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Abstract 
 

Demand for small Unmanned Aircraft (UA) applications in Global Navigation 
Satellite System (GNSS) denied environment has increased over the years in areas 
such as internal building infrastructure inspection, indoor security surveillance and 
stock cycle counting. One of the key challenges in the current development of 
autonomous UA is the localization and pose estimation in the absence of GNSS 
signals. Various methods using onboard sensors such as Light Detection and Ranging 
(LiDAR) have been adopted but with the compromise of take-off weight and 
computing complexity. Off-board sensors such as motion trackers or Radio Frequency 
(RF) based beacons have also been adopted but are costly and limited to a small area 
of operations within the sensor’s range. With the advancement of computer vision and 
deep neural networks, and the fact that the majority of consumer and commercial UA 
comes equipped with high resolution cameras, it is now even more possible to exploit 
camera images for navigational tasks. To enhance the accuracy of traditional 
computer vision methods, machine learning can be adopted to model complex image 
variations for more accurate predictions. In this thesis, a novel approach based on 
Semantic Depth Prediction (SDP) was proposed for small UA to perform path 
planning in GNSS denied environments using its onboard monocular camera. The 
objective of SDP is to perform 3D scene reconstruction using deep convolution neural 
network using 2D images captured through a single forward-looking onboard camera 
thus eliminating the use of expensive and complex sensors. SDP was modeled based 
on open-source image data set (like NYU2 and SunRGB-D) and real image data sets 
taken from the actual environments to improve of detection accuracy and was tested 
in an actual indoor warehouse to validate the performance of the proposed SDP 
concept. Our experiments have shown that combining lightweight mobile 
Convolutional neural network (CNN) models allows feature tracking navigation tasks 
to be undertaken by an off the shelve Tello without the need for additional sensors. 
However, features of interest need to be kept within the center of each frame of image 
to eliminate the possibility of losing feature of interest over time.  Missing objects in 
SDP output can be linked to partially occluded objects captured in the input image as 
existing networks are not able to handle missing information and thus cannot detect 
objects under occlusion. 
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Chapter 1  
 
 
 

1 Introduction 
 

The demand for autonomous Unmanned Aircraft (UA) applications in Global 
Navigation Satellite System (GNSS) denied indoor environments have increased over 
the recent years from performing logistical tasks in warehouses to monitoring of 
crop’s health in large urban greenhouses [1]. Studies have also shown that there are 
growing demands for logistic companies to adopt autonomous UA for inventory 
management applications in large indoor warehouses [2] where GNSS is not available 
as shown in Figure 1.1. One of the key challenges in achieving full autonomous 
capabilities for obstacle rich indoor environments is the ability to perform precise and 
reliable pose estimation, avoidance collision and path planning in the absence of 
GNSS. Weight and size of the indoor UA system is another important safety 
consideration when operating in confined spaces that are populated with high human 
traffic or expensive stock. Safe and practical indoor UA applications cannot be 
achieved without overcoming these challenges. It is therefore crucial to develop an 
efficient and versatile navigation solution that is suitable to meet the demands of 
real-world application. 

 
1.1 Research Motivation 
 

There have been numerous developments in the navigational backbone for 
autonomous indoor UA solutions over the last few decades with no perfect 
solution to suit all types of indoor applications and environments. The success of 
each solution depends on several factors ranging from environmental conditions 
to types of infrastructure available in respective commercial applications. For 
example, developments in localization methods using off-board beacons such as 
Ultra-Wide Band (UWB) technology [3–6] have been explored for trajectory 
planning. This method utilizes multiple low powered, high bandwidth UWB 
sensors that form a mesh network to triangulate the position of the vehicle. 
Although this radio frequency-based technology can produce a high position 
accuracy and allows the UA to operate beyond line of sight from the ground 
control station, it is however a costly solution due to the need for extensive 
numbers of UWB sensors to cover large areas and operations are limited within 
the boundaries of the pre-installed UWB sensors.  
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It can also interfere with other existing systems that operate within the ultra-wide 
band spectrum. 

 
 

Figure 1.1: Challenges of indoor UA navigation with the absence of GNSS due 
to line-of-sight issues with GNSS satellite signals 

Simultaneous Localization and Mapping (SLAM) [7] is another method of 
enabling an autonomous system to continuously map and simultaneously find its 
location in real time with respect to its surroundings. Figure 1.2 shows a typical 
SLAM architecture where it consists of a sensor which inputs sensor data to a 
front end for sensor dependent processing. Maps are continuously updated on the 
move while planning its trajectory to its new location without prior knowledge of 
the environment. This method is also able to react to sudden obstacles appearing 
in the intended path and generate new path. SLAM has been widely adopted in 
the consumer world for applications such as ground cleaning vacuum robots to 
self-driving cars where self-exploratory capabilities are necessary. There are 2 
categories of sensors used for SLAM. 

The use of Light Detection and Ranging (LiDAR) sensors for SLAM is a 
technique commonly used by many for autonomous navigation particularly when 
in tight confined spaces with limited lighting conditions and where feature 
detection is not necessary. LiDAR sensor measures distance of its laser light 
projection by calculating the difference in the laser return timings and 
wavelengths to create 3D point cloud of an object or an environment. LiDAR 
sensors have been predominantly used to generate real time 3D point cloud data 
for feature extraction of the environment and refining the state estimation with 
onboard inertial data [8, 9].  
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The relative position parameters derived from environmental features and the 
differences of measurements from the LiDAR at adjacent times were used to 
estimate and correct the errors from current navigational sensors.  

 

 
 

Figure 1.2: Typical SLAM Architecture 
 
This method proves to be highly accurate but at a disadvantage due to high cost 
and high computational requirements from the large amount of 3D point cloud 
data points from LiDAR sensors. LiDAR sensors are relatively heavy and bulky 
which may be suitable for medium size UA that can accommodate a heavier take-
off weight and computing complexity as shown in Figure 1.3. However, it is not 
practical for small UA weighing less than 100 grams to carry the LiDAR sensors 
due to its payload carrying limitation. 
 

Figure 1.3: Example of a LiDAR SLAM Autonomous Multirotor developed by 
MIT. Source:https://news.mit.edu/2018/mit-csail-programming-drones-fly-face-

uncertainty-0212 
 
 
 

https://news.mit.edu/2018/mit-csail-programming-drones-fly-face-uncertainty-0212
https://news.mit.edu/2018/mit-csail-programming-drones-fly-face-uncertainty-0212
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With the advancement in camera and graphics processing units (GPU) technology, 
computer vision approach has been a popular alternative for mobile robotics and even 
autonomous vehicles to achieve precise localization and pose estimation by detecting 
objects or obstacles through feature extraction and background noise omission. 
Recent surveys [10–14] indicated a growing popularity with this approach which is 
also known as Visual Simultaneous Localization and Mapping (VSLAM) for 
autonomous navigation of indoor UA in the absence of GNSS. Advancement in 
computer vision technologies provided several advantages and benefits leading to low 
cost and lightweight navigation systems which are important for small UA like the 
one shown in Figure 1.4. Another benefit for VSLAM approach is the ability to 
capture rich details of an environment with image data that is not only useful for 
navigational purposes but can also be used in conjunction for non-navigation 
applications such as surveillance, architectural, photogrammetry or infrastructure 
inspection purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.4: Example of a Micro UA with a monocular camera Tello Micro Drone 

Source: https://www.ryzerobotics.com/tello 
 

 

 

 

 

 

https://www.ryzerobotics.com/tello
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The challenge faced by this approach is primarily the ability to perform real time 
images. Processing onboard small UA without the need for high power demand to 
support computing resources. Depth perception is another area that can hinder the 
generation of 3D scene information to provide sufficient depth information of the 
environment. VSLAM utilizes camera-based sensors such as monocular cameras, 
stereo vision cameras, RGB-D cameras as shown in Figure 1.5 to produce feature rich 
visual maps enabling exploration of unknown environments. In addition to using 
forward-looking stereoscopic cameras, pose estimations can be further optimized by 
fusing additional sensors such as optical flow sensor and rangefinders like the 
Quanser QDrone 2 as shown in Figure 1.6 and Modal AI Qualcomm Flight RB5 as 
shown in Figure 1.7. This method however requires additional sensors and onboard 
processors apart from the primary stereoscopic cameras to perform autonomous 
navigation thus adding on weight to the small UA. Benefits of using visual base 
sensors address the issues over LIDAR base systems, allowing more cost-effective 
navigation approaches and reducing computational complexity at the same time. 
Despite progression in vision-based approaches, there are still present issues of fusing 
2D images with other sensor information for optimal scene understanding. As such, 
RGB information obtained from the visual sensors need to be fused with data from 
existing onboard inertial sensors to provide aircraft pose estimation via an extended 
Kalman filter framework as explored by several VSLAM research works. 
 

 
Figure 1.5: AVATAR HD PRO Monocular Camera, Stereolabs ZED 2i Stereo 

Vision Camera and Intel® RealSenseTM Depth Camera D455. 
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Figure 1.6: Quanser QDrone 2 equipped with Intel® RealSenseTM Depth 
Camera and Downward Optical Flow Camera Source: 

https://www.quanser.com/products/qdrone-2/ 
 

 
 

Figure 1.7: Modal AI Qualcomm Flight RB5 equipped with Stereo vision Sensors, 
Tracking Sensor, and Ultrasonic Rangefinder Sensors. Source: 

https://www.modalai.com/pages/qualcomm-flight-rb5-5g-platform 
 

Various techniques have been developed to further enhance the accuracy of image 
detection and recognition for vision-based approaches. The process of image semantic 
segmentation allows each pixel of an image to be labeled with corresponding 
classifications to allow an image to be meaningful and less complex for analysis. This 
has drawn interest into the world of computer vision and the challenge is to segment 
unknown images into different parts and objects. 

 

https://www.quanser.com/products/qdrone-2/
https://www.modalai.com/pages/qualcomm-flight-rb5-5g-platform
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Guo et al [15] reviewed semantic segmentation pertaining to deep convolutional 
neural networks and have identified that it not only improves computational 
efficiency, but it can also improve accuracy by eliminating background noise. Since 
image segmentation is considered as mid-level representation, there are potential 
contributions to a wide field of visual understanding from image classification to 
image synthesis; from object recognition to object modeling; from high performance 
indexing to relevance feedback and interactive search. Garcia et al [16] surveyed on 
various deep learning approaches to perform semantic segmentation and had 
concluded that it improves computational efficiency, accuracy and can be more 
general than the complexities offered by conventional computer vision solutions. The 
key challenges however are that it requires an extensive amount of image data sets to 
train the algorithm and the issues of incorrect segmentation. 

Semantic Segmentation is also used in autonomous driving [17] together with other 
sensors to achieve robust and accurate scene understanding since autonomous 
vehicles are fitted with multiple sensors such as cameras, LiDAR, Radars. Multiple 
sensing modalities can be fused to exploit their complementary properties. The 
accuracy of perception needs to be very accurate and deep learning with computer 
vision helps improve the performance of scene understanding combining multi-
sensory data as shown in Figure 1.9. 

