 0.059) < 0.001 

Atrial Fibrillation - Yes -0.033 (-0.049 - -0.017) < 0.001 

SBP 0.001 (0.001 – 0.002) < 0.001 

NYHA Class II -0.002 (-0.034 – 0.033) 0.889  

NYHA Class III -0.003 (-0.041 – 0.035) 0.872 

NYHA Class IV 0.020 (-0.078 - 0.117) 0.676  

Diabetes - Yes -0.037 (-0.052 - -0.021) < 0.001 

The parameter estimates for variables which include the natural cubic spline have been omitted as 
they are not directly interpretable but instead are illustrated by Figure 44. 
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Figure 43 Average Trajectories of log NT-ProBNP by Treatment Group from the multivariate 
joint model with Observed Values and Trajectories on NT-ProBNP 

 

Figure 44 Average Trajectories of log eGFR by treatment group from the multivariate joint 
model with Observed Values and Trajectories Scaled for Readability. 
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6.4.5 Survival Outcomes from Joint Model 

 

Table 40 illustrates the HRs with 95% CIs and P-Values for the variables of the survival 

component of the multivariate joint model. From the variables, only male sex, BMI, ejection 

fraction (%), NYHA Classes II-IV, heart rate, prior hospitalisation for heart failure, value of 

log NT-ProBNP and value of log eGFR meet the threshold to be considered statistically 

significant. Which suggests that the remaining variables may not be statistically significant. 

From the four alpha parameters (value of log NT-ProBNP, slope of NT-ProBNP, value of log 

eGFR and slope of log eGFR), both the slope of NT-ProBNP and slope of NT-ProBNP fail to 

meet the significance threshold. This may suggest that the slope parameter of NT-ProBNP 

may not be important to the model, however it has been previously shown in Chapter 5, to 

provide a better conditional fit in joint models with the same data. Similarly, the slope 

parameter of log eGFR is also considered to be statistically insignificant, however this may 

be due to the limited number of repeated measurements of log eGFR in this model. The HR 

for the value parameter for the log NT-ProBNP longitudinal outcome suggests that per unit 

increase in log NT-ProBNP, the hazard of the composite event increases by 1.68 times.  The 

HR for the value parameter for the log eGFR longitudinal outcome suggests that per unit 

increase in log eGFR the hazard of the composite event decreases by 0.73 times. 

 

The HR for treatment effect suggests that there is no significant treatment effect with LCZ, 

however this is likely due to treatment being mediated through the NT-ProBNP longitudinal 

outcome. 
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Table 40 Hazard Ratios (95% CI) for Variables in the Multivariate Joint Model 

Variable HR (95% CI) P-Value 

Treatment - LCZ  0.94 (0.77 - 1.14) 0.497  

Age 1 (0.99 - 1.01) 0.722  

Sex - Male 1.29 (1.13 - 1.48) < 0.000  

Region - Latin America  1 (0.85 - 1.18) 0.998  

Region - North American  1.07 (0.88 - 1.31) 0.525  

Region - Pacific Asia/Pacific and Other  1.12 (0.95 - 1.32) 0.175  

Region - Western Europe  0.94 (0.81 - 1.08) 0.367  

BMI 1.02 (1 - 1.03) 0.008  

Ejection Fraction % 0.98 (0.97 - 0.99) < 0.000  

NYHA Class 2  1.3 (1 - 1.71) 0.052  

NYHA Class 3  1.69 (1.29 - 2.25) < 0.000  

NYHA Class 4  1.93 (1.1 - 3.31) 0.024  

Diabetes - Yes  1.42 (1.28 - 1.57) < 0.000  

SBP 1 (0.99 - 1) 0.186  

Heart Rate  1.01 (1 - 1.01) 0.001  

History of Atrial fibrillation – Yes 1.1 (0.98 - 1.24) 0.105  

Ischemic Heart Failure - Yes 1 (0.87 - 1.16) 0.998  

Prior Hospitalisation for Heart Failure - Yes  1.45 (1.3 - 1.63) < 0.000  

Prior History of Myocardial Infarction - Yes  1.19 (1.04 - 1.37) 0.013  

Prior History of Stroke - Yes  1.13 (0.96 - 1.34) 0.157  

Value of Log NT-ProBNP 1.68 (1.54 - 1.85) < 0.000  

Slope of Log NT-ProBNP 1.58 (0.73 - 3.31) 0.232  

Value of Log eGFR 0.73 (0.55 - 0.98) 0.036  

Slope of Log eGFR 0.03 (< 0.00 - 97.71) 0.339 

 

 

Table 41 Marginal and Conditional Performance Statistics from the Multivariate Joint Model 

Statistic Marginal Conditional 

DIC 40506.50 83133.98 

LPML -24769.74 -51799.76 

 
 

6.4.6 Joint Model Performance 

Table 41 Shows the marginal and condition performance statistics, which suggest that for 

both DIC and LPML statistics the marginal fit is better. 
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Figure 45 Multivariate Joint Model Time-Varying ROC, AUC and Brier Score at Month 12 
using Longitudinal Data at Month 0 

 
Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 

 

Figure 46 Multivariate Joint Model Time-Varying ROC, AUC and Brier Score at Month 24 
Using Longitudinal Data up until Month 12 

 
Time-Varying AUC: 0.67 

Time-Varying Brier Score: 0.08 
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Figure 47 Multivariate Joint Model Calibration Curve at Month 12 using Longitudinal Data at 
Month 0 

 

Figure 48 Multivariate Joint Model Calibration Curve at Month 24 using Longitudinal Data 
up until Month 12 
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Figure 49 Dynamic Predictions from Multivariate Joint Model for a Randomly Sampled Patient with Measurements of eGFR and NT-ProBNP, and Corresponding Survival Probability 
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A.) Observation 1, eGFR and NT-ProBNP Measurements at Month 0 with 

Corresponding Survival Probability 

 
Survival at 24 months: 0.73 (0.87 – 0.44) 
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B.) Observation 3, eGFR and NT-ProBNP Measurements at Months 0, 0.5 and 

1 with Corresponding Survival Probability 

 
Survival at 24 months: 0.80 (0.90 – 0.64) 
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C.) Observation 5, eGFR and NT-ProBNP Measurements at Months 0, 0.5, 1, 1.5, 

and 3 with Corresponding Survival Probability 

 
Survival at 24 months: 0.85 (0.92 – 0.73) 
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D.) Observation 6, eGFR and NT-ProBNP Measurements at Months 0, 0.5, 1, 

1.5, 3 and 8 with Corresponding Survival Probability 

 
Survival at 24 months: 0.88 (0.94 – 0.78) 

eGFR and NT-ProBNP are represented by the blue lines on the left with 95% CI, the dashed line represents the last known point the patient was alive, and the 

red line indicates survival probability with 95% CI. 
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Figure 45 and Figure 46 show the time-varying ROCs, AUCs and Brier scores for the 

multivariate joint model at month 12 using baseline data and month 12 using longitudinal 

data up until month 24 respectively. The time-varying AUCs suggest that the model 

performs better at month 12 (using baseline longitudinal data) than it does at month 24 

(using longitudinal data until month 12), with time-varying AUCs of 0.69 and 0.67 

respectively. However, the time-varying Brier score suggests the opposite with the model 

performing better at month 12 (using baseline longitudinal data) than it does at month 12 

(using longitudinal data until month 12) with time-varying Brier scores of 0.10 and 0.08 

respectively. 

 

The time-varying calibration curves for both time points suggest that the model is well 

calibrated with only minor deviation towards the predicted probabilities at the higher end 

of the scale at the second time point. 

