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PREFACE 

 
"The next day was a miracle.  The young man had been on the brink of 

death only 24 hours previously.  Yet, the morning following surgery he 

looked at me with bright eyes, and he felt hungry for the first time in 

months… 

The transplanted kidney functioned immediately, with a dramatic 

improvement in the patient’s renal and cardiopulmonary status.  This 

spectacular success was a clear demonstration that organ 

transplantation could be life-saving.” 

 

Joseph Murray, winner of the Nobel Prize in Physiology or Medicine, 

recalls the first successful kidney transplant, performed at Peter Bent 

Brigham Hospital, Boston, Massachusetts, 1954. 
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ABSTRACT 
The	incidence	of	end-stage	renal	disease	is	increasing	in	Western	Society.		Renal	

transplantation	is	known	to	be	the	optimal	treatment	for	ESRD,	being	associated	

with	significant	reduction	in	morbidity,	mortality	for	patients	and	cost	for	wider	

society	when	compared	to	remaining	on	dialysis.		Unfortunately,	the	growing	

number	of	patients	listed	for	renal	transplantation	has	occurred	without	a	

matched	supply	in	the	number	of	suitable	organs.		This	has	led	to	longer	average	

waiting	times	for	increased	numbers	of	patients,	who	consequently	suffer	

adverse	outcomes	at	considerable	cost	to	the	National	Health	Service	as	a	result	

of	organ	shortage.			

One	strategy	employed	by	clinicians	to	meet	demand	for	organs	has	been	to	

transplant	‘suboptimal’	kidneys’	historically	rejected	as	unsuitable	for	

transplantation,	which	are	usually	retrieved	from	older	and	less	fit	donors.		

Sometimes	referred	to	as	‘extended	criteria’	or	‘marginal	kidneys’,	such	allografts	

are	more	prone	to	damage	in	the	peri-transplantation	period,	with	the	major	

pathological	process	recognised	to	be	ischemia-reperfusion	injury	(IRI).		

Although	functioning	‘marginal’	allografts	have	been	shown	to	confer	benefit	to	

recipients,	early	transplant	failure	is	associated	with	negative	outcomes.		

Consequently,	there	is	a	real	need	to	develop	treatments	to	mitigate	renal	IRI,	

especially	since	the	use	of	‘marginal’	kidneys	is	likely	to	increase.		

	

Stem	cell	therapy	has	been	shown	to	protect	solid	organs	from	IRI	in	a	number	of	

different	animal	models.		Consequently,	there	is	great	interest	in	researching	the	

ability	of	stem	cell-based	therapies	to	ameliorate	solid	organ	damage	and	

perhaps	to	encourage	organ	regeneration.		However,	debate	exists	regarding	the	

exact	mechanism	by	which	stem	cells	produce	their	effects.		Some	researchers	

suggest	that	stem	cells	directly	differentiate	to	replace	specialised	cell	types	in	

damage	organs.		Other	investigators	conclude	that	stem	cells	produce	their	

effects	in	a	paracrine	fashion	via	the	release	of	extracellular	vesicles	with	the	

horizontal	transfer	of	genetic	material	between	cells.		

	

Unfortunately,	no	therapies	are	currently	in	widespread	use	to	reduce	damage	to	

allografts	in	the	peri-transplant	period.		In	part,	this	reflects	the	lack	of	robust	
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small	animal	models	for	screening	potential	renal	IRI	therapies	before	testing	in	

large	animal	models.		Furthermore,	clinical	application	has	been	limited	by	safety	

concerns,	and	particularly	by	the	risk	of	stem	cells	undergoing	malignant	

transformation	and	subsequent	tumour	formation	in	recipients.		However,	

investigators	hypothesise	that	the	use	of	stem	cell-derived,	extracellular	vesicles	

may	confer	similar	beneficial	therapeutic	efficacy,	but	lack	many	of	the	side	

effects	associated	with	stem	cells	themselves.	

	

This	thesis	describes	experiments	in	which	stem	cell-based	therapies	are	tested	

in	conventional	and	novel	animal	models	of	renal	IRI	and	renal	transplantation.	

In	Chapter	3,	initial	experiments	unexpectedly	demonstrated	the	potential	of	ex	

vivo	expanded	stem	cells	to	undergo	malignant	change	and	induce	tumour	

formation	in	recipient	animals.		Therefore,	the	subsequent	research	investigated	

the	effects	of	freshly	isolated	stem	cells	or	those	of	novel	extracellular	vesicle	

preparations.		In	Chapter	4,	experiments	unexpectedly	demonstrated	the	

shortcomings	of	a	conventional	rat	model	of	renal	IRI.		Therefore,	Chapter	5	

describes	the	development	of	a	novel	rat	of	model	of	renal	IRI,	in	which	stem	

cell-based	therapies	may	be	tested.	Using	this	animal	model,	Chapters	6	and	

Chapter	7	describe	the	investigation	of	novel	stem	cell-based	therapies	and	their	

effects	on	renal	IRI.		Some	of	these	treatments	were	found	to	protect	kidneys	

from	IRI	damage	with	preservation	of	renal	function	and	structure	in	the	

medium	to	long-term.		Chapter	8	describes	a	rat	model	of	renal	transplantation,	

in	which	therapies	were	investigated	after	being	screened	for	efficacy	in	the	

novel	rat	IRI	model.		Although	no	functional	difference	was	demonstrated,	renal	

histology	was	preserved	by	treatment,	although	the	mechanisms	by	which	this	

effect	occurred	remain	unclear.	

	

These	findings	suggest	that	stem	cells	and	their	extracellular	vesicles	have	the	

potential	to	reduce	peri-transplantation	renal	IRI	and	hence	improve	long-term	

outcomes	of	‘marginal’	allografts.		However,	clinical	translation	requires	the	

long-term	efficacy	and	safety	of	these	novel	therapies	to	be	investigated	in	large	

animal	models	of	renal	transplantation,	before	further	testing	in	pilot	studies.		

 



	 9	

CONTENT 

 
DECLARATION……………………………………………...2 

ACKNOWLEDGEMENTS………………………………..…3 

DEDICATION………………………………………………...5 

PREFACE……………………………………………………..6 

ABSTRACT…………………………………………………...7 

TABLE OF CONTENTS……………………………………10 

LIST OF TABLES…………………………………………...20 

LIST OF FIGURES………………………………………….20 

LIST OF ABBREVIATIONS ………………………………25 

BIBLIOGRAPHY……………………………..……………243 

APPENDIX …………………………………………………281 

 

 

  



	 10	

TABLE OF CONTENTS 

 
CHAPTER 1……………………………………………………………27 

A REVIEW OF RENAL DISEASE AND KIDNEY 

TRANSPLANTATION AND THE POTENTIAL OF STEM CELL 

TREATMENTS TO AMELORIATE ACUTE KIDNEY INJURY 

1.1  – End Stage Renal Disease and Trends in Renal 

Transplantation………………………………………………………..28   

1.11   – Trends in kidney donation………………………………..31 

1.12  – Classification of renal allografts…………………………..32 

1.13  – Novel strategies to expand supply of renal allografts……..35 

1.2 – Mechanism of Renal Regeneration in Response to Injury…....38 

1.21 – Renal Regeneration……………………..………………….39 

1.22 – Acute kidney injury……………………..………………….40 

1.23  – Cellular and molecular mechanisms of kidney damage 

during ischemia-reperfusion injury………………………………..41 

1.24 – Renal repair………………………………………………...44 

1.3 – Rationale for the use of Stem Cell-Based Therapies in the 

Treatment of Renal Ischemia-Reperfusion Injury…………………..48 

1.31– Definitions and classifications of stem cells………………..49 

1.32 –Induced Pluripotent Stem Cells..............................................51 

1.33 – Mesenchymal stem cells…………………………………...54 

1.34 – Malignant potential of stem cells…………………………..55 

1.35 – Beneficial properties of mesenchymal stem cells………….56 

1.36 – Mesenchymal stem cells and clinical trials………….…….58 

1.37 – Pathfinder cells…………………………………………….59 



	 11	

1.38 – Evidence for the mechanism of action of stem cells………59 

1.381 – Differentiation-dependent hypothesis………………….....60 

1.382 – Differentiation-independent (paracrine action) 

hypothesis………………………………………………………….62 

1.39 – Evidence for a paracrine mechanism in mitigation of acute 

renal injury…………………………………………………….…..63 

1.4 – What is the nature of the paracrine mediators by which stem 

cells act?...................................................................................................66 

1.41 – Which type of extracellular vesicle is responsible for organ 

regeneration?....................................................................................70 

1.5 – Advantages of cell-free versus stem cell therapy……………...71 

 
CHAPTER 2………………………………………………………..….73 

 
GENERAL MATERIALS AND METHODS 

2.1 – Rodent husbandry, anaesthesia, surgery and post-surgical 

care……………………………………………………………………...74 

2.11 – Rodent diet and housing……………………..……………..74 

2.12 – Rodent anaesthesia…………………………………………74 

2.13 – Position and temperature control during rodent surgery…...74 

2.14 Surgical sterility……………………………………………...75 

2.15 – Microsurgical set-up and equipment……………………….75 

2.16 – Post-surgical care…………………………………………..77 

2.17 – Rodent Venesection………………………………………..78 

2.2 – Determination of glomerular filtration rate via continuous 

infusion clearance with fluorescent inulin……………………….….79 

2.21 – Background………………………………………………...79 



	 12	

2.22 – Preparation of FITC-inulin solution……………………….80 

2.23 – Anaesthesia during inulin clearance studies……………….80 

2.24 – Surgical procedure to determine glomerular filtration rate...81 

2.25 – Measurement of biofluids fluorescence……………………87 

2.26 – Calculation of glomerular filtration rate…………………....88 

2.27 – Key factors achieving reliable GFR results………………...88 

2.28 – Tips for successful microsurgical cannulation……………..88 

2.3 – Rodent renal tissue analysis……………………………………..90 

2.31 – Protocol for embedding formalin-fixed kidneys in 

paraffin…………………………………………………………….91 

2.32 – Protocol for staining renal sections with haematoxylin and 

eosin…………………………………………………………….…91 

2.33 – Renal histology assessment………………………………..92 

2.4 – Immunohistochemistry protocol………………………………..93 

2.41 – De-waxing and rehydration of paraffin-fixed tissues………93 

2.42 – Antigen retrieval…………………………………...……….93 

2.43 – Slide staining………………………………………...……..94 

2.44 – Counterstaining of slides…………………..……………….95 

2.45 – Slide dehydration and mounting…………………………...95 

2.46  P-16 Immunohistochemistry protocol with Vector Lab Impress 

peroxidase polymer kit mouse-anti-mouse (MP2400)…………....95 

2.461 – Slide antibody staining……………………………….…..95 

2.47 – Calculating Histoscores……………………………………95 

2.5 – Isolation, purification and quantification of nucleic acids……98 

2.51 – RNA extraction from tissue using Trizol®…………………98 

2.52 – DNAase treatment……………………………………...…..99 

2.53 – cDNA synthesis………………………………………...…100 

2.54 – Taqman real-time polymerase chain reaction………….....101 

2.6 – Isolation of pancreatic-derived pathfinder cells……………..103 



	 13	

2.61 – Preparation of Pathfinder cell-derived microvesicles……103 

2.7 – Statistical analysis……………………………………………..104 

2.71 – Determination of Animal numbers in experimental groups..104 

 

CHAPTER 3…………………………………………………………..105 

 

TESTING THE RENAL REGENERATION EFFICACY OF 

PATHFINDER CELLS IN A RODENT MODEL OF CHRONIC 

RENAL FAILURE AND PREMATURE AGING 

3.1 – Introduction…………………………………………………….106 

3.2 – Hypothesis………………………………………………………107 

3.3 – Methods…………………………………………………………108 

3.31 – Animal housing and husbandry…………………………..108 

3.32 – Group selection…………………………………………...108 

3.33 – Stem cell treatment……………………………………….108 

3.34 – Renal function assessment………………………………..108 

3.4 – Results…………………………………………………………..109 

3.41 – Animal weights…………………………………….……..109 

3.42 – Animal health……………………………………………..109 

3.43 – Serum creatinine………………………………...………..111 

3.44 – Glomerular filtration rate………………………….……...112 

3.5 – Discussion………………………………………………………113 

 
 

 

 

 



	 14	

CHAPTER 4………………………………………………………….117 

 

INVESTIGATING THE EFFECTS OF PATHFINDER DERIVED 

MICROVESICLES IN AN IMMUNOCOMPETENT RAT MODEL 

OF RENAL ISCHEMIA 

4.1 – Introduction………………………………………………….…118 

4.2 – Hypothesis………………………………………………………122 

4.3 – Methods………………………………………………….…..….123 

4.31 – Experimental groups………………………….…….….…123 

4.32 – Surgical procedure: Right nephrectomy +/- left renal 

ischemia…………………………………………………….……124 

4.4 – Results……………………………………………………….….127 

4.41 – Group weight loss compared to baseline weight…………127 

4.42 – Comparison of percentage weight loss from baseline between 

groups……………………………………….……………………128 

4.43 – Serum creatinine levels compared to baseline values…….129 

4.44 – Comparison of serum creatinine levels between groups….130 

4.45 – Glomerular filtration rate…………………………………131 

4.46 – Renal histology scoring…………………………………..132 

4.47 – Immunohistochemistry data……………………………...133 

4.5 – Discussion………………………………………………………134 

 

CHAPTER 5………………………………………………………….136 

 

DEVELOPMENT OF A NOVEL RAT MODEL OF SEVERE 

RENAL ISCHEMIA-REPERFUSION INJURY 

5.1 – Introduction…………………………………………………….137 



	 15	

5.11 – Quantification of renal function…………………………..139 

5.12 – Route of drug delivery……………………………………139 

5.2 – Hypothesis………………………………………………………140 

5.3 – Methods……………………………………………………...….141 

5.31 – Animal housing and husbandry…………………….….…141 

5.32 – Group selection……………………………….…….…….141 

5.33 – Surgical procedure………………………………………..142 

5.34 – Post-surgical care……………………………………....…145 

5.35 – Quantification of renal function and renal injury…...……145 

5.4 – Results…………………………………………………………..146 

5.41– Post-procedure mortality rates and technical 

complications…………………………………………………….146 

5.42 – Group weight loss compared to baseline weight………....147 

5.43 – Comparison of percentage weight loss from baseline……148 

5.44 – Glomerular filtration rate……………………………...….149 

5.45 – Renal histology scoring…………………………………..150 

5.5 – Discussion……………………..………………………………..151 

 
CHAPTER 6 ……………………..…………………………………..154 

 
INVESTIGATING THE RENO-PROTECTIVE EFFICACY OF 

SYNGENEIC ADIPOSE-DERIVED MESENCHYMAL STEM 

CELLS IN A NOVEL RAT MODEL OF RENAL ISCHEMIA-

REPERFUSION INJURY 

6.1 - Introduction…………………..…………………………………155 



	 16	

6.11 – Bone-derived MSCs versus adipose-derived regenerative 

cells for the treatment of renal ischemia-reperfusion 

injury………………................................................................…..156 

6.12 – Route of delivery………………………………………….157 

6.13 – Choice of animal model for testing ADRCs………….......158 

6.14 – Rationale for doses of ADRCs…………………………....158 

6.2 – Hypothesis…………………..…………………………………..160 

6.3 – Methods…………………..……………………………………..161 

6.31 – Animal housing and husbandry…………………………...161 

6.32 – Group selection………………………………….………..161 

6.33 – Surgical procedure…………………………………….….162 

6.34 – Post-surgical care…………………………………………162 

6.35 – Quantification of renal function and renal injury…………162 

6.36 – Dissection of rat inguinal fat pad…………………………163 

6.37 – ADRC isolation from inguinal fat pad…………………164 

6.38 – ADRC cryopreservation……………………………..…165 

6.39 – Characteristics of cellular preparation obtained from adipose 

tissue…………………………………………………...…………165 

6.4 – Results……………………………………………………..…….166 

6.41 – Group weight loss compared to baseline weight………….166 

6.42 – Comparison of percentage weight loss from baseline between 

groups…………………………………………………………….167 

6.43 – Glomerular filtration rate………………………………….168 

6.44 – Renal Histology scoring……………………………..……169 

6.5 - Discussion…………………………………………………..……172 

 

 

 

 



	 17	

CHAPTER 7………………………………………………………….177 

 
THE MEDIUM AND LONG-TERM EFFICACY OF PATHFINDER 

DERIVED MICROVESICLES IN A NOVEL RAT MODEL OF 

SEVERE RENAL ISCHEMIA-REPERFUSION INJURY 

7.1 – Introduction…………………………………………………….178 

7.11 – Problems identifying the beneficial biological factors in the 

stem cell secretome………………………………………………179 

7.12 – Pathfinder-derived microvesicles…………………………181 

7.2 – Hypothesis……………………………………………………....182 

7.3 – Methods…………………………………………………….…...183 

7.31 – Animal housing and husbandry………………………...…183 

7.32 – Group Selection……………………………….…………..183 

7.33 – Surgical Procedure…………………………………..……184 

7.34 – Post Surgical Care……………………………………...…184 

7.35 – Quantification of renal function and renal injury…………184 

7.36 – Pathfinder-derived microvesicle isolation……………...…185 

7.4 – Results………………………………………………………..….186 

7.41 – Animal data after two weeks recovery post surgery: Group 

weight loss compared to baseline weight……………………..….186 

7.42 – Glomerular filtration rate after two weeks recovery……...187 

7.43 – Renal Histology after two weeks recovery………………..188 

7.44 – Animal data after six weeks recovery post surgery: Group 

weight loss compared to baseline weight………………………...190 

7.45  – Comparison of percentage weight loss from baseline 

between groups…………………………………………….……..190 

7.46 – Glomerular filtration rate after six weeks recovery………191 

7.47 – Renal Histology after six weeks recovery……………..….192 

7.5  – Discussion………………………………………………………195 



	 18	

7.51  – Stem cell versus Cell-free therapy……………………….195 

7.52  – Which extracellular vesicle type protects the kidney – 

exosomes or microvesicles? ……………………………………..197 

 

 
 

 

 

 

 

CHAPTER 8………………………………………………………….201 

 
THE EFFECT OF PATHFINDER DERIVED MICROVESICLES 

ON PROLONGED COLD AND WARM ISCHEMIC TIMES IN A 

NOVEL RAT MODEL OF RENAL TRANSPLANTATION 

8.1  – Introduction……………………………………………………202 

8.11 – Warm versus cold renal ischemia…………………………203 

8.12  – Choice of species in animal models of renal 

transplantation……………………………………………………205 

8.13  – Rodent models of renal transplantation…………………..206 

8.14  – Previous studies of renal transplantation in rodents……...208 

8.15  – MSCs and immunological rejection kidney transplant 

models………………………………………………………..…..208 

8.16  – MSCs and prevention of IRI in rodent kidney transplant 

models……………………………………………………………209 

8.17  – Rationale for rat transplant model used in this 

experiment………………………………………………………..210 

8.2  – Hypothesis…………………………………………………...…211 



	 19	

8.3  – Methods……………………………………………………..….212 

8.31 – Animal Housing and Husbandry………………………….212 

8.32 – Group Selection…………………………………………...212 

8.331 – Kidney Transplantation Surgical Procedure………….….212 

8.332 – Retrieval of donor kidney……………………………..…212 

8.333 – Recipient Procedure……………………………………..214 

8.34 – Post-surgical care………………………………………....219 

8.4 – Results…………………………………………………………..220 

8.41 – Pilot transplants………………………………………….220 

8.42 – Post-procedure mortality rates and technical 

complications…………………………………………………....221 

8.43 – Group weight loss compared to baseline weight………...221 

8.44 – Comparison of percentage weight loss from baseline 

between groups…………………………….……………………222 

8.45 – Glomerular filtration rate……………………………...…223 

8.46 – Renal histology scoring………………………….………224 

8.5 – Discussion…………………………………………………….…226 

 

 

 

CHAPTER 9…………………………………………………………..231 

 
GENERAL DISCUSSION 

9.1  – Introduction……………………………………………………232 

9.2  – Improvements to the rat model of renal ischemia-reperfusion 

injury………………………………………………………………….233 

9.3  – Organ recruitment of stem cells and ECVs post 

administration……………………………………………………...…237 

9.4  – Future experiments with ADRC derived ECVs………..…....238 



	 20	

9.5 – Ex vivo normothermic reperfusion and the potential 

implications for clinical translation of stem cell therapies……..….240 

 

LIST OF TABLES 
Table 4.1 – Summary of experimental groups………………………...123 

Table 5.1 – Summary of experimental groups………………………...141 

Table 6.1 – Summary of experimental groups………………………...161 

Table 7.1 – Summary of experimental groups………………………...184 

 

 

LIST OF FIGURES 
Figure 1.1 – Trend in numbers of patients on renal transplantation 

waiting lists in the last decade…………………………………………..30 

Figure 1.2 – Trend in the number of performed kidney transplants in the 

last decade……………………………………………………………....31 

Figure 1.3 – Trend in the type of renal allografts in the last decade…...33 

Figure 1.4 – Trends in the use of “Expanded Criteria” kidneys used in 

the last decade…………………………………………………..………37 

Figure 1.5 – Insults that may cause acute kidney injury……………….40 

Figure 1.6 – Pathological mechanism of renal ischemia-reperfusion 

injury………………………………………………………………….…43 

Figure 1.7 – Renal tubular epithelial repair mechanism after ischemic 

reperfusion injury……………………………………………………….46 

Figure 1.8 – Origin and function of mesenchymal stem cells………….58 

Figure 1.9 – Classification and origin of extracellular vesicles………..68 

Figure 1.11 – Potential mechanism by which stem cells may induce renal 

repair…………………………………………………………………….70 

Figure 2.1 – Microsurgical apparatus and set-up………………...…….76 



	 21	

Figure 2.2 – Dissection and cannulation of femoral vessels, and ureteric 

cannulation during inulin clearance studies………………………….…83 

Figure 3.1 – Rat body weight over experiment time course…………..109 

Figure 3.2 – Heart and lung specimens showing macroscopic evidence of 

malignancy after stem cell treatment…………………………………..110 

Figure 3.3 – Serum creatinine levels in control versus treatment 

groups………………………………………………………………….111 

Figure 3.4 – GFR of control versus treatment groups……….………..112 

 

CHAPTER 4 

Figure 4.1 – Commonly used rat models of renal ischemia…………..120 

Figure 4.2 – Microsurgical method of left renal pedicle dissection +/- 

occlusion and technique used to perform right nephrectomy…………125 

Figure 4.3 – Weight change compared to baseline post surgery within 

groups…………………………………………………………………127 

Figure 4.4 – Weight change compared to baseline post surgery between 

groups…………………………………………………………………128 

Figure 4.5 –Trends in serum creatinine levels post surgery…….……129 

Figure 4.6 – Control and experimental groups serum creatinine levels 

compared to baseline post surgery…………………………………….130 

Figure 4.7 – Control and experimental group GFR 14 days post 

surgery………………………………………………………………....129 

Figure 4.8 – Comparison of renal histology scores between control and 

experimental groups 14 days post surgery………………………….…130 

Figure 4.9 – Comparison of renal immunohistochemistry scores between 

control and experimental groups 14 days post surgery……..…………133 

  



	 22	

CHAPTER 5 

Figure 5.1 – Microsurgical dissection of left renal pedicle, method of 

intra-renal artery infusion of saline vehicle +/- stem cell therapy and 

subsequent renal artery anastomosis……..……………………………143 

Figure 5.2 – Weight change compared to baseline post surgery within 

groups…………………………………………………………….…...147 

Figure 5.3 – Weight change compared to baseline post surgery between 

groups………………………………………………………………....148 

Figure 5.4 – Comparison of GFR between control and experimental 

groups after different recovery times post-ischemia………………….149 

Figure 5.5 – Comparison of renal histology scores between control and 

experimental groups after different recovery times post-ischemia……150 

 

CHAPTER 6 

Figure 6.1 – Weight change compared to baseline post surgery within 

groups………………………………………………………………….166 

Figure 6.2 – Weight change compared to baseline post surgery between 

groups………………………………………………………………….167 

Figure 6.3 – Comparison of GFR between control and experimental 

groups after different doses of ADRCs after two weeks recovery…168 

Figure 6.4 – Comparison of epithelial breaks in control and experimental 

groups………………………………………………………………….169 

Figure 6.5 – Comparison of hyaline cast formation in control and 

experimental groups……………………………………………..….…170 

Figure 6.6 – Comparison of renal histology tissue sections……....…..171 

Figure 6.7 – Dissected renal pedicle showing renal artery occlusion as a 

result of supra-therapeutic doses of ADRCs………….……………174 

 

 



	 23	

CHAPTER 7 

Figure 7.1 – Weight change compared to baseline post surgery between 

groups………………………………………………………………….186 

Figure 7.2 – Comparison of GFR between control and experimental 

groups (PF-MV treated animals) after two weeks recovery………...…187 

Figure 7.3 – Comparison of epithelial breaks in control and experimental 

groups………………………………………………………………….188 

Figure 7.4 – Comparison of hyaline cast formation in control and 

experimental groups………………...…………………………………189 

Figure 7.5 – Weight change compared to baseline post surgery between 

groups………………………………………………………………….190 

Figure 7.6 – Comparison of GFR between control and experimental 

groups (PF-MV treated animals) after six weeks recovery……………191 

Figure 7.7 – Comparison of epithelial breaks in control and experimental 

groups………………………………………………………………….192 

Figure 7.8 – Comparison of hyaline cast formation in control and 

experimental 

groups……………………………………………………………….…193 

Figure 7.9 – Comparison of renal histology tissue sections…………..194 

 

CHAPTER 8  

Figure 8.1 – Heterotopic rat renal transplant……………………...…..207 

Figure 8.2 – Retrieval of donor kidney from Fischer rat……………...216 

Figure 8.3 – Preparation of recipient Fischer rat vessels during kidney 

transplantation…………………………………………………………217 

Figure 8.4 – Microsurgical technique of orthotopic renal transplantation 

and transplant reperfusion……………………………………………..218 

Figure 8.5 – GFR comparison of pilot transplant kidneys versus sham-

operated kidneys……………………………………………………….220 



	 24	

Figure 8.6 – Groups weight loss compared to baseline……………….222 

Figure 8.7 – Comparison of GFR transplanted kidneys treated with saline 

versus PF-MVs……………………………………………………..….223 

Figure 8.8 – Renal histology – epithelial breaks in transplanted kidneys 

treated with saline versus transplanted kidneys treated with PF-MVs...224 

Figure 8.9 – Renal histology – hyaline cast formation in transplanted 

kidneys treated with saline versus transplanted kidneys treated with PF-

MVs…………………………………………………………...……….225 

 

  



	 25	

LIST OF ABBREVIATIONS  

 
ADRCs – Adipose-derived regenerative cells 

AKI – Acute kidney injury 

AS – Albino Swiss 

ASCs – Adult stem cells 

ATP – Adenosine triphosphate 

BD-MSCs – Bone marrow-derived mesenchymal stem cells 

B-IRI – Bilateral ischemia-reperfusion injury 

BUN – Blood urea nitrogen 

c-DNA – complementary DNA 

CIC – Constant infusion clearance 

DBD – Donation after brain stem death 

DCD – Donation after circulatory-confirmed death 

DMSO – Dimethyl sulfoxide 

d-NTPs – Deoxyribonucleotide triphosphates 

DNA – Deoxyribonucleic acid 

ECD – Extended criteria donor 

ESCs – Embryonic stem cells 

ECVs – Extracellular secretory vesicles 

ESRD – End stage renal disease 

GFR – Glomerular filtration rate 

H & E – Haematoxylin and Eosin 

HD – Haemodialysis 

HLA – Human leucocyte antigen 

IHC – Immunohistochemistry 

iPSC  – Induced pluripotent stem cells 

IRI – Ischemia Reperfusion Injury 

MHC – Major histocompatibility complex 

MSCs – Mesenchymal stem cells 

miRNA – Micro ribonucleic acid 

mRNA - Messenger ribonucleic acid 

MVs - Microvesicles 



	 26	

i-NOS – Inducible nitric oxide synthase 

PF – Pathfinder Cells 

PF-MVs – Pathfinder cell-derived microvesicles 

q-PCR – Quantitative polymerase chain reaction 

RNA – Ribonucleic acid 

RRT – Renal replacement therapy 

TNF-α – Tissue necrosis factor alpha 

U-IRI – Unilateral ischemia-reperfusion injury 

U-IRI +N - Unilateral ischemia-reperfusion injury with nephrectomy 

U-IRI – N - Unilateral ischemia-reperfusion injury without nephrectomy 

 

 

 

 

  



	 27	

CHAPTER 1 
 

A REVIEW OF RENAL DISEASE AND KIDNEY 

TRANSPLANTATION AND THE POTENTIAL OF STEM 

CELL TREATMENTS TO AMELORIATE ACUTE 

KIDNEY INJURY 

 

  



	 28	

INTRODUCTION 
1.1 END-STAGE RENAL DISEASE AND TRENDS IN RENAL 

TRANSPLANTATION  

The rapidly increasing incidence of end-stage renal disease (ESRD) in the developed 

world is a direct consequence of an ageing population who are more frequently 

suffering from lifestyle-related conditions such as type II diabetes and obesity.  

Predictions of global population demographics suggest that the number of people with 

ESRD will continue to rise, as will the proportion of the population who are elderly. 

 

The kidneys' principle role is the elimination of toxic waste products, and the 

regulation of both circulating volume and the composition of body fluids.  

Furthermore, the kidney produces hormones including erythropoietin and renin and 

plays a crucial role in the metabolism of vitamin D.  These functions are lost with the 

development of renal failure, and those patients with ESRD require renal replacement 

therapy (RRT) in order to survive.  The term RRT encompasses the different 

modalities of dialysis (both peritoneal and haemodialysis) and kidney transplantation. 

 

In patients undergoing dialysis, waste products are removed from the blood by 

diffusion across a semi-permeable membrane.  Such patients are subjected to dietary 

and fluid intake restrictions, in addition to regular medication in an attempt to 

compensate for the loss of normal renal function.  Inevitably, patients receiving 

dialysis have negative outcomes regarding length and quality of life when compared 

to healthy individuals (Collins et al., 2008, Zelmer, 2007, Wight et al., 1998).  

Furthermore, survival of dialysis patients has not changed appreciably in the last two 

decades, with an annual mortality of approximately 20% (Galliford and Game, 2009) 

and only 35% of dialysis patients alive after five years (Collins et al., 2008).  This 

means that dialysis patients on average have only 20 – 25% the life expectancy of 

healthy age-matched controls (Collins et al., 2008).  Data from the UK renal registry 

shows that since 2000 there has been an average 5% annual increase in the prevalence 

of RRT requirement, with 56,940 individuals receiving RRT in the UK at the 

beginning of 2014 (Pruthi et al., 2013).  Of these, 49% of patients were undergoing a 

form of dialysis.  At an annual cost of £35,000 per individual on haemodialysis, and 

£17,500 on peritoneal dialysis, dialysis provision amounts to 3% of the National 
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Health Service budget (Pruthi et al., 2013).  ESRD patients receiving dialysis 

therefore create a huge national health and economic burden with sufferers 

experiencing poorer than average health status and quality of life (van Manen et al., 

2002, Wight et al., 1998). 

 

A cursory examination of the long-term outcomes of the current dialysis patient 

population reveals a minor reduction in morbidity and mortality associated with 

modern treatment regimes. However, it is clear that more elderly patients are now 

routinely offered dialysis than was the case two decades ago (Collins et al., 2012, 

Jager et al., 2003). Comparison of age-matched populations highlights the improved 

outcomes associated with dialysis in modern practice (Pippias et al., 2015, Marshall et 

al., 2015).  

 

Nevertheless, kidney transplantation has long been associated with survival and 

quality of life benefits for recipients when compared with patients receiving other 

modalities of RRT (Laupacis et al., 1996, Wolfe et al., 1999, Port et al., 1993, 

Schnuelle et al., 1998, Simmons et al., 1990, Gokal, 1993, Kontodimopoulos and 

Niakas, 2008, Zelmer, 2007, Whiting et al., 1999, Meier-Kriesche et al., 2005).  Life 

expectancy of patients who receive a deceased donor transplant is ultimately twice 

that of those remaining on dialysis (Wolfe et al., 1999).  The recognised benefits of 

transplantation, coupled with improved safety in recent years has led to increased 

numbers of patients on UK transplant waiting lists in the last decade.  (See figure 1.1)  

Older recipients now comprise the highest proportional increase of those patients 

added to national waiting lists, with almost half of patients awaiting renal transplant 

being aged > 50 years (Wolfe et al., 2010).  High volume studies have shown reduced 

mortality rates for elderly patients undergoing successful renal transplantation 

compared with similar patients remaining on waiting lists and receiving dialysis.   
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Figure 1.1: shows the trend in the number of patients on the kidney transplant list at 31 March each 

year between 2007 and 2016.  The slight fall in the number of patients actively waiting for a transplant 

largely reflects the increasing use of ‘marginal’ kidneys (Transplant, 2016).  

 

 

Unfortunately, the length of time on dialysis is recognised as an independent predictor 

of poor transplant survival as ESRD patients are subjected to considerable 

physiological deterioration due to the systemic nature of their disease (Meier-

Kriesche and Kaplan, 2002).   

With health economics playing an increasingly important role in modern healthcare 

provision, it is notable that within 2 years renal transplantation becomes cost 

effective, saving the NHS an annual of £25,800 per patient transplanted (Pruthi et al., 

2013).  Renal transplantation is therefore an excellent example of a healthcare 

technology that provides a reduction in morbidity and mortality, and is at least 

theoretically, cost saving and cost effective when compared to dialysis.  The 

promotion of renal transplantation to expand the available number of kidneys has 

additional appeal especially considering evidence that ESRD patients transplanted 

earlier experience better outcomes (Meier-Kriesche and Kaplan, 2002).  Consequently 

the number of renal transplants performed in the UK has tended to increase annually 

(see figure 1.2), although there is still a shortfall in the supply of kidneys due to a lack 

of suitable donors.  

2016 
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Figure 1.2 shows the total number of kidney transplants performed in the last ten years.  The number 

of transplants steadily increased each year from 2130 in 2006/07 to 3,265 in 2015/16 (Transplant, 

2016). 

 

1.11 TRENDS IN KIDNEY DONATION 

Unfortunately, the growing demand for transplantable kidneys has occurred without a 

matched increase in kidney supply, resulting in progressively increasing waiting list 

times (Matas et al., 2014).  This disparity has been a problem since renal 

transplantation became part of accepted clinical practice.  However, with increasing 

numbers of patients with ESRD listed for transplantation, the shortage of 

transplantable kidneys has never been so apparent.  This shortfall is the result of a 

number of factors, the most important of which is increased demand due to the 

success of modern transplantation itself.  Coupled with the falling number of kidneys 

from young, deceased donors, there is a persistent kidney shortage that is the primary 

factor limiting the wider use of transplantation.  This inevitably results in increased 

morbidity, mortality and cost as ESRD patients remain on dialysis. 
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1.12 CLASSIFICATION OF RENAL ALLOGRAFTS 

To analyse the disturbing current donation trends that lead to thousands of patients 

languishing on UK waiting lists, one must first understand the types of kidney donor 

and subsequent classifications of allograft that arise as a result of the donation 

process. 

 

In essence, kidney donors may be divided into three categories:  

Living donors  

It is accepted that outcomes from living donors are superior to those from age-

matched deceased donors – fully HLA-mismatched live donor kidneys have improved 

outcomes when compared to fully matched deceased donor grafts (Meier-Kriesche 

and Kaplan, 2002, Mange et al., 2001).  The previous two decades have seen a 3-fold 

increase in live donation, although in recent years the trend for living donation has 

plateaued while the total demand for organs has continued to rise.  (See figure 1.3) 
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Figure 1.3: shows the total number of adult kidney-only transplants performed in the last ten years, by 

type of donor.  The number of adult transplants from donors after circulatory death (DCD) steadily 

increased from 272 in 2006/2007 to 851 in 2015/2016.  The number of adult transplants from donors 

after brain death (DBD) has increased in the last four years to 1,134 in 2014/2015 after remaining 

relatively constant between 2007/2008 and 2011/2012.  The recent increase in DBD transplantation is 

due to the increased used of extended criteria kidneys.  The number of adult living kidney transplants 

performed was steadily increasing over time before plateauing, and subsequently decreasing by 8% to 

~ 960 in the two financial years.  (Transplant, 2016) 
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Deceased Donors 

Kidneys for transplantation are recovered from deceased donors who: 

 (1) Donate after brain stem death (DBD)  

(2) Donate after circulatory-confirmed death (DCD) 

Formerly referred to as ‘heart-beating' (DBD) and ‘non-heart-beating’ (DCD) the 

current terminology more accurately reflects the absence of peripheral pulses and 

blood pressure over asystole to declare death.  

Outcomes from deceased donor kidneys are inferior to those obtained with allografts 

from living donors.  Partly this is probably due to hormonal and cardiorespiratory 

disturbances that occur in the donor during the retrieval process.  Kidneys in patients 

suffering brain stem death (DBD) are exposed to variations in catecholamine levels 

and a ‘cytokine storm’ (Chiari et al., 2000, Gramm et al., 1992, Pratschke et al., 

2001).  The hypoperfusion that results from this inflammatory milieu may explain the 

adverse allograft outcomes observed in DBD kidneys when compared to those from 

living donors.  It is unclear if this process is substantially different in the setting of 

severe, irreversible head injury without herniation that is present in the majority of 

DCD donors (Brook et al., 2003). However, compared to DBD kidneys, those 

allografts that result from DCD are subjected to greater periods of hypoxia and 

hypotension during the progression to circulatory arrest (so-called “agonal phase”) 

and the mandatory 5-minute period of warm pulseless ischemia prior to retrieval 

(Perera, 2012).   

 

Traditionally, the use of DBD kidneys predominated in most transplant centres.  

However, due to falling numbers of suitable DBD donors, coupled with increased 

demand for transplantable kidneys, the use of DCD kidneys has grown in the past 

decade as a further means of expanding the pool of donor kidneys.  (See figure 1.3)  

DCD kidneys show higher rates of primary non-function and delayed graft function 

(Neyrinck et al., 2013, Renkens et al., 2005, Singh et al., 2011), but after the 

immediate postoperative period have been shown to have comparable outcomes when 

compared to DBD kidneys (Huynh et al., 2015, Weber et al., 2002), provided cold 

ischemic times are kept below 24 hours (Summers et al., 2010, Summers et al., 2013).  

Furthermore, DCD transplantation demonstrates a survival benefit to recipients over 

waiting for a DBD kidney to become available (Snoeijs et al., 2010a, Snoeijs et al., 

2010b). 
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Traditionally, kidneys for transplantation were retrieved from deceased individuals 

meeting the criteria for ‘ideal donors’ (Port et al., 2002).  These criteria include:  

(i) Age between 10 – 39 years.  

(ii) No history of hypertension 

(iii) Did not die from a cerebrovascular accident 

(iv) Pre-donation creatinine < 150µg/dL.  

 

Such ‘ideal' kidneys typically came from individuals who had been in excellent health 

but had suffered an isolated traumatic event.  However, during the last 15 years, there 

has been a steady decline in the numbers of ‘ideal’ deceased donor kidneys offered 

for transplantation (Johnson et al., 2010).  The cause for the falling numbers of ‘ideal 

donors’ is not entirely understood.  Reasons cited often include a reduction in high-

energy traumatic accidents, reduced intracranial haemorrhage due to improved 

radiological intervention, and increased reluctance of intensive care doctors to 

ventilate patients with head injuries whose radiology reveals a poor prognosis (Briggs 

et al., 1997, Bederson et al., 2009). 

 

1.13 NOVEL STRATEGIES TO EXPAND SUPPLY OF RENAL 

ALLOGRAFTS 

The falling number of kidneys from ‘ideal donors’, coupled with increased demand 

for transplantation, has led to persistent kidney shortages resulting in morbidity and 

mortality for dialysis patients who wait for a transplant to become available.  In an 

attempt to fill this void, clinicians have adopted a number of strategies, involving the 

use of kidneys that previously would have been deemed un-transplantable.   

One such strategy has been the use of kidneys from ‘extended criteria donors' (ECD).  

The criteria for ECD kidneys are based on national registry analysis from the United 

States for kidneys transplanted between 1995 and 2000.  Age and a combination of 

medical risk factors were found to be associated with a relative risk for graft failure of 

greater than 1.7 when compared to the ideal donor reference group (Port et al., 2002). 

Donor elements utilised to define ECDs include:(Port et al., 2002, Metzger et al., 

2003) 

(i) Donor age greater than 60 
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(ii) Or donor age between 50 -59 with 2 of the following features 

- Cerebrovascular accident as cause of death 

- Hypertension 

- Preexisting donor renal dysfunction with serum creatinine > 150mg/dL.  

 

Growing demand has necessitated the routine use of DCD and ECD kidneys.  Despite 

controversies regarding allograft survival rates, both DCD and ECD kidney 

transplants have gained acceptance, although clinicians now acknowledge a higher 

risk of poor outcome when compared to those allografts that come from ‘ideal' donors 

(Port, 2003, Nathan et al., 2003).  However, the risk of a poor outcome needs to be 

balanced against the benefits provided by a functioning transplant, compared to 

remaining on dialysis (Merion, 2005).  Short-term allograft survival rates have 

improved continuously in recent years, and most recent studies have reported 

acceptable medium-term DCD and ECD allograft survival rates.  However, less 

impressive improvements are reported for long-term outcomes (Lamb et al., 2011), 

and transplanting ECD kidneys with increased donor age is known to result in higher 

rates of graft failure (Veroux et al., 2012).  Inevitably, recipient survival is reduced 

when a sub-optimal graft fails (Meier-Kriesche et al., 2001). 

Nevertheless, many DCD and ECD kidneys perform extremely well, and there 

appears to be substantial survival, lifestyle and financial benefit in receiving an ECD 

kidney when compared to remaining on dialysis (Merion, 2005, Meier-Kriesche et al., 

2001, Ojo et al., 2001, Martin Navarro et al., 2009, Rao et al., 2007). 

 

As the evidence for the use of kidneys from DCD and ECD sources accumulates, 

transplantation of such kidneys is progressively increasing in many centres.  (See 

Figure 1.4).  Recently > 50% of kidneys transplanted in Europe or North America are 

from donors aged > 50 years, with many recipients of these often being elderly in an 

‘old for old' allocation scheme (Wolfe et al., 2010, Moers et al., 2009).  Here, older 

kidneys are considered a solution for more elderly patients, as lower patient life 

expectancy compensates for the lower expected survival rate of the aged kidney (Foss 

et al., 2009, Chavalitdhamrong et al., 2008, Giessing et al., 2009).  
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Figure 1.4: shows the use of ‘Extended Criteria’ DBD kidneys has almost double in the last decade 

(Transplant, 2016).  

 

 

The trend of transplanting kidneys that would previously have been deemed 

unsuitable is likely to continue as clinicians ‘push the boundaries’ in an attempt to 

meet demand for transplantation.  Transplanting ECD kidneys present unique 

challenges, and innovative approaches are required to achieve satisfactory results.  

The future challenges are therefore to predict better which organs are likely to benefit 

recipients by functioning well, and how best to counter the early, non-specific 

inflammatory insults to which they have been exposed in the transplantation process. 
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1.2 MECHANISM OF RENAL REGENERATION IN RESPONSE TO INJURY 

From donor to recipient, kidney transplantation entails a series of steps, during all of 

which allograft damage may result.  Long-term function and outcome of kidney 

transplants are determined by cumulative peri-transplantation injury, arising from 

such factors as hypoperfusion during organ retrieval, prolonged cold ischemia, warm 

ischemia, ischemia reperfusion injury, episodes of acute rejection and calcineurin 

toxicity (Forsythe, 2009).  Injury to the allograft in the initial stages is recognised to 

have a significant influence on long-term allograft function, by predisposing to 

chronic interstitial fibrosis and tubular atrophy (Pascual et al., 2012, Campistol et al., 

2009).  Over time this ultimately leads to a reduction in functional nephron mass 

(Mueller et al., 2011).  These changes, often referred to ‘chronic allograft 

nephropathy’ have clear implications for transplant survival and hence patient 

longevity (Nankivell and Kuypers, 2011, Moreso and Hernandez, 2013).  

 

As described, current trends in organ donation have forced clinicians to utilise 

kidneys from older and less fit donors (ECD kidneys), in addition to kidneys from 

DCD patients.  Such allografts are more prone to peri-transplantation injury (Bagul et 

al., 2013, Wolfe et al., 1999, Mollura et al., 2003, Meier-Kriesche and Kaplan, 2002, 

Pomfret et al., 2008, Singh et al., 2011, Renkens et al., 2005), and as a result are more 

susceptible to acute complications including delayed graft function (defined as the 

need for dialysis in the first post-transplant week, except for reasons of hyperkalaemia 

or volume overload (Cantaluppi et al., 2013)) acute rejection or primary non-function 

(2010, Singh et al., 2011, Renkens et al., 2005, Pomfret et al., 2008).  Peri-

transplantation injury that results in a long-term reduction in functional capacity of 

allografts that contained fewer nephrons to begin with is likely to be associated with 

negative outcomes.  Therefore, the minimization of allograft injury in the peri-

transplant period and/or strategies to promote the healthy repair of transplant damage 

seems likely to represent a new field, aiming to optimise transplant function and 

patient health following graft implantation (Powell et al., 2013, Furuichi et al., 2012).  

However, the development of new therapeutic strategies necessitates an 

understanding of both the mechanisms by which renal injury occurs and the process 

of endogenous kidney regeneration (Wise and Ricardo, 2012). 
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1.21 RENAL REGENERATION 

Different solid organs have a varying capacity for regeneration, and also the rate of 

cell turnover varies between tissues.  Consequently the time it takes different organs 

to recover after acute injury is variable.  For example, the epithelial tissues of the skin 

and intestine have a high cell turnover and may completely self-renew within days 

(Blanpain et al., 2007, Blanpain et al., 2004). 

 

In contrast to the skin and intestines, the mammalian kidney is particularly 

morphologically complicated, containing approximately 26 terminally differentiated 

cell types that are organised into a highly ordered structure (Miner, 1999). 

Furthermore, the kidney has a high metabolic rate and is constantly exposed to waste 

products and toxins.  Consequently, the kidney has a relatively low cell turnover rate, 

and the rate of repair and regeneration after injury is dependent on the specialised cell 

type involved (Bussolati et al., 2008, Humphreys and Bonventre, 2008).  As a result, 

the mammalian kidney is particularly prone to acute injury.  Despite this, the 

mammalian kidney does have some capacity for self-regeneration and repair, and the 

ability to recover from severe damage.   

 

The capacity for renal regeneration is variable between different species.  For 

example, adult cartilaginous fish display the capacity to form new nephrons in 

response to a significant renal insult (Elger et al., 2003, Roufosse and Cook, 2008).  

In contrast, mammalian kidneys exhibit very limited regenerative ability.  Neo-

nephrogenesis has been reported in prenatal sheep after unilateral nephrectomy, with 

the remaining kidney demonstrating up to a 45% increase in nephron number 

(Douglas-Denton et al., 2002).  Initial studies in post natal rabbits illustrated an 

increase in the total number of glomeruli with the capacity to differentiate following 

unilateral nephrectomy (Sidorova, 1978), but subsequently these results have not been 

reproduced.  The general consensus therefore is that mammalian kidneys cease the 

formation of new nephrons after birth, and merely demonstrate compensatory 

hypertrophy of the remaining nephrons after injury (Sidorova, 1978).  However, the 

mammalian kidney does undergo limited regeneration and remodeling after injury and 

has the capacity to restore deficits in both structure and function.   
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1.22 ACUTE KIDNEY INJURY 

Native acute kidney injury (AKI) is a syndrome characterised by a rapid decline in 

glomerular filtration rate, reflected by a rise in serum creatinine and/or a fall in urine 

output (Khwaja, 2012).  The loss of excretory function leads to the rapid 

accumulation of products of nitrogen metabolism, increased potassium and phosphate 

and a metabolic acidosis.  This is a significant clinical problem, occurring in 5 – 10% 

of all acute hospital admissions, and accounting for up to 20% of admissions to 

intensive care units (Erpicum et al., 2014).  Overall mortality rates for inpatients 

suffering AKI is reported to be 35 – 40%, rising to around 75% for patients with 

multifactorial, sepsis associated renal failure (Nash et al., 2002).  A significant 

proportion of patients with AKI require dialysis, at least on a temporary basis 

(Lameire et al., 1998).  The mortality rate of patients requiring dialysis for AKI (50 -

60%) is nearly twice that of patients without AKI (Ricci et al., 2008, Bellomo et al., 

1995).  

 

Aetiology of AKI is often multifactorial.  Hypovolemia, sepsis, nephrotoxic injury, 

autoimmune damage and physical obstruction to urine flow are all well recognised 

causes of AKI affecting native kidneys. 

 

 

Figure 1.5: Various pathophysiological states and medications can contribute to a reduction of RBF, 

causing generalised or localised ischemia to the kidney leading to AKI.  This figure represents a partial 

list and points to ischemia as being a common pathway in a variety of clinical states affecting the 

kidney (Bonventre and Yang, 2011). 
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Transplanted kidneys are susceptible to all forms of AKI that are seen in native 

organs, especially in the peri-transplant period when the allograft is ‘bedding in'.  

However, the ischemia that occurs during allograft retrieval and cold storage, coupled 

with the warm ischemia and reperfusion injury that occurs during implantation makes 

IRI an especially important insult affecting renal allografts (Koffman and Gambaro, 

2003, Sanchez-Fructuoso et al., 2003, Pascual et al., 2008, Ojo, 2005).   

 

Unfortunately IRI is an unavoidable event in kidney transplantation, as it is 

technically impossible to move a transplant from donor to recipient without temporary 

cessation of renal blood flow.  IRI is therefore a necessary injury that negatively 

impacts on short and long-term outcomes by causing direct inflammatory tissue 

damage and predisposes to enhanced allograft immunogenicity, and hence to episodes 

of acute cell-mediated rejection (Eltzschig and Eckle, 2011). 

 

1.23 CELLULAR AND MOLECULAR MECHANISMS OF KIDNEY 

DAMAGE DURING ISCHEMIA REPERFUSION INJURY 

The cellular and molecular mechanisms that culminate in ischemic tissue damage 

after kidney IRI have been extensively studied and well described (Sutton et al., 2002, 

Bonventre and Yang, 2011, Kosieradzki and Rowinski, 2008).  A sustained 

interruption of renal blood flow is associated with a rapid drop in oxygen partial 

pressure and nutrient concentration.  Anaerobic respiration via glycolysis is necessary 

to maintain a meager supply of adenosine triphosphate (ATP), but as a by-product of 

this process, lactate accumulates in the cell cytosol, lowering pH levels such that 

mitochondrial function is impaired.  Interestingly, a recent paper has identified the 

accumulation of succinate during ischemia as a pivotal step in the generation of 

mitochondrial ROS during reperfusion (Chouchani et al., 2014)  

In this "initiation phase" of IRI, proximal tubular epithelial cells are the primary site 

of damage.  They quickly display a loss of cellular polarity, cytoskeleton disruption, 

and loss of brush border integrity in response to hypoxia (Ashworth and Molitoris, 

1999). Tubular obstruction from sloughed cells and protein aggregation occurs as a 

result of cellular ATP depletion (Kellerman, 1993, Ashworth and Molitoris, 1999).  

Proteases and phospholipases become activated and cause extensive cellular injury 

(Goligorsky, 2005).  This eventually leads to functional impairment of tubules, which 
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are not able to preserve distinct fluid filled compartments with precise electrolyte 

concentrations (Sheridan and Bonventre, 2000). 

 

Endothelial dysfunction and swelling results in microvascular occlusion increased 

resistance to blood flow and renal hypoperfusion.  This pathological process 

exacerbates and extends the initial renal injury and is consequently known as the 

"extension phase"(Sutton et al., 2002).  At this stage, sustained hypoxia causes tubular 

cells and/or glomerular podocytes to undergo necrosis or apoptosis while surrounding 

cells shift their metabolism from aerobic to anaerobic pathways.  The resulting further 

accumulation of lactate and oxygen free radicals leads to an increase in pro-

inflammatory cytokines and the activation of innate immunity (Linfert et al., 2009).  

Expression of adhesion molecules leads to the infiltration and activation of 

macrophages and other leukocytes, augmenting an aggressive inflammatory response 

(Akcay et al., 2009).  Subsequently trans-epithelial and trans-endothelial leaks appear 

at the cortico-medullary junction, an area where high oxygen demand and low oxygen 

tension at steady state predispose to acute tubular necrosis (Evans et al., 2008).  

 

Paradoxically, the final stage of the ischemic injury occurs during the reperfusion 

period.  This is characterized by re-oxygenation, production of ATP by oxidative 

phosphorylation and generation of high concentrations of reactive oxygen species that 

result in hyper-oxidation of proteins, lipids and membranes of both epithelial and 

endothelial cells.  Concurrently, the synthesis of inflammatory cytokines, including 

tumour necrosis factor alpha (TNF-α), interleukins 6 and 8 and surface adhesion 

molecules further encourage the non-specific recruitment of inflammatory cells.  

Leukocyte adherence and lymphocyte activation perpetuate inflammatory cell 

recruitment to the allograft, leading to tissue damage, apoptosis and inflammation.  In 

addition, up-regulation of major histocompatibility complex (MHC) class II antigen 

expression increases organ alloreactivity, increasing the probability of acute cell-

mediated rejection.  Ultimately, the processes of ischemia and reperfusion lead to 

renal tubular cell dysfunction, the release of donor MHC antigens into the host 

circulation, increased allograft immunogenicity, tissue injury and apoptotic cell death.  

These processes contribute to short and long-term allograft dysfunction. 
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Figure 1.6: Endothelial injury in ischemia/reperfusion AKI.  (A) Normal epithelium and endothelium 

separated by a small interstitial compartment.  (B) Ischemia/reperfusion causes swelling of endothelial 

cells; disruptions of the endothelial monolayer; and upregulation of adhesion molecules such as 

ICAMs, VCAMs, and selectins, resulting in enhanced leukocyte-endothelium interactions.  There is 

formation of microthrombi, and some leukocytes migrate through the endothelial cells into the 

interstitial compartment.  The interstitial compartment is expanded with enhanced numbers of 

inflammatory cells and interstitial oedema forms.  
(C) Transmission electron microscopy of normal human peritubular capillary (Cap).   

(D–F)  Acute tubular necrosis.  The peritubular capillaries (PT) show vacuolar degeneration of the 

endothelial cell (arrow in D), thickening and multilayer basement membrane formation (arrows in E), 

and attachment and penetration of monocyte-like cells (arrows in F) in the interstitial region.  Scale 

bars: 2 µm (C and F); 1 µm (D and E).  From Bonventre and Yang (Bonventre and Yang, 2011). 
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1.24 RENAL REPAIR 

Initial renal repair occurs in the “maintenance phase”, via cellular replacement of the 

injured tubular epithelium.  Under normal conditions, proximal tubular epithelial cells 

divide at a low rate, which under normal circumstances is enough to balance the 

routine loss of other epithelial cells (Nadasdy et al., 1994, Prescott, 1966).  However, 

after IRI there is a marked increase in cell turnover, with increased numbers of new 

epithelial cells needed to replenish those lost by necrosis or apoptosis.  

There has been debate regarding the origin of the new renal epithelial cells.  Potential 

sources from which epithelial cells may originate include: 

(1) Intra-renal progenitor cells.  

(2) Circulating stem cells that localise to the site of injury and differentiate into 

functional epithelium. 

(3) Surviving epithelial cells that divide into new epithelial cells.  

 

Recent evidence suggests mammalian kidneys contain resident stem cells, with 

progenitor cell populations initially described in embryonic kidneys reportedly 

identified within the urinary pole of the glomerular parietal epithelium of Bowman's 

capsule (Ronconi et al., 2009, Appel et al., 2009, Sagrinati et al., 2006).  Furthermore, 

another population of resident stem cell has been localised in papillary 

"niches"(Oliver et al., 2009), although these have not yet been confirmed to 

participate in kidney repair (Song et al., 2011).  Either of these may represent stem or 

progenitor cell populations that localise to the urinary pole of the parietal epithelium 

and could be responsible for podocytes replacement after injury (Ronconi et al., 2009, 

Appel et al., 2009).  Despite these observations, the role of resident stem or progenitor 

cells within both healthy and injured mammalian kidneys has not been well defined.  

Given the of presence of stem cells within the embryonic kidney, and the 

demonstration of neo-nephrogenesis during prenatal life, it is possible that stem cells 

play a role in the response of adult mammalian kidneys to both minor and severe 

injury (Reule and Gupta, 2011).  However, studies using genetic fate-mapping 

techniques in transgenic mice have demonstrated surviving tubular cells proliferate to 

replenish lost tubular cells and are unlikely to come from either resident or circulating 

renal stem or progenitor cells (Humphreys et al., 2008).  
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Renal cellular loss leads to the infiltration of bone marrow-derived inflammatory cells 

that contribute to both tissue destruction or repair depending on the extent of an injury 

(Ricardo et al., 2008).  Circulating stem and progenitor cells, including mesenchymal 

stem cells and hematopoietic stem cells, are also known to migrate to damaged 

organs, and may also contribute to renal repair (Patschan et al., 2006, Togel et al., 

2004).  Early studies suggested that replacement of lost epithelial cells was directly by 

circulating stem cells of a bone marrow origin (Bonventre, 2003, Witzgall et al., 

1994).  However, later analysis failed to replicate these findings and demonstrated 

that bone marrow derived stem cells do not directly replace lost epithelium, but exert 

paracrine effects that facilitate repair by reducing inflammation (Duffield et al., 2005, 

Humphreys and Bonventre, 2008).  

 

The formation of new tubular epithelium in response to injury is most likely mediated 

by surviving epithelial cells near the site of damage (Humphreys et al., 2008, 

Romagnani, 2009, Duffield et al., 2005).  Neighbouring cells are thought to de-

differentiate, re-express developmental programs and migrate to areas of denuded 

basal membrane, where damaged cells have undergone apoptosis, necrosis or 

detachment.  (See figure 1.7)  Subsequently proliferation, engraftment and re-

differentiation into functional tubular epithelial cells occurs, resulting in tubular cells 

that exhibit normal polarity and physiological transport mechanisms (Duffield et al., 

2005, Bussolati et al., 2008, Bonventre and Yang, 2011, Humphreys et al., 2008, 

Romagnani, 2009).  
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Figure 1.7: Normal tubular cell repair after ischemic AKI.  With IRI, the typically highly polar 

epithelial cell loses its polarity and brush border with proteins mislocated on the cell membrane.  With 

increasing time/severity of ischemia, there is cell death by either necrosis or apoptosis.  Some of the 

necrotic debris is released into the lumen.  Viable epithelial cells migrate and cover denuded areas of 

the basement membrane.  These cells undergo division and replace lost cells.  Ultimately, the cells go 

on to differentiate and reestablish the multivesicular polarity of the epithelium (Bonventre and Yang, 

2011) 
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This is associated with the exit of inflammatory cells, downregulation of 

inflammatory pathways and re-establishment of normal renal blood flow.  Apoptotic 

pathways initiate the removal of damaged and "surplus cells", with subsequent return 

of physiologic tubular and vascular integrity and function.  Unfortunately, severe 

glomerular injury is irreversible, and progressive glomerular loss leads to expansion 

of the renal interstitium and the formation of fibrosis (Liu and Brakeman, 2008, 

Abbate and Remuzzi, 1996). 
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1.3 RATIONALE FOR THE USE OF STEM CELL-BASED THERAPIES IN 

THE TREATMENT OF RENAL ISCHEMIA-REPERFUSION INJURY 

Regenerative medicine is broadly defined as the study of the repair, regeneration and 

restoration of diseased or damaged cells, tissues and organs (Mironov et al., 2004).  

As a field it still very much in its infancy with clinical applications being limited.   

There are no therapies that reduce injury to native or transplanted kidneys, or 

treatments that promote the renewal of specific kidney cell types in widespread 

clinical use.  Modern management strategies focus instead on supporting failing 

organs until recovery, during which time exposure to further systemic or iatrogenic 

insults may injure a kidney further (Mongardon et al., 2009).  ECD and DCD organs 

are particularly vulnerable to peri-transplantation injury (Koffman and Gambaro, 

2003, Metcalfe et al., 2001a, Metcalfe et al., 2001b), and the trend towards increasing 

use of marginal allografts has highlighted the lack of progress in the regenerative 

area.  Innovative approaches to developing protective and restorative treatments are 

needed, and reports of stem cell-based therapies mitigating renal IRI in animal models 

has led investigators to actively pursue novel therapies for AKI that are based on 

cellular mechanisms of repair and regeneration.  

 

Stem cells are prime candidates for regenerative therapies because they can 

theoretically replace damaged cells when administered either centrally or 

peripherally.  In addition, stem cells secrete a broad range of trophic growth factors, 

cytokines and chemokines and release extracellular vesicles that facilitate the lateral 

transfer of organ-protective messages into target cells.  Furthermore, stem cells 

possess powerful immunomodulatory and anti-inflammatory functions and may 

enhance the proliferation of endogenous stem or progenitor cells in the repair of 

damaged organs and tissues (Togel and Westenfelder, 2012).  The rationale for stem 

cell use in clinical renal transplantation is therefore to reduce the severity of IRI, 

prevention of acute cell-mediated rejection, with the long-term aim of lessening 

immunosuppression requirement (Franquesa et al., 2012a), encouraging cellular 

regeneration and reducing chronic allograft nephropathy (Bank et al., 2015). 

 

The potentially beneficial effects of using stem cells in tissue regeneration were first 

reported by Till and MuCulloch more than 50 years ago (Becker et al., 1963, Till and 

Mc, 1961).  The subsequent enthusiasm for the potential of this novel therapy led to a 
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variety of different stem cell types being investigated for use in regeneration 

medicine, with varying degrees of success.  The first successful uses of a cell-based 

therapy for tissue regeneration described the use of bone marrow-derived stem cells to 

repair damaged muscle fibres in immunodeficient mice (Ferrari et al., 1998).  

Subsequently, numerous studies have reported beneficial effects of various stem cell-

based therapies for mitigation of acute injury and/or restoration of healthy tissue 

(Monsel et al., 2014).  

 

1.31 DEFINITIONS AND CLASSIFICATION OF STEM CELLS 

Stem cells are found in all multicellular organisms and have two characteristic 

properties by which they are defined (Potten and Loeffler, 1990): 

(1) Self-renewal – the ability to undergo cycles of cell division and remain in an 

undifferentiated state:  

(2) Potency – the ability to differentiate into both non-renewing progenitor cells or 

terminally differentiated, functioning specialised cell types.  

 

Stem cells may be classified according to their developmental potential:  

• Totipotent Stem Cells: Produced by the fusion of an egg and sperm cell, these cells 

are able to give rise to all embryonic and extra-embryonic cell types and therefore can 

create a complete and viable organism.  In mammals only the zygote and the first 

cleavage blastomeres are totipotent (Donovan and Gearhart, 2001).  

 

• Pluripotent Stem Cells are able to differentiate into any of the three germ cell 

layers: 

- Endoderm: gives rise to tissues of respiratory and digestive tracts. 

- Mesoderm gives rise to muscle, bone, cartilage, blood and fat. 

- Ectoderm gives rise to epidermal cells and cells of nervous system (Donovan 

and Gearhart, 2001, Lovell-Badge, 2001, Spradling et al., 2001, Surani, 2001). 

 

• Multipotent Stem Cells: Able to give to a subset of cell lineages, and therefore are 

limited in their ability to differentiate.(Eckfeldt et al., 2005) For example 

haemopoietic stem cells are able to give rise to different subtypes of terminally 

differentiated blood cells, but would unable to give rise to cells of neural origin.  
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• Unipotent Stem Cells: Able to differentiate into only one mature cell type.  

 

The term progenitor cell is also often used in the stem cell literature. Unlike stem 

cells, progenitor cells lack the capacity for repeated self-renewal, and their progeny 

only gives rise to specific mature cell types (Reule and Gupta, 2011).  Progenitor 

cells’ ability to give rise to a few cell types sometimes leads them to be classed as 

oligopotent.  

Stem cells from 2 sources are commonly used in biological research:  

• Embryonic stem cells (ESCs) are pluripotent stem cells harvested from the inner 

cell mass of the blastocyst, around five days after fertilization (Donovan and 

Gearhart, 2001). This process results in the destruction of the embryo.  Research 

involving ESCs has therefore been subject to considerable ethical debate (Green, 

2007).  

 

• Adult stem cells (ASCs) are undifferentiated cells found throughout the body 

amongst the differentiated cells of tissues and organs (Spradling et al., 2001).  They 

are best considered multipotent.  ASCs appear able to differentiate and replenish 

damaged cells, thereby repairing the tissue or organ in which they are found.  For 

example, in adult bone marrow there are hematopoietic stem cells (HSC) and 

mesenchymal stem cells (MSCs).  HSC can give rise to all types of blood cell, while 

MSCs have the ability to differentiate into cells of chondrocyte, osteocyte and adipose 

lineage.  

 

Unlike ESC based research, isolating ASC lines does not involve the destruction of a 

fertilized human embryo and is therefore considered less controversial (Green, 2007).  
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1.32 INDUCED PLURIPOTENT STEM CELLS 

The ideal solution to current organ shortages may lie in the development of 

techniques that allow the growth of organs ex vivo, thereby eliminating the need for 

organ donors per se.  This panacea might involve the directed differentiation of 

pluripotent stem cells into a viable organ, ideally of an identical immunological 

profile to the intended recipient.  This would eliminate the requirement for life-long 

immunosuppression and the side effects that are associated with this.  However, it is 

unclear how best to stimulate stem cells to differentiate into mature and fully 

functioning organs, partly because experiments investigating the utility of embryonic 

stem cells or stem cells derived from human fetal tissue have been the subject of 

vigorous ethical debate.  Furthermore, as yet human fetal stem cells are unproven with 

regard to their ability to generate the diverse population of differentiated cell types 

required to produce a viable organ.  

