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Abstract

Verbatim queries submitted to search engines often do not sufficiently describe the user’s
search intent. Moreover, even with well-formed user queries, retrieval failures can still occur,
caused by lexical or semantic mismatches, or both, between the language of the user’s query
and that used in the relevant documents. Pseudo-relevance feedback (PRF) techniques, which
modify a query’s representation using top-ranked documents, have been shown to overcome such
inadequacies and improve retrieval effectiveness.

In this thesis, we argue that the pseudo-relevance feedback information can be used in neural-
based models to improve retrieval effectiveness, for both sparse retrieval and dense retrieval
paradigms. Indeed, recent advancements in pretrained generative language models, such as T5
and FlanT5, have demonstrated their ability to generate textual responses that are relevant to a
given prompt. In light of this success, we study the capacity of such models to perform query
reformulation and how they compare with long-standing query reformulation methods that use
pseudo-relevance feedback. In particular, we investigate two representative query reformulation
frameworks, GenQR and GenPRF. Specifically, GenQR directly reformulates the user’s input
query, while GenPRF provides additional context for the query by making use of pseudo-relevance
feedback information in the top-ranked documents. For each reformulation method, we leverage
different techniques, including fine-tuning and direct prompting, to harness the knowledge of
language models. The reformulated queries produced by the generative models are demonstrated
to markedly benefit the effectiveness of sparse retrieval on various TREC test collections.

In addition, Dense retrieval models, in both single representation dense retrieval and multi-
ple representation dense retrieval paradigms, have shown higher effectiveness over traditional
sparse retrieval by mitigating the lexical and semantic mismatch issues to some extent. How-
ever, underrepresented queries can still cause retrieval failures. In particular, in this thesis, we
investigate the potential for multiple representation dense retrieval (exemplified by ColBERT)
to be enhanced using pseudo-relevance feedback, and thereby present our proposed approach,
ColBERT-PRF. More specifically, ColBERT-PRF extracts representative feedback embeddings
from the document embeddings of the pseudo-relevant set and uses corresponding token statistics
to identify good expansion embeddings among the representative embeddings. These expansion
embeddings are then appended to the original query representation to form a refined query
representation. We show that these additional expansion embeddings benefit the effectiveness of a
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reranking of the initial query results as well as an additional dense retrieval operation. Evaluation
experiments conducted on MSMARCO passage and document ranking as well as the TREC
Robust04 document ranking tasks demonstrate the effectiveness of our proposed ColBERT-PRF
technique. In addition, we study the effectiveness of variants of the ColBERT-PRF model with
different weighting methods. Finally, we show that ColBERT-PRF can be made more efficient,
and with little impact on effectiveness, through the application of approximate scoring and
different clustering methods.

While PRF techniques are effective in closing the vocabulary gap between the user’s query
formulations and the relevant documents, they are typically applied on the same target corpus
as the final retrieval. In the past, external expansion techniques have sometimes been applied
to obtain a high-quality pseudo-relevant feedback set using a high quality external corpus.
However, such external expansion approaches have only been studied for sparse retrieval, and
their effectiveness for recent dense retrieval methods remains under investigation. Moreover,
dense retrieval approaches such as ANCE and ColBERT have been shown to face challenges when
it comes to out-of-domain evaluations, due to the knowledge shift between different domains.
Therefore, in this thesis, we propose a dense external expansion technique to improve the zero-
shot retrieval effectiveness of both single and multiple representation dense retrieval. In particular,
we employ the MSMARCO passage collection as the external corpus. The experimental results
performed on two TREC datasets indicate the effectiveness of our proposed external dense query
expansion techniques for both the sparse retrieval and the (single or multiple) dense retrievals.

Furthermore, we note that the ColBERT model has only been applied to the BERT model
with its corresponding WordPiece tokeniser. However, the effect of the pre-trained model and the
tokenisation method for the contextualised late interaction mechanism used by ColERT is not well
understood. Therefore, in this thesis, we extend ColBERT to Col⋆ and ColBERT-PRF to Col⋆-
PRF, by generalising the de-facto standard BERT PLM to various different PLMs. As different
tokenisation methods can directly impact the matching behaviour within the late interaction
mechanism, we study the nature of matches occurring in different Col⋆ and Col⋆-PRF models,
and further quantify the contribution of lexical and semantic matching on retrieval effectiveness.

Finally, both the ColBERT-PRF as well as the Col⋆-PRF models perform dense query
expansion in an unsupervised manner and might be affected by heuristic techniques such as
clustering and IDF statistics. Therefore, in this thesis, we propose a contrastive solution that
learns to select the most useful embeddings for expansion. More specifically, a deep language
model-based contrastive weighting model, called CWPRF, is trained to learn to discriminate
between relevant and non-relevant documents for semantic search. Our experimental results
show that our contrastive weighting model can aid in selecting useful expansion embeddings and
outperform various baselines. In particular, CWPRF can further improve nDCG@10 by upto
4.1% compared to our proposed ColBERT-PRF approach while maintaining its efficiency.
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Chapter 1

Introduction

One of the most fundamental information retrieval tasks is the adhoc retrieval task, where the
search system provides a list of documents from a collection in response to the user’s information

need (Manning, 2009). Generally, to communicate with the search system, users express their
information needs as questions or queries. Based on this user-initiated question or query, the
search system returns a list of documents in descending order with respect to their estimated
relevance to the query. However, an information retrieval system can fail when the relevant
documents are hard to be retrieved by a user’s query (Croft et al., 2010). One of the prominent
causes behind a retrieval failure is the under-specification of the user’s query, where the search
query is too broad or ambiguous, and which makes it difficult for the search engine to accurately
interpret the user’s intent (Clarke et al., 2009). For instance, a search engine may fail to interpret
the user’s information need with a query ‘coffee’ as the “best coffee brands” or the “nearest
coffee shop”. This might happen because the user may not have enough knowledge or expertise
in the topic they are searching for, thus resulting in ambiguous queries. Furthermore, even with
well-formed user queries, a retrieval failure can also occur when there exists a mismatch between
the language of the relevant documents and that of the user’s query, which can be attributed to
either lexical (or vocabulary) or semantic mismatches, or both. The lexical mismatch issue occurs
when the words used in a query and a document conveying the same meaning do not match. This
issue can be caused by various types of mismatches, such as synonym mismatch (e.g., ‘computer’
vs. ‘laptop’), spelling mismatch (e.g., ‘color’ vs. ‘colour’), stemming mismatch (e.g., ‘look’ vs.
‘looking’), abbreviation mismatch (e.g., ‘UK’ vs. ‘United Kingdom’), and others. On the other
hand, a polysemous mismatch, where the word can express different meanings, is the root cause
of the semantic mismatch problem. For example, the word ‘bank’ expresses different meanings
in the phrases ‘bank account’ and ‘river bank’.

For decades, sparse retrieval has been the dominant information retrieval architecture , where
the query and documents are represented as sparse bag-of-words vectors with dimensions equal
to the vocabulary size of the corpus. In practice, an inverted index is built to record the terms
occurring in each document for fast retrieval. For search algorithms that rely on lexical matching,
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such as BM25 (Robertson et al., 1995), this can result in the lexical mismatch problem (Furnas
et al., 1987). Pseudo-relevance feedback (PRF) techniques have been shown to be an effective
approach to alleviate the vocabulary discrepancies between the user query and the relevant
documents, by modifying the user’s original query, typically by expanding and reweighing their
relative importance with additional useful words. Many approaches follow this pseudo-relevance
feedback paradigm – such as Rocchio’s algorithm (Rocchio, 1971), the RM3 relevance language
model (Abdul-Jaleel et al., 2004), or the DFR query expansion models (Amati and Van Rijsbergen,
2002) – where terms appearing in the top-ranked documents for the user’s initial query are used
to expand it. In common, these techniques assume the top returned documents from the initial
retrieved document list are relevant, otherwise, there is a risk that the expanded terms drift the
intent of the query. Alternatively, methods have been proposed for rephrasing user queries to
generate paraphrases, aimed at addressing the issue of ‘lexical mismatch’. These include the
generation of lexical query substitutions, which identify phrases similar to a query based on
resources like WordNet (Zukerman and Raskutti, 2002) or query logs (Jones et al., 2006).

In recent years, advanced pre-trained neural network models, such as BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020), have had a significant impact on information retrieval due
to their ability to capture the latent traits of texts. Various effective neural rerankers, such as
CEDR (MacAvaney et al., 2019), which is a BERT-based neural reranking model, have been pro-
posed to promote highly relevant documents to the top position of the ranking. Pseudo-relevance
feedback approaches have also demonstrated their efficacy when integrated with effective BERT-
based neural reranking models, by providing a high-quality set of candidate documents obtained
using the expanded query, which can then be reranked (Lin et al., 2021a). A few neural pseudo-
relevance feedback techniques, such as CEQE (Naseri et al., 2021) and BERT-QR (Zheng et al.,
2020) model, can further improve the retrieval effectiveness of sparse retrieval systems by alle-
viating the lexical mismatch problem using the expanded query (Abdul-Jaleel et al., 2004, Amati
and Van Rijsbergen, 2002, Rocchio, 1971). However, as they rely on precise lexical matching
over the inverted index, the semantic mismatch problem can still persist.

The recently proposed dense retrieval models alleviate the above semantic mismatch problem
by encoding the query and document into contextualised embeddings, and have yielded significant
improvements over lexical retrieval (Karpukhin et al., 2020, Khattab and Zaharia, 2020, Lin et al.,
2020a, Xiong et al., 2021, Zhan et al., 2021). Indeed, by representing the query and document
using the contextualised embeddings, relevant documents are typically retrieved based on the
semantic matching between the query and document representations. In particular, two families
of dense retrieval models have emerged (Macdonald et al., 2021b): the single representation

dense retrieval models, where each passage and query are embedded using a single contextualised
embedding, e.g. using BERT [CLS] token; and the multiple representation dense retrieval models,
in which each token of the query or document are individually embedded using contextualised
embeddings. In the single representation dense retrieval models, the relevance of a document
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to a query is estimated according to the inner product of their corresponding contextualised
embeddings in the same vector space. On the other hand, multiple representation dense retrieval
models employ a late interaction scoring mechanism to estimate a similarity score between the
query and document. Compared to traditional sparse retrieval models, dense retrieval models are
able to capture complex relationships between queries and documents, even when they have not
been trained on domain-specific data. Thus, both in-domain (where the retrieval model is trained
and evaluated on the data follow the same distribution) and zero-shot out-of-domain (where
the retrieval model is trained and evaluated on data with different distribution) evaluations are
prevalent for dense retrieval models.

To this end, these techniques, both the aforementioned sparse and dense retrieval models, only
address some of the potential causes for the low retrieval effectiveness: lexical mismatch and
semantic mismatch. However, the issue that the users’ queries might be underrepresented still
exists for both sparse retrieval and even with advanced dense retrieval systems (Wang et al., 2022c).
Indeed, in the dense retrieval paradigm, even encoding the queries into the dense representation,
with insufficient information provided, the query representation can still be underrepresented, for
e.g. the ambiguous short user query: “Jaguar”, which can refer to the luxury car brand Jaguar or
the animal jaguar. Research about implementing pseudo-relevance feedback techniques, which
are effective to address the underrepresented query problem (Xu and Croft, 2017), to perform
query reformulation entirely operating in the dense retrieval paradigm is still in its infancy.
Thus, this thesis examines the potential of the pseudo-relevance feedback information in the era
of neural information retrieval, for both sparse and dense retrieval paradigms. Moreover, we
incorporate external knowledge from high-quality external resources with dense pseudo-relevance
feedback techniques and conduct semantic search on the dense index. Furthermore, we explore
dense pseudo-relevance feedback techniques in both unsupervised and supervised manners.

1.1 Thesis Statement

The statement of this thesis is that pseudo-relevance feedback information can be used in
neural-based models to improve retrieval effectiveness, for both sparse and dense retrieval; In
particular, pseudo-relevance feedback information can be used by a sequence-to-sequence neural
model to generate more effective query reformulations for sparse retrieval; Moreover, applying
pseudo-relevance feedback on contextualised embeddings can refine the query representation for
multiple representation dense retrieval, in particular, the ColBERT model; Furthermore, perform-
ing external pseudo-relevance feedback to refine the query representation can improve the zero-
shot performance for both sparse and dense retrieval; In addition, our key ColBERT-PRF model
can be effectively extended to various forms of dense-PRF models; Finally, pseudo-relevance
feedback information can be used to train a deep language model-based feedback weighting
model for identifying the discriminating expansion embeddings for query reformulation.
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1.2 Thesis Contributions

To summarise, our contributions can be summarised as follows:

1. We alleviate the query and document vocabulary mismatch problem by employing the neu-
ral sequence-to-sequence neural models with the pseudo-relevance feedback information
to perform query reformulation for sparse retrieval.

Classical pseudo-relevance feedback approaches, such as query expansion, select the expansion
terms from the pseudo-relevant set directly. In Chapter 3, we show that the pseudo-relevance
feedback set can act as context information of the query for a pre-trained language model, thus
producing a refined query reformulation.

2. We propose a pseudo-relevant feedback mechanism in the multiple representation dense
retrieval paradigm and propose ColBERT-PRF, which performs query expansion entirely
over the dense index.

One challenge for the traditional pseudo-relevance feedback approaches as well as the neural-
PRF techniques is that they rely on the inverted index, thus making it hard to address the
semantic mismatch problem. In Chapter 4, we propose a dense pseudo-relevance feedback model
named ColBERT-PRF. In particular, by implementing a pseudo-relevance feedback technique for
dense retrieval and performing query expansion entirely in the embedding space, ColBERT-PRF
effectively reduces both the lexical and semantic mismatch problem. Moreover, the refined query
representation produced by ColBERT-PRF helps to clarify the user’s information needs.

3. We incorporate external knowledge from high-quality external resources with dense pseudo-
relevance feedback techniques and conduct semantic search on the dense index.

One challenge with dense retrieval models is their effectiveness on out-of-domain datasets
in a zero-shot manner. Performing external pseudo-relevance feedback techniques can augment
the zero-shot retrieval performance. However, the effectiveness of the dense pseudo-relevance
feedback models, for both the single representation-based or multiple representation-based dense
PRF models, on an out-of-domain dataset that has not been used to train it is still unclear. In
addition, external expansion techniques on sparse retrieval have shown their effectiveness by
bringing high-quality pseudo-relevance feedback from the external resource but have not been
studied in the dense retrieval paradigm. Therefore, to improve the zero-shot performance of dense
retrieval models, in Chapter 5, we incorporate external knowledge from high-quality external
resources with dense pseudo-relevance feedback techniques and conduct the semantic search on
the dense index.

4. We generalise ColBERT-PRF to Col⋆-PRF model, which generalises ColBERT-PRF tech-
nique across various underlying pre-trained language models.
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The underlying first and second pass of retrieval model only apply to BERT and WordPiece
tokeniser, the effect of other various pre-trained language models and tokenisers are under-
investigated in the literature. Therefore, in Chapter 6, we generalise our proposed ColBERT-PRF
model to Col⋆-PRF models, which are built upon different pretrained language models. In
addition, we thoroughly examined the semantic matching behaviour occurring within various
Col⋆-PRF models.

5. We train a supervised feedback weighting model that takes the query and text of the pseudo-
relevance feedback documents as input and outputs feedback weights for selecting and
weighting the expansion embeddings.

Our proposed ColBERT-PRF model operates in an unsupervised way to perform dense query
expansion and it relies on a heuristic method, e.g. statistics of the frequency of the tokens, to
identify expansion embeddings. In Chapter 7, we provide a different method that performs dense
query expansion in a supervised manner. In particular, we propose a supervised model that learns
feedback weights, where for each pseudo-relevance feedback token, we construct a contrastive
objective. With the contrastive objective, the feedback weighting model is trained to assign high
weights to the tokens that are better to discriminate the relevant documents from the non-relevant
documents. Therefore, the feedback weighting model identifies the discriminating expansion
embeddings for semantic search

1.3 Origins of the Materials

Most of the material presented in this thesis is based on papers published in journals and
conferences throughout this PhD programme:

• In (Wang et al., 2023c), we investigate two representative query reformulation frameworks,
namely the GenQR and GenPRF frameworks. In particular, for each framework, we
investigate different techniques, including fine-tuning and direct prompting, to harness the
knowledge of the sequence-to-sequence language models. This work was published in
ACM SIGIR2023 Gen-IR Workshop and contributes to Chapter 3.

• In (Wang et al., 2021a), we propose a dense pseudo-relevance feedback technique for
multiple representation dense retrieval, called ColBERT-PRF. This work is proposed and
its retrieval effectiveness is evaluated for the passage retrieval task in (Wang et al., 2021a),
which was published at the ACM ICTIR 2021 conference. This work contributes to our
Chapter 4.

• In addition, in the work of (Wang et al., 2022c), we further evaluate the retrieval effective-
ness of ColBERT-PRF for long documents. Moreover, several effective ColBERT-PRF
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variants with different expansion embedding weighting methods and efficient ColBERT-
PRF variants with the application of different clustering methods and/or the approximate
nearest scoring method are investigated in this work. This work was published in the ACM
TWEB journal and also contributes to Chapter 4.

• In (Wang et al., 2022b), we thoroughly investigate the retrieval effectiveness of an external
pseudo-relevance feedback approaches for both sparse and dense retrieval in (Wang et al.,
2022b). In particular, we examine the retrieval effectiveness for both the single and multiple
representation pseudo-relevance feedback techniques with high-quality external resources.
This work (Wang et al., 2022b) was published in the Elsevier IPM journal.

• In (Wang et al., 2023d), we extend the ColBERT to Col⋆, by applying the contextualised late
interaction mechanism upon different types of pre-trained language models and tokenisation
techniques. In addition, it quantifies the semantic matching behaviour for the proposed
Col⋆ models. Moreover, we further quantify the semantic matching behaviour for both
Col⋆ and Col⋆-PRF models. This work was published in ACM SIGIR 2023. In this work,
we build the work of Chapter 6 upon (Wang et al., 2023d). More specifically, we further
investigate the effectiveness of implementing pseudo-relevance feedback techniques on
Col⋆ models, i.e. Col⋆-PRF models and measures the semantic matching behaviour for
Col⋆-PRF models in Chapter 6.

• In (Wang et al., 2023b), we proposed a deep language model-based feedback weighting
model, called CWPRF (Wang et al., 2023b), which performs dense query expansion in a su-
pervised way. In particular, CWPRF model is trained to learn to assign feedback weights to
facilitate the expansion embeddings selection process for performing dense query expansion.
In particular, the weighting model is trained to learn from the ability of the feedback em-
beddings to discriminate between relevant and non-relevant documents for semantic search.
This work was published at the ACL 2023 conference and contributes to our Chapter 7.

1.4 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 provides background knowledge for retrieval systems, from the sparse retrieval
to the dense retrieval paradigms, as well as their related literature. In addition, we detail the
implementations of pseudo-relevance feedback techniques for different retrieval systems,
namely classical, neural-based, and dense pseudo-relevance feedback techniques.

• Chapter 3 introduces our proposed sequence-to-sequence query reformulation method. In
particular, we investigate two representative query reformulation frameworks, GenQR and

6



GenPRF frameworks and for each proposed framework, we investigate both fine-tuning
and direct prompting to explore the ability of different pretrained language models for
query reformulation.

• Chapter 4 details our proposed ColBERT-PRF model, which conducts effective query
reformulation operating entirely on the dense index. In particular, ColBERT-PRF imple-
ments the pseudo-relevance feedback mechanism within the late interaction dense retrieval
paradigm. More specifically, based on the pseudo-relevant set of documents identified
using a first-pass dense retrieval, ColBERT-PRF extract representative feedback embed-
dings, while ensuring that these embeddings discriminate among passages, which are then
appended to the query representation.

• Chapter 5 explores the effectiveness of external pseudo-relevance feedback techniques
for zero-shot retrieval tasks. On the one hand, we investigate the benefit of the classical
sparse PRF model that is supported by a pseudo-relevant feedback set obtained from
different dense retrieval approaches. Moreover, we study the effectiveness of external dense
expansion on dense retrieval. This facilitates the investigation of how external expansion
changes the semantic matching behaviour of retrieval. Finally, we investigate whether the
sparse external retrieval can produce feedback information that is useful for dense retrieval.

• Chapter 6 investigates the generalisation of the contextualised late interaction mechanism
upon various pre-trained models, such as RoBERTa (Liu et al., 2020) and ALBERT (Lan
et al., 2020) and different tokenisation techniques, such as WordPiece (Schuster and Naka-
jima, 2012), BPE (Bostrom and Durrett, 2020) and SentencePiece (Kudo and Richardson,
2018). Furthermore, this chapter inspects the nature of matches occurring within the gen-
eralised contextualised late interaction mechanism. In particular, the matching behaviour
on different token families. Finally, we quantify the contribution of lexical and semantic
matching on retrieval effectiveness, respectively.

• Chapter 7 presents a novel technique, called CWPRF. Going further than our proposed
unsupervised ColBERT-PRF model, CWPRF performs dense quey expansion in a super-
vised way. In particular, the CWPRF model is trained to to assign high expansion weights
for tokens that can discriminate the relevant documents from the non-relevant documents.
Based on the predicted weights, CWPRF helps to identify useful expansion embeddings
for generating refined query representations.

• Chapter 8 provides concluding remarks and summarises the contributions of this thesis.
Moreover, it discusses the limitations as well as presenting several future directions that
build upon the foundation laid in this thesis.
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Chapter 2

Background and Related Work

As discussed in Chapter 1, this thesis focuses on the adhoc retrieval task (Manning, 2009). A
schematic view of the standard adhoc search task, as well as its components, is presented in Fig-
ure 2.1. In the adhoc retrieval task, the core component is the score function s(q,d), which takes
the query q and a document d as inputs and produces a score for this document with respect to its
estimated relevance to the query. Based on the estimated relevance score for each document in the
collection, we can obtain a ranked list with a descending relevance order for the query. Depending
on the way the query and document are represented, the retrieval systems can be classified into
two prevalent types: the sparse retrieval paradigm, where the query and document are represented
into sparse vectors with a dimension size equal to the vocabulary size of the collection, and the
dense retrieval paradigm, where the query and document are encoded into a low dimensional
dense representation, such as that obtained from the BERT [CLS] embedding (Devlin et al., 2019).

In particular, in this chapter, we start with a description of the traditional sparse retrieval
paradigm in Section 2.1, then Section 2.2 introduces the pretrained language models and their
prevalent applications in information retrieval (IR), namely neural reranking models and document
expansion, while the more advanced dense retrieval paradigm is detailed in Section 2.3. Next,
we introduce pseudo-relevance feedback (PRF) techniques, specifically traditional, neural-based
and dense PRF approaches in Section 2.4. Finally, retrieval evaluation methods and evaluation
measures used in this thesis are detailed in Section 2.5.

Figure 2.1: A schematic view of the adhoc search task.
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2.1 Sparse Retrieval

In sparse retrieval systems, queries and documents are encoded into sparse high-dimensional
representations. For instance, assume there are three documents in a collection:

Doc 1: A dog playing in the backyard.
Doc 2: A cute cat sleeps in the sun all day.
Doc 3: The brown fox is a cunning animal.
For these example documents, we can create a vocabulary, which consists of all the unique

terms from all the documents and with a dimension as v. Based on this vocabulary, a binary vector
(with a dimension size equal to v) for each document and query in the collection can be created.
In particular, a query q and a document d can be represented by a vector of ordered index terms:
Vq =(q⃗1, q⃗2, ..., q⃗|v|) and Vd =(d⃗1, d⃗2, ..., d⃗|v|), respectively. For instance, the sparse representation
for Doc 2 in the above example is VDoc2 = (1,1,0,0,0,1,0,1,0,0,1,0,0,1,1,0), where the length
of the sparse vector equals to the size of the vocabulary, the value, 1 (or 0), indicates whether the
term appears (or not) in the ordered vocabulary, e.g. in alphabetical order. similarly, for a query
‘cute cat’, the sparse query representation is Vq = (0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0). These
sparse representations, consisting of a bag of binary occurrence indicators, are often referred
to as one-hot encodings. Next, we introduce the various prevalent sparse retrieval models in
Section 2.1.1, starting with the vector-space and TF-IDF models, then the probabilistic model,
exemplified by the BM25 model, and finally, the information-theoretic model, exemplified by the
DPH model. Moreover, we describe how to experiment with the introduced retrieval models in
practice and how to construct the more complex retrieval pipelines using the PyTerrier platform
in Section 2.1.2.

