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Abstract

Depression has become one of the most prevalent mental health issues, affecting more than 300
million people all over the world. However, due to factors such as limited medical resources and
accessibility to health care, there are still a large number of patients undiagnosed. In addition,
the traditional approaches to depression diagnosis have limitations because they are usually
time-consuming, and depend on clinical experience that varies across different clinicians. From
this perspective, the use of automatic depression detection can make the diagnosis process much
faster and more accessible. In this thesis, we present the possibility of using speech for automatic
depression detection. This is based on the findings in neuroscience that depressed patients have
abnormal cognition mechanisms thus leading to the speech differs from that of healthy people.
Therefore, in this thesis, we show two ways of benefiting from automatic depression detection,
i.e., identifying speech markers of depression and constructing novel deep learning models to
improve detection accuracy.

The identification of speech markers tries to capture measurable depression traces left in
speech. From this perspective, speech markers such as speech duration, pauses and correla-

tion matrices are proposed. Speech duration and pauses take speech fluency into account, while
correlation matrices represent the relationship between acoustic features and aim at capturing
psychomotor retardation in depressed patients. Experimental results demonstrate that these pro-
posed markers are effective at improving the performance in recognizing depressed speakers. In
addition, such markers show statistically significant differences between depressed patients and
non-depressed individuals, which explains the possibility of using these markers for depression
detection and further confirms that depression leaves detectable traces in speech.

In addition to the above, we propose an attention mechanism, Multi-local Attention (MLA),
to emphasize depression-relevant information locally. Then we analyse the effectiveness of
MLA on performance and efficiency. According to the experimental results, such a model can
significantly improve performance and confidence in the detection while reducing the time re-
quired for recognition. Furthermore, we propose Cross-Data Multilevel Attention (CDMA) to
emphasize different types of depression-relevant information, i.e., specific to each type of speech
and common to both, by using multiple attention mechanisms. Experimental results demonstrate
that the proposed model is effective to integrate different types of depression-relevant informa-
tion in speech, improving the performance significantly for depression detection.
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Chapter 1

Introduction

1.1 Background on Depression

Depression, as a common mental health issue, can happen to anyone who has experienced exces-
sively stressful events or trauma. In particular, people who have experienced abuse, significant
losses, or other negative events in life are much likelier to be affected by depression. For exam-
ple, extensive surveys of the population suggest that 16.2% of the adults in the USA experience
at least one episode of Major Depression Disorder (MDD) during their life (R. C. Kessler et
al., 2003). According to a large-scale analysis (Vos et al., 2016), the number of individuals
with depression increased by 18.4% between 2005 and 2015. In 2015, the World Health Or-
ganization states that depression affected 4.4% of the world’s population, corresponding to 322
million people (WHO, 2017). In particular, according to the statistics from the Center for Dis-
ease Control, adolescents ages 13–18 have experienced one of the depression symptoms (Kann
et al., 2018). Furthermore, a population screening suggests that depression incidence increased
by 37% from 2005 to 2014 (Mojtabai et al., 2016). Therefore, on current trends, depression
is likely to become the most common mental illness by 2030. (Mathers & Loncar, 2006). The
COVID-19 pandemics further aggravated such a serious situation, resulting in an even greater
number of patients (Bueno-Notivol et al., 2021). There was an estimation of an additional 53.2
million cases of major depressive disorder per 100,000 population globally due to COVID-19,
corresponding to an increase of 27.6% (Santomauro et al., 2021).

At the individual level, depression increases the risks of suicide and suicide-caused disabil-
ity. The World Health Organization estimates that 800,000 suicides and 16,000,000 suicide
attempts happened globally in 2016 (WHO, 2017). More than half of them appear to be as-
sociated with depression (R. C. Kessler et al., 1994), and approximately 66% of individuals
diagnosed with depression exhibit an increased likelihood of engaging in suicide attempts dur-
ing their lives (McLaughlin, 2011). Depression is one of the main causes of disability among
people above 5 years of age (Gotlib & Hammen, 2008). According to the World Health Orga-
nization, depression led to a total of over 50 million years lived with disability over the world,
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Figure 1.1: This figure shows the annual costs including medical expenses, productivity loss,
etc., associated with depression in the USA from 1990 to 2020.

corresponding to 7.5% of all years lived with disability (WHO, 2017). At present, depressive
disorders have been ranked as the top contributors to non-fatal health losses, the single largest
factor. Consequently, depression places substantial burdens on individuals, families, and society
as a whole.

As a consequence of the above, depression becomes a major economic and societal burden
at the family or society level. For example, in Canada, the average medical costs for depressed
people are 3.5 times higher than those for non-depressed ones (Tanner et al., 2020). In addi-
tion, the economic burden of adults with depression has increased significantly over time. For
instance, in the USA, the annual costs associated with depression (medical expenses, produc-
tivity loss, etc.) increased as follows: 70 billion dollars per year in 1990 (P. E. Greenberg et
al., 1993); 83.1 billion dollars in 2000 (P. E. Greenberg et al., 2003); 173.2 billion dollars in
2005; and 210.5 billion dollars in 2010 (P. E. Greenberg et al., 2015). In 2020, this number
went up to 326.2 billion dollars per year (P. E. Greenberg et al., 2021). This corresponds to a
366% increase even (see Figure 1.1). The economic burden on society is heavier in developing
countries. This is mainly because over 75% of individuals living in developing countries, get too
low income to access treatment, despite the availability of established and effective treatments
for mental disorders (Evans-Lacko et al., 2018).

Similar to the estimate of depression in prevalence developing countries, the figures above
are still likely to be an underestimate because, globally, only half of the patients obtain medical
attention and, furthermore, only 21% of them undergo adequate treatment (R. C. Kessler et al.,
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2003). In other words, while being a serious pathology with highly negative consequences,
depression tends to remain undetected or to be poorly treated. One possible reason for such a
situation is that a large number of cases go undiagnosed due to limited healthcare access in many
countries (Hasin et al., 2018; Williams et al., 2017).

1.2 Depression Diagnosis

In current clinical research, depression assessment is typically determined through various ques-
tionnaires, including the Hamilton Rating Scale for Depression (HAM-D) (Hamilton, 1986),
Patient Health Questionnaire (PHQ) (Kroenke et al., 2001), Beck Depression Inventory-II (BDI-
II) (Beck et al., 1996), Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) (APA,
2013), Quick Inventory of Depressive Symptomatology (Rush et al., 2003), Montgomery Ås-
berg Depression Rating Scale (MADRS) (Montgomery & Åsberg, 1979) and Youth Mania Rat-
ing Scale (YMRS) (Young et al., 1978). However, these traditional assessments heavily rely
on subjective judgement based on the experience and skills of clinicians. According to the epi-
demiological observations, these traditional assessments lead to missed diagnosis in which only
26.4% depressed patients undergo diagnosis (Faisal-Cury et al., 2022) and 21% patients undergo
adequate treatment (R. C. Kessler, 2003). In other words, while being a serious pathology with
highly nediagnosisgative consequences, depression tends to remain undetected or to be poorly
treated via traditional approaches. One possible reason for such a situation is that the first line
of intervention against depression is not led by psychiatrists, specialised and experienced in the
diagnosis of mental health issues, but by General Practitioners (GPs), doctors expected to deal
with common pathologies, but to refer to specialists in case of more serious problems. In par-
ticular, due to the difficulties in diagnosing depression, the accuracy of GPs has been shown to
range between 57.9% and 73.1%, thus leaving a large number of cases undetected (Mitchell et
al., 2009).

Another possible reason for the situation is that there is an inconsistency between mood and
cases of clinical trials (H. Yang et al., 2005). For example, the effects of self-report bias are
ubiquitous in clinical depression diagnosis, with males tending to minimize their depressive
symptoms more than females (Hunt et al., 2003), therefore, these lead to difficulties in the
interpretation of the results related to depression. On the one hand, the methodological pitfalls
and experimental design factors, including patient selection and enrollment pressures, can also
contribute to inaccurate and unreliable clinical findings (Demitrack et al., 1998). On the other
hand, there are potential rater biases in depression diagnosis. For instance, effect sizes based
on clinician ratings were significantly larger than patient-based ratings (R. P. Greenberg et al.,
1992).

Recently, more and more researchers started to investigate the detection of depression au-
tomatically by analyzing data obtained from multiple sources. Neuroimaging encompasses a
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wide range of non-invasive approaches that offer insights into neural mechanisms related to de-
pression from the perspective of brain structure and function. Neuroimaging technique, such
as Functional Magnetic Resonance Imaging (fMRI), electroencephalogram (EEG), magnetoen-
cephalography (MEG), have been applied and played an important role in the investigation of
depression. For example, researchers observed a decreased plasma brain-derived neurotrophic
factor in untreated major depressive disorder patients (Lee et al., 2007), and suicide led by
depression is related to lower Cerebrospinal fluid levels of 5-hydroxyindolacetic acid in the de-
pressed brain (Placidi et al., 2001), and therefore, these can be considered as biomarkers in
depression diagnosis. In addition to the potential biomarkers found in the brain, researchers
have also found similar traces in blood and nervous systems. On the one hand, abnormal levels
of cytokines and 5-HTT have been revealed as an immune response to the central nervous sys-
tem in the pathogenesis of depression (Tsao et al., 2006). On the other hand, researchers found
that depressed patients have abnormal changes in hypothalamus-pituitary-adrenocortical system
regulation assessed with repeated dexamethasone/corticotropin releasing hormone tests (Ising et
al., 2007). These potential biomarkers may predict clinical outcomes in depression diagnosis.
One of the main issues in addressing the problems above is that depression diagnosis is a diffi-
cult, expensive and time-consuming process. This requires clinicians to take a lot of time and
effort to make correct decisions towards individuals with depression. In addition, the diagnoses
mentioned above are invasive, requiring laboratory settings, and therefore making the diagnosis
process more complicated.

To this end, researchers are developing automatic approaches capable of identifying, at least
to a certain extent, people affected by depression. However, the accuracy of the current auto-
matic depression detection approach is still limited and difficult to interpret. The focus of the
thesis is on possible explainable depression markers in speech, i.e., on automatically detectable
traces of the pathology that can contribute to improving the performance of depression detec-
tion approaches. The main motivation for investigating speech is that we believe the process
of speech production differs between depressed and healthy speakers as we will demonstrate in
Chapter 2, and speech is easier to analyze in real-world situations. The main motivation for fo-
cusing on markers is that these cannot be easily controlled by patients that, in some cases, try to
conceal the pathology to escape the stigma associated with it. In this respect, markers can com-
plement questionnaires or other observational clinical approaches, often affected by subjective
biases, with more objective measurements. Another aspect of this thesis is using machine learn-
ing and deep learning approaches to emphasize depression-related information in supporting
depression diagnosis.
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1.3 Thesis Statements

The key-idea underlying this thesis is that depression leaves measurable traces in speech which
can help to distinguish between depressed and non-depressed speakers. The first step in dis-
covering these traces is to establish a more reliable depression speech corpus. Specifically, this
thesis posits that multiple depression-related traces exist, such as those that could be found in
temporal and acoustic properties. The potential implications of analyzing these traces include
the identification of speech markers that may contribute to clinical depression diagnosis. To
analyze these traces and extract depression-relevant information, we also propose the use of
machine learning or deep learning approaches. Such methodologies can uncover potential pat-
terns or relationships related to depression that may not be easily discernible through traditional
statistical methods, thereby enhancing the performance in distinguishing between depressed and
non-depressed speakers. In particular, we postulate that utilizing attention mechanisms based on
deep learning allows emphasising depression-related information, and further improving recog-
nition performance and efficiency in depression detection. Lastly, we propose that utilizing
multiple attention mechanisms in different types of speech (read and spontaneous) can capture
depression-related information, both specific and common in different types of speech. The
combination of this information can further enhance performance in distinguishing between de-
pressed and non-depressed speakers.

In summary, by analysing these measurable traces in speech, our goal is to provide a more
objective approach to depression diagnosis. This approach has the potential to complement
current clinical practices and streamline the diagnosis process in a much simpler way (e.g.,
through the use of speech). As a result, it can reduce the reliance on subjective evaluations,
and enhance the overall accuracy and efficiency of depression detection. In the long run, our
findings in this thesis may contribute to the development of more effective diagnostic tools for
those living with depression.

1.4 Thesis Structures and Contributions

The remainder of the thesis is organized as follows:

• Chapter 2 provides background about depression, including cognition changes in the de-
pressed brain, speech production changes related to depression and related work for au-
tomatic depression detection. First, we introduce the abnormal cognition mechanisms in
the depressed brain, and how such mechanisms are linked to speech, from the perspective
of language and cognition. Second, we describe the changes in speech production among
depressed patients, resulting from the changes in cognition and motor muscular actions.
In the last part of this chapter, we review the techniques in automatic depression detection
including the type of data and deep learning approaches for detection.
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• Chapter 3 describes a novel benchmark, the Androids Corpus, used in this thesis for
speech-based depression detection which consists of 118 recordings of depressed and
control participants. We first review the publicly available speech datasets for depression
detection, and make a comparison with ours (the Androids Corpus). Then we describe
the details of the corpus including tasks description (i.e., Read Task and Interview Task),
data distribution and demographic information about participants (age, gender, education
level). In the last part of the chapter, we provide the baseline approaches including feature
extraction, depression recognition, and results for both read and spontaneous speech.

Contribution: providing a detailed description of the new dataset for depression detec-
tion. This publicly available corpus provides preliminary experimental studies with the
proposed experimental protocol including types of speech material, data collection proto-
col, speaker-independent protocol, clear experimental setup and results of applied baseline
systems. Compared to the other available datasets, this corpus includes more participants
with read and spontaneous speech from the same speaker. Therefore, this allows to inves-
tigate multiple research questions in the following chapters, such as expanding proposed
approaches on different types of speech to make a comparison or interaction.

• Chapter 4 presents two timing-based speech features obtained by using computational lin-
guistic and social signal processing approaches, namely duration of speech and silence.
Such features show significant differences between depressed and non-depressed speak-
ers, and can be used as effective markers for depression detection. We first review the
related work for the identification of timing-based markers. Then we extract these speech
features and examine their effectiveness for depression detection in both read and spon-
taneous speech. Later in the chapter, the experiments show that such markers benefit
depression detection, and are robust in both types of speech.

Contribution: proposing an approach that creates a voice-based depression classifier with
proposed speech features. In particular, defining and applying a controlled method to ob-
tain a lean classifier is unlikely to be overfitting. From a pragmatic point of view, the pro-
posed approach provides a way to evaluate the effectiveness of any proposed speech fea-
tures by combining computational paralinguistics and social signal processing approaches.

• Chapter 5 presents another marker to characterize the relationship between acoustical
properties, namely correlation matrices. We first review previous related work on using
speech feature vectors and correlation structures. Then we propose the approach for cor-
relation matrices representation and apply these matrices in depression recognition. We
next propose stability to measure the changes in the correlation matrices over time. In the
last part of the chapter, we show the experimental results which prove the effectiveness of
using correlation matrices in both read and spontaneous speech for depression detection.

Contribution: the first contribution is that it presents a novel approach by comparing
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SVM and LSTM models when fed with feature vectors versus correlation matrices. The
second contribution is that it demonstrates that changes in correlation patterns over time
can serve as a depression marker, which is a novel finding. The last contribution is that
we introduce a measurement (stability) as an explanation to the points mentioned above,
that is correlation matrices convey more variance that can help to distinguish depressed
and non-depressed speakers, which is of benefit in depression detection.

• Chapter 6 introduces a novel model with an attention mechanism, the Multi-Local At-

tention, that aims at emphasizing depression-related information for depression detection.
We first describe the architecture of the proposed model, subsequently, we propose a confi-

dence score to measure how confident the model is about its outcomes. Next, we show the
performance of depression detection with the proposed approach and make comparisons
to baselines and state-of-the-art approaches. Finally, we examine Multi-Local Attention
in other two respects, i.e., the confidence and the time used for prediction.

Contribution: proposing a novel attention mechanism that enhances the accuracy of the
LSTM-based detector. The proposed approach outperforms state-of-the-art not only in
performance but also in other two aspects: 1) it significantly improves the confidence in
the outcomes classified correctly, meaning it allows the model to make recognition for the
cases evident enough, in the meanwhile, it improves the diagnosis efficiency of doctors
and allows them to focus on more ambiguous cases; 2) it significantly reduces the time
required for testing a potential patient.

• Chapter 7 proposes a novel model, Cross-Data Multilevel Attention (CDMA), with multi-
ple attention mechanisms to explicitly emphasize all the depression-relevant information
available in the data, whether it is specific to each type of speech or common to both of
them. We first review the previous work using read and spontaneous speech and attention
mechanisms for depression detection. Then we introduce the architecture of the proposed
model and the interactions of multiple attention mechanisms for depression detection. Fi-
nally, we analyse the performance for each step and make comparisons by adding one
component at each time.

Contribution: providing another novel architecture that takes read and spontaneous speech
into account jointly. This approach is designed for depression detection, but it can be used
for other data consisting of pairs of items that share a common label in a classification or
regression problem. Another contribution of this chapter is the experimental evidence that
read and spontaneous speech carry both specific and common information. By combin-
ing such information, it is sufficiently diverse to enhance the performance of a detection
approach, outperforming the state-of-the-art approaches as well as baselines.
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1.5 Supporting Publications

Most of the materials presented in this thesis are built on the publications considered by various
international conferences and journals, as follows:

• Fuxiang Tao, Anna Esposito, and Alessandro Vinciarelli. "The Androids Corpus: A New
Publicly Available Benchmark for Speech Based Depression Detection" (INTERSPEECH
2023, published) (Chapter 3)

• Fuxiang Tao, Anna Esposito, and Alessandro Vinciarelli. "Spotting the Traces of Depres-
sion in Read Speech: An Approach Based on Computational Paralinguistics and Social
Signal Processing." (INTERSPEECH 2020, published) (Chapter 4)

• Fuxiang Tao, Wei Ma, Xuri Ge, Anna Esposito, and Alessandro Vinciarelli. "The Rela-
tionship Between Speech Features Changes When You Get Depressed: Feature Correla-
tions for Improving Speed and Performance of Depression Detection" The 30th Interna-
tional Conference on Neural Information Processing (under review) (Chapter 5)

• Fuxiang Tao, Xuri Ge, Wei Ma, Anna Esposito, and Alessandro Vinciarelli. "Multi-
Local Attention for Speech-Based Depression Detection" IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2023, published) (Chapter 6)

• Fuxiang Tao, Xuri Ge, Wei Ma, Anna Esposito, and Alessandro Vinciarelli. "Cross-
Data Multilevel Attention Mechanisms for Depression Detection: Analyzing the Interplay
Between Read and Spontaneous Speech" (to be submitted a journal) (Chapter 7)



Chapter 2

Background

In Chapter 1, we introduced the societal effects of depression including health and economic bur-
dens, and the limitations of depression diagnosis in clinical. To alleviate those limitations such
as high expenses, time costs, complex diagnostic processes, etc. We have proposed speech-based
automatic depression detection from two aspects, one is to identify effective speech markers to
help the process of detection, the other is to use deep learning approaches with attention mecha-
nisms to detect depressed speakers. In this chapter, we first provide the reasons for proposing the
use of speech for depression detection from two points of view. One is the abnormal cognition
mechanisms in the depressed brain and how these mechanisms affect speech processing. The
other one is how these changes in the brain affect speech production. These two aspects build
the theoretical basis of this thesis. In the last part of this chapter, we provide an overview of
automatic depression detection.

2.1 Cognition in Depressed Speakers

Depression, as a mental disorder, is often characterized by a variety of distinctive behaviors.
These include persistent feelings of sadness, a loss of interest in enjoyable activities, a noticeable
decrease in energy, and difficulty with sleep (APA, 2013). Such manifestations are not merely
symptoms and have been associated with tangible changes in cognition among depressed people.
Understanding the influence of depression on mental and emotional states largely relies on the
depression cognitive model, first proposed by Beck about half a century ago (Dobson, 1989).
This model set the groundwork for a better understanding of the factors involved in depressive
episodes and paved the way for the integration of neurobiological findings into the understanding
of depression. With the help of advanced neuroimaging and biological techniques that have been
developed over the years, we are now able to identify and understand such changes in cognition
resulting from the changes in brain structures and functions (Ritchey et al., 2011). There is an
increasing body of evidence suggesting that the behaviors associated with depression are linked
to these alterations (Disner et al., 2011). This will affect the speech of depressed patients in two
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ways, one is to affect speech through abnormal language production mechanisms, and the other
is to affect speech indirectly through emotion (see below).

2.1.1 Depression Affects Language-related Areas of Brain

The frontal lobe is one of the four primary lobes in the brain, located at its forefront. This
area executes sophisticated cognitive functions, for example, language. It has been observed
that this region undergoes functional alterations in individuals living with depression (Disner et
al., 2011). Furthermore, this lobe plays a pivotal role in various aspects of language process-
ing (Alexander et al., 1989). Any observed dysfunctions in this area might explain the observed
changes in the language use among those afflicted with depression.

One of the critical functions of the frontal lobe is muscle control and movement. As a result,
the functionality of the glottis, a muscle critical to speech production, can be impacted among
depressed individuals due to alterations of functioning in the frontal lobe. This could potentially
lead to abnormal speech production in such individuals, a subject which we delve into in greater
detail in Section 2.2.

Despite its relatively large size, accounting for approximately one-third of the surface area
of each hemisphere, the functions of the frontal lobe are remarkably complex. This complexity
has sparked interest among researchers, prompting them to propose sophisticated experimental
techniques to explore how this region influences language processing. The study (Binder et al.,
2003), for instance, employed event-related functional magnetic resonance imaging (fMRI) to
demonstrate stronger word activation occurring in a distributed, left hemisphere network previ-
ously associated with semantic processing. This network includes the prefrontal cortex (part of
the frontal lobe) and the angular gyrus (found in the parietal lobe), both of which play crucial
roles in language processing (see Sections below for more details).

Broca’s Area and Wernicke’s area

Another region within the frontal lobe of particular interest is the left inferior frontal gyrus,
also known as Broca’s area. This area was first associated with language processing by Pierre
Paul Broca, who observed speech impairments in two patients following injury to this brain
region (Kennison, 2013; Dronkers et al., 2007). Subsequent extensive studies involving more
patients with similar injuries corroborated the findings of Broca, suggesting that these patients
exhibited significantly slower responses to target words. This further confirms the role of this
area in word comprehension (Bedny et al., 2007).

Moreover, studies involving healthy participants have also attested to the role of the left in-
ferior frontal gyrus in language processing. For instance, one study demonstrated that activation
during a sentence-matching task primarily arose from the left inferior frontal gyrus (D’Arcy et
al., 2004). A similar activation pattern was observed during phonologic (rhyme detection) and
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semantic categorization tasks in fMRI experiments (Seghier et al., 2004).
Researchers found changes in this region among depressed people, for example, accord-

ing to preliminary studies in neuroscience, depression is associated with a general dysfunction
in the left frontal lobe (Davidson et al., 2002; W. Heller & Nitscke, 1997). Specifically, a re-
cent fMRI-based study focusing on bipolar disorder (a type of depression) revealed functional
dysconnectivity in the left inferior frontal gyrus of patients (Roberts et al., 2017).

In addition to Broca’s area, another important area related to language is Wernicke’s area,
also called Wernicke’s speech area. This area is particularly crucial for the comprehension of
both written and spoken language, providing a complementary function to Broca’s area, which
primarily orchestrates language production. A remarkable discovery has been made concerning
the delayed activation pattern of the Wernicke’s area in individuals living with depression dur-
ing semantic encoding of words (Abdullaev et al., 2002). It was found that these individuals
required the activation of additional brain regions, including the right lateral prefrontal cortex,
to perform semantic processing. This suggests that depression could potentially influence both
the production and comprehension of language.

Prefrontal Cortex

The dorsolateral prefrontal cortex (DLPFC), a crucial region of the frontal lobe, has long been
linked to higher-order cognitive functions. A large number of studies implied that depressed
individuals exhibit distinct variations in their DLPFC compared to non-depressed controls. For
instance, a voxel-based morphometry neuroimaging study has indicated that depressed individ-
uals exhibit reduced gray matter volume in the DLPFC, suggesting a structural alteration in the
brain (Li et al., 2010). On a functional level, another neuroimaging review study proposed that
the DLPFC exhibits reduced activity in depressed brains (Gotlib & Hamilton, 2008). Notably,
this study suggested that such underactivation might not occur in isolation but might be part of
a broader pattern of functional connectivity characterizing brain functioning in depression.

Researchers have started to explore functional connectivity in depression from a neural sys-
tems perspective. Functional connectivity is defined as the temporal correlation of neurophys-
iological events that are spatially distant (Friston et al., 1994). In other words, two regions are
considered functionally connected if their activity measures show a statistical correlation. Based
on this, researchers have proposed the use of effective connectivity, which accounts for both
structural and functional connectivity (Friston, 2011). The concept of effective connectivity in
neuroscience extends beyond the basic notion of functional connectivity, it incorporates the di-
rectional influence that one neural element exerts over another, providing a more comprehensive
and dynamic understanding of brain interactions. A recent neuroimaging study investigating
such effective connectivity networks in the brain has revealed an abnormal pattern in depressed
patients (Rolls et al., 2018). Crucially, it was observed that individuals with depression showed
increased activity in the lateral orbitofrontal cortex, coupled with decreased effective connectiv-
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ity to and from cortical language-related areas (Rolls et al., 2018). This finding corroborates the
idea that alterations in prefrontal cortex function can impact language processing in the brain
from a neurological perspective.

In addition, many studies have demonstrated a relationship between the DLPFC and lan-
guage, particularly verbal fluency. For instance, a study that explored brain activation during ver-
bal fluency tasks suggested that these tasks engage frontal and frontotemporal brain regions (Elf-
gren & Risberg, 1998). This pattern of activation was also identified in healthy children and
adults during verbal fluency tasks, as determined by another fMRI study (Gaillard et al., 2000).
These observations led several researchers to postulate that verbal fluency might be inherently
tied to the functions of the frontal lobe. As a result, they suggested that tests of verbal fluency
could potentially serve as indicators or assessments of frontal lobe functionality (Ravnkilde et
al., 2002). This proposition is further supported by other studies evaluating phonemic verbal
fluency in subjects living with depression, which generally revealed a bilateral hypoactivation
within the frontal lobe (Klumpp & Deldin, 2010). From a behavioral perspective, evidence also
points towards a noteworthy decline in task performance among patients with major depression
relative to healthy controls during an overt and continuous semantic verbal fluency task (Backes
et al., 2014). Taking into account the finding that alterations in the functionality of these specific
areas are observed in patients with depression, it is plausible to infer that such changes could
potentially impact the speech patterns of these individuals.

Angular Gyrus

A comprehensive review consisting of 275 neuroimaging investigations suggests a critical in-
volvement of the left angular gyrus in processing language (Cabeza & Nyberg, 2000). This
implication is further substantiated by an extensive fMRI analysis involving 901 participants,
which revealed that depression influences the functional connectivity of several brain regions,
particularly the left angular gyrus (Cheng et al., 2016). This region exhibited altered functional
connectivity in the context of depression, which could potentially explain the observed inferior
performance in semantic verbal fluency tasks among individuals living with depression (Cheng
et al., 2016).

From the perspective of functional connectivity, the prefrontal cortex and angular gyrus are
critical hubs in the default mode network (a large-scale network) in the brain. These large-scale
brain networks are essentially collections of distributed brain regions exhibiting functional in-
terplay. According to the points from neuroscientists, cognitive tasks are enacted not by isolated
brain regions, but by dynamic networks comprising several discrete regions. Importantly, these
key-regions are instrumental in executing cognitive tasks, such as reading a story (Regev et al.,
2013).

However, pathologies like depression have been linked with abnormal overactivity within
these critical DMN regions (Sheline et al., 2010). A study using dynamic functional connectivity
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analysis to assess the temporal stability of these connections within the DMN found reduced
stability over time (Wise et al., 2017). This finding was further corroborated in an independent
sample. From the perspective of functional connectivity networks, patients with depression are
more likely to be affected by the pathology to produce abnormal speech.

Clinical observations further strengthen these findings. Multiple studies have reported im-
provements in the speech of depressed patients following treatment. For example, a behav-
ioral study involving 105 patients with major depressive disorder (MDD) observed significant
changes in speech production patterns in response to treatment (Mundt et al., 2012). Similarly,
a large meta-analysis revealed that MDD patients performed poorly in both phonemic and se-
mantic verbal fluency tasks compared to healthy controls (Wagner et al., 2012). However, such
worse performances of depressed patients were observed to improve over the course of treat-
ment, which confirmed the negative effects of depression on speech production.

These findings show that depression impacts speech production from the perspective of neu-
roscience, potentially leading to observing differences in speech patterns between depressed
individuals and healthy controls. This may contribute to developing techniques for automatic
depression detection in the future.

2.1.2 Cognition Mechanisms in Depressed Brain

In addition to the impact on the regions related to language processing, depression also affects
other cognition mechanisms that indirectly affect speech processing in the brain. In this subsec-
tion, we introduce two main cognition mechanisms interacting with depression, referred to as
biased attention and biased information processing.