 

However, in 2006 work by Takahashi et al. described techniques that have the 

potential to circumnavigate both of these barriers (Takahashi and Yamanaka, 2006). 

The overexpression of four critical transcription factors (Oct 3/4, Sox 2, Klf 14 and c-

myc) was demonstrated to potentially return any somatic cell to a pluripotent state.  

Stem cells that result from this method are referred to as induced pluripotent stem 

cells (iPSCs) and are thought to have the same potency as ESC lines.  Theoretically, 

iPSCs may be induced from an individual’s somatic cells and stimulated to grow into 

a transplantable organ that has the same immunological profile as the somatic cell 

donor.  Furthermore, this approach is not subject to the same ethical debate as 

experiments utilising ESCs or cells from human fetal tissue.  
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After Takahashi’s seminal work, studies using iPSCs have described experimental 

protocols that have allowed the ex vivo development of precursor kidneys in a 3D 

matrix (Takasato et al., 2016a, Takasato et al., 2016b).  

Termed kidney “organoids”, these precursors are essentially a miniature, self-

organizing multicellular structure, which due to tissue structure and function may be 

regarded as a simplified kidney (Schutgens et al., 2016).  However, while the ethical 

issues surrounding the use of ESCs may be removed by the use of iPSCs, the use of 

iPSCs for the generation of kidney organoids have several potential disadvantages.  

Firstly, iPSCs are genetically unstable, as reprogramming factors introduced by 

lentiviral vectors may incorporate into the cell genome.  This poses the risk of later 

tumour formation (Briggs et al., 2013, Rao and Malik, 2012).  Secondly, organs 

derived from iPSCs may contain cell types that are not fully differentiated, and it is a 

concern that these may give rise to teratoma formation after transplantation 

(Gutierrez-Aranda et al., 2010).  Finally, organoids derived from iPSCs have been 

reported to be less efficient that organoids that are derived from ESCs (Freedman et 

al., 2015).  

 

Nevertheless, while many technical steps require clarification before the successful 

growth of transplantable kidneys, it is apparent that organoids themselves may have 

some useful clinical applications (Little, 2016).  Firstly, organoids could be utilised to 

screen drugs for toxicity, and secondly, organoids may prove useful models in which 

to study genetic aspects of kidney disease.  Furthermore, organoids may prove useful 

sources from which to gather stem cells for use in regenerative therapies (Little and 

Kairath, 2016). 
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Several studies have reported the considerable efficacy of cells derived from iPSCs 

for the treatment of an acute renal injury. However, there are conflicting reports 

regarding the possible mechanism by which this effect is achieved. Imberti et al. 

reported that iPSC kidney cell types reduced renal damage by direct kidney 

integration and differentiation into specialised cell types (Imberti et al., 2015), while 

another study concluded that this effect was mediated via paracrine factors (Toyohara 

et al., 2015).   
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1.33 MESENCHYMAL STEM CELLS  

Mesenchymal stem cells (MSCs) were originally identified in bone marrow stroma by 

Friedenstein et al (Friedenstein et al., 1974, Friedenstein et al., 1968).  They are a 

heterogeneous adult population of multipotent stromal cells that can differentiate into 

cells of the mesodermal lineage.  The presence of MSCs has been detected in the 

tissues of several organs, including peripheral blood, connective tissue, the umbilical 

cord, amniotic fluid, adipose fat and the kidney (Bruno et al., 2009a, Crisan et al., 

2008, Edwards and Hollands, 2007, Flynn et al., 2007).  Similarly, the isolation and in 

vitro expansion of MSCs has been described from bone marrow, adipose tissue, the 

umbilical cord, muscle, fetal liver and lung.  Most often isolated from bone marrow, 

bone marrow derived mesenchymal stem cells (BD-MSCs) constitute only 0.01 – 

0.001% of the total bone marrow cell population (Uccelli et al., 2006). 

 

The Mesenchymal and Tissue Stem Cell Committee of the International Society of 

Cellular Therapy have outlined a combination of phenotypical, morphological and 

functional characteristics that are required to define MSCs (Dominici et al., 2006).  

These are primarily based on three criteria:  

(1) MSCs must adhere to plastic under standard tissue culture conditions, 

exhibit fibroblast-like morphology, while displaying the ability to 

proliferate (Le Blanc, 2006, Tse et al., 2003). 

(2) MSCs must express certain cell surface markers such as CD73, CD90 and 

CD 105, but must not express CD45, CD34, CD14 or CD11b, CD79  

CD19 and major histocompatibility complex II (Dominici et al., 2006). 

(3) Must have the capacity to differentiate into mesenchymal lineages 

including osteoblast, adipocytes and chondroblasts when exposed to the 

appropriate inductive media in vitro.  

Numerous reports have described the beneficial regenerative effects of MSCs.  The 

majority of these published studies describe the use of MSCs to mitigate injury to 

solid organs - a reflection of the potential efficacy of MSCs in regenerative medicine.  

In addition, MSCs possess several advantageous properties that facilitate their use in 

clinical research (Wise and Ricardo, 2012).  

(1) MSC are easily identifiable by their cell surface markers.  

(2) They adhere to plastic and are capable of substantial proliferation and 

expansion in culture ex vivo.  
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(3) They are capable of differentiation into multiple cell lineages.  

(4) MSC can be cryopreserved with no loss of phenotype or differentiation 

potential. 

(5) They can be sourced from adult tissue, hence they are free from the ethical 

issues surrounding ESCs.  

 

1.34 MALIGNANT POTENTIAL OF MESENCHYMAL STEM CELLS 

Extensive expansion of MSCs in culture may lead to changes in cell phenotype and 

function, and it remains unclear if in vitro cultured MSCs differ in their properties 

from populations that have been obtained in vivo (Mohseny and Hogendoorn, 2011).  

The production of sufficient MSCs for clinical use may require consistent in vitro 

expansion, which could lead to spontaneous malignant transformation (Rubio et al., 

2008, Casiraghi et al., 2013b).  This remains the primary concern regarding stem cell 

therapy in clinical application.  Initially MSCs were reported not to form teratomas 

following transplantation in rodents (Kuroda et al., 2010), unlike ESCs and induced 

pluripotent stem cells, which are known to have malignant potential (Blum and 

Benvenisty, 2008, Baker et al., 2007, Barrilleaux et al., 2006, Kuroda et al., 2013).  

However, studies have reported the ability of BD-MSCs to stimulate the growth of 

existing cancers (Studeny et al., 2002) and promote metastases in mice (Karnoub et 

al., 2007).  In vitro cultures of mesenchymal stem cells derived from adipose tissue 

have shown spontaneous malignant transformation after being passaged multiple 

times over 20 weeks (Froelich et al., 2013, Rubio et al., 2005).  This phenomenon was 

not observed when BD-MSCs were passaged 25 times over 44 weeks (Bernardo et al., 

2007), suggesting that the potential for malignant transformation could vary according 

to source and/or the culture conditions (Mannello and Tonti, 2007).  However, whilst 

some studies have reported malignant transformation of BD-MSCs in culture 

(Rosland et al., 2009, Rubio et al., 2005), these have subsequently been retracted as 

the cultures investigated were contaminated with tumor cell lines (Torsvik et al., 

2010).  

 

Nevertheless, MSCs therapy applied to clinical practice ought to use cells produced 

over a short period of time with low passage numbers, and such use would require 

cautious application and rigorous surveillance (Bartmann et al., 2007).  
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1.35 BENEFICIAL PROPERTIES OF MESENCHYMAL STEM CELLS 

MSC Homing Capacity 

In non-injured states, MSCs given intravenously tend to migrate to bone marrow (Gao 

et al., 2001).  However, in vivo studies have demonstrated that after systemic 

administration, MSCs not trapped in the lung have a tendency to localise in sites of 

inflammation in damaged tissues (Horwitz et al., 2002, Mahmood et al., 2003).  

Specific and preferential migration to kidneys after renal injury is also reported 

(Ittrich et al., 2007, Herrera et al., 2004, Morigi et al., 2004).  

 

As MSCs express a variety of adhesion molecules and chemokine receptors(Fox et 

al., 2007), it is likely that chemokines are regulators of this preferential migration to 

sites of inflammation and damage.  Up-regulated in ischemic or hypoxic conditions, 

chemokine ligand 12 receptor 4 (CXC-R4)(Togel et al., 2005b, Wynn et al., 2004, 

Herrera et al., 2007) and platelet–derived growth factor (PDGF)(Burton et al., 1999) 

have been implicated in MSC migration to acutely injured kidneys.  The expression of 

CD44 also appears to be involved in the localisation of MSCs to injured renal tissue 

(Herrera et al., 2007).  This is based on the observation that MSCs, engineered to lack 

CD44 expression, are unable to preferentially migrate to an acutely injured kidney, 

and subsequently, do not aid renal repair (Herrera et al., 2007).   

 

Additionally, matrix metalloproteinase 2 and vascular-cell-adhesion-protein-1 have 

been shown to be essential in MSC rolling and adherence to endothelial cells and 

hence MSC engraftment both in vitro and in vivo (Ruster et al., 2006).  Furthermore, 

expression of these homing-related molecules is up-regulated by inflammatory 

cytokines, including TNF-α and IL-1 (Ren et al., 2010, Shi et al., 2007).  Therefore 

different tissue inflammatory states, as expressed by different levels of inflammatory 

cytokines may be pertinent to MSC engraftment and therapeutic efficacy of MSC 

preparations (Wei et al., 2013). 

 

Immunomodulatory Properties 

Administration of MSCs has been found to exert protective effects in response to IRI 

in a wide range of solid organ animal models.  Such models include acute lung injury 

(Ortiz et al., 2003), AKI (Franquesa et al., 2012b), acute brain injury (Mahmood et 
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al., 2003) and acute myocardial infarction (Gnecchi et al., 2006).  There is general 

consensus amongst researchers that the benefits of MSC therapy in a wide range of 

diseases indicate that MSCs produce their effects in different organs by the 

modulation of common pathways.  MSCs are known to dampen inflammation in 

response to injury, thereby limiting initial tissue damage and subsequently promoting 

tissue repair (Uccelli et al., 2008, Han et al., 2012).   

The immunomodulatory potential of MSCs has been extensively studied (Aggarwal 

and Pittenger, 2005, Krampera et al., 2003).  MSCs poorly present antigen to other 

cells, lacking the expression of MHC class II proteins or co-stimulatory molecules 

(Dominici et al., 2006).  Consequently, MSCs do not stimulate T-cell proliferation in 

mixed lymphocyte culture but are known to down-regulate alloreactive T-cell 

responses in vitro via several mechanisms (Di Nicola et al., 2002).  Furthermore via a 

paracrine effect, infiltrating MSCs have been shown to alter both proliferation and 

cytokine secretion profiles from T helper cells (Krampera et al., 2003, Glennie et al., 

2005, Nauta et al., 2006a).  Additionally, in vitro experiments, demonstrate MSC 

paracrine action dampens IL-2 and IL-15 driven Natural Killer cell proliferation 

(Aggarwal and Pittenger, 2005, Spaggiari et al., 2006), and furthermore production of 

dendritic cells from peripheral blood monocytes (Nauta et al., 2006a, Jiang et al., 

2005, Zhang et al., 2004).  Data on the role of MSCs on B cell function is less clear 

(Tabera et al., 2008, Franquesa et al., 2012b).  It is postulated that MSCs may reduce 

B cell proliferation both indirectly via T cell immunomodulation, and directly by up-

regulating IL–10 production (Franquesa et al., 2015).  

MSC administration has been reported to reduce cell-mediated rejection in rodent 

transplant models (De Martino et al., 2010).  The increasingly used ECD and DCD 

renal allografts are known to suffer from more severe IRI injury (Bagul et al., 2013) 

and are consequently more prone to short-term complications including DGF and 

acute cell-mediated rejection (Pomfret et al., 2008, Renkens et al., 2005, Singh et al., 

2011).  The immunomodulatory ability of MSCs to reduce inflammatory response to 

local injury and increase tolerance (Casiraghi et al., 2013a) makes such therapies an 

attractive option for the treatment of renal IRI (Vanikar et al., 2014). (See figure 1.8)  
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Figure 1.8: MSC origin and function, paracrine function and immunomodulatory properties (Asanuma 

et al., 2010). Since this publication, it has become apparent that MSCs progeny are limited to bone, 

cartilage and adipose cell types.  MSCs are not able to give rise to neurons, hepatocytes or muscle cells 

as originally thought.  

 

 

1.36 MESENCHYMAL STEM CELLS AND CLINICAL TRIALS 

 Given this potential, a small number of clinical studies been conducted, 

administering MSCs to patients undergoing kidney transplantation.  The timing of 

MSC preparation administration has tended to be during induction, and most studies 

have focused on safety and feasibility endpoints (Perico et al., 2011, Mudrabettu et 

al., 2015).  Initial reports suggest a reduction in acute rejection associated with MSC 

induction therapy in comparison to a more conventional induction regime utilising 

antibodies directed against IL-2 receptors (Tan et al., 2012).  Correspondingly, renal 

function at one year was reported to be better in the MSC-treated group (Tan et al., 

2012).  A further randomised study concluded that donor ADRC therapy, when co-

infused with hematopoietic stem cells peri-transplant, was safe and associated with 

fewer episodes of acute rejection (Vanikar et al., 2014).  However, another study 

reported that timing of MSC therapy is critical, with administration prior to 

transplantation yielding better results (Pileggi et al., 2013).  
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1.37 PATHFINDER CELLS 

There is interest in testing the efficacy of novel stem cells types, that are distinct from 

conventional MSCs.  For example, pancreatic ductal epithelial cells are reported to 

have the ability to de-differentiate into progenitor cells capable of forming new 

pancreatic islets and acini (Bonner-Weir et al., 2004).  As ductal cells replicate, they 

transiently express PDX-1, an embryonic transcription factor necessary for pancreatic 

development and the maturation of β-cells.  Cells expressing PDX-1 are reputed to 

display multi-potency (Bonner-Weir et al., 2004). 

 

The isolation and characterization of a novel population of pancreatic ductal 

progenitor cells has subsequently been described (Stevenson et al., 2009).  These 

cells, termed ‘pathfinder cells’ were originally obtained from adult rat pancreatic 

ducts, and have also been demonstrated to express PDX-1.  Two populations of 

pathfinders, either positive or negative for the MSC surface marker CD90 have been 

characterized (Stevenson et al., 2009).  Pathfinders positive for CD90 have been 

shown to form islet like structures when appropriately stimulated in vitro, in addition 

to the transcriptional expression of insulin.  CD90 negative cells do not form islets but 

are able to display insulin gene transcription (Stevenson et al., 2009).  

 

Pathfinder cells have been reported to aid organ regeneration in response to injury in a 

number of animal models.  In streptozotocin-induced diabetic mice, administration of 

intravenous human pathfinders was associated with normalised blood glucose and 

insulin that was murine in origin (Stevenson et al., 2011).  The authors concluded that 

Pathfinders were able to stimulate native β-cell regeneration, probably via a paracrine 

mechanism.  This conclusion was later supported by additional work by the same 

group, using extracellular secretory vesicles isolated from pathfinder cells in the same 

animal model with similar results (McGuinness et al., 2016).  Another study, 

administering intravenous infusion of Pathfinder cells to mice, reported mitigation of 

renal IRI, again thought to be via a paracrine mechanism (McGlynn et al., 2013).   

 

1.38 EVIDENCE FOR THE MECHANISM OF ACTION OF STEM CELLS  

Considerable evidence exists demonstrating the regenerative effects of stem cells as a 

therapy for the repair of damaged solid organs.  However, the precise mechanism by 
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which the beneficial action of stem cells is conferred is not well understood, and no 

single mechanism has gained universal acceptance. 

 

1.381 DIFFERENTIATION-DEPENDENT HYPOTHESIS 

The initial theory, often termed the “Differentiation-Dependent Hypothesis” stated 

that the administration of exogenous stem cells resulted in stem cell localisation 

within the tissues of an injured solid organ.  According to this theory, after 

administration stem cells would migrate to the site of injury, become engrafted into 

the organ and differentiate into healthy, functional specialized cells and their 

supporting types (Orlic et al., 2001, Terada et al., 2002, Ferrari et al., 1998).  

 

The main evidence for the Differentiation –Dependent mechanism was provided by 

the following studies: 

 

•  In murine glycerol and cisplatin AKI models, intravenous MSC therapy was 

reported to promote structural and functional repair of injured kidneys, via MSC 

engraftment and differentiation into functional tubular epithelial cell (Herrera et al., 

2004, Morigi et al., 2004).  Up to 22% of injected MSCs were found engrafted within 

damaged kidneys (Herrera et al., 2004).  This indicated MSC tropism for the injured 

kidney and a potential contribution of the stem cells to aid tubular regeneration and 

subsequently protect long-term kidney function (Herrera et al., 2004, Morigi et al., 

2004).  

 •  In both porcine and rodent animal models of acute myocardial infarction, initial 

experiments demonstrated restoration of cardiac function after intra-cardiac MSC 

administration.  This led some groups to conclude that MSC differentiation into 

cardiomyocytes and other cell types was the likely mechanism by which MSCs act 

(Shake et al., 2002, Tomita et al., 2002, Davani et al., 2003). 

 

Subsequently, evidence from multiple studies utilising different organ injury models 

emerged to challenge the theory of stem cell differentiation as the possible 

mechanism by which stem cells act to cause organ regeneration in response to injury.  
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In summary:  

• Using a rat model of acute myocardial infarction Mangi et al reported improved 

heart function only 72 hours after intra-cardiac MSC administration (Mangi et al., 

2003).  Due to the short timeframe between exposure and response to MSC therapy, 

the authors, concluded myocardial regeneration could not be attributed to MSC 

engraftment and differentiation.   

 

• Herrera et al demonstrated limited replacement of damaged renal tissue by 

differentiated MSCs, with only 2.0 – 2.5% of injected cells showing engraftment 

(Herrera et al., 2007).  Other studies also reported a negligible percentage (<5%) of 

administered cells became engrafted in the injured kidney (Imberti et al., 2007, 

Morigi et al., 2008).  These studies also reported administered MSCs did not persist in 

the kidney in the long-term.  This was a direct contradiction to previous reports 

(Herrera et al., 2004, Morigi et al., 2004) although there was consensus that MSC 

therapy protected against AKI, reducing tubular cell apoptosis and stimulating 

proliferation.  

 

• The work by Herrera et al (Herrera et al., 2007) was later substantiated in rat renal 

IRI models, whereby MSCs were only found to become engrafted transiently.  

Nevertheless improved renal function, likely as a result of reduced tubular damage by 

production of anti-apoptotic, pro-mitogenic and vasculotropic factors was observed 

within 48 hours (Lange et al., 2005).  Furthermore, MSC therapy was associated with 

up-regulation of anti-inflammatory cytokines and growth factors (Togel et al., 2005a, 

Lange et al., 2005, Togel et al., 2007). 

 

• MSC therapy in animal models had typically been delivered intravenously, due to 

the minimally invasive nature of this route and the easy of access.  However, the 

majority of intravenously administered MSCs remain in the circulation for less than 

60 minutes, before accumulating within filtering organs such as the lung, liver and 

spleen (Barbash et al., 2003, Kraitchman et al., 2005, Sackstein et al., 2008, Bieback 

and Brinkmann, 2010).   

 

• Although a limited number of transplanted exogenous cells were seen within the 

injured tissues, endogenous stem/progenitor cells were reported to become the 
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majority of the stem cell population that contribute to tissue repair after injury (Usas 

et al., 2011). 

 

 

1.382 DIFFERENTIATION-INDEPENDENT (PARACRINE ACTION) 

HYPOTHESIS 

As evidence emerged to challenge the differentiation-dependent hypothesis, 

complementary studies introduced the concept that stem cells, via a beneficial 

paracrine action, may mediate their effects via the release of biologically active 

factors.  

 

Paracrine signalling may be defined as a form of communication between two 

different cells, where one cell releases chemical mediators to its immediate 

environment, which results in a change in the behaviour of a cell in the adjacent 

environment.  

 

Supported by a wealth of convincing evidence, the idea that stem cells work via a 

paracrine mechanism gained widespread acceptance. 

 

• It was reported that intra-myocardial injection of cell-free culture medium 

conditioned by MSCs, protected cardiomyocytes from ischemic injury to the same 

extent as medium containing MSCs (Gnecchi et al., 2006).  MSC conditioned media 

improved cardiac function within 72 hours, but no improvement was observed with 

the use of medium that had never been exposed to MSCs (Gnecchi et al., 2006).  This 

experiment was later replicated in a porcine model of myocardial infarction, 

concluding that MSC conditioned medium protected cardiomyocytes from ischemic 

injury (Timmers et al., 2007).   

 

• Lee et al. reported that despite the majority of intravenously administered MSCs 

becoming trapped in the lungs of treated mice, MSC therapy was associated with 

significant myocardial injury reduction.  They concluded that lung engrafted MSCs 

were acting in a paracrine fashion by secreting the anti-inflammatory protein TSG-6 

(Lee et al., 2009). 
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• In a rat renal IRI model, Togel et al reported MSC therapy to be associated better 

outcomes than vehicle only treatment.  MSCs were found to up regulate anti-

inflammatory growth factors such as IGF-1 and IL-10, whilst causing the down-

regulation of pro-inflammatory mediators such as TNF-alpha and inducible nitric 

oxide synthase (i-NOS) (Togel et al., 2005a).  The same group would later 

demonstrate that MSC-conditioned media increased the survival and proliferation of 

endothelial cells in vitro, postulating that paracrine factors were responsible for their 

observations (Togel et al., 2007). 

 

These findings provided strong evidence that stem cells produce their beneficial 

effects in solid organs by the release of biologically active paracrine mediators.  

Despite this, some research groups argue that the differentiation-dependent hypothesis 

is the more likely to be correct, and cite a recent study concluded that stem cell 

conditioned medium did not protect against AKI in a murine cisplatin-induced AKI 

model (Gheisari et al., 2011). 

 

Nevertheless, in recent years the differentiation-independent mechanism has gained 

more supporters.  Interestingly, recent studies argue the differentiation-dependent and 

differentiation-independent mechanisms both play a role in limitation of initial injury 

and long-term kidney regeneration (Zhao et al., 2014).  Whilst acknowledging that the 

differentiation-dependent mechanism may exist in the organ repair process, the 

limited cell engraftment and differentiation reported by most studies would make it 

more likely that stem cells exert the majority of their regenerative effects in a 

paracrine fashion.  

 

1.39 EVIDENCE FOR A PARACRINE MECHANISM IN MITIGTION OF 

ACUTE RENAL INJURY 

Several studies using different models of acute renal injury have demonstrated the 

protective effects of exogenous stem cells.  In these studies, the use of MSCs has 

predominated.  Although MSCs, when administered systemically, were shown to 

migrate to the site of injury, the extent of tissue repair did not correlate with the 

degree of exogenous MSC engraftment.  This suggested that MSCs produced their 

effects in an indirect fashion, leading many of these studies to conclude that stem cells 

produced their beneficial effects via a paracrine mechanism.  
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Consequently, the ‘differentiation-dependent hypothesis' began to lose favour.  

Researchers suspected that the transfer of biologically active factors carried in 

membrane bound extracellular cellular vesicles (ECVs) between stem and recipient 

cells could be responsible for the observed results.  This realisation, together with the 

knowledge that cell-free therapy may have a number of benefits over cellular therapy 

led investigators to isolate preparations of ECVs and utilise them in experiments, in 

an attempt to demonstrate ECV efficacy.  

 

With respect to the kidney, an initial study reported the effects of cell media, 

conditioned by MSCs, injected into the peritoneal cavity of mice with cisplatin-

induced renal failure (Bi et al., 2007).  Media administration was found to be 

associated with reduced tubular cell apoptosis and increase tubular cell survival, 

replicating findings that had previously been observed with MSC therapy itself.  As 

with previous experiments utilizing conditioned cell media, the authors suspected 

there were active agents residing in the media, released by MSCs during culture.  

 

The first ever study to demonstrate the therapeutic effect of MSC-derived ECVs 

focused on kidney injury.  Here, after centrifugation of MSC conditioned cell media, 

Bruno et al demonstrated the protective effects of ECVs in a glycerol-induced murine 

model of AKI (Bruno et al., 2009b).  They concluded the ECVs were able to shuttle a 

subset of micro-RNA (miRNA) that was characteristic of MSC phenotype, thereby 

influencing cell proliferation, transcription and immune-regulation (Bruno et al., 

2009b, Bruno and Bussolati, 2013).  

 

Subsequently, a number of studies, using ECVs purified from conditioned cell media 

have demonstrated protective effects of ECVs given by an intravenous route. 

 

Gatti et al. reported that rats subjected to renal IRI, were protected by a single dose of 

ECVs obtained BD-MSC, given immediately after injury (Gatti et al., 2011).  ECV 

use was associated with improved renal function and histology, with reduction in 

tubular cell apoptosis.  Interestingly, ECVs obtained from fibroblasts conferred no 

benefit to damaged kidneys.  These findings were corroborated in a study by Zou et al 

(Zou et al., 2014).  Here, in rat renal IRI model, the use of intravenously administered 

ECVs isolated from MSCs that originated in umbilical cord tissue, was associated 



	 65	

with improved renal function and histology.  The authors concluded that the likely 

mechanism of ECV action was via a reduction in infiltrating macrophages, due to 

reduced expression of the chemo-attractant protein CX3CL1 (Zou et al., 2014).   

 

Cantaluppi et al reported that in a rat renal model of IRI, ECVs derived from 

endothelial progenitor cells, accumulated in peri-tubular capillaries and tubular cells 

after intravenous injection (Cantaluppi et al., 2012).  The use of ECVs was found to 

accelerate tubular proliferation while reducing apoptosis and leucocyte infiltration.  

Significantly, improved renal function was associated with ECV administration.  The 

use of RNAase on ECVs prior to administration negated their effects (Cantaluppi et 

al., 2012).  Furthermore this experiment analysed the effect of ECVs harvested from 

Dicer knockdown endothelial progenitor cells.  Dicer is an intracellular enzyme 

essential for the production of miRNA.  ECVs from Dicer silenced endothelial 

progenitors were not found to be capable of conferring protection against renal IRI.  

 

Taken together with the effect of RNAase treatment on ECV efficacy, these findings 

clearly implicate the horizontal transfer of miRNA as a key step in the action of ECVs 

on other cells (Cantaluppi et al., 2012).  These results were supported by subsequent 

studies (Bruno et al., 2012, Milwid et al., 2012), which reported amelioration of 

neighbouring AKI in SCID mice by repeated intravenous injections of ECVs obtained 

from BD-MSCs.  Again, RNAase treatment negated any protection conferred by ECV 

administration (Bruno et al., 2012).  In addition to these results, He et al. described 

the reno-protective effects of BD-MSC ECVs, given intravenously to mice 

undergoing a 5/6 nephrectomy (He et al., 2012).  

 

However, the ECVs obtained in each the above studies were isolated using uniform 

centrifuge speeds of 100,000g (Bruno et al., 2009b, Cantaluppi et al., 2012, Gatti et 

al., 2011, Bruno et al., 2012, He et al., 2012, Milwid et al., 2012, Zou et al., 2014).  

As discussed below, ECVs released from stem cells are far from uniform, differing in 

size, membrane surface proteins and biological content.  Centrifugation at 100,000g is 

likely to result in the isolation of at least two active vesicle populations that are 

present in the ECV fraction.  Correct identification of the responsible vesicle type is 

necessary to allow the characterization the active biological factors through which 

tissue repair and regeneration might be achieved (Han et al., 2016).  
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1.4 WHAT IS THE EXACT NATURE OF THE PARACRINE MEDIATORS 

BY WHICH STEM CELLS ACT?  

The exchange of information between cells may involve soluble factors or direct cell-

to-cell contact.  A weight of evidence suggested that stem cells produce their 

beneficial effects via paracrine factors, and subsequently, researchers have 

investigated as to what the identity and nature these factors might be.  

 

Extracellular secretory vesicles (ECVs) have emerged as the leading candidates by 

which stem cells might achieve paracrine signaling.  Correctly applied, ECV is term 

that encompasses the entire spectrum of membranous vesicle derived from cells 

(Anthony and Shiels, 2013).  ECVs are also broadly referred to in the literature using 

several terms including micro-secretory vesicles, micro-particles and (incorrectly) 

microvesicles and exosomes.  Indeed, a recognised standard needs to be reached with 

regard to the nomenclature in this area (Pilzer et al., 2005).  Too often different 

studies use different criteria to define ECVs, and due to inconsistent terminology 

comparison between studies becomes difficult (Anthony and Shiels, 2013, Gould and 

Raposo, 2013).  

 

ECVs were initially identified from a large number of cell types, both in vitro and in 

vivo.  They are membrane bound, spherical, submicron factors that are released from 

the cell membrane.  For a long time, ECVs were considered to be inert cellular debris 

lacking any specific biological purpose (Siekevitz, 1972).  Using electron microscopy, 

ECVs observed in vitro were thought to be the result of cell preparatory methods and 

dismissed as irrelevant artifacts.  Similarly, ECVs obtained from biofluids while in 

vivo were regarded as the result of cell damage or routine cell membrane turnover and 

dismissed as inconsequential (Siekevitz, 1972).  

Subsequently, it was demonstrated that circular plasma membrane fragments released 

from human cells were the result of a specific export process, with ‘membrane 

fragments’ carrying enzymes in the same ratio as the cells from which they originated 

(De Broe et al., 1977).  More recent evidence has questioned the validity of initial 

assumptions, and it is now widely recognized that ECVs influence and participate in 

numerous biological processes (Cocucci et al., 2009).  Recent experiments have 

identified specific functions of ECVs released from various cell types, with the 
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recognition that ECVs should now be considered carriers of genetic information that 

is exchanged in cell-to-cell communication (Raposo and Stoorvogel, 2013).   

Apoptotic vesicles have been demonstrated as being released from both healthy and 

diseased cells undergoing apoptosis.  They range in size from 1 – 5µm (Raposo and 

Stoorvogel, 2013) and  do not appear to have a major role in cell-to-cell signaling 

(Akers et al., 2013). 

 

 However, two broadly distinct types of ECV been reported as participating in the cell 

signalling process – microvesicles and exosomes (Gyorgy et al., 2011, Raposo and 

Stoorvogel, 2013, Thery et al., 2009).  Despite continuing confusion regarding the 

nomenclature used to describe these, there is growing acceptance that microvesicles 

and exosomes are structurally and morphologically distinct.  Furthermore, 

microvesicles and exosomes are thought to contain different biologically active 

factors, and this has clear potential implications for their effects on target cells 

(Raposo and Stoorvogel, 2013, Lai et al., 2012).  

 

Microvesicles are sometimes loosely referred to as “shedding vesicles” (Cocucci et 

al., 2009). They originate by direct budding of small cytoplasmic protrusions of the 

cell plasma membrane in a process that is dependent on calcium influx.  With regard 

to size, microvesicles are a heterogeneous population that range between 100nm – 

1µm (Cocucci et al., 2009, Dragovic et al., 2011).  (See Figure 1.9) 

 

On the other hand, exosomes are derived from the endosomal membrane 

compartment, and after fusion with the plasma membrane undergo exocytosis from 

activated cells (Hugel et al., 2005, Johnstone et al., 1987).  Exosome content entered 

the cell of origin by endocytosis, before being biologically altered and stored as 

intraluminal vesicles within multivesicular bodies of the late endosome.  They are 

released when these multivesicular bodies fuse with the cell membrane in a 

mechanism dependent on cytoskeleton activation.  They are a more homogenous 

population with a size ranging from 30 – 100nm (Heijnen et al., 1999, Rozmyslowicz 

et al., 2003, Dragovic et al., 2011, Hugel et al., 2005, Raposo and Stoorvogel, 2013).  
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Figure 1.9: Release of microvesicles and exosomes.  Microvesicles bud directly from the plasma 

membrane, whereas exosomes are represented by smaller vesicles that are more regular in size and 

shape.  Exosomes originate from inward budding of the cell membrane and the formation of 

multivesicular bodies (MVBs).  When MVBs fuse with the plasma membrane, exosomes are released.  

The point of divergence between these types microvesicles and exosomes is drawn at early endosomes, 

but the existence of distinct early endosomes feeding into these two pathways cannot be excluded.  

Other intracellular vesicles fuse with lysosomes and are degraded (Anthony and Shiels, 2013). 

Interestingly, the release of ECVs from cultured stem cell lines is known to be 

dependent on conditions in which the cells are maintained.  A number of triggers for 

increased ECV production have been identified, including hypoxia, shear stress, 

oxidative stress and the presence of inflammatory cytokines, including TNF-alpha and 

IL-6.  Studies report a 15-fold increase in ECV production when cultured stem cells 

are stimulated with either hypoxia or sheer stress (Bian et al., 2012, Diamant et al., 

2004, VanWijk et al., 2003, Ratajczak et al., 2006b).  

 

ECVs have been shown to contain cell surface receptors and cytoplasmic 

components, including proteins and lipids, which originate from their cell of origin 

(Ratajczak et al., 2006a, Collino et al., 2010, Deregibus et al., 2007, Yuan et al., 

2009).  The presence of cell-specific surface receptors suggests that ECVs are an 

important mechanism by which cells communicate.  Furthermore, this is an indication 

that ECVs target specific cells in the immediate environment and do not communicate 

with other cells in a random fashion.  Analysis has revealed that both microvesicles 

and exosomes contain biologically active nucleic acids in the form of DNA, 

messenger RNA (mRNA), and microRNAs.  The biologically active content of ECVs 
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implies that functional modulation and re-programming of recipient cells may occur 

in response to ECV stimulation.  The membrane structure of ECVs suggests that this 

process is carefully regulated, and consequently is dependent upon the interaction 

between cell-specific surface protein receptors (Collino et al., 2010, Deregibus et al., 

2007, Ratajczak et al., 2006a, Yuan et al., 2009). 

 

Ratajczak et al (Ratajczak et al., 2006a) were the first to show that stem cell derived 

ECVs are able to reprogram cells resident in neighbouring tissue.  In this study, 

haemopoietic progenitor cells were induced to transcribe proteins in response to 

ECVs stimulation.  Since RNAase treatment ablated this process, the authors 

concluded that RNA contained in ECVs was critical in this signaling process.  

 

Subsequent reports described the activation of angiogenic pathways in quiescent 

endothelial cells using ECVs derived from endothelial progenitor cells (Deregibus et 

al., 2007).  Again ECV treatment with RNAase negated this effect.  Later, the same 

group would report that such ECVs contained the pro-angiogenic miRNAs, including 

miR-126 and miR-296 and hypothesized that delivery of these by ECVs into recipient 

cells could explain their observations (Cantaluppi et al., 2012).  

 

These studies suggest that stem cells exert at least some of their beneficial effects in 

damaged solid organs via transfer of genetic information within ECVs (Camussi et 

al., 2010). The resultant alteration of gene expression may result in the up-regulation 

of anti-inflammatory cytokines and anti-apoptotic genes, whilst down regulating 

inflammatory and pro-apoptotic factor expression (Johnstone et al., 1987, Camussi et 

al., 2010). 

 

Tissue resident cells, rather than circulating stem or progenitors cells, seem to provide 

the major contribution to regeneration with solid organs.  Within the kidney, repair 

following ischemia is attributed to tubule re-population from resident tubule cells.  

These are likely to de-differentiate, migrate to the site of injury and differentiate again 

into mature tubular cells.  ECVs released from resident stem cells possibly modulate 

this chain of events, by re-programming remaining tubular cells to enter the healing 

process.  However, these processes may be overwhelmed in the face of severe injury, 

especially if the organ is biologically old.  Administration of either exogenous stem 
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cells, or their ECVs, that results in high localized renal ECV concentration may 

provide a boost to the healing process by both down-regulation of the inflammatory 

process, and direct stimulation of tissue regeneration.  (See Figure 1.11) 

 

 
Figure 1.11: Potential mechanism by which stem cells and their ESVs can induce renal regeneration.  

(Cantaluppi et al., 2013) 

 

1.41 WHICH TYPE OF EXTRACELLUALAR VESICLE IS RESPONSIBLE 

FOR ORGAN REGENERATION 

It has been reported that the microvesicles will sediment at centrifugation speeds 

lower than 100,000g (Muralidharan-Chari et al., 2010).  Due to their smaller size, the 

exosomal fraction requires speeds of around or higher 100,000g to sediment.  Hence it 

is possible to broadly separate the ECV constituents by the use of differential 

centrifugation speeds.  

 

Unfortunately, most studies typically report the use of a single centrifugation speed of 

around 100,000g when preparing their ECV samples.  Hence, the many ECV 

preparations reported to have regenerative effects when applied to injured solid 

organs, are likely to contain both microvesicles and exosomes.  Consequently, any 

	
	
	
	
	
	
	
	
	
	
	

Trophic	Factors:		
VEGF	
PDGF	
IL-1	
TNF-α	
	
	
	
	
	
	

VCAP-1	
MMP-2	
CD44	dependent	
	
	
	

	
	

CXC-R4	
PDGF	
CD44	



	 71	

biological effects associated with the use of such mixed preparations are difficult to 

attribute to a particular ECV fraction and their specific nucleic acid and protein 

content (Muralidharan-Chari et al., 2010). 

 

 

1.5 ADVANTAGES OF CELL-FREE vs. STEM CELL THERAPY 

Understanding the identity of the active paracrine factors and how they may influence 

solid organ repair and regeneration is clearly important in the development of future 

regenerative therapies.  As noted previously, therapeutic administration of stem cells 

is known to carry the risk of mal-differentiation into malignant cell lines.  This is of 

particular concern in patients undergoing solid organ transplantation as such 

procedures carry the necessity of life-long immunosuppression to prevent rejection by 

the adaptive immune system.  Immunosuppression is well recognised to increase the 

risk of malignancy.  It is generally accepted that a recent donor or recipient history of 

a malignant process should be an absolute contraindication to solid organ 

transplantation.  Transplant clinicians recognise the potential risk of using cultured 

stem cell lines as a therapy to reduce peri-transplantation injury and consequently 

there is reluctance to expose transplanted, immunosuppressed patients to novel 

cellular therapies. 

 

ECVs have been shown to be more stable in storage than aliquots containing stem 

cells.  It is also easier to prepare frozen ECVs for delivery than cellular preparations, 

making ECVs more suitable for everyday use (Vlassov et al., 2012).  Moreover, cell-

free preparations are thought to carry a much-reduced risk of causing malignancy 

when compared to preparations containing potent stem cells (Vishnubhatla, 2014) 

(Han et al., 2016).  Identification of the active paracrine factors that mediate 

protection in the short term and/or tissue regeneration in the long-term may allow 

these factors to be manufactured synthetically (Vishnubhatla, 2014), reducing the 

potential for harm to a minimum (Rani et al., 2015).  Furthermore, in clinical 

transplantation, the likely route of administration of any therapy would be into the 

artery supplying the allograft just prior to transplantation.  This would minimise the 

drug dose needed, and would probably dramatically reduce the systemic distribution 

when compared to the intravenous route.  One potential drawback of intra-arterial 

therapy is the increased likelihood of microvascular occlusion, a process originally 
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termed “passive-entrapment” (Walczak et al., 2008).  Supra-therapeutic dose of stem 

cells, administered intra-arterially have since been reported to cause passive 

entrapment, resulting in renal hypoperfusion and dysfunction (Shih et al., 2013, Lee et 

al., 2012, Cai et al., 2014).  In contrast, a therapeutic dose of smaller, soluble and 

highly concentrated biologically paracrine factors would be most unlikely to cause 

such a problem (Rani et al., 2015).   
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CHAPTER 2 
GENERAL MATERIALS AND METHODS 
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The materials and methods presented in this chapter describe general methodology 

relevant to all ‘results’ chapters.  Where appropriate, additional materials and methods 

specific to individual experiments presented within a particular results chapter are 

addressed within that chapter.  

 

2.1 RODENT HUSBANDRY, ANASTHESIA, SURGERY AND 

POST SURGICAL CARE 
2.11 RODENT DIET AND HOUSING 

Albino Swiss rats, their mutant rat substrain (AS-AGU), and Fischer 344 rat strain 

were used in different experiments reported throughout this thesis.  Albino Swiss and 

AS-AGU rats were bred in the Joint Research Facility, University of Glasgow.  Male 

Fisher 344 rats were bought from Harlan UK Ltd, and housed for at least two weeks 

before surgery to allow the animals to equilibrate with their new environment. 

All animals were housed in the Joint Research Facility under standardised conditions 

in plastic metal cages, light-dark cycle 12/12 hours, temperature 22oC +/- 2oC, 

humidity 55 +/- 5%. 

Animals were fed a standard diet of rodent chow and had access to tap water ad 

libitum both pre and post procedures. 

 

2.12 RODENT ANASETHSIA 

All animals were weighed prior surgery.  Anaesthetic induction was achieved by 

placing the rat in an anaesthetic chamber, and ventilating with 5% isoflurane.  Once 

anaesthetized, the animal was shaved as appropriate.  

Unless otherwise stated, anaesthesia was maintained throughout surgery with an 

inhaled mix of 5% isoflurane and 1 litre/ minute of oxygen given via facemask.  The 

required amount of anaesthestic agent was adjusted by an assistant according to the 

animal’s respiratory rate and pain withdrawal reflexes. 

 

2.13 POSITION AND TEMPERATURE CONTROL DURING RODENT 

SURGERY  

The animal was placed supine under a sterile drape on a corkboard, containing a far-

infrared heating mat.  A mobile board is useful for microsurgery, as it allows the 

animals position relative to the surgeon to be easily manipulated during theprocedure.  
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The animal’s core temperature was measured regularly with an infrared thermometer 

and maintained in the range of 36.9oC  - 37.3oC by adjusting the far infrared heating 

mat.  

 

2.14 SURGICAL STERILITY 

The methods used to ensure sterility are recommended by the Home Office and were 

observed and approved by the Home Office veterinary surgeon.  Great care was made 

to ensure sterility at all times including liberal use of sterile drapes and gloves, 

autoclaved instruments (30 minutes at 134oC) and sterile surgical technique.  After 

shaving, the animals were cleaned with 2% chlorhexidine solution before being 

covered with a sterile drape.  

 

2.15 MICROSURGICAL SET-UP AND EQUIPMENT 

- Wild Heerbrugg Ltd operating microscope – zoom 10 – 30x with 60mm LED 

light ring (Microscope Systems Scotland).  

- Far infrared heating pad and infrared thermometer.  (Kent Scientific: DCT-15) 

- Operating Cork Board (30 x 30 cm). (See Figure 2.1) Covered with disposable 

plastic sheeting, held in place with adhesive tape.  Ordinary paper clips, after 

being autoclaved, were attached to elastic bands and used as tissue retractors, 

held in place with sterile 16G needles.   
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Figure 2.1: Typical microsurgical setup, showing the relationship of operating microscope, cork board 

and the attached far infrared heating mat.   
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The following microsurgical instruments were obtained from S&T® 

- Microsurgical vessel dilators with 0.1mm tips.  (D-5a.1) 

- Microsurgical vessel dilators with 0.2mm tips.  (D-5a.2) 

- Microsurgical vessel dilators with 0.3mm tips.  (D-5a.3) 

- Angulated forceps with 0.3mm tips.  (JFA-5b) 

- Dissecting microsurgical scissors with curved tips (SDC-15) 

- Adventia microsurgical scissors with sharp tips (SAS-15) 

- Microsurgical needle holder without a lock, curved tips 0.4mm.  (B-15-8) 

- Tubing introducing forceps, tips 0.35mm.  (TIF02) 

- Clamp applying forceps.  (CAF-4) 

- Atraumatic vascular clamps.  (B1-V and B2-V)) 

- Aceland Frame Clamp.  (ABB-1V) 

- Silicon strip visibility background material – essential to place behind vessels 

during anastomosis, both to protect surrounding structures and to aid 

visualisation.  (VB2 and VB4) 

- 0.6mm rubber sloop  

Additional equipment used during microsurgery included:  

- Electric hair clippers (Oster-A5-00) 

- 15G Scalpel.  (Ethicon Ltd) 

- Sterile Dressing packs (Nu-Care Products) 

- Sterile Cautery  (John Weiss International Eye Cautery 0111122)  

- 30G Rycroft Cannula (0108003)  

- Sterile cotton tip applicators (Nu-care Products) 

- 10/0 nylon sutures.  (Schuco Ltd, ZX-AK-0105, DR4 needle) 

- 4/0 polyglactin 910 (vicryl®) sutures (Ethicon Ltd) 

 

2.16 POST-SURGICAL CARE 

Post-operatively, all animals were injected with 2.5ml of subcutaneous 0.9% saline  

(Baxter Healthcare, Thetford UK).  Buprenorphine analgesia was injected 

subcutaneously at 0.0045% per 100g of body weight.  This was repeated every 12 

hours for a maximum duration of 48 hours post surgery.  The animal was placed in a 

warming box at 38oC for 60 minutes after surgery and then returned to its cage.  

Animals were allowed free access to rodent chow and water and were weighted daily. 
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2.17 RODENT VENESECTION 

Measurement of serum creatinine is a commonly used to assess kidney function in 

humans and laboratory animals.  

Creatinine is a byproduct of muscle metabolism, formed during the breakdown of 

phosphocreatine by creatine kinase.  For an individual animal, the rate of production 

of serum creatinine is relatively constant, although this varies between animals 

according to muscle mass.  Creatinine is mainly filtered from the blood in the 

glomerulus, although it is also secreted by the proximal tubules.  When glomerular 

filtration is impaired, the blood level of creatinine rises.  

 

~ 200µL of blood for creatinine levels was obtained from rat-tail veins by puncture 

with a 23G needle after anaesthesia was induced as described in Section 2.12.  

The blood was spun for 6 minutes at 6000rpm, and the serum stored on ice before 

being transported to the Diagnostic Veterinary Diagnostic Services Laboratory, 

University of Glasgow at Garscube. Serum creatinine was measured via a kinetic 

modification of the Jaffe procedure, using an automated Olympus AU5400 analyzer.  
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2.2 DETERMINATION OF GLOMERULAR FILTRATION RATE 

VIA CONTINUOUS INFUSION CLEARANCE WITH 

FLUORESCENT INULIN 

 
2.21 BACKGROUND 

The formation of urine begins in the glomerulus with the generation of plasma 

ultrafiltrate.  The rate of ultrafiltrate formation, known as ‘Glomerular Filtration Rate’ 

(GFR) is regarded as the ‘gold standard' for determining renal function in both 

animals and humans (Schock-Kusch et al., 2012, Meneton et al., 2000). 

 

However, the use of the term ‘gold standard' implies there are widely employed 

correct procedures with optimised protocols to measure GFR (Schock-Kusch et al., 

2012).  In fact, GFR as determined by the administration of an exogenous tracer, may 

be measured by using two standard approaches:   

 

(1)  Two compartment clearance models - determination of a tracer’s elimination 

kinetics from plasma after a single bolus injection, requiring timed blood 

collection (Qi et al., 2004, Sturgeon et al., 1998, Fischer et al., 2000). 

 

(2) Constant Infusion Clearance (CIC) models - a tracer is infused at a constant 

rate until a steady-state tracer concentration is reached in the distribution 

volume.  This allows determination of a tracer’s urinary excretion rate via 

timed urinary and blood collection.  To achieve steady state as quickly as 

possible, a loading dose of tracer is administered in most protocols before 

constant infusion of tracer begins (Schock-Kusch et al., 2012, Fleck, 1999, 

Fleck and Braunlich, 1984, Jobin and Bonjour, 1985). 

 

An ideal exogenous tracer for determining GFR should be biologically inert, freely 

filtered across Bowman’s capsule and neither reabsorbed, manufactured nor secreted 

by the renal tubule (Sturgeon et al., 1998). 

 

Inulin is a biologically inert, uncharged fructan-type polysaccharide molecule.  It is 

unbound by plasma proteins and is not manufactured nor metabolised in vivo. 
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Furthermore, it is freely filtered by glomeruli, and unlike creatinine is neither secreted 

nor reabsorbed by tubular epithelial cells (Wang et al., 2010).  Consequently, inulin is 

widely regarded as an excellent reporter of GFR, with inulin clearance techniques 

employed to measure GFR in numerous studies.  Recently, the use of fluorescently 

conjugated inulin has emerged as a reliable technique for GFR characterization, with 

the use of fluorescent reporter simplifying reporter quantification in the collected 

biofluids (Fleck, 1999, Fleck and Braunlich, 1984, Qi et al., 2004, Sturgeon et al., 

1998). 

 

Throughout this thesis, Glomerular Filtration Rate (GFR) was calculated via a 

constant infusion clearance (CIC) technique, utilising fluorescently conjugated inulin, 

in a protocol adapted from Barber et al (Barber and Bourne, 1971). 

 

2.22 PREPARATION OF FITC-INULIN SOLUTION  

 0.2% Fluorescein Isothiocyanate Inulin (FITC-Inulin, Sigma-Aldrich) solution was 

made by dissolving 40mg of FITC Inulin in 20mls of 0.9% saline solution.  1% FITC-

Inulin was made by dissolving 10mg FITC-Inulin per ml of 0.9% Physiological Saline 

Solution (Baxter Pharmaceuticals).  To facilitate dissolution of inulin into solution, 

0.9% saline was warmed in a water bath to 40oC before use. 

 

 The solutions were dialysed for 24 hours through a GeBAflex-tube with a 1Kda 

semipermeable membrane (Gene Bio-Applications) in 0.9% Physiological Saline 

Solution, to remove unbound fluorescein.  The solution was then sterilised by passing 

it through a 0.22µm syringe filter.  At all possible times, inulin solutions were 

protected from light to prevent dissociation prior to infusion.  Furthermore, inulin 

solutions were universally made and utilised within 24 hours to avoid degradation of 

inulin solution. 

 

2.23 ANESTHESIA DURING INULIN CLEARNACE STUDIES 

Anesthetic induction was with isoflurane as described in Section 2.12.  During inulin 

studies, anaesthesia was then maintained with an initial intraperitoneal injection of 

thiobutabarbitol sodium (Inactin®) using 12mg per 100g of body weight.  Further 

maintenance doses of 2.4mg per 100g of body weight were given as required.  This 
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dosing protocol has previously been shown to provide stable cardiovascular 

parameters (Brammer et al., 1993).  

 

 

2.24 SURGICAL PROCEDURE TO DETERMINE GLOMERULAR 

FILTRATION RATE 
 

POSITIONING AND TEMPERATURE CONTROL 

 As described in Section 2.13 

 

FEMORAL VESSEL DISSECTION AND CANNULATION - (Figure 2.2i – 

2.2xii) 

The left groin was shaved and an incision made inferior and parallel to the inguinal 

ligament.  Dissection was carried out to retract the groin fat pad proximally, thereby 

exposing the femoral vessels.  The femoral artery and vein were fully dissected.  (See 

Figure 2.2)  After clamping the femoral vein proximally and ligating distally, 

microsurgical polyethylene tubing (Smiths Medical), 0.96mm external diameter (ED), 

was used to cannulate the vein.  The tubing was secured using 5/0 ligatures.  A 0.5ml 

bolus of 1% inulin solution was given before starting a constant infusion of 0.2% 

FITC inulin using a syringe pump (World Precision Instruments, NE300) at a rate of 

3ml per hour. 

A microsurgical catheter (0.8mm ED) was then placed in the femoral artery.  This 

was used to take blood samples during the experiment.  Between sampling, the line 

was locked with heparin-saline solution. 

 

URETERIC CANNULATION - (Figure 2.2 xii – xvi) 

The abdomen was re-opened along the line of the previous midline incision.  The 

bowel was wrapped in damp swabs, the ureters dissected and cannulated using a 7cm 

length of microsurgical tubing (0.61mm ED) Ligatures were applied to secure the 

catheters’ position. 

 

Via these cannulas, urine was collected into separate tubes during each 30-minute 

interval.  In the middle of each 30-minute collection period, an 80ul blood sample was 

taken via the arterial line. 
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Urinary volume for each 30-minute period was measured using a Gilson's pipette after 

a gentle spin at 2000 rpm for 15 seconds to remove sediment.  Once volume was 

measured, urine was transferred to a fresh Eppendorf tube for subsequently 

fluorescent measurement.  Similarly, immediately after collection, blood was spun 

down at 6000rpm for 6 minutes, and serum transferred into a fresh Eppendorf tube for 

later analysis. 

 

The experiment was terminated after six timed urinary/blood samples had been 

collected.  The animal was killed, liver, spleen, heart, lungs and both kidneys were 

taken and stored in 10% formation, liquid nitrogen and RNA later.   
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Figure 2.2: Dissection of Femoral Vessels 

(i) Dissection of the rodent left groin to expose the femoral anatomy.  The left common femoral artery 

(L-CFA), left common femoral vein (L-CFV), left femoral nerve (L-FN), left superficial circumflex 

iliac vessels (L-SCIV) and left external pudendal vessels (L-EPV) are clearly seen.     (ii) The L-SCIV 

and L-EPV are ligated.  (iii) The femoral sheath is opened, and dissection carried out to separate the 

femoral artery and vein.  The left profunda femoral artery (L-PFA) and vein (L-PFV) are exposed, 

allowing identification of the left common femoral artery (L-CFA) and vein (L-CFV), and also the left 

superficial femoral artery (L-SFA) and vein (L-SFV).  (iv) The L-PFVs are ligated and divided.  

(i)	 (ii)	

(iii)	 (iv)	

L-CFA	
L-CFV	

L-FN	

L-EPV	 L-SCIV	

L-FA	
L-FN	
L-FV	

L-SCIV	

L-EPV	

L-SFA	

L-SFV	

L-PFV	

L-PFA	
L-CFA	

L-CFV	 L-CFV	
L-CFA	
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Figure 2.2: Dissection and cannulation of femoral vessels. 

(v) The L-PFA is dissected before being divided with cautery.  Both femoral artery and vein have now 

been dissected, and their side branches ligated.  (vi) The L-SFV is ligated distally (DL).  A vascular 

clamp (VC) is applied to the L-CFV proximally.  Ligatures (L) are loosely placed in preparation for 

cannulation.  (vii) A venotomy (V) is made in the distal part of the L- SFV.  (viii) The vessel is 

cannulated, and the ligatures tightened before being cut to size.  The vascular clamp is re-positioned 

onto the cannula to provide extra security against slippage.  A bolus is inulin is given at this point, and 

the FITC-inulin infusion (II) is started.  

(v)	 (vi)	

(viii)	

L-CFA	

L-PFA	

L-SFA	

VC	

L	

L-SFV	

DL	

VC	
II	

L	V	

(vii)	
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Figure 2.2: Cannulation of Femoral Artery. 

(ix) The L-CFA has a vascular clamp (VC) applied proximally and ligature applied distally (DL).  

Loose ligatures are applied in preparation for cannulation.  An arteriotomy (Ar) is then made distally.  

(x) An arterial line prepped with heparinized saline, the vessel cannulated and ligatures tightened to 

secure the line in place.  The vascular clamp is released and blood flows into the arterial line allowing a 

sample to be taken.  The inulin infusion (II) is continuously running.  (xi) The smooth cannula tip 

achieved by cutting with a scalpel (top) versus the ragged edge made with sharp scissors (bottom).  

(xii) Overview of rat position with left groin dissection during inulin clearance.  

(ix)	

(xi)	 (xii)	
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Ar	
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II	

AL	

II	
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II	
AL	
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Figure 2.2: Ureteric cannulation.  

(xiii) After a midline incision, retroperitoneal dissection is carried out to expose the right ureter (R-U).  

This involves mobilising the small bowel (SB) by incision of it posterior attachments.  The ureter, 

containing fluorescent urine, is easily identified by its characteristic vermiculation.  Cannulation is 

easiest at the point the ureter runs over the right common iliac vein (R-CIV).  The inferior vena cava 

(IVC) and left common iliac vein (L-CIV) are easily visible.  (xiv) Dissection is carried out to expose 

the left ureter (L-U), again easily identified by the fluorescent urine.  The IVC and aorta (A) are easily 

seen.  The left kidney (LK) and, spleen (S) are also visible.  (xv) The left ureter is cannulated and urine 

is seen to freely flow into the cannula.  (xvi) The position of the rat after ureteric cannulation.  The 

urine in collected into Eppendorf tubes (UB), placed to catch under ureteric cannulas as it flows.  Note 

the inulin infusion line (II).   
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2.25 MEASUREMENT OF BIOFLUID FLUORESCENCE 

Plasma and urine fluorescence were measured by pipetting a10µL sample of biofluid 

onto with a Fluorescent Plate (Thermo-Scientific F96 Microwell plate).  To this, 40µL 

of HEPES 500mM buffer solution (dissolved 59.6g of HEPES buffer in 500ml of 

water, adjusted to pH 7.4 by adding Sodium Hydroxide solution) was added to give a 

total volume in each well of 50µL.  The addition of buffer is necessary, as 

fluorescence of biofluids has been shown to vary according to pH (Lorenz and 

Gruenstein, 1999).  Each sample was assayed in triplicate to identify pipetting error. 

 

Serum and urinary fluorescence were measured using a fluorescence microplate 

spectrometer (BIO-TEK flx-800) measuring emission and absorbance wavelengths of 

495nm and 430nm respectively.  

 

 From triplicate assays, mean fluorescence values were obtained and mean fluorescent 

values calculated.  
 

Steady state was reached in the plasma when the amount of inulin infused was equal 

to the amount filtrated by the kidneys.  This is defined as a <5% change in inulin 

plasma concentration over a 30-minute period (Sturgeon et al., 1998).  Data indicated 

that steady state is typically reached 60 - 90 minutes after the inulin infusion had 

commenced.  
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2.26 CALCULATION OF GLOMERULAR FILTRATION RATE 

At steady state, the amount of inulin removed per minute from the plasma is equal to 

the urinary inulin concentration (Ui) multiplied by the urinary volume per minute 

(Uv).  As inulin is freely filtered at the glomerulus, measuring the plasma inulin 

concentration at steady state (Pi) allows the volume of plasma filtered per minute 

(GFR) to be calculated according to the formula: 

 

GFR = Ui x Uv / Pi 

 

Where Ui  = Urinary fluorescence: Uv = Urine volume per minute: Pi = Plasma 

fluorescence. 

 

2.27 KEY FACTORS IN ACHIEVING RELIABLE GFR RESULTS 

Avoiding unnecessary blood loss is key to ensuring accurate GFR results.  To achieve 

this, it is advisable to ligate all branches of the femoral vessels and to provide 

proximal and distal control of vessels before making an incision for cannulation.  

Bleeding points on the re-opened abdominal wall should be cauterised or over-sewn 

immediately.  Cauterisation of small retroperitoneal vessels encountered during 

dissection of the ureter is advised, as these may bleed profusely over the time course 

of the study if left uncontrolled.  

 

2.28 TIPS FOR SUCCESSFUL MICROSURGICAL CANNULATION 

Cannulation is easier if a precise hole is made in the front wall of the structure to be 

cannulated.  A horizontal cut with a pair of pointed microsurgical scissors is most 

effective.  This manoeuvre allows the structure to remain under tension, while the 

created defect gapes open, allowing easy access for the passage of the cannula.  (See 

Figure 2.2 (xii) and (ix))  Fully dividing a structure causes proximal retraction, 

whereby cannulation becomes extremely problematic.  

 

It is useful to have ligatures to secure a catheter loosely applied prior to cannula 

insertion.  This allows simple tightening of the ligature as soon as the cannula is 

inserted, reducing the chance of the cannula inadvertently slipping out.  (Figures 2.2 

(xi) and (ix)) 
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When the microsurgical tubing is cut to size, the use of a scalpel blade allows a 

smooth, angled but non-pointed end of the tube to be fashioned.  (Figure 2.2 (xi))  The 

use of scissors leads to a ragged pointed tube that is difficult to insert and will tear 

holes in vessel walls when advanced.   
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2.3 RODENT RENAL TISSUE ANALYSIS 
2.31 PROTOCOL FOR EMBEDDING FORMALIN-FIXED KIDNEYS IN 

PARAFFIN 

Kidneys, fixed in 10% formalin, were halved prior to embedding in paraffin.  The 

remaining half of the kidney was returned to formalin.  

In order to dehydrate the tissue: 

(1) Kidneys were placed in 80% ethanol for 30 minutes 

(2) Kidneys were placed in 95%% ethanol for 30 minutes 

(3) Kidneys were placed in 95% ethanol for 45 minutes 

(4) Kidneys were placed in 100% ethanol for 40 minutes 

(5) Kidneys were placed in 100% ethanol for 40 minutes 

(6) Kidneys were placed in 100% ethanol for 40 minutes 

(7) Kidneys were placed in xylene for 40 minutes 

(8) Kidneys were placed in xylene for 40 minutes 

(9) Kidneys were placed in hot paraffin for 60 minutes 

(10) Kidneys were then finally placed into hot paraffin for 30 minutes 

before being allowed to cool on a ‘cold plate', and blocks turned out. 

 

Using a hand-operated microtome, blocks were then cut into 5µm sections, and 

floated in a warm water bath, before being placed on poly-L-lysine coated glass 

slides.  

 

To fix paraffin sections to the sides, slides were then placed in a drying oven for 90 

minutes at 60oC, before being stored at 4oC in a cold room.  
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2.32 PROTOCOL FOR STAINING RENAL SECTIONS WITH 

HAEMATOXYLIN AND EOSIN  

Haematoxylin and Eosin (H & E) staining are the most commonly used histological 

stains.  Cell nuclei are stained blue, and cell cytoplasm is stained pink. 

 

METHOD 

2% Eosin was made up by dissolving 20g of Eosin in 1000ml of distilled water, using 

magnetic stirring.  A 20ml scoop of Calcium chloride was added to the mixture.  This 

helps eosin fix to the tissue sections.  

 

Paraffin-fixed tissue was cut to 5µm and mounted on poly-L-lysine coated glass slides 

as previously described in Section 2.31. 

In order to remove paraffin from the sections: 

(1) Slides were placed in xylene for 5 minutes 

(2) Slides were then replaced in a fresh xylene for a further 5 minutes 

In order to re-hydrate tissue sections: 

(3) Slides were then placed in 100% ethanol for 3 minutes 

(4) Slides were placed in 100% ethanol for a further 3 minutes 

(5) Slides were placed in 90% ethanol for 2 minutes 

(6) Slides were placed in 70% ethanol of 2 minutes 

(7) Slides were placed in running water for 2 minutes 

(8) Slides were then stained Harris haematoxylin for 8 minutes 

(9) Slides were then rinsed in running tap water for 2 minutes 

(10) Slides were then placed in ‘Scott’s’ tap water for 45 seconds until blue 

(11) Slides were then rinsed in running tap water for 2 minutes 

(12) Slides were then placed in 2% Eosin stain for 10 minutes.  

(13) Slides were then rinsed in running tap water for 2 minutes 

(14) Slides were quickly dipped in 90% ethanol 

(15) Slides were quickly dipped in 100% ethanol 

(16) Slides were quickly dipped in 100% ethanol 

(17) Slides were placed in xylene for 1 minute 

(18) Slides were placed in xylene for 1 minute 

(19) Slides were mounted with coverslips and fixed using DPX.  



	 92	

2.33 RENAL HISTOLOGY ASSESSMENT 

 IRI-related changes in renal histology are most severe in the S3 segment of the 

proximal renal tubule, located at the outer stripe of outer medulla.  Such changes 

typically include denudation of tubular basement membrane, loss of brush border, and 

sloughed debris in the tubular lumen that results in hyaline cast formation.   

 

To assess renal histology and quantify ischemic related damage, 5µm kidney sections 

were routinely stained with hematoxylin and eosin as described in Section 2.32. 

Histology scoring was a method described in a previous study (Melnikov et al., 2002) 

and subsequently modified in later reports.(Wang et al., 2012, Gatti et al., 2011, 

Allam et al., 2012) Using a 200x objective [high-power field (HPF)] 10 non-

overlapping fields were randomly selected by a single blinded observer.  Within each 

field, the following were counted in a 60 second period:  

(i) Number of hyaline casts  

(ii) Number of epithelial breaks (denudation of tubular basement membrane) 
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2.4 IMMUNOHISTOCHEMISTRY PROTOCOL 
Immunohistochemistry (IHC) was carried out in a standardised fashion for the 

proteins of interest listed below.  Primary antibody type and dilution are 

expressed in brackets.   

 

Kidneys sectioned to 5µm and fixed to poly-L-lysine coated glass slides as described 

in Section 2.31, were removed from storage at 4oC, placed in a plastic slide rake, and 

baked for 30 minutes at 56oC.  

 

2.41 DE-WAXING AND REHYDRATION OF PARAFFIN FIXED TISSUES 

(1) Slides were placed in xylene for 2 minutes. 

(2) Slides were placed in xylene for 2 minutes. 

(3) Slides were placed in 100% ethanol for 2 minutes. 

(4) Slides were placed in 100% ethanol for 2 minutes. 

(5) Slides were placed in 90% ethanol for 2 minutes. 

(6) Slides were placed in 70% ethanol for 2 minutes. 

(7) Slides were placed in running tap water for 2 minutes. 

 

During this process, solution for antigen retrieval was prepared.  

 

2.42 ANTIGEN RETRIEVAL 

(1) 1000ml of distilled water was placed in a plastic pressure cooker 

(2) 0.37g of EDTA (Sigma E-5134) and 0.55g Tizma Base (Sigma T-1503) were 

added to the water 

(3) Using a pH probe, the pH of the solution was adjusted to 8.0.  This usually 

necessitated the addition of a few drops of hydrochloric acid via a Pasteur 

pipette. 

(4) This solution was then heated for 13.5 minutes in the microwave at high 

power 

(5) Slides were then placed in the hot solution, and the lid locked onto the 

pressure cooker to provide a tight seal.  

(6) The slides were then heated in the microwave at high temperature, and under 

pressure for 5 minutes.  
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(7) Slides were left in antigen retrieval solution to cool for 20 minutes at room 

temperature, before being rinsed in distilled water.  

 

2.43 SLIDE STAINING 

A 3% solution of hydrogen peroxide (H2O2) solution was made by mixing 360ml of 

distilled water with 40ml of 30% H2O2.  