2.1.1 Sparse Retrieval Models

Vector-space Retrieval Models The most straightforward way to estimate the relevance
between a query representation Vq and a document representation Vd is by using similarity
functions, such as the cosine similarity method, as follows:

s(q,d) = cosine(Vq,Vd) =
∑

vocab
j=1 d⃗ j · q⃗ j

∑
vocab
j=1 ||d⃗ j|| · ||q⃗ j||

(2.1)

These models, based on the geometric representations of the query and document, are known
as vector-space retrieval models (Salton et al., 1975). While vector-space models are easy to
implement, they suffer from the high-dimensional representations and ignore term-dependence
relationships. Indeed, in the web search scale, the dimension of a document representation can be
thousands or even millions of dimensions. Low-quality tokens , such as the tokens correspond to
the ‘stopwords’ or low IDF tokens, are often removed to reduce the vocabulary size (Scholer
et al., 2002, Tonellotto et al., 2013).
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Furthermore, the vector-space model can be adapted to various weighting schemes, for
instance, the term frequency tf and the inverse document frequency IDF are often used to
describe the importance of a term. More generally, the relevance score of a query-document pair
can be estimated using the following score function:

s(q,d) = ∑
t∈q∩d

f (η(q, t),η(d, t)), (2.2)

where f (t) represents a score function calculated based on the overlapping terms between docu-
ment d and query q. In particular, the query and document can be represented as η(q, t) and η(d, t)

respectively using their associated statistics, such as term frequency tf and document frequency df .
TF-IDF Retrieval Model: Now we introduce the simplest retrieval model instantiated from

Equation (2.2), i.e. the TF-IDF ranking model (Sparck Jones, 1972). TF-IDF combines the count
of index term occurrences in a document, i.e. t f and the inverse document frequency, i.e. id f . In
particular, t f assigns a higher weight to terms that appear more frequently while id f measures
the rareness of a term across a collection of documents and gives high weights for terms that
occur rarely in the collection. There are many variations of id f , however a simple variant can be
described as follows:

id f (t,d) = log
(

N +1
Ni +1

)
, (2.3)

where Ni is the number of documents containing the token ti and N is the total number of
documents in the collection; +1 is applied for smoothing to avoid division by zero. Based on this,
the weighting scheme for TF-IDF can be described as follows,

sTF-IDF(q,d) = ∑
t∈q∩d

f (η(q, t),η(d, t)) = ∑
t∈q∩d

t f (t,d) · id f (t,d), (2.4)

where t f (t,d) refers to the frequency of the term t in the document d and id f (t,d) is the inverse
document frequency.

Okapi BM25 Retrieval Model: Besides the vector space weighting model, which makes
the explicit usage of the sparse representations, probabilistic retrieval models, which are based on
the probability theory, have been extensively used in the literature (Robertson, 1977, Robertson
and Spärck Jones, 1976). For instance, BM25 (Robertson et al., 1995, Spärck Jones et al., 2000)
was proposed to incorporate the query and document term weights into the scoring function and
is still dominant and one of the best-performing sparse ranking models today. Therefore, in this
thesis, we extensively use BM25 in the experimental part as a strong sparse retrieval baseline
ranking model and as a robust basis for creating more advanced neural baseline models. BM25
is defined as Equation 2.8, where Ni is the number of documents containing the token ti. t f (t,d)

and t f (t,q) denote the frequency of the term t in the document and query, respectively, k2, k1

and b are free parameters, where k1 and k2 control how much the term frequency is scaled and b

controls the normalisation of the document length. dl and avgdl denote the length of a document
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d and the average length of the documents in the collection, respectively.

sBM25(q,d) = ∑
t∈q∩d

f (η(q, t),η(d, t)) (2.5)

= ∑
t∈q∩d

id f (t,d) ·η(q, t) ·η(d, t) (2.6)

= ∑
t∈q∩d

id f (t,d) · t f (t,q)(1+ k2)

k2 + t f (t,q)
· t f (t,d)(k1 +1)
t f (t,d)+ k1(1−b+b dl

avgdl )
(2.7)

= ∑
t∈q∩d

log
(

N−Ni +0.5
Ni +0.5

)
· t f (t,q)(1+ k2)

k2 + t f (t,q)
· t f (t,d)(k1 +1)
t f (t,d)+ k1(1−b+b dl

avgdl )
. (2.8)

DPH Retrieval Model: As we can see from the previous section, BM25 contains several free
parameters (k1, k2, b) that can require further tuning depending on the retrieval task. Here we
introduce a parameter-free ranking model called DPH (Amati et al., 2007). DPH is developed
under the information-theoretic-based Divergence From Randomness (DFR) framework (Amati,
2006), which assumes that: The more the divergence of a term’s within-document term-frequency

from its frequency within the whole collection, the more the information carried by the word

t in the document d (Amati, 2006, Amati et al., 2007). In particular, the parameter-free DPH
weighting model is calculated as follows,

sDPH(q,d) = ∑
t∈q∩d

η(q, t) ·η(d, t), (2.9)

where η(q, t) = t f (t,q)
maxti∈qt f (ti,q)

, and η(d, t) =
t f (t,d)(1− t f (t,d)

ld
)2

t f (t,d)+1 log(t f (t,d) · ln
ld ·(t f (t,C))+0.5 · log(2π ·

t f (t,d) · (1− t f (t,d)
ld

)). As the parameter-free DPH provides an effective and efficient alternative
of BM25 (Robertson et al., 1995, Spärck Jones et al., 2000), in this thesis, we also employ DPH
as one of the baseline sparse ranking models.

2.1.2 Retrieval Pipelines

In Section 2.1.1, we introduced several classical sparse retrieval models. In recent years, with
the advent of neural network models, the application of machine-learning-based applications
in the information retrieval field has experienced a great growth. Researchers tend to perform
more complex end-to-end experiments, such as learning to rank (LTR) and neural reranking
in a retrieval pipeline. Thus, in this thesis, we resort to expressive high-level notations for
describing complex retrieval pipelines. For instance, we use the + operator to establish a linear
combination of the scores of the two retrieved results lists, a feature supported by the PyTerrier
platform (Macdonald and Tonellotto, 2020, Macdonald et al., 2021a). We describe the advanced
complex pipelines using PyTerrier, for neural reranking in Section 2.2, for dense retrieval in
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Table 2.1: PyTerrier transformers (Macdonald et al., 2021a).

Input Output Transformer

Q → Q′ Query rewriting
Q → R Retrieval
R → Q′ Query expansion
R → R′ Re-ranking
R → R f Feature extraction

Table 2.2: PyTerrier operators for combining transformers (Macdonald et al., 2021a).

Operator Name Description

» then Pass the output from one transformer to the next transformer
+ linear combine Sum the query-document scores of the two retrieved result lists
∗ scalar product Multiply the query-document scores of a retrieved result list by a scalar
∗∗ feature union Combine two retrieved result lists as features
| set union Make the set union of documents from the two retrieved result lists

& set intersection Make the set intersection of the two retrieved result lists
% rank cutoff Shorten a retrieved result list to the first k elements
ˆ concatenate Add the retrieved result list from one transformer to the bottom of the other

Section 2.3 and for integrating pseudo-relevance feedback in Section 2.4.
PyTerrier introduces transformers and operators to perform complex retrieval tasks by con-

structing retrieval pipelines, enabling experiments to be conducted in a declarative manner. In
particular, Table 2.1 presents the classes of PyTerrier’s transformers, which are distinguished
by their input and output. Table 2.2 lists the operators for combining the transformers to build
retrieval pipeline. More formally, let Ret(I,k)(q)→ R denotes a retrieval process that takes a
query q as input and returns a ranked list of k documents as the retrieved set R by searching over
the index I.1 In addition, based on the introduced PyTerrier transformers, let x» denote passing
the output of one transformation process, with type x, as input to another, where x = R indicates
the type is a ranking of documents and x = Q indicates the type is a query. As we will show,
this definition is sufficiently general enough to encompass classical sparse retrieval models (e.g.
BM25 or DPH) and dense retrieval models (in Section 2.3) as well as pseudo-relevance feedback
settings (in Section 2.4). Based on this, the simplest retrieval pipeline for retrieval using BM25
can be created as RetBM25(I,k). Moreover, to handle very long documents, a more complex
retrieval pipeline can first break down each retrieved document into passages. Then a scorer can
be applied to the smaller text chunks. Finally, the document score can be aggregated over the text
chunk scores using a MaxPassage function. Such a retrieval pipeline can be created as follows,

PipeMaxP = RetRetriever(I,k′)
R»Sliding(I,length,stride) R»RetScorer(I,k)

R» MaxPassage(·) ,
(2.10)

1 To aid readability, we use ‘document’ and ‘passage’ interchangeably in our explanations of the models.
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where Sliding(·) denotes the sliding window function that is typically applied on long doc-
uments to be split into shorter texts. More specifically, two parameters are used in the sliding
window function: length and stride, where the length determines the number of words
in each chunk while the stride controls the number of words the window moves over the
text chunk for each step. Typically, if the stride is equal to the length, the window would
create non-overlapping chunks. In addition, the MaxPassage(·) function is applied to aggregate
the scores of the chunked passages for each document. This pipeline is particularly useful when
applying the advanced BERT-based reranker and we will discuss this design in Section 2.2.

Overall, in this section, we introduced the classical sparse representation method and various
prevalent traditional term weighting models in Section 2.1.1. Then, we described the experimental
platform we used, namely PyTerrier, throughout this thesis in Section 2.1.2. However, all the
retrieval models introduced in Section 2.1 rely on the sparse representations of the query and doc-
uments. The sparse bag-of-words representations have drawbacks, such as high dimensionality,
the term independence assumption and ignoring the order of the words as well as the context of
the words. Distributed semantic models (Le and Mikolov, 2014, Mikolov et al., 2013), such as the
Word2Vec model (Le and Mikolov, 2014), encode each vocabulary entry to a low-dimensional
word representation. Word2Vec embeddings can capture the syntactic and semantic word relation-
ships between words in the representation space. For example, in the Word2Vec representation
space, ‘apple’, ‘banana’, and ‘orange’ are all fruits in the Word2Vec representation space, so
they should be placed close to each other but far away from the word representations of ‘queen’
and ‘king’. Although Word2Vec embeddings have demonstrated promising results for natural
language understanding (Baroni et al., 2014, Le and Mikolov, 2014), Word2Vec model is unable
to capture the dynamic contextualised meaning of a word. Indeed, since the Word2Vec model
produces one vector for each word, even for different sense words with the same surface word
form, such as ‘bank’ in ‘bank of river’ vs. ‘bank of Scotland’. Later, pretrained language models,
such as BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020), have led to the development
of natural language understanding and semantic search techniques. More importantly, models
such as BERT can produce contextual word embeddings that take the surrounding context into
consideration, thus producing different embeddings of the ‘bank’ in different contexts. In the
following section, we introduce various families of pretrained language models and their usage in
modern information retrieval systems.

2.2 Pretrained Language Models (PLMs)

In this section, we first introduce various types of pretrained language models depending
on their underlying transformer architecture in Section 2.2.1. Then we detail the application
of PLMs in the retrieve-then-rerank pipeline and the usage of PLMs for refining the document
representations in Section 2.2.2 and Section 2.2.3, respectively.
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2.2.1 Transformer-based PLMs

For decades, deep convolutional and recurrent neural networks (CNNs and RNNs) have
been widely used (Cho et al., 2014, Hochreiter and Schmidhuber, 1997, LeCun et al., 1998).
However, these models have difficulties learning contextualised word representations. More
recently, Vaswani et al. (2017) proposed a novel self-attention deep-learning model, called
Transformers. The transformer architecture consists of large encoder and decoder blocks to
process the data. In particular, the encoder maps an input sequence to a continuous representation
for each input element. The continuous representations are then used by the decoder to generate
an output sequence. Based on this, various advanced pretrained models are developed based on
the Encoder-only or Decoder-only transformer or both. Most of these pretrained models can be
obtained from the Huggingface 2 library, which is established as the state-of-the-art library for
transformer-based PLMs.

Encoder-based PLMs: Encoder-based PLMs consist only of stacks of transformer encoder
layers, thus the output for the encoder-based PLM models can be regarded as the contextualised
representations of the input sequence. Based on the depth of the model architecture, i.e. the
number of transformer layers consisting in the encoder, different sizes of the PLM models can be
trained. One of the salient encoder-based model families is BERT (Devlin et al., 2019), which
has various types of models that differ with their model size, from BERTtiny to BERTLarge. BERT
employs masked language modelling (MLM) pretraining techniques, where some input tokens
are replaced with [MASK] tokens and the model is trained to reconstruct the masked tokens.
In addition, popular encoder-based PLMs including XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2020), ELECTRA (Clark et al., 2020) or ALBERT (Lan et al., 2020). Encoder-based
PLMs have also been applied for various IR tasks, where various cross-encoder reranker models
have been developed based on the encoder-based PLMs, as well as dense retrieval models that
benefit from the contextualised representations produced by the encoder-based PLMs. Among
various encoder-based PLMs, BERT is the most used PLM in IR, hence, we illustrate the input
and output of BERT in Figure 2.2. In particular, for an input sequence, the special tokens [CLS]
and [SEP] are prepended and appended, respectively. Then BERT produces a dense embedding
for each input token. In Section 2.2.2, we further describe the cross-encoder reranker models and
the dense retrieval paradigms in Section 2.3.

Decoder-based PLMs: Different from encoder-based PLMs, decoder-based PLMs only
employ stacks of the multi-head attention and feed-forward transformer decoder layers. In general,
the decoder-based PLMs consist of a series of GPT models, including from GPT-1 (Radford et al.,
2018), GPT-2 (Radford et al., 2019) or GPT-3 (Brown et al., 2020).

Encoder-Decoder based PLMs: Encoder-decoder based PLMs maintain most of the whole
transformer architecture but are more powerful after pre-training on a diverse set of tasks and
data. A number of Encoder-Decoder PLMs have been developed, such as the T5 (Raffel et al.,

2 https://huggingface.co/
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Figure 2.2: Illustration of the input and output of BERT.

2020) or BART (Lewis et al., 2020) models. The T5 model has also been used for document
expansion in IR, which we will further detail in Section 2.2.3. In this thesis, we also demonstrate
that T5 can also be used to perform adhoc query expansion tasks.

Tokenisation of PLMs Tokenisation is an important technique to preprocess the input text
before input to a contextualised language model. In particular, as transformer-based models
learn representations for each unique token, a limited-size vocabulary is important. Indeed, a
large vocabulary size would cause increased memory and time complexity (Jean et al., 2015),
and difficulty in learning accurate representations for rare tokens (Mikolov et al., 2013). For
these reasons, sub-word tokenisation is usually used to split the input text into small chunks
of text. Thus, frequently used words are given unique IDs, while rare words will be processed
into sub-words. Prevalent tokenisation techniques used by large pretrained language models
include the WordPiece (Schuster and Nakajima, 2012), Byte-Pair Encoding (BPE) (Sennrich
et al., 2016) and SentencePiece (Kudo and Richardson, 2018) tokenisation techniques. For
instance, WordPiece (Schuster and Nakajima, 2012) is used by BERT (Devlin et al., 2019) and
miniLM (Wang et al., 2020a); BPE (Sennrich et al., 2016) is used by the RoBERTa (Liu et al.,
2020) and GPT (Brown et al., 2020, Radford et al., 2018, 2019) models; SentencePiece (Kudo
and Richardson, 2018) is used by the ALBERT (Lan et al., 2020) and T5 (Raffel et al., 2020)
models. In particular, the BPE (Sennrich et al., 2016) and WordPiece (Schuster and Nakajima,
2012) tokenisation technique merge frequently occurring character sequences into larger tokens
but control the vocabulary size using different algorithms to maximise the likelihood of the
training data. In contrast, SentencePiece initially treats each whole sentence as one large token
and learns to split it into sub-words.

In practice, Transfer Learning technique is often used to harness the knowledge stored in the
pretrained models. Transfer learning, where the knowledge stored for addressing one task can
be transferred to address other related tasks, provides flexible ways to leverage the knowledge

15



encapsulated in large pretrained models, such as T5. As a result, many researchers have turned to
make use of such knowledge to address various downstream tasks, such as using the T5 model
for document expansion, which will be detailed in Section 2.2.3, and using a BERT model for
neural query expansion, which will be introduced in Section 2.4.2.

We introduced the different types of PLMs depending on their transformer architecture, i.e.
Encoder-only, Decoder-only and Encoder-Decoder PLMs. In addition, we described various
types of tokenisation techniques used by PLMs. In this thesis, we are more concerned with
the applications of these PLMs in the IR field, namely the adhoc search task. In particular,
Section 2.2.2 introduces how to employ PLMs for the text ranking task, where the PLMs are
regarded as the classifier. Moreover, Section 2.2.3 introduces the scenarios where PLMs are
employed as the document expansion models.

2.2.2 Multi-Stage Retrieval using PLMs

The advanced pretrained neural network models introduced in Section 2.2, such as BERT (De-
vlin et al., 2019) and T5 (Raffel et al., 2020), have shown to have the ability to capture the latent
traits of texts. Recently, the PLMs have been successfully applied in various IR tasks, such as fine-
tuning the PLMs for text classification, as the ranking model or as a useful representation model.
One of the most successful applications of PLMs is as an effective reranker, where the model
reorders a list of documents in accordance with their estimated relevance to the search query.
However, while PLMs have proven to be highly effective as rerankers, they typically require sig-
nificant amounts of time and GPU resources to implement due to their complex architecture and
large size, making it impractical to apply them to the entire index. Thus, some efficient methods,
such as traditional sparse retrieval models BM25 or DPH (cf. Section 2.1), are typically employed
to produce a set of candidates retrieved from the index. Then, a more powerful reranking model
is applied to further improve the effectiveness of the ranking of the candidate documents. In
general, this retrieval pipeline is called Multi-Stage Ranking or Retrieve-then-Rerank retrieval,
which can be expressed as follows:

PipeMulti-Stage = RetRetriver(I,k′)
R» RetScorer/Reranker(I,k). (2.11)

In the following, we introduce two types of popular reranking models based on the Encoder-only
transformer and the Encoder-Decoder transformer PLMs.

Encoder-only PLMs for Reranking: A Encoder-based PLMs can take a pair of query and
document as the input and produce the relevance score of the document for the query. The
Encoder-only text reranking models are also referred to as Cross-Encoder rerankers. One of
the earliest neural rerankers is monoBERT proposed by Nogueira and Cho (2019), where the
BERT model is fine-tuned for passage reranking. Specifically, the input query q and document d

are first split and truncated to a list of word pieces q = q1,q2, · · · ,q|q| and concatenated together
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Figure 2.3: Cross Encoder Retrieval Model.

as the input of the MonoBERT model. More formally, the input for the BERT model can be
expressed as BERT([CLS],q1, ...,q|q|,[SEP],d1, ...,d|d|,[SEP]). Then, the [CLS] vector of
the final output layer of BERT is obtained and input to a single-layer classification network to
produce the estimated relevance score indicating the input document’s relevance to the query. The
inference process for the Encoder-only PLMs reranker can be depicted in Figure 2.3. As the input
of the Encoder-only reranking model takes the document appended to the query, the self-attention
mechanism within the transformer layers is applied to every query and document token. Note
that the input text length for training BERT is typically set to 512. Therefore, for the document
retrieval task, where the document length is longer than 512, more tricks are needed. One
straightforward technique is to divide the long document into smaller chunks and the maximum
score is aggregated as the final score of the document. This model is called MaxP (Dai and Callan,
2019a). On the other hand, MacAvaney et al. (2019) proposed a BERT-based reranking model
called CEDR for document reranking, which incorporates BERT into the neural document ranking
model. Moreover, Gao et al. (2021b) explored a bag of tricks to improve the training of the BERT-
based reranking model via hard negative samples mining and a Localized Contrastive Estimation
(LCE) loss. Later, Pradeep et al. (2022) replaced BERT with the ELECTRA PLM within this
training framework thus obtaining a new more effective reranker named monoELECTRA. In
sum, the difference between these Encoder-only PLMs reranking models is that each model is
built upon different pretrained language models and employs different training techniques to train.
Overall, these cross-encoder rerankers work based on the contextualised dense embeddings of the
documents produced by the (Encoder-only) pretrained language model. Instead, in the following,
we detail various reranker models that are working on the text generation models based on the
Encoder-Decoder structure.

Encoder-Decoder PLMs as Rerankers Besides the Encoder-only reranking models, the
Encoder-Decoder type of PLMs have also been explored as text rerankers. They can also fit into
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Figure 2.4: The Sequence-to-Sequence Retrieval Model.

the multi-stage retrieval pipeline shown in Equation (2.11). Encoder-Decoder PLMs as Rerankers
include models such as monoT5 (Nogueira et al., 2020) and RankT5 (Zhuang et al., 2022). More
specifically, monoT5 is built upon the T5’s Sequence-to-Sequence framework and is trained to
generate the relevance labels, such as ‘True’ or ‘False’ as target tokens, for the input query and
document pair. The input template for monoT5 is:

T5([Query],q1, ...,q|q|,[Document],d1, ...,d|d|,[Relevant]), (2.12)

where the [Query] and [Document] and [Relevant] are special tokens indicating the
beginning of the query and document tokens as well as the predicted relevance target token, such
as ‘True’ or ‘False’, respectively. Then, the estimated relevance score is obtained by applying
a softmax function on the logits underlying the target tokens. Overall, the architecture for the
Sequence-to-Sequence retrieval models can be illustrated in Figure 2.4.

2.2.3 Refined Document Representations Obtained using PLMs

Besides using PLMs for text ranking, another strand of research leverages PLMs to perform
document expansion trying to alleviate the pervasive vocabulary mismatch problem in information
retrieval. Document expansion augments each document with supplementary information, for
instance, additional terms selected from a corpus or predicted queries generated by a natural
language generation model from the original document. DeepCT (Dai and Callan, 2020b) and
HDCT (Dai and Callan, 2020a) learn each term importance score of a term using the BERT model
in a context-aware manner for both passages and documents. In contrast, the Doc2query approach
expands each document by generating multiple predicted queries using a Sequence-to-Sequence
transformer model (Nogueira et al., 2019b) and later applied the T5 model (Nogueira et al.,
2019a) for the same purpose. This is effective but comes with the significant upfront cost of
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applying the expensive PLM, for instance, the T5 model, to every document before indexing.
Later, DeepImpact (Mallia et al., 2021) further estimates the semantic impact score of the token
of a document enriched by the DocT5Query model, which can be regarded as a combination of
the DeepCT and DocT5query methods.