 

6.4.7 Dynamic Predictions from Joint Model 

Figure 49 illustrates the dynamic predictions from a randomly sampled patient for four 

time points from the multivariate joint model. These predictions show the observed 

measurements of eGFR and NT-ProBNP with the predicted trajectories from the model, 

along with the corresponding survival curves. Overall survival at 24 months increased with 

more measurements, however, this may be due to the patient surviving longer. Overall, the 

95% CIs for the survival curves are wide with the narrowest being at observation 5, this 

may be explained by the closeness of the observed measurements to the predicted 

trajectory and the closeness of the measurements themselves. 
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Figure 50 Multivariate Joint Model - External Validation Time-Varying ROC, AUC and Brier 
Score at Month 12 using Longitudinal Data at Month 0 Data from the ATMOSPHERE Trial 

 
Time-Varying AUC: 0.69 

Time-Varying Brier Score: 0.10 

 

Figure 51 Multivariate Joint Model - External Validation Time-Varying ROC, AUC, and Brier 
Score at Month 24 using Longitudinal Data until Month 12 Data from the ATMOSPHERE 
Trial 

 
Time-Varying AUC: 0.71 

Time-Varying Brier Score: 0.90 

 



231 

 

Figure 52 Multivariate Joint Model - External Validation Calibration Curve at Month 12 
using Longitudinal Data at Month 0 Data from the ATMOSPHERE Trial 

 
 

Figure 53 Multivariate Joint Model External Validation Calibration Curve at Month 12 
using Longitudinal Data at Month 0 Data from the ATMOSPHERE Trial 
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6.4.8 External Validation 

The time-varying AUC’s ROC’s and Brier scores for the multivariate joint model at month 

12 (using baseline longitudinal data) and month 12 (using longitudinal data up until time 

point 12) are shown in Figure 50 and Figure 51 respectively. The time-varying AUC’s 

suggest the model performs the same with the ATMOSPHERE data at the month 12 (using 

baseline longitudinal data), however the time-varying AUC at month 12 (using 

longitudinal data up until time point 12) suggests that the model performs better with the 

ATMOSPHERE data than it does with the original data suggesting 0.05 point increase in 

time-varying AUC, moving the model into the acceptable category for discrimination with 

a score of 0.71. However, the time-varying Brier score and calibration curves suggest that 

the calibration is worse with the ATMOSPHERE data, with the calibration curves showing 

more deviation towards the observed probabilities with a greater deviation in the middle of 

the curve. While the time-varying Brier score remains the same at month 12 (using 

baseline data), it shows an increase of 0.01 to 0.09 at time point 24 (using longitudinal data 

up until time point 12), suggesting a small drop in overall performance.
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Table 42 Hazard Ratio (95% CI) and P-Values from the Cox PH Models 
 

  Cox PH Last Measurement Extended Cox PH 

Variable HR (95% CI) P-Value  HR (95% CI) P-Value  

Treatment - LCZ  0.83 (0.76-0.91)  <0.001  0.83 (0.76-0.91)  <0.001  

Age 1 (1-1)  0.967  1 (1-1)  0.99  

Sex – Male 1.29 (1.15-1.45)  <0.001  1.29 (1.14-1.45)  <0.001  

Region - Latin America  0.99 (0.85-1.15)  0.871  1.02 (0.88-1.19)  0.762  

Region - North American  1.03 (0.86-1.22)  0.779  0.97 (0.81-1.17)  0.779  

Region - Pacific Asia/Pacific and Other  1.08 (0.93-1.25)  0.31  1.12 (0.97-1.31)  0.132  

Region - Western Europe  0.92 (0.81-1.05)  0.2  0.9 (0.79-1.03)  0.129  

BMI 1.02 (1.01-1.03)  0.001  1.02 (1.01-1.03)  0.001  

Ejection Fraction % 0.98 (0.97-0.99)  <0.001  0.98 (0.97-0.99)  <0.001  

NYHA Class II 1.23 (0.96-1.57)  0.1  1.19 (0.93-1.53)  0.162  

NYHA Class III 1.53 (1.18-1.98)  0.001  1.5 (1.16-1.95)  0.002  

NYHA Class IV 1.79 (1.08-2.94)  0.023  1.87 (1.13-3.08)  0.014  

Diabetes - Yes  1.36 (1.24-1.5)  <0.001  1.36 (1.24-1.49)  <0.001  

SBP 1 (1-1)  0.287  1 (0.99-1)  0.169  

Heart Rate  1.01 (1-1.01)  0.002  1.01 (1-1.01)  0.005  

History of Atrial fibrillation – Yes 1.09 (0.99-1.2)  0.093  1.07 (0.97-1.19)  0.177  

Ischemic Heart Failure – Yes 1.01 (0.89-1.14)  0.888  0.99 (0.87-1.13)  0.915  

Prior Hospitalisation for Heart Failure - Yes  1.37 (1.25-1.51)  <0.001  1.35 (1.22-1.49)  <0.001  

Prior History of Myocardial Infarction - Yes  1.2 (1.06-1.36)  0.003  1.21 (1.07-1.37)  0.002  

Prior History of Stroke - Yes  1.09 (0.94-1.26)  0.238  1.09 (0.94-1.26)  0.263  

Log NT-ProBNP 1.6 (1.53-1.68)  <0.001  1.61 (1.54-1.69)  <0.001  

Log eGFR 0.74 (0.63-0.87)  <0.001  0.73 (0.62-0.87)  <0.001  
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Figure 54 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 12 
A.) Time-Varying ROC and AUC at 12 Months 

for the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 12 Months for the 

Extended Cox PH Model 

  
Time-Varying AUC at 12 Months: 0.67 Time-Varying AUC at 12 Months: 0.67 

Figure 55 Time-Varying ROCs and Time-Varying AUCs for the Cox PH Models at Month 24 
A.) Time-Varying ROC and AUC at 24 Months 

for the Cox PH Last Measurement Model 

B.) Time-Varying ROC and AUC at 24 Months for the 

Extended Cox PH Model 

  
Time-Varying AUC at 24 Months: 0.67 Time-Varying AUC at 24 Months: 0.67 
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6.4.9 Comparative Analysis 

Table 42 shows the HRs (95%CI) and P-Values for both Cox PH models, illustrating 

differences between both the Cox PH model and the multivariate joint model. Between the 

two Cox PH models, there are marginal differences in both P-Values and HRs for the region 

parameters. However, all parameters suggest region is statistically insignificant in all models.  

 

There are also differences between the two Cox PH models with regards to NYHA, the 

largest being NYHA Class IV, with the extended Cox PH model being closer to the 

multivariate joint model. However, there is no difference in significance between any of the 

models. 

 

Finally, there is a difference of 0.07 and 0.06 when comparing Log NT-ProBNP of the last 

measurement Cox PH and the extended Cox PH model against the multivariate value of Log 

NT-ProBNP respectively, suggesting a difference between the models. However similar to 

Chapter 4 there is a significant treatment effect for both Cox PH models and not in the 

multivariate models, which again may suggest that the treatment effect is mediated by NT-

ProBNP. 

