

Islam, Gibrail (2024) On the real world practice of Behaviour Driven

Development. PhD thesis.

https://theses.gla.ac.uk/84085/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/84085/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

On the Real World Practice of Behaviour Driven Development

Gibrail Islam

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

January 2024

Abstract

Surveys of industry practice over the last decade suggest that Behaviour Driven Development is a
popular Agile practice. For example, 19% of respondents to the 14th State of Agile annual survey
reported using BDD, placing it in the top 13 practices reported. As well as potential benefits,
the adoption of BDD necessarily involves an additional cost of writing and maintaining Gherkin
features and scenarios, and (if used for acceptance testing,) the associated step functions. Yet
there is a lack of published literature exploring how BDD is used in practice and the challenges
experienced by real world software development efforts. This gap is significant because without
understanding current real world practice, it is hard to identify opportunities to address and
mitigate challenges. In order to address this research gap concerning the challenges of using
BDD, this thesis reports on a research project which explored: (a) the challenges of applying
agile and undertaking requirements engineering in a real world context; (b) the challenges of
applying BDD specifically and (c) the application of BDD in open-source projects to understand
challenges in this different context.

For this purpose, we progressively conducted two case studies, two series of interviews, four
iterations of action research, and an empirical study. The first case study was conducted in an
avionics company to discover the challenges of using an agile process in a large scale safety-
critical project environment. Since requirements management was found to be one of the biggest
challenges during the case study, we decided to investigate BDD because of its reputation for
requirements management. The second case study was conducted in the company with an aim
to discover the challenges of using BDD in real life. The case study was complemented with an
empirical study of the practice of BDD in open source projects, taking a study sample from the
GitHub open source collaboration site.

As a result of this Ph.D research, we were able to discover: (i) challenges of using an agile
process in a large scale safety-critical organisation, (ii) current state of BDD in practice, (iii)
technical limitations of Gherkin (i.e., the language for writing requirements in BDD), (iv) chal-
lenges of using BDD in a real project, (v) bad smells in the Gherkin specifications of open-source
projects on GitHub. We also presented a brief comparison between the theoretical description
of BDD and BDD in practice. This research, therefore, presents the results of lessons learned
from BDD in practice, and serves as a guide for software practitioners planning on using BDD
in their projects.

i

Acknowledgements

First of all, I would like to thank the Almighty God for His uncountable blessings. It has been a
long and hard journey, and the person I would like to thank the most is my supervisor. I could
not wish for a better supervisor than him. He has been a real inspiration. I thank him from the
depths of my heart for keeping me motivated and guiding me throughout this journey.

I would like to thank my father, my mother, and my brother for their love, support, and prayers.
I would like to thank my wife from the bottom of my heart who took care of my responsibilities
while I did my Ph.D. I can never thank her enough. I would also like to thank my children who
had to bear the pain of being away from me.

I would like to thank Dr. Robbie Simpson (Late) for his help and support during the early phase
of my Ph.D. research. Lastly, I would like to extend my gratitude to the faculty members and the
staff at the School of Computing Science (University of Glasgow), and the individuals within
the Company who assisted me with my research, particularly with undertaking the interviews.

ii

Declaration

I declare that the research in this study is my own work and no part of this thesis was presented
for another degree in this or any other university anywhere. The contents of Chapter 4 of this
thesis contributed to the following publication which was co-authored with my supervisor Dr.
Tim Storer.

Islam G, Storer T. A case study of agile software development for safety-critical sys-
tems projects. Reliability Engineering & System Safety. 2020 Aug 1;200:106954.

iii

Contents

Abstract i

Acknowledgements ii

Declaration iii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Thesis Statement . 4
1.4 Research Contribution . 5
1.5 Thesis Overview . 7

2 Research Methodology 10
2.1 Justification of the Research Approach . 10
2.2 Literature Review . 12

2.2.1 First Literature Review . 13
2.2.2 Second Part of the Literature Review 13

2.3 Case Study . 14
2.3.1 Semi Structured Interviews . 15
2.3.2 Wengraf’s Method . 16

2.4 Action Research . 18
2.5 Online Experiment on GitHub . 21
2.6 Summary . 22

3 SLR on Agile Methods in Safety Critical Systems 23
3.1 Agile Development and Safety-Critical Systems 23

3.1.1 Agile Software Development . 24
3.1.2 Safety-Critical Systems . 26
3.1.3 Agile Software Development for Safety-Critical Systems 28

3.2 Literature Review Process . 29

iv

CONTENTS v

3.3 Thematic Analysis of the Selected Studies . 33
3.3.1 Advocates of Agile Methods . 33
3.3.2 Studies Focusing a Particular Aspect of Agile Development of Safety-

Critical Systems . 35
3.3.3 Suggested Tailoring in Agile Methods 41

3.4 Discussion Based Upon Thematic Analysis of the Challenges Identified from
the Studies . 47
3.4.1 Statements and Perceptions . 47
3.4.2 Organisational Culture and Training 51
3.4.3 Project Management . 52
3.4.4 Documentation . 54
3.4.5 Regulatory Standards . 55
3.4.6 Design and Architecture . 57

3.5 Discussion . 58
3.6 Threats to Validity . 60
3.7 Summary . 61

4 Agile in Large Scale Safety Critical Systems 63
4.1 Objectives of the Exploratory Case Study . 64
4.2 Interviews . 65
4.3 Overview of Software Development in the Company 68

4.3.1 Project Team Structure . 69
4.3.2 Development Process . 69
4.3.3 Project Customers . 70
4.3.4 Requirements Management . 73
4.3.5 Product Integration and Certification 73

4.4 Use of Agile Software Development . 74
4.5 Discussion of Challenges . 79

4.5.1 Pressure for Waterfall (Challenges 1, 2, 3, 4, 5) 79
4.5.2 Coordination amongst Stakeholders (Challenges 6, 7, 9) 86
4.5.3 Documentation and Communication (Challenge 8, 10) 89
4.5.4 Cultural Challenges (11, 12, 13) . 92
4.5.5 Agile Methods Tailored to Large-Scale Safety-Critical Systems 93

4.6 Threats to Validity . 94
4.7 Summary . 95

5 Literature Review and Background: BDD 96
5.1 Requirements Engineering in Regulated systems 96
5.2 Agile Requirements Engineering in Regulated Systems 99

CONTENTS vi

5.3 Background on Behaviour Driven Development 100
5.4 Literature Review Method . 105

5.4.1 Use of Natural Language . 106
5.4.2 Embrace BDD as a Holistic Approach 107
5.4.3 Role of Experience in Using BDD . 107
5.4.4 Maintenance of BDD Specifications 108
5.4.5 Tool Support . 108
5.4.6 Quality of BDD Specifications . 109
5.4.7 BDD for Hardware . 109
5.4.8 BDD for Regulated Systems . 109

5.5 Discussion . 110
5.6 Research Context . 110
5.7 Threats to Validity . 111

6 BDD in Practice: A Case Study 113
6.1 Objectives of the Exploratory Case Study . 114
6.2 Context of the study . 115

6.2.1 Overview of the Project and the Project Team Structure 115
6.2.2 Software Process Overview . 116
6.2.3 Development Technology . 118

6.3 Action Research . 118
6.4 Semi-Structured Interviews . 126
6.5 Discussion of the Limitations and Observations 129

6.5.1 Test First Development is Difficult to Apply 131
6.5.2 BDD Lacks Methods and Tools for Identifying and Refactoring Bad

Smells . 133
6.5.3 Gherkin Lacks Hierarchy of Features and Traceability 134
6.5.4 Identification of Appropriate Level of Abstraction is Difficult 135
6.5.5 Gherkin Does Not Support Multiple Actors in “As A” Statements . . . 136
6.5.6 Gherkin Does Not Support Concurrency of Execution 137
6.5.7 Convincing Developer and the Customer to Use BDD 140
6.5.8 Risk of Duplication of Effort in Large-Scale Systems 141

6.6 BDD in Theory vs BDD in Practice . 142
6.6.1 Understanding . 142
6.6.2 Collaboration . 144
6.6.3 Acceptance Testing . 146

6.7 Threats to Validity . 147
6.8 Summary . 150

CONTENTS vii

7 An Analysis of the Practice of BDD on GitHub 152
7.1 Objectives of the Experiment . 153
7.2 Experiment Design . 154

7.2.1 Definition of exclusion / inclusion criteria: 154
7.2.2 Repository Data Set Preparation . 157

7.3 Results . 158
7.3.1 Prevalence of BDD on Github . 158
7.3.2 Characterisation of Gherkin Projects 159
7.3.3 Gherkin versus Non-Gherkin Projects 166

7.4 Discussion of the Results . 173
7.5 Threats to Validity . 176
7.6 Summary . 177

8 An Analysis of Bad Smells in Gherkin Specification 180
8.1 Objectives of the Experiment . 181
8.2 Review of Bad Smells in Gherkin . 182

8.2.1 Gherkin Bad Smells identified in Peer-Reviewed and Grey Literature . 183
8.2.2 Mapping Bad Smells . 184
8.2.3 Experiment Design . 187

8.3 Results . 189
8.3.1 Arrange-Act-Assert vs Given-When-Then 191
8.3.2 Multiple Assertions . 193
8.3.3 Duplication of Gherkin steps . 194
8.3.4 Lazy Steps Data Table: . 196
8.3.5 Lazy Scenario Outline . 198

8.4 Gherkin Specifications Bad Smells and Other Gherkin Artefacts 200
8.4.1 Relationship with the size of scenarios 200
8.4.2 Relationship with contributors . 202

8.5 Threats to Validity . 205
8.6 Summary . 209

9 Conclusions 211
9.1 Thesis Research Question 1 . 211
9.2 Thesis Research Question 2 . 214
9.3 Thesis Research Question 3 . 220
9.4 Contributions . 223
9.5 Interconnection of the Studies . 226
9.6 Scope and Validity . 227
9.7 Limitations . 228

CONTENTS viii

9.8 Research Implications . 230
9.9 Future Work . 232
9.10 Summary . 236

Bibliography 237

A Interview Questions for use of Agile Methods 281

B Interview Questions for Investigating Use of BDD 288

List of Tables

3.1 Challenges reported in selected studies . 48
3.1 Challenges reported in selected studies . 49
3.1 Challenges reported in selected studies . 50

ix

List of Figures

2.1 Flow diagram mapping RQs to methods and chapters 11
2.2 The interview process . 17
2.3 RP -> CRQ- > TRQ -> IQ: Wengraf’s semi-structured interview model 18

3.1 Search strings . 30
3.2 Literature sources for the literature review . 30
3.3 Data extraction properties . 32
3.4 Potential conflicts between agile principles and DO-178C 56

4.1 Research question construction using Wengraf’s method 66
4.2 Summary of Interview Participants . 67
4.3 A typical phase of a project from the perspective of the Software Team 71
4.4 Layers of Customers . 72
4.5 Summary of the identified challenges . 80

5.1 Feature template . 102
5.2 Scenario template . 103
5.3 Example of a scenario . 103
5.4 Example of a code step . 103
5.5 Literature Sources for the Second Literature Review 106
5.6 Search Strings . 106

6.1 Use Case Template . 117
6.2 Format of a Feature in Gherkin . 119
6.3 Structure of a Scenarios with AAA violations 120
6.4 Research question construction using Wengraf’s method 127
6.5 Summary of Interview Participants . 128
6.6 Summary of challenges found during action research and interviews 132
6.7 Feature with multiple actors . 137
6.8 Scenario with multiple actors . 138
6.9 Scenario concurrent execution of steps . 138

x

LIST OF FIGURES xi

6.10 Implement “When I run 100m” as a thread . 139
6.11 Scenario with a complex step . 139
6.12 Scenario with concurrent execution . 140

7.1 Pipeline diagram . 156
7.2 Cumulative histograms of feature and scenario counts for 493 repositories . . . 160
7.3 Average scenario and step count . 161
7.4 Project Given-When-Then share . 161
7.5 Change in number of scenarios and their size versus project age 162
7.6 Feature count growth versus project age histogram 163
7.7 Average number of scenarios and steps versus the project feature and scenario

count respectively . 163
7.8 Share of Gherkin and Non-Gherkin commits and their frequency over time . . . 164
7.9 Percentage of commits and LoC before first feature 165
7.10 Change in practice of introduction of first feature in a project 166
7.11 Comparison of characteristics of Gherkin and non-Gherkin projects 168
7.12 Popular application languages in Gherkin and non-Gherkin projects 169
7.13 Project durations for projects with at least 10 commits 170
7.14 LoC at first feature histogram . 171
7.15 Histogram of contributors in Gherkin and non-Gherkin projects 171
7.16 Developer’s lifetime and earliest involvement in Gherkin projects 172
7.17 Change frequency and commit history of Gherkin and non-Gherkin projects . . 173

8.1 Search Strings . 183
8.2 Applicable bad smells in the context of BDD specification 186
8.3 Projects’ bad smells bar chart . 190
8.4 Contributor time to bad smell introduction . 190
8.5 Arrange-Act-Assert vs Given-When-Then . 191
8.6 Pie charts showing addition and removal of AAA pattern violations 192
8.7 Pie charts showing addition and removal of multiple assertions 193
8.8 Example of Duplication . 194
8.9 Pie charts showing addition and removal of clones 195
8.10 Example of step parameters . 196
8.11 Example of a step data (text) . 196
8.12 Step function for scenario in Figure 8.11 . 197
8.13 Example of a step data table . 197
8.14 Pie charts showing addition and removal of lazy steps 198
8.15 Example of a scenario outline . 199
8.16 Pie charts showing addition and removal of lazy outline tables 199

LIST OF FIGURES xii

8.17 Histograms of scenario sizes for repositories with and without selected smells . 201
8.18 Time series of project smell density . 203
8.19 Scatter plots of project total smell counts against project gherkin contributor counts204
8.20 Histogram of time working on a repository for commit authors who do and do

not make changes to selected smells for 274 repositories with known history . . 206
8.21 Scatter plots of total smells introduced versus author days in a project for 201

projects . 207

9.1 Future work research questions . 232

Chapter 1

Introduction

This chapter introduces the background on Behaviour Driven Development (BDD), the motiva-
tion that guided this research, the thesis statement, and the research questions pursued during
this Ph.D. This chapter is divided into five sections. Section 1.1 provides a background for
the research; whereas, Section 1.2 provides the description of the motivation for investigating
the challenges of applying an agile process, specifically, Behaviour Driven Development to the
development of a project in a large-scale avionics company. Section 1.3 describes the thesis
statement and the research questions answered during this research. Section 1.4 discusses the
research contribution, and Section 1.5 presents an overview of each chapter in this thesis.

1.1 Background

Typical requirements engineering activities comprise elicitation, analysis, documentation, and
review [Dick et al., 2017, Fricker et al., 2015, Kassab, 2015]. A variety of methods have been
developed to elicit requirements from and with stakeholders including, prototyping, interviews,
focus groups, etc. Similarly, a variety of methods for analysing and documenting requirements
have also been proposed in both the peer-reviewed and grey literature, including, for example,
business process modeling, gap analysis, requirements templates, user stories, etc. In general,
the purpose of these activities and methods is to (i) facilitate communication between the stake-
holders; (ii) establish a shared vision of the project among stakeholders; and (iii) inform project
management and planning.

Nuseibeh and Easterbrook [2000] and many other researchers [Macaulay, 2012, Rost and
Glass, 2011, Fricker et al., 2015, Lehtinen et al., 2014, Iqbal et al., 2020] argue that inadequate
requirements are a major cause of project failure. A recent survey [The Standish Group, 2019]
on the success of IT projects and project management best practices shows that 83.9% of IT
projects partially or completely fail. The top factor in the failure of projects, according to the
survey, is incomplete requirements.

These challenges are exacerbated in large-scale complex IT systems because of factors such

1

CHAPTER 1. INTRODUCTION 2

as organisational structure, size and nature of the project, the number of teams involved, and
involvement of non-agile units [Inayat et al., 2015b, Kalenda et al., 2018]. A large number
of stakeholders’ involvement also affects the ability to communicate effectively in large-scale
development context [Fucci et al., 2018].

To address these challenges, several researchers [Paasivaara et al., 2018, Abrar et al., 2019,
Venkatesh and Rakhra, 2020, Kalenda et al., 2018] have suggested the use of agile methods for
the development of large-scale systems because of their flexibility, and emphasis on commu-
nication and coordination. Despite the attempts to adopt agile methods in large-scale systems
development, and their perceived benefits and success in small-scale projects, requirements man-
agement, shared understanding and communication among stakeholders consistently appear in
the literature as challenges of agile requirements engineering in a large-scale development en-
vironment. [Inayat et al., 2015a, Vilela et al., 2017, Uludag et al., 2018, Dikert et al., 2016].
Kalenda et al. [2018] argue that “scaling of requirements management cannot be avoided when

scaling agile”. Kasauli et al. [2021] identify six themes related to the challenges of agile require-
ments engineering in large-scale systems during their multi-method study involving interviews,
focus groups, and cross-company workshops. Four out of the six themes focus on the challenges
related to requirements management, shared understanding, and communication. The remain-
ing two themes focus on the process and organisational aspects of a project. In a Systematic
Literature Review by Dikert et al. [2016], requirements management, communication, and coor-
dination are among the top challenges of agile requirements engineering in a large-scale context.
The recent studies list requirements management and shared understanding of a project among
the major challenges in the application of agile methods in large-scale environment [Dikert et al.,
2016, Uludag et al., 2018, Steghöfer et al., 2019, Kalenda et al., 2018, Kasauli et al., 2018b].

The nature of the challenges reported in the literature implies that mere adoption of an agile
process does not solve the challenges pertaining to the requirements engineering of large-scale
systems. A systematic mapping study by Curcio et al. [2018] also identified requirements man-
agement in large-scale systems development as a research gap. It is, therefore, important to
investigate the challenges related to requirements management, communication, and shared vi-
sion in a large-scale development context.

Although it was originally conceived for acceptance testing purposes [North et al., 2006],
Behaviour Driven Development (BDD) has recently gained popularity and appeared as an agile
method that promotes flexibility and shared vision through ease of communication and require-
ments management [Oliveira and Marczak, 2018, Wang and Wagner, 2018, Moe, 2019]. The
annual industrial survey reports on the state of agile from the last eight years show a gradual
increase in the popularity of BDD [CollabNet VersionOne, 2013, 2014, 2015, 2016, 2017, 2018,
2019, 2020]. The survey reports show that more than a fifth of teams are incorporating BDD.

BDD is a test-first approach which focuses on writing acceptance tests for requirements spec-
ification before writing production code [Oliveira and Marczak, 2018, Irshad et al., 2021, Smart,

CHAPTER 1. INTRODUCTION 3

2014]. Advocates of BDD argue that the focus on requirements specification in BDD helps
in avoiding waste of effort i.e., building something that is not required [Oliveira and Marczak,
2018, Smart, 2014]. A recent survey shows that practitioners believe that BDD provides ease of
understanding by employing a ubiquitous language (i.e., Gherkin) for expressing requirements
specification in the form of agile user stories [Binamungu et al., 2020].

Gherkin uses a structured natural language to describe requirements specifications in the
form of features and scenarios. A feature in BDD is an agile user story, describing a single
functional behaviour; whereas, a scenario is a specific example of the feature being performed
with a system. Existing literature on BDD [Oliveira and Marczak, 2018, Dees et al., 2013, Smart,
2014, Irshad et al., 2021] recommends writing features and scenarios in a way that focuses
on a required functionality instead of delving into how that functionality is achieved. Smart
[2014] argues that the use of natural language and obscuration of technical details help the
non-technical stakeholders understand what is going to be built. According to opinions of BDD
practitioners reported in a survey study [Oliveira and Marczak, 2018], requirements specification
in BDD bridges the communication gap between technical and non-technical people, encourages
communication, and creates a shared understanding of a project across team(s).

1.2 Motivation

Despite the benefits, the BDD process itself requires an investment of time and effort to produce
and maintain BDD-related artefacts in addition to all other project-related artefacts as a soft-
ware project evolves. For example, Storer and Bob [2019] observe that the adoption of BDD
necessitates simultaneous maintenance of both Gherkin specifications and corresponding step
functions as system requirements and implementation evolve. More generally, the results of a
survey focusing on challenges of BDD by Binamungu et al. [2018b], show that the area which
needs most attention in the context of BDD is maintenance of BDD specifications. Six out of ten
themes of the challenges discussed in the survey are related to the maintenance of BDD speci-
fications. These themes include, for example, difficulty in locating faults in large BDD suites,
duplication detection, and difficulty in changing BDD suites. The survey demonstrates that the
cost of maintaining BDD specifications is a significant concern for practitioners working in the
software industry. The practitioners also believe that the change in BDD requirements becomes
difficult as the requirements of a system evolve [Binamungu et al., 2018b].

The results of a survey study [Irshad et al., 2021] on the use of BDD in large-scale system
development show that large-scale system development requires more time and effort because
of the factors that define large-scale system’s context. These factors include communication
overhead between multiple teams and a large number of stakeholders, cross functional depen-
dencies, parallel development, and effort estimation issues. The results of the survey show that
the practitioners believe that the use of BDD in a large-scale context could be costly because of

CHAPTER 1. INTRODUCTION 4

the effort required to perform detailed analysis and model a large number of scenarios.
Several researchers [Storer and Bob, 2019, Binamungu et al., 2018b, Irshad et al., 2021,

Binamungu et al., 2020] have pointed out the maintenance of BDD specification as one of the
research opportunities. The existing research has explored various aspects of the challenges re-
lated to the maintenance of BDD specifications e.g., size of a project [Irshad et al., 2021], tool
support [Storer and Bob, 2019], quality of BDD specifications [Binamungu et al., 2020], expe-
rience of applying BDD [Binamungu et al., 2018b] etc. However, to the best of our knowledge,
no study has investigated the technical limitations of Gherkin and BDD specifications writing
styles which could also create maintenance issues in BDD specifications.

Several researchers [Binamungu et al., 2020, Oliveira et al., 2019] argue that writing a good
BDD test suite is a challenging task. The studies [Binamungu et al., 2020, Oliveira et al., 2019],
however, are focused on the quality of BDD specifications. For example, as a result of a survey
from BDD practitioners by Oliveira et al. [2019] has proposed a question-based checklist to
assess the quality of BDD specifications. The maintenance issues emerging from underlying
technical limitations of Gherkin and the ways people write requirements are still undiscovered.

In summary, challenges evident in industry concerning the use of BDD in large-scale systems
development, coupled with the lack of research on this topic in available literature is the biggest
motivation for this research. A case study in the early phases of this research identified require-

ments management in large-scale systems for teams adopting agile process as a real concern.
We, therefore, chose to focus on studying the challenge from their perspective and conducted an
action research case study to explore the application of BDD to a project. In order to generalise
and compare the observations from the second case study, an experiment was conducted that
extended the scope to include open-source projects on GitHub. This research helped in discov-
ering technical limitations of Gherkin and studying bad smells (i.e., structural inflexibilities) in
BDD requirements specifications due to the ways people write BDD requirements.

1.3 Thesis Statement

Ultimately, the focus of this research was to explore the practice of Behaviour Driven Devel-
opment in a real-world software development context. Therefore, the thesis statement for the
research described here is as follows:

The practice of Behaviour Driven Development, its associated artefacts, and the intrin-
sic nature of the associated Gherkin language, incurs significant additional overhead for
software engineers in terms of on-going maintenance in real-world software engineering
environment.

However, the research presented in this thesis was developed in stages. The research was

CHAPTER 1. INTRODUCTION 5

initially motivated by the lack of case study research concerning the challenges of applying ag-
ile methods generally in large scale safety critical systems. Therefore, a study was developed
in partnership with a large avionics company to explore this concern. The company was tran-
sitioning to the use of agile methods within their software development teams, so this process
provided an opportunity to understand both the benefits and challenges of applying agile as per-
ceived by the practitioners. Semi-structured interviews were conducted with members of several
teams at different stages of the transition to explore the challenges faced during the application
of an agile method within the company. The following research question was the focus of the
first semi-structured interview study:

RQ1: What are the challenges of adopting agile methods in large-scale software development
activities, particularly in regulated environments?

During this first study, the engineering and management of requirements in large-scale sys-
tems emerged as a key challenge. Based upon the findings of the initial study and in agreement
with the case study partner, we decided to explore the application of Behaviour Driven Develop-
ment (BDD) to requirements engineering within the company’s software development process
due to its association with agile methods and growing popularity in the industry. We conducted
an action research case study in the same company with the aim of exploring the challenges of
applying BDD to the development of a project in the company. The study was focused on the
following research question:

RQ2: What are the challenges of adopting Behaviour Driven Development for the purposes of
requirements engineering and acceptance testing in the early phases of a software project?

The action research case study yielded the discovery of technical limitations of Gherkin
(i.e., the language for writing BDD specifications) along with the challenges of applying BDD.
However, the study was restricted to a single project in an organisation. We extended the scope
of our research and decided to investigate open-source BDD projects on GitHub. The purpose of
the study was to identify existing writing practices in BDD specifications that could potentially
create maintenance issues in BDD specifications. The following research question was the focus
of that study:

RQ3: What are the specification writing practices in the existing open-source BDD projects
that could result in maintenance challenges in behaviour driven development software
projects?

1.4 Research Contribution

The research presented in the thesis makes several contributions to the body of knowledge. The
contributions include:

CHAPTER 1. INTRODUCTION 6

Exploratory Case Study of Agile Software Development for Safety-Critical Systems Projects
This study significantly extends the existing evidence base for the application of agile software
development within safety-critical systems engineering by investigating the challenges from the
perspective of practitioners. We conducted four semi-structured interviews with employees of
the company in a variety of roles in different software projects and with diverse experiences.
The extent of the material generated from these interviews allowed us to gain significant insight.
Specifically, we reported on how some teams within the company have employed an agile soft-
ware process (Scrum) within a Waterfall process for the wider systems engineering project. We
elaborated on this integration by describing how the teams have made necessary customisations
to Scrum to fit within this process.

We described the successes that the teams have experienced in employing and adapting indi-
vidual agile practices, such as, planning poker, continuous integration, automated static analysis,
and code reviews, as well as, discussing where the use of agile software development has led to
drawbacks. We also investigated the practices that the teams have not employed, such as pair
programming and user stories, and discussed the rationale for this from the teams’ perspective.
Where appropriate, we related these insights to the available literature. The work, therefore, pro-
vides a substantial case study based on evidence from an industry of the real-world challenges of
employing agile software development for safety-critical systems and establishes a foundation
for future research in addressing these challenges.

Participatory Action Research Case Study of Behaviour Driven Development The action
research case study contributed to the body of research in four ways. First, this study was an
industrial study. Since there is a lack of empirical studies exploring the challenges and technical
limitations of applying Behaviour Driven Development (BDD) in a large-scale organisation, the
study significantly extended the evidence base for the empirical studies on the application of
BDD.

Second, the action research explored the technical limitations of BDD. The action research
study was a walk through of the application of BDD to a project. It explored the technical
limitations of BDD in representing some of the requirements for example: lack of support for
concurrent execution of actions by multiple actors. During the action research, we also discov-
ered that BDD is helpful in the validation of requirements and evaluating their consistency.

Third, the semi-structured interviews presented an overview of the challenges experienced
by the practitioners during the application of BDD to a project. Through the semi-structured
interviews, we were able to highlight the real-life challenges in the application of BDD due
to the factors like experience of the team members, workflow, number of stakeholders, and
organisational structure and culture.

Fourth, the overall study enabled us to present a comparison between BDD in theory and
BDD in practice. We learned that the theoretical description of BDD and its steps do not take the

CHAPTER 1. INTRODUCTION 7

real-life factors into consideration e.g., organisational structure and culture; and team’s experi-
ence and familiarity with BDD. The outcomes of the steps involved (in the theoretical framework
of BDD) are based upon assumptions and ideal circumstances. The comparison between the the-
oretical framework of BDD and BDD in practice helped us in understanding the practicality of
the recommended steps in BDD.

Empirical Study of BDD Characteristics in Open Source Projects The study presents the
state of BDD in open-source projects on GitHub. The purpose of the study was to give a bird’s-
eye view of BDD in practice. The study presents: (i) an overview of the open-source Behaviour
Driven Development projects; (ii) a comparison between the BDD and non-BDD projects; (iii)

the evolution of different (BDD) projects related artefacts. The study uses the projects’ meta-
data to present an overview and the growth of different project-related artefacts by analysing
the commit history of the projects. The study also draws the statistical relationships between
various project-related artefacts.

Online Experiment to Explore the Nature of Bad Smells in Open-Source BDD Project’s
Specifications To the best of our knowledge, there is not a single study that has investigated
the open-source BDD projects to identify the existing BDD specifications writing practices and
patterns that could adversely affect the maintainability of BDD requirements specifications. This
study is a foundation stone of the evidence base for the empirical studies on the discovery of
existing bad smells in open-source BDD projects’ specifications.

First, we analysed the existing literature on bad smells (i.e., structural inflexibilities of
project artefacts) in software engineering. Then, the bad smells, which appeared applicable
to BDD requirements specifications, were identified. Next, we performed a feasibility assess-
ment of the identified bad smells to pick out the bad smells for which a further investigation was
possible within the time limit of this Ph.D. We selected a number of applicable bad smells for
further investigation and discussed the rest of the applicable bad smells as an opportunity for
the future.

This study discussed the impact of each of the finally selected bad smells on BDD speci-
fications. The study also presented the percentage of their existence in the open-source BDD
projects. Through this study, we have attempted to identify the existing BDD specification writ-
ing practices and patterns that must be avoided.

1.5 Thesis Overview

The objective of this research was to investigate the limitations and challenges during the use of
agile, specifically, Behaviour Driven Development (BDD) in practice.

CHAPTER 1. INTRODUCTION 8

Chapter 2: presents the description of the research methods that were used during this Ph.D
research. The research methods include a systematic literature of the relevant studies, ex-
ploratory case study, action research and interviews within a large-scale avionics company, and
an online experiment.

Chapter 3: serves as a background for Chapter 4. It examines the relevant literature related to
the use of agile process in large-scale safety-critical systems. The chapter includes a Systematic
Literature Review on the challenges of applying agile methods in a large-scale safety-critical
systems development context. The chapter presents the challenges reported in the literature on
the use of agile methods for the development of large-scale safety-critical systems.

Chapter 4: is an exploratory case study on the use of agile in a large-scale avionics company.
The case study identifies the challenges in the use of an agile process in large-scale safety-critical
systems development. The chapter includes a discussion on the organisational hierarchy, team
structure, and overall context. The chapter also presents the results from the semi-structured
interviews in the form of the challenges related to the use of agile process in the company.

Chapter 5: serves as a background for Chapters 6, 7 and 8. The chapter discusses the concept
of Behaviour Driven Development (BDD). The chapter presents an overview of the literature on
Behaviour Driven Development (BDD). The chapter also discusses the BDD process.

Chapter 6: is an action research case study for the incorporation of BDD into a project at the
company. The chapter discusses the incorporation of BDD; the technical limitations of Gherkin;
the context of the study; and the results from the post hoc semi-structured interviews which were
conducted to learn from people’s experience of using BDD. The chapter presents a summary of
the technical limitations of Gherkin and the challenges faced by the team in using BDD. The
chapter also presents a comparative analysis of BDD in theory and BDD in practice.

Chapter 7: gives an overview of the open-source BDD projects on GitHub. The chapter
discusses the development process of a tool for retrieving the metadata from the open-source
BDD projects on GitHub. The chapter presents the bird’s-eye view of the open-source BDD
projects; their comparison with non-BDD projects; and the growth and evolution of different
BDD-related project artefacts.

Chapter 8: discusses different types of applicable bad smells in BDD specifications. The
chapter presents a summary of the existing bad smells in the open-source BDD projects on
GitHub. The chapter also discusses the implications of such bad smells on BDD specifications.

CHAPTER 1. INTRODUCTION 9

Chapter 9: presents the conclusions to the research questions discussed in Section 1.3. The
chapter also discusses the limitations of this research work and the suggestions for future re-
search.

Chapter 2

Research Methodology

This chapter describes the research methods used during the course of this Ph.D research. These
research methods include literature review, case study, action research and (online) experimen-
tation. Section 2.1 provides the justification for the choice of each research method. Section
2.2 through to Section 2.5 describes the use of literature review, case study, action research and
(online) experiment in detail. Section 2.6 presents the summary of the chapter.

2.1 Justification of the Research Approach

Figure 2.1 shows the flow of the progress of this research, the relationship between the research
questions and the research methods used during this research. The first stage of the research was
a systematic literature review in the broad area of agile methods in safety-critical systems. This
revealed that a body of the academic literature considers agile methods in their traditional form
unsuitable for the development of large-scale safety-critical systems mainly due to the rigour,
production of heavy documentation and following of strict procedures required to develop these
systems. Following this, it was decided to investigate whether these issues could be confirmed
in a real industrial setting. A case study was conducted in a large avionics company to report
their experience of using the Scrum agile method. During the case study, requirements manage-
ment in agile development of large-scale safety-critical systems appeared as a major concern.
This concern was further investigated with the help of a literature review on Behaviour Driven
Development (BDD) followed by an action research case study on the use of BDD for the devel-
opment of a project at the (same) company. The choice of BDD was influenced by its apparent
popularity for requirements management and enhanced communication. During the study, we
learned that the language used for describing BDD scenarios (i.e., Gherkin), provides a lot of
freedom which could potentially allow developers to write specifications that are functionally
correct but structurally problematic. The lessons learned from the action research study were
limited to an early phase of a single case study; therefore, we decided to extend the scope of the
study to open-source BDD projects on GitHub.

10

CHAPTER 2. RESEARCH METHODOLOGY 11

	
	
	
	

Major	Findings	Research	Method	Research	Questions	

(Start	of	the	
Research)	

RQ1	

Challenges	of	
adopting	agile	

process	in	a	large-
scale	safety-critical	

environment	

RQ2	

Technical	
limitations	of	
Gherkin	and	
Challenges	of	
using	BDD	

RQ3	

Literature	Review	

Bad	smells	in	
open-source	

Gherkin	projects	

(chapter	3)	
Overview	of		
Relevant	
Literature	

(chapter	4)	
	

Case	Study	
(Interviews)	

(chapter	7	&	8)	
	

Online	Experiment	

(chapter	5)	
Overview	of		
Relevant	
Literature	

(chapter	6)	
	

Action	Research,	
Case	Study	
(Interviews)	

Figure 2.1: Flow diagram mapping RQs to methods and chapters

CHAPTER 2. RESEARCH METHODOLOGY 12

The choice of research methods during the course of this Ph.D was driven by the circum-
stances as the programme of studies progressed. The research was based on the knowledge
gained from the literature review. The analysis of recent and past literature helped us in laying
the foundation of this Ph.D research. The analysis of the relevant literature not only helped us
in identifying the research gap but enabled us to construct the objectives of this research. The
literature review helped in identifying the lack of empirical research in the area we were initially
interested in i.e., application of agile methods in large-scale safety-critical systems. The curios-
ity behind the question “What happens in real life?” made us want to conduct our research in an
industrial setting. The aim was to report the challenges of applying agile methods to large-scale
system development.

The author was fortunate to find an industrial partner for his research. The industrial partner
was a large avionics company in the UK, and they were already experimenting with an agile
method (i.e., Scrum) for the development in several of their projects. We had an appointment
based access to the employees of the company (i.e., the industrial partner). Due to the confi-
dential nature of the organisation’s projects, we did not have direct access to the projects, the
site of the development or any project related documentation. The data we collected focused on
opinions and experiences of applying Scrum in their own context in the form of semi-structured
interviews.

The second case study with the same company was focused on learning the impediments in
applying Behaviour Driven Development (BDD) to the development of a project at the company.
The project team at the company was unfamiliar with the use of BDD, so action research was the
best suited approach. Action research is an “on the spot” process which aims at taking correc-
tive actions for bringing improvement in a situation [Chu and Ke, 2017]. Following the action
research method, we were able to incorporate BDD in the development process of a project by
constantly suggesting improvements based upon ongoing evaluations and observations. Con-
ducting the action research allowed us to observe the limitations of using the Gherkin language
for BDD in practice

Our choice of an online experimentation was driven by the need to extend the scope of
the study and the desire to generalise the findings to other projects. We took the motivation
from a few existing studies [Kalliamvakou et al., 2016, Chong and Lee, 2018, Ortu et al., 2018,
Munaiah et al., 2017, Cosentino et al., 2017, Borle et al., 2018, Vendome et al., 2017] and
decided to investigate a random sample of open-source projects on GitHub to understand BDD
in practice.

2.2 Literature Review

A literature review is performed to identify the “state of the art” in a field of interest [Walli-
man, 2017]. A literature review also helps in identifying the gap in research and provides an

CHAPTER 2. RESEARCH METHODOLOGY 13

understanding of how new work will extend the state of the art [Walliman, 2017]. According
to Snyder [2019], a literature review is a way of synthesising research findings and uncovering
areas where more research is needed.

Snyder [2019] categorised the literature reviews as (i) systematic review: aims to identify all
empirical evidence to answer a particular research question or hypothesis, (ii) semi-systematic
review: explores how research within a selected field has progressed over time, (iii) integrative
review: assesses or critiques the literature on a research topic in order to propose new theoretical
frameworks or suggest improvements to existing frameworks.

The literature reviews during this research were performed in progressive steps. As this Ph.D
research progressed, the focus of the literature review also progressed. The initial focus of the
literature review was on application of agile in large-scale and safety-critical systems. Then, on
the basis of the first case study, the focus of a second literature review narrowed to Behaviour
Driven Development (BDD). Two literature reviews formed different sections of Chapter 3 and
Chapter 5.

We relied on the online libraries for doing the literature review. The first part of the literature
review (i.e., Chapter 3) was a systematic literature review. Whereas, an exhaustive search for
literature was performed, and a semi-systematic protocol was adopted for the next part (i.e.,
Chapter 5).

2.2.1 First Literature Review

According to Shokraneh [2019], irreproducibility of the research is a major concern in all fields
of science. The literature reviews, if not documented properly, are seldom reproducible. In
order to make the literature review reproducible, the author of this document used the systematic
literature review guideline by Kitchenham et al. [2009].

The Kitchenham et al. [2009] guideline for a Systematic Literature Review (SLR) describes
a process for conducting a repeatable literature review, which also provides the guidelines on
identifying, evaluating and interpreting the relevant research on a particular area of interest. The
guidelines also propose methods for conducting a well planned study and provide recommenda-
tions for measuring the quality of a literature review and validity of its results.

The systematic literature review was focused on the use of agile methods in regulated en-
vironments, in particular, safety-critical systems development. It was helpful in understanding
the current state of issue(s) and solutions related to the application of agile in large-scale safety-
critical systems.

2.2.2 Second Part of the Literature Review

The first part of the literature review provided a background for the first case study. The result
from the first case study suggested that requirements engineering in the large-scale systems was

CHAPTER 2. RESEARCH METHODOLOGY 14

an issue and needed further investigation. Therefore, our second literature review was focused
on agile requirements engineering, specifically, Behaviour Driven Development (BDD). BDD
is an agile method which is based upon requirements, their elaboration and their management.
The second literature review served as the background knowledge for the second case study.

During an initial review of the literature, we identified a lack of empirical research on BDD.
Snyder [2019] recommends a semi-systematic review of the literature where the intention is to
present a narrative overview of the research area. We, therefore, adopted this approach prior to
conducting our own empirical research on BDD.

2.3 Case Study

Thomas [2015] defines the case study as a research which concentrates on a person, group,
institution, country, an event or a period of time. Ridder [2017] calls it investigation of “a real-

life phenomenon in-depth and within its environmental context”. Unlike experimentation, the
case study research does not have a controlled environment. Instead, the environmental context
is a part of the case study research investigation [Ridder, 2017]. Thomas [2015], while defining
the case study, says “it is not a method in itself... rather it is a focus on one thing”. According
to the author, the results from a case study should not be generalised since the purpose of a
case study is to investigate a phenomenon in relation to a single entity (i.e. person, group, an
organisation etc).

The case study approach was used twice during the course of this Ph.D research. The case
study was a suitable method in our context because we wanted to learn from a real life example
of the use of an agile method in an industrial setting, conduct the study in an uncontrolled
environment, and report the experience and opinions of the people using the method in a real
project. The first case study explored the use of agile process in a large-scale environment;
whereas, the second case study explored the use of Behaviour Driven Development (BDD).
Both case studies were conducted in a large avionics company in the United Kingdom (referred
to as “the company”∗) throughout this document.

The company as a whole was engaged in a variety of projects for external customers, typi-
cally comprising both hardware and software development for safety-critical systems. Although
they had a previous collaborative relationship with the supervisor of the author, their selection as
a research partner was driven by mutual interests. The company was already exploring the use
of agile in a large-scale regulated environment which made them an ideal case for the research.

Negotiations led to a non-disclosure agreement signed between the parties involved in the
research due to the sensitive nature of the work at the company. An unstructured interview was
conducted with two employees at senior positions in the company as a preliminary step. The
interview was focused on understanding the overall structure, processes and the workflow in the

∗name of the company redacted because of the non-disclosure agreement between the research partners

CHAPTER 2. RESEARCH METHODOLOGY 15

organisation. This interview formed the basis of the objectives and the design of both (i.e., first
and the second) case studies.

The guidelines by Hancock and Algozzine [2017] and Yin [2011] were followed for execu-
tion of the case study research process which involved following activities:

• Selecting a design: Objectives are defined and case study design (i.e., exploratory, ex-
planatory, or descriptive [Yin et al., 2003]) is selected.

• Data collection: Procedures and protocols for data collection are defined and executed.

• Analysis: First, the collected data is organised in a logical and a manageable format. After
that, interpretation is performed on the data.

• Reporting: The reader is given a comprehensive view of the focal issue and the findings
of the case study.

The first case study was an exploratory study. The objective of the case study was to un-
derstand and explore the application of agile in the context of an industrial, large-scale regulated
environment. A series of semi-structured interviews was conducted to collect qualitative data,
and the focus of the interviews was on the discovery of challenges and impediments in the ap-
plication of agile. The data was analysed using Wengraf [2001] guideline.

The second case study was also an exploratory study. Its objective was to explore the use of
BDD in an industrial setting. Four iterations of action research were performed before conduct-
ing the semi-structured interviews. The use of action research method not only aligned the BDD
workflow with an ongoing development process but was also instrumental in formulating the
interview questions for the second case study. The focus of the interviews was on the discovery
of impediments in the application of BDD.

2.3.1 Semi Structured Interviews

Different sources of information for collection of evidence during a case study [Yin et al., 2003]
include documents, email correspondence, notes, direct observations etc. Interviews are also
considered one of the important means for collection of evidence in a Case Study [Holstein et al.,
2002, Yin et al., 2003]. Interviews are generally categorised under qualitative research methods,
and they are used to explore practices, views and beliefs. Research data from interviews often
comprises of lengthy explanations.

Interviews do not have a single standard definition, and a number of different methods to
conducting them have been proposed. According to Wang [2015], an interview is interactional
communication process between two parties, where one of the parties asks pre-determined ques-
tions. Walliman [2017] considers interviews as one of the methods for collecting qualitative data

CHAPTER 2. RESEARCH METHODOLOGY 16

from people’s experiences and recollections. According to Gubrium and Holstein [2001], “in-

terviews give access to observations of others”. We can say that interview is a form of an
interaction which lets the interviewee narrate the account of his/ her experience in his/ her own
words.

Semi-structured interviews are in-depth interviews where respondents are asked about facts
and their opinions on a matter of interest [Yin et al., 2003]. In these types of interviews, the
respondents may be considered as “informants” [Yin et al., 2003] because they can provide
insight and refer to corroboratory sources of evidence. Unlike structured interviews, where
the interviewer asks a set of pre-determined questions, semi-structured interviews are flexible
and their use encourages reciprocity between the interviewer and the participant [Kallio et al.,
2016]. Semi-structured interviews give the freedom of expression to the participants, and open
ended questions prompt discussion which helps the interviewer to explore a particular theme
and improvise new questions during the interview.

Use of the semi-structured interviews helped us to explore, investigate and learn the practices
and the behaviours followed in the company, particularly, the company’s experience of using
the software development methods studied during this research. Two sets of semi-structured
interviews in the company were conducted during the course of this research to gather opinions
in the form of qualitative data. The first series of interviews was conducted during the first
case study to explore and learn the use of agile methods in the company. The second series of
interviews was conducted during the second case study to learn the company’s experience of
using Behaviour Driven Development (BDD).

Figure 2.2 provides a visual summary of our semi-structured interview process. Wengraf
[2001]’s guidelines were used for preparing the questions for the interviews. After carefully
reviewing the questions and getting them validated from an independent expert, mock interviews
were conducted to estimate the average duration of the interview and adjust the sequence of the
questions.

2.3.2 Wengraf’s Method

Wengraf [2001] provides a guideline for the development and analysis of a semi-structured
interview questions. Figure 2.3 is a graphical representation of the Wengraf’s model. The
model is a hierarchical approach consisting of four steps. First step is to determine the Goal
(i.e., Research Purpose) of the interview. The next step is to determine “What do you need to

know?” in order to reach the Goal of the interview. To achieve this, RP is refined as one or
more objectives called Central Research Questions (CRQs) that encompass the broader aspects
of the research purpose. The description of the information required to understand each aspect
is documented in the form of a separate objective at this stage.

In the third step, each CRQ is divided into a number of Theory Questions (TQ), specific
propositions to be investigated during the conduct of the study. Theory questions “... are for-

CHAPTER 2. RESEARCH METHODOLOGY 17

Figure 2.2: The interview process

CHAPTER 2. RESEARCH METHODOLOGY 18

Figure 2.3: RP -> CRQ- > TRQ -> IQ: Wengraf’s semi-structured interview model

mulated in the theory-language of the research community” [Wengraf, 2001]. The information
required to answer each proposition is further divided into a set of interview questions in the
fourth step. In this step, the set of suitable interview questions (IQs) for each TRQ are devel-
oped. The interview questions (IQs) are “... formulated in the language of the interviewee”

[Wengraf, 2001]. This approach provides a logical hierarchy and rationale behind every inter-
view question.

Analysis of the gathered data is also performed by using Wengraf [2001] guideline by an-
swering the questions backwards with the help of the following formula 2.1 where IM is the
interview material, ATQ is the answer to each theory question which will answer the Central
Research Questions.

IM−> AT RQs−> ACRQ (2.1)

Answers (IM) to the Interview Questions (IQ), related to a single Theory Question (TQ) are
combined to form a story. This story answers a Theory Question. Then, the answers to each
Theory Question related to a single Central Research Question (CRQ), are combined to answer
the CRQ. The descriptive answer of each CRQ is then combined to describe the purpose of the
research.

Once the interview instrument was developed, mock interviews were conducted to estimate
the duration of the interviews. Next, the interviews were conducted, transcribed, and the tran-
scriptions were validated with the interviewees in case they wanted to add or omit anything.
The analysis was performed using the Wengraf [2001] guidelines through which we reached the
“Goal” of the interview. The guidelines also assisted in drawing the context of the interviews.

2.4 Action Research

Action research is also called learning by doing [Riley and Moltzen, 2011]. It involves conduct-
ing research alongside implementing actions or changes within an environment where circum-

CHAPTER 2. RESEARCH METHODOLOGY 19

stances require flexibility [Somekh, 2005]. Action research enables the practitioners to study
and improve aspects of practice [Tran, 2009, Koshy, 2005]. Understanding the context, plan-
ning, and implementing a corrective action are the main purposes of being engaged in action
research [Koshy, 2005]. Action research is suitable in settings where practitioners seek to “se-

lect a new initiative, study its practical implications, consider ways of implementing the ideas,

and evaluate and make decisions” [Koshy, 2005]. Gunbayi [2020] categorises the action re-
search into three types i.e.,

• Technical Action Research: The researcher puts an action into practice, and the practi-

tioner follows the instructions of the researcher.

• Participatory Action Research: The researcher and practitioner put an action into prac-

tice together.

• Emancipatory Action Research: The practitioner is given new knowledge and skills to

gain a critical perspective towards the practitioner’s own practices.

The need for action research arose at the start of the second case study when the company
wanted to employ a development process which could help them with better management of re-
quirements. Our intention was to enable the team to employ BDD and study the impact of BDD
on their development processes. Participatory action research design was adopted to collaborate
with the practitioners in order to align BDD with their development processes. Participatory
action research is suitable in the situations where the focus is on capacity building [MacDonald,
2012]. It involves the use of self-reflective cycles to achieve a social change [Savin-Baden and
Wimpenny, 2007]. The work proceeded in four phases of action research, with data gathered
throughout.

We followed the participatory action research guideline described by Kindon et al. [2007].
According to Kindon et al. [2007], (participatory) action research is an iterative method with
five main steps: (i) Diagnosis, (ii) Planning, (iii) Action, (iv) Analysis, (v) Reflection. Please
note that from this point onwards wherever we use the term “action research”, it will mean
“participatory action research”.

Diagnosis concerns the identification of the underlying problem which cultivates an organisa-
tion’s desire for change [Baskerville, 1999]. According to Danley and Ellison [1999], diagnosis

in participatory action research identifies the gaps in knowledge and skill of the team members.
The first case study (as described in Chapter 4) in this thesis provided the information which

helped in diagnosing the problem i.e., requirements management in large-scale systems is a
challenge. The company wanted to deliver earlier and improve its project development process
by using a method which could help them with their requirements management process.

CHAPTER 2. RESEARCH METHODOLOGY 20

Planning in action research describes the planning process of the actions that could resolve
the issues identified during diagnosis. According to Kemmis et al. [2013], planning includes
identification of the stakeholders, provision of monitoring the action, shared concerns, possibili-
ties and limitations. Chevalier and Buckles [2019] refer to planning as a blueprint for systematic
action.

Planning activities were undertaken in collaboration with representatives from the company
throughout the action research. This took place either through email or in-person meetings.
For example, after a considerable number of email exchanges and several meetings between the
author and the company representatives, it was mutually decided to explore Behaviour Driven
Development (BDD) for development of a project because of its apparent popularity for require-
ments management, and communication through requirements specifications.

Action in this context describes the implementation of the plan for improvement. According
to Mertler [2009], action (in this context) is also a process of data collection. The new state or
change that arises (as a result of this phase) serves as an input (i.e., data) for the next phase (i.e.,
analysis) in action research.

The action in our context was primarily focused on requirements elicitation, refinement and
documentation of requirements of the project we agreed to work upon with the company. For
example, the development team at the company already had an existing set of user stories before
we decided to collaborate with them. In order to incorporate BDD, these user stories were
converted into BDD requirements (feature) format as a part of the action taking during the first
iteration of action research.

Analysis involves understanding and interpretation of the data collected during or as a result
of the action. According to Johnson [2008], “...as you collect your data, analyse them by look-

ing for themes, categories, or patterns that emerge. This analysis will influence further data

collection [and analysis] by helping you to know what to look for”.
Qualitative data in form of observations were collected during the four iterations of the ac-

tion research. For example, during the conversion of the existing requirements into the BDD
requirements (feature) format in the first iteration of action research, discrepancies in the exist-
ing set of requirements were observed. Removal of those discrepancies revealed a number of
limitations of Gherkin. These observations were documented. In addition, more qualitative data
in the form of observations regarding BDD and the use of Gherkin were collected during the
interviews.

Reflection, in this context, implies the corrective actions needed on the basis of the observa-
tions made during analysis. According to Mertler [2009], reflection is a corrective action needed
at the end of a particular action research cycle to make improvements to present context (of the
action research) to reach better results.

CHAPTER 2. RESEARCH METHODOLOGY 21

Corrective actions, on the basis of analysis, were suggested at the end of each of the four
iterations. These suggestions became the basis for planning for the next iteration. For example,
as a corrective action during the first iteration of action research, we suggested removal of the
structural anomalies in the existing set of requirements, which led to the need for breaking up
the requirements into smaller requirements.

2.5 Online Experiment on GitHub

The design, nature and environment of an experiment is dependent upon the aim of the study
[Juzgado and Moreno, 2001]. The aim of our study was to conduct an experiment using uncon-

trolled historical data of open-source projects. To be able to include and access a large number
of projects’ data, it was decided to use an online platform.

Online platforms are increasingly being used by researchers and analysts for conducting on-
line experiments and collection of data for different purposes [Newman et al., 2021]. Examples
of these online platforms include: Prime Panels†, Study Response‡ and Prolific Academic§. In
spite of GitHub¶ being an online version control system, the meta-data associated with projects
has drawn interest of the researchers. Many studies [Kalliamvakou et al., 2016, Chong and Lee,
2018, Ortu et al., 2018, Munaiah et al., 2017, Borle et al., 2018, Cosentino et al., 2017, Vendome
et al., 2017, Bao et al., 2019, Sharma et al., 2017, Goyal et al., 2018, Qi et al., 2017] have been
conducted that used project related meta-data from GitHub to study the patterns, behaviour of
the developers, practices and various other phenomena such as communication patterns [Ortu
et al., 2018], effects of test driven development [Borle et al., 2018], and software license usage
[Vendome et al., 2017].

GitHub provides a number of resources like GitHub API, through which project related meta-
data can be collected for analysis. Project related information on GitHub includes number of
commits, contributors, development languages, issues, pull requests etc. Researchers and data
miners analyse this meta-data to draw various statistical results [Munaiah et al., 2017, Borle
et al., 2018].

The scope of the case study (discussed in Chapter 6) was limited to a single project. The
focus of this case study was on finding challenges of BDD. To extend the scope of our inves-
tigation, we decided to conduct an online experiment using open-source projects on GitHub.
The purpose of the study was to develop an understanding of the practice of Behaviour Driven
Development in open source software projects. The study used evidence available through the
history of changes made to relevant artefacts in project version control repositories, i.e. Gherkin
feature files.

†https://www.cloudresearch.com/products/prime-panels
‡http://www.studyresponse.net
§https://www.prolific.co
¶https://github.com

https://www.cloudresearch.com/products/prime-panels
http://www.studyresponse.net
https://www.prolific.co
https://github.com

CHAPTER 2. RESEARCH METHODOLOGY 22

Extending the scope of our research to open-source projects on GitHub exposed us to a
large number of open-source projects, ranging from new to established projects. Investigation
of open-source projects helped us in studying the overall practice of BDD and investigating the
relationship between various project artefacts. The term “experiment” was inspired from similar
studies [Sharma et al., 2017, Ortu et al., 2018, Bao et al., 2019] that used GitHub to collect meta-
data. We replicated the steps which were common their [Sharma et al., 2017, Ortu et al., 2018,
Bao et al., 2019] experiment design i.e., (i) defining the aim of the experiment, (ii) devising an
exclusion/ inclusion criteria (iii) data extraction and (iv) drawing the results. The aim of the
experiment was to study the application of BDD in open-source projects on GitHub.

2.6 Summary

This chapter presented an overview of the research methods used during the course of this Ph.D
research. The research methods included two literature reviews, each followed by an exploratory
cases study. In addition to the exploratory case study, the second literature review was followed
by action research and experimentation.

The first literature review was a systematic literature review, conducted to understand the
challenges of applying agile methods to the development of large-scale safety-critical systems.
Whereas, the second literature review was a semi-systematic literature review. Its purpose was to
understand and explore the state of the art research on BDD. Each literature review was followed
by an exploratory case study on the same topic. Whereas, action research was used for aligning
the BDD process with the development process of the project, investigated during the second
case study.

The online experiment, using open-source projects on GitHub, was an extension of the in-
vestigation on BDD. Analysis of meta-data from the open-source project on GitHub helped in
understanding the BDD in practice, and studying different project related artefacts and relation-
ship between them.

Chapter 3

Systematic Literature Review on Agile
Methods for Large Scale Safety Critical
Systems

This chapter presents a systematic literature review on the use of agile methods for development
of large-scale safety-critical systems. It also provides a theoretical background for Chapter
4. The focus of systematic literature review was on the challenges of using agile method for
development of large-scale safety-critical systems.

Section 3.1 consists of sub-sections which provide an introduction of the concept of agile
software development of safety-critical systems. Section 3.1.1 presents a brief overview of agile
software development followed by an introduction on safety-critical systems in Section 3.1.2.
Section 3.1.3 presents a background on agile software development of safety critical systems.
Section 3.2 describes the literature review process and protocol. Section 3.3 consists of sub-
sections that divide the selected studies into major themes including: studies advocating the use
of agile for safety-critical systems development, studies focusing a particular aspect of agile
development of safety-critical systems, and studies that suggest tailoring in agile methods. The
challenges found in literature on agile development of large-scale safety-critical systems were
also divided into major themes that are discussed in Section 3.4. Section 3.5 consists of the
discussion on the findings of the literature review. Section 3.6 discusses threats to validity of
this study. Section 3.7 presents a summary of this chapter.

3.1 Agile Development and Safety-Critical Systems

This section provides an overview of agile software development and its relationship to safety
critical system development. It serves as an introductory background for the systematic literature
review and builds an understanding of the context.

23

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 24

3.1.1 Agile Software Development

Agile software development emerged in the late 1990s and is considered to be a response to
the failure of existing plan based software development processes, such as Waterfall [Bening-
ton, 1983, Vijayasarathy and Butler, 2016, Wang et al., 2012] and the Rational Unified Process
[Software, 2003, Tanveer, 2015] to accommodate the highly volatile nature of requirements for
software development projects. A common critique of these methods is that the lifecycle of
software delivery is far slower than the pace of change in the problem domain [Schwaber and
Beedle, 2001, Tanveer, 2015, Koronios et al., 2015, Abrahamsson et al., 2017]. For example, a
typical iteration in the Rational Unified Process is between six and twelve months, during which
time, the requirements for the project or the technology available in the market place may have
changed considerably.

Proponents of an agile approach to software development [Beck et al., 2001a, Abrahamsson
et al., 2017] instead advocate for a process model that is based on continual review of progress
and requirements through continued close collaboration with the customer. Schwaber and Bee-
dle [2001] and Abrahamsson et al. [2017] explain that this approach is derived from empirical
process engineering, in which, rather than attempting to design a software process apriori, pro-
cess engineers closely monitor and make small, frequent changes to the production process. As
a consequence of this approach, a team practising agile software development will still begin
work with a broad understanding of the long term objectives for their project, but will avoid
detailed planning for all except the most immediate project activities.

Agile methods are a family of software process models that share this common agile philos-
ophy. Examples of agile methods include Lean [Poppendieck and Poppendieck, 2003, Dingsøyr
and Lassenius, 2016], Crystal [Cockburn, 2004], Feature Driven Development [Palmer, 2002],
Extreme Programming (XP) [Beck and Andres, 2005] and Scrum [Schwaber and Beedle, 2001].
A unifying characteristic of these process models is that they are iterative and concurrent. Soft-
ware development takes place within short iterations of typically two or three weeks, but some-
times as short as a single day, punctuated by deliveries to a customer for immediate feedback
and review. In further contrast to plan-based methods, within each iteration, multiple software
development activities may occur concurrently, including requirements analysis, design, imple-
mentation and testing. Each agile method is itself further characterised by a set of practices
undertaken to support development work and manage the complexity of the concurrent software
process. Examples include backlog grooming, planning poker, sprint planning daily standups
and retrospectives from Scrum [Schwaber and Beedle, 2001]; spike prototyping, automated unit
testing and refactoring in extreme programming, and value-chain mapping in Lean [Poppendieck
and Poppendieck, 2003, Dingsøyr and Lassenius, 2016].

The software industry, as a whole, is witnessing a gradual transition from traditional plan-
driven process models to agile software development [Chapman, 2016, Chapman et al., 2017,
Glas and Ziemer, 2009, Paige et al., 2011, Wils et al., 2006]. A 2018 survey of software indus-

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 25

try practitioners found that 97% of respondents reported using agile methods [CollabNet Ver-
sionOne, 2019]. In addition, the survey found that 78% of respondents reported that the teams
in their organisation continued to use a mix of agile and plan-based methods and practices.
Advocates of agile software development contend that plan-driven software processes lack the
flexibility to respond to rapidly changing business requirements [Beck and Andres, 2005, Beck
et al., 2001a, Schwaber and Beedle, 2001].

Agile software development addresses this demand for flexibility by emphasising the organ-
isation of work into small co-located teams, short development cycles punctuated by deliveries
of software releases to customers for review and feedback, encouraging frequent informal com-
munication amongst software team members and the exclusion of practices that do not demon-
strably contribute value to the project customer, often including formal documentation [Black
et al., 2009, Rayside et al., 2009]. Such values are embodied in a number of agile methods, such
as Feature Driven Development [Palmer, 2002], Extreme Programming (XP) [Beck and Andres,
2005] and Scrum [Schwaber and Beedle, 2001]. Each agile method may also be characterised by
a number of agile methods, such as daily standup in Scrum or pair programming in XP. Methods
may also be customised by the addition of supplemental practices, or practices themselves may
be customised to meet the demands of the project context.

According to industry surveys, Scrum and XP are the most frequently reported methods
employed by software teams for organising an agile software development process [Wang et al.,
2012, CollabNet VersionOne, 2019]. Schwaber and Beedle [2001], and Lei et al. [2017] state
that the Scrum process works well for small teams of between three and nine members. Key
roles within Scrum include the Scrum master, responsible for facilitating team activity and the
product owner, responsible for managing the relationship between the customer and the team.
The Scrum process comprises of short iterations called sprints, typically lasting 1-3 weeks. Each
sprint begins with a planning meeting during which new requirements are transferred from the
product backlog to the sprint backlog. The sprint begins once the requirements are agreed upon
for the sprint backlog. Communication between team members is maintained through a daily
meeting, called a stand-up, during which each team member briefly reports progress, plans and
any issues that have arisen. At the end of a sprint, the team holds a review meeting during which
progress is compared against the goals of the sprint.

The XP process, as described by Beck et al. [2001a] and Wang et al. [2012], has a similar
focus on short iterations punctuated by releases to the customer. Similar practices to Scrum are
also advocated for project management, such as a daily stand-up meeting and release planning
for an iteration. However, in contrast to Scrum, XP practices focus on the lower level activities
associated with software engineering. For example, XP advocates the use of user stories devel-
oped in user story workshops for requirements gathering; test driven development for both new
features and bug fixes; and refactoring as an explicit practice to maintain code quality. Other
practices are also recommended to foster team communication through pair programming. For

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 26

example, Schwaber and Beedle [2001] argue that the two methods are complementary and can
co-exist in a single team with Scrum providing a wrap around for the practices within XP.

3.1.2 Safety-Critical Systems

Sometimes a certain characteristic of a software system is mandated by law or an organisational
policy. These characteristics are so important for the operation of a software that without them,
often the software system is deemed unusable. Such characteristics are considered critical to
the business and consequently, the software. These software systems are referred to as critical

systems. Regulations play a key role in constraining the specification, design, assurance and
maintenance of a wide variety of critical software systems. Examples include: railway/ aircraft
operating and control systems, electric power grid systems, first responder communications sys-
tems etc.

According to Pal and Karakostas [2021] critical software systems are “software whose failure

would impact safety or cause large financial or social losses”. Development of critical systems
have to demonstrate compliance to a regulation if their malfunction or unintended use involves
a risk of resulting in an outcome which is prohibited by law or a regulation [Heeager, 2014]. For
example, the UK government’s recent guidelines∗ on standalone medical apps and softwares
which involve diagnosis, treatment or management of patients state that “Standalone software

and apps that meet the definition of a medical device are required to be CE, CE UKNI or UKCA

marked in order to demonstrate that they are acceptably safe to use and perform in the way the

manufacturer/developer intends them to”.
Safety-critical systems are one of the examples of critical systems. According to Knight

[2002], “Safety-critical systems are those systems whose failure could result in loss of life, sig-

nificant property damage, or damage to the environment.”. Examples include nuclear systems,
medical devices, air traffic control, avionics, railway control systems and automotive control
systems. Due to the involvement of physical risks, development of safety-critical system devel-
opment is typically undertaken within respect to particular generic or domain specific standards
or other regulatory constraints [Heeager and Nielsen, 2018]. Such standards may impose con-
siderable structure on the software development process including the selection and ordering
of activities. Furthermore, standards may specify artefacts that must be produced during the
development to show conformance. For example, DO-178C is a standard for development of
airborne software. Similar standards exist for other domains, such as IEC 62304 for develop-
ment of Medical devices, ISO 26262 for automotive and IEC 61513 for nuclear.

The purpose of following these regulatory standards is to demonstrate that a sufficient amount
of rigour was applied during the development to ensure that the computer system is safe to use

∗https://www.gov.uk/government/publications/regulatory-status-of-software
-including-apps-used-in-the-diagnosis-treatment-and-management-of-patients
-with-coronavirus-covid-19

https://www.gov.uk/government/publications/regulatory-status-of-software-including-apps-used-in-the-diagnosis-treatment-and-management-of-patients-with-coronavirus-covid-19
https://www.gov.uk/government/publications/regulatory-status-of-software-including-apps-used-in-the-diagnosis-treatment-and-management-of-patients-with-coronavirus-covid-19
https://www.gov.uk/government/publications/regulatory-status-of-software-including-apps-used-in-the-diagnosis-treatment-and-management-of-patients-with-coronavirus-covid-19

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 27

[Lee et al., 2014]. For example, under the law of negligence† in the United Kingdom, the manu-
facturers (of safety-critical systems) owe a duty of care to ensure that the computer systems they
supply are not likely to cause physical injury [Davis, 1995]. This implies that an uncertified
safety-critical computer system (i.e., a safety-critical computer system which does not fulfil the
legal requirements of safety) lacks the demonstration of element of duty of care as mandated
by the law. Depending on the regulatory framework, supplying a safety-critical system which
lacks the appropriate certification could place considerable legal liabilities on the vendor of the
computer system [Myers et al., 2012, Lee et al., 2014].

Bell [2017] provides a historical perspective on the development of the field of safety critical
systems. He argues that the field emerged as a distinct discipline in the 1970s, with initial focus
on hardware. For nearly a decade, the focus of the experts of safety-critical systems was on
hardware and mechanical components. As the role of software became increasingly important
in the chemical process sector in early 1980, increasing attention was paid to the role of safety
in programmable electronic systems [Parry, 1993]. From 1980-1990 guidelines (i.e., HSE PES
guidelines) related to the safe use of programmable electronic systems were published, leading
to the publication of IEC 61508 (regulatory standard for functional safety) in 1998.

Achieving certification for safety-critical systems may require performing additional activi-
ties during the development e.g., hazard analysis. Certification could also require production of
significant amount of documentation as a means of demonstrating compliance with the regula-
tory framework. Due to the additional activities involved in the development of the safety-critical
systems, it takes considerably longer to complete safety-critical system development [Kasauli
et al., 2018a].

Several researchers [Winkler et al., 2012, Notander et al., 2013, Hatcliff et al., 2014] ar-
gue that there is a dominance of traditional approaches and sequential models in safety-critical
systems development. NASA’s Software Safety Guidebook [NASA] specifically recommends
against using agile methods for safety-critical software development because of their “low rigour”.
Since traditional development models tend to deliver the product near the end of the project, the
customers have to wait a long time before they can use the system [Myklebust et al., 2015,
Abrahamsson et al., 2017]. There are two main problems with delivering a system after a long
period of time. Firstly, the needs and wants of the customer change with the change in needs
of the business; therefore, the delivered system may no longer fulfil the current business needs.
Secondly, late delivery delays feedback, increasing the cost of fixing mistakes [Myklebust et al.,
2015]. Therefore, there is increasing demand to adopt more frequent delivery cycles, or use of
processes that enable more frequent delivery, such as those derived from agile principles.

Agile methods are based upon agile principles whose main focus is to replace heavy-weight
time consuming procedures with light-weight activities and subtract the element of delay. Quick
delivery, strong communication and accommodation of change are the core values of agile. Ag-

†https://www.legislation.gov.uk/ukpga/2006/29/notes/division/3/1

https://www.legislation.gov.uk/ukpga/2006/29/notes/division/3/1

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 28

ile methods are widely praised for their benefits such as ability to adapt to changes [Mohammad
et al., 2013, Khan and Beg, 2013, Paetsch et al., 2003, Coram and Bohner, 2005], quick devel-
opment in short releases and progress visibility.

Despite the benefits, Agile methods are criticised for reasons such as inadequate support for
large-scale and safety-critical projects, lack of “proper” documentation, and discipline [Martins
and Gorschek, 2016, VanderLeest and Buter, 2009]. Development of safety-critical software re-
quires detailed analysis in each phase that consists of long and careful procedures [Kasauli et al.,
2018a]. Heavy documentation and certification is a mandatory part of the process in safety-
critical system development [Notander et al., 2013, Heeager and Nielsen, 2018]. Therefore, it is
important to know if or not agile methods are suitable for use in regulated environments.

3.1.3 Agile Software Development for Safety-Critical Systems

Like any other software systems organisation, the developers of safety-critical systems also faced
the pressure of delivering earlier and faster. To the best of our knowledge, the first study which
recognised this issue and proposed the use of agile methods for the development of safety-critical
system was the study by Boehm [2002]. The author, while theoretically arguing the suitability
of agile methods for the development of safety-critical systems, proposed using a hybrid (i.e.,
Agile-Planned) approach for the development of safety-critical systems.

This idea of using agile methods for development of safety-critical systems faced a wide
criticism during the last 20 years. Studies by Lindvall et al. [2002] and Turk et al. [2014]
were amongst the earliest studies that criticised agile methods and discussed the challenges of
using agile methods for development of safety-critical systems. Lindvall et al. [2002] presented
a theoretical analysis of the empirical evidence discussed in an eWorkshop on importance of
highly skilled developers in agile teams. Eighteen Agile experts participated in the eWorkshop
who acknowledged the widespread criticism of agile methods and argued that agile methods are
unsuitable for the development of the safety-critical systems. Turk et al. [2014] conducted a
theoretical analysis of the limitations of agile methods. Their findings seem to coincide with
Lindvall et al. [2002]. According to the authors, the quality control mechanisms offered by agile
are not adequate for the development of safety-critical systems.

Both studies [Lindvall et al., 2002, Turk et al., 2014], however, highlighted the criticism of
agile development without citing any other study which implies that these studies were among
the initial studies on this topic. This assumption was confirmed when we were unable to find
studies published before the above mentioned studies on the challenges of agile development of

safety-critical systems.
To understand the reason behind this criticism, we need to understand the context i.e., the

regulatory standards. The development of safety-critical systems is constrained by the regulatory
standards. Regulatory standards can be classified by their scope i.e., generic vs. domain specific
[Gruber et al., 2010, Notander et al., 2013]. However, Notander et al. [2013] divide the regu-

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 29

latory standards into two categories (i) means-prescriptive: the software development method
is either required or recommended and (ii) objective-prescriptive: defines what objectives the
resulting system artefacts must satisfy without stating how the objectives are achieved.

According to Notander et al. [2013], means-prescriptive standards dictate traditional life
cycles, making the accommodation of agile software development much more difficult. On
the other hand, objective-prescriptive standards, such as DO-178C may offer fewer restrictions.
Since objective-prescriptive standards such as DO-178C do not prescribe the development life
cycle, it is important to know if we can use agile methods to develop safety-critical systems - if

they are suitable then what practices are applicable and which of them are unsuitable for the

development of a safety-critical project?.
There are several experiences of applying agile methods to safety-critical systems reported in

the literature [Stålhane et al., 2012, Myklebust et al., 2016, Wang and Wagner, 2016b, Hanssen
et al., 2016]. These studies focused different themes and reported different challenges related
to the use of agile methods for development of safety-critical systems. For example, Myklebust
[2008] identified a conflict between quality assurance activities practiced by agile and the quality
assurance requirements mandated by the regulatory standards. Shenvi [2014] and Kuchinke
et al. [2014] argued that the agile methods’ lack of support for the documentation mandated by
the regulatory standards makes agile a weaker candidate for the development of safety-critical
systems.

We also came across studies that advocated use of agile methods. For example, Gary et al.
[2011] demonstrated successful use of an agile method for the development of image guided
surgical toolkit, a safety-critical system. Fitzgerald et al. [2013] also illustrated a successful
application of an agile method in a large scale regulated environment.

During the initial informal review of the literature at the start of this Ph.D research, we
discovered that the extent of the use of agile methods in regulated environments in literature
is unclear, and the researchers seem to have diverse opinions on the topic. Therefore, in order
to have a holistic view of the problems and challenges of using agile in safety-critical systems
context, we decided to conduct a systematic literature review with a focus on challenges of using

agile methods for the development of safety-critical systems.

3.2 Literature Review Process

In order to conduct the Systematic Literature Review (SLR), we developed a search protocol
and an inclusion/exclusion criteria to find the relevant literature on the challenges of applying

agile in safety-critical systems published between the years 2000 and (March) 2021.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 30

(((agile) AND regulated) AND software)
(agile and safety standards)
agile large-scale mission critical systems
(agile* challenges* large-scale safety-critical)
(agile challenges in large-scale safety-critical)
agile in safety-critical systems
conflicts between agile and regulatory standards
agile success factors and regulatory standards

Figure 3.1: Search strings

Database URL Number of Matches
ACM http://dl.acm.org/ 2480
IEEExplore http://ieeexplore.ieee.org/Xplore/home.jsp 2711
Scopus https://www.scopus.com 198
Science Direct http://www.sciencedirect.com/ 9752
Web of Science http://apps.webofknowledge.com 178

Total 15319

Figure 3.2: Literature sources for the literature review

Search String Strategy

The search strings described in Figure 3.1 were formed following the Population, Interven-
tion, Comparison, Outcomes and Context (PICOC) criteria suggested by Petticrew and Roberts
[2008]. Keywords were identified from the purpose of the SLR i.e., what major challenges in

the application of agile methods in safety-critical systems are reported in the literature. The
synonyms of important search terms were used to improve the search. The search strings were
formed by using AND and OR Boolean operators. The databases were iteratively searched i.e.,
keywords and search terms were changed and refined.

Preliminary Searches

Figure 3.2 lists the repositories used for searching the studies using various combinations of
search strings. At the time of the search, the databases listed in Figure 3.2 were among the top
10 databases for searching software engineering research according to google.com.

Inclusion/Exclusion criteria

The following criteria were used to accept or reject the studies.
Include:

1. Study must be accessible in full text.

2. Study highlights the focus on the application of agile in regulated environment.

3. Study which explicitly or implicitly reports challenges, success factors and limitations of
application of agile in regulated environment.

google.com

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 31

4. All studies from 2000 to March 2021.

Exclude:

1. Study which does not focus on the use of agile in regulatory environment.

2. Study which is older than year 2000. The studies older than the establishment of the agile
manifesto were excluded.

3. Study which is not from the field of computer science e.g., Biology etc.

4. Non English language studies.

Identification of primary studies

Selection of primary studies for this SLR is performed in number of steps.

1. First step was to use keywords to search and identify potential sources. 15319 Studies
were identified using search strings from different online repositories, listed in Figure 3.2.

2. All BibTex files were exported to a tool called Jabref.

3. After filtering the search results and removing 5407 duplicates, there were 9912 studies.

4. The studies that were older than the establishment of agile manifesto i.e., older than the
year 2000, were removed. 733 Studies were removed, and the remaining studies were
9179.

5. Another 5841 irrelevant studies i.e., the studies from non-computer science/software en-
gineering fields e.g., Biology etc., were removed.

6. There were 89 duplicates that were not detected by Jabref and were removed manually.

7. Studies removed on the basis of keywords, title and abstract were 3140 and the remaining
studies were 109.

8. After applying inclusion/exclusion criteria, 52 studies were selected, and 57 studies were
removed because they did not meet the inclusion/exclusion criteria.

Snow ball sampling

Snowball sampling (also called backwards Snowball sampling) refers to checking the reference
lists of the included studies for additional references [Jalali and Wohlin, 2012]. We used the
backward snowball sampling technique and included four more studies.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 32

Category Properties
General Information Author, Year, Title, Date of publication
Aim of the Study Purpose of research
Methodology Experiment, Case Study, Tool Proposal, Theoretical Argumentation
Sample size Can the results be generalised?
Result Outcome
Critical analysis Evaluation of the quality of the study
Challenges reported Limitations about application of agile
Success factors reported Benefits, Strengths

Figure 3.3: Data extraction properties

Data extraction and synthesis strategy

A spreadsheet was created for the extraction of properties of the 56 finally selected studies in the
SLR. Figure 3.3 lists the properties which were extracted from the studies. The data was then
synthesised by performing thematic analysis on the extracted data using guidelines by Cruzes
and Dybå [2011].

Thematic analysis

Two thematic analyses were conducted during the SLR.

1. Thematic analysis of the selected studies,

2. Thematic analysis of the challenges of agile identified from the studies.

Thematic analysis of the selected studies: The selected literature included studies based
upon theoretical argumentation, experience reports, case studies, interview surveys, review pa-
pers, experimentation, toy examples, industrial assessment and systematic literature reviews. We
observed that the selected studies were not homogeneous i.e., studies differ from each other with
respect to sample space, research methods, publishing venues, rigour, outcomes and focus of the
study. Due to the heterogeneous nature of studies, we decided not to draw collective statistical
inferences from the studies such as frequency of a reported challenge. Instead, we decided to
group the studies into following themes based upon the primary focus of each study.

• studies advocating the use of agile methods,

• studies which focus a particular aspect of agile development of safety-critical systems

• suggested tailoring in agile methods.

Thematic analysis of the challenges of agile identified from the studies: The purpose of
this SLR was to get an overview of the challenges and the limitation of the agile methods, when
used in regulated environments. Each of the 56 studies was read, and the properties described in
the Figure 3.3 were extracted for each study. These properties were documented in a single excel

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 33

sheet. One of the fields in the excel sheet was Challenges reported, under which the challenges
reported in each study were listed.

We realised that some of the challenges were inter-related; whereas, others were just gen-
eral statements and perceptions e.g., Adoption of agile in safety-critical systems is very slow.
Therefore, we decided to group the findings into themes and sub-themes. These themes were
based upon the nature of the challenges identified from the studies e.g., challenges specific to
the regulatory standards were grouped together.

3.3 Thematic Analysis of the Selected Studies

As discussed before, the selected studies had diverse perspectives, and it was important to devise
a mechanism which could present an overall picture. Therefore, we decided to group the selected
studies into themes based upon the overall narrative of each study. This section presents a brief
overview of the 56 selected studies. Each of the following sub-sections explain these themes in
detail.

3.3.1 Advocates of Agile Methods

We found studies that used various research methods to demonstrate that agile methods could
be used for the development of safety-critical systems. These studies demonstrated that agile
methods could be used for the development of safety-critical systems. These studies did not
report any challenges of using agile for safety-critical system development, however, argued
that agile needs to be tailored according to the demands of the project.

For example, Fitzgerald et al. [2013] conducted a case study at QUMAS (a leading supplier
of regulatory compliance management solutions). The authors discussed the perceived tension
points of agile e.g., time to market, lack of formal planning, adherence to regulatory standards,
verification and validation and lack of attention to documentation. The authors, through this
study illustrated how an agile approach was implemented successfully in a regulated environ-
ment. The study demonstrated a successful application of agile and reported no limitations of
agile. However, the authors argued that agile needs to be tailored for use in regulated environ-
ments.

Mango [2016] discussed a project at NASA in which agile software development process
was used to develop the ground and flight application software in a space exploration rocket.
Although the issues were not reported in this study, the key message in the study was that agile
has to be tailored in for use in regulated environment.

The study by Huang et al. [2012] was a case study which discussed the use of flexible
style of agile systems engineering for complex hardware and software projects. The authors
incorporated innovations in a project and presented the lessons learned which included need for

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 34

interactive design reviews. The authors recommended tailoring of the agile process according
to the requirements of a project.

Rasmussen et al. [2009] presented a comparison of two medical device projects i.e., one
developed using agile and the other without use of agile. Both projects required FDA approval.
According to the findings of the study, use of agile appears to be beneficial but agile needs to be
tailored to fit into the context of regulated environment.

The aim of the case study by Gary et al. [2011] was to challenge the assumption that ag-
ile methods are inappropriate for the development of safety-critical software and demonstrate
that agile methods are flexible enough to incorporate right amount of ceremony i.e., heavy doc-
umentation and incorporation of activities mandatory for safety-critical system development.
The authors elaborated on their experience of using agile for the development of IGSTK (image
guided surgical toolkit). They adopted ten of the best practices from agile including constant
communication, continuous building and testing, and focus on the current set of requirements.
Through the development of IGSTK, the team demonstrated that agile can be used for the devel-
opment of the safety-critical systems. However, the authors did not elaborate on the challenges
in the application of agile.

Browning and Heath [2009] discussed the case of Lockheed Martin’s production system
for F-22 aircraft. The authors studied the relationship between the lean implementation and
production cost. According to the authors, elimination of tasks does not guarantee cost reduction
because Lean/Agile is affected by other factors such as novelty, complexity and instability. The
study presented eleven propositions e.g., if implemented at the wrong time, even lean practices

can be wasteful. However, the propositions were not validated with empirical evidence.
Stelzmann [2012] and Kruchten [2013] investigated the context in which use of agile meth-

ods is feasible. Stelzmann [2012] investigated the context in which agile is feasible by interview-
ing 20 people. The author deemed agile to be unsuitable for the development of safety-critical
systems. However, the author did not provide details of the underlying reasons behind the re-
ported challenge. Kruchten [2013] further elaborated on the issue in an experience report which
discussed the context in which agile methods could be used. The author discussed a project
where the development team thought that a solid architecture will emerge after iterations and
refactoring, but it did not. According to the author, detailed documentation clashes with agile
which also implies that agile is not suitable for safety-critical systems with high level of critical-
ity. The authors also acknowledged that adaptations must be made to agile methods for use in
safety-critical system development.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 35

3.3.2 Studies Focusing a Particular Aspect of Agile Development of Safety-
Critical Systems

We identified several studies which focus a particular aspect of the agile development of safety-
critical systems such as:

• documentation [Shenvi, 2014, Kuchinke et al., 2014, Hajou et al., 2014, Heeager, 2014,
Rottier and Rodrigues, 2008, Carpenter and Dagnino, 2014, Wang et al., 2017a],

• conflicts between evolutionary design offered by agile and upfront design required by the
regulatory standards [Abdelaziz et al., 2015, Rottier and Rodrigues, 2008, Carlson and
Turner, 2013, Ge et al., 2010], recertification challenges [Gallina et al., 2018, Myklebust
et al., 2014b],

• conflicts between agile practices in XP and the requirements of the regulatory standards
[Jonsson et al., 2012, Mehrfard et al., 2010, Mehrfard and Hamou-Lhadj, 2011, Paige
et al., 2008],

• conflict between testing activities in agile and the requirements of the regulatory standards
[Jonsson et al., 2012, McBride and Lepmets, 2016, Kuchinke et al., 2014, Baron and
Louis, 2021, Heeager and Nielsen, 2018, Hajou et al., 2014, Carlson and Turner, 2013,
Notander et al., 2013, Górski and Lukasiewicz, 2012, Doss and Kelly, 2016],

• lack of use of formal methods in agile development [Wolff, 2012],

• developers’ behaviour towards development of safety-critical systems [Lenberg et al.,
2020],

• need for software estimation methods in agile process [Rottier and Rodrigues, 2008, Hajou
et al., 2014, Alleman et al., 2003, Koski and Mikkonen, 2015].

