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Thesis Abstract  

 

Context and objective  

 

Randomised controlled trials (hereafter, trials) are widely regarded as the gold standard 

for evaluating treatment efficacy in medical interventions. They employ strict study 

designs, rigorous eligibility criteria, standardised protocols, and close participant 

monitoring under controlled conditions, contributing to high internal validity. However, 

these stringent criteria and procedures may limit the generalisability of trial findings to 

real-world situations, which often involve diverse patient populations such as 

multimorbidity and frailty patients. Consequently, there is growing interest in the 

applicability of trials to real-world clinical practice. In this thesis I will 1) evaluate how 

well major trials report on variation in treatment effects and 2) examine the use of trial 

calibration methods to test trial applicability. 

 

Methods  

 

1) A comprehensive and consistent subgroup reporting description was presented, 

which contributes to the exploration of subgroup effects and treatment 

heterogeneity for informed decision-making in tailored subgroup populations 

within routine practice. The study evaluated 2,235 trials from clinicaltrial.gov 

that involve multiple chronic medical conditions, assessing the presence of 

subgroup reporting in corresponding publications and extracting subgroup terms. 

These terms were then standardised and summarised using Medical Subject 

Headings and WHO Anatomical Therapeutic Chemical codes. Logistic and Poisson 

regression models were employed to identify independent predictors of subgroup 

reporting patterns. 

 

2) Two calibration models, namely the regression-based model and inverse odds of 

sampling weights (IOSW) were implemented. These models were utilised to apply 

the findings from two influential heart failure (HF) trials - COMET and DIG - to a 

real-world HF registry in Scotland consisting of 8,012 HF patients mainly with 

reduced ejection fraction, using individual participant data (IPD) from both 

datasets. Additionally, calibration was conducted within the subgroup population 
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(lowest and highest risk group) of the real-world Scottish HF registry for 

exploratory analyses. The study provided comparisons of baseline characteristics 

and calibrated and uncalibrated results between the trial and registry. 

Furthermore, it assessed the impact of calibration on the results with the focus 

on overall effects and precision. 

 

Results  

 

The subgroup reporting study showed that among 2,235 eligible trials, 48% (1,082 trials) 

reported overall results and 23% (524 trials) reported subgroups. Age (51%), gender 

(45%), racial group (28%) and geographical locations (17%) were the most frequently 

reported subgroups among 524 trials. Characteristics related to the index condition 

(severity/duration/types, etc.) were somewhat commonly reported. However, reporting 

on metrics of comorbidity or frailty and mental health were rare. Follow-up time, 

enrolment size, trial starting year and specific index conditions (e.g., 

hypercholesterolemia, hypertension etc.) were significant predictors for any subgroup 

reporting after adjusting for enrolment size and index conditions while funding source 

and number of arms were not associated with subgroup reporting.  

 

The trial calibration study showed that registry patients were, on average, older, had 

poorer renal function and received higher-doses of loop diuretics than trial participants. 

The key findings from two HF trials remained consistent after calibration in the registry, 

with a tolerable decrease in precision (larger confidence intervals) for the effect 

estimates. Treatment-effect estimates were also similar when trials were calibrated to 

high-risk and low-risk registry patients, albeit with a greater reduction in precision.  

 

Conclusion 

 

Variations in subgroup reporting among different trials limited the feasibility to 

evaluate subgroup effects and examine heterogeneity of treatment effects. If IPD or IPD 

alternative summarised data is available from trials and the registry, trial applicability 

can be assessed by performing calibration.   
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Chapter 1: Context and Introduction 

 

1.1 Introduction 

 

1.1.1 Randomised controlled trials (hereafter, trials) 

 

Trials are prospective studies aimed at examining the impact on outcomes (including 

adverse effects) caused by an intervention when it is implemented instead of another 

intervention or lack of intervention(1). Trials employ randomisation to minimise bias 

and offer a robust approach for exploring cause-effect relationships(2). Through 

randomisation, trials ensure that participant characteristics, both observed and 

unobserved, are evenly distributed between the treatment groups, randomising 

confounding factors that may bias results, enabling one to attribute any disparities in 

outcomes to the specific intervention; this is not possible with any other study design(2, 

3). Trials are therefore regarded as the highest level of evidence in evidence-based 

medicine for evaluating efficacy in clinical research(3, 4).  

 

1.1.2 Trial applicability 

 

1.1.2.1 Definition 

 

The Consolidated Standards of Reporting Trials (CONSORT) statement contains 

guidelines for reporting parallel group trials, and use the terms generalisability, 

external validity or applicability to describe the aspect of the generalisability of the 

trial findings(5). Some researchers prefer to use applicability(1, 6). According to David 

et al, applicability is defined as “the extent to which the effects observed in published 

studies are likely to reflect the expected results when a specific intervention is applied 

to a broader population of interest under ‘real-world’ settings”, which they believe this 

perspective aligns more closely with the reviews conducted by the Agency for 

Healthcare Research and Quality Effective Health Care Program and many other groups 

such as guideline developers(6). A conceptual review gives the definition of applicability 

as “the extent to which the magnitude of effectiveness of an intervention for a specific 
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patient or specific group of patients in clinical practice is similar to the magnitude of 

effectiveness in the results of a trial or a systematic review of trials”(1). 

 

1.1.2.2 Propositions (principles) for trial applicability 

 

Based on a conceptual review, some important propositions for trial applicability were 

extracted with explanations listed below(1):  

 

1. High internal validity: For the findings of a trial or a systematic review (with or 

without meta-analysis) to be applicable to clinical practice, it is essential to 

have high internal validity. This means the risk of biased findings is low, 

indicating that results likely reflect the true situation within the specific context 

of the study(5). Otherwise, the findings may be false. Therefore, it is rational to 

utilise the findings of a study only when the risk of bias is low(5).  

 

2. Rationale: Clinicians or decision-makers require knowledge derived from the 

trial to obtain answers for specific patients of interest(6). 

 

3. Documentation of trials: To obtain a reliable estimate of the intervention effect 

in the real-world clinical practice, it is crucial to have comprehensive 

documentation of the characteristics of a trial at two levels: the intended study 

design and what the trial turned out to be with the latter considering the 

aspects of participants selection, healthcare settings, the baseline 

characteristics of participants, interventions, outcomes and follow-up. The 

documentation is a precondition for accurate estimation. Also, apart from 

variations in outcomes, trials should also provide information on the probabilities 

of favourable and unfavourable (adverse) outcomes between the different 

treatment arms. 

 

4. Documentation of registries: The representative clinical registries in the real-

world with uniform documentation with the trial enables the systematic 

comparison between trial data and registry data(7).  
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This conceptual review also displayed other propositions such as applicability needs to 

base on trials with a plausible mechanism intervention, single intervention trials can 

provide more applicable evidence et al. It also highlights that applicability is reduced 

due to heterogeneity in the study population and the multidimensionality of the 

intervention. Additionally, factors such as human perception, behaviour, environmental 

considerations, and health economic issues further lesson the applicability(8). In 

summary, ensuring high internal validity is crucial to enhance the applicability of a trial 

which indicates the findings are likely to reflect the truth. And based on the nature of 

the trial this feature is always fulfilled. Additionally, the trial should be designed with 

rational interventions that address the specific needs of the target population. 

Moreover, accessibility to both the trial information and the registry data is important 

to enable meaningful comparisons between them.  

 

1.1.2.3 Trial applicability 

 

By design, trials ensure the high internal validity via randomisation and stringent 

eligibility criteria, participants selection and allocation methods under ideal conditions 

with minimised bias (2, 9-11). This can meet the pre-condition for trial applicability as 

it is likely to reflect the “truth” between the outcomes and interventions(5). However, 

the rigorous implementing requirements of trials also means that it may not fully 

capture the complexities and challenges experienced in routine clinical practice. There 

are multiple factors including trial settings, patients selection and characteristics, 

differences between trial protocol and routine practice, outcome measures and follow-

up, treatment adverse events et al that can affect the applicability of trials(12).  

 

Pragmatic trials offer greater applicability to real-world patient populations by enrolling 

a broader range of patients, relaxing the inclusion criteria for a better reflection of 

real-world populations(10, 11, 13). Additional details can be found in Chapter 2. Even 

for few highly pragmatic trials, it remains uncertain if they have well represented the 

target population. Therefore, this thesis will not focus on pragmatic trials but the vast 

majority of trials.  
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1.1.2.3.1 Trial settings and resources 

 

A comprehensive understanding of the trial context is crucial when assessing its 

applicability, including any unique characteristics of the healthcare system in different 

countries. For example, different healthcare systems can influence the speed that 

patients got diagnosed and investigated, further having impact on time from last 

symptoms to randomisation and even treatment effects(14). It also remains 

questionable how trials conducted in developed countries apply to the developing 

countries. Moreover, differences in disease diagnosis and management methods 

between countries, which can be substantial, as well as important racial variations in 

disease pathology and natural history, can also impact the applicability. An illustrative 

example is the heterogeneity of results in trials of bacilli calmette guerin vaccination 

for tuberculosis prevention, where efficacy progressively declines with decreasing 

latitude(15). 

 

The selection process of centres and clinicians participating in trials, although often 

underreported, can also impact the applicability(12). An example is the Asymptomatic 

Carotid Artery Study trial, which focused on endarterectomy for asymptomatic carotid 

stenosis. This trial exclusively admitted surgeons with exceptional safety records, 

rejecting 40% of initial applicants and subsequently excluding those who experienced 

adverse surgical outcomes during the trial(16). This is not feasible in real-world clinics. 

Also, while trials should include centres capable of safely treating patients, the 

selection process should not be overly exclusive to the extent that the results cannot be 

generalised to routine clinical practice. 

 

1.1.2.3.2 Patients selection and characteristics  

 

There are also multiple factors regarding patients selection and characteristics such as 

pathways to recruitment, heterogeneity of patients, volunteer bias, going through pre-

randomisation run-in that will influence trial applicability.   
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1.1.2.3.2.1 Pathways to recruitment  

 

In trials, there are often earlier stages of selection that are commonly overlooked, but 

present challenges(12). For example, when recruiting participants for a trial of a new 

blood pressure-lowering drug in a hospital clinic, maybe less than 10% of patients with 

hypertension are managed in hospital clinics, which may differ from those managed in 

primary care settings. Additionally, if only one out of the ten physicians who treat 

hypertensive patients in the hospital is involved in the trial, and this physician primarily 

sees young patients with resistant hypertension, it creates a situation where the 

potential recruits are already highly unrepresentative of the local community. 

Therefore, it is crucial for trials to document and report the recruitment pathways 

whenever possible(12). 

 

1.1.2.3.2.2 Heterogeneity of patients 

 

Patients in real-world settings can be more heterogeneous, which unavoidably 

questioning the applicability(8). The heterogeneity and variability of real-world patients 

comparing with trial participants can reflect on multiple aspects such as demographics 

(age, gender, race et al), comorbidities and disease severities, treatment adherence, 

concomitant medication use and polypharmacy et al(17-19). Some studies have 

consistently demonstrated differences between patients in real-world settings and those 

enrolled in clinical trials. For instance, research by Tan et al showed that among 43,895 

eligible trials they have examined, adolescents experience the highest proportion of 

exclusions, reaching a peak of 90.3% in cardiovascular trials, and the lowest exclusion 

rate at 70.7% in ear, nose, and oropharynx trials. However, adolescents represent a 

median of 28.0% (interquartile range (IQR): 19.3%-30.8%) of the real-world population 

across different cohorts(19). Additionally, the exclusion proportion increases as patients 

get older after their 60s. It also showed that trials are very likely to exclude patients 

with comorbidities which dramatically reduce the eligible participants. However, in the 

real-world practice, multimorbidity (referred to two or more clinical specialties) is 

common with a median prevalence at 41∙0% (IQR 34∙9% – 46∙0%)(19). Another example 

compared 226 hypertension trials and 21 corresponding observational studies and it 

found that the mean age of participants in trials was 54.46 years which was significantly 

younger compared to the observational studies with the mean age at 66.35 years 

(P<0.05)(20). It also showed that duration of hypertension and severity in trial 

participants was significantly lower than those in the real-world (3.89 years vs 12.96 
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years for duration, 17% grade III hypertensive patients vs 34%). Trials also tended to 

enrol hypertensive participants with significantly fewer comorbidities such as heart 

failure, stroke, diabetes, or coronary heart disease compared to patients in the real-

world practice(20).  

 

1.1.2.3.2.3 Volunteer bias 

 

Volunteer bias is a potential source of selection bias which is also a systematic error 

that occurs when there are differences between individuals who choose to participate in 

studies and those who do not(21, 22). In trials, this bias can arise from the fact that the 

participants only include individuals who are willing to participate, leading to 

systematic differences between volunteers and those who decline or do not respond to 

invitations, which may not reflect the real-world situations(22). For example, certain 

trials investigating antipsychotic drugs have specifically recruited patients who have 

previously shown a positive response to antipsychotic treatment, introducing 

uncertainties regarding the differences compared to those who have not been actively 

treated(12, 23).  

 

1.1.2.3.2.4 Pre-randomisation run-in periods 

 

Pre-randomisation run-in periods are commonly used in trials to exclude patients based 

on factors such as poor adherence, adverse effects, or ineffective treatment. In active 

treatment run-in periods, all eligible patients receive the active drug, and those who 

experience serious adverse effects or show signs of treatment ineffectiveness are 

excluded. Although this approach aims to ensure safety and efficacy, a high rate of 

exclusion can limit the applicability of the trial findings. Furthermore, some studies 

indicate that the complication rates observed during the subsequent randomised phase 

are lower than those observed during the run-in period, which may not accurately 

reflect real-world conditions. 

 

1.1.2.3.3 Subgroup analyses and reporting 

 

Subgroup patients refer to a specific subset or subgroup of patients within a trial. 

Subgroup analyses involve dividing participants into specific subgroups based on their 
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specific characteristics and subsequently comparing the relevant research outcomes 

among these subgroups(30). They are used to examine consistency/differences in 

treatment effects between groups to help tailor treatment recommendations and 

provide reassurance that treatments effects are “portable” to groups with different 

characteristics(24). For example, treatment effects may be bigger for older patients 

than younger participants within a trial, then older patients in the real-world may 

benefit more. This phenomenon also raises a question that the overall trial findings 

would arguably be less applicable to routine clinical settings, where the patients are 

generally younger. Hence, along with trial design and baseline characteristics, subgroup 

reporting is one of the most important factors for considering trial applicability if 

heterogeneity in treatment effects (HTE) is less likely to be applicable. Therefore, 

understanding the subgroup distribution and subgroup treatment effects is also 

important to assess applicability. However, individual trials are rarely sufficiently large 

to estimate subgroup effects with adequate precision, making subgroup effect estimates 

difficult to interpret and frequently misleading(25).  

 

To help address this problem, subgroup analyses of similar trials can be combined in 

meta-analyses(26). This requires that the subgroups of interest are reported 

consistently across multiple trials(26). However, some studies show that the subgroup 

reporting is inconsistent overall.  

 

The majority of studies of subgroup reporting have focused on its overall aspects, such 

as the incidence and factors influencing subgroup reporting, as well as the adherence to 

reporting guidelines(27-30). Less attention has been given to identifying the specific 

subgroups that are commonly reported. Additionally, the emphasis has mainly been on 

individual papers, particularly those published in major general medical journals, rather 

than considering the comprehensive reporting of subgroups across all papers for a given 

trial. In short, they have focused on trial reporting from the perspective of single trials, 

not meta-analysis. 

 

A number of previous studies have examined the reporting of subgroup analyses and the 

impact of study characteristics on subgroup reporting. For instance, a systematic review 

investigated 467 trials across 118 core medical journals in 2007, revealing that 44% (n = 

207) of them reported subgroups. Higher-impact journals and larger sample sizes were 

associated with more frequent subgroup reporting, while industry funding sources were 

more likely to report subgroups in trials without statistically significant primary 
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outcomes(31). Another study randomly selected 437 trials from five high-impact 

journals across three time periods, finding that 62% (n = 270) of them reported 

subgroups. The study also highlighted that disease severity was commonly reported 

(69%), while age (87%) and sex (73%) were the most frequently reported subgroups (28). 

Similarly, a systematic review focusing on cardiovascular disease (CVD) trials examined 

130 publications from three high-impact journals between 2015 and 2016. The review 

showed that 68% (n = 89) of these publications presented subgroup analyses, and trials 

with larger sample sizes were more likely to report subgroups(32). Additionally, another 

study assessed 97 trials conducted between 2005 and 2006, revealing that 61% (n = 59) 

of them reported subgroups, and trials with larger sample sizes were more inclined to 

report subgroups(33). However, it is important to note that these studies often 

concentrated solely on high-impact journals, limited time periods, specific conditions, 

and/or specific subgroups, potentially limiting the generalisability of their conclusions 

(27-30, 32, 34). 

 

Moreover, the denominator in each of these estimates is trials identified from searching 

the published literature. It is therefore not clear what proportion of trials that are 

registered go on to publish subgroup effects. Furthermore, it is not clear what 

subgroups are reported, in which trials, and with what frequency. If existing trial data is 

to be harnessed to provide more reliable estimation of subgroup effects, it is necessary 

to understand what proportion of registered trials report subgroups, as well as what 

subgroups these trials report. 

 

1.1.2.4 The focus of this thesis 

 

Concerns over trial applicability can arise in various aspects of a trial, including trial 

settings and resources, patients selection etc.. However, this thesis specifically 

concentrates on the distribution of patient characteristics in the trial and real-world 

target population. Real-world data refer to information routinely collected from various 

sources that pertains to the health status of patients and/or the delivery of health 

care(35). The real-world target population in this thesis is patients encountered and 

recorded in clinical practice, which is under the observational and noninterventional 

setting that is different from the controlled, interventional trial setting. It is assumed 

that patients from this real-world target population could have some chance of being 

included in the trial, but it is not necessarily the population from which trial 

participants are derived. Figure 1 refers to the necessary conditions for applicability. 
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In scenario A, if differences exist only in the distributions of characteristics between the 

trial and target population, without heterogeneity in treatment effects (HTE), trial 

findings can still be applicable. 

 

In scenario B, even with HTE, if there are no differences in patient characteristics 

between the trial and target population, trial findings can remain applicable. 

 

In scenario C, assuming other factors like trial settings and resources are transferable, 

trial findings are inapplicable when both differences in patient characteristics and HTE 

are present. This thesis will centre on this scenario, investigating 1) the assessment of 

HTE and applicability, and 2) methods to enhance trial applicability in the presence of 

both HTE and differences in patient characteristics. 

 

Figure 1. Necessary conditions for applicability.  

 

 

 

1.1.3 Strengths and weaknesses of trials compared with population-based 

observational studies. 

 

Trials continue to be the gold standard for evaluating the efficacy of interventions. 

They are indispensable for testing the effects of new treatments. Meanwhile, 

observational data derived from real-world clinical practice can offer valuable insights 
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into treatment characteristics and safety, uncovering aspects that may have been 

previously overlooked(36). The summarised comparisons between trials and 

observational studies are displayed below(36, 37).  

 

Strengths of trials:  

1) High internal validity.  

2) Evaluates efficacy. 

3) Best for studying an intervention. 

4) Unbiased distribution of confounders: randomisation can balance confounding 

across arms. 

 

Weaknesses of trials:  

1) Resources consuming. 

2) Relatively short follow-up: Due to the high costs associated with trials, short 

trial durations are often implemented, which may not be sufficient to detect 

rare or delayed side effects and assess long-term efficacy(36). 

3) Volunteer bias: In trials, it may consist only individuals who are willing to 

participate due to the strict study design, systematic differences can occur 

between those who volunteer and those who decline or do not respond to 

invitations(22).  

4) Limited applicability. 

 

Strengths of observational studies:  

1) Good external validity. 

2) Evaluate effectiveness: The effectiveness of a treatment, which refers to its 

performance in real-world clinical practice, may not have been adequately 

studied prior to marketing approval. Observational studies and real-world data 

are valuable in assessing treatment effectiveness, as they allow for broader 

inclusion criteria and provide evidence on how the treatment performs in 

realistic clinical conditions. Observational studies provide comprehensive data 

on treatment outcomes in the complex environment of routine care, ideally 

including all cases treated with the intervention. 
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3) Good to inform risk factors on an outcome: it can reflect the natural 

progression of diseases. 

4) Participants can be matched. 

5) Can detect rare adverse events, rare diseases or minority patients. 

 

Weaknesses of observational studies: 

1) Limited internal validity: It can be challenging to distinguish the effects of a 

new treatment from other confounding. And it lacks randomisation and control 

for confounders.  

2) Channelling bias: Channelling is a selection bias commonly observed in 

observational studies that compare older and newer drugs within the same 

therapeutic class. It occurs when drugs with similar indications are prescribed to 

groups of patients with different baseline prognoses. This bias can be influenced 

by the timing of drug launches, as medications introduced later to the market 

may be more likely to be prescribed to patients who have not responded well to 

existing medications (38). 

3) Difficult to blind. 

4) Lack details such as disease severity. 

 

Understanding these complementary approaches, namely trials and observational 

studies, can help bridge the gap between internal validity and external validity, efficacy 

and effectiveness and contribute to a comprehensive understanding of healthcare 

interventions. This thesis aims to examine methods to enhance trial applicability by 

integrating both trials and a population-based observational study (a disease registry). 

 

1.2 Objectives of the thesis and justification 

  

Continuing from scenario C in Figure 1, my thesis will encompass the following 

objectives: 

 

1. Explore the conventional availability of trial data for assessing HTE and 

applicability. 
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2. Examine methods for enhancing applicability to a wider real-world population 

encountered in clinical practice by utilising individual participant data from both 

trials and population-based real-world disease registry. 

 

Initially, for the exploration of assessing HTE and applicability, conducting subgroup 

analyses with the same index conditions and interventions to assess was considered. 

However, due to inconsistent reporting of trial subgroups, this approach became 

unfeasible. Understanding the consistency of subgroup reporting across different index 

conditions and intervention types is essential to establish a standardised subgroup set 

for various index conditions and interventions. Additionally, this understanding would be 

valuable for investigating HTE. 

 

1.3 Structure of the thesis 

 

Chapter 1 defines trial applicability and outlines its prerequisites, including high 

internal validity, rationality, and clear documentation etc.. It also discusses factors like 

trial settings and patient selection that influence trial applicability. The chapter then 

focuses on the specific scenario of differences in patient characteristics distribution 

between trials and target populations, as well as HTE. By comparing the strengths and 

limitations of trials and observational studies, it aims to combine both data sources to 

enhance trial applicability. The chapter finally justifies the thesis objectives: 1) 

investigating the conventional use of trial data for assessing HTE and applicability, and 

2) exploring methods to improve applicability by combining individual participant data 

from trials and population-based observational studies. 

 

Chapter 2 describes and critiques the literature on existing methods aimed at enhancing 

the applicability of trials to real-world populations. It presents three types of literature: 

1) Descriptive comparisons of characteristics between trial participants and real-

world patients. 

2) Modification of trial design to include more representative samples. 

3) Statistical strategies to apply trial findings into the real-world population. 

 

Chapter 3 aims to address the first objective that is about the subgroup reporting 

situations in clinical trials with different chronic medical conditions. It assesses over 
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2,000 trials from clinicaltrial.gov, keeping eligible trials defined by the criteria, 

screening their related publications, extracting every subgroup reported, harmonising 

and summarising those subgroups. It provides the descriptive picture of the presence 

and numbers of subgroups reported in different index conditions. It highlights the 

commonest subgroups and the uncommonest subgroups across different trials. It also 

analyses the relationship between trial characteristics and subgroup reporting. It 

further provides implications for further reporting guidance.  

 

Chapter 4 aims to apply the findings from two historical heart failure (HF) trials to a 

real-world HF registry in Scotland using two statistical methods. One method involves 

reweighting by utilising individual participant data (IPD) obtained from the literature, 

which is considered the gold standard method. The other method employs a parametric 

survival model. Both methods demonstrate that when applying the results of these two 

HF trials to the Scottish HF registry, patients in the real-world setting experience 

similar treatment effects as observed in the trials. Furthermore, this chapter discusses 

the necessary data format for calibrating trial findings and provides additional 

recommendations to both trialists and routine data managers. 

 

Finally, chapter 5 summarises the main findings and contributions of the thesis by 

revisiting two research questions and corresponding case studies trying to answer those 

questions. The challenges and recommendations arising from the practical case studies 

and methodologies to enhance the trial applicability are also discussed and summarised. 

It also discusses the strengths and weaknesses of the research in this thesis. It 

ultimately presents the overall conclusions derived from the conducted research and 

outlines the potential areas for future research. 
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Chapter 2: Literature review of methods to improve the 

applicability of trials in the real-world population. 

 

2.1 Aim  

 

To stay updated on the latest scope, breadth, and characteristics of research pertaining 

to the applicability of trials involving pharmaceutical drug therapy in real-world 

populations, a literature review was conducted. The primary objective was to survey 

the existing literature and provide an overview of the current methodologies utilised to 

assess and enhance the applicability of trials. 

 

2.2 Methods  

 

2.2.1 Search strategy 

 

The search strategy was reviewed by the librarian and is shown in Table 1. Searches 

were run in EMBASE (1947 to present) and MEDLINE (1946 to present) on 18th February 

2021 for the first time including published studies from 1946/1947 to 31/12/2020. The 

key words used are “representativeness”, “randomised controlled trial”, 

“pharmaceutical drug therapy”, “real-world population” and their synonyms. Searches 

was run on May 2023 for the second time for updates from 01/01/2021 to 16/05/2023 by 

the same search strategy.  

 

Table 1. Search strategy in Embase and Medline. 

1 external validity.tw. 

2 (generalisab* or generalizab*).tw. 

3 representat*.tw. 

4 applicab*.tw. 

5 or/1-4 

6 Clinical Trial/ 

7 Randomised Controlled Trial/ 

8 controlled clinical trial/ 
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9 multicenter study/ 

10 Phase 3 clinical trial/ 

11 Phase 4 clinical trial/ 

12 exp RANDOMISATION/ 

13 Single Blind Procedure/ 

14 Double Blind Procedure/ 

15 Crossover Procedure/ 

16 PLACEBO/ 

17 randomi?ed controlled trial$.tw. 

18 rct.tw. 

19 (random$ adj2 allocat$).tw. 

20 single blind$.tw. 

21 double blind$.tw. 

22 ((treble or triple) adj blind$).tw. 

23 placebo$.tw. 

24 Prospective Study/ 

25 or/6-24 

26 (real-world population or real-world).tw. 

27 
(real world or real life or real patient$ or real practice$ or 

real clinical$ or realpopulation$).tw. 

28 
(actual world or actual life or actual patient$ or actual 

practice$ or actual clinical$ or actual population$).tw. 

29 or/26-28 

30 exp Drug Therapy/ 

31 exp Pharmaceutical Preparations/ 

32 exp Drug Interactions/ 

33 

(drug or drugs or pharmaceutical$1 or pharmacotherap$ or 

pharmaco-therap$ or chemotherap$ or chemo-therap$ or 

pharmacolog$ or medicin$ or medicat$ or agent$1 or 

dose$1 or dosage$1 or dosing).tw. 

34 or/30-33 

35 5 and 25 and 29 and 34 

36 limit 35 to yr="1946 - 2020" 

37 limit 36 to (english language and humans) 
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2.2.2 Review process 

 

Inclusion was limited to literature published in English related to humans from 1946 to 

08/2021. Studies were considered eligible if their methodology involved exploring 

strategies to enhance the real-world representativeness of trials. The review included 

both the review articles of different methods and individual research paper. 

Conferences paper mentioning above were also included. The review specifically 

focused on trials involving one or more pharmaceutical drugs, excluding surgical trials. 

Studies were also excluded if they solely analysed trial data or routine data without 

attempting to apply trial results in real-world contexts. 

 

2.3 Results  

 

The PRISMA diagram is as Figure 2. Title and abstract were screened for studies. 140 

studies were retained for full-text screening. After screening the full text, additional 15 

references were detected from the citation list and were added.  

 

After screening all of them, they were mainly classified as 3 types of references.  
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Figure 2. PRISMA diagram of the literature review. 

 

 

2.3.1 Descriptive comparisons.  

 

This type of study accounted for a major proportion of the literature which includes two 

sub-types. The first sub-type compared the baseline characteristics and/or outcome 

between the target population and trial participants to describe the representativeness. 

For example, researchers compared the baseline characteristics and outcomes between 

the Acute Study of Nesiritide in Decompensated Heart Failure trial and an eligible 

complementary registry. Patients in the observational registry were more elderly, more 
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likely to be female, had more chronic respiratory disease, higher SBP and ejection 

fraction level, and had less diabetes. They had a similar incidence of ischemic HF and 

atrial fibrillation. For the endpoint, in-hospital mortality was significantly higher for the 

registry than the trial patients(39). This study showed that the patients in the trial 

differed significantly with those in the registry according to the baseline characteristics 

and outcomes, which reflected the under-representativeness issue and emphasised the 

need for improving the generalisability of the findings of trials(39).  

 

Palmowski et al conducted a systematic review and meta-analysis to compare the 

characteristics between participants in rheumatoid arthritis (RA) trials with 

glucocorticoids and real-world patients(40). They pulled out 56 trials with a total of 

7,053 participants and 10 cohorts with a total of 14,688 patients. 12 characteristics 

were reported with sufficient frequency to enable comparative analysis. Trial 

participants were found to be younger (-4.7 years [95% CI -7.2 to -2.1]; p < 0.001) and 

had higher erythrocyte sedimentation rates (11.8 mm/h [5.7 to 17.8]; p < 0.001) 

compared to real-world patients. There were no statistically significant differences 

observed in any of the other analysed characteristics between trials and the routine 

data, including proportion of females, body mass index (BMI), proportion of current or 

previous smokers, disease duration, disease activity score, proportion of individuals 

positive for rheumatoid factor or nticitrullinated peptide antibody, health assessment 

questionnaire, pain, and patient’s global assessment of disease activity. Sensitivity 

analyses were also conducted and gave similar statements. In this study, comorbidities 

were unable to be assessed due to insufficient reporting. Researchers found that the 

study populations in those glucocorticoids trials were generally representative of 

current real-world patients, with the exception of elderly patients who were 

underrepresented which was consistent with the trend observed in RA trials in 

general(41). Also, the representation of patients with comorbidities remains unclear as 

they were unable to assess this characteristic adequately.  

 

Although 12 characteristics have been compared between glucocorticoid trials for RA 

and real-world patients, with 10 out of 12 showing no significant differences, the 

descriptive comparison of baseline characteristics and the application of trial findings to 

real-world RA patients are still subject to questioning. It shows the representativeness 

issue and justifies the “what” question while is not adequate to answer the “how” 

question which is how to improve the trial representativeness.  
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Evans et al conducted a systematic review to identify published studies that examined 

the treatment of patients with atrial fibrillation (AF) using warfarin in real-world 

clinical practice(42). The data from these studies were then compared with pooled data 

from five AF trials using warfarin(42, 43). Three studies were identified from the 

systematic review that met the predefined criteria which is in line with trials, 

conducted in different healthcare settings (the US, UK and Canada) and involving a total 

of 410 patients. Compared to participants in clinical trials, patients in real-world 

clinical practice were 6 years older and had a higher proportion of women compared to 

the trial population. Additionally, a significantly higher proportion of patients from 

routine practice had a history of cerebrovascular disease. However, the rate (expressed 

as events per 100 patient-years of exposure) of ischemic stroke was similar between 

clinical practice and randomised  studies, with rates of 1.8% (95% [CI], 0.9%-2.7%) and 

1.4% (95% CI, 0.9%-2.0%), respectively. Rates of intracranial hemorrhage (0.1% [0%-0.3%] 

vs 0.3% [0.06%-0.5%]) and major bleeding (1.1% [0.4%-1.8%] vs 1.3% [0.8%-1.8%]) were 

also similar. However, the rate of minor bleeding was higher in clinical practice 

compared to trials, with rates of 12.0% (9.7%-14.3%) and 7.9% (6.6%-9.2%), 

respectively(42).  

 

This study only extracted and analysed published data for the real-world population, it 

is unavoidable to introduce bias caused by the non-publication of negative results(44).  