 

The time-varying ROCs and corresponding AUCs shown in Figure 54 suggest that there is no 

difference in prognostic performance between the two Cox PH models at either time point, 

with and time-varying AUC at both of 0.67. Comparison with the multivariate model suggest 

the Cox PH models perform worse at 12 months with an AUC of 0.69 for the multivariate 

model. However, the AUC at 24 month is the same for all models. 
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6.5 Discussion 

With the rise in both awareness and usage of joint modelling, along with the need to explore 

joint modelling for the purpose of assessing the association of biomarkers and an endpoint, 

there is also a need to understand how joint modelling may be useful in the context of 

prognostic models, and if it can improve on the current methodology. To this end, a 

multivariate joint model was fit and using data from two clinical trials, this model was 

evaluated and compared against traditional models fit with the same data. 

 

The multivariate JM suggests that there is a significant association between both log NT-

ProBNP and log eGFR and the primary composite endpoint of cardiovascular death and first 

hospitalisation for heart failure. This further adds to the evidence base, suggesting a link 

between both biomarkers and adverse events for patients with heart failure. 

 

Like Chapter 4, the HR for the treatment effect on the survival outcome suggests that there is 

no significant direct treatment effect on survival, suggesting instead that again the treatment 

effect is being mediated through NT-ProBNP. However, due to the inclusion of natural 

splines and the interaction of them with treatment, it is not possible to determine the overall 

treatment effect. 

 

The multivariate model showed that both the value parameters for log NT-ProBNP and log 

eGFR were considered statistically significant, suggesting that per unit increase in log NT-

ProBNP the hazard of the composite outcome increases by 1.68 times (P-Value <0.000), and 

per unit increase in log eGFR the hazard of the composite event decreases by 27%. It should 

be noted that due to the possibility that the treatment effect is being mediated through NT-
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ProBNP, the treatment effect on Log NT-ProBNP should be considered when interpreting 

this parameter. 

 

As with Chapter 4, the slope parameter of log NT-ProBNP does not meet the significance 

threshold, however as previously reported in Chapter 4, this parameter improved the subject 

specific fit, so while it may not be significant at a population level, it may add value for 

subject specific predictions. Similarly, the slope of eGFR is measurable at two decimal 

places, unlike Chapter 5. However, it is considered insignificant and has wide confidence 

intervals, as previously stated likely due to the limited repeated measurements of log eGFR in 

this model, compared to the previous chapter. 

 

The average longitudinal trajectories illustrated in Figure 43 and Figure 44 suggest that for 

the average patient (using mode and median baseline characteristics) there is a difference in 

treatment effect over time on log NT-ProBNP. However, no such difference is illustrated 

with log eGFR. Whilst no difference between the treatment groups for log eGFR are 

illustrated, the predicted profile of log eGFR is shown still illustrated over time. It should be 

noted however that as the multivariate model is based around random effects, and as such the 

trajectories may vary by patient. 

 

All directly interpretable parameters in the log NT-ProBNP longitudinal outcome are 

considered statistically significant, with treatment and BMI having a negative effect and age 

and the presence of atrial fibrillation having a positive effect on log NT-ProBNP. These 

results are supported by prior research, BMI has previously been shown to have an inverse 

relationship with NT-ProBNP in patients with chronic heart failure, while both age and atrial 

fibrillation have been shown to have positive relationship with NT-ProBNP [151]. While 
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these effects are small < 0.1, it should be noted that NT-ProBNP is represented on a log scale 

and that time is represented in months, and this should be taken into consideration when 

interpreting the coefficients.  

 

In the log eGFR longitudinal outcome, all parameters but those for the NYHA Classes are 

considered statistically significant. With age, the presence of atrial fibrillation and diabetes 

having a negative effect, and the male sex and SBP having a positive effect. These results are 

supported by the literature as age, the presence of atrial fibrillation and diabetes have all been 

previously shown to have an inverse relationship with eGFR. While a positive relationship 

between the male sex, SBP and eGFR has also been previously demonstrated [34], [152]–

[156]. As with the log NT-ProBNP outcome, the effect sizes are small < 0.1 however eGFR 

is represented on a log scale and time as months, so this need to be considered when 

interpreting the coefficients. It should also be noted that higher eGFR values are considered 

better so a negative effect of a coefficient may be positive for the patient. 

 

For both DIC and LPML the model suggest that the marginal (population level) fit is better 

than the conditional (subject specific) fit. This may indicate that the model may not be as 

suitable for subject specific predictions as it is for population level coefficients and HRs, as a 

result the model may be more suitable to measuring the association of the biomarkers and the 

composite outcome. 

 

The time-varying AUCs suggest that the model performs better with regards to prognostic fit 

at 12 months (using baseline data) than it does at 24 months (using longitudinal data at 12 

months), however the time-varying Brier score suggest the model performs better at 24 

months when calibration is taken into consideration. The time-varying AUCs at both time 
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points suggest that the model missed the threshold for acceptable performance when assessed 

at these two points using the respective longitudinal data. 

 

External calibration with the ATMOSPHERE data suggests similar prognostic performance 

to when using the original data at month 12 (using baseline data) when assessing the time-

varying AUC with the model, again missing the threshold for acceptable performance. 

However, the model with the ATMOSPHERE data shows an improvement over the original 

data at month 12 (using longitudinal data at month 12) of 0.5, moving the model into the 

acceptable range for prognostic performance. However, when calibration is also considered 

using the time-varying Brier score, the model shows a decrease in performance of 0.1 in Brier 

score at the 24-month time point.  The performance with external data suggests that the 

model may provide a good fit for the validation data and that the data may be a better fit at 24 

months (using longitudinal data at month 12) than the original data, possibly due to the 

amount of data available, however it may simply be due to the selection of patients used in 

the predictions used to calculate the time-varying AUCs. 

 

The comparative analysis suggests that the joint model performed better than the Cox PH 

models at month 12 and similarly at month 24 with respect to time-varying AUC, suggesting 

that the joint models may be better with regards to performance at the first time point. While 

the time-varying AUCs use the same underlying methodology there are differences between 

the way the time-varying AUCs are calculated, meaning they should be interpreted with 

caution. 

 

Altogether, the multivariate joint model performed adequately, and could potentially provide 

a good prognostic model. The multivariate model has the advantage of allowing for multiple 
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longitudinal responses and both subject specific and dynamic predictions over the current 

standard Cox PH models as well as allowing for repeated measurements, whilst handling the 

special properties of biomarkers. However, when compared to the two univariate joint models 

of Chapter 4 and Chapter 5 the multivariate models show little or no advantage, with respect 

to time-vary AUCs and Brier scores, suggesting with this data, there may not be an advantage 

of the multivariate joint model, possibly due to the limitations around the repeated 

measurements. It should also be acknowledged that both these advantages, are based on the 

premise of random effects which are latent and therefore unobservable. This needs to be 

considered when determining the suitability of the methodology of joint models as capturing 

these random effects relies on the correct specification of the longitudinal process as 

described in Chapter 1. Incorrect specification of the longitudinal process may result in 

incorrect specification of the random effects therefore affecting the validity of the subject 

specific predictions that rely on the random effects, leading to less accurate predictions for 

new patients. 