 

(1) Slides were placed in 3% H2O2 solution for 10 minutes, the solution being 

gently agitated with a magnetic stirrer. 

(2) Slides were washed in running tap water for 2 minutes. 

(3) Slides were then ‘ringed’ with a DAKO marker to create a hydrophobic 

barrier. 

(4) 200µl of a 1x casein solution made up at a 1 in 10 dilution in TBS was then 

applied to each section.  This was incubated for 60 minutes at 25oC in a 

humidified chamber.  

(5) Casein solution was then blotted from sections.  

(6) Primary antibody for the protein of interest was made then up to the stated 

dilution in 5% casein. 

(7) 200µl of primary antibody solution was applied to each slide, which were then 

incubated overnight at 4oC. 

(8) Slides were washed in TBS for 2 x 5 minutes 

(9) Secondary anti-Rabbit Envision antibody was made up to 1:200 dilution in 1x 

casein in TBS. 200µL was applied to each slide. 

(10) Slides were incubated at 25oC for 30 minutes in a humidified chamber.  

(11) Slides were washed in TBS for 2 x 5 minutes 

(12) DAB substrate (Vector SK4100) was made by mixing two drops of 

stock buffer with 5ml of distilled water, four drops of DAB substrate and two 

drops of hydrogen peroxide. 

(13) Sections were incubated at room temperature until colour developed.  

Typically this took around 7 minutes.  

(14) Slides were then washed in water for 10 minutes.  
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2.44 COUNTER-STAINING OF SLIDES 

(15) Slides were stained for 45 seconds in Harris Haematoxylin. 

(16) Slides were then rinsed in running water. 

(17) Slides were de-stained in acid alcohol for 30 seconds. 

(18) Slides were then rinsed in running water. 

(19) Slides were then stained in Scot’s tap water substitute for 1 minute.  

(20) Slides were then rinsed in running water. 

 

2.45 SLIDE DEHYDRATION AND MOUNTING 

(21) 1 minute in 70% ethanol 

(22) 1 minute in 90% ethanol 

(23) 1 minute in 100% ethanol 

(24) 1 minute in 100% ethanol 

(25) 1 minute in xylene 

(26) 1 minute in xylene 

(27) DPX and coverslips were added. 

 

2.46 P-16 IMMUNOHISTOCHEMISTRY PROTOCOL WITH VECTOR LAB 

IMPRESS PEROXIDASE POLYMER KIT MOUSE-ANTI-MOUSE (MP2400) 

The protocol used for p16 IHC differed slightly from the standardised IHC technique 

in that a specific, pre-prepared reagent kit (MP2400) was utilised for the primary and 

secondary antibody applications steps.  De-waxing, antigen retrieval, counterstaining 

and mounting of slides were as described in Sections 2.41, 2.42, 2.43 and 2.44.  

 

2.461 SLIDE ANTIBODY STAINING 

A 3% solution of hydrogen peroxide (H2O2) solution was made by mixing 360ml 

of distilled water with 40ml of 30% H2O2.  

(1) Slides were placed in 3% H2O2 solution for 10 minutes, the solution being 

gently agitated with a magnetic stirrer. 

(2) Slides were washed in running tap water for 2 minutes. 

(3) Slides were then ‘ringed’ with a DAKO marker to create a hydrophobic 

barrier. 
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(4) Three drops of Protein blocking solution (Reagent 1) was added to each slide 

to completely cover the tissue section.  This was incubated for 30 minutes at 

25oC in a humidified chamber.  

(5) Protein blocking solution was then blotted from sections.  

(6) MaxHomo TM blocking reagent (Reagent 2) was then added to completely 

cover tissue sections.  This was incubated for 60 minutes at 25oC in a 

humidified chamber.  

(7) Slides were washed in TBS for 5 minutes 

(8) Slides were washed again in TBS for 5 minutes 

(9) Primary antibody (Mouse anti-mouse p16 (F12) Santa Cruz sc-1661) was 

made up to a 1:150 dilution in DAKO diluent.  200µl of primary antibody 

solution was applied to each slide to cover tissue sections. 

(10)  Sections then incubated overnight at 4oC in a humidified tray. 

(11) In the morning, slides were washed in TBS for 5 minutes. 

(12) Slides were washed again in TBS for 5 minutes. 

(13) Mouse Antibody Amplifier (Reagent 3) was added to cover tissue 

sections.  Slides were then incubated for 30 minutes at 25oC in a humidified 

chamber.  

(14) Slides were washed in TBS for 5 minutes 

(15) Slides were washed again in TBS for 5 minutes 

(16) Ready to use Polymer HRP Secondary antibody (Reagent 4) was 

added to slides to cover tissue completely.  Slides were then incubated for 30 

minutes at 25oC in a humidified chamber. 

(17) Slides were washed in TBS for 5 minutes 

(18) Slides were washed again in TBS for 5 minutes 

(19) DAB substrate (Vector SK4100) was made by mixing two drops of 

stock buffer with 5ml of distilled water, four drops of DAB substrate and two 

drops of hydrogen peroxide. 

(20) Sections were incubated at room temperature until colour developed.  

Typically this took around 7 minutes.  

(21) Slides were then washed in water for 10 minutes, counterstained and 

mounted as described in Sections 2.44 and 2.45.  
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2.47 CALCULATING HISTOSCORES 

Histoscores from each immunohistochemistry slide were calculated in standard 

fashion as previously described (Hirsch et al., 2003).  Using a semi-quantitative 

approach, immunohistochemistry slides were assigned a histoscore by two blinded 

observers.  This was achieved by evaluating both nuclear and cytoplasmic staining 

intensity.  This is graded as follows:  

Grade 0 = non staining; Grade 1 = weak staining; Grade 2 = medium staining; Grade 

3 = strong staining. 

The percentage of each staining intensity level is estimated and a histoscore assigned 

using the following formula: 

 

[1 x (%cells @ Grade 3) + 2 x (%cells @ Grade 2) + 3 x (% cells @ Grade 3)] 

 

The final score for each tissue section may range from 0 to 300. 
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2.5 ISOLATION, PURIFICATION AND QUANTIFICATION OF 

NUCLEIC ACIDS 

2.51 RNA EXTRACTION FROM TISSUE USING TRIZOL®  

Unless otherwise stated, reagents used during RNA extraction, manufacture of cDNA 

and q-PCR were obtained from Invitrogen Ltd (Paisley, UK) 

 

Workspace and tools were cleaned with RNAase away spray prior to starting RNA 

extraction. 

(1) 50 – 100mg of tissue, previously stored at -20oC in RNAse later, was added to 

a sterile tube containing 0.5ml of Trizol.  

(2) This was homogenised with a sterile fashion, using an electric homogenizer. 

(3) A further 0.5ml of Trizol was added and the solution vortexed for 20 seconds. 

(4) Samples were incubated at room temperature for 10 minutes. 

(5) 0.2ml of ice-cold chloroform was added, and the tube vortexed for 20 seconds, 

and incubated for 5 minutes at room temperature.  

(6) Tubes then underwent centrifugation for 10 minutes (14,000rpm at 6oC). 

(7) The colourless upper phase was then transferred to a new tube, and 1x volume 

of phenol/chloroform/ isoamyl alcohol at pH 6.6 was added. 

(8) This was vortexed for 20 seconds, incubated for 5 minutes at room 

temperature, before further centrifugation for 10 minutes (14,000rpm at 6oC). 

(9) The colourless upper phase was then transferred to a new tube, and 1x volume 

of ice-cold isopropanol added.  Tubes were inverted a few times to mix the 

solutions. 

(10) RNA was precipitated at – 80oC for 30 minutes.  

(11) Tubes were centrifuged for 30 minutes (14,000 rpm at 6oC). 

(12) RNA pellets were obtained, and supernatant removed without 

disturbing the pellet. 

(13) The pellet was washed with 1ml of 95% ice-cold ethanol.  

(14) The sample underwent centrifugation for 10 minutes.  (14,000 rpm at 

6oC).  

(15) The supernatant was removed. 

(16) The pellet was washed with 75% ice-cold ethanol. 
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(17) The sample underwent centrifugation for 10 minutes.  (14,000 rpm at 

6oC).  

(18) The supernatant was removed. 

(19) Samples were left to air-dry for 5 minutes. 

(20) Pellets were dissolved in 40ul of 0.1% diethylpyrocarbonate-treated 

(DEPC) water (ThermoFisher Scientific). 

 

Nanodrop® spectrophotometry analysis was then carried out, to measure RNA 

concentration and purity.  

(1) The machine is ‘zeroed’ using a 1.5ul sample of DEPC water 

(2) A 1.5ul RNA sample is placed on the pedestal.  The machine 

automatically adjusts to create a column of fluid, forming the optimum 

path length, through which the absorbance of the sample is measured. 

(3) Nucleotides, including RNA, single-stranded DNA and double-stranded 

DNA absorb at 260nm and contribute to the total absorbance of the 

sample.  The ratio of absorbance at 260nm and 280nm is used to assess the 

purity of RNA.  A ratio of ∼2.0 is accepted as pure for RNA. If the ratio is 

lower, it may indicate the presence of protein or phenol, which strongly 

absorb at 280nm. 

(4)  Samples were stored in – 80oC freezer.  

 

2.52 DNAase TREATMENT 

(Promega RQ1-RNase Free DNase®) 

Before the conversion of mRNA to cDNA, it is necessary to perform DNAase 

treatment to remove all genomic DNA.  This was achieved in the following standard 

fashion. 

(1) Samples were retrieved from the – 80oC freezer and thawed at room 

temperature.  

(2) The volume of RNA solution required to give 2µg was calculated for each 

sample, and this was added to fresh 200µl Eppendorf tube. 

(3) The total volume in each tube was then made up to 15µl by adding the 

requisite volume of DEPC water.  
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(4) DNAase ‘master-mix’ was made, containing 40% 10x DNAase buffer, 40% 

RNAase Out and 20% RQ DNase by volume.  

(5) 5µl DNAase ‘master-mix’ was added to each Eppendorf tube, so that each 

tube held exactly 20µl containing: 

- 2µg of RNA 

- 2µl 10x DNAase buffer 

- 2µl RNase OUT 

- 1µl RQ DNase 

(6) Samples were then incubated at 37oC for 30 minutes 

(7) 1µl of STOP solution was added  

(8) Samples were incubated at 65oC for 10 minutes to inactivate DNAase.  

(9) Samples were kept on ice, and Nanodrop measurement repeated to assess 

RNA concentration without genomic DNA contamination.  

 

2.53 cDNA SYNTHESIS 

(Roche Transcriptor Reverse Transcription).  

After purification of RNA, conversion to cDNA is necessary to proceed to q-PCR.  It 

is crucial to have equal concentrations of cDNA for q-PCR, and to do this the RNA 

concentration during reverse transcription must be kept constant.  This was achieved 

via the following standardised protocol: 

(1) After establishing RNA concentration with Nanodrop, exactly 1µg of RNA 

from each sample was added to a separate 200µl Eppendorf tube. 

(2) DEPC water was added to make the total volume of RNA and water to 20µl.  

(3) 2µl of random hexamer solution was added.  

(4) 2µl of dNTP solution was added 

(5) The solution was then incubated for at 65oC for 10 minutes before being 

placed on ice.  

(6) RT ‘master-mix’ containing, by volume 50% 5x Buffer, 25% 0.1M DDT, 

12.5% RNAase, and 12.5% reverse transcriptase was made.  

(7) 16µl of RT ‘master-mix' was then added to each sample so that each 

Eppendorf contained 40µl solution made up of:  

- 1µg RNA 

- 2µl random hexamer solution 



	 101	

- 2µl dNTP solution 

- 8µl 5x RT buffer 

- 4µl 0.1M DTT solution 

- 2µl RNase Out  

- 2µl Reverse Transcriptor  

(8) Samples were mixed and then incubated for at 25oC for 12 minutes, 42oC for 

50 minutes and 70oC for 15 minutes.  

(9) Samples were then stored at -20oC until q-PCR.  

 

 

2.54 TAQMAN REAL-TIME POLYMERASE CHAIN REACTION 

Polymerase Chain Reaction (PCR) is a method that allows exponential amplification 

of short DNA sequences (usually 100 – 600 bases) within a longer double-stranded 

DNA molecule.  PCR entails the use of a primers pairs that are complementary to a 

defined sequence on each of the two strands of DNA and specific to the gene of 

interest.  During PCR cycling, these primers are extended by a DNA polymerase, so 

that a copy is made of the designated gene sequence. Repeating the process leads to 

logarithmic amplification.  During each cycle, the strands of DNA are separated by 

heat denaturation, during which the primers become annealed to their complementary 

sequence.  The use of heat-stable polymerases (Taq-polymerase) eliminates the need 

to added fresh polymerase after each cycle.  

 

TaqMan probes are oligonucleotides that have fluorescent reporter dye attached to the 

5’ end and a quencher to the 3’ end.  When the probe is intact, the reporter dye 

emission is quenched due to the physical proximity of the reporter and quencher 

fluorescent dyes.  During the extension phase of the PCR cycle, the 5’ nuclease 

activity of the Taq-polymerase cleaves the hybridization probe and releases the 

reporter dye from the probe.  With each cycle of PCR amplification, there is an 

increase in fluorescence emission that is monitored in real-time (RT –PCR) using the 

ABI 7700 sequence detector.  

TaqMan RT-PCR was done using a Roche Lightcycler.  Using a standardised RT-

PCR ‘master-mix’, so that each sample was measured in triplicate, using specific 
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probe and primers for the genes of interest.  Each PCR plate well contained the 

following:  

(1) 1µl cDNA 

(2) 5µl 2x Taqman Universal Master Mix 

(3) 3.5µl DEPC water 

(4) 0.5µl of probe/primer mix 

 

Quantification of RT-PCR was via the comparative CT method (∆∆CT).  A threshold 

was set at a point where the amplification appeared linear for both the gene of interest 

and the housekeeping gene HPRT.  The resultant cycle number (CT) for both of these 

genes was recorded for each sample and also for a control tissue sample.  The CT 

values of both the sample of interest and control are then normalised to the 

housekeeping gene HPRT and quantified according to the following equation:  

 

∆∆CT = ∆CTsample - ∆CT reference 

 

Where ∆CTsample is the CT value for any sample normalised to the endogenous 

housekeeping gene (∆CTsample – CT housekeeping gene), and ∆CT reference is the CT value for 

the control also normalised to the endogenous housekeeping gene (∆CTreference – CT 

housekeeping gene) 
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2.6 ISOLATION OF PANCREATIC DERIVED PATHFINDER 

CELLS 
Laboratory staff, using methods described in a previous report, conducted pathfinder 

isolation and colony maintenance (Stevenson et al., 2011, Stevenson et al., 2009).  

The author did not perform this task, but was provided with cell preparations, used for 

the experiments described in Chapter 3.  

 

Briefly, minced pancreatic tissue was obtained from 12-month-old Albino Swiss rats.  

Seeding into CMRL medium (Invitrogen, Paisley UK) produced a confluent 

monolayer containing Pathfinder cells after ~ 5 weeks, which was then harvested and 

washed in phosphate buffered saline.  Cells were maintained in CMRL-1066 medium, 

supplemented with 10% fetal bovine serum ((FBS), Sigma, Poole UK).  Cells were 

characterised as described in previous reports.  Pathfinder cells were comprised of a 

mixed CD90 cytotype, positive for expression of c-met, CD147, CD44, CD49f and 

CD71.  Cells were negative for CD31, CD34, CD45, CD105, CD73 and c-kit 

expression.   

 

2.61 PREPARATION OF PATHFINDER DERIVED 

MICROVESICLES 
The microvesicles used throughout this thesis were isolated by Dr Diane Anthony. 

 

The methods employed have been previously described in detail (McGuinness et al., 

2016).  

Briefly, pathfinder cells, grown as described above in T50 flasks, CMRL-1066 

medium and FBS, and were centrifuged for 2.5 hours at 120,000 x g and then 

supernatant was carefully removed.  Pathfinders were then cultured without medium 

change until 80% confluent and the supernatant harvested. 

Under aseptic conditions, the supernatant was centrifuged at 1000 x g for 10 minutes 

to remove cell debris.  The supernatant removed and centrifuged at 16,000 x g for 2.5 

hours at 4oC.  The cell pellet was removed, re-suspended in sterile PBS and 

centrifuged for 2.5 hours at 16,000 x g at 4oC.  The yield was a cell free fraction, 

made up predominantly of microvesicles.  These were kept at -80oC until required for 

use.  
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2.7 STATISTICAL ANALYSIS 
Statistical analysis was performed using Graphpad Prism 6.0.  

The specific parametric and non-parametric statistical tests used to analyse each 

experiment are detailed within each results chapter.  Data are presented as means ± 

Standard Deviation (SD) with the level of significance set at p<0.05.  

Error bars on graphs represent SD unless otherwise stated.  

 

2.71 DETERMINATION OF ANIMAL NUMBERS IN 

EXPERIMENTAL GROUPS 
Most previous rodent renal IRI studies have utilized a group size of 6 – 8 animals. 

However, these experiments have exclusively used serum creatinine / BUN to 

measure kidney functional status, with these being recognized as less sensitive 

indicators than GFR. Furthermore, there appears to be a complete absence of reported 

data describing the effect of stem cells and / or ECVs on GFR in renal IRI 

experiments.  

 

A recent paper, outlining a similar model to the novel renal IRI model described in 

Chapter 5, used a power calculation to determine a sample size requirement of 6 

animals per group (Le Clef et al., 2016).  Furthermore, studies using ADRCs (Chen et 

al., 2011, Shih et al., 2013, Wang et al., 2013b, Iwai et al., 2014) or ECVs (Gatti et 

al., 2011, Cantaluppi et al., 2012) have employed 6 or 8 animals per group to 

demonstrate significant findings.   

 

The experiments presented throughout the course of this thesis were novel. As such, it 

was not thought feasible to perform formal power calculations to determine group 

numbers, as effect size of therapeutic agents and standard deviation were unknown 

due to a lack of previous pilot data. Therefore, based on the findings / methods of the 

previous studies noted above, it was decided to employ 6 animals per group, but to 

review this requirement based on experimental findings.  
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CHAPTER 3 
 

TESTING THE RENAL REGENERATIVE EFFICACY 

OF PATHFINDER CELLS IN A RODENT MODEL OF 

CHRONIC RENAL FAILURE AND PREMATURE 

AGING  
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3.1 INTRODUCTION 
The increase in ESRD seen in the Western world is mainly related to chronic disease 

processes that are a consequence of lifestyle in individuals with a genetic 

predisposition to cardiovascular disease and diabetes.  While there has been much 

interest in developing cell-based therapies to mitigate acute events affecting native 

and transplanted kidneys, there has been less interest in the potential of stem cells to 

combat disease processes that culminate in patients with chronic renal failure 

progressing to end-stage disease. 

 

In part, this is due to a lack of suitable animals models that display chronic renal 

failure in association with increased cellular senescence.  However, within Glasgow 

University exists the mutant rat substrain (AS/AGU), which arose spontaneously in a 

colony of Albino Swiss rats (Clarke and Payne, 1994).  As a result of a mutation in 

the gene encoding the protein kinase PKCϒ, the AS/AGU rat is predisposed to 

excessive levels of oxidative stress, manifested by increased levels of cellular 

senescence and hence premature ageing (Craig et al., 2001).  This is most obliviously 

apparent in a Parkinsonian type movement disorder that is the result of the 

progressive loss of dopaminergic neurones (Payne et al., 2000).  However, the 

AS/AGU strain has been shown to develop chronic renal failure, with associated renal 

senescence in an age-dependent fashion (Gingell-Littlejohn, 2014).  It is therefore 

feasible to hypothesise that the AS/AGU rat provides a good model in which to study 

the ability of multiple doses of stem cell-based therapy to halt the progression of 

chronic renal disease in the long-term.   

 

A previous study reported that intravenous therapy with Pathfinder cells reduces 

senescence in acutely injured kidneys (McGlynn et al., 2013).  Furthermore, in mice 

subjected to streptozotocin-induced diabetes, intravenous Pathfinder therapy is 

reported to initiate native islet regeneration, with subsequent long-term 

normoglycemia observed in treated animals (Stevenson et al., 2011). 
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3.2 HYPOTHESIS 

(1) AS/AGU rats treated with multiple doses of intravenous Pathfinder cells may 

show improved renal function and reduced molecular marker of renal ageing 

12 months after treatment is initiated.   
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3.3 METHODS 

3.31 ANIMAL HOUSING AND HUSBANDRY 

Animals were housed and fed as described in Section 2.1.  Animals were weighed 

weekly and assessed on a daily basis for signs of distress or illness.  

 

3.32 GROUP SELECTION 

16 AS/AGU rats (eight male and eight female) aged from 4 -12 months, were 

randomly assigned to treatment and control groups so that each group contained four 

male and four females rats of similar ages. 

 

All animals were weighed at baseline and bled for baseline serum creatinine levels 

one week before the first injection. 

 

3.33 STEM CELL TREATMENT 

Animals randomised to treatment received 3 x 106 rat pathfinder cells in 0.9ml 

phosphate buffered saline (PBS) via tail vein injection.  Animals randomised to the 

control group received 0.9ml PBS vehicle via tail vein injection. 

Injections were repeated every two weeks. 

 

3.34 RENAL FUNCTION ASSESSMENT 

Rats underwent tail vein bleeding (Section 2.17) every two weeks.  Bleeding and tail 

vein injection weeks were alternated, so that no rat was both injected and bled in the 

same week.  

Animals were culled in terminal GFR studies (Section 2.2) 



	 109	

3.4 RESULTS 

3.41 ANIMAL WEIGHTS 

No significant weight difference was noted between Pathfinder treated and control 

animals at any point.  (See Figure 3.1)  However, a trend of weight loss in the 

Pathfinder treated group was observed prior to the experiment being halted. 

 
 

3.42 ANIMAL HEALTH 

35 days after the experiment began, a Pathfinder treated male rat was found dead in 

its cage.  For the previous five days, this animal had displayed weight loss, and signs 

of illness (marked piloerection, increased respiratory rate, reduced movement and 

food intake).  A post-mortem examination was carried out, with the finding of 

multiple pulmonary nodules, highly suspicious of disseminated malignancy.  (See 

Figure 3.2 (i)) 

 

By this time, other animals in the Pathfinder treatment group were displaying similar 

signs of weight loss, illness and distress.  Accordingly, both the University Veterinary 

Officer and the Home Office inspector were asked for an opinion.  It was deemed that 

all treated animals were distressed and consequently an order was made to 

immediately cull the animals.  It was permitted to do this in terminal GFR 

experiments.  A post-mortem examination was performed on each Pathfinder-treated 

animal, with the universal finding of multiple pulmonary lesions.  In addition five 

animals displayed macroscopic evidence of cardiac, renal or splenic involvement.  

(See Figure 3.2).  Formal pathology reports, produced by the Veterinary Diagnostic 

Services, University of Glasgow identified the macroscopic lesions as highly 
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infiltrating neoplastic tumours, and these were present in the lungs of all examined 

animals, in addition to the heart, spleen and kidneys of specific individuals.  These 

tumours were highly anaplastic, displaying signs of bone formation although the cells 

of origin could not be determined.  (See report attached: Appendix 1) 

These features are most frequently observed in teratoma or osteosarcomas.  

 

No sign of illness or distress was observed in the control group animals, which were 

also culled in terminal GFR experiments.  Post mortem examination revealed no 

evidence of pulmonary or abdominal malignancy in any animal treated with PBS 

vehicle.  

 

 

 

(i)	 (ii)	

Figure	3.2:	(i)	Le#	lung	and	heart	of	AS/AGU	rat	found	dead	35	days	a#er	Pathfinder	injec>on.	
(ii)	Right	lung	of	AS/AGU	rat	44	days	a#er	Pathfinder	injec>on.		
Both	lungs	display	evidence	of	disseminated	malignancy	in	the	form	of	mul>ple	pulmonary	
nodules.		
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3.43 SERUM CREATININE 

No difference in serum creatinine was noted between groups at any point, although a 

trend was noted towards increased serum creatinine in Pathfinder treated animals by 

Week 5.  (See Figure 3.3). 

 

 
Figure 3.3: No difference was noted at any point in serum creatinine levels between Pathfinder treated 

and control animals. However, blood tests at the end of Week 5 did show a trend towards elevated 

serum creatinine in the Pathfinder treated group (p=0.089) 

 

Pa
th
fin

de
r T

re
at
ed

Con
tro

l
0

20

40

60

80

100

Week 5
C

r 
µ

m
o

l/
L

 

Pa
th
fin

de
r T

re
at
ed

Co
nt
ro

l
0

20

40

60

80

100

C
r 
µ

m
o

l/
L

 

Week 4

Pa
th
fin

de
r T

re
at
ed

Co
nt
ro

l
0

20

40

60

80

100

C
r 
µ

m
o

l/
L

 

Week 3
Pa

th
fin

de
r T

re
at
ed

Co
nr

ol
0

20

40

60

80

100

C
r 
µ

m
o

l/
L

 

Baseline Creatinine Level

Pa
th
fin

de
r T

re
at
ed

Co
nt
ro

l
0

20

40

60

80

100

C
r 
µ

m
o

l/
L

 

 Week 1

Pa
th
fin

de
r T

re
at
ed

Co
nt
ro

l
0

20

40

60

80

100

C
r 
µ

m
o

l/
L

 

Week 2



	 112	

3.44 GLOMERULAR FILTRATION RATE 

Only 6 Pathfinder treated animals underwent GFR studies, as one animal had been 

found deceased and another suffered a cardiac arrest under anaesthesia before steady 

state was reached.  Furthermore, 2 Pathfinder treated animals were clearly unwell 

during GFR study and failed to pass urine, resulting in a GFR of zero.  As a result, 

Pathfinder-treated animals were found to have a significantly lower GFR compared to 

control animals (p=0.0015).  (See Figure 3.4) 
 

 
Figure 3.4: Pathfinder treated animals surviving to undergo GFR studies (n=6) had a significantly 

lower GFR compared to control animals (n=8). p =0.0015 
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3.5 DISCUSSION 

In the field of regenerative medicine, the development of stem cell-based therapies are 

eagerly anticipated as promising tools to treat patients with a range of diseases. Such 

optimism is based on the ability of pluripotent and multipotent stem cells to 

differentiate into numerous cell lineages, with the potential to either replace damaged 

tissues directly by differentiation or to affect solid organ repair via a paracrine 

mechanism of action.  

 

Due to the ethical issues surrounding the use of ESCs, research has tended to focus on 

the use of MSCs.  These may be obtained from a number of different tissue types, 

although the use of BD-MSCs has predominated in most laboratories.  However, to 

obtain sufficient numbers of cells to achieve efficacy in clinical protocols, extensive 

ex vivo expansion is required (Rosland et al., 2009).  Unfortunately, accumulation of 

DNA damage through genomic instability, loss of cell cycle regulation and 

deregulation of epigenetic signature is more likely to arise during long-term, repeated 

culture under standard in vitro conditions (Maitra et al., 2005, Narva et al., 2010).  

This may eventually result in expanded stem-cell populations displaying 

tumorigenicity – defined as ‘the capacity of a cell population inoculated into an 

animal model to produce a tumor by proliferation at the site of inoculation and /or at a 

distant site by metastasis (Organization., 2013).  Therefore, the potential ability of 

stem-cell lines to undergo malignant transformation during repeated passage 

necessitates a stringent quality and assessment procedure in order to minimise the risk 

of negative, malignancy related outcomes to recipients (Yasuda and Sato, 2015). 

 

Any normal cell in the body has the potential to undergo malignant transformation. 

Such cells usually exhibit changes in their morphology, growth kinetics, cell surface 

markers, genetic composition and tumorigenicity (Lye et al., 2016). 

 

Pluripotent and multipotent stem cells, of both human and rodent origin, have been 

reported to undergo oncogenic transformation with the potential to cause 

disseminated malignancy as a result of their use in animal models.  Passaged MSCs 

obtained from rodents have been reported to display abnormal morphology, high 

proliferation rates and aneuploidy (Miura et al., 2006, Furlani et al., 2009a).  Evidence 
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of tumorigenicity has also been observed in rodent MSCs after only 3 passages, with 

MSCs undergoing malignant transformation and producing malignant tumors when 

injected into rats, rabbits and mice (Furlani et al., 2009a, Ahmadbeigi et al., 2011, 

Zhou et al., 2006). 

  

The longer telomere lengths in rodents (30 – 100kb) versus humans (5 – 10kb) 

theoretically reduces the risk of spontaneous transformation in expanded cell lines of 

human origin (He et al., 2012, Smogorzewska and de Lange, 2002, Oeseburg et al., 

2010).  Nevertheless, malignant transformation during passage has been reported in 

human MSC cell lines (Rubio et al., 2005, Rosland et al., 2009).  Subsequently, 

however, these findings were retracted as it was suspected that expanded human 

MSCs had been contaminated with tumour cell lines (Torsvik et al., 2010, de la 

Fuente et al., 2010).  While some reports have stated categorically that cultured 

human MSCs do not undergo spontaneous transformation in vitro (Bernardo et al., 

2007, Augello et al., 2010, Choumerianou et al., 2008), other researchers have 

recently indicated that such change does occur, while excluding the possibility of cell 

line contamination in their experiments (Pan et al., 2014, Wang et al., 2013a).  

Consequently, there is uncertainty regarding the ability of human MSC cell lines to 

display tumorigenicity after ex vivo expansion, although a reasonable body of 

evidence exists to suggest this phenomenon is at least a possibility (Lye et al., 2016, 

Yasuda and Sato, 2015).  

 

While there are no previous reports of ex vivo cultured Pathfinder cells displaying 

tumorigenicity, there is little doubt that Pathfinder treated animals in this experiment 

developed malignant tumours as a result of their therapy. Furthermore, both the 

distribution of disease and the timing of onset of symptoms of tumour burden reported 

here mimic the results of a previous study where intravenous MSC therapy resulted in 

multiple pulmonary metastatic lesions (Rosland et al., 2009).  It seems logical to 

conclude that the observed reduction in GFR results from dehydration and general 

illness that results from widespread metastatic disease that was universally seen in 

Pathfinder treated animals.  

 

This finding serves to highlight the dangers associated with the use of passaged stem 

cell preparations.  Patients undergoing renal transplantation are universally treated 
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with powerful immunosuppression medication in order to reduce the incidence of 

acute and chronic rejection episodes.  However, immunosuppressed patients are 

known to be at increased risk of long-term malignancy as a consequence of this 

therapy.  In addition, several studies in rodents have confirmed increasing teratoma 

formation rates with increasing levels of immune deficiency (Drukker et al., 2006, 

Dressel et al., 2008, Hentze et al., 2009). 

 

Theoretically, it is possible that treatment with stem cell preparations in an attempt to 

improve long-term allograft function increases patient risk of adverse outcomes as a 

result of malignant stem cell transformation.  That controversy exists regarding the 

ability of ex vivo expanded human MSC lines to display tumorigenicity is perhaps a 

moot point, as the potential for cell line contamination or spontaneous malignant 

transformation during passage will always exist – hence the clinical application of 

passaged cell preparations predisposes patients to unnecessary risk.  When 

considering this fact, it is pertinent to recall the salient principle of clinical medicine 

“Primum non nocere” – “First do no harm”.  

 

It follows that to facilitate the implementation of novel stem cell-based therapies, the 

adoption of strategies that exclude ex vivo stem cell expansion are of paramount 

importance.  Failing that, it would be highly desirable to implement stringent quality 

assurance procedures to exclude tumourogenesis, such as was observed here in 

immunocompetent animals.  Two strategies with the potential to reduce the risk of 

malignant complications have been reported in the literature: 

 

(1) The use of cell-free preparations, usually containing a biologically active 

fraction consisting of Extracellular secretory vesicles. (ECVs) 

(2) The use of stem cell preparations requiring little or no ex vivo expansion. This 

may comprise cells freshly isolated and used immediately, or cells that are 

isolated and immediately cryopreserved, being stored for later ‘off the shelf’ 

use.  

 

The negative findings of this chapter provided a persuasive argument to restrict the 

study of ex vivo expanded stem cell populations in animal models of renal failure. 

Indeed, the unexpected results reported above breeched the terms of the Project 
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Licence under which this experiment was conducted.  The Home Office inspector 

stipulated that no further work should be undertaken with pathfinder cells which had 

been expanded ex vivo without prior discussion with the Home Office.   

 

Consequently, due to the reduced potential for tumourogenesis, it was decided to 

focus investigation on the reno-protective abilities of both cell-free preparations and 

non-expanded stem cell preparations for the remainder of this thesis. 
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CHAPTER 4 
INVESTIGATING THE EFFECTS OF PATHFINDER 

CELL-DERIVED MICROVESICLES IN AN 

IMMUNOCOMPETENT RAT MODEL OF RENAL 

ISCHEMIA/REPERFUSION
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4.1 INTRODUCTION 
Currently no therapies are in widespread clinical use for the treatment or prevention 

of acute injury to either native kidneys or renal allografts.  This partly reflects the 

imperfect nature of the animal models in which novel treatments for renal injury are 

tested (Singh et al., 2012, Lieberthal and Nigam, 2000).  In vitro models including 

renal cell cultures, isolated renal tubules and isolated perfused kidneys have been 

gainfully employed to research the pathophysiological mechanisms by which renal 

injury occurs at the cellular and molecular level (Ortiz et al., 2015).  However, such 

models lack the physiological complexity to properly investigate the systemic effects 

of renal disease and the kidney’s subsequent response to novel therapies (Lieberthal 

and Nigam, 2000).  To draw meaningful conclusions regarding the efficacy and safety 

of cell-based treatments, in vivo models must be employed – a point highlighted by 

the findings of Chapter 3.  

 

In vivo models of renal failure have been commonly described and utilized, with 

approximately 50% of experiments conducted in rats (Wei and Dong, 2012).  For 

preliminary experiments, both rats and mice are considered favourable species as in 

vivo models for the investigation of renal disease.  Rodents are widely available and 

inexpensive when compared to research using large animals species, although large 

animals exhibit the closest similarity with humans and are considered the ‘gold 

standard’ for testing novel therapies (Giraud et al., 2011).  Nevertheless, rodents bear 

physiological and anatomical similarity with higher order mammals, and novel 

therapies may be screened using rodents before treatments are investigated further in 

large animal models.  

 

 

Rodent models commonly utilized to investigate the pathological pathways that lead 

to renal damage include:  

(1) Renal mass reduction by 5/6 nephrectomy 

(2) Renal ischemia-reperfusion injury (IRI) 

(3) Administration of nephrotoxic drugs to induce renal damage.  
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The 5/6 nephrectomy model is commonly used to create impaired renal function by 

ablation of renal mass.  This produces proteinuria but does not mimic the pathological 

mechanisms seen in acute transplant-associated injury or the processes involved in the 

presentation of native renal disease (Perez-Ruiz et al., 2006). 

 

Alternatively, prolonged warm renal IRI in rodents has been shown to cause 

significant tubular injury and an influx of inflammatory cells, leading to long-term 

renal fibrosis (Basile et al., 2001).  Warm renal IRI is considered to be the main 

pathological process affecting renal allografts, and models using warm IRI are 

probably the best mimics of the clinically observed acute transplant injury (Lameire, 

2005, Lameire et al., 2005).  In addition, warm renal IRI may also negatively impact 

upon the function of native kidneys, and is often seen in patients subjected to cardiac 

and vascular surgery, trauma, and burns (Lameire and Vanholder, 2004).  IRI is 

therefore a common and important pathology in which to study renal disease in an 

animal model. 

 

Therefore, rodent IRI models are of clinical relevance and furthermore such models 

are useful for assessing the efficacy of potential treatments before testing in a more 

technically complex rodent transplant model.  Here, a period of transplant cold 

storage is added to closely emulate the processes of involved during clinical 

transplantation (Wang et al., 2013b).   

 

Established in vivo models of renal IRI may broadly be divided into two types: 

bilateral  (B-IRI) or unilateral renal injury (U-IRI).  (See figure 4.1)  
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Figure 4.1: Commonly used rodent IRI models. 

 

U-IRI may be further divided into models with or without a contralateral nephrectomy 

(Le Clef et al., 2016, Wei and Dong, 2012).  Models using B-IRI or U-IRI with 

contralateral nephrectomy are the most commonly studied, probably because blood 

analysis may demonstrate trends in renal function throughout the experimental time 

course (Skrypnyk et al., 2013).  

 

However, the metabolic and electrolyte disturbances resulting from a severe and 

prolonged acute kidney injury may lead to unacceptable numbers of postoperative 

animal deaths (Wang et al., 2012) (Jang et al., 2009) usually within 48 hours of 

surgery (Skrypnyk et al., 2013).  As post-reperfusion renal function is known to be 

closely related to warm ischemic time, it is important to strike the correct balance 

between an acceptable number of post-procedure animal deaths and an ischemic 

period long enough to cause a permanent renal injury (Zager et al., 2011, Zager et al., 

2013).  Such a deficit in kidney function is necessary to demonstrate the long-term 

effects of novel therapies on renal recovery.  

 

(U–IRI-N) (U–IRI+N) 
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Most studies examining the use of renal IRI in rats report ischemic times of between 

30 – 60 minutes (Le Clef et al., 2016, Wang et al., 2012, Singh et al., 2012, Jo et al., 

2001, Jablonski et al., 1983, Nemoto et al., 2001, Ysebaert et al., 2000).  

Unfortunately, the majority of these experiments are concluded within a week of 

surgery and only a few studies applied to renal IRI report the long-term sequelae of an 

acute renal insult (Delbridge et al., 2007, Gueler et al., 2004, Kim and Padanilam, 

2015).  This may reflect the difficulty encountered when attempting to inflict a 

permanent renal injury using IRI without suffering unacceptable numbers of post 

surgical deaths from acute renal failure.  For example, serum creatinine levels after 60 

minutes of bilateral renal ischemia have been reported to return to sham levels after 7 

days recovery and remain stable for 40 weeks subsequently (Basile et al., 2001).  This 

duration of bilateral ischemia has been reported subsequently to result in ~ 50% 

mortality within 30 days post surgery (Wang et al., 2012). 

 

Most IRI experiments are preformed using healthy young rodents.  Clearly this does 

not mimic the clinical situation where organs from older donors are increasing used.  

The AS/AGU rat substrain displays premature renal dysfunction (Gingell-Littlejohn, 

2014) and consequently may be a useful model in which to perform renal IRI 

experiments.  Unfortunately, the available colony of AS/AGU rats was not large 

enough to power the planned IRI experiments, and so the Albino-Swiss strain was 

chosen for use in this experiment.   

 

After review of the literature, it was decided to investigate the effects of a 30-minute 

period of unilateral warm ischemia in Albino-Swiss rats undergoing a simultaneous 

contralateral nephrectomy.  The pathological course of unilateral ischemia with 

simultaneous contralateral nephrectomy model is expected to be quite similar to 

bilateral ischemia in that both models leave the animal with injured renal tissue only 

(Le Clef et al., 2016).  This allowed the use of serum creatinine to monitor gross renal 

function over the course of the experiment.  However, in view of the potential 

insensitivity of serum creatinine as a marker of rodent renal function, terminal inulin 

studies were performed after 14 days to characterize GFR in the most accurate way 

possible.  
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Furthermore, after the negative findings associated with the use of stem cell therapy 

described in Chapter 3, it was decided to investigate the use extracellular vesicles 

harvested from Pathfinder cells, as ESVs are thought to have a reduced malignant 

potential (Han et al., 2016, Vishnubhatla, 2014, Rani et al., 2015).  

 

4.2 HYPOTHESIS 

 
(1) 14 days after undergoing 30 minutes of warm renal IRI, changes in renal 

function, histology and molecular markers of damage will be evident versus 

controls not undergoing renal IRI.  

(2) Pathfinder-derived microvesicles, given intravenously, will mitigate the 

effects of renal IRI, resulting in improved renal function and histology, while 

reducing molecular markers of damage. 

(3) Microvesicles lack the ability to induce teratoma formation after intravenous 

administration.  
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4.3 METHODS 
4.31 EXPERIMENTAL GROUPS 

24 AS rats aged between 10 - 12 months were randomly assigned to 3 different 

groups. There were four males and four females, for a total of 8 rats in each group.  

• Group 1 – Right nephrectomy + saline vehicle via tail vein injection. 

• Group 2 – Right nephrectomy + left renal ischemia + saline vehicle via tail vein 

injection. 

• Group 3 – Right nephrectomy + left renal ischemia + pathfinder derived 

microvesicle therapy via tail vein injection.  

 

Group Nephrectomy Ischemia MV Therapy 

1 √ x x 

2 √ √ x 

3 √ √ √ 
 

Table 4.1: Summary of experimental groups. Randomly assigned to each group were four male and 

four female Albino Swiss Rats. 

 

Rodent husbandry, anaesthesia, positioning during surgery and post-surgical care, 

including venesection were conducted in standard fashion, as previously described in 

Sections 2.11 – 2.17.  

 

Microvesicles were harvested from Pathfinder cells as outlined in section 2.61. Using 

data from studies where intravenous Pathfinder microvesicles had achieved 

normoglycemia in diabetic mice, microvesicle dose was calculated per gram of rodent 

body weight and adjusted for rats.  
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4.32 SURGICAL PROCEDURE: RIGHT NEPHRECTOMY +/- LEFT RENAL 

ISCHEMIA 

A midline incision was made through the skin and subcutaneous fat using a 15 bladed 

scalpel, to expose the abdominal wall musculature. The linea alba was then incised 

with scissors from the xiphisternum and approximately 4cm inferiorly to provide 

excellent access to both kidneys. (See Figure 4.2)  To expose the left renal pedicle, 

the small and large bowel were packed away as necessary using sterile gauze swabs 

soaked in warm saline.  In all Groups, the left renal pedicle was dissected from the 

renal hilum proximal to the origin of the supra-adrenal vein, using a combination of 

sharp and blunt dissection.  The renal artery, which lies supero-posteriorly to the renal 

vein on the left, was not dissected free of the vein.  Once dissection had been 

achieved, the renal pedicle was clamped en mass using an atraumatic vascular clamp 

(B2-V) in animals belonging to Groups 2 and 3.  The pedicle was not clamped in 

Group 1 animals.  Visual inspection of the kidney at this point was undertaken, with 

the universal finding of a colour change, confirming correct application of the clamp. 

 

A right nephrectomy was then carried out.  The small and large bowel were repacked 

to provide exposure of the right kidney.  A folded swab was also placed to retract the 

right lobe of the liver, which was carefully detached from the vena cava using sharp 

dissection.  The right kidney was then mobilised from the renal bed, and the right 

ureter ligated using 8/0 nylon before being divided.  Attention was then directed 

towards the right renal pedicle, which was dissected, double ligated en mass with 6/0 

prolene and then divided.  The right kidney was then removed, and hemostasis noted. 



	 125	

 
Figure 4.2: (i) Exposure of the left kidney (LK) via retraction of the rectus muscle (R). The left renal 

vein (LRV), left renal artery (LRA) and left ureter (U) are clearly visible.  (ii) Extensive dissection of 

the left renal pedicle, to display relationship of relevant local anatomy.  The inferior vena cava (IVC), 

aorta (A), left colon (C) are easily seen, as are the LRV and LRA.  The vascular clamp (not pictured) 

was universally applied at the level of the double black line, just distal to the origin of the left gonadal 

vein.  (iii) Retraction of the right rectus (R) to expose the right kidney (RK).  The IVC and right renal 

vein (RRV) are seen.  The right renal artery runs posterior to the RRV and is not visible.  (iv) The right 

renal bed (RRB) after right nephrectomy.  The doubly ligated right renal pedicle (L-RRP) is clearly 

seen.  
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In groups undergoing ischemia, the clamp was removed from the left renal pedicle, to 

provide exactly 30 minutes of warm ischemia.  

 

The abdomen was closed en mass using a continuous 4/0 vicryl suture, with a 

subcuticular 4/0 un-dyed suture for the skin edges.  

 

Groups 1 and two were given 800µl of 0.9% saline vehicle, intravenously via tail vein 

injection using a 30G insulin syringe.  Group 3 animals received 800µl intravenous 

MV therapy via tail vein injection.  Tail vein injection was given after abdominal 

closure, typically 20 minutes after unclamping of the renal pedicle.  

 

Blood was taken from each animal for creatinine levels at days 2, 4, 7 and 10.  

 

At day 14, the animals underwent terminal inulin clearance studies in order to 

accurately characterise the GFR of the remaining kidney, according to the standard 

protocol described in Section 2.2. After the animal was sacrificed, left kidneys were 

stored in 10% formalin and RNA later solution for later analysis.  

 

Formalin preserved kidneys were paraffin embedded and sectioned as described in 

Section 2.3.  Histological analysis and immunohistochemistry for P16, P21 and Ki 67 

were carried out as described in Sections 2.3 and 2.4 
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4.4 RESULTS 
4.41 GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

As shown in Figure 4.3 all animals suffered significant weight loss in response to the 

trauma of surgery.  By day 14 animals undergoing nephrectomy alone (Group 1) had 

regained their baseline weight.  In contrast, animals subjected to nephrectomy and 

ischemia (Groups 2 and 3), remained significantly below their baseline weight by Day 

14. 
 

 

 
 

Fig 4.3: Compared to baseline, animals in Groups 1, 2 and 3 exhibited significant weight loss on Day 2 

(p =0.0004, 0.0003 and <0.0001 for Group 1, 2 and 3 respectively) There remained significant weight 

loss for all Groups on Day 4 (p =0.0006, 0.0005, and <0.0001 respectively), Day 7 (p=0.0011, 

<0.0001, and <0.0001) and day 10 ( p=0.0006, 0.0039 and <0.0001) 

By day 14, animals undergoing nephrectomy alone (Group 1) had regained baseline weight (p = 

0.6980).  In contrast, animals subjected to nephrectomy and ischemia (Groups 2 and 3) failed regained 

their baseline weight by day 14 (p = 0.0358 and <0.0001 respectively).  

Statistical analysis by unpaired Students t test.  
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4.42 COMPARISION OF PERCENTAGE WEIGHT LOSS FROM BASELINE 

BETWEEN GROUPS 

Animals undergoing nephrectomy alone (Group 1) regained weight more quickly than 

animals subjected to nephrectomy and ischemia (Groups 2 and 3).  No significant 

difference was observed at any point in weight loss compared to baseline, between 

Group 2 and Group 3.  (Figures 4.4) 

 
 

 

Figure 4.4(i) Group 1 animals were found to have lost significantly less of their baseline body weight 

at day 7 (p =0.0259), day 10 (p =, 0.0253) and day 14 (p= 0.0378) when compared to Group 2 animals.  

(ii) Group 1 animals lost significantly less of their baseline body weight compared to Group 3 animals 

at day 4 (p=0.0149), Day 7 (p=0.0015), Day 10 (p=0.0004) and Day 14 (p=0.0002) (iii) There was not 

significant difference in baseline body weight lost at any time point when comparing Groups 2 and 3.   

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test 
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4.43 SERUM CREATININE LEVELS COMPARED TO BASELINE VALUES 

After surgery, all groups displayed significantly elevated serum creatinine levels 

when compared to baseline for the duration of the experiment. (Figure 4.5).  

 
Figure 4.5: All groups displayed significantly elevated serum creatinine from baseline (p<0.0001), at 

all the experimental time points of Day 2, Day 4, Day 7 and Day 10. 

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 

 

 

 

 

 

 

 

 

 

 

 

Day
 0

Day
 2

Day
 4

Day
 7

Day
 10

0

50

100

150

200

250

Time

C
r u

m
ol

/L
 

GROUP 1

GROUP 2
GROUP 3



	 130	

4.44 COMPARISION OF SERUM CREATININE LEVELS BETWEEN 

GROUPS 

 

No significant difference in serum creatinine level was observed between any groups 

at any time point. (Figure 4.6). 

 
 
Figure 4.6: At all time points, Group 1 was found to have no significant difference in serum creatinine 

when compared to Group 2 (p = 0.9350, 0.9270, 0.8110 and 0.6478 at days 2, 4, 7 and 10 respectively) 

or Group 3 (p = 0.2093, 0.4583, 0.3365 and 0.3863 at days 2, 4, 7 and 10 respectively). 

No significant difference in serum creatinine level between Group 2 and Group 3 was observed at any 

time point (p= 0.3359, 0.6815, 0.6912 and 0.8955 at days 2, 4, 7 and ten respectively). Statistical 

analysis by one-way ANOVA with Tukey multiple comparisons test.   
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4.45 GLOMERULAR FILTRATION RATE 

All rats were culled on day 14 after undergoing terminal GFR experiments via 

continuous inulin infusion as described in Section 2.2.  

No significant difference in GFR was observed between any of the groups.  (See 

Figure 4.7) 

 

 
Figure 4.7: No significant differences were observed in GFRs between group 1 and 2 (p=0.9697), 

groups 2 and 3 (p=0.2976) and groups 1 and 3 (p=0.4143).  

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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4.46 RENAL HISTOLOGY SCORING 

Histological examination of kidney tissue revealed no significant difference between 

Groups in either the number of epithelial breaks or hyaline casts per high-powered 

field. (Figure 4.8)   

 
Figure 4.8: (i) No difference was observed in the number of epithelial breaks between Groups 1 and 2 

(p =0.7353 ) or Groups 1 and 3 (p=0.8782).  No difference in epithelial break formation was observed 

between Groups 2 and 3. (p=0.9619) (ii) No difference in hyaline cast formation was observed between 

Groups 1 and 2 (p=0.7663) or Groups 1 and 3 (p=0.9945).  No difference in hyaline cast formation was 

found between Group 2 and 3 (p=0.8218)  

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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4.47 IMMUNOHISTOCHEMISTRY DATA 

Histoscores for p16, p21 and Ki 67 were calculated by 2-blinded observers as 

described in Section 2.47.  

No significant difference between groups was found for p16, p21 or Ki 67 (Figure 

4.9).  

 
Figure 4.9: (i) No significant difference in cortical nuclear p16 expression was found between Group 1 

and 2 (p=0.9644) or Groups 1 and 3 (p=0.9882).  No difference was found between Groups 2 and 3 

(p=0.9146). (ii) No significant difference in cortical nuclear p21 expression was found between Group 

1 and 2 (p=0.8139) or Groups 1 and 3 (p=0.8060). No difference was found between Groups 2 and 3 

(p=0.9999). (iii) No significant difference in cortical nuclear Ki67 expression was found between 

Group 1 and 2 (p=0.8313) or Groups 1 and 3 (p=0.4160. No difference was found between Groups 2 

and 3 (p=0.7611).  

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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4.5 DISCUSSION 

Home Office Legislation in the UK regarding animal work requires intra-experiment 

animal pain and post-procedural animal mortality to be kept to a minimum.  Using 

conventional animal models, long periods of renal ischemia are therefore effectively 

prohibited as severe acute renal dysfunction is likely to cause severe metabolic and 

electrolyte disturbances that result in excessive numbers of post-procedural animal 

deaths (Skrypnyk et al., 2013, Wang et al., 2012). 

 

The unilateral renal ischemia with contralateral nephrectomy rodent model has been 

utilised in a number of studies, although ischemic times applied to the remaining 

kidney have varied from study to study.  Results from these studies indicate 

acceptable animal mortality rates with shorter periods of ischemia, but with increased 

mortality as ischemic times lengthen (Wang et al., 2012, Le Clef et al., 2016).  

Furthermore, the magnitude and duration of renal injury are clearly related to the 

length of the ischemic period (Grigoryev et al., 2008) with healthy rodents exhibiting 

considerable renal regeneration after ischemic renal injury (Ysebaert et al., 2000, 

Forbes et al., 2000).  However, 30 - 60 minutes of ischemia has previously been 

reported in some studies to result in a long-standing functional renal deficit in rats, 

with associated changes in renal histology and increased molecular markers of injury 

(Gatti et al., 2011, Cantaluppi et al., 2012, Shih et al., 2013, Feng et al., 2010b, Cai et 

al., 2014, Chen et al., 2011). 

 

30 minutes of ischemia was chosen for this experiment in the belief that this would 

produce a long-standing deficit in renal function with concomitant changes in renal 

histology and molecular markers of damage that would be detectable 14 days after 

injury occurring.  By establishing a long-term renal injury in animals subjected to 

nephrectomy and ischemia, it was intended to investigate the protective and 

regenerative effects of stem cell derived ESV therapy.  Also, it was hoped that animal 

mortality would be kept within the confines of the Home Office Project License. 

 

Unfortunately, it is clear from this study in Albino Swiss rats undergoing a 

contralateral nephrectomy, 30 minutes of warm ischemia to the remaining kidney is 

not enough to produce a renal injury that is evident after 14 days recovery.  While 
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body weight in animals undergoing nephrectomy alone (Group 1) recovered to 

baseline more quickly than those animals subjected to nephrectomy and ischemia 

(Groups 2 and 3), no markers of renal injury were significantly different between 

Group 1 and Group 2 after 14 days recovery and the GFR between groups was not 

statistically different.  

 

Serum creatinine levels did not vary significantly between the Groups at any time.  It 

may be that 30 minutes of warm unilateral ischemia in the Albino Swiss strain is not 

enough to produce an acute kidney injury resulting in renal dysfunction.  However, 

another explanation is that serum creatinine lacks the sensitivity to accurately 

characterise renal function in rodents, especially when dysfunction is kept to a 

minimum (Finco and Duncan, 1976, Harvey and Malvin, 1965, Katayama et al., 2010, 

Meyer et al., 1985).  This would explain the apparent lack of difference in serum 

creatine between Groups 1 and 2 during the initial post-operative period.  

 

By day 14 the lack of significant difference between Groups in any of the functional, 

histological or molecular markers of damage, is an indication that 30 minutes of 

ischemia is not enough to cause a permanent renal injury in the Albino Swiss rat 

strain.  The lack of injury negates the ability of such a model to detect any protective 

or regenerative effects of cellular therapy on the renal system, as these results suggest 

a healthy Albino Swiss rat has the ability to recover from a 30-minute period of 

ischemia within 14 days of ischemia occurring.  

 

Consequently, it seemed impossible to continue to use this or similar models to 

investigate the long-term effects of stem cell-based therapies at mitigating renal 

ischemia.  It was felt that longer periods of renal ischemia were necessary to produce 

a permanent renal injury, but that this would not be possible in conventional models 

without breaching the terms of the Home Office Project License.  The natural 

conclusion was that in order to better test the medium and long-term effects of stem 

cell based therapies in rodents, a novel model was required. 
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CHAPTER 5 
 

DEVELOPMENT OF A NOVEL RAT MODEL OF 

SEVERE RENAL ISCHEMIA-REPERFUSION INJURY 
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5.1 INTRODUCTION 
Despite considerable research efforts to develop novel anti-ischemic compounds to 

combat renal IRI, there are no protective or regenerative agents in clinical use and 

supportive therapy remains the mainstay of treatment (Chatterjee, 2007, Chatterjee 

and Thiemermann, 2003).   

 

The dearth of novel therapies in part reflects the lack of suitable animal models in 

which new medicines can be tested.  The salient finding of Chapter 4 was the 

difficulty encountered when subjecting rats to an ischemic insult that causes a 

measurable permanent reduction in renal function without unacceptable numbers of 

animals dying first from acute kidney failure.  Establishing a state of chronic renal 

failure is a necessary first step in order to investigate the long-term efficacy of 

emerging treatments (Lieberthal and Nigam, 2000).   

 

The majority of renal IRI experiments have been conducted in rodents, which are 

considered favourable to larger animals due to their relatively low cost and wide 

availability (Ortiz et al., 2015).  The most commonly studied rodent models utilise 

either bilateral renal ischemia (B-IRI), or unilateral ischemia (U-IRI) after performing 

a contralateral nephrectomy (U-IRI+N) (Wei and Dong, 2012).  Serum creatinine and 

BUN are almost universally used in such models to monitor renal function (Wei and 

Dong, 2012).  In both of these model types, ischemic times of 30 – 60 minutes have 

been shown to cause acute renal dysfunction (Jo et al., 2001, Nemoto et al., 2001, 

Ysebaert et al., 2000, Jablonski et al., 1983) although studies indicate this usually 

resolves within a week of surgery (Forbes et al., 2000, Ysebaert et al., 2000, Jablonski 

et al., 1983).  Longer periods of warm ischemia are associated with unacceptable 

numbers of post-procedure animal deaths, often within 48 hours as a result of acute 

renal failure (Zager, 1987, Zager, 1991).    

The majority of studies investigating the effects of novel therapies on renal IRI only 

report outcomes during the first few post-operative days, by which time rodent serum 

creatinine typically approaches baseline.  Although a few longer-term studies have 

been published, most reports indicate that injured control kidneys return to a state of 

normal morphology within two weeks of injury.  Serum creatinine and BUN levels 
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normalise by two weeks post procedure, remaining stable 40 weeks later indicating no 

long-term functional decay (Basile et al., 2001, Horbelt et al., 2007).   

 

 This highlights the shortcomings of conventional rodent models of renal IRI – 

namely the paradox of inflicting a severe enough injury to cause permanent renal 

damage while avoiding unacceptable numbers of post procedure animal deaths 

(Skrypnyk et al., 2013).  Using conventional rodent models, it therefore appears 

difficult to inflict a longstanding renal injury, as rodent kidneys seem to regenerate to 

function normally after non-fatal periods of renal ischemia.  The benefit of testing the 

long-term effects of novel therapies in conventional rodent models is therefore 

questionable (Wang et al., 2012). 

 
U-IRI without contralateral nephrectomy (U-IRI-N) leaves animals with a healthy 

functioning kidney that serve as protection against acute renal failure and death 

(Zager et al., 2011).  Consequently, such models allow the study of prolonged 

ischemic times well beyond the typical first few days of acute renal injury (Lech et 

al., 2009), with animals subjected to prolonged ischemia eventually developing 

chronic renal failure (Ascon et al., 2009).  Ischemic times of up to in 60 minutes in 

mice (Adachi et al., 2013) and 190 minutes in rats (Craddock, 1976) have been 

reported.  Such severe injury more closely resembles the nephropathology observed in 

the clinical setting (Salahudeen, 2004).  However, U-IRI-N models do not allow 

functional elements of the ischemic injury to be studied using serial blood analysis, as 

renal function markers in such models are affected by the filtration of the uninjured 

kidney (Skrypnyk et al., 2013).  

 

Nevertheless, while serial blood analysis may be useful to map renal function trends 

during the experimental time course, in rodents the accuracy of serum creatinine and 

BUN in assessing renal function is of dubious significance (Finco and Duncan, 1976, 

Harvey and Malvin, 1965, Katayama et al., 2010, Meyer et al., 1985, Namnum et al., 

1983).  With blood analysis unable to accurately determine both short and long-term 

rodent renal function in IRI experiments, any conclusion regarding the quantified 

efficacy of therapies based on blood analysis must be questionable, and more accurate 

methods of demonstrating renal function should be employed.  
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5.11 QUANTIFICATION OF RENAL FUNCTION 

As described in Section 2.2, GFR as determined by inulin clearance is widely 

regarded as the most reliable and accurate method of quantifying renal function.  

Using inulin clearance, split renal function has been measured in dogs (Tsuji et al., 

1993), pigs (Downey et al., 2001) and rats (Malis et al., 1983, Kassab et al., 2001) by 

separate cannulation of each ureter and accurate urine collection.  Unfortunately, the 

size constraints when using a murine model make ureteric cannulation impractical.  

However, in rat models of U-IRI-N, inulin clearance with ureteric cannulation offers 

the most accurate method of quantifying split renal response to injury +/- 

intervention.    

 

5.12 ROUTE OF DRUG DELIVERY 

The optimum route of administration for stem cell therapy has yet to be clarified.  

Novel stem cell therapies have typically been delivered systemically during animal 

experiments investigating the mitigation of renal IRI.  The most common route of 

systemic administration has been by intravenous injection, although other studies 

have given intra-aortic treatment via carotid cannulation (Feng et al., 2010b).  

However, while systemic delivery methods have been shown to mitigate renal 

ischemia, this requires larger numbers of cells to produce efficacy than with local 

administration (Shih et al., 2013).  Moreover, systemic distribution results in the 

majority of administered cells being filtered by the pulmonary circulation (Fischer et 

al., 2009, Burst et al., 2010).  This has been shown to produce undesirable effects 

such as pulmonary damage (Anjos-Afonso et al., 2004) and pulmonary vascular 

occlusion (Shih et al., 2013). 

 

Direct renal intra-parenchymal injection of stem cells has been demonstrated to be an 

efficient route (Chen et al., 2011) and furthermore may increase the retention and 

survival of administered cells.  However, a direct intra-parenchymal injection may 

result in local storage of stem cells and ultimately lead to renal damage (Mias et al., 

2008).  

 

Administration of therapy into the renal artery is the likely route of drug 

administration in clinical transplantation, where the availability of the renal artery 

allows easy ex vivo delivery prior to implantation.  Intra-renal artery therapy injection 
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theoretically allows high local concentration of treatment without the potential side 

effects of systemic distribution.  One study in an allogeneic rat renal transplant model 

has reported that intra-renal artery infusion of MSCs was superior to MSC treatment 

by intravenous injection for the prevention of acute rejection (Zonta et al., 2010). 

 

However, in rodents, this is a technically demanding procedure requiring 

fluoroscopically guided renal artery catheterization in animal models where the renal 

artery has not been opened, or a direct arterial injection with subsequent vascular 

repair to prevent catastrophic haemorrhage if the artery is available.  Nevertheless, to 

mimic the transplantation process as closely as possible, novel rodent models utilising 

intra-renal artery infusion of stem cell therapies are potentially of relevance.   

 

 

5.2 HYPOTHESIS 

(1) Rats subjected to 120 minutes of unilateral warm renal ischemia will exhibit 

long-term functional deficit in function of the damaged kidney, together with 

abnormal renal histology and elevated molecular markers of injury. 

(2) The presence of a healthy contralateral kidney will reduce to an acceptable 

level the post procedure animal deaths that result from metabolic derangement 

as a result of acute renal dysfunction.  

(3) Direct intra-renal artery injection of therapy is the route most likely employed 

during clinical transplantation.  Animal models developed to investigate novel 

therapies should utilise this route. 
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5.3 METHODS 
5.31 ANIMAL HOUSING AND HUSBANDRY  

Male Fisher 344 rats, aged 12 - 14 weeks and weighing 225 – 250g were sourced 

from Harlan UK Ltd. Animals were housed in the JRF, University of Glasgow for at 

least two weeks prior to surgery to allow the animals to equilibrate with their new 

environment.  Animals were housed and fed as described in Section 2.1.  During 

equilibration prior to surgery, animals put on weight such that on the day of surgery, 

rats weighing 250 – 320g were used.  

 

Post surgery, animals were weighed weekly and assessed on a daily basis for signs of 

distress or illness.  

 

5.32 GROUP SELECTION 

Animals were randomly assigned to sham operation (Group 1), 120 minutes of left 

renal IRI with two weeks recovery (Group 2), or 120 minutes of left renal IRI with six 

weeks recovery (Group 3).  (See Table 5.1) 

 

Group 120 minutes left 

renal ischemia 

Recovery prior to 

Inulin Clearance 

Intra-renal artery 

flush 

1 X 2 weeks None 

2 √ 2 weeks Normal saline 

3 √ 6 weeks Normal saline 

Table 5.1: Summary of experimental groups.  Six rats were randomly assigned to each group. 
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5.33 SURGICAL PROCEDURE 

Rodent anaesthesia, positioning during surgery and post-surgical care, were 

conducted in standard fashion, as previously described in Sections 2.12 – 2.16.  

 

Surgical Procedure: A high midline incision was made.  The small bowel was 

wrapped in damp swabs, and retractors placed to enable access to the left renal 

pedicle.  (Fig 5.1a)  Mobilisation of the left colon was achieved by incising the lateral 

peritoneal attachments, thereby exposing the renal vasculature.  The renal artery was 

separated from the renal vein using blunt dissection with cotton tips and/or forceps, to 

fully expose the length of the renal artery from its origin on the aorta to the renal 

hilum.  (Fig 5.1b)  This necessitated tying of the suprarenal vein.  Once exposed, an 

atraumatic vascular clamp was placed on the on the artery, close to its junction on the 

aorta, signifying the start of the ischaemic period.  A colour change in the kidney was 

quickly visible, confirming correct placement of the clamp. 

 

Group 1 (sham operated animals) underwent dissection of the renal pedicle, but no 

clamping of the renal artery. 

 

After 90 minutes of ischemia, an arteriotomy was made, and the kidney flushed with a 

0.8ml intra-arterial injection of normal saline given via a 30G Ryecroft cannula.  To 

facilitate this, a thin rubber sloop was placed around the cannula at the point of 

insertion and tension applied to prevent back-leak while an assistant gently injected 

the contents of the syringe.  A colour change in the cortex of the kidney was 

universally observed, confirming infiltration of the kidney parenchyma with saline 

vehicle.  (Fig 5.1d) 

The artery was fully transected, then re-anastomosed in a standardised triangulated 

fashion, using 12 interrupted 10/0 nylon sutures.  (Fig 5.1f-j)  A frame clamp was 

used to secure the arterial ends during anastomosis, and background material placed 

to prevent damage to posterior structures.  (See fig 5.1e)  The arterial clamps were 

removed after exactly 120 minutes and reperfusion of the kidney confirmed visually.  

Wound Closure: The abdominal musculature was closed en mass using a continuous 

4/0 vicryl suture, with a subcuticular 4/0 suture applied to close skin edges.  Using 

this closure, there were no wound infections or dehiscence, and only a single episode 

of an animal gnawing its skin sutures.  
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Figure 5.1: (a) View of the left renal pedicle before mobilisation of the left colon.  (b) View after 

mobilising the left colon and dissection of the renal artery to its origin on the aorta.  

(c) Preparation of renal artery for intra-arterial injection.  Background material has been inserted to 

protect posterior structures.  (d) View during intra-arterial injection.  Note colour change of renal 

cortex during perfusion.  (e) Transected artery in frame clamp, ready for anastomosis.  (f) Insertion of 

stay suture into the renal artery. 