SegNet [18] was developed to address the efficiency in both memory and 
computational time which is crucial for lightweight and dynamic micro drone 
applications. Quantitative assessment has proven that SegNet was able to provide 
better performance as compared to other widely adopted FCN and other well-known 
architectures. They have tested using 2D RGB images from road scenes and SunRGB-
D [19] datasets and achieved good results since SegNet only stores the max-pooling 
indices of featured maps and uses them in the decoder network. 

The concept of using vision-based navigation systems requires highly accurate and 
reliable real time 2D object recognition to work. Several works were accomplished 
by applying Convolutional Neural Network (CNN) machine learning techniques but 
requires complex designs which is unsuitable for adoption onto unmanned systems. 
Ding et al [20] designed a pipeline using both public and private image datasets to 
pre-trained CNN model to improve real time indoor object detection and recognition. 

 
 
 
 
 



CHAPTER 1. INTRODUCTION 
 

8 
 

To further exploit the use of object detection and recognition for scene 
understanding, semantic segmentation can be applied to a known image for 
further classification at the pixel level. This will allow multi-class segmentation 
using pre-trained and new images for a more accurate and efficient 3D indoor 
scene recreation that can be applied on a small UA for path planning task. The 
accuracy and speed of semantic segmentation can also be greatly improved by 
applying CNN to enable the small UA to perform path planning without prior 
knowledge about new environments or positions of obstacles. 

 

 
Figure1.8: Example of Semantic Segmentation of a Motorcycle Image by Guo et al 

[16] 

Figure 1.9: A complex urban road scene with image classification labels obtained 
from RGB image [16, 18]
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1.2 Research Objective 
As discussed earlier, it is important to reduce the weight and footprint of small UA 

due to its limited payload carrying ability. Such small UA is in demand by various 
industry sectors for indoor applications where GNSS is not readily available. 
Therefore, the objectives of this thesis are as follows: 

1. To study how UA regulations had made an impact on the navigation constraints 
of small UA. 

2. To evaluate current convolution neural network models for image detection 
and recognition, semantic segmentation, and depth inference capabilities 
suitable for 3D scene reconstruction. 

3. Develop a multimodal framework for effective 3D scene understanding of 
static and dynamic obstacles by coupling image detection, semantic 
segmentation, and depth perception models. 

4. Validate autonomous flight using SDP in GNSS denied indoor environment. 

1.3 Contributions 
This thesis contributes to the development of Semantic Depth Prediction method 

that enables efficient avoidance collision and path finding functions for small UA in 
GNSS denied environments. The main goal is to infer 3D scene information from 2D 
images using semantic depth prediction model for optimal path finding in an obstacle 
rich environment. Secondly, the long-term goal is to be able to apply this as an 
embedded vision system for small UA to achieve autonomous sense and avoid 
capabilities in an indoor environment. The contributions to this development are 
summarized below: 

1. Proposing a fused multi-modal CNN method comprising of image detection 
and recognition; semantic segmentation and depth inference to perform 
indoor navigation using a single monocular camera. 

2. Develop autonomous navigation method using Semantic Depth Prediction 
(SDP) without additional sensors apart from the integrated camera on a 
small UA. 

3. Training of deep learning system by fusing synthetic and actual image datasets 
(NYU2 and SunRGB-D) for subjective identification of objects and obstacles. 
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1.3.1 List of Publications 

The contributions of this thesis have led to the following peer-reviewed conference 
publications: 

• Mark Tay Yong Kiat and Sutthiphong Srigrarom Laser Guided Semantic 
Depth Prediction System (An indoor micro-UAV navigation platform, 15th 
International Conference on Intelligent Unmanned Systems (ICIUS) 2019, 
Beijing on 28th August 2019 (http://icius2019.org/) 

• Y. K. Tay and H. Hesse, "Impact of Unmanned Aircraft Regulations on 
Autonomous Navigation Approaches for Indoor Multi-Rotor Applications 
Survey," 2021 7th International Conference on Control, Automation and 
Robotics(ICCAR),2021,pp.201205,DOI:10.1109/ICCAR52225.2021.9463498
Awarded for “Best Oral Presentation”. 
 

1.4 Thesis Outline 
The focus of this work is to develop the use of lightweight CNN to perform 

computer vision-based navigation in a GNSS denied indoor environment using a 
small UA in a GNSS denied environment. The goal is to use the onboard monocular 
camera to achieve an image-based navigation using an off the shelve UA without the 
need for additional navigational sensors. 

Chapter 2 discusses the motivation on how UA regulations had driven the way 
autonomous UA systems are designed. Classifications by weight with respective 
regulatory requirements have been put in place to ensure safe UA operations. With 
the increasing demand for small UA in real world applications, the challenge is to 
establish lightweight autonomous navigation methods with the least amount of 
hardware to reduce its weight with the use of computer vision and CNN satisfy both 
regulators and real world needs through computer vision with deep learning 
approaches. 

Chapter 3 discusses on SDP’s approach and how various of lightweight CNN 
models designed for mobile applications were evaluated to determine the combination 
of CNN models used for object detection and recognition and joint semantic depth 
segmentation model that would fulfill SDP’s objective. 

Chapter 4 provides experimental results of the software in the loop and hardware 
in the loop validation in the proposed warehouse environment and Chapter 5 
concludes the findings in this thesis and future work. 

http://icius2019.org/)
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Chapter 2 
 
2 Background and Related Work 

This chapter will cover several topics related to the motivation of the development 
of SDP for small UA. As the demand for autonomous small UA indoor applications 
increases, it is not possible to adopt the matured methods of navigation that are used 
on larger UA for outdoor applications. The development of UA regulations across the 
world has also played a part in determining the relative size of the UA by various 
weight categories that may affect the decision of navigational solutions used for the 
desired applications. 

In addition, with technology advancements in the world of computer vision and 
deep learning, we will look at how deep learning methods can improve the 
implementation of computer vision and how it is able to minimize the need for 
additional navigation sensors to enable small UA with autonomous capabilities. 

 
2.1 Impact of UA Regulations Affecting Autonomous 

Navigation Approaches 

The demand for UA technologies in real world commercial applications [21–23] 
has been constantly increasing over the recent years due to the technology 
advancement and economic benefits. This technology has evolved from the first UA 
in 1783 in the form of a wind dependent air balloon to current times where palm size 
flying robots with smart features that can be purchased conveniently over the counter. 
Over the past decade, UA has been extensively used in the outdoor environment for 
a vast spectrum of commercial applications [22, 23] such as construction, agricultural, 
surveillance, entertainment, and transportation industries. One of the successes to the 
rapid evolution of outdoor UA application is the availability of GNSS [24] that 
provides the basis for autonomous navigation. GNSS technology was approved for 
civilian use in the 1980s and is now widely used for navigation and positioning 
applications. In modern day applications, UA navigation systems cannot solely rely 
on GNSS technology alone. 
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Outdoor applications in obstacle rich urban environments face intermittent GNSS 
outages caused by signal masking and multi path issues. GNSS is usually paired 
alongside inertial sensors to provide a dead reckoning system [25] where inertial 
sensors would provide position information in the event of momentary GNSS outage. 

With the rise of indoor UA applications in the recent years., the adoption of UA 
technology in the supply chain sector offers competitive economic benefits for supply 
chain integration, shortening of cycle times to support improved customer service 
levels and improving supply chain responsiveness. One of the key challenges to 
achieve autonomous navigation capabilities in GNSS denied obstacle rich 
environments is the ability to perform precise and reliable pose estimation with 
respect to the known obstacles for avoidance collision and path planning functions. 
Weight and size of such air vehicles is another important consideration for safety 
when operating in confined spaces that are populated with high human traffic or 
expensive stock. Safe and practical indoor UA applications cannot be achieved 
without overcoming such challenges. 

The increased demand for commercial UA operations has resulted in a need for 
national aviation authorities to maintain safety and competency standards in the 
interest of public safety. UA regulatory frameworks by weight classification will 
change the way UA are classified especially for commercial UA operations since 
earlier UA developers had not considered this non-existence requirement in the past 
as part of their design considerations. 

This thesis will discuss how UA regulations have impacted the existing 
autonomous indoor UA navigation solutions and emerging trends for modern day UA 
systems considering UA regulatory requirements. 
 
2.1.1 Common Methods of UA Classification 

Classifications of UA were generally divided between military or civil applications 
and further broken down into the type of applications unique to specific operations. 
For example, within each group (military and civil), it can be further differentiated by 
its take-off weight; flight mechanics e.g. airplane, helicopter, multi-rotor, powered-
lift; operating range and endurance; or by specific commercial applications. Due to 
the sharp increase in commercial UA applications, it is now important to consider 
how national aviation authorities across the world are classifying commercial UA. 
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2.1.1.1 UA Classifications by Regulations 

Since UA operations involves a mixture of stakeholders that could either be 
aviation trained or some who are not, International Civil Aviation Organization 
(ICAO) had developed a set of guidance to help respective countries devise a UA 
regulatory framework according to their own needs without the compromising safety 
and economical needs. Under ICAO’s definition, "UA is defined as an aircraft 
intended to be flown without a pilot on board and can be remotely controlled from 
another place or pre-programmed to carry out a task without intervention" [26]. 
However, UA regulations for commercial applications still vary across different 
countries depending on whether technology or safety was regarded as the higher 
priority.  UA Regulatory framework has been constantly updated to cope with safety 
requirements, new commercial applications   and technology advancements that are 
unique to the respective country’s UA climate. 

Most UA regulatory framework concentrates on 4 sub areas of compliance. They 
are opera- tor’s Competency; registration of UA; type of operations and insurance. 
Examples of national UA framework includes Federal Aviation Authorities (FAA) in 
the United States implementing Part  107 Unmanned Aircraft guidelines, Civil 
Aviation Authorities (CAA) in the United Kingdom implementing Dronesafe 
initiative, European Union Aviation Safety Agency (EASA) in Europe implementing 
the European drone regulations and last but not least Civil Aviation  Authorities of 
Singapore (CAAS) in Singapore implementing its Air Navigation Act 101 - 
Unmanned Aircraft Operations.  The introduction of new regulatory requirements will 
eventually change the type and mass of UA systems that commercial applications will 
adopt due to regulatory compliance. Since the entry to market for any commercial 
type of UA is dependent on the authorities’ regulatory approvals to operate, it is very 
therefore important to start bench marking against these regulations to accurately 
determine the potential use cases for new technological developments. 

CAAS governs the use of all UA activities with Singapore’s Air Navigation Order 
(ANO) 101 - Unmanned Aircraft Operations. UA regulations in Singapore are 
generally classified firstly by weight and subsequently by type of UA. UA purpose is 
categorized by recreational purpose, educational purpose, or non-recreational and 
non-educational purpose. Regardless of its purpose, it is mandatory to register any 
UA that has a total take off mass above 250g, regardless if it is operated within an 
indoor or outdoor environment. For commercial purposes, the UA operator is required 
to hold a valid Unmanned Aircraft Pilot License (UAPL) regardless of total take off 
mass. 
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UAPL are classified into 2 categories; Class A UAPL is required for below 25kg 
UA and Class B UAPL is required for above 25kg UA. Each class of UAPL is further 
divided into 4 UA types; Aeroplane, Airship, Rotorcraft and Powered-Lift. Figure 
2.1provides an overview of the necessary CAAS regulatory requirements for the 
respective total UA mass. 