 

The second sub-type illustrated the proportion of the target population that would meet 

the inclusion and exclusion criteria of the trial, that is, defining the target population as 

trial-eligible and trial-ineligible participants and comparing the baseline characteristics 

and/or outcome across them. For example, heart protection study trial is a typical 

statins use trial in diabetes patients(45, 46) as statins were broadly used to reduce 

cardiovascular risk among patients with diabetes(47). The endpoint was composite CVD 

events, and the treatment arms were statins verse placebo. When this trial was applied 

to the real-world patients in Finland diabetes database (N=56,593), only 57% (N=32,582) 

patients were eligible for the trial and patients who were ineligible had a higher 

cumulative risk for CVD events (48). This study also indicated that this trial was under-

representative for the female patients. This was a simple example to assess the 

representativeness of a trial and it provided a general picture of representativeness 

instead of quantifying it. 
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Another example is in chronic hepatitis C (CHC) patients. Berden et al conducted a 

retrospective cohort study involving CHC patients treated in real-world settings nation-

widely to compare the effectiveness and safety of patients eligible and ineligible for 

registration trials(49). They identified registration trials through a systematic search for 

telaprevir and boceprevir in CHC patients. From the published protocols, the eligibility 

criteria was extracted and a general set of criteria based on the least stringent criteria 

across all studies was developed. This general set was then applied to the real-world 

population to determine eligibility. They compared the outcomes between eligible and 

ineligible patients and performed sensitivity analyses using strict criteria. Among the 

cohort of 467 patients, 47% would have been ineligible for registration trials. The main 

exclusion criteria were related to hepatic decompensation and comorbidities such as 

cardiac disease, anaemia, malignancy, and neutropenia. These criteria were associated 

with an increased risk of serious adverse events (relative risk 1.45-2.31). Ineligible 

patients experienced significantly more serious adverse events compared to eligible 

patients (27% vs. 11%, p<0.001). The effectiveness of treatment was decreased when 

strict criteria were applied for sensitivity analyses. 

 

Approximately half of the patients with CHC undergoing treatment in real-world clinical 

practice would not meet the eligibility criteria for registration trials. This finding 

therefore highlights the limitation of generalisability of results obtained from trials is to 

real-world patients who would not meet the eligibility criteria. The strengths of this 

study lie in its nationwide and multicenter nature, which is from a large and 

representative real-world cohort. However, the retrospective design of the study 

resulted in the presence of missing values for some variables. 

 

A literature review conducted to assess the external validity of trials also supported 

these two sub-types of comparisons between the participants included in the trials and 

patients from everyday clinical practice(50). That are analysing the baseline 

characteristics of trial-enrolled patients, comparing them to a real-world population; 

and assessing the proportion of real-world patients who would have been eligible for 

trial inclusion and comparing characteristics between trial-eligible and trial-ineligible 

patients. The findings of the included studies consistently indicated that trial 

participants were highly selected and had a lower risk profile than real-world 

populations. Elderly patients and those with comorbidities were frequently excluded. 

The ineligibility proportion calculated from individual studies revealed that a significant 

proportion of the general disease population was often excluded from trials. The 

majority of studies (37 out of 52 retained studies) explicitly concluded that trial 
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participants were not broadly representative of real-world patients, raising concerns 

about the external validity of trials. 

 

2.3.2 Trial designs.  

 

When it came to the second type of references, it was about modifying trial design to 

enrol more representative patents in the real-world. This thesis focuses on maximising 

the applicability of explanatory trials which is different with pragmatic trials. The brief 

comparison between them is showed in Table 2. Explanatory trials aim to test the 

efficacy of an intervention under ideal or controlled conditions that typically include 

highly selected participants with fewer comorbidities and adhering more closely to the 

study protocol, strict inclusion and exclusion criteria, standardised protocols, and close 

monitoring of participants, which aim to minimise confounding factors and maximise 

internal validity. For the outcome measures, explanatory trials primarily focus on 

measuring surrogate endpoints or clinical outcomes that directly assess the efficacy of 

the intervention. The findings of explanatory trials, therefore, may have limited 

generalisability to broader populations in the real-world clinical settings. They provide 

evidence of efficacy under specific strict conditions that may not reflect the 

complexities of routine care (9-11). 

 

Unlike explanatory trials which enabled homogeneity by controlling known bias and 

confounders in strict settings to evaluate the causal effects of the intervention, 

pragmatic trials aim to assess the effectiveness of interventions under real-world 

conditions, reflecting routine clinical practice(11). They enrol a broad range of patients 

who are more representative of real-world populations, including those with 

 

Table 2. Key characteristics comparison between explanatory trials and pragmatic 
trials. 

 Explanatory trials Pragmatic trials 

Research objective Assessing efficacy of 

interventions under ideal, 

controlled conditions 

Assessing effectiveness of 

interventions in real-world 

clinical practice 

Eligibility criteria and 

Participants enrolled 

Strict and selective, 

enrolling a homogeneous 

population 

Inclusive and 

representative of the 

target patient population 
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encountered in routine 

care 

Treatment protocols Highly standardised and 

protocol-driven, limiting 

variations in care delivery 

Flexible and adaptable to 

reflect diverse real-world 

clinical practice 

Outcome measures Usually focused on specific 

clinical endpoints to 

measure the efficacy of 

intervention  

Broader range of 

outcomes, including 

patient-centred outcomes, 

healthcare resource 

utilization, cost-

effectiveness et al 

Internal validity High internal validity 

through strict control of 

measured variables 

Compromised internal 

validity through less 

control over confounding 

factors 

External validity Limited Higher external validity to 

real-world populations  

Implications to clinical 

decision-making 

Provides insights into the 

efficacy of interventions in 

controlled settings 

Offers evidence that 

directly informs clinical 

decision-making in routine 

care settings 

Resource intensity Resource requirements can vary depending on several 

factors, including the study design, sample size, data 

collection methods, and the specific research question 

being addressed et al.  

 

 

comorbidities and varying levels of adherence. Pragmatic trials have more inclusive 

eligibility criteria, flexible treatment protocols, and capture the diversity of patients 

and practices encountered in routine care. These trials provide valuable data on 

clinically relevant considerations such as different treatments, patient-friendly 

treatment algorithms, cost-effectiveness, and outcomes that are meaningful to 

patients(51). They also account for real-world treatment adherence and compliance, 

offering insights into the direct impact of medications or treatment regimens on 

patients(52). The findings from pragmatic trials, therefore, have higher generalisability 

to real-world patient populations (10, 11, 13). It tried to increase the heterogeneity in 
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all aspects such as patient enrolment and clinical settings etc. to maximise the 

generalisability. However, this heterogeneity can introduce additional sources of 

variability and limit the translatability to different settings and locations, which could 

compromise the ability to draw causal inferences so it supposed to be large enough to 

increase power and simple enough for performing and follow-up purpose(10, 53). Also, 

pragmatic trials conducted in real-world settings often require larger sample sizes, 

longer follow-up periods, and greater resource allocation compared to explanatory 

trials. This increased complexity and resource requirements can sometimes pose 

challenges in terms of time, cost, and logistical considerations(13).  

 

One example that illustrates the value of pragmatic trial design is the investigation of 

patient-driven insulin titration protocols(54). A total of 244 insulin-naive subjects with 

type 2 diabetes and HbA1c levels between 7.0% and 9.0% on oral antidiabetic treatment 

were enrolled in the Treat to target with once-daily Insulin Therapy: Reduce A1C by 

Titrating Effectively study. The subjects were randomly assigned in a 1:1 ratio to one of 

two treatment arms with 3.9–5.0 or 4.4–6.1 mmol/l fasting plasma glucose as titration 

targets(54). This study provides valuable insights into the effectiveness and feasibility of 

patient-directed insulin titration by focusing on real-world conditions, aligning with the 

practical needs of patients in their everyday experiences rather than reflecting the 

needs of a highly controlled, well-motivated population in an explanatory trial setting. 

This trial design bridges the gap between clinical research and routine clinical practice, 

offering evidence that is more applicable and relevant to routine patient care. 

 

Generally, trials require substantial resources with complex design, burdensome 

administrative procedures, staff training, participants recruitment, data collection, 

safety reporting and substantial funding etc.(55), which already posed a great challenge 

for investigators to initiate it. Pragmatic trial could probably improve the external 

validity by relaxing the inclusion criteria and enrolling a wider range of more 

representative participants based on the real-world situation, but it initiates a new trial 

with the expense of costly resources rather than make more use of the existing trials 

which is not a sustainable way and is not always feasible. Some researchers also believe 

that it may not be accurate to assume that pragmatic trials inherently have higher 

applicability than explanatory trials(12). Although pragmatic trials offer several 

advantages such as broad eligibility criteria, and inclusion of diverse centres with 

varying expertise and more representative patient populations, these factors can also 

present challenges in implementation when attempting to generalise the overall 

average treatment effect to a specific clinical setting(12). 
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2.3.3 Trial analysis - statistical methods. 

 

It is of increasing scientific interest whether there are methods that can assess the real-

world treatment effects based on the existing trials and the baseline characteristics of 

real-world target population without costing more resources. Researchers did try 

exploring the “bridge” between this gap. This third type of references described the 

attempts to solve this issue which were statistical strategies. The comprehensive 

overview of different methods for applying trial findings to a target population is 

provided in Table 3.  

 

Each method has its own set of key features, strengths, limitations, assumptions, and 

data requirements with more details described below.  
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2.3.3.1 Overview 

 

Table 3. Comparison of Methods for Extrapolating Trial Findings to Target Populations: Key Features, Strengths, Limitations, Assumptions, and 
Data Requirements. 

Method Key Features Strengths Assumptions Limitations Relative 

treatment 

effects 

come from 

trial 

Data 

Needed 

in Trial 

Data 

Needed 

in 

Registry 

Re-weighting 

by using 

individual data 

Reweight trial data 

to resemble the 

registry cohort 

Regarded as gold-

standard approach 

among re-weighting 

methods 

Models to predict the 

sampling probability were 

correctly specified; all 

individuals in the target 

population had some 

chance of being included 

in the trial 

Unmeasured factors 

may introduce 

disparities 

Yes IPD IPD 

Re-weighting 

by using 

simulated data 

Simulate individual-

level data based on 

summary statistics 

from the registry 

More widely 

applicable 

No correlations between 

each covariate from the 

registry 

Unmeasured factors 

and assumption may 

introduce disparities 

Yes  IPD Aggreg

ated 

Re-weighting 

by using the 

Adjust patient 

characteristics in the 

More widely 

applicable 

- Unmeasured factors 

are not considered; 

Yes  IPD Aggreg

ated 
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method of 

moments 

trial to match 

aggregated data in 

the registry 

method is a bit 

sophisticated  

Post-

stratification 

Reweight effects 

based on population 

distributions 

Conceptually 

straightforward 

- Applicability is 

limited in terms of 

the number of 

variables 

Yes  IPD Aggreg

ated 

Expected 

absolute risk 

reduction 

Combine relative risk 

in the trial and 

baseline risk in the 

target population 

The absolute effect 

and number needed 

to treat can be 

obtained 

Uniform relative risk 

across trial and target 

population 

The assumption may 

not always be valid 

Yes  IPD Aggreg

ated 

Multilevel 

Network Meta-

Regression 

model 

Establish an IPD level 

regression model and 

combine outcomes 

from aggregate data 

study while adjusting 

for differences in 

effect modifiers  

Important for 

decision making; 

can be used in any 

relative target 

population 

Common heterogeneity 

variance; shared effect 

modifier; conditional 

constancy of 

relative effects 

May suffer from low 

power; the 

unmeasured effect 

modifier may differ 

between studies int 

the network and the 

target population 

Yes Both Both 

Extrapolation 

by using cross-

Integrate findings 

from randomised and 

Can extrapolate 

trial findings to 

No unmeasured correlates 

of the effect measure; 

the observed trends in 

Subjective judgment 

in selecting 

algorithms and 

Yes  IPD Aggreg

ated 
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design 

synthesis 

non-randomised  

studies 

excluded 

populations 

relationships between the 

risk factors and the 

endpoints remain 

constant. 

statistical models; 

caution is needed 

for extrapolation 

Extrapolation 

by using 

discrete event 

simulation 

Model disease 

pathways and 

outcomes over time 

Accounts for 

dynamic risk factors 

over time; can 

extrapolate trial 

findings to excluded 

populations 

Same as cross-design 

synthesis 

Requires validation 

and careful 

interpretation 

Not clear IPD IPD 

Maximum 

entropy 

weighting 

Match trial strata and 

reweights based on 

observed 

characteristics in the 

target population 

Combines benefits 

of trials and 

observational data 

sources 

Consistency under parallel 

studies, strong 

ignorability of sample 

assignment 

May be complicated 

to implement 

Yes IPD Either  

Non-

parametric 

Bayesian 

approach 

Model observational 

data with a Dirichlet 

process 

Incorporates trial 

data with prior 

distribution 

- Limited details 

available for 

evaluation 

Not clear IPD Either 

 IPD: individual participant data. 
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2.3.3.2 Re-weighting by using individual data.  

 

The overall aim of this method is to resemble the registry cohort in terms of all 

measured variables by reweighting the trial, and then to re-estimate the treatment 

effects of trial on outcomes in the real-world population using reweighted sample. It 

combines the trial cohort and registry cohort together and estimates the probability of 

trial participation for every individual if they were selected from the target population 

by multivariate logistic regression model which includes all effect modifiers that might 

have the potential to influence the treatment effects such as sociodemographic factors, 

medical history et al (56, 57). To calculate the weights (inverse odds) of each patient 

from the real-world target population included in the trial, logistic regression was first 

used to model the probability of being included in the trial sample, with the patient 

characteristics as predictors. The logistic regression can be written as the formular 1 

below. 𝑝𝑖=𝑃𝑟(𝑆𝑖=1|𝑋𝑖) denotes the probability of subject 𝑖, with a p-dimensional patient 

covariates 𝑋𝑖, had membership in trial sample (𝑆𝑖=1)(56). This step examines how well 

those baseline characteristics or effect modifiers capture the differences between the 

trial samples and target population(57). After getting the probability, the sampling 

weights (the inverse of the estimated odds of trial participation conditional on baseline 

covariates) for the trial participants can be obtained by getting the inverse odds of the 

sampling probability [(1-p)/p] (58). Then the inverse odds of trial participation 

weighting method were employed to re-estimate the baseline characteristics and 

cumulative incidence of trial outcomes in both the treatment and placebo arms of the 

trial cohort in terms of the distribution of characteristics in the registry.  

 

 

This approach aims to enhance the representation of individuals in the linked trial 

cohort who share characteristics that are more prevalent in the registry cohort. 

Conversely, individuals in the linked trial cohort with characteristics that are less 

𝑙𝑜𝑔(𝑝𝑖/1−𝑝𝑖) = 𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑝𝑋𝑖𝑝 

𝑝𝑖: the probability of subject 𝑖 from the target population, with a 𝑝-dimensional predictors/patient 

characteristics from 𝑋𝑖1 to 𝑋𝑖𝑝, of being included in the trial.  

𝑖: each subject in the target population. 

𝑋: predictors such as age, gender et al.  

𝑝: number of predictors.  

(Formula 1) 
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common in the registry cohort are given less weight. This process creates a pseudo-

population that mimics the distribution of observed covariates in the registry 

cohort(56). Within the weighted trial, multiple models such as logistic regression or cox 

proportional hazard model can be applied to obtain the risk of getting the endpoint on 

the treatment and effect modifiers(59).  

 

It's important to highlight that inverse odds of sampling weights (IOSW) are typically 

utilised in situations where the effects are estimated in a population entirely external 

to the study sample. This concept is often referred to as "transportability". This differs 

from another scenario where study results are extended from a sample to the 

population it was drawn from, and in this case, inverse probability of sampling weights 

(IPSW) are used, commonly referred to as "generalisability"(58, 60, 61).  

 

This method has been applied to Dual Antiplatelet Therapy (DAPT) trial and a 

contemporary real-world population of 568,540 patients undergoing percutaneous 

coronary intervention with drug-eluting stent(56, 62). DAPT was a large pragmatic trial 

where patients who had undergone a coronary stent procedure with a drug-eluting stent 

were enrolled. Following 12 months of treatment with a thienopyridine drug 

(clopidogrel or prasugrel) and aspirin, patients were randomly assigned to either 

continue thienopyridine treatment or receive a placebo for an additional 18 months. 

Throughout the study, all patients continued to receive aspirin. The co-primary 

endpoints were stent thrombosis and major adverse cardiovascular and cerebrovascular 

events (a composite of death, myocardial infarction (MI), or stroke) occurring between 

months 12 and 30. The primary safety outcome was moderate or severe bleeding. DAPT 

was observed to reduce stent thrombosis (hazard ratio [95% confidence interval (CI)] 

0.29 [0.17 to 0.48]), major adverse cardiovascular and cerebrovascular events (0.71 

[0.59 to 0.85]) and MI (0.47 [0.37 to 0.61]), but at the cost of increased bleeding (1.61 

[1.21 to 2.16]). These findings led to current guidelines recommending the continuation 

of DAPT for patients with an acceptable risk of bleeding beyond the initial one-year 

period(62). In comparison to the trial population, the registry patients exhibited more 

comorbidities and were more likely to present with myocardial infarction and receive 

2nd-generation drug-eluting stents. After applying reweighting method to represent the 

registry, there was no longer a statistically significant effect of prolonged DAPT in 

reducing stent thrombosis (reweighted treatment effect [95% CI] -0.40, [-0.99% to 

0.15%]), major adverse cardiac and cerebrovascular events (-0.52 [ -2.62% to 1.03%]), or 

myocardial infarction (-0.97% [-2.75% to 0.18%]). However, the observed increase in 

bleeding associated with prolonged DAPT remained significant (2.42% [0.79% to 3.91%]). 
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This study assessed the applicability of the DAPT to a more contemporary registry 

population receiving PCI and indicated the benefit of prolonged DAPT was attenuated in 

the real-world population. It showed findings from trials can be applied to the real-

world population based on the observed effect modifiers and this method could be used 

in a wider context in other cardiovascular trials. This method based on the assumptions 

that logistic regression models used to predict the sampling probability were correctly 

specified and all individuals in the target population had some chance of being included 

in the trial(59). Unmeasured factors that could not be addressed during the reweighting 

process might introduce disparities between the extrapolated registry treatment effect 

derived from the registry data and the actual treatment effect that would be observed 

if a contemporary trial were conducted.  

 

2.3.3.3 Re-weighting by using simulated individual data in the target population. 

 

In this method, IPD was used from trials and the aggregated data was used from the 

target population. Based on the summary statistics of each effect modifiers and the 

total number of the target population, IPD can be simulated under the assumption that 

there are no correlations between each covariate. All variables were simulated 

independently. There are two ways of simulation. Continuous variables such as age, BMI 

can be simulated as continuous variables based on means and standard deviations. They 

can also be simulated as categorical variables (e.g., categorise age into <65 and >= 65-

year-old). Categorical variables were simulated based on the proportions. In order to 

achieve a more stable sampling distribution, researchers in this study increased the 

sample size by a factor of 100 compared to the size of the target population. Then this 

data was combined with the trial data and the probability of inclusion and sampling 

weights can be obtained and the treatment effects can be estimated as the above 

method. This study only involves the main effects without treatment interactions as 

interaction terms might worsen the covariates balance(59). 

 

The availability of IPD in the target population sometimes is limited such as being stored 

in the restricted platforms and cannot be accessed. This method can be more widely 

adapted to deal with the real-world questions although IPD from the trial is still 

needed. Also, unmeasured covariates were not considered and the assumption that no 

correlations between each covariate may cause some disparities between the treatment 

effects from the estimated and observed real-world situations.  
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2.3.3.4 Re-weighting by using the method of moments.  

 

Signorovitch et al. introduced this approach to enable indirect comparisons between 

trials when IPD are limited(63). In situations where only IPD is accessible for trials of 

one treatment (such as a novel drug), while only aggregated data is available for trials 

of the comparator treatment, it is possible to utilise all available data by adjusting the 

average patient characteristics in IPD trials (hereafter, T1) to match the characteristics 

reported for trials without IPD (hereafter, T0). After matching, all available baseline 

characteristics can be well balanced across trials. Treatment outcomes can then be 

compared across balanced trial populations.  

 

The principle behind this method is still re-weighing in which participants in T1 are re-

weighted to match the distribution of participants in T0. To address the under-

representation of participants who are more likely to have received treatment in T0 

compared to treatment in T1, their weights will be increased (up-weighted) accordingly 

in the T1 sample. Participants less likely to have received T0 versus T1 will be down-

weighted to compensate for their over-representation in the T1 sample(63). The weight 

assigned to the i-th participant receiving treatment in T1 is the odds that the i-th 

participant receives treatment in T0 versus T1 (being enrolled in T0 vs T1) based on the 

i-th participant’s baseline characteristics. The weights can be estimated using the 

logistic regression as the equation below, where xi is the covariate vector for the i-th 

participant(61). However, the regression parameters are not estimable using standard 

methods due to the lack of IPD in T0. Then Signorovitch et al. proposed the use of a 

method of moments estimate for β and the details was described in their paper(63). 

They also showed the weights balance the mean covariate values between the weighted 

T1 population and T0 population.   

 

Similarly, in the scenario that only aggregated data is available for the target 

population instead of T0, participants in the trial with IPD can also be re-weighted to 

have average values of variables that match baseline characteristics in the target 

population with aggregated data. After getting the weights, the treatment effects can 

still be estimated as the above methods(59). 

 

This method estimates weights for target population with only aggregated data by 

estimating the regression parameter through the method of moments. Compared with 
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using IPD in the target population, it can also add more flexibility for data acquisition. 

Also, it is said that the variables can be well balanced between trials and target 

population. However, it may require a sophisticated understanding of the method of 

moments and programming skills in practice.  

 

2.3.3.5 Post-stratification 

 

Post-stratification, originally used in sample surveys to align survey samples with 

population distributions(64), has been extended to estimate population-level 

effects(57). It re-weights the effects according to population distributions, which is the 

common way to apply trial effects to the target population. For example, if a trial 

contains a 20% female and 80% male composition, whereas the target population is 

evenly split between genders. In this scenario, post-stratification would involve taking 

an equally weighted average of the gender-specific effect estimates from the trial to 

estimate the effect in the population. The 95% CI can be obtained based on the pooled 

standard deviation across strata(59, 65). Hong et al suggested that it can only be used 

on binary or categorical effect modifiers and better for one-at-a-time variable(59). The 

calculation was performed iteratively for each effect modifier individually. 

Subsequently, the poststratification estimates of treatment effect, pertaining to all 

effect modifiers, were aggregated by computing the unweighted mean of the estimated 

treatment effects(59). This method can work effectively when there are only a small 

number of variables which is also binary or categorical, it might not be suitable for 

many or continuous variables(59).  

 

While this method is conceptually straightforward, its applicability is limited in terms of 

the number of variables that can be adjusted. When attempting to post-stratify on basic 

demographic factors such as gender, race, ethnicity, and age groups, the resulting post-

stratification cells may become very small(57).  

 

Li et al proposed post-stratification can also be used for generalisation with discrete 

effect modifiers and continuous effect modifiers with detailed steps and equations 

described(66). In situations involving multiple continuous effect modifiers, discrete 

pseudo-strata can be constructed for each point by selecting nearest neighbours based 

on a multivariate distance measure. However, when both continuous and discrete effect 

modifiers are present, it is advisable to initially select pseudo-strata based on 
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continuous predictors and subsequently stratify within those strata using discrete 

stratifiers. This approach helps avoid the issue of empty strata, where for instance, 

there are no non-smokers aged 34 (66). 

 

Tipton introduces a method that integrates post-stratification and propensity scores to 

account for a broader range of variables. This approach exhibits close similarities to the 

re-weighting methods above(67). 

 

2.3.3.6 Expected absolute risk reduction.  

 

The expected absolute risk reduction can be obtained by the difference of the actual 

observed risk of unexposed patients in the target population and the expected risk of 

the exposed patients if they were treated as the trial, assuming the relative risk 

calculated from the trial is also true for the target population. For example, 

Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating 

Rosuvastatin (JUPITER) evaluates the effectiveness of rosuvastatin vs placebo among 

patients with low levels of low-density lipoprotein (LDL) cholesterol and elevated levels 

of C-reactive protein. The primary outcome is the major cardiac event(68). JUPITER - 

eligible patients naive to statins were defined in the target population, the actual 

cardiovascular risk was treated as the baseline risk. If the 1-year risk ratio is 0.55 for 

rosuvastatin in JUPITER and the 1-year cardiovascular risk is 1.5% in the target 

population, the expected risk in the target population if they were treated with 

rosuvastatin can be calculated as 0.55 * 1.5% = 0.825% assuming the relative risk is also 

uniform for the target population. Then the expected absolute risk reduction at 1-year 

is 0.825% - 1.5% = -0.675 percentage points. The 95% confidence intervals can be 

obtained based on standard deviations of estimates from 200 bootstraps of the JUPITER 

data(59). This method based on the assumption that the relative risk is uniform for the 

trial and target population which may not always be valid.  

 

Another example using this method was applied in Clopidogrel versus Aspirin in Patients 

at Risk of Ischaemic Events (CAPRIE) trial to Saskatchewan routine health population 

(69). CAPRIE trial evaluated the relative efficacy of clopidogrel compared with aspirin in 

reducing the risk of a composite ischemic events including ischaemic stroke, myocardial 

infarction, or vascular death (70). 12,931 patients from Saskatchewan population who 

fulfilled the CAPRIE eligible criteria were selected and the data was linked with hospital 
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admission records, physician visits and prescriptions et al. In order to determine the 

potential absolute risk reduction associated with clopidogrel for the prevention of 

ischemic events in real-world settings, the relative risk reduction observed in the 

CAPRIE trial (8.7%) was multiplied by the reference risk (per year) estimated for 

patients receiving aspirin in the Saskatchewan population. Chi-square tests were then 

employed to compare the event proportions between those trial-eligible patients from 

Saskatchewan populations and the participants randomly assigned to aspirin treatment 

in the CAPRIE trial. For the results, patients in the real-world were slightly older and 

there were more females than those in the trial. The rates of subsequent outcomes 

were higher in real-world practice compared to the CAPRIE controls. In Saskatchewan, 

patients experienced outcomes at a rate of 159 per 1,000 person-years, whereas in 

CAPRIE, the rate was only 69 per 1,000 person-years. This indicates that patients in 

Saskatchewan had an event rate slightly more than twice as high (relative risk 2.3, 95% 

CI: 2.2 to 2.5, P < 0.0001) as that of CAPRIE. Based on the data from patients receiving 

aspirin in the CAPRIE trial, it was estimated that treatment with clopidogrel instead of 

aspirin would prevent 5 events per 1,000 person-years which corresponds to a number 

needed to treat of 200 per year. By utilising the event rate in Saskatchewan (159 per 

1,000 person-years) as an approximation of the reference risk, and applying the same 

relative risk reduction of 8.7%, the calculation yields 14 adverse events prevented per 

1,000 person-years. Consequently, the number needed to treat is 70 per year. 

 

When assessing the cost-effectiveness and health benefits of a therapy within the 

context of healthcare assessment, it is important to take into account the absolute 

effect and the number needed to treat(71). This method has implications on 

determining the cost effectiveness of new therapies. It is commonly assumed that the 

relative risk reduction observed in CAPRIE, is applicable to the real-world Saskatchewan 

population. If this assumption were invalid, the utility of randomised  trials would be 

compromised. Nevertheless, it is important to critically examine this assumption. The 

key consideration is whether the factors influencing the reference risk also impact the 

relative risk reduction. For instance, this could happen if the causes of adverse 

outcomes vary among patients in a population compared to those in a clinical trial. 

Despite the pragmatic and representative nature of clinical trials, there is a possibility 

of underestimating the reference risk and, consequently, the absolute effects(69). Also, 

this method did not take the multiple baseline characteristics into account which can 

only make inferences in the population level rather than an individual level.  
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2.3.3.7 Multilevel Network Meta-Regression (ML-NMR) model 

 

ML-NMR model is a powerful method for conducting population-adjusted indirect 

comparisons and it is an extension of the network meta-analysis (NMA) framework 

designed to incorporate both individual and aggregate data from a connected network 

formed by any number of studies and treatments(72). 

 

It follows specific steps: 

 

1. Data Integration: ML-NMR integrates both IPD and aggregate data from a 

connected network formed by any number of studies and treatments. 

2. Individual-Level Regression Model: It establishes an individual-level regression 

model directly fitted to participants with IPD(73). 

3. Incorporation of Aggregate Data: It incorporates summarised outcomes from 

studies with aggregate data by integrating it across the covariate distribution 

within each aggregate data study. ML-NMR adeptly combines networks of IPD and 

aggregate data studies of varying sizes, adjusting for differences in effect 

modifiers and avoiding aggregation bias and noncollapsibility bias. 

4. Population-Adjusted Estimates: ML-NMR can produce population-adjusted 

estimates of quantities of interest in any target population for which covariate 

information is available, such as average treatment effects or absolute event 

probabilities(72). 

 

This approach relies on several assumptions. Firstly, all effect modifiers should be 

appropriately accounted for to maintain the validity of the conditional constancy of 

relative effects assumption. Additionally, it assumes the consistency of relative 

treatment effects, extending this consistency assumption to the interactions involving 

effect modifiers. The shared effect modifier assumption, where interaction parameters 

of effect modifiers are assumed to be common for treatments, is also employed. 

However, this assumption can be challenging to hold when data is insufficient. 

Furthermore, it may suffer from low power when data is lacking. Unmeasured effect 

modifiers may also be omitted between studies in the network and the target 

population(72).  
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The method can been implemented in the “multinma” R package(74) and Phillippo et al 

provides more details on fitting ML-NMR models(72).  

 

2.3.3.8 Extrapolation by using cross-design synthesis 

 

A broader category of methodologies, known as research synthesis or cross-design 

synthesis, incorporates similar principles to meta-analysis but offers greater potential to 

explicitly address the question of generalisability (57). Research synthesis allows for the 

integration of findings from both randomised and nonrandomised studies, enabling the 

combination of information on program effects from diverse sources. For instance, it 

can merge results from a trial with those from an observational study, which can 

provide different, complementary strengths and weaknesses (i.e., trials are usually used 

to explore the causal relationship with restricted subjects and study design and 

observational studies might contain more representative samples with less restrictive 

inclusion criteria)(57, 75, 76) to extrapolate findings of trial to the target population 

(77-79). This approach involves modelling multiple parameters from each study and 

incorporating study characteristics into the analysis(80). It assumes that there are no 

unmeasured correlates of the effect measure of interest by inclusion criteria for the 

trial and the observed trends in relationships between the risk factors and the endpoints 

remain constant. However, further investigation is required to fully explore the 

applicability of research synthesis in addressing the specific question of generalisability, 

as the explicit goal of these methods may not always be to estimate population 

effects(57).  

 

Wang et al proposed cross-design synthesis could be used to extrapolate trial findings to 

estimate treatment effects in excluded populations(77). They conducted a fictional case 

study to extrapolate trial results for fantastistatin compared to normostatin to a target 

population that includes older patients with a longer lag between MI and treatment 

initiation than those in the trial. The algorithm they used utilises observed trends in the 

rate of major adverse cardiovascular events (MACEs) with increasing age among 

normostatin initiators in the observational data to extrapolate rates to older patients 

who were excluded from the trial. They then checked the consistency by assessing if the 

rate of MACEs with increasing age among normostatin initiators under 65 years in the 

observational data aligns with the trends observed in trial participants under 65 years 

who initiated normostatin. If there were significant deviations, cross-design synthesis 

would not be applied in this case. If not, the rates of MACEs in both arms of the trial 
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would be extrapolated and the expected rates for each group in the excluded target 

population would be estimated. To estimate the average efficacy in the defined target 

population, the observed and extrapolated rates of events can be combined by 

reweighting them according to the distribution of age and/or interval between MI and 

treatment initiation in the target population. 

 

Cross-design synthesis lacks formal mechanisms to assess the similarity or difference 

between subjects in trials and individuals in the target population. Subjective judgment 

in some parts of the process such as the selection of the algorithms and the complex 

statistical adjusting models with the possibility of pooling inappropriate data still 

remains questioning(76). It still needs to be cautious when extrapolation being carried 

out and interpreted. 

 

2.3.3.9 Extrapolation by using discrete event simulation 

 

Discrete event simulation (DES) is a method used to model disease pathways and 

outcomes over time, taking into account treatment and individual patient-level 

variables. By tracking patient-level characteristics and incorporating changes in risk 

factors, DES can estimate event rates, absolute risks, and treatment effects(81-84). For 

instance, DES can consider the increased risk of MACEs as patients age or develop 

comorbidities. DES can incorporate these “dynamic” risk factors as parameters when 

estimating individual risks in the simulation. It can, therefore, extrapolate over time as 

patients’ risk varying based on different transition pathways and health status according 

to the characteristics such as more elderly age or more comorbidity burden. Similar to 

reweighting and cross-design synthesis, DES can generalise results to target populations 

with different characteristics and extrapolate evidence to populations excluded from 

trials. Like cross-design synthesis, it also assumes that there are no unmeasured 

correlates of the effect measure of interest and the observed associations between the 

risk factors and the endpoints remain constant(77). To implement DES, the following 

steps can be followed: 

 

1. Develop and validate outcome prediction models: Create models that describe 

how patient characteristics relate to outcomes for each exposure group using 

trial data and external information. 
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2. Design the DES model: Construct a model that represents various health states 

and pathways, incorporating the prediction model from step 1 to define 

probabilities of outcomes based on changing patient characteristics. 