LC = left colon: LK = left kidney: LRV = left renal vein: RA = renal artery: IVC = inferior vena cava: 

A = aorta: LLL = left lobe of liver: S = rubber sloop: C = 30G cannula.   
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Figure 5.1(g) Completion of front arterial wall anastomosis.  (h) The sixth suture inserted into the 

middle of the back wall.  (i) Completed anastomosis prior to clamp removal.  (j) Finished anastomosis 

post clamp removal.  Note renal perfusion and bulging artery downstream of anastomosis indicating 

technical success. 
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5.34 POST-SURGICAL CARE 

This was carried out in standard fashion as described in Section 2.16.  

 

5.35 QUANTIFICATION OF RENAL FUNCTION AND RENAL INJURY 

At day 14, Group 1 and Group 2 animals underwent inulin clearance studies to 

accurately characterise the function of the left kidney, according to the standard 

protocol described in Section 2.2.  Group 3 animals underwent inulin clearance 

studies six weeks after ischemia, again according to standard protocol. 

Left kidneys and right kidneys were weighed, before being stored in 10% formalin 

and RNA later solution for later analysis. 

 

Formalin preserved kidneys were paraffin embedded and sectioned as described in 

Section 2.3 Histological analysis was carried out as described in Sections 2.3 and 2.4 
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5.4 RESULTS 
5.41 POST-PROCEDURE MORTALITY RATES AND TECHNICAL 

COMPLICATIONS 

In the 18 rats subjected to 120 minutes of unilateral warm renal ischemia, (and 

subsequently in more than 60 animals used to test stem cell-based therapies) there was 

only one post-procedure death.  

 

Furthermore, there was one failed attempt to successfully anastomose the renal artery, 

indicating that for a trained microsurgeon, successful anastomosis of vessels ~ 0.6mm 

is technically feasible. 
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5.42 GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

 
Fig 5.2: Compared to baseline, animals in Groups 1, 2 and 3 exhibited significant weight loss on Day 2 

(p <0.0001, 0.0011 and 0.0033 for Group 1, 2 and 3 respectively) There remained significant weight 

loss for all Groups on Day 4 (p <0.0001, <0.0001, and 0.0002 respectively), Day 7 (p=0.0003, 0.0027, 

and 0.0001) and day 10 (p=0.0311, 0.0157 and 0.0033).  By day 12 animals weights in all groups had 

returned to baseline (p=0.4394, 0.9734 and 0.2189 respectively).  

By day 14, animals in all groups had put on weight in comparison to baseline (p =0.0002, 0.0006 and 

0.0066 respectively).  

Statistical analysis by unpaired Student’s t test.  

 

  

Da
y 
0

Da
y 
2

Da
y 
4

Da
y 
7

Da
y 
10

Da
y 
12

Da
y 
14

85

90

95

100

105

110
%

 B
a

s
e

li
n

e
 B

o
d

y
w

e
ig

h
t

Group 2
Group 1

Group 3



	 148	

5.43 COMPARISION OF PERCENTAGE WEIGHT LOSS FROM BASELINE 

BETWEEN GROUPS

 
Figure 5.3(i) At no time point were Group 1 animals were found to have a significant weight 

difference as % of baseline weight, when compared to Group 2 animals.  (ii) At no time point were 

Group 1 animals were found to have a significant weight difference as % of baseline weight when 

compared to Group 3 animals.  (iii) At no time point were Group 2 animals were found to have a 

significant weight difference as % of baseline weight when compared to Group 3 animals.   

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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5.44 GLOMERULAR FILTRATION RATE 

120 minutes of renal ischemia was found to produce a permanent, severe and 

reproducible injury that resulted in a long-term GFR deficit.  (See figure 5.4).  

 

 
Figure 5.4: Left sided renal function in Group 1 (sham-operated), Group 2 (120 minutes IRI with two 

weeks recovery) and Group 3 (120 minutes IRI with six weeks recovery).  Group 2 animals experience 

a severe reduction in GFR (~ 50%) compared to sham operated animals (p=0.0022).  GFR is typically 

~ 65% of sham values after six weeks recovery (p=0.0013). 

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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5.45 RENAL HISTOLOGY SCORING 

Histological examination of kidney tissues as described above reveals significant 

disruption in renal architecture in those animals subjected to 120 minutes of warm 

ischemia.  (See figure 5.5) 

 
 Figure 5.5: (a) Renal histology shows that Group 2 animals exhibit significantly more epithelial 

breaks than Group 1 animals (p<0.0001). Similarly, more epithelial cell breaks are observed in Group 3 

animals than Group 1 (p<0.0001). Group 2 animals had more epithelial breaks than Group 3 animals 

(p<0.0001).  

(b) More hyaline casts are observed in both Group 2 (p<0.0001) and Group 3 (p=0.0285) when 

compared Group 1.  More hyaline casts are found in Group 2 animals compared to Group 3 animals 

(p=0.0001).  

Statistical analysis by one-way ANOVA with Tukey multiple comparisons test. 
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5.5 DISCUSSION 
Cell-based therapy has emerged as a potential treatment for acute renal injury 

affecting either native or transplanted kidneys.  IRI is a particular problem in the field 

of transplantation where changing trends in organ donation have led clinicians to meet 

demand by utilising ‘marginal’ organs from the DCD category, or from older and less 

fit DBD donors (Schold et al., 2005, Tuttle-Newhall et al., 2009).  Such kidneys, may 

be subjected to longer periods of warm ischemia during retrieval, and consequently 

are more susceptible to IRI during implantation (Port et al., 2002, Koffman and 

Gambaro, 2003, Metcalfe et al., 2001a, Metcalfe et al., 2001b).  Developing 

strategies, including pharmacological interventions to improve the outcomes of these 

‘extended criteria' allografts is of the utmost importance.   

 

The absence of interventions for the treatment of renal IRI reflects the lack of relevant 

animal models in which novel therapies may be easily studied. Many standard rodent 

models used to induce renal dysfunction do not rely on warm ischaemia as a 

mechanism of injury.  These include models that utilise reduction of renal mass (5/6 

nephrectomy), administration of nephrotoxins,  or renal  

injury caused by ureteric obstruction.  However, warm renal ischemia and the injury 

that follows reperfusion are the most common causes of renal transplant dysfunction 

encountered in clinical practice (Giraud et al., 2011, Jang et al., 2009).  Establishing 

authentic animal models that mimic the pathological process of renal IRI is of vital 

importance in evaluating the feasibility and efficacy of novel therapeutic 

interventions.  Unfortunately, commonly used rodent models of renal IRI lack the 

capacity to inflict a severe, long-standing renal injury without excessive post-

operative animal deaths.  To address this, Wang et al. investigated the use of 

prolonged warm ischemic times to create a severe and sustained renal injury model 

(Wang et al., 2012).  They observed warm ischemic times of up to 90 minutes were 

associated with long-term disruption of renal architecture, increased levels of 

apoptosis and renal fibrosis.  However, they reported prolonged ischemia resulted in 

almost 80% animal deaths at four weeks, although renal function as determined by 

serum creatinine, had normalised by this time in surviving animals.   
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Rodent kidneys subjected to prolonged periods of warm ischemia have been reported 

to display abnormal histology after several days recovery, while the serum 

creatinine/blood urea nitrogen (BUN) were found to be normal (Basile et al., 2001, 

Forbes et al., 2000, Wang et al., 2012, Chen et al., 2011, Jablonski et al., 1983, 

Marshall V, 1982).  This paradox may be explained by the relative insensitivity 

creatinine and BUN at quantifying renal function in rodents (Finco and Duncan, 1976, 

Harvey and Malvin, 1965, Katayama et al., 2010, Meyer et al., 1985).  While 

convenient, these surrogate markers of glomerular filtration do not become 

significantly elevated until 50 – 75% of kidney function is lost (Finco and Duncan, 

1976).  Also, creatinine secretion varies in acute renal failure.  Creatinine clearance 

studies are reported to be more accurate than serum analysis alone, but necessitate the 

timed collection of urine in conjunction with serum analysis.  This makes creatinine 

clearance an impractical tool for estimating renal function in postoperative rodents 

(Sturgeon et al., 1998).  Furthermore, such studies have been shown to overestimate 

GFR by as much as 10% (Harvey and Malvin, 1965, Namnum et al., 1983).  

 

With blood analysis unable to accurately determine both short and long-term renal 

function in IRI experiments, any conclusion regarding the efficacy of therapies based 

on such markers is questionable.  To accurately quantify the effect of novel 

treatments, other methods of assessing renal function should be employed.  

 

The model described here goes some way to addressing the problems encountered by 

Wang et al (Wang et al., 2012), and additionally has several advantages over 

commonly used in vivo models.  This model can inflict a reproducible and severe 

renal IRI without excessive post-operative mortality.  Cannulation of both ureters in a 

terminal procedure allows the accurate calculation the GFR of each kidney by inulin 

clearance.  This is the most sensitive method of characterising the injury that results 

from a given ischemic time and also of assessing the renoprotective effect of any 

therapeutic intervention.   

 

Given the severity of the ischemic insult inflicted, a major advantage of our model is 

the small number of post -operative animal deaths observed.  This probably reflects 

the relative lack of metabolic disturbance that results from the filtration of the 

uninjured right kidney.  It may be argued that this produces an artificial setting, 
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leaving an injured kidney to recover in a non-uraemic environment.  However, a non-

uraemic state after renal IRI has been reported to increase fibrosis in injured kidneys 

(Jablonski et al., 1985), hindering long-term renal recovery by arresting tubular 

epithelial cells in G2/M phase of the cell cycle (Yang et al., 2010).  Indeed, one recent 

report hypothesised that U-IRI-N rodent models might offer greater reliability by 

allowing the assessment of the natural course of post-ischemic renal damage, without 

the anti-inflammatory effects of ischemia (Le Clef et al., 2016).  There do not appear 

to be any studies that show U-IRI-N models to be unreliable.  

 

Furthermore, this is one of the first descriptions of therapy given directly into the 

renal artery in an in vivo IRI animal model.  Intra-renal artery infusion is a more 

technically challenging procedure than either intravenous injection or aortic injection 

via carotid cannulation, but with practice, it is possible to achieve arterial anastomotic 

patency rates approaching 100%.  By using this route, the systemic drug distribution 

and the negative effects of pulmonary entrapment are minimised, while a high local 

concentration of therapy to the damaged kidney is provided.  Importantly this method 

mimics the therapeutic route likely to be employed in clinical transplantation, where 

the renal artery is readily available for drug administration prior to implantation.  This 

route could easily be utilised in a rodent transplant model.  However, results obtained 

using our model are less variable as there is no need for venous and ureteric 

anastomosis.  Hence, we can screen potential therapies’ efficacy prior to their use in a 

more technically complex transplant model.  This reduces animal numbers needed to 

test potential drugs for clinical transplantation and allows refinement of dosing 

schedules.  

 

Finally, a recent paper using mice has described a U-IRI-N model similar to the rat 

model described here (Le Clef et al., 2016).  That another group has identified many 

of the shortcomings of commonly used animal models partly validates the logic 

behind the development of this novel rat model. In recognition of this, findings of this 

Chapter were recently published (Whalen et al., 2016). 
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CHAPTER 6 
INVESTIGATING THE RENO-PROTECTIVE 

EFFICACY OF SYNGENEIC CRYOPRESERVED 

ADIPOSE-DERIVED REGENERATIVE STEM CELLS IN 

A NOVEL RAT MODEL OF SEVERE RENAL 

ISCHEMIA-REPERFUSION INJURY 
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6.1 INTRODUCTION 
As discussed previously, renal transplantation is established as the optimal treatment 

for ESRF with recognized benefits including reduced mortality, morbidity and cost 

when compared to remaining on dialysis (Laupacis et al., 1996, Wolfe et al., 1999, 

Zelmer, 2007).  However, the increased demand for organs has not been matched by a 

concomitant rise in donation (Matas et al., 2013, Port, 2003) and clinicians have 

attempted to meet demand by utilizing organs from ‘extended criteria donors’ (ECD) 

or individuals who donate after circulatory death (DCD)(Port, 2003, Nathan et al., 

2003).  Ischemia-reperfusion injury (IRI) is magnified in these ‘marginal’ organs, 

resulting in worse short and long-term outcomes when compared to other categories 

of age-matched kidneys (Bagul et al., 2013, Neyrinck et al., 2013, Wadei et al., 2013). 

 

IRI is an inevitable event during transplantation, characterized by an inflammatory 

reaction associated with the infiltration of monocytes and the production of reactive 

oxygen species (Bonventre and Yang, 2011, Eltzschig and Eckle, 2011).  

Furthermore, IRI is thought to be responsible for approximately 30% of delayed graft 

function (Kosieradzki and Rowinski, 2008). Such events, by increasing 

immunogenicity, predispose to acute rejection and early graft dysfunction (Bouma et 

al., 2009).  Both of these are well recognized to be predictors of poor long-term 

outcomes (Joosten et al., 2004, Matas et al., 1994, Troppmann et al., 1995). 

 

Therefore, the current trend towards increasing use of ECD and DCD kidneys 

necessitates the development of protective and regenerative novel therapies to 

mitigate IRI.  Unfortunately, no such treatments are in widespread clinical use and 

current post-transplant management strategies remain largely supportive.  
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6.11 BONE DERIVED MSCs VERSUS ADIPOSE REGENERATIVE CELLS 

FOR THE TREATMENT OF RENAL ISCHEMIA REPERFUSION INJURY 

Stem cell therapy has emerged as a potential approach to combat the early graft 

dysfunction and enhanced immunogenicity that follow IRI as a result of the 

transplantation process.  Beneficial effects associated with the administration of 

mesenchymal stem cells (MSCs) have been reported in various rodent renal IRI 

models, where MSCs have been shown to act via anti-inflammatory and 

immunomodulatory mechanisms. 

 

MSCs may be obtained from a variety of sources including bone marrow, umbilical 

cord blood and adipose tissue.  Most studies investigating the effects of protective 

MSCs on organ ischemia have utilised bone marrow-derived mesenchymal stem cells 

(BD-MSCs).  Whilst these are a convenient cell line in a laboratory setting, a number 

of potential problems exist with the application of BD-MSCs to the clinical 

environment.  

 

Firstly, allogeneic MSCs have been demonstrated to be immunogenic (Nauta et al., 

2006b) and the use of autologous or syngeneic MSCs is considered preferable in the 

transplant setting (Roemeling-van Rhijn et al., 2012).  Unfortunately, extracting 

autologous BD-MSC preparations is invasive, and furthermore requires ex vivo 

cellular expansion.  Achieving this within the time constraints associated with 

deceased kidney donation is likely to prove problematic.  Moreover, the malignant 

potential of cells expanded ex vivo has raised safety concerns, especially when applied 

to immunosuppressed patients in the transplantation setting (Roemeling-van Rhijn et 

al., 2012, Lee et al., 2009, Mantovani, 2012, Ren et al., 2012).  

 

Fortunately, there are other tissues sources from which to isolate stem cells for 

therapeutic application.  Adipose tissue is abundant and in contrast to bone marrow 

can be obtained in a minimally invasive fashion.  Large numbers of adipose-derived 

regenerative cells (ADRCs) can quickly be obtained from adipose tissue. It is 

important to note that the ADRC population is heterogeneous, containing 

mesenchymal stem cells, endothelial cells, endothelial progenitor cells and vascular 

smooth muscle cells (Lin et al., 2008). 
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No ethical concerns exist regarding the use of adipose tissue as a source of 

regenerative cells, and it is therefore an attractive option from which cells may be 

isolated for immediate use.  

 

The yield of MSCs from adipose tissue is reported to be 40 times greater than from 

bone marrow (Kern et al., 2006). Hence, ADRCs can be isolated in large quantities by 

minimally invasive liposuction, and require no ex vivo expansion prior to storage or 

use. Therefore, ADRCs are an easily accessible and abundant source of autologous 

cells, which may be isolated and administered immediately, or cryogenically 

preserved for later use.   

 

If the safety and efficacy of ADRCs can be demonstrated, it is feasible to envisage a 

scenario involving recipient liposuction at the same procedure as kidney 

transplantation.  Cell isolation would yield an autologous ADRC preparation that 

could be delivered directly into the renal artery ex vivo, thereby providing a high local 

cell concentration, whilst minimizing systemic distribution.  A study confirming that 

ADRC function and phenotype is not affected by the uremic conditions suffered by 

ESRF patients has important implications for autologous ADRCs use in transplant 

recipients (Roemeling-van Rhijn et al., 2012). 

 

However, for logistical reasons, ADRC isolation may not be possible at the time of 

transplantation.  Here, it is feasible that ADRCs could be harvested from a patient 

soon after they were placed on a transplant waiting list.  Cryogenic freezing of the 

ADRCs at the transplant center would allow cells to be ready for use in the event of 

that individual being offered a kidney, although the efficacy of cryogenic ADRCs 

would need to be demonstrated in studies beforehand.   

 

6.12 ROUTE OF DELIVERY 

Several studies have reported the safety and efficacy of ADRCs in the treatment of 

renal IRI rat models.  Initial studies, using fresh and cryogenically frozen cells (either 

syngeneic or autologous), used carotid artery cannulation (Feng et al., 2010b) and 

intra-venous (Chen et al., 2011) delivery methods that resulted in systemic ADRC 

distribution.  Whilst systemic delivery methods have been shown to mitigate renal 

ischemia, this requires larger numbers of cells to produce efficacy than with local 
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administration (Shih et al., 2013).  Moreover systemic distribution results in the 

majority of MSCs remaining in the lungs, where the large size of MSCs (15 -19µm) 

results in MSC entrapment by pulmonary filtration (Fischer et al., 2009, Burst et al., 

2010, Schrepfer et al., 2007).  This has been shown to produce undesirable effects 

such as pulmonary infarction (Anjos-Afonso et al., 2004) and pulmonary vascular 

occlusion (Shih et al., 2013).  Local administration of therapy into the renal artery is 

therefore preferable, and has been shown to be a more effective route at ameliorating 

IRI in rodents treated with MSCs, undergoing renal transplantation (Zonta et al., 

2010, Iwai et al., 2014).  Furthermore, it is the likely route of drug administration in 

clinical transplantation, where the availability of the renal artery allows easy ex vivo 

delivery prior to implantation. 

 

 

6.13 CHOICE OF ANIMAL MODEL FOR TESTING ADRCs 

Current studies in rat renal IRI models have not convincingly demonstrated a long-

standing benefit of MSCs on renal function (Wang et al., 2012).  In part, this is due to 

shortcomings in conventional models that usually subject animals to 30 - 60 minutes 

of warm ischemia (Jo et al., 2001, Ysebaert et al., 2000, Nemoto et al., 2001, 

Jablonski et al., 1983).  This typically only results in impaired renal function for the 

first postoperative week (Forbes et al., 2000, Ysebaert et al., 2000, Jablonski et al., 

1983, Marshall V, 1982).  

 

The recognized shortcomings of commonly used rodent models led to the 

development of the novel model described in Chapter 5.  In this chapter, the effects of 

uncultured, cryopreserved syngeneic ADRCs in renal IRI in the novel rodent model 

are investigated, utilizing an intra-renal artery infusion.  Renal function was examined 

after a 2-week recovery period.   

 

6.14 RATIONALE FOR DOSES OF ADRC  

In order to reduce experimental time and animal numbers, the authors of a study 

(Feng et al., 2010b) reporting the effects of intra-arterial ADRCs on renal IRI were 

contacted for advice regarding initial dosing protocols.  A starting dose of 1 x 106 

ADRCs was recommended.  After 6 animals were treated with 1 x 106 ADRCs, it was 

decided to increase the dose to 1.3 x 106 to investigate if this affected efficacy.  As it 
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was quickly apparent that 1.3 x 106 ADRCs had a negative effect on renal perfusion, a 

group of 6 animals were treated with 7 x 105 ADRCs.  
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6.2 HYPOTHESIS 
(1) Syngeneic, cryopreserved ADRCs may protect long-term renal function 

from severe renal ischemia-reperfusion injury 

(2)  The effects of ADRCs may occur in a dose-dependent fashion.  
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6.3 METHODS 
6.31 ANIMAL HOUSING AND HUSBANDRY  

This was conducted in standard fashion, as previously described in section 5.31. 

Briefly, male Fisher 344 rats, aged 12 - 14 weeks and weighing 225 – 250g were 

allowed to equilibrate for at least 2 weeks prior to surgery.  Animals were housed and 

fed as described in Section 2.1.  During equilibration prior to surgery, animals put on 

weight such that on the day of surgery, rats weighing 250 – 320g were used.  

 

Post surgery, animals were weighed weekly and assessed on a daily basis for signs of 

distress or illness.  

 

6.32 GROUP SELECTION 

Control Groups 

Animals were randomly assigned to sham operation (Group 1, n=6) or 120 minutes of 

left renal IRI and renal artery injection with normal saline vehicle (Group 2, n=6).  

Animals were then recovered for 2 weeks.  

 

Adipose Derived Mesenchymal Stem Cell Groups 

Group 3 animals (n=6) were treated with 1 x 106 cryopreserved ADRC, given via the 

renal artery and recovered for 2 weeks.  Group 4 animals (n=4) were treated with 1.3 

x 106 ADRC and recovered for 2 weeks.  Group 5 animals (n=6) were treated with 7 x 

105 ADRC and recovered for 2 weeks.  

(See Table 6.1) 

 

Group 120 minutes left 

renal ischemia 

Recovery prior to 

Inulin Clearance 

Intra-renal artery 

Injection (0.9ml) 

1 X 2 weeks None 

2 √ 2 weeks Normal saline 

3 √ 2 weeks 1 x 106 ADRC 

4 √ 2 weeks 1.3 x 106 ADRC 

5 √ 2 weeks 7 x 105 ADRC 
 

Table 6.1: Summary of experimental groups.  6 rats were randomly assigned to each group.  
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6.33 SURGICAL PROCEDURE 

Rodent anesthesia, positioning during surgery and post-surgical care, including were 

conducted in standard fashion, as previously described in Sections 2.12 – 2.16.  

 

Surgery was carried out was described in Section 5.33.  Treatment groups received 

intra-renal artery therapy as outlined in Table 6.1.  All intra-renal artery infusions 

were made up to a total volume of 0.9ml in normal saline immediately prior to use.  
 

6.34 POST-SURGICAL CARE 

This was carried out in standard fashion as described in Section 2.16.  

 

6.35 QUANTIFICATION OF RENAL FUNCTION AND RENAL INJURY 

At day 14, animals underwent inulin clearance studies in order to accurately 

characterize the function of the both kidneys, according to the standard protocol 

described in Section 2.2.  

Left kidneys and right kidneys were weighed, before being stored in 10% formalin 

and RNA later® solution for later analysis. 

 

Formalin preserved kidneys were paraffin embedded and sectioned as described in 

Section 2.3 Histological analysis and immunohistochemistry for P16, P21 and Ki 67 

were carried out as described in Sections 2.3 and 2.4 
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6.36 DISECTION OF RAT INGUINAL FAT PAD 

(1) A male Fisher 344 rat, weighing 250 – 320g was euthanized by placing in a 

pre-filled CO2 chamber until motionless. 

(2) 1 minute was allowed to pass from the animal’s last movement until the 

animal was removed from the chamber. 

(3) The abdomen and groins of the rat were shaved, and the animal pegged out on 

a cork board, cleaned with 2% chlorhexidine and covered with a surgical 

drape. 

(4) Horizontal incisions in both groin creases were made to allow exposure of the 

groin adipose fat pads, which lies between the skin and muscles of the femoral 

triangle. 

(5) Lymph nodes in both fat pads were excised and discarded.  Likewise, any 

visible vessels were excised. 

(6) The fat pads were dissected free and weighted.  Typically ~ 4g of fat was 

obtained from each rat.  

(7) Fat was placed in sterile Hartmann’s solution ((Baxter Healthcare, Thetford 

UK) 

(8) At this point, fat was transferred to the British Heart Foundation Building, 

University of Glasgow for ADRC isolation to begin.  
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6.37 ADRC ISOLATION FROM INGUINAL FAT PAD 

ADRCs were isolated from the inguinal fat pad of freshly culled Fisher 344 rats (200 

– 320g) as previously described (Feng et al., 2010b, Schenke-Layland et al., 2009), 

but with minor modifications.  ADRC isolation work was done solely by Dr Diane 

Hardie Ph.D.  

 

(1) 5ml of Hartmann’s solution was added to a vial containing 35mg of Celase (a type 

of collagenase) reagent.  (Cytori Therapeutics, San Diego, CA, USA)  This 

produced a concentration of ~ 30 units/ml.  

(2) Homogenization of adipose tissue was achieved using large, and then small sterile 

scissors in a sterile, dry Petri dish.  Homogenization was judged complete when 

pieces were <4mm in diameter. 

(3) Homogenized adipose tissue was placed in a 50ml conical tube with 5x volume of 

collagenase solution.  

(4) The conical tube was agitated for 30 minutes, whilst being incubated at 37oC.  

(5) The tube was shaken violently to break up the largest remaining tissue pieces and 

agitated for a further 15 minutes at 37oC.  

(6) The ADRC fraction was separated by centrifugation at 600 g for 5 min.  

(7) The resulting pellet was washed in sterile PBS, centrifuged at 400g for 5 mins and 

repeated.  

(8) Incubation with Intravase™ (Cytori Therapeutics, San Diego, CA, USA) for 10 

min was followed by more PBS washing.  

(9) The cells were then passed through 100- and 40-µm Falcon™ cell strainers (BD 

Biosciences, San Jose, CA, USA), sequentially.  

(10) ADRCs were counted and prepared for cryopreservation. 
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6.38 ADRC CRYOPRESERVATION 

Cryopreservation of ADRCs was as described in a previous study (Feng et al., 

2010b). 

Briefly, ADRCs were isolated and frozen in 10% serum from Fisher 344 rats and 10% 

dimethyl sulphoxide in lactated Ringer's solution at a concentration of 3 x 106 

cells/ml. Cells were stored in liquid nitrogen until required. 

Prior to infusion, cells were thawed rapidly and re-suspended in 10× volume of PBS.  

The cells were centrifuged at 400 g for 10 min, washed in PBS and re-suspended in a 

minimum volume.  Counting of viable cells was carried out to ensure that the desired 

number of viable cells was obtained.  Immediately prior to injection, cells were 

diluted with normal saline to give a total volume of 0.9ml.  

 

6.39 CHARACTERISTICS OF CELLULAR PREPARATION OBTAINED 

FROM ADIPOSE TISSUE 

Flow cytometric studies were not performed on adipose tissue-derived cell 

preparations, isolated as part of these experiments.  However, previous studies 

utilizing the same protocols for ADRC extraction have performed flow cytometric 

analysis of fresh and cryopreserved cell extracts obtained from rat adipose tissue 

(Feng et al., 2010b).  

 

This revealed that ~ 44% of cells were CD45+, most of which were monocytes, 

neutrophils and tissue macrophages.  The majority of CD45- cells were found to be 

CD73+ and CD90+ and considered to be of mesenchymal origin.  

Hence ~ 50% of cells obtained using this protocol were considered MSCs, with the 

remainder thought to be blood and tissue derived leucocytes (~ 44%) and endothelial 

cells (~3.4%).  

Epitope expression was retained following cryopreservation, with a slight reduction in 

the frequency of CD45+/CD11b+ cells, and an increase in CD45-/CD31+ cells.  This 

probably represents a fall in neutrophil presence in the samples, which is consistent 

with the known sensitivity of neutrophils to freezing and thawing (Feng et al., 2010b). 
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6.4 RESULTS 
6.41 GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

 
Fig 6.1: Compared to baseline, sham-operated animals, those treated with saline vehicle, those treated 

with 1 x 106 ADRC and those treated with 1.3 x 106 ADRC exhibited significant weight loss on Day 2 

(p <0.0001, 0.0011, 0.0001 and p <0.0001 respectively).  There remained significant weight loss for 

these Groups on Day 4 (p <0.0001, <0.0001, 0.0012 and 0.0019 respectively), Day 7 (p=0.0003, 

0.0027, 0.0004 and 0.0490).  By day 10, sham-operated animals, saline treated animals and those given 

1 x 106 ADRC were still below their baseline weight (p=0.0311, 0.0157 and 0.0740), whilst animals 

treated with 1.3 x 106 ADRC weights were not significantly below baseline (p=0.6106).  

By day 12, animals in the aforementioned groups had regained baseline weight (p=0.4394, 0.9734, 

0.4232 and 0.2038 respectively).  

By day 14, animals the aforementioned groups had put on weight in comparison to baseline (p 

=0.0002, 0.0006 and 0.0064 and 0.0573 respectively).  

Animals treated with 7 x 105 ADRC lost weight on day 2 (p=0.0005), day 4 (p=0.0002) and day 7 

(p=0.0278).  By day 10, the weight of animals treated with 7 x 105 ADRC had risen above baseline 

(p=0.0005) and remained so at day 12 (p<0.0001) and at day 14 (p=0.0001).  

Statistical analysis by unpaired Students t test.  
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6.42 COMPARISION OF PERCENTAGE WEIGHT LOSS FROM BASELINE 

BETWEEN GROUPS 

 
Figure 6.2: (i) There was no difference in weight trends between sham-operated animals and animals 

treated with 7 x 105 ADRC up to day 7.  By day 10, the 7 x 105 ADRC group were observed to have 

gained weight faster than sham-operated animals (p=0.0011).  This trend continued at day 12 

(p=0.0038) and day 14 (p=0.0028).  (ii) There was no difference in weight trends between animals 

treated with saline vehicle and those treated with 7 x 105 ADRC up to day 7.  By day 10, the 7 x 105 

ADRC group were observed to have gained weight faster than the saline group (p=0.0009).  This trend 

continued at day 12 (p=0.0013) and day 14 (p=0.0012).  

(iii) There was no difference in weight trends between animals treated with 7 x 105 ADRC and those 

treated with 1 x 107 ADRC up to day 7.  By day 10, the 7 x 105 ADRC group were observed to have 

gained weight faster than the 1 x 107 ADRC group (p=0.0034).  This trend continued at day 12 

(p=0.0034) and day 14 (p=0.0165).  (iv) There was no difference in weight trends between animals 

treated with 7 x 105 ADRC and those treated with 1.3 x 106 ADRC up to day 12.  By day 14, the 7 x 

105 ADRC group were observed to have gained weight faster than the 1.3 x 106 ADRC group  

(p=0.0009).  

No significant difference was observed between the % baseline weights of sham-operated animals, 

saline-treated animals, 1 x 106 ADRC or 1.3 x 106 ADRC, at any time point.  

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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6.43 GLOMERULAR FILTRATION RATE 

Effect on GFR after ADRC Infusion 

ADRCs were found to protect GFR in a dose-dependent manner. 

 

 

 
 
 Figure 6.3: Compared to saline vehicle alone, a dose of 7 x 105 ADRCs was found to significantly 

protect GFR versus saline treated animals (p= 0.0014).  Indeed, the GFR of sham-operated animals and 

animals treated with 7 x 105 ADRCs were not significantly different (p= 0.9992).  

7 x 105 treated animals were observed to have significantly higher GFR versus animals treated with 1 x 

106 ADRC (p=0.0457) and those treated with 1.3 x 106 ADRC (p=0.0015).  A larger dose of 1 x 106 

ADRCs was not found to improve GFR versus saline treated animals (p=0.5793). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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6.44 RENAL HISTOLOGY SCORING 

Epithelial Breaks 

 
 

Figure 6.4: Sham-operated animals were found to have significantly fewer epithelial breaks compared 

to animals treated with saline (p<0.0001), 1 x 106 ADRC (p<0.0001), and 1.3 x 106 ADRC (p<0.0001).  

Similarly, sham operated animals were found to have fewer epithelial breaks than animals treated with 

7 x 105 ADRC (p=0.0003). 

Animals treated with 7 x 105 ADRC were found to have fewer epithelial breaks compared to animals 

treated with saline (p<0.0001), and animals treated with 1.3 x 106 ADRC (p<0.0001).  

Animals treated with 1 x 106 ADRC had fewer breaks compared to animals treated with saline 

(p<0.0001), and those treated with 1.3 x 106 ADRC (p=0.0216).  

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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Hyaline Cast Formation 

 
 

Figure 6.5: Sham-operated animals were found to have fewer hyaline casts than saline treated animals 

(p<0.0001) and those treated with 1.3 x 106 ADRC  (p<0.0001). 

Animals treated with 7 x 105 ADRC were found to have fewer hyaline casts than those treated with 

saline (p=0.0004) and those treated with 1.3 x 106 ADRC (p<0.0001). 

Fewer casts were found in animals treated with 1 x 106 vs 1.3 x 106 ADRC (p=0.0091). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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Furthermore, 1.3 x 106 ADRCs were universally observed to result in renal artery 

‘clogging' post clamp removal, resulting in renal hypoperfusion post clamp removal 

(see figure 6.7). Experiments with 1.3 x 106 ADRCs were therefore halted after 

recovering 4 animals, with a further 2 animals culled intra-operatively. 

 

 
 

Figure 6.6: (a) Haematoxylin and eosin stained kidney sections from rats 2 weeks post surgery.  

Kidneys from saline treated animals show marked tubular dilation (green asterisks) and epithelial 

breaks (black arrowheads).  Hyaline casts are also present (black dots).  Dilation of Bowman’s space is 

also present (blue arrows).  (b) These changes are less marked in animals treated with 7 x 105 ADRC, 

which display healthy glomeruli (large black arrows).  (c) Animals treated with 1 x 106 ADRC have 

fewer markers of damage compared to saline treated animals. (d) Animals treated with 1.3 x 106 

ADRC have grossly abnormal renal histology, similar to those animals treated with saline alone.    
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6.5 DISCUSSION 
The current trend towards transplanting ‘marginal’ kidneys necessitates the 

development of novel therapies to combat peri-transplantation injury and IRI in 

particular.  Stem cell therapy has great potential in this regard, with investigators 

actively testing the efficacy of cellular preparations to reduce injury affecting both 

native and transplanted kidneys.  

 

Various stem cells have been investigated for the treatment of renal IRI, including 

BD-MSCs, ADRCs and hematopoietic stem cells.  The ideal characteristics of a stem 

cell source include widespread availability with minimally invasive harvesting, 

thereby allowing isolation of fresh or cryopreserved preparations, without the need for 

ex vivo cellular expansion. 

 

Here, ADRCs were selected for further investigation as ADRCs fulfill many 

requirements that are necessary to apply a stem cell source to the clinical 

environment.  Also, the paracrine mechanisms of ADRCs have been shown to be 

different from those of BD-MSCs, showing more potent anti-inflammatory and 

immunomodulatory function (Banas et al., 2008). 

 

One weakness of this experiment is the lack of molecular data to support the 

mechanisms by which ADRCs may produce their effects.  However, it is known that 

the renal tubular epithelium releases pro-inflammatory mediators including TNF- α, 

IL-6 and IL-8 and transforming growth factor β in response to IRI.  Numerous studies 

examining the effects of ADRCs in renal ischemia have demonstrated that ADRC 

administration is associated with down-regulation of the inflammatory response.  

Chen et al demonstrated that ADRC therapy protected renal function by suppressing 

oxidative stress and the inflammatory response by reducing both cytokine production 

and expression of cell surface adhesion molecules (Chen et al., 2011).  Feng et al 

observed ADRC therapy to be associated with reduced macrophage infiltration as a 

result of reduced CXCL2 and IL-6 expression.  The authors concluded the increased 

tubular epithelial cell proliferation they observed was the result of a dampened 

inflammatory response that helped to restore renal architecture and preserve renal 

function (Feng et al., 2010b).  In a mouse model of renal IRI, Furuichi et al observed 
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treatment with ADRCs caused the suppression of IL-1β and TNF-α, leading to anti-

inflammatory activity and alleviation of tubular necrosis (Furuichi et al., 2012).  More 

recent studies, examining the effects of local ADRC administration on rat renal IRI 

have also reported a reduced inflammatory response after ADRC therapy (Shih et al., 

2013, Wang et al., 2013b).  It is possible that molecular data from this study would be 

in agreement with the above findings.  

 

Here, one possible route of administration in clinic transplantation was mimicked in 

order assess the feasibility of intra- renal artery administration.  Furthermore, intra-

renal artery administration avoids the potentially detrimental effects of systemic stem 

cell delivery that have been reported with administration via the intravenous route.  

Other studies report local arterial administration of cell therapy is superior to other 

administration methods (Iwai et al., 2014, Zonta et al., 2010).  However, at the outset 

of this experiment, there were apparently no published studies using ADRCs via the 

renal artery route in renal IRI models.  Therefore the authors of a previous study 

administering ADRCs via carotid cannulation were contacted for advice regarding 

ADRC dose (Feng et al., 2010b).  Following discussion, a starting dose of 1 x 106 

ADRCs was decided upon. 

 

Utilizing the intra-renal artery route in our rate model, a dose-dependent 

renoprotective effect of ADRCs was observed.  The lowest dose 7 x 105 ADRCs were 

found to significantly protect GFR and renal histology from severe IRI, whilst a 

higher dose of 1 x 106 ADRC preserved renal histology but did not protect GFR.  

 

The highest dose of 1.3 x 106 ADRCs was associated negative outcomes when 

compared to controls.  This finding may be explained by the universal intra-operative 

observation of macroscopic occlusion of the terminal branches of the renal artery 

when injecting 1.3 x 106 ADRCs (see figure 6.7).  Despite relieving this by 

downstream massage of the occluding cell ‘plug’, the kidney failed re-perfuse 

normally.  As ADRCs have a larger diameter than tissue capillaries (Furlani et al., 

2009b, Vulliet et al., 2004), it is likely that higher doses of cells cause occlusion of 

the macro and/or microscopic renal circulation.  The subsequent hypoperfusion is 

likely to result in negative effects on long-term kidney structure and function.  
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Figure 6.7: (i) Dissected renal pedicle after attempted reperfusion of left kidney post administration of 

1.3 million ADSC.  Despite the patent anastomosis, and a clear pulse distal to this (blue arrow), the 

kidney is poorly perfused (white arrows).  The renal artery bifurcation is also patent (green arrows).  

However, there is obvious renal artery occlusion due to viscous ADRC preparation causing arterial 

plugging (black arrows).  (ii) Further dissection of the hilar branches of the renal artery reveals the 

majority of the distal branches are occluded (black arrows).  (iii) After clearing the renal artery of cell 

preparation by gentle downstream ‘milking' with forceps, the kidney still perfused poorly (white 

arrows).  A pulse remains in the artery distal to the anastomosis and is now present in the hilar 

branches (blue arrows).  (iv) The kidney perfuses poorly and becomes discolored, indicating ongoing 

ischemia.  (white arrows)  
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Prior to this experiment, studies investigating organ ischemia, utilizing both systemic 

and local administration of BD-MSCs had reported the dose-dependent phenomenon 

we observe (Furlani et al., 2009b, Freyman et al., 2006).  Freyman et al used 5 x 107 

BD-MSCs and reported adverse effects of intracoronary infusion of MSCs in a 

porcine model of myocardial infarction (Freyman et al., 2006).  They concluded that 

the reduced myocardial blood flow might have been due to occlusion of the cardiac 

microcirculation (Freyman et al., 2006).  

 

Subsequent to the conclusion of this experiment, studies observing dose dependence 

in rat models of renal IRI, utilizing renal artery administration of both BD-MSCs and 

ADRCs were published (Cai et al., 2014, Shih et al., 2013, Lee et al., 2012).  The 

findings of these studies are in agreement with the observation here that excessive 

doses of locally administered MSCs may produce negative effects via blockage of the 

tissue microcirculation.  

 

In rat models of renal IRI, laser Doppler has demonstrated reduced renal blood flow 

after administration of 5 x 107of ADRCs (Lee et al., 2012) or 1 x 106 BD-MSCs (Cai 

et al., 2014) directly into the renal artery.  Subsequently, using quantum dot-labeled 

ADRCs, renal vessel occlusion by ADRCs was reported after 1 x 107 and 5 x 107 

doses of cells were given via the renal artery (Shih et al., 2013).  These reports are in 

keeping with the findings here that local administration of 1.3 x106 ADRCs was 

associated with negative long-term outcomes, and that a lower dose of 1 x 106 ADRC 

did not improve GFR in comparison with saline vehicle controls.  

 

Nevertheless, here a dose of 7 x 105 ADRCs is associated with significant reno-

protection, when compared to saline vehicle controls.  The optimal dose of locally 

administered ADRCs here is broadly in keeping with the findings of previous studies, 

as is the observation that ADRCs can protect long-term renal histology from IRI 

damage (Shih et al., 2013, Lee et al., 2012, Feng et al., 2010b, Villanueva et al., 

2013).  However, in contrast to the other studies, here it is reported that ischemia 

causing long-term reduction in renal function is significantly mitigated by intra-renal 

artery ADRCs therapy at the correct dose.  
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The post-operative weight recovery of the animals treated with 7 x 105 ADRC was 

significantly better than the other experimental groups, including sham animals.  This 

observation may reflect more ‘healthy’ animals in the 7 x 105 ADRC group when 

compared to other animals subjected to ischemia.  However, the superior weight of 7 

x 105 ADRC treated animals versus the sham group is difficult to interpret.  

Theoretically, sham animals ought to regain their weight faster postoperatively than 

animals subjected to ischemia, and this finding may simply reflect a slower than 

expected weight gain in the sham group.  As the age and starting weights of animals 

in all groups was not significantly different, the reason for the apparent slow weight 

gain in the sham group, or the faster weight gain of the 7 x 105 group, is unclear.    

 

Translation of ADRCs therapy into routine clinical practice requires further 

investigation, with emphasis on clarifying the initial safe doses of ADRCs and the 

long-term effects in immunosuppressed transplant patients.  Establishing a rodent 

transplant model, utilizing both cold and warm ischemia whilst administering 

immunosuppression post-operative closely mimics the clinical transplant process.  

Such a model, again subjecting the injured kidney to prolonged ischemia might enable 

the effects of intra-renal artery ADRCs to be studied in a safe environment. 

After this, ex vivo models of porcine kidney reperfusion circuits could also be used to 

test initial ADRCs dosing schedules prior to efficacy testing in porcine renal 

transplant models.  
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CHAPTER 7 
 

THE MEDIUM AND LONG-TERM EFFICACY OF 

PATHFINDER DERIVED MICROVESICLES IN A 

NOVEL RAT MODEL OF SEVERE RENAL ISCHEMIA-

REPERFUSION INJURY 
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7.1 INTRODUCTION 
Stem-cell therapy has been reported to ameliorate both acute and chronic dysfunction 

of cardiac, respiratory, and renal systems in numerous animal models.  As described 

in Section 1.37 – 1.38, debate continues regarding the likely mechanism by which 

stem cells act.  However, general consensus accepts that the reported beneficial 

effects of stem cell therapy are likely to occur via a paracrine mechanism (Abreu et 

al., 2016), and this especially appears to be the case in the kidney (Wise and Ricardo, 

2012). 

 

It is clear that cell-to-cell communication plays a vital role in the regulation of tissue 

and organ function in multicellular organisms.  Extracellular vesicles (ECVs) have 

been implicated as important mediators of intercellular communication, appearing to 

act via ancestral mechanisms amongst cells and tissues (Valadi et al., 2007). 

 

The content of ECVs consists primarily of proteins, lipids and genetic material 

including messenger-RNA (mRNA) and micro-RNA (miRNA) (Bruno et al., 2016, 

Raposo and Stoorvogel, 2013, Witwer et al., 2013).  In general, the content of ECVs 

reflects the content of the parent cell (Quesenberry et al., 2014).  Recent data suggest 

that ECVs released from stem cells mediate paracrine effect by shuttling their content 

into target cells (Lai et al., 2011, Yeo et al., 2013, Lai et al., 2013).  The transfer of 

miRNA by ECVs is thought to be particularly important in regulating cell processes, 

as miRNAs have been shown to modify recipient cell gene expression and hence 

protein production (Raposo and Stoorvogel, 2013, Ratajczak et al., 2006b, Anthony 

and Shiels, 2013).  The transfer of genetic material and consequent cell stimulation 

may therefore modify target cells and reprogram their biological processes, resulting 

in long-lasting changes to cell phenotype, function and fate (Biancone et al., 2012, 

Bruno and Camussi, 2013, Deregibus et al., 2007, Ratajczak et al., 2006a, Valadi et 

al., 2007).  

The ability of ECVs to produce epigenetic changes in their recipients depends on 

upon the phenotype of the parent cell (Katsuda et al., 2013).  Experimental studies 

have shown that ECVs derived from MSCs emulate the effect of their parent cells in 

various experimental models of visceral injury, notably stimulating cell proliferation 

and enhancing tissue repair (Bruno et al., 2012, Herrera et al., 2010, Bruno et al., 
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2009b).  Data indicate such ‘cell-free’ therapies may have similar therapeutic efficacy 

compared to cell-based therapy, but are postulated to hold a number of advantages 

over the use of stem cells themselves.   

As a result, there is active research in the development of ECVs as novel treatments 

of organ damage.  

 

Potential advantages of cell-free therapies include:  

(1) Cell-free therapy is thought to carry significantly less risk of cell 

maldifferentiation and malignancy (Bruno et al., 2016, Kunter et al., 2007).  

The risk of this occurring was highlighted by the findings of Chapter 3.  

 

(2) The biologically active factors in cell-free therapy are smaller and more 

soluble than stem cells.  Theoretically, therapeutic doses of cell-free ECV 

therapy carried reduced risk of arterial or capillary occlusion (Rani et al., 

2015).  The risk of occlusion was a significant finding in experiments using 

ADRCs, described in Chapter 6.  

 

(3) Identification of the factors responsible for producing beneficial effects may 

subsequently allow synthetic manufacture packaged in vesicle form.  This 

would ensure quality control of biologically active contents (Vishnubhatla, 

2014, Taylor and Shah, 2015). 

 

(4) Cell-free preparations are easier to store, transport and use in clinical settings 

(Vishnubhatla, 2014, Kordelas et al., 2014, Yeo et al., 2013).   

 

 

7.11 PROBLEMS IDENTIFYING THE BENEFICIAL BIOLOGICAL 

FACTORS IN THE STEM CELL SECRETOME 

ECVs are a heterogeneous population of small, spherical, membrane-bound particles 

that originate from different sites in parent cells.  Consequently, ECVs differ in cell 

surface markers and crucially in size.  As highlighted in Section 1.4, this research 

field is still in its infancy and as yet no ECV classification system has been applied 

universally.  However, classification based on size and origin is now gaining 

widespread acceptance.  In part, this is due to the recognition that it is vital to identify 
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the specific beneficial ECV subtypes, thereby allowing the biologically active content 

to be characterized prior to manufacture for therapeutic application. 

 

ECVs may be considered to consist of 3 separate subtypes or ‘fractions’ (Anthony and 

Shiels, 2013): 

 

(1) Exosomes: 40 – 100nm in diameter, and of endosomal origin.  Exosomes are 

stored prior to their release, which occurs after fusion with multivesicular 

bodies.  (See figure 1.5) 

 

(2) Microvesicles: 100nm - 1µm in diameter, are formed after budding directly 

from the plasma membrane in an energy-dependent process, reliant on calcium 

influx and cytoskeleton reorganization (Cocucci et al., 2009). (See figure 1.5) 

 

(3) Apoptotic bodies (also termed ‘Shedding vesicles’) – 1 - 5µm sized particles 

released upon fragmentation of the plasma membrane that occurs during 

apoptosis.  

 

Each ECV subtype is normally present within the in vitro cultured cell medium and 

body fluids from which ECVs are typically obtained prior to experimental use.  

Isolation of a specific ECV fraction may be achieved either by differential 

ultracentrifugation, ultrafiltration and/or immunoprecipitation with the use of 

antibody loaded magnetic cell beads (Fierabracci et al., 2015).  Failure to adhere to a 

strict ECV isolation protocol will lead to preparations contaminated with different 

ECV types prior to use. 

 

This is important as the proteins, lipids and genetic material contained within each of 

the ECV fractions has been shown to differ in type and quantity (Quesenberry et al., 

2014, Keerthikumar et al., 2016).  Additionally, the content of ECVs from any 

particular cell type may be influenced by physical or chemical stressors, such as 

hypoxia, oxidative stress and inflammation (Robbins and Morelli, 2014).  

Consequently, each ECV fraction from the same parent cell may modulate protein and 

gene expression to a different extent in recipient cells.  Logically, therefore, 

identifying the ECV fraction which produces beneficial cellular effects is a crucial 
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step in characterizing protective/regenerative factors contained within that fraction, 

prior to manufacture of a synthetic drug.  

 

Unfortunately, the inconsistent use of terms in a number of reports has resulted in 

misleading titles and conclusions regarding the efficacious ECV subtype.  

For example, early and extensive work by Camussi et al used ‘microvesicles’ as a 

universal term to include each of the 3 separate ECV types (Gatti et al., 2011, 

Cantaluppi et al., 2012, Bruno and Camussi, 2013, Camussi et al., 2013, Camussi et 

al., 2011).  The group concluded that ‘microvesicles’ conferred beneficial effects after 

renal injury, although ECVs were harvested by using undifferentiated 100,000g 

centrifugation forces, probably resulting in a preparation containing exosomes, 

microvesicles and apoptotic bodies (Gatti et al., 2011, Cantaluppi et al., 2012, Bruno 

et al., 2009b).  Indeed, using analysis of therapeutic ECV preparation by transmission 

electron microscopy and Nanosight analysis in one study reported 90% of 

administered ECVs to range in size from 60 – 160nm (ie seemed to contain both 

exosomes and microvesicles) (Cantaluppi et al., 2012).  A more recent paper (Bruno 

et al., 2016) by the same authors replaced the term ‘microvesicles’ with ‘extracellular 

vesicles’ - perhaps after recommendation by the International Society for 

Extracellular Vesicles that ECV should be used as an umbrella term  for each of the 3 

ECV types (Katsuda et al., 2013).  Whilst it now appears the classification system 

used in this thesis (Section 1.4) is gaining acceptance, it remains necessary to examine 

the centrifugal spin protocols to determine the identity of the vesicles administered in 

any particular study.  

 

7.12 PATHFINDER DERIVED EXTRACELLULAR VESICLES 

Pathfinder cell administration has been shown to restore normoglycaemia with the 

recovery of normal tissue function in a murine model of streptozotocin-induced 

diabetes (Stevenson et al., 2011).  Furthermore, Pathfinder cells have been shown to 

restore normal renal function and architecture in a murine model of renal IRI, whilst 

also significantly reducing P16 levels in treated animals (McGlynn et al., 2013).  In 

both studies, Pathfinder cells were only faintly detected in damaged organs, with the 

majority of tissue restoration occurring with host cells.  This implies Pathfinder cells 

also act via a paracrine mechanism.  
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A recent study by the same group has demonstrated that ECVs derived from 

Pathfinder cells were able to replicate the findings of previous experiments in the 

streptozotocin-induced diabetic murine model (McGuinness et al., 2016).  

Importantly, by using differential centrifugation spin rates, exosomes enriched 

fractions were obtained and found to be ineffectual at repairing streptozotocin-

induced damage. The microvesicle enriched fraction however had equivalent efficacy 

at repairing damage when compared to Pathfinder cells (McGuinness et al., 2016).  

 

This finding implies that the microvesicles may be the paracrine entity by which 

Pathfinder cells produce their beneficial effects and consequently may have the ability 

to mitigate renal IRI.  This finding is contrary to previous reports, which have 

concluded that exosomes are more physiologically relevant and powerful components 

of stem cell secretome (Kordelas et al., 2014).  However, whilst it is possible MSCs 

produce their effects via exosomes, this does not appear to be the case with ECVs 

derived from pathfinder cells.  Therefore, we decided to investigate the effects of 

pathfinder-derived microvesicles in our novel model of rodent renal ischemia.  

 

 

7.2 HYPOTHESIS 

(1) Pathfinder-derived microvesicles may protect kidney function and architecture in 

both the medium and long-term in a novel rodent model of severe renal IRI. 
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7.3 METHODS 
7.31 ANIMAL HOUSING AND HUSBANDRY  

This was conducted in standard fashion, as previously described in section 2.1  

Post surgery, animals were weighed weekly and assessed on a daily basis for signs of 

distress or illness.  

 

7.32 GROUP SELECTION 

Control Groups 

Animals were randomly assigned each group.  Sham operation animals (Group 1, 

n=6), underwent laparotomy and dissection of the left renal pedicle only.  

After 120 minutes of left renal IRI, Group 2 animals (n=6) were treated with 0.9ml of 

intra-renal artery normal saline and 2 weeks recovery.  Group 3 animals (n=6) were 

likewise treated with 0.9ml saline vehicle after 120 minutes of left renal IRI, but with 

6 weeks recovery. 

 

Pathfinder Derived Microvesicle Treatment Group 

400ng of Pathfinder-derived microvesicles (PF-MV) were thawed and dissolved in 

0.9ml of normal saline immediately prior to use.  After 120 minutes of left sided renal 

IRI, Group 4 animals (n=6) were treated with 0.9ml of intra-renal artery PF-MVs, 

before being allowed to recovery for 2 weeks.  Group 5 animals (n=6) were likewise 

treated with 0.9ml of intra-renal artery PF-MVs after 120 minutes of IRI but were 

recovered for 6 weeks.  
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Group 

(n=6) 

120 minutes left 

renal ischemia 

Recovery prior to 

Inulin Clearance 

Intra-renal artery 

Injection (0.9ml) 

1 X 2 weeks None 

2 √ 2 weeks Normal saline 

3 √ 6 weeks Normal saline 

4 √ 2 weeks 400ng PF-MV 

5 √ 6 weeks 400ng PF-MV 
 

Table 7.1: Summary of experimental groups.  6 rats were randomly assigned to each group.  

 

7.33 SURGICAL PROCEDURE 

Rodent anesthesia and positioning during surgery were conducted in standard fashion, 

as previously described in Sections 2.12 – 2.16.  

Surgery was carried out as described in Section 5.33.  Treatment groups received 

intra-renal artery therapy as outlined in Table 7.1.  All intra-renal artery infusions 

were made up to a total volume of 0.9ml immediately prior to use.  

 

7.34 POST-SURGICAL CARE  

This was carried out in standard fashion as described in Section 2.16.  

 

7.35 QUANTIFICATION OF RENAL FUNCTION AND RENAL INJURY 

At day 14, animals in Groups 1, 2, and 4 underwent inulin clearance studies in order 

accurately to characterize the function of the remaining kidney, according to the 

standard protocol described in Section 2.2.  Group 3 and Group 5 animals underwent 

inulin clearance studies 6 weeks after ischemia, again according to standard protocol. 

Left kidneys and right kidneys were weighed, before being stored in 10% formalin 

and RNA later solution for later analysis. 

 

Formalin preserved kidneys were paraffin embedded and sectioned as described in 

Section 2.3 Histological analysis and immunohistochemistry for P16, P21 and Ki 67 

were carried out as described in Sections 2.3 and 2.4 
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7.36 PATHFINDER DERIVED MICROVESICLE ISOLATION 

This was achieved in a standard fashion as described in Section 2.6, to give an aliquot 

prepared in a minimal volume containing ~ 400ng of microvesicles.  This sample was 

made up to 0.9ml in normal saline immediately prior to intra-renal artery infusion. 
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7.4 RESULTS 
7.41 ANIMAL DATA AFTER 2 WEEKS RECOVERY POST SURGERY 

GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

 

  
Figure 7.1: There were no significant differences in % baseline body weight loss between sham-

operated, saline treated or PF-MV treated animals at any time point postoperatively.  

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test 
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7.42 GLOMERULAR FILTRATION RATE 

Effect on GFR after PF-MV Administration after 2 weeks recovery 

 

 
 

Figure 7.2: Sham-operated animals had a higher GFR than animals subjected to 120 minutes of 

ischemia and treated with saline (p=0.0022).  A trend towards higher GFR in sham-operated animals vs 

PF-MV was observed, although this was not statistically significant (p=0.0623). 

Treatment with PF-MVs protected GFR from ischemia when compared to treatment with saline alone 

(p=0.0201). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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7.43 RENAL HISTOLOGY 

7.431 Epithelial Breaks after 2 weeks recovery 

 
 

Figure 7.3: After 2 weeks recovery, sham-operated animals had significantly fewer epithelial breaks 

than animals subjected to 120 minutes of ischemia and treated with saline (p<0.0001) or PF-MV 

(p<0.0001). 

Animals treated with PF-MV had fewer epithelial breaks than animals treated with saline alone (p = 

0.0012). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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7.432 Hyaline Cast Formation after 2 weeks recovery 

 

 
 

Figure7.4: Sham-operated animals had fewer hyaline casts vs animals treated with saline (p<0.0001).  

Although a trend towards fewer casts in sham-operated animals vs PF-MV treated animals was 

observed, this was not statistically significant (p=0.0860).   

PF-MV treated animals had fewer hyaline casts than those treated with saline alone (p=0.0061). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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7.44 ANIMAL DATA AFTER 6 WEEKS RECOVERY POST SURGERY 

GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

 

 
 

Figure 7.5: Both saline and PF-MV treated animals lost significant weight from baseline in the first 

week following surgery.  Whilst saline treated animals remained below baseline weight at Day 7 

(p<0.0001) and Day 10 (p=0.033), PF-MV treated animals had regained baseline weight by Day 7 

(p=0.0935).  Saline-treated animals regained baseline weight by Day 12 and thereafter both groups 

continued to gain weight until the experiment was terminated. 

Statistical analysis by unpaired Students t test.  

 

 

7.45 COMPARISION OF PERCENTAGE WEIGHT LOSS FROM BASELINE 

BETWEEN GROUPS 

There was no significant difference between the weights of saline and PF-MV treated 

animals at any time point during the experiment (see figure 7.5). 
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7.46 GLOMERULAR FILTRATION RATE 

Effect on GFR after PF-MV after 6 weeks recovery 

 

 
 

Figure 7.6: Sham-operated animals were found to have a higher left sided GFR than those animals 

subjected to 120 minutes of ischemia and treated with saline. (p=0.0041)  There was no difference in 

the GFR of sham animals, and those treated with PF-MVs, after 6 weeks recovery (p=0.2541). 

6 weeks post surgery, PF-MV treated animals had a significantly higher GFR compared to saline 

treated animals (p=0.0093).  

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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7.47 RENAL HISTOLOGY SCORING 

7.471 Epithelial Breaks after 6 weeks recovery

 
 

Figure 7.7: Sham-operated animals had few epithelial breaks compared to animals treated with saline 

(p<0.0001) and PF-MV (p<0.0001), 6 weeks after surgery.   

PF-MV animals had fewer epithelial breaks than those animals treated with saline (p=0.0217).  

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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7.472 Hyaline Cast Formation after 6 weeks recovery 
 

 
 

Figure 7.8: 6 weeks post surgery, sham-operated animals had fewer hyaline casts than animals treated 

with saline (p=0.0285).  A trend was observed towards fewer casts in sham animals than those treated 

with PF-MV, although this was not statistically significant (p=0.0788).  

6 weeks post surgery, there was no difference in hyaline cast number between animals treated with 

saline and those treated with PF-MV (p=0.8452). 

Statistical analysis by 1 way ANOVA with Tukey multiple comparisons test. 
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Figure 7.9:  (a) Histology from a saline-treated rat subjected to 120 minutes of warm ischemia, 2 

weeks post surgery.  There is marked tubular dilation (green asterisk), with epithelial thinning and 

breaks (black arrowheads).  A glomerulus with an increase in Bowman’s space is marked with a blue 

arrow.  Hyaline casts are marked with black dots. (b) Tissue from a PF-MV treated rat 2 weeks after 

ischemia.  There is less disruption to renal histology compared to saline treated animals.  (c) Tissue 

from a rat subjected to 120 minutes of warm ischemia, 6 weeks post surgery.  Tubular dilation and 

epithelial breaks are less pronounced than 2 weeks post surgery, and there are fewer hyaline casts 

present.  (d) Tissue from a rat treated with PF-MV, 6 weeks post surgery.  Compared to saline treated 

animals, tubular dilation and epithelial breaks are less marked.  
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7.5 DISCUSSION 
7.51 Stem Cell versus Cell-free therapy 

Stem cell therapy, whilst potentially conferring a considerable benefit as a novel 

treatment for the protection and rejuvenation of damaged organs, remains associated 

with a number of serious possible side effects.  In this thesis, the findings of Chapter 

3, where disseminated malignancy as a result of cellular therapy, and Chapter 6 where 

supra-therapeutic doses of cells produced arterial occlusion, highlight some of the 

concerns raised previously regarding stem cells as a novel treatment.  Cell-free 

therapy theoretically has a reduced risk of inducing malignancy in recipients, and due 

to the small size of ECVs, microcirculation occlusion in organs treated with local 

arterial infusion is thought to be extremely unlikely (Rani et al., 2015).  Furthermore, 

if the active and beneficial components contained within ECVs can be identified, 

manufacture of a synthetic and pure drug may be possible.  However, in order to 

achieve this, it is necessary to demonstrate convincingly that ECV therapy produces 

long-term benefit, whilst identifying the biologically active components of the ECV 

fraction that are responsible for this.  

 

The experiment described here demonstrates that cell-free therapy has the potential to 

ameliorate severe renal IRI, with the preservation of renal morphology ultimately 

associated with improved long-term renal function as determined by GFR.  While the 

results of ECV therapy in renal IRI have been described by previous studies, this is 

the first account describing the effect of Pathfinder-derived ECVs on renal IRI.  

Furthermore, for the treatment of renal IRI, this appears to be the first application of a 

preparation containing a truly ‘purified’ microvesicle fraction, obtained from any 

particular stem cell source. 

 

 ECVs derived from BD-MSCs were the first cell-free preparations to be tested in 

models of acute kidney injury.  Bruno et al showed a single intravenous injection of 

BD-MSC derived ECVs were able to accelerate structural and functional recovery in 

a murine model of glycerol-induced AKI (Bruno et al., 2009b).  Importantly, the 

effects observed were comparable to those obtained with the cells of origin, indicating 

that ECVs might replicate the beneficial effects reported with MSC therapy.  Gatti et 

al would later report that a single intravenous dose of ECVs, again derived from BD-
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MSC, protected the renal function and morphology of rats subjected to contralateral 

nephrectomy and 45 minutes of unilateral ischemia (Gatti et al., 2011).  Molecular 

data presented suggests that shortly after injury, treated animals renal histology 

exhibit reduced leucocyte infiltration, a down-regulated inflammatory response 

leading to less tubular epithelial cell apoptosis and proliferation in response to injury.  

Long-term structural changes in renal morphology, such as glomerulosclerosis and 

tubulointerstitial were consequently reduced with the protection of long-term renal 

function.  They also demonstrated that treatment of ECVs with RNAase prior to 

injection abolished ECV efficacy, implying that the RNA cargo played a vital role in 

conferring the beneficial effects seen with ECVs. 

 

In a similar rat model of renal IRI, after administering ECVs derived from endothelial 

progenitor cells, Cantaluppi et al observed preserved renal function and histology as a 

result of ECV therapy, with progression to chronic renal failure prevented in treated 

animals (Cantaluppi et al., 2012).  The observed effects were again abolished by 

RNAase treatment.  

 

The lack of efficacy reported with ECVs subjected to RNAase treatment suggests a 

crucial role of RNA in the mechanism by which ECV convey renoprotection.  When 

compared to the parent cell RNA content, MSC-derived ECVs have been shown to be 

enriched in small non-coding RNAs, but also contain 239 mRNAs that are involved in 

cell differentiation, transcription, cell proliferation and immune regulation (Eirin et 

al., 2014, Bruno et al., 2009b). 

 

 Furthermore, ECVs contain concentrated levels of microRNAs (miRNAs).  miRNAs 

are non-coding RNA molecules that typically consist of 22 nucleotides.  They are 

highly conserved, negative regulators of gene expression that act on the post-

transcriptional level by binding to complementary sequences of mRNA in recipient 

cells.  This inhibits the translation of mRNA and promotes mRNA degradation 

(Bartel, 2004).  It is postulated that by silencing mRNA translation, the horizontal 

transfer of miRNA by ECVs may down-regulate recipient cell injury response, and in 

particular the inflammatory cascade.  
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The importance of miRNA in the renoprotective effect of ECVs was demonstrated by 

Cantaluppi et al (Cantaluppi et al., 2012), and this finding was later replicated by 

Collina et al (Collino et al., 2015).  Dicer and Drosha are miRNA processing enzymes 

that play a crucial role in the maturation of miRNAs (Kuehbacher et al., 2007).  

Application of either Dicer (Cantaluppi et al., 2012) or Dosha (Collino et al., 2015) 

knock-down in progenitor cells from which ECVs were harvested, resulted in the 

abolition of the renoprotection previously observed with ECVs from normal 

progenitor cells.  In addition, depletion of specific miRNAs from ECVs characterized 

the importance of the proangiogenic miRNA-296 and miRNA-126 (Cantaluppi et al., 

2012).  These results support the assertion that via horizontal transfer within ECVs, 

miRNAs play a crucial role in reprogramming damaged resident renal cells to a 

regenerative state.  

 

7.52 Which Extracellular Vesicle Type protects the Kidney - Exosomes or 

Microvesicles? 

The results of this study corroborate the findings of McGuiness et al, who reported 

that within the ECV population derived from Pathfinder cells, it is the MV fraction 

that contains the biologically active cargo responsible for the protective/regenerative 

effects on injured cells (McGuinness et al., 2016).  Prior to this experiment, the 

finding of McGuiness et al appears to be the only study that demonstrated therapeutic 

efficacy of a properly characterized population of microvesicles, whilst reporting the 

separated exosome fraction lacked biological effect (McGuinness et al., 2016).  It is 

worth re-iterating that as described in Section 7.11, a number of previous studies have 

reported the protective effects of administering stem cell-derived ‘microvesicles’ to 

injured organs (Cantaluppi et al., 2012, Bruno et al., 2009b, Bruno et al., 2012, Gatti 

et al., 2011, Bonventre, 2009).  However the protocols used in those studies is likely 

to have resulted in a mixed exosomes/microvesicle preparation according to the now 

widely accepted definition of ECVs used in this thesis, and it is impossible to 

conclude that the content of microvesicles alone was responsible for the observed 

protective effects. 