These studies argue the unsuitability or challenges of incorporating agile methods in their tradi-
tional form for the development of safety-critical systems.

Documentation

We found various studies [Shenvi, 2014, Kuchinke et al., 2014, Hajou et al., 2014, Heeager,
2014, Rottier and Rodrigues, 2008, Carpenter and Dagnino, 2014, Wang et al., 2017a] which
use different research methods to point out agile methods’ lack of support for the documen-
tation requirements of safety-critical systems. Shenvi [2014] performed a theoretical analysis
of three regulatory standards for medical software including ISO 13485, IEC 62304, US FDA
QSR 820 and argued that agile is weak on documentation aspects, therefore, not favoured by

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 36

the regulatory agencies. Results of a survey conducted with four groups of academic develop-
ers [Kuchinke et al., 2014] also suggest that agile methods are short on documentation when it
comes to regulatory environments. Hajou et al. [2014] conducted a systematic literature review
with a primary focus on the challenges faced by the pharmaceutical industry. The authors high-
lighted the lack of evidence and “not much research” in the area. After discussing the dynamics
of pharmaceutical environments, the authors listed five challenges identified from the analy-
sis of 49 selected studies. The compatibility of documentation with agile practices was one of
those challenges. The authors argued that there is no room for creating less documentation or
performing less quality assurance activities.

Heeager [2014] presented two case studies to demonstrate the implementation of a hybrid
approach in the regulatory environment. The results of the study implied that agile methods in
their original form do not support the documentation needed by the regulatory standards and ag-
ile needs to be adapted for the regulatory environments. Study by Rottier and Rodrigues [2008]
was their experience report of a project that was developed using agile (Scrum) by a medical
device company. The authors reported various organisational and process challenges in adop-
tion of agile. Their findings included the conflicts between minimal documentation in agile and
extensive documentation required by the regulatory standards. The study suggested that Scrum
needs to be adapted for the development of medical device software. However, the nature of
adaptations remained unclear in the study. Carpenter and Dagnino [2014] reviewed the relevant
literature in space based system engineering and argued that Test Driven Development (TDD),
Extreme Programming and Scrum are suitable agile practices. Whereas, the non-applicable agile
practices included evolutionary requirements, minimal documentation and refactoring.

Wang et al. [2017a] intended to improve the safety related communication by improving the
safety related documentation in a Scrum development environment. The authors investigated
three types of safety related documentation patterns in the agile development i.e., safety epic,
safety story and the agile safety plan. Safety story and safety epic were found to be beneficial
in improving the safety related communication. According to the authors, although the agile
safety plan provides an overview of the process, there is a gap between the high level plan
and the concrete development; therefore, the agile safety plan has a little positive effect on the
communication.

Evolutionary Design offered by Agile

Several studies [Abdelaziz et al., 2015, Rottier and Rodrigues, 2008, Carlson and Turner, 2013,
Ge et al., 2010] highlighted the conflict between evolutionary design offered by agile and up-
front design required by the regulatory standards. For example, Abdelaziz et al. [2015] in a
study based upon theoretical argumentation, argued that the evolutionary design offered by ag-
ile conflicts with the regulatory standards because the standards require upfront design (offered
by the traditional models) which serves as an input for the hazard analysis. According to Rottier

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 37

and Rodrigues [2008], hazard analysis is a mandatory part which needs to be accomplished at
product definition and then updated at major milestones. Risks cannot be identified on the fea-
tures that are not yet well-defined. Carlson and Turner [2013] presented non-software agile case
studies for lessons that are potentially applicable to the aircraft systems’ integration process.
The authors presented five case studies and the lessons learned from them. Lessons learned
from three out of the five case studies emphasise on the need of an early architecture.

The study by Ge et al. [2010] is based upon a toy example which used theoretical argu-
mentation for the construction of a model and then illustrated the model with help of a the toy
example. The authors pointed out the difficulty in using agile with the regulatory standards
by discussing the overall characteristics of the regulatory standards and the activities mandated
by the standards e.g., need for an upfront design and production of heavy documentation. Ac-
cording to the authors, detailed design and plan serve as an input to hazard analysis which in
turn produces the safety requirements and initiates certification process. The authors proposed
construction of an upfront design which is sufficient for hazard analysis. The approach allowed
modular construction of the safety-arguments. However, evaluation of the model revealed that
the model is unable to assess the quality of the safety argument.

Need for Recertification

Gallina et al. [2018], in a study based upon theoretical argumentation, elaborated on the issue
by pointing out the need for recertification with the change in requirements. According to the
authors, regulatory standards require early validation of a process plan which includes the re-
quirements definition. Whereas, the concept of continuous improvement in agile encourages
accommodation of change in the software which consequently requires re-validation of the plan
by a regulatory authority. According to the authors, the re-validation of the plan incurs rework,
additional cost and time.

On the contrary Myklebust et al. [2014b] performed a theoretical assessment of Scrum and
the documentation required by the standard IEC61508 with the help of five experts (i.e., docu-
ment writers). The study aimed at optimising the effort spent in the documentation by identifying
the documents that can be auto-generated, combined, reused, and needed to be reproduced in
case of recertification. Their analysis suggests that only five documents are needed to be repro-
duced when performing recertification using IEC61508. According to the authors, the existing
conflicts between Scrum and IEC61508 are not a consequence of the standard’s certification
requirements “... but are related to what the individual assessor will accept as a proof of con-

formance (PoC) for an activity” [Myklebust et al., 2014b].

Inapplicable Practices

Jonsson et al. [2012] presented a theoretical analysis of agile practices in the context of software
development in the railway sector regulated by the EN50128 regulatory standard and validated

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 38

the findings with two researchers. The authors argued that XP’s practice of using simple cards to
document requirements (stories) is unlikely to be accepted in a regulated environment because
the regulatory standards dictate that the requirements must be placed in a document or a tool.
The authors argued that XP recommends waiting until the end of the development to create
the design and architecture related document; whereas, these documents are created early in the
regulated environments to enable verification and validation. Theoretical mapping of XP and the
FDA regulations [Mehrfard et al., 2010, Mehrfard and Hamou-Lhadj, 2011] also show that XP
needs to be extended before its use with FDA regulations. According to Mehrfard et al. [2010],
Mehrfard and Hamou-Lhadj [2011], XP does not support FDA activities e.g., documentation
and design review. Paige et al. [2008] conducted a case study and developed a high integrity
software using XP. According to the authors, agile processes are not designed to be used for the
development of safety-critical systems. The authors pointed out that agile methods need to be
modified for the use in safety-critical systems development.

Testing

Jonsson et al. [2012] argued that EN50128 (regulatory standard for railway software) requires
the implementer and tester to be separate people; whereas, in Test Driven Development (TDD),
the developers write the tests themselves. McBride and Lepmets [2016] also emphasised on the
importance of an independent testing body. In a study based upon theoretical argumentation,
the authors discussed the potential problem of confirmation bias which can appear due to the
agile practice of allowing the development teams do the testing. The authors emphasised on
the importance of an independent testing body. The results of a survey conducted with four
groups of academic developer by Kuchinke et al. [2014] also showed that there is a lack of
quality assurance guidelines (required by regulatory standards) in agile, and there is a need to
train the developers in order to help them understand regulatory compliance. Baron and Louis
[2021] reviewed the relevant literature on certification of safety-critical avionics software. The
authors argue that the way agile principles are interpreted is not compatible with the certification
process. According to the authors, adaptations are necessary to ensure that compliance is still
met.

Heeager and Nielsen [2018] conducted a Systematic Literature Review (SLR) to identify the
disputes in agile development of safety-critical systems. The results of the study suggested that
requirements, documentation, life-cycle and testing are the four problem areas in agile develop-
ment of safety-critical systems. Hajou et al. [2014] also pointed out the lack of fundamentals
in agile methods on which the quality of the safety-critical systems should be based. Accord-
ing to the authors, agile methods lack the method of ensuring quality assurance required by the
regulatory standards.The authors argue that the regulatory complexity cannot be altered as it is
a mandatory element of the pharmaceutical environment; therefore, the existing agile methods
need to be tailored to meet the need of the regulatory environment. However, the exact adapta-

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 39

tions remain unclear in the study. According to Carlson and Turner [2013], incremental testing
is effective and speeds up the iteration pace. A strong change process is needed.

Notander et al. [2013] interviewed five engineers from four different domains with a focus on
challenges in flexible safety-critical software development. The authors identified four themes
in terms of the challenges to the flexible development i.e., (i) Human Factors: there is a need for
investment in training people to understand special nature of safety-critical system development,
(ii) Requirements and verification: need to improve quality assurance activities in agile (for
safety-critical environment), (iii) agile development: common belief is that pure agile conflicts
with the requirements of safety standards, (iv) Variants and components: how to use reusable
components to optimise the process. They report the lack of evidence as their own experience
from reading the literature.

The case study by Górski and Lukasiewicz [2012] discusses several agile models in the field
of safety-critical systems. Their analysis of the literature shows that none of the models was
validated properly, and a lack of explicit guidance on the application of agile in the regulated
environments still exists. The authors proposed an approach called assurance argument patterns.
According to the authors, the agile methods should be regarded as complementary to the plan
driven practices instead of being a replacement. Extensive testing and good identification of
requirements are vital, and communication with domain experts and potential users is crucial.
The authors argued that the safety assurance should be incremental.

Doss and Kelly [2016] presented a proposal about the research on integration of assurance
case with Scrum. The authors [Doss and Kelly, 2016] argued that there is a reluctance to adopt
agile methods within safety-critical system development, and used this argument as a basis for
the study. The authors [Doss and Kelly, 2016] proposed to apply 4 + 1 safety assurance princi-
ple [Kelly, 2014] to the Scrum process and interview the practitioners to investigate the current
concerns and opportunities voiced by the safety-critical systems professionals regarding the use
of agile development methods, integration of incremental assurance case development and eval-
uation within the existing “Scrum” methodology. They also proposed to investigate the changes
that the Scrum process has to undertake in order to become compliant with the safety standards.
As a results of this study, the authors [Doss and Kelly, 2016] proposed additional activities for
Scrum to enable its use in the development of safety-critical software.

Use of Formal Methods

Wolff [2012], in a study based upon theoretical argumentation on the use of formal methods in
agile development of the safety-critical systems, highlighted the reliance of agile methods on
the informal evaluation techniques as a major problem. The author argued that the informal
methods are insufficient for establishing the quality of a safety-critical system; therefore, agile
is rarely used in regulated environments.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 40

Developers’ Behaviour

Lenberg et al. [2020] discussed developers’ behaviour towards development of safety-critical
systems. The authors conducted interviews with six software engineers. They identified four
themes which linked behaviour of the developer to the safety-critical systems development i.e.,
(i) awareness and alignment, (ii) norms over standards, (iii) domain knowledge, and (iv) organi-
sational trust and stress. Their analysis suggested that the safety-critical development “ imposes

stress on the software engineers and that to reduce such pressure it is critical to enhance the

organisational trust”. The authors pointed out the non-compatibility of the regulatory standards
with the approach proposed by agile.

Estimation

We already discussed the study by Rottier and Rodrigues [2008]. The study was an experience
report of a project that was developed using agile (Scrum) by a medical device company. The
authors point out the disparity between using an agile method in the software department versus
using a waterfall process throughout the rest of the organisation. The authors also argue that
the estimations in agile process are often problematic and un-realistic. Hajou et al. [2014] also
pointed out the need for a method for estimation of software development projects when using
agile methods.

Alleman et al. [2003] acknowledged that there is no schedule variance process for XP; there-
fore, XP is unable to forecast the future cost and schedule. The authors described the experience
of using the earned value analysis in conjunction with the agile development on a mission crit-
ical government project. Earned value analysis is a way of predicting future schedule and cost
variance. This study demonstrated that the earned value management (EVM) system can be
used with XP i.e., XP complies with the EIA748 (standard for EVM). Selected practices and
activities of XP are used in this study [Alleman et al., 2003], but the rationale for selecting a
practice is not provided.

Study by Koski and Mikkonen [2015] presented an overview of the major issues which were
faced during a multi-million euros mission critical information system project for emergency
services. The scope, duration and the price were fixed by the signed contracts, but the costumer
was willing to collaborate with the developers in an iterative and incremental development envi-
ronment. XP as a model was followed for the development. The authors acknowledged that the
fixed price contracts and the traditional way of estimation do not anticipate the cost of change
clearly. They also suggested few improvements for the future which include:

• Direct access to real customer for discussion, feedback and validation

• Keeping the feedback loop as short as possible with the ability to scale the loop when
required

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 41

• Creating an environment which supports collaboration among all the players e.g., testers,
development teams, managers etc.

• Improving automated testing

However, the recommendations were not validated by the authors.

3.3.3 Suggested Tailoring in Agile Methods

Several researchers [Stålhane et al., 2012, 2013, Hanssen et al., 2016, Wang and Wagner, 2016b,
Wang et al., 2017b, Lukasiewicz and Górski, 2016, 2018, McHugh et al., 2013, 2014, Trektere
et al., 2016, Clarke et al., 2014, Özcan-Top and McCaffery, 2018, Stephenson et al., 2006,
Cordeiro et al., 2007] have extended agile methods to propose various new frameworks e.g.,
SafeScrum [Stålhane et al., 2012], AgileSafe [Lukasiewicz and Górski, 2016] etc. The following
sub-sections discuss these frameworks in detail.

Adaptations to Existing Agile Process

There seems to be a major consensus on the need for adaptations in agile methods in order to
enable them for the use in the development of safety-critical systems. Several researchers [Sid-
dique and Hussein, 2014, Wils et al., 2006, Axelsson et al., 2016, Goncalves et al., 2015, Martins
and Gorschek, 2016] have suggested adaptations to the agile process. For example, Siddique and
Hussein [2014] interviewed twenty one practitioners from twenty one different organisations to
present an insight into the choice of development methodology in large and complex software
projects in Norway. The findings suggested that the agile methodologies are not the preferred
choice of the large-scale safety-critical systems development organisations. Based upon the
data gathered from the interviews, the authors suggested the use of hybrid models (i.e., agile
combined with waterfall).

The study by Wils et al. [2006] is an industrial assessment report. The authors reported
the findings of their study conducted at Barco (a major Belgian avionics equipment supplier).
Barco adopted XP to benefit from strengths offered by the agile methods. The company wanted
to improve the time-to-market and respond quickly to the change in requirements. It turned out
that XP did not bring the expected improvements because the project was dependent upon hard
to control external factors e.g., automated testing was taking too long, hardware co-development
etc. Following recommendations are made by this study:

1. Add more communication and feedback to the process.

2. Limit amount of changes at the later stages

3. Auto generate documents, use version control, and keep track of the dependencies and the
changes in the documents.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 42

4. Use agile document preparation practice for the documents that cannot be auto generated
e.g., RaPiD7.

5. Use automated testing, pair programming reviews.

Axelsson et al. [2016] presented an overview of the topics discussed at a seminar in Stock-
holm in 2014 on the current state of agile, its applications to the safety-critical systems and
the consequences of innovations in large organisations. Need for quality assurance activities
expected by regulatory standards, thorough design reviews, and compliant documentation is
highlighted in the study. The authors also acknowledged the lack of evidence and practical
guidance on agile, therefore, emphasised on the need for more research in the area.

Study by Goncalves et al. [2015] is an experience report about an academic project in which
five scrum teams i.e., around 70 students, worked together on a micro-satellite system and suc-
cessfully delivered the project in four sprints of four weeks each. They used Scrum and its best
practices to produce a prototype as a proof of concept. However, the study [Goncalves et al.,
2015] does not report the limitations.

Martins and Gorschek [2016] performed a systematic literature review of requirements en-
gineering in the domain of safety-critical systems. One of their main conclusions was the dom-
inance of the traditional approaches i.e., the well-established methods (both in terms of analysis
techniques and overall project management) are widely used. Whereas, the newer approaches
are often introduced and then abandoned i.e., the “early mortality of new approaches”. While
agile and lean methodologies were not the primary focus of their study, one of their suggested
research questions for the research community, based on their analysis of existing work, was:
“to what extent may the lean and agile requirements engineering approaches improve the inte-

gration amongst safety, requirements, test and certification teams?”. They pointed towards the
need to investigate the use of agile methods for the development of safety-critical systems.

SafeScrum

Stålhane et al. [2012] performed a theoretical assessment of conformance of Scrum with IEC
61508 certifiable environments. The analysis was performed in two iterations by three experts
in the area of software development, certification, and agile development respectively. Based
on their assessment, the authors proposed an extended version of Scrum and called it “Safe-

Scrum”. The authors performed a manual analysis of Scrum and IEC61508, and found fifteen
issues where adaptations were needed. These issues were mostly related to documentation and
planning.

In the later years, more studies [Stålhane et al., 2013, Hanssen et al., 2016] were conducted
to perform evaluation of SafeScrum. Stålhane et al. [2013] performed a theoretical analysis of
the challenges of using SafeScrum with three different regulatory standards i.e., IEC 61508,
IEC 60880 and IEC 50128. The authors argued that agile (e.g., Scrum) is not well adapted

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 43

for safety-critical systems. According to the authors, the regulatory standards are developed
for the plan driven approaches, which makes the accommodation of change difficult. However,
the authors contradict themselves later by saying “... IEC 61508 and IEC 60880, EN 50128

explicitly allows iterative development...”. This means that although the regulatory standards
allow iterative development, the existing agile methods in their traditional form are unsuitable
for development of safety-critical systems.

The aim of the study by Hanssen et al. [2016] was to report the lessons learned from the
trial run of SafeScrum in a company. The company used SafeScrum in one of their projects
which required IEC 61508 compliance. The authors gathered the data by observing the sprint
reviews, analysis of the documentation, and conducting the interviews and discussions with the
scrum team. During this study, the authors learned that the quality assurance offered by Scrum
is insufficient for a regulated environment. Based upon the analysis of IEC 61508 (regulatory
standard), the discussion with an independent assessor and working with the scrum team, the
authors identified the necessary additional tasks for the quality assurance and the need for a QA
role in agile. The authors argued that the scrum quality assurance is thought to be embedded in
the process itself e.g., Pair programming etc. According to the authors, the Quality Assurance
mechanisms in Scrum and agile are insufficient for the regulated domain. Also, agile has a qual-
ity assurance mechanisms but no explicit QA role, which is against the “independent testing”

required by the regulatory standards Hanssen et al. [2016].
Wang and Wagner [2016a], Myklebust et al. [2014a] proposed adaptations to SafeScrum.

Wang and Wagner [2016a] theoretically integrated a novel systematic safety analysis technol-
ogy STPA into SafeScrum. The authors argued that the current safety analysis technologies
are inadequate for agile. Myklebust et al. [2014a] presented a theoretical description of change
impact analysis in safety-critical software when using SafeScrum. The authors provided rec-
ommendations for integrating SafeScrum with the change impact process in safety-critical soft-
ware. However, a critical evaluation of those recommendations was not discussed in the study.
A similar study is performed by Stålhane and Myklebust [2015].

S-Scrum

Wang and Wagner [2016b] extended SafeScrum by integrating SafeScrum with a safety analy-
sis and verification approach based upon STPA (System-Theoretic Process Analysis), a safety
guided design technique by Leveson [2016]. The authors referred to this extended version as
S-Scrum. The authors [Wang and Wagner, 2016b] validated their model using a toy example of
airbag system. The authors argued that safety should be approached from the agile standpoint
rather than combining agile with a plan driven approach. They also pointed out the difficulty in
using agile methods in the regulated environments due to the activities mandated by regulatory
standards e.g., need for an upfront design.

Wang et al. [2017b] applied and validated the S-Scrum method proposed earlier. The study

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 44

was conducted in three episodes i.e., Scrum was used in the first episode, S-Scrum in second
and optimised S-Scrum was used in the last episode of the study. The authors suggested few
additional activities and improvements to optimised S-Scrum.

AgileSafe

Lukasiewicz and Górski [2016] proposed a new methodology called AgileSafe for the devel-
opment of safety-critical systems. The approach employed evidence-based arguments which
followed recommendations on assurance cases from IEC 15026 regulatory standard. The objec-
tive was to help the SMEs (Small/medium size enterprises) developing safety-critical systems
and increase their profit. The authors argued that accommodation of change will result in the
changes in safety evidence collected during the development which may affect the scope and the
structure of the certification process. Therefore, change in safety-critical environment is a com-
plicated and potentially costly operation. The authors claimed that their approach was validated
but there was no evidence for it nor the results of the validation were reported in the study. A
concrete justification for the need of this new approach was also not provided.

Lukasiewicz and Górski [2018] further extended the method by proposing AgileSafe Use
Case - a two step approach. In the first step, the system was decomposed into the use cases and
the regulatory constraints for the use cases were identified. In the second step, the AgileSafe
was improved by updating the knowledge base of the method through identifying patterns, and
practices emerged from the system under development. The authors demonstrated the use of the
method with the help of a case study of continuous glucose monitoring-enabled insulin pump
system. According to the authors, in order to the improve AgileSafe use case knowledge base,
the user should be an expert on agility in addition to being a person with good knowledge of the
standards and the safety aspects of the software development. This implies that the use of agile
methods requires considerable training and investment.

Agile-V Model

The study by McHugh et al. [2013] is focused on use of agile methods for development of med-
ical device software. The authors proposed the Agile-V model by integrating agile practices
applicable to development medical software with a plan driven V model. They conducted inter-
views and then mapped findings of the interviews with the literature by conducting a systematic
literature review. Accommodation of change in the requirements was identified as a main issue
with the plan driven life cycles during the interviews. Participants of the interviews suggested
different measures to counter this problem including detailed upfront planning and preventing
the customer from introducing the changes once the project enters the development phase.

Another study [McHugh et al., 2014] was conducted as an extension of the previous study. In
this study, the authors conducted an experiment for implementing and validating the model. The
authors argued that no agile method is sufficiently comprehensive in producing the regulated

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 45

deliverables. The authors of the study demonstrated that the hybrid model works better than a
plan driven model in a safety-critical environment but failed to report the shortcomings of the
framework they had proposed.

MDevSPICE R©

Clarke et al. [2014] introduced MDevSPICE by describing it as a framework to facilitate the
production of a medical device software. The framework was developed by Regulated Soft-
ware Research Centre (RSRC) in Ireland. In this study, however, the authors did not describe
the framework itself but discussed the regulatory standards the framework could meet. In an-
other study Lepmets et al. [2015] described MDevSPICE as a framework that “... integrates

generic software development best practices with medical device standards’ requirements en-

abling consistent and thorough assessment of medical device processes”. The authors described
the MDevSPICE framework which consists of a process reference model, a process assessment
model, an assessment method, and training and certification schemes. According to the authors,
the model was validated by five different organisations. However, the authors did not elaborate
on the limitations of the framework.

Trektere et al. [2016], in their study, demonstrated that MDevSPICE could be tailored by in-
troducing agile practices into the framework. The authors theoretically argued the development
of mobile medical applications using MDevSPICE, which combined agile with the reduced V-
model. The authors did not discuss the limitations of the approach. Özcan-Top and McCaffery
[2018] performed a theoretical mapping of MDevSpice with the Scrum and XP activities to
assess the extent to which the regulatory requirements defined in MDevSPICE meet the activ-
ities of Scrum and XP. The study showed that using XP and Scrum practices for development
of a medical device software may meet nine processes in MDevSPICE. The authors described
14 additional processes in order to show conformance to medical regulations. This shows that
tailoring is essential for agile methods if they are to be used in the medical device software do-
main. According to the authors, XP (as compared to Scrum) showed a limited support for the
development of medical device software.

Other Frameworks

Stephenson et al. [2006] proposed a four steps framework to introduce agility in the safety-
critical systems development by using the following as input:

• The original agile security architecture definition.

• Component-based safety modelling techniques such as Cecilia/OCAS and HiP-HOPS.

• Recommended practice documentation ARP 4754 [Landi and Nicholson, 2011] and ARP
4761 [SAE, 2017].

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 46

• Expertise within the safety analysis community.

The authors performed a theoretical analysis of the model with respect to increments, testing,
infrastructure, guidance and training, independence, and integration. However, the analysis
lacks detail.

Cordeiro et al. [2007] used theoretical argumentation for the construction of a model. The
authors conducted an experiment to validate the model. However, the limitations of the model
were not reported in the study. The results of the study implied that agile methods need to be
adapted to the needs of a project.

Commonalities and Differences

Further analysis showed that we can group the research suggesting tailoring of agile methods for
safety-critical systems development into two i.e., (i) research which suggests combining agile
methods with another method, (ii) research which suggests integration of safety aspects and
improvements in various activities of agile methods.

The research which suggests combining other methods includes using a hybrid method (i.e.,
agile combined with waterfall) [Siddique and Hussein, 2014]. Other researchers propose com-
bining other traditional methods with agile for example; McHugh et al. [2013] propose Agile-V
model by integrating agile practices applicable to development medical software with a plan
driven V model. Trektere et al. [2016] propose combining MDevSPICE framework in a setting
where an agile method is already in use in combination with V-model. The study by Özcan-
Top and McCaffery [2018] shows that using XP and Scrum practices may meet some of the
processes described by MDevSPICE. However, the authors described 14 additional processes to
show conformance to medical regulations.

The second group of studies suggests improvements in existing agile methods and integra-
tion of safety aspects. For example, Wils et al. [2006] recommend improvements such as auto-
mated testing in XP. Axelsson et al. [2016] suggested the need for quality assurance activities
expected by regulatory standards. Stålhane et al. [2012] integrate safety aspects in Scrum and
call it SafeScrum. The authors suggest improvements in documentation and planning. However,
Wang and Wagner [2016a] and Myklebust et al. [2014a] suggest integration of STPA and change
impact process in safety-critical software development, respectively, into SafeScrum which im-
plies that SafeScrum is not sufficient for the development of safety-critical systems on its own.
In a later work, Wang et al. [2017b] suggest further improvements in their earlier work in which
they combined STPA with SafeScrum (and named it S-Scrum). Lukasiewicz and Górski [2018]
propose AgileSafe which employs evidence-based arguments that follow recommendations on
assurance cases from IEC 15026 regulatory standard. According to the authors, the use of the
method requires considerable prior experience in agile.

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 47

3.4 Discussion Based Upon Thematic Analysis of the Chal-
lenges Identified from the Studies

In this section, we analyse the challenges found during our Systematic Literature Review (SLR)
in the light of the evidence presented in the studies selected in this SLR. The challenges reported
in the selected studies are divided into themes using Figure 3.1. Each theme listed in Figure 3.1
either describes the nature of the challenge or focuses a particular aspect of a project.

3.4.1 Statements and Perceptions

Some of the arguments made in some of the selected studies listed in Figure 3.1 seem to be the
“general perceptions” of the researchers. In this section, we have discussed and analysed the
evidence presented in the studies in support of such arguments and the statements.

Our experience from reading the literature is that agile is unsuitable for the development of

safety-critical systems used to be a perception because of the non-ceremonial facade of agile
methods. If we look at the research published during the last decade in this area, we notice a
gradual transition from traditional plan-based software development life cycles to the use of agile
methods. Attempts to employ agile methods in the development of safety-critical systems are
being made in the regulated environments e.g., avionics [Goncalves et al., 2015, Wils et al., 2006,
VanderLeest and Buter, 2009], railways [Jonsson et al., 2012], medical device software [Trektere
et al., 2016, McHugh et al., 2014, Shenvi, 2014, Rottier and Rodrigues, 2008] etc. Studies show
that agile is not unsuitable for the development of safety-critical system but needs to be adapted
according the requirements of the projects [Trektere et al., 2016, McHugh et al., 2014, Carpenter
and Dagnino, 2014, Huang et al., 2012, Stålhane et al., 2013, Górski and Lukasiewicz, 2012,
Mehrfard and Hamou-Lhadj, 2011, Shenvi, 2014, Mehrfard et al., 2010, Cordeiro et al., 2007,
Jonsson et al., 2012, Rottier and Rodrigues, 2008, Alleman et al., 2003, Goncalves et al., 2015,
Wils et al., 2006]. However, the exact nature of adaptations remains unclear.

Slow adoption of agile in regulated environments is also a perception. There is no evidence to
support this argument in the studies reporting this observation [McHugh et al., 2014, Kuchinke
et al., 2014, Doss and Kelly, 2016, Stephenson et al., 2006]. As discussed before, we can clearly
see a rise in the number of publications on the use of agile in the regulated context in the last
ten (10) years. We cannot say anything conclusive about the pace of adoption of agile in the
regulated environment unless a point of reference and the difference between fast and slow, in
this context, are defined.

Many of the selected studies argue that agile needs to be tailored for its use in regulated
environments [Trektere et al., 2016, Wang and Wagner, 2016b, McHugh et al., 2014, Myklebust
et al., 2014a, Huang et al., 2012, Stålhane and Myklebust, 2015, Ge et al., 2010, Abdelaziz
et al., 2015, Stålhane et al., 2013, Górski and Lukasiewicz, 2012, Lukasiewicz and Górski,
2016, Cordeiro et al., 2007, Fitzgerald et al., 2013, Rasmussen et al., 2009, Hajou et al., 2014,

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 48

Table 3.1: Challenges reported in selected studies

Theme Challenges References
Statements
and
Perceptions

Agile is not suitable for
safety-critical systems
and systems with high
level of criticality.

[Siddique and Hussein, 2014, Kruchten, 2013,
Stelzmann, 2012, Stålhane et al., 2013, Górski
and Lukasiewicz, 2012, Paige et al., 2008,
Mehrfard and Hamou-Lhadj, 2011, Shenvi,
2014, Wolff, 2012, Rottier and Rodrigues,
2008, Doss and Kelly, 2016, Wils et al., 2006,
Fitzgerald et al., 2013, Hajou et al., 2014,
McBride and Lepmets, 2016]

Adoption of agile in
regulated environments
is very slow

[McHugh et al., 2014, Kuchinke et al., 2014,
Doss and Kelly, 2016, Stephenson et al., 2006]

Agile has to be tailored
in order to be used in
regulatory
environments.

[Gallina et al., 2018, Baron and Louis, 2021,
Gallina et al., 2018, Baron and Louis, 2021,
Trektere et al., 2016, McHugh et al., 2014,
Carpenter and Dagnino, 2014, Heeager, 2014,
Siddique and Hussein, 2014, Huang et al.,
2012, Stålhane et al., 2013, Górski and
Lukasiewicz, 2012, Mehrfard and
Hamou-Lhadj, 2011, Shenvi, 2014, Mehrfard
et al., 2010, Cordeiro et al., 2007, Jonsson
et al., 2012, Rottier and Rodrigues, 2008,
Alleman et al., 2003, McHugh et al., 2013,
Wils et al., 2006, Rasmussen et al., 2009,
Hajou et al., 2014, Mango, 2016]

Lack of evidence and
guidance to support the
use of agile in
regulatory
environments; and
Slow adoption of agile
in regulated
environment

[Wang and Wagner, 2016b, Notander et al.,
2013, Carpenter and Dagnino, 2014, Heeager,
2014, Siddique and Hussein, 2014, Huang
et al., 2012, Axelsson et al., 2016, Ge et al.,
2010, Abdelaziz et al., 2015, Shenvi, 2014,
Jonsson et al., 2012, Browning and Heath,
2009, McHugh et al., 2013, Stephenson et al.,
2006, Carlson and Turner, 2013, Fitzgerald
et al., 2013, Stålhane et al., 2012, Wang and
Wagner, 2016a, Hajou et al., 2014, McBride
and Lepmets, 2016]

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 49

Table 3.1: Challenges reported in selected studies

Theme Challenges References
Organisational
culture and
training

Lack of investment in
training people (e.g.,
developers) i.e., to
develop understanding
of the criticality
involved in regulated
systems.

[Notander et al., 2013, Kuchinke et al., 2014,
Jonsson et al., 2012, Rottier and Rodrigues,
2008, Carlson and Turner, 2013, Hajou et al.,
2014, Carlson and Turner, 2013, Koski and
Mikkonen, 2015, Jonsson et al., 2012, Lenberg
et al., 2020]

Project
management

Agile vs Fixed
Contracts and
traditional way of
estimating of system
development projects.
Agile is unable to
forecast future cost and
schedule.

[Rottier and Rodrigues, 2008, Alleman et al.,
2003, Koski and Mikkonen, 2015, Hajou et al.,
2014]

Documentation
Non-compatibility of
certification
documentation with
agile practices and
methods.

[Trektere et al., 2016, Notander et al., 2013,
McHugh et al., 2014, Heeager, 2014, Siddique
and Hussein, 2014, Kruchten, 2013, Mehrfard
and Hamou-Lhadj, 2011, Kuchinke et al., 2014,
Shenvi, 2014, Mehrfard et al., 2010, Jonsson
et al., 2012, Koski and Mikkonen, 2015,
Myklebust et al., 2014b, Hajou et al., 2014]

Certification is
expensive, and
certification procedure
is usually performed on
a complete system.
“Many releases” makes
certification lengthy,
and it also significantly
increases cost.

[Notander et al., 2013, Lukasiewicz and
Górski, 2016, Jonsson et al., 2012]

Regulatory
standards

Standard lack guidance
on specific context.
Terms used are
ambiguous.

[Stålhane et al., 2013, Mehrfard et al., 2010]

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 50

Table 3.1: Challenges reported in selected studies

Theme Challenges References
Standards dictate a
sequential plan driven
approach.

[Trektere et al., 2016, Wang and Wagner,
2016b, Notander et al., 2013, Ge et al., 2010,
Abdelaziz et al., 2015, Stålhane et al., 2013,
Mehrfard et al., 2010, Jonsson et al., 2012,
Rottier and Rodrigues, 2008, Stålhane et al.,
2012, Hajou et al., 2014]

Agile lacks quality
assurance activities
required by regulatory
standards i.e., tight
collaboration between
development teams and
test teams is in contrast
to independent test
teams

[Wang and Wagner, 2016b, Notander et al.,
2013, Siddique and Hussein, 2014, Axelsson
et al., 2016, Ge et al., 2010, Abdelaziz et al.,
2015, Górski and Lukasiewicz, 2012, Kuchinke
et al., 2014, Shenvi, 2014, Fitzgerald et al.,
2013, Wang and Wagner, 2016a, Hajou et al.,
2014, Hanssen et al., 2016, McBride and
Lepmets, 2016, Myklebust, 2008]

Design and
architecture

Many safety analysis
techniques e.g., FTA,
FMEA need upfront
architecture which is
unlike agile.

[Wang and Wagner, 2016b, Ge et al., 2010,
Abdelaziz et al., 2015, Rottier and Rodrigues,
2008, Stephenson et al., 2006]

Agile offers
evolutionary design vs
traditional upfront
design. There is a need
for explicit guidelines
on how to do periodic
design reviews.

[Kruchten, 2013, Huang et al., 2012, Axelsson
et al., 2016, Ge et al., 2010, Abdelaziz et al.,
2015, Mehrfard and Hamou-Lhadj, 2011]

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 51

Mango, 2016]. Several studies [Ge et al., 2010, Górski and Lukasiewicz, 2012, Cordeiro et al.,
2007] have also proposed models and adaptations to the agile process to enable its use in the
safety-critical system development, but very few were validated.

Most of the selected studies recommend the use of a hybrid approach i.e., agile practices
shall be combined with a plan driven life cycle [Trektere et al., 2016, Wang and Wagner, 2016b,
McHugh et al., 2014, Myklebust et al., 2014a, Huang et al., 2012, Stålhane and Myklebust,
2015, Ge et al., 2010, Abdelaziz et al., 2015, Stålhane et al., 2013, Górski and Lukasiewicz,
2012, Lukasiewicz and Górski, 2016, Cordeiro et al., 2007]. For example, Trektere et al. [2016]
combined agile with reduced V-model and the authors [Stålhane et al., 2013] suggested use of
an extended version of Scrum i.e., SafeScrum. Lukasiewicz and Górski [2016] proposed a new
methodology called AgileSafe that uses evidence based arguments. Mehrfard et al. [2010] ex-
tended XP to meet FDA requirements. Despite of researchers’ advocacy for a hybrid approach,
the nature of “tailoring” and the criteria for such tailoring are unclear.

The above are few of the many examples of different adaptations to the agile methods to
enable their use in regulated environments. Every other study proposes a different hybrid ap-
proach which raises two questions i.e., What adaptations need to be made to agile methods in
order to enable their use in regulated environments? (ii) What is the criteria for making such
adaptations? The lack of knowledge on how to implement a hybrid approach is also pointed out
by Heeager [Heeager, 2014]. Mehrfard and Hamou-Lhadj [2011] argue that the trade-off that
balances agility and auditability, needs to be investigated.

Lack of evidence and guidance to support the use of agile in safety-critical systems is
reported by many studies [Wang and Wagner, 2016b, Notander et al., 2013, Carpenter and
Dagnino, 2014, Heeager, 2014, Siddique and Hussein, 2014, Huang et al., 2012, Axelsson et al.,
2016, Ge et al., 2010, Abdelaziz et al., 2015, Shenvi, 2014], but none of the selected studies
provides any evidence to support this argument. For example, low percentage of empirical re-
search is interpreted as “lack of evidence” by McHugh et al. [2013]. To support their argument,
the authors [McHugh et al., 2013] refer to a statement made by VanderLeest and Buter [2009].
This is a weak deduction because unless someone can define what number of empirical studies
is considered “sufficient”, this argument has no basis.

We believe that the “lack of evidence and guidance to support use of agile in regulatory

environments” is a general perception among the researchers. We also believe that most of
the available literature lacks detailed guidance on specific issues. One of the reasons could be
the confidential nature of regulated systems projects due to which the researchers are unable to
publish the project related details.

3.4.2 Organisational Culture and Training

Resistance to change the ways of working has been reported by several studies [Martins and
Gorschek, 2016, Miler and Gaida, 2019, Cinite and Duxbury, 2018]. People feel more confi-

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 52

dent about using a development method which they have the past experience and guidance for
[Islam and Storer, 2020b]. A “successful” method of the past is, sometimes, used as a stan-
dardised method for the future projects as well. The fear of failure, and lack of confidence
and guidance on how to apply a method often impede its application [Islam and Storer, 2020b].
The researchers [Notander et al., 2013, Kuchinke et al., 2014, Jonsson et al., 2012, Rottier and
Rodrigues, 2008, Carlson and Turner, 2013, Hajou et al., 2014] agree that one of the biggest
challenges behind the adoption of agile process in the companies is the resistance to its adop-
tion.

According to Shimoni [2017], using a new process is like moving from the known to the

unknown which could produce frustration and anxiety that manifests resistance. According to
Erwin and Garman [2010], not believing in the effectiveness of a new process is one of the
reasons behind change resistance in a company. This finding coincides with the findings of
various other studies on the use of agile in safety-critical system development [Hajou et al.,
2014, Carlson and Turner, 2013, Koski and Mikkonen, 2015, Jonsson et al., 2012, Lenberg
et al., 2020].

The analysis of the existing literature [Jonsson et al., 2012, Rottier and Rodrigues, 2008,
Carlson and Turner, 2013, Hajou et al., 2014, Carlson and Turner, 2013, Koski and Mikkonen,
2015, Jonsson et al., 2012, Lenberg et al., 2020] reveals that the risks which prevent the com-
panies from experimenting with a new process like agile include: the lack of guidance on the
practical use of agile in safety-critical system development, consequences of “improper” devel-
opment of safety-critical systems, and the time and effort involved in their development. Intro-
duction of a new process such as agile, into the companies developing safety-critical systems,
requires convincing and educating people about its potential benefits [Notander et al., 2013,
Kuchinke et al., 2014, Jonsson et al., 2012, Rottier and Rodrigues, 2008, Carlson and Turner,
2013, Hajou et al., 2014, Carlson and Turner, 2013, Koski and Mikkonen, 2015, Jonsson et al.,
2012, Lenberg et al., 2020].

According to Miler and Gaida [2019], the adoption of an agile process requires changing
the mindset. Miler and Gaida [2019] emphasise that the agile way of working is a particular

attitude or a way of thinking of the entire team. According to Notander et al. [2013], the organ-
isations must invest in agile trainings and focus on changing people’s attitude towards the agile
procedures. This also includes educating the customer about working in a collaborative agile en-
vironment [Jonsson et al., 2012]. One of the recommendations made by Kuchinke et al. [2014]
is training the developers to support validation and maintenance of the safety-critical systems in
an agile context.

3.4.3 Project Management

This section presents an analysis of the potential contracting issues with the projects developed
using agile methods. Please note that this section does not discuss the role of the customer. Focus

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 53

of this section is specifically on the issues related to the contracting process of agile projects.
The development life cycle of a project that is initiated and developed internally by an or-

ganisation is usually controlled internally. The project related decision making takes place at
the organisation’s own expense e.g., schedule negotiation, delays, change accommodation etc.
Adding more work automatically increases the cost and the schedule of the project. Normally,
when the projects are initiated and developed within the organisation, there is no external organ-
isation to sign a contract with. However, outsourcing or having an external customer typically
involves signing contracts at organisational level.

Outsourcing a software development task to a sub-contractor often requires a clear definition
of what is required [Turk et al., 2014]. The sub-contractor has to submit a clear plan for com-
pletion. The agreed plan for completion with formally agreed terms and conditions between the
parties, takes shape of a formal contract.

The traditional contracting environment, including the government contracts, follows a linear
model [Alleman et al., 2003]. It involves a step-wise completion of tasks, usually, without
the possibility of going back to the previous phase [Mergel et al., 2018]. Any change in the
functionality usually results in re-negotiation of the contract [Gerster and Dremel, 2019]. Also,
in a traditional model, the customer has to wait too long before the product delivery is made
[Mergel et al., 2018]. Agile software development approaches, however, “... involve creating,

testing, and improving technology products incrementally in short, iterative sprints” [Mergel
et al., 2018].

Agile approaches seem like a perfect solution for accommodation of change and early de-
livery, but there are problems with contracting a project which is to be developed using an agile
development model. Estimation of effort is one of the biggest challenges in agile [Rottier and
Rodrigues, 2008]. “It appears difficult to estimate effort through the ‘unstructured nature’ of ag-

ile methods. The amount of effort for delivering a feature seems to be underestimated” [Alleman
et al., 2003]. Also, since agile does not follow a formal plan, there is no alternative to reporting
progress-to-plan [Alleman et al., 2003].

We have noticed a lack of research on the topic of “agile contracts for the development

of safety-critical systems”. Very few [Russo et al., 2018, Turk et al., 2014, Baron and Louis,
2021] have discussed this issue briefly and suggested adaptations to the contracting process to
incorporate agile development of safety-critical systems. Russo et al. [2018] recommend using
Function Point Analysis techniques like Simple Function Points (SiFP) for effort estimation in
an agile project. They suggest Sprint-based contracts for calculating the economic value of the
effort determined by the Function Point Analysis. Baron and Louis [2021] seem to agree with
Russo et al. [2018] and also recommend using iteration-based contracts. Turk et al. [2014] has
suggested dividing a contract supporting agile development into two parts i.e., (i) fixed part: the
activities that must be carried out by the sub-contractor. It includes the criteria for accepting or
rejecting the modification; (i) variable part: the requirements that can vary within the scope and

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 54

boundaries defined in the “fixed part”.

3.4.4 Documentation

According to the researchers [Trektere et al., 2016, Notander et al., 2013, McHugh et al., 2014,
Heeager, 2014, Siddique and Hussein, 2014, Kruchten, 2013, Mehrfard and Hamou-Lhadj,
2011, Kuchinke et al., 2014, Shenvi, 2014, Mehrfard et al., 2010, Jonsson et al., 2012, Koski
and Mikkonen, 2015, Myklebust et al., 2014b, Hajou et al., 2014], agile methods do not support
heavy documentation, especially the documentation mandated by the regulatory standards. The
agile principle [Beck et al., 2001a] “working software over comprehensive documentation” is
commonly quoted as the basis of this conflict between agile methods and the regulatory stan-
dards. This principle is often interpreted as “documentation is discouraged in agile” [Ramesh
et al., 2010, Turk et al., 2005, Baron and Louis, 2021].

Agile gives priority to the important stuff, and the delay caused by the unnecessary things
such as documentation could be the reason behind the interpretation of this agile principle. Since
the pace of change in business is faster than the pace of updating the documents [S. Bose, 2010],
updating the document, every time a change occurs, causes delay. The issue becomes more evi-
dent in the case of safety-critical systems certification which involves production of comprehen-
sive documentary evidence. Heavy documentation makes the work “less agile” [Jonsson et al.,
2012]. The formal way of requirement specifications is also not considered “agile friendly”

[Rayside et al., 2009, Martins and Gorschek, 2016].
Several researchers [VanderLeest and Buter, 2009, Wils et al., 2006, Jonsson et al., 2012]

also draw a contrast between the iterative nature of agile and the certification artefacts which re-
quire looking at the system in its entirety. For example, DO-178C requires early completion and
approval of the Plan for Software Aspects of Certifications (PSAC). Later changes require up-
dating the PSAC and its re-approval by an FAA Designated Engineering Representative (DER)
[VanderLeest and Buter, 2009]. According to VanderLeest and Buter [2009], late introduction
of change in requirements in agile is no worse than waterfall. This problem is also reported by
Wils et al. [2006], Jonsson et al. [2012].

In reality, the agile principle “working software over comprehensive documentation” pro-
motes quick development and accommodation of change. Agile is not against documentation
and this principle is often misinterpreted [Baron and Louis, 2021]. Agile only discourages the
wasteful documentation [Baron and Louis, 2021]. Whereas, in a safety-critical system devel-
opment context, certification is a part of the working software without which, a safety-critical
system is unusable.

We believe that the agile principle “working software over comprehensive documentation”

has been misinterpreted for a long time. There is evidence of use of agile in the development
of airborne software [Chapman, 2016, Glas and Ziemer, 2009, Paige et al., 2011, Rayside et al.,
2009, Turk et al., 2005, Black et al., 2009, Ramesh et al., 2010, Cawley et al., 2010]. Even

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 55

formal specification, with few adaptations, is compatible with agile [Rayside et al., 2009, Black
et al., 2009]. A study by Baron and Louis [2021] discusses the internal surveys of over a hun-
dred industrial certification audits by a technical authority. The study [Baron and Louis, 2021]
is focused on the continuous integration of certification requirements in the software develop-
ment process. Baron and Louis [2021] argued that with agile, it is possible to maintain concise
records that ensure traceability. The authors recommend automating the documentation process.
According to Chapman [2016], automated documentation can reduce delay.

Chapman [2016] suggests building a high integrity deployment pipeline. The author de-
scribes this pipeline which implements an agile environment using four points. The first point
discusses the use of principled requirements engineering [Jackson, 2000], focusing initially on
non-functional requirements development of architecture, specification and associated satisfac-
tion arguments. The second point involves use of formal language for requirements. Third point
describes use of an evidence engine, “... combining static verification, continuous regression

testing, automated generation of documents and assurance evidence, and a cloud of virtual-

ized target platforms for integration and deployment testing”. The fourth point describes use of
well planned early iterations while the plans for later iterations are left open to accommodate
changes.

3.4.5 Regulatory Standards

Before discussing the applicability of agile in the regulatory environment and the potential con-
flicts between them, we need to understand the difference in the nature of the regulatory stan-
dards. Usually, the regulatory standards are classified by their scope i.e., generic vs. domain spe-
cific, but a better and a logical categorisation is provided by Notander et al. [2013]. The authors
[Notander et al., 2013] divide regulatory standards into two categories (i) means-prescriptive,
(ii) objective-prescriptive.

A means-prescriptive standard, e.g., ISO61508, focuses on the achievement of certain high-
level safety goals and typically provides the lists of methods and suggestions that the developers
would be forced to include in their development process. An objective-prescriptive standard on
the other hand, e.g., RTCA/DO-178C, defines the (low-level) objectives that should be reached,
but does not provide a description of how to reach them. High-level safety goals are achieved
when the objectives are fulfilled [Stålhane et al., 2013].

According to Notander et al. [2013], the means-prescriptive standards dictate traditional life
cycles, and the accommodation of agile is much more difficult in means-prescriptive standards.
Whereas, the objective-prescriptive standards do not put any restrictions on the use of agile
methods.

Several studies [Trektere et al., 2016, Abdelaziz et al., 2015, Stålhane et al., 2013, Mehrfard
et al., 2010, Jonsson et al., 2012, Stålhane et al., 2012, Wang and Wagner, 2016b, Notander et al.,
2013, Ge et al., 2010, Stålhane et al., 2013, Rottier and Rodrigues, 2008, Hajou et al., 2014], in

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 56

Agile Principle DO-178C Principle
Individuals and Interactions Processes and Tools
Working Software Comprehensive Documentation
Evolving Requirements via Customer Collaboration Rigorous Requirements Specification
Responding to Change Following a Plan

Figure 3.4: Potential conflicts between agile principles and DO-178C (Reproduced from [Coe
and Kulick, 2013])

this systematic literature review, used the statement “standards favour plan-driven approaches”

as one of the motivations for their studies, but none of them provides any empirical evidence for
this assertion. However, some of the above studies [Abdelaziz et al., 2015, Stålhane et al., 2013,
Mehrfard et al., 2010, Jonsson et al., 2012] discuss the potential conflicts between agile methods
and different regulatory standards.

Means-prescriptive standards need no further discussion since they dictate the processes and
the methods, and there is no possibility of incorporating other development methods than the
prescribed ones. However, we do need to take a look at the objective-prescriptive standards e.g.,
DO-178C and see if there are conflicts between agile methods and the objective-prescriptive
standards.

DO-178C [RTCA], is a regulatory standard for airborne software. Since it is an objective-
prescriptive standard, it does not favour a particular software development life cycle [Cawley
et al., 2010, Wils et al., 2006]. DO-178C provides a list of (total 71) objectives which need to
be met during the development of airborne software [Coe and Kulick, 2013].

Coe and Kulick [2013], in Figure 3.4, provide a list of potential conflicts between agile
and DO-178C [RTCA] certification requirements. Same conflicts were identified by other re-
searchers [Chapman, 2016, Glas and Ziemer, 2009, Ramesh et al., 2010, Turk et al., 2005, Mar-
tins and Gorschek, 2016, Wils et al., 2006, Cawley et al., 2010, Coe and Kulick, 2013, Cawley
et al., 2015, Marques and Cunha, 2013, Chenu, 2009, Boehm and Turner, 2003, Vuori, 2011].

The conflicts between the agile process and regulatory standards imply that agile methods
in their pure form and the regulatory standards do not go hand in hand [Stålhane et al., 2013].
Therefore, agile needs to be tailored and used in combination with other approaches e.g., Agile-
Planned [Boehm, 2002, Coe and Kulick, 2013, Boehm and Turner, 2003]. Cawley et al. [2010]
argue that the agile in combination with traditional approaches (e.g., waterfall) is the most used
and recommended approach.

Researchers [Chapman, 2016, Martins and Gorschek, 2016, Wils et al., 2006, Cawley et al.,
2010, Coe and Kulick, 2013, Cawley et al., 2015, Marques and Cunha, 2013, Chenu, 2009,
Boehm and Turner, 2003, Vuori, 2011] have also proposed various adaptations to agile for its
use in safety-critical systems development, but the methods proposed in the literature have failed
to gain acknowledgement at the industrial level despite having some evidence of success [Van-
derLeest and Buter, 2009]. One of the main reasons behind early mortality of these methods

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 57

could be the lack of empirical evidence to prove generalisability of these methods. Lack of val-
idation of studies is also reported by Martins and Gorschek [2016] in their systematic literature
review and recognised as the main reason behind early mortality of new the proposed methods.
Since the recommendations suggested by these studies are not validated nor the effectiveness
of these recommendations is reported, we are unable to analyse the usefulness of the results of
these studies.

Stålhane et al. [2013] point out the ambiguity in the language of the regulatory standards.
According to Stålhane et al. [2013], many important terms are used loosely in the standards e.g.,
Phase, Risks etc. A word in one standard means one thing and another in the other standard.
Different interpretations of a term can often mean different things. A study by de la Vara et al.
[2016] also reports this issue. According to de la Vara et al. [2016], the text in the safety stan-
dards can be ambiguous and inconsistent. The terminology varies across standards e.g., “work

products” in ISO 26262 vs. “data item” in DO-178C [de la Vara et al., 2016]. The inconsis-
tencies can hinder the comparison of the standards “...especially since there is often incomplete

conceptual overlap between safety-critical domains” [de la Vara et al., 2016]. Ambiguous ter-
minologies is one of the reasons behind the newer version of regulatory standard for airborne
software i.e., DO-178C [Spitzer et al., 2017]. Various terminologies e.g., “guidelines” were
unclear in DO-178B which were clarified and rephrased in DO-178C.

Several studies [Wang and Wagner, 2016b, Notander et al., 2013, Siddique and Hussein,
2014, Axelsson et al., 2016, Ge et al., 2010, Abdelaziz et al., 2015, Górski and Lukasiewicz,
2012, Kuchinke et al., 2014, Shenvi, 2014, Fitzgerald et al., 2013, Wang and Wagner, 2016a,
Hajou et al., 2014, Hanssen et al., 2016, McBride and Lepmets, 2016, Myklebust, 2008] point
out the conflict in the quality assurance activities of agile and the quality assurance requirements
mandated by the regulatory standards. Agile does not draw a distinction between the testers and
developers. The testing is performed by the developers in the agile teams [Wang and Wagner,
2016b, Notander et al., 2013, Siddique and Hussein, 2014, Axelsson et al., 2016]. Whereas, the
regulatory standards require the testing team to be independent. This not only conflicts with
the regulatory standards, but it is very difficult for an independent team to perform the testing
without the inherited knowledge of the project [Islam and Storer, 2020b].

3.4.6 Design and Architecture

Traditional methods favour end to end planning; therefore, a lot of effort is spent in creating
a long-term view while following traditional development life cycles. In the traditional devel-
opment life cycles, the accommodation of change is hard and expensive. The later the need
for change is discovered, the expensive it is to accommodate those changes. With a sequential
approach, the point of design review (the stage where the potential changes to the design are
reviewed) comes very late.

Agile methods, on the other hand, believe in taking small steps. Agile methods are flexible

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 58

because of their notion of dynamic planning. Agile offers evolutionary design while the reg-
ulatory standards mandate an upfront design which also serves as an input for hazard analysis
[Ge et al., 2010, Abdelaziz et al., 2015, Rottier and Rodrigues, 2008] in safety-critical systems.
If we look at the requirement of an upfront design, waterfall seems more suitable lifecycle for
regulated environments but Fitzgerald et al. [2013] believe that long-term view is a perception
which is often not fulfilled. We need to look at different dynamics of safety-critical systems,
including hazard analysis before considering agile methods.

Researchers [Myklebust et al., 2014a, Ge et al., 2010, Fitzgerald et al., 2013] argue that the
design should be “sufficient enough” to enable the hazard analysis. The question is: how much
upfront work is “sufficient” for a particular project [Ge et al., 2010, Chapman, 2016]?

Different hazard analysis techniques require different level of input information [Ge et al.,
2010, Abdelaziz et al., 2015]. “FMEA or HAZOP analysis, engineers not only need to know the

system structure, but also the information of the effect of a failure on other components, which

sometimes comes from a detailed design of components” [Ge et al., 2010, Abdelaziz et al., 2015,
Stephenson et al., 2006].

However, most of the information comes from experience of the safety engineers [Ge et al.,
2010, Abdelaziz et al., 2015]. Considering iterative nature of agile development, we could sup-
pose that we start with a minimum architectural layout and then update the hazard analysis at the
major milestones. This approach is considered inappropriate by Rottier and Rodrigues [Rottier
and Rodrigues, 2008] because the risk assessment (i.e., the second stage of safety engineering)
cannot be performed on the system components which are not well defined.

From the above information, we can infer that the (i) level of detail required in the design to
proceed with the hazard analysis in agile is not clear; and (ii) since the output of popular hazard
analysis techniques (e.g., FTA, HAZOP, FMEA etc) also involves creativity and experience of
the safety engineers, a complete upfront design does not guarantee a thorough hazard analysis.

3.5 Discussion

Several studies which use various research methods, on the use of agile in regulated environ-
ment, have been conducted in the past years. In a recent survey of the field, Heeager and
Nielsen [2018] reviewed 51 studies published over two decades (2001 – 2018). Heeager and
Nielsen found that of those studies, 10 were based on case studies and a further 5 were consid-
ered to be experience reports, such as Gary et al. [2011]. Another experience report not listed
by Heeager and Nielsen [2018] is the work by Chenu [2012].

Relatively few studies have developed conclusions based on detailed interviews with practi-
tioners. Of the existing research, McHugh et al. [2013] conducted interviews with practitioners
working on the development of medical devices. Notander et al. [2013] interviewed five engi-
neers at four different companies to understand the impact of increasing demands for flexibility

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 59

on established safety-critical development. Siddique and Hussein [2014] interviewed 21 indi-
viduals, each in different companies in Norway, to understand the practical choices made by
software engineers in choosing a development method. Reporting on then on-going interview-
based research, Stelzmann [2012] proposed a classification scheme for different safety-critical
contexts in which agile software development is being considered or applied. Hajou et al. [2015]
conducted 14 interviews with software developers in the pharmaceutical industry to understand
the reasons for the lack of adoption of agile software development in that context. In particular,
the authors concluded that the perceived risk of agility mitigated against its adoption.

A common theme in the work on applying agile software development in a safety-critical
context has been the need for adaptation of agile methods and practices to fit within the con-
straints of safety standards. For example, McHugh et al. [2013] suggested that incorporating
agile methods with existing plan-driven methods is the most favourable choice in the software
organisation they studied. To facilitate this, McHugh et al. propose a hybrid V model which
incorporates aspects of agile methods and activities from plan-driven methods.

A more extensive investigation of the integration of agile software development with safety-
critical systems has been developed in the SafeScrum method [Stålhane et al., 2012]. The orig-
inal motivation for this work was the integration of the Scrum method with the IEC 61508, a
high level standard for safety-critical systems. The key intuition in the approach is that safety
requirements change far less frequently and are far more certain than product requirements. To
accommodate this, the SafeScrum method (a) focuses only on software development within the
overall system engineering process; and (b) maintains separate Scrum backlogs for functional
and safety requirements.

Later work on SafeScrum extended the assessment of its compatibility with a variety of other
safety standards, such as in the petrochemical industry [Myklebust et al., 2016]. Other authors
have also considered extensions to the original SafeScrum method, including the integration of
change impact analysis into the agile change request lifecycle [Stålhane et al., 2014], safety
analysis [Wang and Wagner, 2016b] and configuration management [Stålhane and Myklebust,
2015].

A limitation of much of the work on SafeScrum is the lack of case studies or experience
reports, evaluating the method through industrial experience. However, Hanssen et al. [2016]
undertook a two year case study of applying SafeScrum to the development of a fire detection
system. As a consequence of the case study, the authors discovered the need to augment Safe-
Scrum with an embedded quality assurance role within the development team. The duration of
Hanssen et al.’s case study demonstrates the difficulty of conducting real world evaluations of
methods for safety-critical systems. Equally, the work demonstrates the importance of doing so
in order to identify necessary adaptations to theoretical process models.

The published research [Jonsson et al., 2012, McHugh et al., 2013, Wils et al., 2006, Chenu,
2012, Cordeiro et al., 2007, Wang and Wagner, 2016b] shows that there have been multiple

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 60

attempts to use agile methods in safety-critical environments. Many of these studies have dis-
cussed challenges and benefits of the use of agile methods in safety-critical system development.
However, much of the published literature on the application of agile software development to
safety-critical systems work is speculative, suggesting considerable uncertainty amongst prac-
titioners concerning how best to proceed in applying and adapting agile software development
in the context of safety-critical systems development. Also, the nature of adaptations to the
agile process [Siddique and Hussein, 2014, Wils et al., 2006, Axelsson et al., 2016, Goncalves
et al., 2015] differs from each other, showing that the researchers have been unable to reach
a consensus on the number and nature of additional activities in agile for the development of
safety-critical systems.

3.6 Threats to Validity

This section discusses the threats to validity of this systematic literature review. In this section,
we have discussed three types of validity threats i.e., construct, reliability, and external validity.

Construct validity threat

Construct validity is the appropriateness of the operationalisation of concepts being studied.
Construct validity threats for this systematic literature review on challenges related to the use of
agile methods in safety-critical system development may include:
Limited representation of studies: The selected sample of studies may not represent the wide
variety of industries, domains, or safety-critical systems in which agile methods are applied.
Limited representation of studies can potentially undermine the generalisability of the results.
Ambiguous definition of agile and safety-critical systems: The concepts and definitions of
“agile methods” and “safety-critical systems” may differ across the diverse range of published
literature. These terms may be interpreted in various ways which can introduce ambiguity.
Bias towards certain methodologies or perspectives: The inclusion/exclusion criteria used
during the study selection process may introduce a bias towards certain agile methodologies or
perspectives on safety-critical systems. This bias could limit the range of challenges or lead to
an over-representation of certain opinions.
Measurement bias: Different studies may have used different criteria to measure and report
the challenges related to the application of agile methods in safety-critical system development.
The inconsistencies amongst the selected studies in terms of studied samples, methods, analysis,
and conclusions can make it difficult to compare and synthesise the findings accurately.

Reliability Validity Threat

Reliability validity threats for the results from this systematic literature review may include:

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 61

Inter-rater reliability: The involvement of more than one reviewer in the study selection pro-
cess could lead to different interpretations of the findings and exclusion/inclusion criteria. This
can introduce inconsistencies and potentially biased results.
Data extraction errors: Erroneous or partial data extraction from the selected studies can com-
promise the reliability of a systematic literature review. Discrepancies in the extraction process
can impact the validity and reliability of the findings. Moreover, different opinions on the quality
of a study can lead to inconsistencies in the evaluation of the selected studies.

External Validity Threat:

There may be a risk of publication bias, where studies with significant or positive results are
more likely to be published or easily accessible compared to studies with negative results. In
this case, if the systematic literature review only includes published studies, it may not capture
the complete range of challenges related to the application of agile methods in safety-critical
system development. This bias can impact the general understanding of challenges related to
the use of agile methods in safety-critical systems.

Addressing Threats to Validity

To address these threats, we ensured a comprehensive search strategy that included multiple
online databases. The concepts of agile methods and safety-critical systems were clearly defined
at the start of the review and the search string used for searching the online databases was
extracted from these concepts. The exclusion/inclusion criteria were defined clearly, so that
the study selection process is transparent and replicable. An exclusion criteria was defined to
identify the studies with non-significant results.

There were multiple reviewers involved in the selection process (i.e., the author of this the-
sis, his supervisor, and another colleague). A consensus was reached together with improved
inter-rater reliability. Additionally, conducting regular meetings and discussions among review-
ers to clarify any uncertainties or inconsistencies enhanced the reliability of the study selection.
Careful attention was paid to the data extraction process, ensuring that all relevant studies were
included accurately. Documenting the selection and assessment processes in detail further sup-
ported the reliability and reproducibility of the systematic literature review. By doing so, we
enhanced the construct validity of the review and provided more robust insights into the chal-
lenges in this context.

3.7 Summary

This chapter provides a theoretical background for the next chapter. This chapter consists of
a systematic literature review on the use of agile development for large scale safety-critical

CHAPTER 3. SLR ON AGILE METHODS IN SAFETY CRITICAL SYSTEMS 62

systems. Fifty-six studies were selected for the literature review. From the literature review, we
concluded that the software industry is in transition from the traditional development life cycles
to flexible and earlier development. Increasing demand for earlier delivery of a working software
has encouraged the organisations to consider agile methods for development. However, agile
methods need to be adapted according to the need of the system under development. For this
purpose, different researchers have suggested different adaptations for example, hybrid model.

Despite the attempts to use agile methods for the development of large scale safety-critical
systems, there is a lack of empirical research and guidance on the said topic. The published
research literature suggests uncertainty amongst the research community over the use of agile
methods for the development of safety-critical systems. Therefore, as a next step, we decided to
explore the use of agile methods for the development of safety-critical systems in an industrial
setting. The next chapter contains the details of our exploratory study in the industry.

Chapter 4

A Case Study of Agile Software
Development for Safety-Critical Systems
Projects

A key finding from the previous chapter was lack of empirical research in the use of agile meth-
ods in large scale safety-critical systems. This led us to explore the use of agile in safety-critical
systems in a real world setting. This chapter explores the introduction of agile software de-
velopment within an avionics company engaged in safety-critical system engineering. There is
increasing pressure throughout the software industry for development efforts to adopt agile soft-
ware development in order to respond more rapidly to changing requirements and make more
frequent deliveries of systems to customers for review and integration. This pressure is also be-
ing experienced in safety-critical industries, where release cycles on typically large and complex
systems may run to several years on projects spanning decades. However, safety-critical system
developments are normally highly regulated, which may constrain the adoption of agile software
development or require adaptation of selected methods or practices. To investigate this potential
conflict, we conducted a series of interviews with practitioners in a company, exploring their ex-
periences of adopting agile software development and the challenges encountered. This chapter
also explores the opportunities for altering the existing software process in the company to bet-
ter fit agile software development to the constraints of software development for safety-critical
systems. Please note that the contents of this chapter were published in a journal paper∗.

This chapter is structured as follows: Section 4.1 provides an overview of the objectives of
this chapter. Section 4.2 describes the research method for this study including the design of the
semi-structured interview instrument and validation of the findings in a review workshop with
the company. Section 4.3 provides an overview of the company, and how it approaches sys-
tems engineering, giving an understanding of the context in which agile software development
is employed. Section 4.4 summarises the use of agile software development, including specific

∗https://www.sciencedirect.com/science/article/abs/pii/S0951832018308597

63

https://www.sciencedirect.com/science/article/abs/pii/S0951832018308597

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 64

practices, to date within the company, and how these have been fitted into the existing software
development process. Section 4.5 discusses the challenges discovered from the interviews. Sec-
tion 4.6 discusses the threats to validity of this study. Section 4.7 presents the summary of this
chapter.

4.1 Objectives of the Exploratory Case Study

The practice of adapting and customising methods and practices to suit local needs has been
reported for other software domains [Fitzgerald et al., 2006, Wang and Wagner, 2016b, Conboy,
2009]. However, there has been a very little reported in the literature of the experience of
practitioners who have applied necessary adaptations to agile methods or practices in the context
of safety critical system development i.e., empirical research on application of agile methods for
the development of safety-critical systems. Therefore, there are many open questions about the
selection of particular adaptations and their efficacy in different contexts.

To continue to address this gap, we conducted a series of semi-structured interviews with
software engineers working for a large avionics company in the United Kingdom (referred to
as ‘the company’). The company as a whole is engaged in a variety of projects for external
customers, typically comprising both hardware and software development for safety critical sys-
tems. The purpose of the study was to learn about the company’s experiences in the application
of agile software development to safety-critical systems projects and to gain a deeper insight
into the difficulties experienced. Therefore, the objectives within the context of the exploratory
case study in this chapter were:

• Explore agile methods and practices employed in the context of software development for
safety-critical systems.

• Explore the challenges in employing agile methods and practices in the context of software
development for safety-critical systems.

Addressing the first objective provides an understanding of the use of agile software devel-
opment within the company. Addressing the second objective allows for an exploration of the
impact of agile software development from the perspectives of the practitioners. We also seek to
understand what challenges they encountered when employing different practices within agile
methods, which practices were rejected and adapted, and the rationale for doing so. Due to the
exploratory nature of the research, a case study approach was taken [Runeson and Höst, 2009].
An initial interview with stakeholders at the company was conducted as a scoping exercise. Fol-
lowing this, a semi-structured interview instrument was developed following Wengraf’s (2001)
method to ensure traceability between research questions and data gathered. Findings from this
stage were validated in a full-day workshop with wider group of participants.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 65

4.2 Interviews

The company that is the focus of this study is a large multi-national that develops products in
the avionics sector. The company is engaged in a number of projects concerning the design and
development of safety-critical systems, comprising both hardware and software. As discussed
above, the company had begun to experiment with the use of elements of the Scrum process
and other agile practices. During this period, the researchers were invited to conduct interviews
with a number of the company’s employees who had been involved in this transition process.
The purpose of this study was to explore and understand the application of agile software de-
velopment to the development of software for safety-critical systems from the perspective of
practitioners. The study sought to identify both: the benefits recognised by practitioners in us-
ing agile methods and practices in this context and the challenges and limitations experienced.
We conducted a series of interviews with practitioners at the company.

Since this was an exploratory study, and the researchers did not have prior experience of the
company’s work, the first stage of the research process was an unstructured interview (Interview
0) with two senior employees of the company. One of these participants, who also participated
in all the following interviews, was the team lead of a systems team, which was responsible for
elaborating requirements and disseminating these to other teams within a larger project. The
other participant was the Head of Software Engineering, who was responsible for the overall
software development function of the company. The interview meeting continued for 90 min-
utes. This interview was conducted in person, with one of the researchers taking extensive notes
during the interview. A memo was prepared summarising the answers to the questions asked.
This memo was validated by one of the interviewees during a follow-up discussion. The answers
to this initial interview provided guidance to help scope the next stage of our research.

Following this stage, semi-structured interviews were used to gather data. This approach
offers freedom of expression to the participants, and open-ended questions prompt discussion
aiding the interviewer to explore a particular theme. Following McHugh et al. [2013], Wen-
graf’s guidelines were used to construct the interview instrument [Wengraf, 2001]. Figure 4.1
illustrates how Wengraf’s method was applied to the design of the semi-structured interviews.

The Research Purpose (RP), in this case: “Learn about application of agile software de-

velopment to software development for safety-critical systems and to gain a deeper insight into

difficulties experienced when developing avionics systems using agile methods and practices.”.
In the current work, the RP is refined into two CRQs. Each CRQ is divided into a number of
Theory Questions (TQ), specific propositions to be investigated during the conduct of the study.
For example, CRQ1 is refined into two TQs, including “TQ1.1 What agile methods are employed

in practice?”. To answer each TQ, a number of interview questions that will be presented to the
participants are defined. The figure shows a sample of interview questions for TQ1, with the full
interview instrument available for review [Islam and Storer, 2020a]. This approach provides a
traceable hierarchy and rationale behind every interview question.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 66

R
es

ea
rc

h
Pu

rp
os

e
C

en
tr

al
R

es
ea

rc
h

Q
ue

st
io

ns
T

he
or

y
Q

ue
st

io
ns

E
xa

m
pl

e
In

te
rv

ie
w

Q
ue

st
io

ns

L
ea

rn
ab

ou
tt

he
ap

pl
ic

at
io

n
of

ag
ile

so
ft

w
ar

e
de

ve
lo

pm
en

tt
o

so
ft

w
ar

e
de

ve
lo

pm
en

tf
or

sa
fe

ty
-c

ri
tic

al
sy

st
em

s
an

d
to

ga
in

a
de

ep
er

in
si

gh
ti

nt
o

di
ffi

cu
lti

es
ex

pe
ri

en
ce

d
w

he
n

de
ve

lo
pi

ng
av

io
ni

cs
sy

st
em

s
us

in
g

ag
ile

m
et

ho
ds

an
d

pr
ac

tic
es

.

1.
W

ha
ta

sp
ec

ts
of

ag
ile

m
et

ho
ds

an
d

pr
ac

tic
es

ar
e

be
in

g
em

pl
oy

ed
in

th
e

co
nt

ex
to

fs
of

tw
ar

e
de

ve
lo

pm
en

tf
or

sa
fe

ty
-c

ri
tic

al
sy

st
em

s?

1.
W

ha
ta

gi
le

m
et

ho
ds

an
d

pr
ac

tic
es

ar
e

em
pl

oy
ed

?
C

us
to

m
er

In
vo

lv
em

en
t6

.A
re

m
ul

tip
le

re
le

as
es

de
liv

er
ed

to
th

e
cu

st
om

er
du

ri
ng

a
pr

oj
ec

t?

2.
W

ha
tc

us
to

m
iz

at
io

ns
ha

ve
th

ey
m

ad
e

to
th

e
m

et
ho

d
an

d
pr

ac
tic

es
th

ey
ar

e
em

pl
oy

in
g?

R
eq

ui
re

m
en

ts
9.

H
ow

ar
e

re
qu

ir
em

en
ts

m
an

ag
ed

du
ri

ng
el

ab
or

at
io

n/
ch

an
ge

/e
vo

lu
tio

n?

2.
W

ha
ta

re
th

e
ch

al
le

ng
es

in
em

pl
oy

in
g

ag
ile

m
et

ho
ds

an
d

pr
ac

tic
es

in
th

e
co

nt
ex

t
of

so
ft

w
ar

e
de

ve
lo

pm
en

tf
or

sa
fe

ty
-c

ri
tic

al
sy

st
em

s?

3.
W

ha
tb

en
efi

ts
di

d
th

ey
ex

pe
ct

fr
om

ag
ile

so
ft

w
ar

e
de

ve
lo

pm
en

t?

R
eq

ui
re

m
en

ts
4.

W
ha

tp
ro

po
rt

io
n

of
th

e
re

qu
ir

em
en

ts
sp

ec
ifi

ca
tio

n
re

qu
ir

es
ch

an
ge

?

4.
W

ha
tb

en
efi

ts
w

er
e

th
ey

ab
le

an
d

no
ta

bl
e

to
ac

hi
ev

e?
R

eq
ui

re
m

en
ts

10
.H

ow
of

te
n

ar
e

re
qu

ir
em

en
ts

re
vi

ew
ed

?
H

ow
is

th
is

do
ne

?

5.
W

ha
ta

re
th

e
po

te
nt

ia
l

co
nfl

ic
ts

of
ag

ile
so

ft
w

ar
e

de
ve

lo
pm

en
tw

ith
re

gu
la

to
ry

st
an

da
rd

(s
)(

i.e
.D

O
-1

78
C

)?

Q
ua

lit
y

A
ss

ur
an

ce
4.

H
ow

do
es

ce
rt

ifi
ca

tio
n

dr
iv

e
qu

al
ity

as
su

ra
nc

e
pr

ac
tic

es
?

Fi
gu

re
4.

1:
R

es
ea

rc
h

qu
es

tio
n

co
ns

tr
uc

tio
n

pr
oc

es
s

fo
llo

w
in

g
W

en
gr

af
’s

m
et

ho
d

[W
en

gr
af

,
20

01
]

fo
r

th
e

in
te

rv
ie

w
in

st
ru

m
en

t
us

ed
in

th
e

A
vi

on
ic

s
C

om
pa

ny
.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 67

Participant and Role Experience of Agile
P1: Lead software
engineer

Using agile and practices within current team;
experience of using agile on previous projects

P2: Lead software
engineer

Experience of using agile software development
in previous projects; Considering the use in
current project

P3: Deputy lead software
engineer

Using waterfall

P4: Lead software
engineer

Using waterfall

P5: Systems team lead Using a hybrid model (water-scrum-fall)

Figure 4.2: Summary of Interview Participants

Once an initial version of the interview instrument was prepared, it was validated by an
independent academic expert who did not have any involvement in the research. The validator
was contacted by email to arrange a teleconference during which all questions in the interview
instrument were reviewed. The validator advised altering the order of questions to facilitate
the interview process but did not recommend changing the content of any questions. A series
of mock interviews were also conducted with non-participants in the study to familiarise the
researchers with the structure of the interview instrument and to test the timing and duration of
the interviews.

Four interviews were conducted during four sessions. Our intention was to gather data from
multiple perspectives within the company, creating a broader understanding of the context of
this chapter. Interviews were conducted with five practitioners (Participants P1-P5) with differ-
ent experiences, expertise, and roles. These experiences included acting as a project manager,
requirements engineer, software developer and a member of an integration team. The fifth par-
ticipant, P5, was a systems team lead and participated in all the interviews. The first four inter-
viewees were working on three different projects within the company. The first team had some
experience of employing agile software development within their projects whereas the second
software team was considering its use because they wanted to be able to deliver more frequent
releases. In both cases, the participants interviewed had used an agile method and associated
practices in their previous projects within the company. However, the third software team was
reluctant to adopt agile software development and wanted to retain their existing plan based
process, which resembled Waterfall [Benington, 1983]. The third team felt that they worked
effectively within this process and although aware of the use of agile software development
elsewhere within the company, did not see the need to begin introducing an agile method or
practices to their own software process. All the participants, including the ones with experi-
ence of agile software development within the company, worked on avionics related projects
requiring D178-C certification. A summary of the interview participants is presented in Figure
4.2.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 68

The approximate duration for each interview was 90 minutes. Interviews were transcribed
and sent to the participants for validation, permitting participants to make additions or clari-
fications. After getting verbal permission from the participants, the transcripts were used for
analysis. The transcripts from the interviews were then analysed to answer the theory questions.
The analysis of the gathered data is also performed by using Wengraf [2001]’s guidelines, using
a bottom-up approach to answer the questions at each level.

For the analysis, answers to the questions were gradually aggregated at each stage in the
hierarchy. A table was created similar to Figure 4.1 for this purpose. Answers to every interview
question from all participants were pasted in the Answer column next to the respective interview
question. Answers to every group of IQ relating to each Theory Question were then merged to
form a story. The group of Interview Questions relating to each Theory Question was deleted
such that each Theory Question had a descriptive answer. The same process was repeated again
to find answers to CRQs.

The descriptive answers to each CRQ were reviewed by the authors independently, and the
issues reported in them were highlighted. The notes were compared afterwards in a meeting to
discuss the discovered issues. Eleven challenges were identified during this data analysis. These
results were presented to a group of people from the company for validation. The participants
in the workshop validated all the challenges identified during the interviews, with the exception
of one. In addition, the participants of the meeting raised three new challenges which were not
discovered during semi-structured interviews. All fourteen of these challenges are discussed in
Section 4.5. As a result, we also gained an understanding of the factors that directly or indirectly
affect and contribute to the actual and perceived benefits of agile software development within
the company. At the end, the findings from the interviews were mapped to findings in the
literature. Note that where we use quotations below to illustrate a challenge it is sometimes
necessary to anonymise some of the topics to preserve confidentiality. All the work described in
this section took place between March 2017 and March 2018.

4.3 Overview of Software Development in the Company

This section draws on the analysis of the answers to the interview questions to develop a descrip-
tion of the structure and process for software development used by the company. The descrip-
tion below provides the context for the discussion of challenges which were identified during
the interviews and discussed in Section 4.5. Each theme discussed below was identified in the
interviews as having an impact on the introduction of agile practices to the software teams. The
Section begins with an overview of the a typical project team structure, organised to accommo-
date both hardware and software development processes. The section then describes the overall

software development process within the company and where agile software development has
been adopted within individual sub-teams. Next, the section describes the relationship between

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 69

a typical project in the company and a complex network of project customers. The next sec-
tion reviews the requirements management process, showing how requirements derived for the
overall project are communicated to the software teams and sub-teams. Finally, the process of
delivering and certification for products according to safety standards is described.

4.3.1 Project Team Structure

The size of project teams within the company varies considerably, typically between 50 and 200
people. Within a project, a software development team (SDT) itself typically comprised of 20 to
35 people, with the rest of the project team working on different other components or functions
within the project, including the systems integration team, hardware, firmware, software, safety,
flight trials, configuration and the management team.

The SDT has its own organisational structure. The overall team has a small management
unit, comprising a lead software engineer, deputy lead software engineer, program manager and
coordinator. The lead software engineer and deputy lead software engineer share technical and
managerial responsibilities for the overall project. These include the overall software lifecycle,
comprising requirements, definition, design, software implementation, quality assurance, certi-
fication and delivery. The lead software engineer is also responsible for customer liaison and
has sign-off authority for documentation and software changes. The lead software engineer is
also responsible for assigning responsibilities to individual software sub-teams. The software
program manager has responsibility for project planning within the software team and resource
allocation. Finally, the software coordinator is responsible for maintaining documentation, for
example, meeting minutes.

A software team is typically divided into a number of sub-teams, which specialises in a
particular functional aspect of the software project and consists of either four or five people.
Each sub-team has a sub-team leader, who is expected to be able to run a full lifecycle including
high level design and requirements analysis within their area of expertise. The sub-team leads
also act as functional champions because of their expertise in some area of functionality. The
sub-team leaders typically have 15 to 30 years of experience. Other members of the team have
different level of experience, from recent graduates to 20-30 years of experience.

4.3.2 Development Process

Most of the projects within the company, including the participants’ current projects, are planned
to run for several years and are divided up into a number of phases with each phase intended to
deliver further new functionality on the product, as agreed with the customer(s). The duration of
a phase varies from project to project. In some projects, a phase is between four (4) and six (6)
months and in others, a phase is between one (1) year and eighteen (18) months. Each phase is
allocated a number of requirements to be implemented, agreed with the project customer. At the

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 70

end of each successful phase, a delivery is made to the customer comprising (in the ideal case)
the features of the requirements that were originally agreed upon.

A typical phase is illustrated in Figure 4.3. Requirements are created in the IBM DOORS
documentation tool by the systems team and later exported into the IBM Rhapsody modelling
tool used by the requirements analysis sub-team within the SDT. The requirements analysis
team translates the requirements into a high level software architecture. During this process,
the software team and systems team are in constant communication, due to the need to further
negotiate and clarify the requirements. Once the requirements and architecture are agreed upon,
they are allocated to different sub-teams by the requirements manager. Within each sub-team,
the company allows some flexibility with regard to the software process, for example, with
some sub-teams using a Waterfall software process within a single phase and others applying
the Scrum method. Consequently, one participant (P2) called their software process “water-

scrum-fall”, as Scrum was inserted into the middle of the company’s overall project lifecycle.
Towards the end of a phase, different functions of the software are packaged into an integrated
software release. The software is delivered to the integration team to develop an overall delivery
release to the project customer.

There is a set practice of having a weekly technical and management meeting and a monthly
software team meeting. Minutes and actions are captured at the meetings and distributed only to
the relevant people. Other than the formal meetings, spoken/face-to-face communication is the
main type of interaction that takes place between the software team and other teams. Within each
sub-team, members are co-located and interviewees report that the culture within the company
encourages workplace interaction.

4.3.3 Project Customers

From the perspective of a project software team, the relationship with the project customer was
viewed as complex, with the project actually having several ‘layers’ of customer (Figure 4.4).
The systems team acts as the most immediate customer for the software team, providing the
requirements specification (recall Figure 4.3). In turn, the systems team manages the relationship
with the project’s immediate external customer. The systems team is therefore responsible for
gathering requirements from the external customer. As the company may be part of a larger
project consortium, the external customer may itself also have a further external customer who
will have a significant influence on the direction of the project. Alternatively, the system under
development may have several direct customers. In all these cases the software team may find
themselves interacting less frequently with these stakeholders, or doing so through informal
communication mechanisms, indicated by the dashed arrows in Figure 4.4.