Similarly, Federal Aviation Authorities (FAA) Part 107 requires all UA weighing 
between 250g to 25kg flying for work or business to be registered. From a regulatory 
standpoint, public safety was the key priority, and a study was conducted in 2016 by 
FAA Regulatory Task Force (RTF) to assess the risk levels associated with the mass-
based categorization. Although it was evaluated that lightweight UA weighing less 
than 250g poses no lethal threat to inflict serious injuries [27], this assessment was 
deemed conservative due to overly simplified assumptions on impact risk evaluation.  
Based on accounting for the actual kinetic energy transfer of a falling UA, 250g is the 
conservative weight limit (i.e., safer one). The 2.2kg limit would be more realistic or 
representative weight limit [28]. Despite recommendations made to adjust the upper 
weight limit for a "low risk" UA to 2.2kg, most national aviation authorities took the 
conservative approach with the 250g weight threshold. It is evident from Table 2.1 
that most national aviation authorities classify UA below 250g as harmless and do not 
impose regulatory requirements on them. 
 

 
 

Figure 2.1: Summary Table for CAAS UA Regulations 
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National aviation authorities do not specifically classify autonomous UA 
operations. It can be assumed that the intended use for any autonomous UA 
systems regardless of indoor or outdoor applications is mainly for commercial 
applications. As such, most commercial UA operations will require relevant 
permits and licenses from their aviation authorities despite operating fully 
autonomous system that does not require a pilot in the loop. Table 2.1 is a 
summary table of UA regulatory requirements by some countries. 
 

2.1.1.2 Emerging trend in UA development below 250g 

The increase in adoption of the more conservative 250g weight threshold across 
many national aviation authorities have started to influence UA manufacturers to 
review their existing product line of UA systems for the consumer market since 
most were designed based on applications without regulatory classifications by 
weight. As a leading UA manufacturer, DJI’s commitment for safety led them to 
launch the Mavic Mini series since October 2019 that was purposefully designed 
with a total take-off weight of 249g to avoid the need for UA registration. Other 
lightweight UA systems were developed prior to the implementation of the weight 
dependent regulations such as the Ryze Tello that weighs approximately 80g or 
Parrot Mambo that weighs approximately 73g, such UA are considered basic toy 
UA with minimal advance features and low-resolution cameras. 

UA manufacturers typically drive new technological adoption and bring forth 
new technology innovations into the commercial UA market. This would 
therefore influence researchers in the areas of UA technologies to consider 
regulatory weight classifications during the development of UA related 
technologies.
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Table 2.1: UA Regulatory Requirements by Countries 
 

Countries UA Registration Requirements 
Australia All weights - To operate UA < 2kg for 

commercial reasons, CASA 
must be notified. 

Canada For UA between 250g up to 25kg - UA pilot licence to fly UA 
that weigh 250 grams (g) up 
to and including 25 kilograms 
(kg) 

China For UA >250g - All drones flown for 
commercial use requires a 
commercial UA license. 

France For UA    800g - Commercial UA operators 
must pass a theoretical exam 
and undergo practical 
training/assessment. 

Germany For UA  250g - UA > 5 kg must obtain 
permit to fly at night. 
- License required for UA > 
2kg 

Japan Not required - UA weighing 200g or more 
must seek permission to 
operate. 

Singapore For UA    250g - Permits required for 
commercial UA operations. 

South Korea All weights - License required for all 
commercial operations with 
UA 12kg. 

United Kingdom For UA   250g - Commercial UA operations 
Operator ID1 and/or Flyer ID2 

required for UA > 250g 
and to obtain Permission to 
Fly Commercially (PFCO) 
- Insurance is required for all 
commercial UA operations 

United Arab Emirates     All weights - Permits required for 
commercial UA operations. 

United States For UA between 250g to 25kg with 
exceptions for recreational flyers. 
N paper registration for 25kg above 

- License required for all 
commercial operations. 
- Airspace authorization for 
UA operations outside of class 

  G airspace  
1Operator ID - Must be labeled on your drone or model aircraft. 
2Flyer ID - Shows operator has passed the basic flying test. 
*Accurate at the time of publishing 
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2.1.2 Autonomous Navigation for Multi-rotor Systems 
UA navigation is the process where the system determines its position based on 

a reference and plans an optimal path to navigate to its desired location. Autonomy 
of the navigation is aided with sensors providing relevant sensor data for 
localization reference. A basic Multi-Rotor (MR) system architecture is shown in 
Figure 2.2 where navigational algorithms in the guidance, navigation and control 
module determine its state, position estimates and its optimal flight path with 
respect to its operating environment. The algorithm output commands are 
subsequently fed to the propulsion system to perform to execute the desired 
maneuvers. 
 

 

Figure 2.2: Basic Multirotor System Architecture 
 

Autonomous navigation can firstly be classified by outdoor or indoor applications 
and subsequently by global or localized navigational by sensor types as shown in 
Figure 2.3. There are also various Indoor localization methods that can be further 
differentiated between off-board and on-board methods.
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Figure 2.3: Classification of Autonomous Navigation by Sensor Type 

 
2.1.2.1 Outdoor Navigation Methods 

Most outdoor applications can be assumed to be flying over remote or rural 
areas where the probability of UA striking a person is not more than 0.01% [29] 
since human population is less dense and the risk of UA falling and causing harm 
to people below. In addition, the nature of outdoor applications requires a larger 
UA to have the capacity to carry heavy payloads such as pesticides, parcels, or 
even commercial grade cameras to perform its commercial task. Other 
considerations such as weather, endurance and range may not be an incentive to 
operate small UA. UA designed for outdoor autonomous flights relies on the 
matured GNSS method for global navigation [30] and some UA systems are also 
fitted with other sensors for avoidance collision capabilities [31]. GNSS has been 
around for decades and is a popular navigational system used in manned aviation. 
The increase in demand for commercial applications [32]in the areas of search 
and rescue, remote sensing, civil infrastructure, agriculture, supply chain and even 
drone taxi is pushing UA industry into a new era. Most of these UA applications 
perform autonomous flights using GNSS guided waypoints as the point of 
navigation like manned aviation. Advantages of GNSS include 24/7 availability, 
good location accuracy worldwide and uses standard latitude/longitude reference. 
The disadvantage is that GNSS signals will be attenuated by roofs and walls 
therefore is not suitable for indoor navigation applications without the use of 
GNSS repeaters. 
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2.1.2.2 Indoor Navigation Methods 

Indoor applications are however more delicate due to confined spaces and 
obstacles. The potential demand for indoor applications from the supply chain 
industry’s perspective mainly evolves around inventory management inside 
warehouses where UA can be used to perform stock taking and other associated 
processes. Although GNSS reception is poor or non-existent for indoor 
environments, it is possible to generate GNSS signals using Pseudolites (Pseudo-
Satellites) [33] installed at corners of room to create a pseudo satellite 
constellation. This allows GNSS signals from each satellite to be received and 
subsequently relayed through indoor transmitters. No modifications were required 
on the GNSS receiver end and horizontal position accuracy proved to be as 
accurate. This solution cannot detect obstacles and other infrastructure thus would 
require additional sensors for collision avoidance. 

Other indoor localized navigation methods can be achieved with off-board 
techniques such as RF beacon [34] or motion trackers [35] to track the position of 
the UA, this method is unable to perform obstacle avoidance on its own as well.  
Another disadvantage for this method is that it requires RF receivers or visual 
markers to be installed on the UA and that it must operate within line of sight of 
its transmitters or trackers. Such technique is also limited to the local area network 
of the installed RF transmitters and trackers thus can be costly solution if the area 
of operation is extensive. 

Figure 2.4 summarizes some of the advantages and disadvantages across the 
various navigational methods. Advantages of vision sensors outweigh the other 
methods of indoor localized methods. There is no impact to weight since most 
UA are already equipped with onboard cameras therefore allowing the possibility 
to use the video feed for vision-based navigation tasks. 

2.1.2.2.1 Computer Vision Methods for Indoor Navigation  

With the advancement in camera and graphics processing units (GPU) technology, 
computer vision approach has been a popular alternative for mobile robotics and even 
autonomous vehicles to achieve precise localization and pose estimation by detecting 
objects or obstacles through feature extraction and background noise omission. 
Recent survey [11,12,13,14] indicated a growing popularity with such approach 
which is also known as Visual Simultaneous Localization and Mapping (VSLAM) 
for autonomous navigation of indoor drones in the absence of GNSS. Advancement 
in computer vision technologies provided several advantages and benefits leading to 
low cost and lightweight navigation system. 
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Other benefits for vision-based approach are the ability to capture rich details 
of an environment with image data that is not only useful for navigational 
purposes, but the same image data can also be used in parallel for non-navigation 
applications such as surveillance, architectural, photogrammetry or infrastructure 
inspection purposes. 
 

 
Figure 2.4: Impact of Autonomous Navigation Methods in Different Environments 
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2.1.3 Conclusion 
The adoption of weight dependent regulations across national aviation authorities 

has influenced leading UA manufacturers to consider weight requirement during the 
development of UA related technologies. A comparison across various navigation 
sensors suggested that vision sensors have several advantages over other navigational 
sensors without compromising significantly on the UA weight; especially for indoor 
applications since most off-the-shelf UA are equipped with onboard cameras. Vision 
sensor data is also useful in two folds; (1) to perform onboard localized navigation 
that is crucial for autonomous navigation in obstacle rich indoor environments and 
(2) the same vision data can be used for other non-navigational tasks that is equally 
important in commercial real-world applications. These requirements should be 
considered when developing a safe and lightweight indoor autonomous UA that can 
also allow commercial UA operators to avoid weight dependent UA regulations if 
necessary. 
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2.2 Computer Vision Methods for Autonomous 
Navigation 

In the previous section, we learned that the key challenge to equip small UA with 
indoor autonomous navigation capabilities is limited by the payload carrying 
capabilities. For any UA to autonomously navigate in a GNSS denied indoor 
environment, it must understand its environment before it is able to determine the best 
obstacle free path to follow. Since our argument is that most UA are fitted with 
cameras, implementing visual based autonomous navigation approaches for small UA 
will help to address this issue. 

Computer vision (CV) generally makes use of image capturing devices to visually 
attain a high-level understanding of the real world. It replicates our human vision 
system by acquiring information through digital images, analyzing, and abstracting 
relevant information for decision-making tasks. Traditional CV does not contain 
predictive elements thus does not have the ability to make decisions and its accuracy 
is dependent on the programming of the models by CV engineers. The challenge with 
traditional CV escalates when the complexity of image analysis increases. Fine tuning 
of more complex CV applications will have to be programmed manually with some 
compromises to achieve the most desirable outcome thus making traditional CV 
programming dependent. 

Deep Learning (DL) helps to address traditional CV issues. DL is a branch of 
Machine Learning (ML) which is a subset of Artificial Intelligence (AI), and it mimics 
human behavior to analyze and perform a given task. The key difference between DL 
and ML is that the former relies on artificial neural network which mimics the human 
brain, therefore allowing the ability to work on larger data sets with more complex 
correlations as compared to ML. Although CV methods have been optimized for 
performance and efficiency, DL methods can improve accuracy and versatility. 
 