 

 The result of the current experiment – namely that ‘true’ microvesicles alone may 

ameliorate acute organ injury – disagrees with the previous reports in published 

literature.  The general consensus is that exosomes are likely to contain the factors by 
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which stem cells produce their paracrine effects.  The majority of reports have 

investigated ECVs obtained from MSCs that are of either a bone marrow or adipose 

origin (Han et al., 2016).  Those studies that have attempted to differentiate between 

the effects of individual ECV fractions have concluded that MSC-derived exosomes 

are able to promote angiogenesis in ischemic tissue and ameliorate tissue damage 

after ischemic injury (Arslan et al., 2013, Bian et al., 2014, Xin et al., 2013, Hu et al., 

2015, Lin et al., 2016).   

 

Work investigating the effects of ECVs from other stem cell classes also report the 

exosome fraction conveys the observed beneficial effects of parent stem cells.  Berger 

et al reported that exosomes derived from endothelial colony forming cells protected 

against renal IRI in a murine model (Burger et al., 2015).  Furthermore, the same 

group recently reported that this effect appears to be mediated by the horizontal 

transfer of miRNA -486-5p, which they observe to be selectively enriched within the 

exosomes fraction (Vinas et al., 2016).   

 

The apparent discrepancy regarding the efficacy of exosomes versus microvesicles 

may be explained by the parent stem cells source.  It is well recognized that the 

content of ECVs is dependent upon the type of stem cell from which they originate, 

and the conditions in which those stem cells were kept prior to ECV harvest.  For 

example, ECVs derived from fibroblasts contain little biologically active genetic 

material, and confer no organ protection compared to saline control in animals models 

of renal IRI (Quesenberry et al., 2014).  Logically, it seems possible that pathfinder 

cells may produce their effects via the transfer of genetic material contained within 

microvesicles, but that other stem cell types produce their therapeutic effects 

predominantly via exosomes.  Whilst studies have characterized a least some of the 

active miRNA classes within ECV fraction (Cantaluppi et al., 2012, Vinas et al., 

2016), work is on-going to identify the responsible factors within the PF-MV 

preparation (McGuinness et al., 2016). 

 
One clear weakness in this study is a lack of molecular data, which may have 

provided some insight into the mechanisms by which PF-MVs act. 
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Nevertheless, other studies using Pathfinder cells or PF-MVs have published 

molecular data that indicate the mechanisms by which the beneficial biological effects 

are obtained.  McGlynn et al reported the reduced renal expression of p16ink4a in mice 

treated with Pathfinder cells 2 weeks after IRI to be associated with improved renal 

function and morphology (McGlynn et al., 2013).  No difference in apoptosis, as 

measured by TUNEL staining was observed between treated and untreated animals, 

probably because the apoptotic process would have been completed 14 days post 

injury.  Furthermore, Pathfinder cells, as demonstrated by FISH, were notable by their 

absence in treated kidneys.  The authors concluded that via a paracrine mechanism, 

Pathfinder cells reduced cellular senescence in response to injury (McGlynn et al., 

2013).  This finding was in keeping with previous studies using Pathfinder cells, 

where reduced cellular senescence in damaged organs was been noted in Pathfinder 

treated animals, in the absence of Pathfinder engraftment (Stevenson et al., 2011).  

The authors concluded that Pathfinder cells, probably via material contained within 

microvesicles encourage organ repair through cell regeneration.  In the kidney, this 

may be via up-regulated mechanisms including the de-differentiation of surviving 

tubular epithelial cells followed by proliferation to repopulate damaged tubules, as 

suggested by Bonventre et al (Bonventre, 2003).  

Several different sources of ECVs have been reported to have similar efficacy at 

mitigating acute renal injury, culminating in the ability to reduce kidney fibrosis as a 

long-term outcome.  However, this effect cannot yet be assigned to a particular 

molecular mechanism.  This is perhaps unsurprising when considering the content of 

ECVs reflects the phenotype of the parent cell and consequently, the cargo within 

ECVs of different origin is may be markedly different (Quesenberry et al., 2014).  

There is no evidence to suggest that Pathfinder mediated protection is produced by an 

anti-inflammatory action.  This is in stark contrast to the postulated action of MSCs, 

where there is now a wealth of evidence to support the anti-inflammatory and 

immune-modulatory properties of MSCs, which appear to be mediated by ECVs in a 

paracrine fashion.  

 

Therefore, it is possible that MSCs and Pathfinder cells aid long-term recovery of 

organs after acute injury via different mechanisms.  There is clear evidence that 

Pathfinder cells do this by the transfer of material in microvesicles, and that this 

reprograms cells to enter regenerative pathways and avoid a senescent state.  In 
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contrast, MSCs appear to provide initial protection against injury by dampening local 

inflammatory responses and that this effect is primarily achieved via the horizontal 

transfer of genetic material contained within exosomes.  However, a recent study 

observed that a combination of ADRCs and ADRC derived exosomes provided 

additional protection against renal IRI when compared to either therapy alone (Lin et 

al., 2016).  This suggests that ADRC derived microvesicles act synergistically with 

ADRC derived exosomes to confer additional protection.  

In conclusion, these experiments strongly suggest that ECV treatment has the 

potential to mitigate the unavoidable renal IRI that occurs during the transplantation 

process.  Characterization of PF-MV content and obtaining molecular data to gain 

insight into the mechanisms by which PF-MV content produces effects are important 

next steps.  Furthermore, experiments to investigate any possible synergistic effect of 

PF-MVs and ECVs derived from MSCs are warranted.  
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CHAPTER 8 
THE EFFECT OF PATHFINDER DERIVED 

MICROVESICLES ON PROLONGED COLD AND 

WARM ISCHEMIC TIMES IN A NOVEL RAT MODEL 

OF RENAL TRANSPLANTATION  
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8.1 INTRODUCTION 
There are few, if any, animal models that accurately reproduce the insults a renal 

allograft encounters during the journey from donor to recipient.  Although animal 

models are a valuable tool for understanding the pathophysiological processes 

involved during renal IRI, the clinical translation of experimental results have several 

limitations, usually due to the anatomical and physiological differences between 

species.  Nevertheless, animal models have accentuated our understanding of the 

insults transplanted kidneys encounter, and may yet a play a significant role in the 

search for therapeutic intervention (Becker and Hewitson, 2013).  

 

Animal research requires investigators to continually refine experimental protocols so 

that the likelihood of gaining the knowledge sought is maximised, while animal 

suffering and a total number of laboratory animals used are reduced (Kobayashi et al., 

2012, 2011b).  Some of the shortcomings of commonly used animal models have 

been highlighted in this thesis – indeed these failings led to the development of a 

novel rat model of renal IRI described in Chapter 5.  However, while IRI remains the 

leading cause of injury to transplanted kidneys and is accentuated in the increasingly 

used ECD and DCD kidneys, other acute insults combine to negatively influence 

long-term transplant outcomes (Jang et al., 2009).  Such processes include hypoxia 

during cold storage, acute rejection, and calcineurin toxicity in the short and long-

term (De Rosa et al., 2016).  

 

Most preclinical renal IRI animal models use ischemia caused by occlusion of the 

renal artery to produce an acute kidney injury.  While this does not exactly replicate 

the clinical situation, several pathways are up-regulated that are important participants 

in acute allograft injury.  These include activation of the coagulation system (Thuillier 

et al., 2010), leukocyte infiltration (Versteilen et al., 2011), endothelium (Kwon et al., 

2009) with overexpression of adhesion molecules (Kato et al., 2009), cytokine 

release, intrarenal vasoconstriction pathway and apoptosis (Saikumar and 

Venkatachalam, 2003).  Nevertheless, these ‘traditional’ models of ischemia-

reperfusion do not expose animals to immunological or pharmacological insults, nor 

do they subject injured kidneys to cold storage.  In order to mimic this process and to 

investigate the ability of stem cell-based therapies to ameliorate renal injury that 
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results from such insults, animal models of kidney transplantation need to be 

employed (Becker and Hewitson, 2013, Lieberthal and Nigam, 2000, Saat et al., 2016, 

Masoud et al., 2012).  However, renal transplantation is a technically more 

demanding exercise than warm renal IRI, introducing more variables into both control 

and experimental groups.  It therefore seems reasonable to screen novel therapies for 

efficacy in IRI models, before progressing to experiments in models of 

transplantation.  

 

8.11 WARM VERSUS COLD RENAL ISCHEMIA 

Static cold storage is traditionally used to preserve kidneys ex vivo during the 

transplantation process.  Throughout cold storage, the kidney is placed in a 

hypothermic solution designed to cool the kidney and by reducing cellular 

metabolism, the effect of on-going ischemia is minimised.  Organs are usually cooled 

to 4oC, as it has been shown that each 10oC drop in temperature results in a 2-fold 

reduction in cellular metabolism (Lee and Mangino, 2009).  

 

The decrease in free radicle formation encountered as a result of reduced cellular 

metabolism during static cold storage reduces cell depolarization and membrane 

destabilisation.  However, while static cold perfusion lessens the degree of cell injury 

caused by ischemia, cold storage does not completely prevent it (Ponticelli, 2015).  

Reduced ATP production leads to dysfunction of the Na/K ATPase pump and calcium 

influx that eventually results in cell swelling and cell cycle arrest (Ponticelli, 2015).  

Also, ECD and DCD allografts tolerate cold anoxia poorly, with the detrimental 

impact of hypothermia demonstrated in several studies (Hamed et al., 2015, Kayler et 

al., 2011, Summers et al., 2013).  Furthermore, the abrupt temperature shift from 

hypothermia to normothermia that occurs during reperfusion has been shown to result 

in mitochondrial dysfunction and up-regulate pro-apoptotic signal transduction 

(Minor et al., 2013). 

 

Warm and cold ischemia are thought to produce structural injury in different areas of 

the kidney by distinct pathological processes.  Warm ischemic injury, characterised 

by an interruption in renal blood flow, produces tissue hypoxia as a principle insult.  

The resulting alteration in the medullary microcirculation causes endothelial 
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dysfunction and proximal tubular injury, principally in the cortico-medually junction 

(also referred to as the outer stripe of the medulla) (Heyman SN, 2010). 

 

The recognised mechanism of cold ischemic injury is also related to the disturbance in 

osmoregulation, energetics, and aerobic metabolism.  Dysfunction of the Na/K 

ATPase pump results in higher intracellular sodium concentrations and cell swelling.  

Ongoing anaerobic respiration results in lactic acid production and intracellular 

acidosis (Salahudeen, 2004).  However, cold ischemia has been shown to produce 

preservation of the proximal tubules, although distal nephron injury is more 

prominent upon reperfusion.  This produces an injury that is principally located in the 

inner medullary stripe, although damage to the outer medually stripe is observed if the 

period of cold ischemia is prolonged (Heyman SN, 2010).  For this reason, cold-

storage induced injury is a pivotal contributing factor to early graft dysfunction in 

renal transplant recipients, predisposing to DGF and the subsequent adverse outcomes 

that are associated with its occurrence (De Rosa et al., 2016).  

 

Wang et al. examined the effect of ADRC administration in a rat model of cold renal 

IRI (Wang et al., 2013b).  Using intra-renal and intravenous autologous ADRC 

injections after a 30-minute period of cold ischemia, protection of renal function and 

morphology was reported to be associated with a down-regulated inflammatory 

response in ADRC treated animals after 24 hours recovery (Wang et al., 2013b). 

 

Interestingly, telomere-independent cellular senescence, as shown by elevated p16 

expression has been associated with poor long-term renal allograft outcomes in 

humans and rodents (McGlynn et al., 2009, Koppelstaetter et al., 2008, Melk et al., 

2005, Serrano et al., 1996).  Braun et al reported that murine kidney transplants from 

donors lacking the p16INKK4a locus had reduced interstitial fibrosis and tubular atrophy 

compared to transplanted kidneys from wild-type controls (Braun et al., 2012).  This 

suggests that cellular senescence as a result of IRI/immunological rejection leads to 

premature chronic allograft nephropathy and ultimately allograft failure, implying that 

therapy that reduces senescence may benefit transplant outcomes.  McGlynn et al 

have previously demonstrated Pathfinder cell therapy to be associated with a 

reduction in p16 expression and serum creatinine levels in a murine model of renal 

IRI (McGlynn et al., 2013). 
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The results of experiments in the novel rat model of renal IRI suggest that PF-MVs 

and ADRCs protect renal function and structure against prolonged warm ischemia.  In 

order to mimic the process of clinical transplantation, it was decided to investigate the 

ability of stem cell-based therapies to protect against both cold and warm ischemia by 

developing an animal model of transplantation.  

 

8.12 CHOICE OF SPECIES IN ANIMAL MODELS OF RENAL 

TRANSPLANTATION 

The first major decision during the development of an animal model is the selection 

of species involved.  Essentially, smaller animal species, such as rodents, are easier to 

house and handle than larger animals but are anatomically distinct from humans, 

processing unilobular and unipapillary kidneys (Simmons et al., 2008). Unfortunately, 

the different vascular properties of the renal medulla contribute to variability in the 

pathophysiology of ischemic AKI between species.  When novel therapies are applied 

to large animal models, replicating the findings from rodent experiments may 

consequently be difficult.  This hampers clinical translation of new treatments.  

Rodent models of renal transplantation are therefore limited in the relevant 

information they provide by physiological and anatomical differences.  Furthermore, 

the size constraints associated with rodent renal transplantation requires a skilled and 

experienced surgeon to provide consistent results and avoid multiple surgical failings 

(Khalifeh et al., 2015). Nevertheless, the relatively low-cost and ease of licensing 

compared to large animals makes rodent transplant models more practical.  However, 

rodent IRI renal models remain more popular still, probably because conventional IRI 

models lack the requirement for vascular or ureteric anastomosis, and hence require 

less surgical expertise.  

 

 Larger animals more closely resemble human anatomy and physiology but are more 

expensive, labour intensive, and their use in experimental research is limited by 

ethical debate.  Nevertheless, three large animal models have been used extensively in 

models of renal transplantation: dogs, pigs, and non-human primates.  Of these, the 

pig has the significant advantage in that the public has little resentment for porcine 

research, leading to fewer ethical and legal restrictions on porcine studies (Dehoux 

and Gianello, 2007).  Furthermore, pigs are reasonably similar to humans in size, 
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metabolism, immunology and renal anatomy (Kirk, 2003, Giraud et al., 2011, 

Rothkotter, 2009).  While housing and husbandry of standard pigs are expensive and 

time-consuming, the advent of genetically modifiable mini-swine may change this 

situation (Lunney, 2007). Finally, pigs are easily bred, quickly bled and it is possible 

to repeatedly obtain biopsies during the experimental time course.  This establishes 

the pig as the ‘gold-standard' in renal transplantation research (Lunney, 2007).  

However, due to the expense, strict legislation and relative logistical difficulty of 

working with pigs, the numbers of reported studies using porcine models of renal 

transplantation are scarce when compared to those using rodents. 

 

While large animal studies are essential before moving to clinical trials, this was not 

feasible with the research facilities available.  With a view to the reducing the total 

number of animals experimented upon, it was decided to test novel therapies in a 

rodent transplant model after therapeutic effectiveness had been demonstrated in the 

novel rodent IRI model.  It was hypothesised this might provide efficacy data, prior 

testing in porcine models with a view to clinical translation in pilot studies.   

 

8.13 RODENT MODELS OF RENAL TRANSPLANTATION 

With the purpose of investigating the ability of stem cell-based therapies to combat 

both cold and warm renal ischemia, we decided to develop a rat model of renal 

transplantation.  Previous models of rodent transplantation have tended to use 

allografts from young healthy donors, exposed to only minimal cold and warm 

ischemic times.  This is clearly not representative of the human population 

undergoing kidney transplantation.  Furthermore, as described in Section 5.1, rat 

kidneys have the ability to recover long-term function from near fatal levels of 

ischemic injury.  In order to investigate the long-term effects of novel treatments on 

severely injured kidneys, it was decided to subject the transplanted kidneys to 

prolonged periods of cold and warm ischemia prior to reperfusion.  This has not been 

investigated previously, probably because prolonged transplant ischemic times are 

associated with high numbers of post-procedural animal deaths.  It was therefore 

decided to leave the rat with a functioning native kidney to prevent death from acute 

renal failure and to calculate GFR by inulin clearance with ureteric cannulation as 

described in Chapter 2. 
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Rat kidney transplantation became established in the 1960s, and subsequently, several 

studies have reported surgical techniques that make the procedure easier to perform 

(Pahlavan et al., 2006, Schumacher et al., 2003, Spanjol et al., 2011).  2 methods of 

transplantation have been routinely described:   

 

(1) Heterotophic transplantation: End to side anastomosis of the renal artery and 

vein onto the infra-renal abdominal aorta and inferior vena cava respectively, 

with clamps applied superiorly and inferiorly to the incision in the recipient 

vessel.  Ureteric implantation is achieved via ureterovesical anastomosis.  The 

transplanted kidney is left within the peritoneal cavity.  (See Figure 8.1) 

 

 
Figure 8.1: Heterotopic renal transplant, performed by the author during microsurgical training at 

Northwick Park Institute for Medical Research. 

 

(2) Orthotopic transplantation: After left-sided nephrectomy, end-to-end anastomosis 

of the transplanted renal artery and vein onto the native renal vessels is performed.  

The kidney is placed within the native renal bed.  Ureteric anastomosis between the 

transplant and native systems is made in an end-to-end fashion, sometimes over a 

ureteric stent (Herrero F 2004, Pietsch et al., 2004).  
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8.14 PREVIOUS STUDIES OF RENAL TRANSPLANTATION IN RODENTS 

Some studies using MSC therapy have focused investigation upon 

immunomodulation and the ability of MSCs to protect against rejection, while others 

have examined the effects of cellular therapy against IRI +/- rejection.  Reviewing the 

findings of these reports provides insight into the potential of cell-free therapy to 

mitigate injury occurring in the peri-transplant period. 

 

8.15 MSCs AND IMMUNOLOGICAL REJECTION IN KIDNEY 

TRANSPLANT MODELS 

De Martino et al. investigated the immunomodulatory effects of allogeneic MSCs 

after both syngeneic and allogeneic rat kidney transplantation (De Martino et al., 

2010).  MSC therapy was shown to reduce renal tubular damage by reducing 

inflammatory cell infiltrate in both models of transplantation (De Martino et al., 

2010).  This implies that acute cell-mediated rejection is mitigated by MSCs in the 

allogeneic transplantation group, while in syngeneic transplanted animals, enhanced 

immunogenicity as a result of IRI is also ameliorated by MSC treatment.  

 

Franquesa et al. utilized the Fischer to Lewis rat transplant model of chronic allograft 

nephropathy to investigate the effects of BD-MSCs given intravenously 11 weeks 

post transplantation (Franquesa et al., 2012b).  For the first 15 postoperative days, rats 

were treated with cyclosporine A to reduce the incidence of acute rejection.  

Transplanted kidneys were subjected to 150 minutes of cold ischemia, although the 

length of warm ischemia was not reported.  After 24 weeks, MSC therapy was 

associated with a down-regulated inflammatory response with reduced expression of 

inflammatory cytokines and fewer macrophages infiltrating the renal parenchyma.  

Consequently, MSC treated animals were shown to have improved serum creatinine 

levels, superior renal histology and reduced renal fibrosis (Franquesa et al., 2012b).  

 

Using a rat transplant model, Zhang et al. investigated the effects of combined 

cyclosporin A with multiple post-transplant BM-MSC intravenous injections (Zhang 

et al., 2007).  They observed that combined cyclosporin A and BM-MSC therapy 

preserved short-term transplant function better than monotherapy with either 

treatment alone, but ultimately allograft longevity was not superior to any 

combination.  However, as this Wistar into Lewis transplant model utilised minimal 
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renal ischemia and predominantly caused renal dysfunction by acute cell-mediated 

rejection, this finding is unsurprising.  It may be that any initial renal IRI was 

mitigated by MSC therapy, but that ultimately immunological rejection was too 

powerful to be affected by either cyclosporin A or MSC administration. 

 

8.16 MSCs AND PREVENTION OF IRI IN RODENT KIDNEY TRANSPLANT 

MODELS 

Iwal et al investigated the effects of autologous ADRC infusion in a syngeneic rat 

kidney transplant model, which was published around the conclusion of this 

experiment.  Iwal et al concluded that ex vivo intrarenal artery infusion of 1 x 106 

ADRCs was associated with significantly improved renal function after 60 minutes of 

cold and 60 minutes of warm ischemia (Iwai et al., 2014).  Furthermore, it was noted 

that intra-renal artery infusion of ADRCs, although not significantly better at 

protecting renal function and histology than intravenous administration, was not 

associated with complications previously reported with systemic administration (Iwai 

et al., 2014).  

 

Hara et al. investigated the effects of BD-MSCs on renal IRI following 24 hours of 

cold ischemia to study the effects of prolonged cold ischemia on graft 

immunogenicity (Hara et al., 2011).  Using a robust model of acute rat kidney 

rejection, they reported intravenous administration of autologous BD-MSCs to be 

associated with suppression of pro-inflammatory cytokines and down-regulation of 

adhesion molecules and chemokines.  In keeping with previous studies (Zonta et al., 

2010, Schrepfer et al., 2007) they noted that the vast majority of administered cells 

became entrapped within the pulmonary circulation and only a few reached the 

transplanted kidney.  They concluded that BD-MSC administration was able to reduce 

graft immunogenicity following prolonged cold storage, and speculated that this 

effect was due to the inhibition of immune cell migration into the transplanted kidney.  

Furthermore, they concluded that BD-MSC efficacy was likely mediated via a 

paracrine effect (Hara et al., 2011).  Unfortunately, they did not report the period of 

warm ischemia that the transplanted kidney was subjected to.  
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8.17 RATIONALE FOR RAT TRANSPLANT MODEL USED IN THIS 

EXPERIMENT 

Previous experiments in Chapter 5 had indicated prolonged ischemic times are 

necessary to produce a long-standing renal injury - an essential requirement when 

investigating the ability of novel treatments to protect renal function in medium to 

long term.  However, rodents have been shown to lack the artery of Adamkiewicz, a 

branch of the posterior intercostal artery which in man typically arises on the left at 

the level of the 9th – 12th intercostal artery (Schievink et al., 1988).  This vessel is 

necessary to provide collateral spinal blood supply during aortic cross-clamping.  

Lacking this vessel, rodents undergoing prolonged suprarenal aortic cross-clamping 

are reported to suffer high rates of postoperative spinal paralysis due to spinal cord 

ischemia (Taira and Marsala, 1996, Awad et al., 2010).  After discussion with experts 

at Northwick Park Microsurgical Institute, London, it was decided to develop a 

transplant model using an orthotopic transplant model, which would necessitate 

clamping of the renal vessels only.  Syngeneic rats were used as both donors and 

recipients to remove immunological rejection as a confounding factor.  Again, novel 

therapy was administered via the transplant renal artery immediately prior to 

reperfusion to avoid systemic distribution.  Infusion of MSCs via the renal artery has 

previously been shown to be superior to intravenous therapy in a rat transplant model 

(Zonta et al., 2010). 
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8.2 HYPOTHESIS 
(1) Prolonged periods of cold and warm ischemia will result in a predictable 

reduction in long-term function and histology of a renal allograft, transplanted 

between syngeneic rats. 

(2) Administration of therapy, previously shown to mitigate warm renal IRI may 

improve long-term transplant function and histology. 
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8.3 METHODS 
8.31 ANIMAL HOUSING AND HUSBANDRY  

Male Fisher 344 rats, aged 12 - 14 weeks and weighing 225 – 250g were sourced 

from Harlan UK Ltd.  Animals were housed in the JRF, University of Glasgow for at 

least two weeks before surgery to allow the animals to equilibrate with their new 

environment.  Animals were housed and fed as described in Section 2.1.  During 

equilibration before surgery, animals put on weight such that on the day of surgery, 

rats weighing 250 – 320g were used. 

 

8.32 GROUP SELECTION 

 6 animals were randomly assigned to both control and treatment groups.  Donor 

animals were randomly selected from the housed rat population on the day of surgery.  

Transplanted kidneys in control animals were treated with intra-renal artery saline 

vehicle infusion only, 40 minutes prior to graft reperfusion.  Transplanted kidneys in 

treatment group animals were given an intra-renal artery infusion of PF-MVs, given 

exactly 40 minutes prior to transplant reperfusion.  

Post surgery, animals were weighed daily and assessed for signs of distress or illness.  

 

The first 2 successfully transplanted animals, after being subjected to 120 minutes of 

cold ischemia and 120 minutes of warm ischemia, were treated with saline vehicle.  

The next 2 animals were treated with PF-MVs.  Thereafter transplanted animals were 

alternatively treated with saline vehicle or PF-MVs in an attempt to avoid skewed 

outcomes as a result of improved surgical technique. 

 

8.331  KIDNEY TRANSPLANTATION SURGICAL PROCEDURE  

Rodent anaesthesia, positioning during surgery and post-surgical care were conducted 

in standard fashion, as previously described in Sections 2.12 – 2.16. 

 

8.332 Retrieval of Donor Kidney 

Via a long midline incision, the left-sided retroperitoneal structures were exposed by 

mobilising the left colon.  Damp swabs were placed to retract small and large bowel 

and protect the donor kidney.  
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To aid transplantation, it was helpful to have the maximum length of the artery, vein 

and ureter attached to the donor kidney.  Therefore, the full length of the donor left 

renal artery was dissected from the renal hilum to the origin on the abdominal aorta.  

The suprarenal artery was divided with cautery.  Gentle handling with a vascular 

sloop and the direct application of 1% lignocaine prevented spasm of the renal artery.  

The full length of the left renal vein was dissected from the renal hilum to the 

termination of the vein on the inferior vena cava.  The major branches (suprarenal, 

gonadal and lumbar veins) were ligated with 9/0 nylon and divided.  The left ureter 

was dissected free of its attachments from the renal hilum and dissected free distal to 

the crossing of the ureter over the bifurcation of the iliac vessels.  The ureter was then 

transected as distally as possible, and the divided end retracted proximally, out of 

harm's way.  Once this was achieved, the kidney itself was dissected free from the 

renal bed, by sharply incising its fascial attachments.  

 

At this point, the kidney had not been subjected to any ischemia and was attached to 

the donor only by the left renal artery and vein.  (See figure 8.2i) 

A ligature was placed on the renal artery at its origin on the aorta, signifying the start 

of the ischemic period.  (Figure 8.2ii)  An arteriotomy was made, and a cannula was 

placed in the artery.  Using a pre-placed vascular sloop to prevent leakage, the renal 

artery was flushed with ice-cold University of Wisconsin solution (UW), thereby 

flushing the static blood out of the kidney.  (See Figure 8.2iii) 

This typically required a flush of around 4ml of fluid.  The return of this cold fluid to 

the donor circulation, by the left renal vein, universally resulted in donor cardiac 

arrest.  

 

Once the kidney was cooled and adequately flushed, a venotomy was made in the left 

renal vein (8.2iv) and a loop-marking suture placed in the anterior wall.  (8.3v) This 

helped accurate approximation without twisting during transplant anastomosis.  The 

vein was then entirely transected, and the kidney placed in ice-cold UW for 120 

minutes exactly.  The body of the donor rat was discarded. 
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8.333 Recipient Procedure 

The recipient rat was anaesthetized and positioned in standard fashion, again taking 

full sterile procedures.  A midline laparotomy was made, and again the left-sided 

retroperitoneal structures were exposed by mobilising the left colon.  Damp swabs 

were placed to retract the bowel and spleen.  The native left renal artery was 

mobilised along its entire length as described above.  The native left renal vein was 

mobilised up to the origin of the left gonadal vein.  The native left ureter was 

minimally dissected from the left renal hilum.  The kidney's attachments were fully 

excised to mobilise the kidney. 

 

The renal artery clamped at its origin and divided distally to preserve the maximum 

length of the native artery.  The renal vein was clamped distal to the left gonadal vein 

and divided at the renal hilum.  The native ureter was divided as it exited the renal 

hilum, again to preserve the maximum possible length.  The kidney was removed 

from the renal bed and discarded.  The native vessels were flushed with saline in a 

retrograde fashion to eliminate any clots.  (Figure 8.3vi) 

After exactly 120mins of cold ischemia, the transplant kidney was placed in the 

recipient left renal bed (Figure 8.3vii).  This signified the start of the warm ischemic 

period.  The kidney was protected with saline soaked swabs.  

 

Anastomosis of the vessels was begun.  Firstly the native and transplant renal veins 

were anastomosed with 10/0 interrupted nylon sutures in a standard fashion using 16 

stitches.  For this, the two loop-marking sutures helped significantly in ensuring the 

renal vein was sutured in the correct orientation, without twisting or catching the back 

wall.  (Figure 8.3viii)  Venous anastomosis typically took 45 – 50 minutes to 

complete, and attention was then turned to the renal artery.  This was anastomosed as 

described in Section 5.33.  40 minutes prior to reperfusion, the kidney was treated 

with 0.9ml of either saline vehicle or PF-MVs via intra-renal artery infusion, as 

described in Section 5.33.  After exactly 120 minutes of warm ischemia, the vascular 

clamps were removed to re-perfuse the transplanted kidney.  (Figure 8.4x) 

 

Attention was then turned to ureteric anastomosis which was conducted as previously 

described with slight modifications (Herrero F 2004).  Briefly, a 6/0 nylon stent was 

cauterised slightly to blunt each end and placed in native and transplant ureter. (See 
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Figure 8.4xi).  Over this, the ureter was anastomosed end to end with six equally 

spaced, interrupted 11/0 nylon sutures.  The stent was removed after the final suture 

was placed, but before the final suture being tied. 

 

The renal fascia was tacked over the transplanted kidney with interrupted 10/0 sutures 

to hold it in the renal bed.  The swabs were removed, and the intestines returned to the 

abdomen.  The abdomen was closed with 4/0 continuous vicryl en mass, with un-dyed 

4/0 vicryl to close the skin – as previously described in Section 5.33.  
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Figure 8.2: (i) The retroperitoneal structures in the donor rat are dissected to expose the transplant 

renal artery (TX-LRA) and renal vein (TX-LRV) and the allograft (LK).  The transplant ureter (TX-U) 

is dissected to preserve the maximum length during the transplant process.  The gonadal vessels are 

easily seen.  (LGV)  (ii) A ligature is placed on the renal artery is ligated at its origin on the aorta (A).  

The LK becomes discoloured at this point, signifying the start of the ischemic period.  (iii) Via an 

arteriotomy, a cannula (C) is placed in the TX-LRA and secured with a vascular sloop (S) before the 

allograft is flushed with ice-cold University of Wisconsin solution.  The TX-LRV bulges with UW 

solution and a colour change is seen in the kidney as the blood is expelled.  (iv) The renal artery is 

transected at its origin.  After a ligature is placed at the origin of the TX-LRV, a venotomy is made in 

the anterior wall of the TX-LRV.  
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Figure 8.3: (v) A marking suture is placed in the anterior wall of the TX-LRV before the vein is 

completely transected, and the transplant removed and stored on ice in UW for 120 minutes.  (vi) The 

retroperitoneum of the recipient rat is dissected, preserving the length of the native left renal artery (N-

LRA), native left renal vein (N-LRV) and native left ureter (N-U).  Vascular clamps (VC) are placed 

on the vessels.  The native kidney is removed, leaving the renal bed (RB) free for the transplant.  (vii) 

After exactly 120 minutes on ice, the transplant is placed in the recipient renal bed, and vascular 

anastomosis begins.  (viii) The TX-LRV and N-LRV are placed in frame clamp, approximating the 

anterior vein walls using the marking sutures.  Stay sutures (SS) are placed, and the vein anastomosed 

with interrupted 10/0 nylon.  Yellow background material prevents damage to posterior structures 

during this process.   
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Figure 8.4: (ix) The renal artery and vein are anastomosed in standard fashion as described in Section 

5.33.  (x) The vascular clamps are removed after exactly 120 minutes of warm ischemia, and the 

transplant is reperfused.  (xi) Attention is turned to the ureteric anastomosis.  A 6.0 nylon stent (6/0 

NS) is inserted into both transplant and native ureters to aid suture placement.  It is removed before the 

anastomotic completion.  (xii) The finished transplant before closure of renal fascia to secure the 

kidney in position.   
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8.34 POST-SURGICAL CARE 

This was carried out in standard fashion as described in Section 2.16.  

 

8.35 QUANTIFICATION OF RENAL FUNCTION AND RENAL INJURY 

At day 14 animals underwent inulin clearance studies in order to accurately 

characterise the function of the transplanted kidney, according to the standard 

protocol described in Section 2.2.  Both kidneys were weighed, before being stored in 

10% formalin and RNA later solution for later analysis. 

Formalin preserved kidneys were paraffin embedded and sectioned as described in 

Section 2.3 Histological analysis and immunohistochemistry for P16, P21 and Ki 67 

were carried out as described in Sections 2.3 and 2.4 
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8.4 RESULTS 
8.41 PILOT TRANSPLANTS 

The first 2 animals to undergo transplantation were treated with saline and subjected 

to 120 minutes of cold ischemia, and 90 minutes of warm ischemia.  (See figure 8.5)  

The transplant GFR values obtained from these ‘pilot’ studies appeared broadly 

comparable to GFR values from healthy animals, which suggested a possible lack of 

significant injury after 14 days recovery.  Therefore, the warm ischemia time was 

increased to 120 minutes.  

 

 

 
Figure 8.5:  No significant difference was observed between the native renal function of sham-

operated animals (n=6) and ‘Pilot Study’ transplanted kidneys subjected to 120 minutes of cold and 90 

minutes of warm ischemia (n=2).  Data after 2 weeks recovery post surgery.  

Statistical analysis by unpaired Student's t-test. 
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8.42 POST-PROCEDURE MORTALITY RATES AND TECHNICAL 

COMPLICATIONS 

5 of the first 6 animals to undergo transplantation with 120 minutes of cold and 120 

minutes of warm ischemia did not survive 14 days post procedure.  

 

Of these 5 animals:  

• 1 animal lost >10% of its bodyweight by 7 days, and was culled.  At post mortum, it 

was clear that there was ureteric obstruction of the transplanted kidney, due to dense 

inflammatory adhesions in the surgical field.  

• 1 animal developed a thrombus in the renal vein at kidney reperfusion.  This was not 

technically salvageable without subjecting the animal to >120 minutes warm ischemia 

and so the animal was culled.  

• 1 animal bled from an unligated branch of the renal artery at kidney reperfusion.  

This was not amenable to surgical fixation without subjecting the animal to >120 

minutes of warm ischemia.  The animal was culled.  

• 2 animals were found dead in their cages the following morning, for reasons that 

were not apparent at post mortem. 

 

Following this, 11 further animals were successfully transplanted and survived to 14 

days and were apparently healthy.  

 

8.43 GROUP WEIGHT LOSS COMPARED TO BASELINE WEIGHT 

Animals in both groups lost significant body weight until 10 days post surgery, but 

had recovered body weight by Day 14.  (See Figure 8.6) 
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Fig 8.6: Compared to baseline, animals with both saline and MV-treated kidney transplants exhibited 

significant weight loss on Day 2 (p <0.0001 in both groups).  There remained significant weight loss 

for both groups on Day 4 (p <0.0001 in both groups), Day 7 (p=0.001 and < 0.0001 respectively) and 

day 10 (p=0.0075and 0.001 respectively).  By day 12, the body weight of animals with saline treated 

transplants had returned to baseline (p=0.1213), whilst animals with MV-treated transplants remained 

below their baseline weight (p=0.0443).  By day 14, animals in all groups had put on a mean average of 

4% body weight in comparison to baseline (p =0.0041 and 0.0191 respectively).  

Statistical analysis by unpaired Students t test.  

 

8.44 COMPARISION OF PERCENTAGE WEIGHT LOSS FROM BASELINE 

BETWEEN GROUPS 

There was no significant difference in weight loss from baseline between groups at 

day 2 (p= 0.0876), Day 4 (p=0.2704), Day 7 (p= 0.5494), Day 10 (p=0.9602), Day 12 

(p=0.9442) or Day 14 (p=0.5397).  (See Figure 8.6) 

Statistical analysis by unpaired Students t test.  
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8.45 GLOMERULAR FILTRATION RATE 

There was no significant difference in GFR between transplants treated with saline 

and those treated with PF-MVs. (see Figure 8.7) 

 

 
 
Figure 8.7: Transplant function in saline treated animals was not significantly different to those in 

animals with transplants treated with PF-MVs.  (p = 0.1724)  

Statistical analysis by unpaired Student's t-test. 
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8.46 RENAL HISTOLOGY SCORING 

Epithelial Breaks 

Transplanted kidneys treated with PF-MVs exhibited significantly fewer epithelial 

breaks than transplants treated with saline alone.  (See Figure 8.8) 

 

 
 Figure 8.8: (a) Renal histology shows that transplants treated with PF-MVs exhibit significantly fewer 

epithelial breaks than transplants treated with saline vehicle alone (p=0.0076).  

Statistical analysis by unpaired Student's t-test. 
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Hyaline Cast Formation 

Transplanted kidneys treated with PF-MVs had significantly fewer hyaline casts when 

compared to transplanted kidneys treated with saline alone. (see Figure 8.9) 

 

 
Figure 8.9: Fewer hyaline casts are observed in transplanted kidneys treated with PF-MVs than 

transplanted kidneys treated with saline alone (p= 0.0079). 

Statistical analysis by unpaired Student's t-test. 
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8.5 DISCUSSION 
Although recent improvements in tissue typing and immunosuppression regimes have 

significantly reduced the incidence of post-transplant acute rejection, long-term graft 

survival rates have remained unchanged (Saat et al., 2016).  This probably reflects the 

fact that ECD and DCD renal allografts are increasingly being transplanted into older 

patients, and that ‘marginal’ organs are at increased risk of damage during the 

transplantation process (Ali and Sheerin, 2013).   

 

The common pathology predominantly responsible for long-term allograft loss is 

chronic allograft nephropathy (CAN).  CAN is a multifactorial process that results 

from a combination of injurious processes that begin during the peri-transplant period 

and ultimately lead to late transplant dysfunction and allograft loss (Marcen et al., 

2009, Heemann and Lutz, 2013).  Insults including cold and warm ischemia, 

reperfusion injury, low-grade antibody-mediated rejection together with calcineurin 

toxicity result in severe interstitial fibrosis and tubular atrophy (Marcen, 2009, Grinyo 

et al., 2010).  Evidence suggests that CAN is related to chronic immunological insults, 

but also to uncontrollable factors at the time of transplantation including poor 

allograft quality and IRI that enhances allograft immunogenicity (Timsit et al., 2010).  

 

Unsurprisingly, the complex biological processes that combine to produce acute 

transplant injury are difficult to simulate properly using current rodent models of 

renal transplantation.  Most rodent models of renal transplantation focus upon a single 

pathological process – usually immunological rejection as a result of allogeneic 

transplantation, or a combination of cold and warm ischemia.  In this experiment, it 

was decided to investigate the effects of ECV therapy against prolonged cold and 

warm IRI, as this is reported to be the major insult encountered by ‘marginal’ renal 

allografts.  Allografts were deliberately transplanted between syngeneic rats to 

exclude acute rejection as a confounding factor.  This allowed focused evaluation 

upon the effects of cold storage, warm ischemia and reperfusion injury on allograft 

function and histology, and the ability of ECV therapy to mitigate this.  However, in 

future it would be relatively straightforward to introduce immunological rejection into 

the experiment by transplanting Fischer kidneys into the Lewis rat strain, which is a 

well-recognized rodent model of CAN (White et al., 1969, Shrestha and Haylor, 
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2014).  This would allow the investigation of the effects of stem cell-based therapies 

against prolonged cold and warm ischemia, immunological rejection and 

subsequently against CAN.  In addition, when performing such experiments, it would 

be possible to treated transplanted animals with calcineurin inhibitors, thereby 

investigating the effects of stem cell therapies in a more exact imitation of the clinical 

transplantation process. 

 

The immunomodulatory and anti-inflammatory properties of MSCs have led 

investigators to study their use in animal transplant models, with the aim of reducing 

peri-transplant injury and hopefully lessen the need for long-term immunosuppressive 

medication.  However, cell-free therapy confers some theoretical benefits over 

cellular treatments, and efficacy of cell-free treatment has been demonstrated in some 

different rodent renal IRI models. 
While there are several reports describing the use of cell-based therapies in rodent 

transplant models, there appear to be no studies where an animal renal transplant 

model has been treated with ECV therapy in an attempt to protect allograft function 

against IRI.  Indeed there is only one published study where ECV therapy has been 

given to a rodent kidney transplant model, in an attempt to reduce chronic allograft 

nephropathy (Koch et al., 2015). 

 

The microsurgical challenge of anastomosing the vessels and ureters in rat kidney 

transplantation is known to introduce additional experimental variability when 

compared to results obtained with simple rat renal IRI models (Schumacher et al., 

2003, Pahlavan et al., 2006, Spanjol et al., 2011).  However, transplantation is deemed 

necessary to introduce a period of experimental cold ischemia +/- immunological 

incompatibility, in order to mimic the clinical process of deceased donor renal 

transplantation.  The paucity of studies examining ECV therapy in rodent transplant 

models may highlight a lack of investigator enthusiasm due to the technical 

complexity involved in the procedure itself.  However, it is also possible the lack of 

published data for ECV therapy in this area reflects a lack of therapeutic efficacy that 

is not in the public domain due to publication bias.   

 

The model described here exposed the transplanted kidneys to 120 minutes of cold 

ischemia and 120 minutes of warm ischemia.  This is considered a prolonged 
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ischemic period (Schumacher et al., 2003) and produced a severe, long-standing renal 

injury compared to the split renal function of age and sex matched Fischer rats. 

Initially, ‘pilot’ transplants were performed  (n=2), utilising 120 minutes of cold and 

90 minutes of warm ischemia, but results indicated that transplant function was not 

reliably diminished after 14 days recovery.  The warm ischemia period was therefore 

extended to 120 minutes and a significant decline in transplant function observed.  

 

Increased periods of ischemia during rodent transplantation are reported to cause 

greater variation in renal morphology and function (Pahlavan et al., 2006, 

Schumacher et al., 2003).  Despite this, the variability in GFR and histology results 

obtained here from saline-treated rats subjected to 240 minutes of total ischemia was 

acceptable (mean GFR =0.04815, SD = 0.0394, 95% Confidence Interval = 0.01568 

– 0.08062).  Interestingly, greater variability was observed in the GFR of PF-MV 

treated animals for reasons that are unclear (mean GFR =0.07653, SD =0.03578, 95% 

Confidence Interval =0.03898 – 0.1141).  This may have been the result of 

unrecognised technical complications (e.g. renal artery or ureteric stenosis) or natural 

variability reflecting the prolonged ischemia and the ability of PF-MVs to ameliorate 

this.  Increasing the numbers of animals in both control and experimental groups 

would be a natural next investigative step, as the data indicates the experiment may be 

numerically underpowered to show a significant difference in transplant GFR.  

 

Despite this, PF-MV treated animals exhibited both fewer epithelial breaks and fewer 

hyaline casts when compared to saline treated controls.  This indicates that PF-MVs 

had a beneficial effect on renal morphology, but that this effect did not translate into 

improved GFR at 14 days post-transplant.  Clearly, it is possible that GFR between 

groups could differ significantly at other post-operative time points, although further 

experiments would be required to explore this possibility. 

 

An apparent flaw in this experiment is the lack of molecular data, which may have 

provided an insight into the mechanisms by which PF-MVs produce their effect upon 

renal morphology.  As there is an absence of data regarding the biological action of 

ECVs in transplant models, it is difficult to speculate in what, if any, additional ways 

ECVs may act to counter the cold ischemia and enhanced immunogenicity that result 

from allogeneic transplantation. 
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A single study has thus far reported the use of ECVs in an animal kidney transplant 

model.  Koch et al. harvested MSC-derived ECVs and administered them 

intravenously to an allogeneic rat transplant model of acute rejection on the 1st post 

surgical day (Koch et al., 2015).  Renal IRI was only 30 minutes and no 

immunosuppression was given.  Leucocyte infiltration in treatment and control 

kidneys was significantly different, although this did not appear to affect renal 

function or the production of donor-specific antibodies.  The authors concluded that 

therapy with ECVs was safe but did not seem to confer any functional or histological 

benefit at mitigating acute cell-mediated rejection.  This was unsurprising given the 

fact that cell-mediated rejection is an immunological process that is unlikely to be 

completely nullified by the administration of a single dose of therapy, the efficacy and 

dosing of which had not been demonstrated by the investigators previously.  

Furthermore, timing and route of the dose used in this study were probably sub-

optimal.  As a consequence, it is difficult to draw any firm conclusions regarding the 

potential of ECV therapy in kidney transplantation based on the findings of this study.  

 

At the time of writing, there appear to be no other published reports investigating the 

use of ECV therapy in animal models of renal transplantation.  

Nevertheless, some previous studies have demonstrated the ability of MSCs to 

mitigate damage to renal function and structure in rodent transplant models.  The 

consensus is currently that stem cells act via paracrine mediators in the form of ECVs.  

Furthermore, ECV therapy appears to be equivalent in mechanism and efficacy to 

treatment with the parent stem cell type in a number of studies.  Therefore it is 

possible that if applied to a rodent kidney transplant model, via a common mechanism 

of action, ECVs may have a similar effect to the stem cell type from which they 

derive.  

 

Initially, it was planned to test both PF-MVs and ADRCs in the transplant model.  

However, difficulties in establishing both the technical aspects of the transplant 

procedure and the amount of ischemia required to produce a long-standing insult 

meant that this was not possible.  It is unfortunate that these time constraints did not 

allow the testing of a therapeutic dose (7 x 105) of ADRCs in this rat transplant 

model. 
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Nevertheless, multiple previous studies have shown MSCs to mitigate warm renal IRI 

via anti-inflammatory and anti-oxidative mechanisms (Chen et al., 2011, Feng et al., 

2010b, Sheashaa et al., 2016, Shih et al., 2013, Villanueva et al., 2013).  Furthermore, 

studies in rodent transplant models have shown MSCs to reduce acute cell-mediated 

rejection, mitigate IRI and probably as a long-term consequence of these effects, 

reduce CAN.  Unfortunately, there is a relative shortage of published work exploring 

the effects of ECV therapy in animal kidney transplant models, although the reasons 

for this are unclear.  Increasing the animal numbers in the current experiment and 

furthermore introducing an ADRC treatment group while obtaining molecular data 

from stored tissue samples are obvious next steps that may allow conclusions 

regarding the potential of PF-MVs and ADRCs in this model of renal transplant 

ischemia.  If proved effective, testing these novel therapies in rodent transplant 

models of CAN subjected to similar periods of ischemia may clarify their utility prior 

to testing in porcine models of renal transplantation.  
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CHAPTER 9 
 

GENERAL DISCUSSION 
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9.1 INTRODUCTION 
The experiments presented in this thesis highlight the potential of stem cells and their 

ECVs to reduce the peri-transplantation injury that renal allografts suffer as a result of 

IRI.  Given the increasing use of marginal allografts, which are more prone to IRI, 

such therapies are urgently needed as a reduction in the initial injury may theoretically 

improve allograft function in the long-term.  

 

This is important, as long-term transplant outcomes with marginal kidneys are less 

than satisfactory, although transplantation with such allografts has been shown to be 

preferable to remaining on dialysis.  Nevertheless, renal allografts exhibit a long-term 

decline in function associated with chronic fibrosis that occurs as a result of persisting 

alloreactivity and calcineurin-inhibitor related toxicity.  Strategies to reduce initial 

injury may limit allograft immunogenicity and subsequent calcineurin requirements, 

preserve the number of functioning nephrons and ultimately encourage renal 

regeneration.  

 

Since work on this thesis began, researchers have conducted pilot studies examining 

the safety and feasibility of MSC use for the prevention of peri-transplantation injury.  

No studies reporting the use of ECVs in renal disease have been reported in human 

subjects at the time of writing,  although the use of ECVs to treat graft versus host 

disease has been described (Kordelas et al., 2014).  Perico et al. (Perico et al., 2011) 

were the first to report the use of MSCs in patients undergoing renal transplantation, 

concluding that infusion of autologous MSCs 7 days post-transplant did not improve 

outcomes after one year compared to conventional therapy.  Reinders et al. (Reinders 

et al., 2013) reported that treatment with autologous BD-MSCs in response to acute 

rejection on protocol biopsy was safe, noting reductions in acute rejection and 

interstitial fibrosis 24 weeks post-treatment.  While no conclusions were drawn 

regarding the efficacy of MSC therapy, the treatment appeared safe, and the findings 

were suggestive of systematic immunosuppression (Reinders et al., 2013).  Peng et al. 

(Peng et al., 2013) reported that intra-renal artery infusion of MSCs at the time of 

surgery approximately allowed a 50% reduction in tacrolimus therapy one year after 

transplantation.  
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Unfortunately, while these studies have been suggestive of benefit associated with 

MSC treatment, the small numbers of patients recruited make it difficult to draw firm 

conclusions (Bank et al., 2015).  However, these pilot studies have been conducted 

predominantly using allografts that come from living donors, and the results from 

such allografts are known to be excellent.  This is probably because live donor 

allografts are subjected to a minimal cold and warm ischemic times, and hence peri-

transplantation injury and subsequent enhanced allograft immunogenicity are kept to 

a minimum.  Theoretically, the impact of stem cell-based therapy in this situation is 

likely to be negligible, compared to the application of novel therapies in marginal 

allograft transplantation.  Furthermore, clarification regarding the optimal route of 

administration, numbers of cells per dose and timing of treatment in relation to 

surgery is required to produce the maximum beneficial effect.   

 

The clinical translation of stem cell-based therapies ultimately requires the safety and 

efficacy of treatment to be demonstrated in large animal models of transplantation 

prior to the implementation of widespread clinical trials.  This chapter discusses how 

the progression to large animal work might best be achieved, highlighting 

improvements to the rodent experiments described here and postulating how future 

work might provide information that allows large animal work to be conducted in an 

efficient fashion.   

 

 

9.2 IMPROVEMENTS TO THE RAT MODEL OF RENAL 

ISCHEMIA-REPERFUSION INJURY  
As previously discussed, the rat model described in Chapter 5 addresses some of the 

disadvantages that are associated with conventional rodent models of renal ischemia.  

Nevertheless, there are negative aspects of the novel rat model that principally 

concern the characterization of GFR in terminal studies. 

 

Continuous infusion of an exogenous tracer is regarded as being the most accurate 

method of determining GFR (Huang et al., 2016, Miller et al., 1952).  In U-IRI-N 

models, such as the novel model developed here, individual ureteric cannulation is 
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utilised to allow the individual GFR of each kidney to be characterised.  However, the 

size of rodents makes this technique both time-consuming and technically difficult.   

 

In addition, hypovolemia as a result of insidious bleeding may occur during GFR 

studies using the method described.  Any occult blood loss observed during these 

experiments was universally intra-abdominal, originating from either the incised 

abdominal musculature or from tiny retroperitoneal vessels divided during ureteric 

dissection.  During the dissection necessary to allow the insertion of the ureteric 

cannulas, meticulous hemostasis was routinely performed in an attempt to prevent 

unnecessary blood loss.  Unfortunately, any bleeding after ureteric cannulation was 

not immediately apparent as the intestines were returned to the abdomen post-

cannulation to help maintain the steady core body temperature that is necessary to 

achieve consistent GFR results (Le Clef et al., 2016, Wei and Dong, 2012).  The 

abdomen was also loosely packed with swabs to help prevent unnecessary heat loss.  

Routine inspection of the abdomen was not undertaken after GFR studies begun as 

this risked dislodging the position of the cannulas.  Any bleeding was therefore not 

apparent until the rat’s circulating volume had been reduced sufficiently to reduce 

urine output and thereby artificially producing lower GFR results.  During this thesis, 

four animals were terminated prior to the conclusion of GFR studies, when it became 

apparent that occult intra-abdominal blood loss during the inulin clearance study had 

resulted in reduced urine output and inaccurate GFR results.  These animals were 

excluded from experimental groups, which necessitated the use of an additional 

animal in a repeated procedure.  

 

A second problem with the use of terminal inulin clearance studies is that only a 

single GFR value can be obtained from each animal (Ellery et al., 2015).  Clearly, in 

order to gain GFR values at different times points post surgery, larger numbers of 

animals would be required that if multiple GFR results could be obtained from each 

animal at various time points without sacrificing it. 

 

Therefore, the benefit of ureteric cannulation, namely the characterization of split 

renal function in a U-IRI-N model, needs to be balanced against both the 

inconvenience of excluding animals after technical complications during GFR studies 

and the requirement for large numbers of animals to provide insight into renal 
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function over a prolonged period of time.  The fundamental principles of animal 

research specify that investigators actively seek to reduce the total numbers of 

animals utilised in their experiments, while refining techniques in order to obtain 

more accurate information (2011a).  In keeping with this philosophy, the emergence 

of the 2-compartmental models of inulin clearance have led to the publication of 

methods whereby GFR in conscious rodents can be characterised.  Practically, such 

models are desirable in that repeated GFR measures may be obtained from each 

individual animal at different time points, as the GFR procedure does not necessitate 

the animal to be culled.  Furthermore, the use of conscious animals is beneficial as 

anaesthesia is reported to lower GFR and may be avoided using these techniques (Qi 

et al., 2004, Fusellier et al., 2007).   

 

The fundamental concept upon which all 2-compartmental models rely is the decay of 

exogenous tracer from the plasma and extracellular space following the 

administration of a single intravenous bolus.  The measurement of decay necessitates 

obtaining either a single timed blood sample (Katayama et al., 2010, Katayama et al., 

2011) or multiple, timed blood samples (Sturgeon et al., 1998, Qi et al., 2004).  The 

use of fluorescent or radioactive tracer facilitates the measurement of tracer decay, 

allowing the elimination of tracer by the renal tract to be calculated.   

 

However, 2 compartmental models rely upon mathematical modelling to calculate 

both the initial, rapid redistribution of exogenous tracer from the circulation to the 

extracellular fluid and the subsequent slower elimination of tracer by the renal tract.  

Unfortunately, these less invasive methods of measuring GFR are considered 

inaccurate when compared to the more invasive constant infusion techniques utilised 

in this thesis (Sharmarlouski A, 2014).  However, conventional constant infusion 

techniques make repeated GFR measurements from a single animal impractical. 

 

Happily, a recent report described the continuous monitoring of GFR, by measuring 

the transcutaneous fluorescent decay of FITC – sinistrin in conscious animals 

(Schock-Kusch et al., 2011).  Sinistrin is an inert renal reporter molecule that, like 

inulin, is considered ideal for measurement of GFR.  Recent improvements to this 

method have been reported to give GFR values as accurate as those obtained with 

continuous inulin infusion (Friedemann et al., 2016).  The significant advantage of 
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this method is that there is no requirement for a rodent to be anaesthetized, nor are 

repeated blood samples required.  This allows multiple GFR values to be obtained 

from each animal, enabling the progression of renal function over a long experimental 

time course to be tracked.   

 

However, such transcutaneous monitoring does not measure split renal function, 

which is a necessity in the U-IRI-N model where the GFR of the damaged kidney and 

the response to therapy is of interest.  

 

To make improvements to the novel model described here, this difficulty may be 

overcome in two different ways.  Firstly, it may be possible to safely perform a right-

sided nephrectomy a few days after the initial IRI experiment, as the GFR data 2 

weeks post procedure suggests the function of the left kidney is enough to prevent 

death from uremia.  Surviving animals could have their renal function measured via 

transcutaneous as recently described (Friedemann et al., 2016).  Should mortality 

rates after right-sided nephrectomy prove unacceptably high, it may prove necessary 

to reduce the initial period of left-sided ischemia although the permanent effects on 

renal function as a result of this would need to be clarified.  

 

A second option to measure split GFR, without the requirement for nephrectomy, is to 

use a form of imaging, after the administration of a bolus of contrast medium or 

exogenous tracer.  Recent advances in magnetic resonance imaging (MRI) have 

allowed both renal blood flow and GFR to be measured (Zeng et al., 2015). However, 

such a modality is expensive and consequently may not be practical during ‘screening' 

rodent research.  Ratio-metric determination of GFR by two-photon microscopy has 

been described (Wang et al., 2010).  This technique is minimally invasive and allows 

split renal function to be characterised.  Either of these methods could be employed to 

measure GFR repeatedly in the same animal should right-sided nephrectomy not 

prove feasible.  However, as both imaging modalities require the animal to be 

anaesthetized, transcutaneous measurement of GFR post nephrectomy would be 

preferable.  
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9.3 ORGAN RECRUITMENT OF STEM CELLS AND ECVs POST 

ADMINISTRATION 
In this thesis, no experiments were conducted to investigate the sites to which stem 

cells or ECVs were recruited after infusion directly into the renal artery.  However, 

previous studies using BD-MSCs (Cai et al., 2014) and ADRCs (Iwai et al., 2014) 

administered via the renal artery have shown the vast majority of cells are recruited 

by the kidney and furthermore persist in this location for the next 24 hours.  It 

therefore seems likely that cells administered in the novel rodent model would be 

recruited into the kidney.  This contrasts the findings with cells administered 

intravenously, which were found to localise in the lungs for at least three days (Iwai et 

al., 2014).  

 

At the time of writing, there appear to be no studies that differentially track the fate of 

ECVs in animal models, either given systemically or administered in a local fashion.  

In part, this probably reflects the difficulties in labelling and tracking harvested 

ECVs, and furthermore the difficulty distinguishing between  ‘biologically active' 

ECVs which have become internalised in a cell, or are merely adherent to a cell 

surface (Feng et al., 2010a).  

 

An in-depth discussion as to how this might be achieved is beyond the scope of this 

thesis.  However, in broad terms, the bioluminescent labelling of ECVs has been 

described, using reporters such as firefly luciferase (Sharkey et al., 2016) or  Gaussia 

luciferase (Lai et al., 2015).  This becomes fused to cell membrane domains, and 

consequently is incorporated into ECV membranes during production.  This method 

may be used to track ECV fate in vivo (Lai et al., 2015). 

 



	 238	

9.4 FUTURE EXPERIMENTS WITH ADRC ECVs 
 

A body of convincing evidence has led to the recognition that the beneficial action of 

stem cell therapy in response to renal injury is mediated by ECVs in a paracrine 

fashion (Bi et al., 2007, Bruno et al., 2009b, Bruno and Bussolati, 2013, Gatti et al., 

2011, Zou et al., 2014, Cantaluppi et al., 2012).  One of the constant themes 

throughout this thesis has been that the therapeutic use of stem cells themselves 

should be considered to carry more risk than therapy with ECVs – not least because 

administered cells have the potential for malignant transformation and supra-

therapeutic doses may lead to tissue capillary occlusion.  The use of ECVs has not 

been associated with these problems, and significantly ECV application has been 

shown to have similar efficacy as the use of stem cells themselves (Bruno et al., 

2009b).  

 

Unfortunately, time constraints prevented the isolation of ECVs from the ADRCs in 

this thesis.  However, obtaining a preparation of ECVs from ADRCs using 

centrifugation and examining the effects in the novel rodent model would be an 

interesting next set of experiments.  If the efficacy of this preparation could be 

established, it would be interesting to separate the ECV preparation into its three 

fractions using differential ultracentrifugation protocols previously described 

(McGuinness et al., 2016).  The size of vesicles in each fraction could then be 

determined using either Nanosight analysis (Cantaluppi et al., 2012) and/or 

Nanoparticle tracking analysis (Gardiner et al., 2013) to ensure a ‘clean’ preparation.  

Testing each fraction in the novel model may then identify which of the ECV 

fractions contains the biologically active material that confers beneficial effects.   

 

It is unfortunate that time constraints prevented the completion of IHC and qPCR 

analysis that may have provided further insight into the cellular process by which 

ADRCs and PF-MVs produced their biological effects in severely injured kidneys.  

However, a number of previous studies have indicated that MSCs produce at least 

some of their effects by dampening the inflammatory response to injury (Feng et al., 

2010b, Chen et al., 2011, Shih et al., 2013, Furuichi et al., 2012, Wang et al., 2013b), 



	 239	

while PF-MVs are thought to produce their effects through separate pathways that 

encourage cellular regeneration (McGlynn et al., 2013, Stevenson et al., 2011).  

 

This suggests that Pathfinder cells and MSCs produce their effects via different 

biologically active factors.  Evidence suggests that in the case of Pathfinder cells, 

these are contained within microvesicles (McGuinness et al., 2016), while in MSCs 

the identity of the responsible ECV fraction(s) remains unclear. The characterization 

of ECVs from MSCs as described above would allow an investigation into the effects 

of a preparation containing the efficacious ECVs from both Pathfinder cells and 

MSCs. 

Given the likely different mechanism of action of these cell types, it may be that 

combining the active ECV fractions would produce a synergistic effect that resulted 

in initial injury reduction and subsequent regeneration of specialised cell types within 

the damaged kidney.  

 

The ultimate aim of these experiments is to identify any factors contained within 

ECVs that influence cellular processes in a beneficial way.  An in-depth discussion as 

to how this might be achieved is outside the scope of this thesis.  However, in board 

terms, the first step in the process would be to identify the ECV fraction(s) from 

specific cell types that mediate beneficial effects.  One study reported characterising 

the mRNA and miRNA content contained within porcine ADRCs, concluding that 

ECVs were enriched in miRNAs involved in angiogenic and anti-inflammatory 

pathways (Eirin et al., 2014).  However, the use of undifferentiated centrifugation 

resulted in the cargo of all ECV subtypes being reported, and not just the biologically 

active content.  This highlights the importance of investigating the efficacy of 

particular ECV fraction.  From a ‘clean’ preparation of efficacious vesicles, the 

biologically active cargo could be extracted using recognised protocols (Eldh et al., 

2012). Several papers have recently reported different molecular techniques allow the 

cargo of different ECV subtypes to be characterised (Crescitelli et al., 2013, Chevillet 

et al., 2014, Ji et al., 2014).  This may then enable the manufacture of a synthetic 

(cell-free) product for clinical application, the purity of which could be stringently 

tested. 
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9.5 EX VIVO NORMOTHERMIC REPERFUSION AND THE 

POTENTIAL IMPLICATIONS FOR CLINICAL TRANSLATION 

OF STEM CELL THERAPIES 
Several studies have identified the adverse effects of prolonged cold ischemia on 

renal allografts, with the risk of transplant failure at three months reported increasing 

with each additional hour of cold ischemia (Debout et al., 2015).  Compared to 

‘standard criteria’ organs, ECD and DCD kidneys tolerate hypothermia poorly 

(Summers et al., 2013, Kayler et al., 2011), and display high rates of DGF after 

prolonged cold storage (Bilgin et al., 1998).  DGF is itself a poor prognostic indicator 

for long-term allograft outcomes, probably as enhanced allograft immunogenicity 

increases the likelihood of subsequent episodes of rejection (Gill et al., 2016, Wu et 

al., 2015).  

 

As a consequence of the change in donation trends towards marginal kidneys, 

clinicians have recognised the need to move away from the traditional ‘cold storage' 

approach.  Recent research has focused on the development of novel methods of 

organ preservation, with much interest in allograft ex vivo normothermic reperfusion.  

In the context of this thesis, this is important, as this evolving technology may provide 

the opportunity to better investigate stem cell-based therapies and implement them in 

a safer fashion.   

 

Ex vivo normothermic reperfusion of allografts involves the continuous re-circulation 

of a blood-based solution through an extracorporeal organ at body temperature before 

transplantation.  The removal of toxic metabolites and restoration of aerobic 

respiration is thought to ‘resuscitate' organs subjected to periods of warm and cold 

ischemia during retrieval and transportation.  These techniques have gradually been 

adopted in clinical transplantation for other solid organs including the heart (Ardehali 

et al., 2015), lung (Cypel et al., 2011) and liver (Brockmann et al., 2009, Ravikumar 

et al., 2016).  There is growing recognition that normothermic preservation has 

advantages for renal allografts (Hosgood et al., 2015, Kaths et al., 2016b).  The 

perfusion of allografts ex vivo has necessitated the development of isolated perfusion 

systems, which have been adapted from paediatric cardiopulmonary bypass circuits 

(Bagul et al., 2008).  Additionally, leucocyte depleted blood-based perfusion solutions 
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have been developed, which compared to whole blood, reduce the inflammatory 

cascade that occurs during reperfusion, but still allow efficient transfer of oxygen 

(Hosgood and Nicholson, 2011, Harper et al., 2006).   

 

A recent study using porcine kidneys has shown that continuous normothermic 

reperfusion after organ retrieval is associated with superior function compared to 

normothermic reperfusion following a period of static cold storage (Kaths et al., 

2016a).  However, the transportation of organs during continuous reperfusion is likely 

to present dangerous logistical problems, especially as problems with organ perfusion 

in transport could lead to long periods of warm ischemia.  A more practical approach 

would probably involve a period of cold storage during transportation, followed by ex 

vivo normothermic reperfusion just before allograft implantation.  This approach 

theoretically has several advantages as cold storage time is minimised and the 

perfused renal allograft may be macroscopically inspected and its suitability for 

transplantation assessed (Hosgood et al., 2015).  Furthermore, the resistance to renal 

blood flow may be measured, and the restoration of normothermia allows aerobic 

respiration to commence, facilitating the removal of toxins produced under anaerobic 

conditions. 

Recent studies have now demonstrated the benefits of this novel approach in kidney 

transplantation, with the initial clinical pilot study observing a DGF rate of 6% in 

treated ECD allografts, compared to 36% with kidneys treated with traditional static 

cold storage (Nicholson and Hosgood, 2013).  

 

While further discussion regarding the benefits of normothermic kidney perfusion is 

outside the scope of this thesis, it is important to highlight that future efforts to 

improve marginal allograft outcomes are likely to involve this novel technique.  

Happily, the rise of ex vivo normothermic reperfusion creates unique opportunities for 

the development of concomitant strategies to incorporate novel stem cell-based 

treatments into clinical practice.   