One of the interview participants (P5) described this as “a very complex stakeholder rela-

tionship in terms of lots of people with different views and influences.” The customer has a
certain delivery schedule which has the main influence over the overall schedule. The interview

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 71

Software Team

Requirements
Analysis Team

Sub
team

Sub
team

Sub
team

Sub
team

Integrated
Software
Release

Software
Architecture

Integration
Team

Requirements

Firmware
Team

Hardware
Team

Delivered
Release

Systems
Team

Software
Requirements

Figure 4.3: A typical phase of a project from the perspective of the Software Team

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 72

External

Customer

External

Customer

External

Customer

Project

Consortium

Software

Team

Systems

Team

External

Customer

Figure 4.4: Layers of Customers. Solid arrows represent formal lines of communication. Dashed
arrows represent informal or infrequent lines of communication.

participants reported that in the past, the overall project management team decided the project
schedule, but now the software team also gives their input on tasks and schedule. Although the
wider project management team sets the major milestones in agreement with the external cus-
tomer, the software teams set their own milestones within these boundaries. This gives the team
members a sense of ownership and responsibility. Agreed delivery dates are then passed onto
the external customers. Normally, the software team would involve more people if there is a risk
of missing the delivery date, but if the schedule needs to be changed, it is done after negotiation
with the external customer. Final decision about changes to a schedule is made by the Software
Function lead.

For the software team, the “customer” is primarily the project’s systems team, who parti-
tions and allocates requirements to teams within the project. Consequently, the systems team is
usually one or two delivery phases ahead of a software team. For example, the systems team
will be preparing requirements for the second or third phase while the software team is working
on the first phase. The main involvement of a systems team is in the beginning (elaborating
requirements) and at the end (completing integration) of each phase. A systems team does not
participate in the feedback reviews regularly, but if there is a very complex task (a complex
algorithm to be implemented, for example), they would get involved. The systems team also
provides inputs for acceptance testing.

The interview participants reported that in the past, their software team has had ready access
to the systems team, who can be approached on a needs basis. However, there is no pre-defined
way of soliciting feedback from the respective systems team. Rather, it is mostly informal,
whenever needed. Conversely, gate reviews and interim reviews are formally performed with
the external customer (representatives). Normally, it takes more than six weeks to get feedback
on a delivery as the customer requires this time to test the new features on the integrated system.
Certification also delays delivery sometimes.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 73

4.3.4 Requirements Management

Requirements are analysed and refined at the start of each iteration. At the end of requirements
analysis phase of each iteration, the requirements are reviewed by a panel which involves the
software team lead and software engineers. Requirement specifications are delivered to the soft-
ware teams in textual form with some supporting UML diagrams to help the engineers under-
stand the requirements. Requirements are managed through the IBM requirements management
application, DOORS. The interview participants reported that requirements analysis and decom-
position is a challenge and depends on an engineer’s familiarity and experience with the nature
of task to be performed well. There is no typical number of requirements for a phase. The
average number of requirements per iteration is unknown because it depends upon the amount
of work required to meet a particular requirement, due to the unequal size of requirements.

One software team had experimented with converting requirements into more formal struc-
tured text. They converted the requirements from free text into a structured Z notation. How-
ever, one participant (P1) reported that this turned out to be a “disaster”. According to P1, the
customer reported their displeasure with the transformed requirements because they were less
readable than the original.

The interview participants reported that requirements change was experienced in all projects.
One participant estimated that 10% of the requirements changed throughout the software life-
cycle. Changes were reported due to a variety of sources, including requests from customers,
the discovery of conflicts between the architecture and requirements during implementation or
the need for further requirements elaboration or additional scope. The need for a change in the
requirements can be discovered at any stage from requirements analysis to delivery. Participants
also reported that the discovery of requirements changes often necessitated rework or coordina-
tion with other teams in the project to assess impact, particularly the project’s systems team. It
was also observed that requirements tended to stabilise towards the end of the project.

4.3.5 Product Integration and Certification

Integration and certification is performed iteratively, beginning within the software team, be-
fore an entire product release is provided to the customer. Certification occurs when a formal

release is due to be delivered to the customer. Also, an integral part of the integration pro-
cess is the preparation of supplementary documentation to support certification processes. This
documentation includes requirements specifications, risk management plans, accomplishment
summaries, release information and high level and subsystem design documents.

Software teams manage all their documentation and design models locally using the Serena
Dimensions configuration management tool and generally only have visibility of other teams’
documentation during the integration and certification process. Documentation is reviewed
whenever a significant change is made as well as during the certification process. Documen-

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 74

tation is formally reviewed during a lifecycle in the appropriate phase. For example, test reports
will be reviewed in testing.

More recently, projects have used a practice of delivering engineering releases as well as the
end of phase formal releases. Although these are releases that are provided to the customer, they
are done so in order to generate feedback and do not undergo the whole certification process.

The participants reported that some visibility of progress is lost during the integration pro-
cess. This happens because during the integration process, there are many other ways of track-
ing progress, and it is possible that software team members do not update internal issue tracking
(such as Jira) because this creates duplication of work. Moreover, if a problem arises in integra-
tion, it is recorded via a project wide defects recording tool, and the respective software team
involves the people they need immediately in the task. Thus the benefits of internal progress
tracking within the team are lost during integration.

4.4 Use of Agile Software Development

This section discusses the extent to which the company has so far used agile practices, building
upon the Section 4.3 to meet the first objective of this chapter. Each team has some flexibility in
choice of software process, depending on the nature of the overall project, with the final selection
of lifecycle being made by a team’s lead software engineer. The company has developed a series
of questions that guide the selection of a software process. Historically, teams have typically
employed Waterfall or an iterative process because of the duration of the projects.

Two of the interviewees had previously worked in software teams that employed agile meth-
ods. In their current projects, one participant had also begun employing elements of Scrum,
several months prior to the interviews. Several motivations for this were given during the course
of the interviews:

• The need to speed up delivery times and produce a series of phased releases for the cus-
tomer. The second team reported that this goal had not been reached yet, although the first
team found employing aspects of agile methods had resulted in significant benefits. One
participant (P5) commented that they wanted to be “...giving the customer many more re-

leases”. Another participant (P3) with no experience of using agile software development,
while expressing his expectation from its adoption, emphasized the need to deliver more
frequently “...we would be able to provide the customer with more frequent deliveries of

the software”.

• Improving communication within the software team. One interviewee (P1) reported that
“...we wanted more visibility in the project i.e. who is doing what?, how many tasks have

been completed?, estimates, performance and list of completed jobs etc.” Tools like Jira
Kanban boards were reported as helpful in this regard.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 75

• Improving team member engagement with the coordination of the software project. Free-
dom to select one’s own tasks has prompted a sense of responsibility among team mem-
bers. While expressing benefits of using Scrum, a participant (P1) said “The level of

engagement of some of my engineers is much better... That is the massive difference, my

teams are working much better.”

• Earlier discovery of problems. The interviewees reported that problems were often dis-
covered late during integration, requiring more costly rework. One participant (P1) while
talking about reasons of adopting agile software development commented “...not letting

things get too far before realising its gone wrong. It’s that visibility thing. It’s about know-

ing about problems sooner”. Another participant (P3) who did not have any experience
of using agile software development, while discussing the reasons seen for using agile in
other projects, said “...so we get feedback earlier.”

The Scrum method itself had been selected by these teams for this part of the process because
it was perceived as the de facto industry standard, and within the scope of a sub-team, did
not require senior management support to allow the experiment. At the time when interviews
were being conducted, the organisation had not undertaken significant Scrum training for its
personnel. Rather, individual teams had chosen to adopt agile methods and practices within
their own parts of a wider project.

Each team has a scrum master responsible for coordination of activity. Project planning is
organised into a series of sprints with associated planned releases, with each sprint typically
lasting one or two weeks. The team creates a plan at the start of each sprint, using a Jira or
Kanban issue board to track progress. The scrum master begins by calculating the available
effort in terms of story points in the sprint based on team size and availability. The teams do
a “T-shirt size” estimation of the tasks and record this on Jira boards. Numerical information
is extracted with the help of a formula from T-shirt estimation and entered into a Microsoft
Project plan for long term planning. Items from the backlog are then selected for completion
and allocated to the sprint.

The interviewees reported that the first and second teams follow the daily stand-up ceremony
to facilitate communication. In the second software team, the lead software engineer acts as the
product owner, so the team also conducts customer demonstrations. However, the first software
team does not have customer demonstrations because they do not have a product owner within
the team. Customer demonstrations are also interpreted as something that induces a sense of
failure or inability to finish the task on time, by the first software team we interviewed. Ac-
cording to the first software team lead (P1) “...at times the teams don’t feel failure, and I know

that meeting (customer demonstration) helps with the feeling of failure, which would be nice

sometimes...It helps with building reasonable pressure on the team member.” The interviewee
suggested that the first software team lead would rather have a ‘mock’ meeting with another

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 76

internal team than the external customer because they have a very formal relationship with the
customer with whom the team feels unable to discuss delays. Neither of the two software teams
currently conduct retrospectives. It was stated that the first team does not see the value in it be-
cause they are already monitoring progress through Jira boards. Therefore, they do not see the
need of having a separate meeting for looking at previous performance. Separately, the second
team reported that they had experimented with retrospectives. They reported finding the number
of potential process improvements to consider to be overwhelming and so had abandoned them
until additional Scrum training could be completed. However, the available literature advocates
conducting retrospectives. For example, Kasauli et al. [2018a] performed a mapping study on
the use of agile in safety-critical systems development. The authors conducted a workshop with
experts from six large Swedish product development companies to identify critical aspects in
this topic which were to be further investigated. Then as a next step, the authors performed
a systematic literature review during which they selected 34 studies for further analysis. Ac-
cording to one of their findings, sprint planning combined with retrospective helps in improving
estimation in safety-critical system development.

The team members are encouraged to communicate and help each other, and use this as a
means of learning. Pair programming is viewed only as a form of mentoring in the organisation
and people have different opinions about it. Pair programming is found to be ineffective and
a time wasting activity by one of the participants because it has been observed that the weak
member does not learn from it, and mostly, the stronger member takes the keyboard. Accord-
ing to the lead software engineer (P1) “...someone always takes a back seat while the stronger

member takes the keyboard.” Others take pair programming purely as a way to “help each other

out.” However, this negative opinion about pair programming strongly contradicts with what
is reported in the literature. The researchers [Williams and Kessler, 2003, Chong et al., 2005,
Hannay et al., 2009, Jones and Fleming, 2013] agree that pair programming not only improves
productivity and code quality but provides a learning opportunity to the “pair”. According to
Williams and Kessler [2003], pair programming involves assumption of roles i.e., a driver and
a navigator. They switch roles periodically. Results from an experimental study by Jones and
Fleming [2013], show that pair programming improves technical skills along with production of
high quality code in a relatively shorter amount of time. In order to understand the circumstances
which led to interviewees’ negative opinion about pair programming, we need to observe their
pair programming sessions in a future study perhaps.

Despite the perceived benefits, participants P1 and P2 also reported drawbacks of employing
agile software development. First, the team has discovered that applying an agile philosophy to
design is creating rework because short term design decisions are later discovered to be incom-
patible with the overall product design, “...this is because the teams think, since they are working

agile, they are concerned (only) with the part they are working on.” The Lead Software Engi-
neer (P1) for the first team further suggested that the team needs some “forward thinking”, for

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 77

example, to anticipate the need for extension points in design. The first software lead engineer
felt that the Waterfall process helps with this issue by encouraging a more holistic approach to
design.

The third team was using a Waterfall process, rather than an agile method. When we asked
them if they would consider applying agile software development in the future, several reasons
were given for not doing so. First, the third team believed that agile methods and practices are
not suitable for projects where requirements are uncertain or volatile. One of the Lead Software
Engineers (P4) said “I think one of the reasons we‘ve not gone agile is experience. You know

we‘re experienced with the lifecycles that we follow.” This was a common reply from the team
members who were reluctant to use agile software development. The project they worked on was
for a new product, but they based their software process on that for a long standing (more than
20 years) project within the company, “...it used fairly similar processes all the way through.

So for us on the new product it made sense to stick with the non-risky strategy of going with

what we‘d done previously. We know that process works, we know, what we‘re going to get out

of it (P4).” We believe that there were two main factors behind the teams’ reluctance to use
agile i.e., (i) general misconception about agile that it lacks focus on documentation, (ii) lack of
experience and guidance in using agile methods.

Kasauli et al. [2018a] reported challenges of using agile methods in safety-critical system
development in their mapping study. According to the authors, agile methods often reported to
suffer from lack of focus on documentation “..as extensive documentation will diminish advan-

tages of agility”. This perception is incorrect and probably comes from false interpretation of
agile manifesto. Agile principle “working software over comprehensive documentation” is seen
as minimum or no documentation as reported by Sharp and Robinson [2010]. In safety-critical
system development, major portion of documentation is used to demonstrate regulatory com-
pliance without which the system cannot be used legally. Therefore, in safety-critical system
development, documentation is part of a “working software”. The focus of this agile principle is
on avoiding waste of effort. It does not mean that documentation should be avoided [Wagenaar
et al., 2018]. Kasauli et al. [2018a] also report that, in the context of safety-critical systems
development, agile methods are thought to have lack of guidance on project monitoring and
control. Also, according to the findings of the authors, there are doubts in sufficient level of
testing mechanisms offered by agile. Authors report that agile’s “unstructured nature” lead to
lack of trust in agile. Also, the regulatory standards suggest upfront planning which is against
the recommended workflow of agile.

In particular, the team believed that the requirements for the project were relatively well
understood and stable, so the team was able to plan Waterfall phases of 9 - 12 months duration,
“So I guess it was a sort of macro-agile process... but the sprints were just incredibly long...But

each of those was separate in a way (P4).” The team used waterfall but incorporated sprints in
the development life cycle to build the system in increments, but these sprints were much longer

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 78

than the normal (week or two weeks) duration recommended by agile. However, the duration of
these “sprints” is unclear.

Second, the third team believed that applying an agile method only within the software team
would create difficulties for coordination with the other teams in the project (hardware, firmware,
integration etc.). A software team does not work in isolation as said by one of the participants
(P4) “...we do work very closely with the systems team to define our requirements, we work

very closely with the hardware and firmware teams to integrate software, so those, you know

would all need to be working to the same schedule, and the same set of sprints.” Consequently,
there was a concern that applying an agile method and practices within the software team would
complicate this as different teams work at their own pace and the schedules between different
teams often mismatch, “...they may not be working to the same schedule as we are...that’s not

something we’re very good at (P4).”

More widely, the third team believed that the company as a whole lacks guidance on how
to adopt agile software development when developing software for safety-critical systems and
are uncertain about the suitability, “...there’s always been a fear of certification... and how an

agile development would affect that?.” The Lead Software Engineer (P4) for the third team also
pointed towards the need to change the mindset of the people saying “...within the business there

is a fear or a concern that doing something an agile way means doing it in a scrappy way,.. you

know or doing it in a careless way.”

These concerns were also reflected in the experiences of the first two teams in employing
agile software development. The participants from these two teams reported both internal and
external obstacles, both in convincing team members of the benefits of change and in engaging
with the project customer. They found that the application of an agile method was constrained
by the customer’s desire for a form of contract that encouraged a plan-driven software process.
For example, the requirements phase is associated with a milestone in the contract for delivering
a full requirements specification before design and implementation work proceeds. Further, the
participants believed that the regulatory framework also dictated a plan driven process. Both
software team leads argued that “...regulatory standards do not let us choose our own method

(P1).” In addition, these regulatory standards require production of a lot of documentation.
As a consequence, both participants that had experience of agile software development

picked up the parts of Scrum and agile practices that they thought were beneficial and could
be applied without conflicting with regulatory standards of project contracts. These included
the use of Kanban boards in Jira, sprints, daily stand-ups, sprint planning and product backlogs.
Further, both teams anticipated employing more agile practices, such as the specification of re-
quirements as user stories, in the future. Conversely, both software teams wanted to re-instate
the Gate Reviews they were conducting while using Waterfall but they had not reached an agree-
ment yet on how to do this within their agile software development process. Both these teams
expected that employing agile software development would enable them to deliver smaller, in-

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 79

cremental improvements of the overall system more frequently to the customer over the lifecycle
of the project, compared with their existing plan-driven process.

4.5 Discussion of Challenges

This section discusses the challenges in implementing agile software development within the
Company, building upon Section 4.3 and 4.4 to meet the second objective of this chapter. Fig-
ure 4.5 presents the key challenges elicited during the interviews. We discuss these challenges
under the distinct themes of Pressure for Waterfall, Coordination amongst Stakeholders, Doc-
umentation Demands and Cultural Challenges, below. For each theme, we present and discuss
extracts from our interview transcripts where relevant observations of interest are made. For
each theme, we also identify relevant literature and discuss the implications of the findings. At
the end of this section, we discuss how the current agile methods tailored to large-scale systems
could contribute to solve some of the challenges reported in this study.

4.5.1 Pressure for Waterfall (Challenges 1, 2, 3, 4, 5)

Challenges 1, 2 and 3 reflect the difficulties of implementing agile software development in a
wider software development culture where the Waterfall process has become embedded. All the
participants except one said that regulatory standards are one of the main hurdles in use of agile
software development. They anticipated that Waterfall imposed by standards would prevent the
use of an agile method (Challenge 2). For example, “Our standard says that we use waterfall... it

doesn’t say that we can pick our method (P1)” Further, the participants stated that the company’s
internal standard, which conforms with DO-178C prevents the use of agile methods, and that
customers are also wary of such an approach. However, the other participant (P4) argued that
“...No, I don’t think there are any conflicts...I can’t see really why it would be a problem.”

Reflecting on the emphasis on Waterfall in the standards, the participants also reported that
the use of Waterfall is often mandated by the (external) customer which restricts them from
using agile software development (Challenge 3). Within the company, contractual agreements
are the primary driving force of a project. Plans, milestones, term, and conditions of a project
greatly impact the development lifecycle of a project, “the customer is saying, we want you

to use waterfall... because of the way we get a set of contractual requirements and we must

complete all those contractual requirements, rather than create a set of requirements then cut

dead at a certain point (P1).” This perspective reflects the culture within safety-critical systems
development of defining the full requirements at the beginning of the project because of the
need to understand the full features of the software, and how it will integrate with the hardware.
As a consequence, most participants believed that use of agile software development in full
was not practical because this would require a different relationship with the customer in which
requirements were continually refined and renegotiated at the beginning of each sprint or release.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 80

Challenge
1 Agile software development advocates incremental design, but safety standards

require upfront design as necessary input for hazard analysis.
2 Regulatory standards are perceived as mandating Waterfall and not permitting

agile methods.
3 The prevalence of fixed price contracts for pre-agreed requirements in safety

critical systems projects is not readily compatible with agile software
development.

4 The actual time taken to complete the tasks always turns out to be more than it is
estimated in the beginning, particularly due to integration complexity in
safety-critical systems projects.

5† Requirements are difficult to modularise in safety-critical projects because the
functionalities are so interdependent that it is very hard to separate them.

6 Software teams lose visibility during the integration phase. Agile methods lack
guidance on integration with hardware.

7 There is a complex network of customers that obstructs agile ceremonies such
as the Sprint Review

8 Face-to-face informal contacts dominate communication, causing project related
information to be lost.

9 Software, hardware, firmware and other teams in safety-critical systems work
function independently according to their own schedule causing plans to
become mismatched.

10 Frequent releases increase overheads and costs because they must be
accompanied by supplemental documentation to achieve certification.

11 The Software team has no practical example to follow for applying agile
methods and they lack the resources to experiment.

12† The teams need guidance on how to scale agile methods for use in large multi
team context.

13† The organisational mindset require convincing about the benefits of agile
software development.

14‡ Independent testing required by standards conflicts with the practice of
developer created tests advocated by agile software development.

Figure 4.5: Summary of challenges identified during this study. Unmarked challenges were dis-
covered during the semi-structured interviews and confirmed in the validation workshop. Chal-
lenges marked †were discovered within the validation workshop. The challenge marked ‡was
discovered during the semi-structured interviews, but rejected during the validation workshop.
All challenges (including 14) are reported for completeness.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 81

In the literature, VanderLeest and Buter [2009] argue that “Contractual models in aerospace

expect firm-fixed estimates of large complex projects with little room for change. The agile ap-

proach of using client-driven adaptive planning at the start of each iteration faces the hurdle of

dealing with the potential contractual changes that result from such frequent planning.” Limited
support for subcontracting is a connected limitation of agile software development reported by
Turk et al. [2014]. Sub-contracted tasks are usually well defined, and the milestones are clearly
laid out [Turk et al., 2014] which already gives a limited freedom to the development team and
the remaining “flexibility” is constrained by regulatory standards.

There are mixed opinions about use of agile software development for software development
for safety-critical systems in the literature. For example, VanderLeest and Buter [2009], Cawley
et al. [2010] and Wils et al. [2006] all argue that DO-178C does not favour a particular soft-
ware development lifecycle, but rather provides process guidelines and (in total 71) objectives
for development of airborne software [Coe and Kulick, 2013]. Wils et al. [2006] argued that a
reasonable re-interpretation of agile principles would mean they are compatible with certifica-
tion. In particular, Wils et al. contend that working software in this context comprises both the
implementation and the documentation, because the documentation is necessary for the software
to be certified as safe to enable use.

Conversely, Winningham et al. [2015] argue that agile methods and practices are not devel-
oped for safety-critical systems. In order to be used for safety-critical systems such as avionics,
the software process has to conform to process standards i.e. DO-178C in the context of the cur-
rent study [RTCA]. Several authors have identified and discussed specific conflicts. Relevant to
our work, agile principles discourage the development of detailed designs that anticipate future
requirements prior to implementation work. Beck and Andres [2005], for example, allude to the
‘you ain’t gonna need it principle’ and argue that the expectation of requirements change means
that any effort dedicated to design for future implementation could well be wasted. However,
Chapman [2016], Chapman et al. [2017], Cawley et al. [2010], Wils et al. [2006], Chenu [2009],
Glas and Ziemer [2009], Boehm and Turner [2003] and Coe and Kulick [2013] all contend that
this principle conflicts with most safety-critical standards that mandate the development of a
sufficiently detailed design to act as input to certification processes. Changes to the design may
invalidate the certification status of the product and require an extensive rework of assurance
related artefacts.

One particular impact of this emphasis on Waterfall reported by participants is the extent of
detailed requirements analysis, specification, and design that take place before implementation
work proceeds (Challenge 1). These processes are accompanied by gate reviews to evaluate the
quality of work before permitting a project to proceed to the next phase. Our participants said,
for example “The design itself, we tend to come up with fairly stable architectural designs quite

early on... Specifically because we don’t want to be changing them all the time (P4).”

This issue was explored further with the participants. During discussion, it emerged that

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 82

several of the participants preferred to engage in substantial upfront design, regardless of the
constraints imposed by the standard. This preference was justified by the scale of the system
development and the need to accommodate future planned features within the existing design,
“I think you need to be forward thinking as to what your design needs to be (P1).” One of the
participants also stated that adopting an agile approach to design increased costs of this aspect of
the work overall because the team did not design with future requirements in mind and so created
substantial additional rework, “What I guess was not anticipated was the amount of rework that

agile is creating for me... I think you need to be forward thinking as to what your design needs

to be (P1).” The participant goes on to explain that this anticipatory design is necessary because
of the interdependence between the different teams in the overall project. The team needs to be
aware of the expectations of other teams on the software they are working on and anticipate this
in the design.

Despite the preference for upfront design, all of the participants noted the tendency for the
software projects to undergo substantial requirements and consequent design changes once im-
plementation begins, with estimates ranging from between 10% and 20% although one partic-
ipant estimated that deviations from the original plan could reach 80%. Our participants also
reported that these changes could come from the customer or from the software process itself
(such as the need for further elaboration) and occur throughout the software process.

VanderLeest and Buter [2009] quote findings from different studies suggesting that a typical
project may experience 25% change in requirements, increasing to 35% for a a large project.
These estimates suggest that there is considerable variability within ‘safety-critical’ projects as
to the degree of certainty in the project requirements and plan, and thus the feasibilty of applying
a plan-driven process. On the one hand, the extent of volatility in requirements for safety-critical
systems suggests that adopting an agile method or practices would be appropriate for require-
ments engineering in this context. However, there is a need to understand how agile methods and
practices can be adapted to accommodate the need for continual certification against standards.
As discussed above, SafeScrum [Stålhane et al., 2012] is an indication of the interest in this area.
There is also a need to extend agile methods and practices to mitigate changing requirements
across software, hardware and other developments, as discussed concerning Challenge 6 below.

Related to this, one participant in the validation phase workshop identified a further chal-
lenge with the modularisation of requirements (Challenge 5), stating “We get over 8000 pages

of requirements and it becomes really difficult for us to isolate a sub-set of requirements from a

big pool of requirements (Validation Workshop).” The sheer amount of detail in the fully elab-
orated requirements document makes it difficult for the software team to allocate packages of
functionality to the different sub-teams. Later design and implementation work reveals interde-
pendencies between functions that were not anticipated during the requirements analysis phase.
This requirements complexity would appear to be a significant challenge for the implementa-
tion of agile software development, since requirements cannot readily be divided into modular,

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 83

manageable features.
As a result of these constraints, the participants reported that they feel the time and amount

of work needed is nearly always underestimated, and that delays occurred due to the additional
effort needed to better understand or implement altered requirements (Challenge 4). One par-
ticipant (P3) commented, “there is a high level of, what we call punt... in our system level re-

quirements which then obviously impacts us downstream.” The fixed price approach to contracts
and the estimation process does not anticipate this cost of change. In particular, one participant
noted that even though change occurs in project requirements or plans, due to requests by the
customer, this does not always get integrated into the estimates for the overall plan “...but a lot

of this time, changes come in that are not considered (P3).” We believe that along with other
factors, fixed contracts also contribute to the issue of estimation in this context. Agile meth-
ods, by nature, have a short-term vision. Agile advocates accommodation of change and can
handle uncertain situations; therefore, some researchers [Turk et al., 2014, Alsaqqa et al., 2020,
Richardson et al., 2020] propose using short-term contracts to match the short-term planning
nature of agile methods.

However, in some cases, the participants did report being able to rely on historical data from
previous projects to produce reliable work estimates, “it was a fairly mature, although [it]’s

a new [product], our ... product line is very mature, you know. So the requirements, eighty

percent of them probably were very well understood at the beginning of the project (P4).” Also,
to process historical data, Duszkiewicz et al. [2022] developed a tool in collaboration with a
Danish software development company that employs Natural Language Processing algorithms
to find past similar user stories and retrieve the time spent on them. However, the evaluation of
the tool shows that different phrasings and wordings can impact the similarity scores.

Similar challenges have been identified in the literature. For example, Wils et al. [2006]
reported the finding of their study of implementing XP, conducted at Barco (a major Belgian
avionics equipment supplier). The company employed XP in order to reduce time-to-market
and respond quickly to change in requirements. However, during the study, it was found that the
software project was dependent upon external factors that were hard to control, such as delays
in automated testing and mismatched hardware development schedules.

Large systems engineering projects often depend on significant upfront design as a means
of coordinating effort between different sub-teams working on software, firmware and hardware
elements [Chapman, 2016, Chapman et al., 2017]. In addition, requirements and design docu-
mentation serve as inputs for hazard analysis and other safety certification processes which begin
while software implementation is still underway. For example, DO-178B/C requires early com-
pletion and approval of Plan for Software Aspects of Certifications (PSAC). Later changes are
difficult because the PSAC has to be updated and re-approved [VanderLeest and Buter, 2009].
Therefore, some level of detailed design documentation is required for this purpose.

However, many regulatory standards, such as DO-178C [RTCA] do not prevent changes

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 84

to software design because having a rigid upfront system design that cannot be revisited and
changed is unrealistic. The concern here then is how much upfront design do is needed and how
much change to a design can be accommodated by safety analysis processes. Ge et al. [2010]
demonstrate that design can be simple but detailed enough to allow preliminary hazard analysis.
Ge et al. have used the term “sufficient design” to refer to the level of detail in the initial design
without explaining the minimum level of detail needed to conduct preliminary hazard analysis.
Critically, there is a need to develop a design process that copes with both evolution and satisfies
the needs of existing hazard analysis techniques, or develop a hazard analysis technique that
copes with evolutionary design.

Advocates of agile software development, such as Beck and Andres [2005], advise against
undertaking detailed software design work prior to implementation, arguing that without suffi-
cient information about the problem domain and associated constraints, any proposed designs
will be subject to change once implementation begins. One potential direction to address this
problem may be to extend the practice of system metaphor definition in the XP agile method to
encompass the need for some anticipatory design desired by the participants.

Despite these challenges, the participants reported considerable experience experimenting
with agile software development, making adaptations to fit their needs. Winningham et al.
[2015] note that agile methods were not developed for safety-critical systems and that con-
sequently, many practices within agile methods need to be compliant with standards, such as
DO-178C [RTCA]. Coe and Kulick [2013], Boehm [2002], Boehm and Turner [2003] suggest
that methods such as Agile-Planned that combine elements of both philosophies show promise
in this context. This selection and adaptation of elements was reported by the participants. As
one of the participants (P1) described it “We follow some bits of agile that are of interest to

us..” The participants reported that their teams participated in a variety of Scrum ‘ceremonies’
including sprint planning, daily standups, customer demonstrations and retrospectives, although
all participants reported adaptations, or the non-use of a ceremony, which we examined further.

In particular, two of the participants reported conducting frequent retrospectives, reflecting
the use of Scrum within their teams, whereas, the other two participants reported undertaking
less frequent “lessons learned” within their projects, typically following the delivery of a release
to the customer. When discussing the practicality of employing retrospectives, one participant
(P2) noted the difficulty of making frequent change to their software process, due to the risk
that a change to the process might be disruptive, “we’ve got pretty fluent software development

delivery system...we’re being encouraged to stick to schedule...it would be unwise to inject too

many silly ideas into how to change that at this point in time. So we also encourage people

to, like, to sort of like story-board their ideas and just to put them to the side.” Instead, the
participants reported collecting ideas for changes to the software process (on a Trello board, for
example) that could be reviewed at less frequent meetings. This practice shows the company
adapting agile practices to match the tempo of a safety-critical project, and avoiding the risks of

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 85

frequent small changes.
Several of the participants reported extensive use of quality assurance associated with agile

software development, including automated static analysis, refactoring, automated unit testing,
test driven development, code review and pair programming. Automated static analysis in par-
ticular was used extensively within the company. One participant (P2) confirmed that a key
goal of employing static analysis was to achieve conformance with MISRA C standards “it’s for

MISRA, I think level coding standards.” In a follow up discussion, it was revealed that the com-
pany had found that the application of static analysis within a continuous integration pipeline
had transferred well to an agile software development approach without the need for adaptation.
In fact, the transition had led to enhanced benefit from the use of static analysis. The teams
found that applying the tooling more frequently led to the production of reports with fewer but
more meaningful warnings, “As the delivery frequency increased...As the maturity of the product

became higher, the easier it was to run static analysis as large swathes of code were unchanged

from delivery to delivery. (P5)”

In other cases, these practices were adapted to fit within the constraints of safety-critical
system development when appropriate. In the case of pair programming, two of the participants
were very emphatic that they did not practice pair programming despite all the participants
reporting that informal mentoring of newer members of the company was strongly encouraged.
One of the participants (P1) made the distinction between pair programming and mentoring, “...

I think that it’s much better giving people a little bit of help and then dropping back and then

reviewing their changes and giving them some feedback but making them do the task. Really

to use the adage teach someone to fish so that the next time they can fish. There is always

a ...when you do pair programming, there is always a stronger member and they will always

take the keyboard... and that’s not what you want.” One participant (P2) suggested that the
“demographics” of the company was partly a cause of this approach. Many employees have
worked for the company for considerable periods of time and have become experts in particular
domains of the development work. Therefore, the participants felt that these engineers would
not benefit from pair programming with a younger graduate, but that the graduate would benefit
from a mixture of demonstration and peer review. As one participant (P1) described it, “I think

it wastes budget. I don’t think we get the value from that task.”

A final challenge within this theme was identified during the semi-structured interviews
concerning quality assurance practices within the company (Challenge 14). Safety-critical stan-
dards, such as DO-178C advocate or even require the use of independent teams to develop test
procedures. However, agile methods, such as XP advocate the development of tests by the devel-
opment team themselves, partly as a form of documentation of the application software [Beck
and Andres, 2005]. When we investigated this conflict with the participants, a complex picture
emerged, with some participants contending that this conflict was “an ongoing problem. No,

I don’t think we have eliminated it. (P1)” However, different perspectives amongst the team

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 86

and within the validation workshop ultimately led to this Challenge being rejected by the par-
ticipants, because the established compromise described below was considered to be sufficient.
However, we report the discussion from the interviews for completeness.

The issue emerged when one of the participant stated that the DO-178C standard they were
working towards did not require complete independence, instead, the testing procedures are
independently witnessed, “We satisfy that by having all of our v & v witnessed or signed off by

our QA people. So, all of our document reviews and things like that would have input from the

QA department. All of testing is actually witnessed, you know we have someone sitting there

writing things down, so that that gives us our independence. (P1)” However, the participants
also recognised that this situation is the result of a tension between the desire for independence
of testing and the need to have domain expertise concerning the software under development in
order to test it effectively, “it’s an interesting tension there, between needing to know exactly the

details of the component you’re testing. (P2)”. What emerged from the following discussion
was that the deliberate physical distance of the QA team to ensure independence had made it
very difficult for them to gain a sufficient understanding of the system to develop effective tests
“There was too much inherent knowledge that the guys in these teams have about the internals of

the software. (P2)”. One possible avenue here, proposed by the participants was a compromise
in which the QA team remained independent, but engaged in closer cooperative work with the
development team, “[if] we had got a v & v team in much earlier it would have worked a lot

better. ”

4.5.2 Coordination amongst Stakeholders (Challenges 6, 7, 9)

The participants reported several aspects of the software team’s work specific to safety-critical
software development connected with coordination with external (to the software team) stake-
holders that presented challenges to the use of agile software development (Challenges 6, 7 and
9). Agile principles emphasise the close involvement of an identifiable customer as critical to a
project success [Chapman, 2016, Chapman et al., 2017]. Providing the team with ready access
to the customer enables better communication, allowing uncertainties with regards to require-
ments and design to be resolved more quickly [Schwaber and Beedle, 2001]. However, the
projects reported by the interview participants experience a far more complex relationship with
the project customers (Challenge 7). The participants described various customer structures, for
example, “joint systems team meeting ... happens on a sort of two monthly basis And that

involves our direct customers and members of.. their direct customers (P3)” and “...there’s cer-

tain customers could be viewed as being the END USER they are the end users. They are type

of customers. But then there are people who are little bit closer like COMPANY, then we get

little bit closer again.. which are the people who are involved as product owners (P1).” From
the perspective of a software team, the immediate customer is the project’s systems team who
allocates the requirements. The whole project may have several different customers, each with

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 87

slightly different needs. These customers may, in turn, be procuring the product as a compo-
nent to be integrated into one or more larger systems for their own customers. This network
of stakeholders is characteristic of safety-critical systems projects, and so “Agile use in these

environments is restricted by the elements that define these environments” [Hajou et al., 2014].
However, from the participant’s perspective, the influence of external customers is difficult to
manage, because they only have direct access to the systems team in order to demonstrate their
work and receive feedback “For me, I would say that customer demonstration ... would be the

demonstration of how things work when it gets to the TEST ENVIRONMENT (P2).”

Chapman [2016] and Chapman et al. [2017] notes that requirements engineering in agile
software development is dependent on close customer involvement in the project to the extent
that the customer may be viewed as an additional member of the project team. However, as
Chapman et al. [2017] notes, this may not be practical in the scenario described above, where
there are many different types of customers with different perspectives on and commitments to
the project, such as procurers, end users, industry regulators and independent auditors. Ensuring
close involvement of a larger number of customers on an on-going basis is difficult due to practi-
cal considerations such as time availability. In addition, these customers may have very different
views on the requirements for the project, but there is very little guidance available on decision
making, where the customer relationship is inevitably more complex [Chapman, 2016]. One
possibility is the suggestion by Paige et al. [2011] to use a “Stakeholder consortium” to mitigate
this problem. However, Chapman [2016] and Chapman et al. [2017] suggest that achieving con-
sensus within the consortium may not be practical and that establishing “rules of engagement”

and use of tools to automate communication and documentation can counter this problem.
The other teams within the overall project are all also effectively external stakeholders for

the software team and coordination here also presents challenges. The different teams within
the overall project have their own pace of completing tasks (Challenge 9). Deadlines and mile-
stones are defined in the contracts for the whole project, but individual teams choose their own
development lifecycles within this framework, creating a “silo effect” [VanderLeest and Buter,
2009]. Members of the software teams interviewed report being unaware of the details of activ-
ities and current status of tasks in other teams. Participants also reported that schedules across
teams often do not match. For example, “they’re working on their own bunch of things at their

own priorities, with their own pace dictated by the number of resources that those have, and

it’s often when it gets to the point where the crunch is coming that we start to understand that

we’ve, we’re misaligned in terms of priority (P2).” The teams also have their own interpretation
of when tasks are considered complete, as one participant (P2) observed, “when I say hardware

guys I mean the guys who produce the actual circuits, and then the firmware guys who bring that

to life so we can use it for software development. Their definition of what finished is, so that we

can put the capability of software on it, tends to be separate from what we think the done thing

is.”

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 88

In early work in the field of Global Software Engineering, Herbsleb and Mockus [2003]
recognised the challenges of coordinating work across loosely coupled or distributed sub-teams.
These challenges remain an active area for Software Engineering research, as illustrated by the
recent study by Ebert et al. [2016]. Turk et al. [2014] suggests frequent and informal commu-
nication to overcome the lack of visibility but informal and face to face communication poses
a risk of important project related information getting lost. VanderLeest and Buter [2009] also
emphasize the importance of tools to improve communication and coordination among teams.
In our case study, one participant described a project where all the teams were compelled to
strictly follow the same schedule using a single Microsoft Project plan. According to the lead
software engineer interviewed, this approach worked well. However, it is unclear whether this
approach can be imposed on all projects in the company.

The lack of visibility also causes problems at integration between software and hardware
(Challenge 6), a challenge that Stelzmann argues is characteristic of safety-critical system devel-
opments [Stelzmann, 2012]. Integration between hardware and software is often done towards
the end of a project release, due to the components only being available at this stage. All par-
ticipants agreed that this arrangement caused problems, “typically when we get to integration.

We’ll find that something that the hardware is doing either isn’t as we understood it to be, or

it’s not working (P2).” Although the allocation of tasks and designs is well understood by the
different teams at the start of the release, it was difficult for the team members to stay up to
date with “what is happening in other teams.” One participant (P1) said “Once we get into the

integration phase, we found that the boards don’t always stay up to date.” Several interview
participants suggested this was because different teams run their own development lifecycles,
for example “We’ve got software people working in the software plan and hardware people and

firmware people working in the firmware plan. So it often becomes dissected. (P2).” Due to
the late-stage integration, it was suggested that a software team tends to focus predominantly
on their own tasks, and so lose visibility of changes that are occurring elsewhere in the project.
This phenomenon affected both the team that followed Waterfall and the team that had recently
employed aspects of agile software development. One participant (P1) also reported that the
benefits of employing a Kanban board in Jira had been lost once the project moved to an inte-
gration phase, as other tools were used for tracking progress on integration “Once we get into

the integration phase, we found that the boards don’t always stay up to date... I believe, that

the reason for that is we have got other methods of tracking our problems and the guys see it as

duplication.”

To partly address this challenge, one of the participants (P4) described how they had adapted
their software process to incorporate a weekly integration meeting during the integration phase
of the project, “during our integration process, you know a lot of people had to work quite closely

together so we were having weekly meetings. Once we got through that process they stopped

becoming useful.” As described above, this demonstrates how the company is employing the

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 89

principles of agile, such as frequent informal communication, but adapting the specific practices
to fit with the needs of safety-critical system development. The weekly integration meeting
allowed issues to be aired and resolved frequently between the different sub-teams, in a similar
way to a product planning meeting within a single team.

The difficulties in employing continuous integration are also reported in the literature. Jamis-
sen [2012] argues that DO-178C does not conflict with the concept of continuous integration in
agile software development, however, Ge et al. [2010] and Kaisti et al. [2013] note that con-
tinuous integration of embedded systems is challenging. Kaisti et al. [2013] report a scarcity
of evidence on the use of continuous integration in embedded systems. According to Douglass
[2016], most of the literature concerning agile software development is focused on software ap-
plication development, not embedded systems. This lack of guidance on Hardware and Software
co-development and integration is recognised by many researchers [Chapman, 2016, Chapman
et al., 2017, Kaisti et al., 2013, Douglass, 2016]. For example, in their study, Wils et al. [2006]
found that the software-hardware integration phase inevitably slows down development efforts.
This stage is also where the discovery of required changes can frequently arise and be the most
problematic.

One proposal in the literature is to use simulators and emulators to help reduce problems
at integration [Ard et al., 2014, Schooenderwoert and Morsicato, 2004, VanderLeest and Buter,
2009]. A key challenge in this approach is to ensure that emulators, simulators or test equipment
have the exact specification of the target equipment [Ard et al., 2014]. While testing a system
using emulators, changes made to software and hardware should also be kept in mind [Ard et al.,
2014]. All the interview participants told us that the equipment for testing is not updated and
often its specification does not match the target hardware. This suggests that there is a challenge
in maintaining up to date test harness implementations.

4.5.3 Documentation and Communication (Challenge 8, 10)

Two related challenges were reported by participants concerning the use of agile documentation
and communication practices. The Agile Manifesto [Beck et al., 2001a] advocates the delivery
of “working software over comprehensive documentation.” Several authors have argued that
this principle makes agile software development incompatible with the development of software
with certification requirements [Ramesh et al., 2010, Turk et al., 2005, Martins and Gorschek,
2016, Rayside et al., 2009]. This conflict was reflected in the interviews, with one participant
(P3) commenting that “..the process documentation that we have at the moment doesn’t adhere

to agile sort of development process” (Challenge 10). Critically, certification standards for
safety-critical systems (DO-178C, for example) mandate the generation of documentation to
demonstrate that both the delivered product and development process conform with standards
and is safe to use. Certification is a very expensive and time consuming activity since it is
performed on the complete system for delivery, as one participant (P1) described “the standards

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 90

require us sometimes on producing a hell of a lot of documentation... a lot of overhead in

that respect.” Certifying the system each time a change had been made would be prohibitively
expensive, so the company normally only certifies the system for each “formal delivery” to the
customer. Participants also identified the need for maintenance of documentation as a cause of
delays in the project schedule, having an additional impact on Challenges 4 and 5 discussed
above.

Despite this apparent conflict, there are a number of studies which demonstrate the use of
agile software development in the development of formal specifications, for example, Rayside
et al. [2009], Black et al. [2009]. Several of these authors emphasise on the need to adapt agile
methods and practices according to the need of safety-critical system development. For exam-
ple, Rayside et al. [2009] argue that traditional and agile methods are separated by limitations of
current technology rather than by fundamental intellectual differences. They believe that the use
of a “mixed interpreter that executes mixed programs, comprising both declarative specification

statements and regular imperative statements” [Rayside et al., 2009] can mitigate many of the
problems. Black et al. [2009] suggest that if requirements can be expressed in a formal nota-
tion they can then be machine checked for inconsistencies, effectively extending the automation
of quality assurance processes to requirements documentation, in a similar manner to the Be-
haviour Driven Development (BDD) practice [North et al., 2006]. Bowen et al. [2023] describe
two approaches for transforming informal specifications into formal notations. One of these
approaches consist of derivation of first-order-logic (FOL) predicate from BDD specifications
by incorporating formal notations in BDD’s textual specifications. However, the authors do not
evaluate the readability of such specifications in the study.

The company in the current study has also adapted its practice with respect to certification to
achieve more frequent deliveries. The participants reported having employed a practice of mak-
ing non-certified intermediate deliveries available to the customer, called “engineering deliveries

or releases.” One participant (P3) stated “we have moved to the philosophy of ... there would

be all engineering releases and at certain points in development we would take an engineering

release and do the formalities on it.” An advantage of this approach is that the customer is able
to begin integrating the product into their own system development efforts earlier. A subsidiary
benefit is that the engineering releases do not require the demonstration of quality assurance
processes demanded by many safety-critical standards [Chapman, 2016, Chapman et al., 2017,
Cawley et al., 2010, Boehm and Turner, 2003, Vuori, 2011]. As one participant (P3) stated,
“certainly when we come to formal release if you like... that’s where our testing level moves up.”

Another potential option to mitigate the costs of document production is the use of automated
techniques, which can reduce delay [Chapman, 2016, Chapman et al., 2017]. In addition, the
approach implies that there is an expectation that an engineering release may eventually become
a formal release, which as a consequence imposes the quality assurance standards for developing
a formal release, but without the accompanying documentation to demonstrate it.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 91

Similarly, agile software development advocates frequent face-to-face communication in
small groups to ensure that critical information is circulated effectively. However, it is well
understood that this approach does not necessarily scale effectively to larger multi-team projects
with different lifecycles and cultures (Challenge 8). In particular, communication in agile soft-
ware development is reliant on the retention of tacit knowledge, which can be difficult to re-
cover in large-scale projects [Boehm, 2002, Glas and Ziemer, 2009, Ramesh et al., 2010]. We
discussed the challenge of managing communication in large scale projects with the participants
and a number of different perspectives were identified. The participants reported that a mixture
of approaches to documenting information were taken, with some teams relying predominantly
on an informal approach, “I would say that large majority of them are not recorded. There is

very few... where in the meeting someone minutes the meeting. (P3)”, whereas, others stated that
formal documentation was used extensively for communiciation, either through email or design
documents, “know have a face to face chat and then email out the outcome of that discussion

and any action points, what was agreed, and distribute that to the rest of the team (P4).”

Several of the participants stated that an informal approach had led to mis-communications,
with one participant (P2) suggesting for example, that the informal communications needed
to be ‘snooped’ on to ensure the information wasn’t lost “we could get someone to snoop the

conversations, and figure out how much we lost.” However, another participant (P4) reported that
the project teams could often rely on the tacit knowledge of individual members because of the
demographics of the company. “I don’t think we really suffered as a result of that. Because we

had a good group of people and a lot of very experienced people. If it was a less mature project

with you know, less experienced engineers then I think it would have been a problem.” These
two different perspectives illustrate the need to not just adapt agile practices to safety-critical
systems, but to adapt them to the specific context of the project.

There was some discussion about the impact that adopting agile software development had
on this problem. One participant (P2) commented that “I’m not, at the moment I should be at

the ten o’ clock stand-up in the roof lab. If someone doesn’t come and tell me what happened

or what I’m meant to do or any of the other information then that could be lost.” However an-
other participant (P1) described how agile software development had assisted in retaining some
aspects of information that might otherwise be lost because the team became more disciplined
about recording information in the project team’s tracking tool “Since we have employed the

boards and they understand more about what’s going on.” Again, this suggests that there is
potential for agile software development to be adapted to allow teams working on large scale,
safety-critical systems projects to identify and maintain the documentation that is valuable to
them. Spijkman et al. [2022]’s work is also focused on conversational requirements engineering
techniques in agile methods to address the issue of information being lost during informal con-

versations. The focus of the study is on pre-requirements specifications to trace the source of
requirements. The authors propose a prototype tool called TRACE2CONV which makes use of

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 92

NLP techniques to link the relevant part of a transcribed conversation to a user story. However,
according to the authors, the tool requires further development and validation.

4.5.4 Cultural Challenges (11, 12, 13)

The final theme which emerged from the interviews was the need to change the culture within
the company. Three particular challenges emerged in this context. First, the software teams
in the company had no prior experience of using agile software development on a large scale
and lacked guidance from elsewhere in the literature (Challenges 11 and 12). At the moment,
software teams are using the Scrum method and other agile practices within individual software
sub-teams, but expressed a strong desire for guidance on how to scale these for use in large
multi-team context, “if we can get...the other functions who work in those projects like firmware

and hardware, if we can get them simply to follow the water-scrum-fall, that might be as good

as what we can achieve (P2).” However, there is relatively little guidance in the academic or
practitioner literature on this, an issue also reported by Fitzgerald et al. [2013]and Cawley et al.
[2010]. However, there are studies which report the successful use of agile software development
in safety critical systems [Fitzgerald et al., 2013, VanderLeest and Buter, 2009, Gary et al., 2011,
Cawley et al., 2010]. A commonly reported point in the literature is that agile methods and
practices have to be adapted according to the requirements of a project [Fitzgerald et al., 2013,
VanderLeest and Buter, 2009, Gary et al., 2011, Cawley et al., 2010].

The participants reported feeling confident about using Waterfall because they have plenty
of practical examples from the past. The company finds it difficult to experiment with something
new, given the safety-critical nature of their projects and with very little or no prior example to
follow. Also, there is relatively less guidance available in the literature about the use of agile
software development in safety-critical systems, particularly in the avionics industry [Ge et al.,
2010, Paetsch et al., 2003, Wang and Wagner, 2016b, Carpenter and Dagnino, 2014, Heeager,
2014, Huang et al., 2012, Axelsson et al., 2016].

As a consequence, the company has a well documented and understood software develop-
ment process, which is reflected in the organisational culture. The participants, therefore, iden-
tified the need to change the mindset of their colleagues (Challenge 13), as the Waterfall process
has been in practice for years in the company. As one participant (P4) said “it would be quite

difficult to have an Agile process that spanned this whole organisation, without a fairly funda-

mental paradigm shift.” Fitzgerald et al. [2013] also report this issue in their study. Fitzgerald
et al. found that agile methods and practices are “developer-centric”, therefore, they are typi-
cally easily accepted by the development team, whereas, management requires some convincing
about the benefits of agile software development. One of the reasons behind the resistance by the
management is the perception of “short termism” about agile software development [Fitzgerald
et al., 2013]. Management usually prefers an upfront complete plan, whereas, the agile philoso-
phy advocates short term sprints and a “plan as you go” approach.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 93

4.5.5 Agile Methods Tailored to Large-Scale Safety-Critical Systems

Edison et al. [2022] compared main methods for large-scale agile development namely SAFe,
LeSS, Scrum-at-Scale, DAD, and the Spotify model through a Systematic Literature Review
(SLR). Although the focus of this SLR is not safety critical systems, many of the challenges as-
sociated with application of agile methods in large-scale systems found during the SLR overlap
with the challenges found in this study. This shows that some of the challenges found during our
study are not specific to safety-critical system development and they exist in large-scale system
development in general. For example, challenge number 11 and 12 in Figure 4.5 stating “The

Software team has no practical example to follow for applying agile methods and they lack the

resources to experiment” and “The teams need guidance on how to scale agile methods for use

in large multi team context” overlaps with a challenge in the SLR. According to one of the find-
ings of the SLR there is a lack of guidance for adoption of agile. Similarly, challenge number 13
i.e., “The teams need guidance on how to scale agile methods for use in large multi team con-

text” overlaps with a finding in the SLR. According to the authors, one of the common reasons
for agile methods’ failure is adopting agile methods without adopting agile thinking. According
to the authors, focus is on “doing agile” instead of “being agile” is one of the causes of failure
of agile methods.

However, the study by Steghöfer et al. [2019] focuses on challenges of scaled agile for
safety-critical systems. The authors conducted a focus group with three experts from automo-
tive industry to collect challenges in their daily work. According to the authors, frameworks
like SAFe or LeSS do not provide explicit support for development of safety-critical systems
because they lack activities for ensuring safety such as risk management, safety analysis, and
certification. The authors found from the literature that there are two agile approaches that
cover the entire development lifecycle for safety-critical systems i.e., (i) R-Scrum and (ii) Safe-
Scrum. The study however, proposes no explicit solution for the challenges presented in this
study except challenge number 10 i.e., “Frequent releases increase overheads and costs, be-

cause they must be accompanied by supplemental documentation to achieve certification”. The
study suggests incremental compliance i.e., incremental update of safety case (i.e., documentary
showing regulatory compliance). However, incremental compliance is not discussed in detail
in the study. Nevertheless, the study explicitly confirms two of our observation i.e., challenge
numbers 11 and 12 stating that no practical guidance is available for the team to adopt agile
in their context especially in large multi team context. The authors acknowledge that neither
R-Scrum nor SafeScrum provide guidance on how work on safety should be divided between
teams. According to the authors, agile lacks guidance on several aspects of the development of
safety-critical systems.

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 94

4.6 Threats to Validity

This section discusses the threats to the validity of this exploratory case study. In this section,
we have discussed three types of validity threats i.e., construct, reliability, and external validity.

Construct validity threat

Construct validity threats for this exploratory study on discovering the challenges related to the
application of an agile method in a safety-critical system development organisation may include:
Limited representation of industry: The selected organisation may completely represent the
wide range of industrial domains, or safety-critical systems where agile methods are practiced.
This limited representation of industry can undermine the generalisability of the findings of the
case study.
Bias towards specific methodologies or perspectives: The interviewees used scrum as a
method that may introduce a bias towards certain agile methods or perspectives on safety critical
systems. This bias can affect the construct validity by limiting the range of challenges consid-
ered or leading to an over-representation of specific point of views.

Reliability Validity Threat

Reliability validity threats for the results from this case study may include:
As mentioned at the beginning of this thesis, a research paper was in a reputable journal

using the text from most of the sections of this chapter. The research paper had two authors
which can lead to varying interpretations of the interview answers during the analysis process.
This can introduce inconsistencies and potentially bias the results. Incomplete data extraction
from the interviews can also impact the validity and reliability of the findings.

External Validity Threat:

One potential external validity threat is the generalisability of the findings. Since the case study
only focuses on the findings from one avionics company, the findings may not apply to other
avionics companies or industrial domains, such as railways or medical software. Another po-
tential threat is the small sample size and selection of the participants that may not represent
the broader population. Furthermore, personal biases such as preconceptions or personal expe-
riences may influence the interview questions or interpretation of the data.

Addressing Threats to Validity

To address these threats, we clearly described the context and characteristics of the case study,
allowing readers to determine the applicability of the findings to their own context. To enhance
external validity, it was important to ensure a diverse and representative sample of participants

CHAPTER 4. AGILE IN LARGE SCALE SAFETY CRITICAL SYSTEMS 95

from various roles and levels within the organisation. We used an already established guideline
called Wengraf [2001]’s guideline to develop a set of questions for the interview sessions. This
set of interview questions was validated with the help of an independent researcher. Later on,
the analysis was also conducted using the Wengraf’s guideline. We maintained transparency
throughout the research process, acknowledging any biases and taking steps to minimise their
impact. The analysis process and the findings were discussed and validated with the organisa-
tion.

4.7 Summary

The purpose of this exploratory study was to investigate agile practices and their employment
challenges in the context of large-scale safety-critical systems development. A series of semi-
structured interviews were conducted with four employees of an avionics company which led
to the identification of 13 challenges. This study presents a detailed analysis of the challenges
relating to the application of agile in a large-scale safety-critical development context.

The challenges found were grouped into three categories: the influence of traditional sys-
tems engineering processes on agile software development, complex interactions with multiple
external stakeholders, and the documentation required to meet the required regulatory standards.
One of the key findings of this study was the difficulty in managing and maintaining systems’
requirements while following agile development. We, therefore, decided to explore the use of an
agile method called Behaviour Driven Development (BDD) which focuses on the requirements
of a system. The next chapters in this thesis elaborate on our investigation of Behaviour Driven
Development.

Chapter 5

Literature Review and Background:
Behaviour Driven Development

One of the key findings from the exploratory study in the previous chapter was the difficulty in
managing requirements in safety-critical systems when using agile as a development method.
We decided to explore the use of Behaviour Driven Development (BDD) (i.e., an agile practice)
because of its focus on requirements management. The reason for adopting a semi-systematic
literature review was that it explores how research within a selected field has progressed over
time [Snyder, 2019] and we wanted to explore how research on challenges of BDD has pro-
gressed over time. This chapter presents a theoretical background of BDD and an overview of
the available literature on the challenges of BDD in large-scale regulated environments. This
chapter also serves as a theoretical background for the subsequent chapters.

Section 5.1 provides a brief introduction to the concept of requirements engineering in reg-
ulated systems. The literature discussed in the section shows that requirements engineering of
regulated systems requires performing additional activities. Section 5.2 discusses the concept
of agile requirements engineering in regulated systems with a focus on safety-critical systems.
Section 5.3 provides a theoretical background of BDD followed by a description of the BDD
process. Section 5.4 discusses the method adopted to collect and analyse the literature. Also,
the section contains various themes that emerged from dividing the studies found during the
literature review. The context for this Ph.D research is described in Section 5.6. Section 5.7
discusses the threats to the validity of this literature review.

5.1 Requirements Engineering in Regulated systems

Requirements engineering is the process of discovering, developing, tracing, analysing, quali-
fying, communicating, and managing the requirements which define the intended working of a
system [Dick et al., 2017]. A typical requirements engineering process includes activities such
as: (i) understanding the problem and the need, (ii) elicitation of requirements, (iii) analysis

96

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 97

and modeling of the system through the requirements, (iv) documentation of requirements, (v)

validation of the requirements, and (vi) management of the requirements [Macaulay, 2012].
Comparative analysis of guidelines [Dick et al., 2017, Macaulay, 2012] on requirements en-

gineering and literature on requirements engineering in regulated systems [Martins and Gorschek,
2017, Gallina et al., 2018] shows that the requirements engineering process for the development
of regulated systems involves additional activities. For example, a typical requirements elicita-
tion activity in requirements engineering involves requirements gathering through focus groups,
interviews, observations, etc. Whereas, for the development of a regulated system such as safety-
critical system, the requirements elicitation process involves additional activities such as hazard
analysis for elicitation of safety requirements [Vilela et al., 2017]. The process which covers
these additional activities is called safety analysis, and its purpose is to identify potentially
hazardous software faults [Medikonda and Ramaiah, 2014].

The safety analysis of software requirements detects safety issues in the requirements [Hansen
et al., 1998]. During this process, incomplete and hazardous requirements are identified. The
safety analysis is typically performed by safety engineers as a separate process [Leveson, 2016].
which takes requirements as an input [Vilela et al., 2017]. This means that this process is per-
formed after obtaining a set of requirements. This could delay the detection of incomplete and
hazardous requirements which could lead to repeating the requirements engineering activities
and a complete safety re-analysis of software requirements i.e., rework [Leveson, 2016, Vilela
et al., 2017]. According to Leveson [2016], this separation of requirements engineering and
safety engineering is “...almost guaranteed to make the effort and resources expended a poor

investment” because the concept of safety might be isolated from the developers building a
system.

To enable integration between requirements engineering and safety analysis process, several
researchers [Martins and Gorschek, 2016, Vilela et al., 2017, Mhenni et al., 2018, Vilela et al.,
2020] have stressed on the importance of communication between team members, especially
between requirements engineers and safety analysts. Martins and Gorschek [2016] conducted a
Systematic Literature Review (SLR) to investigate the usefulness of the approaches proposed to
elicit, model, specify, and validate safety requirements in the context of safety-critical systems
development. Their findings show that the focus of a large percentage of studies was on inte-
gration between requirements engineering and safety engineering, traditional safety engineering
approaches, and the need for more industrial validation of research on safety-critical systems.
The authors also suggested a need for the establishment of a communication process between
requirements engineers and safety analysts. The findings of the study by Vilela et al. [2017]
coincide with the findings of Martins and Gorschek [2016]. Vilela et al. conducted a Systematic
Literature Review (SLR) on the integration between requirements engineering and safety anal-
ysis. They selected 57 studies for their SLR. The authors discussed the benefits and challenges
of the integration techniques in detail. While pointing out the lack of empirical research in the

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 98

integration between requirements engineering and safety analysis, they emphasised the need for
formal guidelines for requirements engineers to derive and communicate safety requirements
from the safety analysis.

The findings of several studies also showed that there is a need to establish communication
mechanisms between requirements engineers and safety analysts. For example, Raatikainen
et al. [2011] conducted a case study in the nuclear energy domain in Finland. Their study was
focused on finding challenges in the requirements engineering process in safety-critical systems,
specifically, safety-related automation systems of nuclear power plants. The challenges found
during the study included: regulatory requirements, communication, aging of the system, rep-
resentation, and the tool for requirements management. The authors argued that there is a need
to establish practices to communicate and collaborate. In a systematic mapping study, Vilela
et al. [2019] used 60 (selected) studies (out of 1164) to investigate the integration and require-
ments communication among different stakeholders when developing safety-critical systems.
The authors analysed factors associated with safety requirements such as challenges, needs in-
volved, application context, evaluation methods, languages and tools used to specify safety re-
quirements. According to their analysis, model-based collaboration is the most used form of
communication; whereas, face-to-face verbal communication is among the least used forms of
communication.

A number of researchers proposed frameworks to integrate requirements engineering and
safety analysis activities. For example, Mhenni et al. [2018] proposed a framework by extending
SysML, a systems modeling language. The authors integrated safety engineering with SysML
and named the framework SafeSysE. This seven step framework was demonstrated using a case
study. Vilela et al. [2020] followed design science methodology to propose a safety maturity
module for Unified Requirements Engineering Process Maturity Model (Uni-REPM) [Svahn-
berg et al., 2015], a light-weight model presenting the maturity of requirements engineering
process through sets of activities divided into seven areas such as organisational support, require-
ments process management, elicitation, requirements analysis, release planning, documentation
and requirements specification, and requirements validation.

The authors [Vilela et al., 2020] proposed addition of fourteen safety-related activities in-
cluding safety knowledge management, safety communication, and human factors, spread across
the seven areas of Uni-REPM. The authors conducted a static validation of the extended version
of Uni-REPM (i.e., Uni-REPM SCS) with two practitioners and nine academic experts. The
authors implemented a software tool to support the usage of Uni-REPM SCS. The aim of the
tool was to reduce the gap between requirements engineering and safety-critical systems by fo-
cusing on safety actions that should be covered in the requirements engineering process. The
authors conducted a theoretical comparison between Uni-REPM SCS, +SAFE-CMMI-DEV (an
extension to CMMI for Development (CMMI-DEV) that covers safety management and safety
engineering) and ISO 15504-10 (a framework for the assessment of processes including safety).

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 99

The comparison shows that Uni-REPM SCS is more descriptive and detailed because of its focus
on safety in requirements engineering and its comprehensive assessment instrument.

5.2 Agile Requirements Engineering in Regulated Systems

Agile methods have been the focus of the research for many years, yet we see challenges of

requirements engineering in agile methods among the recent topics in research [Inayat et al.,
2015b, Schön et al., 2017a,b, Curcio et al., 2018, Kasauli et al., 2021].

According to participants of the study by Kasauli et al. [2021], the standard conformance
could only be integrated with agile methods if the development is planned systematically. Sev-
eral researchers [Vilela et al., 2017, Martins and Gorschek, 2016] have also argued the impor-
tance of the need for integration of requirements engineering and the safety analysis process
in safety-critical systems development. The idea behind this is that in order to be able to use
agile for the development of safety-critical systems, the activities mandated by the regulatory
standards need to be made part of the life cycle. Different researchers have proposed different
ideas for doing this. Antinyan and Sandgren [2021] propose automating several steps of safety
analysis to reduce administrative effort. Maqsood et al. [2020] have proposed two sets of pat-
terns for agile development of safety-critical systems: (i) for tracing safety requirements and (ii)

performing automated testing.
Several researchers [Hughes et al., 2017, Dick et al., 2017, Laplante, 2017] agree that in-

complete requirements are considered the major cause of project failure. Agile’s advocation for
the accommodation of change in requirements is built upon the narrative that requirements are
volatile (i.e., they tend to change). Agile methods deal with the volatility of requirements by
focusing on the high-priority requirements related to the immediate development life cycle i.e.,
the iteration. Agile teams focus on delivering the system in small iterations by implementing
small sets of known requirements.

The accuracy of these requirements is improved through the emphasis on communication
through practices like customer involvement and face-to-face communication. In a Systematic
Literature Review (SLR) on agile requirements engineering, Schön et al. [2017b] argue that
agile relies on continuous communication and collaboration to involve the stakeholders in the
requirements engineering process. According to Martins and Gorschek [2016], the most impor-
tant factor for successful agile requirements engineering is the intensive communication among
the stakeholders.

Although the literature [Inayat et al., 2015b, Schön et al., 2017a,b] implies that the commu-
nication challenges are mitigated by agile, yet the existing challenges reported in the literature
on agile requirements engineering in safety-critical systems relate to communication and knowl-
edge management [Kasauli et al., 2018b, Martins and Gorschek, 2017, 2016]. The challenges in

communication is a common theme that appears both in traditional and agile requirements engi-

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 100

neering in safety-critical systems. Kasauli et al. [2018b] reported the requirements engineering
related challenges of large-scale agile safety-critical system development based upon 20 qualita-
tive interviews, 5 focus groups, and 2 cross-company workshops. Their findings are summarised
in four sets of conclusions, all of which relate to the communication and information between
the stakeholders. In a similar study Kasauli et al. [2021] the authors state that “...our results

suggest, it is crucial to establish suitable exchange and management of knowledge throughout

large-scale agile system development”.
Various studies [Badampudi et al., 2013, Heikkilä et al., 2017, Martins and Gorschek, 2016,

2017, Kasauli et al., 2021] investigated the issue of communication in large scale agile projects.
Many of them suggested improvements in various areas of requirements engineering; whereas,
some suggested frameworks. For example, Fægri and Moe [2015] suggested a conversation
model of software development. The work by Spijkman et al. [2022] is also aimed at con-
versational requirements engineering. The authors introduced a tool that establishes backward
traceability from requirements to one or more relevant transcript segments in a requirements
conversation. The tool matches the speakers’ turn to the requirements using tokenization and
lemmatization techniques. Although the authors recognised the need for further development
in the tool for use in practice, their preliminary results showed the feasibility of the overall
approach. Medeiros et al. [2020] proposed an approach called Requirements Specification for
Developers (RSD) to create an SRS that provides information closer to development needs. The
RSD approach adopted conceptual modeling, mockup modeling, and specification of acceptance
criteria to create a requirements specification for the developers.

Among other methods and frameworks, Behaviour Driven Development (BDD) is an ag-
ile method that claims to improve communication and knowledge sharing among stakeholders
through requirements. We have discussed and analysed the literature on BDD in this chapter.
The reason for our interest in BDD was due to the popularity of BDD. It is a well established
process as compared to the frameworks proposed by the studies discussed before. The annual
survey for agile has been including BDD in the list of most used agile processes for many years
[CollabNet VersionOne, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020].

5.3 Background on Behaviour Driven Development

BDD was originally conceived for the purpose of acceptance testing. While discussing agile
user stories, North et al. [2006] says “A story’s behaviour is simply its acceptance criteria: if

the system fulfills all the acceptance criteria, it’s behaving correctly; if it doesn’t, it isn’t.” Ac-
cording to Smart [2014], Behaviour Driven Development (BDD) is an agile practice for writing
and automating the execution of acceptance tests for requirements with a focus on the behaviour
of a system. The goal of BDD is to create a shared understanding of a system through require-
ments. It is a process of elaboration and automated testing of the behaviour of a system [Pereira

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 101

et al., 2018].
In spite of its initial conception, various researchers recognise BDD as an effective method

for improving communication and requirements engineering as well rather than a mere way of
testing [Pereira et al., 2018, Oliveira and Marczak, 2018, Wang and Wagner, 2018, Scandaroli
et al., 2019, Moe, 2019, Nascimento et al., 2020a, Smart and Molak, 2023]. According to Smart
and Molak [2023], BDD works well for requirements analysis. Aslak Hellesøy, the founder
and creator of Cucumber (a tool for automating BDD test suites), in one of his blogs [Hellesøy,
2020] says that BDD is not a testing technique. According to him, BDD is not test automation; it
is collaborative requirements analysis combined with formulation and automation of behaviour
testing.

Scandaroli et al. [2019] reported the lessons learned from applying BDD using two different
case studies. According to the authors, the benefits of BDD include effective communication be-
tween team members through a shared understanding of requirements. Pereira et al. [2018] also
reported improved collaboration and communication through requirements as benefits of BDD
during their industrial case study on finding benefits and challenges of BDD. The majority of
BDD activities theoretically described by Smart [2014] also consist of requirements elicitation
and decomposition. This set of activities also includes writing and testing of the acceptance cri-
teria in addition to the requirements engineering activities. This shows that BDD is much more
than purely acceptance testing and that it supports communication and requirements engineering
activities.

The requirements in BDD are organised into agile user stories. The user stories in BDD are
called features where each feature is written and stored in a separate text file with a “.feature”

extension. The features in BDD are written in Gherkin: a non-technical and human readable
language for documenting writing requirements specifications in BDD. Gherkin uses natural
language sentences to describe the desired behaviour of a system.

An agile user story in a Gherkin feature file template is described in Figure 5.1. The structure
of a typical feature in Gherkin comprises four parts i.e.,

i. Title: describes the name of the feature;

ii. Rationale (i.e., the phrase starting with “In order to...”): describes the benefit of perform-
ing the function;

iii. Actor (i.e., the phrase starting with “As a...”): provides the information about the stake-
holder needing the ability to perform the function;

iv. Goal (i.e., the phrase starting with “I want ...”): describes the ability to perform a function.

Altogether, these four parts of a feature help in defining the scope of functionality and facilitate
a common understanding between technical and non-technical stakeholders.

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 102

Feature: <title>
In order to <achieve a business goal or deliver business value>
As a <stakeholder>
I want <something>

Figure 5.1: Feature template

A typical feature file contains a feature and several formalised examples of how a feature
works [Smart, 2014]. These formalised examples are called Scenarios and each scenario rep-
resents a unique variation of the sequence of behaviour during the performance of a feature.
There are two main artefacts in BDD i.e., (i) requirements i.e., features (including the associated
scenarios); and (ii) the associated code steps.

However, according to North [2019], a requirement in BDD consists of a feature and its
associated scenario, whereas the associated code steps for automating the testing of acceptance
criteria in BDD is complementary to BDD and is inherited through Test Driven Development
[North, 2021]. Improvement in the understanding of the requirements is one of the main benefits
of BDD identified during an industrial study by Irshad et al. [2021]. This shows the primary goal
of BDD is to get the requirements right through communication and collaboration. It could also
mean that automation of acceptance testing in BDD is a part of the requirements engineering
process. There are several studies [dos Santos and Vilain, 2018, Maciel et al., 2019, Bjarnason
et al., 2016, Bjarnason and Borg, 2017] which seem to support this concept.

dos Santos and Vilain [2018] experimented with 18 students in the last year of their Com-
puter Science bachelor’s degree at the University of Santa Catarina, Brazil. The experiment
compares the applicability of two acceptance testing techniques that complement requirements
engineering (Fit tables and Gherkin language). The authors did not find sufficient evidence to
show that one of these techniques is easier to use of better to communicate software require-
ments. However, the evidence showed that the mean time to specify test scenarios using the
Gherkin language is lower than fit tables. The study by Maciel et al. [2019] is also based upon
combining testing with requirements to add clarity to the requirements. The authors propose a
model driven driven approach to promote test specification at a very early stage and combine
them with requirements specifications. To demonstrate the applicability of the approach, the au-
thors use ITLingo RSL to support requirements and test specifications, and the Robot language
to specify test scripts. The approach uses model-to-model transformation, such as test cases
into test scripts which then are executed by the Robot test automation framework. However, the
approach was not evaluated by the study.

Bjarnason et al. [2016] performed an iterative case study at three companies and collected
data through 14 interviews and focus groups to investigate the idea of using test cases as re-
quirements to understand how test cases can support requirements activities. The results suggest
that frequent communication enforced by using tests as requirements supports elicitation, vali-
dation, and management of customer requirements. The authors discovered five variants of tests

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 103

Given <a context>
When <an action>
Then <you expect some outcome>

Figure 5.2: Scenario template

...
Scenario: Basic DuckDuckGo Search

Given the DuckDuckGo home page is displayed
When the user searches for "panda"
Then results are shown for "panda"

...

Figure 5.3: Example of a scenario

as requirements specification i.e., de facto, behaviour-driven, story-test driven, stand-alone strict
and stand-alone manual. The study by Bjarnason and Borg [2017] is based upon theoretical
argumentation. The authors highlight three practices and argue that they can provide effective
alignment of requirements engineering and testing i.e., using test cases as requirements, harvest-
ing trace links, and reducing distances between requirements engineers and testers.

Figure 5.2 describes the format of a scenario in Gherkin. Each natural language sentence
in a scenario is called a step of which there are three types i.e., (i) Given: represents the pre-
condition, (ii) When: represents the action on the target system, (iii) Then: represents the post-
conditions or the desired state of the system as a result of the action. Altogether, these three
parts describe one or more outcomes as a result of one or more specific actions in a specific
context. Every step is linked to the system under test through the implementation of step defi-
nition functions, sometimes informally referred to as glue code, such that every step has a piece
of code associated to it. This is why requirements specification in BDD is called executable
specification.

Figure 5.3 is an example of a scenario (re-produced from a tutorial∗ on BDD). The scenario
describes searching a term on the homepage of a website called DuckDuckGo. The Given step
in the scenario describes a pre-condition i.e., the homepage of the website is already displayed.
Figure 5.4 describes the associated code step for the Given step in the scenario. The first line of a
step function annotates the function with the text in the respective Gherkin step from Figure 5.3.

∗https://automationpanda.com/2018/10/22/python-testing-101-pytest-bdd/

...
@given(’the DuckDuckGo home page is displayed’)
def ddg_home(browser):

browser.get(DUCKDUCKGO_HOME)
...

Figure 5.4: Example of a code step

https://automationpanda.com/2018/10/22/python-testing-101-pytest-bdd/

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 104

The function fulfils the behaviour specified in the text i.e., in this case, displays the homepage
for DuckDuckGo.

A wide range of tools is available to support BDD for different programming languages.
For example, Cucumber works with some major programming languages including, Java, Ruby,
and many popular web application programming languages. SpecFlow is a BDD tool for .NET
platform, Behave works with Python, JBehave is a Java framework whereas Behat is for PHP.
Most BDD frameworks have mechanisms for generating empty code steps from scenario steps;
whereas, some BDD tools embed the scenarios directly in test code (i.e., no separate feature
file). The exact nature of the code depends on the implementation framework. For example
in Behave (python), code steps are functions that are annotated with the string representing the
corresponding scenario step. Similarly, in JBehave (Java), the code steps are methods collated
in a Steps class, again annotated with the corresponding scenario step. In this section, we have
explained how BDD is practiced using Cucumber.

BDD Process

To the best of our knowledge, the books by Smart [2014] and Wynne et al. [2017] are the most
cited books on Behaviour Driven Development (till December-2021). They proposed a number
of steps for the production of BDD features and scenarios. We extracted the following notable
BDD activities from the above cited books to provide a theoretical overview of the BDD process.
Please note that this process is a collection of theoretical recommendations by Smart [2014] and
Wynne et al. [2017].

Determination of business goal: Since the aim of Behaviour Driven Development (BDD) is
to provide value, it is very important to understand the business goal of a project. For example,
the business goal of a project which aims to provide an online service to the customers could be
to attract more customers by providing easy access to a service.

Define and document set of major features and determine the relative value of proposed
features: The high-level functionality of the system is discussed and transcribed in the form of
features (user stories) described in Figure 5.1. A set of useable features and the value associated
with them is discovered and discussed during this activity. The high level functionality elicited
during this step helps in reaching the business goal. Considering the above example, several use-
able features like “create account” or “perform an online transaction” could help the business
owners reach the business goal i.e., easy access to a service.

Illustrate the stories with examples: Discuss the concrete and real-life examples with the
customer (Or the product owner) such that every scenario is an end-to-end representation of the
corresponding feature. These examples serve as the acceptance criteria at the later stages.

Describe examples as BDD scenarios: Examples are transcribed using the BDD scenario
template in Figure 5.2. Each example describes a unique sequence of events corresponding to
the respective feature. This will serve as the basis for the acceptance criteria. Acceptance testing

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 105

is used to demonstrate the high-level, end-to-end behaviour of an application.
Write the code: A scenario in BDD contains Given-When-Then steps that altogether express

the behaviour of the system described in a scenario. During this step, a piece of code that
satisfies the description of each step in a scenario is written. The complete code for a scenario
is organised in a unit test which implements the complete behaviour described by the scenario.
In other words, the unit test will build up the components which demonstrate the behaviour
described in the scenarios [Smart, 2014].

Since activities in Behaviour Driven Development process emphasise communication and
collaboration between stakeholders, it is pertinent to know who should take part in these activi-
ties. One of the recommendations on who should take part in these activities is the “three amigos

meeting” where the developer, tester, and business analyst or the product owner get together to
discuss the features and associated examples. Three amigos meeting is a recommended practice
for all activities in the BDD process [Smart, 2014, Wynne et al., 2017]. Participation of different
roles in the activities helps in presenting different views of a functionality.

5.4 Literature Review Method

Behaviour Driven Development (BDD) has gained increasing popularity in recent years as an
agile method. Annual surveys on the state of agile list BDD as one of the most employed
techniques in the industry. The annual surveys on the state of agile published during the last
eight years [CollabNet VersionOne, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] show an
annual increase in the use of BDD by agile practitioners i.e., from 10% in 2013 to 19% in 2020.
In a study, Binamungu et al. [2018b] surveyed 75 BDD practitioners from different parts of the
world, out of which, 20% made BDD a mandatory tool; whereas, 61% used it as an optional tool.
The results of the study also suggested that BDD is in active use in the industry. Rahman and
Gao [2015] presented a reusable automated acceptance testing architecture to address concerns
associated with reusability, audibility, and maintainability. Rahman and Gao [2015] pointed
out that there has been a recent increase in the number of people embracing the methodology.
Zampetti et al. [2020] analysed 50,000 popular open-source projects written in five programming
languages on GitHub. Their results show that BDD tools are used in 27.25% of 50,000 open-
source projects. According to the survey by Rahman and Gao [2015], the main reason for this
growing interest in BDD is the ease of understanding of requirements.

Although there has been a growing interest in Behaviour Driven Development in recent years
[Storer and Bob, 2019, Silva et al., 2020a], several researchers [Egbreghts, 2017, Binamungu
et al., 2018b, Zampetti et al., 2020, Pereira et al., 2018] have pointed at the scarcity of empirical
research on application and challenges of BDD in real projects in large-scale environments.
These studies were based upon different research methods such as interviews [Pereira et al.,
2018], experimentation [Diepenbeck et al., 2018, Storer and Bob, 2019], case study [de Souza

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 106

Database URL
ACM http://dl.acm.org/
IEEExplore http://ieeexplore.ieee.org/Xplore/home.jsp
Scopus https://www.scopus.com
Science Direct http://www.sciencedirect.com/
Web of Science http://apps.webofknowledge.com
Google Scholar https://scholar.google.com/

Figure 5.5: Literature Sources for the Second Literature Review

(((Behaviour Driven Development) AND regulated) AND software)
(Behaviour Driven Development and safety standards)
(Behaviour Driven Development* challenges* large-scale safety-critical)
(Behaviour Driven Development challenges in large-scale safety-critical)
(Behaviour Driven Development challenges)

Figure 5.6: Search Strings

et al., 2017], toy examples [Gómez, 2018, Zaeske et al., 2021], online surveys [Zampetti et al.,
2020, Binamungu et al., 2018b, 2020], literature review [Solis and Wang, 2011, Egbreghts,
2017], and expert panel research [Nascimento et al., 2020b]. We divided the studies into various
themes to present an overview of the topics on BDD in the literature.

The relevant literature was reviewed from a variety of online sources including relevant
books, white papers from the industry, journals, conference proceedings, and experience re-
ports. An exhaustive search for the literature on BDD and application of BDD in large-scale

environments was performed. The repositories listed in Figure 5.5 were used for searching the
studies using the combinations of search strings in Figure 5.6. The keywords were identified
from the purpose and synonyms of the important search terms. The databases were searched it-
eratively by using the search strings that were formed by using AND and OR Boolean operators.
The purpose of the second literature review was to find the studies on BDD and its application

in large-scale environments.

5.4.1 Use of Natural Language

Researchers [Storer and Bob, 2019, Carrera et al., 2014, Keogh, 2010, Smart, 2014, Pereira et al.,
2018] have acknowledged that the use of BDD encourages communication and forces elabora-
tion of poorly understood requirements. The use of BDD bridges the gap between stakeholders
and written specifications in a way that not only improves understanding and communication but
draws both technical and non-technical stakeholders into the process [Wynne et al., 2017]. Ease
of understanding in BDD is due to the use of Gherkin language which uses a structure similar to
the natural language [Binamungu et al., 2018b, Borgenstierna, 2018, Pyshkin et al., 2012, Solis
and Wang, 2011, Silva et al., 2020a, Diepenbeck et al., 2018, Sarinho, 2019].

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 107

Borgenstierna [2018] performed a comparison of two frameworks i.e., Behave (for BDD)
and PyUnit (for TDD). The comparison was performed from a tester’s perspective using Yu-
bikey (i.e., USB NFC authenticator) as a case. The results show that the Gherkin language used
in Behave is easier to read. Nascimento et al. [2020b] investigated the potential benefits and
challenges of teaching BDD to software engineering students. They conducted an expert panel
research with 28 active learning experts from four countries. Results of the study suggested that
BDD has a greater positive impact in the requirements phase than other stages of software de-
velopment. Solis and Wang [2011] analysed the relevant literature and the available tools. They
discussed six main characteristics of BDD which, according to the authors, cover a range of
software development activities including requirements elicitation, analysis, design, and imple-
mentation. According to the authors, BDD workflow initiates discussion and provides a good
starting point to communicate with the customer. Ease of communication because of the use
of natural language and automation of requirements specifications are considered strengths of
BDD.

5.4.2 Embrace BDD as a Holistic Approach

According to Solis and Wang [2011], BDD is a combination of characteristics that include the
use of natural language, TDD, and automated acceptance testing. The authors emphasised that
these characteristics are interlinked and should be embraced in a holistic way to get the full
benefit of the BDD approach.

On the contrary, Egbreghts [2017], in a literature review of BDD, highlighted the charac-
teristics of BDD from the literature. According to the findings of the study, BDD is not fully
embraced in the projects because it is not a well-defined agile method. According to the author,
different concepts of BDD are not interlinked as they are in traditional agile development.

5.4.3 Role of Experience in Using BDD

Pereira et al. [2018] interviewed 24 participants from different companies and varying levels of
expertise in agile and BDD. The focus of their research was on discovering the benefits and the
challenges of BDD. According to Pereira et al. [2018], scenarios are the strength of BDD and
investing in training and tools pays off. Their results suggested that lack of experience in BDD
can lead to production of poorly written scenarios. BDD starts to show benefits once a company
overcomes the initial learning curve.

Gómez [2018] conducted an experiment using a toy example with twenty (20) students
to compare three agile software development methods i.e., Incremental Test-Last (ITL), Test
Driven Development (TDD), and Behaviour Driven Development (BDD). The study did not
present any conclusive results and mainly discussed the data gathering and potential ways of
evaluating the data. The study showed a decrease in productivity because of a lack of expe-

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 108

rience in BDD. Zampetti et al. [2020] also argued that the use of BDD in a project requires
experience and training.