Biased Attention

A most common behavioral manifestation of depression is rumination, involving a persistent
focus on negative content in the past or at present, resulting in emotional distress (Nolen-
Hoeksema et al., 2008). This view is confirmed through a cognitive perspective, with substantial
evidence suggesting that individuals with depression exhibit a particularly selective attention
and preferential recall towards negative information (Mathews & MacLeod, 2005). Generally,
this attention bias is not unique to depressed individuals, for example, non-depressed individ-
uals tend to exhibit biased attention toward positive stimuli, such as uplifting or pleasurable
content (Gotlib et al., 2004). However, a clinical study, using eye-tracking methodologies, has
extended these findings to show that depressed individuals tend to spend more time on negative
emotional stimuli, often neglecting the positive ones compared to healthy people (Kellough et
al., 2008).

One plausible explanation for this cognitive behavior is the alterations in the frontal lobe.
In addition to its role in language processing (see above), the frontal lobe also plays an impor-
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tant role in human attention. Specifically, an fMRI-based neuroimaging study suggested that
the disengagement of attention requires top-down intervention from higher-order brain cortical
areas, including the prefrontal cortex (Corbetta et al., 1998). Given the alterations in the frontal
lobe observed in depressed individuals (see above), it is expected that these individuals would
exhibit different patterns of attention when compared to healthy people. According to Beck’s
depression cognitive model, biased attention in depressed individuals are due to the difficulty in
disengaging from negative stimuli (Dobson, 1989). This difficulty is attributed to impairment in
certain brain regions specific to depression, which lead to deficits in inhibiting attention towards
negative stimuli (Disner et al., 2011).

Researchers have started to use neuroimaging techniques to understand such biased attention
mechanisms in depression from the perspective of cognition. In particular, the ventrolateral pre-
frontal cortex and DLPFC are two crucial parts of the prefrontal cortex that interest researchers.
In general, the ventrolateral prefrontal cortex is considered to be associated with control over
stimulus selection, while the DLPFC is considered to be related to executive functioning (Pas-
sarotti et al., 2009). However, depressed individuals exhibit a failure to get feedback from the
DLPFC, indicating impaired top-down cognitive control (Fales et al., 2008). In addition, an-
other neuroimaging study further revealed the relationship between depression and cognitive
control of emotion cues, in which individuals with depression have difficulty engaging neural
regions that facilitate cognitive control, especially for emotional information, including the ven-
trolateral prefrontal cortex (Beevers et al., 2010). Therefore, these abnormalities in top-down
cognitive control mechanisms contribute to the difficulty in disengaging from negative stimuli
in depressed patients.

The anterior cingulate cortex (ACC), a brain region in the limbic system, is also considered
to be associated with cognitive control. According to the finding in neuroscience, ACC is a
key node in the circuit involved in regulating both cognitive and emotional processing (Bush
et al., 2000). A neuroimaging study suggested that inhibition within negative stimuli recruits a
distinct set of brain regions that includes ACC (Shafritz et al., 2006). As we mentioned in the
above subsections, dynamic functional connectivity in DMN in the depressed brain tends to be
unstable (see above). Importantly, ACC is also a crucial region in the DMN, meaning that it
is expected to exhibit a unique pattern of activity in depressed individuals compared to healthy
adults. According to a neuroimaging study related to depression, only negative stimuli can
activate ACC in depressed individuals, although both positive and negative stimuli can activate
ACC in non-depressed individuals (Eugène et al., 2010; Mitterschiffthaler et al., 2008). This
differential response provides a complementary explanation for why depressed patients struggle
to disengage from negative emotions.

In conclusion, alterations in the ACC and prefrontal cortex contribute to abnormal top-down
regulation, leading to biased attention towards negative stimuli in depressed individuals. As a
result, this biased attention to the input into the brain may potentially lead to biased information
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processing for depressed patients.

Biased Information Processing

Beck’s cognitive model of depression is a landmark that provides an understanding of the biased
cognitive mechanisms that underpin depression (Beck, 2008). One of its most important features
is the concept of biased information acquisition and processing, suggesting that both internal
and external environmental stimuli activate and influence the information processing pathways
in depressed patients. In line with previous sections, this suggests that depressed patients tend
to focus on negative elements, resulting in the brain being trapped in the loop of negativity that
is continually processing negative information.

From a neuroscience perspective, individuals with depression exhibit distinct patterns of bi-
ased information processing when encoding, organizing, and retrieving information (Disner et
al., 2011). For example, depressed patients show decreased sensitivity to their positive emo-
tions (Watson et al., 1988), in other words, a loss of pleasure. The main explanation for such a
situation is the decrease of dopamine secretion, because dopamine is linked with the experience
of pleasure. In particular, several neuroimaging studies suggested that a top-down control from
the prefrontal cortex triggers dopamine release, increasing brain activity in response to reward-
ing stimuli and successfully regulating emotion by activity (Del Arco & Mora, 2008; Wager
et al., 2008). However, this process can be impacted in individuals with depression due to the
alterations of the prefrontal cortex (see subsections above).

Another critical function of the prefrontal cortex is emotion regulation, and a correlation
has been demonstrated between specific patterns of the activity in the prefrontal cortex and
emotion regulation (S. H. Kim & Hamann, 2007). The prefrontal cortex has been revealed with
diminished maintenance of brain activation, which reflects a decreased capacity to keep positive
emotion (A. S. Heller et al., 2009). This can be a key feature of depression that limits response
to positive stimuli, which leads to biased information processing.

Depression is a mental disorder that can lead to changes in emotions, thus the brain regions
related to emotion processing are the focus of researchers. The perception of emotional stimuli
depends on the amygdala, two almond-shaped clusters of nuclei located in the temporal lobes of
the brain. This brain region provides emotional responses and contributes to the interpretation
of the emotional quality of stimuli. However, many studies suggested that there are structural
and functional abnormalities in the amygdala in the depressed brain, such as increased neuro-
physiological activity, abnormal metabolism, and reduced grey matter volume (Drevets, 2001).
In particular, depressed patients exhibit sustained amygdala activities in response to processing
negative information, and such activities are more intense and longer than those in healthy con-
trols (Siegle et al., 2002). Importantly, such excessive activity in the amygdala still persists in
depressed individuals even after the removal of negative stimuli (Schaefer et al., 2002). These
neuroscience findings reveal the impact of amygdala alterations on the abnormal processing of



CHAPTER 2. BACKGROUND 16

negative emotional information in depression.
A comprehensive meta-analysis involving 385 studies found a negative correlation between

amygdala activity and left DLPFC function when processing emotional information in healthy
individuals (Costafreda et al., 2008). In general, the DLPFC exerts an indirect inhibitory regula-
tion on the amygdala (J. LeDoux, 2007; J. E. LeDoux, 2000). However, the inhibitory deficits in
the frontal areas can affect amygdala activity. For example, the decreased top-down regulation,
from bilateral DLPFC to the amygdala, generates abnormal reactivity of the amygdala (Fales
et al., 2008). Moreover, the hyperactivity of the amygdala in depressed individuals, acting as a
bottom-up signal, influences higher cortical structures, contributing to the bias towards negative
emotional processing, even at a subconscious level (Victor et al., 2010). This implies a tendency
of the depressed brain to amplify negative emotional responses.

Therefore, alterations in the function and structure of the prefrontal cortex in depressed indi-
viduals, contribute to decreased cognitive control and amygdala hyperactivity. This is due to the
dysfunction of both top-down and bottom-up regulation, leading to dysfunctions in emotional
processing in the depressed brain. Such dysfunctions have an impact on cognitive processes,
particularly in regard to attention and information processing, which is significant and has been
shown to affect alterations in linguistic content (see next section for more details).

In conclusion, it is apparent that alterations in specific brain regions associated with language
processing can directly influence speech production. In the meanwhile, changes in other brain
regions can generate attention and information processing biases in individuals with depression.
The attention bias can skew the focus of an individual towards negative content, thus further
aggravating the biased information processing within the depressed brain. As a result, this
predisposition towards negativity indirectly affects the speech content of depressed individuals,
causing a tendency towards more negative words (see below), as shown in Figure 2.1.

2.2 Different Speech Production in Depression

Speech production, a common but complex process, is initiated with cognitive planning, in
which the message going to be spoken is formulated and sets up phonetic and prosodic informa-
tion in the brain of the speaker. Then such information is conveyed by motoric muscular actions
(e.g. the control of the vocal tract), and this information is regulated by articulators for voice
generation (Singh, 2019; Sataloff et al., 2007). Prosodic information depends on the style and
rhythm of speech.

In the previous sections of this chapter, we reviewed the various neurobiological alterations
that occur within the depressed brain, and introduced the multiple cognitive impairments es-
pecially for the mechanisms of language processing in depression (see Section 2.1). These
alternations are expected to affect the speech production of depressed patients. In the current
section, we will introduce speech from the perspectives of motor actions and voice. We will
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Biased
Attention

Biased
Infomation Processing

“I am feeling sad...”Speech
Production

Figure 2.1: The figure shows that depression can influence speech in two primary ways. Firstly,
alterations in the brain regions associated with language processing directly impact speech pro-
duction. Secondly, alterations in other brain regions can also induce biased attention and in-
formation processing, which may trap the individuals in a state of persistent negativity. Conse-
quently, this has an indirect effect on the content of their speech.

first delineate the process of voice generation, followed by an introduction to the changes in this
process in depression. Then we will introduce speech variations observed in individuals with
depression and this is the main motivation why we establish a new corpus including read and
spontaneous speech.

2.2.1 Voice Generation

The control of motor muscles in voice generation includes the muscles of lungs, larynx and vocal
tract. The process commences with the generation of pulmonary pressure by the lungs, followed
by sound creation through phonation in the glottis of the larynx and finally, the modification of
these sounds into distinct vowels and consonants by the vocal tract.

The vocal cords, located within the larynx and formed by two masses, are a critical compo-
nent of the vocal tract. The inner edges of these masses create an opening known as the glottis.
This structure plays an important role in voice generation, in which the larynx controls the vocal
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cords to generate sound.
The lungs control the inhalation of air by expanding the surrounding rib cage and maintain-

ing a steady flow of air during voice generation through precise muscle control. In the mean-
while, the vocal cords are opened and closed rhythmically, controlled by the larynx, to facilitate
the passage of air through the glottis, thereby generating sound. Such a process introduces rapid
vibrations of the vocal folds due to aerodynamic phenomena, leading to a sequence of vibratory
cycles that produce sound. The larynx modulates the tension of the muscle, partly closing the
vocal cords to control the size of the glottis and the airflow through it, thus altering the voice.

The fundamental frequency of the sound generated depends on the length, size, and tension
of the vocal cords. For example, the average frequency for adult males, adult females and chil-
dren are about 125 Hz, about 210 Hz, and over 300 Hz, respectively, mainly due to differences
in larynx characteristics. Furthermore, the shape modification of the vocal tract is mainly de-
termined by the articulators (e.g. tongue, palate, cheek, and lips) which modulate the sound
emanating from the larynx to produce various phonemes.

Compared to any other human mechanical activity, more motor fibres are involved in the
process of voice generation, in which around 100 muscles collaborate precisely in temporal
respect, with the primary muscle groups involved being the laryngeal, respiratory, and articula-
tory muscles (Kent, 2000). In particular, the laryngeal muscles, including five muscle groups
to control nine cartilages, collaborate with the diaphragm and intercostal muscle groups for res-
piration as well as those muscles controlling the lower jaw, tongue, lips, and velum for voice
generation (Singh, 2019; Sataloff et al., 2007; Cummins, Scherer, et al., 2015).

From the perspective of acoustic theory, the source-filter model was proposed to analyse
speech production and vocal acoustics (Singh, 2019; Almaghrabi et al., 2023). This model
includes two stages, sound source modelling and conversion to speech signals. In the first stage,
an excitation signal x(t) often modelled by a periodic pulse train with spacing τ is used to
represent sound signals generated from the glottis, while in the second stage, a filter with a
continuous impulse response amplifies and attenuates the frequency response of the signal. Such
a stage can represent resonant properties of the vocal tract and allow to define a transfer function
v(t) (Singh, 2019; Rabiner & Schafer, 2010; Almaghrabi et al., 2023). Therefore, the speech
signal s(t) can be defined as follows:

s(t) = x(t)∗ v(t), (2.1)

where speech signal s(t) is the result of convolving x(t) with v(t), and is periodic τ in the time-
domain. When it comes to the frequency domain, such equation can be converted with the
Fourier transform as follows:

S ( jω) = X ( jω) ·V ( jω) , (2.2)

where · is the multiply operation.
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2.2.2 Changed Voice Generation in Depression

As mentioned in the previous subsection, the process of voice generation involves many groups
of muscles cooperating, however, many studies have reported that this process is affected by
depression, leading to qualitative and quantitative changes in speech production (Kiss & Vicsi,
2017b; Cannizzaro et al., 2004). In particular, depressed patients exhibit psychomotor retarda-
tion that shows slowing of physical movements and thoughts (Cannizzaro et al., 2004). Such
a behavior also reflects on the speech production that shows sluggishness and motor disorder
in vocal articulation (Williamson et al., 2013). Furthermore, compared to healthy individuals,
such an abnormal process leads to a longer response time, longer pause time and slower speech
rate in depressed individuals (Yamamoto et al., 2020). This indicates that the speech observed
in depressed individuals seems to be different from healthy people.

The above phenomena attracted the interest of researchers. According to Cummins, Scherer,
et al. (2015), depressed patients have changes in muscle tension that affect the vocal tract and
articulatory movement during voice production. For example, "[...] disturbances in laryngeal
muscle tension will influence vocal fold behaviour whilst changes to respiratory muscles will
affect subglottal pressure [...]" (Cummins, Scherer, et al., 2015). As a result, the prosody and
quality of the speech are affected by the changed muscle tension and control. In particular,
Y. Yang et al. (2012) revealed that the prosody features can reflect depression severity. From this
perspective, the speech produced by articulators (in control of muscles in speech production) is
expected to convey depression-related information.

In fact, cognitive impairments and psychomotor retardation can generate more speech er-
rors (Cummins, Scherer, et al., 2015). For example, compared to healthy individuals, more
phonation and articulation errors were observed during the speech of depressed patients (Christo-
pher & MacDonald, 2005). Similarly, such a higher frequency of errors was also shown in
depressed participants during a different speech task (Stasak et al., 2021). Furthermore, such
speech errors can be magnified by external interference or in communication with others (Xie
et al., 2019). Although speech disfluency is common in spontaneous speech (Johnson, 2004), a
greater number of abnormal pauses and speech errors, resulting from abnormal cognitive-motor
impact, were also observed in the simple reading tasks for depressed individuals (Tao et al.,
2020; Stasak et al., 2021).

2.2.3 Speech Features in Depression

An important and frequently reported aspect of research in the field of depression-related speech
is the investigation of alterations in speech features. Depression affects muscle tension and mod-
ifies salivary and mucus secretion (Cummins, Scherer, et al., 2015), thus leading to changes in
speech features. Speech features employed for depression detection can be categorised into
four groups, namely source features, spectral features, prosodic features, and formants fea-
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tures (D. M. Low et al., 2020). There is a simple and standard speech feature set proposed
in Schuller et al. (2009), which includes these four aspects of features.

Source Features

Source features provide information related to glottis when producing the voice (Cummins,
Scherer, et al., 2015). Such features play an important role in characterising voice quality, which
refers to the changes, unrelated to prosodic elements such as pitch, in the vibrations of vocal
cords and the shape of vocal tract as perceived auditorily (Cummins, Scherer, et al., 2015).
According to D. M. Low et al. (2020), voice quality features and glottal features, as two main
types of source features, were suggested to model the vibration of vocal folds and the glottal flow
during voice production. In general, the measurements of voice quality in depression detection
include jitter, shimmer and harmonic-to-noise ratio (HNR).

To this end, features measuring voice quality (e.g., jitter, shimmer) have been proposed to
describe small cycle-to-cycle changes in glottal pulse, and then showed a strong connection to
depression (Quatieri & Malyska, 2012). Similar to jitter and shimmer, HNR describes a ratio of
harmonics to inharmonic components, which are higher in depressed patients due to the altered
patterns of airflow in the speech production (L.-S. A. Low et al., 2010).

• Jitter is impacted by the control of vocal fold vibration, and it measures the variation of
successive glottal periods, typically ranging between 0.50% and 1.00% in adults (Teixeira
et al., 2013). Jitter is defined as follows:

Jitter =
1

N −1

N−1

∑
i=1

|Ti −Ti−1|, (2.3)

where N is the total number of extracted periods and Ti is the time period of the glottal
pulse.

• Shimmer reflects the peak values of a signal and it is affected by glottal resistance or mass
lesions on the vocal cords (Teixeira et al., 2013), typically ranging between 0.05 dB and
0.22 dB (Haji et al., 1986). Shimmer measures the amplitude of the variation of successive
glottal periods, defined as follows:

Shimmer(dB) =
1

N −1

N−1

∑
i=1

∣∣∣∣20∗ log
(

Ai+1

Ai

)∣∣∣∣ , (2.4)

where N is the total number of extracted periods, Ai is the amplitude measured from peak-
to-peak.

• HNR measures the ratio between periodic and non-periodic components (harmonics to
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inharmonic components) in the voice. HNR is defined as follows:

HNR = 10 · log
ACF(T0)

ACF(0)−ACF(T0)
, (2.5)

where T0 is the fundamental period determined by mathematical fundamentals presented
by Boersma et al. (1993), and ACF is the autocorrelation function.

Given that depression-related vocal cord vibration (Ozdas et al., 2004) results from the
changes in subglottal pressure and vocal cord tension (Sundberg et al., 2011), Quatieri & Malyska
(2012) found that jitter and shimmer show a strong connection to depression. In particular,
Silva et al. (2021) found that depressed patients tend to have significantly higher values of jitter
and shimmer compared to healthy individuals. Such results reflect the glottal irregularities in
phonation in depressed individuals, affecting the dynamic coordination of the larynx motor. In
addition, HNR is also correlated with depression severity significantly (Quatieri & Malyska,
2012) and is higher in depressed patients due to the altered patterns of airflow in the speech
production (L.-S. A. Low et al., 2010). These results also reflect turbulent glottis led by muscle
incoordination. The above source features showing differences in depressed individuals were
investigated in Table 2.1.

Prosodic Features

Prosodic features describe the variations in the perceived acoustic properties, such as rhythm,
stress, and intonation of speech, reflecting the manner of speaking (Cummins, Scherer, et al.,
2015). This type of feature includes speaking rate, pitch (F0, the fundamental frequency) and
loudness.

Pitch is a perceptual property of speech and it represents the glottal excitation rate (Sethu et
al., 2009). Quantifiable as a frequency such as F0 (fundamental frequency), pitch corresponds
to the lowest frequency of a periodic vocal cord vibration. The variation in F0 values is typically
affected by gender and mainly depends on vocal cord structures, including anatomy and larynx
size (Benesty et al., 2008). According to paralinguistic investigations on depression speech,
researchers found depressed patients tend to show speech abnormalities in prosodics including
decreased pitch and pitch range (Cummins, Scherer, et al., 2015). In particular, Hussenbocus
et al. (2015) observed that males with depression tend to have decreased F0 values while fe-
males with depression tend to have increased F0 values. Despite these findings, some studies
reported no correlation between F0 and depression (Mundt et al., 2012; Quatieri & Malyska,
2012; Y. Yang et al., 2012). Such discrepancy may arise from inconsistent ground truth (clini-
cal diagnosis vs self-assessments) or variations in speech content (reading vs interview) across
different studies.

The perception of loudness is associated with the intensity of the speech signal and it typ-
ically depends on glottal excitation strength and sub-glottal pressure etc (Seshadri & Yegna-
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narayana, 2009). The previous study suggested that the decrease in loudness is associated with
depression (K. R. Scherer, 2013). However, this relationship has been contested in some stud-
ies (Cummins, Scherer, et al., 2015). For example, Alpert et al. (2001) found that depressed
individuals spoke louder than non-depressed individuals. In recent years, researchers typically
use the root mean square of the energy instead of loudness to measure the energy in speech, see
Section 3.3.1 for more details.

Given the effects of psychomotor retardation among depressed patients, researchers explored
timing-based features in order to capture these delayed articulatory movements. In this perspec-
tive, features such as prosodic timing measures (Mundt et al., 2012), speech rate and phoneme
rate (Trevino et al., 2011) have been proposed. In particular, many studies report depressed
patients to have a slower speech rate compared with controls (Cummins, Scherer, et al., 2015;
Hönig et al., 2014; Alghowinem et al., 2012). (Trevino et al., 2011) also explains depressed
speech rate from the phoneme level of speech production. One possible explanation for such
a situation is that depressed patients tend to have more pauses during speaking (Mundt et al.,
2012; Liu, Li, et al., 2017), thus taking more time in speech. Furthermore, evidence suggests that
the duration of pauses in speech from depressed individuals is typically longer than those from
non-depressed individuals (Tao et al., 2020). The prosodic features that have been identified as
showing significant differences in studies related to depression are presented in Table 2.1.

Other prosodic features such as zero-crossing rate (ZCR) and voicing probability (VP) are
also important and have been revealed differences in depressed people, see Section 3.3.1 for
more details.

Formants Features

Formant features, often called filter features, represent frequency peaks in the spectral distribu-
tion where the speech signal concentrates a high proportion of acoustic energy (Abhang et al.,
2016). These features are relevant to the characteristics of the vocal tract and are influenced by
factors such as muscular tension and the production of salivation or mucus (Cummins, Scherer,
et al., 2015). Formant features capture the information related to the acoustic resonances of the
vocal tract, thereby reflecting the coordination of speech articulators (Williamson et al., 2013).
Despite a signal theoretically being capable of containing an infinite number of formants, only a
limited number fall within the range of human auditory perception (Özseven & Düğenci, 2018).
The top two formant frequencies, commonly referred to as F1 and F2, are critical in specifying
the quality of a vowel (Benesty et al., 2008). The subsequent three formant frequencies (F3, F4,
F5) define the property of the voice (Stanek & Polak, 2013).

The reduction of articulatory effort in depressed patients resulting from psychomotor distur-
bances, thus has an impact on the formant features (Flint et al., 1993). In general, depressed
patients exhibit a decrease in average formant frequencies, such as F1 and F2 (Kiss & Vicsi,
2017b; Flint et al., 1993; Vicsi et al., 2012). However, such observations are not consistently
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Table 2.1: The survey of widely-used speech features in terms of source features, prosodic
features, formants features and spectral features shows significant differences between depressed
speech and healthy speech.

Features types Features Studies

Source Features
Jitter&shimmer

(Ozdas et al., 2004; Carding et al., 2009;
Quatieri & Malyska, 2012; Alghowinem,
Goecke, Wagner, Epps, Gedeon, et al., 2013;
Sahu & Espy-Wilson, 2016; Silva et al., 2021)

HNR
(Quatieri & Malyska, 2012; Horwitz et al.,
2013; Jia et al., 2019, 2020; Albuquerque et
al., 2021)

Prosodic Features

F0

(Alghowinem, Goecke, Wagner, Epps,
Gedeon, et al., 2013; K. R. Scherer, 2013;
Guidi et al., 2015; Hussenbocus et al., 2015;
Simantiraki et al., 2017)

Loudness
(Alghowinem, Goecke, Wagner, Epps,
Gedeon, et al., 2013; J. Wang et al., 2019)

ZCR & VP
(Alghowinem, Goecke, Wagner, Epps,
Gedeon, et al., 2013; Morales & Levitan,
2016)

Pauses & speech
rate

(Alpert et al., 2001; Cannizzaro et al., 2004;
Mundt et al., 2012; Morales & Levitan, 2016;
Liu, Kang, et al., 2017)

Formants Features
F1/F2/F3

(France et al., 2000; Moore II et al., 2007;
Vicsi et al., 2012; Shannon et al., 2016; Kiss
& Vicsi, 2017a,b)

Vocal tract coor-
dination

(Williamson et al., 2013, 2014, 2016, 2019;
Tao, Ma, et al., 2023)

Spectral Features
MFCCs

(Yingthawornsuk et al., 2006; Quatieri &
Malyska, 2012; Cummins, Epps, & Am-
bikairajah, 2013; Kiss & Vicsi, 2017b;
Taguchi et al., 2018; J. Wang et al., 2019)

Mel-filtered band
energies

(Kiss & Vicsi, 2017a)

reported across all studies. For example, Mundt et al. (2007) reported that there was no sig-
nificant correlation between F1 variability and depression. Similarly, France et al. (2000) ob-
served increases in the locations of formant frequencies (F1-F3). The potential source of this
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inconsistency could lie in the complex relationship between the dynamics of the source and the
filter (Cummins, Scherer, et al., 2015). Another potential explanation for such a discrepancy
may be the different antidepressant medications used across studies. Some of these medications
may have anticholinergic effects that decrease saliva production, thereby leading to a drier vo-
cal tract and mouth, and therefore, this could subsequently interfere with the formants and the
distribution of energy (France et al., 2000; Cummins, Scherer, et al., 2015).

Psychomotor retardation can result in vocal tract constriction and/or a deficit in motor coor-
dination, which in turn may affect the formant features in individuals with depression (Quatieri
& Malyska, 2012; Flint et al., 1993). Drawing on observations of psychomotor retardation in
depressed patients, Williamson et al. (2013) proposed more sophisticated features related to the
coordination of vocal tract articulation across variable time scales. Specifically, Williamson et
al. (2013) focused on changes in the correlation across different time scales of formant frequen-
cies, thereby reflecting changes in formant features of depressed individuals. The reduction of
vowel space among depressed patients corroborates this, indicating less articulate speech and al-
tered formant features (S. Scherer et al., 2015). Additionally, a decreased acoustic feature space
in depressed patients was also reported (Cummins, Sethu, et al., 2015). Therefore, the changes
in formant features provide a direction for investigating depressed speech from an articulatory
perspective, and thus allow researchers to detect depressed speakers from irregular articulatory
information (Huang et al., 2019b,a). Table 2.1 presents formant features investigated in the
studies related to depressed speech.

Spectral Features

Spectral features, representing the distribution of frequencies in human speech signals over a
specific duration, can be analyzed for their individual frequency components. They are capable
of capturing variations in prosodic, phonetic, and articulatory information that occur due to
speech motor control (Almaghrabi et al., 2023). These features have been utilized to reflect the
psychological state of the speaker (Cummins, Scherer, et al., 2015). In addition, spectral features
were also observed to represent the relationship between the movements of articulators and the
shape of vocal tract (W. Pan et al., 2019). Therefore, spectral features are also expected to
capture psychomotor retardation and disturbances in muscle tension (Almaghrabi et al., 2023).
Table 2.1 presents spectral features showing significant differences between depressed and non-
depressed individuals.

In the studies investigating the speech of depression, it has been observed that a relative
shift in spectral energy is common among individuals affected by the pathology. This shift
typically involves the spectral energy transitioning from lower to higher frequency bands (France
et al., 2000; Ozdas et al., 2004). Specifically, the averaged energy values in low-frequency
bands (65–400 Hz) tend to shift towards higher values, and those in higher frequency bands
(1330–5735 Hz) lean towards lower ones (Kiss & Vicsi, 2017b). This energy shift may be an
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outcome of the increased tension in the vocal tract or vocal cords, thus altering properties in the
resonance of the vocal tract (Cummins, Scherer, et al., 2015; K. R. Scherer, 1986).

Among the spectral features, mel-frequency cepstral coefficients (MFCCs) are commonly
used. MFCCs are obtained by taking logs of powers on a nonlinear mel scale of frequency
and transforming them by a linear cosine. The main advantage of using MFCCs is that the
frequency bands on the mel scale are equidistant in perception, therefore, compared to using
the spectrum with linearly-spaced frequency bands, it mimics the response of the human audi-
tory system more accurately. Studies have demonstrated that MFCCs, representing the speech
spectrum of a speech segment, show decreased temporal variations with increasing severity of
depression (Cummins, Epps, Sethu, et al., 2013). For example, MFCC5 and MFCC7 values
are found to be lower in depressed speech, which can be leveraged as effective indicators for
depression identification through voice analysis J. Wang et al. (2019). Furthermore, a signif-
icant increase in MFCC2 was observed in the speech of depressed patients, such a difference
that remains unaffected by factors such as age or gender (Taguchi et al., 2018). These variations
in MFCCs between depressed and non-depressed speech reflect the differences in vocal tract
configuration from an anatomical perspective (Zhu et al., 2012).

The standard procedure in depression detection involves the concatenation of MFCCs with
their time derivatives (i.e., delta), which captures the temporal variation of MFCCs and pro-
vides additional information relevant to depression. For instance, MFCCs combined with time
derivatives were found to have a significantly negative correlation with the severity of depres-
sion (Cummins, Epps, Sethu, et al., 2013). These findings indicate the distinct spectral character-
istics of depressed speech, showing the potential of such features used for automatic depression
detection, see Section 2.3.

2.2.4 Changes of Depressed Speech in Interview

Complementing the findings on acoustic errors, there are some speech errors of depressed speak-
ers in the interview. Table 2.2 presents related tasks used in the studies investigating spontaneous
speech. For example, Rubino et al. (2011) found that, compared to healthy individuals, de-
pressed individuals tended to have more referential failures which are errors replacing words
(i.e., malapropisms) in spontaneous speech. According to the definition of malapropism, it is a
type of error involving the substitution of an intended word with an incorrect one. This misused
word is typically unrelated in meaning but shows some similarities, such as in word pronunci-
ation, syllable length, or grammatical category (Fay & Cutler, 1977). In particular, given that
depressed patients exhibited passive avoidance strategies (Holahan & Moos, 1987; Holahan et
al., 2005), it is expected that, compared to non-depressed individuals, depressed speakers may
be less inclined to self-correct their speech errors.