All the above methods focus on enriching documents on the term level, which means these
PLMs-based models are still based on bag-of-words representations, which are indexed using
sparse vectors, cf. Section 2.1. In contrast, a thread of works focused on augmenting the doc-
ument representations. EPIC (MacAvaney et al., 2020b) directly predicts the contextualised
importance and creates expanded document representations. In particular, EPIC employs a BERT
model to project each term in the passage as a dense vector with a dimension as the whole
BERT WordPiece vocabulary size, and then the document representation is aggregated using
the maximum score for each term. The final passage representation is in the whole vocabu-
lary size, which has the effect of augmenting the original passage representation. In addition,
SparTerm (Bai et al., 2020) also employs the BERT model to directly learn the weights for the
sparse representation. It first learns a BERT-based encoder model to produce a dense importance
distribution with the dimension of the whole vocabulary size and then employs a gating controller
to control the term activation to ensure that the final representation contains the original passage
terms. Later, SPLADE (Formal et al., 2021a), as well as SPLADE-v2 (Formal et al., 2022),
augment the performance of SparTerm by applying a log-based saturation function to smooth
the over-dominated terms and training with additional in-batch negative samples. More recently,
COIL (Gao et al., 2021a) learns contextualised exact matching vectors for each token, which can
be encoded into an inverted index. uniCOIL (Lin and Ma, 2021) simplifies COIL to learn a scalar
weight instead of the contextualised matching vector for each document token.

These models all enrich the document’s original representation by augmenting the document
representation in a whole vocabulary size. Therefore, these models are often referred to as
learned sparse representation models. In general, the enriched document representations of these
document expansion and learned sparse models are compatible with the traditional inverted index
structure. As a result, they are often employed as first-stage effective sparse retrievers, like BM25,
within a multi-stage retrieval pipeline using a cross-encoder for reranking the final results.

To summarise, this section began with the introduction of the Transformer architecture and
three types of pretrained language models classified by their underlying transformer architecture.
Then, we discussed the application of the PLMs for text ranking (cf. Section 2.2.2) and for
refining the document representation (cf. Section 2.2.3) in IR. We note that all these models
rely on the inverted index in different formats. In the following, in Section 2.3, we will further
discuss the application of the PLMs for performing adhoc ranking entirely on a dense index.
Moreover, besides refining document representation, in Section 2.4, we will introduce various
pseudo-relevance feedback techniques for refining query representation.
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2.3 Dense Retrieval

The above retrieval models, namely the sparse retrieval (Section 2.1), multi-stage retrieval
(Section 2.2.2) and document expansion models as well as the learned sparse retrieval models
(Section 2.2.3) all rely on the traditional sparse inverted index to different extents. Indeed, sparse
retrieval relies on the vocabulary-sized sparse representation-based inverted index; multi-stage
retrieval requires a high recall and also an efficient first round of retrieval, which is typically
deployed on the more efficient sparse inverted index, to provide a candidate set for reranking.
Moreover, although learned sparse models incorporate the contextualised importance of each term
into the index, the format of the indices is still a sparse representation-based inverted index. This
means that although efficient for storage and computation, these sparse representation methods
may lose some semantic relationships between words.

Based on these considerations, another strand of works have directly delved into retrieval mod-
els based on the dense document representations. Unlike sparse representations, dense representa-

tions, such as those obtained by using BERT embeddings, can capture the semantic relationships
between words and encode information in a lower dimensional continuous vector sparse. In ad-
dition, dense representations allow for an efficient similarity computation between the query and
the document’s dense representations. In terms of the model structure, different from the popular
“cross-encoder” based BERT-rerankers (MacAvaney et al., 2019, Nogueira and Cho, 2019), dense
retrieval models usually apply a BERT-based bi-encoder (or dual-encoder) structure. The query
and document are encoded separately into dense representations. Then, dense retrieval performs
relevance scoring through the encoded contextualised representations of queries and documents.
Moreover, according to the way the queries and the documents are encoded, dense retrieval mod-
els can be divided into two families (Macdonald et al., 2021b): single representation and multiple
representation dense retrieval models. Section 2.3.1 and Section 2.3.2 describe the dense retrieval
paradigm and the salient works for single and multiple representation dense retrieval, respectively.

2.3.1 Single Representation Models

In single representation models, each query or document as a whole is encoded into a single
dense representation, i.e. a single embedding for each query or passage. Then the relevance
between the query and document is estimated based on the encoded query and document vectors,
for example using their dot product similarity. There have been many dense retrieval models
developed since the beginning of 2020, such as DPR (Karpukhin et al., 2020), RepBERT (Zhan
et al., 2020), ANCE (Xiong et al., 2021), Rocket-QA (Qu et al., 2021) and TCT-ColBERT (Lin
et al., 2020a). In general, these models share a similar model structure and inference process but
are differentiated by their training process.

More formally, in terms of the model structure, the single representation dense retrieval
models consist of a BERT-based query encoder EQ and a BERT-based document encoder ED.
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Figure 2.5: Architecture of the Single Representation Dense Retrieval.

The input template for obtaining the query and document representations using EQ and ED can
be described as follows:

ψq = EQ([CLS],q1, ...,q|q|,[SEP]) ∈ R1×m, (2.13)

and
ψd = ED([CLS],d1, ...,d|d|,[SEP]) ∈ R1×m. (2.14)

Then, the similarity score between the query and document is estimated as follows:

s(q,d) = sim(ψq,ψd), (2.15)

where sim(., .) denotes the similarity function used to measure the similarity between the query
and document embeddings. This is commonly instantiated with the L2-based or cosine similarity
functions. Figure 2.5 depicts the architecture of the single representation dense retrieval paradigm.
The pooling layer can be instantiated by different functions depending on the specific model
design, such as the [CLS] pooling, Max or Average pooling functions. We further describe this
in the following specific model introduction.

With a trained model, during the indexing time of a single representation dense model, the
document representations are pre-computed and encoded in the dense index. The retrieval pipeline
of single representation dense retrieval model deployed on the PyTerrier platform is illustrated in
Figure 2.6 and can be expressed as follows:

PipeSingle-Rep = EQ
R» RetANN(I,k), (2.16)
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Figure 2.6: Conceptual Architecture of Single Representation Dense Retrieval using PyTerrier.

where EQ denotes the query encoder of the dense retrieval model, which does not rely on the
index and encodes the query text into the dense query embedding using the trained dense retrieval
model. RetANN(I,k) search denotes performing an Approximate Nearest Neighbour search
method on its dense index and returns k documents. Furthermore, in the following, we describe
several salient retrieval models, namely the DPR and ANCE models.

DPR: Dense Passage Retriever (DPR) was proposed by Karpukhin et al. (2020) for open-
domain question-answering tasks. The query encoder and the passage encoder are employed as
BERT (Devlin et al., 2019) networks and BERT’s [CLS] representations are taken as the query
and passage representations. Accordingly, the pooling layer in Figure 2.5 can be instantiated
to the [CLS] pooling function in DPR. Thus, the similarity between the query and passage
representations is defined as follows:

s(q, p) = sim(ψq[CLS],ψp[CLS]) = ψq[CLS]
⊤ ·ψp[CLS], (2.17)

where sim denotes the similarity function for measuring the relevance between the query and
passage representations, which commonly employ the dot-product or cosine similarity functions.
DPR uses the dot-product similarity function as its similarity function.

During training, each training instance contains one query q, one positive (relevant) passage
p+, and DPR mines n negative (non-relevant) passages p−1···n. Then DPR is trained using the
negative log-likelihood loss, which is used to make the similarity score higher for positive
documents and lower for negative documents, as follows:

L(q, p+, p1···n
−) =− log

exp[sim(ψq[CLS],ψ
+
p[CLS]

)]

exp[sim(ψq[CLS],ψ
+
p[CLS])]+ exp[∑ j∈n sim(ψq[CLS],ψp j

−
[CLS]

)]
. (2.18)

In particular, Karpukhin et al. (2020) experimented with negative (non-relevant) passages that
were selected from three different sources: (1) random, where the negative samples are selected
randomly from the training corpora; (2) BM25, where the non-relevant negative samples in the
BM25 retrieved list are selected as the negative samples; and (3) in-batch negatives, where the
passages from the other instances in the same training batch are regarded as the negative samples.
Empirically, the in-batch negative sampling method has been shown to be the most effective
among the above sampling techniques (Lin et al., 2021a).

ANCE: Approximate Nearest Neighbour Negative Contrastive Estimation (ANCE) was
proposed by Xiong et al. (2021) and also falls into the single representation dense retrieval
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Figure 2.7: ANCE Asynchronous Training (Xiong et al., 2021).

paradigm depicted in Figure 2.6. similar to DPR, the ANCE model adopts the bi-encoder
architecture, and the query documents are encoded as BERT’s CLS embeddings. The relevance
score between the query and passage pair can be estimated using Equation (2.17). In contrast to
DPR, ANCE theoretically analyses that negative samples which can be easily distinguished from
the positive samples, such as the hard negative samples identified from the BM25 retrieved list,
can lead to diminishing gradient norms. Therefore, Xiong et al. (2021) argued that mining hard
negative samples via ANN search running on an ANCE index can effectively train the ANCE
dense retrieval model. In particular, ANCE employs an asynchronous training method, where it
repeatedly mines hard negative samples from the ANN search returned list and updates the ANCE
dense index with the most newly trained ANN model. Figure 2.7 presents this asynchronous
training procedure of ANCE.

As ANCE is one of the more effective than DPR as a single representation dense retrieval
model (Lin et al., 2021a), in this thesis, we not only employ ANCE as a baseline of our proposed
models but also build on top of ANCE using our own proposed PRF techniques to further improve
the retrieval effectiveness on single-representation dense retrieval models in Chapter 5. We use
RetANCE(I,k) to denote the ANCE retrieval model.

2.3.2 Multiple Representation Models

In contrast to single representation, multiple representation dense retrieval models, exempli-
fied by ColBERT (Khattab and Zaharia, 2020, Santhanam et al., 2022), encode each token of the
query or document into a dense representation. ColBERT consists of a query encoder EQ and a
document encoder ED, which are fined-tuned based on the pretrained BERT model.

The queries and documents are represented by tokens from a vocabulary V . The input query
tokens are encoded as a list of query embeddings (each of dimension m) using EQ, as follows:

φq = ColBERT([CLS],[Q],q1, ...,q|q|) ∈ R32×m, (2.19)
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Figure 2.8: Contextualised Late Interaction in Multiple Representation Dense Retrieval.

where m = 128 and ‘[MASK]’ embeddings are used to pad the input query embeddings to 32.
Similarly, for a document d, we encode it into a list document embeddings using ED, as follows:

φd = ColBERT([CLS],[D],d1, ...,d|d|) ∈ R|d|×m. (2.20)

The number of encoded query tokens is fixed to |q| = 32 and filled with the special token
‘[MASK]’ if the original query contains less than 32 tokens. Moreover, a linear layer is used
to map the BERT representations into a low-dimensional vector with m components, typically
m = 128 (Khattab and Zaharia, 2020).

To estimate the relevance score of a document to a query, ColBERT implements a two-stage
scoring pipeline: in the first stage, an approximate nearest neighbour (ANN) search produces a set
of candidate passages. The ANN search used here is similar to the scoring process of the single
representation dense retrieval models depicted in Figure 2.5. In the second stage, these passages
are re-ranked with a so-called late interaction mechanism. In particular, this late interaction
scoring mechanism is illustrated in Figure 2.8.

More formally, the relevance score of a document d to a query q, denoted as s(q,d), is
calculated using a late interaction matching mechanism. The late interaction mechanism is based
on the bag of encoded query and document representations, where the maximum similarity score
among all the document representations for each query token representation is calculated and
then summed to obtain the final relevance score:

sMaxsim(q,d) =
|q|

∑
i=1

max
j=1,...,|d|

sim(φ T
qi
,φd j), (2.21)
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Figure 2.9: Conceptual Architecture of Multiple Representation Dense Retrieval using PyTerrier.

similar to single representation dense retrieval, there are several commonly used similarity
functions sim(., .) for dense retrieval models, namely the L2-based and Cosine similarity func-
tions (Khattab and Zaharia, 2020, Santhanam et al., 2022). When experimenting on the PyTerrier
platform, the retrieval pipeline for ColBERT can be expressed using Equation (2.22) and depicted
in Figure 2.9.

PipeMulti-Rep = EQ
R» RetANN(I,k′)

R» Maxsim(I,k), (2.22)

where RetANN(I,k′) denotes performing an Approximate Nearest Neighbour search method
on the multiple representation dense index and returns k′ documents. Maxsim(I,k) denotes
performing the Maximum similarity scoring method on its dense index and returns k documents.

To summarise, this section introduced both single and multiple dense retrieval models. For
single representation, we detailed the model structure, training and inference process for the DPR,
ANCE and TCT-ColBERT models. For multiple representations, we highlight the working proce-
dure for the ColBERT model. Besides different types of retrieval paradigms, namely single and
multiple representation models, these models also distinguish themselves by using various training
techniques, such as negative sampling, hard negative sampling and knowledge distillation etc.

To the best of our knowledge, ColBERT (Khattab and Zaharia, 2020) exemplifies the imple-
mentation of an end-to-end IR system that uses multiple representations of query and document.
The ColBERT model is a scalable yet expressive neural retrieval model, and has been used in
various ways to enhance retrieval effectiveness. For instance, TCT-ColBERT (Lin et al., 2020a,
2021b, Wang et al., 2022a) employs ColBERT as the teacher model and distils the learned knowl-
edge from ColBERT to a single representation dense retrieval model. In addition, several works
focus on improving the retrieval efficiency of ColBERT. For instance, pruning techniques on
query (Tonellotto and Macdonald, 2021a) and document embeddings (Acquavia et al., 2023) that
are estimated as less useful are found to achieve more efficient retrievals. Moreover, XTR (Lee
et al., 2023) simplifies the scoring component of ColBERT which only uses the retrieved passage
tokens rather than all tokens.

Furthermore, upon comparing the single and multiple representation dense retrieval paradigms,
we observe that ColBERT outperforms other single representation dense retrieval models like
ANCE and TCT-ColBERT in several key aspects. Firstly, the multiple representation dense
retrieval model, ColBERT, often exhibits higher retrieval effectiveness than the single repre-
sentation dense retrieval models, such as ANCE (cf. Section 2.3.1). Secondly, it is easier to
access and further extract useful information from the retrieved document embeddings in the
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multiple representation dense retrieval paradigm than in the single representation dense retrieval
paradigm. Finally, ColBERT enables us to inspect the matching behaviour occurring within the
dense retrieval. ColBERT employs the above late interaction scoring mechanism (computed
using Equation (2.21)) to estimate a similarity score between the query and document. In practice,
some embeddings will represent the same token – a lexical match – while others may match at a
semantic level (‘car’ vs. ‘vehicle’). In particular, the extent that such semantic matching behaviour

occurs among the contextualised representations is still under-investigated. Indeed, it is difficult
to disentangle the semantic matching from the dot product operation on the single-representation
dense retrieval models introduced in the previous sections. However, multiple-representation
dense retrieval models provide the possibility to inspect the dense matching behaviour and to
investigate the nature of its effectiveness improvements.

Based on these discussions, in this thesis, we focus on building our work upon the multiple
representation dense retrieval paradigm. In particular, we investigate how to effectively implement
the pseudo-relevance feedback mechanism on the multiple representation dense retrieval paradigm
using the token-level embedding representations. In the following section, we introduce the
various pseudo-relevance feedback technique families, namely the sparse PRF, neural PRF and
Dense PRF approaches, which correspond to the aforementioned retrieval paradigms.

2.4 Pseudo-Relevance Feedback

As we discussed in Chapter 1, the classical sparse retrieval models introduced in Section 2.1
can fail when there is a lexical or semantic mismatch between the query and the relevant
document(s), or when the user’s query is under-specified. Recently, various advanced PLM-based
rerankers introduced in Section 2.2 and the dense retrieval models introduced in Section 2.3 have
demonstrated their ability to improve retrieval effectiveness by alleviating semantic mismatch, as
the underlying PLMs are capable of capturing the semantic relationship between the query and
document. In addition, several document expansion models introduced in Section 2.2.3 attempt
to address the lexical mismatch problem by expanding the original document with potentially
relevant information, such as questions that the document may answer.

However, we argue that among all the aforementioned retrieval paradigms, namely the sparse
retrieval, retrieve and rerank, and dense retrieval paradigms, user queries can still be under-
represented. Indeed, users may lack sufficient knowledge about the topic they are searching for,
which can make it challenging for them to formulate well-represented queries using the appro-
priate keywords or phrases (Carmel and Yom-Tov, 2010). Many researchers seek to reformulate
the user’s initial query into an articulated query for more effective retrieval. In particular, query
reformulation can generally be expressed as a process P that takes the user’s initial query q0 and
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converts it into a new representation qr, with the aim of improving retrieval effectiveness:

qr = P(q0, ...), (2.23)

where “...” denotes the optional information that may be used by a query reformulation process
P. For instance, a query rewriting process might rely on the text of the query alone:

qr = PQR(q0). (2.24)

On the other hand, many query expansion approaches obtain a reformulated query through
the application of a classical pseudo-relevance feedback mechanism – such as Rocchio (Croft
et al., 2010) or RM3 (Abdul-Jaleel et al., 2004) – which makes use of query terms occurring in
the top-ranked documents returned for the original query q0, as follows:

qr = PPRF(q0,Rk(q0)), (2.25)

where Rk(q0) is a ranking of k documents obtained using q0 and qr takes the form of a weighted
set of terms.

The pseudo-relevance feedback (PRF) paradigm generally consists of three stages: (i) the
initial retrieval stage, where an initial retriever is employed to provide a list of documents and the
top-returned documents are assumed to be relevant to the input query; (ii) the PRF stage, which
identifies the useful expansion terms from the pseudo-relevant documents and appended them
to the initial query to produce a refined query representation; (iii) the reranking stage, where
a reranking process is conducted based on the refined query representation to recalculate the
similarity score of the document to the input query and reorder accordingly.

Following the definition of the PyTerrier operators introduced in Section 2.1.2, pseudo-
relevance feedback techniques can be generally described as follows: given some set of ranked
documents R, let a pseudo-relevance feedback process be denoted as PRF(I,θ)(R)→ q, where
θ are the parameters of the process. Typically, a PRF process takes the top-ranked documents
from the initial retrieved document list as the pseudo-relevance feedback documents, extracts
useful information from the PRF documents and in turn, produces a reformulated query. When
implementing a typical PRF technique, a retrieval pipeline can be established as,

PipePRF = Retriever(I,k′)
R» PRF(I,θ)

Q
» Reranker(I,k), (2.26)

In addition, Figure 2.10 depicts the retrieval pipeline of a PRF process using PyTerrier.
In the following, we further detail the working process of the traditional sparse PRF techniques

working within the sparse retrieval paradigm in Section 2.4.1, including the Rocchio algorithm,
the RM3 algorithm and the DFR Bo1 algorithm. Moreover, in Section 2.4.2, we introduce several
salient neural-based PRF techniques which can be deployed within the retrieval-and-rerank
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Figure 2.10: Conduct traditional sparse PRF experiment using PyTerrier.

retrieval paradigm. Finally, we focus on more advanced dense PRF techniques in this thesis and
introduce several concurrently proposed dense PRF models in Section 2.4.3.

2.4.1 Sparse PRF Approaches

Many pseudo-relevance feedback techniques have been proposed to address the vocabulary
mismatch problem in the sparse retrieval paradigm (cf. Section 2.1) and we refer these PRF
approaches to sparse PRF approaches. Such sparse query expansion approaches, which rewrite the
user’s query, have been shown to be an effective approach to alleviate the vocabulary discrepancies
between the user query and the relevant documents, by modifying the user’s original query to
improve the retrieval effectiveness. In the following, we introduce several salient sparse PRF
methods, namely the Rocchio relevance feedback algorithm, RM3 and Bo1 algorithms.

Rocchio Algorithm: The Rocchio algorithm was proposed by Rocchio (1971). It operates
in the vector space model and modifies the initial query vector to get closer to the average
vector of the relevant documents while moving away from the average vector of the non-relevant
documents. More specifically, the optimised query vector is obtained by averaging the document
vectors of the relevant documents and adding to the original query vector and at the same time
subtracting the mean averaged non-relevant document vectors from it. More formally, this process
can be described as follows,

q⃗r = α · q⃗0 +
β

| Dr | ∑
di∈Dr

d⃗i−
γ

| Dn | ∑
di∈Dn

d⃗i, (2.27)

where Dr and Dn denote the known relevant and non-relevant sets of the documents and q⃗0 and
q⃗r denote the initial user query and the optimised new query, respectively. Tunable parameters: α

weights the initial query, β weights relevant documents and γ weights the non-relevant documents.
The Rocchio technique assumes that we can obtain a user-judged set of relevant and non-relevant
documents in order to improve the query representation. However, in practical applications,
users may be reluctant to make explicit relevant judgements for retrieved documents. Instead,
the pseudo-relevance feedback formulation assumes that the top-ranked documents of an initial
retrieved document list corresponding to a query are relevant, while the lower-ranked documents
can be considered non-relevant. In the following, we further detail two salient pseudo-relevance
feedback term weighting models, namely the RM3 and Bo1 algorithms.

RM3: Now, we introduce the RM3 (Abdul-Jaleel et al., 2004) model. For each candidate
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expansion term t, we first measure its association to a query q = q1, . . . ,q|q| using the joint
probability of observing the word together with the query words, i.e. P

(
t,q1, . . . ,q|q|

)
. The

candidate word t can be sampled from the set of pseudo-relevance feedback documents denoted
as PRF . Thus, the association score for each candidate expansion term t is calculated by

SRM3(t) = P
(
t,q1, . . . ,q|q|

)
=

1
#PRF ∑

d∈PRF
(
t f (t,d)
|d|

×
|q|

∏
i=1

t f (qi,d)+µP(qi|C))

|d|+µ
),

(2.28)

where µ = 2500 is a smoothing parameter. Based on this, the expansion terms are selected
according to the calculated association score and then added to the original query. Finally, the
term weighting formula is expressed as follows,

Score(t) = α ∗Scoreexp(t)+(1−α)∗Scoreorig(t)

= α ∗ SRM3(t)
∑d∈PRF ∑t ′∈d SRM3(t ′)

+(1−α)∗ t f (t,q)
|q|

,
(2.29)

where SRM3(t) is calculated using Equation (2.28) and 0 ≤ α ≤ 1 controls the contribution of
the expansion terms with respect to the original query terms like the α and β parameters in
Equation (2.4.1). Indeed, although effective, there is a risk of the pseudo-relevance feedback
techniques that the added terms drift the intent of the query. To address this issue, RM3 introduces
a parameter α to balance the importance of additional terms derived from the feedback to the
original query terms, which helps it avoid the issue of “query drift”. RM3 technique has been
widely used in the IR field, therefore, we also employ RM3 as a baseline model to compare with
in this work.

Bo1: Bo1 (Amati and Van Rijsbergen, 2002) model is a query expansion model based on
Bose-Einstein statistics. Bo1 is an effective variant of the Divergence From Randomness (DFR)
term weighting model but articulates the query representation by internally performing the query
expansion. In particular, for each candidate expansion term t, a score is calculated by

SBo1(t) =

(
∑

d∈PRF
t f (t,d)

)
∗ log2

(
1+ t favg(t,C)

t favg(t,C)

)
+ log2(1+ t favg(t,C)), (2.30)

where PRF denotes the set of pseudo-relevance feedback documents and t favg(t,C) denotes the
average term frequency of the term t in the whole collection, which is calculated as t favg(t,C) =

∑d∈C t f (t,d)/N and N is the number of documents in the collection. Based on the calculated
scores obtained using Equation (2.30), we select the expansion terms to add to the original query,
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to formulate the final expanded query as follows:

Score(t) = Scoreexp(t)+Scoreorig(t)

=
1+ log(t f (t,q))

1+maxt ′∈q log(t f (t ′,q))
+

SBo1(t)
maxt ′∈d∈PRF SBo1(t ′)

.
(2.31)

The retrieval pipeline for experimenting with a specific PRF technique, such as Bo1 algorithm
or RM3, can be achieved by instantiating the PRF technique as shown in Equation (2.26) and
Figure 2.10 using a specific query expansion technique.