5.4.4 Maintenance of BDD Specifications

Binamungu et al. [2018b] conducted a study by using an online survey for gathering data. They
investigated the extent of the use of BDD in the industry, perceived challenges and benefits,
and the discovery and management of duplicates in BDD specifications. An online survey was
filled out by seventy-five (75) practitioners from all over the world. As a result of the study,
the authors learned that BDD tests suffer from the same maintenance challenges that test suites
in automated testing face. Maintenance and duplication in BDD specification are the major
challenges according to the respondents of the survey in the study. According to Nascimento
et al. [2020b], the use of BDD requires performing additional activities that can increase delivery
time.

The basis of the study by Storer and Bob [2019] was the difficulty in maintaining BDD
tests. In case of an update, the changes need to be made at two places i.e., the scenario and the
corresponding code steps. To address this issue, the authors proposed automatic generation of
code steps. According to the authors, excluding the underlying implementation logic makes the
scenarios implicit. On the other hand, if scenarios are made explicit by placing some implemen-
tation details in the scenarios, the scenarios become long and harder to understand. Hence, there
is a need for a guideline to write tests in Gherkin.

5.4.5 Tool Support

The goal of the study by Zampetti et al. [2020] was to investigate the adoption of BDD in 50,000
open-source projects developed in five programming languages. The authors also surveyed 31
practitioners with high level of testing experience. Findings of the study indicated that BDD
tools are used in 27.25% of 50,000 open-source projects. The authors identified six different
tools that were used in the majority of the 27.25% BDD projects. The percentage of Ruby
projects was highest among the BDD projects. The results of the study showed that the adoption
of BDD tools in the projects is still low, and in many cases, they are used for activities such as
unit testing. The authors also observed that the majority of the developers write the code before
writing the tests. According to the authors, the developers are still skeptical about the use of
BDD.

Article by de Souza et al. [2017] reported the findings of a case study in which BDD was
combined with Scrum for the development of an educational learning and management system
at a Brazilian university. They reported a considerable improvement in communication between
team members and product owner because of the use of BDD. The study showed that existing
tools mainly focus on the “... implementation phase, providing limited support to the require-

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 109

ments gathering, analysis, and design phases of software life cycle”. According to Solis and
Wang [2011], the existing tool kits for BDD lack support for the planning and analysis phases
of the software development.

5.4.6 Quality of BDD Specifications

Nascimento et al. [2020b] suggested that more investigation is needed on the quality of scenarios
and the role of experience in writing them. Binamungu et al. [2020] presented the results of a
survey on views of the BDD practitioners on BDD suite quality. They proposed four principles
of BDD suite quality and asked respondents to respond according to their level of agreement
with them. The four principles of BDD suite quality were: (i) Principle of Conservation of
Steps, (ii) Principle of Conservation of Domain Vocabulary, (iii) Principle of Elimination of
Technical Vocabulary, (iv) Principle of Conservation of Proper Abstraction. At least 75% of
respondents voted in support of each of the four principles. The Importance of writing reusable
scenarios and the readability and clarity of the resulting specification was highlighted by the
respondents.

5.4.7 BDD for Hardware

A study by Diepenbeck et al. [2018] was on adaptation of BDD to the needs of the verification-
centric hardware design flow. They extended BDD methodology by combining formal properties
with test-driven development design. The authors implemented a test bench in Verilog to test
their approach. While pointing towards the implicit nature of the scenarios, the authors argued
that the lack of implementation semantics and implicit environment assumptions, such as re-
strictions on the data range of certain inputs, shows that Gherkin does not share the underlying
complexity of the code.

5.4.8 BDD for Regulated Systems

A study by Zaeske et al. [2021] discussed the application of BDD to an example of an avionics
application that comes under DO-178C regulated standard for airborne software. The example
system was a Class C Terrain Awareness and Warning System, developed using Rust language
with Rust BDD infrastructure. The study showed that the high-level requirements of a system
regulated by DO-178C can be captured and formalised using Gherkin. However, the authors
do not report any challenges about the application of BDD to an avionics system regulated by
DO-178C.

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 110

5.5 Discussion

Despite the increasing popularity of BDD, there is a lack of empirical studies on the discov-
ery and resolution of the challenges associated with BDD. This scarcity of literature is also
mentioned in various studies [Binamungu et al., 2018b, Borgenstierna, 2018, Binamungu et al.,
2018a, Solis and Wang, 2011, Pereira et al., 2018, Zampetti et al., 2020]. The lack of empirical

evidence also means that there is less practical guidance available on BDD, which as a conse-
quence, can lower the confidence of the people attempting to use BDD. In the previous study
(in Chapter 4), we have seen that the lack of practical guidance on agile methods is one of the
biggest hurdles in its adoption. According to Julian et al. [2019], there has been relatively lit-
tle investigation on how agile is adopted and used in industry. While pointing at the lack of
availability of empirical studies, the authors [Julian et al., 2019] argue that there is very little
literature available on “how agile is used in practice?” as compared to the existing literature
discussing “what is agile?”.

The need for practical guidance comes from the gap between theory and real life. The
theoretical models and processes are usually based upon certain assumptions and tend to ignore
real-life constraints such as size and structure of the organisation, unavailability of the customer,
the experience of the team members, etc. The real-world factors can limit the application of the
theoretical models. The theoretical description of BDD also presents an ideal situation where
everyone is thought to be involved in the development. We do not know anything about the
practicality of the activities of BDD. There is a need for guidance on what activities to follow,
their outcomes, and how to handle real-life situations that can impede the speed of development
e.g., unavailability of the customer, benefits of adopting certain activities, or implications of
ignoring them.

Investigating the use of BDD in the real-world could bring clarity and confidence in the
use of BDD. It is important to know the impediments in the application of BDD so that the
industry can take guidance from such knowledge. Lack of practical guidance on a method often
hinders the adoption of the method e.g., agile [Islam and Storer, 2020b]. There is a need to
investigate the constraints and the real-life challenges in the application of BDD. Learning from
the experience of the practitioners keeping in mind the circumstances they applied BDD in, can
serve as a guide for the people attempting to use BDD.

5.6 Research Context

This research is focused on the challenges of applying Behaviour Driven Development. Effec-
tive management of project requirements in large-scale organisations appears to be a challenge
because of the factors such as ineffective communication due to the size of the team and project
[Fucci et al., 2018, Konrad and Gall, 2008]. Since agile methods are popular for close collab-

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 111

oration, communication, accommodation of change, and shared vision of the project, several
researchers [Paasivaara et al., 2018, Abrar et al., 2019, Venkatesh and Rakhra, 2020, Kalenda
et al., 2018] have proposed use of agile methods in large-scale environments. Unfortunately, the
use of agile methods in large-scale environments does not solve the issues related to communica-
tion, shared vision, and requirements management since the same issues appear as challenges of
agile requirements engineering in large-scale environments in the literature [Inayat et al., 2015a,
Vilela et al., 2017, Uludag et al., 2018, Dikert et al., 2016]. In an attempt to solve the issues
related to communication, shared vision, and requirements management, we decided to explore
the use of Behaviour Driven Development (BDD).

Despite the increasing popularity of BDD, several researchers [Binamungu et al., 2018b,
Nascimento et al., 2020b, Irshad et al., 2021] have pointed at the lack of knowledge and evidence
on the challenges of BDD. As a part of this research, we have explored the challenges related
to the use of BDD in an industrial environment which helped us in discovering the technical
limitations of Gherkin along with exploring the challenges of using BDD in a large organisation.

Since Gherkin provides a lot of freedom for writing requirements specifications, it is easy to
write an over complicated set of requirements which could create maintenance issues in BDD
requirements specification. In this research, we also identified several requirements specifica-
tion writing styles and practices that could lead to inflexible requirements specification and,
consequently, bad smells. The open-source BDD projects on GitHub were examined for this
purpose.

Highlighting the limitations of Gherkin, exploring the challenges of BDD, and identifying
the existing bad smells in requirements specifications of open-source BDD projects will serve as
a guide for people and organisations intending to adopt Behaviour Driven Development (BDD).

5.7 Threats to Validity

This section discusses the threats to the validity of this literature review. In this section, we have
discussed three types of validity threats i.e., construct, reliability, and external validity.

Construct validity threat

A construct validity threat for this semi-systematic literature review on Behaviour Driven De-
velopment could be the lack of clarity in defining BDD and its associated concepts. Different
studies can use varying definitions for concepts such as “adoption of BDD”, “effectiveness of

BDD”, or “challenges in implementing BDD”, which can make the comparison of the results
difficult.

CHAPTER 5. LITERATURE REVIEW AND BACKGROUND: BDD 112

Reliability Validity Threat

A reliability validity threat for this semi-systematic literature review on Behaviour Driven De-
velopment could be the lack of replicability of the review. The reliability of a literature review
may be compromised if the literature review is not reproducible. Also, a reviewer can have
his/her own interpretation of the data. This can result in inconsistent findings and conclusions
drawn from the reviewed studies.

External Validity Threat

An external validity threat for this semi-systematic literature review on Behaviour Driven Devel-
opment could be the limited generalisability of findings. The reviewed studies may not represent
the entire population of the studies on BDD.

Addressing Threats to Validity

To address the validity threats, the BDD concept and the activities of a BDD process were
described upfront. We presented a conceptual framework that outlines the specific aspects and
dimensions of Behaviour Driven Development. The studies on the challenges of BDD already
appeared to be scarce so we did not apply inclusion/exclusion criteria for selecting the relevant
studies, ensuring that no studies were excluded. Regular meetings and discussions with other
academics and a series of email exchanges with Dan North (creator of BDD) addressed the
uncertainties during the study selection.

Chapter 6

BDD in Practice: A Case Study

Chapter 4 reported on the experience of adopting an agile method within a company engaged in
large-scale, complex software and hardware systems development. The company’s established
development process was based on sequential models. The reasons for following sequential
models included stringent documentary requirements, project size, team size and setting, soft-
ware and hardware co-development, and interdependence of hardware and software components
of a project. The change in business needs (i.e., the desire to deliver earlier and continuously)
pushed the company to adopt agile development. The company undertook the transition gradu-
ally, with attempts to introduce agile development in some of the new and ongoing projects and
sub-projects.

The focus of our previous study (as explained in Chapter 4) with the company was to un-
derstand the impediments to the adoption of an agile development process. We learned that
adoption of agile in large-scale safety-critical system development is constrained by its context
i.e., highly regulated safety-critical environment. Using an agile process in a large-scale safety-
critical environment often requires adaptation of various methods and practices. In particular,
there is a need to understand how agile software development can be adapted in the context of
large-scale, complex systems engineering which includes the development of both software and
hardware components on projects that may last many decades.

We also learned that requirements management in large-scale systems is a challenge. We
learned that factors such as pace of development, nature, and size of a project, number of teams
involved, and organisational and regulatory requirements could impact an organisation’s ability
to manage requirements. We, therefore, decided to explore an agile process, Behaviour Driven
Development (BDD), which is primarily hinged upon requirements engineering. The decision to
explore the use of BDD was based upon its apparent popularity and emphasis on communication
and collaboration through requirements specification.

We conducted a literature review in Chapter 5 on BDD, its challenges and its application in
large-scale environments. We detected a scarcity of literature on BDD, especially, application
of BDD in large-scale environments. This motivated us to conduct action research to explore

113

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 114

the use of BDD for development of a project in an industrial setting.
This chapter discusses the challenges faced during the application of BDD within the com-

pany and a number of limitations of Gherkin (i.e., language for writing requirements speci-
fications in BDD). This study also presents a comparison between BDD in practice and the
theoretical process of BDD as proposed by Smart [2014] and Wynne et al. [2017]. This chapter
is organised as follows: Section 6.1 elaborates on the objectives of the study. Section 6.2 de-
scribes the context of the project studied in this chapter. Section 6.3 explains the use of action
research in the early phases of this study. Action research helped in aligning the BDD process
with the development process of the project discussed in this study. Section 6.4 describes the use
of semi-structured interviews in this study. The semi-structured interviews were used at the end
of this study to report the experiences and opinions of the people who applied BDD during the
project discussed in this study. Section 6.5 discusses the observations regarding the limitation
of Gherkin (i.e., the language for writing BDD specifications). These observations were made
during the action research and the interviews. Section 6.6 presents a comparison of BDD in
practice with the BDD process. Section 6.7 discusses the threats to the validity of this study and
the summary of the chapter is presented in Section 6.8.

6.1 Objectives of the Exploratory Case Study

As discussed earlier in Chapter 1, the annual industrial survey reports from the last eight years
on the state of agile show a gradual increase in the popularity of BDD [CollabNet VersionOne,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]. Some recent studies [Degutis, 2018, Wang
and Wagner, 2018, Zaeske et al., 2021] show that BDD is also being considered for the develop-
ment of complex systems. Yet there has been very little investigation reported in the literature
on the experience of practitioners who have applied BDD (as explained in Section 5.4) which
implies that there is a scarcity of knowledge on the use of BDD in academic literature. There
are, therefore, many open questions about the application, challenges, and adaptations to BDD
in various software domains.

To begin to address this gap, we conducted a study with software engineers working for a
large avionics company in the United Kingdom (referred to as ‘the company’). As described in
Chapter 4, the company, as a whole, is engaged in a variety of projects for external customers,
typically comprising both hardware and software development for safety-critical systems. The
purpose of this study was to learn about the company’s experience in the application of Be-
haviour Driven Development (BDD) to software development for a project and to gain a deeper
insight into the difficulties experienced. Therefore, the research objectives within the context of
the case study in this chapter were:

• Explore the feasibility of applying Behaviour Driven Development to the development
and maintenance of a project.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 115

• Identify the benefits and difficulties experienced when developing a system using Be-
haviour Driven Development.

• Analyse BDD in practice versus its portrayal in theory (as described in section 5.3).

A combination of research methods (i.e., action research and case study interviews) was used
to reach the objectives of this study. The study was conducted in two phases. In the early phase,
we wanted to enable the project development team to use BDD for the development of a project.
Action research was used for this purpose. The use of action research in the early phase of this
study helped us align the development process of the project with BDD and enable the project
development team to adopt BDD for the development of the project.

In the latter phase, we wanted to learn and report the experiences and opinions of the people
who used BDD for the development of the project discussed in this study. A series of post
hoc semi-structured interviews was conducted for this purpose. The use of semi-structured
interviews helped us understand and report the opinions and experiences of the development
team using BDD.

6.2 Context of the study

BDD was used for the development of a sub-part of an ongoing project. This sub-part was
a tool internally used and developed at the company for the automation and management of
large data sets. As described in Chapter 4, we are unable to discuss specific details (including
the requirements specification) of the sub-project (i.e., the tool) because of the confidentiality
agreement between ourselves and the company.

The description below provides context for the discussion of the challenges identified during
action research and interviews conducted during this study. Each theme discussed below gives
an overview of the context in which BDD was applied and adopted. This section describes
the overall project structure where BDD was adopted as a software development process. The
section also discusses the project team structure, and the software process and technology used
to develop the project.

6.2.1 Overview of the Project and the Project Team Structure

The project discussed in this study was initiated by the product owner since he worked in an
area where he had felt the need for the tool. As he was familiar with the use and need of the
system, he was one of the key people in specifying the initial concept of the project. The project
discussed in this study was part of a larger project which had a completion time of three years
and comprised a six-member Scrum Team. Three out of those six people, including the product
owner and scrum master, in addition to working on the larger project, worked on the project
discussed in this study.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 116

The project (discussed in this study) was a tool developed for internal use for a specific
group of engineers in the company with an estimated completion time of 12 months. It was
purely a software project, and also, one of the projects that the company wanted to develop using
agile. For the development of this project, the company adopted the basic agile team settings
recommended in the literature [Mergel et al., 2020, Dybå and Dingsøyr, 2008, Stadler et al.,
2019, Conboy and Carroll, 2019]. The adopted agile team settings included having a small team
and the creation of a co-located environment. Therefore, the team was limited to three people
including the developer, the product owner, and the scrum master. All team members were
co-located for frequent and informal communication.

The team members had a varying level of professional experience. The product owner,
with over seven years of experience, served in different roles within the company e.g., product
owner, and system integrator of hardware, firmware and software. He used agile methods for
four or five years before working on the said project. Whereas, the software developer was an
industrial placement student and had no prior experience of using agile methods in a professional
environment. The scrum master, however, had four years of working experience, with a couple
of years of experience in test-driven development.

Before starting the project, a prototype was developed to get feedback on the usability of the
tool. The initial users of the tool were seven employees of the company who assumed the role of
the customers for this project. They included a mix of software engineers and experts from other
fields who did not have a background in software development. The experts were able to give
feedback on the usability; whereas, the software engineers gave feedback on the requirements
and functionality.

Feedback from the users helped in the preparation of an initial set of requirements in the form
of fifty use cases. Each use case was documented using the company’s prescribed requirements
template. The template was in a tabular form consisting of several fields describing the use
case and can be seen in Figure 6.1. These fields could be divided into (i) use case information
i.e., title, description, owner and primary actor, and status of the use case; (ii) precondition and
post-condition; (iii) sequence and description of steps; (iv) sequence and description of steps for
alternate path; (v) assumptions and constraints; (vi) demonstration and validation criteria.

6.2.2 Software Process Overview

This section presents an overview of the software process used in the case study, which will be
described in more detail in the phases of the action research presented below. The life cycle
model followed for the development of the overall project was Scrum. The sub-part focused
in this study was managed within the wider project’s Scrum process; therefore, there were no
separate Scrum activities for the sub-part. However, Behaviour Driven Development was only
applied in the sub-part (i.e., the project discussed in this study).

Application of BDD to the project consisted of transcription of features and scenarios, ac-

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 117

Figure 6.1: Use Case Template

ceptance testing, and implementation. The features and the associated scenarios were elicited
in separate meetings for the project. Whereas, implementation of both the application and the
tests was performed by the developer. Several additional meetings also took place for minor
clarifications on the project. These additional meetings included (i) face-to-face conversations
between the developer and the product owner for clarifications on the nature of input data; and
(ii) the telephone conversations between the author (of this thesis) and the product owner or the
author and the developer for further clarifications on the elicited features and scenarios.

The overall project (i.e., the larger project and its sub-part) was developed in sprints, and
the duration of each sprint was two weeks initially. Afterwards, the team felt that some of the
issues they were putting into their backlog were either too big or the priority of the tasks kept on
changing because of the pressure from the customer (i.e., the users of the tool). Consequently,
at the end of two weeks, the team would end up working on requirements different than they
planned for that particular sprint. So, within the first few months of the project, the team moved
to running one-week sprints. However, after running a one-week sprint for several weeks, the
team moved back to a two-week sprint duration once again because the team felt that there was
not much to discuss after one week.

Up till the point of the interviews, there were fifteen two-week sprints and ten releases of the
overall project. At the end of each sprint, the team held a back-to-back review and a retrospective
meeting on the same day. There was no separate sprint planning for the project (discussed in
this study). Therefore, the tasks for a sprint for the project were part of the list of tasks for the
overall project.

The team had daily stand-up and review meetings. In the review meetings, the team dis-

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 118

cussed the feedback on the overall project with the stakeholders and also reviewed the backlog.
In the daily stand-ups, the team typically discussed the tasks they were working on at that point
and the tasks they did on the last work day. They also introduced a weekly backlog refinement
meeting to talk about the backlog, and what certain stories or tasks would involve.

Testing of the overall project was performed by the product owner, the developer, and the
potential users of the application. The product owner and the developer were involved in unit
testing and integration testing with the rest of the platform; whereas, the users provided feedback
after manually using the application.

6.2.3 Development Technology

Initially, the team wanted to develop the project using Matlab. Just before starting the develop-
ment, it was decided that the project would be developed using Python/Django and not Matlab.
The decision was made because of the technological limitations and licensing cost of Matlab
(i.e., the team had a limited budget).

The project was developed in Python using the Django framework∗. The data was stored in
Apache HBase† - an open-source database, and Behave‡ was used for automating the specifi-
cations. The other tools for supporting the project included Cucumber§ for BDD tests manage-
ment, Jira for requirements management, and Confluence for drawings and documentation. The
team used a local version control system because of the confidentiality of the projects.

6.3 Action Research

A decision was made to implement an action research study following the guidelines and process
described in Section 2.4. By the time we decided to collaborate with them and incorporate BDD
into the project, the team had already started some initial development work using the initial
set of use cases. As described in Chapter 4, the company was in transition towards agile. Their
biggest motivation for adopting agile was early delivery and effective requirements management.
Due to our research interest in the application of agile methods in large-scale environments, we
agreed to collaborate on a project.

The first meeting with two senior employees from the company, regarding the project (dis-
cussed in this study), took place on 11th October, 2018. Since the previous study described
in Chapter 4 highlighted requirements management as a challenge of agile development in a
large-scale environment, it was mutually decided to explore the application of Behaviour Driven
Development (BDD) to the project. After the first meeting, we were handed over the fifty use

∗https://www.djangoproject.com
†https://hbase.apache.org
‡https://behave.readthedocs.io/en/stable/
§https://cucumber.io/

https://www.djangoproject.com
https://hbase.apache.org
https://behave.readthedocs.io/en/stable/
https://cucumber.io/

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 119

In order to <achieve a business goal or deliver business value>
As a <stakeholder>
I want <something>

Figure 6.2: Format of a Feature in Gherkin

cases for conversion into BDD features. We went through four iterations with varying numbers
of stakeholders, mostly the development team and the users.

First Iteration

Planning: All the use cases were examined and discussed between the author and his supervi-
sor. The author established a strategy for conversion. Rules were defined for interpreting
different fields of the use case template in Figure 6.1. To generate a raw suite of user
stories (features) and scenarios compatible with the Gherkin language, we decided to:

1. Transcribe ‘Pre-conditions’ as (Given steps in the) ‘Background’.

2. Transcribe ‘Sequences of Execution’ steps as ‘When’ statements.

3. Transcribe ‘Description of the System Response’ as ‘Then’ statements.

4. Transcribe ‘Post-conditions’ as ‘Then’ statements.

5. Alternative triggers may describe alternative user actions (‘When’), causes of system
failure (annotations to ‘Then’ statements or alternative scenario labels).

Action: The author studied each use case and transcribed the system’s intended behaviour in
the Gherkin feature format described in Figure 6.2. The first line in Figure 6.2 (starting
with In order to) describes the rationale of the functionality. The second line describes the
intender who wishes to perform the action or the functionality described in the third line
of Figure 6.2.

After writing a feature for each use case, scenarios were transcribed for each feature while
following the rules we described earlier. During this iteration, fifty use cases were con-
verted into Gherkin features.

Analysis: During the conversion, we identified that the emerging scenarios were complex and
contained interleaved When/Then statements. Figure 6.3 shows the structure of one such
feature and the corresponding scenarios. The text describing the actual use case is redacted
due to project-related confidentiality. The Figure 6.3 shows that the transcription of the
use cases resulted in scenarios with interleaved When/Then statements.

It was observed that Given, When and Then statements are synonyms for the Arrange,
Act and Assert stages of a unit test, according to the AAA pattern, proposed by Bill

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 120

Feature: < description >
In order to <achieve a business >
As a <stakeholder>
I want <something>

Background:
Pre-conditions

Given <a context>
And < additional context related information >
And < additional context related information >

Scenario: < description of a scenario>
Steps and responses

When < an action >
Then < expected outcome >
When < an action >
Then < expected outcome >
When < an action >
Then < expected outcome >

Post-conditions
And < additional expected outcome >
And < additional expected outcome >

Scenario: < description of a scenario>
Steps and responses

When < an action >
Then < expected outcome >
When < an action >
Then < expected outcome >

Figure 6.3: Structure of a Scenarios with AAA violations

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 121

Wake¶. AAA pattern is a common way of structuring and organising a unit test into three
functional sections (i.e., Arrange, Act, Assert) [Ma’ayan, 2018, Sundelin et al., 2018].
Following this pattern creates a clear separation between a unit test’s setup (i.e., Arrange),
its operation (i.e., Act), and results (i.e., Assert). Sundelin et al. [2018] argue that follow-
ing the AAA patterns makes a unit test easier to maintain and understand. Therefore, the
interleaving of when and then steps was a potential indicator of complexity in the BDD
test scenario because it violates the AAA pattern.

Violation of AAA pattern (i.e., use of interleaved Given-When-Then statements) in a sce-
nario is an indication that the scenario is attempting to test too much functionality. Ac-
cording to Khorikov [2020b], testing too much functionality in a single unit test makes a
test “exceed the realm of a unit test and become an integration test”. Oliveira and Marczak
[2018] argue that scenarios with interleaved Given-When-Then statements are difficult to
read and understand. This implies that the Gherkin scenarios with AAA pattern violations
(i.e., use of interleaved Given-When-Then statements) are difficult to read and understand
even if they are functionally correct. We refer to the violation of AAA pattern as one of
the bad smells in unit testing.

Reflection(corrective action): The resulting scenarios showed us that it may be possible to
translate use cases into BDD scenarios. The translation strategy we devised was unknown
until we attempted it and then performed a corrective action i.e., evolved our strategy.
However, the accuracy of the strategy we applied for the translation of the use cases into
BDD scenarios was unknown.

The process of translating the use cases into BDD scenarios allowed us to detect the vi-
olation of the AAA pattern which was not evident in the use case format. At this stage,
we observed that we needed a means of breaking up the associated features into smaller
features. In the process of searching for tools and support on Google, we found that BDD
lacked tools and methods for identifying and refactoring scenarios with bad smells.

Second Iteration

Planning: The scenarios with the AAA pattern violations were presented in a meeting to the
two senior members of the project team on 10th January, 2019. It was agreed during
the meeting that breaking the scenarios is inevitable which indicated that the features
also need breaking up. Six use cases were prioritised for conversion during the meeting.
Among those six use cases, four were from the previous set of fifty use cases while two of
them were new.

Action: Since we did not find a tool support for removing AAA pattern violations, we had to

¶https://xp123.com/articles/3a-arrange-act-assert

https://xp123.com/articles/3a-arrange-act-assert

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 122

do it manually. First, the two new use cases were also converted into Gherkin features
according to the rules we described earlier. Then each of the six features was discussed in
detail between the author of this thesis and his supervisor. Each feature was broken down
into smaller features based on this discussion. There were seven scenarios in six feature
files before removing the AAA pattern violation. The removal of AAA pattern violations
led to the breaking up of the features and scenarios which resulted in a total of nineteen
scenarios and twelve feature files. We presented the resulting features, scenarios and the
corresponding code steps in a validation meeting to two experts from the company.

Analysis: During the process of conversion and removal of AAA pattern violations, we made
five more observations about the limitations of Gherkin as summarised below:

• During the conversion of the scenarios, it was observed that Gherkin has a non-
hierarchical requirements organisation. Gherkin does not provide a means to define
hierarchy or dependencies between features. Each Gherkin feature file is a text file
with no indication of the feature it was derived from. Gherkin also lacks a means of
expressing dependencies across features and scenarios.

• During the second iteration of the action research, we observed that sometimes the
scenarios and steps are simple to express in Gherkin but turn out to be complex in
implementation. The appropriate level of abstraction in Gherkin steps is unknown
[Binamungu, 2020]. Gherkin scenarios and steps do not express the details embed-
ded in implementation.

The documentation for Cucumber (a tool used for writing Gherkin) [CucumberStu-
dio, 2019b] advocates writing declarative Gherkin. Declarative scenarios hide imple-
mentation details and focus on the goal without specifying how the goal is achieved.
Whereas, imperative scenarios include the details of the user’s interaction with the
system, often UI. The rationale behind avoiding writing imperative scenarios dis-
cussed in the documentation [CucumberStudio, 2019b] is that imperative scenarios
include UI details which can often change. This can make the scenarios brittle and
hard to maintain. However, our finding does not relate to a user’s UI interaction.
We observed that an apparently simple step like “firing a space rocket” can have an
extensive amount of implementation in the background which is hard to imagine at
the scenario writing stage.

• We noticed that most of the feature files consisted of scenarios with multiple as-
sertions. Having multiple assertions in a scenario is an indication that multiple be-
haviours are tested in a single scenario, and it is a violation of Cardinal Rule of
BDD‖. According to the cardinal rule in BDD, every scenario must be focused on

‖https://automationpanda.com/2018/02/03/are-gherkin-scenarios-with-multip
le-when-then-pairs-okay/

https://automationpanda.com/2018/02/03/are-gherkin-scenarios-with-multiple-when-then-pairs-okay/
https://automationpanda.com/2018/02/03/are-gherkin-scenarios-with-multiple-when-then-pairs-okay/

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 123

testing a single behaviour. Multiple assertions could mask bugs e.g., if an assert fails
in a test, the status of the remaining part of a test becomes unknown since the test
stops execution at the first failing assert. As discussed before, we did not find tool
support to identify and remove assertion roulette bad smell in Gherkin scenarios.

• Each feature in Gherkin is seen from a single user’s perspective. Gherkin does not
support describing the feature from multiple users’ perspective i.e., a feature has a
single "As a" statement. Gupta [2019] recommends writing a separate user story
for each user but the problem is that Gherkin does not provide a way of express-
ing dependency between features in case the features are separated. Also, the fea-
tures which mandate participation of more than one actor cannot be expressed using
Gherkin.

• Gherkin does not support concurrency of execution of scenario steps. There is a lack
of support in Gherkin for the situations where two or more steps are to be executed
together to successfully execute a scenario. For example: In a situation where two
actors need to perform the action specified in the scenario together for successful
execution of the scenario.

Reflection (corrective action): After the removal of (AAA violations) bad smells, the twelve
features were presented to the four members of the (larger) project team (including the
two senior members from the previous meetings) on 23rd January, 2019. This meeting
lasted four hours. Each use case was discussed separately in detail during the meeting.
The participants observed that although the proposed features corresponded with the use
cases, they did not express the functionality intended for the system. The participants
stated that the conversion of the use cases into user stories had made the documented
requirements clearer, allowing them to identify where they were incorrect.

The strategy to translate use cases into BDD scenarios showed that it may not be possible
to directly translate the use cases into user stories i.e., there could be intermediate step(s)
in the middle. This discovery was not made until after we tried converting the use cases
to Gherkin scenarios. One of the reasons could be the difference in basic structure of
a use case and a BDD scenario. Use cases tend to contain a multiple paths of execution
with no distinction between action and assertion, whereas a scenario describes a particular
instance in a specific context.

Third Iteration

Planning: At the end of the meeting, we decided to conduct a User Story workshop at the
company which would enable them to create a new set of requirements written as user
stories following a Behaviour Driven Development process from the outset. A date was
decided for conducting the User Story workshop.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 124

Action: The workshop was conducted with four senior members of a development team for the
wider project (i.e., web application for managing large data set generation) on 1st May,
2019 at one of the company’s premises. It was pre-decided that the workshop will be
focused on the features for an upcoming iteration.

The project was outlined and all the main stakeholders were identified at the beginning of
the workshop. After giving team members a tutorial on writing the user stories, they were
asked to write user stories. Each user story was written on a sticky note and pasted on a
white board. While the participants were pasting user stories (sticky notes) on the board,
the author grouped them into different functions such as search, upload, and analysis. All
non-functional requirements for example, security and user-interface (UI) requirements,
were grouped together under non-functional requirements.

Analysis: The author of this thesis inspected the user story board after the completion of user
story writing session. Many duplicates were identified in the user stories.

Reflection (corrective action): In a following session, all duplicates and out of scope user sto-
ries were discarded after discussing each user story with the participants of the user story
workshop. At the end of the session, we had a total of 41 user stories out of which, seven-
teen were non functional requirements. After the final selection of the user stories, it was
decided that the author will convert the user stories into BDD features and later discuss
the scenarios for each feature with the participants.

Fourth Iteration

Planning: Right after the User Story workshop, the author (of this thesis) started working on
converting the user stories, elicited during the workshop, into BDD features. In the first
week of July 2019, we were told that an individual had joined the company who would
work as a software developer for the project discussed in this study. A meeting was sched-
uled for 1st August, 2019 to share project materials with him and have a discussion on
BDD and its application in the project.

Action: Four individuals participated in the meeting on 1st August, 2019. The participants
included the software developer, a senior member of the project team (from the previous
meetings), the author(of this thesis) and his supervisor. The senior member of the project
team assumed the role of the product owner for the project focused on this study.

At the meeting, the participants discussed the role of BDD, its importance in the project
and the progress so far. It was decided at the meeting that the author will collaborate
with the development team on refining the scenarios while the development team will
start implementing the tests for the scenarios. After the meeting, the project team set up
a GitHub repository to collaborate with the author. The features were put in Jira, and the

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 125

features were divided into four functional categories. The code was also uploaded to the
GitHub repository.

Clarification was required around some aspects of terminology in the scenarios to be de-
veloped, so an additional meeting with the team was scheduled on the 23rd August, 2019,
lasting for four hours. All three team members were present during the meeting, along
with the researcher. The purpose of the meeting was to clarify some of the technical de-
tails and elicit examples of data for the scenarios. During the meeting, thirteen features
out of a total of 41 were reviewed and clarified. As a consequence of the discussion, a
further sixteen additional features were identified that required elaboration. It was agreed
that a further meeting would be scheduled to review the remaining features.

Analysis: At this stage, it was apparent to us that the pace of development became faster than
the pace of updating the features and scenarios. This was later confirmed in interviews.
The reason for this was the time pressure for completing the project. The development
team started lagging behind in meeting the project schedule because getting the scenarios

right was taking longer than the team expected. The development team was not sure about
when to stop refining the Gherkin specifications. They did not know when is a particular

scenario good enough? i.e., it completely represents the user’s intention.

We also observed that Gherkin gives a lot of freedom of expression, and there are no re-
strictions on the way a feature or the corresponding scenarios are described, which is one
of reasons it is very difficult to maintain the quality of the scenarios. Studies [Lucassen
et al., 2016, Prakash and Prakash, 2017] show that the practitioners mostly rely on the ex-
perience of the user story writer to ensure the quality of the user stories. According to the
studies [Oliveira and Marczak, 2018, Smart, 2014], badly written scenarios can negatively
impact the ability of the tests to reflect the system coverage and the team confidence in
them.

Oliveira and Marczak [2018] define a set of five quality attributes for the quality of BDD
scenarios. Unfortunately, the quality attributes defined by Oliveira and Marczak [2018]
are descriptive and subject to the understanding and experience of the person applying
them. For example, one of the quality attributes Small is hard to determine and requires
judgement of the person writing BDD scenarios. Prakash and Prakash [2017] argue that
determining Small in the context of user stories is not apparent.

Reflection (corrective action): To keep the pace of refining the scenarios with the development,
we scheduled another meeting on 9th September, 2019. The participants of this meeting
were: the product owner, the developer, and the author of thesis and his supervisor. The
aim of this meeting was to seek clarity on few of the unclear terminologies in the scenarios
in four feature files.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 126

In this meeting we discussed scenarios the developer was working on. Some of the fea-
tures were prioritised for development. The development team could not discuss the actual
example of the data due to the confidentiality of the project. Therefore, the unclear sce-
narios were completed using dummy data. Also, we refactored some of the feature files
to improve readability.

Overall, the action research phase of the study comprised eight separate meetings with the
development team spanning more than 32 hours, as well as considerable offline work to define
and revise features. In addition to the (in-person) meetings, the research team (i.e., author and his
supervisor) and the development team exchanged more than a hundred emails over the period
of twelve months. These emails were focused on clarifications and updates. Telephone calls
were also scheduled for minor clarifications and to discuss updates. The work in this section
was carried out between October 2018 and November 2019.

The action research revealed several limitations of the BDD practice (as described in theo-
retical accounts, [Binamungu et al., 2018a,b, Oliveira et al., 2019]) and the Gherkin language.
These limitations could potentially result in complexity in requirements specifications or diffi-
culty in maintaining specifications. To confirm these findings, follow-up interviews were con-
ducted with the development team to understand the practice of BDD from their perspective.

6.4 Semi-Structured Interviews

Post hoc semi-structured interviews were conducted with the development team for the project
(discussed in this study). The aim was to gather qualitative data in the form of experiences and
opinions of the people who used BDD for the development of the said project. As explained
in Section 2.3.1, semi-structured interviews offer freedom of expression to the participants, and
open-ended questions prompt discussion, aiding the interviewer to explore a particular theme.
Wengraf’s guidelines [Wengraf, 2001] (as explained in Section 2.4) were used to construct the
interview instrument. Figure 6.4 illustrates how Wengraf’s method was applied to the design of
the semi-structured interviews.

Wengraf’s guidelines [Wengraf, 2001] is a top down approach for developing a semi-structured
survey instrument. Wengraf follows an iterative process for refining the questions derived from
the overall research purpose into a number of smaller questions. The Research Purpose (RP)
in this case is: “Learn about the feasibility of applying Behaviour Driven Development to the

development and maintenance of a system developed in a large-scale environment; to gain a

deeper insight into the benefits and difficulties experienced when developing and maintaining a

system using Behaviour Driven Development.”.
In the current study, the RP was refined into three central research questions (CRQs) included

in Figure 6.4 for completeness. Each CRQ was divided into a number of Theory Questions (TQ),
specific propositions investigated during the study. For example, CRQ2 is refined into three

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 127

R
es

ea
rc

h
Pu

rp
os

e
C

en
tr

al
R

es
ea

rc
h

Q
ue

st
io

ns
T

he
or

y
Q

ue
st

io
ns

E
xa

m
pl

e
In

te
rv

ie
w

Q
ue

st
io

ns

L
ea

rn
ab

ou
tt

he
fe

as
ib

ili
ty

of
ap

pl
yi

ng
be

ha
vi

ou
rd

riv
en

de
ve

lo
pm

en
tt

o
th

e
de

ve
lo

pm
en

ta
nd

m
ai

nt
en

an
ce

of
a

sy
st

em
de

ve
lo

pe
d

in
a

la
rg

e-
sc

al
e

en
vi

ro
nm

en
t;

to
ga

in
a

de
ep

er
in

si
gh

ti
nt

o
th

e
be

ne
fit

s
an

d
di

ffi
cu

lti
es

ex
pe

ri
en

ce
d

w
he

n
de

ve
lo

pi
ng

an
d

m
ai

nt
ai

ni
ng

sy
st

em
s

us
in

g
be

ha
vi

ou
r

dr
iv

en
de

ve
lo

pm
en

t.

1.
W

ha
ti

s
th

e
ex

te
nt

of
th

e
ap

pl
ic

at
io

n
of

be
ha

vi
ou

rd
riv

en
de

ve
lo

pm
en

tt
o

de
ve

lo
pm

en
ta

nd
m

ai
nt

en
an

ce
of

th
e

sy
st

em
s

in
th

e
co

m
pa

ny
?

1.
W

ha
ti

s
th

e
le

ve
lo

ft
he

te
am

’s
fa

m
ili

ar
ity

an
d

ex
pe

ri
en

ce
w

ith
ag

ile
m

et
ho

ds
an

d
B

D
D

?

W
he

n
di

d
yo

u
pe

rs
on

al
ly

st
ar

tu
si

ng
be

ha
vi

ou
rd

riv
en

de
ve

lo
pm

en
t?

2.
H

ow
w

as
B

D
D

in
co

rp
or

at
ed

in
th

e
ov

er
al

lp
ro

je
ct

st
ru

ct
ur

e
an

d
te

am
se

tti
ng

?
W

ho
w

as
in

vo
lv

ed
in

w
ri

tin
g

B
D

D
sp

ec
ifi

ca
tio

ns
?

2.
Is

it
fe

as
ib

le
to

ap
pl

y
be

ha
vi

ou
rd

riv
en

de
ve

lo
pm

en
tt

o
th

e
de

ve
lo

pm
en

ta
nd

m
ai

nt
en

an
ce

of
a

sy
st

em
de

ve
lo

pe
d

in
a

la
rg

e-
sc

al
e

en
vi

ro
nm

en
t?

3.
H

ow
do

es
B

D
D

he
lp

in
th

e
de

ve
lo

pm
en

t
of

a
sy

st
em

in
a

la
rg

e-
sc

al
e

en
vi

ro
nm

en
t?

W
ha

tt
oo

ls
ar

e
yo

u
us

in
g

fo
ra

ut
om

at
in

g
B

D
D

sp
ec

ifi
ca

tio
ns

?
H

av
e

yo
u

fo
un

d
an

y
pr

ob
le

m
s

w
ith

th
e

to
ol

s?

4.
H

ow
do

es
B

D
D

he
lp

in
th

e
m

ai
nt

en
an

ce
of

a
sy

st
em

de
ve

lo
pe

d
in

a
la

rg
e-

sc
al

e
en

vi
ro

nm
en

t?

W
ha

ts
te

ps
di

d
yo

u
fo

llo
w

to
ac

co
m

m
od

at
e

an
d

m
an

ag
e

a
ch

an
ge

or
up

da
te

th
e

sp
ec

ifi
ca

tio
ns

?

5.
C

an
yo

u
re

co
rd

al
lt

he
re

qu
ir

em
en

ts
w

ith
B

D
D

?
W

ha
tw

er
e

th
e

ty
pe

s
of

re
qu

ir
em

en
ts

th
at

w
er

e
di

ffi
cu

lt
to

do
cu

m
en

ti
n

B
D

D
?

3.
W

ha
tb

en
efi

ts
an

d
di

ffi
cu

lti
es

w
er

e
ex

pe
ri

en
ce

d
w

he
n

us
in

g
be

ha
vi

ou
rd

riv
en

de
ve

lo
pm

en
t?

6.
W

ha
ta

re
th

e
pe

rc
ei

ve
d

be
ne

fit
s

of
ap

pl
yi

ng
B

D
D

?
In

w
hi

ch
ph

as
es

of
so

ft
w

ar
e

de
ve

lo
pm

en
t,

B
D

D
he

lp
ed

?
H

ow
?

7.
W

ha
td

iffi
cu

lti
es

w
er

e
ex

pe
ri

en
ce

d
w

he
n

th
e

pr
oj

ec
tw

as
de

ve
lo

pe
d

us
in

g
B

D
D

?
A

re
th

er
e

an
y

pr
ob

le
m

s
th

at
yo

u
ex

pe
ct

ed
an

d
fa

ce
d

af
te

ra
pp

lic
at

io
n

of
B

D
D

O
R

ex
pe

ct
ed

bu
td

id
no

t
fa

ce
?

Fi
gu

re
6.

4:
R

es
ea

rc
h

qu
es

tio
n

co
ns

tr
uc

tio
n

pr
oc

es
s

fo
llo

w
in

g
W

en
gr

af
’s

m
et

ho
d

[W
en

gr
af

,2
00

1]

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 128

Interview Role Responsibility
P2 Industrial Placement Student Software Developer
P3 Lead System Engineer Product Owner
P4 Deputy Lead Software Engineer Scrum Master

Figure 6.5: Summary of Interview Participants

TQs, including “TQ2.1 How does BDD help in the development of a system in a large-scale

environment?”. To answer each TQ, a number of interview questions were defined. Figure 6.4
shows a sample of interview questions, with the full survey instrument available for review (in
Appendix B). This approach provides a traceable hierarchy and rationale behind every interview
question.

Full interviews were conducted during four sessions with three members (Participants P2-
P4) of the development team: the Software Developer, Product Owner, and Scrum Master (as
described in Figure 6.5). These interviews were conducted in person at the company’s premises.
The first interview was conducted with the Software Developer on 10th December, 2019. Rest
of the interview sessions were conducted with the Scrum Master and the Product Owner on
27th February, 2020. The aim was to gather data from multiple perspectives within the project.
Interview participants had different experiences, expertise, and roles.

Figure 6.5 presents a summary of the information on interview participants. These experi-
ences included acting as a product owner, scrum master, and software developer. The second
and third (P3 and P4) participants had some experience of adopting agile methods within their
projects; whereas, the first participant (P2) was using the agile process for the first time in a
professional environment.

The approximate duration of each interview was 90 minutes. However, the interview with the
product owner was conducted in two sessions because of his other commitments on the interview
day. The duration of the two interviews with the product owner was 70 minutes each. All the
interviews were transcribed and sent to the participants to make additions or clarifications. After
getting verbal permission from each participant, the transcripts were used for analysis.

Analyses of the transcripts were performed using Wengraf’s guidelines [Wengraf, 2001],
using a bottom-up approach to answer the questions at each level. Every question was answered
at each stage in the hierarchy by starting from the bottom i.e., Interview Questions.

A table similar to Figure 6.4 was created for this purpose. Answers to each interview ques-
tion from all participants were pasted in the Answer column next to the respective interview
question. All the answers to each interview question were then merged to form a story. Differ-
ent stories for every group of IQ relating to a Theory Question were then merged to answer each
TQ. The group of Interview Questions for each Theory Question was deleted such that each
Theory Question had a descriptive answer. The same process was repeated to find answers to
CRQs.

The descriptive answers to each CRQ were reviewed by the author and his supervisor, and

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 129

the issues reported in them were highlighted. Four limitations were identified during interview
analysis, out of which two overlapped with the five limitations identified during action research.

Figure 6.6 lists the challenges and limitations of Gherkin discovered during the action re-
search and the post hoc interviews. Their discovery gave us an understanding of the limitations
of Gherkin that directly or indirectly affected the actual and perceived benefits of Behaviour
Driven Development within the company. Note that where we use quotations below to illustrate
a challenge, it is sometimes necessary to anonymise some of the topics to preserve confiden-
tiality. The interviews discussed in this section were carried out between December 2019 and
February 2020.

6.5 Discussion of the Limitations and Observations

This section reviews the observations made during the application of Behaviour Driven Devel-
opment (BDD) while using two different research methods throughout the course of this study.
This section discusses the adoption of BDD; expectations, achievements and hurdles in prac-
ticing BDD in the project (discussed in this study). This section draws on the analysis of the
answers to the interview questions and observations made during the action research to develop
a description of the use of BDD in the project.

It must be recognised that the adoption of BDD/Gherkin in the company was their first
attempt using this approach in their context. Therefore, it is possible that the approach adopted
by the team was sub-optimal and that the challenges identified might be overcome through
adaption and learning as the engineers gained more experience with the approach. Nevertheless,
the research does demonstrate the challenges faced by a reasonably well-resourced software
team in adopting BDD in the described context.

The company is a large organisation having sub-divisions e.g., systems engineers, software
engineers, and engineering department. Different sub-divisions are responsible for performing
different tasks in the company e.g., the systems engineers write the specification while the soft-
ware engineers do the implementation. The adoption of BDD was driven by the need to improve
communication and a common understanding of the requirements. Its adoption was expected to
bridge the gap and improve the communication and coordination between different sub-divisions
as the product owner (P3) said “...I hoped that it would close the seams between the specification

and the implementation”.
After a couple of iterations of action research, it was revealed that the initial set of user

stories was inconsistent and did not represent the requirements adequately. So, the team decided
to discard the initial set of user stories and elicit the requirements in a user story workshop (as
discussed in Section 6.3). Initially, 41 features were elicited for development later evolved to 57
features and 64 scenarios. Each feature had at least one scenario. Alternate scenarios for all the
features were not clear at this point.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 130

After the elicitation of the user stories (features) in the user story workshop, each feature was
discussed individually, and the ones which were finalised for development were put in Jira. A
Jira ticket was created for each requirement. Every ticket had a description and acceptance crite-
ria. When we inquired about the synchronisation between acceptance criteria in the Jira tickets
and the acceptance criteria in the scenarios, we were told by the product owner (P3) “...Well,

there’s a disconnect, but they should all...I think, we were mindful to make them related”. We
learned that they wrote the Jira tickets manually. This sometimes caused confusion among the
team members because of the duplication of the acceptance criteria i.e., writing it twice (once in
the scenarios and once in the Jira tickets).

One of the main reasons for this duplication was that the team had to stay consistent with the
internal process of the company along with the attempt to write and execute a BDD test suite for
this project. The purpose of the acceptance criteria in the Jira tickets in the company’s internal
process was to build an understanding of the functionality and to express the rationale behind
each functionality. The internal process of the company required them to write tickets in Jira.
As the product owner (P3) mentioned “...we write down acceptance criteria on all of our issues,

not just related to this”.
In addition to the Jira tickets, vision-level drawings were created in Confluence. Some of

these drawings were related to a specific set of features to communicate “ before and after” i.e.,
this is what the users can do now; this is what they will be able to do later. These drawings
were presented to the stakeholders to communicate the development tasks. The drawings helped
in setting the expectations of the stakeholders. The product owner (P3) pointed out that most
of the customers were non-technical; therefore, “ ...we communicated... almost totally through

drawings, like some of it ... whiteboard drawings and then photographs, some of it electronic...

drawings”.
At the end of each iteration, the team had a retrospective meeting. The retrospective meetings

were focused on the progress and evaluation of the overall project. The team assessed its per-
formance in the retrospective meetings, and the meetings’ outcomes and details were recorded
in Confluence. Things like (P3) “ ...What we could improve, what we could keep, what we could

drop, what we could add in terms of team activities” were discussed at the retrospective meet-
ings. As discussed before, there were no separate retrospective meetings, separate stand-ups or
processes for the sub-part. As one of the participants (P3) said “...we treated this as part of those

bigger sessions and just sort of tack it on..”.
The BDD process being used in the sub-project was not discussed in the meetings for the

overall project. Only a brief summary of the developed features was discussed. One of the
problems at the retrospective meetings was that the team members, who were not involved in
the development of the sub-part, experienced difficulty in understanding the discussion about it.

Apart from the challenges in applying BDD, it helped the team to communicate the require-
ments within the team and encouraged them to discuss each requirement in detail. The team

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 131

believed that the BDD workflow enforces communication as one of the participants (P3) men-
tioned “...you kind of have to have the conversations; otherwise, you can’t build the tests”.

The findings from four iterations of action research and four sessions of semi-structured
interviews are combined and summarised in Table 6.6. The third column of Table 6.6 indicates
the research method, during the use of which, each observation was made. It must be kept in
mind that the challenges listed here are practitioners’ portrayal of the BDD process. Please
note that where examples are provided to illustrate a point, they are based on real findings in the
action research or interviews, but here they are replaced with toy examples due to the confidential
nature of the project.

6.5.1 Test First Development is Difficult to Apply

We observed during the action research and the interviews that some of the functionality was
developed before specifying the BDD tests. The literature on BDD discourages this practice
i.e., coding before writing BDD tests [Wang and Wagner, 2018, Barus, 2019, Moe, 2019, Solis
and Wang, 2011, Smart, 2014]. When we inquired about the reason behind this practice in the
project, we were told that the developer was not familiar with the technology and the tools. Also,
this was the first time he was practicing BDD. As the software developer (P2) mentioned “ ...

it was kind of... it was a little bit experimental start, kind of just seeing what we could do... I

am still kind of learning how to use the framework....just because I wasn’t sure if that’s what I

wanted to do. It’s kind of like experimenting, and then, if it worked well, I could write a BDD

test and fully implement it”.
According to the product owner, many times the software developer was not clear about the

functionality until he developed it. As he (P3) said “... he was using the code to think through

the workflow, and then he writes ... like that seems sensible”. The software developer (P2) also
admitted “ ...I want to see how it worked first. So, I would implement it, see how it worked. And

if what I’ve done, I’d like too, so I’d write BDD test after...”.
Also, we felt that the software developer was not entirely convinced about the use of BDD

for the development. The software developer (P2) had some concerns about writing BDD tests
for User Interface (UI) as well. As he (P2) pointed out “... why we’re actually doing behaviour

testing... a lot of behaviours are through using.... interactive... UI. But we can’t really test

that. So, then that’s where behave, BDD and the... application kind of clashes with what we

want to test”. One possible approach to address this issue is the use of Domain Specific Lan-
guages (DSLs). A DSL is a language tailored to a specific domain and provides ease of use and
understanding while keeping the required formalism [Fowler, 2011, Rocha Silva, 2022]. For
example, Silva et al. [2019a] propose an approach to identify various types of inconsistencies
UIs. In another study, Rocha Silva [2022] propose a DSL similar to Gherkin for the specification
of consistent and testable user requirements for web-based graphical user interfaces.

While talking about the benefits of BDD, the product owner (P3) pointed out that since the

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 132

Challenges Explanation Action
research/Semi-
structured Inter-
views

1 Test first development
is difficult to apply

Because of lack of clarity it is difficult
for a developer to always imagine what a
requirement will look like after
development. Therefore, it is hard to
write tests before development.

Action research and
Interviews

2 BDD lacks methods
and tools for
identifying and
refactoring bad smells

Complex scenarios, indicated by an
interleaving of When/Then statements
result in bad tests and they mask bugs.
There is a need for a means of breaking
up the associated feature into smaller
features i.e., a tool that identifies bad
smells in Gherkin scenarios such as
AAA pattern.

Action research

3 Gherkin lacks a
hierarchy of features

We can’t express within Gherkin a
relationship between epics, features, user
stories, etc. It is important to know and
document what evolved from what.
Gherkin has no mechanism for showing
the hierarchy of features.

Action research and
Interviews

4 Identification of
appropriate level of
abstraction is difficult

for example, Gherkin lacks
implementation details. Instead, the code
has to be embedded in implementation,
making the Gherkin implicit, rather than
explicit. This makes it hard for the
developers to imagine the system in
advance.

Action research and
Interviews

5 Gherkin doesn’t
support multiple
actors in “As A”
statements

Several of the use cases examined
identified multiple actors, either with
complementary or even identical roles.
There is no mechanism within the
Gherkin semantics for capturing these
relationships.

Action research

6 Gherkin doesn’t
support concurrency
of execution

This should really be critical for a
requirements language for modern
distributed systems.

Action research

7 Convincing the
developer and the
customer to use BDD

Like any other new method, it has been
observed, that convincing people to
adopt BDD is a challenge.

Interviews

8 Risk of duplication of
effort in large-scale
systems

When a lot of people are involved in a
project and everyone is limited to their
own set of tasks, it is very difficult to
know if someone has already written the
steps similar to what someone else was
writing in which case, a test already
exists.

Interviews

Figure 6.6: Summary of challenges found during action research and interviews

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 133

software developer was a novice in the company, he did not understand the vision, and what the
product was meant to do. BDD gave the team a method to communicate the vision. According
to the team, the use of BDD helped them define the project at an appropriate level which is
understandable by the users without implementation.

Although test first development in BDD is inherited from Test Driven Development (TDD),
the test first development in TDD is different from test first development concept in BDD. In
TDD, the focus of tests is on the development of small units called unit tests, whereas the focus
of tests in BDD is on acceptance testing or a particular behaviour of a system. This behaviour

can consist of multiple small units. So, we can say that TDD is a bottom up test first develop-

ment approach in which the smallest entity is a unit test, whereas in BDD, the smallest unit is
a behaviour that can consist of various unit tests making BDD a top-down approach. Accord-
ing to the documentation on Cucumber (a tool used for BDD) “.... TDD test asserts the result

of a specific method, while the BDD test is only concerned about the result of the higher level

scenario”. This is why the studies show that the sequencing (i.e., the order in which test and
production code are written) has no important influence [Fucci et al., 2017]. Fucci et al. [2017]
analyse 82 data points collected from four workshop sessions conducted with 39 professionals
from two companies about unit testing and TDD. The results of the study show that the order
in which test code and production code is written has no impact on productivity in TDD. Vu
et al. [2009] conducted an experimental study with undergraduate students in which the students
designed, implemented, deployed, and maintained a software system to meet the requirements
of an industry sponsor. One group of students applied a Test-First (TDD) methodology, while
the other group applied a traditional Test-Last methodology. The results show that the Test-Last
team was more productive and wrote more tests than their Test-First counterparts. However, the
productivity in the study is measured by counting the number of tests writing which is much eas-
ier when the functionality is clear. This confirms our observation about the difficulty in applying
test first development without knowing how the functionality will look like after development.
This issue can further “inflate” when an approach involving testing behaviour through testing of
multiple units at once is used i.e., BDD.

6.5.2 BDD Lacks Methods and Tools for Identifying and Refactoring Bad
Smells

This problem emerged while converting the user stories, we received from the company, into
Gherkin features during the first iteration of action research (explained in Section 6.3). The
user stories we received turned out to be lengthy and had interleaving Given-When-Then. This
interleaving Given-When-Then is a violation of the AAA pattern and, consequently, a bad smell.

Bad smells are certain structures in software artefacts that indicate design problems hinder-
ing the evolution and maintenance of the software artefacts [Fontana et al., 2012, Suryanarayana

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 134

et al., 2014]. Bad smells usually do not stop the software from executing, but their existence
makes the system inflexible for the accommodation of future changes. They can exist in vari-
ous forms in different software artefacts and usually require refactoring. Examples of the bad
smells in different project artefacts include; code duplication and strong coupling between meth-
ods in the code [Fontana et al., 2012, Garousi and Küçük, 2018], and ambiguous phrases and
nonverifiable terms in requirements specification [Femmer et al., 2017]. During this study, we
found that bad smells can also appear in Gherkin specifications mainly because of the way BDD
requirements are written.

We discovered two bad smells during action research i.e., (i) AAA pattern violation during
the first iteration and (ii) assertion roulette during the second iteration. According to Ciliberti
[2017], the AAA pattern improves readability by structuring a unit test into three distinct phases
(Arrange-Act-Assert). It helps in separating what is being tested from the setup and results.
BDD replicates this concept for structuring the specifications. Smart [2014] argues that organi-
sation of natural language specification into distinct phases cleanly defines the context of a test
and improves readability. According to the survey by Oliveira and Marczak [2018], the practi-
tioners believe that mixing Given-When-Then step order impacts readability of the scenario.

As discussed in Chapter 5, a BDD scenario is implemented in the form of a unit test in a BDD
test suite. This means that multiple assertions in a BDD scenario are also reflected in a unit test.
These multiple assertions in a unit test is a bad smell known as assertion roulette [Bavota et al.,
2012, Peruma et al., 2020, Grano et al., 2020]. We are unaware of any tools that detect these bad
smells in BDD specifications. Other potential examples of bad smells in Gherkin specifications
could include; combining two or more independent phrases in a single step [Smart, 2014] and
duplication of steps across scenarios [Suan, 2015].

To the best of our knowledge, there is a lack of tool support for detecting and fixing struc-
tural discrepancies (i.e., bad smells) in Gherkin scenarios. We made this observation during the
first and second iteration of the action research while searching online for a tool support for
automatically detecting and refactoring bad smells in Gherkin scenarios.

6.5.3 Gherkin Lacks Hierarchy of Features and Traceability

While looking at the traditional requirements engineering process in the company, we learned
that their requirements engineering was a hierarchical process. There were layers to it, and
people used to engage at the layer that was appropriate for them to operate at. For example, a
systems engineer would deal with high-level requirements; whereas, a software engineer would
only look at low-level requirements.

The team, while discussing the difficulty with BDD, pointed out that there was no hierarchy
in the requirements, and it was difficult for the team members to work at different layers of
requirements. During the second iteration of action research, we observed that Gherkin does not
provide a mechanism for showing which higher-level feature a certain feature was derived from.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 135

This observation was later confirmed during the interviews. We observed that BDD features
provide a single-layer modeling. A single-layer requirements model is built at the same level
[He et al., 2013]. The set of features (in BDD) has a non-hierarchical structure with no indication
of features they derive from i.e., there is no way of expressing that some features are refined from
a higher level, more abstract requirement. Such a model lacks traceability.

The traceability of requirements is significant to ensure consistency among project artefacts
[Duarte et al., 2016]. The record of requirements evolution is a part of the history of the project
which shows the trail of decision making. Regulatory standards such as DO-178C and EN-
50129 also have strict traceability requirements.

Another related issue in this context was the interdependence of requirements. As the prod-
uct owner (P3) said “... understanding how different scenarios or different features relate to one

another... understanding how those things are related seems to be quite hard”. The team also
pointed out that getting enough detail in BDD is difficult. While talking about the advantages
of BDD, one of the participants (P3) said “Maybe the value of it’s the same thing that makes it

difficult... getting the detail in them is tricky. There can be lots of steps”. The team also stated
that there is no way of understanding how different scenarios or different features relate to one
another in BDD.

According to Smart [2014], a feature is a functionality that can be delivered independently
of other features. It implies that the concept of interdependence of requirements is foreign to
BDD. According to Trkman et al. [2016], a lack of awareness about requirements dependencies
can lead to missing information about a project and its domain. Requirements dependencies
present information, like which previously developed user stories are required by the new user

stories?, and how the completion of a user story impacts another user story? [Trkman et al.,
2016].

Although the BDD process, explained in Section 5.3, describes activities that involve de-
composition of requirements that consequently create some sort of hierarchy, this hierarchy
cannot be reflected through features (i.e., user stories) or Gherkin. Also, the interdependence of
requirements cannot be expressed through user stories or Gherkin.

The INVEST criteria by Bill Wake∗∗ recommends having no dependencies between user
stories. The assumption behind this criterion is that user stories can be written independently.
The action research and interviews suggest that this may not be practical, and it is useful to know
the relationships between various requirements to ensure traceability.

6.5.4 Identification of Appropriate Level of Abstraction is Difficult

During both action research and interviews, we observed a lack of guidance on the level of
abstraction in a scenario i.e., how much implementation detail should be there in BDD spec-

ifications?. BDD using Gherkin provides a single level of abstraction between the Gherkin
∗∗https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 136

language and its implementation. This means that there are only two places that can accom-
modate complicated implementation details. If we remove all the implementation details from
Gherkin scenarios then only the code will have all the implementation details. This issue is also
highlighted by Binamungu et al. [2020]. The authors surveyed BDD practitioners to understand
their opinions on quality criteria for BDD test suite. One of the findings of the survey shows
that practitioners find it difficult to decide how much implementation detail should be there in a
scenario.

This issue also relates to the inherent nature of user stories. The declarative nature of the
user story helps the stakeholders to communicate amongst themselves without reference to im-
plementation details [Smart, 2014, Wynne et al., 2017]. “User stories encourage deferring de-

tails” [Cohn, 2004]. If a typical user story is written following guidance such as by Beck et al.
[2001b], it lacks details of user interaction and important factors like performance requirements;
therefore, a user story is open to interpretations. Avoiding misinterpretations is one of the rea-
sons agile recommends that customer should be a part of an agile team. The available guidance
on BDD (as discussed in Chapter 5) emphasises on describing the requirements in terms of;
“...what a feature should do, not how it should do it” [Smart, 2014]. As the scrum master (P4)
said “...the tricky part there is the implementation of each step can be a bit arduous”.

However, unlike user stories, scenarios contain more information since they are real-life ex-
amples of the associated user stories. Even though this practice is discouraged by practitioners
[CucumberStudio, 2019b, Smart, 2014, Wynne et al., 2017], various levels of implementation
details can be embedded in the scenarios making them imperative. The issue here is not whether
the Gherkin scenarios should or should not contain implementation details (i.e., declarative ver-
sus imperative scenarios). The issue is what appropriate level of detail should be there in a
scenario. Completely declarative scenarios are easily understandable but hide the amount of
implementation effort as well as UI details. Imperative scenarios are brittle [CucumberStudio,
2019b] and require constant maintenance which can create significant overhead.

6.5.5 Gherkin Does Not Support Multiple Actors in “As A” Statements

During the second iteration of action research, we observed that one of the limitations of a user
story is its lack of support for the multiple actors i.e., it is difficult to describe a feature from
multiple actors’ perspective. The atomic nature of a user story and the assumption of a single
actor forces a developer to view the problem in isolation from the perspective of a single actor
i.e., a feature has a single As a statement.

Although the content of the user story block of a Gherkin feature is only provided for doc-
umentation purposes and is not leveraged when executing the test suite, Gupta [2019] recom-
mends writing a separate user story for each user. According to the author, having each user
describe the system from his/ her own perspective creates multiple conceptual models and these
models can be used for a better description of the system. The BDD process (as described by

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 137

Feature: unlock the safety deposit box
In order to access the content of a security box
As a bank manager and a customer
We want to unlock the security system

Figure 6.7: Feature with multiple actors

Smart [2014] and Wynne et al. [2017]) also recommends the use of a single actor in a feature.
In BDD, the scenarios pertaining to a feature are further elaboration of a user story in real

real-life context. Since the narrative of a user story is from a single person’s perspective, the
scenario also represents the perspective of a single person. Division of scenarios with respect to
users in a feature is not supported by Gherkin. Nevertheless, different users can have different
needs and perspectives of a system [Rosson and Carroll, 2002], therefore it is important that this
singularity is maintained by Gherkin.

Having a separate user story for each user can only happen when users using a feature do
not require each other’s participation for successful execution of the functionality expressed by a
feature. In this case, a single feature used by various users can be separated into various features
such that each feature will have a single actor i.e., copies of the same feature with different
actors. This will, however, increase the size of the test suite and involve a risk of duplication of
features.

This also means that the features which mandate the participation of more than one user may
not be expressed using Gherkin. This limits the ability to express features that mandate more
than one user. For example, Figure 6.7 describes unlocking feature for safety deposit boxes in
a bank. The security system of the vault requires two keys i.e., the bank manager’s key and the
customer’s key to unlock a safety deposit box. Both keys must be turned together to unlock the
safety deposit box. Unfortunately, the features that require the participation of more than one
actor are not supported by Gherkin.

6.5.6 Gherkin Does Not Support Concurrency of Execution

This limitation of Gherkin was observed during the second iteration of action research. As we
developed our feature suite, we noticed that the ordering of steps in some scenarios was arbi-
trary and could be re-ordered with the same post conditions applying. In principle, it would be
desirable that the system did not discriminate between different combinations of step sequences
of such scenarios, and considered one test code for multiple combinations of step sequences of
the same scenario.

However, in practice, the order of steps in Gherkin scenarios is important. Each combination
of the sequence of steps of a scenario is treated as a different scenario by the test suite. The only
way to express a scenario in which the step order is arbitrary using the Gherkin language is
to create multiple, very similar scenarios leading to increased cloning as is there no way of

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 138

Scenario: open bank safe
Given a locked steel safe
And a customer with a key
And a manager with a key
When the customer turns the key
And the manager turns the key
Then the safe is unlocked

Figure 6.8: Scenario with multiple actors

Scenario: race to the finish
Given a race line 100m away
When I run 100m
And my friend cycles 100m
Then my friend finishes first

Figure 6.9: Scenario concurrent execution of steps

denoting in the existing language the ordering that applies to the groups of steps.
Similarly, the simultaneous execution of two steps in scenarios is not supported by Gherkin.

Concurrency in the context of software development is a phenomenon in which two or more
processes cooperate with each other to complete a task [Axford, 2002, do Rocio Senger de
Souza et al., 2011]. There could be a number of execution orders between concurrent processes
e.g., the processes could start together but end at different times, start at different times but end
together, or start or end one after the other, etc. To test all possible execution orders is very
difficult [Radnoci, 2009] and would require a number of unit tests, each for testing a particular
execution order.

Figure 6.8 gives an example of this problem. The figure is an example of a scenario for
unlocking safety deposit box feature example in Section 6.5.5. A bank locker is only unlocked
when the customer and the bank manager turn their keys at the same time. There could be a
number of execution orders for the above scenario. For example, the manager and customer
could turn the key at the same time, start turning the key one after the other, or finish turning the
key at the same time, etc. Ideally, the safety deposit box should unlock for all of these concurrent
execution orders. This means that the order of execution is of no concern in the above scenario.
In a scenario where execution of steps can occur in any order, we need to have several unit tests,
each testing a particular execution order to demonstrate that we get the same output for each
execution order. There could be other examples where the order of execution matters.

Consider another example in Figure 6.9 where two people start the race together. In this
example, two steps run sequentially so the scenario does not reflect the desired behaviour. As
a first proposed solution, we implement “When I run 100m” as a thread in Figure 6.10. The
conceptual basis of Gherkin is that each step should describe a single behaviour, be atomic,
and executed sequentially. A step sentence should also be an explicit description of the actual
behaviour. If “When I run 100m” is implemented with a thread it is not explicit, because we can

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 139

...
def run_100m():

while i < 100:
sleep 10:
metres += 1

threading.Thread(target=run_100m).start()
...

Figure 6.10: Implement “When I run 100m” as a thread

Scenario: race to the finish
Given a race line 100m away
When I run 100m and my friend cycles 100m
Then my friend finishes first

Figure 6.11: Scenario with a complex step

no longer guarantee when the thread is going to terminate. If we reword this to “When I start

running 100m”, we still cannot be sure when the step will terminate (if ever). Moreover, a step
should always be atomic i.e., a step should not depend on the prior execution of another step
[Smart, 2014]. So the step “When I run 100m” at the same time that “my friend cycles 100m”

will still contain a bad smell because it references another behaviour that must be executed.
Also, a step must be fully completed before the next step starts, so “When I start running 100m”

is smelly because it is vague - it does not describe a behaviour with a fixed termination.
A second solution is to to execute two logically different steps concurrently in the imple-

mentation glue code as shown in Figure 6.11. However, a step should not describe a composite
behaviour. Smart [2014] argues that combining two or more behaviours in a single Gherkin step
could lead to writing a method that tests multiple behaviours within a single method. This is a
type of bad smell known as eager test [Garousi et al., 2018]. In an eager test, in case of a failure
of any of the asserts, the method stops execution which prevents the remaining parts of the test
from executing. According to Garousi et al. [2018], eager tests make it hard for the developer to
understand the fault during the execution of the test.

Unfortunately, Gherkin does not support any of these concurrency relationships. It is im-
portant to note that we are not discussing any particular execution order. We are discussing a
limitation of Gherkin language that it does not facilitate concurrent execution of steps in a sce-
nario irrespective of their execution order. Instead, steps in a scenario execute in a sequence.
Also, this is a finding from a real-life project which shows how BDD is practiced in reality. A
way to fix this issue is to extend Gherkin semantics so that there is an explicit mechanism for
asserting that two (or more) atomic, single behaviours run concurrently as shown in Figure 6.12.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 140

Scenario: race to the finish
Given a race line 100m away
Concurrently:

When I run 100m
And my friend cycles 100m

Then my friend finishes first

Figure 6.12: Scenario with concurrent execution

6.5.7 Convincing Developer and the Customer to Use BDD

Resistance to change is considered a common behaviour in software organisations [Ashbacher,
2010, Gandomani et al., 2014, Jyothi and Rao, 2011], and the reasons could be political, techni-
cal or mere uncertainty [Gandomani et al., 2014]. Stray et al. [2020a], in a systematic literature
review on agile coaching and the role of agile coach, describe resistance to change and diffi-
culty in understanding and implementing agile methods at scale as one of the important reasons
for employing an agile coach. A study by Amorim et al. [2021] guided by design science
methodology aimed to eliminate some known challenges of COBIT 5 adoptions by providing
a Scrum-based methodology. COBIT 5 is a framework for guidance in evaluating, directing,
and monitoring an enterprise’s use of IT. One of their findings showed that the use of an agile
methodology by itself is not enough to reduce the resistance to change. Mantovani Fontana
and Marczak [2020] conducted industrial surveys to discover challenges faced by public sector
software organisations in the adoption of agile methodologies in Brazil. Based upon the results
from 167 responses, the authors concluded that cultural change and resistance to change are the
main challenges still faced by Brazilian government IT organisations.

Sometimes, the new methods and tools, the developers are not familiar with, are forced upon
the developers by the senior management, and the developers are not entirely convinced about
their use. However, in this case the use of BDD was proposed by the development team in order
to improve communication and better understanding and management of requirements. As the
scrum master (P4), while talking about the adoption of BDD at the company, said “... if you’re

trying to get people to understand behaviour driven development... it’s quite a foreign concept

for them”. The interview participants and some recent studies [Pereira et al., 2018, Barbosa,
2020, Smart, 2018] identified “convincing people to use BDD” as a challenge.

During the course of this study, we learned that BDD serves as a tool for communication
for those who are actively involved in the project. In case of the lack of engagement from
the customer, BDD becomes the responsibility of the development team which often results in
poorly defined scenarios due to the lack of details in the requirements [Scandaroli et al., 2019,
Barbosa, 2020]. BDD requires the customer to express the desired behaviour in a certain format
which not only familiarises the customer with the workflow and purpose of BDD but creates a
common point of interaction between the customer and development team.

When asked about who was involved in discussing examples and writing scenarios?, the

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 141

product owner (P3) answered “... we already knew quite a lot about what the flow of the appli-

cation was going to be... I think the development team, I’d say... so not really the customers”

According to the findings of Scandaroli et al. [2019], “...when the adoption of BDD is mostly

bound to the technical team, BDD scenarios can become too technical, which removes the ben-

efits of proper understanding of features across all contexts (business and technical)”. Similar
challenges were faced by the interview participants who said that it was difficult to communi-
cate the project-related information using the feature files. It was hard for the people who were
not actively involved in the development of the project to understand and negotiate the require-
ments using feature files. Instead, the participants used hand-drawn whiteboard diagrams to
communicate with the stakeholders who were not actively involved in the development.

During this project, the product owner acted as the customer. His role was limited to giving
feedback on the development and clarification of BDD scenarios. We believe that one of the
reasons behind the lack of participation was the size and the culture of the organisation. The
product owner was involved with many teams and in many different projects at the same time.
Although the organisation was transitioning towards agile, the long-standing waterfall culture
and the segmentation between the departments were still reflected in the projects.

6.5.8 Risk of Duplication of Effort in Large-Scale Systems

In a large software project setting, where team members are too focused on their own tasks and
have limited communication with other teams, there is a risk of duplication of effort. The team
had believed that they needed to understand a lot about the whole system if they wanted to write
a good set of Gherkin features; otherwise, it was very difficult to know if someone had already
written the steps similar to what someone else was writing, in which case, a test already existed.

Being unaware of the dependencies between tasks, or not knowing if a certain task has
already been completed by someone, can lead to the duplication of tasks. This in turn calls
for refactoring and creates rework. As the product owner (P3) said “... it feels like I need to

understand a lot about the whole system if I want to write a good set of Gherkin because ... I

don’t want to have thousands of, or hundreds of thousands of tests... I want to have the right

number of tests... cause you almost want to know how someone’s written the steps similar to

this, so you’ve already got a test”.
BDD projects involve additional artefacts which already require additional effort. Not know-

ing if a task is completed and can be reused would mean duplication of tasks and effort. This
duplication of task effort will be more than the duplication of tasks and effort in an identical
non-BDD project. For example, there is a possibility of having duplicate scenarios and accep-
tance tests in addition to the duplication of effort in the code. Duplication of effort in BDD suites
is also discovered as one of the challenges in a survey study on finding challenges of BDD by
Binamungu et al. [2018b].

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 142

6.6 BDD in Theory vs BDD in Practice

According to Julian et al. [2019], there is very little literature available on how agile process is

used in practice? as compared to the existing literature discussing what is an agile process?.
This section presents the overview of the BDD workflow in theory vs what happened in reality.
While defining the theoretical models and processes, the real-world factors that can limit the
application of a process are often ignored. These factors, in the context of software systems,
include the availability of the customer, organisational culture and structure, size of the project,
etc. Ignoring these real life factors creates a disconnect between what happens in reality, and
how it is described in the literature. In this section, we have discussed the practicality of the
theoretical BDD workflow in light of our experience during this study.

During the study, we observed that the theoretical workflow of BDD [Smart, 2014, Wynne
et al., 2017] is based upon certain assumptions. To explore these assumptions and bridge the
gaps between BDD process and its application in real life, we have discussed the use of BDD in
this study. We observed that there is a need for guidance on BDD activities, their outcomes, and
how to handle real-life situations that can impede the speed of development e.g., the unavail-
ability of the customer, and benefits of adopting certain activities or implications of ignoring
them. After reviewing some of the studies on BDD [Binamungu et al., 2018b, North et al.,
2006, Wynne et al., 2017, Rahman and Gao, 2015, Smart, 2014, Zampetti et al., 2020, de Souza
et al., 2017, Storer and Bob, 2019] we summarised the BDD process discussed by Smart [2014]
and Wynne et al. [2017] under three broad concerns: i.e., Understanding, Collaboration, and
Acceptance Testing.

This categorisation of concerns by us was based upon the “rationale behind using BDD”

discussed in the studies. For example, all the studies listed above emphasise that the main goal
of BDD is to create a shared understanding of the system under construction. When we look
at the activities in the BDD workflow (discussed in section 5.3) which help in creating this
“shared understanding”, we see that determination of business goal helps in creating a shared
understanding. Similarly, collaborative practices like three amigos meeting in BDD process
show that BDD process emphasises collaboration. We categorised activities like scenario writing
and writing glue code under acceptance testing.

6.6.1 Understanding

In this sub-section, we review the application of BDD workflow activities that primarily focus
on understanding the business, problem, requirements specification and the establishment of the
logical connection between all the requirements. We present a summary of the activities of the
theoretical workflow, and discuss how and if those activities were performed in our context.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 143

BDD Process

One of the activities of BDD theoretical workflow, which is also considered a starting point in
the BDD workflow, is the identification of a business goal [Wynne et al., 2017, Smart, 2014].
Determination of a business goal establishes the importance and the need for a project. It also
helps in understanding the strategic benefits of a project to the business. This activity is identical
to the primary activity of the theoretical model of Goal Driven Development (GDD) [Schnabel
and Pizka, 2006, Park et al., 1996], and its purpose is to shift the focus from requirements to the
business goal.

A business goal tends to be more stable than the requirements i.e., change in a broader
business goal is less likely to take place than in a set of requirements [Schnabel and Pizka, 2006,
Park et al., 1996]. According to Schnabel and Pizka [2006], requirements are not the best source
of information for initial understanding of the system due to their volatile nature.

Determination of a business goal in BDD is followed by the definition of the major features
and the determination of the relative value of each feature. The purpose of this activity in
BDD is to define the major capabilities and their importance towards the achievement of the
business goal. Smart [2014] describes this step as an activity where features are “injected” to
determine how exactly a system is expected to deliver business value. “This is what’s called

hunting the value. The aim is to understand the business value that lies behind a feature so

that you can objectively decide which features are worth creating” [Smart, 2014]. The outcome
of this activity is a set of major requirements. The major requirements are then broken down
into smaller requirements. These smaller requirements are documented along with their real-life
examples called scenarios.

Although BDD is an agile way of development, analysis of the BDD activities discussed in
Section 5.3 shows that the BDD process is a sequential process where successful execution of
an activity is dependent upon the understanding and execution of the preceding activity. For
example, BDD process recommends that the features should be defined after understanding the
business goal [Wynne et al., 2017, Smart, 2014]. Similarly, the scenarios should be described
after defining the corresponding features. It was, therefore, logical for us to review the activities
of the workflow in this sequence.

In Practice

Contrary to the theoretical workflow, the starting point for the project at the company was the
elicitation of requirements. As a participant (P3) explained “..we did a few iterations with the

prototype... that helped to settlethe scope of the tool ”. We observed that the development of
a project using BDD was not very different from the development of the other non-BDD projects
at the company. The development process started from the elicitation of requirements, and team
members seemed to be unaware of the underlying business goal. We believe this happened
because the requirements specifications are thought to be the primary source of understanding a

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 144

software system in the industry [Krüger et al., 2018, Wiegers and Beatty, 2013]; therefore, the
organisations see requirements elicitation as a starting point in any software project.

As the project was a novel product, the features were not clear in the beginning. One of the
participants (P3) said “...we found it quite difficult to get an appropriate level of specification”.
This means that it was difficult for the team to imagine all the scenarios in advance. While
referring to the developer, a participant (P3) said “...he didn’t understand the vision, or what

the product was meant to do”. Many times, while writing the scenarios, either a feature was
broken down, re-written or discarded. At times, a requirement did not become clear until it
was implemented. In which case, the requirement was implemented before its scenarios and
underlying tests were written. Even after being able to write a feature and the primary scenario
in a reasonable form, the team struggled to define alternate scenarios for a feature. It was hard
for them to imagine the alternate scenarios before the implementation of a feature.

Examination of the process of documentation of features and their associated scenarios
shows that the process is based upon the assumption that the requirements of a project are
known by the person writing the requirements. Without knowing what is required, it is diffi-
cult to imagine or document how the requirement will execute. The requirements for the project
were elicited and documented at the user story workshop without determining the business goal
and major features. The features were elicited and documented directly without performing the
preliminary activities of the theoretical framework of BDD. According to Smart [2014], the de-
termination of the business goal and major features that will satisfy the business goal, help in
the elicitation of requirements. Elicitation of the major features is followed by refinement of the
major features. Next, the resulting features are documented along with their associated scenar-
ios. BDD process seems to build a conceptual background of the project requirements before
the elicitation of features and their associated scenarios.

We believe that the lack of complete understanding of the requirements, which reflected in
the team’s struggle to document the features and associated scenarios, was due to the lack of
requirements refinement and elicitation activities. However, we cannot say anything conclusive
about the effectiveness of the initial activities of the BDD process. We believe that more research
is needed to determine the importance of these activities.

6.6.2 Collaboration

In this section, we have looked at how different BDD-related meetings took place during the
project, to understand the limitations and impediments of real life.

BDD Process

The BDD workflow recommends collaborative practices like the “three amigos meeting” for all
BDD activities including elicitation of requirements and acceptance criteria [Smart, 2014]. The

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 145

three amigos meeting is a BDD activity where three people (i.e., business analyst, developer,
and the tester) meet to discuss how the product will be developed [Wang and Wagner, 2018,
Northwood, 2018, Kudryashov, 2015]. The business analyst or the product owner describes
the problem that must be solved; the developer discusses how the solution will be implemented;
and the tester discusses the criteria for testing the product. The purpose of involving all the
stakeholders is to get the requirements right and bring everyone on the same page.

Looking at a feature from three different angles adds clarity and helps in establishing a clear
understanding and defining the acceptance criteria. This meeting aims to produce examples
(called scenarios) that define the acceptance criteria and the testing strategy. These examples
are converted into executable specifications by writing a piece of code for each step of every
scenario. The associated code for a scenario demonstrates if a scenario is doing what it was
supposed to do [Smart, 2014, Wynne et al., 2017]. Ideally, all the stakeholders, including the
customer, should participate in the feature elicitation and scenario writing, but does the partici-

pation of all the stakeholders guarantee productivity?.

In Practice

The BDD workflow presumes a team of permanent members who are involved from the very
start of the project and are familiar with the features of the project under development. We
believe that the activities of the theoretical workflow are based upon certain assumptions i.e., (i)

everyone is involved and available, (ii) everyone is experienced in writing BDD scenarios and
(iii) BDD workflow does not take the time constraints of a project into consideration.

Real-world constraints, such as unavailability of team members and customers, development
of a novel project, and situations where a new team member joins the team, are not taken into
consideration by the BDD workflow. We have experienced a similar situation during the project
discussed in this study. The features were elicited by the product owner, potential users, and
the scrum master in a user story workshop, which were then handed over to the developer for
scenario writing who joined the team after the features were elicited. The developer was not
part of the requirements elicitation process which reflected in his struggle to understand the
requirements.

Also, there were no specific roles in a team in the company i.e., there was no separate testing
or quality assurance team. Everyone in the team was expected to be able to run a complete
lifecycle. Too much emphasis on who should participate? was probably one of the reasons for
not being able to do the three amigos meeting. One can argue that the existence of different
“roles” in BDD does not mean that different people should play these roles; the same person
can wear different “hats”, thus playing different roles along the project.