Another study comparing the speech patterns of depressed and non-depressed individuals
found that depressed individuals are more likely to express negative emotions when describing
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Table 2.2: The survey of tasks used for investigating the spontaneous speech of depressed indi-
viduals.

Studies Participants Tasks

(Rude et al., 2004) 124 Writing about feeling in the college

(Molendijk et al., 2010) 412 Writing about their life

(Fast & Funder, 2010) 181 Interviewed by clinician

(Jarrold et al., 2011) 26 Structured interviews

(Zimmermann et al., 2013) 118 Semi-structured interview

(Van der Zanden et al., 2014) 234 Answering to a set of questions

(Bernard et al., 2016) 136 Writing about feeling in the college

(Nook et al., 2017) 107 Writing responses to neutral images

their feelings (Long et al., 2017). Moreover, a linguistics meta-analysis further confirmed these
findings, indicating that depressed individuals tend to use fewer positive words in their speech
compared to healthy individuals (Tølbøll, 2019). This observation aligns with Beck’s cognitive
model, confirmed by the study from a perspective of spontaneous speech (Rude et al., 2004). In
particular, depression has an impact on the ways in which individuals perceive, interpret, and
communicate their experiences by the cognitive mechanisms that promote increased self-focus
and negative thinking (Bernard et al., 2016). In particular, depressed individuals incline to use
more first-person pronouns, and such a finding reflects self-focus in depression (Tackman et al.,
2019). The meta-analysis further confirmed this phenomenon, and suggested that the use of first-
person singular pronouns significantly correlated with depression, importantly, such correlation
was not biased (Holtzman et al., 2017).

2.3 Overview of Automatic Depression Detection

In the last section, we introduced the various differences in terms of read and interview speech
that result from changes in the vocal tract caused by depression. This is the main motivation
for this thesis why to establish the Android Corpus, collecting read and spontaneous speech.
These differences in such speech provide a reliable basis for developing techniques for depres-
sion detection. In this section, we will review studies using speech for automatic depression
detection.



CHAPTER 2. BACKGROUND 27

2.3.1 Advantages of Automatic Depression Detection

The first advantage of such a technique is that the outcome may be robust and independent to
the language used in the system. For instance, Alghowinem et al. (2016) investigated the use of
German and English recordings from clinical interviews for depression detection. In particular,
such speech recordings had different accents, such as Australian and American. The results
suggested that the application of SVM models to speech recordings in the different language
yielded comparable classification performance, with an average recall of 89.5%. Even when all
speech recordings were combined, depression detection remained effective, achieving an aver-
age recall of 74.6%. In the similar vein, Kiss et al. (2016) investigated the acoustic features
extracted from read speech of Hungarian speakers (54 patients, 73 controls) and Italian speakers
(11 patients and 11 controls). The results suggested that the variance in acoustic features be-
tween healthy and depressed speech was found to be similar in both languages, and there was no
significant difference in the classification outcomes when using different languages. The above
findings indicate that healthy and depressed speech carries comparable separation tendencies
across different languages.

Another advantage in the use of automatic depression detection is that it allows to be ap-
plied to large-scale depression screening. For example, computer-automated methods can be
employed for telephone data collection (Mundt et al., 2007, 2012). A voice-controlled agent,
allowing for hands-free interactions, can be utilized for remote mental health monitoring, thus
overcoming challenges such as cost of health care and time, stigma, and accessibility that often
hinder mental health care access (D. M. Low et al., 2020). Furthermore, this technique can com-
ply with standard protection of sensitive personal data. For example, healthcare organizations
have started to analyze electronic health data with devices that meet standard protection for pa-
tients data (Brewer et al., 2022). As a result, The trend towards developing privacy-preserving
techniques for automatic depression detection is on the rise (X. Xu, Peng, et al., 2021; Al-
maghrabi et al., 2023; Koops et al., 2023).

2.3.2 Read and Spontaneous Speech of Depression

In recent years, the computing community has made substantial efforts towards automatic de-
pression detection with speech (Cummins, Scherer, et al., 2015; Wu et al., 2022). After ob-
serving the difference in speech production between depressed patients and healthy individu-
als (Cummins, Scherer, et al., 2015), researchers have tried to identify which type of speech is
best suited to maximize the difference in speech. The first type is spontaneous speech, mainly
because it is the closest format to the clinical depression diagnosis. In clinical settings, de-
pressed patients are typically diagnosed by answering a series of questions in questionnaires
that reflect psychometric properties, such as Hamilton Depression Rating Scale. Another reason
is that spontaneous speech is considered to be more capable of expressing the emotional state of
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the speaker (Mitra & Shriberg, 2015).
In this respect, many studies have started to investigate the effectiveness of spontaneous

speech in automatic depression detection because it provides more acoustic variability (Al-
ghowinem, Goecke, Wagner, Epps, Breakspear, & Parker, 2013; Jiang et al., 2017; Alghowinem
et al., 2012; Aloshban et al., 2020, 2022; Alsarrani et al., 2022). For example, tempo-related
features such as pause lengths and articulation rate are useful in spontaneous speech (Kiss &
Vicsi, 2017a). This is in line with the phenomenon that depressed patients tend to speak with
significantly longer pauses than non-depressed speakers (Alghowinem, Goecke, Wagner, Epps,
Breakspear, & Parker, 2013; Esposito et al., 2016). Additionally, depressed patients tend to have
more referential failures, such as word replacement errors where an incorrect substitution word
with an unrelated meaning but a similar pronunciation is used instead of the intended word (Ru-
bino et al., 2011). However, such an observation seems to be affected by the lower participation
of depressed patients when speaking spontaneously, during which they may typically attempt a
few times before speaking up or keeping silent (He et al., 2022).

The aforementioned issue can be addressed by providing predefined text, i.e., read speech,
because it requires less participation from depressed patients. On the one hand, the unimportant
nature of the material being read limits the impact of variability related to speech content, and
this provides researchers with a perspective to investigate acoustic properties of speech. For
example, formants trajectories are more effective in read speech due to their sensitivity to the
content of speech (Mitra & Shriberg, 2015; Kiss & Vicsi, 2017a). On the other hand, the pre-
defined text makes the speakers more careful with the articulation of speech, making it easier to
capture acoustic phonetic information (Mitra & Shriberg, 2015). In addition, read speech pro-
vides specific tempo-related features, such as read speed, indicating that depressed patients may
tend to read slower (Tao et al., 2020), which is in line with the phenomenon of psychomotor
retardation among depressed patients (Williamson et al., 2013). However, the disadvantage of
read speech is that it suppresses the emotional state of the speaker (Mitra & Shriberg, 2015).

Researchers have found some acoustic features (e.g. variability of fundamental frequency
and mel-frequency cepstral coefficients) exhibit common variability in the read and spontaneous
speech (Long et al., 2017), but they differ from each other phonetically and phonologically (Kiss
& Vicsi, 2017a). Recently, more and more studies have taken both of them into account for
depression detection (Jiang et al., 2018; Lu et al., 2021; Rejaibi et al., 2022; Du et al., 2023).
However, the main issue is that different types of speech are fed into the model in the same
way, which leads to the loss of unique information related to each type. The approach proposed
in this work addresses the problem by jointly considering the specific information of read and
spontaneous speech.
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Figure 2.2: The overview of steps in the automatic depression detection system.

2.3.3 Automatic Depression Detection Research Pipeline

Figure 2.2 shows the overall framework commonly used in automatic depression detection. This
framework typically includes four steps, namely data acquisition, data preprocessing, feature

extraction and depression recognition.

Data Acquisition

The data of participants including speech signals and demographic information are stored in
databases, the Andriods Corpus, see Chapter 3 for more details. The speech signals typically
are the recordings during the tasks performed by participants, such as reading aloud a passage,
describing pictures, communicating with others etc. The demographic information might be of
help in detecting depressed speakers and includes age, gender, education level etc. In addition
to the speech signals, other types of data used in the automatic depression detection system in-
clude electroencephalogram (EEG) J. Shen et al. (2020), functional near-infrared spectroscopy
(fNIRS) (R. Wang et al., 2021), accelerometers (sensors) (Burton et al., 2013), Global Position-
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ing System (GPS) (X. Xu, Chikersal, et al., 2021) and WiFi (Yue et al., 2020). In this thesis, we
only survey automatic depression detection using speech signals.

Data Preprocessing

Depending on the task (classification or regression), the data of all participants should be divided
into two groups according to the ground truth, a group of depressed patients and a group of
healthy controls. For a classification task, such as detecting a depressed speaker, the labels
for the depressed patients are determined by the ground truth (Cummins, Scherer, et al., 2015;
Kiss & Vicsi, 2017a; Aloshban et al., 2020; Tao, Ge, et al., 2023). However, for a regression
task, such as predicting the severity of depression in patients, the labels depend on questionnaire
scores, which serve to indicate depression severity (Cummins, Scherer, et al., 2015; Williamson
et al., 2019; Dumpala et al., 2021; He & Cao, 2018).

The main steps of data preprocessing include noise reduction and pre-feature manipulation.
Noise reduction is the process of removing noise and outliers from speech signals. pre-feature
manipulation is normalizing, filtering or segmentation to redistribute the features in the raw data
for the next step of feature extraction.

Normalization is crucial data manipulation techniques, transforming the value range to a 0-1
scale and modifying the influence of specific data points, respectively. These processes enhance
the data quality and integrity, thereby avoiding anomalies and inconsistencies. Z-score normal-
ization and min–max normalization are the most widely used normalization methods (Patro &
Sahu, 2015). The former transforms the distribution of probability into a standard Z distribution
with an area of 1, while the latter converts the minimum value in the dataset into 0 and the maxi-
mum value into 1. These transformations both convert values into a constrained range, enabling
an improved understanding of the relative impact of various data points.

Segmentation, the process of dividing data into distinct segments, varies based on data types.
In speech signal processing, segmentation can be used to identify boundaries between words,
syllables, or phonemes, facilitating linguistic analysis of spoken natural languages (Schuller
& Batliner, 2013). Furthermore, segmentation can isolate irrelevant speech data, such as the
voice of interviewer during communication (Aloshban et al., 2021) or silence before the start of
experiments (Tao et al., 2020). It can also be employed for detecting speaking through Noise-
Robust segmentation (Khorram et al., 2016), voice activity detection(Karam et al., 2014), and
speech recognition(Mattys et al., 2012).

Pre-feature manipulation involves altering the data into a more useful form in order to be in
line with the objective, without necessarily removing any information before it is input into the
model. An example of these methods is signal transformation, which mathematically converts
the data into a different form for specific analysis, such as the Fast Fourier Transform (FFT) that
converts time-domain data into frequency-domain data (Brigham, 1988).

Both filtering and segmentation help exclude noise data, and this allows the extraction of
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more accurate speech features for subsequent analysis. However, the removal of some data
might inadvertently lose important information from the signal, or distort the original signal. As
a result, this might lead to over-fitting during the recognition stage, making it challenging to use
in some environments with high noise levels.

Feature Extraction

The process of feature extraction converts speech signals into feature vectors. These vectors aim
to encapsulate the maximum amount of information present in speech signals, while minimizing
redundancies (Kinnunen & Li, 2010). The choice of extracted features depends on the specific
goals of the research and varies among studies, but commonly includes linguistic and acous-
tic features, as discussed in Sections 2.1 and 2.2. Within the context of depression detection,
the extracted features proposed in the Audio/Visual Emotion Challenge (AVEC) 2009 has seen
widespread use for inferring human emotional and psychological states (Schuller et al., 2009).
During extracting features, a commonly used method involves segmenting speech signals into
multiple short windows, then extracting predefined speech features from each window. This
method allows for a more precise representation of syllables or phonemes within spoken words.

Another feature extraction approach has been proposed for depression detection is the use
of i-vectors (Cummins et al., 2014). I-vectors have been extensively proposed for speech recog-
nition applications (Dehak et al., 2010). Frame-level features are acquired by adapting the Uni-
versal Background Model, which characterizes the feature distribution of acoustic space, to
a series of specific speech frames, thereby estimating the parameters of utterance-dependent
Gaussian Mixture Models (GMM). The i-vector space represents a low-dimensional subspace
where supervectors represented by GMM are linearly transformed, retaining as much variability
or valuable information in the raw vector space. The i-vector extraction can be expressed as:

Φx = Φ+T ω, (2.6)

where Φx is the supervectors corresponding to the speech utterance, Φ is the supervectors cor-
responding to the UBM, T is a low-rank matrix capturing all relevant variability and ω is the
i-vectors (Kenny et al., 2005). However, the disadvantage of this approach is that the extraction
process of i-vectors depends on the assumption that the extracted features follow a Gaussian dis-
tribution. However, such an assumption may not be suitable for all types of speech data, leading
to inaccurate estimation of i-vectors.

An alternative feature extraction approach for depression detection (Egas-López et al., 2022)
involves the use of x-vectors, which are also commonly used for speech recognition (Snyder et
al., 2017, 2018). Conceptualized as a neural network-based feature extraction method, the x-
vector approach generates fixed-dimensional embeddings to represent unfixed-length utterances.
The extraction of x-vectors includes following steps. Firstly, the structure of the Deep Neural
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Network (DNN) is such that the frame-level layers with time-delay architecture. The output
from the previous frame-level layer is concatenated and as input fed to the current layer. From
this perspective, this approach takes the temporal context information into account. Next, the
stats pooling aggregates output from the last frame-level layer and calculates the average and
standard deviation. These are then concatenated and fed to subsequent segment layers to extract
the x-vectors embeddings. The advantage of this approach is that it captures speaker-specific
information throughout the entire speech signal, and thereby resulting in a fixed-size vector that
is irrelevant the utterance length. However, the disadvantage is that the x-vectors are sensitive to
the choice of layer used for extraction, and such a choice is empirical and varied across speech
data.

Depression Recognition

In this step, the extracted feature vectors are fed to the model for recognition. These models are
typically developed based on machine learning or deep learning algorithms. In the next section,
we will introduce some algorithms that are widely used in the field of depression detection,
such as Support Vector Machine (SVM), Long-short Term Memory neural networks (LSTMs).
Table 2.3 presents a survey of algorithms used for depression detection with corresponding
experiments and results, evaluated by standard evaluation metrics, see 2.3.6 for more details.

2.3.4 Algorithms in Depression Detection

Support Vector Machine

A Support Vector Machine (SVM) is a powerful and simple algorithm and it has been widely
utilized in various domains, including speech and vision (Zeng et al., 2007), particularly for
classification tasks. The SVM operates under the principles of supervised learning, where it
constructs and compares multiple hyperplanes with the goal of identifying the one that achieves
the maximum separation between data points from given classes (Larsen et al., 2015). In other
words, SVM aims to discriminate categories with a gap of maximal width. The data points are
projected into this space and categorized based on their location relative to the gap (Cristianini
& Shawe-Taylor, 2000; Schölkopf & Smola, 2002).

The SVM algorithm can be mathematically formulated as follows:

min
ω,b,εi

1
2
∥ω∥2 +λ

m

∑
i=1

εi (2.7)

s.t. yi(ω
T · xi +b)≥ 1− εi,εi ≥ 0, i = 1,2, · · · ,m (2.8)

where ω is the vector orthogonal to the hyperplane, λ is a constant to punish training errors,
controlling the trade-off between maximizing the margin and minimizing errors, and b is a bias
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Table 2.3: The survey of automatic depression detection studies. Abbreviations: PT - Depressed
patients, HC - Healthy controls, Acc - Accuracy, Pre. - Precision, Rec. - Recall, F1. - F1-score,
MAE - mean absolute error, RMSE - root mean squared error. The scores are averaged for the
studies with multiple tasks.

Algorithms Studies Samples Metrics Scores Experiments

SVM

(Kiss & Vicsi,
2017a)

48PT
25HC

Acc. 84.5% Reading; Interview

(Jiang et al., 2017) 85PT
85HC

Acc. 78.13% Reading; Interview;
Picture description

(Long et al., 2017) 37PT
37HC

Acc. 78.02% Reading; Interview;
Picture description

(Stolar et al., 2018) 29PT
34HC

Acc. 76.35% Interview

(Tao et al., 2020) 56PT
54HC

Acc. 84.5% Reading

RF

(Espinola et al.,
2021)

22PT
11HC

Acc. 87.55% Interview

(Stasak et al., 2022) 44PT
108HC

F1. 69.2% “pataka” task

(Wanderley Es-
pinola et al., 2022)

28PT
12HC

Acc. 75.27% Interview

MLP
(Dong & Yang,
2021)

292 par-
ticipants

F1. 81.6% Reading; Interview

(Sun et al., 2022) - MAE 0.77 Audio and video
tasks

CNN
(Saidi et al., 2020) 189 par-

ticipants
F1. 69.0% Interview

(Y. Wang et al.,
2022)

25PT
25HC

Acc. 77% Reading; Interview;
Picture description

(Q. Wang & Liu,
2022)

76PT
81HC

F1. 82.4% Reading

LSTM

(Z. Zhao et al., 2019) 189 par-
ticipants

MAE 4.20% Interview

(Z. Zhao et al., 2020) 189 par-
ticipants

MAE 4.28% Interview

(Y. Zhao, Xie, et al.,
2021)

- Acc. 90.2% Interview

(Rejaibi et al., 2022) 292 par-
ticipants

RMSE 0.168% Reading; Interview

(Tao, Ge, et al.,
2023)

55PT
54HC

F1. 88.0% Reading

term.
In addition to classification tasks, SVM can be adapted for regression tasks (Support Vector
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Regression), using the hyperplane itself. The main advantage of using SVM is that it provides
good generalization performance (Schuller et al., 2011). As a result, it has been widely employed
for automatic depression detection (Cummins, Scherer, et al., 2015; Kiss & Vicsi, 2017a; Long
et al., 2017; Z. Pan et al., 2018; Scibelli et al., 2018; Tao et al., 2020). For example, Long et al.
(2017) fed a set of extracted acoustic features into an SVM classifier, achieving 78.02% accuracy
in depression detection. Alghowinem, Goecke, Wagner, Epps, Gedeon, et al. (2013) utilized
recordings from 30 depressed and 30 non-depressed speakers for speech features extraction, and
they reported an improved performance in recall with the average of 81.61% when using SVM
and Gaussian Mixture Models jointly.

Furthermore, the use of SVMs in both read speech and spontaneous speech was effective
in distinguishing between depressed and non-depressed speakers, with 86% and 83% classifica-
tion accuracies, respectively (Kiss & Vicsi, 2017a). Another utilization of SVM in the field of
depression detection involves evaluating the effectiveness of acoustic features in recognizing de-
pressed speakers, for example, Tao et al. (2020) reported a 16.3% improvement in classification
accuracy by incorporating pause features into the SVM model.

Random Forest

The Random Forest (RF) algorithm, as an ensemble learning method, is also widely used in
the field of speech-based depression detection. This algorithm assembles a large number of
decision trees during the training phase. Similar to the SVM, RF can execute both classifications
and regressions. When applied to classification tasks, the result of RF depends on the majority
output from the collection of trees. Conversely, for regression tasks, the result is determined by
the mean predictive value returned by the individual trees.

A study conducted by Stasak et al. (2022) evaluated the classification performance by using
acoustic features extracted from the speech signals, such as spectral, prosodic, landmark, and
voice quality. The experiment involved 152 speakers, comprising both 108 controls and 44
depressed patients. The findings indicated a 10% increase in classification accuracy by the RF
classifier. In a similar vein, Wanderley Espinola et al. (2022) constructed 300 trees to extract
33 speech features from the recordings of 78 speakers, achieving a classification accuracy of
75.27%. Moreover, McGinnis et al. (2019) utilized recordings from 71 children recorded during
a three-minute speaking task, and found that the performance across various machine learning
models including logistic regression, SVM, and RF are comparable in depression detection.

One of the key strengths of RF is its ability to lower variance and produce robust predictive
outcomes due to ensemble averaging. However, combining diverse trees may introduce bias into
the model. Given that RF works by generating a plethora of decision trees, it can be demanding
in terms of memory, and therefore, may not be the most efficient model for data with a high
volume of features.
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Multi-Layer Perceptron

The Multilayer Perceptron (MLP), a type of feedforward artificial neural network (ANN) that
is fully interconnected, has been widely used in various applications, such as pattern recog-
nition (Abiodun et al., 2019) and emotion recognition (Basu et al., 2017). An MLP typically
features a minimum of three layers: an input layer and an output layer at both ends, and one or
more hidden layers between them. Each layer contains nodes (perceptions) that are intercon-
nected with the nodes in the subsequent layer. Besides the input nodes, each node embodies
a neuron utilizing a nonlinear activation function. In several MLPs, specific neurons utilize
a nonlinear activation function to emulate the firing frequency of action potentials of biologi-
cal neurons. The widely used activation functions are sigmoid function σ(x), tangent function
tanh(x) and ReLU function f (x), defined as follows:

σ(x) =
1

1− e−x (2.9)

where x is the output from a neuron. Similarly, the tangent function tanh(x) is defined as follows:

tanh(x) =
e2x −1
e2x +1

(2.10)

The ReLU function f (x) is defined as follows:

f (x) =

0 if x < 0

1 if x ≥ 0
(2.11)

Owing to their ability to model intricate relationships between inputs and outputs and to
discover patterns within data, MLP networks are frequently employed in research for detecting
depression (Alghowinem, Goecke, Wagner, Epps, Gedeon, et al., 2013; Alsarrani et al., 2022;
Sun et al., 2022; Du et al., 2022). For example, Du et al. (2022) reported a better performance in
the use of MLP for depression detection when compared to other traditional models, achieving
an average accuracy of 78.15% using the same dataset. Furthermore, Sun et al. (2022) extended
the use of MLP to accommodate multimodal data for depression detection, resulting in an im-
proved F1-score of 85.5%.

However, the architecture of the network is typically determined by the number of percep-
trons for each layer, the number of hidden layers used, activation function used after each layer
etc, which is nontrivial and adds complexity to the model. As a result, MLP tends to be overfit-
ting and needs substantial training data to overcome this issue (Schuller et al., 2011).
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Figure 2.3: The figure shows the architecture of a convolutional neural network (CNN).

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a specialized type of ANN that mitigates
overfitting issues, which commonly exist in the MLP. CNNs achieve this by simplifying the in-
put through convolutional operations that extract smaller and more manageable features. This
approach is inspired by the biological functioning within the animal visual cortex, where indi-
vidual neurons are activated by stimuli within a limited region of the visual field. CNNs are
widely used in various applications, such as medical imaging (Basu et al., 2017).

As represented in Figure 2.3, a CNN is composed of an input layer, multiple hidden layers,
and an output layer. The hidden layers include a series of convolutional layers, pooling layers
and a fully connected layer. The convolutional layers perform convolution operations on the
input data with convolutional kernels or filters. The outcomes of these operations, referred to
as the feature maps, undergo a non-linear activation function (typically ReLu) before feeding to
the subsequent layer.

Following the convolutional layers, pooling layers serve to keep crucial features while re-
ducing the input dimensions for the next convolutional layer. Average pooling and max pooling
are two types of pooling strategies that are commonly used. After several iterations of con-
volution and pooling, a fully connected layer transforms the 2-dimensional feature map into a
1-dimensional feature vector, generating the output for classification or regression.

In the field of automatic depression detection, researchers typically utilize spectrograms
derived from a short-time Fourier transform or other images related to speech signals as in-
put data (Huang, Epps, Joachim, Stasak, et al., 2020; Saidi et al., 2020; Y. Wang et al., 2022;
Q. Wang & Liu, 2022), which have demonstrated the effectiveness of CNNs. For example, Saidi
et al. (2020) introduced a CNN-based methodology for automatic feature extraction in de-
pression detection. In a similar vein, Y. Wang et al. (2022) extracted the deep features of
MFCC feature maps by using CNN, achieving a depression detection accuracy of 77%. Subse-
quently, Q. Wang & Liu (2022) proposed an approach that uses more sophisticated deep spectral
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features and modulates the architecture of CNN to achieve a better accuracy of 82.7% in depres-
sion detection.

However, the main limitation of CNNs used for speech data is that it does not take the
sequential context of speech into account, thus likely to lose the information in the temporal
respect.

Long Short-Term Memory

Long Short-Term Memory Networks (LSTMs), as a type of recurrent neural network (RNN),
was first proposed by Hochreiter & Schmidhuber (1997). Although conventional RNNs can use
their cyclic links to capture a certain amount of context and store temporal representations from
previous inputs, they suffer from the vanishing gradient issue (Bengio et al., 1994). Therefore,
LSTM is expected to solve this problem, providing a short-term memory for RNN that can
persist over a large number of timesteps and can remember the optimal amount of contextual
information benefits to the classification task, thus representing "long short-term memory". They
find extensive use in time series data processing and prediction, with particular effectiveness in
speech signal applications.

An LSTM network shares similarities with an RNN, with the key difference being the re-
placement of the nonlinear hidden units with memory units. A single LSTM unit consists of a
cell, a forget gate, an input gate and an output gate. These three gates work together to update
the cell state. The forget gate in an LSTM cell decides the portion of redundant information
discarded from the previous timestep, such a gate has been demonstrated its effectiveness (Gers
et al., 2000). The forget gate in the cell C at the time t is defined as follows:

ft = σ(Wf · [ht−1,xt ]+b f ), (2.12)

where Wf is the weight, b f is the bias and ft is the outcome of forget gate that is activated by
a non-linear activation function σ of the weighted sum of the input vector xt in the current cell
and the state vector ht−1 in the previous cell.

The input gate decides the portion of new information learning and storage in the new mem-
ory cell. The input gate it in the cell C at time t is defined as follows:

it = σ(Wi · [ht−1,xt ]+bi), (2.13)

where Wi is the weight, bi is the bias and the rest is identical to Equation 2.12. The candidate
information that might be updated in the state are represented as follows:

ĉt = tanh(Wc · [ht−1,xt ]+bc), (2.14)

where Wc is the weight and bc is the bias. The ĉt determines the portion of the input that can be
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Figure 2.4: The figure presents the architecture of an LSTM cell at time t, including the forget
gate, input gate, and output gate.

updated in the new cell state. The new cell state is then updated with the forget and input gates
as follows:

ct = ft ⊙ht−1 + it ⊙ ĉt , (2.15)

where the operator ⊙ is the Hadamard product, meaning the element-wise product. Here,
ct can be considered as output for a cell at time t. An output gate is defined to control the
conversion of a cell output ct to the hidden state ht , as follows:

ot = σ (Wo · [ht−1,xt ]+bo) . (2.16)

The hidden state ht at time t can then be defined as follows:

ht = ot ⊙ tanh(ct) (2.17)

where tanh is a pointwise non-linear tangent activation function.
These gates are able to store and access information over lengthy sequences, by updating

the cell state by taking the output from the previously hidden layer and the current input into
account. This makes LSTMs particularly apt for processing speech signals. Consequently, in the
domain of depression detection based on speech, LSTMs are a prevalent method (Z. Zhao et al.,
2019, 2020; Y. Zhao, Liang, et al., 2021; Y. Zhao, Xie, et al., 2021; Dumpala et al., 2022; Muza-
mmel et al., 2021; Rejaibi et al., 2022; Tao, Ge, et al., 2023). For example, Rejaibi et al. (2022)
utilized LSTMs in conjunction with MFCC features to not only detect depressed individuals
but also predict the severity of their condition. Moreover, Z. Zhao et al. (2020) introduced an
additional attention layer to the LSTM architecture, enabling the transfer of knowledge learned
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from the speech recognition task to the depression recognition task. The results were reported
to outperform other speech-based systems with a Root Mean Square Error of 5.51 on the Pa-
tient Health Questionnaire-8 scale. Building upon this, Tao, Ge, et al. (2023) proposed a novel
architecture combining LSTMs and multi-local attention mechanisms, achieving improved per-
formance and efficiency in detecting depressed speakers.

2.3.5 Attention Mechanisms for Depression Detection

Recently, deep neural networks have become popular for the task of depression analysis (Alosh-
ban et al., 2020, 2022; Wu et al., 2022; Du et al., 2023). Typically, the raw audio signal or ex-
tracted hand-crafted features of depression are used as input and fed to the deep neural networks
for detection. For instance, researchers proposed feeding a combination of hand-crafted and
deep-learned features, i.e., spectrogram information, to convolution neural networks (CNNs) to
infer the severity of depression from speech (He & Cao, 2018). Meanwhile, Mel Frequency
Cepstrum Coefficients are fed to Recurrent Neural Networks (RNN), a model dealing effec-
tively with the sequential structure of speech, also showing a robust performance in depression
detection (Rejaibi et al., 2022). However, these deep networks struggle when recordings are
longer than a few seconds and give rise to thousands of feature vectors, possibly weakly la-
belled. The attention mechanisms (Vaswani et al., 2017), a group of algorithms in the context of
deep learning, can be used to address this problem.