 

3. Simulate the trial participants: Generate a cohort of patients with 

characteristics matching those in the original trial population. 

 

4. Validate the DES model: Compare the simulated event rates and effect measures 

from the DES model with the observed rates and measures from the trial. 

 

5. Simulate the target population: Use the DES model to simulate a cohort of 

patients with characteristics reflecting the target population in routine care. 

Obtain the relevant covariate distributions from literature or healthcare data 

sources. 

 

6. Run DES: Obtain predicted absolute event rates and effect measures for the 

target population. Consider uncertainty by incorporating model estimates and 

standard errors at each transition. 

 

By following these steps, DES can provide estimates of outcomes and treatment effects 

for a target population by accounting for patient characteristics and their impact on 

health outcomes over time. 

 

Outcome prediction models can be derived from various sources, such as published 

literature or regression models fitted with individual-level data from trials or 

observational studies. It is important to validate newly developed models to assess their 

predictive performance in out-of-sample data. In a recent study, published outcome 

models from the Randomised Evaluation of Long-Term Anticoagulation Therapy trial 

were combined with baseline characteristics from two previously published 

observational studies comparing dabigatran to warfarin in atrial fibrillation patients to 

develop a DES model that accurately replicated the rates of ischemic stroke and major 

bleeding observed in the trial. The well-fitted DES model was then utilised to predict 

trial outcomes in populations similar to those encountered in routine care settings(81). 
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By using this method, researchers need to get access to IPD in both trial and routine 

data to be able to develop and validate outcome prediction models and examine the 

effects and “dynamic” risk over time. DES model can extrapolate trial findings to 

excluded populations, but it also needs to be cautious when validating the model and 

interpreting it.  

 

2.3.3.10 Maximum entropy weighting 

 

The principle of maximum entropy states that, in situations where information is 

incomplete, the preferred probability distribution is the one that maximises entropy or 

a form of probabilistic uncertainty while satisfying the given constraints (53). The 

natural constraint is that the sum of all probabilities must equal one. Maximum entropy 

weighting does not assume the propensity score is rightly specified and does not make 

additional assumptions about the distribution of weights.  

 

It uses an automatic matching approach to create matched strata within the trial and 

then by using maximum entropy weighting to reweight the individual trial strata 

according to the observed characteristics in the target population(85). More details and 

equations can be found in the appendix(85). It ensures the weights of the matched pairs 

sum to 1, but simultaneously satisfy the constraints based on the characteristics. This 

method can be used when either aggregated or individual data of the target population 

are available and it has some in common with the method of moments(86, 87). It is 

suggested to incorporate covariates in the model that are expected to have an impact 

not only on the outcomes but also on the selection of patients into the trial. 

It combines the benefits of trials with those of large observational data sources and 

retains the advantages of both types of data. However, it requires sufficient 

assumptions such as the consistency under parallel studies, strong ignorability of sample 

assignment for treated and controls(85). It may also be complicated to implement.  

 

2.3.3.11 Non-parametric Bayesian approach  

 

According to Yovanna et al in 2017, a non-parametric Bayesian approach was applied 

that models long-term observational data with a Dirichlet process. The fitted Dirichlet 

process serves as the prior distribution, while the Kaplan Meier estimate from the trial 
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data acts as the likelihood function. Trial data was then incorporated with the prior 

distribution from the observational data, resulting in the non-parametric Bayesian 

estimator (88). As this approach was published as the meeting abstract, more details 

are to be explored.  

 

2.3.3.12 Discussion 

 

Re-weighting by using individual data, aiming to adjust the trial cohort to resemble the 

target population in terms of measured variables, is regarded as the gold-standard 

approach among re-weighting methods(59). It based on three assumptions that 1) it 

captured most of the potential factors that may modify the effect, 2) logistic regression 

models utilised to estimate the sampling probability were accurately specified and 3) 

every individual in the target population had a non-zero probability of being selected 

for the trial.  

 

Weighting methods that rely on aggregate data from the target population have 

inherent limitations when it comes to matching multidimensional distributions of effect 

modifiers between the weighted trial and target population. This is due to the lack of 

IPD or joint distribution data. Modelling-based weighting methods require the 

assumption of correct model specification but often neglect to assess covariate balance 

in joint distributions for confounding control(89). However, achieving covariate balance 

in joint distributions is crucial as it involves reweighting trial participants to the target 

population based on all effect modifiers, including those specific to certain covariate 

patterns. A study evaluated variable balance in subgroups stratified by sex after 

reweighting trial participants to match the target population's marginal distributions of 

variables(59). It showed that while the gold-standard method maintained balanced 

covariates after stratification by sex, re-weighting by using simulated data and the 

method of moments showed a deterioration in covariate balance. To address this 

limitation, IPD or data on joint distributions of relevant effect modifiers are necessary 

when the access to IPD is not always possible due to data sharing agreement and 

regulatory approvals. The flexible application of re-weighting methods therefore 

depends on the availability of the data from the real-world. Re-weighing by using IPD is 

recommended where possible.  
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In re-weighting by using simulated data, it is assumed that there is no correlation 

between effect modifiers. The impact of correlation on the generalisability of trial 

results is not well understood. While correlation between variables may not affect 

certain methods of confounding control, it can potentially introduce interactions in 

logistic regression models used to predict sampling probabilities, thereby influencing 

the estimates in the generalisability of trial results(90). Therefore, further research is 

needed to explore the incorporation of correlation between covariates in 

simulations(59). 

 

Poststratification can be viewed as another weighting approach that assesses the 

generalisability by reweighting subgroup-specific treatment effects to align with the 

distribution of those subgroups in the target population. However, this method is 

limited by the number of variables it can account for. Additionally, it only standardizes 

for the distribution of one effect modifier at a time. This method can be particularly 

valuable when there is a strong effect modifier or when identifying effect modifiers that 

have a substantial impact on the generalisability of trial results(59). 

 

Extrapolation by using cross-design synthesis or DES both need IPD from the target 

population to model multiple parameters or measure the dynamic risk factors over 

time. They both based on the assumption that there are no unmeasured correlates of 

the effect measure and the observed trends in relationships between the risk factors 

and the endpoints remain constant. And the models need to be validated before it can 

be applied. The strength is that they can extrapolate trial findings to excluded 

population that other methods cannot achieve. In theory they are feasible while 

researchers just used the C cases studies to implement the methods. It remains unsure 

if they are practical in the real-world situations and it requires a more comprehensive 

understanding and interpretation of the methods.  

 

While re-weighting by simulated data and method of moments that are based on 

aggregated data are theoretically straightforward to implement, practical challenges 

often arise. The ability to align multidimensional distributions of effect modifiers 

between the weighted trial and target population may be constrained by the absence of 

IPD or comprehensive joint distributions. Therefore, matching existing aggregated data 

that precisely with the trial's inclusion and exclusion criteria can be difficult unless 

common effect modifiers were pre-specified before aggregation. On the other side, 

comparing with getting access to IPD in the target population through data sharing 
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agreement and regulatory approvals, weighting methods using simulated individual data 

and the method of moments are preferable with much less administrative burden but 

require more advanced programming techniques. However, study highlights the 

limitation of using continuous variables in weighting methods based on aggregate data 

due to the challenge of understanding actual distributions without IPD(59). In certain 

situations where a strong effect modifier is suspected or complex programming is not 

feasible, alternative approaches such as poststratification and expected absolute risk 

reduction should be considered. 

 

2.4 Chapter discussion 

 

Austin Hill said in 1984, “At its best a trial shows what can be accomplished with a 

medicine under careful observation and certain restricted conditions. The same results 

will not invariably or necessarily be observed when the medicine passes into general 

use”(23, 91). The disparities between trials and real-world practice reflect a 

phenomenon known as the "development paradox." In the drug development process, 

phase II-III trials typically focus on enrolling patients who are relatively easy to treat, 

whereas in real-world clinical settings, priority is given to treating patients with more 

challenging conditions(92-94). The sequential approach of initially studying drugs in 

easy-to-treat patients is generally deemed appropriate. However, the final step of 

conducting trials specifically targeting difficult-to-treat patients is frequently bypassed 

or postponed until after market authorisation(49). There are always uncertainties when 

the findings from trials are applying to patients in the real-world practice especially for 

those with different characteristics. This literature review focuses on methods to 

improve the applicability of trials to the real-world practice and there are 3 types of 

studies.  

 

The descriptive comparisons mainly describe two types of comparisons to assess the 

representativeness of the trial. Comparing the baseline characteristics and/or outcome 

between the target population and trial participants is the first type. The second type 

of assessment is defining the target population as trial-eligible and trial-ineligible 

participants and comparing the baseline characteristics and/or outcome across them. 

The issue of representativeness is well described by those comparisons with some 

examples provided, emphasising the importance of addressing the "what" question. 

However, it falls short in providing a solution to the "how" question, which pertains to 

improving the trial representativeness.  
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The second type of study refers to conducting pragmatic trials rather than explanatory 

trials to improve the trial representativeness by enrolling more representative samples 

from the routine practice to better reflect the real-world situation. Pragmatic trials 

have a higher external validity than explanatory trials from the design, but the cost of 

substantial resources poses a great challenge due to the complex design, burdensome 

administrative procedures, staff training, participant recruitment, data collection, 

safety reporting, and the need for substantial funding, among other factors (55). These 

resource-intensive requirements can create barriers and limitations in conducting 

research studies and clinical trials. In the words of Theodore Roosevelt, "Do what you 

can, with what you have, where you are." Nowadays conducting randomised  

effectiveness trials that involve significant financial investments of tens or hundreds of 

millions of dollars may not be feasible(95). Also, even for highly pragmatic trial, it 

remains uncertain if they have well represented the target population. However, with 

the emergence of registries and powerful digital platforms, there is an opportunity to 

leverage the available resources, such as bigger data and smaller budgets, to design and 

execute megatrials. These megatrials can still provide valuable insights and contribute 

to advancing scientific knowledge within the constraints of current resources(95).  

 

The third type of literature is about re-analysing the available trials and routine registry 

with statistical methods to maximising the generalisability of explanatory trials. These 

methods are all based on the statistical strategy to apply findings from trials to the 

target population in the real-world in terms of the existing trials without costing 

substantial resources to modify trial design to involve more representative samples. 

Each method has unique features, strengths, limitations, assumptions, and data 

requirements. Re-weighting methods are used to adjust trial cohorts to resemble the 

target population. Re-weighting using individual data is considered the gold-standard 

approach, but it relies on the model is correctly specified for the trial inclusion 

probability and individuals in the target population had some chance of being included 

in the trial. Although obtaining IPD is preferred, it is not always possible. Re-weighting 

using aggregated data have limitations in matching effect modifiers and covariate 

balance due to the lack of IPD or joint distribution data. Poststratification is useful for 

strong effect modifiers but limited in accounting for multiple variables. Extrapolation 

methods require IPD and assumptions of no unmeasured factors. They can apply trial 

findings to excluded population which is a strength over re-weighting methods. 

However, they normally require comprehensive understanding and programming skills, 

and the models always need validation for practical application in real-world situations. 
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Using statistical strategies to maximise the applicability of trials is more sustainable 

based on existing data sources compared to modifying trial designs to enrol more 

respective samples, which is also the focus of this thesis. Understanding those aspects 

of different methods is crucial for choosing the appropriate method. It depends on the 

data availability and type, conditions to meet the assumptions, the understanding to 

the statistical methods and programming skills et al. Also cautions are needed when 

justifying the purpose and interpreting the results.  

 

There is no existing literature comparing whether the importance of trial 

representativeness varies by the type of condition being investigated (e.g. non-

communicable diseases, infectious diseases, cancers, screening interventions etc). The 

swiftness with which individuals can spread infections around the globe makes 

infectious diseases a tremendous challenge for governments, the public, and primary 

healthcare systems(96). The screening interventions require careful consideration of 

both the prevalence and severity of the disease being screened for(97). 

Noncommunicable diseases (NCDs, also called chronic diseases), including 

cardiovascular disease, cancer, chronic respiratory ailments, and diabetes et al 

represent 74% of global deaths(98). Population growth, rising global average age, and 

considerable declines in age-, sex-, and cause-specific mortality rates drive a shift from 

infectious, maternal, neonatal, and nutritional causes to non-communicable 

diseases(99). Among NCDs, cardiovascular diseases, causing predominant deaths about 

17.9 million yearly, followed by cancers, resulting in 9.3 million deaths(98). Therefore, 

my thesis will firstly focus on NCDs, then specifically using cardiovascular diseases as an 

example to explore trial applicability.   
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Chapter 3: Case study 1 - A description of subgroup 

reporting in clinical trials of chronic medical conditions. 

 

3.1 Chapter summary 

 

This study examined a wide range of clinical trials for subgroup reporting obtained from 

clinicaltrial.gov and screened each trial-corresponding publication. Every reported 

subgroup was extracted. Using MeSH terms and WHOATC code, all reported subgroups 

have been standardised and categorised, and summarised according to trial index 

condition with their frequencies. It described the association between trial 

characteristics (such as trial starting year, enrolment size, follow-up time, trial 

sponsors, number of arms, index conditions) and subgroup reporting. It also provided 

implications for future trial reporting.  

 

3.2 Abstract 

 

3.2.1 Introduction 

 

In trials, subgroup analyses are used to examine whether treatment effects differ by 

important patient characteristics. However, which subgroups are most commonly 

reported have not been comprehensively described. Therefore, using a set of trials 

identified from the US clinical trials register (ClinicalTrials.gov), every reported 

subgroup for a range of conditions and drug classes (PROSPERO CRD42018048202) was 

described. 

 

3.2.2 Methods 

 

Trial characteristics from ClinicalTrials.gov via the Aggregate Analysis of 

ClinicalTrials.gov database was obtained. Subsequently all corresponding PubMed 

indexed papers were also obtained and screened for subgroup reporting. Tables and 

text for reported subgroups were extracted and standardised using Medical Subject 
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Headings and WHO Anatomical Therapeutic Chemical codes. Via logistic and Poisson 

regression models, independent predictors of result reporting (any vs none) and 

subgroup reporting (any vs none and counts) were identified. Next, subgroup reporting 

by index condition was summarised and all subgroups were presented for all trials via a 

web-based interactive heatmap (https://ihwph-

hehta.shinyapps.io/subgroup_reporting_app/).  

 

3.2.3 Results 

 

Among 2,235 eligible trials, 48% (1,082 trials) reported overall results and 23% (524 

trials) reported subgroups. For any subgroup reporting, adjusting for enrolment size and 

index conditions, the predictive characteristics were follow-up time (odds ratio (OR), 

95%CI: 1.13, 1.04-1.24), enrolment (per 10-fold increment, 3.48, 2.25-5.47)), trial 

starting year (1.07, 1.03-1.11) and specific index conditions (e.g., 

hypercholesterolemia, hypertension etc., OR ranged from 2.48 to 10.44). Funding 

source and number of arms were not associated with subgroup reporting. Results were 

similar on modelling any result reporting (except number of arms, 1.42, 1.15-1.74) and 

the total number of subgroups.  

 

Age (51%), gender (45%), racial group (28%) and geographical locations (17%) were the 

most frequently reported subgroups. Characteristics related to the index condition 

(severity/duration/types etc.) were somewhat commonly reported (e.g., 69% of MI trials 

reported on MI severity/duration/types). Also, 16% cardiovascular trials reported on 

diabetes. However, reporting on metrics of comorbidity or frailty (5 trials) and mental 

health (4 trials) were rare. 

 

3.2.4 Conclusion 

 

Other than age, sex, race ethnicity, geographic location and characteristics related to 

the index condition, information on variation in treatment effects is sparse in trial 

reporting. 

 

 

 

https://ihwph-hehta.shinyapps.io/subgroup_reporting_app/
https://ihwph-hehta.shinyapps.io/subgroup_reporting_app/
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3.3 Introduction  

 

3.3.1 Heterogeneity of treatment effect (HTE) 

 

Trials provide estimations of average treatment effects, yet they are less suitable for 

comprehending the variability, known as HTE, that exists among individuals. Observing 

the difference in outcome caused by a treatment in an individual is infeasible, given 

that an individual cannot experience both the treatment and non-treatment 

simultaneously(100). 

 

The average treatment effect derived from a trial is the difference in average outcomes 

between the intervention group and the comparator group (such as placebo). However, 

applying these average outcomes to a particular individual necessitates the assumption 

of homogeneity, implying that the average treatment effect observed within the study 

population reflects the impact on any individual within it, which is usually not true. A 

trial can indicate an overall average benefit for an intervention by showing a large 

benefit in a small subset of individuals, even if there is no benefit or potential harm 

observed for the majority(101). Therefore the results of that trial, an average benefit, 

would be greatly misleading for nearly all individuals(100). 

 

The most common method to investigate whether the treatment effect varies among 

individuals is to estimate the benefit separately in subgroups of patients. This is based 

on the assumption that a subgroup is more homogeneous than the entire study 

population. Consequently, the average effect within the subpopulation may provide a 

better prediction of the benefit for any individual within that subgroup(100). 

 

3.3.2 What are subgroup analyses?  

 

Subgroup analyses normally split participants into subgroups according to their specific 

characteristics and make comparisons across them based on the research of interest. 

The subgroup analyses may be conducted for subset of subjects such as males and 

females, patients that are over 65-year-old and less than 65-year-old, or for subset of 

studies in different locations et al. Subgroup analysis is most commonly used to explore 

HTE(100). It is generally the evaluation of a treatment effect in a specific subset of 
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subjects as the response to interventions may vary by the subjects’ baseline 

characteristics(102). For example, low-risk participants may fail to show the benefits of 

intervention in a prevention trial compared with high-risk participants(102). Subgroup 

analysis is usually run as a post-hoc analysis after individual patient data being collected 

and obtaining the treatment effects based on the whole participants. It is not a re-test 

for the null hypothesis in any subgroup as it can be misleading by chance and sample 

size, instead, it aims to explore if the treatment effects obtained from the whole 

participants from the trial is heterogeneous across subgroups. For example, male 

patients who are over 65-year-old in the trial might get a higher benefit than the 

female patients under 65-year-old. That is usually conducted by running a treatment by 

subgroup interaction to assess whether the treatment effect is significantly different in 

the subgroups. Furthermore, it is hopefully expected to detect information about the 

tailored subgroup patients who can gain most or least benefit from the treatment and 

generate hypothesis for further research(103, 104).  

 

3.3.3 Challenges of subgroup analyses. 

 

When assessing HTE between subgroups, an interaction test is appropriate(33). 

The most informative approach will implement both estimating the treatment effect in 

that subgroup and an interaction test(105). However, interpreting and reporting 

subgroup analyses can pose challenges(34), often leading to misleading outcomes due to 

increased risks of false positives (caused by unadjusted multiple comparisons) and false 

negatives (resulting from inadequate statistical power)(106, 107). 

 

3.3.4 How to evaluate the heterogeneity of treatment effects across subgroups?  

 

The most widely used methods to assess the heterogeneity is to test the hypothesis of 

treatment-by-subgroup interaction. If the hypothesis is rejected or, in other words, 

there is a significant interaction, it will indicate a substantial heterogeneity in 

treatment effects across subgroups. This case usually indicates further analysis and 

interpretation(102, 108). Alternatively, if not, then the difference in the effects across 

subgroups might be subtle and the overall mean effects might be able to capture the 

treatment effects(102). The interaction testing can decrease the risk of finding false-

positive subgroups while its power in detecting true subgroups remains low(109). It is 
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also worth noting that statistical significance of the findings within each subgroup 

analysis should not be compared(110).  

 

Trials are generally not powered to detect subgroup effects, and the sample size in 

subgroup analyses is frequently insufficient to detect clinically significant differences in 

treatment effects even if these were to exist.(25) Conversely, by testing multiple 

subgroups, the likelihood of chance findings (i.e. false positives) is increased(25, 111).  

 

To increase statistical power to detect differences in effectiveness, and to confirm or 

refute apparent subgroup effects from single studies, subgroup analyses of similar trials 

can be combined in meta-analyses to pool information across multiple trials(26). For 

such meta-analyses to be possible and reliable, however, studies of comparable agents 

must assess similar subgroups. Furthermore, these analyses need to be reported 

consistently. However, not all trials report subgroup analyses(28, 29). Those trials that 

do report subgroups vary widely in their reporting and adherence to published 

guidelines(28, 29, 112). 

 

Well-conducted subgroup analyses can sometimes inform health policy 

recommendations. A meta-analysis of six large diabetes trials with cardiovascular and 

kidney outcomes revealed that non-White participants had higher rates of 

cardiovascular and other comorbidities compared to the White participants(113). 

However, non-White participants accounted for only approximately 21% of the overall 

enrolled trial populations, which is under-represented. The American Diabetes 

Association and the European Association for the Study of Diabetes recommended in 

their consensus report that the increased burden of complications in underrepresented 

populations with diabetes should be considered in tailoring personalized treatment 

plans. Ongoing and future trials should aim to recruit participants who are more 

representative of the entire population with diabetes. This approach will facilitate a 

more accurate assessment of the effects of interventions within less studied 

subgroups(114, 115). 

 

Another meta-analysis of all major beta-blocker trials in heart failure with reduced 

ejection fraction (HFrEF) has revealed no benefit concerning hospitalisation and 

mortality in the subgroup of HFrEF patients with atrial fibrillation(116). However, as 

this analysis is a retrospective subgroup analysis and considering that beta-blockers did 
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not increase the risk, the guideline committee decided not to make a separate 

recommendation based on heart rhythm(117).  

 

3.3.5 Research questions and rationale 

 

Cochrane Handbook had advised that the investigation of heterogeneity which may be 

sought by conducting subgroup analyses or meta-regression is less likely to provide 

useful findings unless there is a considerable number of studies such as at least ten 

studies/trials for each characteristic of interest, although even ten studies may be too 

few when the covariates are distributed unevenly(118). 

 

I originally intended to conduct subgroup analysis for trials with the same index 

conditions and interventions to assess HTE. However, the inconsistent subgroup 

reporting across trials made this objective unfeasible. Instead, to understand the 

consistency of subgroup reporting across different index conditions and intervention 

types to further enable the exploration of HTE, this study will assess a set of trials with 

multiple chronic medical conditions for subgroup reporting. It aims to address questions 

regarding:   

1) Which subgroups are reported, in which trials, and at what frequency? 

2) What are the predictors of subgroup reporting among trial characteristics? 

 

3.4 Methods 

 

3.4.1 Identifying trials registered in ClinicalTrials.gov 

 

The trials selection has been described previously(119) (PROSPERO (CRD42018048202)). 

The eligible trials were identified through the US Clinical Trials register 

(clincialtrials.gov). This study was restricted to this database because it allowed 

efficiently obtaining a large trial-level (rather than paper-level) denominator. Trials 

were sought between January 1990 (since initial scoping indicated that trials with 

accessible IPD generally initiated after this date) and November 2016 using the Access 

to Aggregate Content of ClinicalTrials.gov (AACT) database. This is a copy of 

ClinicalTrials.gov in a relational database format(120). Additionally, the selected trials 
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were of phase 2/3, 3, or 4, with a minimum recruitment of ≥ 300 participants. These 

trials encompassed participants aged ≥ 60 years (or without an upper age limit) and 

focused on evaluating drugs for specific chronic conditions. The chosen conditions were 

those that necessitate long-term pharmacological therapy. The selection criteria are 

shown in Supplementary I Table S1. A range of cardiovascular, musculoskeletal, 

gastrointestinal, respiratory, neurological, urological, metabolic and autoimmune 

disorders were included. A full list of included conditions, Medical Subject Heading 

(MeSH) terms and MeSH code are provided in Table S2. 

 

3.4.2 Identifying publications relating to registered trials 

 

All PubMed indexed publications related to the identified trials from the 

ClinicalTrials.gov database were searched using two approaches. First, the 

ClinicalTrials.gov database was searched for PubMed IDs (PMIDs) of all relevant 

registered trials. Trial sponsors are obligated to update the ClinicalTrials.gov database 

with PMIDs of publications associated with registered trials. Secondly, PubMed was 

searched using the trial registration number for each relevant trial to identify 

publications that were not yet added to the database. This search was performed using 

the R Eutils package(121). This was last updated in April 2019.  

 

3.4.3 Screening of publications  

 

All papers were screened manually and via automatic text searches, as depicted in 

Figure 3. Initially, an automatic full-text search was conducted using specific strings 

such as "subgroup," "sub-group," "strata," "by baseline," "subpopulation," or "sub-

population." In cases where the automatic screening did not identify any of these terms 

in the manuscript text, articles (including supplementary appendices) were manually 

reviewed once to confirm the absence of relevant results. Otherwise, the studies were 

independently screened by two reviewers. 

 

3.4.4 Data extraction 

 

Trial-level data for all trials identified from ClinicalTrials.gov, regardless of publication 

status and the presence of subgroup analyses, were extracted from AACT. Extracted 
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data included ClinicalTrials.gov identifier, index condition, interventions and 

comparators, number of participants, phase of trial, number of arms, trial sponsor, 

start date, completion date, countries included, and eligibility criteria. Tabulated 

subgroup data were extracted using an interactive web-app (https://tabletidier.org/), 

subgroup results in the manuscript text or in figures without accompanying tables were 

extracted manually. The text used to describe subgroups were extracted verbatim. To 

allow comparison of subgroups across different studies, this text was assigned to 

standard terms using the MeSH and/or WHO Anatomical Therapeutic Chemical (ATC) 

vocabularies. MeSH is created by National Library of Medicine for indexing journal 

articles and books in life sciences which is widely used by PubMed and ClinicalTrials.gov 

registry. I initially extracted the tabulated data via TableTidier with the help of trained 

clinicians or medical student. Then text or figure data was extracted. I harmonised the 

collected data, and subsequently allocated appropriate MeSH and/or WHO codes to 

each to correspond with the relevant subgroups. For potentially ambiguous subgroups, 

like those in abbreviations, I cross-referenced the original paper to ensure they have 

been captured correctly. All assigned MeSH and/or WHO code were then reviewed by a 

clinically qualified investigator for accuracy. I also added additional qualifiers to 

assigned MeSH terms for subgroups such disease severity or duration to capture more 

information (i.e., duration of diabetes is one of the subgroups in the diabetes trials). 

 

3.4.5 Statistical analysis 

 

Via an interactive heatmap, all original subgroup terms as well as MeSH terms at the 

level of individual subgroup for all trials were summarised. The heatmap allows users to 

examine subgroup reporting according to the type of subgroup as well as the index 

condition, drug class and other trial characteristics (https://ihwph-

hehta.cognishinyapps.io/subgroup_reporting_app/), and where possible, links directly 

to the extracted tables. It should be clarified that this R shiny app was designed by my 

supervisor – Prof David McAllister, while the prepared data needed is my work. In this 

chapter, a concise overview is provided by presenting simple summary statistics such as 

ranks, counts, and percentages. Additionally, specific terms of interest are presented, 

and certain terms are collapsed into broader categories using the MeSH hierarchy. For 

example, heart failure and myocardial infarction are collapsed into the category of CVD 

(122). 

 

https://tabletidier.org/
https://ihwph-hehta.cognishinyapps.io/subgroup_reporting_app/
https://ihwph-hehta.cognishinyapps.io/subgroup_reporting_app/
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Two sets of logistic regression models for two sets of binary outcomes were fitted, i) 

any results reported and ii) any subgroups reported (taking those with any results 

reported as the denominator). For both outcomes, variables included were the year the 

trial started, number of arms ((>2 arms vs ≤2 arms), number of participants enrolled, 

sponsor type (industry versus other), duration of follow-up and the index condition (see 

Table S2 for list of conditions). Among trials with any subgroup reporting, we examined 

the total number of subgroups using quasi-Poisson models, again including the same 

covariates. This latter model was confined to trials with one or more subgroup. Data 

analysis was performed using R version 4.2.  

 

3.5 Results 

 

As reported previously(119), 2,235 registered clinical trials with a pre-specified set of 

conditions and treatment comparisons were identified. Of the 1,082 trials with 

published results, 524 (48.43%) trials reported findings from subgroup analyses (907 

manuscripts, of which 681 presented these results in tabular form) (Figure 3). Over 

2,000 unique strings were reduced to 345 unique MeSH terms. Of these MeSH terms, 182 

were further described using qualifiers (eg severity, duration). 

 

3.5.1 Presence and numbers of subgroups reported 

 

Of the 524 trials reporting subgroups, 156 (30%) reported a single subgroup, 90 (17%) 

reported 2-3 subgroups, 73 (14%) reported 4-5 subgroups and 205 (39%) reported 6 or 

more subgroups. Compared to trials without subgroup reporting, trials reporting 

subgroups were generally larger (median 827 participants, interquartile range (IQR 499 

to 1912) versus 610 participants enrolled (IQR 418 to 1000), had longer follow-up 

(median 2 years (IQR 2 to 4 years) versus 2 (IQR 1 to 3  years)), a higher percentage of 

non-industry sponsorship (14% versus 9%) and a higher percentage with more than 2 

arms (39% versus 35%).          

 

Figure 4 shows associations for any result reporting (yes/no), any subgroup reporting 

(yes/no among those trials reporting results), and total number of subgroups reported 

(among those trials reporting >=1 subgroup), using logistic regression models and a 

Poisson model, respectively. All of the covariates shown were included in the models. 
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Of the trial characteristics, the number of participants enrolled was the most important 

predictor of any result reporting OR per 10-fold increase in number enrolled 1.63; 95% 

CI 1.22 - 2.19, Figure 4), any subgroup reporting (OR per 10-fold increase in number  

 

Figure 3. Screening of subgroups analyses from eligible papers. 
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enrolled 3.48; 95% CI 2.25 – 5.47, Figure 4) and the total number of subgroups reported 

(rate ratio (RR) per 10-fold increase 1.69; 95% CI 1.65 – 1.73). Duration of follow-up also 

predicted any result reporting (OR 1.10 per year of follow-up; 95% CI 1.03 - 1.18), 

subgroup reporting (OR 1.13; 95% CI 1.04 - 1.24) and the total number of subgroups (RR 

1.03; 95% CI 1.02 - 1.03). More recent trials were similar to older trials (OR 0.97, 95% CI 

0.95 - 0.99, OR 1.07, 95% CI 1.03 - 1.11 and RR 1.02, 95% CI 1.02 - 1.02 for result 

reporting, subgroup reporting and number of subgroups respectively). Trials with 3 or 

more arms were more likely to report results (OR 1.42, 95% CI 1.15 - 1.74) but were not 

associated with increased subgroup reporting (OR 1.00, 95% CI 0.73 - 1.37) or a higher 

total number of subgroups (RR 1.01, 95% CI 0.99 - 1.04). Industry funding was not 

associated with any of the three outcomes (OR 1.03, 0.73 - 1.45; OR 1.58, 0.94 - 2.69 

and RR 1.00, 0.97 - 1.03 respectively). 

 

Taking asthma trials as a reference (asthma was chosen to make the ratios easier to 

interpret as it was an index conditions with lower odds of reporting), subgroup reporting 

was more likely within trials of cardiovascular, metabolic, thromboembolic index 

conditions (overall index conditions ORs ranged from 2.48 to 10.44, see Supplementary I 

Table S3). These trials were also more likely to report larger numbers of subgroups. 

Results for other indications were more mixed (Figure 4). 

 

3.5.2 Commonest subgroups reported 

 

There was substantial variation in subgroups across index conditions. Across 49 index 

conditions there were a total of 345 subgroup terms, with a median of 11 terms per 

index condition ranging from 1 to 97 (interquartile range 6 to 29). Nonetheless, some 

subgroups were common across all index conditions. Age (268 out of 524 trials, 51%) and 

gender (in 235 trials, 45%) were the commonest reported subgroups. Despite being the 

most common, these subgroups were only reported in approximately 50% of trials with 

documented subgroups, which accounts for roughly 25% (268 out of 1,082 trials) of the 

trials with reported results. It was followed by comorbid diabetes (154 out of 524 trials, 

29%), racial group (in 146 trials, 28%), BMI (in 125 trials, 24%), geographical locations (in 

88 trials, 17%), Glycated Haemoglobin A (in 72 trials, 14%) and cigarette smoking (in 63 

trials, 12%). Most of the BMI subgroup reporting appeared in the context of type 2 

diabetes trials (out of 125 trials reporting BMI, 44 of them are in type 2 diabetes trials, 

35%), followed by hypercholesterolemia trials (12%, n = 15) and Chronic Obstructive 

Pulmonary Disease (COPD) and hypertension trials (both 7%, n = 9). Among trials 
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reporting cigarette smoking subgroups, most were COPD trials (18 out 63 trials, 29%) 

followed by coronary artery disease (13%, n = 8) and type 2 diabetes trials (11%, n = 7).  