This assumption could be rejected by looking at the very description of the three amigos
meeting by Smart [2014] which says in three amigos meeting “... three team-members - a

developer, a tester, and a business analyst or product owner - get together to discuss a feature

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 146

and draw up the examples”. This clearly shows that this meeting is between three individuals
having three specific roles.

We observed that the theoretical workflow of BDD is for a specific project setting where
all the stakeholders are involved in the development process, and there are specific roles, such
as tester, developer, and business analyst. The real-life impediments are not taken into account
which makes the implementation of the theoretical framework of BDD unfeasible in the project
settings that conflict with the underlying assumptions of activities of the theoretical framework.
It is important to mention that the project was dealt with as a part of the main project, which
means the processes and practices used for the large project encompassed the project discussed
in this study. There were no separate processes for the sub-project.

6.6.3 Acceptance Testing

This section reviews the acceptance testing activity in the project discussed in this study.

BDD Process

An acceptance test is a description of the behaviour of a software product in a specific context.
Acceptance test is usually described as an example or a usage scenario while acceptance testing
is a process of verifying the execution of that example. Miller and Collins [2001], while dis-
cussing the importance of acceptance testing, refer to the acceptance test as a contract between
a developer and the customer. The authors further argue that an acceptance test captures a re-
quirement in a directly verifiable way where successful execution of the acceptance test means
that there has been no breach of contract.

BDD incorporates acceptance testing and takes it one step further by associating specifica-
tions with acceptance tests. A piece of code is written for each step in a scenario which tests
the behaviour of the system described in the respective step. We can say that there are two main
components in BDD acceptance criteria i.e., (i) scenario and (ii) acceptance test. A scenario is an
example of the acceptance criteria for a requirement, and the associated code is the acceptance
test for a scenario.

BDD process recommends writing acceptance tests for specifications before implementation
[Smart, 2014]. However, the same recommendation is made by Beck [2003] as a practitioner of
Test Driven Development (TDD). Therefore, we can say that the BDD practice of “writing test

before code” is inherited from TDD. The purpose of this practice is to eliminate the waste of ef-
fort by implementing only what is specified and to have a clear understanding of the requirement
and its acceptance criteria before implementing the requirement. One of the assumptions behind
“writing acceptance test for the specification before implementation” is that requirements will
become clear while writing the acceptance criteria.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 147

In Practice

Writing the acceptance criteria for a requirement, its acceptance test, and then implementing the
code seems like a simple and logical flow of activities; however, a requirement is not always
clear until the implementation starts. The same happened in our context.

The project was new, and the developer and the users were not able to imagine the acceptance
criteria in advance. As the developer (P2) said “....it was... being kind of developed experimen-

tally in a way. I don’t think they really knew that this kind of thing was being developed”. Many
times, the requirements became clear only after the developer had implemented them and got
feedback from the users of the system. In which case, the developer had to re-write the scenarios
and the acceptance criteria after making changes in the implementation.

This seemed like an overhead, and the team’s desire to get the scenarios and the acceptance
test right was taking too much of the implementation time. So, the pressure to get the product
ready shifted the focus from BDD to development. This shift in focus made the pace of main-
tenance of the feature files slower than the development. To discuss this further, we need to
look at Test First Development (TDD) since BDD’s test-first approach is inherited from TDD.
Unfortunately, we were unable to find published research on measuring the practicality of test
first approach in TDD. However, we were able to find a blog [Vlad, 2019] which discusses trial

and error situation in TDD i.e., when it is difficult to know how something should work and the
problems one might face. In such situations, TDD can initially lead to several rounds of pro-
ductive failure. Trail and error situations can be more difficult in BDD because, unlike TDD,
scenarios are written for whole features behaviours rather than individual function behaviours.

The team found prototyping to be more effective than BDD because of the lack of clarity
in the requirements. The assumption that the requirements should always become clear while
writing the acceptance criteria proved wrong in our context. The requirements were vague
which produced vague acceptance criteria which, consequently, led to writing acceptance tests
that were based upon assumptions about the system. Most of the requirements did not become
clear until they reached the implementation, which naturally made the team rely on manual
testing and feedback on the implementation from the users. However, automated testing is less
time-consuming than manual testing [Musliu and Jashari, 2021].

6.7 Threats to Validity

This section discusses the threats to the validity of this exploratory study. In this section, we
have discussed three types of validity threats i.e., construct, reliability, and external validity.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 148

Construct validity threat

The construct validity threats for this exploratory study on challenges related to the use of BDD
may include: effectiveness of qualitative measurement of the results during action research and
effectiveness of interviews to capture the results.

Four cycles of action research were conducted during each of which a few observations were
made of a qualitative nature. It is possible that some important observations went unnoticed. It
should be noted that we have presented the challenges described in this study from the devel-
opment team’s perspective who attempted to use BDD for the first time in the early phase of a
small sub-project. Therefore, we acknowledge that some of the challenges may not have been
discovered. Also, since there was no guidance available on the conversion of use cases into
BDD scenarios, it is possible that the strategy devised by us for the conversion of the given use
cases into BDD scenarios was erroneous and use cases cannot be directly translated into BDD
features.

There is another construct validity threat called the Hawthorne effect [Sedgwick and Green-
wood, 2015] that relates to action research. This threat refers to the potential bias that arises
when individuals modify their behaviour due to the awareness of being observed. This can lead
to an inaccurate understanding of the phenomenon under investigation.

Various interview sessions were conducted with the team members of the project discussed
in this study. It is possible that the interview instrument used during this study did not cover all
aspects of the purpose of this study. Also, the project and the team may not adequately represent
the diverse range of industrial domains, or systems in which BDD is applied. This can limit
the validity of the construct. The challenges studied and investigated during the study may also
introduce bias toward certain perspectives on the use of BDD. This bias could limit the range of
challenges considered or lead to an over-representation of opinions.

Reliability Validity Threat

Inaccurate or incomplete data extraction from the collected data can compromise the reliability
of the results. One such threat is observer bias. Observer bias occurs when the researchers or
observers have preconceived biases that may influence their observations or interpretations of
the data. Another reliability validity threat may be the interviewer bias. This occurs when the
interviewer’s personal beliefs and opinions influence the interviewing process.

External Validity Threat:

Lack of experience in the development of applying BDD may have an impact on what the team
considers as a challenge. The specific context and setting in which the study took place may have
unique characteristics that may have limited the generalisability of the findings. For example,
the study was focused on a small project with a small team who were inexperienced in BDD.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 149

The results may not apply to other organisations settings such as a large-scale project and a large
team experienced in the use of BDD.

Addressing Threats to Validity

To address these threats, we took several steps. For example, constant communication with the
team members including face-to-face meetings, telephonic conversations, email exchanges, and
sharing of documents enhanced the expressiveness of the team members. They were able to dis-
cuss the issues in applying BDD openly. With the use of action research as a research method,
we were able to study the challenges faced by the team as they progressed in the project along
with the improvements in practical application of BDD. In addition, we introduced confidential-
ity by keeping the views of each individual confidential during the lifetime of the project.

Before attempting to translate the use cases into BDD scenarios, we studied the structural
concept behind use cases. A use case describes a specific sequence of of events in a given
context which is also a characteristic of BDD scenarios. Various fields in the use case template
were mapped to Given, When, Thens in the BDD scenarios after carefully reviewing each field
in the use case template. However, to the best of our knowledge, the strategy devised by us for
translating use cases into BDD scenarios was attempted the first time and the validity of this
strategy is unknown.

Interviews were conducted as a secondary source of data to validate the findings and further
explore the phenomenon. By employing a secondary source of data and cross-referencing the
results, it became possible to develop a more comprehensive understanding of the phenomenon,
reducing the influence of the Hawthorne effect. To mitigate the interviewer bias, open-ended
questions were asked during the interviews to enable the team members to express their views
in detail which helped us in discovering unidentified aspects. In addition, we followed Wengraf
[2001]’s guidelines to devise the interview questions and perform the analysis of the data from
the interviews. This helped us in the systematic extraction of the data and production of results.

At the start of the project, the team was introduced to the concept of BDD and was given
the time to learn BDD and the tools used for it. The project was a part of a larger project
internally developed in a large avionics company which is one of the top 10 avionic companies
in the UK according to Google. The participants had various levels of industrial experience.
However, we acknowledge that it was beyond our control to conduct a study with an additional
team to compare the results. We also acknowledge that BDD was applied in a small project with
a small team therefore enabling the readers to assess the similarities and differences with their
own context.

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 150

6.8 Summary

This chapter describes the use of action research for the incorporation of BDD into a project
in an avionics company. The action research identified some technical limitations of Gherkin.
It is important to note that the findings reported in this chapter are from the perspective of the
team. The collection of practices, technology, culture, and mindset manifest these challenges.
The findings documented in this chapter as challenges and limitations manifest themselves when
BDD is “practiced” within this case study.

The action research also revealed that the use of BDD is helpful in assessing the validity and
consistency of the requirements. The chapter also presents the results from the post hoc semi-
structured interviews with the development team using BDD. The interviews helped in drawing
the context of the project. The interviews identified challenges in the application of BDD.

Four out of eight limitations of Gherkin in Figure 6.6 refer to the limitations of Gherkin.
According to the project team’s feedback from practicing BDD, challenge number 3, 4, 5, and 6
show that Gherkin is unable to express various ways of user interaction with a system and that
Gherkin is not very well suited for describing the rich variety of ways that users interact with
systems.

This chapter presents an analysis of the practicality of the theoretical steps of BDD. A com-
parative analysis between BDD in theory vs BDD in practice revealed that the theoretical frame-
work is based upon ideal circumstances and does not consider the real-world factors (e.g., the
experience of the development team). At the moment, there is no guidance available on how to
take the real-world factors into account. Many activities of the theoretical workflow of BDD are
based upon assumptions. These assumptions include: availability, participation, and experience
of the stakeholders. Whereas, BDD process does not take real-life circumstances into consider-
ation, such as vague requirements, unavailability of the customer, organisational structure, and
the type of the product. The time taken to overcome these impediments is also not considered
by the theoretical workflow. There is a need for guidance and training on BDD. Unless the peo-
ple understand the purpose of using BDD, and have practical knowledge and guidance on how
to use BDD for communication and development, it will be seen merely as a way of writing
requirements.

Because of the lack of quality criteria, it is easy to not know when to stop refining scenarios,
especially, when the requirements are not clear. Writing the acceptance tests is a time-consuming
activity, and many times, it is hard to imagine the scenarios in advance in which case, the at-
tempts to get the scenarios right consume a lot of development time. Also, BDD does not (at the
moment) specify quality criteria for the scenarios which means it is hard to know if a scenario
is good enough to form the basis for the acceptance test for a requirement.

Although BDD is an agile practice, and must not suppose to be used in isolation as a fully-
fledged development process, the progress and the quality of artefacts in BDD is dependent upon
the clarity in the requirements. Also, BDD is not a technique for requirements elicitation. It has

CHAPTER 6. BDD IN PRACTICE: A CASE STUDY 151

indeed to be used in conjunction with other practices (and processes). Various activities in BDD
process have different purposes. The requirement elicitation activity in BDD is a three amigos

meeting. During this study, we observed that although BDD is primarily a development method,
and the requirements elicitation in BDD is weak. It has to be used in conjunction with the other
requirements elicitation methods such as prototyping.

Upon observation during the action research, we detected that the content of the user story
block of a Gherkin feature is only provided for documentation purposes and is not leveraged
when executing the test suite. Only the scenarios that describe the acceptance criteria play a role
in leveraging test execution.

Chapter 7

An Analysis of the Practice of BDD on
GitHub

In Chapter 6, we explored the application of Behaviour Driven Development (BDD) in a large-
scale organisation and discussed the lessons learned from it. The focus of the previous chapter
was on elaborating the challenges faced during the application of BDD in a single commercial
project. During the previous study, we learned that, in BDD, developers sometimes transcribe
the requirements in ways that introduce bad smells in the requirements (i.e., make the require-
ments inflexible). These requirements could be functionally correct but they negatively impact
the evolution of a system. In this chapter, we extend the research by conducting an empirical
analysis of BDD in practice in open-source projects.

This chapter presents an overview of open-source projects that contain BDD artefacts. To do
this, a sample of projects that contain BDD artefacts were identified on the GitHub collaboration
platform. The contents and meta-data of these projects was explored in order to characterise
BDD-containing open-source projects. In addition, the evolution of BDD-containing projects
was studied. Finally, a second sample of non-BDD-containing projects was obtained to compare
between BDD and non-BDD-containing projects.

To gather the described samples, a GitHub repository sampling tool was implemented to
query the GitHub API. Exclusion/ inclusion criteria were defined and implemented in the tool
to filter sampled repositories. The tool then gathered relevant meta-data from each project be-
fore cloning to a local filesystem. Once cloned, commits on the mainline of each project were
checked out and inspected using a number of automated metrics.

The next section provides a more detailed overview of the objectives of this chapter. Section
7.2 explains the experiment design and provides a description of the steps followed during the
experiment. The results from the experiment are discussed in Section 7.3 which includes an
overview of Gherkin projects, a discussion on the relationship between BDD-related project
artefacts, a comparison between Gherkin and non-Gherkin projects, and a discussion on the
evolution of BDD artefacts. The section compares the meta-data fields and the contents of

152

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 153

Gherkin and non-Gherkin projects to show similarities and differences between them. Section
7.4 consists of the discussion based upon the results of this study, whereas Section 7.5 discusses
the threats to the validity of this study. Section 7.6 provides a bird’s eye view of the BDD in
open-source projects and a summary of this chapter.

7.1 Objectives of the Experiment

Scope of the existing studies [de Souza et al., 2017, Solis and Wang, 2011, Gómez, 2018, Bina-
mungu et al., 2018b, 2020, Egbreghts, 2017, Zaeske et al., 2021, Oliveira and Marczak, 2018,
Irshad et al., 2021] on BDD in practice is limited to a certain organisation or the opinions of
the practitioners. We have extended the scope of the study to the open-source BDD projects to
create a general overview of the current state of BDD and its adoption. Looking at the bigger

picture helped us in understanding the overall adoption and growth of BDD in practice in open-
source projects. Lessons learned from this chapter represent a broader trend in the adoption,
growth and evolution of BDD and its artefacts.

The objectives of this chapter are:

• Present an overview of BDD related artefacts and study their evolution over project life
time.

• Compare open-source BDD projects with non-BDD projects and understand the differ-
ences between them.

For this purpose, the open-source BDD repositories on GitHub were investigated. GitHub
has over 37 million repositories and has become one of the major sources of software artefacts on
the internet [Kalliamvakou et al., 2016, Chong and Lee, 2018, Ortu et al., 2018]. The projects’
data available on GitHub gives researchers and data miners an opportunity to explore what is

being done in practice? [Kalliamvakou et al., 2016, Chong and Lee, 2018]. Researchers mine
GitHub repositories to retrieve the data regarding different matters of interest [Kalliamvakou
et al., 2016, Chong and Lee, 2018, Ortu et al., 2018]. GitHub offers a number of means (e.g.,
GitHub API) through which one can fetch the information someone is interested in.

This chapter is based upon results and statistics from studying the meta-data drawn from the
open-source BDD projects on GitHub. The meta-data was programmatically extracted at every
commit from a random sample of BDD projects. It not only helped in studying the growth of
BDD-related artefacts but also facilitated in drawing the correlation between different project
artefacts.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 154

7.2 Experiment Design

The focus of the experiment was to study the real projects. The experiment design was replicated
from previously published studies [Bao et al., 2019, Sharma et al., 2017, Ortu et al., 2018] which
used the meta-data from repositories on GitHub to investigate different phenomena. The steps
that were common in their experiment design were replicated i.e., (i) establishment of a primary
selection criteria; (ii) devising a criteria for filtering the repositories; and (iii) collection of the
results.

The primary selection criteria for the projects in this experiment was the use of Gherkin

language in a project. According to GitHub documentation∗, GitHub provides information on
the languages used in a repository. GitHub uses the open-source Linguist library to determine
the languages used in a file. BDD specifications are written in Gherkin therefore, presence of
Gherkin among the languages used in a project indicate the incorporation of BDD. Repositories
where Gherkin was listed as one of the development languages, were considered for selection.

The next step was to devise a filtration criteria for the repositories. Assignments, practice
or dummy projects could skew our results. So, we used the guidance provided in the literature
[Munaiah et al., 2017, Kalliamvakou et al., 2016, Borle et al., 2018, Leotta et al., 2019, Roehm
et al., 2019] to devise an exclusion/ inclusion criteria for removing the dummy projects from our
dataset.

7.2.1 Definition of exclusion / inclusion criteria:

Kalliamvakou et al. [2016] conducted a study that was aimed at understanding the potential
perils when mining GitHub for research purposes. Although many repositories are being actively
used for development on GitHub, according to Kalliamvakou et al. [2016], most of them are
simply personal or inactive repositories. According to Munaiah et al. [2017] the proportion of
noise (homework assignments etc) in a random sample of repositories could skew the results and
may lead to inaccurate conclusions. In order to remove noise in our data, we used the guidance
provided in the literature [Munaiah et al., 2017, Kalliamvakou et al., 2016, Borle et al., 2018,
Leotta et al., 2019, Roehm et al., 2019] to devise the following exclusion/ inclusion criteria for
the selection of GitHub repositories.

1. Evidence of Sustained evolution: Remove the repositories with less than six commits.
Less number of commits show a lack of evidence of sustained evolution which could
mean either a project was a dummy repository (i.e., homework, assignment, etc.) or the
project was developed somewhere else and later put on GitHub for the purpose of storing
it. Findings of the study by Kalliamvakou et al. [2016] show that 90% of projects on
GitHub have less than 50 commits. According to the authors [Kalliamvakou et al., 2016],

∗https://docs.github.com/en/github/creating-cloning-and-archiving-reposit
ories/about-repository-languages

https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-repository-languages
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-repository-languages

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 155

the median of the number of commits on GitHub is 06. We, therefore, excluded the
repositories with less than six commits.

2. Evidence of Collaboration: Remove repositories with only one or no contributor.
Real projects show signs of collaboration according to the studies [Kalliamvakou et al.,
2016, Leotta et al., 2019, Vendome et al., 2017] on mining GitHub repositories. The
projects having only one contributor are considered personal projects [Kalliamvakou et al.,
2016]. Whereas, “...development of a software system involving more than one developer

can be considered as an instance of collaborative software engineering” [Munaiah et al.,
2017]. Since we were interested in real projects, we excluded the projects with zero or
only one contributor.

3. Evidence of interest from the community: Include repositories with at least one
watcher OR at least one fork. According to Leotta et al. [2019] 71.6% of the projects
on Github are personal projects, dummy repositories, or assignments. One of the criteria
for identifying a real project is the popularity of the project i.e., the interest of the people
in the project from outside the development team [Kalliamvakou et al., 2016, Leotta et al.,
2019, Vendome et al., 2017]. We considered two indicators of popularity for a repository
mentioned in [Munaiah et al., 2017, Kalliamvakou et al., 2016, Borle et al., 2018, Leotta
et al., 2019, Roehm et al., 2019, Allamanis and Sutton, 2013] i.e. (i) watchers and (ii)

fork.

A repository with at least one star or watcher shows there is at least one user, other than the
developer, who has shown appreciation for the repository [Leotta et al., 2019, Vendome
et al., 2017]. Whereas Fork is also considered an indicator of popularity and interest in
a repository by Allamanis and Sutton [2013]. We consider evidence of interest from the
community as inclusion criteria for the repositories.

4. Fork Repositories: As mentioned in some of the studies [Vendome et al., 2017, Kalliamvakou
et al., 2016] we excluded forks to avoid over-representation of data. Fork repositories were
replaced with their parents.

5. Minimum Size of Code Base: greater than 100,000 bytes in the latest commit: This
criterion is used to exclude small repositories which might bias the results and are likely
to be dummy repositories according to researchers [Roehm et al., 2019, Vendome et al.,
2017, Leotta et al., 2019].

6. Repositories with no Gherkin files: After applying the above exclusion/inclusion crite-
ria, we found that some of the resultant repositories did not have any Gherkin files. When
we investigated such repositories, we found that Gherkin was incorporated in a branch and
never in the master. We excluded such repositories.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 156

Figure 7.1: Pipeline diagram

7. Repositories with no features: Some of the resultant repositories did not have any fea-
tures although there were few Gherkin files in them. The .feature files in these repositories
contained random data and not features. Such repositories were excluded.

During the development of exclusion/ inclusion criteria for the GitHub repositories, we ob-
served that the application of the criteria was not a straightforward process. For example, there
were large repositories with no commit history and no watchers but the repository itself was
large enough to be noticeable. Therefore, we developed a data-gathering workflow by using
the devised exclusion/ inclusion criteria. We implemented the exclusion/ inclusion criteria in
Python and developed a tool that gathered the meta-data through GitHub API.

For collection of results, a tool was developed in Python which implemented the primary
selection criteria along with the exclusion/ inclusion criteria and collected the meta-data auto-
matically. The tool used a five stage process. Figure 7.1 illustrates the five stages process of the
tool. At first, the tool generated 1 million random GitHub repository identifiers. The reposito-
ries which matched the identifiers were marked as a match. At Stage 2, the tool filtered out the
non-Gherkin projects by selecting the projects which listed Gherkin as one of the development
languages. Stage 3 implemented the exclusion/ inclusion criteria for removal on the dummy
projects. In Stage 4, the tool exported the meta-data from the last commit of the finally selected
projects. In Stage 5, the tool generated the meta-data for each commit of all the finally selected
projects to study the evolution of the project artefacts.

The execution of the five-stage process was completed in the first week of September 2020
and the extracted meta-data was stored in a .csv file format. The analysis was performed using
a Python program that retrieved the data from the .csv files using SQLite† (i.e., a database man-
agement system) and generated graphs using Matplotlib‡. The graphs gave us an understanding
of the growth and relationships between different project artefacts. The following sub-sections
describe our experiment design in detail.

†https://sqlitebrowser.org
‡https://matplotlib.org/

https://sqlitebrowser.org
https://matplotlib.org/

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 157

7.2.2 Repository Data Set Preparation

A GitHub repository sampling and analysis tool was developed in order to retrieve a represen-
tative sample of projects containing Gherkin. For sampling, the pipeline tool was designed to
use the GitHub-Python API client. A wrapper was also developed for the API to implement
automated rate limiting to ensure that the tool complied with the GitHub API’s terms of service.

The sampling and analysis pipeline is illustrated in Figure 7.1. In Stage 1, by applying
simple random sampling technique [Thompson, 2012], a random sample of 1,000,000 GitHub
repository identifiers (IDs) was generated in the range 0 to 251,108,600 (the approximate maxi-
mum number of repositories hosted on GitHub at the time of retrieval). Each sampled repository
ID was then assessed using information retrieved from the GitHub API. First, the API was used
to check whether a repository with the respective ID existed. If a repository was found, the
API was queried for the set of languages that had been detected in the repository. Repositories
found to contain Gherkin were initially marked as a match. The repository IDs that we could
not access could have been deleted or private.

In Stage 2, all repositories found in Stage 1 were filtered, following the rationale proposed
in Section 7.2.1. First, we replaced any forked repositories with their ultimate parents. Repos-
itories were then filtered to ensure that they demonstrated evidence of sustained evolution and
collaboration (by having at least six commits and more than one contributor). Then the reposito-
ries were filtered to ensure that they demonstrated evidence of interest from the community (by
having at least one fork or at least one watcher). The repositories considered for selection either
demonstrated evidence of: sustained evolution, collaboration, and interest from the community
or by being a sizeable deposition of code (more than 100,000 bytes in the latest commit).

As an additional step, where the parent repository was found to not contain Gherkin, the
nearest child to the parent (breadth-first search) that contained Gherkin was taken. These forked
repositories were analysed separately and their parents were removed from the main data set.
The reason for doing this was that we wanted to study “primary” repositories, not forks. How-
ever, the removal of forks would result in a small dataset. Searching for the primary repository
allowed us to place a substitute for the fork. In some cases, we found parents of forks that did
not contain gherkin. We used a breadth-first search of children to find the repository nearest to
the parent that introduced Gherkin. We retained the parents as it gave us an opportunity to study
gherkin getting introduced. To compare our sample of Gherkin repositories with the repositories
on GitHub generally, a second sample of 10000 identifiers was generated and used to search the
GitHub API as before, except that the repositories were required to not contain Gherkin files.

Meta-data was gathered for all repositories retrieved, based on the latest commit found in
the main branch of the repository as reported by the GitHub API. The fields recorded captured
information about the code base, contributors, issue tracker, pull requests, and Gherkin files,
etc. In addition, each commit on the main branch of the repository was analysed to extract
information about the practice of behaviour driven development in the project over time. In

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 158

particular, the number of feature files, features, scenarios, backgrounds, steps, and step types
were recorded for each commit. The main branch was identified from the GitHub API or, if
this failed, a number of common names (e.g., master) were tested. As well as providing an
evolutionary view of feature changes in the projects, the data from the first and latest commits
in the repository were added to the summary information for each project. The data gathered
for the study was collated into a data set and is available for inspection and reuse https:
//bit.ly/36wIQ5I.

7.3 Results

This section is based upon the results of the analysis on a random sample of Gherkin and
non-Gherkin projects. The section presents an overview of BDD in practice in open-source
projects on GitHub, and provides an understanding of the size, duration, growth, and evolution
of Gherkin projects and their artefacts. This section also presents a comparison of open-source
Gherkin and non-Gherkin projects to show the similarities and differences between them.

The analysis in this section is performed on the 493 Gherkin projects which were randomly
selected as a result of the experiment described in Section 7.2. However, some of the graphs in
this section are created from various subsets of the 493 projects because not all projects fit the
characteristics of all the graphs we were looking to create. For example, Figure 7.3b presents
the average step count in the projects. One project was excluded from the analysis because
the excluded project had no scenarios and division by zero is undefined. Similarly, Figure 7.10
illustrates the change in the practice of introducing the first Gherkin feature in a project. In order
to plot this graph, it was important that we considered projects with reasonable age and commit
history.

7.3.1 Prevalence of BDD on Github

Our initial step was to generate 1000,000 random identifiers. Testing these against the API re-
sulted in a set of 438,975 repositories, i.e. 44% of our randomly generated identifiers matched
repositories accessible on GitHub. Of these, 1493 (0.34%) were found to contain Gherkin. Ap-
plying Stage 2 real project filtering to this data set yielded 596 parent repositories, a reduction
of 60%. Of these, 51 were discovered to not contain feature files and a fork was collected
and curated in a separate data set. A further 44 projects were discovered to not in fact contain
any parseable Gherkin feature files in their latest commits. In most cases, these projects con-
tained file paths to text files with containing the sequence feature that appears to have caused the
GitHub language identification heuristic to mis-classify them. Overall, 501 projects were found
to contain at least one Gherkin feature file or 0.11% of the raw sample of valid repositories.
While we were running the analysis, eight repositories became inaccessible making the final

https://bit.ly/36wIQ5I
https://bit.ly/36wIQ5I

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 159

number of repositories 493. Those eight repositories were either removed from GitHub or were
made private by their owner(s).

Considering the non-Gherkin sample, 4903 randomly generated IDs matched repositories.
Applying the same Stage 2 filter to our sample of 10000 non-Gherkin repositories yielded 2069
results, a comparable reduction of 58%. This suggests that repositories that contain Gherkin are
as likely to pass the conditions of the filter.

The sampling process allows us to estimate the popularity of the practice of Behaviour
Driven Development in publicly accessible repositories through the maintenance of feature files
in open-source software projects hosted on GitHub. As of January 2020, there are reported to be
approximately 200 million repositories hosted on GitHub by June 2021§. Of these, our analysis
suggests that approximately 87.79 million are accessible repositories. The rest of the reposito-
ries are either private or removed from GitHub. Out of the 87.79 million accessible repositories,
40% (i.e., 35.11 milion) exhibit the properties of a real projects according to our filter condi-
tions. Our sampling process suggests that the percentage of the repositories containing Gherkin
is 0.34%. Extrapolating from our sample, we estimate that there are approximately 119401 real
projects employing Gherkin files on GitHub.

The initial sampling suggests that projects that contain Gherkin (and thus practice behaviour
driven development) are rare on GitHub. This contrasts sharply with the findings of the study
by Zampetti et al. [2020], who concluded that 27% of repositories in their study use BDD
frameworks. Zampetti et al. [2020] took a sample of the top 50,000 open-source projects -
ranked in terms of number of stars - written in the five most popular programming languages on
GitHub i.e., Java, Javascript, PHP, Python, and Ruby. Also, according to the documentation for
Cucumber [Aurlane, 2019], the most popular BDD frameworks are the ones developed for Java,
Javascript, PHP, Python, and Ruby. Therefore, we can say that the sample in the study [Zampetti
et al., 2020] was artificially boosted by selecting projects implemented in the languages believed
to be already associated with popular BDD frameworks and the search for the projects was
limited to popular (and thus more mature) projects. A relatively higher percentage of projects
showing the use of BDD in the study [Zampetti et al., 2020] also implies that BDD is more
popular in mature open-source projects. However, further investigation must be conducted to
confirm this inference. The next sections characterise the data set of Gherkin projects in more
detail.

7.3.2 Characterisation of Gherkin Projects

This section presents an overview of the Gherkin projects selected for this study. It draws on
the analysis of the meta-data from the selected projects, and the graphs shown in this section
describe the relationship between different elements of Gherkin specifications.

§https://github.com/about

https://github.com/about

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 160

100 101 102 103

Features per project

0

20

40

60

80

100

%
P

ro
je

ct
s

n=493

(a) Project feature count distribution

100 101 102 103 104

Scenarios per project

0

20

40

60

80

100

%
P

ro
je

ct
s

n=493

(b) Project scenario count distribution

Figure 7.2: Cumulative histograms of feature and scenario counts for 493 repositories

Features and Scenarios

Figures 7.2a and 7.2b are cumulative histograms that illustrate the number of features and sce-
narios in the projects in the Gherkin data set. - The figures show that 90% of projects comprise
less than 100 features and 80% comprise less than 100 scenarios, respectively. The data set does
contain a small number of outliers, with projects at the extreme containing approximately more
than 800 features and several thousand scenarios. These results may be contrasted with the sur-
vey completed by [Binamungu et al., 2018b]. The majority of practitioners (59%) in that study
reported that the projects they worked on comprised more than 100 scenarios. The reason for
this contradiction could be the difference in the research method. Binamungu et al. [2018b] sur-
veyed the advocates of BDD which could be estimated as a potentially biased sample, whereas
we analysed a random sample of open-source BDD projects. To investigate this further, we plot-
ted histograms of average number of scenarios per feature and the average number of step count
per scenario.

Figure 7.3a and 7.3b are histograms that illustrate the average number of scenarios per fea-
ture and average number of steps per scenario in the Gherkin projects. The projects in the data
set were found to have a median average number of scenarios per feature of just 2 (StDev=3.27).
In addition, Figure 7.3a shows that for more than 60% of projects, the average number of sce-
narios in the feature was less than 5. Further, the median average steps for a scenario was 4
(StDev=4.54) and the average scenario length for more than 90% of projects was 10 or fewer
steps. Thus we can characterise a median Gherkin feature suite on GitHub as comprising 5
features, each of 2 scenarios, with each scenario comprising 5 steps. Several outliers were no-
ticeable in the data set, comprising of very large feature suites of approximately 800 features and
several thousand scenarios. However, these projects appear to be exceptional, with the majority
of the projects comprising small feature suites.

Next, we characterise the composition of scenarios. The analysis showed that major portion

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 161

0 5 10 15 20
Average scenarios count per feature

0

5

10

15

20

25

P
ro

je
ct

s
%

n=493 repositories

(a) Average scenario count histogram

0 10 20 30 40 50
Steps count per scenario

0

5

10

15

20

25

%
P

ro
je

ct
s

n=492 repositories

(b) Average step count histogram

Figure 7.3: Average scenario and step count

(a) Share of step types across Gherkin projects (lat-
est commit) for 493 repositories

(b) Project step type share versus time

Figure 7.4: Project Given-When-Then share

of the total number of Gherkin steps consisted of assertions. To understand this, we plotted a
pie chart of scenario elements and a stack plot that illustrates the proportion of Given-When-
Then over time. Figure 7.4a is a pie chart of the scenario elements (i.e. Given, When, Then)
using. The total number of Gherkin steps in the selected Gherkin projects was 350774. The
figure shows that 40.99% of the total step count of the selected projects consisted of Then steps,
whereas Given and When steps were 27.8% and 31.3% respectively. This proportion of steps
type appears to be roughly consistent over time. Figure 7.4b is a stack-plot of scenario step
types over time. The figure shows a smoothed share of step types over time for all projects in the
data set. The figure shows that the proportion of Given-When-Then steps in Gherkin scenarios
stay consistent over the life of a Gherkin project. To plot this figure, first, timestamps from all
commits in all projects were collected. Then, step share in each commit was calculated as a
proportion and then to allow for varying frequency of commits in projects and project duration,

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 162

(a) Change in number of scenarios per feature ver-
sus project age

(b) Change in scenario size versus project age

Figure 7.5: Change in number of scenarios and their size versus project age

interpolation was applied per project across timestamps. Then a mean average share of step type
was calculated for each timestamp, before finally a smoothed moving average was calculated
for each step type.

Growth of Features and Scenarios in a Project

Figures 7.5a and 7.5b are scatter plots of the rate of change in average number of scenarios and
their sizes in projects versus the age of Gherkin projects in our data set. Figure 7.5a shows the
change in average number of scenarios per feature per day and Figure 7.5b shows the change in
average number of steps per scenario per day. Both scatter plots show no change in the average
number of scenarios and their size over the life of a project. This analysis was performed on
the projects with known project history (i.e., at least 100 commits and minimum age of 180
days). The figures show that average number of scenarios per feature and their size stay roughly
consistent through out the life time of a typical Gherkin project. However, the figures do not
show if the number of features and scenarios grow over the life time of a typical Gherkin project.

To understand this we plotted a time series of project feature count over the lifetime of the
projects using Figure 7.6. The figure shows a growth in number of features over the lifetime of
the projects. The figure shows that the features decrease in number towards the end of projects
which shows that some of the features are either refactored or commented. The Figures 7.7a and
7.7b are scatter plots of average number of scenarios and average number of steps against the
number of features and number of scenarios per project, respectively. The figures show that the
projects with a greater number of features tend to have slightly longer scenarios. The increasing
trend lines in the figures show that larger projects tend to have longer scenarios. However, more
research is needed to confirm this observation. Also, the difference in number of scenarios
and their sizes between projects with large and small number of features is not a lot i.e., the

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 163

Figure 7.6: Feature count growth versus project age histogram

100 101 102 103

Project feature count

5

10

15

20

A
ve

ra
ge

sc
en

ar
io

s
p

er
fe

at
ur

e

n=227 repositories

(a) Average number of scenarios per feature versus
project feature count

100 101 102 103 104 105

Project scenarios count

0

10

20

30

A
ve

ra
ge

st
ep

s
p

er
fe

at
ur

e n=227

(b) Average number of steps per scenario versus
project scenario count

Figure 7.7: Average number of scenarios and steps versus the project feature and scenario count
respectively

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 164

(a) Histogram of share of Gherkin commits versus
Non-Gherkin commits over time

(b) Commit frequency over time

Figure 7.8: Share of Gherkin and Non-Gherkin commits and their frequency over time

difference is just a couple of scenarios and steps.

Incorporation of BDD in a typical Project

Various graphs were plotted to understand the practice of incorporation of Behaviour Driven
Development (BDD). For example, Figure 7.8a shows a smoothed share of Gherkin and non-
Gherkin commits over time for all projects in the data set. To plot this figure, first, timestamps
from all commits in all projects were collected. Then, commit share for Gherkin and non-
Gherkin commits was calculated as a proportion, and then to allow for varying frequency of
commits in projects and project duration, interpolation was applied per project across times-
tamps. Then a mean average share of commit (i.e., Gherkin or non-Gherkin) was calculated for
each timestamp, before finally a smoothed moving average was calculated for each commit.

The figure shows a very small number of Gherkin commits over time. The Gherkin commits
are 5% of the total number of commits. To investigate further we plotted a commit frequency
graph. Figure 7.8b shows the frequency of the commits over the lifetimes of the projects. The
figure shows a decrease in the frequency of commits towards the end of the projects.

To understand when typically is Gherkin introduced in a Gherkin project we plotted a cu-
mulative histogram of the percentage of commits made before first Gherkin feature. Figure 7.9a
shows the percentage of commits completed before a feature was introduced. We can see that
approximately 20% of projects introduced a feature in the first 1% commits. Moreover, all stud-
ied projects had at least one feature introduced before the final 10% commits. Figure 7.9a shows
that approximately 75% of projects had introduced a feature within the first 33% of the total
commits. It suggest that Gherkin introduced reasonably early for many projects.

In order to see how much development was completed before first Gherkin feature was intro-
duced, we plotted a graph of percentage of lines of code completed before first Gherkin feature.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 165

(a) Percentage of commits made before the first fea-
ture

(b) Line of Code before introduction of first feature

Figure 7.9: Percentage of commits and LoC before first feature

Figure 7.9b is a cumulative histogram of percentage of project lines of code completed before
the introduction of first Gherkin feature. The figure shows that less than 80% of the code was
written in less than 80% of the projects, and less than approximately 22% lines of code were
completed in less than 40% of projects. Although, the ascending shape of the graph suggests no
average and shows that the projects introduced their first feature at varying percentages of lines
of code completion, the median percentage of lines of code before the first feature was found to
be 32. It means that approximately 32% of the total lines of code were written before the first
feature was introduced in a project. This observation coincides with one of the observations in
Chapter 6. In Section 6.5.1, we discussed that it was difficult for the developer to test before de-
velopment because it was difficult for the developer to understand what the functionality would
look like in advance. We can speculate by looking at Figure 7.9b that this problem exists in
BDD projects in general.

In order to see if this practice of introducing first feature has changed over the years, we
drew a scatter chart of days after which the first feature was introduced against the start date
of a project. Figure 7.10 shows the days to the first feature in the Gherkin projects. The figure
includes the projects started between the years 2012 and 2016. The mean line in the figure
shows that there has been no change in the practice of introducing the first feature, over the
years. The figure shows that there is no difference in the number of days lapsed after which
the first feature was introduced in the Gherkin projects over the years. However, the projects
are widely dispersed. A subset of projects introduce their feature immediately at the start of the
projects whilst other projects are widely dispersed ranging up to over a thousand days.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 166

Figure 7.10: Change in practice of introduction of first feature in a project

7.3.3 Gherkin versus Non-Gherkin Projects

The previous section gives an overview of BDD in open-source projects on GitHub. In this
section, we compare the open-source Gherkin projects with a sample of non-Gherkin projects in
order to understand the difference between them. This section presents a comparison between
Gherkin and non-Gherkin projects by comparing the projects and their meta-data.

Analysis shows that a typical Gherkin open-source project on GitHub is larger than a typical
non-Gherkin open-source project on GitHub. Figure 7.11 includes a graphical comparison of the
characteristics of the selected projects. The figure includes histograms that compare number
of contributors, total issues closed and open issues, total pull requests, open and closed pull
requests, and (kilo) lines of code of Gherkin and non-Gherkin projects.

Visually, Gherkin projects seemed to have a greater number of contributors, total issues,
closed and open issues, total pull requests, open and closed pull requests, and (kilo) lines of
code; than non-Gherkin projects. This observation was confirmed through the values of the
median for each graph. All the median values for Gherkin project characteristics except for
the open pull requests, were greater than the median values of the respective characteristics
in non-Gherkin projects. This shows that a typical Gherkin open-source project is larger than
a typical non-Gherkin open-source project on GitHub. This observation is further confirmed
through Figure 7.11h. The figure is a comparison of project size with respect to lines of code.
The figure shows that a typical Gherkin open-source project is roughly 3.5 times larger than a
typical non-Gherkin open-source project on GitHub.

Figure 7.11g compares the number of open pull requests in Gherkin and non-Gherkin projects.
The figure shows a low and equal number of median pull requests in both Gherkin and non-
Gherkin projects. This implies that the majority of the projects in both samples (i.e., Gherkin
and non-Gherkin projects) have a similar level of contribution or active moderation activity in
them.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 167

100 101 102 103

Contributors

0

10

20
%

P
ro

je
ct

s Gherkin

Non Gherkin

(a) Non Gherkin median=5 and Gherkin median=8

100 101 102 103 104 105

Total issues

0

10

20

%
P

ro
je

ct
s Gherkin

Non Gherkin

(b) Non Gherkin median=26 and Gherkin me-
dian=54

100 101 102 103 104 105

Closed issues

0

20

%
P

ro
je

ct
s Gherkin

Non Gherkin

(c) Non Gherkin median=16 and Gherkin me-
dian=39

100 101 102 103 104 105

Open issues

0

20
%

P
ro

je
ct

s Gherkin

Non Gherkin

(d) Non Gherkin median=5 and Gherkin median=6

100 101 102 103 104 105

Total pull requests

0

20

%
P

ro
je

ct
s Gherkin

Non Gherkin

(e) Non Gherkin median=12 and Gherkin me-
dian=25

100 101 102 103 104 105

Closed pull requests

0

20

%
P

ro
je

ct
s Gherkin

Non Gherkin

(f) Non Gherkin median=7 and Gherkin median=25

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 168

100 101 102 103 104

Open pull requests

0

25

50

%
P

ro
je

ct
s Gherkin

Non Gherkin

(g) Non Gherkin median=1 and Gherkin median=1

100101102103104105106107108

K Lines of code

0

5

10

%
P

ro
je

ct
s Gherkin

Non Gherkin

(h) Non Gherkin median=4864 and Gherkin me-
dian=17599

Figure 7.11: Comparison of characteristics of Gherkin and non-Gherkin projects

If we look at the number of pull requests in a few of the largest open-source projects¶,‖,∗∗ on
GitHub, we see a small number of pull requests. For example, an open-source learning platform
moodle has 599 contributors but only five open pull requests (until 18 March 2022). This shows
that the project is active and regularly moderated. A high number of open pull requests in a
project could mean that either moderators cannot handle the number of pull requests or the
project has been abandoned by the moderators of the project.

Application Language

Figure 7.12a is a bar chart that illustrates the main languages employed in non-Gherkin and
Gherkin data sets of projects. The figure shows that programming languages associated with
web-application programming (Ruby, PHP) are noticeably more popular in the Gherkin than
non-Gherkin data set(23% versus 5.5% and 15% versus 6% respectively). This suggests that
Gherkin and Behaviour Driven Development may have received greater adoption in web appli-
cation projects than in other technology domains.

Figure 7.12a shows that the most number of Gherkin projects were developed in Ruby mak-
ing Ruby the most popular language for the development of the BDD projects, according to
our data. Interestingly this finding coincides with the study by Zampetti et al. [2020]. Their
analysis of 50,000 popular open-source projects written in five programming languages shows
that “...BDD is more adopted in Ruby than in other languages, and that RSpec is by large the

most adopted BDD tool for Ruby” [Zampetti et al., 2020]. However, the reason behind this
popularity is not mentioned in the study [Zampetti et al., 2020]. One of the reasons behind the
popularity of Ruby in BDD projects could be that Rbehave was one of the first user story-based
BDD framework which was later integrated into RSpec [Chelimsky et al., 2010].
¶https://github.com/996icu/996.ICU
‖https://github.com/moodle/moodle
∗∗https://github.com/EbookFoundation/free-programming-books

https://github.com/996icu/996.ICU
https://github.com/moodle/moodle
https://github.com/EbookFoundation/free-programming-books

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 169

(a) Application language comparison: Gherkin
(n=493) vs Non-Gherkin n=2009 Data Sets

(b) Average number of feature files in the popular
languages

Figure 7.12: Popular application languages in Gherkin and non-Gherkin projects

The projects in PHP and Java language were found to be second and third in the relative ma-
jority of the Gherkin projects in Figure 7.12a. Significantly, projects associated with the C/C++
programming languages are a far smaller proportion of the Gherkin than non-Gherkin data set
of projects (2% versus 11%), suggesting that Gherkin and Behaviour Driven development is not
widely used in the projects developed in C/C++.

Figure 7.12b is a bar chart that shows the average number of gherkin files in the BDD projects
developed in the popular languages. The figure shows that the Gherkin projects in PHP were
found to have the majority of the total Gherkin files. This finding contradicts with one of the
findings of the study by Zampetti et al. [2020] which says that “...BDD frameworks are rarely

used in Java and PHP projects”. According to the authors [Zampetti et al., 2020], BDD frame-
works are used only in 2.26% of the overall PHP projects. Our data shows that although Gherkin
projects are a very small portion of the open-source projects, the use of BDD is considerably
higher in PHP and Java as compared to other technologies.

One of the reasons behind this contradiction could be the difference in the research method.
Zampetti et al. [2020] took a sample of 10,000 repositories for each of the five popular languages
on GitHub, including PHP. Whereas, we scanned 1 million random repositories irrespective of
the development language and our results suggest that the popular languages on GitHub are
popular in BDD projects as well. It is very much possible that BDD is not adopted widely in
overall open-source PHP and Java projects but in the open-source projects that use BDD, PHP
and Java are among the popular languages.

Project Duration

Figure 7.13 is a cumulative histogram that compares the distribution of project durations of
Gherkin and non-Gherkin projects. Non-Gherkin projects range in duration from less than a

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 170

Figure 7.13: Project durations for projects with at least 10 commits

day in our sample, through to more than 10000 days. Conversely, project durations for Gherkin
projects are more narrowly spread, with no project having a duration of less than a day.

Project Size

To compare Gherkin and non-Gherkin project size, we need to recall Figure 7.11h. The figure is
a histogram of project lines of code counts for both Gherkin and non-Gherkin project data sets,
for all projects with at least 1 line of code. The data graph shows that non-Gherkin projects range
from less than 10 to more than 10 million lines of code. Gherkin project LoCs are distributed
over a narrower range of more than 100 to approximately 10 million lines of code. In addi-
tion, Gherkin projects appear to be skewed towards large projects compared with non-Gherkin
projects.

We investigated the causal relationship between the adoption of Gherkin and project size,
as it is unclear from Figure 7.11h whether projects adopt Gherkin because they have reached
a certain size, or whether projects that adopt Gherkin are more likely to become large. Figure
7.14 is a histogram of the number of lines of code completed before the introduction of the first
feature in the Gherkin projects. The mean number of lines of code written before the first feature
was approximately 8000. This shows that Gherkin projects tend to already be sizeable when first
feature is introduced. If we compare Figure 7.14 to Figure 7.9b, we can say that 32% of the line
of code consists of 8000 lines of code making an average open-source BDD project consisting
of approximately 25000 lines of code in total.

Contributors

Figure 7.15a is a histogram that illustrates the distribution of contributors amongst non-Gherkin
and Gherkin projects. As can be seen, both distributions range from just a single contributor

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 171

Figure 7.14: Lines of code at first feature in Gherkin projects histogram

(a) Histogram of project contributors in Gherkin
and non-Gherkin projects

(b) Proportion of Gherkin authors in project

Figure 7.15: Histogram of contributors in Gherkin and non-Gherkin projects

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 172

(a) Developers’ lifetime in Gherkin projects (b) Days to first commit in Gherkin projects

Figure 7.16: Developer’s lifetime and earliest involvement in Gherkin projects

through to more than 400. If we look at Figure 7.15a, we see that both distributions are skewed
towards small contributor counts. Also, we can see that the first decline in the graph from the
top takes place at around a little less than 80% of the projects. This means that projects with
just one or few contributors account for at least around 20% of projects in both cases. However,
the histogram does suggest that the Gherkin projects attract more contributors than non-Gherkin
projects. The median contributor count for Gherkin projects is 8, compared with 5 for non-
Gherkin projects. This difference in contributors may be accounted for by the larger project
sizes as described previously.

Although the Gherkin projects tend to attract more contributors, only a minority commit
to Gherkin artefacts. Figure 7.15b is a cumulative histogram of percentage of developers who
commit Gherkin changes versus percentage of projects. The figure illustrates the share of con-
tribution between Gherkin and non-Gherkin developers in Gherkin projects. The X-axis shows
the percentage of developers who commit Gherkin changes and the Y-axis shows the percentage
of projects. If we look at Figure 7.15b, we see that 50% or more contributors make changes to
25% of the projects. The figure shows that on average, around third of contributors to projects
containing Gherkin make changes to feature files i.e., about 60% of projects.

To understand how long Gherkin developers stay involved in Gherkin projects, we plotted a
histogram of contributors in Gherkin projects against the number of days between first and last
commit. Figure 7.16a shows the lifetime of Gherkin and non-Gherkin contributors in Gherkin
projects. The X-axis in the figure shows the number of days between first and last commit. Y-
axis shows the percentage of developers involved in the projects. The figure shows that Gherkin
developers tend to have longer involvement with the projects.

In order to understand the earliest involvement of Gherkin and non-Gherkin developers in the
project, we plotted a histogram of days to first commit with respect to Gherkin and non-Gherkin
developers. Figure 7.16b shows the number of days between first commit made by Gherkin and

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 173

(a) Age of Gherkin and non-Gherkin projects versus
change frequency

(b) Gherkin and non-Gherkin projects commit his-
tory histogram

Figure 7.17: Change frequency and commit history of Gherkin and non-Gherkin projects

non-Gherkin developers in Gherkin projects. The X-axis in the figure shows the number of days
to the first commit. The Y-axis shows the percentage of developers who made the first commit.
The figure shows that the Gherkin developers join projects earlier than non-Gherkin developers.

Project Commit Frequency

Figure 7.17a is a scatter chart, and it compares the frequency of commits per day in Gherkin and
non-Gherkin projects. The figure shows no significant difference between the commit frequency
of Gherkin and non-Gherkin projects. Figure 7.17b is a cumulative histogram that shows the
cumulative commit history of the Gherkin and non-Gherkin projects. The figure shows that
60% of the non-Gherkin project had at least 1 commit per week. Whereas, over 80% of the
Gherkin projects had at least one commit per week. The comparison between the commits of
Gherkin and non-Gherkin projects show that the Gherkin projects have more number of per-
week commits.

7.4 Discussion of the Results

Perhaps the most striking aspect of the results is the relative scarcity of open-source projects
that have adopted Behaviour Driven Development. There is some variation in this respect with
regard to the previous literature. CollabNet VersionOne [2019]’s survey of industrial practice
suggests considerable uptake of BDD and Binamungu et al. [2018b]’s survey of practitioners
also suggests that BDD has achieved widespread adoption. However, both surveys rely on self-
reporting by practitioners which may be biased by participation enthusiasm. In Binamungu
et al. [2018b] case, BDD communities of practice were specifically targeted in the participant
recruitment strategy. To a lesser extent, the CollabNet VersionOne [2019] studies also rely on

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 174

self-reporting, and practitioners who consider that they practice agile may be more inclined to
participate.

The empirical study by Zampetti et al. [2020] also concluded relatively high adoption of
BDD in open-source communities. However, the sampling strategy adopted may also have in-
fluenced the conclusion, since a decision was taken to focus on popular software repositories that
were identified as containing code in languages known to have good support for BDD frame-
works. Our own strategy sought to obtain a more representative sample of software projects
through random sampling of repository IDs rather than applying selection criteria, although both
studies use similar post-sampling filtering strategies to identify ‘genuine’ software projects.

In addition, as Zampetti et al. [2020] themselves note, the observed use of SpecFlow style
frameworks was in many cases more for describing unit tests rather than end-user features,
which is more commonly associated with the practice BDD. A conclusion that could be drawn
from this comparison is that neither SpecFlow nor Cucumber frameworks are commonly used
for practicing BDD, but that due to the closer association between documented requirements
and executable test code, SpecFlow frameworks are found to be convenient for maintaining unit
tests. Further research is required to understand this difference.

As well as finding the adoption of BDD to be rare, within our sample, we found that repos-
itory feature suites are quite small. Several outliers were noticeable in the data set, comprising
of very large feature suites of approximately 800 features and several thousand scenarios. How-
ever, these projects are exceptional. Therefore, we can characterise a median Gherkin feature
suite on GitHub as comprising 5 features, each of 2 scenarios, with each scenario comprising 5
steps.

These figures contrast with the earlier work, specifically the exploratory study of open-source
projects by Chandorkar et al. [2022], who suggest in their review of 23 repositories a median
of 15 features per project. Again, this difference may well be accounted for by initial sampling
policy, with Chandorkar et al. [2022] adopting a selection strategy of a relatively small number
of repositories, based on popularity rather than random sampling by repository ID. Similarly,
the respondents to Binamungu et al. [2018b] reported the maintenance of much larger feature
suites than we encountered in our study. Again, this result may be due to sampling differences,
with Binamungu et al. [2018b] sampling from self-reporting BDD practitioners, predominantly
in the commercial software industry.

Our findings suggest that although feature suites are maintained throughout a software project
and are proportionate to the size of the project code base as it grows, the number of features and
scenarios is kept small. This may be evidence of a deliberate decision to use BDD frameworks
for documenting and managing high-level acceptance tests that are useful for preventing the
introduction of regressions. In addition, the small suite size may reflect the cost of maintain-
ing large collections of scenarios and code functions, a maintenance challenge also reported
by Binamungu et al. [2018b]’s respondents. Although this finding requires further investiga-

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 175

tion, it suggests that scaling and extending the coverage of BDD scenarios using the existing
frameworks and tools incurs too great a maintenance cost.

Separately, the results of our own study point to a correlation between the maturity of an
open-source project and the adoption of BDD (Figure 7.11). Comparing our two samples of
gherkin and non-gherkin repositories, we found that Gherkin repositories on average have larger
code bases, more issues, pull requests, and contributors and are older and experience more
frequent commits. All these indicators suggest that projects that incorporate Cucumber-style
BDD frameworks are more established than those without. However, it is unclear from this
analysis whether the early adoption of BDD within a software project is a contributing factor in
attracting contributors and activity to a project, or whether BDD is adopted once projects have
established a certain level of maturity.

Within projects that adopt Cucumber-style BDD we observed a tendency to continue main-
taining features throughout the project life-cycle, with a median of just 6 commits and 0 days
since the last feature modifying commit in the repositories in our sample. However, this aspect
of the project work is only undertaken by a minority of contributors (median 25% of authors).
Our analysis also suggests these represent a ‘core’ who join the project early in its creation, are
more intensively involved in project work, and remain with the project for longer.

This characterisation of feature-changing and non-feature-changing authors is striking and
may have implications for owners of open-source projects seeking to recruit new participants.
As reported by Lee et al. [2017], new recruits to open source projects may encounter obstacles to
participation and be deterred from making a sustained contribution. Our study suggests that new
contributors to projects that contain Cucumber-style BDD may be initially able to make small
changes to the project that do not noticeably impact the feature files in the repository. The rela-
tively small size of feature suites observed in our study, indicating limited test coverage to key
‘smoke tests’ supports this argument. If new contributors choose to become more familiar with
the project and make a more sustained contribution, they begin to take on more responsibility
and specify requirements through the creation or maintenance of Gherkin features.

However, new contributors may also be unable to identify situations where simultaneous
modification of code and feature file is necessary unless the code change actively cause a test
defined in the feature file to fail since there is no syntactic link between the name of a step and
the step definition function that realises it. As a consequence, required changes to feature files
will need to be detected in code review or become the responsibility of the core contributors
to the project as a separate task. The recent work by Irshad et al. [2022] demonstrates the
potential for automated detection, although their model is dependent on a dataset of commit-
contemporaneous changes to code and features and does not necessarily account for situations
where feature files should have been updated. Further, the lack of a strong semantics for Gherkin
means that contributors may be uncertain as to what changes should be made to a feature file.
These obstacles could potentially act as a limiting factor on the attraction of new contributors

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 176

once a project containing Cucumber-style BDD features becomes established.
Further work is required to understand these dynamics and the implications for tool develop-

ment to assist contributors to BDD-cucumber projects. In particular, given the evidence of con-
tinued maintenance of Gherkin artefacts throughout a project lifetime, tooling may be required to
better support concurrent alteration, maintenance, and refactoring of Gherkin features alongside
other project artifacts. Irshad et al. [2022] and Binamungu et al. [2018a] have begun to develop
and evaluate tooling for detecting (and consolidating) duplicate scenarios within Gherkin feature
suites; and Storer and Bob [2019] investigated the potential to use natural language processing to
mitigate the need for manually maintained step definition functions. However, much of this work
is preliminary and awaits trial in practice. Further, a broader range of refactoring techniques may
be desirable. For example, tooling to apply refactoring within Gherkin feature suites, such as
extracting or inlining background sections, and splitting or merging features may be useful in a
similar way that application code can be automatically refactored. However, further work be-
yond the present study is required to understand the details of current BDD workflows in actual
practice and how such tooling might augment, or enable new approaches.

The previous study from Chapter 6 shows that the developer faced difficulty in maintaining
the BDD suite since it was taking too long. Also, it was difficult for the developer to imagine the
functionality in advance and write tests before the actual development. We see a similar pattern
in the data collected during this study. The analysis shows that the average size of Gherkin test
suite in a typical Gherkin open-source project on GitHub is small even though a typical Gherkin
project appears to be three times larger than a non-Gherkin open-source project in terms of lines
of code. It seems that the size of Gherkin test suite is deliberately kept small may be due to the
effort required for its maintenance. However, further investigation would be required to see if
tests were written after the development of the Gherkin open-source projects as well.

7.5 Threats to Validity

This section discusses the threats to the validity of this study. In this section, we have discussed
three types of validity threats i.e., construct, reliability, and external validity.

Construct validity threat

If the Python tool does not accurately represent or capture the desired concepts, it may introduce
a threat to the construct validity of this study. This could result in misleading or inaccurate
graphs, which could undermine the validity of the findings of the study. For example, the tool
lacked certain features or functionalities that could help in investigating further aspects of the
application of BDD such as a natural language processing capability to study the evolution of
BDD scenarios.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 177

Reliability Validity Threat

A potential reliability validity threat for this study could be the potential inconsistencies in re-
sults produced by the Python tool over time. If the tool produces different results from the same
data across different instances, it may introduce a threat to the reliability of this study. It is
difficult to draw accurate and meaningful conclusions if there are inconsistencies in the results.

External Validity Threat:

A potential external validity threat to this study could be the limited generalisability of the find-
ings to other contexts such as another sample of open-source projects. The study was conducted
using a specific sample of open-source projects and a set of statistical techniques. The findings
may not apply to a broader population of open-source projects.

Addressing Threats to Validity

At the start of this study, random open-source projects containing Gherkin were studied man-
ually which helped us in devising criteria for selecting only the real projects and filtering out
dummy projects. The validity of the exclusion/inclusion criteria for selecting “real projects”

was tested on a random sample of non-Gherkin open-source projects. While doing the manual
inspection, we created a few graphs manually and understood the construct we wanted to mea-
sure. The tool was implemented at the end of this inspection process to automate the measure-
ment process. Additionally, long discussions between the author of this thesis and his supervisor
took place to optimise the algorithms used for the selection of open projects and the creation of
various graphs.

Every graph was manually inspected after its creation. The tool was tested on various sets of
data extracted from various sub-sets of open-source projects containing Gherkin. This process
evolved the tool and helped us in making the tool more reliable.

This study has a very specific context i.e., analysis of open-source projects on GitHub which
contained Gherkin language. Thus, the findings of this study must be viewed in its context.
However, we acknowledge that we could not test and compare our findings using another plat-
form such as GitLab due to the time limitations of this Ph.D research.

7.6 Summary

This chapter provides an overview of BDD on GitHub. The aim was to analyse open-source
BDD projects on GitHub to elaborate on BDD in practice. The use of BDD in a project was
indicated by the use of Gherkin in a project because Gherkin is the language used for writing
BDD features and scenarios. This is why a project in which BDD is incorporated is also known
as Gherkin project.

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 178

Since our target was to analyse the meta-data and project contents from real projects, a tool
was developed in Python which implemented a five-stage process including an exclusion/inclu-
sion criteria to filter out the dummy projects. The validity of the filtration process was cross-
checked with the help of a random sample of non-Gherkin projects on GitHub i.e., real projects
filter reduced Gherkin samples by 60% and non-Gherkin samples by 58%. The tool not only
extracted meta-data from the most recent commits in the projects but also extracted the meta-
data at each commit of each project to present an understanding of the evolution of Gherkin
artefacts. Our analysis suggests that around 40% of the accessible open-source repositories on
GitHub consist of real projects out of which only 0.34% contain Gherkin.

Various graphs from the extracted meta-data were plotted to understand the growth and rela-
tionship between the features and scenarios. Our analysis suggested that Gherkin projects tend
to be larger than non-Gherkin projects. We observed that the majority of Gherkin projects have
a small feature set size i.e., approximately 70% of projects have ten or fewer features whereas,
a handful have less than 100 features. With the exception of a few outliers, the median number
of features in a Gherkin project on GitHub was 5, each having 2 scenarios, with each scenario
comprising of 5 steps. We also found out that the large projects (i.e., the projects with a greater
number of features) tend to have slightly longer scenarios.

Our analysis showed that the introduction of Gherkin features into a project does not signifi-
cantly increase the size of the project. It means incorporation of BDD does not have any impact
on the growth of a project. We also learned that the number of features and scenarios in the
projects grows over the project life cycle however, the average number of scenarios in a features
in a project and their size does not change during the life cycle of the project. It means that the
details in the Gherkin requirements specifications do not evolve to an extent that can impact the
average size of the scenarios.

The practice of incorporating of Gherkin language in the projects was understood with the
help of various graphs. On average, 10,000 lines of code are written within the first 20% of the
commits before the first feature was introduced in the project. This observation coincides with
a finding from Chapter 6. According to one of our observations from the previous chapter, it is
difficult for a developer to write test code before development since it is often hard to imagine
the functionality in advance. We can speculate that this could be one of the problems faced by
projects in general.

Our analysis shows that the practice of introduction of the first feature has not changed over
the years. On average, all the projects introduce their first feature within the first eight months of
the project age. Although the Gherkin projects duration vary between a day and 10,000 days, the
percentage of Gherkin commits out of the total project’s commits was very low i.e., 5%. From
Figure 7.3 we can see that average size of Gherkin test suite in an open-source BDD project on
GitHub is quite small i.e., 5 features and 2 scenarios per feature. However, the Figure 7.11h
shows that an average open-source BDD project on GitHub is sizeable. This could mean that

CHAPTER 7. AN ANALYSIS OF THE PRACTICE OF BDD ON GITHUB 179

Gherkin is maintained only for a small amount of functionality in a project; which could be the
reason for a low Gherkin commit rate.

Our analysis showed that the developers who make Gherkin commits in a project are usually
the ones who get involved in the project at very early stages. Also, the people who make Gherkin
commits have the longest involvement in the project. This could also mean that the people who
incorporate Gherkin are usually the primary contributors in the project or vice versa.

Comparison between Gherkin and non-Gherkin projects showed similarities between them.
The three differences between Gherkin and non-Gherkin projects were: (i) the technology do-
mains where BDD is receiving more adoption than the other technology domains i.e., Gherkin
is significantly popular in the web development projects. (ii) Gherkin projects have slightly
more number of commits than the non-Gherkin projects, and (iii) Gherkin projects attract more
number of contributors than the non-Gherkin projects.

Chapter 8

An Analysis of Bad Smells in Gherkin
Specification

This chapter is a continuation of the Chapters 6 and 7. In Chapter 7, we presented an overview of
the open-source Gherkin projects and their comparison with non-Gherkin open-source projects.
The previous chapter presented a statistical analysis of the contents and the metadata associated
with Gherkin projects. This analysis gave an overview of the relationships between various arte-
facts of Gherkin projects. Specifically, the focus of the chapter was to characterise the practice
of Behaviour Driven Development (BDD) in open-source projects on GitHub.

In Chapter 6, we discovered a potential for bad smells in Gherkin specifications. In this
chapter, we further investigate this observation and see if the potential for bad smells observed
in the Gherkin language in Chapter 6 is manifest in open-source projects. In order to do that,
requirements specifications written in Gherkin were analysed to detect bad smells which could
potentially lead to maintenance issues in Gherkin specifications. This chapter builds an under-
standing of the extent of these practices and patterns.

Gherkin specifications from the open-source Gherkin projects recovered from GitHub (as
described in Chapter 7) were used to perform this analysis. These projects were curated from
a random sample of open-source projects on GitHub. The next section describes the concept of
bad smells and objectives of this chapter in more detail. Section 8.2 explains which bad smells
were selected for this study for the analysis. The selection of bad smells was based upon: (i)
applicability of the bad smell in the context of Gherkin specifications and (ii) the feasibility
of doing analysis within the duration of this Ph.D research. Section 8.3 discusses each of the
selected bad smells in detail. The section also documents the extent of the existence of each bad
smell in the requirements specifications of open-source Gherkin projects on GitHub. Section
8.4 tests whether bad smells are correlated with other characteristics of Gherkin specifications,
such as scenario size. Section 8.5 discusses the threats to the validity of this study. Section 8.6
presents the lessons learned from our analysis of the selected bad smells and the summary of the
chapter.

180

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 181

8.1 Objectives of the Experiment

Bad smells in software engineering are mostly associated with bad design or structural inflexi-
bility in a software artifact [Mäntylä et al., 2003, Garcia et al., 2009]. The term bad smells was
first used by Fowler [1999] to refer to sub-optimal code structures which may cause harmful
effects. Initial focus of the research on bad smells was on software code [Balazinska et al.,
2000, Mantyla, 2003]. Later, other researchers [Van Rompaey et al., 2007] began to consider
the nature of bad smells in software tests. Over the period of time, the discussion around bad
smells spread to other areas of software engineering such as architecture [de Andrade et al.,
2014], databases [Sharma et al., 2018] and web usability [Grigera et al., 2014] etc.

Bad smells in software system artefacts do not usually stop a software system from executing
[Farcic and Garcia, 2018] but hinder the evolution of a software system [Yamashita and Moonen,
2013]. Their existence in software artefacts could lead to maintenance issues in a software
project [Farcic and Garcia, 2018, Yamashita and Moonen, 2013]. Bad smells can exist in various
software artefacts such as code, test suite, and requirements specification in different forms
including bad design decisions, duplication, and ambiguities.

As mentioned, this chapter is a continuation of Chapters 6 and 7. One aspect of results
from the case study discussed in Chapter 6 was the discovery of violation of AAA pattern and
assertion roulette bad smells in Gherkin specification. We also learned that, due to its natural
language structure, Gherkin provides a lot of freedom for writing requirements specifications.
Therefore, there is potential for developers to write requirements specifications that contain bad
smells which would increase the cost of evolution of a software system even if the requirements
express the desired functionality correctly. It is reasonable to speculate that bad smells known
from source code quality practice could also exist in Gherkin specifications. We, therefore,
decided to investigate whether the potential for bad smells observed in the Gherkin language
in Chapter 6 were manifest in open-source projects. Therefore, in this chapter, we discuss bad
smells and maintenance of Behaviour Driven Development (BDD) requirements specifications.

Since the literature, particularly empirical research on BDD is scarce [Egbreghts, 2017, Solis
and Wang, 2011], it is pertinent to know what practices could lead to bad smells in BDD speci-
fications so that this study could serve as a guide for people planning to use BDD. Specifically,
the literature on BDD test smell is almost non-existent. This is also pointed out as a research
opportunity by Binamungu et al. [2018b]. Therefore, the research objectives within the context
of this chapter are:

• Map the bad smells in unit test to Gherkin specifications in open-source Gherkin projects
on GitHub on the basis of apparent applicability.

• Explore the prevalence of the applicable bad smells in Gherkin specifications in open-
source Gherkin projects on GitHub.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 182

• Examine if the applicable bad smells in Gherkin specifications in open-source Gherkin
projects on GitHub are correlated with other Gherkin artefacts.

Several factors including knowledge gained from the literature, our experience with BDD
in Chapters 6 and 7, manual inspection of Gherkin specifications, and the discussions between
the author and his supervisor played a key role in identification and selection of bad smells in
Gherkin specifications. Knowledge gained from the literature provided a theoretical background
on BDD. The literature also provided a background on the use of Gherkin and a brief overview
of the potential for bad smells in Gherkin specifications. The literature on bad smells in unit

tests helped us in identifying the bad smells that could be applicable to Gherkin specifications.
Manual inspection of randomly selected repositories allowed us to validate the mapping of bad
smells within unit test sites to Gherkin specifications.

8.2 Review of Bad Smells in Gherkin

The issue of bad smells in Gherkin specifications is acknowledged by several researchers [Bi-
namungu et al., 2018b, Suan, 2015]. Binamungu et al. [2018b] used an online survey to gather
responses from 75 BDD practitioners from 26 countries in order to understand the extent of use,
the benefits, and the challenges of BDD. Along with the discussion on the benefits of BDD, the
study highlighted the challenges specific to the maintenance of BDD specifications. The chal-
lenges highlighted in the study included the slow speed of a test suite, the need to maintain BDD
tests in addition to unit tests, and duplication detection. According to the authors, large BDD
test suites are not only difficult to manage and maintain but fault correction is also difficult. The
authors listed investigating BDD test smells as one of the future research opportunities.

The focus of the study by Suan [2015] was on duplicate detection in BDD specifications
i.e., cloning. The author used the text matching and dice coefficient algorithm to identify likely
duplicates. The intersection process collects a pair of consecutive written units that exist in both
pieces of text and then the formula for calculating dice coefficient is applied. The results were
not completely accurate but the concept and the problem itself are very important. Duplication
in BDD scenarios could create maintenance issues in case of refactoring of the specifications
i.e., the same change will have to be made at multiple places because of duplication.

Existing research [Binamungu et al., 2018b, Suan, 2015] demonstrates the concern in the
industry for the potential for bad smells to hinder maintenance in BDD specifications. However,
the literature lacks strong evidence for either the presence of bad smells in BDD specifications,
or indeed, the nature of what constitutes a bad smell in Gherkin.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 183

(((Bad smells) AND Behaviour Driven Development) AND software)
(bad smells in BDD) AND gherkin))
(bad smells in gherkin specifications)

Figure 8.1: Search Strings

8.2.1 Gherkin Bad Smells identified in Peer-Reviewed and Grey Litera-
ture

An online search was performed using Google scholar [LLC, 2004] employing the search strings
specified in Figure 8.1. The search revealed a lack of literature on bad smells in Gherkin speci-
fications. So, we adopted the practice described by Garousi and Küçük [2018] and extended the
scope of the search to grey literature (i.e., blogs and webpages etc.) [Kennedy, 2012, Knight,
2017, CucumberStudio, 2016, Stenberg, 2016].

These webpages also included a part of the documentation on Cucumber [CucumberStudio,
2016] which discussed Anti-patterns in Gherkin. The first anti-pattern in the documentation was:
having scenarios steps that cannot be reused across scenarios or features. The documentation
states that the existence of this anti-pattern in the test suite “...may lead to explosion of step

definitions, code duplication, and high maintenance costs”. This implies that scenario steps
that cannot be reused across features or scenarios in a test suite must be avoided. However, the
documentation does not acknowledge the instances where this anti-pattern cannot be avoided,
thus emphasising only the reuse of steps.

The second anti-pattern in the documentation [CucumberStudio, 2016] was: conjunction

steps. This problem arises when two or more phrases, each of which describes an independent
behaviour, are combined in a single step. According to the documentation, combining two or
more independent phrases in a single step makes the step too specialised and hard to reuse.

Instead, the documentation recommends combining two or more steps using abstract helper

method. This capability is specific to Java and used when a specific repetitive task is shared
between multiple methods or classes. This capability helps in reducing the number of redundant
Gherkin steps. According to the documentation, combining several steps into one (in this way)
“makes your scenarios easier to read”. However, the wording presently used to explain this
concept in the documentation [CucumberStudio, 2016] encourages combining the steps rather
than reducing the number of steps. Other examples of Gherkin Bad smells in the Grey literature
include violation of AAA pattern [Sundberg, 2016], Lazy Scenario Outlines [Sundberg, 2016,
Stenberg, 2016] and Multiple Assertions [Sundberg, 2016] etc.

We observed that the information we found on the topic in grey literature was more than
what was available in peer-reviewed literature. However, the information lacked details and the
arguments were under-developed. For instance, the documentation [CucumberStudio, 2016] on
Cucumber (BDD test management Tool) discusses the Anti Patterns but the description does not
include examples explaining the anti-patterns in detail. Also, the documentation does not state

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 184

if these are the only potential bad smells in Gherkin specifications.

8.2.2 Mapping Bad Smells

In the literature, bad smells in tests are predominantly discussed in the context of unit testing. In
BDD, scenarios are implemented as one or more functional tests i.e., different units integrated
to perform the tests. Due to the lack of literature and guidance on the bad smells in BDD
specification and the close relationship and structural similarities between BDD scenarios and
unit tests, we decided to expand the scope of this study. We used the existing knowledge of
the bad smells in unit tests to see which bad smells in unit tests were applicable to the BDD
specifications.

We found a number of studies that discuss and group the bad smells in the unit tests into
various categories. For example, Meszaros [2007] categorised the test smells into three kinds
i.e., (i) Code Smells: normally observed while reading the code e.g., Obscure Test; (ii) Behaviour

Smells: encountered when the tests are compiled or run e.g. Fragile Tests; and (iii) Project

Smells: are the defects found during formal testing by the users or the customers e.g., Buggy
Tests.

Reichhart et al. [2007] presented an approach and implemented it as an experimental tool
for the qualifying tests. The authors also defined criteria for determining the test quality. The
authors evaluated their approach on a large sample of unit tests from open-source projects. They
identified 27 bad smells in unit tests during their study.

Bavota et al. [2015] reported the results from two empirical studies they conducted to find
out the extent of bad test code smells and their impact on program comprehension during main-
tenance activities. Their first study was an exploratory study of 27 software systems. The
second study consisted of a controlled experiment involving four groups of participants with
varying levels of professional experience. The findings showed a frequent occurrence of the test
smells in software systems. According to the authors, the test smells have a negative impact on
programmers’ comprehension during maintenance activities.

The focus of a systematic literature review [de Paulo Sobrinho et al., 2021] of the studies
published on bad smells between 1990 and 2017 was on examining various kinds of bad smells
in the unit tests and the evolution of researchers’ interest in them. The authors also investigated
the co-occurrence of the discussion of different bad smells in the study. The study provided a
list of 104 bad smells from 351 papers. According to their findings, the bad smells studied the
most are: (i) Duplicate code, (ii) Large Class, (iii) Feature Envy, (iv) Long Method, and (v) Data
Class.

We came across several studies [de Paulo Sobrinho et al., 2021, Reichhart et al., 2007,
Meszaros, 2007, Van Rompaey et al., 2007, Yamashita and Moonen, 2013, Bavota et al., 2012,
Garousi et al., 2018] which discussed a number of bad smells. The biggest problems we faced
were: (i) the unavailability of an exhaustive list of bad smells, (ii) the total number of bad smells

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 185

discussed in each of the studies was different, (iii) the focus of the formally published literature
on the bad smells in code, whereas, the literature discussing an exhaustive list of bad smells in
structure of a unit test appeared to be scarce.

We also observed that the information available on the bad smell on online blogs, white
papers and internet articles was more detailed and covered more number of bad smells than the
formally published research. Also, we did not want to limit ourselves to the bad smells in the
code. Since we were investigating BDD specifications, we also wanted to look at the structural
bad smells like Arrange-Act-Assert (AAA) pattern violation. Therefore, it was important to take
the information available in grey literature into account.

We were able to find a study by Garousi and Küçük [2018] which used both, formally pub-
lished sources and the grey literature for their systematic literature review on bad smells in
software tests. They compiled a list of 182 bad smells from 166 sources including 120 (72.2%)
from the grey literature (e.g., internet articles and white papers). The authors prepared a spread-
sheet∗ of the bad smells in which they grouped the bad smells into six themes based upon their
natures.

We decided to analyse bad smells in unit tests and select the bad smells which appeared
applicable to BDD specifications. We copied the spreadsheet and performed deductive reason-
ing by: (i) searching and reading the definitions and online examples for each of the 182 bad
smells; and (ii) having a discussion between the author of this thesis and his supervisor about
the bad smells which potentially seemed applicable to the BDD specifications. The criteria for
the selection of the bad smells was their applicability to the BDD specifications. Bad smells
which had no apparent effect on the BDD specification or were not directly applicable to the
BDD specifications, were not selected during the process.

As a result of the above activities, we selected eight bad smells out of the 182, (1) Slow
Test; (2) Eager Test; (3) Over-specification; (4) Testing Happy Path only; (5) General fixture;
(6) Duplication; (7) Assertion roulette; and (8) Obscure Test. During the selection process, we
also observed that some of the 182 bad smells were duplicates i.e., a synonym for another bad
smell in the same list. For example, Long Test and Complex Test, the two bad smells in the list,
were the synonyms for Obscure Test which was also listed among the 182 bad smells.

In addition to the deductive reasoning, we (i) used our background knowledge of BDD and
(ii) manually inspected the BDD feature files from a random sample of repositories which led to
the discovery of three more bad smells i.e., AAA pattern violation, Lazy Steps, and Lazy Sce-
nario Outline. AAA pattern violation was discovered during the action research (Section 6.3) in
Chapter 6. Whereas, the Lazy Steps and Lazy Scenario Outline bad smells were observed during
the manual inspection of the feature files. Figure 8.2 lists the bad smells apparently applicable
to the BDD specifications. The third column of Figure 8.2 provides a brief explanation of the
relevance of the bad smell in the context. We do not claim that this is an exhaustive list of the

∗https://goo.gl/1ZrL65

https://goo.gl/1ZrL65

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 186

Bad Smell Applicability to BDD specifications
1 Slow Test The execution of BDD Test Suite could become slow due to various rea-

sons such as a large test suite with heavy coupling or unnecessary use of
Scenario Outlines etc.

2 Eager Test Testing multiple behaviours in a single Gherkin step.
3 Over-specification Imperative scenarios.
4 Testing Happy Path only Not having alternate scenarios for handling unexpected inputs and out-

puts.
5 General fixture Having Given steps that are not used by the scenario.
6 Duplication Duplication of Gherkin steps.
7 AAA pattern violation Interleaved Given-When-Then statements
8 Assertion roulette Multiple Then statements in a scenario
9 Obscure Test Long and complex scenarios

10 Lazy Steps Single row table(s) attached to scenario step(s)
11 Lazy Scenario Outline Scenarios outlines with a single row

Figure 8.2: Applicable bad smells in the context of BDD specification

applicable bad smells in BDD specification. It is possible that we, unintentionally, missed other

bad smells that are also relevant to the BDD specifications.
After the selection of the bad smells, we performed a feasibility assessment, considering the

time required to collect evidence for each of the bad smells in the Figure 8.2. As a result of our
feasibility assessment, we selected the following five out of 11 applicable bad smells.

• AAA pattern violation

• Assertion roulette

• Duplication

• Lazy Steps

• Lazy Scenario Outline

The scope of the rest of the six bad smells was either too broad or collecting evidence for
them required an amount of work that could not be covered during the course of this Ph.D. For
example, investigating Slow Test in BDD specifications would require automating the execu-
tion of the test suite of 493 projects and then finding out which of them are slow and why. It
is possible that the slow execution of a test suite could be an effect of other bad smells in a
test suite, investigating each of which requires a considerable amount of time. Similarly, the
detection of multiple behaviours in Gherkin steps (i.e., Eager Test) would require using natural
language processing techniques to understand and detect independent phrases in Gherkin steps.
As much as we wanted to cover the six unfeasible bad smells, the amount of work required to
gather evidence for such bad smells was not possible within the limited duration of this Ph.D.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 187

8.2.3 Experiment Design

This section describes the bad smells that were selected for the analysis and explains the process
of calculating the existence of those bad smells in open-source BDD projects’ specifications on
GitHub.

In order to extract the data electronically from the projects selected earlier (in Chapter 7), the
Python tool discussed in Section 7.2 was extended. This tool was initially developed to extract
project-related metadata from open-source BDD projects on GitHub. To explore the potential
for bad smells in Gherkin specifications, the Python tool was extended to perform statistical
calculations on the smells selected for analysis in this chapter. The definition of each bad smell
calculated by the tool is as follows:

• AAA pattern violation: Arrange-Act-Assert also known as AAA pattern, is considered
to be one of the best practices for structuring unit tests [Chaczko et al., 2014, Axelrod,
2018, Ma’ayan, 2018]. The (AAA) pattern was observed and named by Bill Wake† in
2001, and the purpose was to make the structure of unit tests readable and maintainable
by organising a unit test into three clear and distinct steps i.e., Arrange, Act, and Assert.
The AAA pattern is equivalent to Given-When-Then scenario structure in BDD, and it
arranges the Gherkin scenarios into the Arrange, Act, and Assert format.

Each scenario was checked for the presence or absence of interleaved Given-When-Then
steps. Every instance of recurring Given step(s) after When or Then step(s), or recurring
When step(s) after Then step(s) was counted as a violation of AAA pattern. This means
every single instance of interleaved Given-When-Then in a scenario was counted as one
violation of the AAA pattern.

• Assertion roulette: It is commonly agreed that having multiple asserts could potentially
mask bugs because, in case of failure of an assert, it is not possible to know the pass or
fail status of the subsequent assert [Tufano et al., 2016, Ma’ayan, 2018].

In order to verify if multiple assertions in a BDD scenario could also mask bugs as they do
in the unit tests, we created a pilot project in Python. For this, A feature file with a single
scenario, having four steps (each starting with Given, When, Then, and And respectively)
was created. We generated code stubs for all the four steps with a failing third step. When
we executed the specification we observed that the fourth step was skipped because of
the failure of the third step. The skipped steps do not execute therefore, the pass or fail
status of the fourth step was unknown which could potentially mask bugs in the fourth
step. This pilot project demonstrated that if an assertion in a Gherkin test fails, the failure
or successful execution status of a subsequent assertion can not be determined.

†http://xp123.com/articles/3a-arrange-act-assert/

http://xp123.com/articles/3a-arrange-act-assert/

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 188

The number of Given, When, Then statements were calculated for each repository. To
know how many repositories have scenarios with more than one assertion, we subtracted
the total number of scenarios in a project from the total number of Then in a project. If
the number of total assertions was more than the number of total scenarios in a project, it
was an indication of assertion roulette bad smell.

• Duplication: By duplication of Gherkin steps or clones we mean repetition of two or
more consecutive steps that already exist in another scenario. The tool implemented two
algorithms for searching for clones in Gherkin specifications: (i) suffix trees for search-
ing for clones within a single scenario, (ii) the longest common subsequence table for
searching between two scenarios.

These algorithms were used to detect clones. At first, all scenarios in a project, and all
pairs of scenarios were checked for potential clones. In both cases, a clone in Gherkin
was defined as a sequence of two or more steps that recur elsewhere, either in the same
scenario or within another scenario in the project. When a clone was found, it was added
to a clone tree. Once all scenarios and pairs were evaluated for possible clone candidates,
the set of clone trees was sorted by maximum depth. Clones were then extracted in size
order from the project. Each instance of repetition of two or more consecutive Gherkin
steps within or across the feature files within a project was counted as one clone.