 

There are some limitations of this analysis, including that of the use of the screening values 

of NT-ProBNP as well as the need to have the biomarkers taken at the same date. In this 

analysis, while the visits were scheduled for the specified dates, the actual samples of both 

biomarkers were not always collected on the same date and due to this limitation, required the 

sample dates to be joint using the prespecified date and use of one of the sample dates over 

the other. There is also an in balance of data at the beginning of the longitudinal data, paired 

with the use of screening values of NT-ProBNP at time zero; this could potentially introduce 

bias. It should also be noted that the inclusion and exclusion criteria of the trial may not be 

completely generalisable and limits the model to HFrEF, however this is a limitation of the 

data itself and therefore outside the scope of this research. While the results of the 
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multivariate joint model are close to those of the LOCF Cox PH model, the JMbayes2 

package whilst based on previous packages (JM and JMbayes) is still in development and 

therefore this analysis is limited to the functionality of the package and its subsequent 

accuracy measures. On this point, it can be noted that the calibration curves do not include 

confidence intervals which would further enhance the interpretation of calibration. 
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Chapter 7 Real-World Application of Prognostic 

Joint Models Illustrated Using a Web Application 

 

7.1 Introduction 

In Chapter 4, Chapter 5 and Chapter 6 joint models were fit for the purpose of evaluating the 

suitability of joint models as prognostic models. However, one key factor in prognostic 

modelling is the usability of the models in real-world application such as clinical practice. 

While Chapter 4, Chapter 5 and Chapter 6  showed how the joint models performed and the 

various outputs of the joint models, these are only useful in prognosis if they can be easily 

generated for new patients. However, generation of these outputs typically requires 

knowledge of the R code and packages. As illustrated in Chapter 1 prognostic models are 

often accompanied by user-friendly interfaces such as web applications, which allow the 

models to be used in real world application. In the case of prognostic modelling, real world 

application could be that of a clinician / patient consultation. The choice to use R for the joint 

model presents a unique opportunity to make use of R Shiny, an add-on to R to easily create 

responsive web applications with minimal effort (requiring less code), whilst allowing for the 

use of R functionality within the application. Therefore, the purpose of the chapter is to 

illustrate how a prognostic joint model could be used in real-world application through the 

use of an R Shiny web application. 
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7.2 Methods 

7.2.1 Choice of Joint Model 

For ease of use of the web application a single joint model was selected to be used in the web 

application. To do this the models were considered on their reported performance 

characteristics. Both joint model 2 from Chapter 4 (log NT-ProBNP and a composite 

endpoint of death from cardiovascular causes and first hospitalisation for heart failure using 

the value and slope of log NT-ProBNP as alpha parameters) and the multivariate joint model 

from Chapter 6 (log NT-ProBNP and Log eGFR, and a composite endpoint of death from 

cardiovascular causes and first hospitalisation for heart failure using the value and slope of 

log NT-ProBNP, and value of log eGFR as alpha parameters) performed similarly with 

regards to time-varying AUC and time-varying Brier score. Either of these two models would 

have been suitable, however the multivariate model requires an additional biomarker to be 

collected repeatedly at the same time point, and for this reason joint model 2 from Chapter 4 

was chosen for use in the web application. While this model was chosen for this application, 

it should be noted that further evaluation of the models may be prudent prior to the use of this 

application in clinical practice. 

 

7.2.2 R Shiny Application 

An R Shiny application requires two components, a User Interface (UI) and a Server, these 

components form the basis of the application, with the UI providing the functionality that the 

user will interact with and the server component containing the code that interacts with the 

data and model. 
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7.2.2.1 UI 

The user interface needs to contain all the user inputs and outputs. For the chosen joint 

model, the user input was separated into two categories, one for baseline measurements and 

one for repeat measurements. These categories form a tab within the application; these tabs 

are essentially pages within the application that users can interact with. Both tabs contain the 

same output, a dynamically generated figure showing the repeated measurements of log NT-

ProBNP on one side and survival probability on the other, this figure is like the dynamic 

predictions from Figure 20, Figure 33, and Figure 49, with the exception that there is only a 

single graph containing all time points, which is dynamically updated dependent on the user 

input instead of multiple graphs for each measurement point that have been added. Along 

with this graph each tab also contains a point estimate of the survival probability at a user-

selected time point. The UI also contains a third tab named ‘debug’ which simply shows the 

user the formatted data. 

 

7.2.2.2 Server 

The server contains the code for the processing of the user input and for interacting with the 

joint model. The server code makes use of R shiny reactive functionality (which allows the 

user interface to be updated automatically based on the user input, without the need to press 

any additional button e.g., an update button). The server code contains processing and 

formatting scripts to take the user input and make it readable by the R function of the 

JMbayes2 package. The code makes use of the predict and plot functions in JMbayes2, 

formatting the user input into the correct format for the new data argument of the predict 

function. 
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7.3 Results 

Figure 56, Figure 57 and Figure 58 show screenshots of the three tabs of the web application, 

demonstrating its functionality. 
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Figure 56 Web Application User Interface for Baseline Measurements Tab 
A.) Baseline Measurement Tab of Web Application with Male Sex Selected, Showing Survival Probability 

Point Estimate at 24 Months 

 
B.) Baseline Measurement Tab of Web Application with Female Sex Selected, Showing Survival 

Probability Point Estimate at 24 Months 

 
All other variables are set to the mode / median values with the exception of treatment which has been preset to Treatment with 

Sacubitril / Valsartan: Yes, the first measurement of NT-ProBNP (Baseline) has been set to the median value for NT-ProBNP 

(1308) as in Figure 57A. 
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Figure 57 Web Application User Interface for the Repeat Measurements Tab 
A.) Repeat Measurement Tab with Single Measurement of NT-ProBNP Set to Median Measurement 

Showing Survival Probability Point Estimate at 24 Months 

 
B.) Repeat Measurements Tab with 3 Measurements of NT-ProBNP Set to Median and Random 

Measurements Showing Survival Probability Point Estimate at 24 Months 

 
The baseline characteristics are the same as selected in Figure 56A 
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Figure 58 Web Application User Interface for the Debug Tab 

 
Repeat and baseline measurements are the same as Figure 56A and Figure 57B. 
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7.3.1 Baseline Measurements Tab 

Figure 56A illustrates the user interface for the baseline measurements tab of the web 

application. From this figure it can be seen how all the baseline measurements can be set 

by the user. The web application fills in default values for the baseline measurements 

based on median and mode values from the original dataset (PARADIGM); except for 

Treatment with Sacubitril / Valsartan which is set to ‘yes’ by default. This tab also shows a 

graph for the dynamic prediction. This graph has been previously described but briefly 

contains the measurements of NT-ProBNP on the left and corresponding survival curve on 

the right with 95% CI, the dashed line is the last point the patient was known to be alive 

(last measurement of NT-ProBNP). This graph is updated whenever the user changes any 

of the baseline measurements. It includes by default one measurement of NT-ProBNP at 

month 0 (considered to be baseline), this measurement can be seen in Figure 57A as being 

set to the median NT-ProBNP value of 1308. Accompanying the dynamic prediction graph 

is a point estimate of the survival probability, which has been set to 24 months. 

 

Figure 56B shows the same tab, but with sex changed from Male to Female; with this 

change you can see the change in survival probability at 24 months has changed from 

0.858 (0.907 – 0.802) to 0.886 (0.926 -0.841) a change of 2.8%, this illustrates a change at 

baseline between males and females with the same measurement of NT-ProBNP. 

 

Figure 57A illustrates the repeat measurements tab of the web application. With one 

measurement prefilled, based on the median NT-ProBNP value from the original 

(PARADIGM) data. This tab has a selector where the user can change the number of 

observations, depending on the number of measurements available. It also contains the 

same dynamic prediction graph from the baseline measurements tab and survival 
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probability point estimate which has been set to 24 months and has the same point estimate 

as Figure 56A of 0.858 (0.907 – 0.802). 