 

For many trials, subgroups relating to the index condition (e.g., duration or severity) 

were commonly reported which meant that treatment effects were stratified by the 

type, duration or severity of the index condition. For example, among 26 myocardial 

infarction trials with subgroup reporting, 69% reported severity/history/type of 

myocardial infarction as a subgroup, for type 2 diabetes trials, 29 of 120 trials reported 

diabetes characteristics (mainly duration) as a subgroup and for COPD trials 30 of 40 

trials (75%) reported severity of COPD as a subgroup, while 88% stroke trials which 

reported subgroup analyses reported previous/severity/type of stroke as a subgroup 

(Table 4). 
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Figure 4. Predictors of subgroup reporting and total number of subgroups.
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Table 4. The proportion of subgroup reporting and commonest subgroups in each index 
condition. 

Conditions 
Total 

subgroups 

The 

proportion 

of subgroup 

reporting 

among 

2,235 trials 

nT/N (%) 

The 

proportion of 

subgroup 

reporting 

among 1,082 

trials with 

results 

reporting 

nR/NR (%) 

Five commonest subgroups in 

each condition 

Myocardial 

Infarction 
99 26/47 (55%) 25/30 (83%) 

Age Factors (25); Diabetes 

Mellitus (23); Gender Identity 

(23); Myocardial Infarction 

(18); Hypertension (8) 

Diabetes 

Mellitus, Type 2 
89 

120/460 

(26%) 

117/235 

(50%) 

Age Factors (59); Glycated 

Hemoglobin A (58); Gender 

Identity (47); Body Mass Index 

(44); Racial Groups (44) 

Coronary Artery 

Disease 
77 27/80 (34%) 27/46 (59%) 

Diabetes Mellitus (23); Age 

Factors (20); Gender Identity 

(20); Myocardial Infarction (10); 

Hypertension (9) 

Hypertension 64 
44/247 

(18%) 
44/98 (45%) 

Age Factors (26); Gender 

Identity (23); Diabetes Mellitus 

(17); Racial Groups (16); Blood 

Pressure (12) 

Heart Failure 51 17/40 (42%) 17/27 (63%) 

Age Factors (12); Diabetes 

Mellitus (11); Gender Identity 

(11); Stroke Volume (10); Heart 

Failure (9) 

Hypercholestero

lemia 
48 28/72 (39%) 28/43 (65%) 

Lipoproteins (20); Diabetes 

Mellitus (19); Age Factors (18); 

Gender Identity (17); Body Mass 

Index (15) 

Atrial 

Fibrillation 
46 13/39 (33%) 13/20 (65%) 

Age Factors (8); Gender Identity 

(7); Heart Failure (7); Atrial 

Fibrillation (6); Hypertension 

(5) 
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Pulmonary 

Disease, Chronic 

Obstructive 

40 
40/186 

(22%) 
39/96 (41%) 

Pulmonary Disease, Chronic 

Obstructive (30); Age Factors 

(20); Cigarette Smoking (18); 

Gender Identity (17); Steroids 

(16) 

Acute Coronary 

Syndrome 
37 9/22 (41%) 9/10 (90%) 

Age Factors (8); Gender Identity 

(7); Diabetes Mellitus (6); 

Myocardial Infarction (5); 

Percutaneous Coronary 

Intervention (5) 

Arthritis, 

Rheumatoid 
35 

28/106 

(26%) 
28/65 (43%) 

Arthritis, Rheumatoid (13); Age 

Factors (7); Gender Identity (6); 

Immunosuppressive Agents (6); 

C-Reactive Protein (5) 

Stroke 35 8/20 (40%) 8/13 (62%) 

Stroke (7); Age Factors (5); 

Gender Identity (5); Diabetes 

Mellitus (3); Hypertension (3) 

Atherosclerosis 30 2/9 (22%) 2/3 (67%) 

Age Factors (2); Body Mass Index 

(2); Cigarette Smoking (2); 

Diabetes Mellitus (2); Gender 

Identity (2) 

Crohn Disease 29 11/18 (61%) 11/16 (69%) 

Immunosuppressive Agents (7); 

Tumor Necrosis Factor Inhibitors 

(7); C-Reactive Protein (6); 

Crohn Disease (5); Steroids (5) 

Osteoporosis 29 11/44 (25%) 11/23 (48%) 

Age Factors (6); Fractures, Bone 

(6); Osteoporosis (5); Body Mass 

Index (3); Geographic Locations 

(3) 

Prostatic 

Hyperplasia 
28 9/30 (30%) 9/15 (60%) 

Body Mass Index (4); Age Factors 

(3); Erectile Dysfunction (3); 

Adrenergic alpha-Antagonists 

(2); Antihypertensive Agents (2) 

Peripheral 

Arterial Disease 
24 3/8 (38%) 3/4 (75%) 

Diabetes Mellitus (2); Age 

Factors (1); Ankle Brachial Index 

(1); Blood Pressure (1); Body 

Weight (1) 

Venous 

Thromboembolis

m 

23 7/36 (19%) 7/8 (88%) 

Age Factors (6); Gender Identity 

(6); Venous Thromboembolism 

(4); Anticoagulants (3); Body 

Weight (3) 
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Asthma 22 
19/147 

(13%) 
19/62 (31%) 

Asthma (6); Eosinophilia (6); 

Steroids (5); Age Factors (4); 

Gender Identity (4) 

Colitis, 

Ulcerative 
21 8/14 (57%) 8/12 (67%) 

Steroids (5); Tumor Necrosis 

Factor Inhibitors (5); C-Reactive 

Protein (3); Gender Identity (3); 

Age Factors (2) 

Psoriasis 19 13/62 (21%) 13/37 (35%) 

Immunosuppressive Agents (5); 

Psoriasis (5); Tumor Necrosis 

Factor Inhibitors (4); Biological 

Therapy (2); Cyclosporins (2) 

Diabetes 

Mellitus 
16 8/36 (22%) 8/15 (53%) 

Age Factors (6); Body Mass Index 

(6); Gender Identity (6); Racial 

Groups (5); Glycated 

Hemoglobin A (3) 

Osteoarthritis 14 6/64 (9%) 6/26 (23%) 

Age Factors (3); Arthritis, 

Rheumatoid (3); Diabetes 

Mellitus (2); Gender Identity (2); 

Pain (2) 

Urticaria 12 2/3 (67%) 2/3 (67%) 

Age Factors (1); Angioedema 

(1); Autoantibodies (1); Body 

Weight (1); Gender Identity (1) 

Diabetes 

Mellitus, Type 1 
11 7/35 (20%) 7/17 (41%) 

Glycated Hemoglobin A (4); 

Insulin (3); Age Factors (2); Body 

Mass Index (2); Glucose (2) 

Hyperlipidemias 11 1/7 (14%) 1/4 (25%) 

Age Factors (1); C-Reactive 

Protein (1); Diabetes Mellitus 

(1); Gender Identity (1); 

Geographic Locations (1) 

Pulmonary 

Embolism 
11 1/2 (50%) 1/1 (100%) 

Age Factors (1); Body Mass Index 

(1); Fibrin Fibrinogen 

Degradation Products (1); 

Gender Identity (1); Neoplasms 

(1) 

Lupus 

Erythematosus, 

Systemic 

10 4/8 (50%) 4/5 (80%) 

Autoantibodies (2); Racial 

Groups (2); Steroids (2); 

Albuminuria (1); Antimalarials 

(1) 

Arthritis, 

Psoriatic 
9 3/5 (60%) 3/4 (75%) 

Immunosuppressive Agents (2); 

Antirheumatic Agents (1); 

Arthritis, Juvenile (1); Arthritis, 
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Psoriatic (1); Arthritis, 

Rheumatoid (1) 

Gastroesophage

al Reflux 
9 5/29 (17%) 5/8 (62%) 

Body Mass Index (2); Age Factors 

(1); Gastrointestinal Diseases 

(1); Gender Identity (1); 

Heartburn (1) 

Seizures 9 6/31 (19%) 6/12 (50%) 

Anticonvulsants (5); Age Factors 

(3); other antiepileptics (3); 

Racial Groups (2); Gender 

Identity (1) 

Spondylitis, 

Ankylosing 
9 3/15 (20%) 3/8 (38%) 

C-Reactive Protein (2); Tumor 

Necrosis Factor Inhibitors (2); 

Arthritis (1); Cigarette Smoking 

(1); Gender Identity (1) 

Angina Pectoris 8 2/4 (50%) 2/4 (50%) 

Age Factors (2); Gender Identity 

(2); Body Weight (1); Diabetes 

Mellitus (1); Electrocardiography 

(1) 

Gout 8 5/11 (45%) 3/4 (75%) 

Glomerular Filtration Rate (3); 

Renal Insufficiency (3); Age 

Factors (2); Comorbidity (2); 

Diuretics (2) 

Parkinson 

Disease 
8 4/38 (11%) 4/12 (33%) 

Parkinson Disease (4); Age 

Factors (3); Gender Identity (3); 

Body Weight (1); Depression (1) 

Idiopathic 

Interstitial 

Pneumonias 

7 3/8 (38%) 3/8 (38%) 

Vital Capacity (2); Age Factors 

(1); Cigarette Smoking (1); 

Geographic Locations (1); 

Hydroxymethylglutaryl-CoA 

Reductase Inhibitors (1) 

Thromboembolis

m 
7 1/4 (25%) 1/1 (100%) 

Age Factors (1); Embolism and 

Thrombosis (1); Gender Identity 

(1); Obesity (1); Specialties, 

Surgical (1) 

Alzheimer 

Disease 
6 4/31 (13%) 4/16 (25%) 

Alzheimer Disease (2); 

Dementia (2); Apolipoprotein A-I 

(1); Gender Identity (1); Genetic 

Profile (1) 

Multiple 

Sclerosis 
6 2/8 (25%) 2/6 (33%) 

Age Factors (2); Coronary Artery 

Disease (1); Gadolinium (1); 
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Gender Identity (1); Multiple 

Sclerosis (1) 

Prediabetic 

State 
6 1/1 (100%) 1/1 (100%) 

Body Mass Index (1); Body 

Weight (1); Diabetes Mellitus 

(1); Gender Identity (1); Racial 

Groups (1) 

Venous 

Thrombosis 
6 2/21 (10%) 2/5 (40%) 

Age Factors (1); Body Weight 

(1); Gender Identity (1); 

Neoplasms (1); Renal 

Insufficiency (1) 

Ischemic Attack, 

Transient 
5 1/1 (100%) 1/1 (100%) 

Age Factors (1); Coronary Artery 

Disease (1); Gender Identity (1); 

Racial Groups (1); Stroke (1) 

Lupus Nephritis 5 1/4 (25%) 1/1 (100%) 

Cyclophosphamide (1); Gender 

Identity (1); Geographic 

Locations (1); Racial Groups (1); 

unclassifiable (1) 

Spondylarthropa

thies 
5 1/1 (100%) 1/1 (100%) 

Age Factors (1); Antirheumatic 

Agents (1); Axial 

Spondyloarthritis (1); Gender 

Identity (1); Tumor Necrosis 

Factor Inhibitors (1) 

Migraine 

Disorders 
3 2/22 (9%) 2/11 (18%) 

Adrenergic beta-Antagonists (1); 

Migraine Disorders (1); 

sumatriptan (1) 

Raynaud Disease 3 1/1 (100%) 1/1 (100%) 
Blood Pressure (1); Gender 

Identity (1); unclassifiable (1) 

Retinal Vein 

Occlusion 
2 1/4 (25%) 1/2 (50%) 

Macular Edema (1); 

unclassifiable (1) 

Rhinitis 2 2/41 (5%) 2/11 (18%) 
Geographic Locations (1); 

unclassifiable (1) 

Esophagitis 1 1/10 (10%) 1/1 (100%) unclassifiable (1) 

Urinary Bladder, 

Overactive 
1 1/39 (3%) 1/14 (7%) Urinary Bladder Diseases (1) 

Some trials might correspond to multiple index conditions, the commonest condition among 

2,235 trials were kept for simplicity; the number for some subgroups is the same in the 5th 

place and only one was kept based on the alphabetical order; the subgroup in bold is the 

subgroup same as the condition term with additional information such as type, severity, 

duration et; nT: number of trials with subgroup reporting among 2,235 trials; nR: number of 

trials with subgroup reporting among 1,082 trials with results reporting; NR: trials with results 

reporting and NR = 1,082. 
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3.5.3 Comorbidity subgroup reporting 

 

Where conditions other than the index conditions were reported as subgroups, this was 

largely confined to diseases within the same body system as the index condition. Figure 

5 illustrates this - the organ system for each index condition and each subgroup are 

shown on the y and x-axis respectively and the % of subgroups reported per organ 

system are shown on each cell - frequencies above 5% were generally seen on the 

diagonals (e.g., 13% trials of cardiovascular diseases reported a non-index condition 

cardiovascular disease subgroup – e.g., stroke trials reported hypertension as a subgroup 

which are both cardiovascular disease). Where there were high percentages off the 

diagonal (i.e., where the index condition and subgroup pertained to different organ 

systems), the subgroup conditions were either known causes or known sequelae of the 

index condition such as nutritional and metabolic disease (predominantly diabetes) in 

cardiovascular disease trials (16%), or cardiovascular diseases (5.5%) and renal disease 

(4.9% urogenital diseases) in diabetes trials. In contrast, only 1.3% of respiratory tract 

diseases trials reported subgroup results according to presence/characteristics of 

cardiovascular diseases. 

 

3.5.4 Comorbidity, multimorbidity, frailty and mental health 

 

Trials rarely included metrics of comorbidity, multimorbidity or frailty (5 trials). 78 

trials (15%) reported estimated glomerular filtration rate or renal insufficiency as renal 

impairment measures and the majority were either type 2 diabetes trials (n = 28) or 

heart failure (n = 8) trials. Subgroups related to mental health were particularly rarely 

reported with only 4 of the 524 trials (1%) including MeSH terms within these categories. 
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Figure 5. Comorbidities reported in each disease system. 

 



81 
 

3.5.5 Demonstration of the heatmap for large heart failure trials.  

 

Figure 6 serves as an illustrative example of the heatmap. Specifically, I opted for large 

HF trials with an enrolment size exceeding 2,000 for the purpose of this demonstration. 

The interactive heatmap can be accessed through the following link: https://ihwph-

hehta.shinyapps.io/subgroup_reporting_app/. Multiple heatmaps can be created, which 

can be customised based on various criteria such as trial index conditions, drug class, 

subgroups, and trial-specific details like sample size. Comprehensive instructions can be 

found on the webpage. 

 

Before drawing the heatmap, after the selection of HF trials with a sample size of over 

2,000, the shinyapp produced summary statistics for eligible HF trials. 11 trials were 

eligible with 33 published papers and there were 46 MeSH and ATC code to categorise a 

total of 280 subgroup strings captured from the papers.    

 

As showed in Figure 6, age (10 out of 11 trials) and gender (9 trials) were most 

commonly reported. Diabetes (9 trials) was also very commonly reported with 2 trials 

reported as history of diabetes, which is in line with the overall finding that diabetes 

were commonly reported in CVD trials. 

https://ihwph-hehta.shinyapps.io/subgroup_reporting_app/
https://ihwph-hehta.shinyapps.io/subgroup_reporting_app/
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Figure 6. Heatmap for large heart failure trials. 
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3.6 Discussion 

 

On reviewing more than 2,000 trials registered on ClinicalTrials.gov, I made a number of 

observations about subgroup reporting. First, only around a quarter of clinical trials 

report subgroup effects. Secondly, of those that report subgroup effects, just under half 

(47%) report on 3 or fewer subgroups. Thirdly, the number of participants enrolled, the 

duration of trial follow-up and trial starting year predict subgroup reporting. Fourthly, 

after accounting for participants enrolled, industry funded trials are not more likely to 

report subgroup effects. Fifthly, some trials with conditions of cardiovascular, 

metabolic and thromboembolic disease are the most likely to report on subgroups. 

 

Finally, this study showed that even where trials do report subgroups, this is largely 

confined to “general” subgroups such as age, sex, race/ethnicity, geographic variation 

or to features of the index condition. Few trials report on comorbidities related to other 

body systems. Mental health disorders or metrics of comorbidity, multimorbidity or 

frailty were rarely covered. Together these findings suggest that – with the exception of 

cardiometabolic and thromboembolic diseases, and especially for subgroups not closely 

related to the index condition - the published literature contains only sparse 

information on how treatment effects differ within clinical trials. 

 

Certain variables, like age and gender with their trial index conditions, may possess 

adequate information for the examination of HTE and the inclusion in the pre-trial 

protocol. However, for variables such as multimorbidity and frailty, there is minimal 

available information, requiring the use of IPD to investigate HTE and enhance the 

applicability of the trial. 

 

3.6.1 Strengths and weaknesses of this study 

 

A strength of this study is that, unlike most previous studies(32, 123), registered trials 

were included regardless of where they were published. Secondly, this study was the 

largest, to my knowledge, to assess subgroup reporting among trials of chronic medical 

conditions. Thirdly, this was the only study to assign terms to standard terminologies 

allowing comparison across multiple conditions and drug classes. However, there were a 

number of limitations. First, where papers were neither notified to the 
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ClinicalTrials.gov register nor included a trial registration identifier in PubMed, they 

were not obtained. However, the number of papers missed is likely to be small because 

the trial registration number is required by the International Committee of Medical 

Journal Editors(124).  Secondly, subgroup results in non-indexed sources (e.g., clinical 

study reports) will have been missed, although many of these are only accessible after a 

formal application process which may require a data sharing agreement. Thirdly, a small 

number of terms could not be assigned to MeSH or ATC codes due to their complexity. 

Finally, the results are confined to chronic medical conditions, and exclude trials in 

infectious diseases, oncology and (other than dementia) psychiatric disorders. 

 

3.6.2 Strengths and weaknesses in relation to other studies 

 

The majority of previous subgroup studies were concerned with the reliability of 

subgroup findings in the context of a single paper. As such, since higher impact journal 

publications are likely to be the most influential, most confined their analysis to papers 

published in one or more high impact medical journal or in the case of Sun et al, on 

core medical journals (as defined by the national library of medicine)(27). Only one 

study, Kasenda et al examined all papers regardless of the journal type, but this was 

confined to a set of trials which had been approved by one of six research ethnics 

committees in Switzerland(125). This difference in papers included could account for 

the fact that previous studies found an association between industry funding and 

subgroup reporting while I did not. Alternatively, the null association for type of funding 

could be due to heterogeneity in this association according to the statistical significance 

of the primary outcome(27, 126). Sun et al found that the association between industry 

funding and subgroup reporting was only present when the primary analysis was not 

statistically significant, and data on this variable was not collected in this study. 

 

Nevertheless, there were a number of findings common to this study and previous 

findings; particularly that larger studies were more likely to report subgroup 

effects(28). It is understandable that larger trials tend to have more subgroup analyses 

since detecting differences in effects between subgroups typically requires larger 

sample sizes compared to assessing the overall treatment effect(127). Small sample 

sizes may have little power for subgroup analysis, which can cause false negatives(128). 

Pre-specification of a subgroup is crucial for making the findings from subgroups more 

convincing(106). It is recommended to pre-specify subgroups during the study design or 

implementation stage. This helps collect the appropriate data to identify subgroup 
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members and ensures the study has sufficient statistical power to detect relevant 

subgroup differences in intervention effects, which can provide further evidence for 

policy decisions tailored to specific subgroup populations(129). Previous literature holds 

differing views regarding the stratified randomisation by the factors defining the 

subgroup on the balance of prognostic factors within the subgroup(130). A pre-specified 

subgroup analysis is generally regarded as more credible and valid, and this credibility is 

not affected by whether the randomisation is stratified based on subgroups (128, 131, 

132). The association between the stratification factors is not well demonstrated in the 

literature to my best knowledge. Sun et al, also found that trials of surgical 

interventions were less likely to report subgroups than non-surgical trials(27). This study 

extended this finding by showing considerable variances among non-surgical trials; even 

after adjusting for trial size and other variables, cardiovascular and metabolic trials 

were considerably more likely to report subgroup effects. 

 

Only one study found reported detailed information on which subgroups were 

reported(28). In the study appendix, Gabler et al reported the percentage of the 1,042 

reported variables which were allocated to specific categories. These included centre or 

site (3%), anthropomorphics (4%), demographics (25%), comorbidities (10%), disease 

severity marker (32%), medical history (6%), medications at baseline (9%), temporal 

features (4%), multivariable risk scores (3%) or others (5%). Several of these were 

further sub-categorised. For example, comorbidity was categorised diabetes (31%), 

cardiovascular disease (35%) and demographics into age, sex, race/ethnicity, smoking 

status and other. These percentages appear consistent with the observations in this 

chapter as to which subgroups were commonest, although treating the variables 

examined as the denominator meant that it cannot be directly compared with my 

findings. 

 

The reporting of subgroup analyses in trials varies, with some trials reporting only the 

numbers, proportions, and event rates of patients in the subgroups(133), while others 

provide detailed subgroup-specific results(134). This variability can pose challenges for 

conducting a meta-analysis that aims to estimate subgroup effects across different 

studies. Proctor et al conducted a NMA based on direct and indirect evidence 

integrating to estimate the treatment effect for a patient subgroup(135). This model 

could potentially mitigate the challenge of integrating subgroup-specific results with 

those that only provide the indirect information of patients in the subgroups. However, 

it may introduce bias when using less patient level data and suffer from low power 
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when the study or covariate effect is small(135). Therefore, caution is needed when 

using this model to integrate information and results have to be interpreted with care.  

 

3.6.3 Meaning of the study 

 

According to the Cochrane Handbook for Systematic Reviews of Interventions, subgroup 

analyses are “uncommon in systematic reviews based on published literature because 

sufficient details to extract data about separate participant types are seldom published 

in reports”(118). This study showed that considerable variation in reporting between 

trials even within the same index condition and drug class was one reason for this lack 

of detail. Nonetheless, common variables did emerge such as age, sex, geographic 

region, race/ethnicity and features of the index condition.  

 

In contrast I found there was very little information contained in the publicly available 

literature about comorbidity and multimorbidity. Given that multimorbidity is common, 

increasing in prevalence, and is known to complicate clinical decision making, the lack 

of such information is a challenge for decision-makers(136). Hanlon et al previously 

showed that, while under-represented, multimorbidity is not absent from clinical 

trials(119). Despite this, very few trials have reported treatment effects according to 

comorbidity, multimorbidity or frailty scores. Moreover, for individual comorbidities, 

the majority of reporting was for conditions in the same body system as the index 

disease (e.g., a history of ischaemic heart disease in a trial of an antihypertensive), so 

there was little information about “discordant” comorbidities (e.g., coexisting prostate 

disease and heart failure), which are the most complex and difficult to treat. 

Nonetheless, given the large number of ways in which multimorbidity can be defined 

and measured, standards are needed if these are to be incorporated into clinical trial 

reporting. 

 

An interesting contrast between this study and most previous reports was the focus; it 

was concerned with all subgroup reports for trials regardless of whether the subgroup 

was reported in a high impact journal. Underlying this difference is a difference in the 

consumer of the subgroups - the person looking at a single trial, versus the secondary 

researcher. For the reader of a single trial, to avoid dangers of over-interpretation, 

individual papers should be very cautious in reporting subgroup effects. However, this is 
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the opposite of what is desirable for meta-analyses across multiple trials, where 

completeness and consistency would be helpful. 

 

At present, neither audience is well served. As this study shows, trials are highly 

variable in what subgroups are reported, while as others have shown papers rarely meet 

the published standards for pre-specification(34). It would seem that in the digital age, 

both audiences could be served. Trial reports could continue to limit subgroup reporting 

in line with current recommendations, while a wider common set of subgroup effect  

standard terminologies for use by secondary researchers. This is an exactly opposite 

strategy to reduce bias in subgroup reporting from that normally advocated – confining 

subgroups reporting to a small set of pre-specified variables – instead rather this study 

reduce bias through completeness. This would of course require an agreement as to 

what should constitute such a wider common set of subgroup effects. I hope that these 

findings, showing dramatic and unhelpful variation across trials, and a paucity of 

information on the impact of health states important for decision-making (such as 

comorbidities and frailty), help demonstrate a need for such a consensus. 

 

3.7 Conclusion 

 

Approximately 1 in 4 trials report results for one or more subgroups. Age, sex, 

race/ethnicity and features of the index condition were the most common subgroups. 

Where subgroup effects for other conditions were reported, these were largely confined 

to the same body system as the index condition. Outside these areas information on 

variation in treatment effects was sparse.  
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Chapter 4: Case study 2 - Transportability of two heart 

failure trials to a disease registry using individual patient 

data. 

 

4.1 Chapter summary 

 

This chapter described the use of a parametric survival model and an inverse odds of 

sampling weights model to calibrate trial findings from two landmark HF trials. The 

objective was to assess whether the trial findings remain applicable in the real-world 

settings by using individual patient data from both the trials and the real-world HF 

register. It included baseline characteristics selection, model building, exploratory 

analyses, results comparisons and interpretation, and implications for data availability. 

 

4.2 Abstract   

 

4.2.1 Background 

 

Trials are the gold-standard for determining therapeutic efficacy and safety, but the 

characteristics of patients participating in trials differ from those encountered in 

clinical practice. Calibration can partially account for these differences, improving the 

applicability of trial findings, without breaking randomisation. I calibrated 

characteristics of patients from two HF trials to those enrolled in a HF registry. 

 

4.2.2 Method 

 

Individual-patient-level data from two trials (COMET, comparing carvedilol and 

metoprolol, and DIG, comparing digoxin and placebo) and a Scottish HF registry with 

8,012 HF patients were obtained. The primary endpoint for both trials was all-cause 

mortality; secondary composite outcomes were all-cause mortality or hospitalisation for 

COMET and worsening HF culminating in death or hospitalisation for DIG. I performed 
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regression-based and inverse odds of sampling weights (IOSW) transportation 

approaches. 

 

4.2.3 Results  

 

Registry patients were older and received higher-doses of loop-diuretics than trial 

participants. For each trial, point estimates were similar for uncalibrated and IOSW 

(e.g., DIG composite outcome:  OR, with placebo as reference, 0.75 95% CI (0.69, 0.82) 

versus 0.73 (0.64, 0.83)). Treatment effect estimates were also similar when calibrated 

to high-risk OR 95% CI (0.64 (0.46, 0.89)) and low-risk registry patients (0.73 (0.61, 

0.86)). Similar results were obtained using regression-based transportation.  

 

4.2.4 Conclusion  

 

Regression-based or IOSW approaches can be used to calibrate trial effect estimates to 

patients administrative/registry data, with only moderate reductions in precision.  

 

4.3 Introduction  

 

Trials are the gold-standard for determining the efficacy and safety of treatments (137, 

138). However, participants in heart failure trials are generally younger, more likely to 

be men, and have fewer comorbidities such as chronic respiratory or kidney disease 

than those encountered in clinical practice (39, 139). If the patient characteristics that 

are under-represented are also associated with differences in treatment efficacy (e.g., 

if efficacy is lower in older people), the applicability of trial findings to clinical practice 

is attenuated. Partly for this reason, trials sometimes report baseline characteristics 

(such as age, sex, and disease severity) as well as treatment effects stratified by 

subgroups. However, individual patients may have many co-existing characteristics (for 

instance anaemia and renal dysfunction) which are not represented in trial analysis with 

one-variable-at-a-time subgroup reporting(24). 

 

Statistical trial transportation, also called calibration or population adjustment in other 

contexts(58, 60, 61), addresses these difficulties by weighting trial results to reflect the 
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characteristics of target populations more closely and, importantly, without breaking 

randomisation. Briefly, transportation apportions greater weight to randomised 

participants that were under-represented in the trial compared to the target population 

and less weight to participants who were over-represented in the trial, compared to the 

target population(58, 140). Calibration has been used in other conditions such as HIV 

(141) and lung cancer (142) and employed in a dual antiplatelet therapy (DAPT) 

study(143) but to my knowledge there was no previous attempt to transport HF trials to 

a clinical practice registry for patients with HF in order to estimate effects in clinical 

practice. trials require considerable resources, in terms of research staff, finances and 

patient commitment (144); it is important to maximise their utility for clinical practice. 

 

Accordingly, I examined the effect of transporting two landmark HF trials to patients 

from a Scottish clinical practice HF registry using two different methods with differing 

assumptions – inverse odds of sampling weights (IOSW), and regression modelling.  

 

4.3.1 Research questions and rationale 

 

This chapter aims to answer three questions:  

(1) Is the HF population encountered in clinical practice in Scotland different from 

the participants included in two HF trials?   

(2) Can we calibrate trial data using disease registry? 

(3) How does the treatment effect estimate change when performing calibration?  

 

This chapter can offer valuable insights into the applicability of the primary results of 

two HF trials to the real-world population. It can also serve as an example for 

evaluating the applicability of other HF trials to broader populations using real-world 

data. 
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4.4 Methods 

 

4.4.1 Data sources and governance 

 

4.4.1.1 Data sources and study population 

 

4.4.1.1.1 Carvedilol or Metoprolol European Trial (COMET)  

 

COMET was a multicentre, randomised, double-blind, parallel-group comparison of 

carvedilol and metoprolol in participants with a left ventricular ejection fraction (LVEF) 

of 35% or less. Conducted in 15 European countries, 1,511 participants were randomly 

assigned to carvedilol and 1,518 to metoprolol tartrate. The mean trial duration was 58 

months. The primary endpoints were all-cause mortality, and a composite of all-cause 

mortality and all-cause hospitalisation (11, 12).  

 

4.4.1.1.2 The Digitalis Investigation Group Trial (DIG) 

 

DIG was a randomised, double-blind trial of the effect of digoxin on all-cause mortality 

compared to placebo among people with chronic HF. Studied in 302 centres, 7,788 

participants were involved. The main trial was conducted for 6800 participants which 

had a LVEF of 45% or less. The average follow-up time was 37 months. The primary 

outcome of the trial was all-cause mortality. Worsening HF culminating in death or 

hospitalisation was reported as a composite secondary outcome (13, 14).  

 

4.4.1.1.3 Heart Failure Registry 

 

A clinical practice registry of individuals with HF (predominantly with HFrEF) was 

obtained from the largest regional health authority in Scotland (National Health Service 

Greater Glasgow & Clyde, NHSGGC), which covers 1.14 million people (almost a quarter 

of the Scottish population)(15). People with HF in the region who were assessed by 

community HF nurses or HF clinics were included in the registry. Each patient’s clinical 

features (diabetes, ischaemic heart disease etc.), therapy, vital signs (heart rate, 

systolic blood pressure (SBP)), results of blood tests (serum sodium, potassium, 
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creatinine etc.) were routinely recorded in an electronic health record to support 

clinical care. Missing values in the HF registry were assumed to be missing at random, 

which means the probability that a value is missing only depends on observed values and 

not on unobserved values(145). It also means that after all available data (i.e., the 

variables included in the imputation model) have been accounted for, any remaining 

missingness can be regarded as random(146). In this chapter, missing data were imputed 

by a predictive mean matching algorithm with one imputed dataset being generated for 

simplicity(147). Briefly, the variable with missing values is regarded as the dependent 

variable in a regression model while all other variables are independent variables. Then 

the missing values in this dependent variable are replaced with imputations from this 

regression model. And this imputed dependent variable with both observed and imputed 

values can subsequently be used as an independent variable in the regression models for 

other variables. It then repeated for each variable that has missing values(148). The 

imputation includes diabetes (12%), SBP (14%), heart rate (12%), serum sodium (24%), 

estimated glomerular filtration rate (eGFR, 24%) and loop diuretics (17%) with dose 

expressed in furosemide equivalents (e.g., 1mg of bumetanide = 40mg of furosemide).  

 

4.4.1.2 Data storage  

 

Data was stored in the Safe Haven platforms via Robertson Centre for Biostatistics. 