The use of attention mechanisms has become increasingly prevalent in the deep learning
community, and they have become successful in a broad range of fields including speech recog-
nition (Yeh et al., 2019), image retrieval (Ge et al., 2023), video description (Zhu & Jiang,
2019), and more recently, in automatic depression detection (Z. Zhao et al., 2019; Niu et al.,
2020; Yin et al., 2023). The attention mechanisms can emphasize the most relevant information
by drawing global dependencies between input and output. For instance, (C. Cai et al., 2021)
proposed attention-based CNNs to focus on time-domain speech signals to obtain multiscale
contextual information related to depression for classification. However, as mentioned earlier,
these approaches lack attention to different types of speech thus neglecting the information spe-
cific to each of them. To the best of our knowledge, no previous work has employed attention
mechanisms to extract complementary information from different types of speech to improve
depression detection.

Attention mechanism led to the development of hierarchical attention networks that are capa-
ble of emphasizing information being modelled at different levels in the hierarchical structures
by leveraging more than one level of attention in the networks (Z. Yang et al., 2016; Ge et al.,
2021; Mallol-Ragolta et al., 2019). Based on this, researchers proposed hierarchical attention
transfer networks that learn attention from a speech recognition task and then transfer attended
linguistic information hierarchically to measure depression severity (Z. Zhao et al., 2019, 2020).
However, such teacher-student frameworks require defining a specific task as the "teacher" to
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teach the other task. This definition is typically based on empirical knowledge, leading to diffi-
culty in finding the best task as the teacher. Compared to these approaches, we propose a student-
student hierarchical framework that uses read and spontaneous speech of the same speaker to
learn from each other to emphasize common information. To the best of our knowledge, no
existing work has yet explored such a framework to enhance common information of two types
of speech for depression detection.

2.3.6 Evaluation

The evaluation of a depression detection system is crucial to assess the quality of a designed de-
tection approach. In this subsection, we will discuss how to assess the performance of different
depression detection systems by utilizing appropriate evaluation approaches.

Evaluation Protocols

In the context of evaluation, the entire dataset is commonly split into disjointed subsets, namely
training sets and test sets. The training sets are used to produce a trained model, while the test
sets are used to evaluate the performance of the model. In general, there are two approaches to
the process of data division:

• k-fold cross-validation: the entire dataset is randomly and evenly split into k disjoint sub-
sets, k− 1 subsets are used as training sets while the rest of one single subset is used as
the test set for the model. Such a process is repeated for k times, a left-out subset as the
test set at each time. As a result, the model will be trained for k times, and the averaged
score on the test set can be considered as the final result.

• Leave-one-out cross-validation: is a particular type of k-fold cross-validation. This ap-
proach is also often used in depression detection when the amount of data is limited due
to the difficulty in recruiting depressed patients. In that case, only one sample is used for
test while the remaining data is used for training. This process is repeated for N times
where N is the number of samples. At each time, an unused sample is selected for test.
The averaged score is also the final result.

Numerous research studies primarily present the best singular performance outcome, which
fails to represent the distribution of the performance of the model. This is mainly because the
weights in the hidden layer are random in the initialization of the model training. This may
lead to potential suboptimal results across training instances, although the same parameters are
utilized in the model. Therefore, the training process is typically repeated several times using the
same experimental design to obtain the overall model performance. In this thesis, we reported
the average and standard deviation of the performance in all experiments over at least 10 times
repetitions.
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Evaluation Metrics

The evaluations of depression detection are usually defined as the difference between the pre-
dictions and the ground truth, and such evaluations varied across tasks. For the task of assessing
the severity of depressed individuals, The evaluation metrics include but are not limited to root
mean squared error (RMSE) and mean absolute error (MAE) (Chai & Draxler, 2014). In this
thesis, we do not focus on the assessment of the severity of depressed speakers, and thereby we
do not use these evaluations.

While for the task of recognizing depressed speakers, the commonly used evaluation metrics
include Accuracy, Precision, Recall and F1-score, defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(2.18)

Precision =
T P

T P+FP
(2.19)

Recall =
T P

T P+FN
(2.20)

F1− score = 2∗ Precision∗Recall
Precision+Recall

(2.21)

where TP is the true positive, FP is the false positive, TN is the true negative and FN is the false
negative. In this thesis, these parameters are defined as follows:

• TP: number of depressed patients that are correctly classified as depressed;

• FP: Type I error, meaning the number of non-depressed individuals that are misclassified
as depressed;

• TN: number of non-depressed individuals that are classified correctly as non-depressed;

• FN: Type II error, meaning the number of depressed individuals that are misclassified as
non-depressed;

Typically, Accuracy is the most widely used evaluation in the field of machine learning. How-
ever, the prevalent problem in many public depression speech datasets is that the number of
recordings for depressed speakers is significantly less than those for non-depressed speakers.
This imbalanced class distribution may lead to an unreliable accuracy in which a classifier al-
ways assigns unseen samples to the majority class, leading to high accuracy. Therefore, nu-
merous studies also take Precision, Recall and F1-score into account for the evaluations. These
evaluation metrics not only consider accuracy, but also take the situations of Type I error and
Type II error into account. In the field of depression detection, Type II error usually lead to more
serious misclassification costs, because this could imply overlooking a diagnosis of depression,
leading to delayed treatment or, in worse scenarios, potential harm to patients, including the risk
of suicide. On the contrary, a Type I error simply means providing additional medical attention
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to someone who is not actually in a critical condition. Therefore, Recall is more practical than
Precision in clinical depression diagnosis. Most studies tend to report F1-score that takes both
Recall and Precision into account.

2.3.7 Conclusions

In this chapter, we provided an overview of the background in the context of automatic de-
pression detection. Firstly, We introduced the cognitive alterations observed in the depressed
patients, exploring how these changes manifest in speech production from both acoustic and
linguistic perspectives. Subsequently, we introduced widely employed acoustic and linguistic
features for detecting depression. We reviewed the studies in investigating depressed speech
to further confirm such speech features are effective and can be used to distinguish between
depressed and non-depressed speakers.

Next, we present a review of the automatic depression detection pipeline, including data
preprocessing and subsequent recognition stages. Then we reviewed the algorithms that are
commonly utilized in the automatic depression detection studies, including Support Vector Ma-
chines, Random Forests, Multi-layer Perceptrons, Convolutional Neural Networks, and Long
Short-Term Memory Networks. Furthermore, we introduced evaluation methods extensively
applied to assess the effectiveness of automatic depression detection systems. Finally, we high-
light the main advantages in the use of such systems.

In the next chapter, we will introduce the dataset collected for this thesis and show the advan-
tages of our dataset by comparing to other publicly available datasets. Additionally, we establish
baseline models using our dataset, enabling meaningful comparisons with the experimental re-
sults detailed in subsequent chapters.



Chapter 3

The Androids Corpus: A New Publicly
Available Benchmark

In this chapter, we introduce the dataset that was used in the experiments presented in the rest of
the thesis. A novel benchmark, the Androids Corpus, for automatic detection of depression using
speech. The corpus includes 118 participants, out of which 64 were diagnosed with depression
by professional psychiatrists. Each participant has at least one recording, resulting in a total of
228 recordings.

The Androids Corpus (https://github.com/androidscorpus/data) consists of
two types of speech samples: 112 recordings of read speech, where each speaker reads the same
text, and 116 recordings of spontaneous speech, where all speakers answer the same questions
in the same order presented by an interviewer. Both types of speech for 110 speakers, including
58 diagnosed with depression, are available in the corpus, while for the remaining 8 speakers,
only either read or spontaneous speech is available.

In terms of the corpus duration, the total recording time for read and spontaneous speech is 1
hour, 33 minutes, and 49 seconds, and 7 hours, 24 minutes, and 22 seconds, respectively. Along
with the data, we also provide experimental protocols and baselines to ensure reproducibility of
the results.

3.1 Introduction

In order to address the issues discussed in Chapter 1, speech-based depression detection has
become increasingly popular, and the computing community has made significant efforts to
develop methods for detecting depression, as seen in studies such as (L. Yang et al., 2021; Cum-
mins et al., 2020; Rejaibi et al., 2022; Alghowinem, Goecke, Wagner, Parkerx, & Breakspear,
2013; Y. Yang et al., 2012; Alsarrani et al., 2022). In particular, this topic has been presented
several times at the Audio-Visual Emotion Challenge (AVEC), a competitive event established
with the objective of evaluating multimedia processing and machine learning techniques for au-
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tomated analysis of emotions in audio, visual, and audio-visual media (Valstar et al., 2013, 2014,
2016; Ringeval et al., 2017, 2019). Encouragingly, some studies have reported achieving depres-
sion detection results comparable to those of General Practitioners (Aloshban et al., 2022), who
are typically the initial point of contact for depression intervention in many healthcare systems.
However, progress in this field continues to be impeded by a lack of data. One reason for this is
that sophisticated techniques, particularly those leveraging on deep neural networks, require in-
creasingly large amounts of data for effective training. Another reason is that, without multiple
corpora, it is impossible to test the robustness of a given approach to various changes in factors
such as settings, sensors, people, language, and other corpus-specific characteristics.

For these reasons, researchers have constructed various datasets (see Table 3.1), typically
collecting audio files when participants perform read and free/spontaneous speech. Read and
spontaneous speech are two different types of data that represent planned and unplanned speech,
respectively. Interviews are widely used for collecting spontaneous speech, although some stud-
ies also use picture description tasks (H. Cai et al., 2020; Tasnim et al., 2022), both of these tasks
can be used to obtain spontaneous speech.

The dataset in Mundt et al. (2007) was constructed by involving 35 patients who were re-
ferred by their treating physicians and were beginning psychotherapy treatment for depression.
The participants were instructed to call a telephone number once a week for six weeks, and their
speech data was automatically collected via the telephone using an Interactive Voice Response
(IVR) system. In addition, the participants were assessed weekly for six weeks using standard
depression severity measurements, Hamilton Rating Scale for Depression (HRSD) and Quick
Inventory of Depressive Symptomology (QIDS). The speech samples include automatic speech
production tasks, such as counting, reciting the alphabet, and passage reading, as well as free
speech tasks. The study examines the relationships between voice acoustic measures and de-
pression severity, while also evaluating any changes in voice measures that may be associated
with treatment response. Several subsequent early studies of speech-based depression detec-
tion are based on this dataset (Sturim et al., 2011; Trevino et al., 2011; Quatieri & Malyska,
2012; Cummins, Epps, & Ambikairajah, 2013; Cummins, Epps, Sethu, et al., 2013; Helfer et
al., 2013).

The Datasets of AVEC 2013 (Valstar et al., 2013) and AVEC 2014 (Valstar et al., 2014)
are subsets of the Audio-Visual Depression Language Corpus (AViD-Corpus), which consists
of 292 participants and a total of 340 video clips recorded via a webcam and a microphone
during a Human-Computer Interaction task. Each participant performed free speech, reading,
singing, and picture description tasks, while their self-reported depression severity level, as
measured by the Beck Depression Inventory-II (BDI-II), was used as groundtruth. The AVEC
2014 dataset (Valstar et al., 2014) is a subset of AVEC 2013 and comprises 300 videos obtained
from the previous Human-Computer Interaction task in AVEC 2013. However, AVEC 2014 only
includes two out of the original 14 tasks, namely read speech (reading aloud a passage, such as
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Table 3.1: The survey of representative depression speech datasets. Abbreviations: PT - De-
pressed patients, HC - Healthy controls, HRSD – Hamilton Rating Scale for Depression, QIDS
– Quick Inventory of Depressive Symptomology, BDI – Beck Depression Inventory, PHQ-9 –
Patient Health Questionnaire, DSM - Diagnostic and Statistical Manual of Mental Disorders,
SDS - Zung Self-Rating Depression Scale, GAD-7 - Generalized Anxiety Disorder scale.

Datasets
Types

Subjects Labels Duration Language
Read Spontaneous

Mundt
et al.
(2007)

√ √
35 PT

HRSD
QIDS - English

Valstar
et al.
(2013)

√ √ 84 PT
208 HC BDI-II 240 hours German

Valstar
et al.
(2014)

√ √ 84 PT
66 HC BDI-II 240 hours German

Gratch
et al.
(2014)

√ 37 PT
152 HC PHQ-8 - English

DeVault
et al.
(2014)

√
275 participants PHQ-8 73 hours English

H. Cai
et al.
(2020)

√ √ 23 PT
29 HC

HRSD
DSM-IV - Chinese

Y. Shen
et al.
(2022)

√ 30 PT
132 HC SDS 2.26 hours Chinese

Tasnim
et al.
(2022)

√ 312 PT
240 HC

PHQ-9
GAD-7 - English

"The Wind of the North and the Sun") and free speech (answering one of several questions).
This selection of tasks allows for a more focused investigation of affect and depression analysis.

The Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) (Gratch et al., 2014)
is a collection of clinical interviews that aim at identifying psychological distress conditions
including anxiety, depression, and post-traumatic stress disorder (PTSD). The corpus includes
audio and video recordings of 189 participants and each participant was interviewed with an
animated virtual interviewer to answer a standardized set of questions, while PHQ-8 was used
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to annotate depression patients. This dataset was explored in the AVEC 2016 (Valstar et al.,
2016) and AVEC 2017 (Ringeval et al., 2017). E-DAIC (DeVault et al., 2014) is an extended
dataset that builds on the DAIC-WOZ and encompasses 275 participants. The data was obtained
through semi-clinical interviews intended to aid in diagnosing psychological distress conditions.
The dataset was annotated with PHQ-8 to be in line with the evaluation of DAIC-WOZ, and it
was explored in the AVEC 2019 (Ringeval et al., 2019).

The multimodal open dataset for mental-disorder analysis (MODMA) (H. Cai et al., 2020)
includes audio recordings, EEG data and questionnaires from 52 participants, of whom 23 par-
ticipants were diagnosed with major depressive disorder (MDD) by at least one clinical psy-
chiatrist. Each participant performed an interview, word reading, passage reading and picture
description task. The audio recordings of the interview consist of answers to 18 questions based
on the DSM-IV and HRSD scales.

The Emotional Audio-Textual Depression Corpus (EATD-Corpus) (Y. Shen et al., 2022)
allows depression detection based on speech characteristics and linguistic content. The dataset
consists of audio and text transcripts of interviews with 162 Chinese students, of whom 30
participants were regarded as depressed. The identification of depressed speakers was based on
their score on the SDS scale, which indicates the severity of depression. In the interview, each
participant was asked to answer three randomly selected questions by a virtual interviewer in an
APP. Their audio responses were then collected and uploaded online.

The Depression and Anxiety Crowdsourced Corpus (DEPAC) (Tasnim et al., 2022) aims to
provide a large collection of audio recordings of individuals with varying degrees of depression
and anxiety. The dataset consists of 2674 audio clips of 571 participants, and each paricipant was
asked to perform 5 tasks, i.e. phoneme pronunciation, phonemic fluency test, picture descrip-
tion, semantic fluency test and prompted narrative task. Each participant was annotated with
both PHQ-9 and GAD-7 to indicate the severity of depression and anxiety, out of which 312
participants were labeled as depression patients (total 552 participants had results of the ques-
tionnaire indicating depression). Additionally, 139 of the same 571 participants were annotated
with anxiety.

While several datasets have been provided to researchers for automatic depression detec-
tion, it is evident that these corpora suffer from certain limitations. One such limitation for the
dataset (Mundt et al., 2007) is the lack of healthy control data for comparison, which makes
it difficult to identify whether a speaker is depressed or not. Moreover, the datasets for AVEC
2013, AVEC 2014, DAIC-WOZ, E-DAIC, and EATD are unbalanced and some of them only
include one type of speech. Another issue with the annotation of participants in these datasets,
as well as in DEPAC, is that it is based on self-reported questionnaires. This approach may in-
troduce a subjective bias, due to misalignment between clinicians’ observations and patients’ re-
sponses (R. P. Greenberg et al., 1992). Additionally, the number of participants in the MODMA
dataset is limited, which hinders the training of deep learning approaches and limits the model’s
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ability to generalize.
For the reasons above, this chapter introduces the Androids Corpus, which serves as a novel

benchmark for speech-based depression detection and is publicly available. The corpus was
specifically designed to offer distinct and complementary opportunities in comparison to other
available corpora.

• The labels for depressed and non-depressed speakers were given by professional psychi-
atrists and not through the rates of self-assessment questionnaires. This means that the
data allows one to investigate depression detection and not prediction of scores obtained
through questionnaires, known to be affected by multiple biases (Paulhus & Vazire, 2007).

• The data were collected with the microphone of a laptop in the mental health centers where
the depression patients are treated. Such an in-the-wild setting corresponds to the situation
in which doctors and depressed participants meet for their therapeutic interactions. This
allows one to develop an approach in conditions representative of a real-world application
environment.

• The corpus includes both read and spontaneous speech recordings for 110 out of a total of
118 participants. This enables investigation of differences in speech properties between
different types of speech from the same speaker, and exploration of the possibility of
detecting depression by using multiple tasks.

• The populations of depressed and non-depressed participants (64 and 54 individuals, re-
spectively) have the same distribution in terms of age, gender and education level. This
limits speaking differences resulting from factors other than depression.

• In the case of spontaneous speech (collected during interviews), the corpus includes a
manual segmentation into turns. This allows one to investigate conversational dynamics
and turn-taking related features (e.g., turn length distribution, speaking time, etc.). In
addition, it excludes the voice of the interviewer from the conversation, thus eliminating
the impact of the voice of the interviewer on depression detection when using spontaneous
speech.

• The corpus includes reproducible experimental protocols (the split of the participants into
subsets to be used for a k-fold setup). This allows rigorous comparisons across multiple
results in this thesis obtained over the data.

• The corpus provides an OpenSmile (Eyben et al., 2013) configuration file allowing one to
extract a standard feature set from the speech recordings. This improves the reproducibil-
ity of the results obtained over the data.
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Figure 3.1: Length distribution across participants. The top bar chart shows the length of the RT
recordings for each participant, the middle one shows the same information for the IT recordings
and the bottom one does the same for the IT data after removing the turns of the interviewer.
Missing bars correspond to participants that did not perform one of the tasks.

• The data is in Italian, a language not widely represented in other publicly available cor-
pora. This allows one to test cultural effects and to investigate whether approaches devel-
oped in one language can extend to other languages.

Given the diversity and depth of the corpus, there is a possibility of uncovering new research di-
rections that were not previously anticipated. Therefore, the list above should not be considered
exhaustive.

The rest of this chapter is organized as follows: Section 3.2 describes the corpus in detail,
Section 3.3 presents the baseline results and the final Section 3.4 draws some conclusions.
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3.2 The Androids Corpus

The corpus consists of recordings from 118 participants, including 64 participants diagnosed
with depression (referred to as depression participants hereafter) and 54 participants without
any history of mental health issues (referred to as control participants hereafter). Each partici-
pant was asked to complete two tasks: the Reading Task (RT) and the Interview Task (IT). The
Reading Task required participants to read a short fairy tale called “The Wind of the North and

the Sun” by Aesop. Such a text was extracted from a book for children because it is plain and
easy to read. This ensures that the participants can perform the Reading task independently of
their education level and condition (depressed or non-depressed). The IT involved answering
questions about daily life, such as “What did you do last week end?” posed by an interviewer
who was instructed to speak as little as possible. Such a task replicates a typical therapeutic
interview with the psychiatrists of five Mental Health Centres involved in the study. The record-
ings of the IT were manually segmented to discard the voice of the interviewer. The recordings
of both RT and IT were collected in standard clinical consultation rooms of the Mental Health
Centers above. The data were recorded with a standard laptop microphone (participants and
interviewers were always at the same distance from the microphone). The aim of the RT and IT
was to produce recordings of read and spontaneous speech, respectively.

The data collection involved psychiatrists to diagnose the patients with the Diagnostic and

Statistical Manual of Mental Disorders 5 (DSM-5). The number of patients with specific
pathologies are as follows: 22 cases of major depressive disorder, 15 cases of bipolar disor-
der in the depressive phase or with the last depressive episode, 8 cases of reactive depression, 7
cases of endo-reactive depression, 5 cases of anxiety-depressive disorder, and 1 case of persis-
tent depressive disorder. For the remaining 6 depression participants, no specific pathology was
identified. The distribution of diagnoses indicates that there is sufficient diversity to cover all
aspects of depression and not just certain types.

All participants were involved on a voluntary basis and they all signed an informed consent
letter formulated in accord with Italian and European privacy and data protection laws1. The data
collection followed the ethical regulations of countries and institutions involved in the work. In
the case of the depression group, the participants were recorded while undergoing treatment,
which means that they were experiencing the pathology. This makes it possible to detect depres-
sion traces among their speech samples. In the case of the control group, the participants were
recruited through word of mouth and selected based on their age, gender, and education level to
match the distribution of the depression group (see below).

Table 3.3 presents demographic information about the participants. Most of them (110 out
of 118) participated in both RT and IT, whereas a few only participated in one of the two (see
Table 3.2). This is the reason why Table 3.3 provides information not only for the entire set of

1The ethical committee of the Department of Psychology at Universitá degli Studi della Campania, “Luigi
Vanvitelli", authorized the experiment with protocol number 09/2016.
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Table 3.2: Participant distribution across tasks. Acronyms RT and IT stand for Reading Task
and Interview Task, respectvely.

Group Only RT Only IT RT and IT Total
Control 2 0 52 54
Depression 0 6 58 64
Total 2 6 110 118

Table 3.3: Demographic information. Acronyms F and M stand for Female and Male, respec-
tively. Acronyms L and H stand for Low (8 years of study at most) and High (at least 13 years of
study) education level, respectively. The sum over the education level columns does not corre-
spond to the total number of participants (118) because 2 of these did not provide details about
their studies.

Task Age M F L H

RT
Control 47.1 ± 12.8 12 42 19 35

Depression 47.4 ± 11.9 20 38 25 32
Total 47.2 ± 12.3 32 80 44 67

IT
Control 47.3 ± 12.7 11 41 19 33

Depression 47.5 ± 11.6 21 43 29 33
Total 47.4 ± 12.1 32 84 48 66

Total
Control 47.3 ± 12.7 11 41 19 33

Depression 47.4 ± 11.9 20 38 25 32
Overall 47.3 ± 12.2 31 79 44 65

participants, but also separately for the two tasks. There is no significant difference observed
between depression and control participants in terms of gender and education level distribution
according to a χ2 test (p > 0.05). This applies to the entire corpus as well as to the subsets of
participants involved in each task. Similarly, according to a two-tailed t-test (p > 0.05), there
is no statistically significant difference in age between the depression and the control group.
Overall, this ensures that the differences in speech between the two groups are due to the pathol-
ogy rather than other factors that might have an impact on speech. The female participants are
roughly 2.5 times more than the male participants, which is consistent with epidemiological ob-
servations that females are more likely to experience depression than males roughly in the same
proportion (Andrade et al., 2003; R. Kessler et al., 2003).

Figure 3.1 shows the length of the recordings for each individual. The total duration of the
RT recordings is 1 hour, 33 minutes and 49 seconds, while the average duration is 50.3 ± 10.3
seconds. When considering separately depression and control participants, the averages are 52.9
± 10.9 and 47.4 ± 8.8 seconds, respectively. The difference is statistically significant (p < 0.01
according to a two-tailed t-test), in line with previous studies showing that depression patients
tend to read slower (Tao et al., 2020). In the case of the IT recordings, the total duration is 7
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Figure 3.2: Baseline approaches. The diagrams shows the two baseline approaches used in the
experiments. The symbol ⊞ corresponds to the average, while the symbol ⊕ corresponds to the
majority vote.

hours, 24 minutes and 22 seconds (the overall average and standard deviation are 229.8 ± 86.6
seconds). According to a two-tailed t-test, there is no statistically significant difference between
depression and control participants (the averages are 198.8 ± 99.2 and 268.0 ± 45.3 seconds,
respectively). In the IT recordings, the total duration of the turns for the participants is 6 hours,
8 minutes and 21.8 seconds, for an average of 190.5 ± 84.1 seconds. The average lengths for
depression and control participants are 176.4 ± 103.1 and 207.9 ± 47.3 seconds, respectively.
Such a difference is statistically significant according to a two-tailed t-test (p < 0.05).

3.3 Baseline Approaches and Results

The goal of this section is to provide an initial set of results that can be used as a term of
comparison to the experiments in the following chapters based on the corpus data. The baseline
approaches (see Figure 3.2) include three main steps, namely feature extraction, depression

detection and aggregation.
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3.3.1 Feature Extraction

The initial step is the same for both baseline approaches. The goal of this step is to convert the
original speech signals into sequences of feature vectors, a more suitable format for classifica-
tion. In the baseline approaches, the extraction was performed with OpenSMILE (Eyben et al.,
2013), an open-source tool widely used for the inference of social and psychological informa-
tion in speech. The vectors were extracted from 25 ms long analysis windows at regular time
steps of 10 ms. The window length is in line with the indications of the literature showing that
values between 20 and 40 ms lead to satisfactory results in the inference of emotional and social
phenomena (Schuller & Batliner, 2013; Schuller et al., 2009; Pappagari et al., 2020; Tayarani
et al., 2019). These values are standard in the literature and were set a-priori. No attempt was
made to find values that might lead to better performance. Every analysis window is converted
into a feature vector x⃗ with OpenSmile (Eyben et al., 2013).

The features include Root Mean Square of Energy (RMSE), Mel Frequency Cepstrum Coef-

ficients (MFCC) 1 to 12, Zero Crossing Rate (ZCR), Voicing Probability (VP) and fundamental

frequency or pitch (F0);

• Root Mean Square of the Energy (1 feature): it provides a measure of how loud someone
speaks and it was shown to account for depression in the literature (L.-S. A. Low et al.,
2010; Schuller & Batliner, 2013).

The definition of the physical energy E of the speech signal s(k) is as follows (Kießling,
1997):

E =
+∞

∑
k=−∞

s2(k) (3.1)

In particular, the energy E(t) of a frame at time t is defined as follows:

E(t) =
t+N

2 +1

∑
k=t−N

2

[s(k)w(t − k−1)]2 (3.2)

where w(k) is a window function for non-zero points from t −N/2 to t +N/2+ 1. This
allows to define the root means square (RMS) energy of E(t), which is used in this thesis
for feature extraction.

• Mel-Frequency Cepstral Coefficients 1-12 (12 features): they model the human periph-
eral auditory system that separates sounds according to their frequency components and
transforms sound signals into neural signals for brain processing. Given that the human
auditory system is more sensitive to sounds in low frequency than to sounds in high fre-
quency, the Mel-Frequency Cepstral Coefficients (MFCCs) model these characteristics
using a nonlinear scale, known as the Mel scale. The transform from a linear frequency
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scale f to Mel scale Mel( f ) is defined as follows (Schuller & Batliner, 2013):

Mel( f ) = 2595 · log
(

1+
f

700

)
(3.3)

The most commonly used coefficients are from 0 to 16. In particular, the coefficients 0-
12 are the most frequently used in speech recognition. Given coefficient 0 describes the
signal energy, we discard coefficient 0 from the feature set in order to avoid redundancy
with the RMS of the Energy. Coefficients 1–12 provide a measure of the phonetic content
of the speech signal and they were shown to be effective in a wide spectrum of appli-
cations aimed at inferring social and psychological information from speech, including
depression (Cummins, Scherer, et al., 2015);

• Fundamental Frequency (1 feature): the fundamental frequency F0 plays an important
role among speech parameters. This is mainly because, compared to other speech pa-
rameters, the changes in the fundamental frequency are much easier perceived by hu-
mans (Schuller & Batliner, 2013). In addition, F0 is the frequency that carries the high-
est energy in the signal, known to convey depression-relevant information (France et al.,
2000; Ozdas et al., 2004; Quatieri & Malyska, 2012). In this thesis, the F0 is extracted
with the sub-harmonic summation approach in line with the study (Schuller & Batliner,
2013);

• Zero-Crossing Rate (1 feature): The zero crossing rate (ZCR) represents the frequency
of zero crossings within a frame. In other words, it occurs when successive samples
exhibit alternating algebraic signs in the context of discrete-time signals. ZCR is defined
as follows (Schuller & Batliner, 2013):

ZCR(t) =
t+N

2 +1

∑
k=t−N

2

s0(k), (3.4)

s0(k) =

0 ifsgn[s(k)] = sgn[s(k−1)]

1 ifsgn[s(k)] ̸= sgn[s(k−1)]
(3.5)

where s0(k) is the signal contains points from t −N/2 to t +N/2+ 1. In the context of
speech signal analysis, the ZCR serves as an indicator of the number of instances when
the amplitude traverses a zero value within a prescribed temporal segment. By analyzing
the proportion of zero crossings in a specific time interval, ZCR can provide information
about the frequency distribution. In particular, it mainly correlates with the low-frequency
components and it would be low when the signal contains strong low-frequency compo-
nents (Schuller & Batliner, 2013). In addition, it is an alternative estimate of the funda-
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mental frequency and it was shown to lead to 80% accuracy in predicting whether a naive
listener considers a speaker depressed (Nilsonne & Sundberg, 1985);

• Voicing probability (1 feature): According to the study (Schuller & Batliner, 2013), voic-
ing probability is obtained by using the autocorrelation function to calculate the first dis-
tinct peak in relation to the total signal energy. This feature accounts for the probability
of an analysis window corresponding to the emission of voice and it was shown to be
effective for the inference of affective and mental states (Cummins, Scherer, et al., 2015;
Gobl & Chasaide, 2003).