To summarise, in this section, we introduced several salient query expansion models, from
Rocchio’s relevance feedback technique to the RM3 relevance model and the Bo1 query expansion
technique. These techniques are based on different assumptions but all rely on the sparse
representations of the query and documents. Due to their effective retrieval capabilities and
ease of interpretation, these techniques continue to play a crucial role in information retrieval.
Therefore, in this thesis, we also employ RM3 and Bo1 models as baseline models for sparse
PRF.

2.4.2 Neural PRF Approaches

With the advent of neural networks and pretrained language models such as BERT, various
effective PLM-based rerankers have benefited from the contextual capabilities of PLMs. As a
result, several PRF techniques have been proposed that attempt to take the contextualised meaning
of the terms into consideration within a PRF process. Next, we detail two recently proposed
neural PRF techniques, namely CEQE (Naseri et al., 2021) and BERT-QE (Zheng et al., 2020).

CEQE: Traditional PRF (pseudo relevance feedback) techniques, such as RM3 (Equa-
tion (2.28)) and Bo1 (Equation (2.30)), identify expansion terms based on statistical measures,
such as term frequency. In contrast, a thread of works (Imani et al., 2019, Kuzi et al., 2016,
Roy et al., 2018, 2016, Zamani and Croft, 2017) focuses on selecting the expansion terms based
on their semantic similarity to the original query terms in a stable embedding space, such as
Word2Vec. Later, with the advent of the BERT model (cf. Section 2.2.1), a contextualised
embeddings-based query expansion model called CEQE (Naseri et al., 2021) was proposed. In
particular, CEQE maps the feedback terms to their BERT embedding space and thus can identify
the query-related terms that may not be captured by the statistical measures alone. Similar to
RM3, CEQE is also conducted based on probabilistic language modelling. Its difference with
RM3 is that: RM3 is based on the static lexical matching of the terms, but CEQE is based on the
contextualised BERT representations. As introduced in Section 2.2.1, BERT uses the WordPiece
tokeniser to split the input text into subwords. Therefore, a term can be split into several word
pieces, for instance, the term “goldfish” is breakdown into “gold” and “##fish”. Accordingly,
CEQE employs three different methods, namely CEQE-Max, CEQE-Mul and CEQE-Centroid to
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Figure 2.11: Architecture of the CEQE approach.

Figure 2.12: Conduct CEQE using PyTerrier.

transform the BERT token-level scores to the term-level scores. More specifically, CEQE-Max
takes the max pooled subword relevance as the terms’ similarity to the entire query, while CEQE-
Mul multiplies subword relevance scores as the final relevance score of the term. In addition,
CEQE-Centroid employs the centroid subword representations to measure the similarity of a
term to the query. Then, the identified expansion terms are highly weighted and are added to the
original query terms to form a new query.

Overall, the PRF process conducted by CEQE can be illustrated in Figure 2.11. From
Figure 2.11, we can see that, although CEQE leverages the BERT contextualised representations
during the expansion terms selection process, it still relies on a conventional sparse initial retrieval,
i.e., BM25, and therefore the refined query representation needs mapping back in the lexical form.
This means that the contextual meaning of an expansion term is lost - for instance, a polysemous
word added to the query can result in a topic drift. The retrieval pipeline for conducting CEQE
query expansion is illustrated as Figure 2.12 and can be constructed as follows:

PipeCEQE = BM25(I,k′)
R» CEQE(I,θ)

Q
» BM25(I,k′) R» Reranker(I,k). (2.32)

NPRF & BERT-QE: NPRF (Li et al., 2018) uses neural ranking models, such as DRMM (Guo
et al., 2016) and KNRM (Xiong et al., 2017), to score the similarity of a document to a top-ranked
feedback document. BERT-QE is conceptually similar to the NPRF model, but it measures
the similarity of each document w.r.t. feedback chunks that are extracted from the top-ranked
feedback documents. In particular, BERT-QE uses a cross-encoder to identify the feedback chunks
that are similar to the original query and incorporate the passage relevance to the identified chunks
into the relevance scoring function. More specifically, BERT-QE also consists of three stages: (i)
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Figure 2.13: Architecture of the BERT-QE approach.

Figure 2.14: Conduct BERT-QE using PyTerrier

the initial retrieval stage; (ii) identifying the relevant information from PRF docs; and (iii) the
BERT-QE reranking stage which leverages 3 sources of information: query, document and the
selected PRF information in stage (ii).

The overall architecture of BERT-QE is illustrated in Figure 2.13. In particular, in stage (ii),
BERT-QE selects the top 3 documents as the PRF documents and applies a sliding window to
decompose the selected PRF docs into overlapping chunks. Then a pretrained BERT model is em-
ployed to score each of the chunks and the top-ranked chunks are regarded as the relevant feedback
information. Then, in stage (iii), BERT-QE makes use of the selected relevant chunks together
with the original query text to score a given document. When experimenting with BERT-QE on
PyTerrier, the retrieval pipeline is constructed as follows and illustrated in Figure 2.14.

PipeBERT-QE = BM25(I,k′)
R» BERT-QE(I,k). (2.33)

The complex deployment of BERT-QE would result in an expensive application of many
BERT computations – approximately 11× as many GPU operations than a BERT-based cross-
encoder reranker (Zheng et al., 2020). Both Neural PRF and BERT-QE approaches leverage
contextualised language models to rerank an initial ranking of documents retrieved by a prelimi-
nary sparse retrieval system. However, they cannot identify any new relevant documents from the
collection that were not retrieved in the initial ranking.

To summarise, the aforementioned neural pseudo-relevance feedback techniques can effec-
tively increase retrieval effectiveness when applied on a sparse retriever, like BM25 or DPH.
Therefore, in this thesis, we employ both CEQE and BERT-QE as baseline models. On the one
hand, most of the existing neural-PRF models are BERT-based approaches, the usefulness of the
Sequence-to-Sequence models for query reformulation is still unclear. Therefore, in this thesis,
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we investigate the Sequence-to-Sequence based PLMs for effective query reformulation. On the
other hand, despite effectiveness, the previously introduced neural-PRF models still operate on a
sparse index that relies on precise lexical matching, specifically CEQE generates a sparse query
while BERT-QE only functions as a reranker. As a consequence, the semantic mismatch caused
by synonymous words remains unaddressed by these models. Inspired by dense retrieval (cf.
Section 2.3), which can alleviate the semantic mismatch issue, and the effectiveness of pseudo-
relevance feedback techniques, this thesis focuses on further refining the query representation for
dense retrieval. Concurrently, other Dense-PRF efforts have also been attempted, and we detail
these methods in the next section.

2.4.3 Dense PRF Approaches

Concurrently to our work, ANCE-PRF (Wang et al., 2021a, Yu et al., 2021b) was proposed,
which can improve effectiveness within the single representation dense retrieval paradigm. Similar
to ANCE-PRF, Vector-PRF (Li et al., 2021a) also refines the query representation heuristically,
such as applying average pooling or a weighted combination of the query and the pseudo-
relevance feedback embeddings. In the following, we detail the ANCE-PRF (Yu et al., 2021b)
and Vector-PRF (Li et al., 2021a) techniques.

ANCE-PRF: ANCE-PRF (Li et al., 2021b, Yu et al., 2021b) has been proposed to perform
PRF in a supervised manner, by re-encoding the query with the text of the PRF documents
into a revised query vector. ANCE-PRF builds upon ANCE (Xiong et al., 2021), which we
introduced in Section 2.3.1. In effect, ANCE-PRF is a cross-encoder that takes a query and all the
pseudo-relevance feedback passages as input and outputs a single reformulated query embedding.
More specifically, there are three stages in ANCE-PRF:

(i) An initial retrieval of ANCE is conducted, matching passages by the similarity of their
single embedded representations with the single embedded representation of the query, which
returns a list of k′ pseudo-relevance feedback passages.

(ii) In the second PRF stage, ANCE-PRF fetches the top-k ranked documents and tokenises
each PRF document into a list sequence of PRF tokens p1, p2, ..., p|p|. Then the PRF tokens are
appended to the original query tokens to form the new query and ANCE-PRF freezes the document
encoder while training a query encoder alone. With a trained ANCE-PRF query encoder, ANCE-
PRF produces a refined query representation. Specifically, the input template for the ANCE-PRF
is formulated as follows, ψ ′q = EANCE−PRF([CLS],q1, · · · ,q|q|,[SEP]p1

1, · · · , p1
|p1|,[SEP], p2

1,

· · · , p2
|p2|, · · ·[SEP], pk

1, · · · , pk
|pk|,[SEP]) ∈ R1×m, where EANCE−PRF denotes the ANCE-PRF

query encoder and ψ ′q denotes the refined query representation by ANCE-PRF.
(iii) Then, in the third stage, another round of ANCE retrieval is performed based on the

refined query representation. The similarity score between the refined query representation and
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the document is estimated as follows:

sANCE-PRF(q,d) = sim(ψ ′q,ψd), (2.34)

where ψd can be obtained using the standard ANCE document encoder. This allows the refined
query representation to be used with the original ANCE index without modification. When
experimenting with ANCE-PRF on PyTerrier, the retrieval pipeline can be constructed as Equa-
tion (2.35) and illustrated in Figure 2.15.

PipeANCE-PRF = RetANCE(I,k′)
R» PRFANCE(I,θ)

Q
» RetANCE(I,k). (2.35)

Figure 2.15: Conduct ANCE-PRF using PyTerrier.

Vector-PRF: Besides the text-based Dense PRF methods, i.e. ANCE-PRF, where PRF
passages are appended to the original query to from the new reformulated query, a further single

representation embedding-based Dense PRF method was proposed by Li et al. (2021a). Similar
to ANCE-PRF, the Vector-PRF model also works within the single representation dense retrieval
paradigm and consists of the three-stage PRF implementation pipeline, which we have introduced
at the beginning of Section 2.4. In contrast to ANCE-PRF, Vector-PRF is unsupervised in
nature and refines the query representation heuristically. By simply applying the average pooling
(referred to as Vector-PRF) or a weighted interpolation (referred to as Rocchio-PRF) on the
original query embedding and the pseudo-relevance feedback embeddings, Vector-PRF produces
a more effective refined query representation. More specifically, the PRF stage of Vector-PRF
can be described as follows: Vector-PRF obtains the top-k ranked passage embedding from
the initial retrieved results as the PRF embeddings, denoted as ψp1 · · ·ψpk , then the new query
representation obtained using the average pooling method is as follows:

ψ
′
q = AvgPool(ψq,ψp1 · · ·ψpk). (2.36)

In addition, the new query representation can be obtained using the weighted combination method
as follows:

ψ
′
q = αRocchio−PRF ·ψq +βRocchio−PRF ·AvgPool(ψp1 · · ·ψpk), (2.37)

where the hyperparameters αRocchio−PRF and βRocchio−PRF control the weights assigned for the
original query and the PRF passages, respectively.

Overall, compared to ANCE-PRF, the Vector-PRF method is simpler to implement, however,
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the effectiveness of the Vector-PRF method has been observed to have a limited increase in terms
of retrieval effectiveness. In this thesis, we employ both the ANCE-PRF and Vector-PRF models
as baselines.

To summarise, we have argued that each type of Pseudo-Relevance Feedback (PRF) technique
has its own strengths and drawbacks. More specifically, sparse PRF approaches (cf. Section 2.4.1),
such as the RM3 model, are easy to implement and straightforward to interpret. The expansion
terms added to the original query can effectively alleviate the lexical gap between the query and
the document. However, these sparse PRF methods rely on lexical retrieval and thus struggle to
address the semantic gap between the query and document. In contrast, neural PRF techniques
(cf. Section 2.4.2), especially those based on the BERT model, can capture the deeper semantic
relationships between words during the PRF stage, thereby alleviating the semantic mismatch
problem. However, neural PRF techniques, such as CEQE and BERT-QE approaches, operate
within the retrieval-and-rerank paradigm. This means that these neural PRF techniques still rely on
the sparse index, and fall short when it comes to increasing recall performance, as the contextual
meaning of an expansion term may be lost. Finally, ANCE-PRF and Vector-PRF approaches (cf.
Section 2.4.3) perform the query expansion and retrieval using the dense index, thus promising to
alleviate both semantic and lexical mismatch problems. However, as these dense-PRF techniques
implement the pseudo-relevance feedback mechanism on the single presentation dense retrieval,
interpreting the actual expanded embeddings becomes challenging.

In the following, we summarise the overall landscape of pseudo-relevance feedback and other
related approaches in the literature in Table 2.3. From the table, it is evident that there exists a
significant gap in the existing literature, as there have been no attempts to incorporate the pseudo-
relevance feedback mechanism within the framework of a multiple representation dense index.
In this work, we propose novel dense query expansion approaches for multiple representation
dense retrieval to fill in this gap. Indeed, we find that the easy access to the token-level document
embeddings used by the multiple representation dense retrieval paradigm, namely ColBERT
(cf. Section 2.3.2) provides an excellent basis for our dense retrieval pseudo-relevance feedback
approach. Indeed, while the use of embeddings in ColBERT addresses the vocabulary mismatch
problem, we argue that identifying more related embeddings from the top-ranked documents
may help to further refine the document ranking. In particular, as we will show, this permits
representative embeddings from a set of pseudo-relevance documents to be used to refine the
original query representation.

2.5 Retrieval Evaluation

To quantify how well a system is able to retrieve relevant information in response to a
user’s query, it is crucial to evaluate the effectiveness and the efficiency of a search engine.
In particular, effectiveness performance assesses the ability of a search system to retrieve the
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Table 2.3: Representative pseudo-relevance feedback and related approaches in the literature,
organised into two dimensions: the task of the approach and the type of index it conducted on.
L-Sparse denotes the Learned Sparse models, N-PRF denotes the Neural-PRF approaches and
D-PRF denotes the Dense-PRF techniques.

Techniques
Index Task

Sparse Learned Sparse Dense Single Dense Multiple Query Ref* Document Ref* Reranking

Sp
ar

se
PR

F

Rocchio (Rocchio, 1971) ✓ ✓
Bo1 Amati and Van Rijsbergen (2002) ✓ ✓
RM3 (Abdul-Jaleel et al., 2004) ✓ ✓
Sparse External Expansion (Peng et al., 2009a) ✓ ✓
CEQE (Naseri et al., 2021) ✓ ✓
PGT (Yu et al., 2021a) ✓ ✓

D
oc

.E
xp

. Doc2query (Nogueira et al., 2019a) ✓ ✓
DocT5query (Nogueira et al., 2019b) ✓ ✓
DeepCT (Dai and Callan, 2020a) ✓ ✓ ✓
HDCT (Dai and Callan, 2020a) ✓ ✓ ✓

L
-S

pa
rs

e

SparTerm (Bai et al., 2020) ✓ ✓ ✓
EPIC (MacAvaney et al., 2020b) ✓ ✓ ✓
SPLADE (Formal et al., 2021a) ✓ ✓ ✓
DeepImpact (Mallia et al., 2021) ✓ ✓ ✓
COIL (Gao et al., 2021a) ✓ ✓
UniCOIL (Lin and Ma, 2021) ✓ ✓

N
-P

R
F NPRF (Li et al., 2018) ✓ ✓

BERT-QE (Zheng et al., 2020) ✓ ✓

D
-P

R
F ANCE-PRF (Yu et al., 2021b) ✓ ✓

Vector-PRF (Li et al., 2021a) ✓ ✓

relevant documents to the top-ranked position in response to the users’ information needs while
efficiency concerns less response time to return the retrieved document list to the user. In the era
of neural IR, many retrieval systems, such as learned sparse retrieval models (cf. Section 2.2.3)
and dense retrieval models (cf. Section 2.3), need to be trained using some training dataset to
learn to understand and represent the context and semantic relationship between different words.
Therefore, training on the datasets addressing their retrieval tasks enables neural retrieval models
to retrieve more relevant documents based on semantic similarity rather than simple keyword
matching. In addition, performing the evaluation on the test queries that belong to the same
domain as the training queries, which is also referred to as an in-domain dataset, it is also worth
evaluating the trained retrieval models’ performance on out-of-domain datasets.

Besides the quantitative analysis of the proposed methods, we also provide the qualitative
analysis for each model. In particular, example queries for the qualitative analysis are selected
based on the per-query retrieval effectiveness analysis between the proposed method and the
compared baseline model. The most improved queries and degraded queries are selected as the
representative examples.

In this section, we first introduce the various evaluation datasets used in this thesis (cf. Sec-
tion 2.5.1). Then we introduce the most prominent methodologies for adhoc retrieval evaluation
in Section 2.5.2. After this, we detail the different evaluation benchmarks in the era of neural IR
in Section 2.5.3, namely in-domain evaluation and out-of-domain evaluation.
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2.5.1 Evaluation Datasets

In this section, we describe the training datasets and test collections used in this work. In
particular, neural IR models, like ColBERT (cf. Section 2.3.2), are trained using supervised data,
specifically using the MSMARCO (Nguyen et al., 2016) passage dataset. Therefore, we introduce
the popular training dataset for neural IR models. Moreover, to evaluate the performance of the
information retrieval system in a controlled manner, a test query set is used, where the test queries
are accompanied by relevance judgements. More specifically, Table 2.4 lists the statistics of the
training corpora and the test query sets used in this thesis, where |C| and |Q| denote the document
collection size and test query set size, respectively. L(Q) denotes the average query length in a
query set while Rel/Q denotes the average number of relevant documents for the queries.

MSMARCO Passage Ranking Dataset: The name of the MSMARCO dataset is short for
the large-scale MAchine Reading COmprehension dataset, which was released by Bing (Nguyen
et al., 2016) in 2016. The dataset allows researchers to study the question answering and the
adhoc ranking tasks, where a ranked list of the documents can be retrieved to potentially answer a
given question. In particular, there are two ranking tasks: passage ranking and document ranking
tasks. More specifically, the passage ranking dataset contains 8.8 million passage-length extracted
from the document web pages. For each training in the passage ranking collection, there are
on average 1.06 judged relevant passages. In order to train effective retrieval models, which
are expected to distinguish the relevant passages from the non-relevant passages, the training
instances are required to consist of positive (relevant) as well as negative (non-relevant) passages.
Therefore, a triplet training dataset was curated for neural retrieval model training. In particular,
for each query in the training dataset, a negative passage is randomly selected from the BM25
retrieved passages that have not been judged by human annotators.

Moreover, as discussed in Chapter 1, we focus on effective retrieval based on various neural
pseudo-relevance feedback techniques. However, pseudo-relevance feedback approaches are
known to be not effective on test collections with few judged passages (Amati et al., 2004), on
average 1.07 judged relevant passages for each development query. Therefore, in this work, we
do not conduct the evaluation using the MSMARCO Dev set.

There are 6838 test queries but their relevance judgements are not publicly available. An
official MSMARCO passage ranking leaderboard3 provides the ranked submissions based on
their evaluation performance on the test queries. The official evaluation metric used is MRR@10.

MSMARCO Document Ranking Dataset: Besides the MSMARCO passage ranking dataset,
the task organisers provide a counterpart longer document ranking dataset. In particular, the
document ranking dataset comprises 3.2M web pages with various field information, namely
URL, title and body text. There are several connections between the document ranking task to
the passage ranking task. Firstly, the documents in the document ranking task contain the source
pages of the passages from the passage ranking datasets. Secondly, the relevance judgements

3 microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard/
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of the document dataset are transferred from the passage judgements, which means a relevant
passage occurring in the document indicates the document is also relevant to a query. Similar to
the MSMARCO passage leaderboard, there is also a leaderboard4 for document ranking with an
official metric of MRR@100.

TREC Deep Learning Track 2019 & 2020: The TREC DL tracks have been organised by
NIST and allow researchers from different institutions to evaluate their methodologies based
on the released test topics. As discussed earlier, MSMARCO development queries have sparse
judgements, hence the TREC track organisers release more densely judged test topics for both
passage and document ranking tasks. In particular, TREC DL 2019 & 2020 topics are released
based on the former introduced official MSMARCO (also referred to as MSMARCO v1) training
data while TREC 2021 & 2022 topics are based on a larger-sized MSMARCO (often referred to
as MSMARCO v2) dataset, where nearly 16 times increase in the size of the passage collection
and nearly four times increase in the document collection size (Craswell et al., 2023, 2021b).
The neural retrieval models are mostly trained using MSMARCO v1 dataset, therefore, in this
thesis, we only evaluate using TREC 2019 (Craswell et al., 2020) and TREC 2020 (Craswell
et al., 2021a) queries. More specifically, TREC 2019 Deep Learning track topics (43 topics with
an average of 215.35 relevance judgements per query) and the TREC 2020 Deep Learning track
topics (54 topics with an average of 210.85 relevance judgements per query) from TREC DL
passage ranking task. In addition, for the document ranking task, there are 43 test queries from
the TREC Deep Learning Track 2019 and 45 test queries from the TREC Deep Learning Track
2020 with an average of 153.4 and 39.26 relevant documents per query, respectively. The official
evaluation metric for both TREC DL passage and document ranking is nDCG@10.

TREC Robust04 Dataset: The Robust04 collection contains 528K newswire articles from
TREC disks 4 & 5 and it is proposed to address the adhoc retrieval task (Voorhees, 2004).
The older Robust04 collection has made significant contributions to the retrieval community
as it provides a large number of test topics with various types, namely 250 topics with ‘title’,
‘description’ and ‘narrative’ fields and highly complete pools with lots of relevant documents (cf.
Table 2.3). In this thesis, we also conduct the evaluation using 250 title-only and description-only
query sets from the TREC Robust04 document ranking task.

TREC GOV2 Dataset: The GOV2 corpus was used by the TREC Terabyte Tracks at TREC
2004–2006 and which addresses the web retrieval task. The GOV2 dataset comprises 52.3M web
pages and was curated by the University of Glasgow. In this thesis, we also evaluate using 149
description-only queries from GOV2 (Clarke et al., 2004).

The WT10G Dataset: The WT10G (Web Track 10Gigabytes) dataset is also commonly used
by researchers in the IR field, which is distributed by CSIRO in Australia. The WT10G collection
is a subset of a more enormous collection, VLC2, and is used to perform adhoc retrieval. In this
thesis, we also perform the evaluation using the 100 topics from the WT10G dataset.

4 microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
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Table 2.4: Summary statistics for the data used in this thesis.

Dataset Tasks |C| |Q| L(Q). Rel/Q

Training Data

MSMARCO Passage Web Retrieval 8,841,823 - - -
MSMARCO Document Web Retrieval 3,213,835 - - -

Robust04 corpus (TREC disks 4&5) News Retrieval 528,155 - - -
GOV2 Web Retrieval 25,205,179 - - -
WT10G Web Retrieval 1,692,096 - - -

Evaluation Data

MSMARCO Passage Training Web Retrieval - 502,939 6.06 1.06
MSMARCO Passage Development Web Retrieval - 6,980 5.92 1.07

MMSARCO Passage Test Web Retrieval 6,837 5.85 -
TREC DL 2019 Passage Web Retrieval - 43 5.40 215.34
TREC DL 2020 Passage Web Retrieval - 54 6.04 210.85

TREC DL 2019 Document Web Retrieval - 43 5.51 153.42
TREC DL 2020 Document Web Retrieval - 45 6.31 39.26

Robust04 (title) News Retrieval - 250 2.76 69.92
Robust04 (desc.) News Retrieval - 250 15.61 69.92

GOV2 5 Web Retrieval - 149 11.62 180.65
WT10G (title)6 Web Retrieval - 100 4.23 59.80
WT10G (desc.)7 Web Retrieval - 100 11.62 59.80

DBPedia Entity Retrieval - 400 5.39 38.2
NFCorpus Bio-Medical Information Retrieval - 50 5.96 38.2

TREC-COVID Bio-Medical Information Retrieval - 50 10.60 493.2
Touché-2020 Argument Retrieval - 49 5.39 19.0

BEIR Benchmark: In 2021, Thakur et al. (2021) constructed the BEIR benchmark which
contains diverse retrieval tasks from different domains. Most of the dense retrieval models
introduced in Section 2.3 are trained using the MSMARCO (v1) corpora. However, these dense
retrieval models might be ineffective when evaluating using topics from other domains. There-
fore, the BEIR datasets are popularly used to evaluate the out-of-domain retrieval performance,
which we further detail in Section 2.5.3. As pseudo-relevance feedback techniques are known
to be not effective on test collections with few judged documents (Amati et al., 2004), we only
evaluate the BEIR datasets that have a good number of judgements for each query. Hence,
in this work, we evaluate on four BEIR (Thakur et al., 2021) datasets, namely DBPedia (Ha-
sibi et al., 2017), NFCorpus (Boteva et al., 2016), TREC-COVID (Voorhees et al., 2021) and
Touché-2020 (Bondarenko et al., 2020).