 

Figure 57B shows the repeat measurements tab with two additional randomly selected 

measurements, by default however, the spacing between measurements is set to 3 months 

but can be adjusted by the user. In this figure the dynamic prediction graph has been 

updated to reflect the additional measurements. The left side of the graph now contains the 

observed measurements as blue dots and the predicted trajectory from the joint model with 

the corresponding 95% CIs. It can also be seen that the point estimate for survival 

probability at 24 months has been updated to 0.888 (0.916 – 0.860) an increase on the 

previous value of 3%. Possibly due to the patient surviving longer and the relatively stable 

profile of NT-ProBNP. 

 

Figure 58 shows the debug tab, the purpose of which is to allow the user to confirm that 

the data the web application is using is correct and has not been corrupted during 

formatting. 

 

7.4 Discussion 

This chapter has explored how joint models can be translated into real-world applications 

using a web application. 

The web application allows for a user such as a clinician to obtain dynamic predictions of 

survival (the probability of death by cardiovascular causes and first hospitalisation for 

heart failure) based on the data available, including baseline characteristics and repeat 

measurements of NT-ProBNP. Alongside this, it adds the potential to see what future 

survival probabilities may be, say, if a patient’s baseline characteristics and/or the 

trajectory of NT-ProBNP were to change, making it a powerful tool. 
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The dynamic and responsive nature of the web application makes it both user-friendly, and 

potentially more valuable than current web-based prognostic tools. 

 

While this application may not be suitable for use by individual patients without a 

clinician, due to the requirement of access to biomarker measurements, if the models were 

fitted with ambulatory measurements rather than biomarkers which rely on blood tests, the 

application use could be expanded to use by the public.  

 

This application has some limitations: while it is possible to deploy the application to the 

web, it relies on the pre-fit joint model, meaning the model needs to be correctly specified 

and validated for the tool to be of use. It also means the tool has the same limitations as the 

original joint model, detailed in Chapter 4. These limitations include the use of screening 

values as baseline values when fitting the joint model, as well as the assumptions made 

around the random effects, and how the joint model bases its predictions on these effects 

which are unobserved.  

 

While the application is user-friendly the clinician would need to know how to interpret the 

results and effectively convey them to the patient; while the graph is simple, an extension 

of this web application would be a user guide and possibly a better legend for the graph, 

however this is out of the scope of this PhD.  

 

Furthermore, this application would need to be tested thoroughly prior to release for use in 

clinical practice. This may entail alpha testing by clinical practitioners to ensure it is fit for 

purpose, and any feedback received would be used to improve the application. Then the 

application could be beta tested within a clinician / patient environment and once again 

feedback would be used to improve the application. 
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Overall, the web application performs as it should, adding a powerful tool to translate 

prognostic joint models into clinical practice. It would also be simple to update or change 

the joint model so that the application could be improved or adapted for other uses. 
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Chapter 8 Discussion 

8.1 Foreword 

The purpose of this chapter is to discuss the work of this thesis and provide a conclusion. 

While many of the previous chapters have provided their own discussions, this chapter will 

link these discussions together whilst also answering the research questions ‘how can joint 

modelling improve on the methodology of the current prognostic models within heart 

failure’ and ‘can prognostic models fitted with joint modelling outperform current standard 

prognostic models within heart failure?’.  

 

8.2 Overview of chapters 

8.2.1 Chapter 2 Joint Modelling of longitudinal processes and 
time-to-event outcomes in heart failure: systematic review 
and exemplar examining the relationship between serum 
digoxin levels and mortality.  

Chapter 2 Introduces how joint modelling has been applied within heart failure, through 

means of a systematic review, paired with and exemplar. It provides the reader with both 

the current uses of joint modelling and introduces how joint modelling can be applied to 

data from patients with heart failure. This chapter helps to provide background and helps to 

answer the aim to explore the use of joint modelling in heart failure. This chapter 

highlighted the gaps around the application of joint models in heart failure, with specific 

regards to the lack of prognostic models within heart failure which use joint modelling and 

the number of studies which used data from RCTs. The exemplar illustrates how joint 

modelling can improve on alternative models such as Cox PH models using LOCF and 

Extended Cox PH with respect to fit (as measured by a discrimination index). 
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8.2.2 Chapter 3 Data Source 

The purpose of Chapter 3 is to introduce the data sources used in the remaining joint 

models of this thesis. The data, obtained from two RCTs (PARADIGM and 

ATMOSPHERE) is summarised, and used in the later chapters in the fitting of joint 

models with the purpose of exploring how these joint models can improve on the existing 

current standard of prognostic models.  

 

8.2.3 Chapter 4 Joint Modelling of NT-ProBNP and a Composite 
Endpoint of Death from Cardiovascular Causes and First 
Hospitalisation for Heart Failure 

Chapter 4 introduces the first joint models that were fit with the intention of evaluating the 

models as prognostic models within this thesis. Whilst also comparing them to alternative 

more traditional models including the current standard (Cox PH models). The models used 

data from the PARADIGM RCT. Using the common and well documented biomarker NT-

ProBNP and a composite endpoint of negative outcomes in heart failure, death from 

cardiovascular causes and first hospitalisation for heart failure. Three joint models where 

fit, using different parameterisations of log NT-ProBNP in the survival component. These 

models were then compared against the current standard of prognostic model the LOCF 

Cox PH model and alternative to joint models the extended Cox PH model. Finally, the 

models were validated using data from the ATMOSPHERE clinical trial to see how well 

the models performed with external data. 

 

The joint models suggest that the value and slope parameterisation of log NT-ProBNP 

performed the best with regards to subject specific predictions according to the available 

summary measures. While the joint models missed the threshold for being considered 

‘acceptable’ with respect to prognostic performance at both 12 and 24 months, they appear 

to have outperformed the Cox PH models at 12 months. Validation of the joint models with 
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an external data set shows that the models performed better at month 24 than with the 

original data. Whilst also meeting the threshold for ‘acceptable performance’ at this time 

point. 

 

Overall, this chapter highlights how joint models can be applied as prognostic models in 

heart failure using a well-established biomarker and common adverse outcomes. Whilst 

also illustrating how joint models compare to the current standard for prognostic models, 

and an alternative to joint modelling. 

 

8.2.4 Chapter 5 Joint Modelling of eGFR and a Composite 
Endpoint of Death from Cardiovascular Causes and First 
Hospitalisation for Heart Failure 

In Chapter 5 a further three joint models were fit, once again using data from the 

PARADIGM clinical trial, and using an alternative biomarker eGFR. A surrogate for renal 

function to which there is a documented link between renal decline and adverse outcomes 

in heart failure. The same endpoint, a composite of cardiovascular death and first 

hospitalisation for heart failure was used, again as it is indicative of adverse outcomes in 

heart failure. Each of the joint models had a different representation of log eGFR in the 

survival outcome. Like Chapter 4 the joint models were compared against both the current 

standard of prognostic model the LOCF Cox PH model and an alternative to joint 

modelling the Extended Cox PH model. The models were also validated with external data 

from the ATMOSPHERE RCT. 

 

The joint models suggest an association of log eGFR and the composite endpoint of death 

from cardiovascular causes and first hospitalisation for heart failure. The comparison of the 

joint models with different representations of log eGFR in the survival component, 

suggests the model which included both the value and slope of log eGFR performed best 



256 

 

with regards to both marginal and conditional fit based on the available summary 

measures. However, there appeared to be issues surrounding the model which included 

both the value and slope of log eGFR with the slope parameter being estimated at <0.001. 

These issues may indicate that the slope parameter may either be too small to estimate or 

may have been incorrectly estimated, in which case this may affect the validity of the 

predictions of the model. 