 

Firstly, ex vivo perfusion circuits seems to present the ideal opportunity to administer 

intra-renal artery therapy without the potential negative effects of systemic 

distribution.  Novel treatment could easily be administered during allograft 

reperfusion, as the renal artery is readily available.  Such intervention would need to 
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be optimised before use in the clinical setting, however, and experiments using 

discarded porcine kidneys could be conducted to investigate the feasibility of such an 

approach.  This could clarify the optimal dose of stem cell therapy and avoid 

supratherapeutic dosing that could cause blockage of the renal microcirculation.  

Theoretically, it would also be possible to subject porcine kidneys to a prolonged 

period of warm ischemia and, using ex vivo perfusion circuits, to examine the 

response to stem cell-based therapies over 24 hours by measuring GFR via constant 

inulin infusion.  These initial screening experiments could provide useful initial 

information regarding dosing protocols before trialling the efficacy of novel therapies 

in porcine models of kidney transplantation.  Recent work by Kaths et al. has 

described a porcine model in which kidneys are auto transplanted after being 

subjected to 8 hours of static cold storage and a short period of warm ischemia during 

re-implantation (Kaths et al., 2016b, Kaths et al., 2016c).  At day 10, animals 

receiving these kidneys were shown to have elevated serum creatinine and worse 

creatinine clearance versus controls, implying a degree of damage as a result of the 

storage and surgical processes.  This model could be used to study the effect of stem 

cell therapy, administered while the kidney was undergoing ex vivo normothermic 

reperfusion.  However, in order to severely damage the kidney and mimic the use of 

‘marginal’ allografts, it may prove necessary to subject the graft to longer periods of 

warm ischemia than were applied in these studies.  

 

With regard to ex vivo normothermic reperfusion and the parallel use of stem cell-

based therapies, there is one final, important point.  Endothelial membrane stiffening 

in response to rapid reperfusion by whole blood, as occurs in standard clinical 

practice during allograft reperfusion, prevents rapid clearance of the renal 

microcirculation.  This ‘no-reflow’ phenomenon may prevent the adequate 

distribution of any novel cells, administered with therapeutic intent.  However, the 

‘no-flow’ phenomenon is ameliorated by a period of normothermic reperfusion with 

leucocyte depleted blood-based perfusion fluids (Kay et al., 2011).  Therefore, the 

administration of cellular therapy to marginal kidney grafts after a period of 

normothermic reperfusion is thought to be superior to administration immediately 

after hypothermia (Iwai et al., 2014).  It may well be that ex vivo normothermic 

reperfusion enhances the effects of cellular treatments by allowing better penetration 

of therapeutic agents into the allograft. 



	 243	

BIBLIOGRAPHY 
 
2010.	SRTR.OPTN	&	SRTR	Annual	Data	report	Am	J	Transplant,	12	(suppl	1):9.	
2011a.	Instituate	for	Laboratory	Animal	Research.	Guide	for	the	Care	and	Use	of	

Laboratory	Animals.	.	The	National	Academies	Press,	Washington	DC.	.	
2011b.	Institute	for	Laboratory	Animal	Research.	Guide	for	the	Care	and	Use	of	

Laboratory	Animals.	The	National	Academies	Press,	Washington	DC.	
ABBATE,	M.	&	REMUZZI,	G.	1996.	Acceleration	of	recovery	in	acute	renal	failure:	

from	cellular	mechanisms	of	tubular	repair	to	innovative	targeted	
therapies.	Ren	Fail,	18,	377-88.	

ABREU,	S.	C.,	WEISS,	D.	J.	&	ROCCO,	P.	R.	2016.	Extracellular	vesicles	derived	
from	mesenchymal	stromal	cells:	a	therapeutic	option	in	respiratory	
diseases?	Stem	Cell	Res	Ther,	7,	53.	

ADACHI,	T.,	SUGIYAMA,	N.,	GONDAI,	T.,	YAGITA,	H.	&	YOKOYAMA,	T.	2013.	
Blockade	of	Death	Ligand	TRAIL	Inhibits	Renal	Ischemia	Reperfusion	
Injury.	Acta	Histochem	Cytochem,	46,	161-70.	

AGGARWAL,	S.	&	PITTENGER,	M.	F.	2005.	Human	mesenchymal	stem	cells	
modulate	allogeneic	immune	cell	responses.	Blood,	105,	1815-22.	

AHMADBEIGI,	N.,	SHAFIEE,	A.,	SEYEDJAFARI,	E.,	GHEISARI,	Y.,	VASSEI,	M.,	
AMANPOUR,	S.,	AMINI,	S.,	BAGHERIZADEH,	I.	&	SOLEIMANI,	M.	2011.	
Early	spontaneous	immortalization	and	loss	of	plasticity	of	rabbit	bone	
marrow	mesenchymal	stem	cells.	Cell	Prolif,	44,	67-74.	

AKCAY,	A.,	NGUYEN,	Q.	&	EDELSTEIN,	C.	L.	2009.	Mediators	of	inflammation	in	
acute	kidney	injury.	Mediators	Inflamm,	2009,	137072.	

AKERS,	J.	C.,	GONDA,	D.,	KIM,	R.,	CARTER,	B.	S.	&	CHEN,	C.	C.	2013.	Biogenesis	of	
extracellular	vesicles	(EV):	exosomes,	microvesicles,	retrovirus-like	
vesicles,	and	apoptotic	bodies.	J	Neurooncol,	113,	1-11.	

ALI,	S.	&	SHEERIN,	N.	S.	2013.	Biomarkers	of	acute	injury:	predicting	the	long-
term	outcome	after	transplantation.	Kidney	Int,	84,	1072-4.	

ALLAM,	R.,	SCHERBAUM,	C.	R.,	DARISIPUDI,	M.	N.,	MULAY,	S.	R.,	HAGELE,	H.,	
LICHTNEKERT,	J.,	HAGEMANN,	J.	H.,	RUPANAGUDI,	K.	V.,	RYU,	M.,	
SCHWARZENBERGER,	C.,	HOHENSTEIN,	B.,	HUGO,	C.,	UHL,	B.,	REICHEL,	C.	
A.,	KROMBACH,	F.,	MONESTIER,	M.,	LIAPIS,	H.,	MORETH,	K.,	SCHAEFER,	L.	
&	ANDERS,	H.	J.	2012.	Histones	from	dying	renal	cells	aggravate	kidney	
injury	via	TLR2	and	TLR4.	J	Am	Soc	Nephrol,	23,	1375-88.	

ANJOS-AFONSO,	F.,	SIAPATI,	E.	K.	&	BONNET,	D.	2004.	In	vivo	contribution	of	
murine	mesenchymal	stem	cells	into	multiple	cell-types	under	minimal	
damage	conditions.	J	Cell	Sci,	117,	5655-64.	

ANTHONY,	D.	F.	&	SHIELS,	P.	G.	2013.	Exploiting	paracrine	mechanisms	of	tissue	
regeneration	to	repair	damaged	organs.	Transplant	Res,	2,	10.	

APPEL,	D.,	KERSHAW,	D.	B.,	SMEETS,	B.,	YUAN,	G.,	FUSS,	A.,	FRYE,	B.,	ELGER,	M.,	
KRIZ,	W.,	FLOEGE,	J.	&	MOELLER,	M.	J.	2009.	Recruitment	of	podocytes	
from	glomerular	parietal	epithelial	cells.	J	Am	Soc	Nephrol,	20,	333-43.	

ARDEHALI,	A.,	ESMAILIAN,	F.,	DENG,	M.,	SOLTESZ,	E.,	HSICH,	E.,	NAKA,	Y.,	
MANCINI,	D.,	CAMACHO,	M.,	ZUCKER,	M.,	LEPRINCE,	P.,	PADERA,	R.,	
KOBASHIGAWA,	J.	&	INVESTIGATORS,	P.	I.	T.	2015.	Ex-vivo	perfusion	of	
donor	hearts	for	human	heart	transplantation	(PROCEED	II):	a	
prospective,	open-label,	multicentre,	randomised	non-inferiority	trial.	
Lancet,	385,	2577-84.	



	 244	

ARSLAN,	F.,	LAI,	R.	C.,	SMEETS,	M.	B.,	AKEROYD,	L.,	CHOO,	A.,	AGUOR,	E.	N.,	
TIMMERS,	L.,	VAN	RIJEN,	H.	V.,	DOEVENDANS,	P.	A.,	PASTERKAMP,	G.,	
LIM,	S.	K.	&	DE	KLEIJN,	D.	P.	2013.	Mesenchymal	stem	cell-derived	
exosomes	increase	ATP	levels,	decrease	oxidative	stress	and	activate	
PI3K/Akt	pathway	to	enhance	myocardial	viability	and	prevent	adverse	
remodeling	after	myocardial	ischemia/reperfusion	injury.	Stem	Cell	Res,	
10,	301-12.	

ASANUMA,	H.,	MELDRUM,	D.	R.	&	MELDRUM,	K.	K.	2010.	Therapeutic	
applications	of	mesenchymal	stem	cells	to	repair	kidney	injury.	J	Urol,	
184,	26-33.	

ASCON,	M.,	ASCON,	D.	B.,	LIU,	M.,	CHEADLE,	C.,	SARKAR,	C.,	RACUSEN,	L.,	
HASSOUN,	H.	T.	&	RABB,	H.	2009.	Renal	ischemia-reperfusion	leads	to	
long	term	infiltration	of	activated	and	effector-memory	T	lymphocytes.	
Kidney	Int,	75,	526-35.	

ASHWORTH,	S.	L.	&	MOLITORIS,	B.	A.	1999.	Pathophysiology	and	functional	
significance	of	apical	membrane	disruption	during	ischemia.	Curr	Opin	
Nephrol	Hypertens,	8,	449-58.	

AUGELLO,	A.,	KURTH,	T.	B.	&	DE	BARI,	C.	2010.	Mesenchymal	stem	cells:	a	
perspective	from	in	vitro	cultures	to	in	vivo	migration	and	niches.	Eur	Cell	
Mater,	20,	121-33.	

AWAD,	H.,	ANKENY,	D.	P.,	GUAN,	Z.,	WEI,	P.,	MCTIGUE,	D.	M.	&	POPOVICH,	P.	G.	
2010.	A	mouse	model	of	ischemic	spinal	cord	injury	with	delayed	
paralysis	caused	by	aortic	cross-clamping.	Anesthesiology,	113,	880-91.	

BAGUL,	A.,	FROST,	J.	H.	&	DRAGE,	M.	2013.	Stem	cells	and	their	role	in	renal	
ischaemia	reperfusion	injury.	Am	J	Nephrol,	37,	16-29.	

BAGUL,	A.,	HOSGOOD,	S.	A.,	KAUSHIK,	M.,	KAY,	M.	D.,	WALLER,	H.	L.	&	
NICHOLSON,	M.	L.	2008.	Experimental	renal	preservation	by	
normothermic	resuscitation	perfusion	with	autologous	blood.	Br	J	Surg,	
95,	111-8.	

BAKER,	D.	E.,	HARRISON,	N.	J.,	MALTBY,	E.,	SMITH,	K.,	MOORE,	H.	D.,	SHAW,	P.	J.,	
HEATH,	P.	R.,	HOLDEN,	H.	&	ANDREWS,	P.	W.	2007.	Adaptation	to	culture	
of	human	embryonic	stem	cells	and	oncogenesis	in	vivo.	Nat	Biotechnol,	
25,	207-15.	

BANAS,	A.,	TERATANI,	T.,	YAMAMOTO,	Y.,	TOKUHARA,	M.,	TAKESHITA,	F.,	OSAKI,	
M.,	KAWAMATA,	M.,	KATO,	T.,	OKOCHI,	H.	&	OCHIYA,	T.	2008.	IFATS	
collection:	in	vivo	therapeutic	potential	of	human	adipose	tissue	
mesenchymal	stem	cells	after	transplantation	into	mice	with	liver	injury.	
Stem	Cells,	26,	2705-12.	

BANK,	J.	R.,	RABELINK,	T.	J.,	DE	FIJTER,	J.	W.	&	REINDERS,	M.	E.	2015.	Safety	and	
Efficacy	Endpoints	for	Mesenchymal	Stromal	Cell	Therapy	in	Renal	
Transplant	Recipients.	J	Immunol	Res,	2015,	391797.	

BARBASH,	I.	M.,	CHOURAQUI,	P.,	BARON,	J.,	FEINBERG,	M.	S.,	ETZION,	S.,	
TESSONE,	A.,	MILLER,	L.,	GUETTA,	E.,	ZIPORI,	D.,	KEDES,	L.	H.,	KLONER,	R.	
A.	&	LEOR,	J.	2003.	Systemic	delivery	of	bone	marrow-derived	
mesenchymal	stem	cells	to	the	infarcted	myocardium:	feasibility,	cell	
migration,	and	body	distribution.	Circulation,	108,	863-8.	

BARBER,	H.	E.	&	BOURNE,	G.	R.	1971.	Determination	of	the	renal	clearance	of	
inulin	in	rats:	lowered	values	at	low	urine	flow	rates.	Br	J	Pharmacol,	43,	
874-6.	



	 245	

BARRILLEAUX,	B.,	PHINNEY,	D.	G.,	PROCKOP,	D.	J.	&	O'CONNOR,	K.	C.	2006.	
Review:	ex	vivo	engineering	of	living	tissues	with	adult	stem	cells.	Tissue	
Eng,	12,	3007-19.	

BARTEL,	D.	P.	2004.	MicroRNAs:	genomics,	biogenesis,	mechanism,	and	function.	
Cell,	116,	281-97.	

BARTMANN,	C.,	ROHDE,	E.,	SCHALLMOSER,	K.,	PURSTNER,	P.,	LANZER,	G.,	
LINKESCH,	W.	&	STRUNK,	D.	2007.	Two	steps	to	functional	mesenchymal	
stromal	cells	for	clinical	application.	Transfusion,	47,	1426-35.	

BASILE,	D.	P.,	DONOHOE,	D.,	ROETHE,	K.	&	OSBORN,	J.	L.	2001.	Renal	ischemic	
injury	results	in	permanent	damage	to	peritubular	capillaries	and	
influences	long-term	function.	Am	J	Physiol	Renal	Physiol,	281,	F887-99.	

BECKER,	A.	J.,	MC,	C.	E.	&	TILL,	J.	E.	1963.	Cytological	demonstration	of	the	clonal	
nature	of	spleen	colonies	derived	from	transplanted	mouse	marrow	cells.	
Nature,	197,	452-4.	

BECKER,	G.	J.	&	HEWITSON,	T.	D.	2013.	Animal	models	of	chronic	kidney	disease:	
useful	but	not	perfect.	Nephrol	Dial	Transplant,	28,	2432-8.	

BEDERSON,	J.	B.,	CONNOLLY,	E.	S.,	JR.,	BATJER,	H.	H.,	DACEY,	R.	G.,	DION,	J.	E.,	
DIRINGER,	M.	N.,	DULDNER,	J.	E.,	JR.,	HARBAUGH,	R.	E.,	PATEL,	A.	B.,	
ROSENWASSER,	R.	H.	&	AMERICAN	HEART,	A.	2009.	Guidelines	for	the	
management	of	aneurysmal	subarachnoid	hemorrhage:	a	statement	for	
healthcare	professionals	from	a	special	writing	group	of	the	Stroke	
Council,	American	Heart	Association.	Stroke,	40,	994-1025.	

BELLOMO,	R.,	FARMER,	M.	&	BOYCE,	N.	1995.	A	prospective	study	of	continuous	
venovenous	hemodiafiltration	in	critically	ill	patients	with	acute	renal	
failure.	J	Intensive	Care	Med,	10,	187-92.	

BERNARDO,	M.	E.,	ZAFFARONI,	N.,	NOVARA,	F.,	COMETA,	A.	M.,	AVANZINI,	M.	A.,	
MORETTA,	A.,	MONTAGNA,	D.,	MACCARIO,	R.,	VILLA,	R.,	DAIDONE,	M.	G.,	
ZUFFARDI,	O.	&	LOCATELLI,	F.	2007.	Human	bone	marrow	derived	
mesenchymal	stem	cells	do	not	undergo	transformation	after	long-term	
in	vitro	culture	and	do	not	exhibit	telomere	maintenance	mechanisms.	
Cancer	Res,	67,	9142-9.	

BI,	B.,	SCHMITT,	R.,	ISRAILOVA,	M.,	NISHIO,	H.	&	CANTLEY,	L.	G.	2007.	Stromal	
cells	protect	against	acute	tubular	injury	via	an	endocrine	effect.	J	Am	Soc	
Nephrol,	18,	2486-96.	

BIAN,	S.,	ZHANG,	L.,	DUAN,	L.,	WANG,	X.,	MIN,	Y.	&	YU,	H.	2014.	Extracellular	
vesicles	derived	from	human	bone	marrow	mesenchymal	stem	cells	
promote	angiogenesis	in	a	rat	myocardial	infarction	model.	J	Mol	Med	
(Berl),	92,	387-97.	

BIAN,	S.	Y.,	CUI,	H.,	ZHANG,	X.	N.,	QI,	L.	P.	&	LI,	D.	Y.	2012.	[Mesenchymal	stem	
cells	release	membrane	microparticles	in	the	process	of	apoptosis].	
Zhongguo	Shi	Yan	Xue	Ye	Xue	Za	Zhi,	20,	453-7.	

BIANCONE,	L.,	BRUNO,	S.,	DEREGIBUS,	M.	C.,	TETTA,	C.	&	CAMUSSI,	G.	2012.	
Therapeutic	potential	of	mesenchymal	stem	cell-derived	microvesicles.	
Nephrol	Dial	Transplant,	27,	3037-42.	

BIEBACK,	K.	&	BRINKMANN,	I.	2010.	Mesenchymal	stromal	cells	from	human	
perinatal	tissues:	From	biology	to	cell	therapy.	World	J	Stem	Cells,	2,	81-
92.	



	 246	

BILGIN,	N.,	KARAKAYALI,	H.,	MORAY,	G.,	DEMIRAG,	A.,	ARSLAN,	G.,	AKKOC,	H.	&	
TURAN,	M.	1998.	Outcome	of	renal	transplantation	from	elderly	donors.	
Transplant	Proc,	30,	744-6.	

BLANPAIN,	C.,	HORSLEY,	V.	&	FUCHS,	E.	2007.	Epithelial	stem	cells:	turning	over	
new	leaves.	Cell,	128,	445-58.	

BLANPAIN,	C.,	LOWRY,	W.	E.,	GEOGHEGAN,	A.,	POLAK,	L.	&	FUCHS,	E.	2004.	Self-
renewal,	multipotency,	and	the	existence	of	two	cell	populations	within	
an	epithelial	stem	cell	niche.	Cell,	118,	635-48.	

BLUM,	B.	&	BENVENISTY,	N.	2008.	The	tumorigenicity	of	human	embryonic	stem	
cells.	Adv	Cancer	Res,	100,	133-58.	

BONNER-WEIR,	S.,	TOSCHI,	E.,	INADA,	A.,	REITZ,	P.,	FONSECA,	S.	Y.,	AYE,	T.	&	
SHARMA,	A.	2004.	The	pancreatic	ductal	epithelium	serves	as	a	potential	
pool	of	progenitor	cells.	Pediatr	Diabetes,	5	Suppl	2,	16-22.	

BONVENTRE,	J.	V.	2003.	Dedifferentiation	and	proliferation	of	surviving	
epithelial	cells	in	acute	renal	failure.	J	Am	Soc	Nephrol,	14	Suppl	1,	S55-61.	

BONVENTRE,	J.	V.	2009.	Microvesicles	from	mesenchymal	stromal	cells	protect	
against	acute	kidney	injury.	J	Am	Soc	Nephrol,	20,	927-8.	

BONVENTRE,	J.	V.	&	YANG,	L.	2011.	Cellular	pathophysiology	of	ischemic	acute	
kidney	injury.	J	Clin	Invest,	121,	4210-21.	

BOUMA,	H.	R.,	PLOEG,	R.	J.	&	SCHUURS,	T.	A.	2009.	Signal	transduction	pathways	
involved	in	brain	death-induced	renal	injury.	Am	J	Transplant,	9,	989-97.	

BRAMMER,	A.,	WEST,	C.	D.	&	ALLEN,	S.	L.	1993.	A	comparison	of	propofol	with	
other	injectable	anaesthetics	in	a	rat	model	for	measuring	cardiovascular	
parameters.	Lab	Anim,	27,	250-7.	

BRAUN,	H.,	SCHMIDT,	B.	M.,	RAISS,	M.,	BAISANTRY,	A.,	MIRCEA-CONSTANTIN,	D.,	
WANG,	S.,	GROSS,	M.	L.,	SERRANO,	M.,	SCHMITT,	R.	&	MELK,	A.	2012.	
Cellular	senescence	limits	regenerative	capacity	and	allograft	survival.	J	
Am	Soc	Nephrol,	23,	1467-73.	

BRIGGS,	J.	A.,	SUN,	J.,	SHEPHERD,	J.,	OVCHINNIKOV,	D.	A.,	CHUNG,	T.	L.,	NAYLER,	
S.	P.,	KAO,	L.	P.,	MORROW,	C.	A.,	THAKAR,	N.	Y.,	SOO,	S.	Y.,	PEURA,	T.,	
GRIMMOND,	S.	&	WOLVETANG,	E.	J.	2013.	Integration-free	induced	
pluripotent	stem	cells	model	genetic	and	neural	developmental	features	
of	down	syndrome	etiology.	Stem	Cells,	31,	467-78.	

BRIGGS,	J.	D.,	CROMBIE,	A.,	FABRE,	J.,	MAJOR,	E.,	THOROGOOD,	J.	&	VEITCH,	P.	S.	
1997.	Organ	donation	in	the	UK:	a	survey	by	a	British	Transplantation	
Society	working	party.	Nephrol	Dial	Transplant,	12,	2251-7.	

BROCKMANN,	J.,	REDDY,	S.,	COUSSIOS,	C.,	PIGOTT,	D.,	GUIRRIERO,	D.,	HUGHES,	
D.,	MOROVAT,	A.,	ROY,	D.,	WINTER,	L.	&	FRIEND,	P.	J.	2009.	
Normothermic	perfusion:	a	new	paradigm	for	organ	preservation.	Ann	
Surg,	250,	1-6.	

BROOK,	N.	R.,	WALLER,	J.	R.	&	NICHOLSON,	M.	L.	2003.	Nonheart-beating	kidney	
donation:	current	practice	and	future	developments.	Kidney	Int,	63,	1516-
29.	

BRUNO,	S.	&	BUSSOLATI,	B.	2013.	Therapeutic	effects	of	mesenchymal	stem	cells	
on	renal	ischemia-reperfusion	injury:	a	matter	of	genetic	transfer?	Stem	
Cell	Res	Ther,	4,	55.	

BRUNO,	S.,	BUSSOLATI,	B.,	GRANGE,	C.,	COLLINO,	F.,	DI	CANTOGNO,	L.	V.,	
HERRERA,	M.	B.,	BIANCONE,	L.,	TETTA,	C.,	SEGOLONI,	G.	&	CAMUSSI,	G.	



	 247	

2009a.	Isolation	and	characterization	of	resident	mesenchymal	stem	cells	
in	human	glomeruli.	Stem	Cells	Dev,	18,	867-80.	

BRUNO,	S.	&	CAMUSSI,	G.	2013.	Role	of	mesenchymal	stem	cell-derived	
microvesicles	in	tissue	repair.	Pediatr	Nephrol,	28,	2249-54.	

BRUNO,	S.,	GRANGE,	C.,	COLLINO,	F.,	DEREGIBUS,	M.	C.,	CANTALUPPI,	V.,	
BIANCONE,	L.,	TETTA,	C.	&	CAMUSSI,	G.	2012.	Microvesicles	derived	from	
mesenchymal	stem	cells	enhance	survival	in	a	lethal	model	of	acute	
kidney	injury.	PLoS	One,	7,	e33115.	

BRUNO,	S.,	GRANGE,	C.,	DEREGIBUS,	M.	C.,	CALOGERO,	R.	A.,	SAVIOZZI,	S.,	
COLLINO,	F.,	MORANDO,	L.,	BUSCA,	A.,	FALDA,	M.,	BUSSOLATI,	B.,	TETTA,	
C.	&	CAMUSSI,	G.	2009b.	Mesenchymal	stem	cell-derived	microvesicles	
protect	against	acute	tubular	injury.	J	Am	Soc	Nephrol,	20,	1053-67.	

BRUNO,	S.,	PORTA,	S.	&	BUSSOLATI,	B.	2016.	Extracellular	vesicles	in	renal	tissue	
damage	and	regeneration.	Eur	J	Pharmacol.	

BURGER,	D.,	VINAS,	J.	L.,	AKBARI,	S.,	DEHAK,	H.,	KNOLL,	W.,	GUTSOL,	A.,	CARTER,	
A.,	TOUYZ,	R.	M.,	ALLAN,	D.	S.	&	BURNS,	K.	D.	2015.	Human	endothelial	
colony-forming	cells	protect	against	acute	kidney	injury:	role	of	
exosomes.	Am	J	Pathol,	185,	2309-23.	

BURST,	V.	R.,	GILLIS,	M.,	PUTSCH,	F.,	HERZOG,	R.,	FISCHER,	J.	H.,	HEID,	P.,	
MULLER-EHMSEN,	J.,	SCHENK,	K.,	FRIES,	J.	W.,	BALDAMUS,	C.	A.	&	
BENZING,	T.	2010.	Poor	cell	survival	limits	the	beneficial	impact	of	
mesenchymal	stem	cell	transplantation	on	acute	kidney	injury.	Nephron	
Exp	Nephrol,	114,	e107-16.	

BURTON,	C.	J.,	COMBE,	C.,	WALLS,	J.	&	HARRIS,	K.	P.	1999.	Secretion	of	
chemokines	and	cytokines	by	human	tubular	epithelial	cells	in	response	
to	proteins.	Nephrol	Dial	Transplant,	14,	2628-33.	

BUSSOLATI,	B.,	TETTA,	C.	&	CAMUSSI,	G.	2008.	Contribution	of	stem	cells	to	
kidney	repair.	Am	J	Nephrol,	28,	813-22.	

CAI,	J.,	YU,	X.,	XU,	R.,	FANG,	Y.,	QIAN,	X.,	LIU,	S.,	TENG,	J.	&	DING,	X.	2014.	
Maximum	efficacy	of	mesenchymal	stem	cells	in	rat	model	of	renal	
ischemia-reperfusion	injury:	renal	artery	administration	with	optimal	
numbers.	PLoS	One,	9,	e92347.	

CAMPISTOL,	J.	M.,	BOLETIS,	I.	N.,	DANTAL,	J.,	DE	FIJTER,	J.	W.,	HERTIG,	A.,	
NEUMAYER,	H.	H.,	OYEN,	O.,	PASCUAL,	J.,	POHANKA,	E.,	RUIZ,	J.	C.,	
SCOLARI,	M.	P.,	STEFONI,	S.,	SERON,	D.,	SPARACINO,	V.,	ARNS,	W.	&	
CHAPMAN,	J.	R.	2009.	Chronic	allograft	nephropathy--a	clinical	syndrome:	
early	detection	and	the	potential	role	of	proliferation	signal	inhibitors.	
Clin	Transplant,	23,	769-77.	

CAMUSSI,	G.,	DEREGIBUS,	M.	C.,	BRUNO,	S.,	CANTALUPPI,	V.	&	BIANCONE,	L.	
2010.	Exosomes/microvesicles	as	a	mechanism	of	cell-to-cell	
communication.	Kidney	Int,	78,	838-48.	

CAMUSSI,	G.,	DEREGIBUS,	M.	C.,	BRUNO,	S.,	GRANGE,	C.,	FONSATO,	V.	&	TETTA,	C.	
2011.	Exosome/microvesicle-mediated	epigenetic	reprogramming	of	
cells.	Am	J	Cancer	Res,	1,	98-110.	

CAMUSSI,	G.,	DEREGIBUS,	M.	C.	&	CANTALUPPI,	V.	2013.	Role	of	stem-cell-
derived	microvesicles	in	the	paracrine	action	of	stem	cells.	Biochem	Soc	
Trans,	41,	283-7.	



	 248	

CANTALUPPI,	V.,	BIANCONE,	L.,	QUERCIA,	A.,	DEREGIBUS,	M.	C.,	SEGOLONI,	G.	&	
CAMUSSI,	G.	2013.	Rationale	of	mesenchymal	stem	cell	therapy	in	kidney	
injury.	Am	J	Kidney	Dis,	61,	300-9.	

CANTALUPPI,	V.,	GATTI,	S.,	MEDICA,	D.,	FIGLIOLINI,	F.,	BRUNO,	S.,	DEREGIBUS,	
M.	C.,	SORDI,	A.,	BIANCONE,	L.,	TETTA,	C.	&	CAMUSSI,	G.	2012.	
Microvesicles	derived	from	endothelial	progenitor	cells	protect	the	
kidney	from	ischemia-reperfusion	injury	by	microRNA-dependent	
reprogramming	of	resident	renal	cells.	Kidney	Int,	82,	412-27.	

CASIRAGHI,	F.,	PERICO,	N.	&	REMUZZI,	G.	2013a.	Mesenchymal	stromal	cells	to	
promote	solid	organ	transplantation	tolerance.	Curr	Opin	Organ	
Transplant,	18,	51-8.	

CASIRAGHI,	F.,	REMUZZI,	G.,	ABBATE,	M.	&	PERICO,	N.	2013b.	Multipotent	
mesenchymal	stromal	cell	therapy	and	risk	of	malignancies.	Stem	Cell	Rev,	
9,	65-79.	

CHATTERJEE,	P.	K.	2007.	Novel	pharmacological	approaches	to	the	treatment	of	
renal	ischemia-reperfusion	injury:	a	comprehensive	review.	Naunyn	
Schmiedebergs	Arch	Pharmacol,	376,	1-43.	

CHATTERJEE,	P.	K.	&	THIEMERMANN,	C.	2003.	Emerging	drugs	for	renal	failure.	
Expert	Opin	Emerg	Drugs,	8,	389-435.	

CHAVALITDHAMRONG,	D.,	GILL,	J.,	TAKEMOTO,	S.,	MADHIRA,	B.	R.,	CHO,	Y.	W.,	
SHAH,	T.	&	BUNNAPRADIST,	S.	2008.	Patient	and	graft	outcomes	from	
deceased	kidney	donors	age	70	years	and	older:	an	analysis	of	the	Organ	
Procurement	Transplant	Network/United	Network	of	Organ	Sharing	
database.	Transplantation,	85,	1573-9.	

CHEN,	Y.	T.,	SUN,	C.	K.,	LIN,	Y.	C.,	CHANG,	L.	T.,	CHEN,	Y.	L.,	TSAI,	T.	H.,	CHUNG,	S.	
Y.,	CHUA,	S.,	KAO,	Y.	H.,	YEN,	C.	H.,	SHAO,	P.	L.,	CHANG,	K.	C.,	LEU,	S.	&	YIP,	
H.	K.	2011.	Adipose-derived	mesenchymal	stem	cell	protects	kidneys	
against	ischemia-reperfusion	injury	through	suppressing	oxidative	stress	
and	inflammatory	reaction.	J	Transl	Med,	9,	51.	

CHEVILLET,	J.	R.,	KANG,	Q.,	RUF,	I.	K.,	BRIGGS,	H.	A.,	VOJTECH,	L.	N.,	HUGHES,	S.	
M.,	CHENG,	H.	H.,	ARROYO,	J.	D.,	MEREDITH,	E.	K.,	GALLICHOTTE,	E.	N.,	
POGOSOVA-AGADJANYAN,	E.	L.,	MORRISSEY,	C.,	STIREWALT,	D.	L.,	
HLADIK,	F.,	YU,	E.	Y.,	HIGANO,	C.	S.	&	TEWARI,	M.	2014.	Quantitative	and	
stoichiometric	analysis	of	the	microRNA	content	of	exosomes.	Proc	Natl	
Acad	Sci	U	S	A,	111,	14888-93.	

CHIARI,	P.,	HADOUR,	G.,	MICHEL,	P.,	PIRIOU,	V.,	RODRIGUEZ,	C.,	BUDAT,	C.,	
OVIZE,	M.,	JEGADEN,	O.,	LEHOT,	J.	J.	&	FERRERA,	R.	2000.	Biphasic	
response	after	brain	death	induction:	prominent	part	of	catecholamines	
release	in	this	phenomenon.	J	Heart	Lung	Transplant,	19,	675-82.	

CHOUCHANI,	E.	T.,	PELL,	V.	R.,	GAUDE,	E.,	AKSENTIJEVIC,	D.,	SUNDIER,	S.	Y.,	
ROBB,	E.	L.,	LOGAN,	A.,	NADTOCHIY,	S.	M.,	ORD,	E.	N.,	SMITH,	A.	C.,	
EYASSU,	F.,	SHIRLEY,	R.,	HU,	C.	H.,	DARE,	A.	J.,	JAMES,	A.	M.,	ROGATTI,	S.,	
HARTLEY,	R.	C.,	EATON,	S.,	COSTA,	A.	S.,	BROOKES,	P.	S.,	DAVIDSON,	S.	M.,	
DUCHEN,	M.	R.,	SAEB-PARSY,	K.,	SHATTOCK,	M.	J.,	ROBINSON,	A.	J.,	WORK,	
L.	M.,	FREZZA,	C.,	KRIEG,	T.	&	MURPHY,	M.	P.	2014.	Ischaemic	
accumulation	of	succinate	controls	reperfusion	injury	through	
mitochondrial	ROS.	Nature,	515,	431-5.	

CHOUMERIANOU,	D.	M.,	DIMITRIOU,	H.,	PERDIKOGIANNI,	C.,	MARTIMIANAKI,	G.,	
RIMINUCCI,	M.	&	KALMANTI,	M.	2008.	Study	of	oncogenic	transformation	



	 249	

in	ex	vivo	expanded	mesenchymal	cells,	from	paediatric	bone	marrow.	
Cell	Prolif,	41,	909-22.	

CLARKE,	D.	J.	&	PAYNE,	A.	P.	1994.	Neuroanatomical	characterization	of	a	new	
mutant	rat	with	dopamine	depletion	in	the	substantia	nigra.	Eur	J	
Neurosci,	6,	885-8.	

COCUCCI,	E.,	RACCHETTI,	G.	&	MELDOLESI,	J.	2009.	Shedding	microvesicles:	
artefacts	no	more.	Trends	Cell	Biol,	19,	43-51.	

COLLINO,	F.,	BRUNO,	S.,	INCARNATO,	D.,	DETTORI,	D.,	NERI,	F.,	PROVERO,	P.,	
POMATTO,	M.,	OLIVIERO,	S.,	TETTA,	C.,	QUESENBERRY,	P.	J.	&	CAMUSSI,	
G.	2015.	AKI	Recovery	Induced	by	Mesenchymal	Stromal	Cell-Derived	
Extracellular	Vesicles	Carrying	MicroRNAs.	J	Am	Soc	Nephrol,	26,	2349-60.	

COLLINO,	F.,	DEREGIBUS,	M.	C.,	BRUNO,	S.,	STERPONE,	L.,	AGHEMO,	G.,	VILTONO,	
L.,	TETTA,	C.	&	CAMUSSI,	G.	2010.	Microvesicles	derived	from	adult	
human	bone	marrow	and	tissue	specific	mesenchymal	stem	cells	shuttle	
selected	pattern	of	miRNAs.	PLoS	One,	5,	e11803.	

COLLINS,	A.	J.,	FOLEY,	R.,	HERZOG,	C.,	CHAVERS,	B.,	GILBERTSON,	D.,	ISHANI,	A.,	
KASISKE,	B.,	LIU,	J.,	MAU,	L.	W.,	MCBEAN,	M.,	MURRAY,	A.,	ST	PETER,	W.,	
XUE,	J.,	FAN,	Q.,	GUO,	H.,	LI,	Q.,	LI,	S.,	LI,	S.,	PENG,	Y.,	QIU,	Y.,	ROBERTS,	T.,	
SKEANS,	M.,	SNYDER,	J.,	SOLID,	C.,	WANG,	C.,	WEINHANDL,	E.,	ZAUN,	D.,	
ZHANG,	R.,	ARKO,	C.,	CHEN,	S.	C.,	DALLESKA,	F.,	DANIELS,	F.,	DUNNING,	S.,	
EBBEN,	J.,	FRAZIER,	E.,	HANZLIK,	C.,	JOHNSON,	R.,	SHEETS,	D.,	WANG,	X.,	
FORREST,	B.,	CONSTANTINI,	E.,	EVERSON,	S.,	EGGERS,	P.	&	AGODOA,	L.	
2008.	Excerpts	from	the	United	States	Renal	Data	System	2007	annual	
data	report.	Am	J	Kidney	Dis,	51,	S1-320.	

COLLINS,	A.	J.,	FOLEY,	R.	N.,	CHAVERS,	B.,	GILBERTSON,	D.,	HERZOG,	C.,	
JOHANSEN,	K.,	KASISKE,	B.,	KUTNER,	N.,	LIU,	J.,	ST	PETER,	W.,	GUO,	H.,	
GUSTAFSON,	S.,	HEUBNER,	B.,	LAMB,	K.,	LI,	S.,	LI,	S.,	PENG,	Y.,	QIU,	Y.,	
ROBERTS,	T.,	SKEANS,	M.,	SNYDER,	J.,	SOLID,	C.,	THOMPSON,	B.,	WANG,	C.,	
WEINHANDL,	E.,	ZAUN,	D.,	ARKO,	C.,	CHEN,	S.	C.,	DANIELS,	F.,	EBBEN,	J.,	
FRAZIER,	E.,	HANZLIK,	C.,	JOHNSON,	R.,	SHEETS,	D.,	WANG,	X.,	FORREST,	
B.,	CONSTANTINI,	E.,	EVERSON,	S.,	EGGERS,	P.	&	AGODOA,	L.	2012.	
'United	States	Renal	Data	System	2011	Annual	Data	Report:	Atlas	of	
chronic	kidney	disease	&	end-stage	renal	disease	in	the	United	States.	Am	
J	Kidney	Dis,	59,	A7,	e1-420.	

CRADDOCK,	G.	N.	1976.	Species	differences	in	response	to	renal	ischemia.	Arch	
Surg,	111,	582-4.	

CRAIG,	N.	J.,	DURAN	ALONSO,	M.	B.,	HAWKER,	K.	L.,	SHIELS,	P.,	GLENCORSE,	T.	A.,	
CAMPBELL,	J.	M.,	BENNETT,	N.	K.,	CANHAM,	M.,	DONALD,	D.,	GARDINER,	
M.,	GILMORE,	D.	P.,	MACDONALD,	R.	J.,	MAITLAND,	K.,	MCCALLION,	A.	S.,	
RUSSELL,	D.,	PAYNE,	A.	P.,	SUTCLIFFE,	R.	G.	&	DAVIES,	R.	W.	2001.	A	
candidate	gene	for	human	neurodegenerative	disorders:	a	rat	PKC	gamma	
mutation	causes	a	Parkinsonian	syndrome.	Nat	Neurosci,	4,	1061-2.	

CRESCITELLI,	R.,	LASSER,	C.,	SZABO,	T.	G.,	KITTEL,	A.,	ELDH,	M.,	DIANZANI,	I.,	
BUZAS,	E.	I.	&	LOTVALL,	J.	2013.	Distinct	RNA	profiles	in	subpopulations	
of	extracellular	vesicles:	apoptotic	bodies,	microvesicles	and	exosomes.	J	
Extracell	Vesicles,	2.	

CRISAN,	M.,	YAP,	S.,	CASTEILLA,	L.,	CHEN,	C.	W.,	CORSELLI,	M.,	PARK,	T.	S.,	
ANDRIOLO,	G.,	SUN,	B.,	ZHENG,	B.,	ZHANG,	L.,	NOROTTE,	C.,	TENG,	P.	N.,	
TRAAS,	J.,	SCHUGAR,	R.,	DEASY,	B.	M.,	BADYLAK,	S.,	BUHRING,	H.	J.,	



	 250	

GIACOBINO,	J.	P.,	LAZZARI,	L.,	HUARD,	J.	&	PEAULT,	B.	2008.	A	
perivascular	origin	for	mesenchymal	stem	cells	in	multiple	human	organs.	
Cell	Stem	Cell,	3,	301-13.	

CYPEL,	M.,	YEUNG,	J.	C.,	LIU,	M.,	ANRAKU,	M.,	CHEN,	F.,	KAROLAK,	W.,	SATO,	M.,	
LARATTA,	J.,	AZAD,	S.,	MADONIK,	M.,	CHOW,	C.	W.,	CHAPARRO,	C.,	
HUTCHEON,	M.,	SINGER,	L.	G.,	SLUTSKY,	A.	S.,	YASUFUKU,	K.,	DE	PERROT,	
M.,	PIERRE,	A.	F.,	WADDELL,	T.	K.	&	KESHAVJEE,	S.	2011.	Normothermic	
ex	vivo	lung	perfusion	in	clinical	lung	transplantation.	N	Engl	J	Med,	364,	
1431-40.	

DAVANI,	S.,	MARANDIN,	A.,	MERSIN,	N.,	ROYER,	B.,	KANTELIP,	B.,	HERVE,	P.,	
ETIEVENT,	J.	P.	&	KANTELIP,	J.	P.	2003.	Mesenchymal	progenitor	cells	
differentiate	into	an	endothelial	phenotype,	enhance	vascular	density,	and	
improve	heart	function	in	a	rat	cellular	cardiomyoplasty	model.	
Circulation,	108	Suppl	1,	II253-8.	

DE	BROE,	M.	E.,	WIEME,	R.	J.,	LOGGHE,	G.	N.	&	ROELS,	F.	1977.	Spontaneous	
shedding	of	plasma	membrane	fragments	by	human	cells	in	vivo	and	in	
vitro.	Clin	Chim	Acta,	81,	237-45.	

DE	LA	FUENTE,	R.,	BERNAD,	A.,	GARCIA-CASTRO,	J.,	MARTIN,	M.	C.	&	CIGUDOSA,	
J.	C.	2010.	Retraction:	Spontaneous	human	adult	stem	cell	transformation.	
Cancer	Res,	70,	6682.	

DE	MARTINO,	M.,	ZONTA,	S.,	RAMPINO,	T.,	GREGORINI,	M.,	FRASSONI,	F.,	PIOTTI,	
G.,	BEDINO,	G.,	COBIANCHI,	L.,	DAL	CANTON,	A.,	DIONIGI,	P.	&	ALESSIANI,	
M.	2010.	Mesenchymal	stem	cells	infusion	prevents	acute	cellular	
rejection	in	rat	kidney	transplantation.	Transplant	Proc,	42,	1331-5.	

DE	ROSA,	S.,	ANTONELLI,	M.	&	RONCO,	C.	2016.	Hypothermia	and	kidney:	a	focus	
on	ischaemia-reperfusion	injury.	Nephrol	Dial	Transplant.	

DEBOUT,	A.,	FOUCHER,	Y.,	TREBERN-LAUNAY,	K.,	LEGENDRE,	C.,	KREIS,	H.,	
MOURAD,	G.,	GARRIGUE,	V.,	MORELON,	E.,	BURON,	F.,	ROSTAING,	L.,	
KAMAR,	N.,	KESSLER,	M.,	LADRIERE,	M.,	POIGNAS,	A.,	BLIDI,	A.,	
SOULILLOU,	J.	P.,	GIRAL,	M.	&	DANTAN,	E.	2015.	Each	additional	hour	of	
cold	ischemia	time	significantly	increases	the	risk	of	graft	failure	and	
mortality	following	renal	transplantation.	Kidney	Int,	87,	343-9.	

DEHOUX,	J.	P.	&	GIANELLO,	P.	2007.	The	importance	of	large	animal	models	in	
transplantation.	Front	Biosci,	12,	4864-80.	

DELBRIDGE,	M.	S.,	SHRESTHA,	B.	M.,	RAFTERY,	A.	T.,	EL	NAHAS,	A.	M.	&	HAYLOR,	
J.	L.	2007.	The	effect	of	body	temperature	in	a	rat	model	of	renal	ischemia-
reperfusion	injury.	Transplant	Proc,	39,	2983-5.	

DEREGIBUS,	M.	C.,	CANTALUPPI,	V.,	CALOGERO,	R.,	LO	IACONO,	M.,	TETTA,	C.,	
BIANCONE,	L.,	BRUNO,	S.,	BUSSOLATI,	B.	&	CAMUSSI,	G.	2007.	Endothelial	
progenitor	cell	derived	microvesicles	activate	an	angiogenic	program	in	
endothelial	cells	by	a	horizontal	transfer	of	mRNA.	Blood,	110,	2440-8.	

DI	NICOLA,	M.,	CARLO-STELLA,	C.,	MAGNI,	M.,	MILANESI,	M.,	LONGONI,	P.	D.,	
MATTEUCCI,	P.,	GRISANTI,	S.	&	GIANNI,	A.	M.	2002.	Human	bone	marrow	
stromal	cells	suppress	T-lymphocyte	proliferation	induced	by	cellular	or	
nonspecific	mitogenic	stimuli.	Blood,	99,	3838-43.	

DIAMANT,	M.,	TUSHUIZEN,	M.	E.,	STURK,	A.	&	NIEUWLAND,	R.	2004.	Cellular	
microparticles:	new	players	in	the	field	of	vascular	disease?	Eur	J	Clin	
Invest,	34,	392-401.	



	 251	

DOMINICI,	M.,	LE	BLANC,	K.,	MUELLER,	I.,	SLAPER-CORTENBACH,	I.,	MARINI,	F.,	
KRAUSE,	D.,	DEANS,	R.,	KEATING,	A.,	PROCKOP,	D.	&	HORWITZ,	E.	2006.	
Minimal	criteria	for	defining	multipotent	mesenchymal	stromal	cells.	The	
International	Society	for	Cellular	Therapy	position	statement.	
Cytotherapy,	8,	315-7.	

DONOVAN,	P.	J.	&	GEARHART,	J.	2001.	The	end	of	the	beginning	for	pluripotent	
stem	cells.	Nature,	414,	92-7.	

DOUGLAS-DENTON,	R.,	MORITZ,	K.	M.,	BERTRAM,	J.	F.	&	WINTOUR,	E.	M.	2002.	
Compensatory	renal	growth	after	unilateral	nephrectomy	in	the	ovine	
fetus.	J	Am	Soc	Nephrol,	13,	406-10.	

DOWNEY,	P.,	TOLLEY,	D.	A.,	JOHNSTON,	S.	R.	&	YOUNG,	M.	2001.	Ischemia-
reperfusion	injury	after	relief	of	ureteral	obstruction:	an	animal	study.	J	
Endourol,	15,	209-11.	

DRAGOVIC,	R.	A.,	GARDINER,	C.,	BROOKS,	A.	S.,	TANNETTA,	D.	S.,	FERGUSON,	D.	
J.,	HOLE,	P.,	CARR,	B.,	REDMAN,	C.	W.,	HARRIS,	A.	L.,	DOBSON,	P.	J.,	
HARRISON,	P.	&	SARGENT,	I.	L.	2011.	Sizing	and	phenotyping	of	cellular	
vesicles	using	Nanoparticle	Tracking	Analysis.	Nanomedicine,	7,	780-8.	

DRESSEL,	R.,	SCHINDEHUTTE,	J.,	KUHLMANN,	T.,	ELSNER,	L.,	NOVOTA,	P.,	BAIER,	
P.	C.,	SCHILLERT,	A.,	BICKEBOLLER,	H.,	HERRMANN,	T.,	TRENKWALDER,	
C.,	PAULUS,	W.	&	MANSOURI,	A.	2008.	The	tumorigenicity	of	mouse	
embryonic	stem	cells	and	in	vitro	differentiated	neuronal	cells	is	
controlled	by	the	recipients'	immune	response.	PLoS	One,	3,	e2622.	

DRUKKER,	M.,	KATCHMAN,	H.,	KATZ,	G.,	EVEN-TOV	FRIEDMAN,	S.,	SHEZEN,	E.,	
HORNSTEIN,	E.,	MANDELBOIM,	O.,	REISNER,	Y.	&	BENVENISTY,	N.	2006.	
Human	embryonic	stem	cells	and	their	differentiated	derivatives	are	less	
susceptible	to	immune	rejection	than	adult	cells.	Stem	Cells,	24,	221-9.	

DUFFIELD,	J.	S.,	PARK,	K.	M.,	HSIAO,	L.	L.,	KELLEY,	V.	R.,	SCADDEN,	D.	T.,	
ICHIMURA,	T.	&	BONVENTRE,	J.	V.	2005.	Restoration	of	tubular	epithelial	
cells	during	repair	of	the	postischemic	kidney	occurs	independently	of	
bone	marrow-derived	stem	cells.	J	Clin	Invest,	115,	1743-55.	

ECKFELDT,	C.	E.,	MENDENHALL,	E.	M.	&	VERFAILLIE,	C.	M.	2005.	The	molecular	
repertoire	of	the	'almighty'	stem	cell.	Nat	Rev	Mol	Cell	Biol,	6,	726-37.	

EDWARDS,	R.	G.	&	HOLLANDS,	P.	2007.	Will	stem	cells	in	cord	blood,	amniotic	
fluid,	bone	marrow	and	peripheral	blood	soon	be	unnecessary	in	
transplantation?	Reprod	Biomed	Online,	14,	396-401.	

EIRIN,	A.,	RIESTER,	S.	M.,	ZHU,	X.	Y.,	TANG,	H.,	EVANS,	J.	M.,	O'BRIEN,	D.,	VAN	
WIJNEN,	A.	J.	&	LERMAN,	L.	O.	2014.	MicroRNA	and	mRNA	cargo	of	
extracellular	vesicles	from	porcine	adipose	tissue-derived	mesenchymal	
stem	cells.	Gene,	551,	55-64.	

ELDH,	M.,	LOTVALL,	J.,	MALMHALL,	C.	&	EKSTROM,	K.	2012.	Importance	of	RNA	
isolation	methods	for	analysis	of	exosomal	RNA:	evaluation	of	different	
methods.	Mol	Immunol,	50,	278-86.	

ELGER,	M.,	HENTSCHEL,	H.,	LITTERAL,	J.,	WELLNER,	M.,	KIRSCH,	T.,	LUFT,	F.	C.	&	
HALLER,	H.	2003.	Nephrogenesis	is	induced	by	partial	nephrectomy	in	
the	elasmobranch	Leucoraja	erinacea.	J	Am	Soc	Nephrol,	14,	1506-18.	

ELLERY,	S.	J.,	CAI,	X.,	WALKER,	D.	D.,	DICKINSON,	H.	&	KETT,	M.	M.	2015.	
Transcutaneous	measurement	of	glomerular	filtration	rate	in	small	
rodents:	through	the	skin	for	the	win?	Nephrology	(Carlton),	20,	117-23.	



	 252	

ELTZSCHIG,	H.	K.	&	ECKLE,	T.	2011.	Ischemia	and	reperfusion--from	mechanism	
to	translation.	Nat	Med,	17,	1391-401.	

ERPICUM,	P.,	DETRY,	O.,	WEEKERS,	L.,	BONVOISIN,	C.,	LECHANTEUR,	C.,	
BRIQUET,	A.,	BEGUIN,	Y.,	KRZESINSKI,	J.	M.	&	JOURET,	F.	2014.	
Mesenchymal	stromal	cell	therapy	in	conditions	of	renal	
ischaemia/reperfusion.	Nephrol	Dial	Transplant,	29,	1487-93.	

EVANS,	R.	G.,	GARDINER,	B.	S.,	SMITH,	D.	W.	&	O'CONNOR,	P.	M.	2008.	Intrarenal	
oxygenation:	unique	challenges	and	the	biophysical	basis	of	homeostasis.	
Am	J	Physiol	Renal	Physiol,	295,	F1259-70.	

FENG,	D.,	ZHAO,	W.	L.,	YE,	Y.	Y.,	BAI,	X.	C.,	LIU,	R.	Q.,	CHANG,	L.	F.,	ZHOU,	Q.	&	SUI,	
S.	F.	2010a.	Cellular	internalization	of	exosomes	occurs	through	
phagocytosis.	Traffic,	11,	675-87.	

FENG,	Z.,	TING,	J.,	ALFONSO,	Z.,	STREM,	B.	M.,	FRASER,	J.	K.,	RUTENBERG,	J.,	KUO,	
H.	C.	&	PINKERNELL,	K.	2010b.	Fresh	and	cryopreserved,	uncultured	
adipose	tissue-derived	stem	and	regenerative	cells	ameliorate	ischemia-
reperfusion-induced	acute	kidney	injury.	Nephrol	Dial	Transplant,	25,	
3874-84.	

FERRARI,	G.,	CUSELLA-DE	ANGELIS,	G.,	COLETTA,	M.,	PAOLUCCI,	E.,	
STORNAIUOLO,	A.,	COSSU,	G.	&	MAVILIO,	F.	1998.	Muscle	regeneration	by	
bone	marrow-derived	myogenic	progenitors.	Science,	279,	1528-30.	

FIERABRACCI,	A.,	DEL	FATTORE,	A.,	LUCIANO,	R.,	MURACA,	M.,	TETI,	A.	&	
MURACA,	M.	2015.	Recent	advances	in	mesenchymal	stem	cell	
immunomodulation:	the	role	of	microvesicles.	Cell	Transplant,	24,	133-49.	

FINCO,	D.	R.	&	DUNCAN,	J.	R.	1976.	Evaluation	of	blood	urea	nitrogen	and	serum	
creatinine	concentrations	as	indicators	of	renal	dysfunction:	a	study	of	
111	cases	and	a	review	of	related	literature.	J	Am	Vet	Med	Assoc,	168,	593-
601.	

FISCHER,	P.	A.,	BOGOLIUK,	C.	B.,	RAMIREZ,	A.	J.,	SANCHEZ,	R.	A.	&	MASNATTA,	L.	
D.	2000.	A	new	procedure	for	evaluation	of	renal	function	without	urine	
collection	in	rat.	Kidney	Int,	58,	1336-41.	

FISCHER,	U.	M.,	HARTING,	M.	T.,	JIMENEZ,	F.,	MONZON-POSADAS,	W.	O.,	XUE,	H.,	
SAVITZ,	S.	I.,	LAINE,	G.	A.	&	COX,	C.	S.,	JR.	2009.	Pulmonary	passage	is	a	
major	obstacle	for	intravenous	stem	cell	delivery:	the	pulmonary	first-
pass	effect.	Stem	Cells	Dev,	18,	683-92.	

FLECK,	C.	1999.	Determination	of	the	glomerular	filtration	rate	(GFR):	
methodological	problems,	age-dependence,	consequences	of	various	
surgical	interventions,	and	the	influence	of	different	drugs	and	toxic	
substances.	Physiol	Res,	48,	267-79.	

FLECK,	C.	&	BRAUNLICH,	H.	1984.	Kidney	function	after	unilateral	nephrectomy.	
Exp	Pathol,	25,	3-18.	

FLYNN,	A.,	BARRY,	F.	&	O'BRIEN,	T.	2007.	UC	blood-derived	mesenchymal	
stromal	cells:	an	overview.	Cytotherapy,	9,	717-26.	

FORBES,	J.	M.,	HEWITSON,	T.	D.,	BECKER,	G.	J.	&	JONES,	C.	L.	2000.	Ischemic	acute	
renal	failure:	long-term	histology	of	cell	and	matrix	changes	in	the	rat.	
Kidney	Int,	57,	2375-85.	

FORSYTHE,	J.	L.	2009.	Transplantation,	Saunders.	
FOSS,	A.,	HELDAL,	K.,	SCOTT,	H.,	FOSS,	S.,	LEIVESTAD,	T.,	JORGENSEN,	P.	F.,	

SCHOLZ,	T.	&	MIDTVEDT,	K.	2009.	Kidneys	from	deceased	donors	more	



	 253	

than	75	years	perform	acceptably	after	transplantation.	Transplantation,	
87,	1437-41.	

FOX,	J.	M.,	CHAMBERLAIN,	G.,	ASHTON,	B.	A.	&	MIDDLETON,	J.	2007.	Recent	
advances	into	the	understanding	of	mesenchymal	stem	cell	trafficking.	Br	
J	Haematol,	137,	491-502.	

FRANQUESA,	M.,	HOOGDUIJN,	M.	J.	&	BAAN,	C.	C.	2012a.	The	impact	of	
mesenchymal	stem	cell	therapy	in	transplant	rejection	and	tolerance.	Curr	
Opin	Organ	Transplant,	17,	355-61.	

FRANQUESA,	M.,	HOOGDUIJN,	M.	J.,	BESTARD,	O.	&	GRINYO,	J.	M.	2012b.	
Immunomodulatory	effect	of	mesenchymal	stem	cells	on	B	cells.	Front	
Immunol,	3,	212.	

FRANQUESA,	M.,	MENSAH,	F.	K.,	HUIZINGA,	R.,	STRINI,	T.,	BOON,	L.,	LOMBARDO,	
E.,	DELAROSA,	O.,	LAMAN,	J.	D.,	GRINYO,	J.	M.,	WEIMAR,	W.,	BETJES,	M.	G.,	
BAAN,	C.	C.	&	HOOGDUIJN,	M.	J.	2015.	Human	adipose	tissue-derived	
mesenchymal	stem	cells	abrogate	plasmablast	formation	and	induce	
regulatory	B	cells	independently	of	T	helper	cells.	Stem	Cells,	33,	880-91.	

FREEDMAN,	B.	S.,	BROOKS,	C.	R.,	LAM,	A.	Q.,	FU,	H.,	MORIZANE,	R.,	AGRAWAL,	V.,	
SAAD,	A.	F.,	LI,	M.	K.,	HUGHES,	M.	R.,	WERFF,	R.	V.,	PETERS,	D.	T.,	LU,	J.,	
BACCEI,	A.,	SIEDLECKI,	A.	M.,	VALERIUS,	M.	T.,	MUSUNURU,	K.,	MCNAGNY,	
K.	M.,	STEINMAN,	T.	I.,	ZHOU,	J.,	LEROU,	P.	H.	&	BONVENTRE,	J.	V.	2015.	
Modelling	kidney	disease	with	CRISPR-mutant	kidney	organoids	derived	
from	human	pluripotent	epiblast	spheroids.	Nat	Commun,	6,	8715.	

FREYMAN,	T.,	POLIN,	G.,	OSMAN,	H.,	CRARY,	J.,	LU,	M.,	CHENG,	L.,	PALASIS,	M.	&	
WILENSKY,	R.	L.	2006.	A	quantitative,	randomized	study	evaluating	three	
methods	of	mesenchymal	stem	cell	delivery	following	myocardial	
infarction.	Eur	Heart	J,	27,	1114-22.	

FRIEDEMANN,	J.,	HEINRICH,	R.,	SHULHEVICH,	Y.,	RAEDLE,	M.,	WILLIAM-
OLSSON,	L.,	PILL,	J.	&	SCHOCK-KUSCH,	D.	2016.	Improved	kinetic	model	
for	the	transcutaneous	measurement	of	glomerular	filtration	rate	in	
experimental	animals.	Kidney	Int,	90,	1377-1385.	

FRIEDENSTEIN,	A.	J.,	CHAILAKHYAN,	R.	K.,	LATSINIK,	N.	V.,	PANASYUK,	A.	F.	&	
KEILISS-BOROK,	I.	V.	1974.	Stromal	cells	responsible	for	transferring	the	
microenvironment	of	the	hemopoietic	tissues.	Cloning	in	vitro	and	
retransplantation	in	vivo.	Transplantation,	17,	331-40.	

FRIEDENSTEIN,	A.	J.,	PETRAKOVA,	K.	V.,	KUROLESOVA,	A.	I.	&	FROLOVA,	G.	P.	
1968.	Heterotopic	of	bone	marrow.	Analysis	of	precursor	cells	for	
osteogenic	and	hematopoietic	tissues.	Transplantation,	6,	230-47.	

FROELICH,	K.,	MICKLER,	J.,	STEUSLOFF,	G.,	TECHNAU,	A.,	RAMOS	TIRADO,	M.,	
SCHERZED,	A.,	HACKENBERG,	S.,	RADELOFF,	A.,	HAGEN,	R.	&	
KLEINSASSER,	N.	2013.	Chromosomal	aberrations	and	deoxyribonucleic	
acid	single-strand	breaks	in	adipose-derived	stem	cells	during	long-term	
expansion	in	vitro.	Cytotherapy,	15,	767-81.	

FURLANI,	D.,	LI,	W.,	PITTERMANN,	E.,	KLOPSCH,	C.,	WANG,	L.,	KNOPP,	A.,	
JUNGEBLUTH,	P.,	THEDINGA,	E.,	HAVENSTEIN,	C.,	WESTIEN,	I.,	
UGURLUCAN,	M.,	LI,	R.	K.,	MA,	N.	&	STEINHOFF,	G.	2009a.	A	transformed	
cell	population	derived	from	cultured	mesenchymal	stem	cells	has	no	
functional	effect	after	transplantation	into	the	injured	heart.	Cell	
Transplant,	18,	319-31.	



	 254	

FURLANI,	D.,	UGURLUCAN,	M.,	ONG,	L.,	BIEBACK,	K.,	PITTERMANN,	E.,	WESTIEN,	
I.,	WANG,	W.,	YEREBAKAN,	C.,	LI,	W.,	GAEBEL,	R.,	LI,	R.	K.,	VOLLMAR,	B.,	
STEINHOFF,	G.	&	MA,	N.	2009b.	Is	the	intravascular	administration	of	
mesenchymal	stem	cells	safe?	Mesenchymal	stem	cells	and	intravital	
microscopy.	Microvasc	Res,	77,	370-6.	

FURUICHI,	K.,	SHINTANI,	H.,	SAKAI,	Y.,	OCHIYA,	T.,	MATSUSHIMA,	K.,	KANEKO,	S.	
&	WADA,	T.	2012.	Effects	of	adipose-derived	mesenchymal	cells	on	
ischemia-reperfusion	injury	in	kidney.	Clin	Exp	Nephrol,	16,	679-89.	

FUSELLIER,	M.,	DESFONTIS,	J.	C.,	MADEC,	S.,	GAUTIER,	F.,	DEBAILLEUL,	M.	&	
GOGNY,	M.	2007.	Influence	of	three	anesthetic	protocols	on	glomerular	
filtration	rate	in	dogs.	Am	J	Vet	Res,	68,	807-11.	

GALLIFORD,	J.	&	GAME,	D.	S.	2009.	Modern	renal	transplantation:	present	
challenges	and	future	prospects.	Postgrad	Med	J,	85,	91-101.	

GAO,	J.,	DENNIS,	J.	E.,	MUZIC,	R.	F.,	LUNDBERG,	M.	&	CAPLAN,	A.	I.	2001.	The	
dynamic	in	vivo	distribution	of	bone	marrow-derived	mesenchymal	stem	
cells	after	infusion.	Cells	Tissues	Organs,	169,	12-20.	

GARDINER,	C.,	FERREIRA,	Y.	J.,	DRAGOVIC,	R.	A.,	REDMAN,	C.	W.	&	SARGENT,	I.	L.	
2013.	Extracellular	vesicle	sizing	and	enumeration	by	nanoparticle	
tracking	analysis.	J	Extracell	Vesicles,	2.	

GATTI,	S.,	BRUNO,	S.,	DEREGIBUS,	M.	C.,	SORDI,	A.,	CANTALUPPI,	V.,	TETTA,	C.	&	
CAMUSSI,	G.	2011.	Microvesicles	derived	from	human	adult	mesenchymal	
stem	cells	protect	against	ischaemia-reperfusion-induced	acute	and	
chronic	kidney	injury.	Nephrol	Dial	Transplant,	26,	1474-83.	

GHEISARI,	Y.,	AHMADBEIGI,	N.,	NADERI,	M.,	NASSIRI,	S.	M.,	NADRI,	S.	&	
SOLEIMANI,	M.	2011.	Stem	cell-conditioned	medium	does	not	protect	
against	kidney	failure.	Cell	Biol	Int,	35,	209-13.	

GIESSING,	M.,	FULLER,	T.	F.,	FRIEDERSDORFF,	F.,	DEGER,	S.,	WILLE,	A.,	
NEUMAYER,	H.	H.,	SCHMIDT,	D.,	BUDDE,	K.	&	LIEFELDT,	L.	2009.	
Outcomes	of	transplanting	deceased-donor	kidneys	between	elderly	
donors	and	recipients.	J	Am	Soc	Nephrol,	20,	37-40.	

GILL,	J.,	DONG,	J.,	ROSE,	C.	&	GILL,	J.	S.	2016.	The	risk	of	allograft	failure	and	the	
survival	benefit	of	kidney	transplantation	are	complicated	by	delayed	
graft	function.	Kidney	Int,	89,	1331-6.	

GINGELL-LITTLEJOHN.	2014.	Cellular	Senescence	and	Renal	Transplantation.	
Doctor	of	Medicine,	University	of	Glasgow.	

GIRAUD,	S.,	FAVREAU,	F.,	CHATAURET,	N.,	THUILLIER,	R.,	MAIGA,	S.	&	HAUET,	T.	
2011.	Contribution	of	large	pig	for	renal	ischemia-reperfusion	and	
transplantation	studies:	the	preclinical	model.	J	Biomed	Biotechnol,	2011,	
532127.	

GLENNIE,	S.,	SOEIRO,	I.,	DYSON,	P.	J.,	LAM,	E.	W.	&	DAZZI,	F.	2005.	Bone	marrow	
mesenchymal	stem	cells	induce	division	arrest	anergy	of	activated	T	cells.	
Blood,	105,	2821-7.	

GNECCHI,	M.,	HE,	H.,	NOISEUX,	N.,	LIANG,	O.	D.,	ZHANG,	L.,	MORELLO,	F.,	MU,	H.,	
MELO,	L.	G.,	PRATT,	R.	E.,	INGWALL,	J.	S.	&	DZAU,	V.	J.	2006.	Evidence	
supporting	paracrine	hypothesis	for	Akt-modified	mesenchymal	stem	
cell-mediated	cardiac	protection	and	functional	improvement.	FASEB	J,	
20,	661-9.	

GOKAL,	R.	1993.	Quality	of	life	in	patients	undergoing	renal	replacement	therapy.	
Kidney	Int	Suppl,	40,	S23-7.	