The 16 features are enriched by taking into account the differences between the feature val-
ues extracted from two consecutive analysis windows, thus reaching a dimensionality D = 32.
The feature set was initially designed for the Interspeech Emotion Recognition Challenge in
2009 (Schuller et al., 2009) and it has been widely used in various applications, particularly in
the inference of social and psychological information from speech.

3.3.2 Depression Detection

This step allows to implement depression recognition based on extracted feature vectors. At
the end of the feature extraction step, every recording is represented with a sequence of vectors
X = {⃗x1, x⃗2, . . . , x⃗T}, where T is the total number of vectors (proportional to the length of the
recording). The first baseline, referred to as BLSV M hereafter, involves the calculation of the
average of the x⃗k vectors and feeding it into a Support Vector Machine (SVM) with the linear
kernel (see red components in Figure 3.2).

The second baseline (see Figure 3.2), referred to as BLLST M hereafter, involves the segmen-
tation in which X is segmented into fixed-length subsequences of length M = 128, referred to
as frames. The frames start at regular steps of length M/2, resulting in a half overlap between
consecutive frames Ik, where k ranged from 1 to N (N is the total number of frames). Each frame
is then used as input individually for a Long Short-Term Memory Network (LSTM) model and
classified as either belonging to the depression or control group. The number of hidden states of
one layer in LSTM is 32, and both parameters were set a-priori.

3.3.3 Aggregation

Given that there are multiple frames per recording for each speaker, there are multiple classifi-
cation outcomes too for BLLST M. This makes necessary an aggregation step that takes as input
the N classification outcomes (N is the total number of frames in a recording) and performs a
majority vote, i.e., it assigns a recording to the class its frames are most frequently assigned to
(see Figure 3.2):

ĉ = argmax
c∈C

n(c), (3.6)
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Table 3.4: Depression detection results. The table shows the results obtained over RT.

Acc. Prec. Rec. F1
Rand. 50.1 51.8 51.8 51.8
BLSV M 69.7±6.6 69.6±3.5 76.3±12.9 71.9±4.8
BLLST M 83.4±2.6 85.0±3.5 83.0±2.3 83.8±2.1

Table 3.5: Depression detection results. The table shows the results obtained over IT.

Acc. Prec. Rec. F1
Rand. 50.5 55.2 55.2 55.2
BLSV M 64.7±6.3 68.4±7.5 66.3±10.9 66.6±7.1
BLLST M 81.6±1.6 83.3±2.7 85.3±1.4 83.4±1.1

where C is the set of all possible classes (depression and control in the experiments of this work),
n(c) is the number of frames assigned to class c and ĉ is the class assigned to the recording.

To provide a point of reference for comparison, all baselines are compared to a random
classifier that assigns each recording to a specific class c based on the prior probability p(c) of
that class. The accuracy α̂ of such a classifier is defined as follows:

α̂ = ∑
c∈C

p(c)2 (3.7)

where C is the set of all classes. Precision, recall, and F1 score of the random classifier are
equivalent to the prior of the positive class, which in this thesis is the percentage of the number
of depression participants.

3.3.4 Experiments and Results

All the baseline experiments were performed according to a k-fold protocol (k = 3) and the
experiments were repeated k times. At every repetition, a different fold was used for the test
while the remaining folds were used for training. All data from a given speaker is placed within
the same fold. In other words, the experiments are designed to be person independent, where
the data of the same individual does not appear in both the training and test sets. In this way, it
ensures that the approaches detect depression and do not simply identify the speakers.

Our model is trained on a single Tesla T4 GPU with 16 GB memory. The Long Short-Term
Memory networks (LSTMs) used in the study were configured with a number of hidden states
of 32. The learning rate was set to 10−3, and the number of training epochs was established
at 100. The LSTMs were trained using RMSProp as an optimizer (Tieleman et al., 2012) with
cross entropy (Rubinstein & Kroese, 2004) as a loss function. The experiments were repeated
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R = 10 times due to the different random initialization of the weights of LSTMs in each fold.
For this reason, the performance metrics are reported in terms of average and standard deviation
across the R repetitions and k folds. The BS1 were implemented with scikit-learn (version in
0.23.2) (Pedregosa et al., 2011), while the BLLST M were implemented with PyTorch (version in
1.13.1+cu116) (Paszke et al., 2019).

Table 3.4 and Table 3.5 present performance metrics of depression detection including Accu-
racy, Precision, Recall and F1 Score obtained over the Read and Interview Tasks. All approaches
show a statistically significant improvement over the random baseline (p < 0.01 according to a
two-tailed t-test). These results may confirm that speech can be used for depression detection,
and the baseline results might be comparable with General Practitioners (the accuracy ranges
between 57.9% and 73.1%) (Mitchell et al., 2009). These baseline results can serve as a term of
comparison for other approaches implemented in other chapters using the same data as well as
the same experimental design.

3.4 Conclusions

In this chapter, we introduced the data used in the thesis. The data (Androids Corpus) is a
new publicly available benchmark for speech-based depression detection. In addition to the
description of the data, we surveyed the currently publicly available audio datasets used for
depression detection, and we highlighted the advantages of the Androids Corpus by comparing
it to those datasets.

Furthermore, we introduced speech features and experiment design of baselines used in the
experiments in the later chapters to keep rigorous comparisons. Next, we provided baseline
results with the predefined experimental protocols. In addition to depression detection, the
Androids Corpus can be used to address various research problems such as identification of
speech markers in read and spontaneous speech, analysis of interplay between read and sponta-
neous speech as well as the relationship between depression and conversational dynamics, etc.
Therefore, this corpus offers researchers an opportunity to expand their research on automatic
depression detection.



Chapter 4

Speech Duration and Silences for
Depression Detection

4.1 Introduction

In the previous chapters, we reviewed the studies investigating automatic depression detection.
The reason for focusing on such a technology is due to the alarming escalation in the number of
depressed patients and the consequent economic burden on society in recent years. By serving
as a supplementary tool for clinical diagnosis, automatic depression detection holds the poten-
tial to alleviate the situation to some extent. One important aspect of implementation, at least
to a partial extent, is to identify depression markers, i.e., reliable, measurable and, possibly,
machine-detectable traces of the pathology. In fact, the availability of such markers can make
it easier for non-specialised doctors to effectively identify people affected by depression and,
thereby leading to an increase in the percentage of cases that obtain psychiatric attention and
proper treatment. Additionally, the traditional clinical diagnosis of depression primarily relies
on questionnaires, such as Hamilton Depression Rating Scale. This way of diagnosis requires
potential patients to make self-assessments towards their internal states. However, this seems
to introduce various subjective biases, particularly when evaluating internal states (Shrout et al.,
2018). These biases can arise from decreased cognitive ability of patients or the stigma associ-
ated with mental disorders. Furthermore, the assessments provided by clinicians are not immune
to subjective biases either (Walfish et al., 2012), and therefore, identifying a marker is expected
to address the problem by providing an objective measurement.

The main reason for focusing on speech is that asking potential depression patients to speak
is something that can be done easily in a clinical setting. This is a major advantage with respect
to biological markers investigated so far that require invasive exams like, e.g., brain neurotrophic
factors (Lee et al., 2007) or monoamine levels in cerebrospinal fluids (Placidi et al., 2001).
Not to mention that these markers have been investigated while developing pharmacological
treatments and have been shown to be affected by several drawbacks, including the difficulty
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to interpret placebo-controlled trials (H. Yang et al., 2005; Fava et al., 2003) methodological
pitfalls at the level of patient selection and enrolment (Demitrack et al., 1998) or misalignment
between clinicians’ observations and patients’ self-assessments (R. P. Greenberg et al., 1992).
Similarly, the efforts of the computing community have explored a wide spectrum of behavioural
markers (facial expressions, nonverbal vocal behaviour, etc.), but none of them appears to clearly
outperform the others. Furthermore, compared to the analysis of read speech, other behavioural
cues might be difficult to capture and analyse outside a laboratory setting.

For these reasons, this chapter investigates the use of computational paralinguistics (Schuller
& Batliner, 2013) and social signal processing (Vinciarelli et al., 2009) as a means to identify
effective depression markers in speech, i.e., observable and measurable traces of the pathology
in the way people speak. The markers in this chapter account for two main behaviours, namely
speech duration and the use of silences. The main reason for focusing on such behaviours is
that, according to neuroscience, one of the main effects of depression is that the brain tends to
become slower at processing linguistic information. Therefore, it is reasonable to expect that
depressed individuals tend to take longer time in speaking and to be less fluent. Compared to the
previous work Esposito et al. (2016), this work converts behaviour differences into detectable
speech representations in the model in an automatic way.

The experiments of this chapter involved 118 participants included in the Androids Corpus
(see Section 3.2). The markers are examined over two types of speech, i.e., the read speech of
112 participants (the maximum number of participants performing a Read Task and the sponta-
neous speech of 116 participants (the maximum number of participants performing an Interview
Task), see Section 3.2). The approach based on a standard feature set, originally designed to
recognise emotions (Schuller et al., 2009), has been used to perform initial experiments. The
feature set has then been expanded with the markers, and the difference in performance result-
ing from the expansion of the feature set has been used as a measure of how effectively the
behaviours above can account for the presence of depression. The results show that adding 3
features to the initial 32 is sufficient to increase the accuracy from 69.7% to 82.1% for the read
speech and from 71.5% to 85.8% for the spontaneous speech, corresponding to a reduction of
the error rate by 40.9% and 50.2%, respectively. This is of particular interest when considering
that the new features are less than 10% of the original set (3 out of 32). Furthermore, the results
appear to be in line with the findings of neuroscience about brain-level differences between de-
pressed and non-depressed individuals. In other words, reading speed and silences appear to be
reliable markers of depression in different types of speech.

The rest of this chapter is organised as follows: Section 4.2 surveys previous work, Sec-
tion 4.3 describes the data used in the experiments, Section 4.4 reports on experiments and
results, while Sections 4.5 draws some conclusions.
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4.2 Previous Work

The computing community has made substantial efforts towards the automatic detection of de-
pression in speech (see (Cummins, Scherer, et al., 2015) for an extensive survey). In general,
researchers have tackled two primary tasks in this area. The first task is the inference of scores
obtained through the administration of self-assessment questionnaires (e.g., the Beck Depres-
sion Inventory II). The second task is actual depression detection, i.e., automatic discrimination
between people diagnosed with depression by psychiatrists and control individuals that are not
affected by mental health issues. In a few cases, the efforts have targeted the identification of
depression markers, as exemplified in this thesis.

In several cases, the proposed approaches have taken into account not only the speech signals
but also their corresponding transcriptions (Morales & Levitan, 2016; Williamson et al., 2016;
Rohanian et al., 2019; Al Hanai et al., 2018). In particular, Morales & Levitan (2016) specifi-
cally maintain that it is crucial to consider both acoustic and linguistic aspects of speech when
developing depression-related technologies, as opposed to addressing them separately. However,
findings from other studies, such as those by Williamson et al. (2016) have indicated that the
most optimal outcomes are achieved when using transcriptions only. Furthermore, experiments
conducted by Rohanian et al. (2019) suggest that the multimodal combination of paralinguis-
tic features and text yields effective results only when deep networks with attention gates are
employed. While these observations may not universally apply and are influenced by the limita-
tions of the models and the characteristics of the datasets, they have demonstrated effectiveness
within the context of their respective experiments. Finally, in the case of the work by Al Hanai
et al. (2018) the authors propose that the best results can be obtained by taking into account
the interaction dynamics, which involve considering the context in which a sentence is uttered
during a conversation.

Overall, the collective findings from the above studies do not provide a clear conclusion on
whether considering what people say is helpful or not in the context of depression detection.
However, the commonality of those studies is that their focus is on the sole speech signal like
in a large number of other contributions including, e.g., (Huang et al., 2018; L.-S. A. Low et al.,
2010; Cummins, Sethu, et al., 2015). In the first work (Huang et al., 2018), the experiments aim
at testing whether speech samples captured through mobile phones allow one to discriminate
between people that are above or below a threshold score of the Personal Health Question-
naire. The results show that this is actually possible with an accuracy of 72%. In the other two
works (L.-S. A. Low et al., 2010; Cummins, Sethu, et al., 2015), the goal is to identify depres-
sion markers that, like in this chapter, can help to distinguish between depressed individuals
and the others. The focus of the experiments in (L.-S. A. Low et al., 2010) is on adolescents
because their voice is not fully formed and, therefore, speech-based depression detection can be
a more challenging task. The results of the work (Schuller & Batliner, 2013) show that the most
effective marker is the energy of the signal, corresponding to how loud people speak, especially
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when measured with the Teager operator. In contrast, Cummins, Sethu, et al. (2015) identi-
fied the variability of phonetic characteristics as the most effective marker for the detection of
depression.

In this chapter, we conduct experiments on speech signals, following the approach of numer-
ous preceding studies (see above). Although there is no clear consensus regarding the specific
type of speech to be analyzed, our experiments encompass both read and spontaneous speech
samples. In this respect, this allows to evaluate the effectiveness and robustness of the proposed
markers across diverse speech contexts in distinguishing between depressed and non-depressed
speakers.

4.3 The Data

In this chapter, we carry out a series of experiments that involve 118 participants in the Androids
Corpus. These experiments incorporate two different types of speech: read speech, which in-
volves 112 participants (Read Task), and spontaneous speech, which includes 116 participants
(Interview Task). For a more detailed account of the corpus and the specific tasks undertaken in
this research, please refer to Section 3.2.

4.4 Experiments and Results

In this chapter, we present an approach and experimental design that follow the same protocol
as the baseline, which is comprehensively discussed in Section 3.3. One of the key aspects
of this process involves the conversion of speech signals into feature vectors through a feature
extraction step, as elaborated in Section 3.3.1. It is important to note that the size of analysis
windows and time steps employed in this chapter are consistent with those used in the baseline
approaches, as detailed in Section 3.3.2.

The dimensionality of each generated feature vector is 32, which includes not only the 16
core features (as outlined in Section 3.3.1), but also their delta coefficients. The latter represents
the differences between the features in the current analysis window and their corresponding
values in the previous window.

At the end of the feature extraction step, we calculate the average of the feature vectors
and combine them with the proposed markers in this Chapter (discussed in further detail below).
This combined data is then fed into the Support Vector Machine (SVM) for recognition, utilizing
the same parameters as those employed in the baseline approaches described in Section 3.3.2.
The recognition is performed using the k-fold protocol (k = 3) and adheres to the same data split
as BS1, as presented in Section 3.3.4.

Additionally, it is worth mentioning that the model training is conducted on the same device
and relies on the same version of the scikit-learn library as used in BS1. This consistency ensures
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a fair comparison and is in line with the information provided in Section 3.3.4.

4.4.1 Duration of Speech

Neuroscience research has provided valuable insights into the relationship between language
processing and depression, suggesting that some brain processes revolving around language
tend to take more time in people affected by depression. In particular, it has been shown that
there is an association between depression and dysfunctions in several areas, such as the frontal
gyrus and Pre-Frontal Cortex (PFC), involved in semantic language processing (Seghier et al.,
2004).

Furthermore, it has been observed that when interpreting the meaning of words, depression
patients display slower activation of the left temporoparietal (Wernicke) area, a key region for
language comprehension, and involvement of brain regions (including right lateral PFC) not
activated in the case of non-depressed people (Abdullaev et al., 2002). These findings suggest
that the neural mechanisms underlying language processing in depressed individuals might be
different from those in healthy individuals.

As a consequence of these altered neural processes, individuals with depression require more
time to assign meaning to words. In this respect, it is reasonable to expect that depressed partic-
ipants take more time to read the text and answer the same questions at the core of the experi-
ments. In other words, it is reasonable to expect that the amount of time needed to read the text
and answer the same questions can act as a depression marker.

In an analysis presented in Section 3.2, the average time and standard deviation for reading
the text are 52.9 ± 10.9 and 47.4 ± 8.8 seconds for depressed and control participants, respec-
tively. Given that all participants read a total of 185 words, this corresponds to average reading
speeds of 209.8 and 234.2 words per minute, respectively, for depressed and control participants.
These results are consistent with the neuroscience indications discussed earlier, further support-
ing the hypothesis that language processing is affected in individuals with depression and can
leave traces in speech.

In addition, the tendency of depressed patients to require more time to speak is also observed
in the other types of speech, i.e., spontaneous speech. Given the statistically significant differ-
ence observed in the duration of read speech (as reported in Section 3.2) between depressed
and healthy people, it is possible to expect that the use of the duration of speech as a feature, in
addition to the 32 features of the standard set, should lead to an improvement of the performance.

The results of such an intervention are summarized in Table 4.1. When compared to the
baseline classifier, the accuracy improved by 6.2 points for read speech and 5.9 points for spon-
taneous speech, corresponding to error rate reductions of 20.5% and 16.7%, respectively. Ac-
cording to two-tailed binomial tests, these improvements are statistically significant (p < 0.05
for both instances), providing further evidence for the effectiveness of using speech duration as
a feature in depression detection. In summary, the time an individual takes to read a given text or
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Table 4.1: Performance after taking the duration of speech into account. RT (Read Task) and IT
(Interview Task) are the results for read and spontaneous speech, respectively.

Clssifier Accuracy (%) (%) Precision (%) Recall (%) F1-Score (%)
RT 75.9 75.1 79.9 77.2
IT 70.6 75.5 70.9 72.2
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Figure 4.1: Silences distribution across participants in read speech (Read Task). The top chart
shows the number of silences per participant, the lower one shows the average length per partic-
ipant.

respond to questions spontaneously appears to be a promising and effective depression marker
that could potentially improve diagnostic and intervention strategies.

4.4.2 Effect of Silences

The previous section shows that brain-level differences between depressed and non-depressed
individuals lead to observable differences in the amount of time needed for speaking. Further-
more, the differences are consistent enough to significantly improve the accuracy of a baseline
classifier in both types of speech through the addition of just one feature to the original set of
32. This section shows that it is possible to further improve the performance of the baseline
classifier by taking into account how depression changes the neural processes responsible for
verbal fluency. In fact, the literature shows that, in the brain of depressed people, the median
prefrontal cortex and angular gyrus generate interferences that result in speech disfluency, typ-
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Figure 4.2: Cumulative distribution function for silences in read speech (Read Task).

ically through the recruitment of a larger number of brain areas involved in speech initiation
and higher-order language processes (Backes et al., 2014). Not surprisingly, many studies found
that depressed individuals have deficits in phonemic and verbal fluency (Wagner et al., 2012).
Furthermore, improved fluency is typically used as a signal of melioration during depression
treatment (Wagner et al., 2012).

One possible effect of the differences above is that depressed people tend to display more fre-
quently intervals of time during which there is no emission of voice. Furthermore, for depressed
people, these intervals of time might tend to be longer. For this reason, the voicing probability
in the baseline feature set has been used to identify sequences of consecutive frames in which
voice is unlikely to be emitted. This has led to the estimate of the probability p(r) of r consec-
utive frames to show a null voicing probability. Correspondingly, it led to the identification of a
minimum threshold value r0 such that the following holds:

p(r ⩾ r0) =
rmax

∑
r=r0

p(r)⩽ 0.05, (4.1)

where rmax is the maximum value of r observed in the data. Given the number of participants is
different for Read Task and Interview Task in this chapter (not every participant performs both
tasks), r0 is estimated for read and spontaneous speech separately.

In the experiments of this chapter, r0 is 55 for read speech and 72 for spontaneous speech,
corresponding to a length of 0.565 s and 0.735 s, respectively, not far from the conventional
threshold of 0.5 s used to identify pauses in linguistics (Schuller & Batliner, 2013). Hereafter,
sequences of null voicing probability at least r0 frames long are referred to as silences. Figure 4.1
and Figure 4.3 show the distribution of the number of silences across participants in read and
spontaneous speech. Figure 4.2 and Figure 4.4 show the corresponding cumulative distribution
function for silences. The average number of silences for depressed and control participants in
read speech is 9.3 and 4.3, respectively (p < 0.001 according to a two-tailed t-test). For the
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Figure 4.3: Silences distribution across participants in spontaneous speech (Interview Task).
The top chart shows the number of silences per participant, the lower one shows the average
length per participant.

Table 4.2: Performance after taking both duration and silences into account. RT (Read Task)
and IT (Interview Task) are the results for read and spontaneous speech, respectively.

Clssifier Accuracy (%) Precision (%) Recall (%) F1-Score (%)
RT 82.1 80.3 86.6 83.2
IT 82.7 84.3 85.5 84.2

spontaneous speech, the average number of silences for depressed and control participants is
29.3 and 15.1, respectively (p < 0.01 according to a two-tailed t-test). When it comes to the
total length of silences in the read speech, it is 10.6 s and 3.9 s for the two groups. Such a
difference is statically significant according to a two-tailed t-test (p < 0.001). In the cases of
spontaneous speech, the total length of silences is 45.2 s for depressed and 17.4 s for control
participants. Furthermore, such a difference is once again statistically significant according to a
two-tailed t-test (p < 0.001). These results suggest depressed people tend to speak with more
and longer pauses in both types of speech. This reveals that the feature set can be expanded
with the number and total length of silences. In other words, these two features might act as
depression markers.

The recognition results are reported in Table 4.2. Compared to the results obtained after
adding the length of the recordings to the original set of 32 features, there is a further increase
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Figure 4.4: Cumulative distribution function for silences in spontaneous speech (Interview
Task).

by 6.2% points of the accuracy, corresponding to a further reduction by 25.7% of the error rate
in the read speech. Such an improvement is statistically significant with p < 0.05 according to a
binomial test). In the cases of spontaneous speech, there is also a further increase by 12.1% of the
accuracy, corresponding to a further reduction by 41.2% of the error rate. Such an improvement
is also statistically significant with p < 0.001 according to a binomial test). Besides increasing
the performance of the approach, the two features described in this section provide a possible
explanation of why depressed participants tend to take more time to speak. In particular, the
effectiveness of the two features suggests that depressed individuals do not just read slower, they
tend to spend more time without uttering the words they read, possibly because they need more
time to process the linguistic information involved. For spontaneous speech, depressed people
show the same tendency as in read speech. However, compared with the use of speech duration,
the use of silences becomes more effective in spontaneous speech (with 12.0% improvement
of F1-Score) than in read speech (6.0% improvement of F1-Score). This may result from the
greater proportion of silences in spontaneous speech, especially given the statistically significant
reduction in the duration of spontaneous speech in depressed patients (see Section 3.2). These
results confirm that silences can be used as markers in automatic depression detection.

4.5 Conclusions

This chapter has presented experiments aimed at answering the hypothesis proposed in the the-
sis statement that depression leaves traces in the temporal aspect of speech. Identifying these
depression markers in speech, i.e., of measurable speech characteristics that can help to dis-
tinguish between depressed and non-depressed individuals. Compared to most previous works
in the literature, the methodology used to identify the markers is not based on statistical test-
ing or correlational analysis, but on the performance improvement observed when using the
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markers as features in a classifier. In particular, the experiments show that three features ac-
counting for three different markers (duration of speech, number of silences and total length of
silences) increase the accuracy from 69.7% to 82.1% for read speech and from 64.7% to 82.7%
for spontaneous speech when added to an initial set of 32 features (statistically significant with
p < 0.0001 according to a two-tailed binomial test). These latter were selected as a baseline
because, while originally designed to capture emotion (Schuller et al., 2009), are known to ef-
fectively account for a much wider spectrum of psychological phenomena, including depression
(see Section 3.3.1).

In addition, compared to most previous work in the literature, this chapter has tried to com-
bine computational paralinguistics (Schuller & Batliner, 2013), based on low-level speech fea-
tures extracted from 25 ms long windows, and social signal processing (Vinciarelli et al., 2009),
based on the detection of nonverbal behavioural cues associated to a phenomenon of interest.
This latter aspect is important because markers should correspond to observable aspects of be-
haviour, given that they must be of help for the diagnosis of depression. In other words, com-
pared to measurements like fundamental frequency or MFCCs, the advantage of observable
behaviours like reading speed or use of silences is that they can be possibly observed without
the need for automatic analysis.

The experiments have been performed over read and spontaneous speech, i.e., over record-
ings of people asked to read the same text and answer the same series of questions. The reason
behind the choice is to examine the effectiveness of proposed markers in the two different types
of speech, i.e., read and spontaneous speech. In other words, the use of read speech limits the
effect of variability sources not necessarily related to depression while the use of spontaneous
speech introduces more variability due to the cognitive effort in planning what to say next. The
results in this chapter confirm the effectiveness of the markers and the robustness when applying
the markers to different types of speech. This is one of the reasons why the markers appear to
be in line with the indications of neuroscience showing that depressed people tend to take more
time to process linguistic information and to be more disfluent.

One interesting aspect of the markers considered in the work is that they are likely to be
honest (Pentland, 2010), i.e., sufficiently difficult to control consciously to allow one to fake
them. For example, in the read speech, the silence length differences between depressed and
control participants correspond to an average silence length of 0.32 s and 0.28 s, respectively.
Similarly, the speed differences correspond to an average time per read word of 286 ms and 256
ms for depressed and control participants, respectively. Both differences are too subtle to be
consciously controlled. Therefore, it is unlikely that a depression patient can try to look like
a non-depressed individual. This is an important advantage because people affected by mental
health issues can try to hide their condition in order to escape treatment, mainly to avoid the
stigma associated to psychiatric problems. In this respect, the markers proposed in this chapter
promise to be of help for clinicians dealing with potential depression patients.
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In this chapter, we have concentrated on the markers in the temporal aspect of speech for
depression detection, while not exploring potential markers in the acoustic aspect, which is a
more relevant dimension of speech. Moving forward to the next chapter, we intend to address
this limitation by proposing and examining potential markers that are specifically associated
with the acoustic aspect of speech.



Chapter 5

Feature Correlation Matrices for
Depression Detection

5.1 Introduction

In Chapter 4, we introduced timing-based depression markers in speech, such as speech duration
and silences. These markers support our thesis statement that depressed individuals exhibit mea-
surable speech characteristics that can help distinguishing between depressed and non-depressed
individuals. The promising performance of our proposed timing-based speech markers moti-
vates us to further advance their development. However, these timing-based speech markers
are an indirect measurement of depression because they do not reflect the changes in acoustic
properties found in depressed speech. In fact, studies suggest that numerous acoustic features
change during speech production among depressed speakers, as discussed in Chapter 2. This
raises the following question: Do the relationships between acoustic features also change in the

speech of depressed speakers, and can such changes serve as potential markers for depression

detection?

Multiple approaches use speech as input because it has been demonstrated that depression
leaves traces in the way people speak (see Section 5.2). In fact, according to neuroscience,
brain connectivity patterns tend to be more unstable in depression patients (Wise et al., 2017).
Specifically, depressed speakers tend to exhibit a lower degree of coordination across different
brain areas, which can "[...] alter speech production by influencing the characteristics of the
vocal source, tract, and prosodics [and lead to] psychomotor retardation, where a patient shows
sluggishness and motor disorder in vocal articulation, affecting coordination across multiple
aspects of production" (Williamson et al., 2013). Such a phenomenon is expected to change not
only the acoustic properties of speech but also the relationships between them. Consequently, it
is anticipated to alter the correlations between features and how these correlations change over
time.

Despite this, to the best of our knowledge, the literature pays only limited attention to the

68
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relationships between features (see Section 5.2). The key assumption of this chapter is that this
oversight results in missing the major depression effects described earlier. For this reason, the
focus of this work is on investigating whether feature correlations and their changes over time
can help improve the effectiveness of depression detection.

The experiments were performed over the Androids Corpus, using an available public dataset,
and were firstly performed on read speech for two main reasons. First, the brain phenomena
mentioned earlier were also observed when people read (Regev et al., 2013). Second, read
speech involves less variability resulting from factors not necessarily related to the pathology
(e.g., the topic being discussed). Then the proposed approach was applied to spontaneous speech
to examine the effectiveness of the approach on different types of speech for depression detec-
tion. The speech samples were represented as sequences of feature correlation matrices (see Sec-
tion 5.4), and this representation was shown to improve two classification approaches, namely
Support Vector Machines (SVM) and Long Short-Term Memory (LSTM) networks (Hochreiter
& Schmidhuber, 1997). Compared to feature vectors, correlation matrices reduced the error rate
by up to 29.0% and up to 15.1% for SVMs and LSTMs, respectively, in read speech. When
it comes to spontaneous speech, the use of correlation matrices reduces the error rate by up to
36.5% and up to 11.4%. Overall, at least for the architectures tested, the proposed approaches
achieved an F1 score of up to 86.0% and 85.9% when fed with feature correlation matrices
in read speech and spontaneous speech, respectively. Additionally, using sequences of feature
correlation matrices made the classification process approximately twice as fast.

In summary, the main contributions of this chapter are as follows:

• To the best of our knowledge, this is the first work comparing the performance of the
same models (SVM and LSTM) when fed with feature vectors and with feature correlation
matrices;

• This is the first work demonstrating that changes in correlation patterns over time can act
as a depression marker.

Comparisons with previous results obtained using the same data show that the above novelties
lead to higher performances, on average.

The rest of this chapter is organized as follows: Section 5.2 describes related work, Sec-
tion 5.3 describes the data, Section 5.4 explains the approach used in the experiments, Sec-
tion 5.5 reports on experiments and results, and the final Section 5.6 draws some conclusions.