 

The comparison of the joint models against the Cox PH models, suggest that the joint 

models are more like the LOCF Cox PH model than the Extended Cox PH models, and 

may suggest that due to the large number of repeat measurements, the Extended Cox PH 

model may have had issues estimating the other covariates. 

 

With regards to prognostic performance, the joint model containing the value and slope 

parameterisation of log eGFR performed better than the other joint models at 12 months, 

meeting the acceptable threshold of 0.70 with regards to the time-varying AUC. However, 

all joint models performed equally at 24 months missing the acceptable threshold for the 

time-varying AUC. The comparison against the LOCF Cox PH model and the Extended 

Cox PH model suggest that the joint models outperform these models at both time points. 

The external validation with the ATMOSPHERE data, suggest that the joint models 

performed worse at both 12 and 24 months with regards to time-varying AUC. 

 

When compared to the models from Chapter 4, the time-varying AUCs suggest that Joint 

Model 2 (Value + Slope of eGFR) outperforms all the NT-ProBNP joint models from 

Chapter 4 at month 12, however all the NT-ProBNP models marginally outperform the 

eGFR models at month 24. Suggesting that at 12 months the value and slope of eGFR 

provides a better model in terms of prognostic performance, whereas any parameterisation 

of NT-ProBNP performs better at 24 months. 
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Like Chapter 4 this chapter adds further to the evidence base, illustrating how another 

established biomarkers in heart failure can be jointly modelled with common adverse 

outcomes to produce prognostic models and how these models compare to the current 

established standard of prognostic model and an alternative to joint modelling. 

 

8.2.5 Chapter 6 Multivariate Joint Modelling of NT-ProBNP and 
eGFR, and a Composite Endpoint of Death from 
Cardiovascular Causes and First Hospitalisation for Heart 
Failure 

Chapter 6 builds on both Chapter 4 and Chapter 5 by fitting a single multivariate joint 

model containing two longitudinal outcomes from the PARADIGM RCT. One of log NT-

ProBNP and one of log eGFR. Modelled with the same composite end point of death from 

cardiovascular causes and hospitalisation for first heart failure, this composite endpoint 

representing adverse outcomes in heart failure. This multivariate joint model was fit using 

the best performing parameterisations for NT-ProBNP and eGFR as defined by the best 

subject specific fit in Chapter 4 and Chapter 5 which was both the value and slope of log 

NT-ProBNP and the value of eGFR. Like the aforementioned chapters, the multivariate 

model was compared against the current best practice for prognostic models a LOCF Cox 

PH model as well as an alternative model to joint models, the Extended Cox PH model. 

The model was validated, again using data from the ATMOSPHERE RCT. 

 

The multivariate joint model suggested an association between the both log NT-ProBNP 

and eGFR and the composite endpoint. Further strengthening the evidence base. Along 

with this association, like Chapter 4 the multivariate joint model suggested that treatment 

effect was being mediated through NT-ProBNP as the treatment effect in the survival 

outcome did not meet the significance threshold. 
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Similar to Chapter 4 the slope parameter for NT-ProBNP was also below the significance 

threshold however, this was included as it had been demonstrated to improve the subject 

specific fit. 

 

Unlike Chapter 5 the slope parameter of eGFR is measurable at two decimal places, 

however, has wide confidence intervals and is considered statistically insignificant. Likely 

due to the limited number of repeated measurements of eGFR as a result of the 

requirement of both biomarkers to be present at each time point. 

 

The average predicted longitudinal profiles of both biomarkers were similar to Chapter 4 

and Chapter 5, but both had wider confidence intervals, possibly to the amount of data lost 

as a result of the limitation to only allow the biomarkers to be at the same time points. 

 

The time-varying AUCs are similar to those of Chapter 4, missing the threshold for 

acceptable performance at 12 and 24 months, with a drop of 0.2 from 12 to 24 months. 

 

External validation showed an increase in time-varying AUC of 0.2 at month 12 this 

exceeding the threshold for acceptable performance, but with a higher Brier score at month 

24 than month 12 suggesting a worse performance when calibration is accounted for. 

 

The HRs from the comparative analysis suggest that the multivariate joint model is more 

similar to the LOCF Cox PH model, with the HRs being closer in value to this model. The 

extended Cox PH model also suggests there is not significant association between log 

eGFR and the composite endpoint which contradicts both the multivariate joint model and 

the LOCF model. 
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While the multivariate model shows an improvement in time-varying AUC over the 

models in Chapter 5 at month 24, they perform equally to the models in Chapter 4, 

suggesting that modelling with both eGFR and NT-ProBNP outcomes are an improvement 

on eGFR alone. However, given the issue that both biomarkers must be collected 

simultaneously, the multivariate model may be best suited when the biomarkers are 

routinely collected together, in clinical practice.  

 

Overall, this chapter illustrates how a multivariate joint model containing two established 

biomarkers in heart failure can be modelled jointly with common adverse outcomes to 

produce a prognostic model. As well as evaluating how that joint model performs 

compared to the current standard and an alternative to joint models. 

 

8.2.6 Chapter 7 Real-World Application of Prognostic Joint 
Models Illustrated Using a Web Application 

In Chapter 7, an interactive web application was developed to illustrate how a prognostic 

joint model could be used in real world setting to provide prognosis based on baseline 

characteristic and repeated measurements of a biomarker. 

This chapter seeks to demonstrate what a web application for prognosis using joint 

modelling is capable of and how an end user such as a clinician would interact with it. 

 

Using the R Shiny framework an interactive web application was developed, allowing for 

dynamic predictions which are updated on input by the user. The web application is both 

reactive in that it updates automatically without the need for further interaction such as an 

update button, while also providing a user-friendly interface. 
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Overall, this chapter demonstrates how a joint model could be used in practice to provide 

prognostic information using both baseline characteristics and repeated measurements 

through use of an interactive web application. 

 

8.3 Strengths and limitations of this research 

This research has both strengths and limitations. This research has identified that joint 

modelling is currently being applied to data from heart failure studies, using both primary 

and secondary data. Although only three studies were identified to be using data from 

randomised control trials, as stated possibly due to the standard of reporting around joint 

models, identifying the need for better standards for the reporting of this type of models.  

 

This research is not only novel in nature, in that it is one of the first pieces of research to 

explore the use of joint models as prognostic models, but also uses external validation to 

strengthen the evaluation of the joint models’ performance.  

 

Overall, the joint models presented in this thesis were shown to have outperformed both 

the current standard of prognostic models and alternative models using time-varying 

AUCs. However, this should be interpreted with caution as while it is possible to obtain a 

time-varying AUC from both joint models and Cox PH model, using the same underlying 

methodology, joint models have other characteristics such as a joint distribution and 

random effects. Both of which need to be taken into consideration when interpreting the 

results of the time-varying AUCs obtained from the different types of models, as this may 

be a case of comparing apples to oranges. 

 

Existing prognostic models such as ‘Predict HF’ may appear to outperform the joint 

models presented in this thesis, but as the existing prognostic models only report AUC-
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ROC and not time-varying AUCs and due to the previously mentioned limitations, the 

performance of the models cannot and should not be compared. This research was limited 

to the available metrics for joint models as presented in this thesis such as the time-varying 

AUC and time-varying Brier Score. While the metrics are appropriate for joint models and 

this limitation may be due to the underlying methodology of joint models, it has identified 

a need for further research into both the existing metrics and into new more generalisable 

metrics especially for comparison with more traditional models. For example, the dynamic 

discrimination index used in Chapter 2 provides an overall summary of discriminatory 

performance of a joint model which could be compared to a C-Statistic of a traditional 

model, however this has been removed in JMBayes2 with no alternative available [117]. 