Storing in a Safe Haven environment ensures the secure handling of sensitive data, 

minimising the risk of unauthorized disclosure. This is achieved by strict control over 

access, data analysis, and output dissemination. It provides a safeguarded setting for 

the linkage, storage, and analysis of personal data. Access to the Safe Haven is granted 

exclusively to authorized researchers listed on the study's application form and 

possessing valid information governance training certification. Remote access to the 

Safe Haven is enabled via a virtual private network, which ensures a secure connection 

to the network. This approach essentially allows working on a restricted terminal where 

data cannot be copied, removed, or stored. The user agreement outlines user 

responsibilities, along with sanctions and penalties for any breaches. All analyses were 

conducted exclusively within the Safe Haven, and outputs were meticulously reviewed 

to prevent any possibility of identifying individual data before release. Only controlled 

and non-disclosing outputs were transferred to me as the researcher. 

 

Trial data and the real-world HF register data were stored in different Safe Havens.  
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4.4.1.3 Variables extraction and data cleaning  

 

4.4.1.3.1 Variables selection 

 

Variables were included as model covariates if they were available in both the trial and 

the registry and if they were regarded to have the potential to modify treatment 

effectiveness by cardiologists. 

 

4.4.1.3.2 Variables extraction among trials and the registry 

 

4.4.1.3.2.1 Baseline characteristics 

 

For baseline characteristics, age (years), systolic blood pressure (mm Hg), heart rate 

(beats per minute), sodium (mmol/l), eGFR (mL/min/1.73m2), loop diuretics (mg, 

referred to frusemide), male (%) and history of diabetes (%) were selected from both 

the trials and the registry. In the registry, age was calculated by using the date of 

referral to subtract the date of birth. Creatinine was extracted from both trials and the 

registry to calculate eGFR by using formula 2 along with age, gender and race 

information. Different datasets used various loop diuretics, including furosemide, 

bumetanide, ethacrynic acid, and torsemide. These could be administered orally (PO), 

via intramuscular injection, slow intravenous injection (IV), or intravenous 

infusion(149). During data cleaning, patients taking bumetanide, ethacrynic acid, or 

torsemide were converted to equivalent doses of furosemide. Since patients in the HF 

registry visited outpatient clinics and some units of the drug were recorded as tablets, 

it implies oral administration. Loop diuretics (specifically furosemide) were then 

calculated using formula 3(150-153). This harmonized terminology between trials and 

registry data, making them comparable. Other covariates were straightforwardly 

extracted from the datasets. 
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For variables like heart rate and creatinine, which were measured multiple times during 

the follow-up, the initial measurement was selected to represent the baseline situation. 

After collecting all the variables, outliers in numerical variables were addressed. For 

instance, some recorded SBP measurements were extremely high, like 15,080, 13,900, 

1,140 mmHg, which were clear outliers. These values were corrected to the median 

value of 120 mmHg. Similarly, certain heart rate values were recorded as 6, 7, or 694 

beats/min, and these were corrected to the median of 72 beats/min. 

 

4.4.1.3.2.2 Endpoint variables  

 

The endpoint variables were extracted accordingly, based on the primary outcomes of 

the trials. In COMET they were all-cause mortality, and a composite of all-cause 

mortality and all-cause hospitalisation. In DIG the primary outcome was all-cause 

mortality. Worsening HF culminating in death or hospitalisation was reported as a 

composite secondary outcome.   

 

The extraction of endpoint variables in the registry was as below:  

 

• All-cause death: Patients with recorded death dates were coded as having 

experienced death, while those without such records were coded as having no 

outcome or being censored. For most patients, referral dates were available. In 

cases where the referral date was missing, the first contact date was used to 

calculate the time to death by subtracting the date of referral or first contact 

from the date of death. 

eGFR = 186 x (Creatinine/88.4)-1.154 x (Age)-0.203 x (0.742 if Female) x (1.210 if in 

Black race)  

(Formula 2) 

 

40 mg PO furosemide ≈ 1 mg PO bumetanide ≈ 20 mg PO torsemide ≈ 100 mg PO 

ethacrynic acid  

(Formula 3) 

 

 

# 
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• All-cause death and all-cause hospitalisation: The initial step involved capturing 

all-cause hospitalizations. A patient management variable in the register 

indicated whether a patient was treated as a "day case" (not retained overnight) 

or an "inpatient." Those designated as inpatients were identified as being 

hospitalized. Some patients experienced multiple admissions, including instances 

before their referral date, suggesting prior hospitalization. To determine the 

time of admission, the first instance of admission after the referral date was 

selected, and the time to admission was calculated by subtracting the referral or 

first contact date from the admission date. In cases where patients experienced 

both admission and death, the time of the first occurrence was selected as the 

endpoint time, typically the time of admission. For the identifier, a value of 1 (1 

= yes) was assigned if either admission or death occurred. Conversely, it was set 

to 0 (0 = no) when neither endpoint event took place. 

 

4.4.2 Statistical methods 

 

Summary 

 

Each trial was analysed separately. For the primary endpoint (all-cause mortality in 

both trials) and the composite endpoint (all-cause mortality or all-cause hospitalisation 

in COMET and worsening HF culminating in death or hospitalisation in DIG), each trial 

was calibrated to the 8,012 patients in the HF registry, first using a regression-based 

method (Figure 7) and then using inverse odds of sampling weights (IOSW, Figure 9). All 

analyses were conducted in R (R 3.4.0 for trial and R 3.5 for the registry). The 

parametric survival models were fitted using the “flexsurv” package(17) and the 

weighted logistic regression models were fitted using the “survey” package(18). Each 

method is described below, with detailed steps and selected R code provided in the 

supplementary appendix. 
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Regression-based calibration  

 

Method description 

 

The overview of this method is showed in Figure 7. Variables were included as model 

covariates based on their availability in both the trial and registry and their potential to 

modify treatment effectiveness (as Table 7). A model based on the trial data was first 

constructed. Parametric survival models of the primary and composite outcome on the 

treatment effect and these covariates were fitted using a range of distributions 

(“Weibull”, “Generalised gamma”, “Exponential”, “Log-logistic”, “Log-normal”, 

“Gompertz”). For subsequent analyses I selected the distribution which had the best fit 

based on visual inspection of diagnostic plots and the Akaike Information Criterion (AIC).  

For all covariates, main effects and 2-way interactions with the treatment variable 

were included in the final model. Where there was evidence of non-linearity for 

continuous covariates, the covariates were transformed (SBP, estimated glomerular 

filtration rate (eGFR) in DIG).  

 

A regression model using the same distribution for the outcome variables, covariates 

and transformations was fitted to the HF registry, except that treatment main effects 

and interaction were not included (since the treatment effects are estimated solely 

using the trial data). This was the registry model. 

 

Coefficients from the registry and trial models were applied to patients in the HF 

registry to estimate the predicted rate of the primary/composite outcome, first 

assuming that patients in the registry received the trial intervention and then assuming 

instead that they received the comparator. For this estimation, the coefficients for the 

covariate main effects (e.g., age, sex) were obtained from the registry model, and the 

coefficients for treatment effects and treatment covariate interactions (e.g., treatment 

+ age*treatment) were obtained from the trial model. The predicted outcome under 

each intervention was then summed across individuals in the registry and then 

compared for the trial and comparator interventions to obtain relative and absolute 

effect measures. 

 

For this analysis, uncertainty in the coefficients was propagated to the final model via 

simulation - I obtained 100,000 samples from both the trial and registry models. I then 
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sampled from multivariate normal distributions where the means and variance-

covariance matrices corresponded to the coefficient point estimates and variance-

covariance matrices from the relevant models. The correlation between coefficients in 

the trial and registry model was assumed to be zero. The outcome predictions and 

treatment effects were calculated for each sample and summarised via the mean 

(geometric mean for relative measures) with the uncertainty expressed via the 2.5th 

and 97.5th percentiles.  

 

Detailed implementation of the regression-based transportation with selected R code 

are described in the supplementary appendix.  
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Figure 7. Overview of the regression-based calibration. 

 

 

The principle of regression-based method 

 

The principle of this method is as Figure 8 below. Briefly, the differences of the 

baseline characteristics between the trial participants and target population had the 

potential to influence the outcomes. By accounting for these differences, combining 

treatment-covariate interactions and the treatment main effect from the trial, the 
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relative scale of the calibrated treatment effect can be determined. To estimate the 

absolute scale of the calibrated treatment effect, I also consider the covariate main 

effect in the target population. Different defined target populations might lead to 

distinct absolute scales of the calibrated treatment effect, such as employing a newly 

defined sub-population from the registry for exploratory analyses.  

 

Figure 8. The principle of regression-based method. 

 

 

Inverse Odds of Sampling Weights (IOSW). 

 

Method description 

 

The overview of this calibration is showed in Figure 9. Briefly, using the same covariates 

as regression-based method, the trial and registry datasets were aggregated to obtain 

counts of individuals with each combination of characteristics (Supplemental II Table 

S4). The probability that an individual from the HF registry is included in the trial 
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sample, conditional on covariates, divided by the probability of not being in the trial 

sample - the inclusion odds - was then estimated by comparing these counts.   

 

I then estimated the treatment effects as standard by comparing the odds of the 

outcome in each treatment arm; except that instead of all participants having the same 

weight in the analysis, different participants were weighted differently according to 

their inclusion odds. As an example, if there were 500 individuals with a given set of 

characteristics in the registry, and 5 participants with that set of characteristics in the 

trial, the odds of being sampled would be 1% (5/500). This would translate to a raw 

weighting of 100 (1/odds) for those 5 participants. Final weights for all participants 

would then be calculated by dividing each participant’s weight by the sum of weights 

for all participants. See supplementary appendix for details on the methods used to 

calculate the inclusion odds and weightings, and to estimate the treatment effects using 

the weightings.  
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Figure 9.  Overview of Inverse odds of sampling weights calibration. 

 

 

Exploratory analyses 

 

Exploratory data analyses are usually utilised to detect mistakes and check the 

assumptions. It is also used to discover patterns and select the suitable model 

preliminarily and explore the relationships among predictor variables. Moreover, it can 

assess the direction and rough size of the associations between the predictor variables 
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and the endpoints(154). In this chapter, exploratory analyses were conducted for both 

regression-based and IOSW method.  

In additional analyses, I used the natural history model fitted to the registry data to 

estimate the risk of the covariates (e.g. age, male, SBP) and outcomes (all-cause death 

et al corresponding with trial outcomes) to estimate the predicted risk for each 

individual in the register, ranked these, then selected the top 10 percentile highest and 

top 10 percentile lowest into the highest and lowest risk subgroups (801 patients in 

each) respectively. two calibration methods were used following the above analyses 

respectively to calculate the measure of effects again(83, 155). They can also be 

regarded as the subgroup analyses as the sub-population was chosen and multiple 

characteristics were considered at the same time. 

 

Assumptions for two calibration methods. 

 

 Table 5. Assumptions for two calibration methods. 

 Regression-based method Inverse Odds of Sampling 

Weights (IOSW) 

Assumptions 

common to both 

methods for relative 

treatment effects 

• Treatment assignment is random and independent of 

sample selection.  

• There are no unmeasured covariates that are related to 

both trial inclusion and that are treatment effect 

modifiers. (Note in the standard approach of applying 

relative treatment effect estimates to target 

populations, the assumption is that there are no (i.e., 

not just no unmeasured) covariates that are related to 

both trial inclusion and that are treatment effect 

modifiers). 

Different 

assumptions across 

methods for relative 

treatment effects 

• For the trial model the 

treatment effect 

estimates are correctly 

modelled including all 

effect modifiers. This 

means all interactions 

that are present are 

• The trial inclusion 

logistic regression 

model includes all 

characteristics that 

both 1) differ between 

trial sample and target 

population and 2) 
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included in the final 

model and that any 

departures from 

linearity are correctly 

modelled. 

demonstrate 

heterogeneity in the 

treatment effect. 

Assumptions 

required for 

absolute effect 

estimates 

• For the Registry model 

the associations are 

correctly modelled 

including all variables 

which predict the 

outcome of interest 

(including all relevant 

interaction terms and 

correctly accounting 

for any departures 

from linearity). 

• The right censoring is 

assumed to be non-

informative 

conditional on the 

covariates. 

• Conditional on the 

characteristics 

included in the trial 

inclusion model, the 

risk of the outcomes 

are the same in the 

trial and registry 

populations. Note that 

this could be relaxed 

by applying the 

calibrated relative 

effect estimate to the 

event rate in the 

registry. 

• The right censoring is 

assumed to be non-

informative by 

assigned treatment. 

 

 

4.5 Results 

 

4.5.1 Baseline characteristics 

 

4.5.1.1 Missing values 

 

The percentage of missing values either in the register or trials is showed as Table 6 

below. There are few missingness in two trials (no more than 0.26%) while in the 
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register, the percentage is much higher (24.35% for eGFR), therefore imputation was 

conducted for the HF register only.  

 

Table 6. Percentage of missingness in the HF register and two trials. 

  
HF register 

(N=8,012) 

COMET 

(N=3,029) 

DIG  

(N=7,788) 

Age (years) 0 0.10% 0 

Systolic blood pressure (mm Hg) 13.90% 0.10% 0.04% 

Heart rate (beats per minute) 11.80% 0.10% 0.10% 

Sodium (mmol/l) 24.10% 0.07%  -- 

eGFR (mL/min/1.73m2) 24.35% 0.10% 0 

Frusemide (mg) 17.40% 0.10%  -- 

*Male, n (%) 0 0.10% 0 

*History of diabetes, n (%) 12.40% 0.26% 0.01% 

*Categorical variables, others are and continuous variables   

 

4.5.1.2 Baseline characteristics in the registry and trials 

 

Patients in the HF register were more elderly (mean (sd): 73 (12) vs 62 (11) and 64 (11) 

years in COMET and DIG respectively), had a slightly lower SBP (120 (21) vs 126 (19) and 

126 (20) mmHg), and eGFR levels (59 (23) vs 67 (21) and 62 (21) mL/min/1.73m2), and a 

much higher loop diuretics dosage (62 (31) vs 20 (46) mg/day in COMET) than trial 

participants. There were more men than women in the register (61% men vs 39% 

women), COMET (80% vs 20%) and DIG (78% vs 22%). Patients with diabetes history in the 

register were slightly fewer than those in the trials (23% vs 24% and 28%).   
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Table 7. Baseline characteristics in each dataset included in calibrations. 

  
HF registry 

(N=8,012) 

COMET 

(N=3,029) 
DIG (N=6,800) 

Age (years) 73 (12) 62 (11) 64 (11) 

Men, n (%) 4906 (61%) 2412 (80%) 5281 (78%) 

History of diabetes, n (%) 1863 (23%) 728 (24%) 1933 (28%) 

Heart rate (beats per minute) 73 (13) 81 (13) 79 (13) 

Systolic blood pressure (mm Hg) 120 (21) 126 (19) 126 (20) 

Serum sodium (mmol/l) 138 (4) 140 (3) -- 

eGFR (mL/min/1.73m2) 59 (23) 67 (21) 62 (21) 

Loop diuretics (mg/day) 62 (31) 20 (46) * 

Categorical variables are shown as counts (%s) and continuous variables as means 

(standard deviations); -- not available; *In DIG loop diuretics was recorded as a 

categorical variable (whether participants had taken it or not or unknown) and the 

dosage information was not available.  

 

 

4.5.2 Effect of baseline characteristics on outcomes 

 

The parametric survival model with a generalised gamma distribution had the best fit 

and was used for the HF registry and each trial. The coefficient for the covariates for 

the HF registry and trials are shown in Figure 10 and Supplementary II Table S5. These 

coefficients are mutually adjusted. In both trials, male sex, older age, history of 

diabetes predicted a worse prognosis. The accelerated failure time (AFT) ratios with 

95% CIs for male sex were 0.65 (0.53, 0.81), 0.91 (0.76, 1.09), 0.67 (0.58, 0.77), and 

0.86 (0.72, 1.02) for COMET all-cause death, composite outcome, DIG all-cause death, 

and composite outcome, respectively. For age, the AFT ratios were 0.63 (0.57, 0.70), 

0.71 (0.65, 0.77), 0.77 (0.72, 0.82), and 0.84 (0.77, 0.91) respectively. For a history of 



106 
 

diabetes, the AFT ratios were 0.73 (0.65, 0.87), 0.64 (0.54, 0.75), 0.67 (0.59, 0.76), and 

0.50 (0.43, 0.58) respectively. Higher eGFR predicted longer survival in both trials (AFT 

ratio: 1.35 (1.22, 1.49), 1.23 (1.13, 1.34), 1.37 (1.29, 1.46) and 1.50 (1.39, 1.63) 

respectively). In COMET, the use of higher dose loop diuretics also predicted a worse 

outcome (AFT ratio: 0.9 (0.84, 0.96) in all-cause death and 0.91 (0.85, 0.97) in the 

composite outcome). Conversely, higher serum sodium concentration (AFT ratio: 1.32 

(1.22, 1.43) and 1.20 (1.11, 1.29)) and higher SBP (AFT ratio: 1.37 (1.25, 1.49) and 1.26 

(1.17, 1.36)) predicted a better prognosis.  

 

Figure 10. Main effects in HF registry and two trials. 

 

 

4.5.3 Effect of baseline characteristics on treatment efficacy 

 

The estimates for the treatment effects (at the mean of all the covariate levels) and 

the treatment-covariate interactions are shown in Figure 11 and Supplementary II Table 

S6. The treatment-covariate interaction estimates were wide, and for some variables 

the magnitude and direction of the point estimates varied between trials. For both 

COMET and DIG, treatment efficacy appeared to be lower for patients with diabetes 

(accelerated failure time (AFT) ratio: 0.95 (0.66, 1.37) and 0.93 (0.67, 1.29) for COMET 

all-cause death and composite outcome; 0.90 (0.71, 1.15) and 0.81 (0.59, 1.10) for DIG 
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all-cause death and composite outcome) and greater for heartrate (AFT ratio: 1.06 

(0.90, 1.25) and 1.13 (0.98, 1.31) for COMET and 1.07 (0.96, 1.20) and 1.12 (0.97, 1.30) 

for DIG), but the CIs almost all included the null. 

 

Figure 11. Treatment and treatment-covariate interactions in two trials. 

 

 

4.5.4 Effect of transportation on treatment effects 

 

Figure 12 and Supplementary II Table S9 show the calibrated treatment effects. For 

either primary or composite outcome in DIG over a period of 3 years, the uncalibrated 

and calibrated effect estimates (odds ratios, ORs) were similar (OR: 0.99 (0.91, 1.07) vs 

1.06 (0.92, 1.21) vs 1.05 (0.86, 1.28) for uncalibrated analysis, IOSW and regression-

based transportation for all-cause death and 0.75 (0.69, 0.82) vs 0.73 (0.64, 0.83) vs 

0.84 (0.78, 0.91) for the composite outcome), indicating similar efficacy in the trial and 

HF registry. For COMET the efficacy was higher for IOSW (OR: 0.62 (0.39, 0.99) and 0.87 

(0.59, 1.30) for all cause death and composite outcome over a period of 4 years) but 

lower for the regression-based transportation (0.97 (0.72, 1.27) and 1.08 (0.81, 1.39)) 

although the 95% CIs overlapped those of the uncalibrated estimates (0.83 (0.74, 0.93) 

and 0.94 (0.86, 1.02)). The impact of transportation was similar where the trials were 

calibrated to the high-risk and low-risk subgroups (Supplementary II Table S11 and Fig 

4). 
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Figure 12. Measure of effects in uncalibrated and calibrated analyses in two trials. A) 
Odds Ratio; B) Risk of the outcome; C) Absolute Risk Reduction (ARR). 

 

 

Where differences exist between calibrated and uncalibrated results, the influence of 

each covariate on this divergence can be estimated as the covariate-treatment 

interaction multiplied by the mean difference in the covariate between the registry and 

trial populations. For instance, in the case of COMET death, the standardised mean for 

loop diuretics in the registry and trial are 0.9 and 0 respectively, and the treatment-

loop diuretics interaction is -0.07. The contribution to the discrepancy is thus calculated 

as -0.07 * 0.9 = -0.06. Consequently, for COMET (death), eGFR and loop diuretics dose 

were the primary influencers; for COMET (composite), age and heart rate were the key 

influencers; and for DIG, male sex and heart rate were the main contributors (see 

Supplementary II Table S7).  

 

Compared to the uncalibrated and IOSW models, the estimated risk of the outcome 

within each treatment arm (except for carvedilol arm in COMET all-cause death) was 

larger for the regression-based model (Figure 12B), e.g., the estimated mortality in the 

digoxin arm of DIG was 35%, 33% and 43% in the uncalibrated, IOSW and regression-
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based analysis respectively. However, these differences of risk in each treatment arm 

did not translate to large differences in the absolute risk reductions (ARRs, see Figure 

12C).  

 

4.5.5 Effect of calibration on precision of treatment efficacy 

 

The ratio of the standard error (SE) from calibrated and uncalibrated analysis was used 

to denote the precision of treatment efficacy as showed in Table 9. As expected, 

compared to the standard analysis, the standard errors (SEs) were generally larger for 

the calibrated effect estimates (Table 8). For transportation to the overall target 

population, this ranged from no increase to 4.6-fold wider SEs (e.g., SEs are 0.06, 0.15 

and 0.24 for uncalibrated analysis, regression-based and IOSW transportation for COMET 

all-cause mortality). Where the results were calibrated to the highest and lowest risk 

subgroups of the registry, which by design were more different from the trial 

populations based on baseline characteristics than was the overall population, the SEs 

ranged from 1.6-fold to 12.7-fold wider.  

 

4.5.6 Influence of highest weights on the precision of treatment effects 

 

In additional analyses (Supplementary II Table S11), the exclusion of individuals with 

lowest 1% odds (largest 1% weights) in the IOSW transportation slightly changed the 

point estimates, SEs and narrowed the CI. After excluding the 1% patients with the 

lowest odds (highest weights) of trial inclusion the SE ranged from no increase to 2.6-

fold wider for overall target population, and it ranged from 1.2-fold to 5-fold wider for 

highest and lowest risk subgroups ((e.g., SEs are 0.06, 0.15 and 0.11 for uncalibrated 

analysis, regression-based and IOSW transportation for COMET all-cause mortality)). 

 

This 1% extreme large weights (low odds of inclusion) were characterised by older age, 

higher loop diuretics doses and lower eGFR (Figure 13).  
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Table 8. Precision of estimates in uncalibrated and calibrated analyses. 

  Uncalibrated(U) 
Regression-

based(R) 

IOSW(IA) (all 

included)  

IOSW(IT) (trimming 

the largest 1% of 

weights)  

  SE(U) 
SE(R) 

(SE(R)/SE(U)) 

SE(IA) 

(SE(IA)/SE(U)) 
SE(IT) (SE(IT)/SE(U)) 

Overall  

  COMET all-cause death 0.058 
0.145 

(2.500) 

0.240 

(4.138) 
0.111 (1.914) 

  COMET all-cause death 

or hospitalisation 
0.044 

0.137 

(3.114) 

0.203 

(4.614) 
0.113 (2.568) 

  DIG all-cause death 0.053 
0.102 

(1.925) 

0.069 

(1.302) 
0.066 (1.245) 

DIG death or 

hospitalisation due to 

worsening heart failure 

0.053 
0.038 

(0.717) 

0.069 

(1.302) 
0.066 (1.245) 

Low risk decile  

  COMET all-cause death 0.058 
0.165 

(2.845) 

0.165 

(2.845) 
0.119 (2.052) 

  COMET all-cause death 

or hospitalisation 
0.044 

0.121 

(2.750) 

0.129 

(2.932) 
0.1 (2.273) 

  DIG all-cause death 0.053 
0.106 

(2.000) 

0.105 

(1.981) 
0.088 (1.660) 

DIG death or 

hospitalisation due to 

worsening heart failure 

0.053 
0.061 

(1.151) 

0.086 

(1.623) 
0.076 (1.434) 

High risk decile  

  COMET all-cause death 0.058 
0.338 

(5.828) 

0.739 

(12.741) 
0.234 (4.034) 

  COMET all-cause death 

or hospitalisation 
0.044 

0.344 

(7.818) 

0.296 

(6.727) 
0.222 (5.045) 

  DIG all-cause death 0.053 
0.197 

(3.717) 

0.248 

(4.679) 
0.134 (2.538) 

DIG death or 

hospitalisation due to 

worsening heart failure 

0.053 
0.076 

(1.434) 

0.171 

(3.226) 
0.114 (2.151) 

SE: standard error; (U): Uncalibrated analysis; (R): Regression-based method; (IA): Inverse Odds of 

Sampling Weights including all patients; (IT): Inverse Odds of Sampling Weights trimming the 

largest 1% of weights; SEs and ratios of SEs are in 3 decimal places. 
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Figure 13. Comparison of distribution of individual characteristics between patients 
with normal and extreme large 1% weights in 1) COMET and 2) DIG. 

1) 
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2) 

 

 

4.6 Discussion 

 

4.6.1 Summary  

 

Two landmark HF trials were calibrated to a Scottish “real-world” population using two 

approaches, regression-based and IPSW. Both were straightforward to perform, with 

only moderate loss of precision manifested as larger SEs. This suggests that trials can be 

calibrated to registry data, maximising representativeness and applicability while 

preserving the benefits of randomisation. 

 

4.6.2 Previous literature and what this study adds 

 

Previous studies have employed calibration using IOSW or generalisation via inverse 

probability of sampling weights (IPSW)(141-143). In DAPT study, IOSW was used to 
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account for patient and procedural factors between trial and the registry and estimated 

the real-world treatment effect comparing 30 months to 12 months of DAPT after 

coronary stent procedures. The weighted analyses no longer showed a significant effect 

of prolonged DAPT on reducing stent thrombosis, major adverse cardiac and 

cerebrovascular events, or myocardial infarction but the increase in bleeding 

persisted(143). In the PARADIGM-HF trial, IPSW was used to re-analyse the treatment 

effects accounting for participants excluded during the run-in period by adding 

additional weight for participants completing run-in most closely resembling those 

excluded. It showed that the weighted analysis of key outcomes taking into account 

drop-outs during the run-in phase did not change the benefit of sacubitril/valsartan 

compared to enalapril (156). Cole and Stewart used IPSW to calibrate a major HIV trial, 

using counts of people with HIV in the US stratified by age, sex and CD4 count to define 

the target population(141). The GetReal project calibrated a trial of chemotherapy for 

non-small cell lung cancer to a cohort study using IPSW with 15 baseline characteristics 

and IPSW showed a similar hazard ratio for pemetrexed compared with gemcitabine 

with greater uncertainty (a wider CI)(142). I add to this literature by showing that HF 

trials can be calibrated to the more complex populations encountered in clinical 

practice with only moderate loss in precision, yielding similar results for both IOSW and 

a regression-based approach. Furthermore, HF trials can be calibrated to different risk 

subgroups based on multiple characteristics. Unlike conventional subgroup analyses this 

approach simultaneously accounts for the impact of all measured characteristics which 

differ between the trial and real-world settings. 

 

In these analyses the calibration was performed to improve transportability rather than 

generalisability. When re-weighting for generalisability, the technique is identical, 

except that the inverse of the probability of trial inclusion is used rather than the 

inverse odds. 

 

4.6.3 Assumptions 

 

Both IOSW and regression make assumptions (Table 5). It is essential that the main 

effects and interactions are correctly modelled in the regression-based approach, and 

that all variables that predict both heterogeneity in participation and the outcome have 

been included in the trial inclusion odds model for the IOSW-approach. For both 

approaches, I also assume that there are no treatment-covariate interactions for 

unmeasured variables; although it is worth noting that the current standard approach of 
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applying the relative treatment effect from trials to target populations makes the more 

extreme assumption that there are no covariate-treatment interactions of any kind 

(measured or unmeasured). Importantly, while transportation helps address under-

representation, caution is needed when extrapolating trial results to patients who could 

not have been included in the trial (thus violating the positivity assumption), in this 

case for example children or people living in Africa. From a purely technical point of 

view, there are differences between the different approaches when extrapolating the 

trial findings to patients with combinations of characteristics beyond the range of the 

trial data. Using the IOSW approach, it is technically impossible to re-weight the 

estimates for levels of characteristics beyond the range of the trial data (eg if no trial 

participants were aged over 65 years one cannot estimate relative effects in a 

population over the age of 65). In contrast, in the regression-based approach, so where 

covariates are modelled as continuous variables (eg linear terms, polynomials etc) it is 

technically straightforward to extrapolate beyond the data. Nonetheless, whether 

applying regression or IOSW it is important to consider whether the applicability of the 

predicted effect estimates, on the required scale, are genuinely transportable to the 

desired target population. In other words, whether the relevant assumptions are met. 

Furthermore, participant/patient characteristics are only one way in which the 

circumstances of the trial may differ from the target population, for example there may 

be differences in clinical settings or time periods of enrolment. Differences in diagnosis, 

treatment delivery and monitoring may lead to differential efficacy (eg due to improved 

adherence, better tailoring of dosages etc)(157).These also need to be carefully 

considered when assessing the transportability of effect estimates, and are generally 

less amenable to the kind of adjustments  described in this chapter. 

 

Differences in the assumptions of IOSW and regression approaches alone, provides 

justification for performing both. However, they also provide different information. For 

example, the IOSW approach involves calculating the trial inclusion odds, and this then 

provides an overall single summary measure for all trial participants and registry 

patients. This allows comparisons within and between these populations, in order to 

determine, for example, whether the trial and registry populations are sufficiently 

similar to undertake calibration. This is analogous to an advantage of propensity score 

weighting in pharmacoepidemiologic analyses (e.g., control for measured confounding, 

identify barriers for treatment such as age) (158). In contrast, an advantage of the 

regression approach is that I can explore which differences between trial participants 

and registry patients are driving any observed discrepancies between calibrated and 

uncalibrated treatment effect estimates. This can be done by examining the magnitude 
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of covariate-treatment interactions and comparing levels of these covariates between 

trial participants and registry patients.  

 

The regression-based calibration approach builds on the standard evidence synthesis 

modelling process for producing absolute treatment effects in a target population, 

recommended in NICE Technical Support Document 5(159), wherein:- i) a standard care 

model for absolute outcomes is fitted to data representative of the target population, 

ii) a relative treatment effect model is fitted to trial data and iii) the two models are 

combined (usually using Monte Carlo methods or bootstrapping) to estimate absolute 

treatment effects. My model differs in two ways. First, homogeneity of relative 

treatment effects is not assumed but allow these to differ according to individual 

participant characteristics. Secondly, rather than having a single estimate for the 

natural history model or having two or more estimates stratified by some important 

characteristics (e.g. disease severity), the rates to differ according to individual patient 

characteristics are allowed. Importantly, this approach works on the assumption that 

relative treatment effects are transportable between trial and target populations 

conditional on the covariates included in the relative effects model in the trial data, 

with the standard care model fitted in the target population providing the baseline 

absolute rates to which the transported relative effects are applied. This is in contrast 

to alternative standardisation/g-computation approaches (e.g. as described by 

Dahabreh et al(160).) which solely use the trial data-derived model to produce absolute 

predictions in the target population (i.e. the standard care model is estimated within 

the trial), and thus are based on the assumption that absolute effects are transportable 

between trial and target populations. This is a much more stringent assumption to 

meet, since differences in all prognostic factors and effect modifiers between trial and 

target population must be accounted for instead of just the effect modifiers and is 

generally considered far less plausible. When non-collapsible relative effects measures 

are used (e.g. odds ratios or hazard ratios), we must additionally take care to ensure 

that the parameters from the standard care model are compatible with the parameters 

from the relative treatment effects model; that is, that they are conditioned in the 

same manner. This is not necessarily true in this analysis as some of the individuals in 

the register were taking digoxin and/or carvedilol. However, in many applications 

where a standard care population can be readily defined (e.g. because a new treatment 

is being considered), this condition is likely to be true; because the standard care 

population is restricted to (i.e. conditioned on) a common standard treatment and so 

the parameters of the standard care model have the same interpretation as their 

counterparts in the relative treatment effects model.  This condition is trivially met by 
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alternative standardisation/g-computation approaches that use only the trial data to 

produce absolute predictions from one single model, although as noted above these 

approaches make much stronger assumptions to transport absolute effects. Since they 

exhibit different assumptions, some researchers may wish to explore the use of both 

approaches as a triangulation exercise. 

 

4.6.4 Doubly robust estimation 

 

Doubly robust estimation combines an outcome regression form with an exposure model 

(e.g., propensity score) to estimate the causal estimate of an exposure on an 

outcome(161). When used independently, both outcome regression and propensity score 

approaches are unbiased only when the statistical model is correctly specified. The 

doubly robust estimator combines these two approaches, ensuring that the effect 

estimator remains robust even when one (but not both) of these models is mis-

specified. This implies that only one of the two models needs to be correctly specified 

to obtain an unbiased effect estimator(161). I focused on comparing two methods of 

calibration (regression-based and IOSW-based). However, it is also possible to combine 

both using what are termed doubly robust approaches where both regression and 

inverse-weighting are used together. See Li et al for an example(162).  