2.5.2 Evaluation Metrics

In this section, we discuss the fundamental concepts of both the effectiveness and efficiency
evaluation metrics, their importance, and the used metrics in this work.

Effectiveness: Given a query q, a retrieval system returns a ranked list Rq by searching over
the index. In practice, instead of returning all the retrieved results, the top k returned documents
Rk(q) are selected to return to the user. In the test query set, among the top k returned documents
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in response for a given q, the documents that can satisfy the user’s information need are judged
as relevant and denoted as Rel(q). In particular, the relevant documents being retrieved can be
denoted as the intersection of the two sets Rel(q) and Rk(q).

The two most basic effectiveness-associated metrics are Precision and Recall (Cleverdon
et al., 1966). In particular, precision measures the fraction of the retrieved documents that are
relevant to the input query with k cutoff, which can be calculated as follows:

P(q,k) =
|Rel(q)∩Rk(q)|
|Rk(q)|

(2.38)

Moreover, Recall is an evaluation metric that measures the proportion of relevant documents
retrieved among the total number of relevant documents in the collection. Recall is important for
IR systems that prioritise retrieving a larger portion of relevant documents, even at the cost of
retrieving some irrelevant documents (cf. decreased precision). Recall at cutoff k is calculated as:

R(q,k) =
|Rel(q)∩Rk(q)|
|Rel(q)|

(2.39)

However, both precision and recall metrics are set-based metrics and therefore they are insensitive
to the ranking swaps in the final ranking list (Robertson, 2008). Therefore, Average Prevision

(AP) metric (Harman, 1995), which takes the order into consideration, is popularly used to
address this limitation. Average Precision is defined as:

AP(q,k) =
∑

k
i=1 P(q, i)Reli
|Rel(q)|

, (2.40)

where P(q, i) denotes the precision calculated using Equation (2.38) and [Reli] is the relevance
judgement, e.g. 0 for non-relevant and 1 for relevant, of the i-th document is relevant to the input
query.

Instead of only assessing the retrieval effectiveness for a single input query, in the more
realistic scenario, the assessment of the retrieval system’s effectiveness must be conducted on
a collection of query sets Q with various query types. Based on average precision, one of the
most commonly used metrics is Mean Average Precision (MAP) (Craswell and Hawking, 2004,
Craswell et al., 2003), which is simply calculated by averaging over the average precision value
for each query q in the query set Q.

MAP(Q,k) =
1
|Q|

|Q|

∑
j=1

AP(q j,k) (2.41)

The MAP metric summarises the retrieval performance of the rankings from multiple queries.
One assumption of average precision (AP and MAP) is that the relevance of a document to an
input query is binary. However, in large-scale web search scenarios, the level of the relevance can
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vary for different documents. Indeed, in some cases, relevant information may only exist in a
paragraph of a long document. Therefore, the relevance of a document should be assessed using a
graded scale, from non-relevant to highly relevant. Moreover, the position of the graded relevance
also matters, as users expect to read the highly relevant documents in the top position while tend
to neglect the lower ranked documents. Accordingly, Järvelin and Kekäläinen (2002) proposed
discounted cumulative gain (DCG) metric, which includes a logarithmic discount factor to assign
higher weights to the relevance of documents that are ranked later in the list and lower weights
to documents that are ranked higher. DCG encodes two assumptions (Järvelin and Kekäläinen,
2002):

• Highly relevant documents are more useful than marginally relevant documents

• The lower the ranked position of a relevant document, the less useful it is for the user, since
it is less likely to be examined.

The DCG for a query q and given rank cutoff k can be calculated as follows:

DCG(q,k) =
k

∑
i=1

2Reli−1
log2(i+1)

, (2.42)

where Reli denotes the graded-relevance of the i-th document in the ranking list. The logarithmic
function log2 is the discount factor to reduce the contribution of the lower ranked documents.

An issue arises with DCG when we compare the performance for different queries as the
relevance and the length of the result list depend on the specific queries entered by users. The
normalised version of DCG (nDCG) is often used to address this issue, where a normalised factor
enables the comparison of the effectiveness of different systems across different queries (Järvelin
and Kekäläinen, 2002).

nDCG(Q,k) =
1
|Q|

|Q|

∑
j=1

DCG(q j,k)
IDCG(q j,k)

, (2.43)

where IDCG(q,k) is an ideally perfect ranking of a query q and is calculated as follows,

IDCG(q,k) =
|RELk|

∑
i=1

2Reli−1
log2(i+1)

, (2.44)

where RELk represents the list of relevant documents (ordered by their relevance) in the corpus
up to the rank cutoff k.

Although DCG incorporates a discount factor, Craswell et al. (2008) noted that it does not
address the ‘click position bias’, where users are more likely to click on higher-ranked documents
than those lower-ranked ones. Furthermore, DCG’s potential is constrained in situations where
there is only a single relevant document for a query, such as when one searches for ‘homepage
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of the University of Glasgow’. The Reciprocal Rank (RR) metric, as introduced by Collins-
Thompson et al. (2014), is often employed for such cases. RR is defined as the reciprocal of the
rank of the first relevant document retrieved. In practice, for a query set Q, Mean Reciprocal

Rank (MRR) is often used by averaging the reciprocal ranks over the queries in a set Q. The
MRR metric can be calculated as follows:

MRR =
1
|Q|

|Q|

∑
j=1

1
rankq j

, (2.45)

where rankq j denotes the rank of the first relevant document for the j-th query q j in the test
query set Q. As discussed in Section 2.5.1, MRR@10 is the official evaluation metric used
in the MSMARCO passage and document leaderboard. In this work, we continue to report
models’ MRR@10 performance. However, MRR is suitable for test queries with binary relevance
scenarios and may not be well extended to measure the effectiveness for queries that have different
levels of relevance. Therefore, we are more focused on MAP and nDCG metrics when comparing
among baselines.

Efficiency: Different to the effectiveness metrics, the efficiency metrics quantify the speed
and resource usage of a retrieval system, such as the query throughput and query latency as well
as the indexing time and index storage requirements (Frachtenberg, 2009, Tonellotto et al., 2018).
From the angle of the users, query latency, which measures how long the users will have to wait
for a response, is a critical metric as it directly impacts the user’s search experience. If a retrieval
system takes too long to respond to the input queries, users will be impatient and resort to a faster
retrieval system (Arapakis et al., 2014). For a set of queries, a common way is to measure the
mean response time or the mean execution time (measured in milliseconds) that a retrieval system
completes the retrieval for all the queries.

On the other hand, the cost of indexing and its storage should be also taken into consideration.
Especially in the era of neural IR, in addition to the traditional sparse index, various index
structures have been proposed, for instance, an approximate nearest neighbour search index,
where each token or document in the collection is encoded and indexed in the dense index, e.g.
the FAISS (Johnson et al., 2019) index. Therefore, it is important that we measure the storage
requirements of the index structures.

2.5.3 Evaluation Benchmarks

As we detailed in Section 2.5.1, various dense retrieval models do not generalise well to user
queries from other domains. Two primary approaches have emerged for the evaluation of the
neural-based retrieval models: in-domain and out-of-domain evaluations. These methods are
distinguished by the distribution differences between the training data and the test data.

In particular, for in-domain evaluation, the test data are similar to the data used to train

42



the model. For instance, a ColBERT (Khattab and Zaharia, 2020) model is trained using the
MSMARCO (Nguyen et al., 2016) training dataset and then evaluated using the MSMARCO
development query set. This constitutes an example of in-domain evaluation. In-domain evalua-
tion can be used to assess how effectively the model has learned from the task-specific data. In
contrast, the evaluation conducted using queries and documents from a domain different from
the one the system was designed for or trained on is commonly referred to as out-of-domain (or
out-of-distribution and zero-shot) evaluation. For example, we might train a ColBERT dense
retrieval model on web-search task-related queries and then test its performance on news retrieval
task-related queries (Santhanam et al., 2022). Evaluating out-of-distribution performance for
neural retrieval models is important, as it measures the model’s generalisation capabilities from
the trained retrieval to other domains.

To summarise, in this section, we first introduce the effectiveness and efficiency metrics in
Section 2.5.2. It is worth noting both effectiveness and efficiency are important for an IR system,
as it ensures that users promptly receive highly relevant results while keeping operational costs
low. (Asadi and Lin, 2013, Manning, 2009, Tonellotto et al., 2013, 2018). Ideally, a good IR
system should be both effective and efficient: it should return highly relevant results with minimal
response time. In this thesis, we empirically evaluated the effectiveness of various retrieval
models using MAP, Recall, nDCG and MRR. More specifically, the MAP and Recall metrics
can reflect the success of the initial retrieval within the multi-stage retrieval pipeline, where
sufficient high-quality candidate documents should be provided to the reranker model. Unless
otherwise specified, we calculate MAP and Recall at rank 1000. In addition, we report MRR
and nDCG calculated at rank 10. In particular, MRR@10 is employed as the official metric to
compare the effectiveness of various submitted systems in the MSMARCO leaderboard (Nguyen
et al., 2016),8 while nDCG@10 is the official effectiveness metric used by TREC Deep Learning
Track (Craswell et al., 2021a, 2020, 2021b). Moreover, in Section 2.5.3, we clarified the concepts
of different evaluation benchmarks for IR. We note that, in the era of neural IR, both in-domain and
out-of-domain evaluations are crucial. In-domain evaluation helps fine-tune the retrieval system’s
performance on its intended data, while out-of-domain evaluation encourages the retrieval system
to be more robust across various domains. In this thesis, the proposed neural-based models are
mainly trained based on the publicly available MSMARCO datasets, which contain a collection
of datasets focuses on deep learning in search.9 The MSMARCO dataset is widely used to train
neural retrieval models, as it is the only available dataset with large numbers of training queries.
However, the development set of the official MSMARCO dataset is sparsely judged, with an
average 1.1 judgment rate. Accordingly, the TREC Deep Learning Track provides more densely
judged query sets. Therefore, for in-domain evaluation, we mainly evaluate using the TREC
query sets, namely the TREC 2019 and TREC 2020 queries. For out-of-domain evaluation,
Thakur et al. (2021) released 18 publicly available datasets for various tasks, in addition to the
8 microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
9 microsoft.github.io/msmarco/
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MSMARCO retrieval, out-of-domain text retrieval tasks known as BEIR. Therefore, we also
evaluate our proposed techniques in terms of their out-of-domain performance using four of the
BEIR datasets that have dense juedgements.

2.6 Conclusion

This chapter provides comprehensive background knowledge, as well as related works,
from traditional sparse retrieval to neural-based retrieval methods and up-to-date dense retrieval
techniques for adhoc information retrieval.

In particular, we first introduce the classical sparse retrieval paradigm and various prevalent
term weighting models together with how we construct the retrieval pipelines for experiments in
Section 2.1. Although efficient, sparse retrieval models can fail the retrieval due to the lexical or
semantic mismatch problem between the user query and collection. Therefore, in Section 2.2,
we introduced the more advanced contextualised pretrained language models, PLMs, e.g. BERT,
followed by their advanced implementations in IR, namely the multi-stage retrieval and the
document representation refinement. Moreover, we introduced the more recently proposed dense
retrieval paradigms in Section 2.3, which operate entirely based on dense representations of
the query and document. In particular, dense retrieval models can capture the contextualised
matching relationship between queries and documents, hence to an extent alleviating the semantic
mismatch issue. In addition, pseudo-relevance feedback mechanisms can lift the effectiveness
performance by overcoming the lexical mismatch problem. Therefore, we detailed various
PRF techniques, from the sparse PRF approaches to the neural PRF approaches in Section 2.4.
However, on one hand, we found that existing neural-PRF techniques are primarily based on the
BERT PLM. The potential of Sequence-to-Sequence PLMs, such as T5, for query reformulation
has not been sufficiently explored. On the other hand, we dscovered that the retrieval can still fail
when the user’s queries are underrepresented even within the dense retrieval paradigm.

In particular, this thesis focuses on implementing pseudo-relevance feedback techniques
to perform query reformulation for both sparse retrieval and dense retrieval paradigms. More
specifically, in Chapter 3, we study the effectiveness of a Sequence-to-Sequence query reformula-
tion method for sparse retrieval and the multi-stage retrieval pipelines. Next, in Chapter 4, we
introduce our proposed ColBERT-PRF model, which implements the pseudo-relevance feedback
mechanism entirely within the multiple-representation dense retrieval paradigm to refine the query
representation. In addition, Chapter 5 explores the effectiveness of external pseudo-relevance
feedback techniques for out-of-domain retrieval tasks. Next, in Chapter 6, we extend ColBERT-
PRF to Col⋆-PRF with various underlying pretrained language models. Finally, we propose a
deep language model-based feedback weighting model, called CWPRF in Chapter 7.
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Chapter 3

Generative Query Reformulation for
Effective Adhoc Search

In our thesis statement (cf. Section 1.1), we postulated that pseudo-relevance feedback
information can be used by a Sequence-to-Sequence neural model to generate more effective
query reformulations for sparse retrieval (cf. Section 2.1). In Chapter 1, we mentioned that
discrepancies between the way that users express their information needs and the content of
relevant documents can cause such documents not to be retrieved or highly ranked, thus causing
issues such as semantic or lexical mismatch. Several threads of research have tried to bridge the
pervasive query-document mismatch problem in information retrieval namely dense embedding-
based representations, document expansion and query expansion.

Indeed, for the first thread, as introduced in Section 2.2, recent advances in pretrained
neural network approaches have been shown to improve various text-processing tasks and to
have the ability to learn the semantic meaning of the input text. Indeed, various approaches
have demonstrated that the BERT-based deep neural ranking models, examples of which were
introduced in Section 2.2.2, are capable of capturing the semantic and syntactic relationship
between the texts, thus can mitigate the semantic mismatch between query and document.
However, apart from a thread of work in dense retrieval models introduced in Section 2.3, which
struggle to handle long documents and suffer from limited interpretability, many works have
employed BERT models as neural rerankers, in that they are applied to improve an initial ranking
obtained from an inverted index using models such as BM25. In addition, industry has started
performing BERT-based reranking at scale (Wang et al., 2021b), demonstrating the value and
applicability of the retrieve-then-rerank (cf. Section 2.2.2) paradigm. Therefore, in this chapter,
we work within the retrieve-then-rerank framework and investigate the capability of using the
Sequence-to-Sequence model for more effective query reformulations.

To overcome the lexical mismatch problem, approaches such as query expansion (cf. Sec-
tion 2.4.1) and document expansion (cf. Section 2.2.3) are still promising, in order to create a
candidate set of documents with a sufficiently high recall to enable a neural reranker to identify and
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up-rank relevant documents occurring in the candidate set. As introduced in Section 2.2.3, doc-
ument expansion augments each document with additional information, for instance, additional
terms selected from a corpus (Billerbeck and Zobel, 2005, Dai and Callan, 2020a) or predicted
queries generated by a natural language generation model from the original document. Indeed, as
argued in Section 2.2.3, the so-called doc2query approach expands each document by generating
multiple predicted queries using generative language models before indexing. This is effective but
comes with the significant upfront cost of applying a heavy model to every document at indexing.

On the other hand, as introduced in Section 2.4, query expansion typically describes ap-
proaches that modify the users’ query with the aim to improve the retrieval effectiveness, such
as the RM3 and Bo1 techniques introduced in Section 2.4.1. By adding additional terms selected
from the pseudo-relevant set of returned documents in response to the initial query or by expand-
ing the original query with lexical-level (Zukerman and Raskutti, 2002) or phrase-level (Riezler
et al., 2007) paraphrases, the distance between the (reformulated) query and the relevant doc-
ument(s) is reduced. Going beyond the traditional sparse PRF approaches (cf. Section 2.4.1),
neural-based PRF approaches (cf. Section 2.4.2), such as CEQE, identifies expansion terms from
the pseudo-relevant documents in the BERT embedding space. These approaches are compatible
with the neural rerankers that were introduced in Section 2.2.2, in that a refined ranking list
obtained using query expansion can improve the effectiveness of a BERT-based reranking model.
Furthermore, as introduced in Section 2.4.2, neural pseudo-relevance feedback (PRF) models
have been proposed, such as NPRF and BERT-QE. However, these models are limited in their
functionality, in that the additional relevance signal obtained from the pseudo-relevant set is only
used to re-rank the candidate set of documents, rather than creating a higher recall candidate
set by re-executing a reformulated query on the inverted index. Instead, in this chapter, we aim
to investigate the potential of generative neural models to produce a refined candidate set of
documents by generating a refined query reformulation for a sparse retrieval approach.

Indeed, motivated by the fact that the same information need can be formulated using different
natural language expressions, in this chapter, we focus on expanding the original query by gen-
erating paraphrases that share the same information need, to improve the retrieval effectiveness.
We cast the query reformulation task as a text generation task. This allows us to be able to test
whether the knowledge encapsulated by pretrained text generation models — such as T5 (cf.
Section 2.2.1) and a more advanced instruction fine-tuned T5 variant called FLAN-T5 (Wei et al.,
2021) — can be exploited for query reformulation to provide as training examples. We explore
two possible generative query reformulation frameworks, GenQR and GenPRF. The first produces
reformulations using only the user’s query text itself (GenQR). The second approach makes use
of pseudo-relevant documents as contextual information (GenPRF), to guide the reformulation
process. For T5, we explore techniques to fine-tune the model for each query reformulation
task. One challenge we found when fine-tuning the T5 model for query reformulation is that
there are no gold-standard labelled query reformulations. To circumvent the lack of ground-truth
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data, we investigate the use of weakly supervised query pairs to fine-tune the T5 model, instead
of human-annotated query pairs. In particular, we leverage three different filters that improve
the weakly supervised dataset to reduce the noise present in the query pairs and thus reduce the
training time of GenQR and GenPRF when injecting the task-specific knowledge into the T5
model. Meanwhile, for FLAN-T5, we explore prompting techniques in an attempt to leverage
the patterns observed in the pre-training process.

In summary, this chapter makes four contributions:

• We propose two generative query reformulation frameworks, namely GenQR and GenPRF;

• We instantiate our generative frameworks using two generative models, a pretrained lan-
guage model, T5, and an instruction fine-tuned language model, FLAN-T5, to reformulate
input queries;

• We make use of pseudo-relevance feedback information as the contextual information for
the input of the generative model;

• We demonstrate the effectiveness of the generated query reformulations in comparison to
several existing baselines within the prevalent retrieve-then-rerank pipeline;

• We investigate the effectiveness of the neural reranker, the monoT5 reranker (Nogueira
et al., 2020), when combined with GenQR and GenPRF results.

The remainder of this chapter is organised as follows: Section 3.1 presents our proposed
generative query reformulation frameworks. Research questions and the used experimental setup
are detailed in Sections 3.2 & 3.3, respectively. Next, we report and discuss our experimental
results in Section 3.4. Finally, we summarise our findings and provide future work directions in
Section 3.5.

3.1 Generative Query Reformulation

In Section 2.4, we introduced two possible query reformulation processes. More specially,
depending on the input with or without pseudo-relevant feedback information, there are two
scenarios: PQR, for which input is only the original query, and PPRF , where input is the original
query and the pseudo-relevance feedback set of documents. In both scenarios, PQR and PPRF

can be seen as methods that add candidate terms or phrases to rewrite or expand the original
query (with the optional weighting of such terms). Instead, we rely on a T5 text generation model
for P, which can refine the initial query q0 by generating paraphrases of the original query. In
addition, to ensure that the paraphrases of the original query are on-topic in relation to the initial
query, we also study an approach that can also encapsulate pseudo-relevance information as
context during the reformulation process. Thus, we study two generative query reformulation
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frameworks: one that takes the form of a general query reformulation process (cf. GenQR),
along with a pseudo-relevance feedback-based query reformulation (cf. GenPRF). For each
query reformulation paradigm, we introduce two methods, namely fine-tuning and prompting, to
leverage the pretrained knowledge of large language models for query reformulation.

In the following, we first introduce the GenQR framework in Section 3.1.1. Then we describe
our GenPRF framework in Section 3.1.2. Finally, the weak supervision data process used to
fine-tune the proposed GenQR and GenPRF when performing the knowledge injection method,
and how it is filtered for quality is introduced in Section 3.1.3.

3.1.1 GenQR

Fine-tuning: Formally, our generative query reformulation process via injecting the task-
specific knowledge into a pretrained text generation model (a pretrained T5 model) is denoted
as PT 5QR. In particular, the PT 5QR takes the initial query q0 (in the form of a sequence of text
and optionally other information) and produces refined queries. When conditioned only on the
input query q0 = q0

1, ...q
0
|q0|, a query paraphrase can be generated by applying a fine-tuned text

generation function, T 5(), as follows:

T5(“refine”,q0
1, ...q

0
|q0|, “</s>”),

where in the input sequence, the input query is prepended with a special prompt token “refine”

indicating to T5 that it should reformulate the input and it is suffixed by the special end-of-
sequence token “</s>”.

More specifically, as introduced in Section 2.2.1, T5 is a large pretrained Text-To-Text-
Transfer-Transformer model. Within such a Sequence-to-Sequence framework, all the tasks
can be cast in a Text-to-Text format. After pre-training, the pretrained knowledge is stored as
the parameters of a T5 model, denoted as T 5(θ̄). The T5 model consists of separate stacks of
encoding and decoding layers: each encoding layer contains a self-attention layer and a feed-
forward layer; while each decoding layer comprises a self-attention layer, an encoder-decoder
attention layer and a feed-forward layer. The encoder takes a source sequence X = (x1,x2, ...,xn)

with a length of n terms and the model is trained to produce the corresponding target sequence
Y = (y1,y2, ...,ym) with a length of m terms. The ultimate goal when training a T5 model is,
given a set of training pairs M= {⟨X ,Y ⟩}, for each pair ⟨X ,Y ⟩ to maximise the posterior for a
target output Y given an input sequence X . The T5 decoder produces one token at each step, thus
at each step during training, the maximum-likelihood objective function is:

maxPT 5(Y | X) = max
M

∏
t=1

PT 5(yt | y1:t−1,X , θ̄), (3.1)

where y1:t−1 = (y1, . . . ,yt−1) are the tokens generated in the previous steps. At each step t, T5
maximises the conditional probability in Equation (3.1) by minimising the negative log probability
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Figure 3.1: The proposed T5QR model for fine-tuning a pretrained model for the adhoc query
reformulation task.

as the prediction loss, also known as the Cross-Entropy (CE) loss:

LT 5 (yt) =−
C

∑
i=1

τi · log(PT 5(ci | y1:t−1,X , θ̄)), (3.2)

where, c1,c2, ...,cC are the search space, i.e. the classes for the decoder – indeed, for a text genera-
tion task, C is equal to the length of the output vocabulary of the model; τi is an indicator variable
equal to 1 when yt = ci and 0 otherwise; and PT 5(ci|·) is the predicted probability produced by
the soft-max layer of the decoder. The loss in Equation (3.2) is backpropagated through the
network to tune the model’s parameters, such that the model’s output is closer to the target.