 

While joint prognostic models were fit and evaluated, due to the recommendation that 

calibration is assessed alongside prognostic performance, an early release of the R package 

JMBayes2 was used, and while the HRs from the joint models were similar to those from 

the Cox PH models, this limitation must be acknowledged. 

 

Although, in the data sets used in this thesis, the estimates of the HRs of the Cox PH 

Models  and the LOCF Cox models were similar to those from the joint models, the former 

models are limited to a singular measurement of the biomarker of interest. This is typically 

the last observed measurement of the biomarker (LOCF), assuming that that the 

measurements from patients whose baseline measurements were used are similar to those 

whose measurements were captured at a later time. In other situations, this could lead to 

greater bias  and underestimation of the biomarker parameter in the model. On the other 

hand, joint modelling uses a linear mixed effect model to estimate the true value of the 

biomarker over time, which should overcome this limitation and therefore may make joint 

models superior, especially when there are fewer later measurements of the biomarker of 

interest. 
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This research also highlighted that while alternative models such as the extended Cox PH 

model allow for repeat measurements, the special properties of the time-varying measure 

such as the correlation between measurements and measurement error need to be 

accounted for. While this has been previously established, this research further identifies a 

potential issue with extended Cox PH models, in that when a large number or repeated 

measurements are added the results from the extended Cox PH model appeared to have 

exhibited issues in its estimation of parameters, illustrating significant differences 

compared to both the joint models and the LOCF Cox PH model. However, as this is based 

on a limited number of models, further research is needed to validate this claim. 

 

From a clinical perspective, the dynamic and subject specific prediction capabilities in JMs 

could allow for more personalised predictions. With the illustration of a web-based 

application, this also allows these dynamic and subject specific predictions to be used in a 

real world setting such a clinician / patient consultation. However, once again these subject 

specific predictions are based on the latent random effects which needs to be considered 

when interpreting their results. The application also needs to be tested and evaluated by 

clinicians. Therefore, further research is required prior to this application being used in 

clinical practice.  

 

There are also limitations surrounding the original data from the PARADIGM HF trial. 

While at least one measurement of NT-ProBNP was collected for all participants. Due to 

joint modelling requiring a baseline, and a run-in period during the trial, only values at 

screening were available for many patients, and while in the interest of maximising use of 

data these patients were included in both Chapter 4 and Chapter 6 this may have 

introduced bias in the analysis. Along with bias, the limited number of repeat 

measurements of NT-ProBNP may have not been the best example for illustrating the 

benefits of joint modelling, and more repeat measures may have improved model fit. 



263 

 

 

While the composite endpoint of the PARADIGM HF trial used in this research 

encapsulates common adverse outcomes, this research may have benefited from the use of 

a singular outcome and the comparison of the individual outcomes of the composite 

outcome. This could be considered for further research. 

 

As well as limitations around the PARADIGM HF trial, there were limitations using the 

ATMOSPHERE HF trial for validation. While the trials are similar and contain the same 

covariates, there are differences in treatment effects between the active arms of the two 

trials. The recoding of these arms to fit the model parameters for validation could have led 

to bias, and underestimation of the treatment effect. A solution to this may be to use the 

equations from the original PARADIGM HF model to apply predictions to patients in the 

control arm(s) of the ATMOSPHERE HF data and then adjust these for the observed 

treatment effects on these patients.  

 

8.4 Future work   

As previously stated, there are a number of areas that this research can be improved and 

developed on. Future work should include further models evaluating the individual 

endpoints of the primary data and then the comparison of these models. Alternative models 

could evaluate competing risks, which are events ‘competing to be first’ that when occur 

prevent or alter the risk of other events from happening such as cardiovascular death and 

non-cardiovascular death [157]. With alternative data, models for reoccurring events could 

also be possible, such as hospitalisation for heart failure to evaluate their feasibility and 

usefulness in joint prognostic models. The use of different primary data could also be used 

to extend the population beyond that of patients with HFrEF, and evaluate the issues 

previously mentioned around the slope parameterisations. It would also be beneficial to use 
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registry data as further external validation to fully evaluate the generalisability of the 

models. A simulation study may be necessary to fully evaluate the aforementioned issues 

around the parameter estimates from the extended Cox PH models and the comparison of 

the Joint Models with the Cox PH models. Such a study could be used to compare the two 

types of Cox PH models against joint models using simulated data and evaluate which 

model had the least bias and greatest accuracy. Finally, further development of the web 

application, including adding documentation and gaining user feedback to ensure the 

application is fully fit for purpose. 
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8.5 Conclusion 

This research sought to answer the following questions: 

‘Can joint modelling enhance the methodological toolkit and have utility in the 

development of prognostic models within heart failure?’. 

‘Can prognostic models fitted with joint modelling outperform current standard prognostic 

models within heart failure?’ 

With these questions in mind, I conclude that joint modelling can be used for prognostic 

models within heart failure, however at this time it is not possible to say with certainty 

whether in terms of model performance they are an improvement over the current gold 

standards of prognostic modelling. Therefore, further development and research of joint 

models is required, alongside research into the comparison of these models with other 

prognostic modelling approaches.  
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Appendices  

All R Code for the models and R Shiny application is available at: 

https://github.com/RyanJField/PhD-Thesis-Code 

 

 

https://github.com/RyanJField/PhD-Thesis-Code
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Appendix Table 1 Variables and Associated Hazard Ratios (95% CI) from the Three Cox PH Models adapted from the PREDICT-HF Study 

Variable Composite Model 
Cardiovascular 

Death Model 

All-cause Mortality 

model 

Baseline 

Age (per 10 y >60 y)  1.15 (1.06-1.25) 1.20 (1.11-1.30) 

BMI (for every kg/m2 decrease less than 30 kg/m2)   1.02 (1.00-1.04) 

Bundle branch block 1.16 (1.05-1.28) 1.20 (1.06-1.35)  

Diabetes mellitus 1.36 (1.24-1.50) 1.26 (1.12-1.42) 1.26 (1.12-1.41) 

Ejection fraction (per 5% decrease <40%) 1.09 (1.05-1.13) 1.10 (1.05-1.15) 1.08 (1.03-1.12) 

HF duration 1-5 y 1.37 (1.21-1.54) 1.21 (1.04-1.40) 1.25 (1.09-1.44) 

HF duration >5 y 1.50 (1.31-1.70) 1.36 (1.16-1.60) 1.35 (1.16-1.56) 

Male 1.22 (1.08-1.38) 1.37 (1.16-1.60) 1.34 (1.16-1.55) 

No previous PCI  1.21 (1.03-1.41) 1.29 (1.12-1.50) 

Not prescribed β-blocker 1.34 (1.14-1.58) 1.36 (1.12-1.65) 1.27 (1.06-1.53) 

Not prescribed sacubitril/valsartan 1.24 (1.13-1.36) 1.25 (1.11-1.40) 1.18 (1.07-1.31) 

NYHA III/IV 1.24 (1.11-1.38) 1.32 (1.16-1.51) 1.30 (1.15-1.47) 

Peripheral arterial disease 1.28 (1.11-1.47) 1.41 (1.18-1.68) 1.36 (1.16-1.60) 

Prior HF hospitalization 1.35 (1.21-1.51)   

Prior MI 1.12 (1.02-1.23) 1.23 (1.08-1.39) 1.15 (1.03-1.29) 