 

4.6.5 Influence of highest weights on the precision of treatment effects 

 

Butala et al suggested to trim the extremely large weights which may be caused by 

small sample size to ensure stable estimates(143). This can be achieved by truncating 

the top weights (such as 1%) or normalising weights. In both the main and exploratory 

analyses (Supplementary II Table S11), the largest 1% weights were truncated. After 

truncation, for the overall target population, the standard errors were reduced to 2.6-

fold wider from 4.6-fold wider before truncation. For the highest and lowest risk 

subgroups of the registry, the standard errors ranged were reduced to 5-fold wider from 

12.7-fold wider, resulting in increased precision with the exclusion of just 1% extreme 

large weights. 
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4.6.6 Challenges and implications  

 

A challenge of calibration is the need to access IPD for both the trial and target 

populations. This is complex (e.g., data sharing agreements and regulatory approvals) 

and requires considerable analyst time. However, as illustrated in Figure 7, changes in 

trial reporting could improve this situation. Were trialists to provide the coefficients 

and the variance-covariance matrix for a treatment effect model including all non-

negligible treatment-covariate interactions, secondary researchers (with access to 

registry IPD) could produce calibrated treatment effect estimates for specific target 

settings. To enable such an approach would also require trialists to select the relevant 

covariates and to correctly specify the treatment covariate analysis. To be widely 

practiced, it would likely also require consensus among trialists and guidance from 

regulatory agencies. Similarly, it may also be possible in the future for estimates to be 

produced by trialists if those managing disease registries (such as NHSGGC) were able to 

provide adequate summary data to reconstruct the joint distribution of patient 

characteristics. I illustrate some of the information that would be need in 

Supplementary I Table S12 for HF clinical trials (age, sex, SBP etc). As has previously 

been shown, joint covariate distributions may be reconstructed from routinely collected 

data given published marginal summary statistics (eg means, standard deviations) and 

correlation matrices if we are willing to make assumptions about the functional form of 

the marginal distributions and the correlation structure, for example by using a 

multivariate normal a copula to capture the correlation structure(72). Moreover, 

simulation studies have shown that the results are likely to be robust to the assumptions 

used to reconstruct the joint distribution(163). However, for such an approach to be 

adopted, additional methodological work is first needed however in order to i) reassure 

those holding routinely collected data that the risk of re-identifying individuals is 

sufficiently low and ii) reassure analysts that this parametric summary of the data is 

generally adequate for trial calibration. For the widespread adoption of transportation, 

the reporting of such summaries would need to be standardised(164). Clinical trials are 

already highly standardised and sophisticated with mature ontologies and reporting 

standards (165). These would need to be expanded to cover reporting of treatment-

covariate interactions from multivariable models. Current proposals to standardise and 

harmonise HF registries would also need to incorporate reporting standards for 

population summaries. Considerable efforts by the HF research community would be 

required to implement such changes in both trial and registry settings. This observation 

that calibration yielded more applicable estimates with only a moderate loss of 

precision suggests that this effort is worthwhile. After incorporating patient 
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characteristics from both the trial and the real world using two statistical calibration 

methods, it shows similar point estimates, albeit with moderately wider confidence 

intervals when considering the enrolment of real-world patients receiving the same 

interventions as in the trial. 'Calibration yielded more applicable estimates' implies 

greater trustworthiness due to the calibration process being performed. 

 

Not every patient encountered in real-world clinical practice would be enrolled in the 

trial, but clinicians need to treat these real-world patients in their daily practice. 

Additionally, policymakers require more evidence to create guidelines. Pragmatic trials 

tend to enrol more representative samples from the real world, but the increased 

complexity and resource requirements pose challenges in implementation in terms of 

time, cost, and logistical considerations(13). Statistical calibration can yield trustworthy 

real-world estimates without the need for implementing new trials, thereby providing 

more evidence without incurring additional trial-related costs. In comparison to the 

efforts involved in initiating a new trial to inform treatments for real-world patients, 

performing calibration is a more straightforward and sustainable approach. 

 

Another challenge in analysing IPD pertains to working within secure data storage 

platforms (Safe Havens). In terms of data protection, Safe Havens offer a highly secure 

environment characterized by restricted access and meticulous management of output 

exports. However, this level of security can also introduce complexities when it comes 

to tasks like downloading packages, conducting data analyses, transferring coefficients, 

and exporting results. This challenge is particularly pronounced when dealing with 

datasets stored in different Safe Havens, as is the case with the HF registry data and 

trial data. 

 

The process of transferring coefficients or aggregated data from one Safe Haven to 

another involves multiple steps and approvals. This necessitates the review of contents 

to be transferred, seeking necessary approvals, and eventually executing the file 

transfer. These procedural intricacies can pose significant challenges and may require a 

considerable amount of time and effort to navigate effectively. 

 

 

 



119 
 

4.6.7 Strengths and limitations 

 

These two calibration methods keep the advantages of the randomisation with high 

internal validity and combines multiple characteristics of routine data to inform the 

situations of patients in the clinical practice. Another advantage of this study is that the 

HF register includes all HF patients who had visited the specialist in NHSGGC that covers 

a wide area in west central Scotland and almost a quarter of Scottish population, which 

is representative for Glasgow HF patients. Furthermore, this study is from the 

perspective of methodology with each step being transparent and reproducible (see 

more details in the appendix) so it can also be used in other scenarios. Trials normally 

require substantial resources while it remains questionable on the treatment 

effectiveness in patients encountered in clinical practice and it is unfeasible to enrol 

every patient into trials. These two calibration methods, therefore, can maximise the 

generalisability of existing trials in a sustainable way without costing extra resources.  

 

There are several important limitations in this analysis. I used routine data to define the 

target population because it was highly representative of patients encountered in 

clinical practice. However, some important variables were incompletely recorded, such 

as the New York Heart Association Classification (NYHA, 77.25% missing) and LVEF 

(84.87% missing) and therefore could not be included in the calibration. Although a 

numerical value for LVEF was available for only 15% of patients, a semi-quantitative 

measure of left ventricular function was available for 88% and indicated a reduced LVEF 

in 85% of cases, indicating that patients in the registry are predominantly HFrEF. This 

case calls for a better quality of data during the data collection procedure in routine 

clinical practice in the future especially for those important variables.  

 

4.7 Conclusion  

 

Calibration of HF trials to HF registry data is feasible and may be used, without breaking 

randomisation, to help address concerns about the representativeness of trials to 

patient population encountered in clinical practice. Consideration should be given to 

trial reporting standards and harmonisation of HF registry data to facilitate trial 

calibration and translation of clinical trials into clinical practice(164).   
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Chapter 5: Discussion and Conclusion. 

 

5.1 Summary of the findings 

 

5.1.1 Subgroup reporting  

 

5.1.1.1 Overview  

 

Chapter 3 involved the identification and examination of 2,235 trials from 

clinicaltrial.gov. Following the eligibility criteria outlined in Supplementary I Table S1, a 

total of 1,082 trials, corresponding to 2,422 publications, were included for further 

analysis. Each publication underwent at least one manual review to determine if 

subgroups were reported or not. Out of the reviewed papers, 907 were found to report 

subgroups. For each reported subgroup, the term was extracted, and standardization 

was performed using MeSH terms to ensure consistency in subgroup comparison across 

different trials. 

 

Subsequently, logistic and Poisson regression models were constructed to explore the 

relationship between various trial characteristics (such as trial starting year, follow-up 

time, index conditions, sample size, number of arms, and industry sponsorship) and the 

reporting of results (whether any results were reported or not) as well as subgroup 

reporting (whether any subgroups were reported or not, and the count of subgroups 

reported). These models aimed to provide insights into the factors influencing result 

reporting and subgroup reporting in trials. 

 

5.1.1.2 Main findings 

 

Among 1,082 trials with reported results, 524 trials reported subgroup. Trials reporting 

subgroups tended to have larger sample sizes, longer follow-up durations, higher 

percentage of non-industry sponsorship, and more arms compared to trials without 

subgroup reporting. 
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The number of participants enrolled was the most significant predictor for any result 

reporting, any subgroup reporting, and the total number of subgroups reported. Follow-

up duration is also a significant predictor. More recent trials were similar to older trials 

in terms of reporting patterns. Trials with 3 or more arms were more likely to report 

results but not necessarily associated with increased subgroup reporting or a higher 

total number of subgroups. Industry sponsorship did not significantly impact the 

reporting patterns. In comparison to asthma trials, cardiovascular, metabolic, and 

thromboembolic trials are more likely to report subgroups, along with a tendency to 

report a larger number of subgroups.  

 

The analysis of 524 trials across 49 index conditions revealed variations in the number 

and types of subgroups reported. There were 345 subgroup terms in total, with a 

median of 11 terms per index condition. Some subgroups were commonly reported 

across all index conditions, including age, gender, comorbid diabetes, racial group, BMI, 

geographical locations, Glycated Hemoglobin A, and cigarette smoking. 

 

In many trials, subgroups related to the index condition, such as duration, severity, or 

type, were frequently reported. For example, in MI trials, severity/history/type of MI 

was commonly reported as a subgroup. In type 2 diabetes trials, diabetes duration was 

frequently reported. Where conditions other than the index conditions were reported as 

subgroups, this was largely limited to diseases within the same body system as the index 

condition. For example, 13% of cardiovascular disease trials reported a non-index 

condition cardiovascular disease subgroup, such as hypertension. In these cases, both 

the index condition and subgroup belonged to the cardiovascular disease category. 

However, when the subgroup conditions differed from the index condition in terms of 

the body system, they were typically known causes or sequelae of the index condition. 

For instance, nutritional and metabolic diseases, predominantly diabetes, were 

reported as subgroups in cardiovascular disease trials (16%). Similarly, in diabetes trials, 

cardiovascular diseases (5.5%) and renal disease (4.9% urogenital diseases) were 

reported as subgroups. This study also found that trials rarely report metrics of 

comorbidity, multimorbidity or frailty and mental health.  

 

This subgroup reporting description study showed there are variations in the subgroup 

reporting across different trials and interventions. It also identified specific subgroups 

that could be of greater interest for different trial index conditions and interventions. 

Future work could be directed towards improving trial reporting standards to achieve 
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more consistent and standardised subgroup reporting across various index conditions 

and interventions. 

 

5.1.2 Trial calibration 

 

5.1.2.1 Overview 

 

Two landmark HF trials – COMET and DIG - were calibrated to a Scottish HF registry by 

using regression-based method and IPSW. Baseline characteristics were compared 

between trial participants and real-world patients. And the treatment effects in the 

real-world registry after calibration were also compared with those in trials.  

 

5.1.2.2 Main findings 

 

8 variables common in both the trials and the registry which were also believed to have 

potential to modify treatment effectiveness by cardiologists were included in the 

analyses. The patients in the HF registry differed from the trial participants. The 

registry patients were older, had slightly lower SBP and eGFR, and higher dosages of 

loop diuretics compared to the trial participants. There was a higher proportion of men 

than women in the registry, while the trials had a more balanced gender distribution. 

Additionally, the percentage of patients with a history of diabetes was slightly lower in 

the registry compared to the trials. 

 

In both trials, male sex, older age, and history of diabetes were associated with a 

poorer prognosis and higher eGFR predicted longer survival. In COMET, use of higher 

dose loop diuretics also predicted a worse outcome, higher serum sodium 

concentration, and higher SBP predicted better prognosis. For both trials, treatment 

efficacy appeared to be lower for patients with diabetes and greater for heartrate but 

the CIs almost all included the null.  

 

In the DIG trial, the uncalibrated and calibrated effect estimates for primary or 

composite outcomes were similar, indicating comparable efficacy between the trial and 

the HF registry. For the COMET trial, the efficacy was higher with IPSW calibration but 
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lower with regression-based calibration compared to uncalibrated estimates. However, 

the confidence intervals of the calibrated estimates overlapped with those of the 

uncalibrated estimates. The impact of calibration was consistent when trials were 

calibrated to high-risk and low-risk subgroups. The SEs of calibrated effect estimates 

were generally larger than those of standard analysis, indicating a loss of precision. 

Calibration to the overall target population resulted in SEs that were up to just over 3-

fold wider. When calibrated to subgroups with the highest and lowest risk deciles, which 

differed more from the trial populations in terms of baseline characteristics, the SEs 

ranged from around 1-fold to around 8-fold wider.  

 

Overall, this study demonstrated that trials can be calibrated to real-world registries 

while maintaining the strengths of trials and without significant loss of precision, 

assuming that the models were correctly specified. The findings also indicated that the 

results and messages derived from the trials remained applicable when applied to the 

Scottish HF registry. These methodologies have the potential for broader application in 

other trials and routine datasets, provided that the necessary data information is 

available. 

 

5.1.2.3 Influence of highest weights on the precision of treatment effects 

 

Extremely large weights which may be caused by small sample size may hurt the stable 

estimates(143). This can be improved by truncating the top weights (such as 1%) or 

normalising weights. The additional analyses excluded the lowest 1% odds (largest 1% 

weights) in the IOSW transportation and slightly changed the point estimates, SEs and 

narrowed the CI. This 1% extreme large weights (low odds of inclusion) were 

characterised by older age, higher loop diuretics doses and lower eGFR (Figure 13). In 

real-world practice, trade-offs may be necessary to achieve better precision by 

excluding patients with extremely low probabilities when using IPSW. However, caution 

is advised when implementing and interpreting these findings. 
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5.2 Strengths and limitations of this thesis  

 

5.2.1 Subgroup reporting  

 

This study has several strengths. Firstly, it detected registered trials from 

clinicaltrial.gov and then identified their corresponding publications, which means that 

it included trials from various publication sources, unlike some previous studies that 

only focused on publications in high impact journals(32, 123). This also potentially 

reduced the publication bias for subgroup reporting and made the description more 

credible. Additionally, this study represents the largest assessment of subgroup 

reporting in trials of multiple chronic medical conditions to date, drawing results from 

2,235 trials. Another unique aspect is the assignment of standardised terminologies, 

enabling comparison across multiple conditions and drug classes. By standardising and 

harmonising terminologies, this study was able to reduce over 2,000 unique strings to 

345 unique MeSH terms. This approach was crucial for facilitating comparisons of 

subgroups among different trials, as it would have been impractical and challenging to 

reconcile diverse subgroup terms reported by different researchers worldwide. 

 

However, there were several limitations. Firstly, some papers might have been missed if 

they were not registered with ClinicalTrials.gov or lacked trial registration identifiers in 

PubMed. However, the number of such missed papers is expected to be small because 

the International Committee of Medical Journal Editors requires trial registration 

numbers (124). Secondly, subgroup results from non-indexed sources such as clinical 

reports could have been overlooked due to limited accessibility as the access to these 

reports often requires a formal application process or a data sharing agreement. 

Thirdly, some terms could not be assigned to standard MeSH or ATC codes due to their 

complexity but after the best attempts and there were not many terms remain 

unassigned. Lastly, the findings are specific to chronic medical conditions and do not 

encompass trials in infectious diseases, oncology, and psychiatric disorders (excluding 

dementia) for simplicity. 
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5.2.2 Trial calibration 

 

This study demonstrated the advantages of using calibration methods to combine the 

strengths of randomised trials with routine data in informing clinical practice. The HF 

register utilised provides a representative sample of HF patients in west central 

Scotland and almost a quarter of Scottish population, offering valuable insights into 

real-world patient situations. Secondly, the transparent and reproducible methodology 

employed in this study makes it applicable to other scenarios as well. By maximising the 

applicability of existing trials, these calibration methods offer a sustainable approach 

without requiring additional resources. 

 

However, there are limitations to consider. Incompleteness of certain variables in the 

routine data, such as NYHA classification and LVEF, limited their inclusion in the 

calibration process. This highlights the need for improved data quality in routine clinical 

practice, particularly for important variables. Efforts should be made to enhance data 

collection procedures in the future to ensure more comprehensive and reliable 

information. 

 

5.3 Implications and recommendations of research 

 

5.3.1 Feasibility and likely benefits of subgroup analysis 

 

In order to conduct subgroup analysis for tailoring treatments to patients with specific 

characteristics, there are two approaches. Firstly, primary researchers can design 

subgroup analyses aligned with predefined subgroup specifications, collect subgroup 

data, and present the subgroup results. Secondly, secondary researchers can gather 

subgroup data (such as numbers, proportions, and events) and conduct post-hoc 

analyses. Pre-specified subgroup analysis is generally considered more credible and 

valid than post-hoc analyses. And sometimes it is challenging for secondary researchers 

to obtain sufficient data from published literature for subgroup analysis, especially if 

IPD is not available. 

 

In the long term, researchers and the community will benefit more if primary 

researchers are able to provide more details about subgroup analyses within RCT. This 
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can be achieved through incorporating subgroup specification in the trial registration 

checklist and incorporating subgroup reporting in the trial reporting guideline. Chapter 

3 can offer further insights into which subgroups should be considered in specific trials. 

Although this approach demands additional effort from primary researchers, the 

enhanced credibility of subgroup analyses and their ongoing benefits for policymakers, 

clinicians, and the targeted subgroup of patients may demonstrate its worthiness. 

 

5.3.2 Improve real-world data quality and incorporate more variables 

 

5.3.2.1 Improve routine data quality 

 

Data quality issues in routine data are commonly described in terms of incomplete 

registers, inconsistencies between registers and reports, and low levels of data accuracy 

(166-170). In Chapter 4, the trial calibration study encountered missing data for 

important variables related to HF severity, such as NYHA classification and LVEF, as well 

as mislabelling of certain measurements from the Scottish HF registry. To address these 

issues, the study employed alternative approaches and solutions. These challenges 

highlight the need for improving data collection, standardization, and quality assurance 

processes in order to enhance the reliability and validity of routine data sources. The 

quality of routine data plays a crucial role in the effective functioning of the health 

system and enables policymakers to evaluate the impact of health system interventions 

aimed at improving population health(171). Although multiple efforts are being made to 

improve the quality of routine data, it remains insufficient and requires further time 

and attention(172). Future research can do more to enhance the data quality such as 

deploying and training monitoring and evaluation officers, conducting routine data 

assessments, collecting feedback et al(173, 174).  

 

5.3.2.2 Incorporate variables more consistent with trial documentation 

 

Comprehensive and consistent data on important variables that can influence treatment 

outcomes are often lacking in routine medical records (1). For instance, routine clinical 

practice frequently lacks consistently reporting of disease severity using standardised 

scales employed in trials(37, 175). To bridge the gap between effectiveness research 

and clinical medicine and to enhance the trial applicability, it is crucial to establish 

consistent documentation of patient characteristics with trials, including selection 
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criteria, adherence to interventions (such as off-label use), and outcome measurements 

et al(1). Although creating such documentation presents significant challenges, partly 

due to the fact that they often involve large-scale datasets requiring substantial 

resources (37), there is a pressing need for disease-specific clinical registries that are 

rigorous planned and designed following the same principles as trials. These registries 

should adopt similar documentation practices, enabling the collection of evidence on 

treatment effectiveness. This approach aligns with the proposition of trial applicability 

from Chapter 1, emphasising that representative clinical registries in the real world 

should maintain uniform documentation standards comparable to trials. This enables 

systematic comparisons between trial data and registry data (1, 7). 

 

5.3.3 Improve trial and routine registry reporting  

 

5.3.3.1 Complete, consistent, and unbiased trial reporting 

 

Making the trial design and findings comprehensive, concise and transparent is 

important to ensure its accurate assessment and enhance the applicability (5). This also 

aligns with the principles of the open science framework, which might be the future 

direction for medical research. It facilitates the inclusion of various elements of the 

research lifecycle such as study design, data storage and analysis, protocol registration, 

etc..(176). Reporting guidelines and frameworks such as CONSORT and GPP3 were well 

established to improve trial reporting quality (5, 177). However, in real practice, the 

trial reporting situations are not adequate with the lack information about patient 

selection, study setting and patient characteristics such as comorbidities and equity 

factors(8). Some reporting also suffers from the selection bias with the tendency to less 

report trials with nonsignificant outcomes (178). These factors can all harm trial 

applicability and mislead future research and clinicians in routine practice. Therefore, 

adhering to reporting guidelines and providing thorough descriptions and details of trial 

design and unbiased findings becomes crucial. 

 

5.3.3.2 Consistent trial subgroup reporting 

 

Subgroup effects are different in a single trial and meta-analysis. From a single trial it is 

more likely to be over-interpreted and misleading as it may suffer from false positive 

(from multiple testing) or false negative (due to reduced statistical power). Instead,  
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considering results from multiple trials or conduct meta-analyses that combine data 

from different studies would be a better option to increase statistical power and 

enhance precision(26). For such purpose, ensuring the completeness and consistency of 

subgroup reporting would be helpful.  

 

Chapter 3 presented findings from an analysis of 2,235 eligible trials, revealing that only 

a quarter of them (524 trials) reported subgroups. Furthermore, significant variation in 

subgroup reporting was observed even among trials within the same index condition and 

drug class, posing challenges for meta-analyses aiming to incorporate subgroup effects. 

Providing a wider common set of subgroup effect estimates via clinicaltrial.gov or 

digital repositories in machine readable formats would be very useful to incorporate 

them and further assess HTE. Another issue identified in subgroup reporting is the 

inconsistent use of subgroup terms by different researchers, necessitating time-

consuming standardisation efforts using MeSH terms and WHOATC codes for 

comparability. To address these challenges, additional items can be added to existing 

trial reporting guidelines or frameworks, towards unifying subgroup terminology. 

Developing a checklist for subgroup reporting, encompassing categories such as 

demographic subgroups (e.g., age, race, gender), disease severities, and comorbidity 

subgroups et al could also enhance the completeness and consistency. 

 

5.3.3.3 Make IPD alternatives available in both trials and routine registries 

 

Chapter 4 showed that a key challenge in calibration is the requirement for accessing 

IPD from both the trial and target populations. This process is complex and time-

consuming, involving data sharing agreements, regulatory approvals, data protection 

training certificate et al. Working with multiple Safe Havens, one for trial data and 

another for the registry, introduces additional complexity. For example, I could not 

directly transfer the summarised matrix generated from one Safe Haven to another. 

These summaries require a thorough review to eliminate any potential identification of 

IPD before being transferred to another Safe Haven to be included in the model. These 

factors have increased the complexity of the analyses, adding further challenges and 

causing extra time in addition to the initial task of obtaining access to IPD. However, 

small changes in trial reporting can help overcome this challenge. If trialists provide 

coefficients and the variance-covariance matrix for a treatment effect model that 

includes all relevant treatment-covariate interactions, secondary researchers with 

access to routine registry data can generate calibrated treatment effect estimates for 
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specific target population settings. If disease registries provide summary data on the 

joint distribution of commonly recorded patient characteristics in their corresponding 

trials (e.g., age, sex, diabetes), trialists with access to IPD can calibrate trials to these 

populations using methods like IOSW or regression. These efforts could significantly 

facilitate the trial transportation to real-world populations.  

 

To facilitate the widespread adoption of calibration, the reporting of such summaries 

should be standardised. Expanding current trial reporting standards to include reporting 

of treatment-covariate interactions from multivariable models is necessary. 

Additionally, ongoing efforts to standardise and harmonise registries should incorporate 

reporting standards for population summaries. Implementing these changes in both trial 

and registry settings will require significant efforts from the research community. The 

calibration study yielding more applicable estimates with only a moderate loss of 

precision supports the value of undertaking these endeavours. 

 

5.4 Recommendations for future search 

 

5.4.1 For subgroup analysis 

 

5.4.1.1 Define subgroups 

 

Defining and using the consistent definition of subgroup enables comparison of 

outcomes among similar subgroups across different clinical trials. When subgroups are 

determined by continuous variables, it is preferable to utilise well-established or 

published cutoffs  (105, 179).  

 

5.4.1.2 Identify important subgroups for trials across different conditions 

 

This can draw upon insights from Chapter 3, considering commonly reported subgroups, 

or obtain information from published literature regarding important prognostic factors 

or effect modifiers for different diseases. Expertise from clinicians in the field can also 

contribute to this identification process. 
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5.4.1.3 Incorporate subgroup analysis into trial registration platforms 

 

The pre-specification of subgroup is to enhance the reliability of subgroup analysis from 

the trial design stage. 

 

5.4.1.4 Include subgroup reporting in the guidelines for trial reporting 

 

This will facilitate secondary researchers in obtaining comprehensive information on 

subgroup reporting, enabling them to conduct meta-analyses and derive treatment 

effects specific to certain subgroups, thereby informing clinical practice. 

 

5.4.2 For trial calibration 

 

5.4.2.1 Define important effect modifiers for trials across diverse conditions 

 

Drawing insights from published literature and expert clinicians can aid trialists in 

creating models by using treatment and treatment-main covariates interactions to allow 

secondary researchers to perform calibration. 

 

5.4.2.2 Examine the magnitude of variation in correlations among potential effect 

modifying variables between different settings 

 

IPD is often limited. Instead, chapter 4 proposed to use the covariate joint distribution 

to re-construct pseudo-IPD which requires marginal summary statistics (mean and 

standard deviation for numerical variables, proportions for categorical variables) and 

correlations between covariates. However, the information about correlations may also 

be insufficient while marginal summary statistics may be accessible via the cohort 

profile description or the annual report of the registry. It is desirable to create pseudo-

IPD using single-variable summary statistics for the real-world target population of 

interest, but taking between-variable statistics from other data sources (eg other 

registries or trial data). However, this assumes that between-variable characteristics 

are sufficiently similar across different settings. Further research can focus on 

examining the variation of correlations between different settings. 
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5.5 Contribution of the thesis 

 

The thesis makes the following contributions: 

 

1. The subgroup study represents the most extensive evaluation of subgroup 

reporting across trials involving multiple chronic medical conditions to date. It 

provides comprehensive and consistent evidence for further investigation into 

subgroup effects and treatment heterogeneity, addressing questions regarding 

which subgroups are reported, in which trials, and at what frequency. 

 

2. The subgroup study examines the association between trial characteristics and: 

1) the reporting of any results, 2) the reporting of any subgroups, and 3) the 

number of reported subgroups. With a sample size of 2,235 trials, it compares its 

findings to existing literature and identifies potential patterns of discrepancy. 

 

3. The calibration study retains the key strength of trials, which is randomisation, 

and combines it with routine data that captures a broader range of patient 

information from the real-world. By leveraging the strength from both sources of 

data, it maximises the applicability of trials to real-world settings. 

 

4. This study is the first to employ a regression-based method for calibrating trials 

in the real-world HF population, taking into account multiple patient 

characteristics in both datasets. The reproducible implementation steps enhance 

the broader utilization of this method in other scenarios. 

 

5. This thesis demonstrates the feasibility of utilising IOSW method to calibrate two 

landmark HF trials in the real-world population, considering multiple patient 

characteristics. It also discusses the trade-off between the precision of 

calibrated estimates and the inclusion of patients with a low odds of being 

included in the trial. 
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6. This thesis has implications for expanding trial reporting guidelines to include 

additional features for subgroup reporting, enabling consistent examination of 

subgroup effects. 

 

7. It also suggests incorporating coefficients, variance-covariance matrices, and 

treatment-covariate interactions as IPD alternatives in the trial reporting 

guidelines to facilitate calibration by researchers. 

 

8. This thesis proposes registry reporting to provide summary data on the joint 

distribution of patient characteristics, enabling calibration from the trialists’ 

side.  

 

5.6 Conclusions 

 

This thesis showed:  

1) Variations in subgroup reporting limited the ability for assessing HTE.  

2) Transportation methods were feasible to improve trial applicability to real-world 

HF populations.  

3) Gaps in access to IPD and calibration need to be addressed.  

 

To be able to perform a meta-analysis to examine the subgroup effects of in tailored 

patients, to further enhance the applicability of trials in these specific populations, this 

thesis emphasises the need for providing a wider common set of subgroup effect 

estimates via clinicaltrial.gov or digital repositories and unifying subgroup terms 

through MeSH terms or WHOATC codes in trial reporting guidelines. This requires future 

research to define important subgroups for different disease conditions, use consistent 

subgroups across different trials and pre-specify subgroup analysis in the trial design 

stage.  

 

Trial calibration methods are novel, practical, and reproducible to enhance the trial 

applicability. It advocates for the inclusion of IPD alternatives for trial reporting 

(coefficients and the variance-covariance matrix for a treatment effect model) and 

routine registry reporting (marginal summary statistics and correlation matrix) to allow 
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researchers without IPD to perform calibration, which will facilitate wider adoption of 

calibration methods. This requires future research to identify important effect 

modifiers for different disease and correctly model the treatment covariate analysis.  
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Supplementary I – Subgroup Reporting 

 

Identifying trials, papers and subgroups. 

 

Identifying eligible trials from clinicaltrials.gov. 

 

Supplementary I Table S1. Pre-specified inclusion criteria for identifying trials from 
clinicaltrials.gov. 

Population • Adults 

• Trials must either not exclude based on age or have an 

upper age limit >60 years 

Intervention “Drug” or “Biological” 

Comparator Comparison with other eligible drug, placebo, usual-care or 

“standard comparator” 

Outcome Any 

Study design • Randomised controlled trial (search criteria “Factorial 

assignment”, “Parallel assignment” and “allocation 

random”) 

• Phase 2/3, 3, or 4 

Date • Trials start date after 1st Jan 1990 

• Search performed September 2017 

Status ‘Active, not recruiting’, ‘Completed’ or ‘Terminated’ 

Enrolment >= 300 

Other exclusions  • Upper age limit under 60 years 

• Topical therapies 

• Discontinued therapies 

• Trials with same-drug comparisons 

 

Supplementary I Table S2. Included conditions, Medical Subject Headings (MeSH) terms 

and MeSH codes. 