2.2.1 Traditional Computer Vision Methods 

Traditional CV relies on engineered algorithms to extract features such as 
colors, edges or objects recovered from an input image to produce a desired 
output. Structure from motion (SFM) technique [36, 37] has been used to perform 
3D scene reconstruction in real time localization system using 2D images from 
monocular camera setups to address localization issues in feature rich indoor 
environments or areas where GNSS signals are weak or non-existent.  
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The implementation of SFM is typically based on a 3-step approach where the 
initial step is to generate video recordings of its selected trajectory path using an 
on-board monocular camera either manually or during a real time mission. SFM 
algorithm is then used to generate a 3D map of the known environment that will 
be used to compute its position in real time with respect to the trajectory path. 
Unsupervised object detection and classification method is subsequently used to 
perform scene interpretation from the 3D map. This method proves to be accurate 
only with minor changes along its planned trajectory but is not adaptable to the 
ever-changing environment as it is limited to the initial 3D mapping information 
and does not have the ability to update its initial 3D map with new environment 
data. 

 
 

 
 

Figure 2.5: Relationship between AI, ML, DL and CV. 
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It is desirable to enhance visual SLAM supported methods with object detection 
and recognition capabilities to provide a more robust and scalable scene 
reconstruction. SLAM-aware object recognition system [38] incorporates multi-
view object proposals and efficient feature encoding techniques onto semi-dense 
monocular SLAM to strengthen its object recognition capabilities. This method 
demonstrated that it was possible to detect and recognize objects in an unknown 
environment on a frame-by-frame basis across various viewpoints from a single 
monocular camera. Such a method was also scalable to a larger number of object 
categories depending on image datasets used to generate the training model. This 
experiment however focuses largely on a passive 2D object detection and 
recognition objective without depth perception of the objects that is crucial for 
navigation purpose. 

Metric scale estimator was introduced to a monocular SLAM system [39] to 
establish a drift free altitude measurement with a scale estimator that transfers up 
to scaled positions from Parallel Tracking and Mapping (PTAM) [40] pose 
estimators to metric form using a single monocular built in camera on a 
commercially off-the-shelve AR Drone platform. Although this low-cost method 
proves that it is possible to rely on integrated monocular cameras for vision data to 
generate 3D scene representation through a PTAM system, insufficient translation caused 
by rapid yaw rates resulted in inaccurate estimates of the camera position and 3D map 
estimation and can be improved with combining IMU system with the visual data [41] to 
provide a more accurate pose estimation of the drone. 

Stereoscopic vision [42] is a method of estimating the object’s location including 
the third dimensional aspect using two or more images simultaneously taken of object 
or surroundings. This method has been gaining popularity in recent years with the 
advancements made with respect to the algorithms allowing accomplishments such as 
the “live” implementation of stereo vision in computer vision. Advantages that come 
with the application of stereo vision systems include: 

1. It is a cheap method for the reconstruction of surroundings in 3D. 
 

2. As it is a passive sensor, it will not be prone to interfering with other sensor 
devices present. 

 
3. It can be easily incorporated with other vision objectives such as feature 

tracking and recognition. 
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3D reconstructions can be simply achieved using stereo vision cameras in two steps: 
 

1. Extract features from both images, match the correspondent features 
between the set of images and generate the disparity map using these points. 

2. After which, the focal length of both cameras along with the camera’s geometry 
such as positioning and orientation, the 3D coordinates of matched features in 
the image pair can be calculated. 

To accomplish the task stated above, the stereo cameras should be in a standard 
position where the optical axis is parallel and image planes being coplanar. When 
the cameras are positioned in this fashion, the rows in the image’s frame buffer 
will be in line with the epi-polar lines hence matching points between the pair of 
images can be detected over these rows. With the physical positioning of the 
cameras established, the virtual parameters of the cameras must also be made 
known, and this is acquired through the calibration of the cameras, thus giving the 
parameters relating the model of the cameras within the program to the physical 
devices. This is essential as the coordinates and positions of the cameras must be 
identified to compute depth and distance information. Once the camera’s 
parameters have been acknowledged, it is now able to match corresponding 
features of the two images taken by the stereo cameras and more importantly, 
generate the disparity between the said features. The program can be based on 
several stereo algorithms with different approaches, some regarding the area 
correlation, others basing it on feature and object detection. For the application of 
3D reconstruction, implementing an area correlation algorithm with stereo 
cameras would be the more adequate system allowing for denser disparity maps. 
This is complemented by a more accurate matching of the features in the right 
frame for every corresponding feature in the left frame, hence creating more 
precise 3D reconstruction. 
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2.2.2 Deep Learning (DL) Computer Vision Methods-
Convolutional Neural Networks (CNN) 

Incorporating artificial intelligence with traditional computer vision reduces the 
need for human intervention, allowing an independent means of analyzing input data. 
Amongst the various DL methods, CNN is preferred for computer vision as it requires 
less pre-processing and is effectively more efficient when it comes to image 
processing. CNN plays a revolutionary role in applying artificial intelligence with 
computer vision as it is generally more accurate compared with other neural networks 
such as Artificial Neural Network (ANN) or Recurrent Neural Network (RNN). The 
introduction of CNN for image processing has improved performance and accelerated 
the adoption of DL in vision base approaches. Many CNN approaches have been 
proposed with the intention to improve detection accuracy and performance for real 
time applications in mobile or embedded systems. CNN extracts and analyzes data 
from an input image at pixel level and computes an output base on learnable weights 
and biases. The use of relevant image data sets for a specific task improves accuracy 
for image classification, object detection and semantic segmentation tasks as well. A 
typical CNN architecture consists of 3 layers termed as convolutional layers, pooling 
layers, and fully connected layers. 
 

 
Figure 2.6: A Typical Convolutional Neural Network Architecture 
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2.2.2.1 Convolutional Layer 

This is the key layer in a CNN where filters or kernels are applied to extract features 
from an input image. Each kernel of a defined N x N size moves across the input 
image of M x M size along its height and width to derive a dot product that associates 
the kernel with the input image to generate a feature map. The amount of movement 
each kernel moves across the input image is termed as stride and this will also 
determine the size of the convolutional layer output. Padding is usually added to the 
outer border of the input image to create more space for the kernel to cover for a more 
accurate analysis.  The convolutional layer output is then passed on to the next layer 
for down sampling. 

An example of the convolutional layer is shown in Figure 2.7 where a 2 x 2 
kernel, stride = 2, padding = 1 will generate a 3 x 3 output. 
 

 

Figure 2.7: Example of how a kernel is applied to an input image. 
 

The output size of the convolutional layer can be calculated using the following 
mathematical formula: 

 
(((W − K + 2P) /S) + 1) 

Where: W = Input size, K = Filter size, S = Stride, P = Padding 
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2.2.2.2 Activation Function 

The activation function in Figure 2.8, also known as transfer function, helps to 
decide if the output of each convolutional layer is to be activated as an input to the 
next hidden layer and is typically positioned at the end of each convolutional layer. 
It determines the firing of a neuron base on a specific input by generating a 
corresponding output. 
 

 

Figure 2.8: Activation Function for Neural Network 
 

Although there are both linear and non-linear activation functions, the latter is 
preferred to allow the neural network to handle more complex patterns or 
relationships for CNN models. Some of the common non-linear activation functions 
used in CNN are as shown in Figure 2.9. 

Figure 2.9: Non-Linear Activation Functions Source: 
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-

learning-9689331ba092  
 
 
 
 
 
 
 

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
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2.2.2.3 Pooling Layer 

The convolutional layer output passes through the pooling layer for the purpose 
of down sampling to reduce the memory and computing requirements without 
losing critical information. This is achieved by summarizing and combining the 
features from the convolutional layer output into a single neuron and subsequently 
passing it down to the next hidden layer. Pooling as shown in Figure 2.10 can be 
achieved either by taking an averaging or maximum pixel value covered by the 
kernel. 

Max pooling basically takes the maximum pixel value obtained from each 
region of the input image that is covered by a kernel. Average pooling takes the 
average pixel value and min pooling takes the minimum value of the same region. 
The most used pooling methods are average and maximum pooling. There is no 
preferred pooling method as each method offers different results depending on the 
expected results of a given input image. For example, max pooling will determine 
the brightest pixel and is useful in high contrast applications. Average pooling on 
the other hand is used to smoothen out the images rather than determining distinct 

features. 
 

Figure 2.10: Max Pooling vs Average Pooling 
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2.2.2.4 Fully Connected Layer 

The Fully Connected (FC) layer is also known as the classification layer and is 
located at the end of the CNN architecture. Each input to the FC layer is connected 
to the output from the last hidden layer and derives the final probabilities for each 
classification label. Using the example in Figure 2.11, the hidden layers will 
breakdown and run the kernels through the input image to analyze and filter the 
features based on its weights and biases in its activation function. 
 

 

Figure 2.11: Fully Connected Layer in a CNN Architecture 
 
2.2.3 Machine Learning Data Sets with RGB and Depth 

Information 
In machine learning (ML), a good data set will determine the accuracy and 

reliability of the trained model. Although larger data sets are beneficial as it can 
help to improve the accuracy but may take a longer time to train due to the large 
amount of data, thus using existing labeled data can reduce time required to train 
the model. Resolution of images also plays a key role in the ML model. Ideally 
the higher the resolution, the better the performance. However, in some 
situations, high resolution images may be intentionally reduced due to processing 
limitations or when there is a need to normalize the resolution for a group of high- 
and low-resolution images.  
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Since the performance of any CNN model depends on good visual information and 
resolution for training, any degradation of image quality would have a detrimental 
effect [43]. Since the training process is to teach it to analyze a predetermined set 
of image data, training data sets will also need to be relevant to the application 
and must be adequately labeled for the relevant features. NYU2 [44] was 
developed to interpret objects, major surfaces and support relations for indoor 
scenes using RGBD images. The objective was to derive a 3D reconstruction 
through the understanding of 3D cues by recovering support relationships from 
the RGBD image features. NYU2 data set is made up of 1449 RGBD images 
obtained from Kinect sensor for a wide range of commercial and residential 
buildings in three different US cities, comprising 464 different indoor scenes across 
26 scene classes. It consists of 35,064 distinct objects, covering 894 different classes. 
The labeled data set consists of pairs of RGB and depth frames that have been 
synchronized and annotated with dense labels for every image. 
 