5.2 Previous Work

In recent years, the computing community has made substantial efforts towards automatic de-
pression detection, with the identification of depression markers in speech being one of the
most important areas of focus (Cummins, Scherer, et al., 2015; Wu et al., 2022; Highland &
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Zhou, 2022). Researchers have observed that speech production differs in depressed individ-
uals (Cummins, Scherer, et al., 2015), and several studies have attempted to identify markers
related to temporal properties. For instance, speech rate (Morales & Levitan, 2016) and fre-
quency of pauses (Tao et al., 2020) have been found to significantly improve depression detec-
tion, resulting in a 15-point increase in accuracy when classifying depressed and non-depressed
speakers. However, the effectiveness of these markers is shown to vary depending on the type
of speech (Kiss & Vicsi, 2017a).

Instead of identifying markers, many approaches represent speech in terms of feature vec-
tors and employ various machine learning methodologies to detect depression. Low-Level De-
scriptors are the primary features used for this purpose, typically extracted from short analysis
windows. The standard practice involves concatenating these speech features with their time
derivatives (delta) to account for potential temporal effects. Such features have proven to be
robust in characterizing both read and spontaneous depressive speech (Cummins et al., 2011;
Cummins, Scherer, et al., 2015; Alghowinem, Goecke, Wagner, Epps, Breakspear, & Parker,
2013). Mel Frequency Cepstral Coefficients (MFCCs) are the most common features, often en-
hancing performance (Taguchi et al., 2018; Niu et al., 2019; Rejaibi et al., 2022). Researchers
have also found that fusing MFCCs with other speech features (such as F0) can further improve
depression detection performance (Wu et al., 2022). However, these typical speech features,
including MFCCs, are sensitive to channel variability (Stasak & Epps, 2017) and can be easily
affected by noise, making them less than ideal (Mitra et al., 2016).

The proposed approach was based on measuring the correlation between features extracted
at multiple time distances, resulting in multiple correlation matrices concatenated with each
other (Williamson et al., 2013). This correlation structure successfully reflects coordination in-
formation between formant frequencies and delta-mel-cepstrum in depression detection. In con-
trast to Low-Level Descriptors, the correlation structure provides information on intricate vari-
ations between feature domains. This approach has proven effective not only for depression but
also for epileptic seizures (Williamson et al., 2011). Furthermore, it has been demonstrated that
this correlation structure can effectively handle variable-length data in feature extraction (Dong
& Yang, 2021). More recent studies show that such a correlation representation is effective
with deep neural networks as well (Song et al., 2020; Huang, Epps, & Joachim, 2020). How-
ever, there are two main issues associated with the aforementioned correlation structure. The
first issue is that it focuses on time-delayed information, necessitating longer speech record-
ings (the time distances for measuring the correlation can be high). Consequently, this can
lead to reduced performance when dealing with short-duration speech utterances (Williamson
et al., 2016). The second main issue is the appearance of artefacts that require extra steps in
preprocessing (Huang et al., 2019a). The approach presented in this chapter addresses both of
these issues by measuring correlations over shorter time intervals and modeling changes in cor-
relations using sequential models. To the best of our knowledge, there is limited knowledge
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Figure 5.1: The diagram shows the four approaches used in the experiments. The black arrows
stand for the use of feature vectors while the red arrows stand for the use of correlation matrices.
The black dashed arrows stand for BLSV M, while the black arrows stand for SV M −C. The red
dashed arrows stand for BLLST M, while the red arrows stand for LST M −C. The symbol ⊕
corresponds to aggregation.

about the dynamic changes of correlation structures over time, and the integration of correlation
structure with acoustical speech features has not been explored before.

5.3 The Data

This chapter included a total of 118 participants from the Androids Corpus. The Read Task
involved recordings from 112 participants, while the Interview Task involved recordings from
116 participants. For more specific details, please refer to Chapter 3, Section 3.2.

5.4 The Approach

The goal of the experiments is to test whether feature correlation matrices convey more depression-
relevant information than feature vectors. For this reason, the approach (see Figure 5.1) includes
a feature extraction step (conversion of speech signals into sequences of feature vectors), a cor-
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relation representation step (mapping of sequences of feature vectors into sequences of feature
correlation matrices), a depression detection step and a stability measurement step. Figure 5.1
shows that this latter can be performed by feeding the same model (SVM or LSTM) with either
feature vectors or correlation matrices. In this way, it is possible to test whether these latter
convey more information than the sole features.

5.4.1 Feature Extraction

The aim of the feature extraction is to convert the speech recordings into sequences of feature
vectors x⃗k. The extraction in this chapter is the same as the step in Chapter 3 Section 3.3.1
including the same feature set, size of analysis windows as well as tools for extraction. This
leads to the same dimension of feature vectors (D = 32) as those used in the baselines (BLSV M

and BLLST M) in Chapter 3.

5.4.2 Correlation Representation

The correlation representation step segments the sequence of feature vectors into subsequences
of length M (the number of vectors included in one subsequence) starting at regular steps of
length M/2 (two consecutive subsequences overlap by half of their elements). In the experi-
ments, the value of M ranges between 100 and 500, corresponding to time intervals of length
between 1 and 5 seconds. Once the segmentation is performed, it is possible to extract a local

feature correlation matrix Wk as follows:

{Wk}i j = corr(Xi,X j), (5.1)

Xi = ⃗{xk}i, (5.2)

X j = ⃗{xk} j, (5.3)

where k ∈ [1,N], N is the total number of subsequences, Xi and X j are the values of feature i and
j along the sequence of vectors X , corr is the function of Spearman Correlation (Howell, 2009),
element {Wk}i j is the correlation coefficient between Xi and X j (i, j ∈ [1,D], D is the number
of features) in the correlation matrix. The reason for using such a correlation is that the feature
values extracted from the feature extraction step do not follow the normal distribution. Given
that there are multiple subsequences, there will be multiple local feature correlation matrices
Wk. The start and the end of vectors (Qs and Qe, respectively) in the subsequence corresponding
to the matrix Wn are as follows:

Qs = (n−1)M/2, (5.4)

Qe = [(n−1)/2+1]M−1 (5.5)
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where n = 1, . . . ,N. All correlation coefficients are converted into Z-scores with Fisher’s trans-
formation, a standard step in statistical analysis of dependent correlations (Meng et al., 1992).

5.4.3 Depression Detection

The first baseline approach for depression detection is BLSV M, which takes the average of the
feature vectors extracted from a recording and feeds it to a linear kernel SVM (see Chapter 3
for more details). Similarly, given that the correlation representation step converts every speech
signal into a sequence of matrices Wk, it is possible to estimate the average Wk and feed it to a
Support Vector Machine to perform the depression detection step (see SV M−C in Figure 5.1).
The correlation matrices are symmetric and only the elements below the principal diagonal are
used, thus leading to a dimension as follows:

D̂ = D(D−1)/2 = 496 (5.6)

where D = 32 is the original number of features. BLSV M and SV M−C can be compared to test
whether feature correlation matrices are actually of help.

Another baseline to perform depression detection is BLLST M which splits the sequence of
the feature vectors into subsequences including 128 consecutive vectors (a standard value in the
literature) and then feed each one of these to LSTMs, (see Chapter 3 for more details). Once
all subsequences are classified, it is possible to apply a majority vote and assign a recording to
the class its subsequences are more frequently assigned to (BLLST M in Figure 5.1). The same
approach can be applied to the sequence of the Wk. In this case, a linear layer reducing the
dimension of the correlation matrices to 32 is added to the LSTM with the goal of making the
problem computationally more tractable (LST M−C in Figure 5.1). BLLST M and LST M−C can
be compared to test whether the matrices actually improve over the feature vectors.

5.4.4 Stability Measurement

The goal of this step is to estimate a measurement for the changes of correlation matrices over
time, namely stability. The reason for investigating such changes is that, as shown in Figure 5.2,
the local correlation matrices (one of the correlation matrices in the sequences) provide more
variation information in depressed and control groups when compared with the global correla-
tion matrices (the average of correlation matrices for two groups). This suggests that the use
of local correlation matrices provides a possible way to discriminate between depressed and
non-depressed speakers.

After the correlation representation step, the original speech signals are converted into the
sequence of correlation matrices Wk (k ∈ {1, . . . ,N}). This allows to define a measurement of
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Figure 5.2: Figure A shows the average of Wk for the control (left) and depressed groups (right),
namely global correlation matrices. Figure B shows one of specific Wk for the control (left) and
depressed groups (right), namely local correlation matrices.

the stability Ŝ of local correlation matrices as follows:

Ŝ = 1
N ∑

N
1 corr(Wk,Wk+1), (5.7)

where Wk and Wk+1 are the consecutive correlation matrices in the sequences, k ∈ {1, . . . ,N}, N

is the total number of correlation matrices, corr is the function of Spearman Correlation (Howell,
2009). Given that the number of consecutive vectors M ranges between 100 and 500 in a frame,
this lead to different Wk at different M. Therefore, the stability Ŝ will be dependent on the value
of M. Due to discontinuity in spontaneous speech (each original X in spontaneous speech is
split into several sub-sequences to discard the voice of the interviewer), stability in spontaneous
speech is estimated as follows:

Ŝ = 1
s

1
N ∑

s
1 ∑

N
1 corr(Wk,Wk+1), (5.8)

where Wk and Wk+1 are the consecutive correlation matrices in the subsequence, k ∈ {1, . . . ,N},
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Table 5.1: Depression detection results in terms of Accuracy, Precision, Recall and F1 score.
The approaches are numbered 1 to 4 according to Figure 5.1. The performance metrics are
represented in terms of average and standard deviation obtained over 10 repetitions of the ex-
periment. At every repetition, the weights of the LSTM were initialized to different random
values. The table reports the best accuracy over different lengths L. Suffix C means classifier
with correlation matrices.

Accuracy Precision Recall F1 Score
Reading Task

Random 50.1 51.8 51.8 51.8
BLSV M 69.7±6.6 69.6±3.5 76.3±12.9 71.9±4.8
SVM-C 78.5±4.0 78.5±8.8 78.8±3.2 78.5±6.0
BLLST M 83.4±2.6 85.0±3.5 83.0±2.3 83.8±2.1
LSTM-C 85.9±1.3 85.5±2.5 87.1±2.7 86.0±1.1

Interview Task
Random 50.5 55.2 55.2 55.2
BLSV M 64.7±6.3 68.4±7.5 66.3±10.9 66.6±7.1
SVM-C 77.6±3.3 82.5±13.7 77.8±6.9 78.9±3.5
BLsvm 81.6±1.6 83.3±2.7 85.3±1.4 83.4±1.1

LSTM-C 83.7±0.4 81.9±1.3 90.6±2.4 85.9±0.4

N is the total number of correlation matrices in the subsequence, corr is the function of Spear-
man Correlation (Howell, 2009), s is the number of subsequences from one speaker.

5.5 Experiments and Results

The experiments were performed according to the same k-fold protocol (k = 3) as in the BLSV M

and BLLST M, see Chapter 3 Section 3.3 for more details about experimental design. The folds
were disjoint and were the same as the data split in BLSV M and BLLST M. The same participant
never appeared in both training and test set and this ensures that the approach actually detects
depression and does not simply recognize the speaker. All hyperparameters were set a-priori
and no attempt was made to find configurations possibly leading to higher performances.

The number of hidden states in the LSTMs was set to H = 32 (the same number of hidden
states as the baselines in the public corpus). The number of training epochs was set to 100
and the learning rate was set to 0.0005. The training was performed using the RMSProp as
an optimizer (Tieleman et al., 2012) and the categorical cross-entropy as a loss function. All
experiments were replicated R = 10 times using a different initialization of the networks and
data splitting at each repetition. For this reason, all results are reported in terms of average and
standard deviation observed over the repetitions. This ensures that the performances are not the
result of a favorable initialization, but a realistic estimate of the system’s effectiveness.
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Figure 5.3: The figure shows averaged F1-Score and its standard error of the mean over 10
repetitions at different lengths M in read speech. C means classifier with correlation matrices.

The goal of these experiments is to compare the performance of the same model when using
feature vectors or feature correlation matrices as input. For this reason, Table 5.1 shows the
results in terms of Accuracy, Precision, Recall and F1 Score. The results of random baseline
approach, BLSV M and BLLST M are the same as in Table 3.4 and Table 3.5. The table shows the
performance of SVMs and LSTMs when giving as input both the sequence of vectors X and
the sequence of feature correlation matrices Wk. According to a two-tailed t-test, all approaches
perform better than the random baseline (p< 0.001 in all cases). Furthermore, always according
to two-tailed t-tests, models perform better when fed with feature correlation matrices than when
fed with feature vectors (p< 0.05 for all cases). The error rate decreases by 29.0% when passing
from BLSV M to SV M−C in read speech, and the relative reduction of the error rate is up to 15.1%
for approaches based on LSTMs in read speech. Similarly, the error rate decreases by 36.5% and
up to 11.4% when passing from BLSV M to SV M −C and passing from BLLST M to LST M −C,
respectively. In this respect, the results suggest that feature correlation matrices actually convey
more depression-relevant information than simple feature vectors.

Given BLSV M and BLLST M lack the correlation representation step, the results of these ap-
proaches are irrelevant to the selection of M, shown as BLSV M and BLLST M in Figure 5.3 and
Figure 5.4. Table 5.1 shows the best results across all values of parameter M. For this reason,
Figure 5.3 and Figure 5.4 show how the F1-Score changes depending on M in read and spon-
taneous speech, respectively. The results suggest that the models fed with feature correlation
matrices tend to outperform those fed with feature vectors, thus confirming that the results of
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Figure 5.4: The figure shows averaged F1-Score and its standard error of the mean over 10
repetitions at different lengths M in spontaneous speech. C means classifier with correlation
matrices.

Table 5.1 are not the result of a particular choice of M. Furthermore, these results also suggest
that the improvement by using correlation matrices in depression detection is irrelevant to the
choice of speech type, meaning the use of correlation matrices is robust in different types of
speech and can actually capture depression-related information.

In addition, the use of the feature correlation matrices reduces significantly the amount of
time required to train the LSTMs. When using the same computing infrastructure (Google
CoLab Tesla T4 GPU), the time goes from 4.5 to 2 minutes for training LSTMs, such an im-
provement is statistically significant according to a two-tailed t-test (p < 0.001), corresponding
to a 56% reduction of time use. This is mainly because LSTMs need fewer cells in the case
of correlation matrix sequences, see Figure 5.1. In the case of SVMs, no significant difference
was observed in terms of training time. A further advantage of correlation matrix sequences is
that, being shorter, they do not need to be segmented into subsequences to be fed to the LSTMs.
Therefore, it is possible to avoid the majority vote.

One possible explanation of the results above is in Figure 5.5. The chart shows an example
of the distribution of stability when M = 300. This suggests that the distribution of stability for
the depressed and control group tend to be different. Figure 5.6 shows the average of stability
over different values of M. A two-tailed t-test shows that, for all values of M, the stability is
higher, to a statistically significant extent, in the case of control participants (p < 0.05 with
FDR correction for all values of M) in both read and spontaneous speech. This result suggests
the speech of depressed patients involves more variability and tends to be more unstable. In
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Figure 5.5: The chart shows an example of the distribution of stability for control (red bars) and
depressed (blue bars) participants, ordered from highest to lowest. Control speakers tend to be
more frequent in the first part of the chart and this suggests that the correlation tends to be higher
for them.
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Figure 5.6: The chart shows the average of stability and their standard error of the mean over
the different values of M. The red line and the red dashed line stand for the average stability of
control in read speech and spontaneous speech, respectively. The blue line and the blue dashed
line stand for the average stability of depressed patients in read speech and spontaneous speech,
respectively.

particular, the correlation is around 0.75 for control participants and around 0.71 for depressed
ones, for all values of M. Such an observation suggests that the relationship between features
extracted at different points in time tends to be less consistent in the case of depressed people
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Table 5.2: Performance in terms of Accuracy, Precision, Recall and F1-Score after taking the
stability into account in the BLSV M. RT (Read Task) and IT (Interview Task) are the results for
read and spontaneous speech, respectively.

RT IT
M Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

100 78.6 80.4 78.5 79.0 74.1 78.8 74.6 75.4
120 77.7 78.8 78.5 78.3 73.3 77.6 74.6 74.8
140 79.5 81.9 78.5 79.6 75.0 79.9 74.5 76.2
160 78.6 80.4 78.5 79.0 74.1 80.5 73.2 75.1
180 78.6 82.0 77.1 78.9 74.1 78.5 75.8 75.8
200 80.4 82.0 80.5 81.0 74.1 78.8 74.5 75.5
220 76.8 78.5 76.6 77.4 71.5 75.4 74.5 73.7
240 77.7 79.9 76.6 78.0 72.4 76.5 74.4 74.3
260 75.1 75.8 76.6 76.1 73.3 78.1 74.5 74.9
280 76.8 75.6 81.3 78.3 70.7 75.5 71.1 72.1
300 78.6 79.5 79.9 79.6 68.9 73.5 71.1 71.0
320 74.2 74.0 77.9 75.9 66.4 71.1 68.4 68.3
340 75.1 75.4 77.9 76.6 63.8 67.3 68.4 66.7
360 78.6 78.1 83.8 80.2 64.7 68.7 67.0 67.0
380 76.0 75.3 80.5 77.6 63.8 67.8 67.0 66.4
400 76.9 75.1 83.8 79.1 61.2 65.0 65.6 64.3
420 77.7 76.3 83.8 79.5 63.0 67.2 65.6 65.3
440 78.7 78.4 82.4 80.2 63.8 68.7 65.6 65.8
460 76.8 75.3 83.8 78.9 62.1 65.9 65.6 64.9
480 76.8 76.7 80.5 78.0 62.1 65.9 65.6 64.9
500 76.8 76.9 80.5 78.1 62.1 66.3 65.6 64.7

and this is probably a depression marker that helps the models to perform better.
According to a two-tailed t-test, stability in read speech is statistically significantly higher

than those in spontaneous speech for both groups (p < 0.05 with FDR correction for all values
of M). One possible explanation for these findings is that spontaneous speech includes different
speech contents, which results in increased variability compared to read speech. Consequently,
this greater variability leads to higher instability in spontaneous speech.

In addition, a two-way analysis of variance (ANOVA) reveals a significant interaction effect
(p < 0.05) between the type of speech (i.e., read or spontaneous speech) and condition (i.e., de-
pression or control). The goal of using ANOVA is to examine whether the relationship between
the type of speech and condition is independent. In this chapter, the interaction effect is signif-
icant, indicating that the effect of the type of speech on stability differs between the depressed
and non-depressed groups. In other words, the difference in stability between the two groups is
more pronounced in the read speech compared to the spontaneous speech.

Another advantage of stability is that it allows to covert correlation matrices into Low-Level
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Figure 5.7: The chart shows the accuracy when adding stability to the original 32 features in
BLSV M over different M. The yellow line and the grey line stand for using 32 features and
stability in BLSV M in the read and spontaneous speech, respectively. The yellow dotted line
and the grey dotted line stand for only using 32 features in BLSV M in the read and spontaneous
speech, respectively.

Descriptors. In this respect, it provides a possible way to combine typical speech features and
correlation matrices together in depression detection. Table 5.2 presents the recognition results
after adding stability to the original set of 32 features in the read and spontaneous speech. Ac-
cording to a two-tailed t-test, for all values of M, adding stability to the original 32 feature set
results in a statistically significant (p < 0.05 for all values of M) improvement in accuracy for
read speech, as shown in Figure 5.7. The improvement between the best results and BLSV M in
read speech reaches up to 10.7%, corresponding to the reduction of the error rate by 35.3%.
When it comes to spontaneous speech, there is also a further increase by 10.3% of the accuracy
(as indicated by the best accuracy in Table 5.6), corresponding to a further reduction by 29.2%
of the error rate. However, such an improvement is only significant (p < 0.05) in the smaller
values of M (M < 320). These results confirm the previously identified interaction effect be-
tween the type of speech and the condition, indicating that stability tends to be more beneficial
for read speech compared to spontaneous speech.
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Table 5.3: Previous studies involving the same participants.

Studies Accuracy Precision Recall F1
Scibelli et al. (2018) 77.0 74.0 80.0 77.0

Tao et al. (2020) 84.5 84.5 84.6 84.5
Aloshban et al. (2020) 83.5 95.0 70.3 80.5
Aloshban et al. (2021) 83.0 95.2 69.0 80.0
Aloshban et al. (2022) 84.7 95.4 72.4 82.3
Alsarrani et al. (2022) 67.6 71.7 72.2 72.3

Ours 85.9 85.5 87.1 86.0

5.6 Conclusions

In this chapter, we answer the research questions proposed in the introduction. The key-result
of this chapter is that feature correlation matrices lead to better depression results than feature
vectors in both read and spontaneous speech, at least in the case of linear kernel SVMs and
LSTMs, the two models used in the experiments. The proposed stability further explains such
an improvement and confirms the effectiveness of using correlation matrices. In addition, the
proposed end-to-end approach significantly reduces the time for detection. To the best of our
knowledge, this is the first work that compares feature vectors and correlation matrices in terms
of the performance they lead to. Furthermore, this is the first work proposing an explanation of
the observed results in terms of a possible marker (the different correlation between consecutive
matrices). It seems not possible to directly integrate the feature correlation matrices with the
markers identified in Chapter 4 for depression detection. The reason for this is that silences
serve as global descriptors, whereas feature correlation matrices function as local descriptors.

Table 5.3 shows results obtained in other works involving the speakers from the same public
dataset as those considered in this chapter. Our results achieve the highest performance outper-
forming state-of-the-art approaches and baselines. In comparison to previous studies (Aloshban
et al., 2020, 2021, 2022), our proposed approach demonstrates a distinct trade-off between pre-
cision and recall. While these studies exhibit higher precision, their recall is significantly lower
than that of our approach. Notably, our approach outperforms the others in terms of the F1-score,
a crucial metric that balances both precision and recall, thereby highlighting the effectiveness of
the proposed methodology. The aim of this chapter is, to examine the effectiveness of correla-
tion matrices by comparing them with feature vectors, but never involved with the combination
of both directly. Therefore, we will introduce the possibility in the combination of two types of
speech for depression detection in the later chapters.

The main limitation of the experiments is the use of a linear layer in LST M−C. Its aim is to
keep the same input dimensionality as BLLST M, while still preserving the correlation between the
features. This costs extra-parameters that make it less clear, in the comparison between BLLST M
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and LST M −C, whether the performance improvement actually results from the correlation
matrices. On the other hand, in the case of the SVMs, the only change between BLSV M and
SV M−C is the use of the matrices and the improvement is statistically significant. This seems to
confirm that the matrices actually help to improve depression detection. In the next chapter, we
aim to tackle such an issue by proposing a novel deep learning model without extra-parameters.
Then we will focus on combining different types of speech for depression detection.



Chapter 6

Multi-local Attention for Depression
Detection

6.1 Introduction

In the previous chapters, we explored speech markers beneficial for automatic depression detec-
tion, supporting the hypothesis in our thesis statement that depressed individuals exhibit traces
in their speech that can be used for identifying depression. However, it is crucial to acknowl-
edge that these chapters only discussed potential markers advantageous for depression detection
without suggesting specific improvements to the model. The computing community is currently
making significant strides towards developing technologies that capture valuable information
for automatic depression detection more effectively. This leads to the following question: can

deep learning methods enhance depression detection performance without increasing the model

parameters?

As demonstrated in Chapter 3, Support Vector Machines (SVMs) can achieve an F1-Score
of up to 69.7% when provided with the average of all feature vectors from a speech recording,
surpassing the baseline performance on the same dataset used in this study. Such an observation
implies that feature vectors that are in proximity to the average convey information relevant to
depression and should, therefore, be considered more reliable. In this respect, recent work (Lins-
ley et al., 2019) suggests that attention mechanisms can be employed to highlight feature vectors
that are likely to contain information related to a given task.

Several deep learning approaches have been proposed for automatic depression detection
including convolutional neural networks (CNNs) (He & Cao, 2018; A. Y. Kim et al., 2023; Ro-
drigues Makiuchi et al., 2019) and recurrent neural networks (RNNs) (Niu et al., 2019; Rejaibi
et al., 2022; Aloshban et al., 2022). In particular, the use of attention mechanisms has become
increasingly prevalent in the deep learning community. The attention mechanisms (Vaswani et
al., 2017) include group of algorithms in the context of deep learning, which aims to emphasize
the most useful features or information related to the task being performed. The application of

83
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attention mechanisms has become successful in a broad range of fields including speech recog-
nition (Yeh et al., 2019), image retrieval (Ge et al., 2023), video description (Zhu & Jiang, 2019)
etc, and more recently, in automatic depression detection (Z. Zhao et al., 2019; Niu et al., 2020;
Yin et al., 2023).

On one hand, attention mechanisms are useful for processing multi-modal data, as they en-
able the extraction of different types of information from various modalities to improve the
overall representation of task-relevant information. Recent studies (Ray et al., 2019; Qureshi
et al., 2019; Niu et al., 2020; Rodrigues Makiuchi et al., 2019) have proposed using attention
mechanisms to extract complementary information between modalities for enhancing the multi-
modal representation of depression for classification purposes. Conversely, applying attention
mechanisms to single-modal data, such as speech, is not only effective but also requires less
computational power compared to processing multi-modal data. Additionally, this approach
offers practical benefits for diagnosis, including simpler data collection. For the acoustics as-
pect, the authors C. Cai et al. (2021) introduced attention-based CNNs focusing on time-domain
speech signals to extract multi-scale contextual information related to depression, enabling ef-
fective classification. Regarding linguistics, the authors (Z. Zhao et al., 2019) proposed a hier-
archical attention network emphasizing depression-related linguistic information. These studies
suggest that attention mechanisms can effectively emphasize task-relevant information across
various data modalities.

In this chapter, we introduce a novel approach, namely Multi-Local Attention, an attention
mechanism (Vaswani et al., 2017) that enhances depression detection based on Long Short-Term
Memory Networks (LSTMs) (Hochreiter & Schmidhuber, 1997). The goal of this approach is
to emphasize feature vectors more similar to the local average within the corresponding frame,
a brief segment extracted from a speech recording. The rationale behind using a local average is
its ability to provide a more accurate representation of potential changes over time. In fact, ear-
lier studies employing attention mechanisms for the same task relied on incorporating attention
layers in Deep Networks, an established but relatively older approach, see, e.g., (Harati et al.,
2021; Z. Zhao et al., 2020; Aloshban et al., 2022). The experiments were performed on read and
spontaneous speech, in line with a large body of previous research, see, e.g., (Mitra & Shriberg,
2015; Alghowinem, Goecke, Wagner, Epps, Breakspear, & Parker, 2013; Liu, Li, et al., 2017;
Tao et al., 2020). The main advantage of using two types of speech is to provide a comparison
of the model applied to different data types.

In total, the experiments in this work involved 118 participants, including 64 diagnosed with
depression by professional psychiatrists, who were asked to perform Read and Interview Tasks
(refer to Chapter 3 for a detailed description of the tasks). The results showed that the Multi-
Local Attention (MLA) approach improved the performance of depression detection based on
LSTMs. Furthermore, most importantly, the MLA proposed in this work increases the accuracy
of baselines from 73.3% to 88.1% for the Read Task, corresponding to increases from 74.7%
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to 88.5% in terms of F1-Score, thus reducing the error rate by 44.6%. When it comes to the
Interview Task, MLA increases the accuracy of baselines from 64.1% to 86.0% for read speech,
corresponding to increases from 71.6% to 87.4% in terms of F1-Score, thus reducing the error
rate by 44.4%. Moreover, the improvement in performance was achieved without a significant
increase in the number of model parameters, demonstrating the potential of the Multi-Local
Attention model for automatic depression detection. According to the results, Multi-Local At-
tention is beneficial not only for enhancing performance metrics such as Accuracy and F1-Score,
but also for improving two other critical aspects of the approach, both important from an applica-
tion point of view. The first aspect pertains to the effectiveness of a confidence score associated
with the detection outcome in identifying speakers who are more likely to be correctly classi-
fied. The second aspect reduces the amount of data required to classify a speaker as depressed
or non-depressed.

The contributions of this chapter can be summarized as follows:

• To the best of our knowledge, this is the first attempt to use the Multi-Local Attention
approach for depression detection.

• We present a comprehensive evaluation of the proposed model, examining its performance
from various perspectives such as performance analysis, effectiveness assessment, time
efficiency analysis, and comparative performance across diverse speech types.

The rest of this chapter is organized as follows: Section 6.2 describes the data, Section 6.3
describes the approach used in the experiments, Section 6.4 reports on experiments and results,
and the final Section 6.5 draws some conclusions.

6.2 The Data

In this chapter, we use a total of 118 participants, of which 116 participants have the data of
read speech (RT Task) and 112 participants have the data of spontaneous speech (IT Task). This
allows for a thorough performance evaluation of our proposed model across different types of
speech. For more details related to the data, please refer to the description in Chapter 3.

6.3 The Approach

The approach used in the experiments includes four main steps, namely feature extraction,
multi-local attention, recognition and aggregation (see Figure 6.1). It is important to note that
although the following descriptions are specifically related to read speech, these steps can be
easily adapted and applied to spontaneous speech as well. All approaches were trained and
tested separately over the Read and Interview Tasks.
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Figure 6.1: The figure shows the main steps of the approach. Vectors a⃗k are the averages ex-
tracted from every frame, MLA stands for Multi-Local Attention, ck is the classification outcome
for frame Ik, the symbol ⊕ corresponds to the majority vote and c is the final classification out-
come.