T5 generates text auto-regressively, that is, the probability of a generated sequence is calcu-
lated as the product of the probability of each token in the sequence. By applying a fine-tuned
T5QR model, T 5QR(θ̂), the joint likelihood of the query reformulation is:

P
(

qr
1,q

r
2, ...,q

r
|qr|

)
=
|qr|

∏
t=1

PT 5QR(qr
t |qr

1:t−1,q
0, θ̂), (3.3)

Hence, the final output of PT 5QR(q0) is obtained by combining the output sequences of N

applications of the T5 model, and weighting the terms from each sequence by the joint likelihood
of the sequence, as follows:

PT 5QR(q0) = wqr1 ·
[
qr1

1 , ...qr1
|qr1|

]
+ ...+wqrN ·

[
qrN

1 , ...qrN
|qrN |

]
, (3.4)

where wqr denotes the joint likelihood of reformulation (or paraphrase of the input query) qr –
i.e. wqr = P

(
qr

1,q
r
2, ...,q

r
|qr|

)
– and N is the number of predicted output sequences used to form

a query reformulation in response to the original query q0. By generating and combining N para-
phrases of the original query generated by T5, important terms are more likely to receive higher
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Figure 3.2: The proposed FlanQR model for the adhoc query reformulation task.

weights – indeed, a similar repeated application of T5 is used by docT5query (Nogueira et al.,
2019a). The fine-tuning process for T5PRF is similar to T5QR, the only difference is the input
template. The final reformulated query for T5PRF is obtained by combining the weighted com-
binations of N invocations of Equation (3.6), in a similar manner as for T5QR in Equation (3.4).

Figure 3.1 illustrates the overall framework of the GenQR process. We first fine-tune a
pretrained T5 model using our proposed QPP-based regularised loss. The obtained reformulated
query concatenates to the original query as a new query to performance retrieval task. Each
pair of training queries consists of a source query and a target query, where the source query is
prepended with the word “paraphrase” and suffixed by the end-of-sequence token “⟨/s⟩”.

Prompting: Instead of injecting task-specific knowledge via fine-tuning a language model,
FLAN-T5 employs an instruction-tuning approach to improve the ability of a language model
for various tasks. However, the capability of FLAN-T5 to perform query reformulation tasks is
still unclear. Thus, besides fine-tuning a T5 model, we also investigate employing the FLAN-T5
model for reformulating the initial user query and we denote this query reformulation process as
PFlanQR. More specifically, we design a query reformulation task aware prompt and combine
it with the original query q0 as the input for PFlanQR. Our PFlanQR model does not require any
further training and only depends on the original query as well as the prompt. The input template
for PFlanQR is as follows:

FlanQR(< Prompt>,q0
1, ...q

0
|q0|). (3.5)

Figure 3.2 illustrates the framework of the FlanQR process. However, while the user’s input
queries may be short and may not provide sufficient evidence to interpret the meaning of the input
query. We hypothesise that the additional pseudo-relevant context information can aid the query
reformulation process. In the next section, we show how T5QR and FlanQR can be formulated
as pseudo-relevance feedback mechanisms.

3.1.2 GenPRF

To reinforce the capability of the query reformulation model to interpret the meaning of the
input query, an additional context that further explains the query statement can be desirable.
Motivated by the utility of the top returned documents in pseudo-relevance query expansion
models (such as Bo1 and RM3 that were introduced in Section 2.4.1), we leverage the top returned
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documents for the original query and use them as the pseudo-relevance contextual information
for the query. This allows the model to better interpret the user’s search intent, thus avoiding the
semantic mismatch problem.

Contextual Fine-tuning: The query together with its contextual information is taken as the
input to fine-tune a pretrained T5 model:

T5PRF(“refine”,q0
1, ...q

0
|q0|, “context:”,context(R), “</s>”), (3.6)

where (similar to “refine”) “context:” is a prompt token denoting the start of the context passage(s);
context(R) identifies important passage(s) of text from the pseudo-relevance feedback document
set R. Thereafter, we instantiate this approach under the GenPRF framework as T5PRF.

Contextual Prompting: Additionally to T5PRF, we also instantiate the GenPRF as FlanPRF,
where we direct prompt the FLAN-T5 model using a task-aware prompt, the initial query q0 as
well as the top-ranked pseudo-relevance feedback information context(R) as input. Note that
similar to PFlanQR, no fine-tuning is needed for PFlanPRF . The input template for PFlanPRF . can
be expressed as follows,

FlanPRF(< Prompt>,q0
1, ...q

0
|q0|,context(R)). (3.7)

Types of Contextual Information Rather than use whole documents, we use passages as
pseudo-relevance context information. Indeed, two considerations prevent entire feedback docu-
ments from being used as context information. Indeed, the compute and memory requirements
of the transformer architecture rise exponentially as sequence length increases, so lengthy doc-
uments can easily exceed available memory. Moreover, long documents may not be wholly
concerned with the topic of the query, potentially misleading our PRF models in understanding
the meaning of the input query. The whole process can be described as follows: Firstly, for
a given initial query q0, we obtain the first K documents returned by the retrieval model, i.e.
RK(q0); Secondly, a sliding window with size w is used to break each document into passages
with an overlap of w/2 words between neighbouring passages – we denote the text passages
obtained from document d as passages(d); Thirdly, a ranking model is employed to assign a
score for each passage, measuring the relevance of the content of the passage to the query; finally,
we apply one of three selection mechanisms to obtain the context information for the T5PRF
model, namely the FirstP, TopP and MaxP selection approaches.

The intuition behind FirstP is that the leading paragraph in a long document often contains
the main gist of the document. Hence, we pick the M highest scoring among each of the first
passages of all documents in R, as follows:

contextFirstP(R,q0) =
M

argmaxs
p∈passages(d)[0],∀d∈R

s(p,q0), (3.8)

where passages(d)[0] denotes the first passage obtained from document d, and s(p,q0) denotes
the relevance score given by a ranking model between a passage p and the original query.
argmaxsM() is an extension of argmax, which returns the top M scoring items.

51



Next, rather than obtaining the first passages, we look to identify the most relevant passages
from the feedback set R, inspired by the MaxPassage ranking approach (cf. Section 2.1.2). In
particular, we formulate two selection mechanisms, namely TopP and MaxP, which slightly differ
in how they obtain the highest M scoring passages from R. TopP takes the M highest scoring
passages across all of the feedback set, while MaxP selects the highest scoring passages from
each document and then selects the highest M among these:

contextTopP(R,q0) =
M

argmaxs
p∈passages(d),d∈R

s(p,q0) (3.9)

contextMaxP(R,q0) =
M

argmaxs
d∈R

argmax
p∈passages(d)

s(p,q0). (3.10)

3.1.3 Weakly Supervised Query Pairs and Filters

In order to fine-tune T5 for the T5QR and T5PRF models, we need a large number of training
pairs that contain a labelling signal. However, for the adhoc query reformulation task, there is no
readily-available large-scale labelled dataset of query reformulations. Hence, to circumvent this
shortage, we leverage existing test collections to generate the required weak supervision signal
for T5.

In particular, to allow T5 to learn how to generate a paraphrase in response to an input query,
the training pairs should convey the same information need. In other words, they should be
semantically similar to each other. Following the work of Zerveas et al. (2019), we first identify
pairs of queries that share at least one relevant document from a test collection. This forms our
initial pool. Our main underlying assumption is that if a document is labelled as relevant for
multiple queries, such queries are assumed to convey the same information need (Wang et al.,
2020b, Zerveas et al., 2019). However, a clear risk when directly using the initial training pool is
that noise can arise – for instance, the content of a document might address multiple different
topics, or the queries pertain to different information needs. Hence, to reduce this noise, we
introduce three filters that can be applied individually – or in combination, – in order to further
improve the quality of the initial training pool, as well as reduce training time.

More specifically, we first identify all pairs of queries that are associated to the same relevant
document. Then we extract the pairs of queries from these tuples as the initial pool M. Within
each query pair ⟨qx,qy⟩ in M, each query consists of a sequence of words, i.e. q = (q1,q2, · · ·q|q|).
To refine M, we apply filters to reduce the number of query pairs, or refine those query pairs to
provide more useful reformulations for fine-tuning T5, i.e. M′ =W(M). We now introduce our
three proposed filters.
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3.1.3.1 Overlap Filter

This filter assumes that only query pairs for which there is a marked overlap in the retrieved
documents for both queries are suitable training examples. A similar approach was previously
described by Cronen-Townsend et al. (2004) for identifying a query drift in query expansion.
Similarly, Mass et al. (2020) employed this method to identify a potential topical drift when
generating paraphrases of FAQ questions. In particular, we use an overlap-based filter – denoted
as WO – for selecting high-quality query pairs from the initial pool M. For a pair of queries
⟨qx,qy⟩ ∈M, we issue qx and qy against the corpus index, respectively, and check the number of
shared documents in the returned top-K result lists. The overlap of the result lists is defined as
the cardinality of the intersection of the top K documents of the two result lists for qx and qy:

O(⟨qx,qy⟩) = |RK(qx)∩RK(qy)|. (3.11)

Hence, the overlap weak supervision filter is defined as:

WO(M) = {⟨qx,qy⟩ ∈M∧O(⟨qx,qy⟩)≥ δO}, (3.12)

where δO defines a threshold on the minimum overlap – for higher values of δO, there is less
chance of topical drift between queries.

3.1.3.2 Effectiveness Filter

The aim of fine-tuning T5 for the query reformulation task is to improve the retrieval effective-
ness in response to an input query. Hence, when selecting training pairs, the retrieval performance
should be taken into consideration, such that the target query qy in the training dataset has a better
quality than the source query qx (in other words, the target query leads to a better retrieval perfor-
mance than the source query). Therefore, we introduce an Effectiveness Filter, denoted as WE , to
improve the quality of the initial pool. Given a query pair ⟨qx,qy⟩, we measure their relative effec-
tiveness, with reference to relevance assessments L. Let M(q) denote the effectiveness of ranking
R(q) for a particular effectiveness metric, such as reciprocal rank (RR) or discounted cumulative
gain (DCG). Then, WE filters the query pairs based on their relative effectiveness, as follows:

WE(M) = {⟨qx,qy⟩ ∈M∧ (M(qy)−M(qx)> δE}, (3.13)

where δE defines the required minimum positive change in M.

3.1.3.3 Stopwords Filter

Stopwords are function or grammatical words, e.g. “is”, or “and”, which have high term
frequencies but contribute very little to enhancing the retrieval performance (Roy et al., 2019).
However, many query pairs may consist of syntactical variations of the same query, such as
stopwords that have changed order or have been substituted with other stopwords. In order to
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help the pretrained T5 model focus on generating terms that can identify relevant documents1,
we propose a Stopwords Filter – denoted as WS – which refines the initial pool conditioned on
the presence of the common words or stopwords. Given a pair of queries ⟨qx,qy⟩, to aid the T5
model producing non-generic words given any natural language query, the stopwords of the target
query qy are removed. Thus, in this case, the filter generates query pairs according to:

WS(M) = {⟨qx,qy−Sstop⟩ ∈M}, (3.14)

where, Sstop denotes a set of stopwords.

3.2 Research Questions

This paper focuses on addressing four research questions on our generative query rewriting
models: Firstly, we investigate the effectiveness of the models under GenQR framework, namely
the T5QR and FlanQR models. In particular, since the choice of training data is key to our
fine-tuned T5-based reformulation models, we also investigate the best training settings among
the weak supervision filters proposed in Section 3.1.3:
RQ3.1: What is the impact of the weak supervision training techniques for GenQR models?

Secondly, since we propose GenPRF, which makes use of contextualised input, we present
our second research question:
RQ3.2: How does the additional pseudo-relevance contextual information affect the performance
of GenPRF compared to GenQR, specifically when using T5PRF vs. T5QR and FlanPRF vs.
FlanQR?

Thirdly, we compare the effectiveness of the studied generative reformulation models, includ-
ing both T5-based and FLAN-based, with standard and recent query reformulation baselines by
addressing the following research question:
RQ3.3: How do the studied generative reformulation models perform compared to the baseline
query reformulation models?

Next, we investigate the effectiveness of the generative reformulation models within an
advanced neural reranking pipeline. Hence, we propose the following fourth research question:
RQ3.4: Do queries reformulated using generative reformulation models result in further improve-
ments when combined with a neural reranker?

Finally, we aim to determine the effect of the hyperparameters in our T5-based reformulation
models.
RQ3.5: What is the impact of the number of top M passages in T5PRF, the number of paraphrases
N to form the query reformulations as well as the relative weighting of reformulations obtained
from RM3 and T5-based reformulation models?
1 Indeed, in our experimental setup, stopwords are removed at retrieval time, so do not contribute to effectiveness.
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Table 3.1: Summary of query pair training pools.

Method Description Pool Size AvgLen(qx) AvgLen(qy)

Initial pool Relevance(qx) = Relevance(qy) 188,292 6.44 6.44
WO δO = 5 40,016 6.08 6.08
WE δE = 0 64,009 6.52 6.63
WS ⟨qx,qy−Sstop⟩ 188,292 6.44 3.46

3.3 Experimental Setup

In this section, we present the datasets used in our experiments in Section 3.3.1. Then, we
describe the implementation details for GenQR and GenPRF models in Section 3.3.2 and present
the configuration of the retrieval pipeline in Section 3.3.3. Finally, Section 3.3.4 provides details
about the used baselines.

3.3.1 Datasets

As discussed in Section 3.1.3, one challenge when fine-tuning the T5 model for query refor-
mulation is that there are no gold-standard labelled pairs of queries that indicate improved query
formulations. To circumvent the lack of ground-truth data, we leverage the filters proposed in
Section 3.1.3 to generate the required weak supervised query pairs to fine-tune the T5 model,
instead of using human annotated query pairs. In our work, the training dataset is constructed
based on the MSMARCO document ranking dataset as introduced in Section 2.5.1.

We follow the assumption introduced by Zerveas et al. (2019) that if a document is labelled
as relevant for multiple queries, such queries are assumed to convey the same information need.
Thus, we firstly identify 188,292 pairs of training queries that share the same labelled relevant
document(s), then we further apply the filters introduced in Section 3.1.3 to reduce the noisy
pairs, and increase the likelihood that they represent near-identical information needs.

For the Stopwords filter, we use a stopwords list of 733 words obtained from the Terrier IR
platform. For the overlap filter, the top-K parameter is set to 10 as suggested by Mass et al. (2020)
and the threshold value is configured as δO = 5. For the effectiveness filter WE , we remove
training pairs from the initial pool based on the difference in the discounted cumulative gain
(DCG), using a minimum difference thresholds of δE = 0. Statistics of the resulting pools after
applying each filter are shown in Table 3.1. We do not select any more aggressive filter settings
(cf. δO > 3 or δE > 0) as this results in pools smaller than 20-30k query pairs, which we found
during our initial experiments to result in lowly performing query reformulation models.

We evaluate the retrieval effectiveness of our proposed T5QR framework on four standard test
collections, namely: the TREC 2019 Deep Learning track (Craswell et al., 2021a) (i) document
ranking and (ii) passage ranking tasks (both containing 43 queries), (iii) 250 queries from the
TREC Robust 2004 track (Voorhees, 2004), and (iv) 149 description-only queries from the TREC
Terabyte Track using GOV2 (Clarke et al., 2004). For the Robust 2004 test collection, we ex-
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periment using both the title-only and the description-only queries, to allow further comparisons
with existing approaches from the literature.

3.3.2 Implementing GenQR and GenPRF

Fine-tuning the T5 Models: When implementing T5QR and T5PRF, we use the t5-base

model with 220 million parameters (Raffel et al., 2020) obtained via the HuggingFace transform-
ers library2. Following Raffel et al. (2020), fine-tuning is performed using a learning rate of
3×10−4 and a dropout rate of 10%. We train for 4 epochs, using a batch size of 6.

For the configuration of the T5PRF model using contextualised inputs, the size of the pseudo-
relevance feedback set, K, is set to 10, following (Li et al., 2018, Zheng et al., 2020). A sliding
window with a size of 128 and a stride of 64 tokens is used to split each feedback document
into passages, following (Su et al., 2019). We select M = {1,2,3} passages for use by the FirstP,
TopP or MaxP selection approaches (cf. Equations (3.8) – (3.10)) as context input for our T5PRF
model - this ensures that the maximum input length of the T5 model is not exceeded.

To generate the prediction sequence, the greedy decoding method is used. We use beam
search with a beam size of 100 to form a large enough set of candidate paraphrases for each input
query. Then we rank all the candidate paraphrases according to their likelihood, and select the
N most likely paraphrases to form the reformulated query. In our experiments, we use N = 5,
but return to the selection of N in Section 3.4.5.

Prompting the FLAN-T5 Models: When implementing FlanQR and FlanPRF models, we
employ the flan-t5-xxl model with 3B parameters (Wei et al., 2021).3 The configuration for extract-
ing the pseudo-relevance feedback context information for FlanPRF is the same as the T5PRF. For
an input query, we design task-aware prompts for FlanQR as follows, FlanQR(‘Improve the

search effectiveness by suggesting expansion terms for the query:

input query’). We also provide various examined prompts in Appendix A. The prompts for Flan-
PRF conditioned on the input query as well as its contextual information, context(R) is as
follows, FlanPRF(‘Improve the search effectivene-

-ss by suggesting expansion terms for the query: input query, based on

the given context information: context(R)’). The selected prompts were identified
among 20 candidate prompts based on their validation performance on the MSMARCO TREC
2019 passage ranking query set.

3.3.3 Retrieval Pipeline Setting

For ranking, we use a Porter stemmed index with stopwords removed. We apply a two-stage
ranking pipeline, where the documents are first ranked by a tuned BM25 retrieval model using
2 https://github.com/huggingface/transformers 3 The models’ sizes are selected based on our available computa-
tional capacity. Since T5QR and T5PRF require training, we were unable to use as large of a model as we were for
the inference-only FlanQR and FlanPRF.
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grid search. In the second stage, reranking is performed by the monoT5 model (cf. Section 2.2.2).
To deploy the monoT5 neural reranker, a sliding window is used to break up long documents

into passages of 128 tokens with a stride of 64 between passages. We use MaxPassage (cf.
Section 2.1.2) to obtain the final score of a document.

For the T5QR and T5PRF generated queries, we combine the generated query reformulation
with the original query to form a new query for input in the first-stage retrieval, i.e. q† = kRM3 ·
qr

RM3 + kT 5 ·qr, where kRM3 and kT 5 are parameters that control the importance of reformulations
query generated by RM3 or by the T5-based query reformulation model (T5QR or T5PRF). We
use kRM3 = 1 and kT 5 = 0.5 as a default setting, but investigate the impact of these two parameters
in addressing RQ3.5.

For the FlanQR and FlanPRF generated queries, we append the generated query reformula-
tions to the original query.4 In particular, the importance of the generated query reformulations
compared to the original query is controlled by a parameter β . We use β = 0.2 as the default
setting in this work. All the hyperparameters are selected based on the validation performance on
the TREC 2019 passage ranking query set.

3.3.4 Baselines

In order to evaluate the effectiveness of our proposed generative query reformulation models,
we compare them to six families of query reformulation baselines, namely:

• Initial query: The original query without any modification.

• Sparse Query Expansion: Three traditional query expansion models, introduced in
Section 2.4.1, are used as baselines, namely: (i) BM25+RM3, (ii) BM25+Bo1 and (iii)
BM25+KL. We use BM25+RM3 as our main PRF baseline, due to its suitability as a
baseline for neural methods (Lin, 2019).

• Neural Query Reformulation: (i) The Transformer model was employed by Zerveas
et al. (2019) for the query reformulation task. We implement the transformer model us-
ing the OpenNMT platform (Klein et al., 2017); (ii) Sequence-to-Sequence Model with
Attention. This model consists of an RNN-based encoder and decoder with an attention
mechanism. The model is also implemented using the OpenNMT platform; (iii) GPT2
is a pretrained transformer-based language model. We fine-tune the GPT2 model for the
query reformulation task as a baseline model.

• Neural Document Expansion: DocT5query is a document expansion model (cf. Sec-
tion 2.2.3), which uses a T5 model fine-tuned to predict related queries for a given document.

4 We tested versions for expansion terms both with and without RM3 terms for both T5 and FlanT5. T5 was more
effective on our validation data with interpolated RM3 terms, while FlanT5 was more effective without. Therefore,
we report these results.
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Table 3.2: RQ3.1 - Part 1: Comparison between weak supervision filters on TREC 2019
document and passage ranking query sets. Superscripts a/b denote significant improvements
(paired t-test with Holm-Bonferroni correction, p < 0.05) over the indicated baseline model.
The highest value in each column is boldfaced.

QR Models Training/epoch TREC 2019 Document TREC 2019 Passage
MAP MRR R@1k nDCG@10 MAP MRR R@1k nDCG@10

Initial query (a) - .341 .889 .701 .557 .311 .694 .752 .517
BM25+RM3 (b) - .397 .858 .760 .559 .342 .655 .796 .548

InitialPool 168 min .397a .849 .757 .565 .347a .663 .796a .554
WS 163 min .387a .833 .745 .579 .342 .654 .777 .532
WO 35 min .398a .860 .756a .581 .343 .644 .797a .543
WE 55 min .400a .856 .761a .581 .348a .657 .808a .547

W(O+S) 34 min .397a .875 .756a .580 .344 .634 .793 .542
W(E+S) 54 min .398a .914 .753a .600 .351a .645a .788 .535

FlanQR - .384a .790 .763a .537 .382a .707 .845a .556

These are then appended to the original document during indexing time. We obtain the
results of DocT5query for the MSMARCO document corpus from (Ma et al., 2022).

• CEQE Models: CEQE (cf. Section 2.4.2) is a BERT-embedding based query expansion
model. In particular, 70-100 expansion terms selected in the contextualised embedding
space are added to the original query to form a new query. We compare with three variants
of CEQE, namely CEQE-Max, CEQE-Centroid and CEQE-mul models. In our implemen-
tation, we apply CEQE query expansion models upon the documents retrieved by BM25
and apply the pipeline BM25 + RM3 + BM25 rather than the Dirichlet LM + RM3 +BM25
pipeline which is used by the original CEQE implementation (Naseri et al., 2021).

• Neural Query Expansion Models: (i) NPRF (cf. Section 2.4.2) is a neural pseudo-
relevance feedback model, which operates as a reranker, that it does not generate a refined
textual query that is re-applied to the inverted index, but instead uses the pseudo-relevance
feedback to re-ranked the initial candidate set of documents. The best variant – NPRFds-
DRMM – is included as a baseline; (ii) BERT-QE (cf. Section 2.4.2) is also a neural PRF
model that builds on NPRF, but use BERT (Large) to refine the PRF information. We
compare with the reported best variant, BERT-QE-LLL.

3.3.5 Evaluation Metrics

Following standard practice in the TREC Deep Learning track (Craswell et al., 2021a) that
introduced in Section 2.5.3, we measure the effectiveness of the reformulated queries through
their ranking performance in terms of Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR)5, as well as Recall and normalised discounted cumulative gain calculated to rank depth
5 Although there has recently been some discussion about the choice of the MAP and MRR metrics to report in the
IR community, no consensus has yet been reached. Thus, to compare with the existing works, we follow the widely
used metrics in our work.
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Table 3.3: RQ3.1- Part 2: Comparison between weak supervision filters on Robust04 and GOV2
query sets. Superscripts a/b denote significant improvements (paired t-test with Holm-Bonferroni
correction, p < 0.05) over the indicated baseline model. The highest value in each column is
boldfaced.