Race/ethnicity    

Asian 1.43 (1.23-1.66) 1.89 (1.57-2.30) 1.42 (1.18-1.71) 

Black 1.67 (1.36-2.04) 1.34 (1.03-1.78)  

Region    

Central Europe 1.34 (1.18-1.52) 1.63 (1.37-1.92) 1.42 (1.23-1.65) 

Latin America 1.50 (1.21-1.85) 1.84 (1.53-2.21) 1.69 (1.43-2.00) 

Systolic BP (per 10 mm Hg decrease <120 mm Hg)  1.10 (1.01-1.19) 1.09 (1.01-1.17) 
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Valvular heart disease 1.33 (1.14-1.55)   

Interaction terms 

Prior hospitalization for HF from Latin America 1.41 (0.78-2.50)   

Laboratory Values 

% Monocytes for every % greater than 7%   1.04 (1.02-1.07) 

Absolute lymphocytes (for every 1000/mL decrease less than 2500/mL) 1.06 (1.02-1.09)   

Absolute neutrophils (for every 1000/mL increase below 6000/mL) 1.07 (1.03-1.11)  1.10 (1.05-1.15) 

Albumin (for every 0.1 g/dL decrease less than 4.2 g/dL) 1.05 (1.03-1.07) 1.05 (1.02-1.08) 1.06 (1.03-1.08) 

AST (For every 598.8 U/L increase greater than 1796.4 U/L)   1.07 (1.01-1.13) 

Chloride (for every 1 mEq/L decrease 100 mEq/L)   1.06 (1.03-1.09) 

Haemoglobin (for every 1 g/dL decrease less than 14 g/dL) 1.08 (1.03-1.13) 1.10 (1.04-1.17) 1.11 (1.05-1.17) 

LDL (for every 38.61 mg/dL increase greater than 115.83 mg/dL) 1.15 (1.04-1.26)  1.19 (1.07-1.33) 

Potassium (for every 0.1 mEq/L decrease less than 4 mEq/L) 1.07 (1.03-1.10) 1.09 (1.05-1.13) 1.05 (1.02-1.10) 

Total bilirubin (for every 0.29 mg/dL increase greater than 0.58 mg/dL) 1.11 (1.08-1.15) 1.10 (1.06-1.14) 1.08 (1.04-1.13) 

Total cholesterol (for every 38.61 mg/dL increase greater than 115.83 mg/dL)  1.09 (1.03-1.16)  

Triglycerides (for every 88.5 mg/dL decrease less than 221.24 mg/dL)   1.12 (1.01-1.24) 

Urea (for every 2.8 mg/dL increase greater than 14.01 mg/dL) 1.02 (1.00-1.04) 1.03 (1.01-1.05) 1.02 (1.00-1.04) 

Uric acid (for every 0.84 mg/dL increase greater than 6.72 mg/dL) 1.08 (1.05-1.11) 1.07 (1.03-1.11) 1.07 (1.04-1.11) 

Natriuretic peptides    

NTproBNP category 1.34 (1.28-1.40) 1.40 (1.32-1.48) 1.33 (1.24-1.38) 

[42] 
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Appendix Table 2 Hazard Ratios (95% CI) from the Seattle Prognostic Model Adapted 
from Levy et al. 

Variable Hazard Ratio (95% CI) 

Demographics  

 Age (decade)* 1.090 (0.985–1.205) 

 Gender (male) 1.089 (0.839–1.414) 

 NYHA class 1.600 (1.019–2.511) 

 100/Ejection fraction 1.030 (1.010–1.050) 

 Ischemic etiology 1.354 (1.074–1.707) 

 SBP, 10 mm Hg* (for SBP <160 mm Hg) 0.877 (0.823–0.935) 

Medications  

Diuretic dose, mg/kg per day 1.178 (1.097–1.266) 

Allopurinol use 1.571 (1.170–2.109) 

Statin use 0.63 (0.410–0.978) 

Laboratory  

If sodium <138, 138-sodium 1.050 (1.005–1.097) 

100/Cholesterol,*dL/mg 2.206 (1.045–4.656) 

If haemoglobin <16, 16-haemoglobin 1.124 (1.053–1.200) 

If haemoglobin >16, haemoglobin-16 1.336 (1.010–1.767) 

% Lymphocytes,* each 5% (for lymphocytes <47%)* 0.897 (0.846–0.951) 

Uric acid, mg/dL (for uric acid >3.4)* 1.064 (1.022–1.108) 

* Continuous Variable  

[61] 
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Appendix Table 3 Additional Hazard Ratios from the Seattle Prognostic Model using 

Hazard Ratios estimated from Meta-analysis or Clinical Trials Adapted from Levy et al. 

Variable Hazard Ratio: When 

Medication / Device Added 

Hazard Ratio: When Patient 

on Medication / Device 

Medications   

ACE inhibitor 0.77 0.77 

13-Blocker 0.66 0.66 

Angiotensin receptor blocker 0.87 0.85 

K-sparing diuretic 0.70 0.74 

Statin 0.78 0.63 

Devices   

Biventricular pacemaker 0.74 1.00 

Implantable cardioverter-

defibrillator 
0.74 0.73 

Biventricular implantable 

cardioverter-defibrillator 
0.64 0.79 

Left ventricular assist device 0.52 N/A 

Hazard Ratios estimated from meta-analysis or clinical trials, NA: Data not available 

[46] 
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Appendix Table 4 Rate Ratios (95% CI) from the MAGGIC Model Stratified by Ejection 
Fraction Adapted from Pocock et al. 

 Ejection Fraction < 40% Ejection Fraction ≥ 40% 

Variable Rate Ratio (95% CI) Rate Ratio (95% CI) 

Age (per 10 years) 1.407 (1.375 - 1.439) 1.589 (1.536 - 1.643) 

Male 1.101 (1.044 - 1.161) 1.113 (1.053 - 1.177) 

BMI (per 1 kg/m2 increase up to 

30 kg/m2) 
0.970 (0.961 - 0.978) 0.960 (0.951- 0.969) 

Current smoker 1.154 (1.091 - 1.222) 1.174 (1.095 - 1.258) 

SBP (per 10 mmHg increase) 0.936 (0.924 - 0.948) 0.982 (0.968 - 0.998) 

Diabetes 1.421 (1.347 - 1.499) 1.401 (1.311 - 1.498) 

NYHA Class 

I 0.828 (0.744 - 0.922) 0.756 (0.682 - 0.838) 

II 1.000 1.000 

III 1.372 (1.303 - 1.445) 1.458 (1.361 - 1.561) 

IV 1.640 (1.503 - 1.790) 1.756 (1.599 - 1.928) 

Ejection fraction 

(Per 5% increase) 
0.915 (0.902 - 0.928)  

COPD 1.191 (1.096 - 1.295) 1.284 (1.181 - 1.396) 

HF duration > 18 months 1.191 (1.127 - 1.259) 1.166 (1.088 - 1.250) 

Creatinine 

(Per 10 µmol/L up to 350 

µmol/L) 

1.041 (1.035 - 1.046) 1.035 (1.029 - 1.041) 

Beta-blocker 0.736 (0.694 - 0.781) 0.798 (0.746 - 0.855) 

ACE-I/ARB 0.834 (0.770 - 0.905) 0.938 (0.842 - 1.044) 

BMI: body mass index, SBP: systolic blood pressure, NYHA: New York Heart 

Association, COPD: chronic obstructive pulmonary disease, HF: heart failure, ACE-I: 

angiotensin-converting enzyme inhibitor, ARB: angiotensin-receptor blockers. 

[16] 
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