Category MeSH term Code 

Musculoskeletal al Osteoporosis C05.116.198.579  
Spondyloarthropathies C05.116.900.853.6

25.800  
Arthritis C05.550.114 
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Arthritis, Rheumatoid Gout C05.799.114  
Osteoporosis C05.799.414 

Digestive system 
diseases  

CREST Syndrome 
C06.405.117.119.5
00.204 

 

Oesophageal Achalasia C06.405.117.119.5
00.432 

 

Oesophageal spasm, diffuse C06.405.117.119.5
00.450  

Gastro-oesophageal reflux C06.405.117.119.5
00.484  

Laryngopharyngeal reflux C06.405.117.119.5
00.484.500  

Plummer-Vinson Syndrome C06.405.117.119.5
00.742  

Oesophagitis C06.405.117.620  
Colitis, Ulcerative C06.405.205.265.2

31  
Inflammatory Bowel Diseases C06.405.205.731  
Inflammatory Bowel diseases C06.405.469.432  
Oesophagitis, peptic C06.405.608.348  
Duodenogastric reflux C06.405.748.240  
Gastritis C06.405.748.398  
Hepatitis, autoimmune C06.552.380.350.0

50 

Respiratory Tract 
Diseases 

Asthma 
C08.127.108 

 
Bronchiectasis C08.127.384  
Bronchitis, chronic C08.127.446.567  
Hypertension, Pulmonary C08.381.423  
Idiopathic Interstitial Pneumonias C08.381.483.487  
Idiopathic Pulmonary Fibrosis C08.381.483.487.5

00  
Lung Diseases, Obstructive C08.381.495  
Pulmonary Embolism C08.381.746  
Pulmonary Fibrosis C08.381.765  
Rhinitis C08.460.799  
Asthma C08.674.095  
Bronchitis, Chronic C08.730.099.567 

Otorhinolaryngologic 
Diseases 

Rhinitis, Allergic 
C09.603.799.315 

 
Multiple Sclerosis C10.114.375.500  
Parkinsonian Disorders C10.228.140.079.8

62  
Brain Ischaemia C10.228.140.300.1

50  
Stroke, Lacunar C10.228.140.300.2

75.800  
Dementia, Vascular C10.228.140.300.4

00  
Infarction, Anterior Cerebral Artery C10.228.140.300.5

10.200.325  
Infarction, Middle Cerebral Artery C10.228.140.300.5

10.200.387 
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Infarction, Posterior Cerebral Artery C10.228.140.300.5

10.200.418  
Dementia, Vascular C10.228.140.300.5

10.800.500  
Stroke C10.228.140.300.7

75  
Alzheimer Disease C10.228.140.380.1

00  
Dementia, Vascular C10.228.140.380.2

30  
Epilepsy C10.228.140.490  
Migraine Disorders C10.228.140.546.3

99.750  
Parkinsonian Disorders C10.228.662.600  
Parkinson Disease C10.574.812  
Alzheimer Disease C10.574.945.249  
Restless Leg Syndrome C10.803 

Male Urogenital 
Diseases 

Prostatic Hyperplasia 
C12.294.565.500 

 
Diabetic Nephropathies C12.777.419.192  
Urinary Bladder, Overactive C12.777.829.866  
Enuresis C12.777.934.284  
Urinary Incontinence C12.777.934.852 

Female Urogenital 
Diseases 

Urinary Bladder, Overactive C13.351.968.829.8
13  

Enuresis C13.351.968.934.2
52  

Urinary Incontinence C13.351.968.934.8
14 

Cardiovascular Diseases Atrial Fibrillation C14.280.067.198  
Atrial Flutter C14.280.067.248  
Heart Failure C14.280.434  
Myocardial Ischaemia C14.280.647  
Atherosclerosis C14.907.137.126.3

07  
Peripheral Arterial Disease C14.907.137.126.3

07.500  
Coronary Artery Disease C14.907.137.126.3

39  
Dementia, Vascular C14.907.137.126.3

72.500  
Intermittent Claudication C14.907.137.126.6

69  
Cerebral Infarction C14.907.253.092.4

77.200  
Dementia, Vascular C14.907.253.560.3

50.500  
Stroke C14.907.253.855  
Embolism and Thrombosis C14.907.355  
Pulmonary Embolism C14.907.355.350.7

00  
Thromboembolism C14.907.355.590  
Thrombosis C14.907.355.830 
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Hypertension C14.907.489  
Myocardial Ischaemia C14.907.585  
Peripheral Vascular Diseases C14.907.617 

Skin and Connective 
Tissue Diseases 

Lupus Erythematosus, Systemic 
C17.300.480 

 
Mixed Connective Tissue Disease C17.300.540  
Rheumatic Diseases C17.300.775  
Scleroderma, Systemic C17.300.799  
Scleroderma, Systemic C17.800.784  
Scleroderma, Diffuse C17.800.784.602  
Scleroderma, Limited C17.800.784.801  
CREST Syndrome C17.800.784.801.5

00  
Psoriasis C17.800.859.675  
Urticaria C17.800.862.945 

Nutritional and 
Metabolic Diseases 

Diabetes Mellitus 
C18.452.394.750 

 
Hypercholesterolemia C18.452.584.500.5

00.396  
Hyperlipidaemia, Familial Combined C18.452.584.500.5

00.438  
Hypertriglyceridemia C18.452.584.500.5

00.851  
Hyperlipidaemia, Familial Combined C18.452.648.398.4

50 

Endocrine System 
Diseases 

Diabetes Mellitus, Type 1 
C19.246.267 

 
Diabetes Mellitus, Type 2 C19.246.300 

Immune System 
Diseases 

Anti-Neutrophil Cytoplasmic Antibody-
Associated Vasculitis 

C20.111.193 

 
Antiphospholipid Syndrome C20.111.197  
Arthritis, Juvenile C20.111.198  
Arthritis, Rheumatoid C20.111.199  
Multiple Sclerosis C20.111.258.250.5

00  
Diabetes Mellitus, Type 1 C20.111.327  
Hepatitis, Autoimmune C20.111.567  
Asthma C20.543.480.680.0

95  
Rhinitis, Allergic C20.543.480.680.4

43 
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Screening eligible trials for reporting results. 

 

Supplementary I Fig 1. The screening of eligible trials with reported results. 

 

 

Screening eligible trials/papers with reported results for reporting subgroups. 

 

2,422 papers with reported results obtained from the above screening process were 

then underwent the screening of subgroups analyses showed in Figure 3 in the main 

paper.  

 

Obtaining standard format for tables obtained from eligible papers. 

 

907 papers contain subgroup reporting after screening as showed in Figure 3 in the main 

paper. Tables from these 907 papers in a tabular format were uploaded to TableTidier 
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(https://tabletidier.org/) – software that can assist with standardising tables into a 

machine-readable format. For example, if a table contains sex as a subgroup name and 

woman as a subgroup level, this is assigned to the Mesh concept identifier (CUI) 

C0079399. Therefore, synonyms used across the papers are harmonised allowing 

comparisons across different papers, trials and disease conditions.  

 

Supplementary I Fig 2. Standardisation process. 

 

 

Assigning MeSH terms 

 

Supplementary I Fig 3. Medical Subject Headings terms assignment. 

 

https://tabletidier.org/
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Model results. 

 

Coefficients from 3 models. 

 

Supplementary I Table S3. Coefficients from subgroup reporting (any vs none) model. 

Term OR 95%CI 

Start year 1.07 (1.03, 1.11) 

Duration of follow up 1.13 (1.04, 1.24) 

Number of arms > 2 1 (0.73, 1.37) 

log (enrolment, base = 10) 3.48 (2.25, 5.47) 

Industry1 1.58 (0.94, 2.69) 

Acute Coronary Syndrome 10.44 (1.57, 210.5) 

Alzheimer Disease 1.12 (0.27, 4.05) 

Angina Pectoris 5.22 (0.57, 48.21) 

Arthritis, Psoriatic 7.62 (0.87, 163.78) 

Arthritis, Rheumatoid 1.66 (0.75, 3.73) 

Atherosclerosis 5.46 (0.3, 143.72) 

Atrial Fibrillation 4.26 (1.37, 14.07) 

Colitis, Ulcerative 5.12 (1.39, 21.75) 

Coronary Artery Disease 3.44 (1.34, 9.09) 

Crohn Disease 7.06 (1.92, 30.14) 

Diabetes Mellitus 4.05 (1.14, 14.81) 

Diabetes Mellitus, Type 1 1.6 (0.49, 5.1) 

Diabetes Mellitus, Type 2 2.44 (1.31, 4.72) 

Gastroesophageal Reflux 4.19 (0.81, 24.01) 

Gout 8 (0.93, 170.12) 

Heart Failure 3.06 (1.08, 9.01) 

Hypercholesterolemia 4.96 (2.09, 12.26) 

Hypertension 2.48 (1.21, 5.22) 

Idiopathic Interstitial Pneumonias 1.7 (0.31, 7.94) 

Lupus Erythematosus, Systemic 8.85 (1.18, 181.81) 

Migraine Disorders 1.1 (0.15, 5.07) 

Multiple Sclerosis 0.53 (0.03, 4.17) 

Myocardial Infarction 9.86 (2.94, 40.48) 

Osteoarthritis 0.85 (0.24, 2.63) 

Osteoporosis 2.45 (0.82, 7.34) 

Parkinson Disease 2.18 (0.49, 8.84) 

Peripheral Arterial Disease 2.79 (0.15, 77.92) 

Prostatic Hyperplasia 3.92 (1.19, 13.71) 

Psoriasis 0.84 (0.31, 2.2) 

Pulmonary Disease, Chronic Obstructive 1.24 (0.6, 2.61) 

Retinal Vein Occlusion 3.48 (0.13, 95.06) 

Rhinitis 0.91 (0.13, 4.18) 

Seizures 3.85 (0.99, 15.59) 

Spondylitis, Ankylosing 1.87 (0.34, 8.97) 
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Stroke 3.85 (0.77, 22.09) 

Urinary Bladder, Overactive 0.15 (0.01, 0.88) 

Urticaria 7.49 (0.67, 168.83) 

Venous Thromboembolism 6.99 (0.86, 150.52) 

Venous Thrombosis 1.87 (0.22, 13.33) 

 

Supplementary I Table S4. Coefficients from number of subgroups model. 

Term OR 95%CI 

Start year 1.02 (1.02, 1.02) 

Number of arms > 2 1.01 (0.99, 1.04) 

log (enrolment, base = 10) 1.69 (1.65, 1.73) 

Industry1 1 (0.97, 1.03) 

Duration of follow up 1.03 (1.02, 1.03) 

Acute Coronary Syndrome 1.43 (1.25, 1.64) 

Alzheimer Disease 0.72 (0.4, 1.19) 

Angina Pectoris 1.43 (0.94, 2.1) 

Arthritis, Psoriatic 0.92 (0.68, 1.23) 

Arthritis, Rheumatoid 1.45 (1.26, 1.67) 

Atherosclerosis 2.12 (1.83, 2.46) 

Atrial Fibrillation 2.11 (1.86, 2.4) 

Colitis, Ulcerative 1.64 (1.38, 1.95) 

Coronary Artery Disease 2.31 (2.06, 2.6) 

Crohn Disease 3.09 (2.72, 3.53) 

Diabetes Mellitus 1.2 (0.94, 1.51) 

Diabetes Mellitus, Type 1 0.97 (0.72, 1.27) 

Diabetes Mellitus, Type 2 2.3 (2.05, 2.58) 

Esophagitis 0.29 (0, 2.11) 

Gastroesophageal Reflux 0.23 (0.04, 0.69) 

Gout 0.99 (0.72, 1.31) 

Heart Failure 2.09 (1.85, 2.37) 

Hypercholesterolemia 2.63 (2.34, 2.96) 

Hypertension 1.87 (1.66, 2.12) 

Idiopathic Interstitial Pneumonias 0.89 (0.5, 1.46) 

Ischemic Attack, Transient 0.83 (0.45, 1.38) 

Lupus Erythematosus, Systemic 1.04 (0.74, 1.43) 

Lupus Nephritis 1.36 (0.81, 2.13) 

Migraine Disorders 0.45 (0.08, 1.34) 

Multiple Sclerosis 0.97 (0.5, 1.68) 

Myocardial Infarction 2.19 (1.96, 2.47) 

Osteoarthritis 1.39 (1.11, 1.73) 

Osteoporosis 1.28 (1.08, 1.51) 

Parkinson Disease 1 (0.7, 1.4) 

Peripheral Arterial Disease 1.65 (1.44, 1.88) 

Prediabetic State 0.87 (0.7, 1.07) 

Prostatic Hyperplasia 2.85 (2.45, 3.31) 

Psoriasis 1.12 (0.95, 1.33) 

Pulmonary Disease, Chronic Obstructive 1.45 (1.29, 1.64) 
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Pulmonary Embolism 2.58 (1.92, 3.4) 

Retinal Vein Occlusion 0.48 (0.14, 1.19) 

Rhinitis 0.31 (0.01, 1.47) 

Seizures 1.01 (0.75, 1.34) 

Spondylarthropathies 1.26 (0.65, 2.18) 

Spondylitis, Ankylosing 1.27 (0.91, 1.73) 

Stroke 1.93 (1.64, 2.27) 

Thromboembolism 1.67 (1.04, 2.52) 

Urinary Bladder, Overactive 0.27 (0, 1.99) 

Urticaria 2.84 (2.15, 3.7) 

Venous Thromboembolism 1.43 (1.23, 1.68) 

Venous Thrombosis 0.81 (0.63, 1.03) 

 

Supplementary I Table S5. Coefficients from results reporting (any vs none) model. 

Term OR 95%CI 

Start year 0.97 (0.95, 0.99) 

Duration of follow up 1.1 (1.03, 1.18) 

Number of arms > 2 1.42 (1.15, 1.74) 

log (enrolment, base = 10) 1.63 (1.22, 2.19) 

Industry1 1.03 (0.73, 1.45) 

Acute Coronary Syndrome 0.93 (0.35, 2.43) 

Alzheimer Disease 1.15 (0.51, 2.56) 

Arthritis, Psoriatic 4.2 (0.58, 84.42) 

Arthritis, Rheumatoid 1.71 (1, 2.94) 

Atherosclerosis 0.54 (0.11, 2.24) 

Atrial Fibrillation 1.03 (0.49, 2.21) 

Brain Ischemia 0.61 (0.02, 16.09) 

Cerebral Infarction 0.42 (0.09, 1.54) 

Colitis, Ulcerative 7.26 (1.87, 48.04) 

Coronary Artery Disease 1.2 (0.65, 2.23) 

Crohn Disease 7.85 (2.04, 51.75) 

Diabetes Mellitus 0.76 (0.34, 1.66) 

Diabetes Mellitus, Type 1 1.37 (0.64, 2.93) 

Diabetes Mellitus, Type 2 1.41 (0.95, 2.08) 

Diabetic Nephropathies 0.4 (0.02, 3.2) 

Enuresis 0.51 (0.02, 4.08) 

Esophagitis 0.13 (0.01, 0.72) 

Gastroesophageal Reflux 0.48 (0.18, 1.18) 

Gout 0.63 (0.16, 2.21) 

Heart Failure 1.96 (0.92, 4.32) 

Hypercholesterolemia 1.7 (0.95, 3.07) 

Hyperlipidemias 1.01 (0.13, 6.37) 

Hypertension 0.94 (0.6, 1.45) 

Lupus Erythematosus, Systemic 1.8 (0.42, 9.18) 

Lupus Nephritis 0.31 (0.02, 2.6) 

Migraine Disorders 1.87 (0.72, 4.98) 

Multiple Sclerosis 2.46 (0.5, 17.89) 
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Myocardial Infarction 1.8 (0.85, 3.9) 

Osteoarthritis 0.94 (0.49, 1.77) 

Osteoporosis 1.22 (0.59, 2.52) 

Parkinson Disease 0.62 (0.26, 1.4) 

Peripheral Arterial Disease 0.75 (0.13, 4.48) 

Prostatic Hyperplasia 1.56 (0.68, 3.59) 

Psoriasis 1.68 (0.9, 3.17) 

Pulmonary Disease, Chronic Obstructive 1.48 (0.93, 2.36) 

Pulmonary Embolism 0.82 (0.03, 21.15) 

Restless Legs Syndrome 1.55 (0.46, 5.23) 

Retinal Vein Occlusion 1.31 (0.15, 11.48) 

Rhinitis 0.48 (0.21, 1.03) 

Seizures 0.68 (0.29, 1.56) 

Spondylitis, Ankylosing 1.38 (0.46, 4.2) 

Stroke 1.45 (0.43, 5.26) 

Thromboembolism 0.52 (0.02, 5.61) 

Urinary Bladder, Overactive 0.78 (0.35, 1.67) 

Venous Thromboembolism 0.26 (0.08, 0.68) 

Venous Thrombosis 0.31 (0.1, 0.87) 
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Supplementary II – Trial Calibration 

 

Regression-based method 

 

Regression-based method implementation - COMET and Heart Failure (HF)  

 

The selected code is provided below. 

Step 1: Clean and transform variables. 

a) Continuous variables standardisation for both COMET and HF registry.  

As showed in formula 4 below, age, systolic blood pressure (SBP), heart rate, sodium, 

eGFR, loop diuretics were scaled by dividing by the standard deviation (SD) after 

subtracting the mean (both SD and mean referring to the HF registry). 

 

 

Men sex and history of diabetes were categorical variables so did not need to be 

standarised. 

b) Select follow-up time.  

The mean trial duration is 58 months. For participants who did not experience death, 

the time to last contact ranged from 5 to 2175 days with the 1st quantile at 1570 days 

(4.30 years). Therefore, we selected 4 years as the follow-up time. Set deaths that 

occurred after 4 years as censored. 

Standardized age in the trial = (Xage_Trial - 𝑋age_Trial)/ age_Trial. 

Standardized age in the register = (Xage_Register - 𝑋age_Trial)/ age_Trial. 

Xage: age values. 

𝑋age: mean age. 

 age: standard deviation of age.  

(Formula 4) 

 

(Formula 3) 
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Step 2: Build the parametric survival model for COMET and obtain the coefficients.  

a) Fit parametric survival model and determine best fitting distribution. 

We fit the parametric survival model with treatment interactions by using “Weibull”, 

“Generalised gamma”, “Exponential”, “Log-logistic”, “Log-normal”, “Gompertz” 

distribution one at a time. The “Generalised gamma” distribution had the best fit based 

on the visual inspection and Akaike Information Criterion and it was selected.  

b) Check linearity assumption for continuous variables in the model.  

This is conducted based on visual inspection and clinical judgment and all continuous 

variables look linear.  

c) Obtain the coefficients, variance and covariance matrix from the model. 

Step 3: Build the parametric survival model for HF registry and obtain the 

coefficients.  

a) Build the same model as COMET in HF Registry. 

This model in HF registry also used “Generalised gamma” distribution without including 

treatment and treatment interactions.  

b) Obtain the coefficients, variance and covariance matrix from the model. 

 

R code for step 3a and 3b 

Register_regression <- flexsurvreg(Surv(time, status) ~ age + male + sbp + heartrate + 

loop_diuretics + diabetes + egfr + sodium, dist = "gengamma", data = Registry) 

coef_Registry <- coef(Registry_regression) 

vcov_Registry<- vcov(Registry_regression) 

 

R code for step 2a and 2c 

comet_regression <- flexsurvreg(Surv(time, status) ~ treat + age + men + sbp + heartrate + 

loop_diuretics + diabetes + egfr + sodium + treat*age + treat*men + treat*sbp + treat* heartrate + 

treat* loop_diuretics + treat*diabetes + treat*egfr + treat*sodium, dist = "gengamma", data = 

comet) 

coef_comet <- coef(comet_regression) 

vcov_comet <- vcov(comet_regression) 
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Step 4: Generate samples based on the coefficients, variance and covariance 

matrix from above. 

a) Samples generation from HF registry model.  

Generate samples from a multivariate normal distribution with the means equal to the 

coefficients and the variances corresponding to the variance-covariance matrix. This 

will generate two matrices, each containing 200 rows (can be more, here generate 200 

for computational reasons), and the number of columns will match the number of 

coefficients in the model.  

b) Samples generation from COMET model.  

Repeat the same as from registry model. 

c) Relevant coefficients selection.  

Select the scale parameter (mu), parameters of covariate main effects (such as age, 

SBP) from samples of the HF Registry (see Supplementary II Table S2) and parameters of 

treatment arm and treatment arm-covariate interactions from samples for the COMET 

model (Table S1). Combine these 2 sets of parameters into a single matrix with 200 rows 

and 18 columns. The distribution of each column indicates the uncertainty for each 

coefficient and the joint distribution of any 2 (or more) columns indicates the joint 

uncertainty across coefficients. 

Step 5: Calculate the risk of death in HF registry.  

a) Set the “treatment variable” for HF registry. 

For HF Registry individual patient data (IPD), set “treat” equal to 1 to model the 

allocation of all patients to carvedilol and “treat” equal to 0 to model the allocation of 

R code for step 5a 

Registry_carvedilol <- Registry %>% 

  mutate(treat=1) 

mtrx_covs_carvedilol <- model.matrix(~ treat + age + male + sbp + heart + loop_diuretics + 

diabetes + egfr + sodium + treat*age + treat*male + treat*sbp + treat*heart + treat* loop_diuretics 

+ treat*diabetes + treat*egfr + treat*sodium, data = Registry_carvedilol)  

Registry_metoprolol <- Registry %>% 

  mutate(treat=0) 

mtrx_covs_metoprolol <- model.matrix(~ treat + age + male + sbp + heart + loop_diuretics + 

diabetes + egfr + sodium + treat*age + treat*male + treat*sbp + treat*heart + treat* loop_diuretics 

+ treat*diabetes + treat*egfr + treat*sodium, data = Registry_metoprolol) 
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all patients to metoprolol. Then create a matrix to be in the same format as the 

simulated parameters in the trial as showed in Table S1. Some rows of this new matrix 

for HF Registry under the carvedilol allocation (treat = 1) are showed in Table S2 as an 

example. 

b) Calculate the linear predictor by multiplication. 

Multiply matrix obtained from step 4c and step 5a. Each cell is the sum of the product 

of each coefficient from step 4c and each covariate level in the HF Registry from step 

5a. Each column represents one patient.  

c) Calculate the probability of getting the primary endpoint.  

The probability of death can be obtained by combining the follow-up time, the cell 

value above and scale parameters (σ and Q) from the parametric survival model of HF 

Registry with the cumulative distribution function of the generalised gamma distribution 

(implemented as pgengamma” in “flexsurv” package). This produces a 200-estimates of 

the predicted risk on carvedilol for each patient and 200-estimates of the predicted risk 

on metoprolol for each patient, which means for each patient in each treatment 

allocation, there are 200 predictions of the risk of death. 

 

d) repeat these steps 500 times. 

Repeat the process from step 4 to step 5c for 500 times to obtain 100,000 samples of 

the probability of death for each intervention group. Note this was done in batches of 

200 for computational reasons. Matrices with more rows could be used if more computer 

memory is available. 

e) Obtain the odds ratio (OR), absolute risk reduction (ARR) and risk in each 

intervention arm.  

For each sample sum the risk across patients to obtain the risks in each arm. Then 

calculate the absolute risk differences (by subtraction) and the odds ratios (by 

R code for step 5b 

cell_carvedilol <- mtrx_coef_ac %*% t(mtrx_covs_carvedilol) 

cell_metoprolol <- mtrx_coef_ac %*% t(mtrx_covs_metoprolol) 

 

R code for step 5c 

prob_carvedilol <- pgengamma (4, cell_carvedilol, sigma = exp (0.58), Q = 0.67) 

prob_metoprolol <- pgengamma (4, cell_metoprolol, sigma = exp (0.58), Q = 0.67) 
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transforming these risks to odds and then division). For the resultant estimates take the 

mean of the 100,000 samples as well as the2.5th and 97.5th centiles as the point 

estimate and 95% confidence intervals respectively. 

 

Regression-based method implementation - DIG and HF Registry 

 

The process is the same as the process in HF Registry and COMET except: 

1. In DIG, there are no sodium and loop_diuretics variables. 

2. The follow-up time is 3 years, events that occurred after 3 years are set as 

censored. 

3. SBP and eGFR showed evidence of departure from linearity, so SBP was 

parameterised as follows: high SBP is obtained by SBP subtracting 130 if SBP is 

over than 130 mmHg; low BP is calculated by 120 subtracting SBP if SBP is less 

than 120. For the values of eGFR which are over than 90, they are set as 90.  

 



162 
 

 

Supplementary II Table S1. Example of the combined matrix in the trial. 

mu*  
trea

t  
age 

* 
Men

* 
SBP 

* 
heartrat

e * 
Loop_diuretics

*  
Diabetes

*  
eGF
R * 

Sodium
*  

trea
t by 
age  

trea
t by 
men  

trea
t by 
SBP 

treat by 
heartrat

e  

treat by 
loop_diuretic

s  

treat by 
diabete

s 

trea
t by 
eGF

R 

treat 
by 

sodiu
m  

0.0
2 

-
0.04 

-0.1 
-

0.16 

-
0.2

2 
-0.28 0.03 0.34 0.65 0.03 0.34 1.58 0.03 0.34 0.06 -0.05 0.04 0.03 

0.2
6 

0.03 -0.2 
-

0.43 

-
0.6

6 
-0.89 0.21 1.31 2.41 0.21 0.03 0.34 0.21 1.31 -0.46 -0.94 

-
0.02 

0.03 

0.5 0.02 
-

0.4
6 

-
0.94 

0.5 0.02 -0.46 -0.94 0.5 0.02 0.21 0.03 0.34 0.01 0.05 0 
-

0.01 
-0.02 

0.9
8 

0.26 
-

0.4
6 

-
1.18 

-1.9 -2.62 -3.34 0.01 0 0 0.03 0.21 1.31 -0.02 0.06 -0.15 
-

0.01 
-0.01 

1.2
2 

0.5 
-

0.2
2 

-
0.94 

-
1.6

6 
0.5 0.02 -0.46 

-
0.94 

-0.01 0.03 0.03 0.34 0 0.02 -0.05 0.01 0.02 

1.4
6 

0.74 
0.0

2 
-0.7 -0.7 0.5 0.02 -0.46 

-
0.94 

0 0.02 0.21 1.31 -0.01 0 -0.02 
-

0.01 
-0.01 

0.0
3 

0.98 
0.0

5 
-

0.88 

-
0.8

8 
4.78 5.73 -0.01 0 -0.01 0.02 0 0.06 0.5 0.02 -0.46 

-
0.94 

-0.02 

*these variables are from HF Registry, the rest are from COMET. SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate. 
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Supplementary II Table S2. Example of the matrix in HF Registry (carvedilol treatment group, treat = 1) 

Intercep

t  

trea

t  
age  

me

n  
SBP  

heartrat

e  

loop_diuretic

s  

diabete

s  

eGF

R 

sodiu

m  

trea

t by 

age  

trea

t by 

men  

trea

t by 

SBP 

treat by 

heartrat

e  

treat by 

loop_diuretic

s  

treat by 

diabete

s  

trea

t by 

eGF

R 

treat 

by 

sodiu

m  

1 1 
0.2

5 
1 

0.2

5 
1.47 1.471 1 1.42 1.22 1.37 1.17 1.03 0.77 0.69 0.43 0.35 0.09 

1 1 
0.3

6 
0 

0.3

6 
-0.98 -0.977 1 

-

1.03 
-1.23 

-

1.08 

-

1.28 

-

1.42 
-1.68 -1.76 -2.02 -2.1 -2.36 

1 1 
0.0

5 
0 

0.0

5 
-1.19 -1.185 1 

-

1.24 
-1.44 

-

1.29 

-

1.49 

-

1.63 
-1.89 -1.97 -2.23 

-

2.31 
-2.57 

1 1 
0.3

6 
1 

0.3

6 
0.38 0.375 0 0.33 0.13 0.28 0.08 

-

0.06 
-0.32 -0.4 -0.66 

-

0.74 
-1 

1 1 
0.6

8 
0 

0.6

8 
-0.3 -0.301 1 

-

0.35 
-0.55 -0.4 -0.6 

-

0.74 
-1 -1.08 -1.34 

-

1.42 
-1.68 

1 0 
0.0

4 
0 

0.0

4 
1.05 1.051 0 1 0.8 0.95 0.75 0.61 0.35 0.27 0.01 

-

0.07 
-0.33 

1 0 
0.2

5 
1 

0.2

5 
-1.71 -1.705 0 

-

1.76 
-1.96 

-

1.81 

-

2.01 

-

2.15 
-2.41 -2.49 -2.75 

-

2.83 
-3.09 

SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate. 
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Inverse Odds of Sampling Weights (IOSW) 

 

IOSW method description. 

 

The odds of inclusion was estimated using a logistic regression model where the numerator 

was the number of trial participants and the denominator was the number of registry 

patients. Based on this model and their individual covariate level, we obtained an 

inclusion probability for each trial participant. The effect of treatment was then 

estimated by fitting a weighted logistic regression model of the outcome on the treatment 

effect within the trial data having re-weighted the contribution of each participant to 

account for their inclusion probability. Compared to an unweighted model, the IPSW 

model gives additional weight to randomised participants who were under-represented in 

the trial compared to the HF registry and give less weight to participants who were over-

represented in the trial, compared to the HF registry.  

 

IOSW method implementation. 

 

We have used COMET (all-cause death) and the HF Registry as an example to describe the 

method. Selected R code is provided below. 

 

Step 1: Data aggregation and merging. 

 

a) Data aggregation. 

Aggregate COMET and HF Registry data separately in each safe haven with the same 

variables chosen as regression-based method. The group intervals are as Table S3. 
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Supplementary II Table S3. Group intervals. 

 

 

b) Data merging. 

 

c) Merge two aggregated datasets as Table S4 (only showing the first 8 rows as an 

example), n and x represent the number of each combination of characteristics in 

HF Registry and COMET respectively. 

 

Supplementary II Table S4. Example of merged data. 

age me

n  

SBP heartrat

e  

eGF

R 

loop_diuretic

s  

diabete

s  

sodium  n  x  

[40,60

)  

0  [ 50,100

)  

[ 50, 70)  [ 30, 

60)  

[ 20, 40)  0  [ 90,135

)  

10

8  

4

2  

[40,60

)  

1  [ 50,100

)  

[ 50, 70)  [ 30, 

60)  

[ 20, 40)  0  [135,145

)  

13

0  

7

8  

[40,60

)  

0  [100,140

) 

[ 50, 70)  [ 30, 

60)  

[ 40, 80)  0  [ 90,135

)  

52 1

9  

[40,60

)  

0  [ 50,100

)  

[70,100) [ 30, 

60)  

[ 40, 80)  0  [135,145

)  

64  5

4  

Age 

(year) 

SBP 

(mmHg) 

Heart rate 

(beats/min) 

Sodium 

(mmol/L) 

eGFR 

(ml/min/1.73m²)   

Loop_diuretics 

(mg) 

<40 <100 <50 <135 <30 <40 

[40,60) [100,140) [50,70) [135,145) [30,60) [40,80) 

[60,80) >=140 [70,100) >=145 >=60 >=80 

>=80 
 

>=100 
   

SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate. 

R code for step 1b 

ath_com <- registry_agg %>%  

  left_join(comet_agg) %>%  

  mutate(x = if_else(is.na(x), 0L, x)) 
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[40,60

)  

1  [ 50,100

)  

[ 50, 70)  [ 30, 

60)  

[ 40, 80)  0  [145,170

]  

37  2

6  

[40,60

)  

0  [100,140

) 

[ 50, 70)  [ 30, 

60)  

[ 40, 80)  1  [ 90,135

)  

15

0  

9

9  

[40,60

)  

0  [ 50,100

)  

[70,100) [ 30, 

60)  

[ 40, 80)  1  [145,170

]  

88  5

5  

[40,60

)  

1  [100,140

) 

[ 50, 70)  [ 30, 

60)  

[ 40, 80)  0  [145,170

]  

32  7  

SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate. 

 

d) Set up the mid-point value for the group interval.  

For continuous variables, set the mid-point value. E.g., if the age interval is between 40 

to 60, the mid-point value is 50.  

 

Step 2: Build logistic regression models. 

 

a) Fit a logistic regression model. 

To estimate the inclusion probability in COMET if participants were selected from HF 

Registry, build a logistic regression model based on the merged data and mid-point value. 

 

b) Estimate the odds of inclusion. 

After building the model as above, the coefficients can be derived. Then calculate the 

sum of the product of each coefficient and each covariate, transform this value into odds, 

and compute the weight (1/odds).  

 

 

R code for step 2a 

 
model<- glm(cbind(x,n)~agevalue + male + sbpvalue + heartvalue + sodiumvalue + 

             egfrvalue + loop_diureticsvalue + diabetes, data = ath_com, family = binomial) 

summary(model) 

round (coef (model),2) %>% dput () 
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c) Build a weighted logistic regression model. 

Using the inverse of the odds in step 2b as the weighting variable, perform a weighted 

logistic regression of death on treatment allocation.  

 

Step 3: Calculate the risk of death in HF registry.  

 

a) Obtain the OR and risk in each intervention arm.  

From the weighted model above, the coefficients obtained are on the log scale. 

Exponentiate these to obtain the odds ratio. For the unweighted and weighted models, the 

risk in each treatment arm was calculated by applying the inverse link function (logistic) 

to the linear predictor. The absolute risk reduction was estimated by re-fitting the model 

using an identity link and gaussian likelihood and obtaining the treatment effect estimate. 

 

The implementation of IOSW in DIG followed this procedure. 

R code for step 2b 

coefs <- c(`(Intercept)` = -8.73, agevalue = -0.01, malevalue = 1, sbpvalue = -0.01, heartvalue = 

0.06, sodiumvalue = 0.21, egfrvalue = 0.13, loop_diureticsvalue = 0.01, diabetes = -0.01) 

comet<- comet %>%  

  mutate (sum = coefs["Intercept"] + coefs["agevalue"] * age + coefs["malevalue "] * male + 

coefs["sbpvalue"] * sbp + coefs["heartvalue"] * heartrate + coefs["sodiumvalue "] * sodium + 

coefs["egfrvalue"] * egfr + coefs["loop_diureticsvalue "] * fusemide + coefs["diabetes"] * 

diabetes) %>%  

  mutate (odds = exp(sum), weights = 1/odds) 

 

R code for step 2c 

comet_survey <- svydesign (id=~1, weights = ~weights, data = comet) 

model_weighted <- svyglm(status~I(tmt==1), design= comet_survey, family=binomial) 

summary(model_weighted) 
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Coefficients and plots 

 

Regression-based method 

 

Coefficients for main effects in both registry and trials, and treatment interactions in trials.  

 

Supplementary II Table S5. Main effects in HF Registry and 2 trials. 