6.3.1 Feature Extraction

In the first step, feature extraction, we align with the procedure outlined in Chapter 3, using
the same feature set and feature extraction approach. This consistency is crucial to ensure a
fair comparison between the proposed approach and baseline methods. The feature extraction
step effectively processes each recording and represents it as a sequence X = {⃗x1, . . . , x⃗T} of
T feature vectors. This process remains consistent with the baselines described in Chapter 3
Section 3.3.

Following the completion of the feature extraction process, the sequences are divided into
frames I = {Ik} (k ∈ {1, . . . ,N}) to facilitate further analysis. Each frame, labeled as Ik, includes
M = 128 consecutive vectors aligning with the BLLST M approach (refer to Section 3.3 for more
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information). To maintain consistency with the BLLST M method, the frames also start at regu-
lar steps of length M/2, which ensures that the overlap size between two consecutive frames
remains identical to that of the BLLST M approach.

6.3.2 Multi-Local Attention

After the segmentation into frames, BLLST M (the same as shown in Figure 3.2 in Chapter 3) and
BL-MLP move to the recognition step (see dashed and dotted arrows in Figure 6.1). Meanwhile,
the MLA takes a different approach and performs the Multi-Local Attention step (see red arrows
in Figure 6.1).

In the first stage of the Multi-Local Attention step, the algorithm calculates the average fea-
ture vector, denoted by a⃗k, for each k-th frame. Subsequently, it applies a transformation to the
remaining feature vectors within the same frame according to the following equations:

x⃗∗i = x⃗i + cos(θi) · x⃗i, (6.1)

cosθi =
a⃗k⃗xi

||⃗ak||||⃗xi||
, (6.2)

where cosθi is the cosine of the angle between a⃗k and x⃗i, i ∈ {1, . . . ,M}, (cosθi is typically
referred to as cosine similarity). The transform emphasizes the vectors that are more closely
aligned with a⃗k by increasing their norm. As a result, a feature vector orthogonal or opposite to
the average will be mapped into a null vector, while the average itself will see its norm multiplied
by

√
2. Any other vector will be between such extremes, effectively highlighting their relevance

to the average vector.

6.3.3 Recognition

After the MLA step, the proposed MLA method proceeds to the recognition phase, where it feeds
the transformed vectors into LSTMs. In comparison, the BL-MLP performs the recognition by
feeding the averages extracted from the frames to a Multi-Layer Perceptron (see dotted arrows
in Figure 6.1), while the BLLST M performs it by feeding the vectors of a frame to LSTMs. In all
cases, the frame is assigned either to class depressed or to class control. It is important to note
that both BLLST M and BL-MLP skip the MLA step before performing the recognition.

6.3.4 Aggregation

Given that there are multiple frames per recording, there is an aggregation step to take every
individual frame classification outcome to a majority vote for all approaches. In this process,
the recording is assigned to the class its frames are most frequently assigned to. This aggregation
step is consistent with the procedure described in Chapter 3. One of the main advantages of this
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approach is its ability to facilitate a strict comparison between the proposed MLA and baselines.
Another advantage of employing this aggregation technique is that it is possible to define a
confidence score, represented by s, according to the following equation:

s =
n(ĉ)
N

, (6.3)

where n(ĉ) is the number of frames assigned to the majority class, which corresponds to the class
that is most frequently associated with the frames in a given recording. The main assumption
behind such a definition is that the tendency to assign a greater fraction of frames to a given
class should be associated to correct classification results.

6.4 Experiments and Results

The experiments were performed according to the same k-fold cross-validation protocol (k = 3)
as the baseline approaches to ensure a consistent evaluation framework, as detailed in Section 3.3
of Chapter 3. This procedure facilitates a fair and unbiased comparison between the MLA and
the established baseline approaches.

In the experimental setup, the LSTMs were configured with 32 hidden states. The learn-
ing rate was set to 10−3 to control the update step size during the training process, and the
training was carried out for 300 epochs to allow the model to converge. The RMSProp opti-
mizer (Tieleman et al., 2012) was employed for training, utilizing categorical cross-entropy as
the loss function to measure the discrepancy between the predicted and true labels (Rubinstein
& Kroese, 2004).

Given that LSTMs require a random initialization for their weights, the experiments were
repeated R = 10 times to account for potential variability in the results. In each repetition, the
weights were initialized differently. For such a reason, all performance metrics are reported in
terms of average and standard deviation across the R repetitions to provide a comprehensive
overview of the model performance.

Both LSTM-based versions of the approach (BLLST M and MLA) employed the same param-
eters and training procedures to maintain consistency in the comparison. The MLP, another type
of neural network used in the study, featured 32 hidden states. The training process for the MLP
was the same as that of the LSTMs to ensure a fair comparison. MLA and BL-MLP approaches
were implemented with the same PyTorch version as BLLST M (version in 1.13.1+cu116) (Paszke
et al., 2019) to guarantee compatibility and reproducibility of the experimental results.

6.4.1 Performance Analysis

Table 6.1 presents a comprehensive overview of the recognition results for all approaches in
terms of Accuracy, Precision, Recall and F1-Score for both Read and Interview Tasks. All
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Table 6.1: Recognition results in terms of Accuracy, Precision, Recall and F1-Score. R and I
stand for Read and Interview Task, respectively.

Task Acc. Prec. Rec. F1
BL-MLP R 73.3±1.6 73.5±2.4 78.0±3.0 74.7±1.0
BLLST M R 85.5±1.2 84.1±2.6 86.8±2.3 84.7±1.3
MLA R 88.1±1.6 87.5±2.7 90.0±2.6 88.5±1.3

BL-MLP I 64.1±1.3 64.2±1.8 82.7±4.4 71.6±1.0
BLLST M I 83.1±0.8 80.4±2.1 87.8±2.7 83.3±0.7
MLA I 86.0±1.3 87.3±4.0 88.2±3.9 87.4±1.0

approaches were compared to a random classifier, as described in Equation 3.7 in Chapter 3
Section 3.3. Precision, Recall and F1-Score correspond to the prior of the positive class (i.e.,
depression in these experiments) which is 51.8% for the Read Task and 55.2% for the Interview
Task. According to a two-tailed t-test, all approaches outperform the random classifier to a
statistically significant extent (p < 0.001 in all cases after Bonferroni correction). These results
suggest that all the approaches in this chapter are effective at recognizing depression in both
Read and Interview Tasks.

The only difference between BLLST M and BL-MLP is the use of LSTM for recognition.
The use of LSTM increases the accuracy by 12.2% and 19.0% for Read and Interview Tasks,
respectively. This enhancement leads to a substantial reduction in the error rate, decreasing by
45.7% for the Read Task and by 52.9% for the Interview Task. This substantial improvement
suggests that LSTM is highly effective at boosting recognition performance in the context of
depression detection. The observed improvements are statistically significant, with p < 0.001
according to two-tailed t-tests, applied with the False Discovery Rate (FDR) correction.

Furthermore, the only difference between the BLLST M and MLA approaches is the applica-
tion of the Multi-Local Attention mechanism before feeding data into the LSTM. This additional
step further increases the accuracy by 2.5% for the Read Task and 2.9% for the Interview Task,
corresponding to a reduction of the error rate by 17.2% for both data types. These improvements
are also statistically significant, with p< 0.001 according to two-tailed t-tests (after applying the
FDR correction). This result indicates that the MLA effectively emphasizes depression-relevant
information in each data type, and therefore enhancing the performance of the model.

An analysis of the results reveals that the performance of all approaches for the Read Task
surpasses that of the Interview Task. This observation is in line with previous studies in the
field, see e.g., (Alghowinem, Goecke, Wagner, Epps, Breakspear, & Parker, 2013; Kiss & Vicsi,
2017a), which report a performance difference of approximately 3.0% between read and spon-
taneous speech. In addition, Table 6.2 demonstrates that the MLA approach achieves results
comparable to those obtained in previous studies that involve the same speakers considered in
this work. Overall, the results appear to support to the key assumption behind the proposed
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Table 6.2: Recognition results in terms of Accuracy, Precision, Recall and F1 Score. The table
includes the results obtained in this chapter and the results from previous studies involving the
same dataset. R and I stand for Read and Interview Task, respectively (I+Text means that both
Interview Task and its transcription were used).

Task Acc. Prec. Rec. F1
Tao et al. (2020) R 84.5 84.5 84.6 84.5

Scibelli et al. (2018) R 77.0 74.0 80.0 77.0
Aloshban et al. (2020) I+T 83.5 95.0 70.3 80.5
Aloshban et al. (2021) I+T 83.0 95.2 69.0 80.0
Aloshban et al. (2022) I+T 84.7 95.4 72.4 82.3
Alsarrani et al. (2022) I 67.6 71.7 72.2 72.3

Ours R 88.1±1.6 87.5±2.7 90.0±2.6 88.5±1.3
Ours I 86.0±1.3 87.3±4.0 88.2±3.9 87.4±1.0

Multi-Local Attention mechanism: vectors closer to the local average should be "trusted" more,
as they likely contain more relevant information for the task at hand.

6.4.2 Confidence Score Analysis

Section 6.3 shows that the proposed approach associates a confidence score s to its classification
outcomes, providing a useful metric for evaluating the model performance. By considering only
the participants with the r highest values of s, in other words, the top r ranked speakers in terms
of the confidence score, we can evaluate the effectiveness of the approach in distinguishing
speakers who are more likely to be classified correctly.

Figure 6.2 shows how the accuracy changes as a function of r (the vertical bars correspond
to the standard error of the mean over the R repetitions of the experiment) for both Read and
Interview Tasks. The curves show that the application of the Multi-Local Attention mechanism
leads to notable improvements in accuracy at every point in the ranking for both tasks. This result
is statistically significant, with p < 0.001 according to a two-tailed t-test. This finding suggests
that the Multi-Local Attention enhances the effectiveness of the confidence score, making it a
more reliable metric for identifying speakers who are more likely to be classified correctly for
both types of speech.

Moreover, by analyzing the data presented in Figure 6.2, it becomes evident that it is possible
to set a threshold value h. When considering only participants with confidence scores of s ≥
h, the accuracy corresponds to a predefined value. For example, when using the confidence
value at rank r = 23 as a threshold in the Interview Task, the accuracy reaches an impressive
99%, which notably outperforms the other two values of 90% and 58%, respectively. These
results seem to confirm that the confidence measure tends to be greater in correspondence with
correct classification outcomes. In this way, this insight allows for a more efficient allocation of
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Figure 6.2: The figure shows the accuracy obtained when considering only the speakers showing
the r highest confidence scores. The vertical bars correspond to the standard error of the mean
observed across R repetitions. The upper plot corresponds to the results of the Read Task while
the lower plot corresponds to the results of the Interview Task.

resources, as the response of the system can be accepted when s is high enough, while requesting
the attention of a doctor when s is too small. As a consequence, the workload for the doctors can
be reduced while keeping the accuracy of the diagnosis approach high enough. In this respect,
the application of MLA improves confidence in the results given by the automatic depression



CHAPTER 6. MULTI-LOCAL ATTENTION FOR DEPRESSION DETECTION 92

detector, more effectively alleviating the workload for doctors.
The Read Task yields a more reliable confidence score and exhibits less variance compared

to the Interview Task when considering all speakers. This outcome may be attributed to the fact
that the Read Task requires participants to read predefined text, leading to less variability in the
speech samples. However, the use of the Interview Task allows a larger subset of participants
corresponding to s > 99%. This result seems to suggest the possibility of combining Read
and Interview Tasks in automatic depression detection, i.e., employing the Interview Task for
participants with sufficiently large s values and utilizing the Read Task to detect the remaining
participants. This combined approach could be a future direction in depression detection and
may further enhance the overall performance of the automatic depression detection system.

6.4.3 Number of Frames

A crucial research question addressed in this study concerns the efficiency of the proposed ap-
proach in detecting depression, specifically within the context of tasks such as the Interview
Task. Our objective is to determine whether it is necessary to analyze the entirety of the record-
ing or if examining only part of it would yield similar results. The main motivation behind this
is to investigate the feasibility of reducing the length of the test and, as a result, reducing the
effort of the patients that take it. This is of particular importance for individuals with severe
depression who might not be at ease while undergoing a test that takes a long time.

Figure 6.3 shows how the accuracy changes as a function of the number of frames used to
perform the classification. Upon the comparison between the curves, it becomes evident that the
MLA approach substantially outperforms the other approaches, as indicated by a statistically
significant difference (p < 0.001, according to a two-tailed t-test) for every number of frames in
both types of speech. Given that increasing the number of frames means to increase the amount
of speech time used to classify a speaker, this means that MLA can reach a predefined accuracy
earlier than the baselines. The relationship between the number of frames, n, and the recording
duration (seconds) can be expressed as:

ι = (n−1)×0.65+1.3, (6.4)

where ι is the number of recording, refer to Section 3.3 for further details about frame size and
step.

A comprehensive analysis of the plots suggests that the results do not exhibit significant
fluctuations after the initial 23 frames, corresponding to the first 15.6 seconds of the Interview
Task. Given that the average length of the Interview Task is 229.8 seconds (see Section 3.3),
this leads to a substantial 93.2% reduction in the duration of data required to make a prediction.
Conversely, the Read Task seems to demand a greater number of frames (41 frames) before
the results reach a stable point, corresponding to 27.3 seconds (compared to an average Read
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Figure 6.3: The figure shows the relationship between accuracy and the number of frames (50
and 46 are the maximum of frames that every participant has for Read Task and Interview Task,
respectively) used for depression detection. The vertical bars correspond to the standard error
of the mean observed across R repetitions. The upper plot corresponds to the results of the Read
Task while the lower plot corresponds to the results of the Interview Task.

Task length of 50.3 seconds). This observation results in a 49.8% reduction in the duration of
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data required to make a prediction. In conclusion, our findings demonstrate that focusing on
the initial few seconds of read and spontaneous speech provides sufficient data for achieving
performance comparable to that obtained when utilizing the entire available material.

6.5 Conclusions

In this chapter, we answered the research question proposed in Section 6.1. We present a com-
prehensive analysis demonstrating that the performance of a depression detector can be signif-
icantly enhanced through the application of Multi-Local Attention. This attention mechanism
is specifically designed to emphasize input data anticipated to convey task-relevant information,
thereby improving the accuracy and reliability of the detection process. Moreover, our findings
reveal two additional and noteworthy improvements in the performance of the detector that hold
significant implications for its practical application in the field of mental health care.

Firstly, we observe that the confidence measure accompanying detection outcomes becomes
more effective in accurately identifying classified speakers. This improvement is of particular
importance because it makes it possible to identify participants for which the actual condition,
whether it be depression or lack of it, is evident enough to be recognized automatically. By
effectively identifying these individuals, doctors can allocate their time and resources more effi-
ciently, concentrating on more difficult and ambiguous cases.

Secondly, our results show that the detector achieves its best accuracy by using a smaller
amount of speech data, which is important considering that depressed individuals often struggle
to speak for a long time. The experiments show that approximately 15 to 25 seconds of two dif-
ferent types of speech are sufficient for detecting depression as effectively as when utilizing all
available data. Compared to the initial approaches, the proposed approach reduces the duration
of data required to make a prediction but makes a relatively accurate detection, which would be a
benefit if deployed in real-world systems. Moreover, this approach ensures that the most vulner-
able individuals, such as severely depressed individuals who find it difficult to speak for lengthy
periods, are not subjected to time-consuming and potentially distressing testing procedures.

In addition, the use of Read and Interview Tasks exhibits distinct patterns in the aforemen-
tioned aspects. This observation seemingly confirms that read and spontaneous speech con-
vey different types of information, a conclusion that is consistent with previous studies in the
field (Mitra & Shriberg, 2015; Kiss & Vicsi, 2017a). As a result, our focus in the subsequent
chapter will be on developing improved methodologies for effectively combining Read and In-
terview Tasks, thereby capturing such information in different tasks for further enhancing the
accuracy and reliability of depression detection.

Another positive effect of the Multi-Local Attention is that the fraction of correctly clas-
sified frames tends to increase (hence the higher confidence scores for the correctly classified
speakers). Such an observation is consistent with the thin slices theory (the tendency of people
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to manifest their inner state through short behavioral displays) (Ambady & Rosenthal, 1992)
and it is the probable explanation behind the effectiveness of the majority vote. Given that such
an aggregation approach is basic, we will focus on the attempt to develop better methodologies
to combine the classification outcomes obtained at the level of individual frames in the next
chapter.



Chapter 7

Cross-Data Multilevel Attention

7.1 Introduction

In the previous chapters, we compared the effectiveness of markers and models applied to Read
and Interview Tasks in the context of depression detection. The experiments show the differ-
ences in effectiveness when using different types of speech, i.e., read and spontaneous speech.
This is mainly due to the way that speech is produced, in which read speech limits the content
of speaking representing more difference in acoustics while spontaneous speech can express the
emotional state of the speaker. So far, the experiments were based on comparisons and no at-
tempt was made to combine two types of speech. This leads to the following questions: can

different types of speech convey different information for depression detection, and if so, can the

combination of this different information improve the performance of depression recognition?

In this chapter, we proposed a new approach to analyse both read and spontaneous speech
in an individual framework using several attention mechanisms used in the last chapter. These
latter operated at multiple levels in terms of time-scale (from short frames of 1.3 seconds to
entire recordings lasting up to several minutes) and data representation (from sequences of fea-
ture vectors extracted from the speech signal to sequences of embeddings resulting from Deep
Networks). The goal of the attention mechanisms is to leverage depression-relevant information
available in both read and spontaneous speech, whether it is specific to each type of data or
common to both.

The literature proposes three main ways to collect speech data for depression detection,
namely asking people to read a text, posing a series of simple questions or asking to talk as
much as possible about a predefined topic (e.g., the description of a picture). The first approach
leads to read speech, while the other two lead to spontaneous speech. The literature has exten-
sively analyzed advantages and disadvantages of both types of data (see, e.g., (Kiss & Vicsi,
2017a)). Overall, the results seem to suggest that spontaneous speech allows one to obtain bet-
ter performance (Alghowinem, Goecke, Wagner, Epps, Breakspear, & Parker, 2013; Mitra &
Shriberg, 2015). However, the differences are small (accuracy differences range between 1%

96
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and 3%) (Kiss & Vicsi, 2017a). As a consequence, several works suggest that the best solution
is to use both types of data (Liu, Li, et al., 2017; Mitra et al., 2015; Long et al., 2017). This
work follows such a methodology and proposes a new depression detection approach capable to
benefit from both read and spontaneous speech samples of the same speaker.

The proposed approach, referred to as Cross-Data Multilevel Attention (CDMA), relies on
the key-assumption that both read and spontaneous speech carry depression-relevant informa-
tion. However, while part of such information is specific of read or spontaneous speech, the
other part is common to both. For this reason, the CDMA includes multiple attention mecha-
nisms that are both type-specific, meaning that they aim at emphasizing information available
only in read or spontaneous data, and type common, meaning that they try to emphasize infor-
mation available in both types of speech. The experiments show that removing one or more of
the attention mechanisms of the CDMA reduces the performance. Such a result seems to con-
firm that the key-assumption above is correct and that the CDMA is effective at leveraging all
information available in the data.

The experiments were performed over the Androids Corpus including 52 individuals diag-
nosed with depression by professional psychiatrists and 58 individuals who had never experi-
enced mental health issues. During the experiments, each participant was asked to read a simple
text and to answer a few questions. In this way, both read and spontaneous speech samples
were available for each person. The 8 participants for which only one type of data was available
were excluded (see Chapter 3 for more data details). The experiments show that the CDMA can
achieve F1-Scores of up to 92.5%, the best result obtained so far over the same data.

Overall, to the best of our knowledge, the main contributions of the work in this chapter are
as follows:

• A new approach, the CDMA, that was developed in a depression detection experiment, but
can be used to analyze all pairs of data items that share a common label in a classification
problem and can be represented as sequences of feature vectors;

• Experimental evidence that, in depression detection, read and spontaneous speech carry
both specific and common information and that these are sufficiently diverse to improve
the performance of a detection approach when combined.

The rest of this chapter is organized as follows: Section 7.2 provides information about
the data used for the experiments, Section 7.3 illustrates the proposed approach, Section 7.4
describes experiments and results, and the final Section 7.5 draws some conclusions.

7.2 The Data

The experiments involved a subset of the Androids Corpus including 110 participants, of which
52 participants are control while 58 participants are depressed. The only reason for participant
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Figure 7.1: Distribution of recording length across the participants with both types of data. The
upper chart shows the length of read speech, and the lower shows the same information for
spontaneous speech (after removing the turns of the interviewer).

selection from the Androids Corpus is that the Read and Interview Tasks should be available.
Therefore, a total of 8 participants are excluded due to the lack of either the Read Task or
Interview Task.

Table 7.1 shows the distribution of age, gender and education level across Control and De-
pressed participants in the subset. According to a two-tailed t-test, there is no statistically sig-
nificant age difference between the two groups. The same applies to gender and education level,
according to a χ2 test. This ensures that differences between the two groups of participants
depend on depression and not on other factors that might affect speech. In addition, there is
no statistically significant difference between the subset used in this chapter and the Androids
Corpus in terms of age (according to a two-tailed t-test), gender and education level (according
to χ2 tests). This means the results obtained from this subset can be generalized to the whole
Androids Corpus.

In the Reading task, the total duration of the recordings is 1 hour, 31 minutes and 43 seconds
(the upper chart of Figure 7.1 shows the duration per participant). The overall average and
standard deviation are 50.3 ± 10.4 seconds, while average and standard deviation for depressed
and control participants are 52.9 ± 10.9 and 47.3 ± 8.9 seconds, respectively. According to
a two-tailed t test, such a difference is statistically significant (p < 0.01). In the Interview
recordings, the total duration of the turns is 5 hours, 44 minutes and 58 seconds, and the lower
chart of Figure 7.1 shows the duration per participant (the overall average and standard deviation
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Table 7.1: The table provides demographic information about the participants in terms of age,
gender and education level. The expressions Low and High refer to this latter. Low means up to
8 years of study, while High means at least 13 years of study. The sum over the education level
columns is only 109 because 1 participants did not disclose information about their studies.

Age Male Female Low High
Control 47.3 ± 12.7 11 41 19 33

Depressed 47.4 ± 11.9 20 38 25 32
Total 47.3 ± 12.2 31 79 44 65

are 188.2 ± 76.2 seconds). The average and standard deviations for depressed and control
participants are 170.5 ± 91.8 and 207.9 ± 47.3 seconds. The difference is statistically significant
between depressed and control participants according to a two-tailed t test (p < 0.01). These
statistical differences and the distribution of recording length in the subset are in line with the
description of the whole corpus in Section 3.2.

7.3 The Approach

The proposed approach includes four main steps, namely feature extraction, segmentation, de-

tection and aggregation (see Figure 7.2 for the overall scheme).

7.3.1 Feature Extraction

The feature extraction step is the same as the baselines described in Section 3.3, including the
feature set, the size of analysis window and tools for extracting features.

Figure 7.2 shows that the output of the feature extraction step are a sequence of feature
vectors X = {⃗x1, . . . , x⃗T} for read speech (T is the total number of feature vectors) and a sequence
of feature vectors Z = {⃗z1, . . . ,⃗zQ} for spontaneous speech (Q is the total number of feature
vectors). In general, T ̸= Q because the amount of read and spontaneous speech is different for
the same speaker.

7.3.2 Segmentation

After the feature extraction step, each recording corresponds to a sequence of feature vectors (see
the end of previous section). Given the same problem as the baselines described in Section 3.3.4
that minimum recording length is in the order of tens of seconds, all sequences include thousands
of vectors, and this makes it impossible to feed them to a model. Therefore, the sequences X and
Z are segmented into frames following the same way for baselines in Section 3.3.4. In the case
of read speech (Read Task), this means to convert X into a sequence I = {Ik} (k ∈ [1,N]), where



CHAPTER 7. CROSS-DATA MULTILEVEL ATTENTION 100

, , , , ,... ...... ... ...1 2 M/2+1 M M+1 3M/2-1 (L-1)M/2-1 Q1 2, , M M+1, , T,... ...M/2+1 ... 3M/2-1 ... (N-1)M/2-1 ...

... ...

... ...

... ...

I1 I2 IN V1 V2 VL

MLA MLA MLA MLA MLA MLA

I1 
* I2 

* IN 
*

V1 
* V2 * VL 

*

LSTM LSTM LSTM LSTM LSTM LSTM

Feature Extraction
Reading Interview

c1 c2 cN
pc o1 o2 oL

po

+ +

r s

f

pf

CT-GA CT-GA

LSTM LSTM

pt pd

+
Aggregation

y

...c1 c2 cN* * *
2

...o1 o oL* * *

...

...

M

D

...

M

D
I1

I1 *

a1

cos(θ )1

r s

r s

f

pf

r s

...

N

D

...

N

D

{C1, ..., CN}

*

s1

cos(α)

...

{C1 , ..., CN }*

* *

*

*

* *

CTF Stage

IT-MLA Stage

CT-GA Stage

Figure 7.2: The figure shows the main stages of the proposed approach. The symbol ⊗ corre-
sponds to the aggregation of the outcomes produced by the different stages of the approach (see
the text for the meaning of symbols).

every frame Ik includes M = 128 vectors (see Section 3.3.4). The frames also start at regular
steps of length M/2, meaning that they overlap by half of their vectors (see Figure 7.2).

In the case of spontaneous speech (Interview Task), the segmentation into frames was ap-
plied individually to each turn of the participants (the turns of the interviewers were manually
eliminated from the data). In this way, no frame includes vectors extracted from different turns.
In technical terms, this means that the initial sequence of vectors Z = {⃗z1, . . . ,⃗zQ} extracted from
an Interview recording was first segmented into turns and then each of these was segmented in-
dividually into frames according to the same procedure used for the read speech. As a result,
spontaneous speech recordings are converted into sequences V = {Vm} (m ∈ [1,L]) of frames.
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Overall, the final outcomes of the segmentation step are a sequence of frames I for read
speech and a sequence of frames V for spontaneous speech (see Figure 7.2).

7.3.3 Detection: Intra-Type Multi-Local Attention

After the segmentation step, read and spontaneous speech are represented as sequences of
frames. The first stage of the detection step, referred to as Intra-Type Multi Local Attention

(IT-MLA) focuses on each type of speech individually (hence the expression Intra-Type) and
tries to emphasize local depression-relevant information available in each frame (hence the ex-
pression Multi-Local Attention). The IT-MLA is the same as MLA in Chapter 6 Section 6.3. In
this chapter, we use IT-MLA to replace MLA in order to help readers understand this attention
mechanism is based on intra-type, different from the other attention mechanism that is based
on cross-type proposed in this chapter (see below). The calculation of IT-MLA is the same as
MLA in Section 6.3.2 that uses the same equation between the average feature vector a⃗k from
every frame k and the vectors x⃗i of the frame k (see Equation 6.1 and Equation 6.2, the equation
is written for the vectors x⃗i extracted from read speech, but it can be written in the same way for
the vectors z⃗i extracted from spontaneous speech).

After the transform, the frames can be given as input to Long Short-Term Memory Networks
(LSTMs) (Hochreiter & Schmidhuber, 1997) to be assigned either to class depression or to class
control. Given that there are multiple frames, there are multiple classification outcomes and it is
possible to estimate the probability of a speaker being depressed as follows:

p(d) =
n(d)

N
, (7.1)

where n(d) is the number of frames assigned to class depression and N is the total number of
frames. This leads to probabilities pc and po of a speaker being depressed based on read and
spontaneous speech, respectively (see Figure 7.2). When pc > 0.5, a speaker is classified as
depressed for read speech (the same applies to po for spontaneous speech).

7.3.4 Detection: Cross-Type Global Attention

The second stage of the detection step, referred to as Cross-Type Global Attention (CT-GA),
aims at jointly using information available in both types of speech (hence the expression Cross-

Type) and at emphasizing information available at the level of a whole recording (hence the
expression Global Attention).

Whenever an LSTM used for IT-MLA classifies a frame (see previous section), it produces
a sequence of hidden states. It is then possible to calculate the average of the hidden states so
that every frame leads to an individual vector c⃗k for read speech and o⃗k for spontaneous speech.
Given that there are multiple frames, the LSTMs of the IT-MLA produce two sequences, namely
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C = {⃗c1, . . . , c⃗N} for read speech and O = {⃗o1, . . . , o⃗L} for spontaneous speech (see Figure 7.2).
The CT-GA stage of the detection transforms the two sequences above according to the

following equation (the expression is written for the c⃗k, but it can be used in the same way for
the o⃗k):

c⃗∗k = c⃗k +
exp(cosαk)

∑
N
j=1exp(cosα j)

· c⃗k, (7.2)

cosαk = s⃗⃗ck/||⃗s||||⃗ck||, (7.3)

where s⃗ is the average of O. In the case of spontaneous speech, it is necessary to use the average
r⃗ of sequence C. In sequence O, the transformation above emphasizes the parts that are more
similar to the average of C and the other way around. This means that the transform emphasizes
in read speech what is similar to spontaneous speech and vice versa. The expected consequence
is that the transformed sequences convey information common to both types of speech.