• Lazy Steps Data Table: A Gherkin language terminology called Step Argument‡,§ refers
to a capability of attaching data to a Gherkin step. This data could be a block of text or a
table of data. In Python, this data is passed as an attribute to the context variable which is
then passed into a step function. A single row in a step data table is an overuse of this ca-
pability and adds unnecessary complexity to the specifications and implementation code.
Data tables are often misunderstood with scenario outlines. It is important to understand
that in a Scenario Outline, each row in the example table executes for the whole scenario.
Whereas, a Data Table only executes for the single step under which the data is defined.

To find the number of lazy steps, all feature files in each project were parsed programmat-
ically with the help of the Python tool. Each feature file was checked for scenarios with
steps having tables containing a single row. Each of such instances was counted as one
lazy step.

• Lazy Scenario Outline: Keeping identical scenarios in a feature file creates duplicates
and rework in case of an update. Identical scenarios having the same wording but different
data values in one feature file could be collapsed into a single Scenario Outline. Refactor-
ing identical scenarios into Scenario Outline and organising the data into tables not only

‡https://cucumber.io/docs/gherkin/reference/
§https://behave.readthedocs.io/en/stable/gherkin.html#step-data

https://cucumber.io/docs/gherkin/reference/
https://behave.readthedocs.io/en/stable/gherkin.html#step-data

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 189

improves readability but saves rework in case of an update. This capability provides ease
of maintenance and helps in reducing text without losing the descriptive value of text.

To find the number of lazy outlines, all feature files in each project were parsed program-
matically with the help of the Python tool. Identical scenarios with different data values
can be combined using scenario outline whereas, a scenario outline with a single row can
be written more concisely as an ordinary scenario. Therefore scenario outlines with only
a single row in the example table were considered a bad smell. Each Scenario Outline

was programmatically checked for the presence of a single row in a table. Every Scenario

Outline with less than two rows was counted as one lazy Scenario Outline.

While manually inspecting the Gherkin specifications from the selected open-source projects,
we noticed the existence of another bad smell which is inverse of Lazy Scenario Outline

discussed in this chapter. This bad smell, which we noticed, consisted of identical scenar-
ios with different data. Such scenarios should have been combined into a scenario outline.
However, we did not evaluate the existence of this bad smell because the work required to
detect this bad smell was complicated and could not be implemented within the course of
this Ph.D.

8.3 Results

This section describes the extent of the existence of the (selected) bad smells in open-source
BDD projects’ specifications and the potential impact of the bad smells on maintenance of BDD
specifications.

An overview of the existence of bad smells discussed in this chapter is presented using Figure
8.3. The figure is a bar chart in which each bar represents the percentage of projects with each
bad smell in the 493 Gherkin projects. There are six bars in the figure, and each bar represents
percentage of Gherkin projects with a particular bad smell. The figure shows that Gherkin
specifications of approximately 36% projects contain at least one violation of Given-When-Then
order (i.e., AAA pattern violation), 70% Gherkin projects have at least one scenario with more
than one assertion, and 68% Gherkin projects have at least one instance of duplication of two or
more consecutive steps (i.e., clones). The figure shows that 3% of the Gherkin projects have at
least one unnecessary Background i.e., 3% projects had at least one feature file with one scenario
and a Background. Because the percentage of projects with the unnecessary Background bad
smell was negligible, we did not investigate them any further. Approximately 30% projects have
at least one lazy step i.e., at least one instance where a scenario step has a table with only one
row. These scenarios could be more concise such that the data in the table is moved to within the
relevant step(s). Approximately 12% of the projects have at least one lazy Outline table where
the table had just one row i.e., a scenario should have been used instead of an Outline table.

Figure 8.4 is a bar chart for the bad smells. The figure contains pairs of bars where each pair

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 190

Figure 8.3: Projects’ bad smells bar chart

Figure 8.4: Contributor time to bad smell introduction

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 191

Arrange-Act-Assert
(Test Driven Development)

Given-When-Then
(Behaviour Driven Development)

Arrange setup and initializations required for
the test

Given describes the preconditions for the sce-
nario and prepares the test environment

Act actions required for the test When describes the action under test
Assert verification of outcome of the test Then describes the expected outcomes

Figure 8.5: Arrange-Act-Assert vs Given-When-Then

represents the proportion of Gherkin contributors who removed or introduced the bad smells
into the project within the first day of their Gherkin commit. This graph shows the default
writing style of the contributors who write Gherkin scenarios. This shows us the proportion of
the contributors who are unaware of the concept of bad smells in Gherkin scenarios. We can see
from the Figure that this value is between 15% and 45%. The Figure shows that the majority of
the bad smells in Gherkin scenarios are introduced by 15% to 45% Gherkin contributors within
the first day of their project commit. The following sub-sections discuss these bad smells in
detail.

8.3.1 Arrange-Act-Assert vs Given-When-Then

Although the AAA pattern is a widely accepted practice for structuring unit tests [Axelrod, 2018,
Chaczko et al., 2014, Ma’ayan, 2018], we did not find a single study that cross-examines the pat-
tern in detail. However, we came across several online blogs and online discussion threads¶,‖,∗∗

which discuss the pattern in more detail than the published research.
If we compare the concept of AAA pattern (in unit tests) with Given-When-Then (in BDD)

and vice versa, we see similarities. The notion and structure of the BDD Given-When-Then
specification template is a reflection of the AAA pattern [Khorikov, 2020a, Northwood, 2018,
Ritchie, 2016]. Figure 8.5 describes the AAA pattern and its equivalent in BDD specifications in
the form of Given-When-Then. The difference between them is the context i.e., the AAA pattern
is seen in the context of code and unit tests, whereas Given-When-Then in BDD is associated
with Gherkin specifications. According to Khorikov [2020b], the only difference between AAA
and Given-When-Then is that the latter is more readable to non-programmers and non-technical
people. In a recent study, Oliveira and Marczak [2018] have listed quality attributes of BDD
scenarios. According to the authors, mixing the step order makes the scenarios unreadable.
Mixing the Given-When-Then step order is equivalent to the violation of Arrange-Act-Assert
pattern (in unit testing) which creates a disarrangement and makes the code unreadable [Axelrod,
2018, Chaczko et al., 2014, Ma’ayan, 2018]. Figure 8.4 shows that approximately 27% of the

¶https://developers.mews.com/aaa-pattern-a-functional-approach/
‖https://freecontent.manning.com/making-better-unit-tests-part-1-the-aaa-

pattern/
∗∗https://java-design-patterns.com/patterns/arrange-act-assert/

https://developers.mews.com/aaa-pattern-a-functional-approach/
https://freecontent.manning.com/making-better-unit-tests-part-1-the-aaa-pattern/
https://freecontent.manning.com/making-better-unit-tests-part-1-the-aaa-pattern/
https://java-design-patterns.com/patterns/arrange-act-assert/

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 192

(a) Contributors who add or remove AAA pattern
violations

(b) Gherkin commits which added or removed
AAA pattern violations

Figure 8.6: Pie charts showing addition and removal of AAA pattern violations

total contributors who introduced AAA pattern violations, introduced them on the first day,
whereas approximately 16% of the contributors removed the AAA pattern violations within
their first day of Gherkin commit.

Next, we calculated the proportion of the Gherkin contributors who added or removed AAA
pattern violation bad smell, and the proportion of Gherkin commits in which this bad smell was
added or removed. Figure 8.6a is a pie chart showing the distribution of Gherkin contributors on
the basis of their role in adding or removing AAA pattern violations in Gherkin specifications.
The figure represents the project contributors who made Gherkin commits to the projects. The
figure shows that out of the total number of contributors who made Gherkin commits, 27.7%
contributors added AAA pattern violations, 8.4% removed AAA pattern violations, while 63.9%
neither removed nor added AAA pattern violations. Out of the total 36.1% (i.e., 27.7% adders
and 8.4% removers), 25.1% were the contributors who were both adders and removers. This
means that the remaining 11% is the sum of the contributors who either added AAA pattern
violations or removed them.

There was no wide distinction between the adders and removers due to the overlapping be-
tween them. The majority of the developers who added AAA pattern violations also removed
AAA pattern violations. Even though there was a major overlap between adders and the re-
movers, we still wanted to know the proportion of adders and removers separately. Therefore,
we plotted them as separate slices in the pie chart.

Figure 8.6b is a pie chart that illustrates the proportion of commits during which the AAA
pattern violations were added or removed. The figure shows that 6.9% commits were made
during which the AAA pattern violations were removed, AAA pattern violations were added
during 20.4% commits, while during the 64.5% of the total Gherkin commits neither the AAA
pattern violations were added nor removed.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 193

(a) Contributors who add or remove multiple asser-
tions

(b) Feature commits added removed multiple asser-
tions piechart

Figure 8.7: Pie charts showing addition and removal of multiple assertions

8.3.2 Multiple Assertions

Apart from the benefits of AAA pattern, the discussion on the online blogs††‡‡ revolves around
the use of single vs multiple asserts - per test Results from an empirical study by Palomba
et al. [2016] show that test smells frequently occur because of multiple assertions in a unit test.
The authors also found that test smells have a strong correlation with the size of the system.
Garousi and Küçük [2018] also list multiple assertions in a unit test as one of the main sources
of bad smells. According to Knight§§ multiple assertions within a Gherkin scenario often implies
violation of Cardinal Rule of BDD i.e. more than one thing is being done in a single scenario.

We calculated the repositories with scenarios with more than one assertion by subtracting
the total number of scenarios in a project from the total number of Then in a project. Figure 8.3
shows that 70% repositories had scenarios having more than one assertion, while 25% reposito-
ries did not have any scenarios with multiple assertions. There were 5% (i.e., 24) projects with
scenarios greater than the number of total assertions which means scenarios having no assertion

at all (i.e., incomplete scenarios). Figure 8.4 shows that 38% of the contributors who con-
tributed to multiple assertions bad smell, introduced multiple assertions within the first day of
their Gherkin commit. The figure shows that approximately 20% contributors removed multiple
assertions within the first day of their Gherkin commit.

Next, we calculated the proportion of the Gherkin contributors who added or removed mul-

tiple assertions bad smell, and the proportion of Gherkin commits in which this bad smell was
added or removed. Figure 8.7a is a pie chart of contributors who add or remove multiple as-

sertions bad smell. The figure shows that 40% contributors added multiple assertions to the

††for example: https://samueleresca.net/2017/08/maintainable-unit-tests/
‡‡https://jamescooke.info/arrange-act-assert-pattern-for-python-developers

.html
§§https://automationpanda.com/2018/01/31/good-Gherkin-scenario-titles/

https://samueleresca.net/2017/08/maintainable-unit-tests/
https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html
https://jamescooke.info/arrange-act-assert-pattern-for-python-developers.html

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 194

Feature: Check Email

Scenario: Read an email from inbox
Given The user has an account
And the user is logged in
When user selects an email to read
Then the email is displayed

Feature: Reset password

Scenario: User requests a a password reset
Given The user has an account
And the user is logged in
When the user submits a password reset request
Then the password is successfully reset

Figure 8.8: Example of Duplication

projects, 10.09% contributors removed multiple assertions and 49.1% Gherkin contributors nei-
ther added nor removed multiple assertions. Out of the total 50.09% (i.e., 40% adders and
10.09% removers), there were 33.1% overlapping contributors who performed both functions
i.e., addition and removal of multiple assertions to the scenarios.

Figure 8.7b is a pie chart showing the proportion of commits in which multiple assertion bad
smell was removed or added in the projects with multiple assertions bad smell. The figure shows
that multiple assertions were added in 38.5% of the Gherkin commits made in 233 projects.
During 14.8% commits, multiple assertions were removed, whereas no multiple assertions were
added or removed in the rest of the 32.6% Gherkin commits.

8.3.3 Duplication of Gherkin steps

Figure 8.8 illustrates an example for understanding step duplication. There are two consecutive
and identical Given steps across two scenarios in the figure. When two or more identical steps
start appearing together at various places in a Gherkin test suite, it indicates a potential for
implicit dependency between those steps. This dependency between the steps is similar to the
routine call coupling in programming where one function calls another function. The problem,
in this context, appears when a change in a clone is required. In case a change is required in
one place, all the other instances of the clones will have to be checked manually for potential
changes. In case of a large test suite manually checking every scenario in every feature file could
be nearly impossible.

In a study, Suan [2015] discussed the issue of duplicates in BDD scenarios. This research
work was focused on the detection and removal of textual duplication. The author discussed
the good and bad duplication in the BDD scenarios. The study was focused on the duplication
within a feature file whereas, the duplicates across the feature files were out of the scope of
the study. According to the author, the duplicates are “good” when the scenarios, in which

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 195

(a) Contributors who add or remove clones (b) Feature commits added removed clones piechart

Figure 8.9: Pie charts showing addition and removal of clones

the duplicates exist, have different pre-condition(s) (i.e., Given step(s)) and/or outcome(s) (i.e.,
Then step(s)). We, however, know that the steps that are common between all the scenarios in
a feature file should be put in the Background. Any duplicates other than the ones merged in
Background within a feature file are unavoidable i.e., when the duplicate steps are not common
to “all” the scenarios in a feature file. Only because something is unavoidable does not make
it “good” or acceptable. Moreover, the argument provided by the author becomes invalid when
considering the duplicates across feature files. In fact, there are no good or bad duplicates. All
duplication is bad when it comes to making a change to duplicate steps manually. The issue of
duplication in Gherkin specifications is also recognised by Binamungu [2020]. This research
work was focused on the detection of semantic duplicates instead of textual matching.

Each occurrence of two more consecutive and identical steps was counted as one duplicate

or one clone during our calculation. Figure 8.3 shows that 69% of the open-source Gherkin
projects on GitHub have at least one clone in their test suite. Figure 8.4 shows that 40% of the
Gherkin contributors introduced the duplicate steps within the first day of their Gherkin commit,
whereas 23% removed the duplicate steps on the first day.

Next, we calculated the proportion of the Gherkin contributors who added or removed dupli-

cate steps bad smell, and the proportion of Gherkin commits in which this bad smell was added
or removed. Figure 8.9a shows that 29.4% of the contributors who made Gherkin commits in
the projects with duplicates (i.e., clones), added duplicate steps, whereas 11.7% removed dupli-
cates. Out of the total adders and removers i.e., approximately 41%, all of the contributors were
adders and removers. This means there were no contributors who only added duplicate steps or
only removed duplicate steps.

We plotted a pie chart to differentiate between the commits that added the duplicate steps
bad smells and the commits that removed the bad smells. Figure 8.9b shows that 39.2% Gherkin
commits contributed to the duplicate steps bad smell, whereas 14.5% commits were made in

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 196

Scenario: Number of books by author
Given I have a book in the store called "name"
When I search for books by "author"
Then I find "number" books

Figure 8.10: Example of step parameters

Scenario: translate text
Given a sample text loaded into the frobulator

"""
Hallo, das ist ein Satz auf Deutsch.
"""

When Bob presses translate
Then the text in the frobulator is translated into English as

"""
Hello this is a phrase in German.
"""

Figure 8.11: Example of a step data (text)

which duplicate steps were removed. During the rest of the 34.7% Gherkin commits no duplicate
steps were added or removed.

8.3.4 Lazy Steps Data Table:

The basis of the bad smell discussed in this section is the overuse of a capability in Gherkin
called “paramterised BDD steps”. When using this capability, parameters are specified in
Gherkin steps using double (") or single (’) quotes. For example, Figure 8.10 shows an ex-
ample of a scenario through which a person can search the number of available copies in a store
of a book written by an author. The above scenario can become cluttered or suffer duplication
when multiple data values are added to a step. For this purpose, Gherkin provides Doc strings

and Data Tables. Doc strings or Data Tables are used when we want to pass more data to a step
than what can fit on a single line.

Figure 8.11 is an example of Doc strings which describes a scenario with step argument
where a block of text is attached to a Given step. The Given step in the figure takes a block
of text as an input and passes it as an attribute to a step function. Figure 8.12 describes a step
function for the scenario described in Figure 8.11. The block of text is passed as an attribute
into the context variable in the step function in the figure for manipulation.

Data tables are used for passing a list of values to a step definition (i.e., step implementation
code). A table of data with some values in rows and columns is passed as a variable to a step
function for manipulation. Figure 8.13 is an example of a scenario with a data table attached to
one of its steps. The scenario in the figure counts the number of people in various departments.
A data table is attached to the Given step. This data table will be passed to a step function
exactly like the example in Figure 8.12.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 197

@given(’a sample text loaded into the frobulator’)
def step_impl(context):

.........

.........

.........

Figure 8.12: Step function for scenario in Figure 8.11

Scenario: Count people in departments
Given a set of specific users

name	department
Barry	Sales
Bob	New Items
Peter	New Items

And Sara is an admin
When Sara counts the number of people in each department
Then Sara will find two people in "New Items"
And Sara will find one person in "Sales"

Figure 8.13: Example of a step data table

Implementation for passing a data table is more complicated than passing a single value as a
parameter in BDD. Therefore, the use of a step argument is inappropriate if the data table con-
sists of a single line. In case of a single line in a step argument table, the table must be removed
and data should be written as part of the relevant step phrase i.e., inline within a sentence. Since
we did not find any literature on lazy steps bad smell in Gherkin, this phenomenon could be
better understood by borrowing the concept behind Lazy Class bad smell.

According to Fowler [2018], a Lazy Class represents a class that is under-used. Such classes
could impede development by adding unnecessary complexity to the code. Lazy class is one of
the code smells which cause clutter in the code. A lazy class must be removed and merged with
another class. The same concept applies to lazy steps in Gherkin specifications. Lazy steps in
Gherkin mean that data which could be written as part of a step is being attached to the step as
an argument instead. Such steps must be refactored and rewritten.

Refactoring the scenarios is the same as refactoring the code. Refactoring improves main-
tainability [Kim et al., 2012]. In a recently published study, Irshad et al. [2022] emphasise on
importance of refactoring of BDD specifications. According to Borg and Kropp [2011], changes
in specifications are inevitable because of the accommodation of frequent changes in agile de-
velopment.

Each occurrence of a single row in a data table attached to a step as a step argument is
counted as one lazy step. Figure 8.3 shows that 29% of the open-source Gherkin projects have
at least one occurrence where a scenario step argument should be refactored into a scenario step.
Figure 8.4 shows that 29% of the contributors who contributed to the lazy steps bad smell, added
lazy steps within the first day, whereas 17% removed the lazy steps bad smell.

Next, we calculated the proportion of the Gherkin contributors who added or removed lazy

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 198

(a) Contributors who add or remove lazy step ex-
amples piechart

(b) Feature commits added removed lazy step ex-
amples piechart

Figure 8.14: Pie charts showing addition and removal of lazy steps

steps bad smell, and the proportion of Gherkin commits in which this bad smell was added or
removed. Figure 8.14a is a pie chart that shows that 27.4% contributors added lazy steps to
the scenarios in open-source Gherkin projects, whereas 13% contributors removed lazy steps.
There were 20.7% contributors who performed both additions and removals of lazy steps. Ma-
jority of the contributors i.e., 59.% neither added nor removed the lazy steps. Figure 8.14b is
also a pie chart which shows that 18.8% Gherkin commits contributed to the addition of lazy
steps, whereas during 7.6% Gherkin commits, lazy steps were removed or refactored. During
a significant percentage of Gherkin commits (i.e., 65%), the lazy steps bad smell was neither
added nor removed.

8.3.5 Lazy Scenario Outline

According to the documentation provided for Cucumber¶¶, the Scenario Outline keyword can
be used for running the “same scenario multiple times with different combinations of values.”

Figure 8.15 is a simple example of a Scenario Outline where two scenarios are collapsed into
one Scenario Outline. Each row in the table refers to a single scenario which means that the
Scenario Outline will run two times. Every time the Scenario Outline executes, the references
are replaced with the data from the row that is being run.

Knowing when to use Scenario Outline is as important as to know when not to use it. Sce-
nario Outlines are used when there are two or more identical scenarios (with different data) in
a feature file but it should not be used in case of a single scenario. A single row in a scenario
outline is an indication that the scenario outline is under-used. This problem is identical to the
problem behind Lazy Class bad smell explained in the previous section. Any Scenario Outline

with a single row is an indication of a need for refactoring. Such Scenario Outline must be

¶¶https://cucumber.io/docs/gherkin/reference/

https://cucumber.io/docs/gherkin/reference/

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 199

Scenario Outline: eating
Given there are <start> cucumbers
When I eat <eat> cucumbers
Then I should have <left> cucumbers

Examples:
start	eat	left
12	5	7
20	5	15

Figure 8.15: Example of a scenario outline

(a) Contributors who add or remove lazy outlines
tables piechart

(b) Feature commits added removed lazy outlines
table piechart

Figure 8.16: Pie charts showing addition and removal of lazy outline tables

refactored and replaced by a scenario with inline data. A Scenario Outline with a single row
means that it is a single scenario therefore it should be written as such.

Each occurrence of a scenario outline with a single row in the table was counted as one lazy

scenario outline bad smell. Figure 8.3 shows that 12% of the open-source Gherkin projects
have at least one occurrence of lazy outline. Figure 8.4 shows that from the contributors who
introduced lazy Scenario Outline tables into the Gherkin projects, 15% introduced lazy Scenario

Outline tables bad smell within the first day, whereas 25% of the contributors removed lazy
Scenario Outline tables within the first day of their Gherkin commit.

Next, we calculated the proportion of the Gherkin contributors who added or removed lazy

scenario outline bad smell, and the proportion of Gherkin commits in which this bad smell was
added or removed. Figure 8.16a is a pie chart showing the proportion of Gherkin contribu-
tors who added or removed lazy scenario outlines. The figure shows that 16.9% of the total
Gherkin contributors added lazy Scenario Outline tables to open-source projects’ Gherkin spec-
ifications, whereas 11.7% contributors removed lazy Scenario Outline tables. Out of the 28.6%

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 200

(i.e., 16.9% adders and 11.7% removers), there were 20.6% contributors who performed both
i.e., additions and removals of Scenario Outline tables. A significant percentage i.e., 71.4% of
the total Gherkin contributors neither added nor removed lazy Scenario Outline tables. Figure
8.16b is a pie chart showing the proportion of Gherkin commits in which lazy outlines were
added or removed. The figure shows that 7.2% commits out of the total Gherkin commits in the
open-source projects contributed to the addition of lazy Scenario Outline bad smell, whereas
3.1%. commits were made during which this bad smell was removed. However, an overwhelm-
ing majority (84.5%) consisted of commits during which neither the lazy scenario outline bad
smell was added nor removed.

8.4 Relationship between Gherkin Specifications Bad Smells
and Other Gherkin Artefacts

In order to understand the potential relationship between the selected bad smells in Gherkin
specifications in our dataset and other Gherkin artefacts in our dataset (e.g., size of scenarios),
we plotted several sets of graphs. These graphs include: comparison histogram of scenario
sizes in the projects with and without a particular bad smell, time series of bad smell density,
comparison histogram of life in the project of Gherkin contributors who contributed or did not
contribute towards a bad smell, and scatter chart of bad smell density versus the number of
contributors.

8.4.1 Relationship with the size of scenarios

Figure 8.17 represents a comparison between the length of scenarios in the projects with and
without bad smells. The figure consists of five sub-figures. Each sub-figure contains two over-
lapping histograms. The X-axis shows the average size of scenarios and Y-axis shows the per-
centage of projects. One histogram represents scenario sizes in projects with one of the five
bad smells discussed in this chapter. The second histogram represents average scenario sizes in
projects which do not contain the respective bad smell. These two histograms in each sub-figure
compare the average sizes of scenarios in projects with and without each bad smell discussed in
this chapter. Visually, scenarios in the projects with bad smells seem to be slightly longer than
scenarios in the projects without the respective bad smells.

To confirm this observation we calculated the median scenario sizes for both histograms in
each sub-figure. Figure 8.17a shows that the median number of steps in a typical scenario in
projects with AAA pattern violations in our dataset was 6, whereas the median number of steps
in the projects with no AAA violations was 4 (rounded to the closest integer). Similarly, the
number of steps in a typical scenario in projects with multiple assertions in Figure 8.17b was
5, whereas in the projects with no multiple assertions, the median number of scenario steps

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 201

(a) With (n=179, median=6.1, blue) and without
(n=313, median=3.5, orange) AAA Violations.

(b) With (n=347, median=4.8, blue) and without
(n=145, median=3.0, orange) Multiple assertions.

(c) With (n=336, median=4.6, blue) and without
(n=156, median=3.0, orange) Clones.

(d) With (n=142, median=4.9, blue) and without
(n=350, median=3.8, orange) Lazy Steps.

(e) With (n=57, median=4.2, blue) and without
(n=435, median=4.0, orange) Lazy outlines.

Figure 8.17: Histograms of scenario sizes for repositories with and without selected smells

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 202

was 3. Figure 8.17c shows that the median number of steps in a typical scenario in projects
with duplicates is 5, whereas in the projects without duplicates, this number is 3. Figure 8.17d
shows that the median number of steps in a typical scenario in projects with lazy steps bad
smell is 5, whereas in the projects with no lazy steps bad smell, the median number of scenario
steps is 4. Figure 8.17e shows that in the projects with and without lazy outline bad smell, the
number of median steps in a typical scenario is roughly equal i.e., 4. These observations imply
that projects with bad smells have slightly longer scenarios than projects with no bad smells.
Unfortunately, using the data we have, we are unable to draw any conclusion on whether or not

a longer scenario size causes these bad smells.
Next, we wanted to know if longer projects have a greater number of bad smells. So, a set

of scatter charts was plotted to understand the density of bad smells (i.e., average bad smell
count per scenario) over the lifetime of a typical Gherkin project. Figure 8.18 is a set of sub-
figures that show a time series of an average number of bad smells. Each of these sub-figures
was plotted using the projects with a bad smell and a reasonable commit history. By reasonable

commit history we mean the repositories which had a minimum of 100 commits, minimum life
duration of 100 days, and project starting in or after January 2005 (i.e., after the conception of
BDD).

Figure 8.18a was plotted using 116 projects with AAA pattern violation bad smell that also
had a reasonable commit history. Similarly, Figures 8.18b, 8.18c, and 8.18d were plotted using
174 projects for multiple assertions, 172 projects for duplicates (or clones), and 82 projects for
lazy steps respectively. Figure 8.18e was plotted using 38 projects with lazy outlines that also
had a reasonable commit history. The shapes of the sub-figures do not show any correlation
between the average count of occurrence of bad smell in a typical scenario and the age of the
projects. We see a periodic cycle of increase and decrease in the graphs but if we look at the
Y-axis the increase and decrease seem to be negligible (i.e., in fractions).

8.4.2 Relationship with contributors

It was observed during the study documented in Chapter 6 that bad smells are associated with
factors associated with project contributors. These factors could include: prior experience in
BDD, specification writing styles, background knowledge of BDD etc. First, we wanted to
understand if the number of contributors involved in a project has an impact on the bad smells
discussed in this chapter. To understand this, we plotted scatter charts of the total number of bad
smells in a project against the number of contributors in a project using Figure 8.19.

Figure 8.19 is a set of sub-figures each of which is a scatter chart. The X-axis shows the
number of contributors and the Y-axis shows the number of bad smells. Each dot on these
scatter charts represents the total count of a bad smell in a project versus the total number of
contributors in a project. However, the data in the graphs is widely dispersed and the shape of the
graphs shows no relationship between the number of bad smells and the number of contributors

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 203

(a) AAA Violations, 116 repositories (b) Multiple assertions, 174 repositories

(c) Clones, 172 repositories (d) Lazy Steps, 82 repositories

(e) Lazy outlines, 38 repositories

Figure 8.18: Time series of project smell density

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 204

(a) AAA Violations, 493 repositories (b) Multiple assertions, 493 repositories

(c) Clones, 493 repositories (d) Lazy Steps, 493 repositories

(e) Lazy outlines, 493 repositories

Figure 8.19: Scatter plots of project total smell counts against project gherkin contributor counts

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 205

in a project. Although the mean line shows some minor reduction, this is an arithmetic mean
and the overall data is scattered so it does not show any correlation. It means that the number of
contributors in a project does not impact the bad smells such as AAA pattern violations, Multiple
assertions, Clones, Lazy steps, and Lazy outlines.

Second, we wanted to see if there is a difference between the life (i.e., time in the project)
of the contributors who introduce bad smells and the life (i.e., time in the project) of the con-
tributors who do not introduce bad smells. Figure 8.20 is a histogram of responsibilities of the
contributors who introduce bad smells versus the contributors who do not introduce bad smells.
The sub-figures represent the percentage of the contributors involved over the lifetime of the
project(s). The only noticeable difference in the average is in the Figure 8.20d. To justify this,
we can only speculate that it is possible that the contributors learned step argument capability in
Gherkin sometime later during the project and started using it which also led to the introduction
of lazy step data tables bad smell at a relatively later stage in the project. The other figures show
no difference between the involvement of the contributors who introduce bad smells and the
involvement of the contributors who do not introduce smells.

Third, to see if the duration of contributors’ involvement has any impact on the introduction
of bad smells, we drew a scatter chart of the bad smells introduced by contributors versus the
age of contributors in the project(s) using Figure 8.21. The Y-axis in the figures shows the total
count of bad smells and the X-axis shows the number of days passed since the first feature was
introduced in a project. Each dot in each scatter chart represents the total number of bad smells
introduced by a contributor and the number of days that the contributor was active in a project.
The data appears to be widely dispersed which means that the bad smells have no relationship
with the duration of involvement of the contributors in the project(s). The concentration in the
scatter plots only shows that more authors are involved at the start of a project.

8.5 Threats to Validity

This section discusses the threats to the validity of this study. In this section, we have discussed
three types of validity threats i.e., construct, reliability, and external validity.

Construct validity threat

A potential construct validity threat for this study could be an incorrect definition of a bad smell

and the context of this study. If “what constitutes a bad smell” is not described appropriately,
many of the bad smells that do not fit in the description may be ignored. Also, since the literature
on bad smells in Gherkin scenarios was unavailable and a list of potential candidates for bad
smells in Gherkin scenarios was adopted from the literature on bad smells in unit tests, it is
possible that some of the potential bad smells specific to Gherkin scenarios were not discovered.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 206

0 1000 2000 3000 4000
Days in project since first feature commit

0

2

4

6

8

10

%
au

th
or

do introduce

don’t introduce

(a) Authors who do (blue, n=570) and don’t (or-
ange, n=904) make AAA violations.

0 1000 2000 3000 4000
Days in project since first feature commit

0

2

4

6

8

10

%
au

th
or

do introduce

don’t introduce

(b) Authors who do (blue, n=1135) and don’t (or-
ange, n=565) make Multiple assertions.

0 1000 2000 3000 4000
Days in project since first feature commit

0

2

4

6

8

10

%
au

th
or

do introduce

don’t introduce

(c) Authors who do (blue, n=1143) and don’t (or-
ange, n=608) make Clones.

0 1000 2000 3000 4000
Days in project since first feature commit

0

2

4

6

8

10

%
au

th
or

do introduce

don’t introduce

(d) Authors who do (blue, n=417) and don’t (or-
ange, n=805) introduce lazy step tables.

0 1000 2000 3000 4000
Days in project since first feature commit

0.0

2.5

5.0

7.5

10.0

12.5

%
au

th
or

do introduce

don’t introduce

(e) Authors who do (blue, n=75) and don’t (or-
ange, n=348) introduce lazy outlines table.

Figure 8.20: Histogram of time working on a repository for commit authors who do and do not
make changes to selected smells for 274 repositories with known history

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 207

(a) Scatter plot of total AAA Violations introduced
versus author days in project.

(b) Scatter plot of total Multiple assertions intro-
duced versus author days in project.

(c) Scatter plot of total Clones introduced versus
author days in project.

(d) Scatter plot of total Lazy Steps introduced ver-
sus author days in project.

(e) Scatter plot of total Lazy outlines introduced
versus author days in project.

Figure 8.21: Scatter plots of total smells introduced versus author days in a project for 201
projects

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 208

At the start of this study, the term bad smell was defined in the context of this study clearly.
Then after not being able to find literature on bad smells in Gherkin, bad smells in unit tests
were analysed for their applicability in the context of Gherkin. Finding an exhaustive list of bad
smells and then deciding which bad smell to investigate may also be a construct validity threats
for this study. Various research studies were found which discussed some bad smells in the
context of unit tests. The number and nature of bad smells discussed in each study was different
from each other. It was important to have an exhaustive list of bad smells in unit tests. The next
step was to decide which bad smell to investigate. It was important to understand the context
and applicability of each bad smell in the given context.

Reliability Validity Threat

The errors or inconsistencies in collecting data for constructing the graphs can threaten the
reliability of this study. The ambiguity in the criteria for identifying bad smells can lead to
inconsistent application of the criteria. The errors in the collection and analysis of Gherkin files
can lead to the loss of important data. The identification and interpretation of bad smells can
also introduce errors in the results and compromise the reliability of the study.

External Validity Threat:

The findings of the study may not be applicable to other programming languages, as Gherkin is
specific to Behaviour Driven Development (BDD) and may not represent the broader software
development community. Also, we conducted this study using only one platform i.e., GitHub.
We did not conduct further investigation on another platform such as GitLab.

Addressing Threats to Validity

We did not find an exhaustive list of bad smells in unit tests in peer-reviewed literature, so we
searched grey literature. We found an exhaustive list of bad smells in unit tests in grey literature.
Each of the bad smells in the list was carefully analysed for its applicability in the context. A
total of 11 bad smells were selected from a list of 182 bad smells. Only five of the 11 bad smells
were selected for further investigation because the scope of six of the bad smells was either
too broad or would require work which was not possible within the limited time for this Ph.D
research. A robust data collection process that minimises the chances of data loss or missing data
was implemented through the Python tool. This shows that we followed a systematic process
for defining bad smells and then deciding which bad smells to investigate.

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 209

8.6 Summary

In computer science, the structural inflexibilities in software artefacts are referred to as bad

smells. They can emerge in various software artefacts such as code, design, architecture, and
in this case, specifications. The bad smells do not stop the software system from executing but
make the evolution of the software system very difficult. Bad smells are one of the indications
of the need for refactoring.

This chapter discusses bad smells in Gherkin specifications. Five bad smells were selected
for the analysis on the basis of applicability and feasibility (as explained in Section 8.2.2). These
bad smells were:

(i). violation of AAA pattern: (in this context) means mixing of Given-When-Then step
order. According to Oliveira and Marczak [2018] means Given-When-Then step order
makes the scenarios unreadable. Violation of the AAA pattern could potentially impact
the readability and maintainability of Gherkin specifications.

(ii). multiple assertions: or assertion roulette (in this context) means having more than one
than one assertion in a Gherkin scenario. Multiple assertions in a scenario could mask
bugs because in case of a failure of an assert, it is impossible to know the pass or fail
status of the subsequent asserts [Tufano et al., 2016].

(iii). duplication of steps: (in this context) means the repetition of two or more consecutive
steps across scenarios. Such steps are difficult to maintain. If a change occurs in such
steps, it has to be reflected in its clones as well. Doing this task manually involves the
risk of missing a few duplicates where a particular change was supposed to be reflected as
well. Duplicate steps in Gherkin impact the maintainability of Gherkin files.

Dealing with duplicates is more difficult when the duplicates occur across feature files.
One potential way of addressing this issue is to include a “referencing” feature (similar to
the concept of referencing in programming) in Gherkin tools. If implemented, through this
functionality, each set of duplicated steps may be written in a separate file and referenced
where required. This could minimise the need for making changes at multiple places when
such a need arises.

(iv). lazy steps: (in this context) means overuse of step data. Single line data tables in Gherkin
steps should be refactored and the data should be put within the respective steps. Having
unnecessary tables amounts to overuse of the step data capability and is similar to the lazy
class bad smell.

(v). lazy outlines: means overuse of scenario outlines. This refers to scenario outlines with a
single row. According to the documentation on Cucumber, scenario outline “...steps are

CHAPTER 8. AN ANALYSIS OF BAD SMELLS IN GHERKIN SPECIFICATION 210

interpreted as a template which is never directly run” [CucumberStudio, 2019a]. Overuse
of scenario outlines leads to slow Cucumber tests.

Figure 8.3 shows that a significant proportion of Gherkin projects contain these bad smells.
Further analysis showed that the bad smells are not correlated with the size or duration of the
project, the size of scenarios, the number of contributors in the project, or the duration of contrib-
utors’ involvement in the project. Also, there is no difference between the duration of involve-
ment of the contributors who introduce bad smells in the project and the duration of involvement
of the contributors who do not introduce bad smells in the project.

We made two observations during this study. First, we learned that there is a lack of re-
search on bad smells in Gherkin specifications. This observation was made while searching for
literature to back our arguments in the sections explaining each bad smell. Second, we learned
that Gherkin provides a general Given-When-Then format for expressing the steps but it does
not put any constraints on how these steps should be used. In other words, Gherkin provides
a lot of freedom as a result of which it is easy for the developers to write specifications that
are functionally correct but structurally inflexible i.e., contain bad smells. Also, the research
community has not established quality criteria for writing Gherkin specifications. Oliveira et al.
[2019] proposed a question-based checklist to assess the quality of BDD specifications. How-
ever, the quality criteria described by Oliveira et al. [2019] is subjective and requires experience
and understanding of the person writing Gherkin. For example, Not too many details is hard to
determine and requires judgement of the person writing Gherkin scenarios.

We believe the existence of bad smells on Gherkin specifications is dependent upon the
contributors’ way of writing Gherkin specifications. Out of the contributors who added bad
smells to the projects, a significant percentage of contributors added the bad smells within the
first day of their Gherkin commit.

Chapter 9

Conclusions

This thesis proposed that the practice of Behaviour Driven Development, its associated artefacts,
and the intrinsic nature of the associated language, Gherkin may incur significant additional
overhead for software engineers in terms of technical debt and ongoing maintenance in the
real-world software engineering environment. On the basis of the analysis of results from an
exploratory case study on the use of agile methods in large-scale safety-critical projects, BDD
was explored for its potential for application in requirements management. An exploratory case
study involving action research and semi-structured interviews, and an experiment, presented
in Chapters 6 - 8, was conducted to understand and evaluate Behaviour Driven Development
(BDD). The purpose of the investigation was to explore the challenges associated with BDD so
that this research could serve as a guide for people planning to employ BDD.

The next three sections of this chapter address the research questions presented in Chapter 1.
Section 9.4 discusses the research contributions made during this Ph.D. Section 9.5 explains the
interconnection of the case studies and the experiment presented in this thesis. The section also
explains how the challenges associated with BDD were discovered which could provide guid-
ance to the people intending to employ BDD. Section 9.6 examines the scope and the validity of
this research followed by a discussion on the limitations of this research in Section 9.7. Section
9.8 discusses the research implications, Section 9.9 presents areas for future work, and Section
9.10 concludes the chapter.

9.1 Thesis Research Question 1

This Ph.D research started with studying application of agile methods for development of large-
scale safety-critical systems. Studying relevant literature revealed the perception that agile, in its
traditional form, is unsuitable for development of safety critical systems. We also learned that
there is a lack of empirical research in the said field which made us want to conduct an empirical
study. The focus of the empirical study was on exploring the challenges of using an agile method
in the context of safety-critical systems development. The answer to the first research question,

211

CHAPTER 9. CONCLUSIONS 212

“What are the challenges of adopting agile methods in large-scale software development ac-
tivities, particularly in regulated environments?”

can be derived from the exploratory case study presented in Chapter 4. This study reports the
results of a series of interviews and workshops in a large avionics company who were experi-
menting with the incorporation of agile software development into their software development
process. The research yielded 13 challenges faced by different software teams interviewed dur-
ing the study concerning the application of agile software development for safety-critical sys-
tems. The challenges can be grouped into three categories:

• the influence of wider Waterfall like systems engineering processes on the practice of agile
software development within a single team;

• the necessarily complex interactions with external stakeholders, including multiple cus-
tomer roles; and

• the demand for documentation to meet required regulatory standards.

We also found that cultural resistance within the company was a cross-cutting concern, lim-
iting the use of elements of agile software development.

The semi-structured interviews undertaken within the exploratory study revealed that agile in
its traditional form is unsuitable for use in large-scale safety-critical development context. The
requirements (such as quality assurance requirements) mandated by the regulatory standards
and the complex dynamics of large-scale systems limit the freedom offered by agile. An agile
process needs to be tailored according to the organisational and project-related needs.

A number of case studies and experience reports in the academic literature have reported
on the adoption of agile in diverse domains, including railways [Jonsson et al., 2012], medical
science [McHugh et al., 2013] and most relevant to the present research, avionics [Wils et al.,
2006, Chenu, 2012]. Many of these studies conclude that agile software development requires
adaptation for application to safety-critical systems. For example, Notander et al. [2013] con-
clude that agile software development, while not incompatible with typical safety-critical stan-
dards, needs to be modified for use on safety-critical system projects. The practice of adapting
and customising methods and practices to suit local needs has been reported for other software
domains [Fitzgerald et al., 2006, Wang and Wagner, 2016b, Conboy, 2009]. However, there
has been very little reported in the literature on the experience of practitioners who have applied
necessary adaptations to agile methods or practices in the context of safety-critical system devel-
opment. Therefore there are many open questions about the selection of particular adaptations
and their efficacy in different contexts.

During the study in Chapter 4, we learned that requirements management in large-scale
safety-critical systems is a challenge. Several researchers agree with this conclusion and identify

CHAPTER 9. CONCLUSIONS 213

requirements management as one of the challenges of agile requirements engineering in large-
scale development environment [Inayat et al., 2015a, Vilela et al., 2017, Steghöfer et al., 2019,
Uludag et al., 2018, Dikert et al., 2016, Kalenda et al., 2018, Kasauli et al., 2018b]. The level
of coordination and communication required for an agile process to be successful is limited
in a large-scale environment involving multiple teams, concurrent development of hardware
and software, interdependence of hardware and software components, unsynchronised pace of
development of different project components etc. The overall complex dynamics of large-scale
systems have an adverse effect on agile management of a project’s requirements.

Three out of the six themes in the empirical study on the challenges of agile requirements
engineering in large-scale systems by Kasauli et al. [2021] focus on the challenges related to
requirements management, shared understanding, and communication. Requirements manage-
ment also appears as one of the challenges of agile requirements engineering in the large-scale
context in two different Systematic Literature Reviews [Dikert et al., 2016, Inayat et al., 2015b].
A case study [Paasivaara et al., 2018] conducted at Ericsson found the challenges associated
with requirements management among the top most challenges in implementing the use of ag-
ile in large-scale software development. While recognising the increasing popularity of agile,
Venkatesh and Rakhra [2020] state that “the problems faced by large-scale organisations when

they implement agile methods are yet to be solved”.
We believe that the Agile Manifesto needs to be revisited for its incorporation in the con-

text of safety-critical systems and for adding clarity to the agile principles. Agile principles are
often misinterpreted [Hohl et al., 2018] making agile look like an ad hoc process that discour-
ages documentation and detailed analysis. Several researchers have argued that the agile princi-
ples conflict with the philosophy behind regulatory standards [Coe and Kulick, 2013, Chapman,
2016, Glas and Ziemer, 2009, Ramesh et al., 2010, Turk et al., 2005]. For example: the way
people interpret agile principle working software over comprehensive documentation seems like
documentation is discouraged in agile [Ramesh et al., 2010, Turk et al., 2005, Coe and Kulick,
2013].

In reality, agile principles promote quick development and accommodation of change. Agile
is not against documentation [Ozkan, 2019]. The focus of agile principles is on avoiding waste
which means removing the production of artefacts without which the system is still usable. If
the system is unusable without performing a certain activity or production of a certain artefact,
the activity or the artefact is of value and has to be made part of the project.

Ozkan [2019] argue that the need of possible updates to the agile manifesto in order to sup-
port the agile development of modern-day software should be investigated. Wils et al. [2006]
report the findings of their study conducted at Barco (a major Belgian avionics equipment sup-
plier). The authors of the study performed an analysis of the agile principles and did not find
conflicts between agile principles and the avionics regulatory standard DO178B. However, they
[Wils et al., 2006] re-interpreted three of the agile principles. (i) Value customer satisfaction: In

CHAPTER 9. CONCLUSIONS 214

avionics, value lies in the suitability of software for flight operations. Correctness in behaviour
and functionality is of the highest value. (ii) face-to-face communication: A lot of information
is lost during informal face-to-face communication. Since the communication is a part of the
project, it should be logged and documented. (iii) Working software is a primary measure of
success: In regulated systems, certification is a part of the project and without it, a project is
not considered complete. We believe that agile manifesto is widely misunderstood. For exam-
ple, according to many researchers [Jyothi and Rao, 2011, Sharma et al., 2012, DŽANIĆ et al.,
2022], agile promotes minimum documentation. Stettina and Heijstek [2011] conducted a sur-
vey and obtained responses from 79 agile practitioners. According to one of their findings, “...

documentation is rather seen as a burden”. Therefore it is imperative that agile manifesto is
revisited to add clarity that agile is against waste and unnecessary work and not documentation.

9.2 Thesis Research Question 2

Our first empirical study with a large avionics company (discussed in Chapter 4) revealed that re-
quirements management in large-scale safety-critical systems is a concern. To further our inves-
tigation we decided to explore the use of an agile method called Behaviour Driven Development
(BDD) which is primarily based upon the idea of requirements communication, understanding,
and management. During the literature review on BDD (in Chapter 5) we learned that there is
a lack of empirical research on BDD. Especially, literature on the challenges of BDD is almost
non-existent. This motivated us to conduct an empirical study to explore challenges of BDD.
The answer to the second research question

“What are the challenges of adopting Behaviour Driven Development (BDD) for the purposes
of requirements engineering and acceptance testing in the early phases of a software project?”

is derived from Chapter 6. The chapter reports the findings of action research and post hoc
semi-structured interviews in a large avionics company where a software development team
experimented with the use of Behaviour Driven Development in the development of a project.
The duration of the study was spread over a period of 16 months.

The project discussed in the study was a sub-part of a larger project. The larger project’s
team consisted of six members out of which three members worked on the sub-part. The sub-
part (referred to as the project) was developed using BDD. The three team members working
on the project included a product owner, a scrum master, and a developer. The team members
had varying levels of experience from the developer being a fresh graduate to the product owner
with over seven years of development experience.

The initial project requirements were a set of tabular use cases documented by the prod-
uct owner. With the incorporation of BDD into the project, the use cases were converted into

CHAPTER 9. CONCLUSIONS 215

Gherkin features. During the conversion of the use cases into Gherkin features and transcription
of the respective scenarios for them, it was discovered that those use cases were wrong and did
not express the users’ intention. This discovery was made when scenarios were simulated with
the actual data.

This shows that use of BDD could facilitate the validation and evaluation of completeness
of requirements. Scenario writing involves writing an end to end example of the execution of a
feature. We observed that simulation of scenarios with actual data helps in looking at a feature
in a real life context which also helps in evaluating the completeness of a feature.

Since the initial set of requirements did not express the users’ intention, they were discarded
and a new set of requirements were elicited in the form of BDD/Gherkin features in a user story
workshop. The participants of the user story workshop were product owner, scrum master and
two members from the larger project team. It should be noted that the developer was not part
of this user story workshop because he joined the organisation after the elicitation of the set of
features in the user story workshop.

The action research and interviews undertaken during the study revealed that the use of BDD
encourages communication between team members. As mentioned earlier, scenario writing
involves simulating the execution of features with actual data. The team members acknowledged
that looking at the scenarios in real life context initiated discussions between them.

The research study (discussed in Chapter 6) yielded eight challenges of applying BDD. The
challenges discussed in the study were discovered during the transcription of requirements as
Gherkin features and the overall application of BDD during a single commercial project. These
challenges which resulted from observations during a real-life industrial project can be grouped
into three categories:

• lack of tool support for detection of bad smells in Gherkin specifications;

• limitations of Gherkin; and

• difficulties experienced by the project team in using BDD as a method.

We have discussed in Chapter 6 that the Gherkin language provides a lot of freedom due to
its natural language structure. Therefore, it is very easy for the developers to write specifications
that are structurally inflexible. We refer to such structural inflexibilities in Gherkin specifications
as bad smells. The existence of bad smells in Gherkin specifications could lead to maintenance
issues in specifications.

During the study in Chapter 6, we detected a violation of Given-When-Then order of steps
and multiple assertions. These bad smells are referred to as AAA pattern violation and assertion
roulette respectively, in the context of unit tests. Oliveira et al. [2019] considered preserving
the order of Given-When-Then as one of the necessary criteria for the quality of BDD scenar-
ios. According to the authors, violation of Given-When-Then step order makes the scenarios

CHAPTER 9. CONCLUSIONS 216

unreadable. Whereas according to the documentation∗ of a Gherkin unified functional testing
tool, assertion roulette is a violation of Cardinal Rule of BDD i.e., one scenario should cover
exactly one single, independent behaviour.

To the best of our knowledge, there are no readily available tools that could detect bad smells
in Gherkin specifications. The closest work we found is a tool called GherkinLint† on GitHub.
The tool is implemented in JavaScript, and performs an automated analysis on Gherkin files
using a number of default rules. However, all of these rules target stylistic errors in Gherkin.
For example, the tool flags an error if a Gherkin file has no scenarios or if a feature in a Gherkin
file has no name. The tool does not detect bad smells. The lack of readily available tools for
detecting bad smells such as AAA pattern violation and assertion roulette makes it difficult to
automatically detect bad smells in Gherkin. This means that the detection of bad smells requires
manual intervention at the moment. The tool we developed helped us in extracting the meta-data
and determine the presence of bad smells discussed in Section 8.2.2.

The limitations of Gherkin highlighted the capabilities that are presently missing in Gherkin
and potentially needed in the future. To the best of our knowledge, there is no study that primar-
ily focuses on the technical limitations of Gherkin. However, the study by Irshad et al. [2021]
discusses a limitation of Gherkin among other challenges of BDD identified in their study. The
authors conducted six workshop sessions with BDD practitioners to understand the benefits and
challenges of BDD. The authors identified the lack of “versioning control of behaviours” as one
of the challenges of using BDD. According to one of the findings of the study, it is difficult
to keep track of the changes to the behaviours when multiple stakeholders are involved in the
project. However, the study does not discuss this issue in detail and the authors [Irshad et al.,
2021] suggest the use of versioning control softwares to handle this issue.

This shows that the use of BDD involves requirements traceability issues which also coin-
cides with one of our findings in Section 6.5. Our findings focus specifically on hierarchical and
horizontal relationships between BDD requirements, whereas the finding by Irshad et al. [2021]
discusses the version control and ownership of the requirements. However, both findings target
different aspects of the same issue i.e., traceability.

In the finding, we discuss how Gherkin does not demonstrate the process of evolution of
features. In other words, Gherkin does not have a requirements traceability mechanism. By
traceability, we mean both vertical and horizontal traceability. Vertical traceability, in this con-
text, refers to the links and sources an item evolved from, whereas horizontal traceability refers
to connections an item has with its peers or other artefacts at the same level of hierarchy. Silva
and Fitzgerald [2021] has proposed automatic parsing of BDD stories to determine (horizontal)
consistency between BDD scenarios and other artefacts such as classes. The issue of horizon-
tal consistency is also addressed in some other studies [Silva and Winckler, 2017, Silva et al.,

∗https://www.gherkinuft.com/gherkin
†https://github.com/vsiakka/gherkin-lint

https://www.gherkinuft.com/gherkin
https://github.com/vsiakka/gherkin-lint

CHAPTER 9. CONCLUSIONS 217

2019c,b, 2020b] as well. The problem of vertical traceability in BDD artefacts is also discovered
as a challenge during the study by Silva [2016].

While the literature on the limitations of Gherkin language is scarce to non-existent, we
found some more limitations of Gherkin (as discussed in Section 6.5). For example, Gherkin
looks at a feature from the point of view of a single actor which is an issue when multiple
actors are involved in the completion of a single task. Furthermore, Gherkin does not support
concurrent execution of two or more steps.

Lack of guidance on BDD greatly influences the success of its use in the industry [Zampetti
et al., 2020]. The theoretical description of BDD activities does not take real-world factors (like
the experience of the people using BDD or the size of a project) into account; hence it is very
difficult to know what to do when a team faces a procedural issue. Attempting a new method
without guidance could raise the overall development cost significantly and cause delays which,
consequently, alleviates the benefits of using an agile process.

During the study, we observed that the team’s experience of using BDD was different than
what is described theoretically by Smart [2014] and Wynne et al. [2017]. The BDD process
consists of a number of activities that could be summarised in five iterative steps (as described
in Section 5.3). These iterative steps include (i) determination of the business goal, (ii) defi-
nition and documentation of a set of major features and determination of the relative value of
each feature, (iii) illustration of features with examples, (iv) description of examples as BDD
scenarios, (v) writing test code for each scenario. Although the theoretical description of BDD
activities looks simple, the description lacks the consideration of real-world factors such as size
and nature of the project, organisational structure, availability and level of experience of the
team members, etc.

The difference in BDD process and applying BDD in practice started appearing from the start
of the incorporation of BDD. For example, BDD process recommends three amigos meeting for
elicitation of features in which the product owner, developer, and the tester participate. The
purpose of the three amigos meeting is to analyse each feature from three different perspectives.
As discussed in Chapter 4, the organisation did not encourage the assumption of specific roles
by the employees. Each member of every team in the organisation was expected to be an all-
rounder in all the fields of software development. Specifically, there was no separate tester role
in the project team. Testing was performed by the developer himself. We believe that the team
did not see the relevance of the three amigos meeting because of not having a separate tester
role in the team, hence did not adopt it. However, in the case of regulated systems such as
safety-critical systems, regulatory standards such as DO-178C [RTCA] mandate a separate and
independent testing role.

As discussed earlier, the testing was performed by the developer. It means two out of three
roles of the three amigos meeting (i.e., the tester and the developer) were already covered by
the developer. The third role in the three amigos meeting is the product owner. The developer

CHAPTER 9. CONCLUSIONS 218

and the product owner already communicated frequently. However, this specific three amigos

meeting could not take place simply because of the missing third amigo i.e., the tester. This
shows that the theory behind the three amigos meeting is based upon the assumption of the
existence of these three roles in a team and does not take other possibilities into account. This
also shows that the theoretical description of the activities does not always match the reality. This
phenomenon is similar to the findings of the study by Stray et al. [2020b]. The study shows that
the traditional way of conducting daily stand-ups as described in the theory is counterproductive.
Instead, the teams should adapt the meetings according to what they find beneficial. For the sake
of argument, if we assume that three amigos meeting is not a meeting between three individuals
and a single person can assume these three roles, our assumption is contradictory to the statement
by Smart [2014]. The author explicitly states “...the "Three Amigos." Three team-members - a

developer, a tester, and a business analyst or product owner - get together to discuss a feature

and draw up the examples” implying that this meeting is between three individuals. At another
place, Smart [2014] states that “...in this approach, the three will sit around a computer and

write up an initial draft of the automated scenarios together”. The context in which the “three

amigos” meeting is discussed in various research studies [Wang et al., 2018, Wang and Wagner,
2018, Elshandidy et al., 2021] also suggests that this is a meeting between three individuals and
the purpose is to have three different perspectives on the matter.

We also learned that it is difficult to imagine the functionality before implementing it. As
mentioned earlier, the developer joined the organisation after the elicitation of the project re-
quirements. He was not familiar with the project. Although he acknowledged that using BDD
as a tool encouraged communication within the team in the form of discussion about the data
in the scenarios, it was difficult for him to completely understand and visualise the scenarios
without developing them. This led to the development of functionality before writing the tests
for them. Our observation concurs with the observation made by Zampetti et al. [2020]. The
authors employ various research methods to elaborate on the adoption of BDD in open-source
projects. According to the authors, the developers often avoid practicing the test-first principle
of BDD. However, the reason for this is not discussed in the study.

During the study (discussed in Chapter 6), we observed that two interconnected factors
played a key role in not practicing the test-first principle of BDD. The first factor was the
pressure to meet the schedule. Software companies around the world cannot dedicate unlim-
ited resources for an unlimited amount of time to any project. The software projects around
the world follow certain schedules and deadlines. We observed that it is easy to get carried
away with investing more time than required while refining the BDD scenarios. Unless there
are criteria to know when the scenarios are good enough, developers do not know when to stop
refining the scenarios and move to development. However, this issue is not specific to BDD. The
pressure to write production code instead of BDD scenarios to meet the schedule is a broader
issue with testing as a whole. It is widely recognised that many companies will be pressured

CHAPTER 9. CONCLUSIONS 219

into coding over testing, especially with tight schedules.
Oliveira et al. [2019] proposed a checklist to assess the quality of BDD scenarios. This

checklist is a set of twelve questions each of which focuses on one of the three components of
Gherkin specifications (i.e., feature, scenario, and step). However, the questions in the checklist
are more or less a set of instructions on what to look out for than a clear criteria to evaluate
the scenarios against. Moreover, the wording of the questions is vague. For example, question
number five in the checklist says How different each scenario is from the others?. Unless we
have a description of what qualifies as a difference, we cannot know if a scenario is different. If
we look at the rationale behind question number five of the checklist, it says that every scenario
of a feature should represent a separate variation of events. This could mean that every scenario
for a feature should have a different outcome even though most of the steps in most of the
scenarios are common i.e., the Then statements should be different even if the Given and When

statements are common between the scenarios are common.
During the study, we observed that investing too much time in refining the BDD scenarios

can cause delay and concerns among the management who are more interested in the outcome
of the project which ideally would be a working software. We observed a similar situation where
the developer started feeling that it was taking too long to refine the scenarios. He did not know
if the scenarios were good enough to proceed with writing the tests for them. The expectations
within the company to deliver working software on time made him pause the refinement of the
scenarios and write the production code.

The second factor that played a key role in not practicing the test-first principle of BDD was
not knowing how much work is needed to implement a certain feature. BDD emphasises the
importance of abstraction in requirements. According to the documentation on Cucumber [Cu-
cumberStudio, 2019b], imperative scenarios include implementation details that are so closely
tied to the mechanics of the UI that the tests become brittle i.e., need updating more often. In-
stead, the documentation [CucumberStudio, 2019b] recommends writing declarative scenarios
that focus on the behaviour instead of how a user interact with a system. The issue with abstrac-
tion in BDD is that the requirements become open to interpretation and also, it hides complexity
embedded in the code which makes it harder to assess the work that needs to be done to complete
a requirement. The project team in our case also felt that often the complexity of a feature is not
visible from the scenarios. The developer experienced situations where the implementation was
too long and complex. Sometimes it was possible to go back to the scenarios and break them
down and sometimes he continued with the implementation.

As it was not until the development started that the developer realised that some of the sce-
narios were too complex and needed to be broken down. Again, going back and forth between
the development and the refactoring of the scenarios was taking too long. Therefore, the de-
veloper decided to continue the development and write the scenarios and the respective tests
at the end of the development. Our observation complements one of the findings of the study

CHAPTER 9. CONCLUSIONS 220

by Zampetti et al. [2020]. They also observed that often the changes to BDD test cases are
driven by the change in production code instead of happening otherwise, ideally. Yang et al.
[2019] demonstrate a method for correlating feature changes and subsequent code changes, but
this would need to be generalised for code changes that also preceded feature changes. Also,
the short time scale for change assumed by Yang et al. [2019] may not be valid i.e., one work
week. Stark et al. [1999] collected data from an organisation on 44 software releases spanning
seven products. During the study, the rate of change was measured as 1.4 changes/month. This
supports our argument that a one-week time scale for measuring change by Yang et al. [2019]
may not be an appropriate time period.

As discussed before, the developer wrote the Gherkin features after the implementation
which shows that Gherkin was used for documentation instead of testing. The developer based
the Gherkin files and the tests on the implementation which means that the tests and the Gherkin
files were an elaboration of what was already implemented. In future work, it would be valu-
able to investigate whether Gherkin is more commonly used for documentation or design in an
empirical study.

We believe that the recommended ways of BDD need to better reflect the observed com-
plexities in practice. Also, the theoretical framework described in the literature is based upon
assumptions. For example, BDD process does not describe the professional profiles of the peo-
ple involved in the project. We have observed that the use of BDD requires a considerable
amount of prior experience in BDD. According to the Österholm [2021], one of the drawbacks
of BDD is that its adoption requires prior experience with TDD (Test Driven Development).
Irshad et al. [2021] conducted six workshop sessions with BDD practitioners and found that
in order to make improvements in a process based upon BDD, the practitioners require prior
experience with BDD.

Moreover, the BDD process does not take the amount of effort required to write the BDD
specifications and tests into account. At the moment, BDD process lacks the consideration for
real life factors which could adversely impact a project e.g., duration and complexity. Hence
more understanding of actual behaviour and empirical research is needed in order to learn from
people’s experience of applying BDD in their context.

9.3 Thesis Research Question 3

The scope of the findings from the empirical study (discussed in Chapter 6) was limited to a
single project. We extended the scope of the investigation on the challenges of BDD to the
open-source projects on GitHub. By doing this, we not only wanted to present an overall picture
of BDD in practice but also investigate the practices that could potentially create maintenance
issues in Gherkin specifications. The answer to the third research question

CHAPTER 9. CONCLUSIONS 221

“What are the specification writing practices in the existing open-source BDD projects that
could result in maintenance challenges in behaviour driven development software projects?”

is derived from Chapter 7 and 8.
Chapter 7 presents an overall picture of BDD in practice. To do this, we implemented a tool

in Python that selected a sample of open-source projects through a five-stage process. In the first
stage, 1 million random GitHub repository identifiers were generated. These identifiers were
then matched with the repositories on GitHub. The repositories which matched the identifiers
were marked for selection. In the second stage, the non-BDD projects were filtered out from the
selected projects by removing the projects that did not contain Gherkin language. Please note
that we were interested in real projects. Therefore, in the third stage, an exclusion/ inclusion
criteria (as discussed in Section 7.2.1) was applied to filter out the dummy projects.

After removing the projects which did not contain any feature the final number of projects
was 501. While running the analysis, eight repositories became inaccessible making the final
number of repositories 493. In the fourth stage, the tool generated meta-data from the contents
of the projects from the most recent commit. In the last stage, the meta-data from the contents
of the projects was generated from all the commits of each project.

The analysis shows that only 0.34% of open-source repositories on GitHub contain Gherkin.
This indicates a low adoption of BDD in open-source projects. The reason behind this low rate
of adoption could be explained using the lessons learned during the study discussed in Chapter
6. In Chapter 6, we learned that the adoption of BDD into a project requires an investment of
additional time and resources. Zampetti et al. [2020] and Irshad et al. [2021] seem to agree with
our opinion. According to Zampetti et al. [2020], BDD as a method is quite effort-prone. The
authors argue that BDD is a way of working, and not just the adoption of a framework. Irshad
et al. [2021], based upon the findings of their industrial evaluation of the application of BDD,
argue that BDD is a time-consuming process, and adoption of BDD requires training, long-term
commitment, and additional resources. Another reason for this low adoption of BDD in open-
source projects on GitHub may be the nature of open-source projects. Usually, the participants
and contributors in an open-source project are volunteers and there is no formal customer role.
This means there is very little “customer involvement” in an open-source project which could
make the benefit of communication offered by BDD less apparent.

We selected a random sample of non-Gherkin projects to see the difference between Gherkin
and non-Gherkin projects. Our analysis showed no significant differences between Gherkin and
non-Gherkin projects. However, the data showed that the adoption of BDD is more popular
in web development languages, such as PHP. The analysis showed that the test suites (i.e., the
number of Gherkin feature files) in the projects that typically adopt BDD were small. When
we compared the lines of code, the projects that adopted Gherkin were found to be larger than
non-Gherkin projects i.e., approximately three times larger. The median number of features in

CHAPTER 9. CONCLUSIONS 222

the dataset was found to be 5, each having 2 scenarios with 5 steps each.
We wanted to see when people typically start incorporating BDD into the projects. Although

the data was too scattered to make a conclusive judgement but we learned that, on average,
people start incorporating BDD during the first six months of the project. We confirmed this
assumption by looking at the percentage of total commits made before the first feature was
introduced in a project. We learned that, on average, first feature is introduced into the project
within the first 15% of the commits. To see if there has been any change in the practice of the
introduction of first feature, we extended this analysis to a number of years.

We learned that the practice has not changed over the years. There has been no change in the
average number of days after the first feature is introduced over the years. BDD is not practiced
to a great extent, it’s only used at a small scale, but projects that adopt BDD tend to be bigger
and those contributors who make BDD changes tend to be much more committed. We learned
that the people who incorporate BDD into the project have the longest and earliest involvement
in the projects. This means that the decision to incorporate BDD and maintenance of BDD
specifications are performed by the primary contributors in the projects.

The focus of Chapter 8 was on bad smells in Gherkin specifications. The selection of bad
smells was made on the basis of applicability and feasibility (as explained in Section 8.2.2).
First, we decided to use the knowledge on bad smells in unit test because of the scarcity of
literature on bad smells in BDD and the similarities between the structures of a Gherkin scenario
and unit test. We used the list of unit test bad smells compiled by Garousi and Küçük [2018],
and theoretically mapped each smell to Gherkin scenarios. Out of 182 unit test bad smells in
the list, eight appeared theoretically applicable to Gherkin scenarios. Later, three more bad
smells were added to the list of applicable bad smells making the total number of applicable bad
smells eleven. These three bad smells were discovered during the manual inspection of Gherkin
specifications of randomly selected projects from our sample of 493 Gherkin projects. Next, we
performed a feasibility analysis by discussing the effort and time required to calculate each of
the 11 selected bad smells. Finally, five bad smells were selected for analysis. Effort and time
required for the rest of the six bad smells appeared greater than what could be achieved within
the course of this Ph.D.

The analysis showed that a significant number of open-source Gherkin projects’ specifica-
tions contain these bad smells. For example, approximately 36% Gherkin projects contain AAA
pattern violation, 70% projects have multiple assertions, 68% projects contain duplications(i.e.,
clones), 12% of the projects have lazy outline, and 30% projects have lazy steps. A large ma-
jority of project contributors introduce these bad smells within the first day of their Gherkin
commit. For example, approximately 45% of the contributors who make Gherkin commits,
introduced clones within the first day of their Gherkin commit.

We investigated the relationship between bad smells and other Gherkin artefacts e.g., size of
scenarios, number of contributors in a project, or the duration of involvement of contributors who

CHAPTER 9. CONCLUSIONS 223

introduce bad smells in projects. These graphs included histograms of scenario sizes, time series
of project smell density, scatter plot of the number of bad smells against Gherkin contributors in
a project, histogram of the time for which contributors were involved in projects, etc.

The graphs showed no relationship between the bad smells and the number of contributors
involved or the duration of their involvement in a project. However, the projects with bad smells
tend to have slightly longer scenarios than the scenarios of the projects with no bad smells.
We were unable to determine if longer scenarios cause bad smells or vice versa. Since a large
percentage of these bad smells are added within the first day of a Gherkin commit in a project,
we could speculate that the reasons for these bad smells could be the lack of experience of
contributors in BDD or simply the way they write specifications.

We believe we have identified evidence of technical debt (i.e., bad smells) in the Gherkin
code. Technical debt in software engineering is known as the financial consequences of trade-
offs between minimising the product time to market and poor specification and implementation
[Ampatzoglou et al., 2015]. Technical debt is recognised as a multiplier to the cost of new
features. It is a function of project size (i.e., same rate of technical debt is more costly for
bigger than smaller projects)[Guo et al., 2016]. The Gherkin suites we observed were small
but the open-source Gherkin projects on GitHub appear to have a greater average number of
lines of code than non-Gherkin projects i.e., three times. This suggests that development teams
deliberately keep BDD suites small to avoid incurring technical debt, but this potentially comes
at the cost of limiting test suite coverage and therefore effectiveness. This means it is hard to
use BDD in large projects because of the cost of maintenance of additional (Gherkin) artefacts.

We do not claim that these bad smells are the only type of bad smell in Gherkin specifica-
tions. There could be various other bad smells in Gherkin specifications but the literature on
bad smells in Gherkin is scarce at the moment. To the best of our knowledge, there are only
two studies [Suan, 2015, Binamungu, 2020] that investigated one of the bad smells in Gherkin
specifications i.e., duplication or clones. We did not find any other studies on any other bad
smells in Gherkin. Lack of guidance on BDD could be one of the reasons for these bad smells
in Gherkin specifications.

9.4 Contributions

Chapter 3: This chapter significantly extends the existing knowledge on the application of
agile software development within safety-critical systems engineering by reviewing the relevant
literature on the topic. We conducted a Systematic Literature Review (SLR) on challenges of
the application of agile methods in safety-critical systems development. The literature review
included an exclusion/inclusion criteria which filtered down the studies that were irrelevant. A
total of 56 studies were selected for the review. The information gathered during the SLR was
the result of the synthesis of the selected studies. The extent of the information generated from

CHAPTER 9. CONCLUSIONS 224

the literature review allowed us to gain significant insight into the state of the field. Specifically,
we reported on what challenges of the application of agile for the development of safety-critical
system development appear in the literature. We elaborated on these challenges by integrating
the findings of the studies. This helped us in presenting an overall picture of the state of the
field. We grouped the challenges of using agile methods in safety-critical systems into various
themes such as organisational culture and training, project management, documentation, regu-
latory standards, design and architecture, as well as, statements that look like perceptions of the
researchers for which no evidence was presented in the respective studies. The work, therefore,
provided an overview of the available literature on the reported challenges of employing agile
software development for safety-critical systems and provided a foundation for research in this
Ph.D.

Chapter 4: This chapter significantly extends the existing evidence base for the application
of agile software development within safety-critical systems engineering by investigating the
challenges from the perspective of practitioners. We conducted four semi-structured interviews
with employees of the company in a variety of roles in different software projects and with
diverse experiences. The interview structure was based upon the information gathered during
an initial exploratory conversation with two senior employees. The findings of the study were
validated in a workshop with a wider number of participants drawn from across the company’s
software development function. The extent of the material generated from these interviews
allowed us to gain significant insight. Specifically, we reported on how some teams within the
company have employed an agile software process (Scrum) within a Waterfall process for the
wider systems engineering project. We elaborated on this integration by describing how the
teams have made necessary customisations to Scrum to fit within this process. We described the
successes that the teams had experienced in employing and adapting individual agile practices,
such as planning poker, continuous integration, automated static analysis, and code reviews,
as well as, discussing where the use of agile software development had led to drawbacks. We
also investigated practices that the teams had not employed, such as pair programming and user
stories, and discussed the rationale for this from the teams’ perspective. Where appropriate,
we related these insights to the available literature. The work, therefore, provides a substantial
case study based on evidence from industry of the real-world challenges of employing agile
software development for safety-critical systems and provide a foundation for future research in
addressing these challenges.

Chapter 6: This chapter significantly extends the evidence base for the challenges of using
Behaviour Driven Development (BDD) by investigating the challenges of BDD from the per-
spective of practitioners. In addition to the four iterations of action research, we conducted
four semi-structured interviews with three employees of the company in a variety of roles in a

CHAPTER 9. CONCLUSIONS 225

software project and with diverse experiences. The action research was conducted to align the
project development with the BDD process.

The interview structure was based upon the information gathered during the action research.
We also compared BDD in theory with BDD in practice. This comparison was based upon the
lessons learned during the study. The extent of the material generated from these interviews
allowed us to gain significant insight into the difficulties of applying BDD. Specifically, we
reported on how a team within the company employed BDD and the difficulties they faced in
using BDD as a process. We elaborated on this experience by describing how the teams made
necessary customisations to the process to match their needs.

We described the successes that the teams experienced in employing and adapting BDD such
as communication within the team, as well as, discussing where the use of BDD led to difficul-
ties. We investigated the technical limitations of Gherkin and the BDD practices that the teams
did not employ (e.g., test first concept in BDD), and discussed the rationale for this from the
teams’ perspective. Where appropriate, we related these insights to the available literature. The
work, therefore, provides a substantial case study based on evidence from industry of the real-
world challenges of employing BDD and provide a foundation for future research in addressing
these challenges.

However, this study was focused on a small project developed by a small team using BDD
for the first time. The team used BDD in the early phase of the project for the short life span
of the project. Therefore, this study reports the challenges experienced by a team who practiced
BDD for a limited duration and did not have any prior experience of using BDD. We are unable
to predict if we would discover more challenges or find solutions to the reported challenges, had
the team practiced BDD for a long term. A further investigation would be required to study the
challenges of BDD discovered during a long-term use.

Chapters 7 and 8: These chapters significantly extend the evidence base for the use of Be-
haviour Driven Development (BDD) by investigating the open-source BDD projects on GitHub.
We conducted an online experiment on GitHub to understand the state of BDD by studying the
project-related artefacts in the open-source projects which incorporated BDD. To the best of our
knowledge, this is the first study in the field of Behaviour Driven Development which involves
studying bad smells in open-source BDD projects available on GitHub and drawing statistical
inferences from them.

The experiment structure was based upon the knowledge gained from the literature and the
exploratory study in Chapter 6. The experiment consisted of five steps through which a random
sample of open-source BDD projects was selected for analysis. The analysis involved gener-
ating graphs. The extent of the information generated from these graphs allowed us to gain
significant insight into the overall state of BDD on GitHub e.g., typical size of a project, typical
number of features and scenarios, etc. Specifically, we reported on how and when BDD is incor-

CHAPTER 9. CONCLUSIONS 226

porated in open-source projects. We plotted graphs showing that the people who make Gherkin
commits have the longest involvement in the projects. The analysis also shows that there is no
considerable difference between the open-source BDD and non-BDD projects on GitHub

We also investigated Gherkin specification writing styles and practices that could be re-
garded as bad smells, such as AAA pattern violations, and lazy scenarios. We discussed the
consequences of these bad smells from the perspective of the evolution of the project. Where
appropriate, we related these insights to the available literature. The work, therefore, provides
a substantial empirical study based on evidence from real open-source projects on GitHub and
a foundation for future research on the bad smells in Gherkin specifications. Moreover, we
generated a dataset of Gherkin projects that can be used in future research.

9.5 Interconnection of the Studies

In addition to the literature reviews (documented in Chapters 3 and 5), two sets of interviews,
four iterations of action research, and an online experiment was conducted over the course of
this Ph.D research (presented in Chapters 4, 6, 7 and 8). This Ph.D was conducted in progressive
steps. The first study was conducted with an avionics company to learn from their experience
of using an agile method. Our focus during the study was on the challenges faced during the
application of the agile method in large-scale safety-critical systems development. As a result of
the study, a number of challenges associated with the application of agile development method
were discovered. Requirements management appeared to be one of the major concerns during
the application of agile methods in large-scale safety-critical systems development context.

To extend the study and investigate this further, we conducted another study to try Behaviour
Driven Development (BDD) for the development of a project at the (same) avionics company.
BDD is an agile method which is based upon the idea of shared understanding through require-
ments. Literature on the challenges of BDD appeared to be scarce. Therefore, the primary focus
of the study was on the challenges related to BDD.

During the study, we found that BDD works well for the decomposition of requirements and
encourages communication between team members. The study yielded eight challenges for the
application of BDD in practice by the software teams adopting BDD for the first time which can
be grouped into (i) lack of tools for detecting bad smells in Gherkin specifications, particularly
during the translation of requirements from other formats, (ii) technical limitations of Gherkin
such as lack of support for multiple actors, and (iii) hurdles in using BDD as a process. We
learned that Gherkin provides a lot of freedom for writing the requirements specifications. One
of the drawbacks of this freedom is inflexible requirements. In BDD, the developers sometimes
transcribe functionally correct but structurally inflexible requirements. Such inflexibilities (i.e.,
bad smells) in the requirements impede the evolution of the overall system. It is possible that we
were not able to discover all the challenges of using BDD because the scope of this study was

CHAPTER 9. CONCLUSIONS 227

limited to a single project.
In order to extend the scope of our investigation and get an overview of the state of BDD we

analysed the open-source projects on GitHub. This third study was divided into two chapters
i.e., Chapter 7 and 8. Chapter 7 presents a birds-eye view of BDD in open-source projects on
GitHub. The chapter presents a comparison of BDD and non-BDD projects and analyses the
open-source projects to learn about the evolution of BDD artefacts. Chapter 8 evaluates the
projects for the existence of bad smells in Gherkin specifications.

The research helped us in understanding the impediments in handling the requirements spec-
ifications when using agile as a development method in large organisations. It also helped us in
understanding the technical limitations and hurdles in using BDD as a process. We have learned
that the mere incorporation of a process such as BDD for the management of requirements spec-
ifications does not solve the problem. The freedom provided by Gherkin as a language is its
own enemy. People must be aware of the potential maintenance issues when using BDD as a
process. However, one possible avenue to address this issue could be the use of Domain Spe-
cific Languages (DSLs). A Domain-Specific Language (DSL) is usually a computer language
that is tailored to a specific application domain e.g., Railways, Healthcare, Robotics, Banking
etc [Fowler, 2011, Kosar et al., 2016]. In this approach, solutions can be expressed at the level
of abstraction of the problem domain, allowing substantial gains in expressiveness and ease of
use [Kosar et al., 2016]. For example, Rocha Silva [2022] propose the use of a Gherkin style
DSL to test web-based graphical interfaces. This approach preserves the abstraction in Gherkin
scenarios keeping the necessary formalism to avoid misinterpretations.

9.6 Scope and Validity

We have acknowledged and discussed the scope and validity issues of this research in the present
section. First is the issue of the ability to generalise the results on the basis of a single case
study. This issue is acknowledged and discussed by Kennedy [1979] in detail. The author
regarded single case studies as “studies of single events, or disaggregated studies of multiple

events”. According to the author, findings from single case studies should not be used for
drawing inferences.

This opinion has been rejected by several researchers [Flyvbjerg, 2006, Hammersley et al.,
2000]. For example, Flyvbjerg [2006] has referred to this opinion as a misunderstanding and
argued that a single case study, because of its in-depth approach, can be considered as a rep-
resentative example of a larger population. Hammersley et al. [2000] argued that if reasonable
assumptions about the similarities in smaller units of a large population can be made then the
findings from studying a single unit can be considered as representative of the findings from
studying that large population.

Before we discuss the validity of the results from the two individual case studies (discussed

CHAPTER 9. CONCLUSIONS 228

in Chapters 4 and 6), we address the validity of the case i.e., the company (we conducted our
research with). In view of the arguments by Flyvbjerg [2006] and Hammersley et al. [2000], the
company must have close similarities with other organisations in the same industrial sector in
order to qualify as a case with findings that can be generalised. According to Todd and Humble
[2019], most avionics companies around the world are large organisations. This means in order
to be a representative of the most avionics companies (i.e., large population), the company we
conducted our research with has to fall under the large organisation category.

According to various business blogs‡,§, we learned that the company (where we conducted
our case studies) is counted among the top twenty aerospace manufacturers in the world. Also,
by reading and comparing the profiles of different avionics companies of the same level, we
learned that the nature of the work and the size of the projects undertaken by the company were
not very different from other large avionic companies. These similarities make the company a
representative sample of its peer companies.

Walsham [1995] categorised generalisation from case studies into four types: (i) concepts,
(ii) theory, (iii) implications, and (iv) rich insight. The results from both case studies (discussed
in Chapters 4 and 6) can be generalised from the rich insight perspective. The first case study
was an exploratory study which gave us an insight into a variety of topics including project
visibility, compartmentalised departments in large organisations, the flow of information, and
customer interaction in large organisations. The second case study was also an exploratory
case study which helped in exploring the use of Behaviour Driven Development (BDD) for the
development of a project. The case study gave us an insight into the challenges of BDD and
helped us in discovering the limitations of the Gherkin language.

9.7 Limitations

This Ph.D research consists of a number of independent but interconnected studies discussed
in various chapters of this thesis. There are several limiting aspects to our research which we
have discussed as potential avenues for future work. First, we would like to discuss one of the
common limitations of the research work discussed in Chapters 4 and 6. The studies discussed
in Chapters 4 and 6 were conducted with the company, and the limiting factor was the nature of
our engagement with the company. The sensitive nature of much of the work in the company
necessarily limited our access to the details of the project(s). Our findings were primarily based
on the perspectives given to us by our interview participants, and we were consequently unable
to verify them through independent inspection of other sources of evidence, such as project
software repositories and software process documentation.

In the study discussed in Chapter 4, the interview participants were selected by the com-

‡www.salesartillery.com/
§www.flightglobal.com

www.salesartillery.com/
www.flightglobal.com

CHAPTER 9. CONCLUSIONS 229

pany, based on their availability and different perspectives and experiences of agile software
development. Considerable effort was made by the researchers to establish a relationship with
the company to allow the interviews to be conducted in the described form. We believe the ar-
rangements reflect the constraints imposed on much of the research conducted in safety-critical
contexts, given the often sensitive nature of such work. However, this does create threats to the
validity of the work, which we have sought to mitigate by relating the findings to those available
in the literature.

Second, we note that one of our findings during the interview stage of the research in Chapter
4 was not validated during the review workshop, concerning the conflict between agile software
development to software quality assurance and that demanded by regulatory standards. This
topic was included in the interview instrument because of the prevalence of the challenge in
the literature. Specifically, Notander et al. [2013] reported that independent testing of complex
systems, in accordance with the regulatory standard, DO-178C [RTCA] was very difficult due
to the need for significant specialist knowledge about the test subject. It was anticipated that
this challenge would also be identified by the participants, particularly given that agile software
development advocates that testing should be conducted by the software team as part of the
design and implementation process.

However, the issue was rejected during the validation workshop. According to the interview
participants, they had great difficulty getting their system tested by an independent quality assur-
ance team. The independent quality assurance team did not have the inherent knowledge of the
system needed to develop effective tests. To mitigate this, the software team conducted training
and workshops with the independent test teams but found these insufficient. So the software
team performed the testing themselves while the independent quality assurance team acted as

witnesses to the testing and signed off the documentation at the end. This approach worked well
for the software team and was perceived to satisfy the demands of the standard for independent
testing whilst also enabling effective tests to be developed.

The rejection of this challenge was surprising to us because the standard DO-178C mandates
an independent testing body. Later reviewing the interview material, we noted that during one
of the interviews a lead software engineer agreed that the risk of bias in this approach was
“... a problem, it’s an ongoing problem.” In reviewing this, it is possible that the participants
do not view the approach to testing as problematic with respect to the standard, but are still
concerned about the risk of bias, regardless. The issue highlights the risk in our research method
of misinterpretation of findings. However, the validation step is applied to mitigate this.

Third, the study discussed in Chapter 6 was limited to a single commercial project. It was dif-
ficult for us to generalise the findings on the basis of a single commercial project. As discussed
before, we did not have access to any other sources of data gathering than appointment-based
access to the team members, and our findings are based upon the observations made during
the action research and the opinions of the team members during the interviews. We were un-

CHAPTER 9. CONCLUSIONS 230

able to verify the findings with the help of a supplementary source of evidence such as code or
documentation.