 
Figure 2.12: Example of NYU2 Labelled Data set - Input (Left), Depth (Centre) 

and Class labels (Right) 
 

SunRGB-D [45] is another RGB-D data set developed for the purpose of major 
scene understanding tasks. It contains 10,000 RGBD images using 4 different RGB-
D sensors; Intel RealSense, Asus Xtion, Kinect V1 and V2 and annotated with 
146,617 2D polygons and 64,595 3D bounding boxes. This data set was densely 
annotated with accurate object orientation, room layout and scene category for each 
image, allowing more accurate 3D recreation of indoor scenes for data hungry 
algorithms for scene recognition tasks. Several combinations of six tasks; scene 
categorizing, semantic segmentation, object detection, object orientation, room layout 
estimation was used to estimate a final 3D scene which includes objects and room 
layout. 
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2.3 Conclusion 
Based on the previous section, global UA regulations are driving UA form 

factors to a smaller footprint. With weight and space limitations, UA designed for 
GNSS denied indoor environment should be small and lightweight therefore the 
need to rely on vision-based approaches. This allows the use of simple sensors 
such as monocular cameras which are already an integral part of most small UA. 
Image data from such cameras can be used to visualize the localized environment. 
The use of CNN can further enhance its scene understanding ability without 
human supervision, to make decisions based on prior training.
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Chapter 3 
 
3 Semantic Depth Prediction (SDP) 
Approach 
 
3.1 Introduction 

This section introduces the concept and underlying architecture Semantic 
Depth Prediction (SDP) method. Semantic Depth Prediction (SDP) is a holistic 
approach that uses deep learning computer vision methods for scene understanding 
and depth inference using 2D images captured from a monocular camera. The 
motivation is to enable a small UA to perform pose estimation and path planning by 
understanding an unknown scene using pre-trained model without additional 
sensors to lighten its weight. There are several contributing factors that can affect 
its efficiency and accuracy of object detection and depth prediction that will 
subsequently affect the autonomous navigation performance. To achieve this, we 
are proposing a real time 3D indoor scene recreation by fusing 2 lightweight CNN 
layers to achieve semantic depth prediction data for optimal path finding in an 
obstacle rich environment. This is then applied onto the small UA to achieve 
autonomous sense and avoid capabilities within an indoor environment. 

 
3.2 Semantic Depth Prediction Model 

A lightweight semantic depth model was developed by using a series of 
lightweight CNN architectures so that it can be deployed on small UA intended for 
indoor applications. Each image from a monocular camera is processed through 
SDP to determine semantic segmentation labels and depth inference. Since various 
metrics of each layer determine the relative performance of CNN models used for 
SDP, it is important to select a lightweight and efficient CNN model for each layer 
as using models that are highly accurate may compromise on the performance 
metrics and using the faster networks may compromise on the accuracy metrics. 
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Figure 3.1 presents the end-to-end approach for SDP, which is a combination 
of efficient deep convolution neural network models unified through 2 computer 
vision tasks namely 1) Object detection and recognition and 2) Joint Semantic 
Depth to produce a joint semantic depth inference for an input image. The 
possibility of sensor fusion based on attitude control and visual sensing to 
corroborate with deep neural networks was explored. SDP was modeled based on 
open-source data sets (like NYU2 and SegNet) and data sets taken from 
simulation and manual flights. The inferred SDP output for each input RGB image 
was subsequently translated into safe probability coefficients represented in a 
matrix to estimate the depth and position of obstacles. 

The key success to this approach depends on the magnitude and quality of 
image data sets to optimize the speed and accuracy of object classification and 
depth perception. This can be achieved by training a deep learning model using 
relevant images to develop generic pre-trained models for indoor scenes or unique 
pre-trained models for specific environments such as a typical indoor logistic 
warehouse. Although processing can be performed onboard the UA, this would 
typically require onboard GPUs for real time processing. To keep the UA 
lightweight, we propose to process the images off-board via a ground terminal with 
subsequent control commands Pitch θ, Roll φ, Yaw ψ and altitude Z commands 
computed and sent back to the UA. 

 
 

Figure 3.1: Framework overview of end-to-end Semantic Depth Prediction 
approach to infer a semantic depth map from a 2-dimensional input image and 
subsequently derive safety probability coefficients for UA control inputs. 
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Figure 3.2 shows how an input image is processed by SDP to generate 2 layers, 
1) Object detection and Recognition Layer and 2) Combined Semantic 
Segmentation and Semantic depth Layer. The initial high level object detection 
and recognition task serves two purposes, firstly to classify and localize potential 
objects in each input image, for example finding bar codes to detect stocks in the 
warehouse as a non-navigation task. The second purpose is to detect existing 
features in the operational environment to initiate autonomous flight command 
cues. Each object of interest detected at image level detection task is subsequently 
processed using semantic segmentation for pixel level classification to 
differentiate objects that are in the foreground or background. NYU2 and 
SunRGB-D data sets containing RGB, and depth information were used for depth 
inference where depth information is used to generate the final 3D scene 
reconstruction. Supervised learning is applied using open-source image data sets 
from ImageNet, NYU2, SunRGB-D for baseline training and real image data 
relevant for specific operational environment is used to supplement the baseline 
pre-trained model to improve the accuracy of each computer vision model. 
 

 
 

Figure 3.2: SDP joint inference using SSDLite and SegNet. 
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3.3 Evaluation of CNN Models for Semantic Depth 

Prediction Model 

Earlier discussions indicated that CNN is the preferred DL architecture for image 
classification tasks since it is a feed forward neural network that can manage large 
extent of parameters found in images without compromising on its performance and 
efficiency. In this section, we will discuss the efficient CNN models that were selected 
for SDP. 

SDP makes use of object detection and recognition layer, semantic segmentation, 
and semantic depth layer. Like any other deep learning system, training is important 
to derive a Pre-Trained Model (PTM) that SDP can use for the purpose of image and 
pixel classification. For this project, datasets from NYU2 [44], SegNet [18] and 
SunRGB-D [45] were used as the basis for SDP baseline training data. 
 
3.3.1 Object detection and Recognition Layer 

Object detection and recognition identifies and locates objects of interest within an 
image. Examples of object detection and recognition applications include counting of 
people in Figure 3.3 or identification of bar codes labels in Figure 3.4. The purpose 
of object detection and recognition is to locate and classify any existing object within 
an image, by labeling them through a bounding box and identifying the confidence 
level of the object. Deciding factors used to determine the appropriate models for this 
layer is based on the accuracy as well as performance of each model for this 
lightweight approach. 
 

Figure 3.3: Object Detection and Recognition for people counting. 
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Figure 3.4: Object Detection and Recognition for Barcode identification. 
 

The initial high-level task of real time image classification and localization for the 
objects of interest from each input image is performed using Single Shot Multibox 
Detector (SSD) as it is one of the best object detectors available, both in terms of 
accuracy and speed [46]. This is due to its architecture on a single-stage approach in 
convolution to detect multiple objects. This algorithm breaks down the image into a 
series of bounding boxes on each layer of the feature map and predicts  the presence 
of an object in each bounding box. As shown in figure 3.5, each layer within the 
feature pyramid has a prediction parameter, and they can detect an object 
independently. 

A typical SSD architecture makes use of the Visual Geometry Group of 16 
layers (VGG-16) pre-trained with ImageNet [47] data set comprising 15 million 
labeled images across 22,000 categories. VGG-16 extracts low-level features from 
the feature map to boost the performance of the SSD capability in high quality image 
classification. In SSDLite, MobileNetV2 replaces VGG-16 as the base network for 
feature extraction using depth-wise convolutions and SSD performs the bounding box 
prediction function. 

 

Figure 3.5: SSDLite with MobileNet for SDP Net Image Detection Layer 
 



CHAPTER 3. SEMANTIC DEPTH PREDICTION (SDP) APPROACH 
 

38 
 

The evaluation was performed across 5 models to identify the most optimal 
option in terms of object detection model and companion computer. The main 
factors to determine the suitable model were based on detectability, accuracy, and 
performance. In our application for SDP, the object detection model should be able to 
detect and identify an object with high confidence to be considered reliable. The 5 
models used in this evaluation are as follows: 

1. SSD_Mobilenet_V1 
 

2. SSD_Mobilenet_V2 
 

3. SSDlite_Mobilenet_V2 
 

4. Faster_R-CNN_inception_V2 
 

5. RFCN_Resnet101 
 

As compared to its more accurate Region Proposal Network (RPN) predecessors 
that uses 2 step function, SSD improves speed of detection by removing the need to 
generate regions of interest (ROI). This was achieved by using a single-stage approach 
in convolution to detect multiple objects. "Single stage" in SSD refers to the fact that 
it performs object detection in a single pass or stage, compared to a two-stage 
approach used by R-CNN models. This algorithm breaks down the image into a series 
of bounding boxes on each layer of the feature map to predict the presence of an 
object in each bounding box. 

Detectability is defined as the model’s ability to identify an object or multiple 
objects classifications within an image frame. This is important in real-time 
navigation applications as the failure to detect objects from the camera’s field of 
view for every image frame will potentially result in collision between the drone 
and the undetected object. Detectability is also affected by the number of entities 
on an image that is presented to the object detector. For example, an object 
detection test between SSD_Mobilenet_V1 and SSD_MobileNet_V2 was 
performed on an image as shown in Figure 3.6. 
 

Figure 3.6: Detectability between MobileNet V1 (left) and V2 (right). 
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An additional test was performed for the 5 models against 50 images containing 
148 object classifications as shown in Figure 3.7. ResNet 101 outperformed the other 
models with 1 object undetected and a 99% detection rate as compared to SSD 
MobileNet V1 with the lowest detection rate of 85% and 25 objects undetected.  

 

 
 

Figure 3.7: Detectability Results (%) of 5 Object Detection Model for 50 
images with 148 object labels. 

 
Another comparison between SSD MobileNetV2 and ResNet 101 shown in Figure 

3.8 proves that ResNet 101 can detect small objects within an image. For the person 
wearing a wristwatch, ResNet 101 was able to detect the 2 classes of objects i.e. the 
watch at 73% and the person at 99% as compared to SSD MobileNetV2. Since ResNet 
101 is a region based fully convolution network and performs object classifications at 
the multiple ROI within an image, it can accurately detect and classify a person in the 
image by associating feature maps and its votes to determine the location and class 
the person. 

Although ResNet 101 model provided more reliable detection result with multiple 
ROI, with detectability as an important function for object recognition applications to 
identify the presence and location of each object in an image, it is not important in 
our application. 
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Figure 3.8: Detectability of SSD_Mobilenet_V2 (left) vs RFCN_Resnet101(right) 
 

The confusion matrix method was used to assess the prediction accuracy for 
the 5 object detection models that we have shortlisted. This matrix is classified into 
4 conditions as specified below: 
 

Table 3.1: Confusion Matrix 

N = 100 Predicted – No Predicted – Yes 

Actual – No True Negative (TN) – 50 False Positive (FP) - 5 

Actual – Yes False Negative (FN) – 10 True Positive (TP) -35 
 

Where: 
TN = Model predicts correctly no object is present 
TP = Model predicts correctly that object is present 
FN = Model predicts wrongly that no object is present 
FP = Model predicts wrongly that object is present 

Where accuracy is: 
 

Accuracy = TP + TN 
N 
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The results in table 3.2 show that accuracy corresponds with the detectability 
amongst the 5 models with ResNet 101 outperforming the MobileNet variants. 
However, the accuracy of the SSD MobileNet variants is still relatively high with 
SSD MobileNet V2 at 85% accuracy. 

Table 3.2: Accuracy Results of 5 Object Detection Model  

SSD MobileNet 
V1 

 

SSD MobileNet 
V2 

SSDlite Faster 
RCNN 

RFCN 
Resnet101 

 
Mean: 81.6 Mean: 85.19 Mean: 83.11 Mean: 91.45 Mean: 95 
Median: 85 Median: 90 Median: 87 Median: 98 Median: 99 
Std Dev: 12 Std Dev: 12.67 Std Dev: 12.69 Std Dev: 13 Std Dev: 8 

 

Frames per second (FPS) is used as a performance indicator for the object 
detection models to determine how fast each model is. The higher the FPS 
indicates a high-performance detection model as compared with a model with low 
FPS. In relation to applications for autonomous navigation, a detection model with 
10 FPS would indicate that it is able to process 10 continuous image frames from 
the video stream every second. This is an important feature for an appropriate 
model as a higher FPS model would result in a low latency object detection for 
real-time navigation models. FPS can also be affected by resolution as higher 
resolution images require longer time to process as compared to lower resolution 
images. 