The transformed sequences C∗ and O∗ are fed to two LSTMs (see Figure 7.2) that generate a
new hidden state for each input vector c⃗∗k and o⃗∗k , respectively. This makes it possible to calculate
the average of the hidden states for each of the two LSTMs. Such averages are fed to two
softmax layers that give as output the probabilities pt and pd of the speakers being depressed,
respectively (see Figure 7.2).

7.3.5 Detection: Cross-Type Fusion

After the CT-GA step, there are four sequences, namely C, O, C∗ and O∗, with their respective
averages r⃗, s⃗, r⃗∗ and s⃗∗ (see Figure 7.2). This makes it possible to obtain two vectors as follows:

f⃗ = r⃗+ s⃗, (7.4)

f⃗ ∗ = r⃗∗+ s⃗∗ (7.5)

where vectors f⃗ and f⃗ ∗ account for information that was available in the intermediate steps of
the process because f⃗ was obtained immediately after IT-MLA, and f⃗ ∗ was obtained during CT-
GA. To ensure that such information does not get lost, the two vectors are fed to two softmax
layers that output two probabilities p f 1 and p f 2 of the speakers being depressed. The rationale
behind the step is that many approaches detect depression above chance by representing speech
recordings through the average of feature vectors extracted at regular time steps from the signal
(see, e.g., (Tao et al., 2020; Kiss & Vicsi, 2017a)). This suggests that the averages r⃗, s⃗, r⃗∗ and
s⃗∗, convey information about the condition of the speaker.

Given that f⃗ and f⃗ ∗ account for averages extracted from different types of speech, the step
is referred to as Cross-Type Fusion (CTF).
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7.3.6 Aggregation

The six probabilities estimated during the process are aggregated in terms of the average:

p̂ =
1

|B| ∑
v∈B

pv, (7.6)

where B = {c,o, f1, f2, t,d}. Whenever p̂> 0.5, a speaker is classified as depressed. In addition,
the probabilities are used to jointly train LSTMs and softmax layers (see previous sections)
according to the following loss function:

L =− 1
K ∑

v∈B

[y log(pv)+(1− y) log(1− pv)], (7.7)

where K is the number of training samples.

7.4 Experiments and results

All experiments were performed according to a k-fold protocol (k = 3). This is in line with the
experimental design of baselines in Section 3.3, following the rule of person independence that
the same person is never represented in both training and test set. All the models were trained
on the same devices as baselines (a single Tesla T4 GPU with 16 GB memory). The number
of hidden neurons in the LSTMs was set to 32, the learning rate to 10−3 and the number of
training epochs to 300. The models were trained with the initializer of PyTorch using RMSProp
as an optimizer (Tieleman et al., 2012). Because of the random initialization of the weights, the
experiments were repeated R = 10 times and, therefore, the performance metrics are reported as
averages and standard deviations across the R repetitions.

Table 7.2 shows the results obtained in this work. The first line is the performance of a
random baseline approach that assigns a sample to the class c with a probability corresponding
to its prior p(c), in line with the Equation 3.7 in Chapter 3. Precision, Recall and F1-Score of the
same random approach correspond to the prior of the positive class (depression in this chapter).
The remaining lines of the table account for approaches that include progressively more stages
of the CDMA (see below).

According to a two-tailed t-test with FDR correction (p < 0.001), the performance is always
better than the random baseline to a statistically significant extent. This means that all stages of
the CDMA actually learn from the data to discriminate between depressed and non-depressed
speakers. The full CDMA approach (lowest line of Table 7.2) outperforms, to a statistically
significant extent, all partial approaches that include only some of its stages. In this respect,
all stages of the CDMA (IT-MLA, CT-GA and CTF) appear to contribute with diverse and
alternative information to the final outcome of the process.
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Table 7.2: The table provides recognition results in terms of Accuracy, Precision, Recall and F1
Score (see the text for the meaning of the acronyms).

Type Stages

GA CTFApproaches
Read Spont. MLA LSTM1

self cross
LSTM2

f1 f2

Acc.(%) Pre.(%) Rec.(%) F1.(%)

Random 50.1±0.0 52.7±0.0 52.7±0.0 52.7±0.0

Part I

BA1 (Read)
√ √

85.5±1.2 84.1±2.6 86.8±2.3 84.7±1.3

BA1 (Spont.)
√ √

83.1±0.8 80.4±2.1 87.8±2.7 83.3±0.7

IT-MLA (Read)
√ √ √

89.2±0.7 88.2±1.8 90.1±1.6 89.0±0.6

IT-MLA (Spont.)
√ √ √

86.8±1.1 83.9±2.3 91.9±1.5 87.4±0.8

Part II

BA2 (Reading)
√ √ √ √

89.9±1.5 88.7±2.1 91.5±2.8 89.9±1.5

BA2 (Interview)
√ √ √ √

87.3±1.1 85.8±2.4 89.4±3.3 87.3±1.1

BA3 (Read)
√ √ √ √ √

90.1±1.6 88.7±3.2 92.4±2.6 90.2±1.2

BA3 (Spont.)
√ √ √ √ √

89.4±0.9 87.1±1.8 93.0±2.5 89.7±0.8

CT-GA (Read)
√ √ √ √ √

90.4±1.2 88.4±2.0 93.6±2.3 90.7±1.0

CT-GA (Spont.)
√ √ √ √ √

89.8±0.8 88.8±1.6 91.4±1.9 89.8±0.7

Part III

BA4
√ √ √ √ √ √ √

90.2±0.8 88.9±1.7 91.5±1.5 90.1±0.8

BA5
√ √ √ √ √ √ √

90.7±0.6 89.3±2.0 92.5±2.8 90.7±0.6

CDMA
√ √ √ √ √ √ √ √

92.7±0.8 91.8±1.4 93.5±2.1 92.5±0.8

7.4.1 Performance Analysis

Figure 7.2 shows that the CDMA can be thought of as a sequence of multiple stages. The goal
of this section is to show how the performance changes along such stages and, correspondingly,
Table 7.2 provides Accuracy, Precision, Recall and F1-Score when taking into account increas-
ingly more of them. This provides an indication of how each of the stages contributes to the
overall performance of the CDMA, reported in the lowest line of the table.

IT-MLA

Part I of Table 7.2 shows a comparison between the IT-MLA (see Section 7.3.3) and a baseline
approach, referred to as BA1, that feeds the sequences of frames I = {Ik} or V = {Vm} to an
LSTM (see Figure 7.2). The only difference between BA1 and IT-MLA is that this latter applies
the MLA before feeding the data to an LSTM. Both IT-MLA and the baseline were trained and
tested separately over read and spontaneous speech. The MLA increases the accuracy by 3.7%
for both types of speech, thus reducing the error rate by 25.5% for read speech and by 21.9% for
spontaneous speech. Such improvements are statistically significant with p < 0.001 according
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Figure 7.3: The plot shows BS2 and BS3. In BS2, the sequence C is fed to the LSTMs skipping
the global attention stage to generate a posterior for depression detection. In BS3, the sequence
C is applied with global attention to generate sequence C∗, then fed C∗ to LSTMs to generate a
posterior for depression detection. These steps also works for the sequence O.

to two-tailed t-tests (after applying the FDR correction). This suggests that the MLA effectively
emphasizes depression-relevant information in each of the data types.

CT-GA

Section 7.3.4 shows that the CT-GA stage transforms sequences C and O and then feeds the
transformed sequences C∗ and O∗ to two LSTMs (represented as LSTM2 in Figure 7.2). This
leads to the estimates of two posteriors, pt and pd in Figure 7.2, that can be used to classify
a speaker. Part II of Table 7.2 shows the performance achieved when using the two posteriors
individually to perform the classification (the corresponding approaches are referred to as CT-
GA over read and spontaneous speech, respectively).

The first key-point of the CT-GA is that sequences C and O are transformed according to
global attention. For this reason, it is possible to compare the performance obtained by the CT-
GA with the baseline (referred to as BA2) that eliminates global attention, meaning sequences
C (or O) are fed to the LSTMs are not transformed (skipping GA in the BA2). This comparison
aims at examining the effectiveness of global attention.

The second key-point of the CT-GA is that sequence C is transformed using the average of
sequence O and vice versa (see Equation 7.3). This aims at emphasizing information common
to both types of speech while still processing individually each of them. For this reason, it
is possible to compare the performance obtained by the CT-GA with an alternative baseline
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approach, referred to as BA3, that transforms sequences C and O as follows:

c⃗∗k = c⃗k +
exp(cosβk)

∑
N
i=1exp(cosβi)

· c⃗k, (7.8)

o⃗∗k = o⃗k +
exp(cosγk)

∑
N
i=1exp(cosγi)

· o⃗k, (7.9)

where βk is the angle between ck and the average of sequence C, while γk is the angle between ok

and the average of sequence O. This is the same transform as the one used in the CT-GA stage
(see Section 7.3.4). However, while the CT-GA uses the average of O to transform C and vice
versa, the transform above use the average of C to transform C and the average of O to transform
O. In other words, there is no attempt to use information common to the two types of speech.
The transform is Intra-Type rather than Cross-Type.

Overall, BA3 and CT-GA perform at the same level according to a two-tailed t-test (none
of them outperforms the others to a statistically significant extent). However, it is important
to observe that, compared to BA2 in Table 7.2, there is a statistically significant improvement
for spontaneous speech according to a two-tailed t-test (p < 0.001 with FDR correction). This
seems to suggest that the GA allows one to bridge the performance gap between read and spon-
taneous speech observed earlier. One possible explanation is that GA emphasizes information
that spans an entire recording. Therefore, it is more likely to emphasize depression-relevant dif-
ferences in spontaneous speech (where every speaker says a different thing) than in read speech
(where every speaker reads the same text).

CTF

Section 7.3.5 shows that the Cross-Type Fusion is performed by feeding vectors f⃗ and f⃗ ∗ to two
softmax layers that output the posteriors p f 1 and p f 2 of class depression (see Figure 7.2). These
are summed to the posteriors resulting from IT-MLA (pc and po) and from CT-GA (pt and pd),
thus resulting in the full CDMA approach.

Part III of Table 7.2 shows the comparison between the CDMA and two alternative baseline
approaches, BA4 and BA5. These correspond to the full CDMA, but BS3 does not take into
account p f 2, while BS4 does not take into account p f 1. The key-result is that the CDMA
improves to a statistically significant extent over all approaches of Parts I-III in Table 7.2, while
baselines BA4 and BA5 improve only over the approaches of Part I of the table. One possible
explanation is that the two fusion approaches contribute with diverse information, meaning that
what is available in f⃗ is not available in f⃗ ∗ and vice versa. For this reason, using only one of the
two is not sufficient and it is necessary to use them both. In any case, adding a stage that takes
information coming from both types of speech leads to the best performance, thus confirming
the key-assumption underlying this work that both read and spontaneous speech have to be taken
into account.
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Table 7.3: Previous results over same data. R and S stand for Read and Spontaneous, respec-
tively (S+Text means that both spontaneous speech and its transcription were used).

Methods Task Acc.(%) Pre.(%) Rec.(%) F1(%)
Scibelli et al. (2018) R 77.0 74.0 80.0 77.0
Tao et al. (2020) R 84.5 84.5 84.6 84.5
Tao, Ge, et al. (2023) R 88.0 87.7 89.0 88.0
Aloshban et al. (2020) S+Text 83.5 95.0 70.3 80.5
Aloshban et al. (2021) S+Text 83.0 95.2 69.0 80.0
Aloshban et al. (2022) S+Text 84.7 95.4 72.4 82.3
Alsarrani et al. (2022) S 67.6 71.7 72.2 72.3
This work R+S 92.7 91.8 93.5 92.5

7.4.2 Comparison with Other Works

Table 7.3 shows the comparison between the CDMA and previous approaches tested over the
same data. The approaches in the table do not make use of the same experimental protocol used
in this work and they all use different subsets of the data (e.g., only read or only spontaneous
speech). Therefore, the comparisons are not fully rigorous and should be considered only as an
indication.

According to a two-tailed t-test with False Discovery Rate (FDR) correction, the CDMA
outperforms the other methods to a statistically significant extent (p < 0.001 in all cases). Three
studies (Aloshban et al., 2020, 2021, 2022) report Precision higher than CDMA, but all of them
have a Recall roughly 20 points lower and they were carried out using only a small subset of
the data (59 speakers in total). Furthermore, the comparison in terms of F1-Score suggests that
the CDMA tends to achieve a better balance between Precision and Recall. Finally, the results
suggest that taking into account both read and spontaneous speech for the same speaker is of
benefit (all other results were obtained using only one type of speech).

7.5 Conclusions

This chapter presented an approach, the Cross-Data Multilevel Attention, aimed at detecting de-
pression through the analysis of read and spontaneous speech. The performance gap between
RT and IT may be attributed to the different nature of these two speech types, each containing
different sets of information. Unlike previous approaches that analyze both read and sponta-
neous speech (see, e.g., (Alghowinem, Goecke, Wagner, Epps, Breakspear, & Parker, 2013;
Kiss & Vicsi, 2017a; Liu, Li, et al., 2017; Long et al., 2017; Mitra & Shriberg, 2015; Mitra et
al., 2015)), the main novelty of the CDMA is that, through the use of attention mechanisms, it
tries to explicitly capture all depression-relevant information available in the data, whether it is
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Figure 7.4: This figure shows the comparison between Read and Spontaneous speech in terms
of accuracy (the vertical bars correspond to the standard error of the mean performance across
the R repetitions of the experiments).

specific of each type of speech or common to both of them. The results show that the inclu-
sion of progressively more attention mechanisms consistently increases the performance over
both types of speech. Table 7.2 shows that, after applying Multi Local Attention and Global

Attention, the F1-Score increases by 6.0% for read speech and by 6.5% for spontaneous speech.
Furthermore, the results show that using jointly read and spontaneous speech leads to a statisti-
cally significant improvement over the best results obtained using only one type of data. In fact,
the CDMA reaches an F1-Score of 92.5%, while the best F1-Scores obtained using individually
read or spontaneous speech are 90.7% and 90.2%, respectively (see Table 7.2).

In line with previous works (see, e.g., (Alghowinem, Goecke, Wagner, Epps, Breakspear, &
Parker, 2013; Kiss & Vicsi, 2017a)), there is a performance difference of roughly 3.0% between
read and spontaneous speech. However, before the application of the GA, the best performance
was obtained over read speech (see Figure 7.4), unlike all previous works (see, e.g., (Liu, Li,
et al., 2017; Mitra & Shriberg, 2015)). One possible explanation is that the way the MLA
works tends to benefit more from read speech. In fact, the key-assumption underlying the MLA
is that the average of the feature vectors extracted from a sample conveys depression-relevant
information. In the case of read speech, such an average might be more informative because
all people read the same text and, therefore, there is less variance associated with the content
of what is being said. However, the performance gap is bridged after the application of the
GA. This seems to suggest that the GA makes the CDMA effective at emphasizing depression-
relevant information irrespective of the type of speech being used.
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The main limitation of the work in this chapter is that the aggregation approach corresponds
to the sum rule (Kittler et al., 1998). While being one of the methodologies most commonly
applied for the combination of multiple classifiers, it is still possible to use more recent tech-
niques designed, e.g., to combine multiple modalities. These methodologies include, e.g., joint
and coordinated representations based on neural networks (see (Baltrusaitis et al., 2019) for an
extensive survey). Furthermore, the GA can be difficult to extend, at least in its current version,
to cases in which there are more than two data streams. However, despite these limitations,
the CDMA has the major advantage that it can be applied to other problems in which there are
two types of data that share a common property (depression or the lack of it in the case of this
chapter) and that can be represented as sequences of feature vectors. Examples include, e.g., the
audio and video streams of recordings to be categorized, multiple physiological signals collected
for the same person, etc.

In view of a possible clinical application, it is important to observe that the performance
of the system is comparable to those of General Practitioners (GP), i.e., doctors that are not
specialized in psychiatry, but are typically the first line of intervention against the pathology. In
fact, according to a meta-analysis of the literature (Mitchell et al., 2009), the accuracy of GPs
ranges between 57.9% and 73.1%, while the average accuracy of the CDMA is 92.7%. On the
other hand, the data used for the experiments were collected in real-world conditions (the room
where patients meet their doctors), but still as a part of a controlled experiment. Furthermore, it
is possible that in clinical practice, people refuse to be recorded or, especially when depression
is severe, patients are not in the condition to perform the tasks at the core of the experiments
(reading and answering questions). In this respect, the comparison above provides an indication,
but it does not necessarily take into account all difficulties that might emerge in clinical practice.

From a technological point of view, the main direction for future work is to address the
limitations mentioned earlier. In particular, the extension of the approach to more than two data
streams will pave the way towards the inclusion of other modalities such as, e.g., the automatic
transcription of spontaneous speech or, possibly, the videos of the experiment participants (this
is not available in the data used for this thesis, but it is at disposition in other depression related
corpora). Whenever the new streams of data provide information alternative to the others, there
is a possibility to obtain further improvements, whether the problem is depression detection or
any other type of classification.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we focus on speech-based depression detection. We propose a comprehensive
methodology that consists of two main aspects, first, the introduction of effective markers, de-
rived from both temporal and acoustic properties, which assist in the identification of depressed
speakers; and second, the development and implementation of advanced deep learning models
specifically designed for the detection of depression. Specifically, we hypothesize that mea-
surable traces of depression can be found in speech, which can be discerned through speech
properties and emphasized using attention mechanisms to differentiate between depressed and
non-depressed speakers.

Firstly, we conducted a comprehensive survey of the currently available speech datasets for
depression detection. Through this analysis, we identified several potential issues that may arise
when using these corpora for depression detection:

• The distribution of depressed patients and controls participants might be unbalanced, or
the overall number of participants may be insufficient for robust analysis;

• The dataset labels may be derived from questionnaires, which are inherently subjective
assessments and can be prone to mislabeling;

• The speech data in the datasets may be limited in variety, with only one type of speech
available.

To address these challenges and improve the quality of research in this field, we introduce a new,
publicly available benchmark (Tao, Esposito, & Vinciarelli, 2023) in Chapter 3. Our proposed
corpus offers several advantages that directly address the aforementioned issues:

• The distribution of depressed individuals and controls participants within the dataset is
well-balanced, ensuring that both groups are adequately represented for analysis.
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• This dataset is the largest publicly available speech corpus for depression detection with
diagnosis by psychiatrists.

• To provide a more comprehensive understanding of depressive speech patterns, our corpus
includes two different types of speech data, i.e., read speech and spontaneous speech.

The availability of this public corpus not only offers valuable resources for our investigation into
depression detection in this thesis, but also presents numerous opportunities for other researchers
to broaden their research interests in the area of automatic depression detection.

Secondly, from the perspective of cognitive neuroscience, we observe that depression changes
the structure and function of the brain, and these alterations lead to changed speech processing
mechanisms in the human brain, as well as in the muscles control responsible for speech produc-
tion. This results in speech that differs from that of healthy individuals. This line of reasoning
forms the foundation for our proposal of speech duration and silence as possible markers for
speech-based depression detection (Tao et al., 2020), as discussed in Chapter 4. To rigorously
evaluate the effectiveness of these proposed speech markers, we utilize techniques from com-
putational linguistics (Schuller & Batliner, 2013) and social signal processing (Vinciarelli et al.,
2009), and compare these markers to widely-used speech features, such as RMS energy, MFCC,
and others. Finally, we assess their performance in both read and spontaneous speech. From
a performance standpoint, we observe that incorporating speech duration and silence into our
analysis leads to improved recognition accuracy. From a statistics standpoint, we find that these
speech markers exhibit distinct differences between depressed and control groups, with speakers
in the former group experiencing longer and more frequent periods of silence. This observation
further supports our hypothesis, suggesting that individuals with depression require more time
to process neural signals in order to produce speech.

In addition to the observed differences between depressed individuals and controls in the
temporal aspect of speech, numerous acoustic features, such as MFCC and F0, also exhibit
differences between the two groups. Given that speech is inherently a sequential signal, the
relationships among acoustic features are expected to change over time. This observation moti-
vates us to propose the use of correlation matrices of speech properties for identifying depressed
speakers in Chapter 5. To rigorously evaluate the effectiveness of employing feature correlation
matrices, we assess the performance across both read and spontaneous speech using various
models. Experimental results demonstrate that the use of feature correlation matrices is more
effective in detecting depressed speakers than the use of feature vectors. This finding remains
robust across different models and both types of speech. Furthermore, our results suggest that
feature correlation matrices introduce additional information, which exhibits greater variation in
depressed individuals. Consequently, feature correlation matrices can be considered as potential
markers for depression detection. These observations lend further support to our hypothesis,
suggesting that depressed individuals experience changes in the control of muscles associated
with speech production, ultimately leading to alterations in speech patterns.
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The above sections mainly concentrate on the identification of speech markers in both tem-
poral and acoustic dimensions for the purpose of depression detection. The findings indicate
that these markers not only exhibit discernible differences between the speech of depressed and
non-depressed individuals, but also serve to enhance the accuracy of detection. This observa-
tion supports our thesis statement that depression leaves measurable traces in both temporal
and acoustic aspects of speech, which can subsequently be employed to differentiate between
depressed and non-depressed speakers.

However, it is worth noting that there could be factors that impede the accurate modeling of
depression-relevant information. For example, the inclusion of depression-irrelevant data, such
as noise, could potentially result in erroneous outcomes. Therefore, this motivates us to use
more sophisticated deep learning approaches for depression detection.

Regarding deep learning, we first analyzed the challenges of applying deep learning algo-
rithms for speech-based depression detection. The major challenges come from weakly labeled
speech signals and the equal treatment of all signals. To address the problem, we proposed a
novel deep learning algorithm, namely MLA, for depression detection in Chapter 6. The core
concept of our proposed MLA algorithm is to employ the attention mechanism, enabling the
emphasis of depression-relevant information within short local frames. To thoroughly assess the
effectiveness of the MLA, we evaluate its performance across both read and spontaneous speech.
Our experimental results indicate that the MLA not only enhances recognition performance but
also elevates efficiency and confidence in prediction. These findings are consistent across read
speech and spontaneous speech. Remarkably, these improvements are consistent across both
read and spontaneous speech, lending support to our hypothesis. This evidence suggests that
the utilization of deep learning approaches, such as the MLA, allows for the highlighting of
depression-relevant information, ultimately leading to more accurate and reliable depression
detection using speech analysis.

Based on MLA, we further developed CDMA in Chapter 7 to facilitate the interaction be-
tween different types of speech for depression detection. The main limitation of MLA lies in its
ability to only emphasize depression-relevant information within a single type of speech, thus
restricting the effective combination of multiple speech types for depression detection. To tackle
this issue, we introduced CDMA, which employs multiple attention mechanisms to emphasize
depression-relevant information across various levels, fostering interaction between different
types of speech for depression detection. Our experimental results suggest that the implementa-
tion of CDMA enables the exploration of emphasizing depression-relevant information in read
and spontaneous speech, leading to an improvement in performance compared to the MLA ap-
proach. This observation supports our hypothesis that the traces of depression left in the speech
include information specific to the type of speech and information common in speech.

In conclusion, the primary focus of Chapter 6 and Chapter 7 is the development of deep
learning approaches for depression detection. The findings support our thesis statement that
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leveraging attention mechanisms based on deep learning can lead to further advancements in
performance for depression detection tasks.

8.2 Limitations

We introduce established corpus and approaches for automatic depression detection, but there
are still some limitations.

The Androids Corpus has some limitations that should be considered. One of the main
limitations is that it is not multimodal, but it is possible to transcribe it manually or automatically
and still develop multimodal approaches based on language and paralanguage. In addition, the
task order effect may be one of the limitations. Another limitation is that the dataset does
not allow for an investigation of how depression progresses over time, as each participant is
recorded only once. The data was collected in the clinical environment, and the effect of noise
has not been considered. Although we employed psychiatrists to annotate the ground truth,
the speech of participants may be affected by other uncontrollable individual differences, such
as potential disorientation, exhaustion, etc. However, to the best of our knowledge, there are
currently no publicly available corpora that address this problem. Despite these limitations, the
dataset has the advantage of being recorded in real-world settings (hospitals) using standard
laptop microphones and the distribution of gender is in line with the distribution in the real
world. These advantages make it representative of the conditions in which depression detection
is typically used.

One limitation of the findings related to speech markers is that they are exclusively based on
Italian data, therefore, their acoustic and phonetic content might differ in other languages. The
feature set employed in this thesis is standard, facilitating fair comparisons, however, there is a
possibility of achieving improved results with a more refined set of features. For CDMA, there
is a requirement to record two types of speech. Consequently, an interviewer is necessary for
this process, but it does not necessarily need to be a human interviewer.

8.3 Future Work

In this section, we explore potential future directions for the field of automatic depression de-
tection.

• Applying attention mechanisms to silence: In Chapter 4, we explored the benefits of
utilizing silence as a marker for detecting depression. Our results indicated that individu-
als living with depression tend to manifest longer and more frequent silence. However, it
should be noted that these variations in silence represent low-level descriptors, i.e., calcu-
lations based on entire recordings. Little is known about the silence changing over time.
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In this study (Farruque et al., 2022), an innovative approach was proposed, which involves
modeling the temporal aspects of silence within the textual content of social media as a
method for detecting depression. This suggests that a similar technique could be utilized
in speech, enabling the detection of depressed speakers through the modeling of temporal
silence. This approach would facilitate an in-depth investigation into the temporal aspects
of silence and how patterns of silence may shift in the speech of individuals with depres-
sion. Furthermore, the integration of attention mechanisms within this temporal silence
model could underscore the significance of this "no activity" behavior. This, in turn, could
provide a promising new direction in the field of depression detection, offering a novel
way to highlight and analyze these periods of silence.

• Combining feature vectors and feature correlation matrices for depression detection:
In Chapter 5, we explored the potential advantages of utilizing feature correlation matrices
to detect depression speakers. Our findings indicate a greater degree of variation within the
feature correlation matrices associated with those diagnosed with depression, suggesting
that these matrices could serve as a valuable marker in depression detection. However,
these correlation matrices are derived from feature vectors. From this perspective, it is
possible to integrate feature vectors and feature correlation matrices for depression de-
tection. For instance, such a relationship can be characterized by graph neural networks
and used for recognition (K. Xu et al., 2018). Alternatively, a complementary approach
would be to concatenate both the feature vectors and the feature correlation matrices, sub-
sequently feeding them into deep networks for recognition. This integration would allow
us to consider a wider spectrum of information, encompassing not only the speech fea-
tures represented by feature vectors, but also the relationships between these features as
encapsulated by the feature correlation matrices. This represents a promising direction for
future research in the field of depression detection.

• Interpretable deep learning models: In Chapter 6 and Chapter 7, we have introduced
leveraging attention mechanisms as a means to emphasize depression-relevant informa-
tion. Our findings suggest that these approaches can significantly enhance the efficiency
and performance of detecting depression. However, there is still a certain level of opacity
in terms of the decision-making process of MLA and CDMA. This lack of transparency
can be a potential barrier to fully understanding and utilizing the insights of these attention
mechanisms, limiting the development of more efficient approaches for depression detec-
tion in the future. Therefore, one promising direction for future research could lie in the
development of more interpretable deep learning models that can provide more clear ex-
planations in the recognition. Another direction worth exploring is the potent visualization
of attention mechanisms. Drawing inspiration from the field of computer vision, attention
visualization offers an explicit depiction of the focus areas within images or videos (Ge
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et al., 2023). This facilitates a direct understanding of how the model assesses and selects
certain areas over others. Therefore, applying such visualization to speech analysis could
significantly enhance our understanding of the decision-making process of the model, e.g.,
a direct explanation of which words or features in the speech are important for depression
detection.

• Recognizing depression with multimodal data: In this thesis, our primary emphasis lies
on the utilization of speech as a means to detect depression. Our results demonstrate that
the use of speech is able to detect depressed speakers. However, the approaches explored
in this thesis are not based on multimodal analysis. Recently, there has been a burgeoning
interest in the application of multimodal strategies for depression detection (Aloshban et
al., 2020, 2021). In light of this, a promising direction for future research involves the
transcription of speech into textual data. This is particularly pertinent for spontaneous
speech, which may provide more information on the mental state of speakers (Kiss &
Vicsi, 2017a). As a result, this will not only augment the corpus at our disposal but also
empower researchers to incorporate a linguistic perspective when formulating multimodal
approaches for depression detection.

• Ethical Considerations: As the prevalence of automatic depression detection increases, it
is crucial to consider the ethical implications of such technology. Currently, privacy issues
have been raised by researchers as potential challenges in the field of automatic depression
detection, e.g., whether depressed speakers can be identified, etc (Bowie-DaBreo et al.,
2022). One of the future directions is to pay attention to privacy protection and avoid the
potential misuse of the technology.

8.4 Concluding Remarks

This thesis has tackled the demanding task of implementing automatic depression detection
based on speech. Specifically, it has made contributions to the field by integrating potential
speech markers and deep learning methodologies with attention mechanisms. We have shown
that speech duration, silence and feature correlation matrices can effectively enhance the per-
formance in recognition. The incorporation of attention mechanisms within deep learning ap-
proaches has also proven beneficial in improving both detection performance and efficiency.
However, there are still some interesting topics and challenges in this research field. We have
highlighted the potential future directions for addressing these challenges in Section 8.3. We
firmly believe that the continued application of speech-based and deep learning methodologies
will be instrumental in the development of automatic depression detection.
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