The study (discussed in Chapter 6) was conducted in an uncontrolled environment. All
project-related decisions such as project schedule, requirements, team members, etc. were made
by the organisation and the project team. The organisation and the project team was responsible
for deciding what and when to develop, and our interaction with the team was limited to the
meetings and the requirements specifications. It is possible that we missed some of the vital
observations which we could only make if we were directly and closely involved in the develop-
ment of the project and were based in the company physically. Being physically present at the
company and closely involved in the project would let us observe behaviours in the team that
can not be discovered otherwise.

Fourth, the team members had no prior experience of using BDD in a project. The prod-
uct owner and the scrum master had some background knowledge of BDD as a method but the
developer was completely unfamiliar with BDD. This lack of experience was one of the rea-
sons that the project team members were unable to detect the technical limitations of Gherkin
themselves. These limitations were observed and discovered by the author of this thesis and pre-
sented to the project team. The project team agreed to the limitations but was unable to discuss
an alternative due to their lack of experience with the tool and the methodology.

Fifth, the tool implemented in Python (discussed in Section 7.2) was used to select a random
sample of real projects in which BDD was incorporated. The tool extracted the meta-data from
the projects and performed additional analysis on the contents of the projects to extract more
data. We believe that the tool could be extended to incorporate more functionality. For example,
the tool could be extended to analyse the state of the practice of test first in BDD in open-source
projects. Also, the tool could be extended to detect other bad smells than the ones discussed in
Section 8.2.2. Restricted functionality of the tool at the moment is one of the limitations of this
research.

9.8 Research Implications

This PhD research began with investigating the use of agile methods in large-scale safety-critical
systems, and later on narrowed down to investigating Behaviour Driven Development (BDD) in
practice. This PhD research was conducted in progressive steps with a focus on three research
questions. These research questions are described in Section 1.3. The study described in Chapter
4 was conducted to find the answer to the first research question. The study in Chapter 6 was
conducted to answer the second research question, whereas the studies described in Chapters 7
and 8 were conducted to find the answer to the third research question. The conclusions of these
studies are described in the form of answers to the three research questions in the first three
sections (i.e., 9.1, 9.2, and 9.3) of this chapter.

CHAPTER 9. CONCLUSIONS 231

Please note that the work in this thesis should be treated as exploratory. Hence, the insights,
lessons learned and challenges identified during this research need to be investigated further in
order to understand the underlying reasons behind the challenges identified during this research.
However, this section provides implications for research based upon the results of this thesis.
The implications are based upon the company’s experience of using agile methods and what we
learned during our study on GitHub.

In summary, the results from Chapter 4 and 6 showed that Agile software development is not
a plug-and-play solution for any organisation. It is a common misunderstanding that adopting
an agile method such as Scrum automatically makes a team or an organisation agile. Especially,
in a large-scale project environment where multiple teams working on their own individual tasks
are involved in a project, it is hard to practice agile at the overall project level.

On the contrary, agile philosophy revolves around a set of principles that promote shared
vision, common understanding, and collaboration, whereas agile methods are the roadmaps for
reaching these objectives. The risk is that the principles of agile will be lost if the focus becomes
on myopic application of methods without consideration of context. Organisations or teams
wanting to adopt agile must focus on the underlying philosophy of agile and strive to reach the
objectives defined by agile principles instead of focusing on agile methods. The processes, tools,
and methods that are adopted to reach these objectives could differ from project to project and
organisation to organisation.

We focused on requirements engineering because it appeared as one of the major concerns in
Chapter 4. So we decided to explore BDD because of its focus on requirements communication,
understanding, and management. Chapters 6, 7 and 8 highlighted the difficulties of applying
BDD in practice. The results show that the use of BDD could incur significant cost of Gherkin
specifications maintenance. This cost could increase if BDD practitioners are unaware of the
challenges and limitations the use of BDD entails. The results from Chapters 6, 7 and 8 imply
that the use of BDD requires a significant amount of prior experience which should also include
knowledge of do’s and don’ts of BDD. Till now, the research community has not been able
to provide an established guideline for avoiding maintenance issues in Gherkin specifications.
Therefore it was pertinent to explore the challenges associated with BDD in practice. These
challenges could serve as a guideline for further research.

Moreover, the activities of BDD described in theory need to be investigated in real-life situa-
tions so that their significance, context, and applicability in different circumstances are clear. At
the moment, the literature available on BDD does not account for the real world circumstances
which could impede the significance or relevance of various activities of BDD as described in
theory.

CHAPTER 9. CONCLUSIONS 232

Question
1 Can lightweight gate reviews be used to achieve the

same quality of the design?
2 How can requirements for complex systems be better

structured and decomposed to enable agile develop-
ment efforts?

3 How can continuous integration methods be extended
to satisfy the heterogeneous nature of complex systems
engineering projects in safety-critical environments?

4 How can agile customer management methods be
adapted to the complex customer structure of safety
critical systems?

5 To what extent can the maintenance of documentation
be automated, or better integrated into the cost estima-
tion process?

6 What is an appropriate level of abstraction needed in
the Gherkin scenarios in order to balance the complex-
ity between code and scenarios?

7 How can we determine the quality of Gherkin scenar-
ios?

8 What is a reasonable amount of time for execution of
a Gherkin test suite?

9 When following BDD, how can we know what re-
quirement(s) or which feature(s) a particular feature
evolved from, to ensure traceability?

10 How can we detect more than one independent be-
haviours in a single step of a Gherkin scenario?

11 How can we measure the readability of Gherkin sce-
narios?

Figure 9.1: Future work research questions

9.9 Future Work

Despite the limitations described above, the research has identified several key themes during the
course of this Ph.D. This section discusses future work and provides a roadmap for addressing
these challenges. Beyond these broad challenges, we have identified a set of immediate research
questions to guide future efforts in this area, summarised in Figure 9.1. These questions are
indicative of immediate research directions that can be undertaken in the short term within these
broad themes.

Questions 1 and 2 address the theme of mitigating the pressure for Waterfall development
processes for software engineering processes. Question 1 concerns the development of lightweight
design review methods that accommodate more rapid changes in software design without com-
promising on design quality. We envisage leveraging existing agile methods and practices to

CHAPTER 9. CONCLUSIONS 233

facilitate this, such as continuous inspection techniques. Question 2 concerns the need for al-
ternative approaches to the structuring of requirements specifications to better support decom-
position of requirements in complex systems such as BDD. In particular, there is a need for
comparison between BDD and other requirements documentation techniques to see whether a
feature driven approach to requirements engineering, embodying detailed specifications as user
stories and scenarios provides better decomposability.

Question 3 and 4 address the theme of coordinating the stakeholder relationships (both in-
ternal and external) within complex systems engineering projects. In particular, software engi-
neering has developed sophisticated techniques for achieving continuous integration of software
products. We envisage that these techniques can be extended further across the technology
stack of firmware and hardware through networked deployments of software on hardware under
development, or the development of realistic hardware simulators concurrently with hardware
development efforts. Similarly, recent advances in software process development that enable ab-
straction of hardware, such as virtualisation, DevOps and Infrastructure as Code may be adapted
to provide solutions to this integration challenge.

Separately, Question 4 concerns the adaptation of agile customer management techniques,
through the product owner to complex systems projects. By convention, agile software develop-
ment assumes that all the interests of “the customer” can be represented to the software team via
the product owner, shielding the development team from the conflicts, tensions, and negotiations
that may occur between different stakeholders. However, the size and complexity of large-scale
systems engineering projects, together with the typically complex interplay between stakehold-
ers (recall Figure 4.4) makes the allocation of this role to a single person impractical. Several
authors have described proposals or experiences of scaling agile methods and practices, partic-
ularly for scaling the role of the product owner. For example, Lowery and Evans [2007] reports
on experiences of implementing a hierarchy of product owners in the BBC’s iPlayer app. They
found that a critical aspect of their approach was ensuring coordination between product owners
and scrum masters in the different teams and placed significant emphasis on time in the product
owners’ schedules to accomplish this. The popular Scaled Agile Framework [Leffingwell, 2016]
also advocates the use of a hierarchy within product ownership, between product managers who
are responsible for the high-level direction and product owners who are embedded in particular
teams focused on specific aspects of functionality. There is a need to explore how these hierar-
chical approaches to managing the relationship with customers through the product owner can
be adapted to both the heterogeneous nature of systems engineering projects which combine a
variety of software and hardware elements; and the consortium arrangement of customers in
systems engineering projects.

Question 5 concerns the automated generation of supplemental documentation, addressing
the need to reduce friction in Software Engineering projects. Traceability remains a critical
component of standards and regulations for safety-critical environments. There will be an on-

CHAPTER 9. CONCLUSIONS 234

going need to produce evidence that system artefacts remain consistent with their requirements
and design, such that any associated safety evaluations are reliable. To adapt agile software
development to fit with this context, there is a need to develop mechanisms for automatically re-
generating artefacts as changes occur, or better support their continuous maintenance alongside
mainstream development efforts. A factor here will be to integrate documentation maintenance
efforts into ongoing software development task cost estimates, such that all necessary changes
are continuously tracked. Similarly, there is a need to develop better methods for modeling and
representing dependencies amongst software project artefacts, such that when changes occur
the impact can be more efficiently assessed. For example, Silva and Winckler [2017] proposed
automated verification of software artefacts by parsing sentences of BDD scenarios using a case
study. Their proof of concept shows that they were able to identify even the fine-grained incon-
sistencies in BDD artefacts.

Crucially, the study discussed in Chapter 4 has demonstrated that there is a need to adapt
agile software development to fit within the constraints of software development for safety-
critical systems and investigated the specific challenges in detail. In particular, there is a need
to understand how agile software development can be scaled to fit large-scale, complex systems
engineering efforts comprising multiple development efforts that include both software and hard-
ware components on projects that may last many decades. Ultimately, these questions reflect the
need to better align the tempo of safety-critical system developments and that assumed by agile
software development. The agile philosophy is to accommodate the constant, rapid, concurrent
change of software development projects, due to inevitable external pressures. The complexity
created by this change is then mitigated through the disciplined application of a combination
of tools and methods. Conversely, the philosophy in software development for safety-critical
systems is to deliberately constrain options for (and pace of) change in order to maintain the
traceability of artefacts. Applying agile software development to safety-critical systems will,
therefore, require the development of tools and methods that provide for the same standard of
continuous traceability.

Question 6, 7 and 8 address the improvement in quality of the Gherkin test suite in BDD.
Question 6 concerns the concept of abstraction in BDD. The available text on BDD such as
online blogs¶ and scientific studies [Oliveira et al., 2019, Silva and Fitzgerald, 2021] discuss the
importance of writing the scenarios without emphasis on the implementation details. According
to the advocates of BDD [Smart, 2014, Wynne et al., 2017], scenarios should be declarative (i.e.,
specifying what needs to be accomplished) and not imperative (i.e., specifying how something
should be accomplished). The focus in the scenarios should be on What and not How.

Declarative scenarios hide implementation details, whereas, imperative scenarios contain
implementation details that tightly couple the scenarios with the input and the UI. Such sce-
narios are not only brittle but also unreadable according to Wynne et al. [2017]. Despite the

¶https://cucumber.io/docs/bdd/better-gherkin

https://cucumber.io/docs/bdd/better-gherkin

CHAPTER 9. CONCLUSIONS 235

emphasis on writing declarative scenarios in the text related to BDD, we believe that declarative
scenarios could be open to interpretations. When relying on what to do and no information on
how to do, it is possible to write code that satisfies a (declarative) scenario but does not follow
the workflow the user had intended. Moreover, hiding the implementation details obscures the
estimation of time and effort required to accomplish a task. We believe that there needs to be
a balance between being declarative and being imperative when it comes to writing scenarios.
The developers should be able to anticipate the amount of time and effort required to complete
a task. We envisage that multiple experiments need to be conducted to define how much infor-
mation in a scenario is considered as just enough and that the complete rejection of imperative
style for scenarios should be revisited.

Question 7 concerns the quality criteria of the BDD scenarios. Some work has already been
done in this regard by Oliveira et al. [2019]. The study [Oliveira et al., 2019] provides a list
of questions in the form of a checklist. The aim of the checklist is to provide a guideline for
writing short, readable and optimal tests. Binamungu et al. [2018b] identify slow execution of
BDD test suites as one of the challenges. According to the authors, the problem of slow BDD
test suites is due to duplication and “other concerns”. However, the authors do not elaborate on
these “other concerns”. We did not find a published study that discusses the reasons for slow
BDD test suites in detail. Nevertheless, we found a blog [Tomas, 2022] which discusses the
reasons for slow BDD test suites in detail. Tomas [2022] discusses 9 reasons for slow BDD test
suites e.g., test using a database, test through UI, dependencies between tests, and presence of
dead code, etc. According to Tomas [2022], the speed of BDD test suite can be improved by
taking steps like: reduction of tests’ size by breaking them up, optimisation of database queries,
reduction of UI interaction, etc. Question 8 is a consequence of the answer to Question 7, and
it concerns the execution speed of the Gherkin test suite. We envisage the establishment of the
factors that slow down the execution of the Gherkin test suite. Doing so will provide a guideline
for writing optimal Gherkin tests.

Question 9 is an extension of Question 2. At the moment, Gherkin does not have a re-
quirements traceability mechanism in place. It is difficult to know which feature a particular
feature evolved from. We envisage enhancing traceability of requirements in complex systems
through the adaptation of behaviour driven development techniques. Cucumber (i.e., BDD tool
for Gherkin) could be extended to incorporate a requirements tree.

Question 10 concerns one of the bad smells in Gherkin specifications. According to Smart
[2014] and Wynne et al. [2017], each step in a Gherkin scenario must perform a single indepen-
dent task. Describing more than one action in a single scenario step is referred to as a Gherkin
Anti Pattern by the documentation on Cucumber‖. Such steps must be split into different smaller
steps such that each step represents a single independent action. At the moment, one of the in-
dications of multiple actions in a single step is the use of conjunction within a Gherkin step ac-

‖https://cucumber.io/docs/guides/anti-patterns/

https://cucumber.io/docs/guides/anti-patterns/

CHAPTER 9. CONCLUSIONS 236

cording to the documentation on Cucumber. We already debunked this myth in 8.2. We envisage
using natural language processing techniques to detect more than one independent behaviours
in a single step.

Question 11 is a further breakdown of Question 7. Question 11 concerns the quality of
Gherkin scenarios. The foremost purpose of the Gherkin scenarios is to communicate the re-
quirements to the non-technical stakeholders of a project [Smart, 2014, Wynne et al., 2017]. For
this purpose, the readability of the scenarios is very important. At the moment, the factors that
play a role in the readability of a Gherkin scenario are unknown. We envisage a clear definition
of readability in the context of Gherkin specifications. In the next step, we envisage conducting
multiple experiments to establish a boundary value for each of those factors e.g., the appropriate
length of a Gherkin scenario. In order to solve the issue of communication between subject
matter experts and software developers, Rocha Silva [2022] propose the use of Domain-Specific
languages (DSL). Although the paper does not specifically discuss the use of DSL for readability
purposes, the author points out that “Requirements expressed through a textual high-level DSL

are more precise and easier to read than the same information expressed in free natural lan-

guage” implying Gherkin. However, more research is needed to study the readability of BDD
scenarios described in Gherkin and DSL.

9.10 Summary

This chapter concludes this PhD research and presents the results of this research. The research
presented in this thesis investigated the use of agile method, specifically, BDD in practice. The
use of BDD was investigated in a project in a large organisation and afterward the scope of the
research was extended to the open-source projects on GitHub. The high-level findings from these
investigations show that Behaviour Driven Development must be adopted with care because its
use often incurs an overhead cost of maintaining Gherkin specifications. Because of the natural
language structure of Gherkin and the lack of research and available guidance, it is easy to
write specifications that could impede the evolution of a system in the future. Nonetheless,
the overhead of maintaining Gherkin could also pay off later in a project in the form of bug
reduction and high-quality code. However, more research is required to investigate this. The
experience and knowledge gained throughout this research provide foundational work to further
investigate BDD for challenges and limitations.

Bibliography

Adil A Abdelaziz, Yaseen El-Tahir, and Raheeg Osman. Adaptive software development for
developing safety critical software. In 2015 International Conference on Computing, Con-

trol, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), pages 41–46.
IEEE, 2015.

Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software develop-
ment methods: Review and analysis. arXiv preprint arXiv:1709.08439, 2017.

Muhammad Faisal Abrar, Muhammad Sohail Khan, Sikandar Ali, Umar Ali, Muhammad Faran
Majeed, Amjad Ali, Bahrul Amin, and Nasir Rasheed. Motivators for large-scale agile adop-
tion from management perspective: A systematic literature review. IEEE Access, 7:22660–
22674, 2019. doi: 10.1109/ACCESS.2019.2896212. URL https://doi.org/10.110

9/ACCESS.2019.2896212.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale us-
ing language modeling. In 2013 10th Working Conference on Mining Software Repositories

(MSR), pages 207–216. IEEE, 2013.

Glen B. Alleman, Michael Henderson, and Ray Seggelke. Making agile development work in a
government contracting environment - measuring velocity with earned value. In 2003 Agile

Development Conference (ADC 2003), 25-28 June 2003, Salt Lake City, UT, USA, pages
114–119. IEEE Computer Society, 2003. doi: 10.1109/ADC.2003.1231460. URL https:

//doi.org/10.1109/ADC.2003.1231460.

Samar Alsaqqa, Samer Sawalha, and Heba Abdel-Nabi. Agile software development: Method-
ologies and trends. Int. J. Interact. Mob. Technol., 14(11):246–270, 2020. doi: 10.3991/IJIM
.V14I11.13269. URL https://doi.org/10.3991/ijim.v14i11.13269.

Ana Cláudia Amorim, Miguel Mira da Silva, Rúben Pereira, and Margarida Gonçalves. Using
agile methodologies for adopting COBIT. Inf. Syst., 101:101496, 2021. doi: 10.1016/j.is.202
0.101496. URL https://doi.org/10.1016/j.is.2020.101496.

Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris Avgeriou.
The financial aspect of managing technical debt: A systematic literature review. Inf. Softw.

237

https://doi.org/10.1109/ACCESS.2019.2896212
https://doi.org/10.1109/ACCESS.2019.2896212
https://doi.org/10.1109/ADC.2003.1231460
https://doi.org/10.1109/ADC.2003.1231460
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1016/j.is.2020.101496

BIBLIOGRAPHY 238

Technol., 64:52–73, 2015. doi: 10.1016/j.infsof.2015.04.001. URL https://doi.org/

10.1016/j.infsof.2015.04.001.

Vard Antinyan and Henrik Sandgren. Software safety analysis to support ISO 26262-6 compli-
ance in agile development. IEEE Softw., 38(3):52–60, 2021. doi: 10.1109/MS.2020.3026145.
URL https://doi.org/10.1109/MS.2020.3026145.

Jason Ard, Kristine Davidsen, and Terril Hurst. Simulation-based embedded agile development.
IEEE Software, 31(2):97–101, 2014.

Charles Ashbacher. Succeeding with agile: Software development using scrum, by mike cohn.
J. Object Technol., 9(4):0, 2010. doi: 10.5381/jot.2010.9.4.r1. URL https://doi.org/

10.5381/jot.2010.9.4.r1.

Pascal Aurlane. The Ultimate Guide to BDD Test Automation Frameworks. https://cucu
mber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-f

ramewor/, 2019.

Arnon Axelrod. Unit Tests and TDD, pages 395–424. Apress, Berkeley, CA, 2018. ISBN
978-1-4842-3832-5.

Jakob Axelsson, Efi Papatheocharous, Jaana Nyfjord, and Martin Törngren. Notes on agile
and safety-critical development. ACM SIGSOFT Softw. Eng. Notes, 41(2):23–26, 2016. doi:
10.1145/2894784.2894796. URL https://doi.org/10.1145/2894784.2894796.

Tom Axford. Concurrency in software engineering. Encyclopedia of Software Engineering,
2002.

Deepika Badampudi, Samuel Fricker, and Ana María Moreno. Perspectives on productivity and
delays in large-scale agile projects. In Hubert Baumeister and Barbara Weber, editors, Agile

Processes in Software Engineering and Extreme Programming - 14th International Confer-

ence, XP 2013, Vienna, Austria, June 3-7, 2013. Proceedings, volume 149 of Lecture Notes

in Business Information Processing, pages 180–194. Springer, 2013. doi: 10.1007/978-3-64
2-38314-4_13. URL https://doi.org/10.1007/978-3-642-38314-4_13.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Laguë, and Kostas Kontogiannis.
Advanced clone-analysis to support object-oriented system refactoring. In Proceedings of

the Seventh Working Conference on Reverse Engineering, WCRE’00, Brisbane, Australia,

November 23-25, 2000, pages 98–107. IEEE Computer Society, 2000. doi: 10.1109/WCRE
.2000.891457. URL https://doi.org/10.1109/WCRE.2000.891457.

Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. A large scale study of long-time con-
tributor prediction for github projects. IEEE Transactions on Software Engineering, 2019.

https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1109/MS.2020.3026145
https://doi.org/10.5381/jot.2010.9.4.r1
https://doi.org/10.5381/jot.2010.9.4.r1
https://cucumber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-framewor/
https://cucumber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-framewor/
https://cucumber.io/blog/bdd/the-ultimate-guide-to-bdd-test-automation-framewor/
https://doi.org/10.1145/2894784.2894796
https://doi.org/10.1007/978-3-642-38314-4_13
https://doi.org/10.1109/WCRE.2000.891457

BIBLIOGRAPHY 239

Rafael Fazzolino Pinto Barbosa. Feature-trace: an approach to generate operational profile and
to support regression testing from bdd features. Master’s thesis, Universidade de Brasília,
2020.

Claude Baron and Vincent Louis. Towards a continuous certification of safety-critical avionics
software. Computers in Industry, 125:103382, 2021.

Arlinta Christy Barus. The implementation of atdd and bdd from testing perspectives. Journal

of Physics: Conference Series, 1175(1):012112, 2019.

Richard L Baskerville. Investigating information systems with action research. Communications

of the association for information systems, 2(1):19, 1999.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David Binkley. An
empirical analysis of the distribution of unit test smells and their impact on software mainte-
nance. In 2012 28th IEEE International Conference on Software Maintenance (ICSM), pages
56–65. IEEE, 2012.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave W. Binkley. Are
test smells really harmful? an empirical study. Empir. Softw. Eng., 20(4):1052–1094, 2015.
doi: 10.1007/s10664-014-9313-0. URL https://doi.org/10.1007/s10664-014

-9313-0.

Kent Beck and Cynthia Andres. Extreme Programming Explained. XP Series. Addison Wes-
ley/Pearson Education, second edition, February 2005.

Kent Beck, Mike Beedle, Arie van Bennekum andw Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
The agile manifesto. Available at http://agilemanifesto.org, 2001a.

Kent Beck, Mike Hendrickson, and Martin Fowler. Planning extreme programming. Addison-
Wesley Professional, 2001b.

Kent L. Beck. Test-driven Development - by example. The Addison-Wesley signature series.
Addison-Wesley, 2003. ISBN 978-0-321-14653-3.

Ron Bell. Safety critical systems - a brief history of the development of guidelines and standards.
In Proceedings of the Twenty-fifth Safety-Critical Systems Symposium, 2017.

Herbert D. Benington. Production of large computer programs. Annals of the History of Com-

puting, 5(4):350–361, October 1983.

https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
http://agilemanifesto.org

BIBLIOGRAPHY 240

Leonard Peter Binamungu. Detecting and correcting duplication in behaviour driven develop-

ment specifications. PhD thesis, University of Manchester, 2020.

Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstantinou. Detecting dupli-
cate examples in behaviour driven development specifications. In 2018 IEEE Workshop on

Validation, Analysis and Evolution of Software Tests (VST), pages 6–10. IEEE, 2018a.

Leonard Peter Binamungu, Suzanne M. Embury, and Nikolaos Konstantinou. Maintaining be-
haviour driven development specifications: Challenges and opportunities. In Rocco Oliveto,
Massimiliano Di Penta, and David C. Shepherd, editors, 25th International Conference on

Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March

20-23, 2018, pages 175–184. IEEE Computer Society, 2018b. doi: 10.1109/SANER.2018.8
330207. URL https://doi.org/10.1109/SANER.2018.8330207.

Leonard Peter Binamungu, Suzanne M. Embury, and Nikolaos Konstantinou. Characterising
the quality of behaviour driven development specifications. In Viktoria Stray, Rashina Hoda,
Maria Paasivaara, and Philippe Kruchten, editors, Agile Processes in Software Engineering

and Extreme Programming - 21st International Conference on Agile Software Development,

XP 2020, Copenhagen, Denmark, June 8-12, 2020, Proceedings, volume 383 of Lecture Notes

in Business Information Processing, pages 87–102. Springer, 2020. doi: 10.1007/978-3-030-
49392-9_6. URL https://doi.org/10.1007/978-3-030-49392-9_6.

Elizabeth Bjarnason and Markus Borg. Aligning requirements and testing: Working together
toward the same goal. IEEE Softw., 34(1):20–23, 2017. doi: 10.1109/MS.2017.14. URL
https://doi.org/10.1109/MS.2017.14.

Elizabeth Bjarnason, Michael Unterkalmsteiner, Markus Borg, and Emelie Engström. A multi-
case study of agile requirements engineering and the use of test cases as requirements. Inf.

Softw. Technol., 77:61–79, 2016. doi: 10.1016/j.infsof.2016.03.008. URL https://doi.

org/10.1016/j.infsof.2016.03.008.

Sue Black, Paul P Boca, Jonathan P Bowen, Jason Gorman, and Mike Hinchey. Formal versus
agile: Survival of the fittest. Computer, 42(9):37–45, 2009.

Barry Boehm. Get ready for agile methods, with care. IEEE Computer, 35(1):64—69, January
2002.

Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

Rodrick Borg and Martin Kropp. Automated acceptance test refactoring. In Danny Dig and
Don S. Batory, editors, Fourth Workshop on Refactoring Tools 2011, WRT ’11, Waikiki, Hon-

https://doi.org/10.1109/SANER.2018.8330207
https://doi.org/10.1007/978-3-030-49392-9_6
https://doi.org/10.1109/MS.2017.14
https://doi.org/10.1016/j.infsof.2016.03.008
https://doi.org/10.1016/j.infsof.2016.03.008

BIBLIOGRAPHY 241

olulu, HI, USA, May 22, 2011, pages 15–21. ACM, 2011. doi: 10.1145/1984732.1984736.
URL https://doi.org/10.1145/1984732.1984736.

Johan Borgenstierna. Behave and pyunit: A testers perspective, 2018.

Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and Abram Hindle. Analyzing
the effects of test driven development in github. Empir. Softw. Eng., 23(4):1931–1958, 2018.
doi: 10.1007/s10664-017-9576-3. URL https://doi.org/10.1007/s10664-017

-9576-3.

Judy Bowen, Benjamin Weyers, and Bowen Liu. Creating formal models from informal design
artefacts. Int. J. Hum. Comput. Interact., 39(15):3141–3158, 2023. doi: 10.1080/10447318.2
022.2095833. URL https://doi.org/10.1080/10447318.2022.2095833.

Tyson R Browning and Ralph D Heath. Reconceptualizing the effects of lean on production
costs with evidence from the f-22 program. Journal of operations management, 27(1):23–44,
2009.

Robert Carlson and Richard Turner. Review of agile case studies for applicability to aircraft
systems integration. Procedia Computer Science, 16:469–474, 2013.

S. E. Carpenter and A. Dagnino. Is agile too fragile for space-based systems engineering? In
2014 IEEE International Conference on Space Mission Challenges for Information Technol-

ogy, pages 38–45, 2014. doi: 10.1109/SMC-IT.2014.13.

Álvaro Carrera, Carlos Angel Iglesias, and Mercedes Garijo. Beast methodology: An agile
testing methodology for multi-agent systems based on behaviour driven development. Inf.

Syst. Frontiers, 16(2):169–182, 2014. doi: 10.1007/s10796-013-9438-5. URL https:

//doi.org/10.1007/s10796-013-9438-5.

Oisín Cawley, Xiaofeng Wang, and Ita Richardson. Lean/agile software development method-
ologies in regulated environments - state of the art. In Pekka Abrahamsson and Nilay V. Oza,
editors, Lean Enterprise Software and Systems - First International Conference, LESS 2010,

Helsinki, Finland, October 17-20, 2010. Proceedings, volume 65 of Lecture Notes in Business

Information Processing, pages 31–36. Springer, 2010.

Oisín Cawley, Ita Richardson, Xiaofeng Wang, and Marco Kuhrmann. A conceptual framework
for lean regulated software development. In Dietmar Pfahl, Reda Bendraou, Richard Turner,
Marco Kuhrmann, Regina Hebig, and Fabrizio Maria Maggi, editors, Proceedings of the 2015

International Conference on Software and System Process, ICSSP 2015, Tallinn, Estonia,

August 24 - 26, 2015, pages 167–168. ACM, 2015.

https://doi.org/10.1145/1984732.1984736
https://doi.org/10.1007/s10664-017-9576-3
https://doi.org/10.1007/s10664-017-9576-3
https://doi.org/10.1080/10447318.2022.2095833
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1007/s10796-013-9438-5

BIBLIOGRAPHY 242

Z. Chaczko, R. Braun, L. Carrion, and J. Dagher. Design of unit testing using xunit.net. In
2014 Information Technology Based Higher Education and Training (ITHET), pages 1–9,
Sep. 2014. doi: 10.1109/ITHET.2014.7155685.

Adwait Chandorkar, Nitish Patkar, Andrea Di Sorbo, and Oscar Nierstrasz. An exploratory study
on the usage of gherkin features in open-source projects. In IEEE International Conference

on Software Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March

15-18, 2022, pages 1159–1166. IEEE, 2022. doi: 10.1109/SANER53432.2022.00134. URL
https://doi.org/10.1109/SANER53432.2022.00134.

Roderick Chapman. Industrial experience with agile in high-integrity software development. In
Safety Critical Systems Club, 2016.

Roderick Chapman, Neil White, and Jim Woodcock. What can agile methods bring to high-
integrity software development? Commun. ACM, 60(10):38–41, September 2017. ISSN
0001-0782. doi: 10.1145/3133233. URL http://doi.acm.org/10.1145/3133233.

David Chelimsky, Dave Astels, Bryan Helmkamp, Dan North, Zach Dennis, and Aslak Helle-
soy. The RSpec book: Behaviour driven development with Rspec, Cucumber, and Friends.
O’Reilly UK Ltd, 2010.

Emmanuel Chenu. Agility and lean for avionics. Paper Presented at Lean, Agile Approach to
High Integrity Software, Paris, 2009. http://manu40k.free.fr/AgilityAndLean
ForAvionics1.pdf, 2009.

Emmanuel Chenu. Agile & lean software development for avionic software. In 6th European

Congress on Real Time Software and Systems, pages 1–3, Toulouse, France, February 2012.
Association Aéronautique Astronautique de France.

Jacques M Chevalier and Daniel J Buckles. Participatory action research: Theory and methods

for engaged inquiry. Routledge, 2019.

Chun Yong Chong and Sai Peck Lee. Can commit change history reveal potential fault prone
classes? A study on github repositories. In Marten van Sinderen and Leszek A. Maciaszek, ed-
itors, Software Technologies - 13th International Conference, ICSOFT 2018, Porto, Portugal,

July 26-28, 2018, Revised Selected Papers, volume 1077 of Communications in Computer and

Information Science, pages 266–281. Springer, 2018. doi: 10.1007/978-3-030-29157-0_12.
URL https://doi.org/10.1007/978-3-030-29157-0_12.

Jan Chong, Robert Plummer, Larry J. Leifer, Scott R. Klemmer, Ozgur Eris, and George Toye.
Pair programming: When and why it works. In Proceedings of the 17th Annual Workshop

of the Psychology of Programming Interest Group, PPIG 2005, Brighton, UK, June 29 -

https://doi.org/10.1109/SANER53432.2022.00134
http://doi.acm.org/10.1145/3133233
http://manu40k.free.fr/AgilityAndLeanForAvionics1.pdf
http://manu40k.free.fr/AgilityAndLeanForAvionics1.pdf
https://doi.org/10.1007/978-3-030-29157-0_12

BIBLIOGRAPHY 243

July 1, 2005, page 5. Psychology of Programming Interest Group, 2005. URL https:

//ppig.org/papers/2005-ppig-17th-chong/.

Heting Chu and Qing Ke. Research methods: What’s in the name? Library & Information

Science Research, 39(4):284–294, 2017.

John Ciliberti. Test-driven development with asp. net core mvc. In ASP. NET Core Recipes,
pages 221–250. Springer, 2017.

Inta Cinite and Linda E Duxbury. Measuring the behavioral properties of commitment and
resistance to organizational change. The Journal of Applied Behavioral Science, 54(2):113–
139, 2018.

Paul Clarke, Marion Lepmets, Fergal McCaffery, Anita Finnegan, Alec Dorling, and Derek
Flood. Mdevspice-a comprehensive solution for manufacturers and assessors of safety-critical
medical device software. In International Conference on Software Process Improvement and

Capability Determination, pages 274–278. Springer, 2014.

Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley Professional, October 2004.

David J Coe and Jeffrey H Kulick. A model-based agile process for do-178c certification. In
Proceedings of the International Conference on Software Engineering Research and Practice

(SERP), page 1, 2013.

Mike Cohn. User stories applied: For agile software development. Addison-Wesley Profes-
sional, 2004.

CollabNet VersionOne. 7th annual state of agile report. https://www.stateofagile.c
om, May 2013.

CollabNet VersionOne. 8th annual state of agile report. https://www.stateofagile.c
om, May 2014.

CollabNet VersionOne. 9th annual state of agile report. https://www.stateofagile.c
om, May 2015.

CollabNet VersionOne. 10th annual state of agile report. https://www.stateofagile
.com, May 2016.

CollabNet VersionOne. 11th annual state of agile report. https://www.stateofagile
.com, May 2017.

CollabNet VersionOne. 12th annual state of agile report. https://www.stateofagile
.com, May 2018.

https://ppig.org/papers/2005-ppig-17th-chong/
https://ppig.org/papers/2005-ppig-17th-chong/
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com

BIBLIOGRAPHY 244

CollabNet VersionOne. 13th annual state of agile report. https://www.stateofagile
.com, May 2019.

CollabNet VersionOne. 14th annual state of agile report. https://www.stateofagile
.com, MAY 2020.

Kieran Conboy. Agility from first principles: Reconstructing the concept of agility in informa-
tion systems development. Information Systems Research, 20(3):329–354, 2009.

Kieran Conboy and Noel Carroll. Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Software, 36(2):44–50, 2019.

Michael Coram and Shawn Bohner. The impact of agile methods on software project man-
agement. In 12th IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems (ECBS’05), pages 363–370. IEEE, 2005.

Lucas C. Cordeiro, Raimundo S. Barreto, Rafael Barcelos, Meuse N. Oliveira Jr., Vicente Lu-
cena, and Paulo Romero Martins Maciel. TXM: an agile HW/SW development method-
ology for building medical devices. ACM SIGSOFT Softw. Eng. Notes, 32(6), 2007. doi:
10.1145/1317471.1317476. URL https://doi.org/10.1145/1317471.1317476.

Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. A systematic mapping study
of software development with github. IEEE Access, 5:7173–7192, 2017. doi: 10.1109/ACCE
SS.2017.2682323. URL https://doi.org/10.1109/ACCESS.2017.2682323.

Daniela S. Cruzes and Tore Dybå. Recommended steps for thematic synthesis in software
engineering. In Proceedings of the 5th International Symposium on Empirical Software

Engineering and Measurement, ESEM 2011, Banff, AB, Canada, September 22-23, 2011,
pages 275–284. IEEE Computer Society, 2011. doi: 10.1109/ESEM.2011.36. URL
https://doi.org/10.1109/ESEM.2011.36.

CucumberStudio. Anti-patterns. https://cucumber.io/docs/guides/anti-pat
terns/?lang=java, 2016.

CucumberStudio. Anti-patterns. https://cucumber.io/docs/gherkin/referen
ce/#scenario-outline, 2019a.

CucumberStudio. Writing better Gherkin. https://cucumber.io/docs/bdd/bette
r-gherkin/, 2019b.

Karina Curcio, Tiago Navarro, Andreia Malucelli, and Sheila S. Reinehr. Requirements engi-
neering: A systematic mapping study in agile software development. J. Syst. Softw., 139:
32–50, 2018. doi: 10.1016/j.jss.2018.01.036. URL https://doi.org/10.1016/j.

jss.2018.01.036.

https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://www.stateofagile.com
https://doi.org/10.1145/1317471.1317476
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1109/ESEM.2011.36
https://cucumber.io/docs/guides/anti-patterns/?lang=java
https://cucumber.io/docs/guides/anti-patterns/?lang=java
https://cucumber.io/docs/gherkin/reference/#scenario-outline
https://cucumber.io/docs/gherkin/reference/#scenario-outline
https://cucumber.io/docs/bdd/better-gherkin/
https://cucumber.io/docs/bdd/better-gherkin/
https://doi.org/10.1016/j.jss.2018.01.036
https://doi.org/10.1016/j.jss.2018.01.036

BIBLIOGRAPHY 245

Karen Sue Danley and Marsha Langer Ellison. A handbook for participatory action researchers.
Boston University, 1999.

Dai Davis. Legal aspects of safety critical systems. In Gerhard Rabe, editor, 14th International

Conference on Computer Safety, Reliability and Security, Safecomp 1995, Belgirate, Italy,

October 11-13, 1995, pages 156–170. Springer, 1995. doi: 10.1007/978-1-4471-3054-3_12.
URL https://doi.org/10.1007/978-1-4471-3054-3_12.

Hugo Sica de Andrade, Eduardo Santana de Almeida, and Ivica Crnkovic. Architectural bad
smells in software product lines: an exploratory study. In Anna Liu, John Klein, and Antony
Tang, editors, Proceedings of the WICSA 2014 Companion Volume, Sydney, NSW, Australia,

April 7-11, 2014, pages 12:1–12:6. ACM, 2014. doi: 10.1145/2578128.2578237. URL
https://doi.org/10.1145/2578128.2578237.

Jose Luis de la Vara, Alejandra Ruiz, Katrina Attwood, Huáscar Espinoza, Rajwinder Kaur
Panesar-Walawege, Ángel López, Idoya del Río, and Tim Kelly. Model-based specification
of safety compliance needs for critical systems: A holistic generic metamodel. Inf. Softw.

Technol., 72:16–30, 2016. doi: 10.1016/j.infsof.2015.11.008. URL https://doi.org/

10.1016/j.infsof.2015.11.008.

Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo de Almeida Maia. A systematic
literature review on bad smells-5 w’s: Which, when, what, who, where. IEEE Trans. Software

Eng., 47(1):17–66, 2021. doi: 10.1109/TSE.2018.2880977. URL https://doi.org/10

.1109/TSE.2018.2880977.

Pedro Lopes de Souza, Antônio Francisco do Prado, Wanderley Lopes de Souza, Sissi Marilia
dos Santos Forghieri Pereira, and Luís Ferreira Pires. Combining behaviour-driven develop-
ment with scrum for software development in the education domain. In Slimane Hammoudi,
Michal Smialek, Olivier Camp, and Joaquim Filipe, editors, ICEIS 2017 - Proceedings of the

19th International Conference on Enterprise Information Systems, Volume 2, Porto, Portugal,

April 26-29, 2017, pages 449–458. SciTePress, 2017. doi: 10.5220/0006336804490458.
URL https://doi.org/10.5220/0006336804490458.

Ian Dees, Matt Wynne, and Aslak Hellesoy. Cucumber Recipes: Automate Anything with BDD

Tools and Techniques. Pragmatic Bookshelf, 2013.

Daniel Ryan Degutis. How to speed up bdd automated acceptance testing for safety-critical
systems. B.S. thesis, University of Stuttgart, 2018.

Jeremy Dick, M. Elizabeth C. Hull, and Ken Jackson. Requirements Engineering, 4th Edition.
Springer, 2017. ISBN 978-3-319-61072-6. doi: 10.1007/978-3-319-61073-3. URL https:

//doi.org/10.1007/978-3-319-61073-3.

https://doi.org/10.1007/978-1-4471-3054-3_12
https://doi.org/10.1145/2578128.2578237
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1109/TSE.2018.2880977
https://doi.org/10.1109/TSE.2018.2880977
https://doi.org/10.5220/0006336804490458
https://doi.org/10.1007/978-3-319-61073-3
https://doi.org/10.1007/978-3-319-61073-3

BIBLIOGRAPHY 246

Melanie Diepenbeck, Ulrich Kühne, Mathias Soeken, Daniel Große, and Rolf Drechsler. Be-
haviour driven development for hardware design. IPSJ Trans. Syst. LSI Des. Methodol., 11:
29–45, 2018. doi: 10.2197/ipsjtsldm.11.29. URL https://doi.org/10.2197/ipsj

tsldm.11.29.

Kim-Karol Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors for
large-scale agile transformations: A systematic literature review. J. Syst. Softw., 119:87–108,
2016. doi: 10.1016/j.jss.2016.06.013. URL https://doi.org/10.1016/j.jss.20

16.06.013.

Torgeir Dingsøyr and Casper Lassenius. Emerging themes in agile software development: In-
troduction to the special section on continuous value delivery. Information and Software

Technology, 77:56–60, 2016.

Simone do Rocio Senger de Souza, Maria A. S. Brito, Rodolfo A. Silva, Paulo Sergio Lopes
de Souza, and Ed Zaluska. Research in concurrent software testing: a systematic review.
In João Lourenço and Eitan Farchi, editors, Proceedings of the 9th Workshop on Parallel

and Distributed Systems: Testing, Analysis, and Debugging, PADTAD 2011, Toronto, ON,

Canada, July 17-21, 2011, pages 1–5. ACM, 2011. doi: 10.1145/2002962.2002964. URL
https://doi.org/10.1145/2002962.2002964.

Ernani César dos Santos and Patricia Vilain. Automated acceptance tests as software require-
ments: An experiment to compare the applicability of fit tables and gherkin language. In
Juan Garbajosa, Xiaofeng Wang, and Ademar Aguiar, editors, Agile Processes in Software

Engineering and Extreme Programming - 19th International Conference, XP 2018, Porto,

Portugal, May 21-25, 2018, Proceedings, volume 314 of Lecture Notes in Business Informa-

tion Processing, pages 104–119. Springer, 2018. doi: 10.1007/978-3-319-91602-6_7. URL
https://doi.org/10.1007/978-3-319-91602-6_7.

Osama Doss and Tim P. Kelly. The 4+1 principles of software safety assurance and their impli-
cations for scrum. In Helen Sharp and Tracy Hall, editors, Agile Processes, in Software En-

gineering, and Extreme Programming - 17th International Conference, XP 2016, Edinburgh,

UK, May 24-27, 2016, Proceedings, volume 251 of Lecture Notes in Business Information

Processing, pages 286–290. Springer, 2016. doi: 10.1007/978-3-319-33515-5_27. URL
https://doi.org/10.1007/978-3-319-33515-5_27.

Bruce Powel Douglass. Agile Systems Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2016.

Ana Marcia Debiasi Duarte, Denio Duarte, and Marcello Thiry. Tracebok: Toward a soft-
ware requirements traceability body of knowledge. In 24th IEEE International Require-

ments Engineering Conference, RE 2016, Beijing, China, September 12-16, 2016, pages

https://doi.org/10.2197/ipsjtsldm.11.29
https://doi.org/10.2197/ipsjtsldm.11.29
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1145/2002962.2002964
https://doi.org/10.1007/978-3-319-91602-6_7
https://doi.org/10.1007/978-3-319-33515-5_27

BIBLIOGRAPHY 247

236–245. IEEE Computer Society, 2016. doi: 10.1109/RE.2016.32. URL https:

//doi.org/10.1109/RE.2016.32.

Aleksander Grzegorz Duszkiewicz, Jacob Glumby Sørensen, Niclas Johansen, Henry Edison,
and Thiago Rocha Silva. On identifying similar user stories to support agile estimation based
on historical data. In Palash Bera, Fabiano Dalpiaz, and Yves Wautelet, editors, Short Paper

Proceedings of the First International Workshop on Agile Methods for Information Systems

Engineering (Agil-ISE 2022) co-located with the 34th International Conference on Advanced

Information Systems Engineering (CAiSE 2022), Leuven, Belgium, June 6, 2022, volume
3134 of CEUR Workshop Proceedings, pages 21–26. CEUR-WS.org, 2022. URL https:

//ceur-ws.org/Vol-3134/paper-4.pdf.

Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A systematic
review. Information and software technology, 50(9-10):833–859, 2008.

Amel DŽANIĆ, Amel Toroman, and Alma DŽANIĆ. Agile software development: Model,
methods, advantages and disadvantages. Acta Technica Corviniensis-Bulletin of Engineering,
15(4), 2022.

Christof Ebert, Marco Kuhrmann, and Rafael Prikladnicki. Global software engineering: Evo-
lution and trends. In 11th IEEE International Conference on Global Software Engineering,

ICGSE 2016, Orange County, CA, USA, August 2-5, 2016, pages 144–153. IEEE Computer
Society, 2016.

Henry Edison, Xiaofeng Wang, and Kieran Conboy. Comparing methods for large-scale agile
software development: A systematic literature review. IEEE Trans. Software Eng., 48(8):
2709–2731, 2022. doi: 10.1109/TSE.2021.3069039. URL https://doi.org/10.110

9/TSE.2021.3069039.

Abigail Egbreghts. A literature review of behavior driven development using grounded the-
ory. In 27th Twente Student Conference on IT. Available at: https://pdfs. semanticscholar.

org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656. pdf, 2017.

Heba Elshandidy, Sherif Mazen, Ehab Hassanein, and Eman Nasr. Using behaviour-driven
requirements engineering for establishing and managing agile product lines. International

Journal of Advanced Computer Science and Applications, 12(2), 2021.

Dennis G Erwin and Andrew N Garman. Resistance to organizational change: linking research
and practice. Leadership & Organization Development Journal, 2010.

Tor Erlend Fægri and Nils Brede Moe. Re-conceptualizing requirements engineering: findings
from a large-scale, agile project. In Maria Paasivaara, editor, Scientific Workshop Proceedings

https://doi.org/10.1109/RE.2016.32
https://doi.org/10.1109/RE.2016.32
https://ceur-ws.org/Vol-3134/paper-4.pdf
https://ceur-ws.org/Vol-3134/paper-4.pdf
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.1109/TSE.2021.3069039

BIBLIOGRAPHY 248

of the XP2015, Helsinki, Finland, May 25-29, 2015, page 4. ACM, 2015. doi: 10.1145/2764
979.2764983. URL https://doi.org/10.1145/2764979.2764983.

Viktor Farcic and Alex Garcia. Test-Driven Java Development: Invoke TDD principles for end-

to-end application development. Packt Publishing Ltd, 2018.

Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder. Rapid quality
assurance with requirements smells. J. Syst. Softw., 123:190–213, 2017. doi: 10.1016/j.jss.20
16.02.047. URL https://doi.org/10.1016/j.jss.2016.02.047.

Brian Fitzgerald, Gerard Hartnett, and Kieran Conboy. Customising agile methods to software
practices at intel shannon. EJIS, 15(2):200–213, 2006.

Brian Fitzgerald, Klaas-Jan Stol, Ryan O’Sullivan, and Donal O’Brien. Scaling agile methods
to regulated environments: an industry case study. In David Notkin, Betty H. C. Cheng, and
Klaus Pohl, editors, 35th International Conference on Software Engineering, ICSE ’13, San

Francisco, CA, USA, May 18-26, 2013, pages 863–872. IEEE Computer Society, 2013. doi:
10.1109/ICSE.2013.6606635. URL https://doi.org/10.1109/ICSE.2013.66

06635.

Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry, 12(2):
219–245, 2006.

Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection of bad
smells in code: An experimental assessment. J. Object Technol., 11(2):5: 1–38, 2012. doi:
10.5381/jot.2012.11.2.a5. URL https://doi.org/10.5381/jot.2012.11.2.a5.

Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison Wesley object
technology series. Addison-Wesley, 1999. ISBN 978-0-201-48567-7. URL http://mart

infowler.com/books/refactoring.html.

Martin Fowler. Domain-Specific Languages. The Addison-Wesley signature series. Addison-
Wesley, 2011. ISBN 978-0-321-71294-3. URL http://vig.pearsoned.com/stor

e/product/1,1207,store-12521_isbn-0321712943,00.html.

Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional, 2018.

Samuel A Fricker, Rainer Grau, and Adrian Zwingli. Requirements engineering: best practice.
In Requirements Engineering for Digital Health, pages 25–46. Springer, 2015.

Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia Juristo. A dissection
of the test-driven development process: Does it really matter to test-first or to test-last? IEEE

https://doi.org/10.1145/2764979.2764983
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.5381/jot.2012.11.2.a5
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html

BIBLIOGRAPHY 249

Trans. Software Eng., 43(7):597–614, 2017. doi: 10.1109/TSE.2016.2616877. URL https:

//doi.org/10.1109/TSE.2016.2616877.

Davide Fucci, Cristina Palomares, Xavier Franch, Dolors Costal, Mikko Raatikainen, Martin
Stettinger, Zijad Kurtanovic, Tero Kojo, Lars Koenig, Andreas A. Falkner, Gottfried Schen-
ner, Fabrizio Brasca, Tomi Männistö, Alexander Felfernig, and Walid Maalej. Needs and chal-
lenges for a platform to support large-scale requirements engineering: a multiple-case study.
In Markku Oivo, Daniel Méndez Fernández, and Audris Mockus, editors, Proceedings of the

12th ACM/IEEE International Symposium on Empirical Software Engineering and Measure-

ment, ESEM 2018, Oulu, Finland, October 11-12, 2018, pages 19:1–19:10. ACM, 2018. doi:
10.1145/3239235.3240498. URL https://doi.org/10.1145/3239235.3240498.

Barbara Gallina, Faiz Ul Muram, and Julieth Patricia Castellanos Ardila. Compliance of agilized
(software) development processes with safety standards: a vision. In Ademar Aguiar, editor,
Proceedings of the 19th International Conference on Agile Software Development, XP 2019,

Companion, Porto, Portugal, May 21-25, 2018, pages 14:1–14:6. ACM, 2018. doi: 10.1145/
3234152.3234175. URL https://doi.org/10.1145/3234152.3234175.

Taghi Javdani Gandomani, Hazura Zulzalil, AA Ghani, Abu Bakar Md Sultan, and Khaironi Ya-
tim Sharif. How human aspects impress agile software development transition and adoption.
International Journal of Software Engineering and its Applications, 8(1):129–148, 2014.

Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward a catalogue
of architectural bad smells. In Raffaela Mirandola, Ian Gorton, and Christine Hofmeister,
editors, Architectures for Adaptive Software Systems, 5th International Conference on the

Quality of Software Architectures, QoSA 2009, East Stroudsburg, PA, USA, June 24-26, 2009,

Proceedings, volume 5581 of Lecture Notes in Computer Science, pages 146–162. Springer,
2009. doi: 10.1007/978-3-642-02351-4_10. URL https://doi.org/10.1007/97

8-3-642-02351-4_10.

Vahid Garousi and Baris Küçük. Smells in software test code: A survey of knowledge in industry
and academia. J. Syst. Softw., 138:52–81, 2018. doi: 10.1016/j.jss.2017.12.013. URL
https://doi.org/10.1016/j.jss.2017.12.013.

Vahid Garousi, Baris Kucuk, and Michael Felderer. What we know about smells in software test
code. IEEE Software, 36(3):61–73, 2018.

Kevin Gary, Andinet Enquobahrie, Luis Ibáñez, Patrick Cheng, Ziv Yaniv, Kevin Cleary, Shylaja
Kokoori, Benjamin Muffih, and John Heidenreich. Agile methods for open source safety-
critical software. Softw. Pract. Exp., 41(9):945–962, 2011. doi: 10.1002/spe.1075. URL
https://doi.org/10.1002/spe.1075.

https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1145/3239235.3240498
https://doi.org/10.1145/3234152.3234175
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1016/j.jss.2017.12.013
https://doi.org/10.1002/spe.1075

BIBLIOGRAPHY 250

Xiaocheng Ge, Richard F. Paige, and John A. McDermid. An iterative approach for development
of safety-critical software and safety arguments. In Sallyann Freudenberg and Joseph Chao,
editors, 2010 Agile Conference, AGILE 2010, Orlando, Florida, USA, August 9-13, 2010,
pages 35–43. IEEE Computer Society, 2010. doi: 10.1109/AGILE.2010.10. URL https:

//doi.org/10.1109/AGILE.2010.10.

Daniel Gerster and Christian Dremel. Agile contracts: Learnings from an autonomous driv-
ing sourcing project. In Jan vom Brocke, Shirley Gregor, and Oliver Müller, editors, 27th

European Conference on Information Systems - Information Systems for a Sharing Soci-

ety, ECIS 2019, Stockholm and Uppsala, Sweden, June 8-14, 2019, 2019. URL https:

//aisel.aisnet.org/ecis2019_rip/1.

Martin Glas and Sven Ziemer. Challenges for agile development of large systems in the aviation
industry. In Shail Arora and Gary T. Leavens, editors, Companion to the 24th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 901–908. ACM,
2009.

Luis Alberto Cisneros Gómez. Analysis of the impact of test based development techniques
(tdd, bdd, and atdd) to the software life cycle. Master’s thesis, Instituto Politecnico de Leiria
(Portugal), 2018.

Gildarcio Sousa Goncalves, Glaydson Luiz Bertoze Lima, Rene Esteves Maria, Ramiro Tadeu
Wisnieski, Mayara Valeria Morais dos Santos, Manasseis Alves Ferreira, Alexandre Chaves
da Silva, Andre Olimpio, Andre Gomes Lamas Otero, Luiz Eduardo Guarino de Vasconce-
los, et al. An interdisciplinary academic project for spatial critical embedded system agile
development. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pages
8C3–1. IEEE, 2015.

Janusz Górski and Katarzyna Lukasiewicz. Assessment of risks introduced to safety critical
software by agile practices - a software engineer’s perspective. Comput. Sci., 13(4):165–182,
2012. doi: 10.7494/csci.2012.13.4.165. URL https://doi.org/10.7494/csci.2

012.13.4.165.

Raman Goyal, Gabriel Ferreira, Christian Kästner, and James Herbsleb. Identifying unusual
commits on github. Journal of Software: Evolution and Process, 30(1):e1893, 2018.

Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Harald C. Gall. Pizza versus pinsa: On
the perception and measurability of unit test code quality. In IEEE International Conference

on Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia, September 28 -

October 2, 2020, pages 336–347. IEEE, 2020. doi: 10.1109/ICSME46990.2020.00040. URL
https://doi.org/10.1109/ICSME46990.2020.00040.

https://doi.org/10.1109/AGILE.2010.10
https://doi.org/10.1109/AGILE.2010.10
https://aisel.aisnet.org/ecis2019_rip/1
https://aisel.aisnet.org/ecis2019_rip/1
https://doi.org/10.7494/csci.2012.13.4.165
https://doi.org/10.7494/csci.2012.13.4.165
https://doi.org/10.1109/ICSME46990.2020.00040

BIBLIOGRAPHY 251

Julián Grigera, Alejandra Garrido, and José Matías Rivero. A tool for detecting bad usabil-
ity smells in an automatic way. In Sven Casteleyn, Gustavo Rossi, and Marco Winckler,
editors, Web Engineering, 14th International Conference, ICWE 2014, Toulouse, France,

July 1-4, 2014. Proceedings, volume 8541 of Lecture Notes in Computer Science, pages
490–493. Springer, 2014. doi: 10.1007/978-3-319-08245-5_34. URL https:

//doi.org/10.1007/978-3-319-08245-5_34.

Thomas Gruber, Egbert Althammer, and Erwin Schoitsch. Field test methods for a co-operative
integrated traffic management system. In Erwin Schoitsch, editor, Computer Safety, Reliabil-

ity, and Security, pages 183–195, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Jaber F Gubrium and James A Holstein. Handbook of interview research: Context and method.
Sage Publications, 2001.

Ilhan Gunbayi. Action research as a mixed methods research: Definition, philosophy, types,
process, political and ethical issues and pros and cons. Journal of Mixed Methods Studies,
(2), 2020.

Yuepu Guo, Rodrigo Oliveira Spínola, and Carolyn B. Seaman. Exploring the costs of technical
debt management - a case study. Empir. Softw. Eng., 21(1):159–182, 2016. doi: 10.1007/s1
0664-014-9351-7. URL https://doi.org/10.1007/s10664-014-9351-7.

Abhimanyu Gupta. Generation of multiple conceptual models from user stories in agile. In
REFSQ Workshops, 2019.

A. Hajou, Ronald S. Batenburg, and Slinger Jansen. An insight into the difficulties of software
development projects in the pharmaceutical industry. Lecture Notes in Software Engineering,
3(4):267– 275, November 2015.

Ali Hajou, Ronald Batenburg, and Slinger Jansen. How the pharmaceutical industry and ag-
ile software development methods conflict: A systematic literature review. In Bernady O.
Apduhan, Ana Maria A. C. Rocha, Sanjay Misra, David Taniar, Osvaldo Gervasi, and Beni-
amino Murgante, editors, 2014 14th International Conference on Computational Science and

Its Applications, Guimaraes, Portugal, June 30 - July 3, 2014, pages 40–48. IEEE Computer
Society, 2014.

M Hammersley, P Foster, and R Gomm. Case study and generalisation. Sage, 2000.

Dawson R Hancock and Bob Algozzine. Doing case study research: A practical guide for

beginning researchers. Teachers College Press, 2017.

Jo Erskine Hannay, Tore Dybå, Erik Arisholm, and Dag I. K. Sjøberg. The effectiveness of pair
programming: A meta-analysis. Inf. Softw. Technol., 51(7):1110–1122, 2009. doi: 10.1016/J.

https://doi.org/10.1007/978-3-319-08245-5_34
https://doi.org/10.1007/978-3-319-08245-5_34
https://doi.org/10.1007/s10664-014-9351-7

BIBLIOGRAPHY 252

INFSOF.2009.02.001. URL https://doi.org/10.1016/j.infsof.2009.02.0

01.

Kirsten Mark Hansen, Anders P. Ravn, and Victoria Stavridou. From safety analysis to software
requirements. IEEE Trans. Software Eng., 24(7):573–584, 1998. doi: 10.1109/32.708570.
URL https://doi.org/10.1109/32.708570.

Geir Kjetil Hanssen, Børge Haugset, Tor Stålhane, Thor Myklebust, and Ingar Kulbrandstad.
Quality assurance in scrum applied to safety critical software. In Helen Sharp and Tracy
Hall, editors, Agile Processes, in Software Engineering, and Extreme Programming - 17th

International Conference, XP 2016, Edinburgh, UK, May 24-27, 2016, Proceedings, volume
251 of Lecture Notes in Business Information Processing, pages 92–103. Springer, 2016. doi:
10.1007/978-3-319-33515-5_8. URL https://doi.org/10.1007/978-3-319-

33515-5_8.

John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul L. Jones. Certifiably
safe software-dependent systems: challenges and directions. In James D. Herbsleb and
Matthew B. Dwyer, editors, Proceedings of the on Future of Software Engineering, FOSE

2014, Hyderabad, India, May 31 - June 7, 2014, pages 182–200. ACM, 2014. doi:
10.1145/2593882.2593895. URL https://doi.org/10.1145/2593882.2593895.

Bi He, Bin Wang, Li Guo, Tongyao Yang, and Xin Xiong. A hierarchical modeling method
based on model-driven development in real-time control system design. In Proceedings of the

32nd Chinese Control Conference, pages 5357–5362. IEEE, 2013.

Lise Tordrup Heeager. How can agile and documentation-driven methods be meshed in practice?
In Giovanni Cantone and Michele Marchesi, editors, Agile Processes in Software Engineering

and Extreme Programming - 15th International Conference, XP 2014, Rome, Italy, May 26-

30, 2014. Proceedings, volume 179 of Lecture Notes in Business Information Processing,
pages 62–77. Springer, 2014. doi: 10.1007/978-3-319-06862-6_5. URL https://doi.

org/10.1007/978-3-319-06862-6_5.

Lise Tordrup Heeager and Peter Axel Nielsen. A conceptual model of agile software develop-
ment in a safety-critical context: A systematic literature review. Inf. Softw. Technol., 103:
22–39, 2018. doi: 10.1016/j.infsof.2018.06.004. URL https://doi.org/10.1016/

j.infsof.2018.06.004.

Ville T. Heikkilä, Maria Paasivaara, Casper Lassenius, Daniela E. Damian, and Christian Eng-
blom. Managing the requirements flow from strategy to release in large-scale agile develop-
ment: a case study at ericsson. Empir. Softw. Eng., 22(6):2892–2936, 2017. doi: 10.1007/s1
0664-016-9491-z. URL https://doi.org/10.1007/s10664-016-9491-z.

https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1109/32.708570
https://doi.org/10.1007/978-3-319-33515-5_8
https://doi.org/10.1007/978-3-319-33515-5_8
https://doi.org/10.1145/2593882.2593895
https://doi.org/10.1007/978-3-319-06862-6_5
https://doi.org/10.1007/978-3-319-06862-6_5
https://doi.org/10.1016/j.infsof.2018.06.004
https://doi.org/10.1016/j.infsof.2018.06.004
https://doi.org/10.1007/s10664-016-9491-z

BIBLIOGRAPHY 253

Aslak Hellesøy. BDD is not test automation. https://cucumber.io/blog/bdd/bdd
-is-not-test-automation/, 2020.

James D. Herbsleb and Audris Mockus. An empirical study of speed and communication in
globally distributed software development. IEEE Trans. Software Eng., 29(6):481–494, 2003.

Philipp Hohl, Jil Klünder, Arie van Bennekum, Ryan Lockard, James Gifford, Jürgen Münch,
Michael Stupperich, and Kurt Schneider. Back to the future: origins and directions of the
"agile manifesto" - views of the originators. J. Softw. Eng. Res. Dev., 6:15, 2018. doi: 10.118
6/s40411-018-0059-z. URL https://doi.org/10.1186/s40411-018-0059-z.

James A Holstein et al. Handbook of interview research: Context and method. Sage, 2002.

Philip M Huang, Ann G Darrin, and Andrew A Knuth. Agile hardware and software system
engineering for innovation. In 2012 IEEE Aerospace Conference, pages 1–10. IEEE, 2012.

D. Laurie Hughes, Nripendra P. Rana, and Antonis C. Simintiras. The changing landscape of
IS project failure: an examination of the key factors. J. Enterp. Inf. Manag., 30(1):142–165,
2017. doi: 10.1108/JEIM-01-2016-0029. URL https://doi.org/10.1108/JEIM-0

1-2016-0029.

Irum Inayat, Lauriane Moraes, Maya Daneva, and Siti Salwah Salim. A reflection on ag-
ile requirements engineering: solutions brought and challenges posed. In Maria Paasi-
vaara, editor, Scientific Workshop Proceedings of the XP2015, Helsinki, Finland, May 25-

29, 2015, page 6. ACM, 2015a. doi: 10.1145/2764979.2764985. URL https:

//doi.org/10.1145/2764979.2764985.

Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin Shamshir-
band. A systematic literature review on agile requirements engineering practices and chal-
lenges. Comput. Hum. Behav., 51:915–929, 2015b. doi: 10.1016/j.chb.2014.10.046. URL
https://doi.org/10.1016/j.chb.2014.10.046.

Javed Iqbal, Rodina B Ahmad, Muzafar Khan, Sultan Alyahya, Mohd Hairul Nizam Nasir, Ad-
nan Akhunzada, and Muhammad Shoaib. Requirements engineering issues causing software
development outsourcing failure. PloS one, 15(4):e0229785, 2020.

Mohsin Irshad, Ricardo Britto, and Kai Petersen. Adapting behavior driven development (BDD)
for large-scale software systems. J. Syst. Softw., 177:110944, 2021. doi: 10.1016/j.jss.2021.1
10944. URL https://doi.org/10.1016/j.jss.2021.110944.

Mohsin Irshad, Jürgen Börstler, and Kai Petersen. Supporting refactoring of BDD specifications
- an empirical study. Inf. Softw. Technol., 141:106717, 2022. doi: 10.1016/j.infsof.2021.1067
17. URL https://doi.org/10.1016/j.infsof.2021.106717.

https://cucumber.io/blog/bdd/bdd-is-not-test-automation/
https://cucumber.io/blog/bdd/bdd-is-not-test-automation/
https://doi.org/10.1186/s40411-018-0059-z
https://doi.org/10.1108/JEIM-01-2016-0029
https://doi.org/10.1108/JEIM-01-2016-0029
https://doi.org/10.1145/2764979.2764985
https://doi.org/10.1145/2764979.2764985
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.1016/j.jss.2021.110944
https://doi.org/10.1016/j.infsof.2021.106717

BIBLIOGRAPHY 254

Gibrail Islam and Tim Storer. A case study of agile software development for safety-critical
systems projects, 2020a. URL https://doi.org/10.1016/j.ress.2020.1069

54.

Gibrail Islam and Tim Storer. A case study of agile software development for safety-critical
systems projects. Reliab. Eng. Syst. Saf., 200:106954, 2020b. doi: 10.1016/j.ress.2020.1069
54. URL https://doi.org/10.1016/j.ress.2020.106954.

Michael A. Jackson. Problem Frames - Analysing and Structuring Software Development Prob-

lems. Pearson Education, 2000. ISBN 978-0-2015-9627-4. URL http://www.pearso

ned.co.uk/Bookshop/detail.asp?item=100000000004768.

Samireh Jalali and Claes Wohlin. Systematic literature studies: database searches vs. backward
snowballing. In Proceedings of the 2012 ACM-IEEE international symposium on empirical

software engineering and measurement, pages 29–38. IEEE, 2012.

Hanne-Gro Jamissen. The challenges to the safety process when using agile development mod-
els. Master’s thesis, Østfeld University College, 2012.

Andrew P Johnson. A short guide to action research. Allyn and Bacon, 2008.

Danielle L. Jones and Scott D. Fleming. What use is a backseat driver? A qualitative inves-
tigation of pair programming. In Caitlin Kelleher, Margaret M. Burnett, and Stefan Sauer,
editors, 2013 IEEE Symposium on Visual Languages and Human Centric Computing, San

Jose, CA, USA, September 15-19, 2013, pages 103–110. IEEE Computer Society, 2013. doi:
10.1109/VLHCC.2013.6645252. URL https://doi.org/10.1109/VLHCC.2013

.6645252.

Henrik Jonsson, Stig Larsson, and Sasikumar Punnekkat. Agile practices in regulated rail-
way software development. In 23rd IEEE International Symposium on Software Reliabil-

ity Engineering Workshops, ISSRE Workshops, Dallas, TX, USA, November 27-30, 2012,
pages 355–360. IEEE Computer Society, 2012. doi: 10.1109/ISSREW.2012.80. URL
https://doi.org/10.1109/ISSREW.2012.80.

Brendan Julian, James Noble, and Craig Anslow. Agile practices in practice: Towards a theory
of agile adoption and process evolution. In Philippe Kruchten, Steven Fraser, and François
Coallier, editors, Agile Processes in Software Engineering and Extreme Programming - 20th

International Conference, XP 2019, Montréal, QC, Canada, May 21-25, 2019, Proceedings,
volume 355 of Lecture Notes in Business Information Processing, pages 3–18. Springer, 2019.
doi: 10.1007/978-3-030-19034-7_1. URL https://doi.org/10.1007/978-3-03

0-19034-7_1.

https://doi.org/10.1016/j.ress.2020.106954
https://doi.org/10.1016/j.ress.2020.106954
https://doi.org/10.1016/j.ress.2020.106954
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=100000000004768
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=100000000004768
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1109/ISSREW.2012.80
https://doi.org/10.1007/978-3-030-19034-7_1
https://doi.org/10.1007/978-3-030-19034-7_1

BIBLIOGRAPHY 255

Natalia Juristo Juzgado and Ana María Moreno. Basics of software engineering experimenta-

tion. Kluwer, 2001. ISBN 978-0-7923-7990-4.

Veerapaneni Esther Jyothi and K Nageswara Rao. Effective implementation of agile practices.
International Journal of Advanced Computer Science and Applications, 2(3), 2011.

Matti Kaisti, Ville Rantala, Tapio Mujunen, Sami Hyrynsalmi, Kaisa Könnölä, Tuomas Mäkilä,
and Teijo Lehtonen. Agile methods for embedded systems development - a literature review
and a mapping study. EURASIP J. Emb. Sys., 2013:15, 2013.

Martin Kalenda, Petr Hyna, and Bruno Rossi. Scaling agile in large organizations: Practices,
challenges, and success factors. J. Softw. Evol. Process., 30(10), 2018. doi: 10.1002/smr.1954.
URL https://doi.org/10.1002/smr.1954.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Germán, and
Daniela E. Damian. An in-depth study of the promises and perils of mining github. Empir.

Softw. Eng., 21(5):2035–2071, 2016. doi: 10.1007/s10664-015-9393-5. URL https:

//doi.org/10.1007/s10664-015-9393-5.

Hanna Kallio, Anna-Maija Pietilä, Martin Johnson, and Mari Kangasniemi. Systematic method-
ological review: developing a framework for a qualitative semi-structured interview guide.
Journal of advanced nursing, 72(12):2954–2965, 2016.

Rashidah Kasauli, Eric Knauss, Benjamin Kanagwa, Agneta Nilsson, and Gul Calikli. Safety-
critical systems and agile development: A mapping study. In Tomás Bures and Left-
eris Angelis, editors, 44th Euromicro Conference on Software Engineering and Advanced

Applications, SEAA 2018, Prague, Czech Republic, August 29-31, 2018, pages 470–477.
IEEE Computer Society, 2018a. doi: 10.1109/SEAA.2018.00082. URL https:

//doi.org/10.1109/SEAA.2018.00082.

Rashidah Kasauli, Grischa Liebel, Eric Knauss, Swathi Gopakumar, and Benjamin Kanagwa.
Requirements engineering challenges in large-scale agile system development. In Matthias
Tichy, Eric Bodden, Marco Kuhrmann, Stefan Wagner, and Jan-Philipp Steghöfer, editors,
Software Engineering und Software Management 2018, Fachtagung des GI-Fachbereichs

Softwaretechnik, SE 2018, 5.-9. März 2018, Ulm, Germany, volume P-279 of LNI, pages
133–135. Gesellschaft für Informatik, 2018b. URL https://dl.gi.de/20.500.12

116/16327.

Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel, and Francisco Gomes
de Oliveira Neto. Requirements engineering challenges and practices in large-scale agile
system development. J. Syst. Softw., 172:110851, 2021. doi: 10.1016/j.jss.2020.110851.
URL https://doi.org/10.1016/j.jss.2020.110851.

https://doi.org/10.1002/smr.1954
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1109/SEAA.2018.00082
https://doi.org/10.1109/SEAA.2018.00082
https://dl.gi.de/20.500.12116/16327
https://dl.gi.de/20.500.12116/16327
https://doi.org/10.1016/j.jss.2020.110851

BIBLIOGRAPHY 256

Mohamad Kassab. The changing landscape of requirements engineering practices over the
past decade. In Richard Berntsson-Svensson, Maya Daneva, Neil A. Ernst, Sabrina Mar-
czak, and Nazim H. Madhavji, editors, 2015 IEEE Fifth International Workshop on Em-

pirical Requirements Engineering, EmpiRE 2015, Ottawa, ON, Canada, August 24, 2015,
pages 1–8. IEEE Computer Society, 2015. doi: 10.1109/EmpiRE.2015.7431299. URL
https://doi.org/10.1109/EmpiRE.2015.7431299.

Tim Kelly. Software certification: Where is confidence won and lost? Addressing Systems

Safety Challenges, T. Anderson, C. Dale (Eds), Safety Critical Systems Club, 2014.

Stephen Kemmis, Robin McTaggart, and Rhonda Nixon. The action research planner: Doing

critical participatory action research. Springer Science & Business Media, 2013.

Dave Kennedy. Smelly Cucumbers. https://www.sitepoint.com/smelly-cucum
bers/, 2012.

Mary M Kennedy. Generalizing from single case studies. Evaluation quarterly, 3(4):661–678,
1979.

Elizabeth Keogh. Bdd: A lean toolkit. In Processings of Lean Software & Systems Conference,

Atlanta, 2010.

PM Khan and MMS Sufyan Beg. Extended decision support matrix for selection of sdlc-models
on traditional and agile software development projects. In 2013 Third International Confer-

ence on Advanced Computing and Communication Technologies (ACCT), pages 8–15. IEEE,
2013.

V. Khorikov. Unit Testing. MANNING PUBN, 2020a. ISBN 9781617296277. URL https:

//books.google.co.uk/books?id=CbvZyAEACAAJ.

Vladimir Khorikov. Unit Testing Principles, Practices, and Patterns. Manning Publications, 1
edition, 2020b. ISBN 1617296279;9781617296277;.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study of refactoring
challenges and benefits. In Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering, pages 1–11, 2012.

Sara Kindon, Rachel Pain, and Mike Kesby. Participatory action research approaches and

methods: Connecting people, participation and place, volume 22. Routledge, 2007.

Barbara A. Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John Bailey, and
Stephen G. Linkman. Systematic literature reviews in software engineering - A systematic
literature review. Inf. Softw. Technol., 51(1):7–15, 2009. doi: 10.1016/j.infsof.2008.09.009.
URL https://doi.org/10.1016/j.infsof.2008.09.009.

https://doi.org/10.1109/EmpiRE.2015.7431299
https://www.sitepoint.com/smelly-cucumbers/
https://www.sitepoint.com/smelly-cucumbers/
https://books.google.co.uk/books?id=CbvZyAEACAAJ
https://books.google.co.uk/books?id=CbvZyAEACAAJ
https://doi.org/10.1016/j.infsof.2008.09.009

BIBLIOGRAPHY 257

Andrew Knight. Bad Gherkin. https://automationpanda.com/tag/gherkin/,
2017.

John C Knight. Safety critical systems: challenges and directions. In Proceedings of the 24th

International Conference on Software Engineering, pages 547–550. ACM, 2002.

Sascha Konrad and Michael Gall. Requirements engineering in the development of large-scale
systems. In 16th IEEE International Requirements Engineering Conference, RE 2008, 8-

12 September 2008, Barcelona, Catalunya, Spain, pages 217–222. IEEE Computer Society,
2008. doi: 10.1109/RE.2008.31. URL https://doi.org/10.1109/RE.2008.31.

Andy Koronios, Michael Lane, and Glen Van Der Vyver. Facilitators and inhibitors for the
adoption of agile methods. In Systems Analysis and Design: People, Processes, and Projects,
pages 43–62. Routledge, 2015.

Tomaz Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: A systematic
mapping study. Inf. Softw. Technol., 71:77–91, 2016. doi: 10.1016/J.INFSOF.2015.11.001.
URL https://doi.org/10.1016/j.infsof.2015.11.001.

Valsa Koshy. Action research for improving practice: A practical guide. Sage, 2005.

Aapo Koski and Tommi Mikkonen. Rolling out a mission critical system in an agilish way.
reflections on building a large-scale dependable information system for public sector. In
Matthias Tichy, Jan Bosch, Michael Goedicke, and Brian Fitzgerald, editors, 2nd IEEE/ACM

International Workshop on Rapid Continuous Software Engineering, RCoSE 2015, Florence,

Italy, May 23, 2015, pages 41–44. IEEE Computer Society, 2015. doi: 10.1109/RCoSE.2015
.15. URL https://doi.org/10.1109/RCoSE.2015.15.

Philippe Kruchten. Contextualizing agile software development. Journal of software: Evolution

and Process, 25(4):351–361, 2013.

Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and Thorsten Berger.
Towards a better understanding of software features and their characteristics: A case study
of marlin. In Rafael Capilla, Malte Lochau, and Lidia Fuentes, editors, Proceedings of the

12th International Workshop on Variability Modelling of Software-Intensive Systems, VAMOS

2018, Madrid, Spain, February 7-9, 2018, pages 105–112. ACM, 2018. doi: 10.1145/316836
5.3168371. URL https://doi.org/10.1145/3168365.3168371.

Wolfgang Kuchinke, Christian Krauth, and Töresin Karakoyun. Agile software development
requires an agile approach for computer system validation of clinical trials software products.
In eChallenges e-2014 Conference Proceedings, pages 1–8. IEEE, 2014.

Konstantin Kudryashov. The beginner’s guide to bdd. Dan North Q & A. https://inviqa.

com/blog/bdd-guide, 2015.

https://automationpanda.com/tag/gherkin/
https://doi.org/10.1109/RE.2008.31
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1109/RCoSE.2015.15
https://doi.org/10.1145/3168365.3168371

BIBLIOGRAPHY 258

Alessandro Landi and Mark Nicholson. Arp4754a/ed-79a-guidelines for development of civil
aircraft and systems-enhancements, novelties and key topics. SAE International Journal of

Aerospace, 4(2011-01-2564):871–879, 2011.

Phillip A Laplante. Requirements engineering for software and systems. CRC Press, 2017.

Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. Understanding the impressions, motiva-
tions, and barriers of one time code contributors to FLOSS projects: a survey. In Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard, editors, Proceedings of the 39th Inter-

national Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May

20-28, 2017, pages 187–197. IEEE / ACM, 2017. doi: 10.1109/ICSE.2017.25. URL
https://doi.org/10.1109/ICSE.2017.25.

Shou-Yu Lee, W. Eric Wong, and Ruizhi Gao. Software safety standards: Evolution and lessons
learned. In 2014 International Conference on Trustworthy Systems and their Applications,

TSA 2014, Taichung, Taiwan, June 9-10, 2014, pages 44–50. IEEE, 2014. doi: 10.1109/TSA.
2014.16. URL https://doi.org/10.1109/TSA.2014.16.

Dean Leffingwell. SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean Software and

Systems Engineering: Scaled Agile Framework for Lean Software and Systems Engineering.
Addison-Wesley Professional, first edition, 2016.

Timo O. A. Lehtinen, Mika Mäntylä, Jari Vanhanen, Juha Itkonen, and Casper Lassenius. Per-
ceived causes of software project failures - an analysis of their relationships. Inf. Softw.

Technol., 56(6):623–643, 2014. doi: 10.1016/j.infsof.2014.01.015. URL https:

//doi.org/10.1016/j.infsof.2014.01.015.

Howard Lei, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran, and Pinar Ozcan. A statistical
analysis of the effects of scrum and kanban on software development projects. Robotics and

Computer-Integrated Manufacturing, 43:59–67, 2017.

Per Lenberg, Robert Feldt, Lars Göran Wallgren Tengberg, and Lucas Gren. Behavioral aspects
of safety-critical software development. In ICSE ’20: 42nd International Conference on

Software Engineering, Workshops, Seoul, Republic of Korea, 27 June - 19 July, 2020, pages
173–176. ACM, 2020. doi: 10.1145/3387940.3392227. URL https://doi.org/10.1

145/3387940.3392227.

Maurizio Leotta, Maura Cerioli, Dario Olianas, and Filippo Ricca. Hamcrest vs assertj: An
empirical assessment of tester productivity. In International Conference on the Quality of

Information and Communications Technology, pages 161–176. Springer, 2019.

Marion Lepmets, Fergal McCaffery, and Paul M. Clarke. Piloting mdevspice: the medical
device software process assessment framework. In Dietmar Pfahl, Reda Bendraou, Richard

https://doi.org/10.1109/ICSE.2017.25
https://doi.org/10.1109/TSA.2014.16
https://doi.org/10.1016/j.infsof.2014.01.015
https://doi.org/10.1016/j.infsof.2014.01.015
https://doi.org/10.1145/3387940.3392227
https://doi.org/10.1145/3387940.3392227

BIBLIOGRAPHY 259

Turner, Marco Kuhrmann, Regina Hebig, and Fabrizio Maria Maggi, editors, Proceedings

of the 2015 International Conference on Software and System Process, ICSSP 2015, Tallinn,

Estonia, August 24 - 26, 2015, pages 9–16. ACM, 2015. doi: 10.1145/2785592.2785598.
URL https://doi.org/10.1145/2785592.2785598.

Nancy G Leveson. Engineering a safer world: Systems thinking applied to safety. The MIT
Press, 2016.

Mikael Lindvall, Victor R. Basili, Barry W. Boehm, Patricia Costa, Kathleen Coleman Dangle,
Forrest Shull, Roseanne Tesoriero Tvedt, Laurie A. Williams, and Marvin V. Zelkowitz. Em-
pirical findings in agile methods. In Don Wells and Laurie A. Williams, editors, Extreme

Programming and Agile Methods - XP/Agile Universe 2002, Second XP Universe and First

Agile Universe Conference Chicago, IL, USA, August 4-7, 2002, Proceedings, volume 2418
of Lecture Notes in Computer Science, pages 197–207. Springer, 2002.

Google LLC. Google Scholar. https://scholar.google.com/, 2004.

Mike Lowery and Marcus Evans. Scaling product ownership. In Jutta Eckstein, Frank Maurer,
Rachel Davies, Grigori Melnik, and Gary Pollice, editors, AGILE 2007 Conference (AGILE

2007), 13-17 August 2007, Washington, DC, USA, pages 328–333. IEEE Computer Society,
2007.

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf, and Sjaak Brinkkemper.
The use and effectiveness of user stories in practice. In Maya Daneva and Oscar Pastor,
editors, Requirements Engineering: Foundation for Software Quality - 22nd International

Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016, Proceedings,
volume 9619 of Lecture Notes in Computer Science, pages 205–222. Springer, 2016. doi:
10.1007/978-3-319-30282-9_14. URL https://doi.org/10.1007/978-3-319-

30282-9_14.

Katarzyna Lukasiewicz and Janusz Górski. Agilesafe - a method of introducing agile practices
into safety-critical software development processes. In Maria Ganzha, Leszek A. Maciaszek,
and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer

Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016,
volume 8 of Annals of Computer Science and Information Systems, pages 1549–1552. IEEE,
2016. doi: 10.15439/2016F360. URL https://doi.org/10.15439/2016F360.

Katarzyna Lukasiewicz and Janusz Górski. Introducing agile practices into development pro-
cesses of safety critical software. In Ademar Aguiar, editor, Proceedings of the 19th Inter-

national Conference on Agile Software Development, XP 2019, Companion, Porto, Portugal,

May 21-25, 2018, pages 13:1–13:8. ACM, 2018. doi: 10.1145/3234152.3234174. URL
https://doi.org/10.1145/3234152.3234174.

https://doi.org/10.1145/2785592.2785598
https://scholar.google.com/
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.15439/2016F360
https://doi.org/10.1145/3234152.3234174

BIBLIOGRAPHY 260

D. Ma’ayan. The quality of junit tests: An empirical study report. In 2018 IEEE/ACM 1st

International Workshop on Software Qualities and their Dependencies (SQUADE), pages 33–
36, May 2018.

Linda A. Macaulay. Requirements engineering. Applied computing. Springer Science & Busi-
ness Media, 2012.

Cathy MacDonald. Understanding participatory action research: A qualitative research method-
ology option. The Canadian Journal of Action Research, 13(2):34–50, 2012.