In this evaluation, the FPS for each model was compared against the 3 
resolutions to determine the performance of each model. From the results shown 
in figure 3.9, it is noticeable that the stronger detection models require longer 
processing time for each image to pass through its complex neural network 
architecture, resulting in lower FPS as compared to SSD neural networks. The 
higher resolution images also resulted in a lower FPS when compared within each 
detection model due to the higher pixel count that requires longer processing time 
as well. 
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Figure 3.9: Performance Results in Frames Per Second (FPS) for 5 Object detection 
Models against image resolution 

It is important that we choose performance over accuracy for SDP Net 
application since this task is a global scene understanding prior to the subsequent 
semantic segmentation process.  

State-of-the-art base network models such as Faster RCNN [48] and ResNet 
101 [49] have been proven to accurately detect fine details in an image at the 
compromise of performance as it could only process low Frames Per Second 
(FPS) as compared to MobileNet models. MobileNet models provide an 
acceptable accuracy rate above 80% with between 6-7 FPS for 720P images when 
it was tested against MS COCO data set as shown in Table 3.3. It is important that 
we choose performance over accuracy for SDP Net application since the UA is 
only required to determine the higher-level object classification for subsequent 
semantic segmentation process. 

 
Table 3.3: Comparison of base network models using MS COCO data set. 

 SSD Mo- SSD Mo- SSDLite Faster RFCN 
bileNetV1 bileNetV2  RCNN ResNet101 

Detectability 83 90 89 97 99 
(%)      
Accuracy (%) 81.6 85.19 83.11 91.45 95 
Performance @ 6.09 6.45 7.42 1.61 0.84 
720P (FPS)      
Performance @ 8.98 8.03 10.13 1.97 0.91 
480p (FPS)      

Performance @ 10.05 9.87 11.21 2.01 0.95 
  360P (FPS)  
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3.3.2 Joint Semantic Depth Layer 

Joint Semantic Depth Inference, as an advanced technique for deducing depth from 
a single 2D RGB image, integrates semantic segmentation and depth estimation 
seamlessly within a unified network. This method, taking a 2D RGB image as input, 
produces two crucial outputs: a semantic segmentation map (FSemantic) and a depth 
map (FDepth). The semantic segmentation map identifies objects in the image, while 
the depth map estimates the depth of each recognized object. The neural network 
undergoes training using the NYU2 and SunRGB-D datasets, combining supervised 
learning to recognize objects and unsupervised learning for autonomous depth 
discernment. The training objective is a combination of semantic (LSemantic) and depth 
(LDepth) losses: Objective = λSemantic * LSemantic + λDepth * LDepth where λSemantic and λDepth 
are weighting factors. The network's ability to infer depth accurately from a single 
RGB image is pivotal for applications like autonomous navigation. Employing a 
semi-supervised learning strategy, the NYU2 and SunRGB-D datasets facilitate depth 
computation tasks, aligning depth information with a pre-trained model for an 
effective inferred depth model. This comprehensive methodology defines spatial 
characteristics and inferred depth, significantly enhancing applications reliant on 
precise depth perception. 

From the data shown in table 3.4, SegNet was chosen to be used in SDP as it was 
evaluated to be an efficient semantic segmentation model for the 2nd layer of SDP. 
SegNet architecture shown in Figure 3.10 is made up of 13 convolutional layers in 
the encoder and decoder with the last decoder output being fed through a multi class 
soft-max classifier to produce the classification for each pixel. For our purpose of 
autonomous navigation, we have assumed that it is not critical to further breakdown 
each classification into sub classifications e.g. sub classify humans into male or 
female, carton boxes into various colors or materials. The motivation to use the 
more efficient SegNet is the lower memory requirements as opposed to other 
larger models such as UNet [52] or DeconvNet [53] since the latter models use 
entire feature maps instead of maximum pooling indices to up sample the layers 
in the decoding process, making the models larger resulting in more memory 
required. 
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Figure 3.10: Semantic Segmentation using SegNet Model for pixel level 

classification. 
 

Song et al [45] evaluated SegNet using 2D RGB images from road scenes and 
SunRGB-D data sets and achieved good results. since SegNet only stores the max 
pooling indices of featured maps and uses them in the decoder network. SegNet 
was used to model appearances and to understand spatial relationships in 2D but 
does not provide depth information which is a requirement for sense and avoid 
functions if applied on the small UA. Pham et al [54] proposed a method to obtain 
3D progressive dense semantic segmentation using RGB-D sensor that 
demonstrated the capability to integrate semantic segmentation into real time 
indoor scanning through a 2D neural network with a novel region-aware CRF 
model. The quantitative assessment against other semantic segmentation models 
is shown in table 3.4. 

Table 3.4: A comparison of computational time and hardware resources against 
SegNet and other architectures with SegNet being the most memory efficient 

during inference model [19]. 

Network Forward 
Pass (ms) 

Backward 
Pass (ms) 

GPU Training 
Memory 

GPU 
Inference 
Memory 

Model Size 
(MB) 

   (MB) (MB)  

SegNet 422.50 488.71 6803 1052 117 
DeepLab- 110.06 160.73 5618 1993 83 
LargeFOV 
FCN 

 
317.09 

 
484.11 

 
9735 

 
1806 

 
539 

DeconvNet 474.65 602.15 9731 1872 877 

Supervised machine learning was also adopted where synthetic 2D image data 
sets, semantic segmentation datasets and RGBD data sets were used as initial data 
sets fed into respective computer vision models to build the baseline training 
model. Real image data as shown in figure 4.6 that is relevant to a specific 
operation environment can be used to supplement the baseline PTM to improve 
the accuracy of each computer vision model. 
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Semantic segmentation is then applied to a known image for further classification 
at the pixel level that allows multi-class segmentation using data sets from SegNet 
and new images for a more accurate and efficient 3D indoor scene recreation that can 
be applied on a UA for path planning task. The accuracy and speed of semantic 
segmentation can also be greatly improved by applying CNN to enable the UA to 
perform path planning without prior knowledge about new environments or positions 
of obstacles. 

The possibility of sensor fusion based on attitude control and visual sensing to 
corroborate with deep neural networks is explored and SDP is modelled based on 
open-source datasets (like NYU2 and SunRGB-D) and data sets taken from 
simulation and manual flights. 

3.4 Training and Testing Model 
Training is important to derive a Pre-Trained Model (PTM) that SDP can use for 

the purpose of image and pixel classification. For this project, SegNet was pre-trained 
with NYU2 and SunRGB-D dataset was used as the basis for SDP baseline training 
data to establish the following PTMs as shown in Figure 3.11. Transferred learning 
was also performed on the PTM using real image data set from a warehouse 
environment for the purpose of the experiment described in chapter 4.  

 
 

Figure 3.11: Semantic Depth Prediction (SDP) - Training Framework 
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After a PTM is established, the model file is transferred to the on-board 
computer. The training system outputs the probabilities of safety measures (M value) 
based on the semantic depth prediction model. Every frame that comes out of SDP 
is a monochromatic understanding of how the system perceives the depth 
information, therefore providing Far/Mid/Near (FMN) values for every frame. The 
outer loop (navigation loop) takes care of how to maneuver the UA. 

M-Value matrix is essentially the way SDP classifies depth values of each pixel 
before determining it’s Far/Mid/Near (FMN) values for each image frame. The 
abstraction of depth values from a depth map using SegNet with the integration of 
datasets like NYU2 and SunRGB-D, involves a strategic approach. SegNet, with its 
ability at learning hierarchical features and spatial relationships, processes depth maps 
to predict and classify depth values for each pixel. The model undergoes training 
using paired depth maps and corresponding ground truth depth values from datasets 
like NYU2 and SunRGB-D, allowing it to associate features with accurate depth 
information. Mathematically, during training, SegNet minimizes a loss function L 
over the dataset {D = {(Ii, Yi)}, where Ii represents depth maps and Yi represents 
ground truth depth values. Post-training, the SegNet output S undergoes thresholding 
techniques based on desired depth intervals. The segmented depth map is then divided 
into zones for efficient computation. Within each zone, the Far/Mid/Near (FMN) 
values are approximated and stored in an M-Value matrix. Mathematically, for each 
zone, the M-Value matrix retains (maximum, minimum, and range) information of 
the depth values. FMN values are essentially a virtual understanding from which the 
navigation loop decides how to move and is performed for SDP output. Instead of 
relying on depth values for each pixel, the frame is split into matrix comprising 
of zones to reduce the amount of processing required. For every zone, the FMN 
value is aggregated, and we have a matrix with max and min of FMN values for every 
zone.  

Further analysis is carried out based on the threshold information. This adjusts 
the M-Values. It is required to adjust the information based on the environment’s 
light intensity (darkness in the room should be offset to adjust for the depth). 
Figure 3.12 below shows an example of the SDP output for a 2D image from the 
UA in a simulated warehouse environment. The left image represents the depth 
image, and the right image represents the semantic segmentation image. M-values 
from the depth image as shown in figure 3.13 are then used to derive safe or 
unsafe zones in the M values matrix. 
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Figure 3.12: SDP Depth on the left and Semantic Segmentation Images 
on the right. 

The output of the testing model is represented as the matrix of safety probability 
(M values). Here, the colors are chosen to depict the safe/unsafe zones. Higher M 
values indicate that the obstacles are at the far approximated distance thus 
indicates that the zone within the frame is safe to fly towards. M values are 
computed for every image frame thus the UA will continuously search navigate 
towards the safe zones with every new image frame. 
 

Figure 3.13: A representation of M-Values for each image frame. 
 
3.5 Comparison of SDP Model vs Existing Methods 

Figure 3.14 denotes the comparative results of input test images, ground truth, 
independent SDP segmentation results as well as SDP results applied with 
SparseFusion (SF) and DenseFusion (DF) by SF, following by the number of 
combined layers used in the network (e.g., DF1 and SF5) using 5 sample test images 
from NYU2 dataset. Segmentation results of SDP takes into comparison with the 
networks trained with RGB, depth, HHA which stands for Height, Histogram, and 
Angle, and their combinations. The segmentation result shows that stacked RGB-D 
output from SDP was able identify the segmentation class labels within the 
foreground to the background walls and floor when compared with the ground truth 
data. Stacked RGB-D results also did not indicate any missing class labels when 
compared with the independent Depth only and RGB results. We show that SDP 
obtained significant improvements by extracting more informative features from 
depth. The inference stage is followed by a dense fully connected CRF refinement to 
produce the final prediction. Applying the similar loss function and post-processing, 
SDP is likely to produce on-par or better results. 
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In the second experiment, we compare the SDP to network trained with different 
representation of depth, to further evaluate the effectiveness of depth estimation and 
different variations. Stacking depth and HHA into color gives slight improvements 
over network trained with only color, depth or HHA. In contrast, with the depth 
estimation of SDP, we improve by over a significant margin, with respect to the IOU 
scores. We remark that depth estimation is useful as a replacement for HHA. Instead 
of reprocessing a single channel depth image to obtain hand crafted three-channel 
HHA representation, SDP learns high dimensional features from depth end-to-end, 
which is more informative as shown by experiments. Since the original VGG 16-layer 
network has 5 levels of pooling, we increased the number of layers to validate the 
point of saturation. 