  HF registry vs COMET (all-cause death) 
HF registry vs COMET (all-cause death or 

all-cause hospitalisation) 
HF registry vs DIG (all-cause death) 

HF registry vs DIG (death or 

hospitalisation due to worsening heart 

failure) 

  

HF registry COMET  HF registry COMET  HF registry DIG  HF registry DIG  

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

  

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

coe

ffic

ien

ts 

stan

dar

d 

erro

r 

AFT 

(95%

CI) 

mu 
2.7

8 
0.05 -- 

3.1

9 
0.12 -- 

0.3

9 
0.06 -- 0.9 0.1 --   

2.4

9 
0.04 -- 

2.8

2 
0.08 -- 

0.0

6 
0.18 -- 8.6 0.1 -- 

sigma 
0.2

5 
0.02 -- 0.4 0.1 -- 

0.5

9 
0.02 -- 

0.5

9 
0.05 --   

0.2

5 
0.02 -- 

0.5

6 
0.08 -- 

1.4

6 
0.07 -- 

0.8

6 
0.1 -- 
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Q  0.8 0.04 -- 
0.5

8 
0.11 -- 

0.6

7 
0.04 -- 

0.3

5 
0.07 --   0.8 0.04 -- 

0.2

2 
0.09 -- 

-

1.9

2 

0.09 -- 
0.0

8 
0.09 -- 

Histo

ry of 

diabe

tes 

-

0.2

9 

0.04 

0.75 

(0.69

, 

0.81) 

-

0.3

2 

0.09 

0.73 

(0.61

, 

0.87) 

-

0.3

2 

0.05 

0.72 

(0.65

, 

0.80) 

-

0.4

5 

0.08 

0.64 

(0.54

, 

0.75) 

  

-

0.3

4 

0.04 

0.71 

(0.66

, 

0.77) 

-

0.4 
0.06 

0.67 

(0.59

, 

0.76) 

-

0.5

1 

0.12 

0.60 

(0.47

, 

0.76) 

-

0.7 
0.08 

0.50 

(0.43

, 

0.58) 

Age* 

-

0.5

3 

0.02 

0.59 

(0.57

, 

0.61) 

-

0.4

6 

0.05 

0.63 

(0.57

, 

0.7) 

-

0.2

1 

0.02 

0.81 

(0.77

, 

0.84) 

-

0.3

4 

0.04 

0.71 

(0.65

, 

0.77) 

  

-

0.4

9 

0.02 

0.61 

(0.59

, 

0.64) 

-

0.2

6 

0.03 

0.77 

(0.72

, 

0.82) 

-

0.1 
0.05 

0.91 

(0.82

, 

1.00) 

-

0.1

8 

0.04 

0.84 

(0.77

, 

0.91) 

Loop 

diure

tics* 

-

0.2 
0.02 

0.82 

(0.78

, 

0.86) 

-

0.1

1 

0.04 

0.9 

(0.84

, 

0.96) 

-

0.1

8 

0.03 

0.84 

(0.79

, 

0.89) 

-

0.0

9 

0.03 

0.91 

(0.85

, 

0.97) 

  --  --  --  --  --  --  --  --  --  --  --  --  

Men 
-

0.1 
0.04 

0.91 

(0.84

, 

0.98) 

-

0.4

6 

0.11 

0.65 

(0.53

, 

0.81) 

0.0

7 
0.04 

1.07 

(0.98

, 

1.17) 

-

0.0

9 

0.09 

0.91 

(0.76

, 

1.09) 

  

-

0.1

2 

0.04 

0.89 

(0.83

, 

0.96) 

-

0.4 
0.07 

0.67 

(0.58

, 

0.77) 

0.0

9 
0.1 

1.09 

(0.89

, 

1.34) 

-

0.1

5 

0.09 

0.86 

(0.72

, 

1.02) 

Heart 

rate* 

-

0.0

6 

0.02 

0.94 

(0.91

, 

0.98) 

-

0.0

5 

0.04 

0.95 

(0.88

, 

1.03) 

-

0.0

3 

0.02 

0.97 

(0.92

, 

1.01) 

-

0.0

1 

0.04 

0.99 

(0.92

, 

1.07) 

  

-

0.0

6 

0.02 

0.94 

(0.91

, 

0.97) 

-

0.1

6 

0.03 

0.86 

(0.81

, 

0.91) 

-

0.0

4 

0.05 

0.96 

(0.88

, 

1.06) 

-

0.3

6 

0.04 

0.70 

(0.65

, 

0.75) 

Sodiu

m* 
0.1 0.02 

1.11 

(1.07

, 

1.14) 

0.2

8 
0.04 

1.32 

(1.22

, 

1.43) 

0.1

3 
0.02 

1.14 

(1.10

, 

1.19) 

0.1

8 
0.04 

1.20 

(1.11

, 

1.29) 

   -- --  --  --  --  --   -- --  --  --  --  --  
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eGFR

* 

0.1

2 
0.02 

1.13 

(1.09

, 

1.18) 

0.3 0.05 

1.35 

(1.22

, 

1.49) 

0.1

3 
0.02 

1.14 

(1.09

, 

1.19) 

0.2

1 
0.04 

1.23 

(1.13

, 

1.34) 

  
0.1

4 
0.02 

1.15 

(1.11

, 

1.19) 

0.3

1 
0.03 

1.37 

(1.29

, 

1.46) 

0.0

9 
0.04 

1.10 

(1.00

, 

1.19) 

0.4

1 
0.04 

1.50 

(1.39

, 

1.63) 

SBP* 
0.1

4 
0.02 

1.15 

(1.11

, 

1.18) 

0.3

1 
0.05 

1.37 

(1.25

, 

1.49) 

0.1

6 
0.02 

1.17 

(1.13

, 

1.22) 

0.2

3 
0.04 

1.26 

(1.17

, 

1.36) 

Lo

w 

SB

P* 

-

0.1 
0.01 

0.91 

(0.88

, 

0.93) 

-

0.2

5 

0.03 

0.78 

(0.73

, 

0.82) 

-

0.2

3 

0.04 

0.80 

(0.74

, 

0.86) 

-

0.3

4 

0.04 

0.71 

(0.66

, 

0.77) 

Hi

gh 

SB

P* 

0.0

8 
0.02 

1.09 

(1.04

, 

1.13) 

0.0

7 
0.03 

1.08 

(1.01

, 

1.15) 

0.2

1 
0.05 

1.23 

(1.11

, 

1.37) 

0.0

6 
0.04 

1.06 

(0.98

, 

1.14) 

SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate; Diabetes and Men are categorical variables; others (with *) are all numerical variables and scaled by dividing by the 

standard deviation (SD) after subtracting the mean (both SD and mean referring to the trial); AFT: accelerated failure time ratio with 95% confidence interval; --: Not available. 

 

Supplementary II Table S6. Treatment interactions in each trial. 

  COMET (all-cause death) 
COMET (all-cause death or all-

cause hospitalisation) 
DIG (all-cause death) 

DIG (death or hospitalisation 

due to worsening heart 

failure) 

  
coefficie

nts 
HR (95%CI) coefficients HR (95%CI)   

coeffici

ents 
HR (95%CI) 

coefficient

s 
HR (95%CI) 

treatment  0.16 
1.17 (0.78, 

1.76) 
0.3 1.35 (0.97, 1.87)   -0.17 

0.85 (0.65, 

1.11) 
0.29 

1.33 (0.96, 

1.84) 
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treatment by 

men 
0.11 

1.11 (0.73, 

1.70) 
-0.26 0.76(0.53, 1.07)   0.27 

1.31 (0.99, 

1.74) 
0.49 

1.63 (1.15, 

2.31) 

treatment by 

age 
0.03 

1.03 (0.84, 

1.26) 
-0.09 0.92(0.84, 1.01)   0.02 

1.02 (0.89, 

1.15) 
-0.02 

0.98 (0.84, 

1.15) 

treatment by 

Diabetes 
-0.05 

0.95 (0.66, 

1.37) 
-0.07 0.93(0.67, 1.29)   -0.1 

0.90 (0.71, 

1.15) 
-0.22 

0.81 (0.59, 

1.10) 

treatment by 

loop diuretics 
-0.07 

0.94 (0.82, 

1.07) 
-0.03 0.97(0.84, 1.11)   -- -- -- -- 

treatment by 

sodium 
-0.14 

0.87 (0.74, 

1.01) 
0.01 1.01(0.87, 1.16)   -- -- -- -- 

treatment by 

eGFR 
0.23 

1.25 (1.03, 

1.52) 
0.05 1.05(0.89, 1.23)   -0.04 

0.97 (0.85, 

1.09) 
-0.12 

0.89 (0.76, 

1.04) 

treatment by 

SBP 
0.12 

1.13 (0.95, 

1.34) 
0.07 1.07(0.93, 1.24) 

treat by low 

SBP 
-0.05 

0.95 (0.85, 

1.06) 
0.08 

1.08 (0.94, 

1.26) 

treat by 

high SBP 
-0.09 

0.92 (0.81, 

1.03) 
-0.12 

0.89 (0.76, 

1.03) 

treatment by 

heart 
0.06 

1.06 (0.90, 

1.25) 
0.12 1.13(0.98, 1.31)   0.07 

1.07 (0.96, 

1.20) 
0.12 

1.12 (0.97, 

1.30) 

--: Not available; SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate; Diabetes and Men are categorical variables; others are all 

numerical variables and scaled by dividing by the standard deviation (SD) after subtracting the mean (both SD and mean referring to the trial). 
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Supplementary II Table S7. Contribution of each covariate to the results differ between uncalibrated and regression-based method. 

  COMET (all-cause death) 
COMET (all-cause death or 

hospitalisation) 
DIG (all-cause death) 

DIG (death or hospitalisation due to 

worsening heart failure) 

  

co

eff

ici

ent

s 

mean of 

each 

covariate 

in HF 

registry 

mean of 

each 

covariate 

in COMET 

mean 

differen

ce * 

coeffici

ents 

co

eff

ici

ent

s 

mean of 

each 

covariate 

in HF 

registry 

mean of 

each 

covariate 

in COMET 

mean 

differen

ce * 

coeffici

ents 

  

co

eff

ici

ent

s 

mean of 

each 

covariate 

in HF 

registry 

mean of 

each 

covariat

e in DIG 

mean 

differen

ce * 

coeffici

ents 

co

eff

ici

ent

s 

mean of 

each 

covariate 

in HF 

registry 

mean of 

each 

covariat

e in DIG 

mean 

differen

ce * 

coeffici

ents 

treatm

ent  

0.1

6 
-- -- -- 0.3 -- -- --   

-

0.1

7 

-- -- -- 
0.2

9 
-- --   

treatm

ent by 

male 

0.1

1 
0.61 0.8 -0.02 

-

0.2

6 

0.61 0.8 0.05   
0.2

7 
0.61 0.78 -0.05 

0.4

9 
0.61 0.78 -0.08 

treatm

ent by 

age 

0.0

3 
1 0 0.03 

-

0.0

9 

1 0 -0.09   
0.0

2 
0.9 0 0.02 

-

0.0

2 

0.9 0 -0.02 

treatm

ent by 

Diabete

s 

-

0.0

5 

0.23 0.24 0 

-

0.0

7 

0.23 0.24 0   
-

0.1 
0.23 0.28 0.01 

-

0.2

2 

0.23 0.28 0.01 

treatm

ent by 

loop 

diuretic

s 

-

0.0

7 

0.9 0 -0.06 

-

0.0

3 

0.9 0 -0.03   -- -- -- -- -- -- -- -- 

treatm

ent by 

sodium 

-

0.1

4 

-0.38 0 0.05 
0.0

1 
-0.38 0 0   -- -- -- -- -- -- -- -- 
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treatm

ent by 

eGFR 

0.2

3 
-0.39 0 -0.09 

0.0

5 
-0.39 0 -0.02   

-

0.0

4 

-0.2 0 0.01 

-

0.1

2 

-0.2 0 0.02 

treatm

ent by 

SBP 

0.1

2 
-0.33 0 -0.04 

0.0

7 
-0.33 0 -0.02 

trea

t by 

low 

SBP 

-

0.0

5 

0.43 0 -0.02 
0.0

8 
0.43 0 0.03 

trea

t by 

high 

SBP 

-

0.0

9 

-0.12 0 0.01 

-

0.1

2 

-0.12 0 0.01 

treatm

ent by 

heart 

0.0

6 
-0.59 0 -0.04 

0.1

2 
-0.59 0 -0.07   

0.0

7 
-0.44 0 -0.03 

0.1

2 
-0.44 0 -0.05 

--: Not available; SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate; Diabetes and Male are categorical variables, others are all numerical variables and scaled by dividing by the standard 

deviation (SD) after subtracting the mean (both SD and mean referring to the HF registry); the means in this table are the standardised mean; * multiply 
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Plots for model fit in trials.  

 

The parametric survival model with treatment interactions by using Generalised gamma, 

Weibull, Exponential, Log-normal, Log-logistic, Gompertz distribution was built 

respectively in each trial and was displayed in Fig 1. In the trial, the generalised gamma 

distribution lines closer with the non-parametric compared with other distributions and 

was then used for the HF register.  

 

Supplementary II Fig 1. Parametric survival model with different distributions in a) 

COMET all-cause death or hospitalisation; b) COMET all-cause death; c) DIG all-cause 

death. 
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Supplementary II Fig 2. Visualisation of model fit (with generalised gamma distribution) 
for trials for a) COMET all-cause death or hospitalisation; b) COMET all-cause death; c) 

DIG all-cause death; d) DIG death or hospitalisation due to worsening HF. 
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Inverse Odds of Sampling Weights (IOSW) 

 

Coefficients from regression model for estimating inclusion odds. 

 

Supplementary II Table S8. Coefficients from regression model for generating inclusion of odds. 

  
HF registry & COMET (all-

cause death)  

HF registry & COMET (all-cause 

death or all-cause hospitalisation) 

HF registry & DIG (all-cause 

death)  

HF registry & DIG (death or 

hospitalisation due to worsening heart 

failure)  

  

overa

ll 

data 

lowest 

risk 

decile 

highest 

risk 

decile 

overall 

data 

lowest risk 

decile 

highest risk 

decile 

overa

ll 

data 

lowest 

risk 

decile 

highest 

risk 

decile 

overall 

data 

lowest risk 

decile 

highest risk 

decile 

Inter

cept 
-4.85 -13.05 6.59 -4.85 -3.31 -7.86 0.44 -3.95 -12.86 0.44 4.85 -2.43 

age -0.05 0.06 -0.25 -0.05 0.02 -0.13 -0.06 0.07 -0.21 -0.06 -0.01 -0.09 

men 1.02 1.07 0.65 1.02 0.9 1.3 0.78 0.91 0.3 0.78 0.69 0.97 

SBP 0.01 0 0.03 0.01 0 0.03 0.01 0 0.03 0.01 -0.03 0.08 

heart

rate 
0.02 0.04 -0.01 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.01 
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sodiu

m 
0.03 0.04 0.08 0.03 0 0.08 -- -- -- -- -- -- 

eGFR 0 0.01 0.02 0 0 0.02 0 -0.01 0.02 0 -0.01 0.01 

furos

emid

e 

-0.01 -0.01 -0.01 -0.01 -0.01 0 -- -- -- -- -- -- 

diabe

tes 
0.05 0.17 -1.57 0.05 0.28 -1.71 0.14 0.82 -1.73 0.14 1.82 -1.41 

--: Not available; SBP: systolic blood pressure; eGFR: estimated glomerular filtration rate. 
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Supplementary II Table S9. Measure of effects in uncalibrated and calibrated analyses. 

  Uncalibrated  Regression-based IOSW  

  arm1 
arm

2 
ARR OR arm1 arm2 ARR OR arm1 arm2 ARR OR 

  COMET all-

cause death 
34% 40% 0.06 

0.83 

(0.74, 

0.93) 

48% 

(41%, 

55%) 

49% 

(47%, 

50%) 

0.01 (-

0.06, 

0.08) 

0.97 

(0.72, 

1.27) 

39% 

(33%, 

44%) 

51% 

(40%, 

61%) 

0.12 (0, 

0.23) 

0.62 (0.39, 

0.99) 

  COMET all-

cause death or 

hospitalisation 

74% 76% 0.02 

0.94 

(0.86, 

1.02) 

87% 

(84%, 

90%) 

87% 

(86%, 

88%) 

-0.01 (-

0.03, 

0.03) 

1.08 

(0.81, 

1.39) 

79% 

(76%, 

82%) 

81% 

(75%, 

86%) 

0.02 (-

0.04, 

0.08) 

0.87 (0.59, 

1.30) 

  DIG all-cause 

death 
35% 35% 0 

0.99 

(0.91, 

1.07) 

43% 

(38%, 

48%) 

42% 

(40%, 

43%) 

-0.01 (-

0.06, 

0.04) 

1.05 

(0.86, 

1.28) 

33% 

(31%, 

35%) 

32% 

(30%, 

34%) 

-0.01 (-

0.04, 

0.02) 

1.06 (0.92, 

1.21) 

DIG death or 

hospitalisation 

due to 

worsening heart 

failure 

31% 38% 0.07 

0.75 

(0.69, 

0.82) 

32% 

(29%, 

34%) 

36% 

(34%, 

38%) 

0.04 

(0.02, 

0.05) 

0.84 

(0.78, 

0.91) 

29% 

(27%, 

31%) 

36% 

(34%, 

38%) 

0.07 

(0.04, 0.1) 

0.73 (0.64, 

0.83) 

IOSW: Inverse Odds of Sampling Weights; ARR: Absolute Risk Reduction; OR: Odds Ratio; Some are not OR, eg, Hazard Ratio for uncalibrated 

COMET, Risk Ratio for uncalibrated DIG; arm1 vs arm2: carvedilol vs metoprolol in COMET, digoxin vs placebo in DIG.  
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Exploratory analyses 

 

Baseline profiles of lowest and highest risk deciles individuals in the HF Registry 

and trials.  

 

The coefficients (Table S5) from the registry natural history model were also used to 

determine the lowest and highest risk subgroups for the trial. These risk subgroups in the 

trial were used to calculate the uncalibrated treatment effects using the Cox proportional-

hazards model. 

 

The baseline profiles of the lowest and highest risk subgroup individuals in the HF register 

and trials were showed as Table S10. Generally, either in the HF register or the trials, age, 

frusemide dose, history of diabetes in the lowest risk group were much lower than those in 

the highest risk group, while the eGFR levels were much higher (e.g. in the HF register for 

COMET all-cause death outcome, the age was 49.10 in the lowest risk group vs 86.83 in the 

highest risk group), which is in line with the main effects showed in Figure 10. 
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Supplementary II Table S10. Baseline profiles of lowest and highest risk deciles individuals in the HF Registry and trials. 

  COMET (all-cause death) 
COMET (all-cause death or 

hospitalisation) 
DIG (all-cause death) 

DIG (composite outcome for 

death or hospitalisation due to 

worsening heart failure) 

  Registry Trial Registry Trial Registry Trial Registry Trial 

  

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decil

e 

highe

st risk 

decile 

lowes

t risk 

decile 

highes

t risk 

decile 

lowes

t risk 

decile 

highes

t risk 

decile 

Age 

(years) 

49.10 

(9.91

) 

86.83 

(6.33) 

41.34 

(7.89

) 

74.31 

(6.58) 

55.36 

(13.8

6) 

81.53 

(8.13) 

46.37 

(11.0

0) 

70.09 

(7.82) 

48.82 

(9.64

) 

87.73 

(5.58) 

43.50 

(7.38

) 

77.70 

(5.51) 

66.87 

(14.74

) 

77.03 

(9.89) 

43.50 

(7.38) 

67.69 

(9.49) 

men sex 

(%) 

65.54

% 

60.80

% 

83.55

% 

78.15

% 

73.66

% 

51.06

% 

89.14

% 

73.18

% 

64.67

% 

61.30

% 

75.29

% 

72.79

% 
 

55.56

% 

75.29

% 

65.15

% 

Loop_diur

etics (mg) 

52.16 

(23.9

5) 

83.18 

(48.3

0) 

7.72 

(21.1

1) 

71.53 

(93.4

1) 

47.62 

(20.8

7) 

88.86 

(48.8

6) 

5.79 

(17.9

7) 

79.74 

(94.2

2) 

-- -- -- -- -- -- -- -- 

History of 

diabetes 

(%) 

7.74% 
40.32

% 
7.24% 

49.34

% 
3.62% 

56.80

% 
4.28% 

61.92

% 
7.74% 

41.95

% 
7.21% 

53.09

% 
4.62% 

55.31

% 
7.21% 

73.24

% 
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Systolic 

blood 

pressure 

(mm Hg) 

120.6

1 

(24.0

8) 

109.2

5 

(18.1

8) 

128.5

7 

(20.3

8) 

117.1

2 

(17.9

2) 

132.7

3 

(26.4

0) 

105.2

7 

(16.3

4) 

137.3

1 

(21.4

1) 

113.5

1 

(16.4

1) 

120.3

7 

(23.0

7) 

109.2

0 

(20.2

4) 

125.4

0 

(19.3

4) 

119.1

3 

(18.8

4) 

154.6

3 

(20.24

) 

92.49 

(9.98) 

125.4

0 

(19.34

) 

103.2

2 

(11.82

) 

Heart rate 

(beats per 

minute) 

74.23 

(13.1

0) 

74.76 

(13.5

1) 

82.21 

(14.0

6) 

83.57 

(13.2

7) 

73.69 

(12.8

9) 

74.30 

(13.4

6) 

80.51 

(13.7

0) 

83.59 

(13.4

7) 

74.43 

(13.1

0) 

74.27 

(13.4

8) 

79.42 

(12.9

9) 

81.46 

(12.8

8) 

72.78 

(13.09

) 

74.69 

(14.40

) 

79.42 

(12.99

) 

83.00 

(12.99

) 

Sodium 

(mmol/l) 

138.6

4 

93.15

) 

136.2

6 

(4.47) 

140.0

7 

(3.08

) 

137.4

0 

(4.94) 

139.8

4 

(3.01

) 

134.8

8 

(4.97) 

141.2

2 

(3.06

) 

136.4

9 

(4.92) 

-- -- -- -- -- -- -- -- 

eGFR 

(mL/min/

1.73m2) 

83.38 

(23.5

9) 

41.27 

(15.6

0) 

90.61 

(22.0

0) 

47.69 

(14.7

6) 

84.97 

(22.5

1) 

39.55 

(15.4

0) 

93.14 

(23.0

5) 

48.14 

(15.5

2) 

78.07 

(14.4

6) 

39.03 

(13.9

1) 

76.42 

(12.7

9) 

43.50 

(13.3

2) 

67.16 

(19.86

) 

47.00 

(17.83

) 

76.42 

(12.79

) 

51.28 

(16.59

) 

Categorical variables are shown as counts (%s) and continuous variables as means (standard deviations); --: Not available; eGFR: estimated 

glomerular filtration rate. 

 

 

 

 



182 
 

Results for exploratory analyses. 

 

The odds ratio (OR), absolute risk reduction (ARR), and risk in each arm in the lowest, highest risk deciles and overall group 

when each trial was calibrated to the HF registry were displayed as the Table S11 and Fig 3. The CIs of the efficacy estimates 

(ORs) and absolute risk reduction (ARR) estimates where the trials were calibrated to the high-risk and low-risk deciles are wider 

than those for the whole register calibration, while within each decile, the results are still similar. And generally, they were not 

far away from the overall calibration.  

 

Supplementary II Table S11. Calibrated results for overall, lowest and highest risk subgroup individuals. 

  Uncalibrated  Regression-based IOSW  
IOSW (trimming the largest 

1% of weights) 

  

a
r
m
1 

a
r
m
2 

A
R
R 

OR arm1 arm2 ARR OR arm1 arm2 ARR OR arm1 arm2 ARR OR 

Overall 

  COMET all-cause 
death 

3
4
% 

4
0
% 

0
.
0
6 

0.83 
(0.74, 
0.93) 

48% 
(41%, 
55%) 

49% 
(47%, 
50%) 

0.01 (-
0.06, 
0.08) 

0.97 
(0.72, 
1.27) 

39% 
(33%, 
44%) 

51% 
(40%, 
61%) 

0.12 
(0, 

0.23) 

0.62 
(0.39, 
0.99) 

37% 
(33%, 
40%) 

38% 
(35%, 
42%) 

0.02 (-
0.03, 
0.07) 

0.93 
(0.75, 
1.15) 

  COMET all-cause 
death or 

hospitalisation 

7
4
% 

7
6
% 

0
.
0
2 

0.94 
(0.86, 
1.02) 

87% 
(84%, 
90%) 

87% 
(86%, 
88%) 

-0.01 
(-

0.03, 
0.03) 

1.08 
(0.81, 
1.39) 

79% 
(76%, 
82%) 

81% 
(75%, 
86%) 

0.02 (-
0.04, 
0.08) 

0.87 
(0.59, 
1.30) 

76% 
(74%, 
79%) 

78% 
(75%, 
81%) 

0.02 (-
0.02, 
0.06) 

0.91 
(0.73, 
1.13) 

  DIG all-cause death 
3
5
% 

3
5
% 

0 
0.99 

(0.91, 
1.07) 

43% 
(38%, 
48%) 

42% 
(40%, 
43%) 

-0.01 
(-

1.05 
(0.86, 
1.28) 

33% 
(31%, 
35%) 

32% 
(30%, 
34%) 

-0.01 
(-

1.06 
(0.92, 
1.21) 

32% 
(30%, 
34%) 

31% 
(29%, 
33%) 

-0.01 
(-

1.04 
(0.91, 
1.18) 
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0.06, 
0.04) 

0.04, 
0.02) 

0.04, 
0.02) 

DIG death or 
hospitalisation due 
to worsening heart 

failure 

3
1
% 

3
8
% 

0
.
0
7 

0.75 
(0.69, 
0.82) 

32% 
(29%, 
34%) 

36% 
(34%, 
38%) 

0.04 
(0.02, 
0.05) 

0.84 
(0.78, 
0.91) 

29% 
(27%, 
31%) 

36% 
(34%, 
38%) 

0.07 
(0.04, 
0.1) 

0.73 
(0.64, 
0.83) 

28% 
(26%, 
30%) 

35% 
(33%, 
37%) 

0.07 
(0.04, 
0.10) 

0.72 
(0.63, 
0.82) 

Low risk decile 

  COMET all-cause 
death 

1
0
% 

1
6
% 

0
.
0
6 

0.63 
(0.33, 
1.20) 

16% 
(12%, 
20%) 

19% 
(17%, 
20%) 

0.03 (-
0.02, 
0.07) 

0.81 
(0.58, 
1.10) 

27% 
(23%, 
31%) 

32% 
(27%, 
38%) 

0.05 (-
0.02, 
0.12) 

0.78 
(0.56, 
1.07) 

28% 
(26%, 
31%) 

29% 
(26%, 
33%) 

0.02 (-
0.03, 
0.06) 

0.92 
(0.73, 
1.16) 

  COMET all-cause 
death or 

hospitalisation 

4
6
% 

5
8
% 

0
.
1
2 

0.73 
(0.53, 
1.00) 

71% 
(66%, 
76%) 

74% 
(72%, 
76%) 

0.03 (-
0.02, 
0.08) 

0.88 
(0.69, 
1.11) 

71% 
(67%, 
74%) 

73% 
(69%, 
77%) 

0.03 (-
0.02, 
0.08) 

0.87 
(0.68, 
1.13) 

69% 
(66%, 
72%) 

72% 
(69%, 
75%) 

0.04 (-
0.01, 
0.08) 

0.84 
(0.69, 
1.03) 

  DIG all-cause death 
1
6
% 

1
6
% 

0 
0.99 

(0.68, 
1.45) 

17% 
(14%, 
21%) 

16% 
(14%, 
17%) 

-0.02 
(-

0.05, 
0.01) 

1.13 
(0.92, 
1.39) 

21% 
(19%, 
24%) 

22% 
(19%, 
24%) 

0.01 (-
0.03, 
0.04) 

0.96 
(0.78, 
1.19) 

23% 
(21%, 
25%) 

23% 
(21%, 
25%) 

0 (-
0.03, 
0.03) 

1.00 
(0.84, 
1.18) 

DIG death or 
hospitalisation due 
to worsening heart 

failure 

1
8
% 

2
3
% 

0
.
0
5 

0.72 
(0.51, 
1.00) 

28% 
(24%, 
31%) 

30% 
(27%, 
32%) 

0.02 (-
0.01, 
0.04) 

0.91 
(0.81, 
1.03) 

22% 
(20%, 
24%) 

28% 
(26%, 
30%) 

0.06 
(0.03, 
0.09) 

0.73 
(0.61, 
0.86) 

22% 
(20%, 
24%) 

28% 
(26%, 
30%) 

0.06 
(0.03, 
0.09) 

0.73 
(0.63, 
0.85) 

High risk decile 

  COMET all-cause 
death 

6
2
% 

5
8
% 

-
0
.
0
4 

1.15 
(0.86, 
1.54) 

74% 
(60%, 
85%) 

73% 
(71%, 
75%) 

-0.01 
(-

0.12, 
0.12) 

1.14 
(0.57, 
2.16) 

64% 
(46%, 
78%) 

82% 
(56%, 
94%) 

0.18 (-
0.07, 
0.43) 

0.38 
(0.09, 
1.64) 

60% 
(52%, 
67%) 

56% 
(48%, 
64%) 

-0.04 
(-

0.15, 
0.08) 

1.16 
(0.73, 
1.83) 

  COMET all-cause 
death or 

hospitalisation 

8
8
% 

8
6
% 

-
0
.
0
2 

1.02 
(0.80, 
1.30) 

95% 
(91%, 
98%) 

94% 
(93%, 
94%) 

-0.01 
(-

0.04, 
0.02) 

1.43 
(0.71, 
2.72) 

85% 
(79%, 
89%) 

88% 
(83%, 
92%) 

0.03 (-
0.04, 
0.1) 

0.77 
(0.43, 
1.38) 

81% 
(75%, 
85%) 

86% 
(82%, 
89%) 

0.06 (-
0.01, 
0.12) 

0.67 
(0.43, 
1.03) 
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  DIG all-cause death 
4
7
% 

4
9
% 

0
.
0
2 

0.94 
(0.76, 
1.17) 

67% 
(58%, 
75%) 

67% 
(65%, 
69%) 

0 (-
0.08, 
0.09) 

1.02 
(0.69, 
1.49) 

47% 
(41%, 
54%) 

56% 
(45%, 
65%) 

0.09 (-
0.03, 
0.21) 

0.71 
(0.44, 
1.15) 

44% 
(40%, 
49%) 

44% 
(40%, 
49%) 

1 (-
0.07, 
0.06) 

1.01 
(0.77, 
1.31) 

DIG death or 
hospitalisation due 
to worsening heart 

failure 

4
2
% 

5
3
% 

0
.
1
1 

0.70 
(0.56, 
0.87) 

36% 
(32%, 
40%) 

42% 
(40%, 
43%) 

0.05 
(0.02, 
0.09) 

0.81 
(0.69, 
0.93) 

42% 
(36%, 
47%) 

53% 
(46%, 
59%) 

0.11 
(0.03, 
0.19) 

0.64 
(0.46, 
0.89) 

35% 
(32%, 
39%) 

45% 
(42%, 
49%) 

0.10 
(0.05, 
0.16) 

0.65 
(0.52, 
0.82) 

IOSW: Inverse Odds of Sampling Weights; ARR: Absolute Risk Reduction; OR: Odds Ratio; Some are not OR, eg, Hazard Ratio for 
uncalibrated COMET, Risk Ratio for uncalibrated DIG; arm1 vs arm2: carvedilol vs metoprolol in COMET, digoxin vs placebo in DIG.  
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Supplementary II Fig 3. Effect estimates for standard and calibrated analyses in the 
highest risk, lowest risk deciles and the overall group in 2 trials. a) Odds ratio; b) 

Absolute risk reduction; c ~ f, risk for c) COMET all-cause death; d) COMET all-cause 
death or hospitality. 
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Target population characteristics. 

 

Supplementary II Table S12. Example of data which could be produced from a registry to 

reconstructe the joint distribution of patient characteristics. 

 

a) Marginal summary statistics 

Categorical variables Mean for each covariate  

Standard deviation for each 

covariate 

n 

men diabetes age SBP …* age SBP …** 

0 0 70.05 120.02 … 10.05 10.03 … 5167 

0 1 70.05 119.96 … 9.99 9.94 … 54198 

1 0 70.03 120.03 … 10.06 9.99 … 8755 

1 1 69.97 120.08 … 10.16 9.94 … 31880 

*Mean for the rest numerical variables; **standard deviation for the rest numerical variables; *** 

correlations between each 2 numerical variables after adjusting for other variables. SBP: systolic 

blood pressure; eGFR: estimated glomerular filtration rate. 

 

b) Correlation matrix 

 Men Diabetes Age SBP … 

Men 1 0.01 -0.01 0.05 … 

Diabetes  1 0.1 0.06 … 

Age   1 0.05 … 

SBP    1 … 

… … … … … … 
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