QR Models Training/epoch Robust04 (T) Robust04 (D) GOV2
MAP R@1k nDCG@10 MAP R@1k nDCG@10 MAP R@1k nDCG@10

Initial query (a) - .256 .705 .439 .233 .670 .411 .268 .643 .468
BM25+RM3 (b) - .284 .752 .437 .266 .709 .427 .291 .657 .452

InitialPool 168 min .286a .754 .443 .271ab .721ab .434b .293ab .662b .461
WS 163 min .290ab .760 .444 .279ab .736ab .439 .301ab .680ab .474
WO 35 min .285a .753 .442 .268ab .711ab .428 .294ab .663b .463
WE 55 min .286a 753 .442 .269ab .714ab .429 .292ab .658b .460

W(O+S) 34 min .286ab .744 . 442 .270ab .718ab .429 .302ab .675ab .472b

W(E+S) 54 min .287ab .753 .442 .278ab .734ab .439 .302ab .676ab .474b

FlanQR - .270ab .756a .461 .278a .760ab .471ab .303ab .680ab .510ab

10. We use the paired t-test (p < 0.05) for significance testing and apply the Holm-Bonferroni
multiple testing correction.

3.4 Results and Discussions

We now address our five research questions in turn: the impact of the weak supervision filters
on training data quality for GenQR models (Section 3.4.1); the usefulness of pseudo-relevance
feedback as contextualised input, as per our proposed GenPRF model (Section 3.4.2). Then, we
make comparisons with the baselines (Section 3.4.3) and consider the role of a neural reranker
(Section 3.4.4). Next, we investigate the hyperparameter of GenQR and GenPRF models in
Section 3.4.5. We also provide qualitative analysis of all the GenQR and GenPRF models in
Section 3.4.6. Finally, we position our proposed methods within the prior approaches and discuss
the difference between GenQR and GenPRF models in Section 3.4.7.

3.4.1 RQ3.1: Impact of the Training Data Quality

In order to better fine-tune the T5QR model, in Section 3.1.3, we proposed to generate
refined training pools using different weak supervision filters. Table 3.2 compares the average
training time needed per-epoch and the effectiveness of T5QR trained with three different weak
supervision filters, namely the Stopwords Filter, the Overlap Filter and the Effectiveness Filter
(top half), as well as using combinations of these filters (bottom half). In addition, we also report
the retrieval effectiveness for the FlanQR model in Table 3.2 & Table 3.3, which does not require
fine-tuning. We report results on all four test collections: TREC 2019 for document ranking and
passage ranking tasks (in Table 3.2), as well as GOV2 and Robust04 (in Table 3.3).

From Table 3.2 & Table 3.3, we observe that both T5QR trained with the initial pool and
the smaller pools result in significant improvements over the initial query on all datasets and
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Table 3.4: RQ3.2: Effect of the PRF contextualised input on TREC 2019 document and passage
ranking query sets. Superscripts a/b/c/d denote significant improvements (paired t-test with
Holm-Bonferroni correction, p < 0.05) over the indicated baseline model(s). The highest value
in each column is boldfaced.

QR Models TREC 2019 Document TREC 2019 Passage
MAP MRR R@1k nDCG@10 MAP MRR R@1k nDCG@10

Initial query (a) .341 .889 .701 .557 .311 .694 .752 .517
BM25+RM3 (b) .397 .858 .760 .579 .342 .655 .796 .548

T 5QR (d) .398a .914 .753 .600 .351 .645 .788 .535
T 5PRFFirstP .411a .868 .770 .596 - - - -
T 5PRFTopP .411a .868 .776a .602a .353a .676 .815a .554
T 5PRFMaxP .411a .868 .776a .602a - - - -

FlanQR (e) .384a .790 .763a .537 .382a .707 .845a .556
FlanPRFFirstP .373 .816 .841 .605 - - - -
FlanPRFTopP .373 .816 .841 .605 .404ab .809b .866ab .628ab

FlanPRFMaxP .361 .780 .844 .578 - - - -

Table 3.5: RQ3.2: Effect of the PRF contextualised input on Robust04 and GOV2 query sets.
Superscripts a/b/c/d denote significant improvements (paired t-test with Holm-Bonferroni cor-
rection, p < 0.05) over the indicated baseline model(s). The highest value in each column is
boldfaced.

QR Models Robust04 (T) Robust04 (D) GOV2
MAP R@1k nDCG@10 MAP R@1k nDCG@10 MAP R@1k nDCG@10

Initial query (a) .256 .705 .439 .233 .670 .411 .268 .643 .468
BM25+RM3 (b) .284 .752 .437 .266 .709 .427 .291 .656 .452

T 5QR (d) .288a .756a .443 .277ab .734ab .439ab .302ab .676ab .474b

T 5PRFFirstP .297ab .757a .463bd .282abd .740abd .441abd .302ab .676ab .475
T 5PRFTopP .296ab .759a .461bd .285abd .743abd .447abd .303ab .685ab .479b

T 5PRFMaxP .296ab .759a .461bd .285abd .743abd .447abd .303ab .685ab .479b

FlanQR (e) .270ab .756ab .461ab .278a .760ab .471ab .303ab .680ab .510ab

FlanPRFFirstP .260 .699 .434 .225 .656 .433b .258 .597 .490b

FlanPRFTopP .260 .699 .434 .224 .656 .406 .258 .597 .490b

FlanPRFMaxP .243 .683 .420 .225 .656 .433b .257 .597 .496b

significantly outperforms BM25+RM3 for a few settings and measures, particularly on Robust04
(D) and GOV2. In addition, we also note that applying the Overlap filter and the Effectiveness
filter only takes 33% and 20% of the training time needed for the initial pool, respectively. Among
the filters, the performances achieved are similar, and hence we conclude that there is no need
to use the initial pool as the training time is less with more aggressive filters. Moreover, we
observe that when combined with the stopwords filter, these combined filters demonstrate marked
performance enhancement over the single filters. Thus, to avoid spending time training the T5
model to generate useless stopwords that do not affect the BM25 retrieval process, we take
forward the higher recall combined filter, i.e. W(E+S), when addressing RQ3.2.

Furthermore, we also report the performance of FlanQR, which does not require fine-tuning.
We observe that FlanQR leads to significant improvements over the initial query, which indicates
the usefulness of the prompting-generated query reformulations.
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Table 3.6: RQ3.2: Comparison with the baseline query expansion approaches. Superscripts a...j
denote significant improvements over the indicated baseline model(s).

Models TREC 2019 Doc. Robust04 (T) Robust04 (D) GOV2

MAP nDCG@10 nDCG@20 MAP nDCG@20 MAP nDCG@20 MAP nDCG@20

BM25+Bo1 (a) .384 .567 .538 .287 .433 .271 .418 .295 .455
BM25+KL (b) .391 .570 .558 .290 .435 .271 .419 .291 .458
BM25+RM3 (c) .397 .579 .558 .284 .427 .266 .408 .291 ..452

Seq2seqattention (d) .255 .414 .403 .199 .343 .204 .343 .216 .377
Transformer (e) .238 .421 .423 .214 .366 .207 .347 .216 .377
GPT2-QR (f) .327 .518 .490 .237 .409 .237 .396 .265 .407

DocT5query (g) - .597 - - - - - - -

CEQE-Max (h) .419 .554 .541 .300 .425 .290 .433 .283 .455
CEQE-Centroid (i) .417 .550 .541 .299 .423 .289 .431 .286 .453
CEQE-Mul (j) .410 .535 .541 .292 .415 .285 .424 .289 .448

NPRF - - - .290 .450 .280 .456 - -
BERT-QE (LLL) - - - .386 .553 - - .268 .604

T 5QR .398de f .600de f .583de f .288cde f .432cde f .278bcde f .420ce f .302cde f .460cde

T 5PRF .411de f .605de f .583de f .296cde f .449cde f .285abcde f .428cde f .303cde f .465de

FlanQR .384de .537de f .520de f .270de f .436de f .278de f .446de f .303cde f .496de f

FlanPRF .373de .605de f .577de f .260de f .411de f .224de f .393de f .262de .464de

Overall, in response to RQ3.1, we find that both the T5QR and FlanQR query reformulation
models can significantly improve over the initial query and, in some cases, BM25+RM3. For
T5QR, using filters can lead to faster training without loss of effectiveness.

3.4.2 RQ3.2: Effect of PRF Contextualised Input

We now investigate the effect of the additional PRF contextual information for T5PRF and
FlanPRF models. In particular, we investigate three selection mechanisms introduced in Sec-
tion 3.1.2, namely MaxP, FirstP and TopP. For the number of context passages we use M = 1 – we
return to this choice in Section 3.4.5. Table 3.4 & Table 3.5 reports the results of our experiments
for RQ3.2. We again evaluate using all four test collections.

First, we analyse the performance of T5PRF models. Examining both Table 3.4 & Table 3.5,
we find that in each group of models, the T5PRF models exhibit some marked improvements over
T5QR for all metrics on all query sets, indicating the effectiveness of the contextualised input.
When comparing to the BM25+RM3 model, marked improvements in terms of MAP, Recall
and nDCG@10 are also observed. In particular, the T5PRF models significantly outperform
the BM25+RM3 model in terms of MAP and nDCG@10 on the Robust04 (T), Robust04 (D),
and GOV2 query sets, as well as in terms of Recall on Robust (D) and GOV2. This observation
indicates that query reformulations generated by the T5PRF models are capable of retrieving
relevant documents that are not identified by the RM3 reformulated queries.

Next we analyse the contextual prompting method, FlanPRF. We observe that FlanPRF
exhibits higher performance over FlanQR on all the reported metrics for TREC 2019 passage and
document query sets, except on MAP for document queries. This indicates the superiority of the

61



additional contextual information for generating more useful expansion terms on these queries.
However, on the Robust title & description queries as well as the GOV2 queries, FlanPRF gives
lower performance compared to FlanQR. We postulate that the FLAN-based models need more
carefully crafted domain-related prompts, perhaps as some of the instruction data for fine-tuning
the FlanT5 model comes from the MSMARCO Q&A training datasets (Wei et al., 2021).

Finally, among the various contextual information selection mechanisms, we find that TopP
and FirstP exhibit higher performance than the MaxP method. This observation indicates that
the beginning sentences are able to capture the meaning of the whole document. In addition,
no differences between the TopP and FirstP methods are observed for the T5PRF and FlanPRF
models. Therefore, we take forward the TopP method, where the top-scored chunks among all
the feedback information are selected as the contextual input, for addressing RQ3.3 and RQ3.4.

Overall, for RQ3.2, we observe that PRF information, in the form of contextual passages, can
bring further improvements over the plain T5QR model on all the five test query sets. However,
FlanPRF only benefits from the additional pseudo-relevant information for MSMARCO docu-
ment and passage query sets and damages the retrieval effectiveness on Robust and GOV2 queries.
Finally, the performance of GenPRF models varies according to the context selection mechanism.

3.4.3 RQ3.3: Comparison with Baselines

In this section, we examine the effectiveness of the GenQR and GenPRF models, in compari-
son to the baselines listed in Section 3.3.4, including traditional query expansion models, neural
query reformulation baselines, neural document expansion baselines, and neural query expansion
models from the literature. Due to space constraints, Table 3.6 compares the performances in
terms of MAP and nDCG@20 on the three test collections where the Neural PRF and BERT-QE
baselines have been evaluated in the literature: TREC 2019, GOV2, as well as the title-only (T)
and description-only (D) queries of Robust04.6 For these baselines, we omit performances not
reported in the original papers.

On analysing Table 3.6, we first observe that the GenQR models significantly outperform the
other generative neural query reformulation models, which have been trained on the same training
input (namely GPT2-QR, Seq2seqattention and Transformer). This emphasises the usefulness of
using T5 and FlanT5 models over other text-to-text approaches such as GPT2.

Next, we compare the GenPRF models with standard PRF query expansion baselines such as
RM3, Bo1 and KL. We observe that on the Robust04 (T) query set, the T5PRF models exhibit sig-
nificant improvements over the BM25+RM3 model for both metrics and significantly outperform
the BM25+KL model in terms of MAP on Robust04 (D), due to the good ability of the T5 model in
interpreting and reformulating the natural language queries posted in the description (D) queries.

Furthermore, in comparison to DocT5query on the TREC 2019 document test query set, we

6 For Robust04, we report nDCG@20 to allow comparisons to be made to (Li et al., 2018, Naseri et al., 2021, Zheng
et al., 2020).
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Table 3.7: RQ3.4 Part1: Performances of T5QR and T5PRF using the monoT5 reranker on TREC
2019 document and passage ranking query sets. Notations as in Tables 3.2.

QR Models Document TREC 2019 Passage TREC 2019
MAP MRR R@1k nDCG@10 MAP MRR R@1k nDCG@10

Initial query (a) .388 .938 .701 .688 .480 .857 .752 .711
BM25+RM3 (b) .405 .938 .760 .693 .489 .833 .796 .708

T 5QR .394 .938 .753a .690 .479 .831 .788a .696
T 5PRF .403 .926 .776a .687 .490 .826 .814a .706
FlanQR .413a .950 .763a .699 .521a .908 .845a .727
FlanPRF .406 .942 .762a .697 .530a .873 .866a .724

Table 3.8: RQ3.4 - Part2: Performances of T5QR and T5PRF using the monoT5 reranker on
Robust04 and GOV2 query sets. Notations as in Tables 3.2.

QR Models Robust04 (T) Robust04 (D) GOV2
MAP R@1k nDCG@10 MAP R@1k nDCG@10 MAP R@1k nDCG@10

Initial query (a) .269 .708 .481 .280 .672 .517 .262 .643 .532
BM25+RM3 (b) .267 .755 .475 .290 .712 .516 .263 .656 .517

T 5QR .269 .759a .474 .295 .736 .524 .269b .676ab .526
T 5PRF .269 .759a .474 .299ab .746ab .525 .273ab .685ab .535b

FlanQR .265 .756a .473 .301ab .760ab .536ab .271a .680ab .543ab

FlanPRF .254 .699 .466 .275 .656 .517 .241 .597 .524

observe that both T5PRF and GenPRF models exhibit higher performances than the DocT5query
model in terms of nDCG@10. This observation demonstrates the effectiveness of our generative
reformulation models, which do not require applying the GPU-intensive application of a T5
model to each document in the collection, while DocT5query does.

When comparing with the CEQE models, we find that the T5PRF models exhibit similar
performances in terms of MAP but much higher performances in terms of nDCG@20 for TREC
2019 Document ranking query set. For the Robust title and description query sets, T5PRF models
show similar performances to the CEQE variants on both metrics. Finally, T5PRF models exhibit
slightly higher performance than the CEQE models on both metrics for the GOV2 queries. In
addition, another strength of T5PRF models compared to the CEQE variants is that T5PRF
models only add ∼10 expansion terms rather than the 70-100 expansion terms added by CEQE.

Finally, we compare with the results reported for Neural PRF, BERT-QE. It is clear that
T5PRF performs very similarly to Neural PRF (e.g. for MAP 0.296 vs. 0.290 on title-only queries
and 0.285 vs. 0.280 on description-only queries). However, as can be observed in Table 3.6,
BERT-QE, which deploys three stages of BERT-Large (in comparison to our use of the compa-
rably simpler T5-base model), exhibits a higher performance than our (simpler) T5PRF approach,
which does not employ any neural reranking. Overall, we conclude for RQ3.3 that T5PRF
offers a promising approach for neural query expansion, which significantly outperforms existing
statistical query expansion approaches.
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3.4.4 RQ3.4: Integration with Neural Rerankers

We now investigate the effectiveness of GenQR and GenPRF models when combined with a
monoT5 neural reranker, in Table 3.7 & Table 3.8. We integrate the reformulated queries with
the monoT5 neural reranker as described in Section 3.3.3.

On analysing both Table 3.7 & Table 3.8, we observe that when combined with the monoT5
reranker, the T5PRF models exhibit higher performances than the T5QR model, which aligns with
the conclusions of RQ3.2. Moreover, similar to the findings of RQ3.2, FlanPRF leads to higher ef-
fectiveness than FlanQR on MSMARCO document and passage queries. We also observe that all
the generative models, except FlanPRF, significantly outperform the BM25 with monoT5 rerank-
ing across all datasets in terms of Recall. This suggests that the reformulated queries generated by
T5PRF are more effective in retrieving relevant documents compared to the original query or the
query reformulated using BM25. For FlanPRF, we find that it excels at the MSMARCO queries
but fails to produce a better reformulation for Robust and GOV2 queries. Moreover, we find
that T5PRF models show considerable improvements over both baselines in terms of MAP and
Recall for the Robust04 dataset, which uses only descriptions, and the GOV2 query sets. We note
that higher performance on Robust has been reported using monoT5 by Nogueira et al. (2020),
but with an experimental setup that is not directly comparable with ours7. In our experiments,
we use a more realistic setting where the user is expected to only enter either keyword-based
queries or natural-language queries, not both. Overall, in response to RQ3.4, we conclude that
our generative models can further enhance effectiveness when combined with neural rerankers.

3.4.5 RQ3.5: Hyperparameter study

We address RQ3.5 by analysing the importance of the hyperparameters of T5QR and T5PRF.
We first consider the impact of the number of selected passages, M, used as the contextualised
input to T5PRF. Recall that the maximum input to the pretrained T5 model, X , is limited to 512
tokens; for this reason, and to ensure sufficient space for the initial query and the prompt tokens,
M cannot exceed 3 passages, given that we use passages of 128 tokens (cf. Section 3.3.2).

Figure 3.3 presents the MAP and nDCG@10 scores of the T5PRF models using different M

values on the TREC2019 document query set. We observe that while nDCG@10 is improved with
more passages (i.e. as M increases), MAP tends to be degraded. We postulate that when more pas-
sages are selected as an input, it is more likely that the T5 model will generate a few off-topic terms
(i.e. topic drift), which will have low weights but can negatively affect MAP; On the other hand,
with more passages, the very important terms for the most highly relevant passages are more easily
identified and emphasised in the resulting query reformulation, resulting in improved nDCG@10.

Next we investigate the impact of the kRM3 and kT 5 parameters introduced in Section 3.3.3.
Figure 3.4 shows a heatmap depicting the performance of a T5PRF model using different values of
7 As (Nogueira et al., 2020) makes use of both the title (T) and description (D) versions of the query, which is not a
realistic setting from a user’s perspective.
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Figure 3.3: Impact of the number of passages M in T5PRF. Different coloured bars are shown for
the three different contextual passage selectors FirstP, TopP and MaxP.
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Figure 3.4: Impact of the mixing parameters kRM3 and kT 5.

kT 5 (x-axis) and kRM3(y-axis) on the TREC 2019 Document task, for (a) MAP and (b) nDCG@10.
Interestingly, we note differences in the overall patterns between MAP and nDCG@10. For both
metrics, the highest values are generally on or near to the diagonal; while effectiveness drops off
for low values of kT 5. This is more marked for nDCG@10 than MAP. Therefore, we conclude
that when the T5-generated query reformulations are combined with RM3, there is more impact to
the top of the ranking, as quantified by the larger improvements in nDCG@10 compared to MAP.

Finally, we examine the impact of the number of paraphrases N selected from a T5-based
model to construct the reformulated query. We take a trained model of T5PRF using the W(E+S)

filter as an example. Figure 3.5 illustrates the impact on the MAP and nDCG@10 scores when
varying N = [1,20]. We observe that, in general, the higher the number of paraphrases to be
included in the query reformulation, the higher the values that MAP or nDCG@10 are likely to
achieve, although with a degree of variance. In particular, all tested N values markedly exceed the
corresponding performance of BM25+RM3. Note that while we only chose N = 5 in reporting
the experiments in this paper in order to facilitate faster retrieval, larger N values usually lead
to a higher effectiveness.
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3.4.6 Case Study

Table 3.9 provides (stemmed) example reformulations for a query from the TREC 2019 test
query set using the RM3, the GenQR and GenPRF query reformulation models..

In particular, all the GenQR and GenPRF models can generate new useful terms that are not
identified by the RM3 model. For T5-based models, we observe that both T5QR and T5PRF
models tend to generate more conservative terms, which present less risk for topical drift. In
addition, we observe that, in Table 3.9, T5PRF focuses on generating expansion terms that are
very closely related to the definition of visceral, such as ‘viscera’, ‘body’. On the other hand,
RM3 identifies terms more widely related to the body, such as ‘cardiac’, and ‘fat’, but which are
less likely to identify more relevant documents for this query.

For FLAN-based models, under the GenQR framework, we find that FlanQR can generate
query reformulations consisting of natural language definitions of the visceral from various
aspects, for instance, the functionality of visceral, the further explanation of viable organ etc.
However, with the additional contextual information, some of the reformulated sentences tend to
focus on abdominal, which is provided in the contextual input, instead of the query term visceral.
Therefore, we find that FlanPRF can easily be drifted away and might struggle to locate useful
information from the potentially relevant information.

3.4.7 Discussion

In the previous sections, we investigated the performance of all four proposed generative
query reformulation methods compared to various query reformulation baselines. In this section,
we first position our proposed models within the prior approaches and discuss how the prompting-
based models, FlanQR and Flan-PRF, perform compared to the fine-tuning-based models, T5QR
and T5PRF.

Compare to Prior Approaches: Several techniques have been proposed to employ the PLM
knowledge for query reformulation for various tasks. For instance, for the OpenQA task, Mao
et al. (2021) used a pretrained language model as a generator to produce background context
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information for an input question – this generated context together, with the input question.
However, this framework is not applicable for addressing an adhoc search task due to the lack of a
training dataset, e.g. query and ground truth answer training pairs, while the produced augmented
queries are long in length which can result in high query latency during retrieval. Similarly,
Mass et al. (2020) fine-tuned a GPT-2 model using FAQ (Frequently Asked Questions) pairs
to generate the predicted questions given an input query. In addition, T5 or GPT2 have been
employed as neural transfer reformulation models to reformulate the query based on the recent
querying history in conversational search (Lin et al., 2020b,c, Yu et al., 2020). Furthermore, Lin
et al. (2020b) compared pretrained models using an encoder-decoder architecture (T5 model)
and a GPT2 (decoder only) model for conversational question reformulation, and concluded that
T5 is more effective. In contrast, our work focuses on proposing a generative method for query
reformulation and concentrates on the well-optimised sparse adhoc retrieval task. In particular,
for fine-tuning a trained language model, we leverage weak supervision methods to generate the
necessary training query pairs, which are then used to fine-tune the existing pretrained T5 model
for the query reformulation task.

Moreover, while prior work has used smaller open-source models, there has been a recent
shift to very large, proprietary, closed-source text generation models, such as OpenAI’s text-

davinci-003 with 175 billion parameters. Concurrently with this work, Wang et al. (2023a)
proposed the query2doc method, which expands the query with generated pseudo-documents
from text-davinci-003. In addition, Mackie et al. (2023) also prompted text-davinci-003 for query
expansion using various prompting techniques. Unlike these works, we provide a comparison
between the effectiveness of fine-tuning and prompting methods for a particular task. Further,
we explore multiple frameworks for query reformulation, namely GenQR and GenPRF, and
investigate how to more effectively employ the learned knowledge from the large neural models.
In addition, it is well-established that large language models (LLMs) with parameters exceeding
100 billion have superior performance on various tasks (Brown et al., 2020, Chowdhery et al.,
2022, Wei et al., 2022a). However, using these large-scale models is often prohibitively expensive.
Therefore, our work explores the ability to use small models with parameters of less than 10
billion for which inference can be performed on consumer GPUs.

Architecture: GenQR methods do not rely on a set of initial retrieved results.8 FlanQR has
the simplest model structure as it also does not require fine-tuning of the model’s parameters.
However, FlanQR is sensitive to the input prompts to generate good query reformulations. In
contrast, T5QR involves injecting task-related knowledge into the model’s parameter during fine-
tuning, but once the model is trained, there is no need for prompt crafting during inference.On the
other hand, GenPRF methods depend upon an initial round of retrieval to provide pseudo-relevant
contextual information. T5PRF is fine-tuned in a weakly supervised way and can better extract
8 We note that although we found T5QR to be most effective when interpolated with RM3 expansion terms, the
initial retrieval process for RM3 expansion can be conducted in parallel with T5QR inference, since it does not
depend on the first-stage results.
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useful information from the PRF contextual information. However, the only input information
source for FlanPRF is prompt. As the prompt can be long, it may contain too much information
for a FlanPRF model to discern which pieces of text can make a good query reformulation.