The experiments showed that segmentation accuracy gets improved from SF1 to 
SF5, however the increase appears saturated up to the 4th pooling, i.e., SF4. A 
possible reason behind the accuracy saturation was that depth had already provided 
very distinguished features at low-level to compensate texture less regions in RGB, 
and we consistently fuse features extracted from depth into the RGB-branch. The 
same trend can be observed with DF layers. In the third experiment, we further 
compare SDP-SF5, SDP-DF1 to the network trained with RGB-D input. For class 
accuracy, all three network architectures give very comparable results. However, for 
IOU scores, SF5 outperforms in 30 out of 37 classes in comparison to the other two 
networks. Since the class wise IOU is a better measurement over global and mean 
accuracy, SDP obtains significant improvements over the network trained with 
stacked RGB-D, showing that depth estimation is a better approach to extract 
informative features from depth and to combine them with color features. Figure 3.15 
shows another validation results between SDP and state-of-the-art SegNet using 4 
sample test images from SunRGB-D data set. 
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Figure 3.14: SDP against other state of the art methods 
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Figure 3.15: SDP against SegNet for indoor scenes (SunRGB-D data set) 
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3.6 Conclusion 
Many CNN models have been developed for specific applications with no 

common model suited for all. In this chapter, an evaluation was performed to 
determine the possible use of available lightweight CNN models for SDP network.  

For object detection and recognition layer, 5 models were evaluated using MS 
COCO dataset to evaluate its accuracy, detectability, and performance to identify 
the model for this layer. Even though RPN models such as Faster_R-
CNN_inception_V2 and RFCN_Resnet101 proved to have higher accuracy and 
detectability scores compared to SSD models, its best performance was only at 
2.01FPS as compared to SSDLite at 11.21 FPS for 360p images. The scores amongst 
the SSD variants were quite similar with SSDLite having the best performance 
amongst the 5 models across all tested FPS. 

For segmentation and depth estimation layer, 4 models were evaluated using 
NYU2 and SunRGB-D datasets for forward and backward pass, GPU training 
memory, GPU inference memory and model size. Since SDP requires real-time or 
low-latency inferences for autonomous navigation, it is crucial to use a lightweight 
model with a low GPU inference memory score for the efficient use of GPU. Among 
the 4 models evaluated, DeepLab-LargeFOV and SegNet achieved a relatively small 
model size compared to FCN and DeconvNet. However, SegNet achieved the 
smallest GPU inference memory among the other models and is ideal for this layer. 

SDP network was subsequently validated for its accuracy using the combination 
of SSDLite and SegNet model using both NYU2 and SunRGB-D data sets showed 
comparative results to other state-of-the-art networks. Stacked RGB-D results were 
similarly close to ground truth data and 4th pooling layer resulted in the optimal 
accuracy for both SF and DF. It was also observed that there was no significant loss 
of class labels in the segmentation output for SDP when compared between ground 
truth and independent SegNet results.  

Overall results achieved the primary objective to combine 2 different CNN 
models into SDP network while retaining each model’s independent accuracy and 
performance that would be suited for autonomous navigation as well as application-
based tasks in indoor GNSS denied environment.
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Chapter 4 
 
4 Semantic Depth Prediction in 
Warehouse Environment 
 
4.1 Introduction 

In chapter 3, we proposed a combination of SSDLite and SegNet to create a 
lightweight SDP network for the purpose of inferring 3D information from 2D 
RGB images suited for autonomous navigation as well as application-based tasks 
in indoor GNSS denied environment. SDP was compared with other networks to 
have similar performance using NYU2 and SunRGB-D data sets. However, other 
challenges in an indoor environment could affect SDP’s performance. Indoor 
environments may lack distinctive visual features that could not be identified by 
SDP’s PTM. This can make it difficult for the UA to identify its location and 
navigate effectively. Actual indoor environments also contain various obstacles 
and structures that can occlude the camera’s view making it difficult for SDP to 
maintain a clear understanding of the surroundings. Lighting conditions vary 
significantly in areas where light is obscured by objects or structures which can 
affect image quality and visibility. Avoiding collisions with obstacles is also 
crucial for safe indoor navigation. SDP must be able to detect potential obstacles 
and react promptly to prevent collision. 

In this chapter, SDP will be validated by flying a UA system in an indoor 
environment. Firstly, software in the loop testing will be performed using a 6 DOF 
multirotor model in a simulated warehouse environment and subsequently 
hardware in the loop testing in an actual warehouse environment using an off- the-
shelve small UA equipped with a forward mounted monocular camera. In both 
environments, lighting conditions were kept constant to eliminate any lighting 
variables to the threshold values. 
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4.2 Software in the Loop Testing in Airsim Environment 

4.2.1 AirSim Environment 

AirSim [55] is an open-source simulator for autonomous vehicles developed 
by Microsoft. It provides a realistic virtual environment for testing and developing 
autonomous systems, specifically focusing on drones and cars. AirSim is designed 
to be used with Unreal Engine, a popular game development engine created by 
Epic Games. 

AirSim utilizes the capabilities of Unreal Engine to create highly detailed and 
visually rich virtual worlds. It simulates various environmental factors, such as 
weather conditions, lighting, and physics, to provide a realistic experience for 
testing autonomous systems. The integration with Unreal Engine allows 
developers to leverage its powerful rendering capabilities, physics simulation, and 
large-scale environments. 

It can create the following conditions: 

1. UA Models: Supports quadcopters, hexacopters, and custom-designed 
models. The models have realistic physics simulation and flight dynamics, 
allowing for accurate representation of flight behavior. PX4 flight controller 
in quadcopter was selected for the purpose of this test. 

2. Flight Controller: PX4 [56] is an open-source flight control software stack 
designed primarily for autonomous unmanned aerial vehicles (UAVs). It is 
widely used in the development of commercial and academic UA projects. 
PX4 provides a standard to deliver drone hardware support and software 
stack, allowing an ecosystem to build and maintain hardware and software for 
scalability. 

3. Environment Customization: Allows customization to simulate indoor 
warehouse environment to replicate real-world conditions. This enables 
testing drones in diverse conditions and complex environments. The 
warehouse environment was custom-built to recreate racking and boxes like 
a physical warehouse environment. 
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4. Computer Vision/AI: includes provisions for computer vision and AI models 
with UA. Sensor data can be simulated from the onboard cameras or other 
sensors as inputs to SDP. 

5. Camera View: Custom camera view was set up in FPV perspective for RGB, 
Depth and Semantic Segmentation. 

 
Figure 4.1: Warehouse Environment built using AirSim for SDP software in the 
loop testing. 

 
4.2.2 Test Objective and Setup 

The objective of the software in the loop testing was to validate the working 
principles of SDP. The test objective in this test case was for a quadcopter to 
perform a free flight within the simulated warehouse environment using SDP as 
the source of navigation. The quadcopter altitude was set to fly at a constant 
altitude of 20m above ground level and constant flight speed was set to 1m/s. +/- 
1◦ yaw at 1hz was set to allow a wider field of view scan. 3 camera views were 
also set up to monitor camera image (RGB), depth estimation and semantic 
segmentation feed as shown in Figure 4.2.  The input image from the quadcopter 
front camera is processed through the PTM validated in section 3 outputs 
quadcopter controls including steering angle to AirSim.  
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Figure 4.2: 3 camera views implemented for simulated warehouse environment. 

 
4.2.3 Discussions 

In the first flight scenario as shown in Figure 4.3, the quadcopter started its flight 
from the center of the warehouse and continued its flight path towards the entrance 
of the warehouse and made a left yaw to avoid the wall. 

 

 
Figure 4.3: Simulated flight from center of warehouse to wall at 1m/s. 

Quadcopter made a left yaw to avoid wall and continued flight towards left 
wall. 

 

In the 2nd flight scenario as shown in Figure 4.4, the quadcopter was observed 
to track along the wall (right of quadcopter) initially before making a left yaw to 
avoid the racks and continued its flight path towards the end of the warehouse. 
 

 
 

Figure 4.4: Quad copter continued its flight path along the wall before making a 
left yaw to avoid the adjacent rack. 
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In the 3rd flight scenario as shown in Figure 4.5, the quadcopter entered a 
narrow passage between the rack (left) and wall (right). It continued maintaining 
its flight path towards the end of the passageway before commencing a 90◦ left 
yaw to face the rack. It performed another 90◦ left yaw upon detecting the rack to 
face the entrance of the passage and continued its flight path towards the passage 
exit. 
 

 

Figure 4.5: Quad copter tracked through a narrow corridor and made a 180◦ turn 
away from the end of corridor. 

From the different flight scenario results in AirSim simulation, SDP was able 
to perform a free flight around the warehouse with zero collision rate. The +/- 1◦ 
yaw rate that was programmed to increase it field of view was effective but was 
noticeable with the quadcopter yawing when it is on a straight and unobstructed 
flight path.  
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4.3 Hardware in the Loop Testing in Physical Warehouse 

4.3.1 Physical Warehouse Environment 

An actual warehouse shown in Figure 4.6 was used for the hardware in the loop 
testing environment. Racks and boxes were like those that were built in the 
AirSim environment to minimize any variables that might be introduced that were 
not trained in the PTM. 

 
Figure 4.6: Physical Warehouse Environment with racking system similar to 

AirSim warehouse environment. 
 
4.3.2 Test Objective 

The objective of this test in the real warehouse environment was to determine if 
SDP was able to recognize and perform a flight path following a specific class label 
and maintain a lateral separation from the racks. In contrast to the software in the 
loop test using AirSim, the UA will not perform a free flight in this test. Real 
images of the racks in yellow and blue as well as the green pallets were used to 
update the PTM of the SDP. Specific class labels associated in this test were 
specifically the boxes, racks, pallets, and the synthetic labels that were used as 
steering cues shown in Figure 4.7.  
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Images from the UA will be processed via the laptop using SDP with subsequent 
control commands Pitch θ, Roll φ, Yaw ψ and altitude Z commands computed 
and sent back to the UA. 
 

 
Figure 4.7: Flight path installed with synthetic steering cues using colors 

and letters. 
 
4.3.3 Test Setup 

The Rhyze Tello in Figure 4.8 is an off-the-shelve quadcopter used as the aerial 
platform for this test. It weighs approximately 80 grams and is equipped with a 
720p HD video camera capable of recording at 30fps, powered by an Intel 14-
core processor and 2.4 GHz 802.11n Wi-Fi module. It does not have an onboard 
GNSS but has 2 infra-red sensors and a downward facing camera for position hold 
functions. The onboard inertial Measurement Unit (IMU) includes a 3-axis 
gyroscope, 3-axis accelerometer and 3 axis-magnetometer provides the Tello with 
stability augmentation functions. All native stability augmentation functions were 
used for this test and only post SDP computed Pitch θ, Roll φ, Yaw ψ and altitude 
Z commands was injected back to the Tello. This means that without any control 
inputs injected back to the Tello, it will hold its last known position with minimal 
drift. 
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Figure 4.8: Ryze Tello quadcopter with forward-looking 720P monocular camera 
weighing 80 grams. 