	 255	

GOLIGORSKY,	M.	S.	2005.	Whispers	and	shouts	in	the	pathogenesis	of	acute	renal	
ischaemia.	Nephrol	Dial	Transplant,	20,	261-6.	

GOULD,	S.	J.	&	RAPOSO,	G.	2013.	As	we	wait:	coping	with	an	imperfect	
nomenclature	for	extracellular	vesicles.	J	Extracell	Vesicles,	2.	

GRAMM,	H.	J.,	MEINHOLD,	H.,	BICKEL,	U.,	ZIMMERMANN,	J.,	VON	
HAMMERSTEIN,	B.,	KELLER,	F.,	DENNHARDT,	R.	&	VOIGT,	K.	1992.	Acute	
endocrine	failure	after	brain	death?	Transplantation,	54,	851-7.	

GREEN,	R.	M.	2007.	Can	we	develop	ethically	universal	embryonic	stem-cell	
lines?	Nat	Rev	Genet,	8,	480-5.	

GRIGORYEV,	D.	N.,	LIU,	M.,	HASSOUN,	H.	T.,	CHEADLE,	C.,	BARNES,	K.	C.	&	RABB,	
H.	2008.	The	local	and	systemic	inflammatory	transcriptome	after	acute	
kidney	injury.	J	Am	Soc	Nephrol,	19,	547-58.	

GRINYO,	J.	M.,	BESTARD,	O.,	TORRAS,	J.	&	CRUZADO,	J.	M.	2010.	Optimal	
immunosuppression	to	prevent	chronic	allograft	dysfunction.	Kidney	Int	
Suppl,	S66-70.	

GUELER,	F.,	GWINNER,	W.,	SCHWARZ,	A.	&	HALLER,	H.	2004.	Long-term	effects	
of	acute	ischemia	and	reperfusion	injury.	Kidney	Int,	66,	523-7.	

GUTIERREZ-ARANDA,	I.,	RAMOS-MEJIA,	V.,	BUENO,	C.,	MUNOZ-LOPEZ,	M.,	REAL,	
P.	J.,	MACIA,	A.,	SANCHEZ,	L.,	LIGERO,	G.,	GARCIA-PAREZ,	J.	L.	&	
MENENDEZ,	P.	2010.	Human	induced	pluripotent	stem	cells	develop	
teratoma	more	efficiently	and	faster	than	human	embryonic	stem	cells	
regardless	the	site	of	injection.	Stem	Cells,	28,	1568-70.	

GYORGY,	B.,	SZABO,	T.	G.,	PASZTOI,	M.,	PAL,	Z.,	MISJAK,	P.,	ARADI,	B.,	LASZLO,	V.,	
PALLINGER,	E.,	PAP,	E.,	KITTEL,	A.,	NAGY,	G.,	FALUS,	A.	&	BUZAS,	E.	I.	
2011.	Membrane	vesicles,	current	state-of-the-art:	emerging	role	of	
extracellular	vesicles.	Cell	Mol	Life	Sci,	68,	2667-88.	

HAMED,	M.	O.,	CHEN,	Y.,	PASEA,	L.,	WATSON,	C.	J.,	TORPEY,	N.,	BRADLEY,	J.	A.,	
PETTIGREW,	G.	&	SAEB-PARSY,	K.	2015.	Early	graft	loss	after	kidney	
transplantation:	risk	factors	and	consequences.	Am	J	Transplant,	15,	
1632-43.	

HAN,	C.,	SUN,	X.,	LIU,	L.,	JIANG,	H.,	SHEN,	Y.,	XU,	X.,	LI,	J.,	ZHANG,	G.,	HUANG,	J.,	
LIN,	Z.,	XIONG,	N.	&	WANG,	T.	2016.	Exosomes	and	Their	Therapeutic	
Potentials	of	Stem	Cells.	Stem	Cells	Int,	2016,	7653489.	

HAN,	Z.,	JING,	Y.,	ZHANG,	S.,	LIU,	Y.,	SHI,	Y.	&	WEI,	L.	2012.	The	role	of	
immunosuppression	of	mesenchymal	stem	cells	in	tissue	repair	and	
tumor	growth.	Cell	Biosci,	2,	8.	

HARA,	Y.,	STOLK,	M.,	RINGE,	J.,	DEHNE,	T.,	LADHOFF,	J.,	KOTSCH,	K.,	REUTZEL-
SELKE,	A.,	REINKE,	P.,	VOLK,	H.	D.	&	SEIFERT,	M.	2011.	In	vivo	effect	of	
bone	marrow-derived	mesenchymal	stem	cells	in	a	rat	kidney	
transplantation	model	with	prolonged	cold	ischemia.	Transpl	Int,	24,	
1112-23.	

HARPER,	S.,	HOSGOOD,	S.,	KAY,	M.	&	NICHOLSON,	M.	2006.	Leucocyte	depletion	
improves	renal	function	during	reperfusion	using	an	experimental	
isolated	haemoperfused	organ	preservation	system.	Br	J	Surg,	93,	623-9.	

HARVEY,	A.	M.	&	MALVIN,	R.	L.	1965.	Comparison	of	creatinine	and	inulin	
clearances	in	male	and	female	rats.	Am	J	Physiol,	209,	849-52.	

HE,	J.,	WANG,	Y.,	SUN,	S.,	YU,	M.,	WANG,	C.,	PEI,	X.,	ZHU,	B.,	WU,	J.	&	ZHAO,	W.	
2012.	Bone	marrow	stem	cells-derived	microvesicles	protect	against	



	 256	

renal	injury	in	the	mouse	remnant	kidney	model.	Nephrology	(Carlton),	
17,	493-500.	

HEEMANN,	U.	&	LUTZ,	J.	2013.	Pathophysiology	and	treatment	options	of	chronic	
renal	allograft	damage.	Nephrol	Dial	Transplant,	28,	2438-46.	

HEIJNEN,	H.	F.,	SCHIEL,	A.	E.,	FIJNHEER,	R.,	GEUZE,	H.	J.	&	SIXMA,	J.	J.	1999.	
Activated	platelets	release	two	types	of	membrane	vesicles:	microvesicles	
by	surface	shedding	and	exosomes	derived	from	exocytosis	of	
multivesicular	bodies	and	alpha-granules.	Blood,	94,	3791-9.	

HENTZE,	H.,	SOONG,	P.	L.,	WANG,	S.	T.,	PHILLIPS,	B.	W.,	PUTTI,	T.	C.	&	DUNN,	N.	
R.	2009.	Teratoma	formation	by	human	embryonic	stem	cells:	evaluation	
of	essential	parameters	for	future	safety	studies.	Stem	Cell	Res,	2,	198-210.	

HERRERA,	M.	B.,	BUSSOLATI,	B.,	BRUNO,	S.,	FONSATO,	V.,	ROMANAZZI,	G.	M.	&	
CAMUSSI,	G.	2004.	Mesenchymal	stem	cells	contribute	to	the	renal	repair	
of	acute	tubular	epithelial	injury.	Int	J	Mol	Med,	14,	1035-41.	

HERRERA,	M.	B.,	BUSSOLATI,	B.,	BRUNO,	S.,	MORANDO,	L.,	MAURIELLO-
ROMANAZZI,	G.,	SANAVIO,	F.,	STAMENKOVIC,	I.,	BIANCONE,	L.	&	
CAMUSSI,	G.	2007.	Exogenous	mesenchymal	stem	cells	localize	to	the	
kidney	by	means	of	CD44	following	acute	tubular	injury.	Kidney	Int,	72,	
430-41.	

HERRERA,	M.	B.,	FONSATO,	V.,	GATTI,	S.,	DEREGIBUS,	M.	C.,	SORDI,	A.,	
CANTARELLA,	D.,	CALOGERO,	R.,	BUSSOLATI,	B.,	TETTA,	C.	&	CAMUSSI,	G.	
2010.	Human	liver	stem	cell-derived	microvesicles	accelerate	hepatic	
regeneration	in	hepatectomized	rats.	J	Cell	Mol	Med,	14,	1605-18.	

HERRERO	F	,	M.	D.,	ZALDUMBIDE	L,	GARCÍA	E	,	CASANOVA-Q	2004.	A	New	
Technique	of	Ureter	Anastomosis	in	Rat	Kidney	Surgery:	The	Temporary	
Stent.	Spanish	Journal	of	Surgical	Research,	7,	172	-	174.	

HEYMAN	SN,	R.	C.,	ROSEN	S.	2010.	Experimental	ischemia-reperfusion	biases	
and	myths	-	the	proximal	vs	distal	hypoxic	tubular	injury	debate	revisited.	
.	Kidney	Int,	77,	9	-	16.	

HIRSCH,	F.	R.,	VARELLA-GARCIA,	M.,	BUNN,	P.	A.,	JR.,	DI	MARIA,	M.	V.,	VEVE,	R.,	
BREMMES,	R.	M.,	BARON,	A.	E.,	ZENG,	C.	&	FRANKLIN,	W.	A.	2003.	
Epidermal	growth	factor	receptor	in	non-small-cell	lung	carcinomas:	
correlation	between	gene	copy	number	and	protein	expression	and	
impact	on	prognosis.	J	Clin	Oncol,	21,	3798-807.	

HORBELT,	M.,	LEE,	S.	Y.,	MANG,	H.	E.,	KNIPE,	N.	L.,	SADO,	Y.,	KRIBBEN,	A.	&	
SUTTON,	T.	A.	2007.	Acute	and	chronic	microvascular	alterations	in	a	
mouse	model	of	ischemic	acute	kidney	injury.	Am	J	Physiol	Renal	Physiol,	
293,	F688-95.	

HORWITZ,	E.	M.,	GORDON,	P.	L.,	KOO,	W.	K.,	MARX,	J.	C.,	NEEL,	M.	D.,	MCNALL,	R.	
Y.,	MUUL,	L.	&	HOFMANN,	T.	2002.	Isolated	allogeneic	bone	marrow-
derived	mesenchymal	cells	engraft	and	stimulate	growth	in	children	with	
osteogenesis	imperfecta:	Implications	for	cell	therapy	of	bone.	Proc	Natl	
Acad	Sci	U	S	A,	99,	8932-7.	

HOSGOOD,	S.	A.	&	NICHOLSON,	M.	L.	2011.	First	in	man	renal	transplantation	
after	ex	vivo	normothermic	perfusion.	Transplantation,	92,	735-8.	

HOSGOOD,	S.	A.,	VAN	HEURN,	E.	&	NICHOLSON,	M.	L.	2015.	Normothermic	
machine	perfusion	of	the	kidney:	better	conditioning	and	repair?	Transpl	
Int,	28,	657-64.	



	 257	

HU,	G.	W.,	LI,	Q.,	NIU,	X.,	HU,	B.,	LIU,	J.,	ZHOU,	S.	M.,	GUO,	S.	C.,	LANG,	H.	L.,	ZHANG,	
C.	Q.,	WANG,	Y.	&	DENG,	Z.	F.	2015.	Exosomes	secreted	by	human-induced	
pluripotent	stem	cell-derived	mesenchymal	stem	cells	attenuate	limb	
ischemia	by	promoting	angiogenesis	in	mice.	Stem	Cell	Res	Ther,	6,	10.	

HUANG,	J.,	GRETZ,	N.	&	WEINFURTER,	S.	2016.	Filtration	markers	and	
determination	methods	for	the	assessment	of	kidney	function.	Eur	J	
Pharmacol,	790,	92-98.	

HUGEL,	B.,	MARTINEZ,	M.	C.,	KUNZELMANN,	C.	&	FREYSSINET,	J.	M.	2005.	
Membrane	microparticles:	two	sides	of	the	coin.	Physiology	(Bethesda),	
20,	22-7.	

HUMPHREYS,	B.	D.	&	BONVENTRE,	J.	V.	2008.	Mesenchymal	stem	cells	in	acute	
kidney	injury.	Annu	Rev	Med,	59,	311-25.	

HUMPHREYS,	B.	D.,	VALERIUS,	M.	T.,	KOBAYASHI,	A.,	MUGFORD,	J.	W.,	SOEUNG,	
S.,	DUFFIELD,	J.	S.,	MCMAHON,	A.	P.	&	BONVENTRE,	J.	V.	2008.	Intrinsic	
epithelial	cells	repair	the	kidney	after	injury.	Cell	Stem	Cell,	2,	284-91.	

HUYNH,	M.	J.,	VIOLETTE,	P.	D.,	ROWE,	N.	E.,	WEERNINK,	C.,	MACLEAN,	K.,	SENER,	
A.	&	LUKE,	P.	P.	2015.	Donation	after	Circulatory	Death	Renal	Allografts--
Does	Donor	Age	Greater	than	50	Years	Affect	Recipient	Outcomes?	J	Urol,	
194,	1057-61.	

IMBERTI,	B.,	MORIGI,	M.,	TOMASONI,	S.,	ROTA,	C.,	CORNA,	D.,	LONGARETTI,	L.,	
ROTTOLI,	D.,	VALSECCHI,	F.,	BENIGNI,	A.,	WANG,	J.,	ABBATE,	M.,	ZOJA,	C.	
&	REMUZZI,	G.	2007.	Insulin-like	growth	factor-1	sustains	stem	cell	
mediated	renal	repair.	J	Am	Soc	Nephrol,	18,	2921-8.	

IMBERTI,	B.,	TOMASONI,	S.,	CIAMPI,	O.,	PEZZOTTA,	A.,	DEROSAS,	M.,	XINARIS,	C.,	
RIZZO,	P.,	PAPADIMOU,	E.,	NOVELLI,	R.,	BENIGNI,	A.,	REMUZZI,	G.	&	
MORIGI,	M.	2015.	Renal	progenitors	derived	from	human	iPSCs	engraft	
and	restore	function	in	a	mouse	model	of	acute	kidney	injury.	Sci	Rep,	5,	
8826.	

ITTRICH,	H.,	LANGE,	C.,	TOGEL,	F.,	ZANDER,	A.	R.,	DAHNKE,	H.,	WESTENFELDER,	
C.,	ADAM,	G.	&	NOLTE-ERNSTING,	C.	2007.	In	vivo	magnetic	resonance	
imaging	of	iron	oxide-labeled,	arterially-injected	mesenchymal	stem	cells	
in	kidneys	of	rats	with	acute	ischemic	kidney	injury:	detection	and	
monitoring	at	3T.	J	Magn	Reson	Imaging,	25,	1179-91.	

IWAI,	S.,	SAKONJU,	I.,	OKANO,	S.,	TERATANI,	T.,	KASAHARA,	N.,	YOKOTE,	S.,	
YOKOO,	T.	&	KOBAYASH,	E.	2014.	Impact	of	ex	vivo	administration	of	
mesenchymal	stem	cells	on	the	function	of	kidney	grafts	from	cardiac	
death	donors	in	rat.	Transplant	Proc,	46,	1578-84.	

JABLONSKI,	P.,	HOWDEN,	B.,	RAE,	D.,	RIGOL,	G.,	BIRRELL,	C.,	MARSHALL,	V.	&	
TANGE,	J.	1985.	The	influence	of	the	contralateral	kidney	upon	recovery	
from	unilateral	warm	renal	ischemia.	Pathology,	17,	623-7.	

JABLONSKI,	P.,	HOWDEN,	B.	O.,	RAE,	D.	A.,	BIRRELL,	C.	S.,	MARSHALL,	V.	C.	&	
TANGE,	J.	1983.	An	experimental	model	for	assessment	of	renal	recovery	
from	warm	ischemia.	Transplantation,	35,	198-204.	

JAGER,	K.	J.,	VAN	DIJK,	P.	C.,	DEKKER,	F.	W.,	STENGEL,	B.,	SIMPSON,	K.,	BRIGGS,	J.	
D.	&	COMMITTEE,	E.-E.	R.	2003.	The	epidemic	of	aging	in	renal	
replacement	therapy:	an	update	on	elderly	patients	and	their	outcomes.	
Clin	Nephrol,	60,	352-60.	



	 258	

JANG,	H.	R.,	KO,	G.	J.,	WASOWSKA,	B.	A.	&	RABB,	H.	2009.	The	interaction	between	
ischemia-reperfusion	and	immune	responses	in	the	kidney.	J	Mol	Med	
(Berl),	87,	859-64.	

JI,	H.,	CHEN,	M.,	GREENING,	D.	W.,	HE,	W.,	RAI,	A.,	ZHANG,	W.	&	SIMPSON,	R.	J.	
2014.	Deep	sequencing	of	RNA	from	three	different	extracellular	vesicle	
(EV)	subtypes	released	from	the	human	LIM1863	colon	cancer	cell	line	
uncovers	distinct	miRNA-enrichment	signatures.	PLoS	One,	9,	e110314.	

JIANG,	X.	X.,	ZHANG,	Y.,	LIU,	B.,	ZHANG,	S.	X.,	WU,	Y.,	YU,	X.	D.	&	MAO,	N.	2005.	
Human	mesenchymal	stem	cells	inhibit	differentiation	and	function	of	
monocyte-derived	dendritic	cells.	Blood,	105,	4120-6.	

JO,	S.	K.,	YUN,	S.	Y.,	CHANG,	K.	H.,	CHA,	D.	R.,	CHO,	W.	Y.,	KIM,	H.	K.	&	WON,	N.	H.	
2001.	alpha-MSH	decreases	apoptosis	in	ischaemic	acute	renal	failure	in	
rats:	possible	mechanism	of	this	beneficial	effect.	Nephrol	Dial	Transplant,	
16,	1583-91.	

JOBIN,	J.	&	BONJOUR,	J.	P.	1985.	Measurement	of	glomerular	filtration	rate	in	
conscious	unrestrained	rats	with	inulin	infused	by	implanted	osmotic	
pumps.	Am	J	Physiol,	248,	F734-8.	

JOHNSON,	R.	J.,	FUGGLE,	S.	V.,	MUMFORD,	L.,	BRADLEY,	J.	A.,	FORSYTHE,	J.	L.,	
RUDGE,	C.	J.,	KIDNEY	ADVISORY	GROUP	OF,	N.	H.	S.	B.	&	TRANSPLANT	
2010.	A	New	UK	2006	National	Kidney	Allocation	Scheme	for	deceased	
heart-beating	donor	kidneys.	Transplantation,	89,	387-94.	

JOHNSTONE,	R.	M.,	ADAM,	M.,	HAMMOND,	J.	R.,	ORR,	L.	&	TURBIDE,	C.	1987.	
Vesicle	formation	during	reticulocyte	maturation.	Association	of	plasma	
membrane	activities	with	released	vesicles	(exosomes).	J	Biol	Chem,	262,	
9412-20.	

JOOSTEN,	S.	A.,	VAN	KOOTEN,	C.,	SIJPKENS,	Y.	W.,	DE	FIJTER,	J.	W.	&	PAUL,	L.	C.	
2004.	The	pathobiology	of	chronic	allograft	nephropathy:	immune-
mediated	damage	and	accelerated	aging.	Kidney	Int,	65,	1556-9.	

KARNOUB,	A.	E.,	DASH,	A.	B.,	VO,	A.	P.,	SULLIVAN,	A.,	BROOKS,	M.	W.,	BELL,	G.	W.,	
RICHARDSON,	A.	L.,	POLYAK,	K.,	TUBO,	R.	&	WEINBERG,	R.	A.	2007.	
Mesenchymal	stem	cells	within	tumour	stroma	promote	breast	cancer	
metastasis.	Nature,	449,	557-63.	

KASSAB,	S.,	HAMDY,	H.,	ABDULGHAFFAR,	T.	&	GRANGER,	J.	P.	2001.	Effects	of	
endothelin-A	receptor	antagonism	on	bilateral	renal	function	in	
renovascular	hypertensive	rats.	Fundam	Clin	Pharmacol,	15,	379-85.	

KATAYAMA,	R.,	WATANABE,	K.,	YAMAGISHI,	N.,	ABE,	S.,	SATOH,	H.	&	
FURUHAMA,	K.	2011.	Sequential	measurements	of	glomerular	filtration	
rate	in	conscious	rats	by	a	bolus	injection	of	iodixanol	and	a	single	blood	
sample.	J	Appl	Toxicol,	31,	360-5.	

KATAYAMA,	R.,	YAMAGUCHI,	N.,	YAMASHITA,	T.,	WATANABE,	S.,	SATOH,	H.,	
YAMAGISHI,	N.	&	FURUHAMA,	K.	2010.	Calculation	of	glomerular	
filtration	rate	in	conscious	rats	by	the	use	of	a	bolus	injection	of	iodixanol	
and	a	single	blood	sample.	J	Pharmacol	Toxicol	Methods,	61,	59-64.	

KATHS,	J.	M.,	CEN,	J.	Y.,	CHUN,	Y.	M.,	ECHEVERRI,	J.,	LINARES,	I.,	GANESH,	S.,	YIP,	
P.,	JOHN,	R.,	BAGLI,	D.,	MUCSI,	I.,	GHANEKAR,	A.,	GRANT,	D.	R.,	ROBINSON,	
L.	A.	&	SELZNER,	M.	2016a.	Continuous	Normothermic	Ex	Vivo	Kidney	
Perfusion	Is	Superior	to	Brief	Normothermic	Perfusion	Following	Static	
Cold	Storage	in	Donation	After	Circulatory	Death	Pig	Kidney	
Transplantation.	Am	J	Transplant.	



	 259	

KATHS,	J.	M.,	ECHEVERRI,	J.,	CHUN,	Y.	M.,	CEN,	J.	Y.,	GOLDARACENA,	N.,	LINARES,	
I.,	DINGWELL,	L.	S.,	YIP,	P.,	JOHN,	R.,	BAGLI,	D.,	MUCSI,	I.,	GHANEKAR,	A.,	
GRANT,	D.,	ROBINSON,	L.	&	SELZNER,	M.	2016b.	Continuous	
Normothermic	Ex	Vivo	Kidney	Perfusion	Improves	Graft	Function	in	
Donation	after	Circulatory	Death	Pig	Kidney	Transplantation.	
Transplantation.	

KATHS,	J.	M.,	ECHEVERRI,	J.,	GOLDARACENA,	N.,	LOUIS,	K.	S.,	CHUN,	Y.	M.,	
LINARES,	I.,	WIEBE,	A.,	FOLTYS,	D.	B.,	YIP,	P.	M.,	JOHN,	R.,	MUCSI,	I.,	
GHANEKAR,	A.,	BAGLI,	D.	J.,	GRANT,	D.	R.,	ROBINSON,	L.	A.	&	SELZNER,	M.	
2016c.	Eight-Hour	Continuous	Normothermic	Ex	Vivo	Kidney	Perfusion	Is	
a	Safe	Preservation	Technique	for	Kidney	Transplantation:	A	New	
Opportunity	for	the	Storage,	Assessment,	and	Repair	of	Kidney	Grafts.	
Transplantation,	100,	1862-70.	

KATO,	N.,	YUZAWA,	Y.,	KOSUGI,	T.,	HOBO,	A.,	SATO,	W.,	MIWA,	Y.,	SAKAMOTO,	K.,	
MATSUO,	S.	&	KADOMATSU,	K.	2009.	The	E-selectin	ligand	basigin/CD147	
is	responsible	for	neutrophil	recruitment	in	renal	ischemia/reperfusion.	J	
Am	Soc	Nephrol,	20,	1565-76.	

KATSUDA,	T.,	KOSAKA,	N.,	TAKESHITA,	F.	&	OCHIYA,	T.	2013.	The	therapeutic	
potential	of	mesenchymal	stem	cell-derived	extracellular	vesicles.	
Proteomics,	13,	1637-53.	

KAY,	M.	D.,	HOSGOOD,	S.	A.,	HARPER,	S.	J.,	BAGUL,	A.,	WALLER,	H.	L.	&	
NICHOLSON,	M.	L.	2011.	Normothermic	versus	hypothermic	ex	vivo	flush	
using	a	novel	phosphate-free	preservation	solution	(AQIX)	in	porcine	
kidneys.	J	Surg	Res,	171,	275-82.	

KAYLER,	L.	K.,	MAGLIOCCA,	J.,	ZENDEJAS,	I.,	SRINIVAS,	T.	R.	&	SCHOLD,	J.	D.	2011.	
Impact	of	cold	ischemia	time	on	graft	survival	among	ECD	transplant	
recipients:	a	paired	kidney	analysis.	Am	J	Transplant,	11,	2647-56.	

KEERTHIKUMAR,	S.,	CHISANGA,	D.,	ARIYARATNE,	D.,	AL	SAFFAR,	H.,	ANAND,	S.,	
ZHAO,	K.,	SAMUEL,	M.,	PATHAN,	M.,	JOIS,	M.,	CHILAMKURTI,	N.,	
GANGODA,	L.	&	MATHIVANAN,	S.	2016.	ExoCarta:	A	Web-Based	
Compendium	of	Exosomal	Cargo.	J	Mol	Biol,	428,	688-92.	

KELLERMAN,	P.	S.	1993.	Exogenous	adenosine	triphosphate	(ATP)	preserves	
proximal	tubule	microfilament	structure	and	function	in	vivo	in	a	maleic	
acid	model	of	ATP	depletion.	J	Clin	Invest,	92,	1940-9.	

KERN,	S.,	EICHLER,	H.,	STOEVE,	J.,	KLUTER,	H.	&	BIEBACK,	K.	2006.	Comparative	
analysis	of	mesenchymal	stem	cells	from	bone	marrow,	umbilical	cord	
blood,	or	adipose	tissue.	Stem	Cells,	24,	1294-301.	

KHALIFEH,	T.,	BAULIER,	E.,	LE	PAPE,	S.,	KERFORNE,	T.,	COUDROY,	R.,	MAIGA,	S.,	
HAUET,	T.,	PINSARD,	M.	&	FAVREAU,	F.	2015.	Strategies	to	optimize	
kidney	recovery	and	preservation	in	transplantation:	specific	aspects	in	
pediatric	transplantation.	Pediatr	Nephrol,	30,	1243-54.	

KHWAJA,	A.	2012.	KDIGO	clinical	practice	guidelines	for	acute	kidney	injury.	
Nephron	Clin	Pract,	120,	c179-84.	

KIM,	J.	&	PADANILAM,	B.	J.	2015.	Renal	denervation	prevents	long-term	sequelae	
of	ischemic	renal	injury.	Kidney	Int,	87,	350-8.	

KIRK,	A.	D.	2003.	Crossing	the	bridge:	large	animal	models	in	translational	
transplantation	research.	Immunol	Rev,	196,	176-96.	



	 260	

KOBAYASHI,	E.,	HISHIKAWA,	S.,	TERATANI,	T.	&	LEFOR,	A.	T.	2012.	The	pig	as	a	
model	for	translational	research:	overview	of	porcine	animal	models	at	
Jichi	Medical	University.	Transplant	Res,	1,	8.	

KOCH,	M.,	LEMKE,	A.	&	LANGE,	C.	2015.	Extracellular	Vesicles	from	MSC	
Modulate	the	Immune	Response	to	Renal	Allografts	in	a	MHC	Disparate	
Rat	Model.	Stem	Cells	Int,	2015,	486141.	

KOFFMAN,	G.	&	GAMBARO,	G.	2003.	Renal	transplantation	from	non-heart-	
beating	donors:	a	review	of	the	European	experience.	J	Nephrol,	16,	334-
41.	

KONTODIMOPOULOS,	N.	&	NIAKAS,	D.	2008.	An	estimate	of	lifelong	costs	and	
QALYs	in	renal	replacement	therapy	based	on	patients'	life	expectancy.	
Health	Policy,	86,	85-96.	

KOPPELSTAETTER,	C.,	SCHRATZBERGER,	G.,	PERCO,	P.,	HOFER,	J.,	MARK,	W.,	
OLLINGER,	R.,	OBERBAUER,	R.,	SCHWARZ,	C.,	MITTERBAUER,	C.,	KAINZ,	
A.,	KARKOSZKA,	H.,	WIECEK,	A.,	MAYER,	B.	&	MAYER,	G.	2008.	Markers	of	
cellular	senescence	in	zero	hour	biopsies	predict	outcome	in	renal	
transplantation.	Aging	Cell,	7,	491-7.	

KORDELAS,	L.,	REBMANN,	V.,	LUDWIG,	A.	K.,	RADTKE,	S.,	RUESING,	J.,	
DOEPPNER,	T.	R.,	EPPLE,	M.,	HORN,	P.	A.,	BEELEN,	D.	W.	&	GIEBEL,	B.	
2014.	MSC-derived	exosomes:	a	novel	tool	to	treat	therapy-refractory	
graft-versus-host	disease.	Leukemia,	28,	970-3.	

KOSIERADZKI,	M.	&	ROWINSKI,	W.	2008.	Ischemia/reperfusion	injury	in	kidney	
transplantation:	mechanisms	and	prevention.	Transplant	Proc,	40,	3279-
88.	

KRAITCHMAN,	D.	L.,	TATSUMI,	M.,	GILSON,	W.	D.,	ISHIMORI,	T.,	KEDZIOREK,	D.,	
WALCZAK,	P.,	SEGARS,	W.	P.,	CHEN,	H.	H.,	FRITZGES,	D.,	IZBUDAK,	I.,	
YOUNG,	R.	G.,	MARCELINO,	M.,	PITTENGER,	M.	F.,	SOLAIYAPPAN,	M.,	
BOSTON,	R.	C.,	TSUI,	B.	M.,	WAHL,	R.	L.	&	BULTE,	J.	W.	2005.	Dynamic	
imaging	of	allogeneic	mesenchymal	stem	cells	trafficking	to	myocardial	
infarction.	Circulation,	112,	1451-61.	

KRAMPERA,	M.,	GLENNIE,	S.,	DYSON,	J.,	SCOTT,	D.,	LAYLOR,	R.,	SIMPSON,	E.	&	
DAZZI,	F.	2003.	Bone	marrow	mesenchymal	stem	cells	inhibit	the	
response	of	naive	and	memory	antigen-specific	T	cells	to	their	cognate	
peptide.	Blood,	101,	3722-9.	

KUEHBACHER,	A.,	URBICH,	C.,	ZEIHER,	A.	M.	&	DIMMELER,	S.	2007.	Role	of	Dicer	
and	Drosha	for	endothelial	microRNA	expression	and	angiogenesis.	Circ	
Res,	101,	59-68.	

KUNTER,	U.,	RONG,	S.,	BOOR,	P.,	EITNER,	F.,	MULLER-NEWEN,	G.,	DJURIC,	Z.,	VAN	
ROEYEN,	C.	R.,	KONIECZNY,	A.,	OSTENDORF,	T.,	VILLA,	L.,	MILOVANCEVA-
POPOVSKA,	M.,	KERJASCHKI,	D.	&	FLOEGE,	J.	2007.	Mesenchymal	stem	
cells	prevent	progressive	experimental	renal	failure	but	maldifferentiate	
into	glomerular	adipocytes.	J	Am	Soc	Nephrol,	18,	1754-64.	

KURODA,	T.,	YASUDA,	S.	&	SATO,	Y.	2013.	Tumorigenicity	studies	for	human	
pluripotent	stem	cell-derived	products.	Biol	Pharm	Bull,	36,	189-92.	

KURODA,	Y.,	KITADA,	M.,	WAKAO,	S.,	NISHIKAWA,	K.,	TANIMURA,	Y.,	
MAKINOSHIMA,	H.,	GODA,	M.,	AKASHI,	H.,	INUTSUKA,	A.,	NIWA,	A.,	
SHIGEMOTO,	T.,	NABESHIMA,	Y.,	NAKAHATA,	T.,	NABESHIMA,	Y.,	
FUJIYOSHI,	Y.	&	DEZAWA,	M.	2010.	Unique	multipotent	cells	in	adult	



	 261	

human	mesenchymal	cell	populations.	Proc	Natl	Acad	Sci	U	S	A,	107,	
8639-43.	

KWON,	O.,	HONG,	S.	M.	&	RAMESH,	G.	2009.	Diminished	NO	generation	by	injured	
endothelium	and	loss	of	macula	densa	nNOS	may	contribute	to	sustained	
acute	kidney	injury	after	ischemia-reperfusion.	Am	J	Physiol	Renal	Physiol,	
296,	F25-33.	

LAI,	C.	P.,	KIM,	E.	Y.,	BADR,	C.	E.,	WEISSLEDER,	R.,	MEMPEL,	T.	R.,	TANNOUS,	B.	A.	
&	BREAKEFIELD,	X.	O.	2015.	Visualization	and	tracking	of	tumour	
extracellular	vesicle	delivery	and	RNA	translation	using	multiplexed	
reporters.	Nat	Commun,	6,	7029.	

LAI,	R.	C.,	CHEN,	T.	S.	&	LIM,	S.	K.	2011.	Mesenchymal	stem	cell	exosome:	a	novel	
stem	cell-based	therapy	for	cardiovascular	disease.	Regen	Med,	6,	481-92.	

LAI,	R.	C.,	TAN,	S.	S.,	TEH,	B.	J.,	SZE,	S.	K.,	ARSLAN,	F.,	DE	KLEIJN,	D.	P.,	CHOO,	A.	&	
LIM,	S.	K.	2012.	Proteolytic	Potential	of	the	MSC	Exosome	Proteome:	
Implications	for	an	Exosome-Mediated	Delivery	of	Therapeutic	
Proteasome.	Int	J	Proteomics,	2012,	971907.	

LAI,	R.	C.,	YEO,	R.	W.,	TAN,	K.	H.	&	LIM,	S.	K.	2013.	Exosomes	for	drug	delivery	-	a	
novel	application	for	the	mesenchymal	stem	cell.	Biotechnol	Adv,	31,	543-
51.	

LAMB,	K.	E.,	LODHI,	S.	&	MEIER-KRIESCHE,	H.	U.	2011.	Long-term	renal	allograft	
survival	in	the	United	States:	a	critical	reappraisal.	Am	J	Transplant,	11,	
450-62.	

LAMEIRE,	N.	2005.	The	pathophysiology	of	acute	renal	failure.	Crit	Care	Clin,	21,	
197-210.	

LAMEIRE,	N.,	VAN	BIESEN,	W.	&	VANHOLDER,	R.	2005.	Acute	renal	failure.	
Lancet,	365,	417-30.	

LAMEIRE,	N.,	VAN	BIESEN,	W.,	VANHOLDER,	R.	&	COLARDIJN,	F.	1998.	The	place	
of	intermittent	hemodialysis	in	the	treatment	of	acute	renal	failure	in	the	
ICU	patient.	Kidney	Int	Suppl,	66,	S110-9.	

LAMEIRE,	N.	H.	&	VANHOLDER,	R.	2004.	Pathophysiology	of	ischaemic	acute	
renal	failure.	Best	Pract	Res	Clin	Anaesthesiol,	18,	21-36.	

LANGE,	C.,	TOGEL,	F.,	ITTRICH,	H.,	CLAYTON,	F.,	NOLTE-ERNSTING,	C.,	ZANDER,	
A.	R.	&	WESTENFELDER,	C.	2005.	Administered	mesenchymal	stem	cells	
enhance	recovery	from	ischemia/reperfusion-induced	acute	renal	failure	
in	rats.	Kidney	Int,	68,	1613-7.	

LAUPACIS,	A.,	KEOWN,	P.,	PUS,	N.,	KRUEGER,	H.,	FERGUSON,	B.,	WONG,	C.	&	
MUIRHEAD,	N.	1996.	A	study	of	the	quality	of	life	and	cost-utility	of	renal	
transplantation.	Kidney	Int,	50,	235-42.	

LE	BLANC,	K.	2006.	Mesenchymal	stromal	cells:	Tissue	repair	and	immune	
modulation.	Cytotherapy,	8,	559-61.	

LE	CLEF,	N.,	VERHULST,	A.,	D'HAESE,	P.	C.	&	VERVAET,	B.	A.	2016.	Unilateral	
Renal	Ischemia-Reperfusion	as	a	Robust	Model	for	Acute	to	Chronic	
Kidney	Injury	in	Mice.	PLoS	One,	11,	e0152153.	

LECH,	M.,	AVILA-FERRUFINO,	A.,	ALLAM,	R.,	SEGERER,	S.,	KHANDOGA,	A.,	
KROMBACH,	F.,	GARLANDA,	C.,	MANTOVANI,	A.	&	ANDERS,	H.	J.	2009.	
Resident	dendritic	cells	prevent	postischemic	acute	renal	failure	by	help	
of	single	Ig	IL-1	receptor-related	protein.	J	Immunol,	183,	4109-18.	

LEE,	C.	Y.	&	MANGINO,	M.	J.	2009.	Preservation	methods	for	kidney	and	liver.	
Organogenesis,	5,	105-12.	



	 262	

LEE,	P.	Y.,	CHIEN,	Y.,	CHIOU,	G.	Y.,	LIN,	C.	H.,	CHIOU,	C.	H.	&	TARNG,	D.	C.	2012.	
Induced	pluripotent	stem	cells	without	c-Myc	attenuate	acute	kidney	
injury	via	downregulating	the	signaling	of	oxidative	stress	and	
inflammation	in	ischemia-reperfusion	rats.	Cell	Transplant,	21,	2569-85.	

LEE,	R.	H.,	PULIN,	A.	A.,	SEO,	M.	J.,	KOTA,	D.	J.,	YLOSTALO,	J.,	LARSON,	B.	L.,	
SEMPRUN-PRIETO,	L.,	DELAFONTAINE,	P.	&	PROCKOP,	D.	J.	2009.	
Intravenous	hMSCs	improve	myocardial	infarction	in	mice	because	cells	
embolized	in	lung	are	activated	to	secrete	the	anti-inflammatory	protein	
TSG-6.	Cell	Stem	Cell,	5,	54-63.	

LIEBERTHAL,	W.	&	NIGAM,	S.	K.	2000.	Acute	renal	failure.	II.	Experimental	
models	of	acute	renal	failure:	imperfect	but	indispensable.	Am	J	Physiol	
Renal	Physiol,	278,	F1-F12.	

LIN,	K.,	MATSUBARA,	Y.,	MASUDA,	Y.,	TOGASHI,	K.,	OHNO,	T.,	TAMURA,	T.,	
TOYOSHIMA,	Y.,	SUGIMACHI,	K.,	TOYODA,	M.,	MARC,	H.	&	DOUGLAS,	A.	
2008.	Characterization	of	adipose	tissue-derived	cells	isolated	with	the	
Celution	system.	Cytotherapy,	10,	417-26.	

LIN,	K.	C.,	YIP,	H.	K.,	SHAO,	P.	L.,	WU,	S.	C.,	CHEN,	K.	H.,	CHEN,	Y.	T.,	YANG,	C.	C.,	
SUN,	C.	K.,	KAO,	G.	S.,	CHEN,	S.	Y.,	CHAI,	H.	T.,	CHANG,	C.	L.,	CHEN,	C.	H.	&	
LEE,	M.	S.	2016.	Combination	of	adipose-derived	mesenchymal	stem	cells	
(ADMSC)	and	ADMSC-derived	exosomes	for	protecting	kidney	from	acute	
ischemia-reperfusion	injury.	Int	J	Cardiol,	216,	173-85.	

LINFERT,	D.,	CHOWDHRY,	T.	&	RABB,	H.	2009.	Lymphocytes	and	ischemia-
reperfusion	injury.	Transplant	Rev	(Orlando),	23,	1-10.	

LITTLE,	M.	H.	2016.	Growing	Kidney	Tissue	from	Stem	Cells:	How	Far	from	
"Party	Trick"	to	Medical	Application?	Cell	Stem	Cell,	18,	695-8.	

LITTLE,	M.	H.	&	KAIRATH,	P.	2016.	Regenerative	medicine	in	kidney	disease.	
Kidney	Int,	90,	289-99.	

LIU,	K.	D.	&	BRAKEMAN,	P.	R.	2008.	Renal	repair	and	recovery.	Crit	Care	Med,	36,	
S187-92.	

LORENZ,	J.	N.	&	GRUENSTEIN,	E.	1999.	A	simple,	nonradioactive	method	for	
evaluating	single-nephron	filtration	rate	using	FITC-inulin.	Am	J	Physiol,	
276,	F172-7.	

LOVELL-BADGE,	R.	2001.	The	future	for	stem	cell	research.	Nature,	414,	88-91.	
LUNNEY,	J.	K.	2007.	Advances	in	swine	biomedical	model	genomics.	Int	J	Biol	Sci,	

3,	179-84.	
LYE,	K.	L.,	NORDIN,	N.,	VIDYADARAN,	S.	&	THILAKAVATHY,	K.	2016.	

Mesenchymal	stem	cells:	From	stem	cells	to	sarcomas.	Cell	Biol	Int,	40,	
610-8.	

MAHMOOD,	A.,	LU,	D.,	LU,	M.	&	CHOPP,	M.	2003.	Treatment	of	traumatic	brain	
injury	in	adult	rats	with	intravenous	administration	of	human	bone	
marrow	stromal	cells.	Neurosurgery,	53,	697-702;	discussion	702-3.	

MAITRA,	A.,	ARKING,	D.	E.,	SHIVAPURKAR,	N.,	IKEDA,	M.,	STASTNY,	V.,	
KASSAUEI,	K.,	SUI,	G.,	CUTLER,	D.	J.,	LIU,	Y.,	BRIMBLE,	S.	N.,	NOAKSSON,	K.,	
HYLLNER,	J.,	SCHULZ,	T.	C.,	ZENG,	X.,	FREED,	W.	J.,	CROOK,	J.,	ABRAHAM,	
S.,	COLMAN,	A.,	SARTIPY,	P.,	MATSUI,	S.,	CARPENTER,	M.,	GAZDAR,	A.	F.,	
RAO,	M.	&	CHAKRAVARTI,	A.	2005.	Genomic	alterations	in	cultured	
human	embryonic	stem	cells.	Nat	Genet,	37,	1099-103.	



	 263	

MALIS,	C.	D.,	CHEUNG,	J.	Y.,	LEAF,	A.	&	BONVENTRE,	J.	V.	1983.	Effects	of	
verapamil	in	models	of	ischemic	acute	renal	failure	in	the	rat.	Am	J	Physiol,	
245,	F735-42.	

MANGE,	K.	C.,	JOFFE,	M.	M.	&	FELDMAN,	H.	I.	2001.	Effect	of	the	use	or	nonuse	of	
long-term	dialysis	on	the	subsequent	survival	of	renal	transplants	from	
living	donors.	N	Engl	J	Med,	344,	726-31.	

MANGI,	A.	A.,	NOISEUX,	N.,	KONG,	D.,	HE,	H.,	REZVANI,	M.,	INGWALL,	J.	S.	&	DZAU,	
V.	J.	2003.	Mesenchymal	stem	cells	modified	with	Akt	prevent	remodeling	
and	restore	performance	of	infarcted	hearts.	Nat	Med,	9,	1195-201.	

MANNELLO,	F.	&	TONTI,	G.	A.	2007.	Concise	review:	no	breakthroughs	for	
human	mesenchymal	and	embryonic	stem	cell	culture:	conditioned	
medium,	feeder	layer,	or	feeder-free;	medium	with	fetal	calf	serum,	
human	serum,	or	enriched	plasma;	serum-free,	serum	replacement	
nonconditioned	medium,	or	ad	hoc	formula?	All	that	glitters	is	not	gold!	
Stem	Cells,	25,	1603-9.	

MANTOVANI,	A.	2012.	MSCs,	macrophages,	and	cancer:	a	dangerous	menage-a-
trois.	Cell	Stem	Cell,	11,	730-2.	

MARCEN,	R.	2009.	Immunosuppressive	drugs	in	kidney	transplantation:	impact	
on	patient	survival,	and	incidence	of	cardiovascular	disease,	malignancy	
and	infection.	Drugs,	69,	2227-43.	

MARCEN,	R.,	FERNANDEZ-RODRIGUEZ,	A.,	RODRIGUEZ-MENDIOLA,	N.,	PONTE,	
B.,	GALEANO,	C.,	VILLAFRUELA,	J.	J.,	TERUEL,	J.	L.,	BURGOS,	F.	J.	&	
ORTUNO,	J.	2009.	Evolution	of	rejection	rates	and	kidney	graft	survival:	a	
historical	analysis.	Transplant	Proc,	41,	2357-9.	

MARSHALL,	M.	R.,	POLKINGHORNE,	K.	R.,	KERR,	P.	G.,	AGAR,	J.	W.,	HAWLEY,	C.	M.	
&	MCDONALD,	S.	P.	2015.	Temporal	Changes	in	Mortality	Risk	by	Dialysis	
Modality	in	the	Australian	and	New	Zealand	Dialysis	Population.	Am	J	
Kidney	Dis,	66,	489-98.	

MARSHALL	V,	J.	P.,	HOWDEN	B,	LESLIE	E,	RAE	D,	TANGE	J.	1982.	Recovery	of	
renal	function	in	the	rat	after	warm	ischaemia:	functional	and	
morphological	changes.	Organ	Preservation,	1,	69	-76.	

MARTIN	NAVARRO,	J.,	ORTEGA,	M.,	GUTIERREZ,	M.	J.,	GARCIA	MARTIN,	F.,	
ALCAZAR,	J.	M.,	MORALES,	J.	M.,	ANDRES,	A.	&	PRAGA,	M.	2009.	Survival	
of	patients	older	than	60	years	with	kidneys	transplanted	from	Spanish	
expanded	criteria	donors	versus	patients	continued	on	hemodialysis.	
Transplant	Proc,	41,	2376-8.	

MASOUD,	M.	S.,	ANWAR,	S.	S.,	AFZAL,	M.	Z.,	MEHMOOD,	A.,	KHAN,	S.	N.	&	
RIAZUDDIN,	S.	2012.	Pre-conditioned	mesenchymal	stem	cells	ameliorate	
renal	ischemic	injury	in	rats	by	augmented	survival	and	engraftment.	J	
Transl	Med,	10,	243.	

MATAS,	A.	J.,	GILLINGHAM,	K.	J.,	PAYNE,	W.	D.	&	NAJARIAN,	J.	S.	1994.	The	impact	
of	an	acute	rejection	episode	on	long-term	renal	allograft	survival	(t1/2).	
Transplantation,	57,	857-9.	

MATAS,	A.	J.,	SMITH,	J.	M.,	SKEANS,	M.	A.,	LAMB,	K.	E.,	GUSTAFSON,	S.	K.,	
SAMANA,	C.	J.,	STEWART,	D.	E.,	SNYDER,	J.	J.,	ISRANI,	A.	K.	&	KASISKE,	B.	L.	
2013.	OPTN/SRTR	2011	Annual	Data	Report:	kidney.	Am	J	Transplant,	13	
Suppl	1,	11-46.	

MATAS,	A.	J.,	SMITH,	J.	M.,	SKEANS,	M.	A.,	THOMPSON,	B.,	GUSTAFSON,	S.	K.,	
SCHNITZLER,	M.	A.,	STEWART,	D.	E.,	CHERIKH,	W.	S.,	WAINRIGHT,	J.	L.,	



	 264	

SNYDER,	J.	J.,	ISRANI,	A.	K.	&	KASISKE,	B.	L.	2014.	OPTN/SRTR	2012	
Annual	Data	Report:	kidney.	Am	J	Transplant,	14	Suppl	1,	11-44.	

MCGLYNN,	L.	M.,	ELLER,	K.,	MACDONALD,	A.	I.,	MACINTYRE,	A.,	RUSSELL,	D.,	
KOPPELSTAETTER,	C.,	DAVIES,	R.	W.	&	SHIELS,	P.	G.	2013.	Pathfinder	
cells	provide	a	novel	therapeutic	intervention	for	acute	kidney	injury.	
Rejuvenation	Res,	16,	11-20.	

MCGLYNN,	L.	M.,	STEVENSON,	K.,	LAMB,	K.,	ZINO,	S.,	BROWN,	M.,	PRINA,	A.,	
KINGSMORE,	D.	&	SHIELS,	P.	G.	2009.	Cellular	senescence	in	pretransplant	
renal	biopsies	predicts	postoperative	organ	function.	Aging	Cell,	8,	45-51.	

MCGUINNESS,	D.,	ANTHONY,	D.	F.,	MOULISOVA,	V.,	MACDONALD,	A.,	
MACINTYRE,	A.,	THOMSON,	J.,	NAG,	A.,	DAVIES,	R.	W.	&	SHIELS,	P.	G.	2016.	
Microvesicles	but	Not	Exosomes	from	Pathfinder	Cells	Stimulate	
Functional	Recovery	of	the	Pancreas	in	a	Mouse	Streptozotocin-Induced	
Diabetes	Model.	Rejuvenation	Res.	

MEIER-KRIESCHE,	H.	U.	&	KAPLAN,	B.	2002.	Waiting	time	on	dialysis	as	the	
strongest	modifiable	risk	factor	for	renal	transplant	outcomes:	a	paired	
donor	kidney	analysis.	Transplantation,	74,	1377-81.	

MEIER-KRIESCHE,	H.	U.,	OJO,	A.	O.,	PORT,	F.	K.,	ARNDORFER,	J.	A.,	CIBRIK,	D.	M.	&	
KAPLAN,	B.	2001.	Survival	improvement	among	patients	with	end-stage	
renal	disease:	trends	over	time	for	transplant	recipients	and	wait-listed	
patients.	J	Am	Soc	Nephrol,	12,	1293-6.	

MEIER-KRIESCHE,	H.	U.,	SCHOLD,	J.	D.,	GASTON,	R.	S.,	WADSTROM,	J.	&	KAPLAN,	
B.	2005.	Kidneys	from	deceased	donors:	maximizing	the	value	of	a	scarce	
resource.	Am	J	Transplant,	5,	1725-30.	

MELK,	A.,	SCHMIDT,	B.	M.,	VONGWIWATANA,	A.,	RAYNER,	D.	C.	&	HALLORAN,	P.	
F.	2005.	Increased	expression	of	senescence-associated	cell	cycle	
inhibitor	p16INK4a	in	deteriorating	renal	transplants	and	diseased	native	
kidney.	Am	J	Transplant,	5,	1375-82.	

MELNIKOV,	V.	Y.,	FAUBEL,	S.,	SIEGMUND,	B.,	LUCIA,	M.	S.,	LJUBANOVIC,	D.	&	
EDELSTEIN,	C.	L.	2002.	Neutrophil-independent	mechanisms	of	caspase-
1-	and	IL-18-mediated	ischemic	acute	tubular	necrosis	in	mice.	J	Clin	
Invest,	110,	1083-91.	

MENETON,	P.,	ICHIKAWA,	I.,	INAGAMI,	T.	&	SCHNERMANN,	J.	2000.	Renal	
physiology	of	the	mouse.	Am	J	Physiol	Renal	Physiol,	278,	F339-51.	

MERION,	R.	M.	2005.	Expanded	criteria	donors	for	kidney	transplantation.	
Transplant	Proc,	37,	3655-7.	

METCALFE,	M.	S.,	BUTTERWORTH,	P.	C.,	WHITE,	S.	A.,	SAUNDERS,	R.	N.,	
MURPHY,	G.	J.,	TAUB,	N.,	VEITCH,	P.	S.	&	NICHOLSON,	M.	L.	2001a.	A	case-
control	comparison	of	the	results	of	renal	transplantation	from	heart-
beating	and	non-heart-beating	donors.	Transplantation,	71,	1556-9.	

METCALFE,	M.	S.,	WHITE,	S.	A.,	SAUNDERS,	R.	N.,	MURPHY,	G.	J.,	HORSBURGH,	T.,	
KNIGHT,	A.	J.	&	NICHOLSON,	M.	L.	2001b.	Long-term	results	of	renal	
transplantation	using	organs	from	non-heart-beating	donors.	Transplant	
Proc,	33,	826.	

METZGER,	R.	A.,	DELMONICO,	F.	L.,	FENG,	S.,	PORT,	F.	K.,	WYNN,	J.	J.	&	MERION,	
R.	M.	2003.	Expanded	criteria	donors	for	kidney	transplantation.	Am	J	
Transplant,	3	Suppl	4,	114-25.	

MEYER,	M.	H.,	MEYER,	R.	A.,	JR.,	GRAY,	R.	W.	&	IRWIN,	R.	L.	1985.	Picric	acid	
methods	greatly	overestimate	serum	creatinine	in	mice:	more	accurate	



	 265	

results	with	high-performance	liquid	chromatography.	Anal	Biochem,	144,	
285-90.	

MIAS,	C.,	TROUCHE,	E.,	SEGUELAS,	M.	H.,	CALCAGNO,	F.,	DIGNAT-GEORGE,	F.,	
SABATIER,	F.,	PIERCECCHI-MARTI,	M.	D.,	DANIEL,	L.,	BIANCHI,	P.,	CALISE,	
D.,	BOURIN,	P.,	PARINI,	A.	&	CUSSAC,	D.	2008.	Ex	vivo	pretreatment	with	
melatonin	improves	survival,	proangiogenic/mitogenic	activity,	and	
efficiency	of	mesenchymal	stem	cells	injected	into	ischemic	kidney.	Stem	
Cells,	26,	1749-57.	

MILLER,	B.	F.,	LEAF,	A.,	MAMBY,	A.	R.	&	MILLER,	Z.	1952.	Validity	of	the	
endogenous	creatinine	clearance	as	a	measure	of	glomerular	filtration	
rate	in	the	diseased	human	kidney.	J	Clin	Invest,	31,	309-13.	

MILWID,	J.	M.,	ICHIMURA,	T.,	LI,	M.,	JIAO,	Y.,	LEE,	J.,	YARMUSH,	J.	S.,	
PAREKKADAN,	B.,	TILLES,	A.	W.,	BONVENTRE,	J.	V.	&	YARMUSH,	M.	L.	
2012.	Secreted	factors	from	bone	marrow	stromal	cells	upregulate	IL-10	
and	reverse	acute	kidney	injury.	Stem	Cells	Int,	2012,	392050.	

MINER,	J.	H.	1999.	Renal	basement	membrane	components.	Kidney	Int,	56,	2016-
24.	

MINOR,	T.,	EFFERZ,	P.,	FOX,	M.,	WOHLSCHLAEGER,	J.	&	LUER,	B.	2013.	Controlled	
oxygenated	rewarming	of	cold	stored	liver	grafts	by	thermally	graduated	
machine	perfusion	prior	to	reperfusion.	Am	J	Transplant,	13,	1450-60.	

MIRONOV,	V.,	VISCONTI,	R.	P.	&	MARKWALD,	R.	R.	2004.	What	is	regenerative	
medicine?	Emergence	of	applied	stem	cell	and	developmental	biology.	
Expert	Opin	Biol	Ther,	4,	773-81.	

MIURA,	M.,	MIURA,	Y.,	PADILLA-NASH,	H.	M.,	MOLINOLO,	A.	A.,	FU,	B.,	PATEL,	V.,	
SEO,	B.	M.,	SONOYAMA,	W.,	ZHENG,	J.	J.,	BAKER,	C.	C.,	CHEN,	W.,	RIED,	T.	&	
SHI,	S.	2006.	Accumulated	chromosomal	instability	in	murine	bone	
marrow	mesenchymal	stem	cells	leads	to	malignant	transformation.	Stem	
Cells,	24,	1095-103.	

MOERS,	C.,	KORNMANN,	N.	S.,	LEUVENINK,	H.	G.	&	PLOEG,	R.	J.	2009.	The	
influence	of	deceased	donor	age	and	old-for-old	allocation	on	kidney	
transplant	outcome.	Transplantation,	88,	542-52.	

MOHSENY,	A.	B.	&	HOGENDOORN,	P.	C.	2011.	Concise	review:	mesenchymal	
tumors:	when	stem	cells	go	mad.	Stem	Cells,	29,	397-403.	

MOLLURA,	D.	J.,	HARE,	J.	M.	&	RABB,	H.	2003.	Stem-cell	therapy	for	renal	
diseases.	Am	J	Kidney	Dis,	42,	891-905.	

MONGARDON,	N.,	DYSON,	A.	&	SINGER,	M.	2009.	Is	MOF	an	outcome	parameter	
or	a	transient,	adaptive	state	in	critical	illness?	Curr	Opin	Crit	Care,	15,	
431-6.	

MONSEL,	A.,	ZHU,	Y.	G.,	GENNAI,	S.,	HAO,	Q.,	LIU,	J.	&	LEE,	J.	W.	2014.	Cell-based	
therapy	for	acute	organ	injury:	preclinical	evidence	and	ongoing	clinical	
trials	using	mesenchymal	stem	cells.	Anesthesiology,	121,	1099-121.	

MORESO,	F.	&	HERNANDEZ,	D.	2013.	Has	the	survival	of	the	graft	improved	after	
renal	transplantation	in	the	era	of	modern	immunosuppression?	
Nefrologia,	33,	14-26.	

MORIGI,	M.,	IMBERTI,	B.,	ZOJA,	C.,	CORNA,	D.,	TOMASONI,	S.,	ABBATE,	M.,	
ROTTOLI,	D.,	ANGIOLETTI,	S.,	BENIGNI,	A.,	PERICO,	N.,	ALISON,	M.	&	
REMUZZI,	G.	2004.	Mesenchymal	stem	cells	are	renotropic,	helping	to	
repair	the	kidney	and	improve	function	in	acute	renal	failure.	J	Am	Soc	
Nephrol,	15,	1794-804.	



	 266	

MORIGI,	M.,	INTRONA,	M.,	IMBERTI,	B.,	CORNA,	D.,	ABBATE,	M.,	ROTA,	C.,	
ROTTOLI,	D.,	BENIGNI,	A.,	PERICO,	N.,	ZOJA,	C.,	RAMBALDI,	A.,	REMUZZI,	
A.	&	REMUZZI,	G.	2008.	Human	bone	marrow	mesenchymal	stem	cells	
accelerate	recovery	of	acute	renal	injury	and	prolong	survival	in	mice.	
Stem	Cells,	26,	2075-82.	

MUDRABETTU,	C.,	KUMAR,	V.,	RAKHA,	A.,	YADAV,	A.	K.,	RAMACHANDRAN,	R.,	
KANWAR,	D.	B.,	NADA,	R.,	MINZ,	M.,	SAKHUJA,	V.,	MARWAHA,	N.	&	JHA,	V.	
2015.	Safety	and	efficacy	of	autologous	mesenchymal	stromal	cells	
transplantation	in	patients	undergoing	living	donor	kidney	
transplantation:	a	pilot	study.	Nephrology	(Carlton),	20,	25-33.	

MUELLER,	T.	F.,	SOLEZ,	K.	&	MAS,	V.	2011.	Assessment	of	kidney	organ	quality	
and	prediction	of	outcome	at	time	of	transplantation.	Semin	
Immunopathol,	33,	185-99.	

MURALIDHARAN-CHARI,	V.,	CLANCY,	J.	W.,	SEDGWICK,	A.	&	D'SOUZA-SCHOREY,	
C.	2010.	Microvesicles:	mediators	of	extracellular	communication	during	
cancer	progression.	J	Cell	Sci,	123,	1603-11.	

NADASDY,	T.,	LASZIK,	Z.,	BLICK,	K.	E.,	JOHNSON,	L.	D.	&	SILVA,	F.	G.	1994.	
Proliferative	activity	of	intrinsic	cell	populations	in	the	normal	human	
kidney.	J	Am	Soc	Nephrol,	4,	2032-9.	

NAMNUM,	P.,	INSOGNA,	K.,	BAGGISH,	D.	&	HAYSLETT,	J.	P.	1983.	Evidence	for	
bidirectional	net	movement	of	creatinine	in	the	rat	kidney.	Am	J	Physiol,	
244,	F719-23.	

NANKIVELL,	B.	J.	&	KUYPERS,	D.	R.	2011.	Diagnosis	and	prevention	of	chronic	
kidney	allograft	loss.	Lancet,	378,	1428-37.	

NARVA,	E.,	AUTIO,	R.,	RAHKONEN,	N.,	KONG,	L.,	HARRISON,	N.,	KITSBERG,	D.,	
BORGHESE,	L.,	ITSKOVITZ-ELDOR,	J.,	RASOOL,	O.,	DVORAK,	P.,	HOVATTA,	
O.,	OTONKOSKI,	T.,	TUURI,	T.,	CUI,	W.,	BRUSTLE,	O.,	BAKER,	D.,	MALTBY,	
E.,	MOORE,	H.	D.,	BENVENISTY,	N.,	ANDREWS,	P.	W.,	YLI-HARJA,	O.	&	
LAHESMAA,	R.	2010.	High-resolution	DNA	analysis	of	human	embryonic	
stem	cell	lines	reveals	culture-induced	copy	number	changes	and	loss	of	
heterozygosity.	Nat	Biotechnol,	28,	371-7.	

NASH,	K.,	HAFEEZ,	A.	&	HOU,	S.	2002.	Hospital-acquired	renal	insufficiency.	Am	J	
Kidney	Dis,	39,	930-6.	

NATHAN,	H.	M.,	CONRAD,	S.	L.,	HELD,	P.	J.,	MCCULLOUGH,	K.	P.,	PIETROSKI,	R.	E.,	
SIMINOFF,	L.	A.	&	OJO,	A.	O.	2003.	Organ	donation	in	the	United	States.	Am	
J	Transplant,	3	Suppl	4,	29-40.	

NAUTA,	A.	J.,	KRUISSELBRINK,	A.	B.,	LURVINK,	E.,	WILLEMZE,	R.	&	FIBBE,	W.	E.	
2006a.	Mesenchymal	stem	cells	inhibit	generation	and	function	of	both	
CD34+-derived	and	monocyte-derived	dendritic	cells.	J	Immunol,	177,	
2080-7.	

NAUTA,	A.	J.,	WESTERHUIS,	G.,	KRUISSELBRINK,	A.	B.,	LURVINK,	E.	G.,	
WILLEMZE,	R.	&	FIBBE,	W.	E.	2006b.	Donor-derived	mesenchymal	stem	
cells	are	immunogenic	in	an	allogeneic	host	and	stimulate	donor	graft	
rejection	in	a	nonmyeloablative	setting.	Blood,	108,	2114-20.	

NEMOTO,	T.,	BURNE,	M.	J.,	DANIELS,	F.,	O'DONNELL,	M.	P.,	CROSSON,	J.,	BERENS,	
K.,	ISSEKUTZ,	A.,	KASISKE,	B.	L.,	KEANE,	W.	F.	&	RABB,	H.	2001.	Small	
molecule	selectin	ligand	inhibition	improves	outcome	in	ischemic	acute	
renal	failure.	Kidney	Int,	60,	2205-14.	



	 267	

NEYRINCK,	A.,	VAN	RAEMDONCK,	D.	&	MONBALIU,	D.	2013.	Donation	after	
circulatory	death:	current	status.	Curr	Opin	Anaesthesiol,	26,	382-90.	

NICHOLSON,	M.	L.	&	HOSGOOD,	S.	A.	2013.	Renal	transplantation	after	ex	vivo	
normothermic	perfusion:	the	first	clinical	study.	Am	J	Transplant,	13,	
1246-52.	

OESEBURG,	H.,	DE	BOER,	R.	A.,	VAN	GILST,	W.	H.	&	VAN	DER	HARST,	P.	2010.	
Telomere	biology	in	healthy	aging	and	disease.	Pflugers	Arch,	459,	259-68.	

OJO,	A.	O.	2005.	Expanded	criteria	donors:	process	and	outcomes.	Semin	Dial,	18,	
463-8.	

OJO,	A.	O.,	HANSON,	J.	A.,	MEIER-KRIESCHE,	H.,	OKECHUKWU,	C.	N.,	WOLFE,	R.	A.,	
LEICHTMAN,	A.	B.,	AGODOA,	L.	Y.,	KAPLAN,	B.	&	PORT,	F.	K.	2001.	Survival	
in	recipients	of	marginal	cadaveric	donor	kidneys	compared	with	other	
recipients	and	wait-listed	transplant	candidates.	J	Am	Soc	Nephrol,	12,	
589-97.	

OLIVER,	J.	A.,	KLINAKIS,	A.,	CHEEMA,	F.	H.,	FRIEDLANDER,	J.,	SAMPOGNA,	R.	V.,	
MARTENS,	T.	P.,	LIU,	C.,	EFSTRATIADIS,	A.	&	AL-AWQATI,	Q.	2009.	
Proliferation	and	migration	of	label-retaining	cells	of	the	kidney	papilla.	J	
Am	Soc	Nephrol,	20,	2315-27.	

ORGANIZATION.,	W.	H.	2013.	Recommendations	for	the	evaluation	of	animal	cell	
cultures	as	substrates	for	the	manufacture	of	biological	medicinal	
products	and	for	the	characterization	of	cell	banks.	WHO	technical	report	
series,,	No	978,	Annex	3.	

ORLIC,	D.,	KAJSTURA,	J.,	CHIMENTI,	S.,	JAKONIUK,	I.,	ANDERSON,	S.	M.,	LI,	B.,	
PICKEL,	J.,	MCKAY,	R.,	NADAL-GINARD,	B.,	BODINE,	D.	M.,	LERI,	A.	&	
ANVERSA,	P.	2001.	Bone	marrow	cells	regenerate	infarcted	myocardium.	
Nature,	410,	701-5.	

ORTIZ,	A.,	SANCHEZ-NINO,	M.	D.,	IZQUIERDO,	M.	C.,	MARTIN-CLEARY,	C.,	
GARCIA-BERMEJO,	L.,	MORENO,	J.	A.,	RUIZ-ORTEGA,	M.,	DRAIBE,	J.,	
CRUZADO,	J.	M.,	GARCIA-GONZALEZ,	M.	A.,	LOPEZ-NOVOA,	J.	M.,	SOLER,	
M.	J.,	SANZ,	A.	B.,	RED	DE	INVESTIGACION,	R.	&	CONSORCIO	MADRILENO	
PARA	INVESTIGACION	DEL	FRACASO	RENAL,	A.	2015.	Translational	
value	of	animal	models	of	kidney	failure.	Eur	J	Pharmacol,	759,	205-20.	

ORTIZ,	L.	A.,	GAMBELLI,	F.,	MCBRIDE,	C.,	GAUPP,	D.,	BADDOO,	M.,	KAMINSKI,	N.	
&	PHINNEY,	D.	G.	2003.	Mesenchymal	stem	cell	engraftment	in	lung	is	
enhanced	in	response	to	bleomycin	exposure	and	ameliorates	its	fibrotic	
effects.	Proc	Natl	Acad	Sci	U	S	A,	100,	8407-11.	