Daniel Maciel, Ana C. R. Paiva, and Alberto Rodrigues da Silva. From requirements to auto-
mated acceptance tests of interactive apps: An integrated model-based testing approach. In
Ernesto Damiani, George Spanoudakis, and Leszek A. Maciaszek, editors, Proceedings of the

14th International Conference on Evaluation of Novel Approaches to Software Engineering,

ENASE 2019, Heraklion, Crete, Greece, May 4-5, 2019, pages 265–272. SciTePress, 2019.
doi: 10.5220/0007679202650272. URL https://doi.org/10.5220/0007679202

650272.

Edward J Mango. Safety characteristics in system application software for human rated explo-
ration missions. Journal of Space Safety Engineering, 3(3):104–110, 2016.

Rafaela Mantovani Fontana and Sabrina Marczak. Characteristics and challenges of agile soft-
ware development adoption in brazilian government. Journal of technology management &

innovation, 15(2):3–10, 2020.

Mika Mantyla. Bad smells in software-a taxonomy and an empirical study. PhD thesis, PhD
thesis, Helsinki University of Technology, 2003.

Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. A taxonomy and an initial empirical
study of bad smells in code. In 19th International Conference on Software Maintenance

(ICSM 2003), The Architecture of Existing Systems, 22-26 September 2003, Amsterdam, The

Netherlands, pages 381–384. IEEE Computer Society, 2003. doi: 10.1109/ICSM.2003.1235
447. URL https://doi.org/10.1109/ICSM.2003.1235447.

Hafiza Maria Maqsood, Eduardo Martins Guerra, Xiaofeng Wang, and Andrea Bondavalli. Pat-
terns for development of safety-critical systems with agile: Trace safety requirements and
perform automated testing. In EuroPLoP ’20: European Conference on Pattern Languages

of Programs 2020, Virtual Event, Germany, 1-4 July, 2020, pages 3:1–3:6. ACM, 2020. doi:
10.1145/3424771.3424800. URL https://doi.org/10.1145/3424771.3424800.

Johnny Marques and Adilson Cunha. A reference method for airborne software requirements.
In Digital Avionics Systems Conference (DASC), 2013 IEEE/AIAA 32nd, pages 7A2–1. IEEE,
2013.

https://doi.org/10.5220/0007679202650272
https://doi.org/10.5220/0007679202650272
https://doi.org/10.1109/ICSM.2003.1235447
https://doi.org/10.1145/3424771.3424800

BIBLIOGRAPHY 261

Luiz Eduardo Galvão Martins and Tony Gorschek. Requirements engineering for safety-critical
systems: A systematic literature review. Inf. Softw. Technol., 75:71–89, 2016. doi: 10.1016/j.
infsof.2016.04.002. URL https://doi.org/10.1016/j.infsof.2016.04.002.

Luiz Eduardo Galvão Martins and Tony Gorschek. Requirements engineering for safety-critical
systems: Overview and challenges. IEEE Softw., 34(4):49–57, 2017. doi: 10.1109/MS.2017.
94. URL https://doi.org/10.1109/MS.2017.94.

Tom McBride and Marion Lepmets. Quality assurance in agile safety-critical systems de-
velopment. In Mark C. Paulk, Ricardo J. Machado, Miguel A. Brito, Miguel Goulão,
and Vasco Amaral, editors, 10th International Conference on the Quality of Information

and Communications Technology, QUATIC 2016, Lisbon, Portugal, September 6-9, 2016,
pages 44–51. IEEE Computer Society, 2016. doi: 10.1109/QUATIC.2016.016. URL
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.016.

Martin McHugh, Oisín Cawley, Fergal McCaffery, Ita Richardson, and Xiaofeng Wang. An ag-
ile v-model for medical device software development to overcome the challenges with plan-
driven software development lifecycles. In John Knight and Craig E. Kuziemsky, editors, Pro-

ceedings of the 5th International Workshop on Software Engineering in Health Care, SEHC

2013, San Francisco, California, USA, May 20-21, 2013, pages 12–19. IEEE Computer So-
ciety, 2013. doi: 10.1109/SEHC.2013.6602471. URL https://doi.org/10.1109/

SEHC.2013.6602471.

Martin McHugh, Fergal McCaffery, and Garret Coady. An agile implementation within a med-
ical device software organisation. In Antanas Mitasiunas, Terry Rout, Rory V. O’Connor,
and Alec Dorling, editors, Software Process Improvement and Capability Determination -

14th International Conference, SPICE 2014, Vilnius, Lithuania, November 4-6, 2014, Pro-

ceedings, volume 477 of Communications in Computer and Information Science, pages
190–201. Springer, 2014. doi: 10.1007/978-3-319-13036-1_17. URL https:

//doi.org/10.1007/978-3-319-13036-1_17.

Juliana Medeiros, Alexandre M. L. de Vasconcelos, Carla Silva, and Miguel Goulão. Re-
quirements specification for developers in agile projects: Evaluation by two industrial case
studies. Inf. Softw. Technol., 117, 2020. doi: 10.1016/j.infsof.2019.106194. URL
https://doi.org/10.1016/j.infsof.2019.106194.

Ben Swarup Medikonda and P Seetha Ramaiah. Software safety analysis to identify critical
software faults in software-controlled safety-critical systems. In ICT and Critical Infrastruc-

ture: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, pages
455–465. Springer, 2014.

https://doi.org/10.1016/j.infsof.2016.04.002
https://doi.org/10.1109/MS.2017.94
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.016
https://doi.org/10.1109/SEHC.2013.6602471
https://doi.org/10.1109/SEHC.2013.6602471
https://doi.org/10.1007/978-3-319-13036-1_17
https://doi.org/10.1007/978-3-319-13036-1_17
https://doi.org/10.1016/j.infsof.2019.106194

BIBLIOGRAPHY 262

Hossein Mehrfard and Abdelwahab Hamou-Lhadj. The impact of regulatory compliance on
agile software processes with a focus on the FDA guidelines for medical device software.
Int. J. Inf. Syst. Model. Des., 2(2):67–81, 2011. doi: 10.4018/jismd.2011040104. URL
https://doi.org/10.4018/jismd.2011040104.

Hossein Mehrfard, Heidar Pirzadeh, and Abdelwahab Hamou-Lhadj. Investigating the capability
of agile processes to support life-science regulations: The case of XP and FDA regulations
with a focus on human factor requirements. In Roger Y. Lee, Olga Ormandjieva, Alain Abran,
and Constantinos Constantinides, editors, Software Engineering Research, Management and

Applications 2010 [selected papers from the 8th ACIS International Conference on Software

Engineering Research, Management and Applications, SERA 2010, Montreal, Canada, May

24-26, 2010], volume 296 of Studies in Computational Intelligence, pages 241–255. Springer,
2010. doi: 10.1007/978-3-642-13273-5_16. URL https://doi.org/10.1007/97

8-3-642-13273-5_16.

Ines Mergel, Yiwei Gong, and John Bertot. Agile government: Systematic literature review and
future research. Gov. Inf. Q., 35(2):291–298, 2018. doi: 10.1016/j.giq.2018.04.003. URL
https://doi.org/10.1016/j.giq.2018.04.003.

Ines Mergel, Sukumar Ganapati, and Andrew B Whitford. Agile: A new way of governing.
Public Administration Review, 2020.

Craig A Mertler. Action research: Teachers as researchers in the classroom. Sage, 2009.

Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education, 2007.

Faïda Mhenni, Nga Nguyen, and Jean-Yves Choley. Safesyse: A safety analysis integration in
systems engineering approach. IEEE Syst. J., 12(1):161–172, 2018. doi: 10.1109/JSYST.20
16.2547460. URL https://doi.org/10.1109/JSYST.2016.2547460.

Jakub Miler and Paulina Gaida. On the agile mindset of an effective team - an industrial opinion
survey. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings

of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS

2019, Leipzig, Germany, September 1-4, 2019, volume 18 of Annals of Computer Science

and Information Systems, pages 841–849, 2019. doi: 10.15439/2019F198. URL https:

//doi.org/10.15439/2019F198.

Roy Miller and Christopher T Collins. Acceptance testing. Proc. XPUniverse, 238, 2001.

Myint Myint Moe. Comparative study of test-driven development (tdd), behavior-driven devel-
opment (bdd) and acceptance test–driven development (atdd). International Journal of Trend

in Scientific Research and Development, pages 231–234, 2019.

https://doi.org/10.4018/jismd.2011040104
https://doi.org/10.1007/978-3-642-13273-5_16
https://doi.org/10.1007/978-3-642-13273-5_16
https://doi.org/10.1016/j.giq.2018.04.003
https://doi.org/10.1109/JSYST.2016.2547460
https://doi.org/10.15439/2019F198
https://doi.org/10.15439/2019F198

BIBLIOGRAPHY 263

Adel Hamdan Mohammad, Tariq Alwada’n, et al. Agile software methodologies: strength and
weakness. International Journal of Engineering Science and Technology, 5(3):455, 2013.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating github for
engineered software projects. Empir. Softw. Eng., 22(6):3219–3253, 2017. doi: 10.1007/s106
64-017-9512-6. URL https://doi.org/10.1007/s10664-017-9512-6.

Arbesë Musliu and Xhelal Jashari. Software automated testing using bdd approach with cucum-
ber framework. In Hajrizi Edmond, editor, 2021 UBT INTERNATIONAL CONFERENCE,
2021.

Colin Myers, Tracy Hall, and Dave Pitt. The responsible software engineer: Selected readings

in IT professionalism. Springer Science & Business Media, 2012.

Thor Myklebust. Safety standards, software and improved development of safety equipment, 01
2008.

Thor Myklebust, T Stålhane, GK Hanssen, and B Haugset. Change impact analysis as required
by safety standards, what to do. In Probabilistic Safety Assessment & Management conference

(PSAM12), Honolulu, USA, 2014a.

Thor Myklebust, Tor Stålhane, Geir Kjetil Hanssen, Tormod Wien, and Børge Haugset. Scrum,
documentation and the iec 61508-3: 2010 software standard. In International Conference on

Probabilistic Safety Assesment and Management (PSAM). PSAM, Hawaii, 2014b.

Thor Myklebust, T Stålhane, and GK Hanssen. Important considerations when applying other
models than the waterfall/v-model when developing software according to iec 61508 or en
50128. In 33rd International System Safety Conference (Aug. 2015), 2015.

Thor Myklebust, Tor Stålhane, and Narve Lyngby. An agile development process for petrochem-
ical safety conformant software. In 2016 Annual Reliability and Maintainability Symposium

(RAMS), pages 1–6. IEEE, 2016.

NASA. NASA Software Safety Guidebook. NASA HQ, Office of Safety and Mission Assurance,
Washington, D.C, USA, 2004.

Nicolas Nascimento, Alan R. Santos, Afonso Sales, and Rafael Chanin. Behavior-driven de-
velopment: A case study on its impacts on agile development teams. In ICSE ’20: 42nd

International Conference on Software Engineering, Workshops, Seoul, Republic of Korea, 27

June - 19 July, 2020, pages 109–116. ACM, 2020a. doi: 10.1145/3387940.3391480. URL
https://doi.org/10.1145/3387940.3391480.

Nicolas Nascimento, Alan R. Santos, Afonso Sales, and Rafael Chanin. Behavior-driven de-
velopment: An expert panel to evaluate benefits and challenges. In Everton Cavalcante,

https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3387940.3391480

BIBLIOGRAPHY 264

Francisco Dantas, and Thaís Batista, editors, SBES ’20: 34th Brazilian Symposium on Soft-

ware Engineering, Natal, Brazil, October 19-23, 2020, pages 41–46. ACM, 2020b. doi:
10.1145/3422392.3422460. URL https://doi.org/10.1145/3422392.3422460.

Alexander Newman, Yuen Lam Bavik, Matthew Mount, and Bo Shao. Data collection via online
platforms: Challenges and recommendations for future research. Applied Psychology, 2021.

Dan North. What’s in a story? https://dannorth.net/whats-in-a-story, 2019.

Dan North. We need to talk about testing. https://dannorth.net/2021/07/26/we
-need-to-talk-about-testing/, 2021.

Dan North et al. Introducing bdd. Better Software, 12, 2006.

Chris Northwood. Testing. In The Full Stack Developer, pages 141–157. Springer, 2018.

Jesper Pedersen Notander, Martin Höst, and Per Runeson. Challenges in flexible safety-
critical software development - an industrial qualitative survey. In Jens Heidrich, Markku
Oivo, Andreas Jedlitschka, and Maria Teresa Baldassarre, editors, Product-Focused Soft-

ware Process Improvement - 14th International Conference, PROFES 2013, Paphos, Cyprus,

June 12-14, 2013. Proceedings, volume 7983 of Lecture Notes in Computer Science, pages
283–297. Springer, 2013. doi: 10.1007/978-3-642-39259-7_23. URL https:

//doi.org/10.1007/978-3-642-39259-7_23.

Bashar Nuseibeh and Steve M. Easterbrook. Requirements engineering: a roadmap. In Anthony
Finkelstein, editor, 22nd International Conference on on Software Engineering, Future of

Software Engineering Track, ICSE 2000, Limerick Ireland, June 4-11, 2000, pages 35–46.
ACM, 2000. doi: 10.1145/336512.336523. URL https://doi.org/10.1145/3365

12.336523.

Gabriel Oliveira and Sabrina Marczak. On the understanding of BDD scenarios’ quality: Pre-
liminary practitioners’ opinions. In Erik Kamsties, Jennifer Horkoff, and Fabiano Dalpiaz,
editors, Requirements Engineering: Foundation for Software Quality - 24th International

Working Conference, REFSQ 2018, Utrecht, The Netherlands, March 19-22, 2018, Proceed-

ings, volume 10753 of Lecture Notes in Computer Science, pages 290–296. Springer, 2018.
doi: 10.1007/978-3-319-77243-1_18. URL https://doi.org/10.1007/978-3-

319-77243-1_18.

Gabriel Oliveira, Sabrina Marczak, and Cassiano Moralles. How to evaluate BDD scenarios’
quality? In Ivan do Carmo Machado, Rodrigo Souza, Rita Suzana Pitangueira Maciel, and
Cláudio Sant’Anna, editors, Proceedings of the XXXIII Brazilian Symposium on Software

Engineering, SBES 2019, Salvador, Brazil, September 23-27, 2019, pages 481–490. ACM,

https://doi.org/10.1145/3422392.3422460
https://dannorth.net/whats-in-a-story
https://dannorth.net/2021/07/26/we-need-to-talk-about-testing/
https://dannorth.net/2021/07/26/we-need-to-talk-about-testing/
https://doi.org/10.1007/978-3-642-39259-7_23
https://doi.org/10.1007/978-3-642-39259-7_23
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1007/978-3-319-77243-1_18
https://doi.org/10.1007/978-3-319-77243-1_18

BIBLIOGRAPHY 265

2019. doi: 10.1145/3350768.3351301. URL https://doi.org/10.1145/335076

8.3351301.

Marco Ortu, Tracy Hall, Michele Marchesi, Roberto Tonelli, David Bowes, and Giuseppe
Destefanis. Mining communication patterns in software development: A github analysis.
In Proceedings of the 14th International Conference on Predictive Models and Data Ana-

lytics in Software Engineering, PROMISE’18, pages 70–79, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-6593-2. doi: 10.1145/3273934.3273943. URL http:

//doi.acm.org/10.1145/3273934.3273943.

Viktor Österholm. Overview of behaviour-driven development tools for web applications. Mas-
ter’s thesis, Åbo Akademi University (Finland), 2021.

Özden Özcan-Top and Fergal McCaffery. Conformance to medical device software develop-
ment requirements with xp and scrum implementation. In Proceedings of the International

Conference on Software Engineering Research and Practice (SERP), 2018.

Necmettin Ozkan. Imperfections underlying the manifesto for agile software development. In
2019 1st International Informatics and Software Engineering Conference (UBMYK), pages
1–6. IEEE, 2019.

Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen. Large-scale agile
transformation at ericsson: a case study. Empir. Softw. Eng., 23(5):2550–2596, 2018. doi:
10.1007/s10664-017-9555-8. URL https://doi.org/10.1007/s10664-017-9

555-8.

Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and agile soft-
ware development. In 12th IEEE International Workshops on Enabling Technologies (WET-

ICE 2003), Infrastructure for Collaborative Enterprises, 9-11 June 2003, Linz, Austria, pages
308–313. IEEE Computer Society, 2003.

Richard F. Paige, Ramon Charalambous, Xiaocheng Ge, and Phillip J. Brooke. Towards agile
engineering of high-integrity systems. In Michael D. Harrison and Mark-Alexander Sujan, ed-
itors, Computer Safety, Reliability, and Security, 27th International Conference, SAFECOMP

2008, Newcastle upon Tyne, UK, September 22-25, 2008, Proceedings, volume 5219 of Lec-

ture Notes in Computer Science, pages 30–43. Springer, 2008. doi: 10.1007/978-3-540-8769
8-4_6. URL https://doi.org/10.1007/978-3-540-87698-4_6.

Richard F. Paige, Andy Galloway, Ramon Charalambous, Xiaocheng Ge, and Phillip J. Brooke.
High-integrity agile processes for the development of safety critical software. IJCCBS, 2(2):
181–216, 2011.

https://doi.org/10.1145/3350768.3351301
https://doi.org/10.1145/3350768.3351301
http://doi.acm.org/10.1145/3273934.3273943
http://doi.acm.org/10.1145/3273934.3273943
https://doi.org/10.1007/s10664-017-9555-8
https://doi.org/10.1007/s10664-017-9555-8
https://doi.org/10.1007/978-3-540-87698-4_6

BIBLIOGRAPHY 266

Kamalendu Pal and Bill Karakostas. Software testing under agile, scrum, and devops. In Ag-

ile Scrum Implementation and Its Long-Term Impact on Organizations, pages 114–131. IGI
Global, 2021.

Stephen R. Palmer. A Practical Guide to Feature-Driven Development. Prentice Hall, February
2002.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea De Lucia.
On the diffusion of test smells in automatically generated test code: An empirical study. In
Proceedings of the 9th international workshop on search-based software testing, pages 5–14.
ACM, 2016.

Robert E Park, Wolfhart B Goethert, and William A Florac. Goal-driven software measurement.
a guidebook. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst, 1996.

Richard R Parry. Programmable electronic safety systems. In Proceedings of International

Conference on Particle Accelerators, pages 2225–2227. IEEE, 1993.

Lauriane Pereira, Helen Sharp, Cleidson de Souza, Gabriel Oliveira, Sabrina Marczak, and Ri-
cardo Bastos. Behavior-driven development benefits and challenges: Reports from an indus-
trial study. In Proceedings of the 19th International Conference on Agile Software Devel-

opment: Companion, XP ’18, pages 42:1–42:4, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-6422-5. doi: 10.1145/3234152.3234167. URL http://doi.acm.org/10

.1145/3234152.3234167.

Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio
Palomba. An exploratory study on the refactoring of unit test files in android applica-
tions. In ICSE ’20: 42nd International Conference on Software Engineering, Workshops,

Seoul, Republic of Korea, 27 June - 19 July, 2020, pages 350–357. ACM, 2020. doi:
10.1145/3387940.3392189. URL https://doi.org/10.1145/3387940.3392189.

Mark Petticrew and Helen Roberts. Systematic reviews in the social sciences: A practical guide.
John Wiley & Sons, 2008.

Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional, May 2003.

Naveen Prakash and Deepika Prakash. Model-driven user stories for agile data warehouse de-
velopment. In Peri Loucopoulos, Yannis Manolopoulos, Oscar Pastor, Babis Theodoulidis,
and Jelena Zdravkovic, editors, 19th IEEE Conference on Business Informatics, CBI 2017,

Thessaloniki, Greece, July 24-27, 2017, Volume 1: Conference Papers, pages 424–433. IEEE

http://doi.acm.org/10.1145/3234152.3234167
http://doi.acm.org/10.1145/3234152.3234167
https://doi.org/10.1145/3387940.3392189

BIBLIOGRAPHY 267

Computer Society, 2017. doi: 10.1109/CBI.2017.67. URL https://doi.org/10.110

9/CBI.2017.67.

Evgeny Pyshkin, Maxim Mozgovoy, and Mikhail Glukhikh. On requirements for acceptance
testing automation tools in behavior driven software development. In Proceedings of the 8th

Software Engineering Conference in Russia (CEE-SECR), 2012.

Fumin Qi, Xiao-Yuan Jing, Xiaoke Zhu, Xiaoyuan Xie, Baowen Xu, and Shi Ying. Software ef-
fort estimation based on open source projects: Case study of github. Information and Software

Technology, 92:145–157, 2017.

Mikko Raatikainen, Tomi Männistö, Teemu Tommila, and Janne Valkonen. Challenges of re-
quirements engineering - A case study in nuclear energy domain. In RE 2011, 19th IEEE

International Requirements Engineering Conference, Trento, Italy, August 29 2011 - Septem-

ber 2, 2011, pages 253–258. IEEE Computer Society, 2011. doi: 10.1109/RE.2011.6051629.
URL https://doi.org/10.1109/RE.2011.6051629.

Ramon Radnoci. Methods for testing concurrent software, 2009.

Mazedur Rahman and Jerry Gao. A reusable automated acceptance testing architecture for
microservices in behavior-driven development. In 2015 IEEE Symposium on Service-Oriented

System Engineering, SOSE 2015, San Francisco Bay, CA, USA, March 30 - April 3, 2015,
pages 321–325. IEEE Computer Society, 2015. doi: 10.1109/SOSE.2015.55. URL https:

//doi.org/10.1109/SOSE.2015.55.

Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Agile requirements engineering
practices and challenges: an empirical study. Information Systems Journal, 20(5):449–480,
2010.

Rod Rasmussen, Tim Hughes, J. R. Jenks, and John Skach. Adopting agile in an FDA
regulated environment. In Yael Dubinsky, Tore Dybå, Steve Adolph, and Ahmed Samy
Sidky, editors, 2009 Agile Conference, Chicago, IL, USA, 24-28 August 2009, pages 151–
155. IEEE Computer Society, 2009. doi: 10.1109/AGILE.2009.50. URL https:

//doi.org/10.1109/AGILE.2009.50.

Derek Rayside, Aleksandar Milicevic, Kuat Yessenov, Greg Dennis, and Daniel Jackson. Agile
specifications. In Shail Arora and Gary T. Leavens, editors, Companion to the 24th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 999–1006.
ACM, 2009.

https://doi.org/10.1109/CBI.2017.67
https://doi.org/10.1109/CBI.2017.67
https://doi.org/10.1109/RE.2011.6051629
https://doi.org/10.1109/SOSE.2015.55
https://doi.org/10.1109/SOSE.2015.55
https://doi.org/10.1109/AGILE.2009.50
https://doi.org/10.1109/AGILE.2009.50

BIBLIOGRAPHY 268

Stefan Reichhart, Tudor Gîrba, and Stéphane Ducasse. Rule-based assessment of test quality.
J. Object Technol., 6(9):231–251, 2007. doi: 10.5381/jot.2007.6.9.a12. URL https:

//doi.org/10.5381/jot.2007.6.9.a12.

William Richardson, Kalen Bennett, Douglas Dempster, Philippe Dumas, Caroline Leprince,
Kim Richard Nossal, David Perry, Elinor Sloan, and Craig J Stone. Toward agile procurement

for national defence: Matching the pace of technological change. Canadian Global Affairs
Institute Calgary, 2020.

Hans-Gerd Ridder. The theory contribution of case study research designs. Business Research,
10(2):281–305, 2017.

Tracy Riley and Roger Moltzen. Learning by doing: Action research to evaluate provisions for
gifted and talented students. Kairaranga, 12(1):23–31, 2011.

Peter Ritchie. Testing. In Practical Microsoft Visual Studio 2015, pages 169–193. Springer,
2016.

Thiago Rocha Silva. Towards a domain-specific language to specify interaction scenarios for
web-based graphical user interfaces. In Companion of the 2022 ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, pages 48–53, 2022.

Tobias Roehm, Daniel Veihelmann, Stefan Wagner, and Elmar Juergens. Evaluating maintain-
ability prejudices with a large-scale study of open-source projects. In International Confer-

ence on Software Quality, pages 151–171. Springer, 2019.

Mary Beth Rosson and John M. Carroll. Usability engineering - scenario-based development

of human-computer interaction. The Morgan Kaufmann series in interactive technologies.
Elsevier Morgan Kaufmann, 2002. ISBN 978-1-55860-712-5.

Johann Rost and Robert L. Glass. The dark side of software engineering: evil on computing

projects. John Wiley & Sons, 2011.

Pieter Adriaan Rottier and Victor Rodrigues. Agile development in a medical device company.
In Grigori Melnik, Philippe Kruchten, and Mary Poppendieck, editors, Agile Development

Conference, AGILE 2008, Toronto, Canada, 4-8 August 2008, pages 218–223. IEEE Com-
puter Society, 2008. doi: 10.1109/Agile.2008.52. URL https://doi.org/10.1109/

Agile.2008.52.

RTCA. DO-178C, Software Considerations in Airborne Systems and Equipment Certification.
RTCA, 1150 18th St, NW, Suite 910. Washington DC 20036-3816 USA., December 2011.

Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

https://doi.org/10.5381/jot.2007.6.9.a12
https://doi.org/10.5381/jot.2007.6.9.a12
https://doi.org/10.1109/Agile.2008.52
https://doi.org/10.1109/Agile.2008.52

BIBLIOGRAPHY 269

Daniel Russo, Gerolamo Taccogna, Paolo Ciancarini, Angelo Messina, and Giancarlo Succi.
Contracting agile developments for mission critical systems in the public sector. In Valérie
Issarny and Schahram Dustdar, editors, Proceedings of the 40th International Conference

on Software Engineering: Software Engineering in Society, ICSE (SEIS) 2018, Gothenburg,

Sweden, May 27 - June 03, 2018, pages 47–56. ACM, 2018. doi: 10.1145/3183428.3183435.
URL https://doi.org/10.1145/3183428.3183435.

J. Ghoshal S. Bose, M. Kurhekar. Agile methodology in requirements engineering. Computer,
42(9):37–45, February 2010.

SAE. International. Guidelines and methods for conducting the safety assessment process on

civil airborne systems and equipment: ARP4761 [S/OL], 2017.

Victor Travassos Sarinho. "bdd assemble!": A paper-based game proposal for behavior driven
development design learning. In Erik D. Van der Spek, Stefan Göbel, Ellen Yi-Luen Do,
Esteban Clua, and Jannicke Baalsrud Hauge, editors, Entertainment Computing and Serious

Games - First IFIP TC 14 Joint International Conference, ICEC-JCSG 2019, Arequipa, Peru,

November 11-15, 2019, Proceedings, volume 11863 of Lecture Notes in Computer Science,
pages 431–435. Springer, 2019. doi: 10.1007/978-3-030-34644-7_41. URL https:

//doi.org/10.1007/978-3-030-34644-7_41.

Maggi Savin-Baden and Katherine Wimpenny. Exploring and implementing participatory action
research. Journal of Geography in Higher Education, 31(2):331–343, 2007.

André Scandaroli, Rodrigo Leite, Aléxis H Kiosia, and Sandro A Coelho. Behavior-driven
development as an approach to improve software quality and communication across remote
business stakeholders, developers and qa: two case studies. In 2019 ACM/IEEE 14th Interna-

tional Conference on Global Software Engineering (ICGSE), pages 105–110. IEEE, 2019.

Ingo Schnabel and Markus Pizka. Goal-driven software development. In 30th Annual IEEE

/ NASA Software Engineering Workshop (SEW-30 2006), 25-28 April 2006, Loyola College

Graduate Center, Columbia, MD, USA, pages 59–65. IEEE Computer Society, 2006. doi:
10.1109/SEW.2006.21. URL https://doi.org/10.1109/SEW.2006.21.

Eva-Maria Schön, Jörg Thomaschewski, and María José Escalona. Agile requirements engi-
neering: A systematic literature review. Comput. Stand. Interfaces, 49:79–91, 2017a. doi: 10
.1016/j.csi.2016.08.011. URL https://doi.org/10.1016/j.csi.2016.08.011.

Eva-Maria Schön, Dominique Winter, María José Escalona, and Jörg Thomaschewski. Key chal-
lenges in agile requirements engineering. In Hubert Baumeister, Horst Lichter, and Matthias
Riebisch, editors, Agile Processes in Software Engineering and Extreme Programming - 18th

https://doi.org/10.1145/3183428.3183435
https://doi.org/10.1007/978-3-030-34644-7_41
https://doi.org/10.1007/978-3-030-34644-7_41
https://doi.org/10.1109/SEW.2006.21
https://doi.org/10.1016/j.csi.2016.08.011

BIBLIOGRAPHY 270

International Conference, XP 2017, Cologne, Germany, May 22-26, 2017, Proceedings, vol-
ume 283 of Lecture Notes in Business Information Processing, pages 37–51, 2017b. doi:
10.1007/978-3-319-57633-6_3. URL https://doi.org/10.1007/978-3-319-

57633-6_3.

Nancy Van Schooenderwoert and Ron Morsicato. Taming the embedded tiger - agile test tech-
niques for embedded software. In 2004 Agile Development Conference (ADC 2004), 22-26

June 2004, Salt Lake City, UT, USA, pages 120–126. IEEE Computer Society, 2004.

Ken Schwaber and Mike Beedle. Agile Software Development with SCRUM. Prentice Hall,
2001.

Philip Sedgwick and Nan Greenwood. Understanding the hawthorne effect. Bmj, 351, 2015.

Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and David Lo. Cata-
loging github repositories. In Proceedings of the 21st International Conference on Evaluation

and Assessment in Software Engineering, pages 314–319, 2017.

Sheetal Sharma, Darothi Sarkar, and Divya Gupta. Agile processes and methodologies: A con-
ceptual study. International journal on computer science and Engineering, 4(5):892, 2012.

Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Diomidis Spinellis.
Smelly relations: measuring and understanding database schema quality. In Proceedings of

the 40th International Conference on Software Engineering: Software Engineering in Prac-

tice, pages 55–64, 2018.

Helen Sharp and Hugh Robinson. Three ‘c’s of agile practice: collaboration, co-ordination and
communication. In Agile software development: current research and future directions, pages
61–85. Springer, 2010.

Ajit Ashok Shenvi. Navigating the maze: journey towards an optimal process framework for
regulated medical software. In Dharanipragada Janakiram, Koushik Sen, and Vinay Kulkarni,
editors, 7th India Software Engineering Conference, Chennai, ISEC ’14, Chennai, India -

February 19 - 21, 2014, pages 21:1–21:6. ACM, 2014. doi: 10.1145/2590748.2590769. URL
https://doi.org/10.1145/2590748.2590769.

Baruch Shimoni. What is resistance to change? a habitus-oriented approach. Academy of

Management Perspectives, 31(4):257–270, 2017.

Farhad Shokraneh. Reproducibility and replicability of systematic reviews. World Journal of

Meta-Analysis, 7(3), 2019.

https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1145/2590748.2590769

BIBLIOGRAPHY 271

Lubna Siddique and Bassam A Hussein. Practical insight about choice of methodology in large
complex software projects in norway. In 2014 IEEE International Technology Management

Conference, pages 1–4. IEEE, 2014.

Thiago Rocha Silva. Definition of a behavior-driven model for requirements specification and
testing of interactive systems. In 24th IEEE International Requirements Engineering Con-

ference, RE 2016, Beijing, China, September 12-16, 2016, pages 444–449. IEEE Computer
Society, 2016. doi: 10.1109/RE.2016.12. URL https://doi.org/10.1109/RE.201

6.12.

Thiago Rocha Silva and Brian Fitzgerald. Empirical findings on BDD story parsing to support
consistency assurance between requirements and artifacts. In Ruzanna Chitchyan, Jingyue
Li, Barbara Weber, and Tao Yue, editors, EASE 2021: Evaluation and Assessment in Software

Engineering, Trondheim, Norway, June 21-24, 2021, pages 266–271. ACM, 2021. doi: 10.1
145/3463274.3463807. URL https://doi.org/10.1145/3463274.3463807.

Thiago Rocha Silva and Marco Winckler. A scenario-based approach for checking consistency
in user interface design artifacts. In Isabela Gasparini, Lara S. G. Piccolo, Luciana A. M.
Zaina, and Roberto Pereira, editors, Proceedings of the XVI Brazilian Symposium on Human

Factors in Computing Systems, IHC 2017, Joinville, Brazil, October 23-27, 2017, pages 3:1–
3:10. ACM, 2017. doi: 10.1145/3160504.3160506. URL https://doi.org/10.114

5/3160504.3160506.

Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. Ensuring the consistency be-
tween user requirements and graphical user interfaces: A behavior-based automated approach.
In Sanjay Misra, Osvaldo Gervasi, Beniamino Murgante, Elena N. Stankova, Vladimir Ko-
rkhov, Carmelo Maria Torre, Ana Maria A. C. Rocha, David Taniar, Bernady O. Apduhan,
and Eufemia Tarantino, editors, Computational Science and Its Applications - ICCSA 2019 -

19th International Conference, Saint Petersburg, Russia, July 1-4, 2019, Proceedings, Part I,
volume 11619 of Lecture Notes in Computer Science, pages 616–632. Springer, 2019a. doi:
10.1007/978-3-030-24289-3_46. URL https://doi.org/10.1007/978-3-030-

24289-3_46.

Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. Ensuring the consistency be-
tween user requirements and GUI prototypes: A behavior-based automated approach. In
David Lamas, Fernando Loizides, Lennart E. Nacke, Helen Petrie, Marco Winckler, and
Panayiotis Zaphiris, editors, Human-Computer Interaction - INTERACT 2019 - 17th IFIP

TC 13 International Conference, Paphos, Cyprus, September 2-6, 2019, Proceedings, Part I,
volume 11746 of Lecture Notes in Computer Science, pages 644–665. Springer, 2019b. doi:
10.1007/978-3-030-29381-9_39. URL https://doi.org/10.1007/978-3-030-

29381-9_39.

https://doi.org/10.1109/RE.2016.12
https://doi.org/10.1109/RE.2016.12
https://doi.org/10.1145/3463274.3463807
https://doi.org/10.1145/3160504.3160506
https://doi.org/10.1145/3160504.3160506
https://doi.org/10.1007/978-3-030-24289-3_46
https://doi.org/10.1007/978-3-030-24289-3_46
https://doi.org/10.1007/978-3-030-29381-9_39
https://doi.org/10.1007/978-3-030-29381-9_39

BIBLIOGRAPHY 272

Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. Extending behavior-driven
development for assessing user interface design artifacts (S). In Angelo Perkusich, editor, The

31st International Conference on Software Engineering and Knowledge Engineering, SEKE

2019, Hotel Tivoli, Lisbon, Portugal, July 10-12, 2019, pages 485–623. KSI Research Inc.
and Knowledge Systems Institute Graduate School, 2019c. doi: 10.18293/SEKE2019-054.
URL https://doi.org/10.18293/SEKE2019-054.

Thiago Rocha Silva, Marco Winckler, and Cédric Bach. Evaluating the usage of predefined in-
teractive behaviors for writing user stories: an empirical study with potential product owners.
Cogn. Technol. Work., 22(3):437–457, 2020a. doi: 10.1007/s10111-019-00566-3. URL
https://doi.org/10.1007/s10111-019-00566-3.

Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. Ensuring the consistency be-
tween user requirements and task models: A behavior-based automated approach. Proc.

ACM Hum. Comput. Interact., 4(EICS):77:1–77:32, 2020b. doi: 10.1145/3394979. URL
https://doi.org/10.1145/3394979.

John Ferguson Smart. BDD in Action. Manning Publications, 2014.

John Ferguson Smart and Jan Molak. BDD in Action: Behavior-driven development for the

whole software lifecycle. Simon and Schuster, 2023.

Jonathan Smart. To transform to have agility, dont do a capital a, capital T agile transformation.
IEEE Softw., 35(6):56–60, 2018. doi: 10.1109/MS.2018.4321245. URL https://doi.

org/10.1109/MS.2018.4321245.

Hannah Snyder. Literature review as a research methodology: An overview and guidelines.
Journal of Business Research, 104:333–339, 2019.

Rational Software. The rational unified process. best practices for software development teams.
white paper TP026B, The Rational Corporation, 2003.

Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven devel-
opment. In 2011 37th EUROMICRO Conference on Software Engineering and Advanced

Applications, pages 383–387. IEEE, 2011.

Bridget Somekh. Action research: a methodology for change and development: a methodology

for change and development. McGraw-Hill Education (UK), 2005.

Tjerk Spijkman, Fabiano Dalpiaz, and Sjaak Brinkkemper. Back to the roots: Linking user
stories to requirements elicitation conversations. In 30th IEEE International Requirements

Engineering Conference, RE 2022, Melbourne, Australia, August 15-19, 2022, pages 281–
287. IEEE, 2022. doi: 10.1109/RE54965.2022.00042. URL https://doi.org/10.1

109/RE54965.2022.00042.

https://doi.org/10.18293/SEKE2019-054
https://doi.org/10.1007/s10111-019-00566-3
https://doi.org/10.1145/3394979
https://doi.org/10.1109/MS.2018.4321245
https://doi.org/10.1109/MS.2018.4321245
https://doi.org/10.1109/RE54965.2022.00042
https://doi.org/10.1109/RE54965.2022.00042

BIBLIOGRAPHY 273

Cary Spitzer, Uma Ferrell, and Thomas Ferrell. Digital avionics handbook. CRC press, 2017.

Manuel Stadler, Raoul Vallon, Martin Pazderka, and Thomas Grechenig. Agile distributed soft-
ware development in nine central european teams: Challenges, benefits, and recommenda-
tions. International Journal of Computer Science & Information Technology (IJCSIT) Vol,
11, 2019.

T Stålhane, T Myklebust, and GK Hanssen. Safety standards and scrum–a synopsis of three
standards. SafeScrum. no, GK Hanssen, Editor, 2013.

Tor Stålhane and Thor Myklebust. The role of CM in agile development of safety-critical soft-
ware. In Floor Koornneef and Coen van Gulijk, editors, Computer Safety, Reliability, and

Security - SAFECOMP 2015 Workshops, ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR,

Delft, The Netherlands, September 22, 2015, Proceedings, volume 9338 of Lecture Notes in

Computer Science, pages 386–396. Springer, 2015. doi: 10.1007/978-3-319-24249-1_33.
URL https://doi.org/10.1007/978-3-319-24249-1_33.

Tor Stålhane, Thor Myklebust, and Geir Hanssen. The application of safe scrum to iec 61508
certifiable software. In 11th International Probabilistic Safety Assessment and Management

Conference and the Annual European Safety and Reliability Conference 2012, 25-29 June

2012, Helsinki, Finland. Curran Associates Inc., 2012.

Tor Stålhane, Geir Kjetil Hanssen, Thor Myklebust, and Børge Haugset. Agile change impact
analysis of safety critical software. In Andrea Bondavalli, Andrea Ceccarelli, and Frank Ort-
meier, editors, Computer Safety, Reliability, and Security - SAFECOMP 2014 Workshops:

ASCoMS, DECSoS, DEVVARTS, ISSE, ReSA4CI, SASSUR. Florence, Italy, September 8-9,

2014. Proceedings, volume 8696 of Lecture Notes in Computer Science, pages 444–454.
Springer, 2014.

George E. Stark, Paul W. Oman, Alan Skillicorn, and Alan Ameele. An examination of the
effects of requirements changes on software maintenance releases. J. Softw. Maintenance

Res. Pract., 11(5):293–309, 1999.

Jan-Philipp Steghöfer, Eric Knauss, Jennifer Horkoff, and Rebekka Wohlrab. Challenges of
scaled agile for safety-critical systems. In Xavier Franch, Tomi Männistö, and Silverio
Martínez-Fernández, editors, Product-Focused Software Process Improvement - 20th Inter-

national Conference, PROFES 2019, Barcelona, Spain, November 27-29, 2019, Proceedings,
volume 11915 of Lecture Notes in Computer Science, pages 350–366. Springer, 2019. doi:
10.1007/978-3-030-35333-9_26. URL https://doi.org/10.1007/978-3-030-

35333-9_26.

Ernst Stelzmann. Contextualizing agile systems engineering. IEEE Aerospace and Electronic

Systems Magazine, 27(5):17–22, 2012.

https://doi.org/10.1007/978-3-319-24249-1_33
https://doi.org/10.1007/978-3-030-35333-9_26
https://doi.org/10.1007/978-3-030-35333-9_26

BIBLIOGRAPHY 274

Jan Stenberg. Behaviour-Driven Development Anti-Patterns.
https://www.infoq.com/news/2016/09/bdd-anti-patterns/, 2016.

ZR Stephenson, JA McDermid, and AG Ward. Health modelling for agility in safety-critical
systems development. In 2006 1st IET International Conference on System Safety. IET, 2006.

Christoph Johann Stettina and Werner Heijstek. Necessary and neglected?: an empirical study
of internal documentation in agile software development teams. In Aristidis Protopsaltis,
Nicolas Spyratos, Carlos J. Costa, and Carlo Meghini, editors, Proceedings of the 29th ACM

international conference on Design of communication, Pisa, Italy, October 3-5, 2011, pages
159–166. ACM, 2011. doi: 10.1145/2038476.2038509. URL https://doi.org/10.1

145/2038476.2038509.

Tim Storer and Ruxandra Bob. Behave nicely! automatic generation of code for behaviour
driven development test suites. In 19th International Working Conference on Source Code

Analysis and Manipulation, SCAM 2019, Cleveland, OH, USA, September 30 - October 1,

2019, pages 228–237. IEEE, 2019. doi: 10.1109/SCAM.2019.00033. URL https:

//doi.org/10.1109/SCAM.2019.00033.

Viktoria Stray, Bakhtawar Memon, and Lucas Paruch. A systematic literature review on ag-
ile coaching and the role of the agile coach. In Maurizio Morisio, Marco Torchiano, and
Andreas Jedlitschka, editors, Product-Focused Software Process Improvement - 21st Interna-

tional Conference, PROFES 2020, Turin, Italy, November 25-27, 2020, Proceedings, volume
12562 of Lecture Notes in Computer Science, pages 3–19. Springer, 2020a. doi: 10.1007/978-
3-030-64148-1_1. URL https://doi.org/10.1007/978-3-030-64148-1_1.

Viktoria Stray, Nils Brede Moe, and Dag I. K. Sjøberg. Daily stand-up meetings: Start breaking
the rules. IEEE Softw., 37(3):70–77, 2020b. doi: 10.1109/MS.2018.2875988. URL https:

//doi.org/10.1109/MS.2018.2875988.

SW Suan. An Automated Assistant for Reducing Duplication in Living Documentation. PhD
thesis, Masters Thesis, School of Computer Science, University of Manchester âĂę, 2015.

Thomas Sundberg. Cucumber Anti-Patterns. http://www.thinkcode.se/blog/2016
/06/22/cucumber-antipatterns, 2016.

Anders Sundelin, Javier Gonzalez-Huerta, and Krzysztof Wnuk. Test-driving fintech product
development: An experience report. In International Conference on Product-Focused Soft-

ware Process Improvement, pages 219–226. Springer, 2018.

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring for software de-

sign smells: managing technical debt. Morgan Kaufmann, 2014.

https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1109/SCAM.2019.00033
https://doi.org/10.1109/SCAM.2019.00033
https://doi.org/10.1007/978-3-030-64148-1_1
https://doi.org/10.1109/MS.2018.2875988
https://doi.org/10.1109/MS.2018.2875988
http://www.thinkcode.se/blog/2016/06/22/cucumber-antipatterns
http://www.thinkcode.se/blog/2016/06/22/cucumber-antipatterns

BIBLIOGRAPHY 275

Mikael Svahnberg, Tony Gorschek, Thi Than Loan Nguyen, and Mai Nguyen. Uni-repm: a
framework for requirements engineering process assessment. Requir. Eng., 20(1):91–118,
2015. doi: 10.1007/s00766-013-0188-1. URL https://doi.org/10.1007/s00766

-013-0188-1.

M. Tanveer. Agile for large scale projects - a hybrid approach. In 2015 National Software

Engineering Conference (NSEC), pages 14–18, Dec 2015. doi: 10.1109/NSEC.2015.739633
8.

The Standish Group. Chaos report. https://www.standishgroup.com/sample_r
esearch, 2019.

Gary Thomas. How to do your case study. Sage, 2015.

S.K. Thompson. Sampling. CourseSmart. Wiley, 2012. ISBN 9781118162941. URL https:

//books.google.de/books?id=-sFtXLIdDiIC.

Daniel Todd and Ronald D Humble. World aerospace: a statistical handbook. Routledge, 2019.

Fernandez Tomas. 9 Ways To Make Slow Tests Faster. https://semaphoreci.com/bl
og/make-slow-tests-faster, 2022.

Thi Thu Hien Tran. Why is action research suitable for education? VNU Journal of Science,

Foreign Languages, 2009.

K. Trektere, F. McCaffery, M. Lepmets, and G. Barry. Tailoring mdevspice for mobile med-
ical apps. In 2016 IEEE/ACM International Conference on Software and System Processes

(ICSSP), pages 106–110, 2016. doi: 10.1109/ICSSP.2016.022.

Marina Trkman, Jan Mendling, and Marjan Krisper. Using business process models to better
understand the dependencies among user stories. Inf. Softw. Technol., 71:58–76, 2016. doi:
10.1016/j.infsof.2015.10.006. URL https://doi.org/10.1016/j.infsof.201

5.10.006.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk.
An empirical investigation into the nature of test smells. In 2016 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages 4–15, Sep. 2016.

Dan Turk, Robert B. France, and Bernhard Rumpe. Limitations of agile software processes.
CoRR, abs/1409.6600, 2014. URL http://arxiv.org/abs/1409.6600.

Daniel E. Turk, Robert B. France, and Bernhard Rumpe. Assumptions underlying agile
software-development processes. J. Database Manag., 16(4):62–87, 2005.

https://doi.org/10.1007/s00766-013-0188-1
https://doi.org/10.1007/s00766-013-0188-1
https://www.standishgroup.com/sample_research
https://www.standishgroup.com/sample_research
https://books.google.de/books?id=-sFtXLIdDiIC
https://books.google.de/books?id=-sFtXLIdDiIC
https://semaphoreci.com/blog/make-slow-tests-faster
https://semaphoreci.com/blog/make-slow-tests-faster
https://doi.org/10.1016/j.infsof.2015.10.006
https://doi.org/10.1016/j.infsof.2015.10.006
http://arxiv.org/abs/1409.6600

BIBLIOGRAPHY 276

Ömer Uludag, Martin Kleehaus, Christoph Caprano, and Florian Matthes. Identifying and struc-
turing challenges in large-scale agile development based on a structured literature review. In
22nd IEEE International Enterprise Distributed Object Computing Conference, EDOC 2018,

Stockholm, Sweden, October 16-19, 2018, pages 191–197. IEEE Computer Society, 2018.
doi: 10.1109/EDOC.2018.00032. URL https://doi.org/10.1109/EDOC.2018.

00032.

Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger. On the detection of test
smells: A metrics-based approach for general fixture and eager test. IEEE Transactions on

Software Engineering, 33(12):800–817, 2007.

Steven H. VanderLeest and A. Buter. Escape the waterfall: Agile for aerospace. In 2009 IEEE/A-

IAA 28th Digital Avionics Systems Conference, pages 6.D.3–1–6.D.3–16, October 2009.

Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares Vásquez,
Daniel M. Germán, and Denys Poshyvanyk. License usage and changes: a large-scale study
on github. Empir. Softw. Eng., 22(3):1537–1577, 2017. doi: 10.1007/s10664-016-9438-4.
URL https://doi.org/10.1007/s10664-016-9438-4.

Dasari Venkatesh and Manik Rakhra. Agile adoption issues in large scale organizations: A
review. Materials Today: Proceedings, 2020.

Leo R. Vijayasarathy and Charles W. Butler. Choice of software development methodologies:
Do organizational, project, and team characteristics matter? IEEE Softw., 33(5):86–94, 2016.
doi: 10.1109/MS.2015.26. URL https://doi.org/10.1109/MS.2015.26.

Jéssyka Vilela, Jaelson Castro, Luiz Eduardo Galvão Martins, and Tony Gorschek. Integration
between requirements engineering and safety analysis: A systematic literature review. J. Syst.

Softw., 125:68–92, 2017. doi: 10.1016/j.jss.2016.11.031. URL https://doi.org/10

.1016/j.jss.2016.11.031.

Jéssyka Vilela, Jaelson Castro, Luiz Eduardo Galvão Martins, Tony Gorschek, and Camilo C.
Almendra. Requirements communication in safety-critical systems. In Maria Lencastre,
Marcela Ridao, and Henrique Prado de Sá Sousa, editors, Anais do WER19 - Workshop em

Engenharia de Requisitos, Recife, Brasil, August 13-16, 2019. Editora PUC-Rio, 2019. URL
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER19/WER

_2019_paper_7.pdf.

Jéssyka Vilela, Jaelson Castro, Luiz Eduardo Galvão Martins, and Tony Gorschek. Safety
practices in requirements engineering: The uni-repm safety module. IEEE Trans. Soft-

ware Eng., 46(3):222–250, 2020. doi: 10.1109/TSE.2018.2846576. URL https:

//doi.org/10.1109/TSE.2018.2846576.

https://doi.org/10.1109/EDOC.2018.00032
https://doi.org/10.1109/EDOC.2018.00032
https://doi.org/10.1007/s10664-016-9438-4
https://doi.org/10.1109/MS.2015.26
https://doi.org/10.1016/j.jss.2016.11.031
https://doi.org/10.1016/j.jss.2016.11.031
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER19/ WER_2019_paper_7.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER19/ WER_2019_paper_7.pdf
https://doi.org/10.1109/TSE.2018.2846576
https://doi.org/10.1109/TSE.2018.2846576

BIBLIOGRAPHY 277

Ungureanu Vlad. Difficulties in using TDD. https://medium.com/@learnstuff.io
/difficulties-in-using-tdd-41429cf1e6e3, 2019.

John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S. Janzen. Evaluating test-
driven development in an industry-sponsored capstone project. In Shahram Latifi, editor,
Sixth International Conference on Information Technology: New Generations, ITNG 2009,

Las Vegas, Nevada, USA, 27-29 April 2009, pages 229–234. IEEE Computer Society, 2009.
doi: 10.1109/ITNG.2009.11. URL https://doi.org/10.1109/ITNG.2009.11.

Matti Vuori. Agile development of safety-critical software. Tampere University of Technology.

Department of Software Systems; 14, 2011.

Gerard Wagenaar, Sietse Overbeek, Garm Lucassen, Sjaak Brinkkemper, and Kurt Schneider.
Working software over comprehensive documentation - rationales of agile teams for artefacts
usage. J. Softw. Eng. Res. Dev., 6:7, 2018. doi: 10.1186/S40411-018-0051-7. URL
https://doi.org/10.1186/s40411-018-0051-7.

Nicholas Walliman. Research methods: The basics. Routledge, 2017.

Geoff Walsham. Interpretive case studies in is research: nature and method. European Journal

of information systems, 4(2):74–81, 1995.

Shiyun Wang. Exploring a research method-interview. Advances in Social Sciences Research

Journal, 2(7), 2015.

Xiaofeng Wang, Kieran Conboy, and Minna Pikkarainen. Assimilation of agile practices in use.
Information Systems Journal, 22(6):435–455, 2012.

Yang Wang and Stefan Wagner. Toward integrating a system theoretic safety analysis in an agile
development process. In Wolf Zimmermann, Lukas Alperowitz, Bernd Brügge, Jörn Fah-
sel, Andrea Herrmann, Anne Hoffmann, Andreas Krall, Dieter Landes, Horst Lichter, Dirk
Riehle, Ina Schaefer, Constantin Scheuermann, Alexander Schlaefer, Sibylle Schupp, An-
dreas Seitz, Andreas Steffens, André Stollenwerk, and Rüdiger Weißbach, editors, Gemein-

samer Tagungsband der Workshops der Tagung Software Engineering 2016 (SE 2016), Wien,

23.-26. Februar 2016, volume 1559 of CEUR Workshop Proceedings, pages 156–159. CEUR-
WS.org, 2016a. URL http://ceur-ws.org/Vol-1559/paper19.pdf.

Yang Wang and Stefan Wagner. Towards applying a safety analysis and verification method
based on STPA to agile software development. In Proceedings of the International Workshop

on Continuous Software Evolution and Delivery, CSED@ICSE 2016, Austin, Texas, USA,

May 14-22, 2016, pages 5–11. ACM, 2016b. doi: 10.1145/2896941.2896948. URL https:

//doi.org/10.1145/2896941.2896948.

https://medium.com/@learnstuff.io/difficulties-in-using-tdd-41429cf1e6e3
https://medium.com/@learnstuff.io/difficulties-in-using-tdd-41429cf1e6e3
https://doi.org/10.1109/ITNG.2009.11
https://doi.org/10.1186/s40411-018-0051-7
http://ceur-ws.org/Vol-1559/paper19.pdf
https://doi.org/10.1145/2896941.2896948
https://doi.org/10.1145/2896941.2896948

BIBLIOGRAPHY 278

Yang Wang and Stefan Wagner. Combining STPA and BDD for safety analysis and verification
in agile development: A controlled experiment. In Juan Garbajosa, Xiaofeng Wang, and
Ademar Aguiar, editors, Agile Processes in Software Engineering and Extreme Programming

- 19th International Conference, XP 2018, Porto, Portugal, May 21-25, 2018, Proceedings,
volume 314 of Lecture Notes in Business Information Processing, pages 37–53. Springer,
2018. doi: 10.1007/978-3-319-91602-6_3. URL https://doi.org/10.1007/978-

3-319-91602-6_3.

Yang Wang, Ivan Bogicevic, and Stefan Wagner. A study of safety documentation in a scrum
development process. In Roberto Tonelli, editor, Proceedings of the XP2017 Scientific

Workshops, Cologne, Germany, May 22 - 26, 2017, pages 22:1–22:5. ACM, 2017a. doi:
10.1145/3120459.3120482. URL https://doi.org/10.1145/3120459.3120482.

Yang Wang, Jasmin Ramadani, and Stefan Wagner. An exploratory study on applying a scrum
development process for safety-critical systems. In Michael Felderer, Daniel Méndez Fer-
nández, Burak Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar Winkler, editors,
Product-Focused Software Process Improvement - 18th International Conference, PROFES

2017, Innsbruck, Austria, November 29 - December 1, 2017, Proceedings, volume 10611 of
Lecture Notes in Computer Science, pages 324–340. Springer, 2017b. doi: 10.1007/978-3-31
9-69926-4_23. URL https://doi.org/10.1007/978-3-319-69926-4_23.

Yang Wang, Daniel Ryan Degutis, and Stefan Wagner. Speed up BDD for safety verification
in agile development: a partially replicated controlled experiment. In Ademar Aguiar, editor,
Proceedings of the 19th International Conference on Agile Software Development, XP 2019,

Companion, Porto, Portugal, May 21-25, 2018, pages 12:1–12:8. ACM, 2018. doi: 10.1145/
3234152.3234181. URL https://doi.org/10.1145/3234152.3234181.

Tom Wengraf. Qualitative Research Interviewing: Biographic Narrative and Semi-Structured

Methods. SAGE Publications, 2001. URL https://books.google.co.uk/boo

ks?id=gj5rvAR1CYgC.

Karl Wiegers and Joy Beatty. Software requirements. Pearson Education, 2013.

Laurie A. Williams and Robert R. Kessler. Pair Programming Illuminated. Addison Wesley,
2003. ISBN 978-0-201-74576-4. URL http://www.informit.com/store/pair-

programming-illuminated-9780201745764.

Andrew Wils, Stefan Van Baelen, Tom Holvoet, and Karel De Vlaminck. Agility in the avion-
ics software world. In Pekka Abrahamsson, Michele Marchesi, and Giancarlo Succi, editors,
Extreme Programming and Agile Processes in Software Engineering, 7th International Con-

ference, XP 2006, Oulu, Finland, June 17-22, 2006, Proceedings, volume 4044 of Lecture

https://doi.org/10.1007/978-3-319-91602-6_3
https://doi.org/10.1007/978-3-319-91602-6_3
https://doi.org/10.1145/3120459.3120482
https://doi.org/10.1007/978-3-319-69926-4_23
https://doi.org/10.1145/3234152.3234181
https://books.google.co.uk/books?id=gj5rvAR1CYgC
https://books.google.co.uk/books?id=gj5rvAR1CYgC
http://www.informit.com/store/pair-programming-illuminated-9780201745764
http://www.informit.com/store/pair-programming-illuminated-9780201745764

BIBLIOGRAPHY 279

Notes in Computer Science, pages 123–132. Springer, 2006. doi: 10.1007/11774129_13.
URL https://doi.org/10.1007/11774129_13.

Dietmar Winkler, Rory V. O’Connor, and Richard Messnarz, editors. Integrating agile practices

with a medical device software development lifecycle, volume 301 of Communications in

Computer and Information Science, 2012. Springer. ISBN 978-3-642-31198-7. doi: 10.100
7/978-3-642-31199-4. URL https://doi.org/10.1007/978-3-642-31199-4.

Jason D Winningham, David J Coe, and Jeffrey H Kulick. Agile systems integration process.
In Proceedings of the International Conference on Frontiers in Education: Computer Sci-

ence and Computer Engineering (FECS), page 149. The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Computing (World-
Comp), 2015.

Sune Wolff. Scrum goes formal: agile methods for safety-critical systems. In Stefania Gnesi,
Stefan Gruner, Nico Plat, and Bernhard Rumpe, editors, Proceedings of the First International

Workshop on Formal Methods in Software Engineering - Rigorous and Agile Approaches,

FormSERA 2012, Zurich, Switzerland, June 2, 2012, pages 23–29. IEEE, 2012. doi: 10.110
9/FormSERA.2012.6229784. URL https://doi.org/10.1109/FormSERA.2012.

6229784.

Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-driven develop-

ment for testers and developers. Pragmatic Bookshelf, 2017.

Aiko Yamashita and Leon Moonen. Exploring the impact of inter-smell relations on software
maintainability: An empirical study. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 682–691, Piscataway, NJ, USA, 2013. IEEE Press.
ISBN 978-1-4673-3076-3. URL http://dl.acm.org/citation.cfm?id=248678

8.2486878.

Aidan Z. H. Yang, Daniel Alencar da Costa, and Ying Zou. Predicting co-changes between
functionality specifications and source code in behavior driven development. In Margaret-
Anne D. Storey, Bram Adams, and Sonia Haiduc, editors, Proceedings of the 16th Inter-

national Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Mon-

treal, Canada, pages 534–544. IEEE / ACM, 2019. doi: 10.1109/MSR.2019.00080. URL
https://doi.org/10.1109/MSR.2019.00080.

Robert K Yin. Applications of case study research. sage, 2011.

Robert K Yin et al. Design and methods. Case study research, 3, 2003.

Wanja Zaeske, Umut Durak, and Christoph Torens. Behavior driven development for airborne
software engineering. In AIAA Scitech 2021 Forum, page 1917, 2021.

https://doi.org/10.1007/11774129_13
https://doi.org/10.1007/978-3-642-31199-4
https://doi.org/10.1109/FormSERA.2012.6229784
https://doi.org/10.1109/FormSERA.2012.6229784
http://dl.acm.org/citation.cfm?id=2486788.2486878
http://dl.acm.org/citation.cfm?id=2486788.2486878
https://doi.org/10.1109/MSR.2019.00080

BIBLIOGRAPHY 280

Fiorella Zampetti, Andrea Di Sorbo, Corrado Aaron Visaggio, Gerardo Canfora, and Massim-
iliano Di Penta. Demystifying the adoption of behavior-driven development in open source
projects. Inf. Softw. Technol., 123:106311, 2020. doi: 10.1016/j.infsof.2020.106311. URL
https://doi.org/10.1016/j.infsof.2020.106311.

https://doi.org/10.1016/j.infsof.2020.106311

Appendix A

Interview Questions for use of Agile
Methods

281

	

Background	Questions	 	
1. What	is	your	job	title?	 	

2. What	is	the	typical	life	span	of	a	project	that	you	have	worked	on	
recently?	

	

3. Tell	us	about	your	role	in	some	recent	projects.	 	

4. What	category	of	system	are	you	working	in?	e.g.	
Communications?	Fuel?	Landing?	Other?	

	

5. What	regulatory	standards	do	you	follow,	if	any?		Example	
DO178C.	

	

Project	organisation	questions	 	
1. Who	is	the	customer	in	your	case	e.g.	company,	individuals?		 TQ1	

2. What	about	other	stakeholders	and	their	involvement?	 TQ1	

3. How	many	teams	are	involved	in	a	typical	project?	 TQ1	

4. What	is	the	typical	team	size?	 TQ1	

5. How	are	the	teams’	roles	structured	within	the	overall	project:	for	
example,	is	there	a	separate	hardware,	software	and	integration	
team,	or	some	other	arrangement?	

TQ1	

6. Are	teams	co-located?	 TQ1	

7. If	not,	how	are	teams	distributed	geographically	(e.g.	same	campus	
but	different	buildings,	different	campuses)?	

TQ1	

8. How	do	you	communicate	between	teams?	:	
a) Formal	In	person	
b) Informal	in	person	
c) Electronic	communication,	e.g.	IM,	Email.	
d) Telephone	
e) Via	issue	tracking	discussions	
f) Other:	please	state.	

TQ1	

9. Do	meeting	decisions	get	recorded	and	disseminated?		If	so,	how?	 TQ2	

10. How	often	does	each	type	of	communication	occur	(many	times	a	
day,	once	or	day	a	day,	once	or	twice	a	week…)?	

TQ1	

11. How	do	you	assign	requirements	to	each	team	in	a	project?		Who	
is	responsible	for	assigning	requirements?	

TQ1	

Individual	Team	organisation	(Thinking	about	within	
your	own	team)	

	

1. What	are	the	roles	in	each	team,	if	any?	 TQ1	

2. What	is	the	typical	level	of	experience	of	each	team	member?	 TQ1	

3. Are	all	team	members	co-located?		 TQ1	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 282

4. If	not,	what	is	the	structure?	 TQ1	

5. How	do	you	communicate	within	individual	teams?	:	
a) Formal	In	person	
b) Informal	in	person	
c) Electronic	communication,	e.g.	IM,	Email.	
d) Telephone	
e) Via	issue	tracking	discussions	
f) Other:	please	state.	

TQ1	

6. Do	meeting	decisions	get	recorded	and	disseminated?		If	so,	how?	 TQ1	

7. How	often	does	each	type	of	communication	occur	(many	times	a	
day,	once	or	day	a	day,	once	or	twice	a	week…)?	

TQ1	

8. How	do	you	assign	requirements	to	each	individual	in	a	team?		
Who	is	responsible	for	assigning	requirements?	

TQ1	

9. Do	team	members	participate	in	knowledge	sharing	activities	such	
as	pair	programming	or	mentoring?	

TQ1	

Software	Process	 	
1. Does	your	team	use	an	agile	methodology,	if	so:	

a) Which	one	does	your	organisation	use	(Scrum,	XP,	Crystal,	
mixture,	parts	of	several).	

b) Which	phases	of	the	project	life	cycle	have	you	applied	
agile	to	(requirements,	design,	implementation,	
qa/certification,	integration,	delivery)?	

c) Which	phases	would/are	you	considering	applying	agile	to	
in	the	future?		Why?	

d) What	benefits	have	you	found?	
e) What	obstacles	did	you	encounter	(if	any):	

i) When	changing	from	your	previous	SDLC?	
ii) Integrating	agile	methods	with	avionics	

regulatory	and	certification	requirements	
(process	vs	people/communication)?	

iii) Projects	that	combine	both	hardware	and	
software	components?	

f) Where	agile	methods	are	not	employed,	what	process	
model	(if	any)	do	you	follow?	

g) Do	you	consider	different	SDLC	models	for	different	
projects?		If	so,	what	reasoning	is	applied	when	selecting	a	
model?		Who	makes	the	decision?	

h) What	compromises/customisations	have	you	made	to	
theoretical	descriptions	of	agile	processes?	

i) What	changes/additions	are	you	planning	to	
make	to	your	software	process,	or	do	you	think	
would	be	desirable?	

TQ5	

2. Who	is	involved	in	deciding	the	project	schedule?	
a) Team	members	
b) Team	management	
c) Customer	
d) Other	

TQ2	

3. Who	decides	if	the	project	schedule	should	be	changed?	 TQ2	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 283

Software	Practices	 	
1. Do	you	follow	sprints?	If	so:		

a) How	long	does	a	sprint	last?	
TQ2	

2. Which	of	the	following	ceremonies	do	you	practice?		
a) Product	planning	
b) Daily	stand-ups	
c) Customer	demonstrations/meetings	
d) Retrospectives	

For	each	ceremony:	

a) If	you	don’t	use	the	ceremony	explain	why	not	(not	tried	
yet,	don’t	think	it	suitable…)	

b) What	benefits	have	you	found	of	applying	it?		
c) What	obstacles?		
d) What	would	you	do	differently	to	current	practice?	
e) How	frequently	does	the	meeting	take	place?	
f) Who	with	(core	team,	customer	or	product	owner,	

managers,	wider	project…)	
g) What	do	you	do	in	the	meetings?		Examples	for	

retrospectives	are	data	gathering	techniques,	e.g.	HSG,	
data	analysis	(RC	techniques,	e.g.	5	whys).	

TQ2	

3. What	documentation	is	generated	within	the	project	process?	
• Plans	
• Requirements	
• Risk	management	
• Certification	or	regulatory	documentation	
• Other	

a) How	is	documentation	managed?	
b) How	frequently	is	it	reviewed?	

TQ1	

Customer	Involvement	in	the	Project	 	
1. Agile	methods	emphasize	on	customer’s	involvement.	

a) Is	the	customer	involved	during	the	life-cycle	of	the	
project?		If	so:	

b) How	frequent	is	customer	involvement	in	the	project?	

TQ2	

2. Which	phases	of	the	project	is	the	customer	involved	in	
(requirements,	design,	implementation,	quality	assurance,	
certification,	and	delivery,	other…)?	What	is	the	nature	of	the	
involvement	in	each	phase?	

TQ1	

3. What	measures	do	you	use	to	ensure	customer	engagement,	if	
any?		For	example,	customer	co-location,	attendance	at	meetings,	
other	communication.	

TQ1	

4. What	methods	do	you	use	to	solicit	customer	feedback	when	
required	(if	any?).	

a) Are	these	methods	formally	defined	by	the	
customer/contract/wider	organisation?	How	long	do	you	
have	to	wait	before	you	get	the	feedback	from	the	
customer?	

TQ1	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 284

5. Do	you	experience	delays	in	delivering	software	to	customers?		If	so:	
a) How	often	do	you	experience	a	delay?	
b) What	are	the	major	factors	that	delay	product	delivery?	
c) When	a	delay	in	delivering	a	feature	occurs,	do	you	

normally:	
i) Extend	the	deadline	for	delivery	
ii) Postpone	the	feature	(or	lower	priority	features)	

to	the	next	sprint	

TQ4	

6. Are	multiple	releases	delivered	to	the	customer	during	a	project?		If	so:	
a) Are	these	releases	all	certified	in	the	same	way/to	the	

same	standard?	

TQ1	

Requirements	 	
1. Are	requirements	specifications	delivered	in	a	pre-defined	

structure/template/document?		For	example,	does	the	template	use:	
a) UML	use	case	or	class	diagrams,	or	similar?	
b) Text	
c) Structured	text	
d) Other?	

Can	an	example	requirements	document	set	be	shared?	

TQ1	

2. Do	requirements	change	during	the	life-cycle	of	a	project?	If	so…	
a) What	is	the	source	of	requirements	change?	

i) External/customer	
ii) During	design,	implementation	due	to	discovery	

of	conflicts,	feasibility	issues	
iii) Need	for	further	elaboration	(e.g.	due	to	

ambiguous	language	or	need	for	restructuring.)	
b) When	does	a	need	for	change	typically	get	discovered?	

i) Requirements	analysis	
ii) Design	
iii) Integration	with	hardware	
iv) QA/Certification	
v) Delivery	
vi) Other?	

TQ3	

3. How	are	uncertainties	regarding	requirements,	design	and	
implementation	resolved?	For	example:	

a) Discussion	within	team	
b) Negotiation	with	customer	
c) Decided	by	management	
d) Other	

4. What	proportion	of	the	requirements	specification	requires	change?	
a) How	often	does	this	occur?	
b) Are	the	requirements	transformed	into	a	different	

notation	during	this	process?	

TQ3	

5. How	is	requirements	cost	measured?		Story	points,	person	time…?	 TQ1	

6. How	are	requirements	allocated	to	successive	sprints?	Who	is	
responsible	for	this?	

TQ2	

7. How	many	sprints	in	advance	does	your	team	plan?		 TQ3	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 285

8. During	a	sprint,	how	many	requirements	allocated	to	a	sprint	change?		
a) For	a	current	sprint	
b) For	a	future	sprint	

TQ3	

9. How	are	requirements	managed	during	elaboration/change/evolution?		
Is	a	requirements	management	tool	employed?	

TQ2	

10. How	often	are	requirements	reviewed?		How	is	this	done?	 TQ4	

11. What	are	the	average	number	of	requirements	(or	cost	of	
requirements)	per	release?	

TQ1	

12. Do	hardware	requirements/specification	change	during	software	
development	and	vice/versa?	

a) If	so,	what	affect	does	this	have	on	either?	

TQ4	

13. Do	requirements	and	design	stabilise	during	the	project?		If	so,	at	what	
point?	

TQ1	

Quality	Assurance	 	
1. What	practices	do	you	employ	to	ensure	that	the	project	is	

maintainable	in	the	future?	For	example:	
• Refactoring	
• Pair	programming	
• Code	review	
• Static	analysis	
• Automated	unit	testing	(e.g.	using	frameworks	

like	CPPUnit)	
• Test-driven	development	
• Other	

In	each	case:	

a) Indicate	how	much	effort	is	applied	to	this	practice	per	
sprint.	

b) Which	practice	you	think	is	most	effective	at	detecting	
defects?		

TQ4	

2. What	proportion	of	activity	is	spent	on	QA	versus	software	
development?	

TQ4	

3. Do	you	use	automated	metrics	to	analyse	your	code,	for	example:	
• Test	code	coverage	
• Normalised	vulnerability	scores	
• Mutation	testing	estimates	
• Static	analysis	warnings	

TQ4	

4. How	does	certification	drive	quality	assurance	practices?	 TQ5	

Certification/Change	Management	 	
1. Is	certification	documentation	

i) Maintained	manually	
ii) Generated	from	other	source	artifacts	
iii) Both	

TQ5	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 286

2. If	maintained	manually:	
a) Does	documentation	get	updated:	

i) Periodically	
ii) When	a	change	is	made	to	a	dependent	

artefact.	
b) If	periodically,	how	frequently	is	documentation	

checked?	
i) When	a	release	is	being	prepared?	
ii) After	a	sprint	
iii) After	a	set	period	of	time.	

TQ5	

Integration	 	
1. What	are	the	different	types	of	integration	that	need	to	be	

undertaken?	(For	example:	software-software,	software-hardware…)	
TQ1	

2. Who	is	responsible	for	integration	between	software	and	hardware	
components?	(Separate	team,	collaborative	between	individual	
teams…)	

TQ1	

3. How	often	is	integration	performed	(End	of	every	sprint,	end	of	every	
release…)?	

TQ1	

4. Does	integration	lead	to	feedback	to	individual	project	components?		
If	so,	how	is	this	communicated	and	managed?	

TQ1	

	

APPENDIX A. INTERVIEW QUESTIONS FOR USE OF AGILE METHODS 287

Appendix B

Interview Questions for Investigating Use
of BDD

288

RQ CRQ TQ IQ

Learn about the
feasibility of applying
behaviour driven
development to the
development and
maintenance of a
system developed in
a large-scale
environment; to gain
a deeper insight into
the benefits and
difficulties
experienced when
developing and
maintaining avionics
systems using
behaviour driven
development.

What is the extent of
application of
behaviour driven
development to
development and
maintenance of the
systems in the
company?

TQ1.
Background of
interviewee

What is your job title?

What is the life span of the project
that you have worked on recently?

Do you have an estimate of how
long will it take to complete?

Tell us about your role in some
recent projects.

TQ2.
Familiarity and
experience with
agile and BDD?

Did you receive any formal
training on using scrum or
applying agile?

• Has the organisation arranged

any scrum/agile trainings?

• If yes, Tell us about it

Have you used agile method(s)
before this project? If yes, tell us
about it i.e. for how many years
etc.

When did you personally start
using behaviour driven
development?

TQ3.
Project organisation
and Team Structure

Who is the customer in your case
e.g. company, individuals?

Who was the product owner?

• What about other stakeholders

and their involvement?

• How many people were

directly involved?

• How many people were

indirectly involved?

What is the team size?

What are the roles in each team, if
any?

What is the typical level of
experience of each team member?

Are all team members co-located?

What different kinds of meetings
did you have during the course of
the project?

• What time did you have the

meetings?

• Who participated in each type

of meetings?

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 289

• What did you discuss at the

meetings?

• Who spoke at the meetings?

• What mile stones did you set?

How many out of those

achieved?

• What wasn’t achieved? The

ones not achieved what were

the reasons in your opinion?

Did meeting decisions get
recorded and disseminated? If so,
how?

How did you often communicate?
How often did each type of
communication occur (many times
a day, once or day a day, once or
twice a week…)?

How are the requirements
assigned to each individual in a
team? Who is responsible for
assigning requirements?

What is the size of this project in
terms of number of features?

Do team members participate in
knowledge sharing activities such
as pair programming or
mentoring?

TQ4

(Customer
Involvement in the
Project)

BDD emphasizes on customer’s
involvement.

a) Is the customer involved
during the life-cycle of the
project? If so:

How frequent is customer
involvement in the project?

Who was involved in writing BDD
specifications?

Who was involved in discussing
examples and writing scenarios?

• What methods do you use to

solicit customer feedback when

required (if any?).

• Were these methods formally

defined by the

customer/contract/wider

organisation?

• How long do you have to wait

before you get the feedback

from the customer?

• How is the feedback recorded

and where?

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 290

• Could you talk about the

feedback from the people who

have used the system?

Is there anything you would like to
change about the customer
interaction and communication,
based upon your experience with
this project?

TQ5.
Software Process

You use an agile methodology, if
so:

a) Which one did you use in this
project (Scrum, XP, Crystal,
mixture, parts of several).

b) What was the main
motivation behind adopting
agile?

c) What was the motivation
behind adopting BDD?

d) What benefits have you
found of using BDD?

Were you involved in specification
writing prior to working on this
project?

What information or
documentation did you have
about the project before starting
the project?

What were the steps or strategy
for capturing and documenting
requirements in form of BDD
features?

What were the typical steps from
conceiving a feature to
implementation?

How different were the user
stories elaborated during the user
stories workshop, from the ones
implemented?

How well did you understand the
requirements?

Did you need to make adjustment
to requirements?
if yes, what were the reasons?
And where? Feature level/
scenario level? and why?

How often the technology forced
the requirements to change?

Who was responsible for testing
the application?

Did you have a tester role
assigned to a team member?

• If not, who did the quality

assurance and verification?

How often did you run the tests?

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 291

How often and what level of
testing was performed? e.g.

• unit testing,

• regression testing,

• Integration testing etc.

What steps did you take when
certain testing was unsuccessful?

How long were the tests?

How often did you have to change
the tests?

a) What compromises
/customisations have you
made to theoretical
descriptions of agile
processes?

b) What changes/additions to
your software process do
you think would be
desirable?

Who is involved in deciding the
project schedule?

a) Team members
b) Team management
c) Customer

Other

Who decides if the project
schedule should be changed?

At what point did you start using
BDD in this project?

If not from the start then What
difficulties did you face in
switching from old methods and
tools to BDD tools and
specifications?

How many iterations has it been?

How long is an iteration?

How many sprints?

Did you have retrospectives or
similar at the end of iteration? If
yes, who was involved?
Did BDD come up in the
retrospectives? What did you
discuss?

Is it feasible to apply
behaviour driven
development to the
development and
maintenance of a
system developed in
a large-scale
environment?

TQ6. How does BDD

help in development

of a system in a

large-scale

environment?

What tool are you using for
automating BDD specifications?
Have you found any problems
with the tools?

What other tools did you use for
supporting the project?

How many features have been
implemented vs the features
which have been documented?

What are the total number of
features and scenarios now?

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 292

What is the ratio of duplication of
steps in the scenarios?

How did you handle duplication in
scenarios within feature files?

• across feature files?

How much duplication is there in
the code? What do you do about
it?

TQ7: How does BDD
help in maintenance
of a system
developed in a large-
scale environment?

• How frequent was a change

or an update requested in a

feature?

• What steps did you follow to

accommodate and manage a

change or update to the

specifications?

• Who was involved in updating

the features?

• Do you think the use of BDD

has made the specification

difficult to understand,

extend and change?

• How did bdd affect design of

the system

What project related
documentation do you have other
than feature files?
How often that documentation is
used for guidance and
consultation?

Have you produced any
documentation other than the
Gherkin specification yet?
Do you think they are all in sync?

What other project related
documentation do you need to
produce for this project?

How often did you revisit the
features?
For what reasons?

How much time did you spend in
maintenance activities vs
implementation?

Did you have to change the
specification while refactoring the
code?

TQ8. Can you record

all the requirements

with BDD?

Are there any types of
requirements that you did not
document in BDD but
implemented?
Were there any UI requirements?

What were the type of
requirements which were difficult

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 293

to document in BDD?

What benefits and
difficulties were
experienced when
developing avionics
systems using
behaviour driven
development

TQ9
Benefits Difficulties

What would you say about
learning BDD? How difficult or
easy is it?

What were your expectations
from applying behaviour driven
development?

What are the benefits that you
expected but have not achieved
from application of BDD?

In which phases of software
development, BDD helped? and
how?

Which phases of software
development do you think BDD
lacks support for? and why?

What are the problems that you
have faced with BDD?

Are there any problems that you
expected and faced after
application of BDD OR expected
but did not face?

How did you prioritize the
features?
Did the implementation drive the
prioritization or the requirements
themselves?
Who was involved in
prioritization?

How often do you run the feature
files and write the tests before
actually starting the
implementation?

Were there occasions where you
implemented some functionality
and afterwards wrote BDD
features and scenarios?
If yes why do you think that
happened?

Were you happy with the pace of
development?

What were the pain points while
using BDD and developing this
project?

 What are the lessons learned from
this project?

APPENDIX B. INTERVIEW QUESTIONS FOR INVESTIGATING USE OF BDD 294

	Thesis Cover Sheet (My Version)
	2024IslamPhD
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Background
	Motivation
	Thesis Statement
	Research Contribution
	Thesis Overview

	Research Methodology
	Justification of the Research Approach
	Literature Review
	First Literature Review
	Second Part of the Literature Review

	Case Study
	Semi Structured Interviews
	Wengraf's Method

	Action Research
	Online Experiment on GitHub
	Summary

	SLR on Agile Methods in Safety Critical Systems
	Agile Development and Safety-Critical Systems
	Agile Software Development
	Safety-Critical Systems
	Agile Software Development for Safety-Critical Systems

	Literature Review Process
	Thematic Analysis of the Selected Studies
	Advocates of Agile Methods
	Studies Focusing a Particular Aspect of Agile Development of Safety-Critical Systems
	Suggested Tailoring in Agile Methods

	Discussion Based Upon Thematic Analysis of the Challenges Identified from the Studies
	Statements and Perceptions
	Organisational Culture and Training
	Project Management
	Documentation
	Regulatory Standards
	Design and Architecture

	Discussion
	Threats to Validity
	Summary

	Agile in Large Scale Safety Critical Systems
	Objectives of the Exploratory Case Study
	Interviews
	Overview of Software Development in the Company
	Project Team Structure
	Development Process
	Project Customers
	Requirements Management
	Product Integration and Certification

	Use of Agile Software Development
	Discussion of Challenges
	Pressure for Waterfall (Challenges 1, 2, 3, 4, 5)
	Coordination amongst Stakeholders (Challenges 6, 7, 9)
	Documentation and Communication (Challenge 8, 10)
	Cultural Challenges (11, 12, 13)
	Agile Methods Tailored to Large-Scale Safety-Critical Systems

	Threats to Validity
	Summary

	Literature Review and Background: BDD
	Requirements Engineering in Regulated systems
	Agile Requirements Engineering in Regulated Systems
	Background on Behaviour Driven Development
	Literature Review Method
	Use of Natural Language
	Embrace BDD as a Holistic Approach
	Role of Experience in Using BDD
	Maintenance of BDD Specifications
	Tool Support
	Quality of BDD Specifications
	BDD for Hardware
	BDD for Regulated Systems

	Discussion
	Research Context
	Threats to Validity

	BDD in Practice: A Case Study
	Objectives of the Exploratory Case Study
	Context of the study
	Overview of the Project and the Project Team Structure
	Software Process Overview
	Development Technology

	Action Research
	Semi-Structured Interviews
	Discussion of the Limitations and Observations
	Test First Development is Difficult to Apply
	BDD Lacks Methods and Tools for Identifying and Refactoring Bad Smells
	Gherkin Lacks Hierarchy of Features and Traceability
	Identification of Appropriate Level of Abstraction is Difficult
	Gherkin Does Not Support Multiple Actors in "As A" Statements
	Gherkin Does Not Support Concurrency of Execution
	Convincing Developer and the Customer to Use BDD
	Risk of Duplication of Effort in Large-Scale Systems

	BDD in Theory vs BDD in Practice
	Understanding
	Collaboration
	Acceptance Testing

	Threats to Validity
	Summary

	An Analysis of the Practice of BDD on GitHub
	Objectives of the Experiment
	Experiment Design
	Definition of exclusion / inclusion criteria:
	Repository Data Set Preparation

	Results
	Prevalence of BDD on Github
	Characterisation of Gherkin Projects
	Gherkin versus Non-Gherkin Projects

	Discussion of the Results
	Threats to Validity
	Summary

	An Analysis of Bad Smells in Gherkin Specification
	Objectives of the Experiment
	Review of Bad Smells in Gherkin
	Gherkin Bad Smells identified in Peer-Reviewed and Grey Literature
	Mapping Bad Smells
	Experiment Design

	Results
	Arrange-Act-Assert vs Given-When-Then
	Multiple Assertions
	Duplication of Gherkin steps
	Lazy Steps Data Table:
	Lazy Scenario Outline

	Gherkin Specifications Bad Smells and Other Gherkin Artefacts
	Relationship with the size of scenarios
	Relationship with contributors

	Threats to Validity
	Summary

	Conclusions
	Thesis Research Question 1
	Thesis Research Question 2
	Thesis Research Question 3
	Contributions
	Interconnection of the Studies
	Scope and Validity
	Limitations
	Research Implications
	Future Work
	Summary

	Bibliography
	Interview Questions for use of Agile Methods
	Interview Questions for Investigating Use of BDD