 
Since the motivation of this test was to prove that path planning can be achieved 

using SDP, all SDP processing was thus performed off-board the UA on a laptop 
to reduce the amount of computing power required on onboard the Tello. Video 
feed was streamed down via the 2.4GHz wireless transmission protocol to a laptop 
at 30fps where the images were then processed using SDP. Pitch θ, Roll φ, Yaw ψ 
and altitude Z commands were subsequently sent back to the Tello 2.4GHz 
wireless transmission protocol as shown in Figure 4.9.  

 

 

Figure 4.9: Data transmission setup 
 
4.3.4 Flight Control Algorithm 

 
The Rhyze Tello monocular camera as shown in Figure 4.8 processes input 

images at a resolution of 720P but for quicker uploading to the laptop, each image 
is resized to 480P. The designated flight trajectory as shown in Figure 4.7, 
involves an automated take-off with its camera facing the rack with a controlled 
velocity of 0.5m/s until the first synthetic cue is identified. Through Wi-Fi 
transmission as shown in Figure 4.9, every image from Tello’s camera is sent to 
a laptop for SDP processing. Synthetic features in the form of color and letters 
have been positioned at the flight path corners to provide cues via object detection 
and recognition for commanding the Tello to roll left, climb, roll right, and stop 
to land through a python script when each feature of interest is detected by SDP. 
SDP object recognition and detection model analyze each image to determine if 
the captured features align with cues trained for detection. Tello executes flight 
control actions for alterations in Pitch θ, Roll φ, Yaw ψ, and altitude Z when 
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relevant features have been identified. In the absence of detected features, Tello 
maintains its flight path by tracking segmented labels and maintaining depth 
separation until the next feature of interest is detected. If no objects are detected 
in an image, the values for Pitch θ, Roll φ, Yaw ψ, and altitude Z remain 
unchanged. 

 

 

Figure 4.10: SDP Flight Control Logic with Rhyze Tello 
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4.3.5 Discussions 

Below are the qualitative data abstracted from the flight test videos. The flight 
was fully autonomous and the Tello was able to maintain distance between itself 
and the trained rack images. Upon an autonomous takeoff at 0.5m/s climb rate, the 
Tello ascended to the yellow placard as shown in figure 4.10 which commanded 
a stop to hover before commanding a left roll to track along the lateral beam of the 
rack while maintaining its distance using SDP. 
 

Figure 4.11: Synthetic cue to command to hover and execute left roll as shown in 
image on the left. The right image shows the SDP processed image. 

 
Figure 4.11shows a sequence of images with Tello tracking the rack beam, 

maintaining a constant distance between the rack beam and Tello without any 
forward proximity sensors. It is observed that the white boxes were not processed 
as SDP output as it was not shown as completed boxes within the input RGB 
image. Other objects appear as black masks in the SDP output as they were not 
trained in the PTM. 
 



CHAPTER 4.   SEMANTIC DEPTH PREDICTION IN WAREHOUSE ENVIRONMENT  
 

62 
 

 
 

Figure 4.12: RGB input image on the left and SDP output on the right from the 
Tello tracking the rack beam from left to right. 

 
As commands were set to execute upon the detection of the colored placard, it was 

observed that the Tello stopped hovering upon the detection of the yellow placard 
from the object detection and recognition model. The Tello’s position was not 
corrected to the middle of the image frame but was positioned with a left bias as 
shown in Figure 4.12. In the ascend, the Tello tracked along the vertical blue rack 
beam maintaining constant distance as shown in Figure 4.13 but with the initial 
left bias as shown in Figure 4.12. 
 

 

Figure 4.13: Synthetic cue to command hover and ascend as shown in image on the 
left. The right image shows the SDP processed image. 
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Figure 4.14: RGB input image on the left and SDP output on the right from the 
Tello tracking the rack beam in the ascend. 

 
In the ascend as it approaches the right command placard, it was again observed 

that the Tello stopped to hover upon the detection of the yellow placard from the 
object detection and recognition model. The Tello’s position was not corrected to the 
middle of the image frame but was positioned with a top bias this time as shown in 
Figure 4.14. 
 

Figure 4.15:  Synthetic cue to command hover and execute right roll as shown in 
image on the left. The right image shows the SDP processed image. 
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With the top bias after detecting the right command cue, it continued to track 
right along the rack beams with the beams biased to the top. With the accumulation 
of position errors in this last segment, the rack beam was at the top edge threshold 
of the input image frame as shown in Figure 4.15. 

 
 

Figure 4.16: RGB input image on the left and SDP output on the right from the 
Tello tracking the rack beam from right to left after the ascend. 

 
As it approaches the Stop to land command placard, it was again observed that 

the Tello stopped to hover upon the detection of the red placard from the object 
detection and recognition model and executed the stop to hover with the placard 
positioned on the extreme right of the   input image as shown in Figure 4.16. 
 

 
Figure 4.17: Synthetic cue to command to hover and execute landing as shown in 

image on the left. The right image shows the SDP processed image. 
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4.4 Conclusion 
SDP was tested in both software and hardware in the loop to validate the 

possibility of combining of lightweight CNN models to recreate 3D scene using a 
2D image from a monocular camera without additional sensor hardware for the 
purpose of autonomous navigation in a GNSS denied environment. A PTM using 
NYU2 and SunRGB-D open-source datasets and real data set from the indoor 
warehouse testing environments were sufficient for SDP to perform avoidance 
function in the AirSim testing as well as feature tracking autonomous flight with 
depth control in the actual warehouse environment. The quadcopter in AirSim 
was able to detect and avoid features based on the SDP and was able to continue 
its flight path by locating areas within the image of high threshold values in the 
free flight mode. 

Testing with the Tello in the physical warehouse had its challenges as features of 
interest need to be kept within the center of each frame of image to eliminate the 
possibility of losing features of interest over time. Once key features such as the rack 
beams or synthetic cue fall out of the input image frame during flight, SDP will not 
be able to perform depth inference or path planning functions. Missing objects in SDP 
output was also likely due to partially occluded objects captured in the input image as 
existing networks were not able to handle missing information and thus could not 
detect objects under occlusion [57]. 
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Chapter 5 
 
5 Conclusion and Future Work 

 
5.1 Conclusion 

This thesis mainly focused on using a combination of proven lightweight CNN 
models for 3D scene reconstruction using 2D images for small UA. Weight dependent 
UA regulations set by national aviation authorities have influenced leading UA 
manufacturers to consider weight requirements during the development of UA related 
technologies. Since majority of modern UA systems are equipped with monocular 
cameras as an integral part of the system for the purpose of aerial photography and 
videography, the same camera can also be used for autonomous navigation without 
significantly increasing UA weight by adding other complex sensors. 2D images from 
the monocular camera is capable of 3D reconstruction for autonomous navigation in 
obstacle rich GNSS denied indoor environments and the same image data can 
concurrently be useful for other non-navigational tasks that is equally important in 
commercial real-world applications. 

The motivation to scale down indoor autonomous UA has motivated the use of 
lightweight mobile CNN models to perform autonomous navigation without the need 
for additional navigation sensors that would increase the weight and size of the UA. 
In this thesis, several of the objectives were accomplished: 

1. A study showed how global UA regulations had led to smaller UA designs 
driving the use of vision-based navigation to achieve the sizable footprint for 
safe indoor applications. 

2. Combining lightweight mobile CNN models to achieve vision-based 
navigation using image detection and recognition, semantic segmentation, and 
depth inference methods for 3D scene reconstruction. 

3. Validation of SDP model for autonomous navigation in AirSim and physical 
warehouse with possible improvements to address the issues of centroid 
tracking of objects as well as missing objects due to partial occlusion from input 
images. 
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As the demand for small autonomous UA operations in indoor environments 
increases, there is a need to explore other indoor scenes apart from warehouse 
environment such as indoor security surveillance or crops monitoring in an indoor 
greenhouse where the need for small UA is crucial to reduce the risk of collateral 
damage and other safety concerns. 

In chapter 4, testing was conducted in a warehouse environment with consistent 
lighting using Tello’s built in HD (720P) camera. Lighting conditions may vary if 
used for security surveillance of an office building where lighting may be inadequate 
after office hours or when intense sunlight passes through the greenhouse during 
midday. Varying lighting conditions can affect the SDP approach since camera-based 
approaches are sensitive to light. 
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5.2 Future Work 
The following factors can be further evaluated to determine how varying lighting 

conditions can affect vision-based object detection and semantic segmentation 
performance. 

1. Pixel size determines the resolution of each image. For low light applications, 
it is suggested that pixel size increases to allow more photons to be collected 
within each pixel. However, increasing pixel size would decrease the number 
of pixels for the same sensor size and can cause the degradation of resolution 
that can affect the performance of image segmentation in SDP approach. 

2. Noise can be a problem as it creates a grainy effect in low light conditions and 
can cause distortion to an image resulting in the lack of details. When the light 
intensity is close to the noise level of the camera sensor, some of the pixels 
will appear as noise randomly. 

In our experiment, Wi-Fi communication was used between the Tello and laptop 
for the purpose of demonstrating SDP within line-of-sight range in a localized indoor 
warehouse environment. Wi-fi technology is designed for Local Area Network (LAN) 
and is limited by its range thus requires a network of Wi-Fi nodes to expand its 
coverage. In contrary, 5G mobile technology on the other hand is a cellular network 
technology designed for Wide Area Network (WAN) mobile communications and 
can provide high-speed, low-latency wireless connectivity for mobile devices, IoT 
devices, and other applications outside of traditional Wi-Fi networks. Since 
commercial UA applications typically operate in Beyond Visual Line of Sight 
(BVLOS) conditions, implementing SDP with 5G mobile network as the 
communication medium will allow higher bandwidth data transfer at BVLOS range 
which is crucial for higher quality images to be transferred to the ground server to 
compute control inputs back to the UA at low latency. 

Key advantages of 5G mobile network includes: 
 

1. Ultra-high reliability and low-latency connectivity for navigation or AI on the 
edge without heavy onboard computing. 

2. Effective for Beyond Visual Line of Sight (BVLOS) Operations without the 
need for the UA to establish Line of Sight communication with the ground 
control station. 

3. Scalable network system for swarm operations to provision for localized SDP 
information to be shared across multiple agents. 
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The fusion of Convolutional Neural Networks (CNNs) and Computer Vision (CV) in 
autonomous navigation for small drones signifies a significant leap forward, offering 
enhanced object recognition, adaptability to dynamic environments, and improved 
situational awareness. In GNSS-denied indoor settings, this innovation empowers 
small Unmanned Aircraft (UA) for safer and more reliable autonomous flight without 
increasing its size and weight with additional onboard sensor and computing 
hardware. 
 
The continuous evolution of CNNs and CV technologies not only augments 
navigation precision but also promises increased accessibility, reducing barriers to 
entry across industries. These advancements hold the potential to broaden the 
applications of small drones in areas such as surveillance, inspection, and search and 
rescue, ushering in an era of unprecedented capabilities for autonomous systems. 
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