PAHLAVAN,	P.	S.,	SMALLEGANGE,	C.,	ADAMS,	M.	A.	&	SCHUMACHER,	M.	2006.	
Kidney	transplantation	procedures	in	rats:	assessments,	complications,	
and	management.	Microsurgery,	26,	404-11.	

PAN,	Q.,	FOURASCHEN,	S.	M.,	DE	RUITER,	P.	E.,	DINJENS,	W.	N.,	KWEKKEBOOM,	J.,	
TILANUS,	H.	W.	&	VAN	DER	LAAN,	L.	J.	2014.	Detection	of	spontaneous	
tumorigenic	transformation	during	culture	expansion	of	human	
mesenchymal	stromal	cells.	Exp	Biol	Med	(Maywood),	239,	105-15.	

PASCUAL,	J.,	PEREZ-SAEZ,	M.	J.,	MIR,	M.	&	CRESPO,	M.	2012.	Chronic	renal	
allograft	injury:	early	detection,	accurate	diagnosis	and	management.	
Transplant	Rev	(Orlando),	26,	280-90.	

PASCUAL,	J.,	ZAMORA,	J.	&	PIRSCH,	J.	D.	2008.	A	systematic	review	of	kidney	
transplantation	from	expanded	criteria	donors.	Am	J	Kidney	Dis,	52,	553-
86.	



	 268	

PATSCHAN,	D.,	PLOTKIN,	M.	&	GOLIGORSKY,	M.	S.	2006.	Therapeutic	use	of	stem	
and	endothelial	progenitor	cells	in	acute	renal	injury:	ca	ira.	Curr	Opin	
Pharmacol,	6,	176-83.	

PAYNE,	A.	P.,	CAMPBELL,	J.	M.,	RUSSELL,	D.,	FAVOR,	G.,	SUTCLIFFE,	R.	G.,	
BENNETT,	N.	K.,	DAVIES,	R.	W.	&	STONE,	T.	W.	2000.	The	AS/AGU	rat:	a	
spontaneous	model	of	disruption	and	degeneration	in	the	nigrostriatal	
dopaminergic	system.	J	Anat,	196	(	Pt	4),	629-33.	

PENG,	Y.,	KE,	M.,	XU,	L.,	LIU,	L.,	CHEN,	X.,	XIA,	W.,	LI,	X.,	CHEN,	Z.,	MA,	J.,	LIAO,	D.,	
LI,	G.,	FANG,	J.,	PAN,	G.	&	XIANG,	A.	P.	2013.	Donor-derived	mesenchymal	
stem	cells	combined	with	low-dose	tacrolimus	prevent	acute	rejection	
after	renal	transplantation:	a	clinical	pilot	study.	Transplantation,	95,	161-
8.	

PERERA,	M.	T.	2012.	The	super-rapid	technique	in	Maastricht	category	III	
donors:	has	it	developed	enough	for	marginal	liver	grafts	from	donors	
after	cardiac	death?	Curr	Opin	Organ	Transplant,	17,	131-6.	

PEREZ-RUIZ,	L.,	ROS-LOPEZ,	S.,	CARDUS,	A.,	FERNANDEZ,	E.	&	VALDIVIELSO,	J.	
M.	2006.	A	forgotten	method	to	induce	experimental	chronic	renal	failure	
in	the	rat	by	ligation	of	the	renal	parenchyma.	Nephron	Exp	Nephrol,	103,	
e126-30.	

PERICO,	N.,	CASIRAGHI,	F.,	INTRONA,	M.,	GOTTI,	E.,	TODESCHINI,	M.,	CAVINATO,	
R.	A.,	CAPELLI,	C.,	RAMBALDI,	A.,	CASSIS,	P.,	RIZZO,	P.,	CORTINOVIS,	M.,	
MARASA,	M.,	GOLAY,	J.,	NORIS,	M.	&	REMUZZI,	G.	2011.	Autologous	
mesenchymal	stromal	cells	and	kidney	transplantation:	a	pilot	study	of	
safety	and	clinical	feasibility.	Clin	J	Am	Soc	Nephrol,	6,	412-22.	

PIETSCH,	A.,	NETT,	P.	C.,	SOLLINGER,	H.	W.	&	HULLETT,	D.	A.	2004.	Modified	
technique	of	ureteroureterostomy	in	rat	kidney	transplantation.	
Microsurgery,	24,	345-9.	

PILEGGI,	A.,	XU,	X.,	TAN,	J.	&	RICORDI,	C.	2013.	Mesenchymal	stromal	(stem)	cells	
to	improve	solid	organ	transplant	outcome:	lessons	from	the	initial	
clinical	trials.	Curr	Opin	Organ	Transplant,	18,	672-81.	

PILZER,	D.,	GASSER,	O.,	MOSKOVICH,	O.,	SCHIFFERLI,	J.	A.	&	FISHELSON,	Z.	2005.	
Emission	of	membrane	vesicles:	roles	in	complement	resistance,	
immunity	and	cancer.	Springer	Semin	Immunopathol,	27,	375-87.	

PIPPIAS,	M.,	STEL,	V.	S.,	ABAD	DIEZ,	J.	M.,	AFENTAKIS,	N.,	HERRERO-CALVO,	J.	A.,	
ARIAS,	M.,	TOMILINA,	N.,	BOUZAS	CAAMANO,	E.,	BUTUROVIC-PONIKVAR,	
J.,	CALA,	S.,	CASKEY,	F.	J.,	CASTRO	DE	LA	NUEZ,	P.,	CERNEVSKIS,	H.,	
COLLART,	F.,	ALONSO	DE	LA	TORRE,	R.,	GARCIA	BAZAGA	MDE,	L.,	DE	
MEESTER,	J.,	DIAZ,	J.	M.,	DJUKANOVIC,	L.,	FERRER	ALAMAR,	M.,	FINNE,	P.,	
GARNEATA,	L.,	GOLAN,	E.,	GONZALEZ	FERNANDEZ,	R.,	GUTIERREZ	
AVILA,	G.,	HEAF,	J.,	HOITSMA,	A.,	KANTARIA,	N.,	KOLESNYK,	M.,	KRAMAR,	
R.,	KRAMER,	A.,	LASSALLE,	M.,	LEIVESTAD,	T.,	LOPOT,	F.,	MACARIO,	F.,	
MAGAZ,	A.,	MARTIN-ESCOBAR,	E.,	METCALFE,	W.,	NOORDZIJ,	M.,	
PALSSON,	R.,	PECHTER,	U.,	PRUTZ,	K.	G.,	RATKOVIC,	M.,	RESIC,	H.,	
RUTKOWSKI,	B.,	SANTIUSTE	DE	PABLOS,	C.,	SPUSTOVA,	V.,	
SULEYMANLAR,	G.,	VAN	STRALEN,	K.,	THERESKA,	N.,	WANNER,	C.	&	
JAGER,	K.	J.	2015.	Renal	replacement	therapy	in	Europe:	a	summary	of	the	
2012	ERA-EDTA	Registry	Annual	Report.	Clin	Kidney	J,	8,	248-61.	

POMFRET,	E.	A.,	SUNG,	R.	S.,	ALLAN,	J.,	KINKHABWALA,	M.,	MELANCON,	J.	K.	&	
ROBERTS,	J.	P.	2008.	Solving	the	organ	shortage	crisis:	the	7th	annual	



	 269	

American	Society	of	Transplant	Surgeons'	State-of-the-Art	Winter	
Symposium.	Am	J	Transplant,	8,	745-52.	

PONTICELLI,	C.	E.	2015.	The	impact	of	cold	ischemia	time	on	renal	transplant	
outcome.	Kidney	Int,	87,	272-5.	

PORT,	F.	K.	2003.	Organ	donation	and	transplantation	trends	in	the	United	
States,	2001.	Am	J	Transplant,	3	Suppl	4,	7-12.	

PORT,	F.	K.,	BRAGG-GRESHAM,	J.	L.,	METZGER,	R.	A.,	DYKSTRA,	D.	M.,	GILLESPIE,	
B.	W.,	YOUNG,	E.	W.,	DELMONICO,	F.	L.,	WYNN,	J.	J.,	MERION,	R.	M.,	
WOLFE,	R.	A.	&	HELD,	P.	J.	2002.	Donor	characteristics	associated	with	
reduced	graft	survival:	an	approach	to	expanding	the	pool	of	kidney	
donors.	Transplantation,	74,	1281-6.	

PORT,	F.	K.,	WOLFE,	R.	A.,	MAUGER,	E.	A.,	BERLING,	D.	P.	&	JIANG,	K.	1993.	
Comparison	of	survival	probabilities	for	dialysis	patients	vs	cadaveric	
renal	transplant	recipients.	JAMA,	270,	1339-43.	

POTTEN,	C.	S.	&	LOEFFLER,	M.	1990.	Stem	cells:	attributes,	cycles,	spirals,	pitfalls	
and	uncertainties.	Lessons	for	and	from	the	crypt.	Development,	110,	
1001-20.	

POWELL,	J.	T.,	TSAPEPAS,	D.	S.,	MARTIN,	S.	T.,	HARDY,	M.	A.	&	RATNER,	L.	E.	
2013.	Managing	renal	transplant	ischemia	reperfusion	injury:	novel	
therapies	in	the	pipeline.	Clin	Transplant,	27,	484-91.	

PRATSCHKE,	J.,	WILHELM,	M.	J.,	LASKOWSKI,	I.,	KUSAKA,	M.,	PAZ,	D.,	TULLIUS,	S.	
G.,	NEUHAUS,	P.,	HANCOCK,	W.	W.	&	TILNEY,	N.	L.	2001.	The	influence	of	
donor	brain	death	on	long-term	function	of	renal	allotransplants	in	rats.	
Transplant	Proc,	33,	693-4.	

PRESCOTT,	L.	F.	1966.	The	normal	urinary	excretion	rates	of	renal	tubular	cells,	
leucocytes	and	red	blood	cells.	Clin	Sci,	31,	425-35.	

PRUTHI,	R.,	STEENKAMP,	R.	&	FEEST,	T.	2013.	UK	Renal	Registry	16th	annual	
report:	chapter	8	survival	and	cause	of	death	of	UK	adult	patients	on	renal	
replacement	therapy	in	2012:	national	and	centre-specific	analyses.	
Nephron	Clin	Pract,	125,	139-69.	

QI,	Z.,	WHITT,	I.,	MEHTA,	A.,	JIN,	J.,	ZHAO,	M.,	HARRIS,	R.	C.,	FOGO,	A.	B.	&	
BREYER,	M.	D.	2004.	Serial	determination	of	glomerular	filtration	rate	in	
conscious	mice	using	FITC-inulin	clearance.	Am	J	Physiol	Renal	Physiol,	
286,	F590-6.	

QUESENBERRY,	P.	J.,	GOLDBERG,	L.	R.,	ALIOTTA,	J.	M.,	DOONER,	M.	S.,	PEREIRA,	
M.	G.,	WEN,	S.	&	CAMUSSI,	G.	2014.	Cellular	phenotype	and	extracellular	
vesicles:	basic	and	clinical	considerations.	Stem	Cells	Dev,	23,	1429-36.	

RANI,	S.,	RYAN,	A.	E.,	GRIFFIN,	M.	D.	&	RITTER,	T.	2015.	Mesenchymal	Stem	Cell-
derived	Extracellular	Vesicles:	Toward	Cell-free	Therapeutic	Applications.	
Mol	Ther,	23,	812-23.	

RAO,	M.	S.	&	MALIK,	N.	2012.	Assessing	iPSC	reprogramming	methods	for	their	
suitability	in	translational	medicine.	J	Cell	Biochem,	113,	3061-8.	

RAO,	P.	S.,	MERION,	R.	M.,	ASHBY,	V.	B.,	PORT,	F.	K.,	WOLFE,	R.	A.	&	KAYLER,	L.	K.	
2007.	Renal	transplantation	in	elderly	patients	older	than	70	years	of	age:	
results	from	the	Scientific	Registry	of	Transplant	Recipients.	
Transplantation,	83,	1069-74.	

RAPOSO,	G.	&	STOORVOGEL,	W.	2013.	Extracellular	vesicles:	exosomes,	
microvesicles,	and	friends.	J	Cell	Biol,	200,	373-83.	



	 270	

RATAJCZAK,	J.,	MIEKUS,	K.,	KUCIA,	M.,	ZHANG,	J.,	RECA,	R.,	DVORAK,	P.	&	
RATAJCZAK,	M.	Z.	2006a.	Embryonic	stem	cell-derived	microvesicles	
reprogram	hematopoietic	progenitors:	evidence	for	horizontal	transfer	of	
mRNA	and	protein	delivery.	Leukemia,	20,	847-56.	

RATAJCZAK,	J.,	WYSOCZYNSKI,	M.,	HAYEK,	F.,	JANOWSKA-WIECZOREK,	A.	&	
RATAJCZAK,	M.	Z.	2006b.	Membrane-derived	microvesicles:	important	
and	underappreciated	mediators	of	cell-to-cell	communication.	Leukemia,	
20,	1487-95.	

RAVIKUMAR,	R.,	JASSEM,	W.,	MERGENTAL,	H.,	HEATON,	N.,	MIRZA,	D.,	PERERA,	
M.	T.,	QUAGLIA,	A.,	HOLROYD,	D.,	VOGEL,	T.,	COUSSIOS,	C.	C.	&	FRIEND,	P.	
J.	2016.	Liver	Transplantation	After	Ex	Vivo	Normothermic	Machine	
Preservation:	A	Phase	1	(First-in-Man)	Clinical	Trial.	Am	J	Transplant,	16,	
1779-87.	

REINDERS,	M.	E.,	DE	FIJTER,	J.	W.,	ROELOFS,	H.,	BAJEMA,	I.	M.,	DE	VRIES,	D.	K.,	
SCHAAPHERDER,	A.	F.,	CLAAS,	F.	H.,	VAN	MIERT,	P.	P.,	ROELEN,	D.	L.,	VAN	
KOOTEN,	C.,	FIBBE,	W.	E.	&	RABELINK,	T.	J.	2013.	Autologous	bone	
marrow-derived	mesenchymal	stromal	cells	for	the	treatment	of	allograft	
rejection	after	renal	transplantation:	results	of	a	phase	I	study.	Stem	Cells	
Transl	Med,	2,	107-11.	

REN,	G.,	ZHAO,	X.,	WANG,	Y.,	ZHANG,	X.,	CHEN,	X.,	XU,	C.,	YUAN,	Z.	R.,	ROBERTS,	A.	
I.,	ZHANG,	L.,	ZHENG,	B.,	WEN,	T.,	HAN,	Y.,	RABSON,	A.	B.,	TISCHFIELD,	J.	
A.,	SHAO,	C.	&	SHI,	Y.	2012.	CCR2-dependent	recruitment	of	macrophages	
by	tumor-educated	mesenchymal	stromal	cells	promotes	tumor	
development	and	is	mimicked	by	TNFalpha.	Cell	Stem	Cell,	11,	812-24.	

REN,	G.,	ZHAO,	X.,	ZHANG,	L.,	ZHANG,	J.,	L'HUILLIER,	A.,	LING,	W.,	ROBERTS,	A.	I.,	
LE,	A.	D.,	SHI,	S.,	SHAO,	C.	&	SHI,	Y.	2010.	Inflammatory	cytokine-induced	
intercellular	adhesion	molecule-1	and	vascular	cell	adhesion	molecule-1	
in	mesenchymal	stem	cells	are	critical	for	immunosuppression.	J	Immunol,	
184,	2321-8.	

RENKENS,	J.	J.,	ROUFLART,	M.	M.,	CHRISTIAANS,	M.	H.,	VAN	DEN	BERG-LOONEN,	
E.	M.,	VAN	HOOFF,	J.	P.	&	VAN	HEURN,	L.	W.	2005.	Outcome	of	nonheart-
beating	donor	kidneys	with	prolonged	delayed	graft	function	after	
transplantation.	Am	J	Transplant,	5,	2704-9.	

REULE,	S.	&	GUPTA,	S.	2011.	Kidney	regeneration	and	resident	stem	cells.	
Organogenesis,	7,	135-9.	

RICARDO,	S.	D.,	VAN	GOOR,	H.	&	EDDY,	A.	A.	2008.	Macrophage	diversity	in	renal	
injury	and	repair.	J	Clin	Invest,	118,	3522-30.	

RICCI,	Z.,	CRUZ,	D.	&	RONCO,	C.	2008.	The	RIFLE	criteria	and	mortality	in	acute	
kidney	injury:	A	systematic	review.	Kidney	Int,	73,	538-46.	

ROBBINS,	P.	D.	&	MORELLI,	A.	E.	2014.	Regulation	of	immune	responses	by	
extracellular	vesicles.	Nat	Rev	Immunol,	14,	195-208.	

ROEMELING-VAN	RHIJN,	M.,	REINDERS,	M.	E.,	DE	KLEIN,	A.,	DOUBEN,	H.,	
KOREVAAR,	S.	S.,	MENSAH,	F.	K.,	DOR,	F.	J.,	JN,	I.	J.,	BETJES,	M.	G.,	BAAN,	C.	
C.,	WEIMAR,	W.	&	HOOGDUIJN,	M.	J.	2012.	Mesenchymal	stem	cells	
derived	from	adipose	tissue	are	not	affected	by	renal	disease.	Kidney	Int,	
82,	748-58.	

ROMAGNANI,	P.	2009.	Toward	the	identification	of	a	"renopoietic	system"?	Stem	
Cells,	27,	2247-53.	



	 271	

RONCONI,	E.,	SAGRINATI,	C.,	ANGELOTTI,	M.	L.,	LAZZERI,	E.,	MAZZINGHI,	B.,	
BALLERINI,	L.,	PARENTE,	E.,	BECHERUCCI,	F.,	GACCI,	M.,	CARINI,	M.,	
MAGGI,	E.,	SERIO,	M.,	VANNELLI,	G.	B.,	LASAGNI,	L.,	ROMAGNANI,	S.	&	
ROMAGNANI,	P.	2009.	Regeneration	of	glomerular	podocytes	by	human	
renal	progenitors.	J	Am	Soc	Nephrol,	20,	322-32.	

ROSLAND,	G.	V.,	SVENDSEN,	A.,	TORSVIK,	A.,	SOBALA,	E.,	MCCORMACK,	E.,	
IMMERVOLL,	H.,	MYSLIWIETZ,	J.,	TONN,	J.	C.,	GOLDBRUNNER,	R.,	
LONNING,	P.	E.,	BJERKVIG,	R.	&	SCHICHOR,	C.	2009.	Long-term	cultures	of	
bone	marrow-derived	human	mesenchymal	stem	cells	frequently	
undergo	spontaneous	malignant	transformation.	Cancer	Res,	69,	5331-9.	

ROTHKOTTER,	H.	J.	2009.	Anatomical	particularities	of	the	porcine	immune	
system--a	physician's	view.	Dev	Comp	Immunol,	33,	267-72.	

ROUFOSSE,	C.	&	COOK,	H.	T.	2008.	Stem	cells	and	renal	regeneration.	Nephron	
Exp	Nephrol,	109,	e39-45.	

ROZMYSLOWICZ,	T.,	MAJKA,	M.,	KIJOWSKI,	J.,	MURPHY,	S.	L.,	CONOVER,	D.	O.,	
PONCZ,	M.,	RATAJCZAK,	J.,	GAULTON,	G.	N.	&	RATAJCZAK,	M.	Z.	2003.	
Platelet-	and	megakaryocyte-derived	microparticles	transfer	CXCR4	
receptor	to	CXCR4-null	cells	and	make	them	susceptible	to	infection	by	
X4-HIV.	AIDS,	17,	33-42.	

RUBIO,	D.,	GARCIA,	S.,	PAZ,	M.	F.,	DE	LA	CUEVA,	T.,	LOPEZ-FERNANDEZ,	L.	A.,	
LLOYD,	A.	C.,	GARCIA-CASTRO,	J.	&	BERNAD,	A.	2008.	Molecular	
characterization	of	spontaneous	mesenchymal	stem	cell	transformation.	
PLoS	One,	3,	e1398.	

RUBIO,	D.,	GARCIA-CASTRO,	J.,	MARTIN,	M.	C.,	DE	LA	FUENTE,	R.,	CIGUDOSA,	J.	C.,	
LLOYD,	A.	C.	&	BERNAD,	A.	2005.	Spontaneous	human	adult	stem	cell	
transformation.	Cancer	Res,	65,	3035-9.	

RUSTER,	B.,	GOTTIG,	S.,	LUDWIG,	R.	J.,	BISTRIAN,	R.,	MULLER,	S.,	SEIFRIED,	E.,	
GILLE,	J.	&	HENSCHLER,	R.	2006.	Mesenchymal	stem	cells	display	
coordinated	rolling	and	adhesion	behavior	on	endothelial	cells.	Blood,	
108,	3938-44.	

SAAT,	T.	C.,	VAN	DEN	AKKER,	E.	K.,	JN,	I.	J.,	DOR,	F.	J.	&	DE	BRUIN,	R.	W.	2016.	
Improving	the	outcome	of	kidney	transplantation	by	ameliorating	renal	
ischemia	reperfusion	injury:	lost	in	translation?	J	Transl	Med,	14,	20.	

SACKSTEIN,	R.,	MERZABAN,	J.	S.,	CAIN,	D.	W.,	DAGIA,	N.	M.,	SPENCER,	J.	A.,	LIN,	C.	
P.	&	WOHLGEMUTH,	R.	2008.	Ex	vivo	glycan	engineering	of	CD44	
programs	human	multipotent	mesenchymal	stromal	cell	trafficking	to	
bone.	Nat	Med,	14,	181-7.	

SAGRINATI,	C.,	NETTI,	G.	S.,	MAZZINGHI,	B.,	LAZZERI,	E.,	LIOTTA,	F.,	FROSALI,	F.,	
RONCONI,	E.,	MEINI,	C.,	GACCI,	M.,	SQUECCO,	R.,	CARINI,	M.,	GESUALDO,	
L.,	FRANCINI,	F.,	MAGGI,	E.,	ANNUNZIATO,	F.,	LASAGNI,	L.,	SERIO,	M.,	
ROMAGNANI,	S.	&	ROMAGNANI,	P.	2006.	Isolation	and	characterization	of	
multipotent	progenitor	cells	from	the	Bowman's	capsule	of	adult	human	
kidneys.	J	Am	Soc	Nephrol,	17,	2443-56.	

SAIKUMAR,	P.	&	VENKATACHALAM,	M.	A.	2003.	Role	of	apoptosis	in	
hypoxic/ischemic	damage	in	the	kidney.	Semin	Nephrol,	23,	511-21.	

SALAHUDEEN,	A.	K.	2004.	Cold	ischemic	injury	of	transplanted	kidneys:	new	
insights	from	experimental	studies.	Am	J	Physiol	Renal	Physiol,	287,	F181-
7.	



	 272	

SANCHEZ-FRUCTUOSO,	A.	I.,	DE	MIGUEL	MARQUES,	M.,	PRATS,	D.	&	
BARRIENTOS,	A.	2003.	Non-heart-beating	donors:	experience	from	the	
Hospital	Clinico	of	Madrid.	J	Nephrol,	16,	387-92.	

SCHENKE-LAYLAND,	K.,	STREM,	B.	M.,	JORDAN,	M.	C.,	DEEMEDIO,	M.	T.,	
HEDRICK,	M.	H.,	ROOS,	K.	P.,	FRASER,	J.	K.	&	MACLELLAN,	W.	R.	2009.	
Adipose	tissue-derived	cells	improve	cardiac	function	following	
myocardial	infarction.	J	Surg	Res,	153,	217-23.	

SCHIEVINK,	W.	I.,	LUYENDIJK,	W.	&	LOS,	J.	A.	1988.	Does	the	artery	of	
Adamkiewicz	exist	in	the	albino	rat?	J	Anat,	161,	95-101.	

SCHNUELLE,	P.,	LORENZ,	D.,	TREDE,	M.	&	VAN	DER	WOUDE,	F.	J.	1998.	Impact	of	
renal	cadaveric	transplantation	on	survival	in	end-stage	renal	failure:	
evidence	for	reduced	mortality	risk	compared	with	hemodialysis	during	
long-term	follow-up.	J	Am	Soc	Nephrol,	9,	2135-41.	

SCHOCK-KUSCH,	D.,	SHULHEVICH,	Y.,	XIE,	Q.,	HESSER,	J.,	STSEPANKOU,	D.,	
NEUDECKER,	S.,	FRIEDEMANN,	J.,	KOENIG,	S.,	HEINRICH,	R.,	HOECKLIN,	
F.,	PILL,	J.	&	GRETZ,	N.	2012.	Online	feedback-controlled	renal	constant	
infusion	clearances	in	rats.	Kidney	Int,	82,	314-20.	

SCHOCK-KUSCH,	D.,	XIE,	Q.,	SHULHEVICH,	Y.,	HESSER,	J.,	STSEPANKOU,	D.,	
SADICK,	M.,	KOENIG,	S.,	HOECKLIN,	F.,	PILL,	J.	&	GRETZ,	N.	2011.	
Transcutaneous	assessment	of	renal	function	in	conscious	rats	with	a	
device	for	measuring	FITC-sinistrin	disappearance	curves.	Kidney	Int,	79,	
1254-8.	

SCHOLD,	J.	D.,	KAPLAN,	B.,	BALIGA,	R.	S.	&	MEIER-KRIESCHE,	H.	U.	2005.	The	
broad	spectrum	of	quality	in	deceased	donor	kidneys.	Am	J	Transplant,	5,	
757-65.	

SCHREPFER,	S.,	DEUSE,	T.,	REICHENSPURNER,	H.,	FISCHBEIN,	M.	P.,	ROBBINS,	R.	
C.	&	PELLETIER,	M.	P.	2007.	Stem	cell	transplantation:	the	lung	barrier.	
Transplant	Proc,	39,	573-6.	

SCHUMACHER,	M.,	VAN	VLIET,	B.	N.	&	FERRARI,	P.	2003.	Kidney	transplantation	
in	rats:	an	appraisal	of	surgical	techniques	and	outcome.	Microsurgery,	23,	
387-94.	

SCHUTGENS,	F.,	VERHAAR,	M.	C.	&	ROOKMAAKER,	M.	B.	2016.	Pluripotent	stem	
cell-derived	kidney	organoids:	An	in	vivo-like	in	vitro	technology.	Eur	J	
Pharmacol,	790,	12-20.	

SERRANO,	M.,	LEE,	H.,	CHIN,	L.,	CORDON-CARDO,	C.,	BEACH,	D.	&	DEPINHO,	R.	A.	
1996.	Role	of	the	INK4a	locus	in	tumor	suppression	and	cell	mortality.	
Cell,	85,	27-37.	

SHAKE,	J.	G.,	GRUBER,	P.	J.,	BAUMGARTNER,	W.	A.,	SENECHAL,	G.,	MEYERS,	J.,	
REDMOND,	J.	M.,	PITTENGER,	M.	F.	&	MARTIN,	B.	J.	2002.	Mesenchymal	
stem	cell	implantation	in	a	swine	myocardial	infarct	model:	engraftment	
and	functional	effects.	Ann	Thorac	Surg,	73,	1919-25;	discussion	1926.	

SHARKEY,	J.,	SCARFE,	L.,	SANTERAMO,	I.,	GARCIA-FINANA,	M.,	PARK,	B.	K.,	
POPTANI,	H.,	WILM,	B.,	TAYLOR,	A.	&	MURRAY,	P.	2016.	Imaging	
technologies	for	monitoring	the	safety,	efficacy	and	mechanisms	of	action	
of	cell-based	regenerative	medicine	therapies	in	models	of	kidney	disease.	
Eur	J	Pharmacol,	790,	74-82.	

SHARMARLOUSKI	A,	S.	Y.,	GERACI	S,	FRIEDEMANN	J,	GRETZ	N,	NEUDECKER	S,	
HESSER	J,	STSEPANKOU	D.	2014.	Automatic	artifact	removal	from	GFR	
measurements.	Biomed	Signal	Process	Control,	14,	30	-	41.	



	 273	

SHEASHAA,	H.,	LOTFY,	A.,	ELHUSSEINI,	F.,	AZIZ,	A.	A.,	BAIOMY,	A.,	AWAD,	S.,	
ALSAYED,	A.,	EL-GILANY,	A.	H.,	SAAD,	M.	A.,	MAHMOUD,	K.,	ZAHRAN,	F.,	
SALEM,	D.	A.,	SARHAN,	A.,	GHAFFAR,	H.	A.	&	SOBH,	M.	2016.	Protective	
effect	of	adipose-derived	mesenchymal	stem	cells	against	acute	kidney	
injury	induced	by	ischemia-reperfusion	in	Sprague-Dawley	rats.	Exp	Ther	
Med,	11,	1573-1580.	

SHERIDAN,	A.	M.	&	BONVENTRE,	J.	V.	2000.	Cell	biology	and	molecular	
mechanisms	of	injury	in	ischemic	acute	renal	failure.	Curr	Opin	Nephrol	
Hypertens,	9,	427-34.	

SHI,	M.,	LI,	J.,	LIAO,	L.,	CHEN,	B.,	LI,	B.,	CHEN,	L.,	JIA,	H.	&	ZHAO,	R.	C.	2007.	
Regulation	of	CXCR4	expression	in	human	mesenchymal	stem	cells	by	
cytokine	treatment:	role	in	homing	efficiency	in	NOD/SCID	mice.	
Haematologica,	92,	897-904.	

SHIH,	Y.	C.,	LEE,	P.	Y.,	CHENG,	H.,	TSAI,	C.	H.,	MA,	H.	&	TARNG,	D.	C.	2013.	
Adipose-derived	stem	cells	exhibit	antioxidative	and	antiapoptotic	
properties	to	rescue	ischemic	acute	kidney	injury	in	rats.	Plast	Reconstr	
Surg,	132,	940e-51e.	

SHRESTHA,	B.	&	HAYLOR,	J.	2014.	Experimental	rat	models	of	chronic	allograft	
nephropathy:	a	review.	Int	J	Nephrol	Renovasc	Dis,	7,	315-22.	

SIDOROVA,	V.	1978.	The	postnatal	growth	and	restoration	ofinternal	organs	in	
vertebrates.,	PSG	Publishing	Compnay,	Inc.	

SIEKEVITZ,	P.	1972.	Biological	membranes:	the	dynamics	of	their	organization.	
Annu	Rev	Physiol,	34,	117-40.	

SIMMONS,	M.	N.,	SCHREIBER,	M.	J.	&	GILL,	I.	S.	2008.	Surgical	renal	ischemia:	a	
contemporary	overview.	J	Urol,	180,	19-30.	

SIMMONS,	R.	G.,	ANDERSON,	C.	R.	&	ABRESS,	L.	K.	1990.	Quality	of	life	and	
rehabilitation	differences	among	four	end-stage	renal	disease	therapy	
groups.	Scand	J	Urol	Nephrol	Suppl,	131,	7-22.	

SINGH,	A.	P.,	JUNEMANN,	A.,	MUTHURAMAN,	A.,	JAGGI,	A.	S.,	SINGH,	N.,	GROVER,	
K.	&	DHAWAN,	R.	2012.	Animal	models	of	acute	renal	failure.	Pharmacol	
Rep,	64,	31-44.	

SINGH,	R.	P.,	FARNEY,	A.	C.,	ROGERS,	J.,	ZUCKERMAN,	J.,	REEVES-DANIEL,	A.,	
HARTMANN,	E.,	ISKANDAR,	S.,	ADAMS,	P.	&	STRATTA,	R.	J.	2011.	Kidney	
transplantation	from	donation	after	cardiac	death	donors:	lack	of	impact	
of	delayed	graft	function	on	post-transplant	outcomes.	Clin	Transplant,	
25,	255-64.	

SKRYPNYK,	N.	I.,	HARRIS,	R.	C.	&	DE	CAESTECKER,	M.	P.	2013.	Ischemia-
reperfusion	model	of	acute	kidney	injury	and	post	injury	fibrosis	in	mice.	J	
Vis	Exp.	

SMOGORZEWSKA,	A.	&	DE	LANGE,	T.	2002.	Different	telomere	damage	signaling	
pathways	in	human	and	mouse	cells.	EMBO	J,	21,	4338-48.	

SNOEIJS,	M.	G.,	SCHAUBEL,	D.	E.,	HENE,	R.,	HOITSMA,	A.	J.,	IDU,	M.	M.,	
IJZERMANS,	J.	N.,	PLOEG,	R.	J.,	RINGERS,	J.,	CHRISTIAANS,	M.	H.,	
BUURMAN,	W.	A.	&	VAN	HEURN,	L.	W.	2010a.	Kidneys	from	donors	after	
cardiac	death	provide	survival	benefit.	J	Am	Soc	Nephrol,	21,	1015-21.	

SNOEIJS,	M.	G.,	WINKENS,	B.,	HEEMSKERK,	M.	B.,	HOITSMA,	A.	J.,	CHRISTIAANS,	
M.	H.,	BUURMAN,	W.	A.	&	VAN	HEURN,	L.	W.	2010b.	Kidney	
transplantation	from	donors	after	cardiac	death:	a	25-year	experience.	
Transplantation,	90,	1106-12.	



	 274	

SONG,	J.,	CZERNIAK,	S.,	WANG,	T.,	YING,	W.,	CARLONE,	D.	L.,	BREAULT,	D.	T.	&	
HUMPHREYS,	B.	D.	2011.	Characterization	and	fate	of	telomerase-
expressing	epithelia	during	kidney	repair.	J	Am	Soc	Nephrol,	22,	2256-65.	

SPAGGIARI,	G.	M.,	CAPOBIANCO,	A.,	BECCHETTI,	S.,	MINGARI,	M.	C.	&	MORETTA,	
L.	2006.	Mesenchymal	stem	cell-natural	killer	cell	interactions:	evidence	
that	activated	NK	cells	are	capable	of	killing	MSCs,	whereas	MSCs	can	
inhibit	IL-2-induced	NK-cell	proliferation.	Blood,	107,	1484-90.	

SPANJOL,	J.,	CELIC,	T.,	JAKLJEVIC,	T.,	IVANCIC,	A.	&	MARKIC,	D.	2011.	Surgical	
technique	in	the	rat	model	of	kidney	transplantation.	Coll	Antropol,	35	
Suppl	2,	87-90.	

SPRADLING,	A.,	DRUMMOND-BARBOSA,	D.	&	KAI,	T.	2001.	Stem	cells	find	their	
niche.	Nature,	414,	98-104.	

STEVENSON,	K.,	CHEN,	D.,	MACINTYRE,	A.,	MCGLYNN,	L.	M.,	MONTAGUE,	P.,	
CHARIF,	R.,	SUBRAMANIAM,	M.,	GEORGE,	W.	D.,	PAYNE,	A.	P.,	DAVIES,	R.	
W.,	DORLING,	A.	&	SHIELS,	P.	G.	2011.	Pancreatic-derived	pathfinder	cells	
enable	regeneration	of	critically	damaged	adult	pancreatic	tissue	and	
completely	reverse	streptozotocin-induced	diabetes.	Rejuvenation	Res,	14,	
163-71.	

STEVENSON,	K.	S.,	MCGLYNN,	L.,	HODGE,	M.,	MCLINDEN,	H.,	GEORGE,	W.	D.,	
DAVIES,	R.	W.	&	SHIELS,	P.	G.	2009.	Isolation,	characterization,	and	
differentiation	of	thy1.1-sorted	pancreatic	adult	progenitor	cell	
populations.	Stem	Cells	Dev,	18,	1389-98.	

STUDENY,	M.,	MARINI,	F.	C.,	CHAMPLIN,	R.	E.,	ZOMPETTA,	C.,	FIDLER,	I.	J.	&	
ANDREEFF,	M.	2002.	Bone	marrow-derived	mesenchymal	stem	cells	as	
vehicles	for	interferon-beta	delivery	into	tumors.	Cancer	Res,	62,	3603-8.	

STURGEON,	C.,	SAM,	A.	D.,	2ND	&	LAW,	W.	R.	1998.	Rapid	determination	of	
glomerular	filtration	rate	by	single-bolus	inulin:	a	comparison	of	
estimation	analyses.	J	Appl	Physiol	(1985),	84,	2154-62.	

SUMMERS,	D.	M.,	JOHNSON,	R.	J.,	ALLEN,	J.,	FUGGLE,	S.	V.,	COLLETT,	D.,	WATSON,	
C.	J.	&	BRADLEY,	J.	A.	2010.	Analysis	of	factors	that	affect	outcome	after	
transplantation	of	kidneys	donated	after	cardiac	death	in	the	UK:	a	cohort	
study.	Lancet,	376,	1303-11.	

SUMMERS,	D.	M.,	JOHNSON,	R.	J.,	HUDSON,	A.,	COLLETT,	D.,	WATSON,	C.	J.	&	
BRADLEY,	J.	A.	2013.	Effect	of	donor	age	and	cold	storage	time	on	
outcome	in	recipients	of	kidneys	donated	after	circulatory	death	in	the	
UK:	a	cohort	study.	Lancet,	381,	727-34.	

SURANI,	M.	A.	2001.	Reprogramming	of	genome	function	through	epigenetic	
inheritance.	Nature,	414,	122-8.	

SUTTON,	T.	A.,	FISHER,	C.	J.	&	MOLITORIS,	B.	A.	2002.	Microvascular	endothelial	
injury	and	dysfunction	during	ischemic	acute	renal	failure.	Kidney	Int,	62,	
1539-49.	

TABERA,	S.,	PEREZ-SIMON,	J.	A.,	DIEZ-CAMPELO,	M.,	SANCHEZ-ABARCA,	L.	I.,	
BLANCO,	B.,	LOPEZ,	A.,	BENITO,	A.,	OCIO,	E.,	SANCHEZ-GUIJO,	F.	M.,	
CANIZO,	C.	&	SAN	MIGUEL,	J.	F.	2008.	The	effect	of	mesenchymal	stem	
cells	on	the	viability,	proliferation	and	differentiation	of	B-lymphocytes.	
Haematologica,	93,	1301-9.	

TAIRA,	Y.	&	MARSALA,	M.	1996.	Effect	of	proximal	arterial	perfusion	pressure	on	
function,	spinal	cord	blood	flow,	and	histopathologic	changes	after	
increasing	intervals	of	aortic	occlusion	in	the	rat.	Stroke,	27,	1850-8.	



	 275	

TAKAHASHI,	K.	&	YAMANAKA,	S.	2006.	Induction	of	pluripotent	stem	cells	from	
mouse	embryonic	and	adult	fibroblast	cultures	by	defined	factors.	Cell,	
126,	663-76.	

TAKASATO,	M.,	ER,	P.	X.,	CHIU,	H.	S.	&	LITTLE,	M.	H.	2016a.	Generation	of	kidney	
organoids	from	human	pluripotent	stem	cells.	Nat	Protoc,	11,	1681-92.	

TAKASATO,	M.,	ER,	P.	X.,	CHIU,	H.	S.,	MAIER,	B.,	BAILLIE,	G.	J.,	FERGUSON,	C.,	
PARTON,	R.	G.,	WOLVETANG,	E.	J.,	ROOST,	M.	S.,	LOPES,	S.	M.	&	LITTLE,	M.	
H.	2016b.	Kidney	organoids	from	human	iPS	cells	contain	multiple	
lineages	and	model	human	nephrogenesis.	Nature,	536,	238.	

TAN,	J.,	WU,	W.,	XU,	X.,	LIAO,	L.,	ZHENG,	F.,	MESSINGER,	S.,	SUN,	X.,	CHEN,	J.,	
YANG,	S.,	CAI,	J.,	GAO,	X.,	PILEGGI,	A.	&	RICORDI,	C.	2012.	Induction	
therapy	with	autologous	mesenchymal	stem	cells	in	living-related	kidney	
transplants:	a	randomized	controlled	trial.	JAMA,	307,	1169-77.	

TAYLOR,	D.	D.	&	SHAH,	S.	2015.	Methods	of	isolating	extracellular	vesicles	impact	
down-stream	analyses	of	their	cargoes.	Methods,	87,	3-10.	

TERADA,	N.,	HAMAZAKI,	T.,	OKA,	M.,	HOKI,	M.,	MASTALERZ,	D.	M.,	NAKANO,	Y.,	
MEYER,	E.	M.,	MOREL,	L.,	PETERSEN,	B.	E.	&	SCOTT,	E.	W.	2002.	Bone	
marrow	cells	adopt	the	phenotype	of	other	cells	by	spontaneous	cell	
fusion.	Nature,	416,	542-5.	

THERY,	C.,	OSTROWSKI,	M.	&	SEGURA,	E.	2009.	Membrane	vesicles	as	conveyors	
of	immune	responses.	Nat	Rev	Immunol,	9,	581-93.	

THUILLIER,	R.,	FAVREAU,	F.,	CELHAY,	O.,	MACCHI,	L.,	MILIN,	S.	&	HAUET,	T.	
2010.	Thrombin	inhibition	during	kidney	ischemia-reperfusion	reduces	
chronic	graft	inflammation	and	tubular	atrophy.	Transplantation,	90,	612-
21.	

TILL,	J.	E.	&	MC,	C.	E.	1961.	A	direct	measurement	of	the	radiation	sensitivity	of	
normal	mouse	bone	marrow	cells.	Radiat	Res,	14,	213-22.	

TIMMERS,	L.,	LIM,	S.	K.,	ARSLAN,	F.,	ARMSTRONG,	J.	S.,	HOEFER,	I.	E.,	
DOEVENDANS,	P.	A.,	PIEK,	J.	J.,	EL	OAKLEY,	R.	M.,	CHOO,	A.,	LEE,	C.	N.,	
PASTERKAMP,	G.	&	DE	KLEIJN,	D.	P.	2007.	Reduction	of	myocardial	
infarct	size	by	human	mesenchymal	stem	cell	conditioned	medium.	Stem	
Cell	Res,	1,	129-37.	

TIMSIT,	M.	O.,	YUAN,	X.,	FLOERCHINGER,	B.,	GE,	X.	&	TULLIUS,	S.	G.	2010.	
Consequences	of	transplant	quality	on	chronic	allograft	nephropathy.	
Kidney	Int	Suppl,	S54-8.	

TOGEL,	F.,	HU,	Z.,	WEISS,	K.,	ISAAC,	J.,	LANGE,	C.	&	WESTENFELDER,	C.	2005a.	
Administered	mesenchymal	stem	cells	protect	against	ischemic	acute	
renal	failure	through	differentiation-independent	mechanisms.	Am	J	
Physiol	Renal	Physiol,	289,	F31-42.	

TOGEL,	F.,	ISAAC,	J.,	HU,	Z.,	WEISS,	K.	&	WESTENFELDER,	C.	2005b.	Renal	SDF-1	
signals	mobilization	and	homing	of	CXCR4-positive	cells	to	the	kidney	
after	ischemic	injury.	Kidney	Int,	67,	1772-84.	

TOGEL,	F.,	ISAAC,	J.	&	WESTENFELDER,	C.	2004.	Hematopoietic	stem	cell	
mobilization-associated	granulocytosis	severely	worsens	acute	renal	
failure.	J	Am	Soc	Nephrol,	15,	1261-7.	

TOGEL,	F.,	WEISS,	K.,	YANG,	Y.,	HU,	Z.,	ZHANG,	P.	&	WESTENFELDER,	C.	2007.	
Vasculotropic,	paracrine	actions	of	infused	mesenchymal	stem	cells	are	
important	to	the	recovery	from	acute	kidney	injury.	Am	J	Physiol	Renal	
Physiol,	292,	F1626-35.	



	 276	

TOGEL,	F.	E.	&	WESTENFELDER,	C.	2012.	Kidney	protection	and	regeneration	
following	acute	injury:	progress	through	stem	cell	therapy.	Am	J	Kidney	
Dis,	60,	1012-22.	

TOMITA,	S.,	MICKLE,	D.	A.,	WEISEL,	R.	D.,	JIA,	Z.	Q.,	TUMIATI,	L.	C.,	ALLIDINA,	Y.,	
LIU,	P.	&	LI,	R.	K.	2002.	Improved	heart	function	with	myogenesis	and	
angiogenesis	after	autologous	porcine	bone	marrow	stromal	cell	
transplantation.	J	Thorac	Cardiovasc	Surg,	123,	1132-40.	

TORSVIK,	A.,	ROSLAND,	G.	V.,	SVENDSEN,	A.,	MOLVEN,	A.,	IMMERVOLL,	H.,	
MCCORMACK,	E.,	LONNING,	P.	E.,	PRIMON,	M.,	SOBALA,	E.,	TONN,	J.	C.,	
GOLDBRUNNER,	R.,	SCHICHOR,	C.,	MYSLIWIETZ,	J.,	LAH,	T.	T.,	MOTALN,	
H.,	KNAPPSKOG,	S.	&	BJERKVIG,	R.	2010.	Spontaneous	malignant	
transformation	of	human	mesenchymal	stem	cells	reflects	cross-
contamination:	putting	the	research	field	on	track	-	letter.	Cancer	Res,	70,	
6393-6.	

TOYOHARA,	T.,	MAE,	S.,	SUETA,	S.,	INOUE,	T.,	YAMAGISHI,	Y.,	KAWAMOTO,	T.,	
KASAHARA,	T.,	HOSHINA,	A.,	TOYODA,	T.,	TANAKA,	H.,	ARAOKA,	T.,	SATO-
OTSUBO,	A.,	TAKAHASHI,	K.,	SATO,	Y.,	YAMAJI,	N.,	OGAWA,	S.,	
YAMANAKA,	S.	&	OSAFUNE,	K.	2015.	Cell	Therapy	Using	Human	Induced	
Pluripotent	Stem	Cell-Derived	Renal	Progenitors	Ameliorates	Acute	
Kidney	Injury	in	Mice.	Stem	Cells	Transl	Med,	4,	980-92.	

TRANSPLANT,	N.	B.	A.	2016.	
http://www.odt.nhs.uk/pdf/organ_specific_report_kidney_2016.pdf.	

TROPPMANN,	C.,	GILLINGHAM,	K.	J.,	BENEDETTI,	E.,	ALMOND,	P.	S.,	GRUESSNER,	
R.	W.,	NAJARIAN,	J.	S.	&	MATAS,	A.	J.	1995.	Delayed	graft	function,	acute	
rejection,	and	outcome	after	cadaver	renal	transplantation.	The	
multivariate	analysis.	Transplantation,	59,	962-8.	

TSE,	W.	T.,	PENDLETON,	J.	D.,	BEYER,	W.	M.,	EGALKA,	M.	C.	&	GUINAN,	E.	C.	2003.	
Suppression	of	allogeneic	T-cell	proliferation	by	human	marrow	stromal	
cells:	implications	in	transplantation.	Transplantation,	75,	389-97.	

TSUJI,	Y.,	ARIYOSHI,	A.	&	SAKAMOTO,	K.	1993.	An	experimental	model	for	
unilateral	ischaemic	acute	renal	failure	in	dog.	Int	Urol	Nephrol,	25,	83-8.	

TUTTLE-NEWHALL,	J.	E.,	KRISHNAN,	S.	M.,	LEVY,	M.	F.,	MCBRIDE,	V.,	ORLOWSKI,	
J.	P.	&	SUNG,	R.	S.	2009.	Organ	donation	and	utilization	in	the	United	
States:	1998-2007.	Am	J	Transplant,	9,	879-93.	

UCCELLI,	A.,	MORETTA,	L.	&	PISTOIA,	V.	2006.	Immunoregulatory	function	of	
mesenchymal	stem	cells.	Eur	J	Immunol,	36,	2566-73.	

UCCELLI,	A.,	MORETTA,	L.	&	PISTOIA,	V.	2008.	Mesenchymal	stem	cells	in	health	
and	disease.	Nat	Rev	Immunol,	8,	726-36.	

USAS,	A.,	MACIULAITIS,	J.,	MACIULAITIS,	R.,	JAKUBONIENE,	N.,	MILASIUS,	A.	&	
HUARD,	J.	2011.	Skeletal	muscle-derived	stem	cells:	implications	for	cell-
mediated	therapies.	Medicina	(Kaunas),	47,	469-79.	

VALADI,	H.,	EKSTROM,	K.,	BOSSIOS,	A.,	SJOSTRAND,	M.,	LEE,	J.	J.	&	LOTVALL,	J.	O.	
2007.	Exosome-mediated	transfer	of	mRNAs	and	microRNAs	is	a	novel	
mechanism	of	genetic	exchange	between	cells.	Nat	Cell	Biol,	9,	654-9.	

VAN	MANEN,	J.	G.,	KOREVAAR,	J.	C.,	DEKKER,	F.	W.,	BOESCHOTEN,	E.	W.,	
BOSSUYT,	P.	M.,	KREDIET,	R.	T.	&	DIALYSIS,	N.	S.	G.	N.	C.-O.	S.	O.	T.	A.	O.	
2002.	How	to	adjust	for	comorbidity	in	survival	studies	in	ESRD	patients:	
a	comparison	of	different	indices.	Am	J	Kidney	Dis,	40,	82-9.	



	 277	

VANIKAR,	A.	V.,	TRIVEDI,	H.	L.,	KUMAR,	A.,	GOPAL,	S.	C.	&	KUTE,	V.	B.	2014.	
Mesenchymal	stem	cells	and	transplant	tolerance.	Nephrology	(Carlton),	
19,	369-74.	

VANWIJK,	M.	J.,	VANBAVEL,	E.,	STURK,	A.	&	NIEUWLAND,	R.	2003.	Microparticles	
in	cardiovascular	diseases.	Cardiovasc	Res,	59,	277-87.	

VEROUX,	M.,	GROSSO,	G.,	CORONA,	D.,	MISTRETTA,	A.,	GIAQUINTA,	A.,	
GIUFFRIDA,	G.,	SINAGRA,	N.	&	VEROUX,	P.	2012.	Age	is	an	important	
predictor	of	kidney	transplantation	outcome.	Nephrol	Dial	Transplant,	27,	
1663-71.	

VERSTEILEN,	A.	M.,	BLAAUW,	N.,	DI	MAGGIO,	F.,	GROENEVELD,	A.	B.,	SIPKEMA,	
P.,	MUSTERS,	R.	J.	&	TANGELDER,	G.	J.	2011.	rho-Kinase	inhibition	reduces	
early	microvascular	leukocyte	accumulation	in	the	rat	kidney	following	
ischemia-reperfusion	injury:	roles	of	nitric	oxide	and	blood	flow.	Nephron	
Exp	Nephrol,	118,	e79-86.	

VILLANUEVA,	S.,	CARRENO,	J.	E.,	SALAZAR,	L.,	VERGARA,	C.,	STRODTHOFF,	R.,	
FAJRE,	F.,	CESPEDES,	C.,	SAEZ,	P.	J.,	IRARRAZABAL,	C.,	BARTOLUCCI,	J.,	
FIGUEROA,	F.	&	VIO,	C.	P.	2013.	Human	mesenchymal	stem	cells	derived	
from	adipose	tissue	reduce	functional	and	tissue	damage	in	a	rat	model	of	
chronic	renal	failure.	Clin	Sci	(Lond),	125,	199-210.	

VINAS,	J.	L.,	BURGER,	D.,	ZIMPELMANN,	J.,	HANEEF,	R.,	KNOLL,	W.,	CAMPBELL,	P.,	
GUTSOL,	A.,	CARTER,	A.,	ALLAN,	D.	S.	&	BURNS,	K.	D.	2016.	Transfer	of	
microRNA-486-5p	from	human	endothelial	colony	forming	cell-derived	
exosomes	reduces	ischemic	kidney	injury.	Kidney	Int.	

VISHNUBHATLA,	I.	C.,	R;	STEVANATO,	L;	HICKS,	C;	JOHN	SINDEN,	J	2014.	The	
Development	of	Stem	Cell-derived	Exosomes	as	a	Cell-free	Regenerative	
Medicine.	J	Circ	Biomark,,	3,	10.5772/58597.	

VLASSOV,	A.	V.,	MAGDALENO,	S.,	SETTERQUIST,	R.	&	CONRAD,	R.	2012.	
Exosomes:	current	knowledge	of	their	composition,	biological	functions,	
and	diagnostic	and	therapeutic	potentials.	Biochim	Biophys	Acta,	1820,	
940-8.	

VULLIET,	P.	R.,	GREELEY,	M.,	HALLORAN,	S.	M.,	MACDONALD,	K.	A.	&	
KITTLESON,	M.	D.	2004.	Intra-coronary	arterial	injection	of	mesenchymal	
stromal	cells	and	microinfarction	in	dogs.	Lancet,	363,	783-4.	

WADEI,	H.	M.,	HECKMAN,	M.	G.,	RAWAL,	B.,	TANER,	C.	B.,	FARAHAT,	W.,	NUR,	L.,	
MAI,	M.	L.,	PRENDERGAST,	M.	&	GONWA,	T.	A.	2013.	Comparison	of	
kidney	function	between	donation	after	cardiac	death	and	donation	after	
brain	death	kidney	transplantation.	Transplantation,	96,	274-81.	

WALCZAK,	P.,	ZHANG,	J.,	GILAD,	A.	A.,	KEDZIOREK,	D.	A.,	RUIZ-CABELLO,	J.,	
YOUNG,	R.	G.,	PITTENGER,	M.	F.,	VAN	ZIJL,	P.	C.,	HUANG,	J.	&	BULTE,	J.	W.	
2008.	Dual-modality	monitoring	of	targeted	intraarterial	delivery	of	
mesenchymal	stem	cells	after	transient	ischemia.	Stroke,	39,	1569-74.	

WANG,	E.,	SANDOVAL,	R.	M.,	CAMPOS,	S.	B.	&	MOLITORIS,	B.	A.	2010.	Rapid	
diagnosis	and	quantification	of	acute	kidney	injury	using	fluorescent	
ratio-metric	determination	of	glomerular	filtration	rate	in	the	rat.	Am	J	
Physiol	Renal	Physiol,	299,	F1048-55.	

WANG,	H.	J.,	VARNER,	A.,	ABOUSHWAREB,	T.,	ATALA,	A.	&	YOO,	J.	J.	2012.	
Ischemia/reperfusion-induced	renal	failure	in	rats	as	a	model	for	
evaluating	cell	therapies.	Ren	Fail,	34,	1324-32.	



	 278	

WANG,	Y.,	ZHANG,	Z.,	CHI,	Y.,	ZHANG,	Q.,	XU,	F.,	YANG,	Z.,	MENG,	L.,	YANG,	S.,	YAN,	
S.,	MAO,	A.,	ZHANG,	J.,	YANG,	Y.,	WANG,	S.,	CUI,	J.,	LIANG,	L.,	JI,	Y.,	HAN,	Z.	
B.,	FANG,	X.	&	HAN,	Z.	C.	2013a.	Long-term	cultured	mesenchymal	stem	
cells	frequently	develop	genomic	mutations	but	do	not	undergo	malignant	
transformation.	Cell	Death	Dis,	4,	e950.	

WANG,	Y.	L.,	LI,	G.,	ZOU,	X.	F.,	CHEN,	X.	B.,	LIU,	T.	&	SHEN,	Z.	Y.	2013b.	Effect	of	
autologous	adipose-derived	stem	cells	in	renal	cold	ischemia	and	
reperfusion	injury.	Transplant	Proc,	45,	3198-202.	

WEBER,	M.,	DINDO,	D.,	DEMARTINES,	N.,	AMBUHL,	P.	M.	&	CLAVIEN,	P.	A.	2002.	
Kidney	transplantation	from	donors	without	a	heartbeat.	N	Engl	J	Med,	
347,	248-55.	

WEI,	Q.	&	DONG,	Z.	2012.	Mouse	model	of	ischemic	acute	kidney	injury:	technical	
notes	and	tricks.	Am	J	Physiol	Renal	Physiol,	303,	F1487-94.	

WEI,	X.,	YANG,	X.,	HAN,	Z.	P.,	QU,	F.	F.,	SHAO,	L.	&	SHI,	Y.	F.	2013.	Mesenchymal	
stem	cells:	a	new	trend	for	cell	therapy.	Acta	Pharmacol	Sin,	34,	747-54.	

WHALEN,	H.,	SHIELS,	P.,	LITTLEJOHN,	M.	&	CLANCY,	M.	2016.	A	novel	rodent	
model	of	severe	renal	ischemia	reperfusion	injury.	Ren	Fail,	1-8.	

WHITE,	E.,	HILDEMANN,	W.	H.	&	MULLEN,	Y.	1969.	Chronic	kidney	allograft	
reactions	in	rats.	Transplantation,	8,	602-17.	

WHITING,	J.	F.,	ZAVALA,	E.	Y.,	ALEXANDER,	J.	W.	&	FIRST,	M.	R.	1999.	The	cost-
effectiveness	of	transplantation	with	expanded	donor	kidneys.	Transplant	
Proc,	31,	1320-1.	

WIGHT,	J.	P.,	EDWARDS,	L.,	BRAZIER,	J.,	WALTERS,	S.,	PAYNE,	J.	N.	&	BROWN,	C.	
B.	1998.	The	SF36	as	an	outcome	measure	of	services	for	end	stage	renal	
failure.	Qual	Health	Care,	7,	209-21.	

WISE,	A.	F.	&	RICARDO,	S.	D.	2012.	Mesenchymal	stem	cells	in	kidney	
inflammation	and	repair.	Nephrology	(Carlton),	17,	1-10.	

WITWER,	K.	W.,	BUZAS,	E.	I.,	BEMIS,	L.	T.,	BORA,	A.,	LASSER,	C.,	LOTVALL,	J.,	
NOLTE-'T	HOEN,	E.	N.,	PIPER,	M.	G.,	SIVARAMAN,	S.,	SKOG,	J.,	THERY,	C.,	
WAUBEN,	M.	H.	&	HOCHBERG,	F.	2013.	Standardization	of	sample	
collection,	isolation	and	analysis	methods	in	extracellular	vesicle	
research.	J	Extracell	Vesicles,	2.	

WITZGALL,	R.,	BROWN,	D.,	SCHWARZ,	C.	&	BONVENTRE,	J.	V.	1994.	Localization	
of	proliferating	cell	nuclear	antigen,	vimentin,	c-Fos,	and	clusterin	in	the	
postischemic	kidney.	Evidence	for	a	heterogenous	genetic	response	
among	nephron	segments,	and	a	large	pool	of	mitotically	active	and	
dedifferentiated	cells.	J	Clin	Invest,	93,	2175-88.	

WOLFE,	R.	A.,	ASHBY,	V.	B.,	MILFORD,	E.	L.,	OJO,	A.	O.,	ETTENGER,	R.	E.,	AGODOA,	
L.	Y.,	HELD,	P.	J.	&	PORT,	F.	K.	1999.	Comparison	of	mortality	in	all	
patients	on	dialysis,	patients	on	dialysis	awaiting	transplantation,	and	
recipients	of	a	first	cadaveric	transplant.	N	Engl	J	Med,	341,	1725-30.	

WOLFE,	R.	A.,	ROYS,	E.	C.	&	MERION,	R.	M.	2010.	Trends	in	organ	donation	and	
transplantation	in	the	United	States,	1999-2008.	Am	J	Transplant,	10,	961-
72.	

WU,	W.	K.,	FAMURE,	O.,	LI,	Y.	&	KIM,	S.	J.	2015.	Delayed	graft	function	and	the	
risk	of	acute	rejection	in	the	modern	era	of	kidney	transplantation.	Kidney	
Int,	88,	851-8.	

WYNN,	R.	F.,	HART,	C.	A.,	CORRADI-PERINI,	C.,	O'NEILL,	L.,	EVANS,	C.	A.,	WRAITH,	
J.	E.,	FAIRBAIRN,	L.	J.	&	BELLANTUONO,	I.	2004.	A	small	proportion	of	



	 279	

mesenchymal	stem	cells	strongly	expresses	functionally	active	CXCR4	
receptor	capable	of	promoting	migration	to	bone	marrow.	Blood,	104,	
2643-5.	

XIN,	H.,	LI,	Y.,	CUI,	Y.,	YANG,	J.	J.,	ZHANG,	Z.	G.	&	CHOPP,	M.	2013.	Systemic	
administration	of	exosomes	released	from	mesenchymal	stromal	cells	
promote	functional	recovery	and	neurovascular	plasticity	after	stroke	in	
rats.	J	Cereb	Blood	Flow	Metab,	33,	1711-5.	

YANG,	L.,	BESSCHETNOVA,	T.	Y.,	BROOKS,	C.	R.,	SHAH,	J.	V.	&	BONVENTRE,	J.	V.	
2010.	Epithelial	cell	cycle	arrest	in	G2/M	mediates	kidney	fibrosis	after	
injury.	Nat	Med,	16,	535-43,	1p	following	143.	

YASUDA,	S.	&	SATO,	Y.	2015.	Tumorigenicity	assessment	of	human	cell-
processed	therapeutic	products.	Biologicals,	43,	416-21.	

YEO,	R.	W.,	LAI,	R.	C.,	ZHANG,	B.,	TAN,	S.	S.,	YIN,	Y.,	TEH,	B.	J.	&	LIM,	S.	K.	2013.	
Mesenchymal	stem	cell:	an	efficient	mass	producer	of	exosomes	for	drug	
delivery.	Adv	Drug	Deliv	Rev,	65,	336-41.	

YSEBAERT,	D.	K.,	DE	GREEF,	K.	E.,	VERCAUTEREN,	S.	R.,	GHIELLI,	M.,	
VERPOOTEN,	G.	A.,	EYSKENS,	E.	J.	&	DE	BROE,	M.	E.	2000.	Identification	
and	kinetics	of	leukocytes	after	severe	ischaemia/reperfusion	renal	
injury.	Nephrol	Dial	Transplant,	15,	1562-74.	

YUAN,	A.,	FARBER,	E.	L.,	RAPOPORT,	A.	L.,	TEJADA,	D.,	DENISKIN,	R.,	AKHMEDOV,	
N.	B.	&	FARBER,	D.	B.	2009.	Transfer	of	microRNAs	by	embryonic	stem	
cell	microvesicles.	PLoS	One,	4,	e4722.	

ZAGER,	R.	A.	1987.	Partial	aortic	ligation:	a	hypoperfusion	model	of	ischemic	
acute	renal	failure	and	a	comparison	with	renal	artery	occlusion.	J	Lab	
Clin	Med,	110,	396-405.	

ZAGER,	R.	A.	1991.	Adenine	nucleotide	changes	in	kidney,	liver,	and	small	
intestine	during	different	forms	of	ischemic	injury.	Circ	Res,	68,	185-96.	

ZAGER,	R.	A.,	JOHNSON,	A.	C.,	ANDRESS,	D.	&	BECKER,	K.	2013.	Progressive	
endothelin-1	gene	activation	initiates	chronic/end-stage	renal	disease	
following	experimental	ischemic/reperfusion	injury.	Kidney	Int,	84,	703-
12.	

ZAGER,	R.	A.,	JOHNSON,	A.	C.	&	BECKER,	K.	2011.	Acute	unilateral	ischemic	renal	
injury	induces	progressive	renal	inflammation,	lipid	accumulation,	
histone	modification,	and	"end-stage"	kidney	disease.	Am	J	Physiol	Renal	
Physiol,	301,	F1334-45.	

ZELMER,	J.	L.	2007.	The	economic	burden	of	end-stage	renal	disease	in	Canada.	
Kidney	Int,	72,	1122-9.	

ZENG,	M.,	CHENG,	Y.	&	ZHAO,	B.	2015.	Measurement	of	single-kidney	glomerular	
filtration	function	from	magnetic	resonance	perfusion	renography.	Eur	J	
Radiol,	84,	1419-23.	

ZHANG,	W.,	GE,	W.,	LI,	C.,	YOU,	S.,	LIAO,	L.,	HAN,	Q.,	DENG,	W.	&	ZHAO,	R.	C.	2004.	
Effects	of	mesenchymal	stem	cells	on	differentiation,	maturation,	and	
function	of	human	monocyte-derived	dendritic	cells.	Stem	Cells	Dev,	13,	
263-71.	

ZHANG,	W.,	QIN,	C.	&	ZHOU,	Z.	M.	2007.	Mesenchymal	stem	cells	modulate	
immune	responses	combined	with	cyclosporine	in	a	rat	renal	
transplantation	model.	Transplant	Proc,	39,	3404-8.	

ZHAO,	J.	J.,	LIU,	J.	L.,	LIU,	L.	&	JIA,	H.	Y.	2014.	Protection	of	mesenchymal	stem	
cells	on	acute	kidney	injury.	Mol	Med	Rep,	9,	91-6.	



	 280	

ZHOU,	Y.	F.,	BOSCH-MARCE,	M.,	OKUYAMA,	H.,	KRISHNAMACHARY,	B.,	KIMURA,	
H.,	ZHANG,	L.,	HUSO,	D.	L.	&	SEMENZA,	G.	L.	2006.	Spontaneous	
transformation	of	cultured	mouse	bone	marrow-derived	stromal	cells.	
Cancer	Res,	66,	10849-54.	

ZONTA,	S.,	DE	MARTINO,	M.,	BEDINO,	G.,	PIOTTI,	G.,	RAMPINO,	T.,	GREGORINI,	
M.,	FRASSONI,	F.,	DAL	CANTON,	A.,	DIONIGI,	P.	&	ALESSIANI,	M.	2010.	
Which	is	the	most	suitable	and	effective	route	of	administration	for	
mesenchymal	stem	cell-based	immunomodulation	therapy	in	
experimental	kidney	transplantation:	endovenous	or	arterial?	Transplant	
Proc,	42,	1336-40.	

ZOU,	X.,	ZHANG,	G.,	CHENG,	Z.,	YIN,	D.,	DU,	T.,	JU,	G.,	MIAO,	S.,	LIU,	G.,	LU,	M.	&	
ZHU,	Y.	2014.	Microvesicles	derived	from	human	Wharton's	Jelly	
mesenchymal	stromal	cells	ameliorate	renal	ischemia-reperfusion	injury	
in	rats	by	suppressing	CX3CL1.	Stem	Cell	Res	Ther,	5,	40.	

 

  



	 281	

APPENDIX 1 

 

 