Challenges: In fine-tuning-based methods, the primary challenge lies in constructing high-
quality training data for a specific task to adapt the model’s capacity to address the target task.
Evidence for this can be found in the results presented in Table 3.2 &Table 3.3. On the other hand,
prompting methods do not involve changing the model’s parameters and only rely on the model’s
existing knowledge and understanding to produce desired outputs. The key challenge for prompt-
ing methods is to identify task-related prompts that effectively unlock the large language model’s
learned knowledge. Moreover, based on the qualitative study conducted in Section 3.4.6, we
find that the zero-shot prompting method can be challenging for the FlanPRF method in terms of
identifying useful information and filtering out distracting details from the contextual information.
Moreover, one might resort to few-shot prompting by providing a prompt with a few examples for
generative models to learn from. However, few-shot prompting also encounters similar challenges
with T5-based methods, such as constructing high-quality examples and limitations in input
length. Overall, based on the effectiveness results for FlanQR and FlanPRF models observed in
Tables 3.4-3.8, it is still promising to explore the effective way of designing query reformulation
task-related prompts for the LLMs. For instance, instead of designing one prompt template and
deploying it across various datasets, different prompts may be needed for different datasets.

3.5 Conclusions

In the proposed thesis statement in Section 1.1, we posited that we can use pseudo-relevance
feedback information by a Sequence-to-Sequence neural model to generate more effective query
reformulations for sparse retrieval. Therefore, to address this hypothesis, in this chapter, we
investigated neural query reformulation methods built upon the generative neural models with
Sequence-to-Sequence architecture, such as T5 and FLAN-T5 models. In particular, we proposed
two possible generative query reformulation frameworks, GenQR and GenPRF. Models under the
GenQR framework directly take a query as input, while models under the GenPRF framework
also incorporate contextual information extracted from the pseudo-relevant feedback documents.
Moreover, under each framework, we investigated both fine-tuning and direct prompting methods
to leverage the learned knowledge of T5 and FLAN-T5, respectively. Extensive experiments
showed that the GenQR and GenPRF models can significantly enhance effectiveness on four
standard TREC test collections (when using either keyword or natural-language queries) and that
significant improvements can also be observed when combined with additional neural rerankers
compared to standard PRF techniques such as RM3.

In conclusion, the main findings of this chapter can be summarised as follows:

• We find that pseudo-relevance feedback information, in the form of contextual input, can
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bring further improvements over the plain GenQR model on all five test query sets. However,
the performance of the GenPRF models, i.e. T5PRF and FlanPRF, varies depending on the
context selection mechanism.

• GenPRF models, in particular, the T5PRF model offers a promising approach for neural
query expansion, which significantly outperforms the existing statistical query expansion
approaches.

• When interrogating the neural rerankers, we find that our generative models can further
enhance effectiveness when combined with neural rerankers.

Overall, we found that the pseudo-relevance feedback information can be used by the
Sequence-to-Sequence neural model in a generative way to refine the query formulation for
more effective sparse retrieval. Specifically, our generative query reformulation models can
produce queries that are more precise than RM3 (in terms of nDCG@10) while also enhancing
Recall. Moreover, compared to competing techniques such as docT5query, our studied mod-
els can be applied at querying time without the need to apply expensive neural models to all
documents at indexing time.

However, there are also some limitations to the proposed generative query reformulation meth-
ods. Firstly, any prompting-based generative query reformulation methods depends heavily on the
input prompt. Secondly, the primary focus of these methods is on effective sparse retrieval. As we
detailed in Chapter 2, there are several paradigms for more advanced neural information retrieval,
namely the retrieve-then-rerank paradigm (cf. Section 2.2.2) and dense retrieval (cf. Section 2.3).
In addition, this chapter mainly explored the capability of the Sequence-to-Sequence PLMs for
more effective query reformulation, the generated query reformulations are still in text format.
Moreover, as detailed in Section 2.2.2 and Section 2.3, the encoder-based PLMs, in particular,
the BERT model, have shown strong capabilities for generating contextualised embeddings and
employed as effective neural rerankers as well as the dense retrieval models. However, the effec-
tiveness of the pseudo-relevance feedback mechanism for the more advanced dense retrieval is still
limited study. Therefore, in the following chapters, from Chapter 4 to Chapter 7, we will inves-
tigate the possibility of pseudo-relevance feedback techniques for more effective dense retrieval.
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Table 3.9: Example reformulations of ‘define visceral’ using RM3, T5QR & T5PRF as well as
FlanQR & FlanPRF approaches. To aid the reading, we highlight the prompt words in red and
the original query in blue colour.

BM25+RM3 Input Query: define visceral
BM25+RM3 Reformulated Query:
central∧0.0253 defin∧0.3167 cell∧0.0503 fat∧0.0371 obes∧0.0384 muscl∧0.077 cardiac∧0.0201 viscer∧0.3833
tissu∧0.0249 skelet∧0.0261

T5QR Input Query: “refine”: define visceral
T5QR Reformulated Query:
viscer∧0.1041 definit∧0.1041 viscera∧0.0327 defin∧0.0327 definit∧0.0253 viscer∧0.0253 viscer∧0.0135 fluid∧0.0135
viscer∧0.0098 structur∧0.0098

T5PRF Contextualised Input Query:
“refine”: define visceral. “context”: viscera on 5 Apr.2018. These example sentences are selected

automatically from various online news sources to reflect current usage of the word ‘visceral’. Views expressed in
the examples do not represent the opinion of Merriam-Webster or its editors. Send us feedback. The Tie Between
visceral and Biology. The “viscera” are the internal organs of the body-especially those located in the large cavity of the
trunk (e.g., the heart, liver, and intestines). The word viscera comes from Latin, in which it has essentially the same
meaning.Something “visceral” has to do with the viscera. In a more figurative sense, something “visceral” is felt “deep
down”. Even in the early years of its use, “visceral” often referred to things emotional rather than physiological. For
example, in 1640, an English bishop named Edward Reynolds wrote, “Love is of all other the inmost”.
T5PRF Reformulated Query:
viscera∧0.1596 viscer∧0.1556 viscera∧0.0592 bodi∧0.0592 viscer∧0.0379 fat∧0.0379 definit∧0.0243 viscer∧0.0243

FlanQR Input Query: Improve the search effectiveness by suggesting expansion
terms for the query: define visceral
FlanQR Reformulated Query:
Viable organ means the possibility that it could be dead if not harvested and the normal, healthy human being is capable
of dead Organs, substances in organ meat and whole part of digestion
Viscera (and viscerally) Able:-able; competent, eager to serve
Visceral or viscular can mean the inner layer, which includes any cell wall-containing tissue lining cells in organs
Visceral art refers to the expressive medium of artists, drawing on recognizable visceral materials: bones, organs, muscle
tissue, soft tissue, cells, chemicals, fat and saliva
Visco-elastic properties, properties of visceral organs, measure of stiffnesss

FlanPRF Input Query: Improve the search effectiveness by suggesting expansion
terms for the query: define visceral, based on the given context information: Abdominal
fat can be visceral or subcutaneous. Visceral adipose tissue (VAT) is fat that is around the organs inside the abdomen.
Subcutaneous adipose tisue (SAT) is fat under your skin (love handles). With visceral fat your stomach wall is pushed
out from inside. Your stomach muscles can sometimes be quite defined, but your stomach will still be extended. isceral
adipose tissue (VAT) is fat that is around the organs inside the abdomen. Subcutaneous adipose tisue (SAT) is fat under
your skin (love handles). With visceral fat your stomach wall is pushed out from inside. Your stomach muscles can
sometimes be quite defined, but your stomach will still be extended.
FlanPRF Reformulated Query:
Visceral adipose tissue (VAT) is fat that is around the organs inside the abdomen.
Visceral (adjective) Abdominal fat can be visceral or subcutaneous.
Abdominal fat can be visceral or subcutaneous. Visceral adipose tissue (VAT) is fat that is around the organs inside the
abdomen.
Visceral adipose tissue (VAT) Visceral adipose tissue (VAT) is fat that is around the organs inside the abdomen.
Abdominal fat can be visceral or subcutaneous. Visceral adipose tissue (VAT) is fat that is around the organs inside the
abdomen.
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Chapter 4

ColBERT-PRF: Semantic PRF for Dense
Retrieval

In Chapter 3, we validated our first posed hypothesis in our proposed thesis statement (cf.
Section 1.1), namely that pseudo-relevance feedback information can be used by a sequence-to-
sequence neural model to generate more effective query reformulations for sparse retrieval. The
promising results of using the pretrained language models for query reformulation motivate us to
further delve deeper into how to harness the capacity of pretrained language models for effective
query reformulation.

Indeed, as discussed in Section 2.2 and Section 2.3, many pretrained language models have
demonstrated further promise in being a suitable basis for dense retrieval. Typically, instead of
using a classical inverted index, in dense retrieval, the documents and queries are represented
using embeddings. Then, the documents can be retrieved using an approximate nearest neighbour
algorithm – as exemplified by the FAISS toolkit (Johnson et al., 2019). In particular, two distinct
families of approaches were introduced in Section 2.3: single representation dense retrieval and
multiple representation dense retrieval. In single representation dense retrieval (introduced in
Section 2.3.1), as used by DPR and ANCE, each query or document is represented entirely by a
single embedding, typically obtained from the BERT’s [CLS] token. Query-document relevance
is estimated in terms of the similarity of the corresponding [CLS] embeddings. In contrast, in
multiple representation dense retrieval (introduced in Section 2.3.2) – as proposed by Khattab and
Zaharia (2020) – each term of the queries and documents is represented by a single embedding.
For each query embedding, one per query term, the nearest document token embeddings are
identified using an approximate nearest neighbour search, before a final re-scoring to obtain exact
relevance estimations. Although it has been found that performing information retrieval based on
contextualised representations of the query and document can alleviate both the lexical mismatch,
for instance, “last name” and “surname” and the semantic mismatch, for instance, “I like an
apple” and “I like Apple airpods” (Peters et al., 2018), user’s queries can still be underrepresented.
Therefore, we argue that, as users issue the query prior to access to the relevant documents, the
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users’ queries can still be insufficiently well represented within the dense retrieval paradigm, and
as a consequence, this representation can be improved by access to a pseudo-relevant set. Indeed,
as introduced in Section 2.2, we know that the BERT model excels at capturing contextualised
meanings in textual passages; for instance, the BERT-based dense retrieval models introduced in
Section 2.3. However, such dense retrieval models can still fail to interpret the search intent of
short user queries, such as ‘jaguar’.

On the other hand, many studies have focused on the use of static word embeddings, as
discussed in Section 2.1,, such as Word2Vec, within query expansion methods (Diaz et al., 2016,
Kuzi et al., 2016, Roy et al., 2018, 2016). Indeed, most of the existing embedding-based QE
methods (Diaz et al., 2016, Kuzi et al., 2016, Roy et al., 2018, 2016, Zamani and Croft, 2016)
are based on static embeddings, where a word embedding is always the same within different
sentences, and hence they do not address contextualised language models such as BERT. As
discussed in Section 2.4.2, CEQE makes use of contextualised BERT embeddings for query
expansion. However, the resulting refined query representation again relies on a traditional
sparse inverted index for a further round of retrieval. In contrast, in this chapter, we focus on
implementing contextualised embedding-based query expansion for dense retrieval. Accordingly,
we pose the follow-up question corresponding to the second hypothesis of our thesis statement
in Section 1.1: can we apply the pseudo-relevance feedback mechanism on contextualised

embeddings to refine the query representation for multiple representation dense retrieval?

Indeed, as retrieval uses multiple representations, this allows additional useful embeddings
to be appended to the query representation. Furthermore, the exact scoring stage provides the
document embeddings in response to the original query, which can be used as pseudo-relevance
information. In particular, we propose a pseudo-relevance feedback mechanism called ColBERT-
PRF for dense retrieval. More specifically, as embeddings cannot be counted, ColBERT-PRF
applies clustering to the embeddings occurring in the pseudo-relevant set, and then identifies the
most discriminative embeddings among the cluster centroids. These centroids are then appended
to the embeddings of the original query. ColBERT-PRF is focussed on multiple representation
dense retrieval settings; However, compared to existing work, our approach is the first work to
apply pseudo-relevance feedback to any form of dense retrieval setting; moreover, among the
existing approaches applying deep learning for pseudo-relevance feedback, our work in this paper
is the first that can improve the recall of the candidate set by re-executing the expanded query
representation upon the dense retrieval index, and thereby identify more relevant documents that
can be highly ranked for the user.

To summarise, this chapter makes the following contributions:

• We propose a novel contextualised pseudo-relevance feedback mechanism for multiple
representation dense retrieval;

• We cluster and rank the feedback document embeddings for selecting candidate expansion
embeddings;

72



• We evaluate our proposed contextualised PRF model in both ranking and reranking settings.

• We demonstrate the effectiveness of the ColBERT-PRF model on document ranking tasks,
using the MSMARCO document test collection and the TREC Robust04 test collections;

• We further investigate the effectiveness of ColBERT-PRF by varying the selection of the
expansion embeddings.

• We thoroughly investigate the trade-off between the effectiveness and the efficiency of
ColBERT-PRF.

The remainder of this chapter is organised as follows. In Section 4.1, we review and provide
a more detailed description of a multi-representation dense retrieval, the ColBERT model.
Section 4.2 presents our proposed dense PRF method – ColBERT-PRF. Next, we discuss the
effectiveness of ColBERT-PRF for the passage ranking task and for the document ranking task in
Section 4.3 and Section 4.4, respectively. Next, we discuss the usefulness of different weighting
methods for measuring the informativeness of the expansion embeddings of ColBERT-PRF in
Section 4.5. In Section 4.6, we study efficient variants of ColBERT-PRF. Finally, we provide
concluding remarks of this chapter in Section 4.7.

4.1 Recap: Multi Representation Dense Retrieval

As introduced in Section 2.3.2, in ColBERT, the queries and documents are represented by
tokens from a vocabulary V . Each token occurrence has a contextualised real-valued vector with
dimension d, called an embedding. More formally, let f : V n→ Rn×d be a function mapping
a sequence of terms {t1, . . . , tn}, representing a query q, composed by |q| tokens into a set of
embeddings {φq1, . . . ,φq|q|} and a document composed by |d| tokens into a set of embeddings
{φd1, . . . ,φd|d|}.

Khattab and Zaharia (2020) recommended that the number of query embeddings be 32,
with extra [MASK] tokens being used as query augmentation. Indeed, these mask tokens are a
differentiable mechanism that allows documents to gain score contributions from embeddings
that do not actually occur in the query, but which the model assumes could be present in the
query. In practice, as we later show in Section 4.2.4, the [MASK] embeddings are very similar
to embeddings of the existing query tokens, and hence cannot be considered as a form of query
expansion. Moreover, they do not make use of pseudo-relevance feedback information obtained
from the top-ranked documents of the original query, which has repeatedly been shown to be an
effective source to improve query representations.

To obtain the first set of candidate documents, ColBERT makes use of FAISS in its first-stage
pass, an approximate nearest neighbour search library, on the pre-computed document embed-
dings. Conceptually, FAISS allows to retrieve the k′ documents containing the nearest neighbour
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Algorithm 1: The ColBERT E2E algorithm
Input : A query Q
Output :A set A of (docid, score) pairs
COLBERT E2E(Q):

1 φq1, . . . ,φqn ← Encode(Q)
2 D← /0
3 for φqi in φq1, . . . ,φqn do
4 D← D∪Fd(φqi,k

′)

5 A← /0
6 for d in D do
7 s← ∑

|q|
i=1 max j=1,...,|d|φ

T
qi

φd j

8 A← A∪
{
(d,s)

}
9 return A

document embeddings to a query embedding φqi , i.e., it provides a function Fd(φqi,k
′)−→ (d, . . .)

that returns a list of k′ documents, sorted in decreasing approximate scores.
However, these approximate scores are insufficient for accurately depicting the similarity

scores of the documents, hence the accurate final document scores are computed using Equa-
tion (2.21) in a second pass. Typically, for each query embedding, the nearest k′ = 1,000
documents are identified. The set formed by the union of these documents are reranked1 using
Equation (2.21). A separate index data structure (typically in memory) is used to store the
uncompressed embeddings for each document.

To the best of our knowledge, ColBERT exemplifies the implementation of an end-to-end
IR system that uses multiple representation. Algorithm 1 summarises the ColBERT retrieval
algorithm for the end-to-end dense retrieval introduced in Section 2.3.2.

The easy access to the document embeddings used by ColBERT provides an excellent basis
for our dense retrieval pseudo-relevance feedback approach. Indeed, while the use of embeddings
in ColBERT addresses the vocabulary mismatch problem, we argue that identifying more related
embeddings from the top-ranked documents may help to further refine the document ranking. In
particular, as we will show, this permits representative embeddings from a set of pseudo-relevance
documents to be used to refine the query representation φ .

4.2 Dense Pseudo-Relevance Feedback

The aim of a pseudo-relevance feedback approach is typically to generate a refined query
representation by analysing the text of the feedback documents. In our proposed ColBERT-PRF
approach, we are inspired by conventional PRF approaches, as discussed in Section 2.4.1, such

1 In this way, any notion of similarity from the ANN stage is discarded - the entire set of retrieved documents is
reranked; we return to this detail later in Section 4.6.
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as Bo1 and RM3, which assume that good expansion terms will occur frequently in the feedback
set (and hence are somehow representative of the information need underlying the query), but
infrequent in the collection as a whole (therefore are sufficiently discriminative). Therefore,
we aim to encapsulate these intuitions while operating in the contextualised embedding space
Rd , where the exact counting of frequencies is not actually possible. In particular, by operating
entirely in the embedding space rather than directly on tokens, we conjecture that we can identify
similar embeddings (corresponding to tokens with similar contexts), which can be added to the
query representation for improved effectiveness.2

In this section, we detail how we identify representative (centroid) embeddings from the
feedback documents (Section 4.2.1), how we ensure that those centroid embeddings are suf-
ficiently discriminative (Section 4.2.2), and how we apply these discriminative representative
centroid embeddings for (re)ranking (Section 4.2.3). We conclude with an illustrative example
(Section 4.2.4) and a discussion of the novelty of ColBERT-PRF (Section 4.2.5).

4.2.1 Representative Embeddings in Feedback Documents

First, we need to identify representative embeddings {υ1, . . . ,υK} among all embeddings in
the feedback documents set. A typical “sparse” PRF approach – such as RM3 – would count
the frequency of terms occurring in the feedback set to identify representative ones. However,
in a dense embedded setting, the document embeddings are not countable. Instead, we resort to
clustering to identify patterns in the embedding space that are representative of embeddings.

Specifically, let Φ(q, fb) be the set of all document embeddings from the fb top-ranked feed-
back documents. Then, we apply a clustering approach, e.g., the KMeans clustering algorithm,
to Φ(q, fb):

{υ1, ..,υK}= Clustering
(
K,Φ(q, fb)

)
. (4.1)

By applying the clustering algorithm, we obtain K representative centroid embeddings of the
feedback documents. The embeddings forming each cluster may or may not correspond to the
exact same tokens spread across the feedback documents. In this way, a cluster can represent
one or more tokens that appear in similar contexts, rather than a particular exact token. This is
a key advantage of ColBERT-PRF. For example, for the query ‘do goldfish grow?’ (discussed
further in Section 4.2.4 below), we find that the embeddings for the words ‘water’, ‘tank’, ‘tanks’
and ‘pond’ form one of the clusters; other clusters are for unrelated words, such as ‘to’, ‘change’,
‘color’ etc. In the next section, we address the selection of centroids, specifically identifying those
that discriminate among the documents in the corpus, and hence should be used for expansion.

To further demonstrate the choice of clustering technique for ColBERT-PRF, we have com-
pared ColBERT-PRF implemented using KMeans clustering and ColBERT-PRF with traditional

2 In (Wang et al., 2022c), we provide experiments that use Bo1 and RM3 to select tokens and their corresponding
embeddings that verify this conjecture.
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query expansion methods, namely Bo1 and RM3 techniques in (Wang et al., 2022c). Later, in
Section 4.6, we propose and evaluate other approaches for clustering.

4.2.2 Identifying Discriminative Embeddings among Representative Em-
beddings

Many of the K representative embeddings may represent stopwords and therefore are not
sufficiently informative when retrieving documents. Typically, identifying informative and
discriminative expansion terms from feedback documents would involve examining the collection
frequency or the document frequency of the constituent terms (Cao et al., 2008, Roy et al., 2019).
However, there may not be a one-to-one relationship between query/centroid embeddings and
actual tokens, hence we seek to map each centroid υi to a possible token t. Some clusters will be
focused in their meaning, containing only a single token (but with multiple different embeddings)
or containing embeddings of multiple related tokens (e.g. ‘water’, ‘tank’, ‘tanks’ and ‘pond’).
Other clusters will be less focused, containing unrelated words, such as non-functional words
and stopwords (‘to’, ‘change’, ‘color’, ‘from’, ‘or’, ‘were’).

To map each cluster to a single token to represent each cluster, we resort to FAISS, through
the function Ft(υi,r) −→ (t, . . .) that, given the centroid embedding υi and r, returns the list of
the r token ids corresponding to the r closest document embeddings to the centroid.3 From a
probabilistic viewpoint, the likelihood P(t|υi) of a token t given an embedding υi can be obtained
as:

P(t|υi) =
1
r ∑

τ∈Ft(υi,r)
1[τ = t], (4.2)

where 1[] is the indicator function.
For simplicity, we choose the most likely token id, i.e., ti = argmaxt P(t|υi). Mapping back to

a token id allows us to make use of Inverse Document Frequency (IDF), which can be pre-recorded
for each token ID. The importance σi of a centroid embedding υi is obtained using a traditional
IDF formula4: σi = log

(
N+1
Ni+1

)
, where Ni is the number of passages containing the token ti and

N is the total number of passages in the collection. While this approximation of embedding
informativeness is obtained by mapping back to tokens, as we shall show, it is very effective.

Choosing the single most likely token from FAISS is useful for two reasons: while a cluster
may encapsulate multiple tokens, using FAISS tells us what the cluster’s centroid embedding
will actually match to in the corpus; Moreover, a qualitative inspection looking at either the
mostly likely tokens identified from FAISS, or the tokens involved in each cluster, found that in
general they were representative of the cluster in terms of informativeness. For instance, a cluster
containing embeddings for ‘to’, ‘change’, ‘color’, ‘from’, ‘or’, ‘were’, the centroid was most likely

3 This additional mapping can be recorded at indexing time, using the same FAISS index as for dense retrieval,
increasing the index size by 3%. 4 We have observed no marked empirical benefits in using other IDF formulations.
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Figure 4.1: Workflow of ColBERT-PRF ranker.

to match with ‘to’ in the corpus, meaning that the centroid was not useful for expansion. Going
further, instead of IDF, we discuss different derivations of a tailored informativeness measure in
Section 4.5, including Inverse Collection Term Frequency and Mean Cosine Similarity methods.

Finally, we select the fe most informative centroids as expansion embeddings based on the σi

importance scores as follows:

Fe = TopScoring
({

(υ1,σ1), . . . ,(υK,σK)
}
, fe

)
, (4.3)

where TopScoring(A,c) returns the c elements of A with the highest importance score.

4.2.3 Ranking and Reranking with ColBERT-PRF

Given the original |q| query embeddings and the fe expansion embeddings, we incorporate
the score contributions of the expansion embeddings in Eq. (2.21) as follows:

s(q,d) =
|q|

∑
i=1

max
j=1,...,|d|

φ
T
qi

φd j +β ∑
(υi,σi)∈Fe

max
j=1,...,|d|

σiυ
T
i φd j , (4.4)

where β > 0 is a parameter weighting the contribution of the expansion embeddings, and the
score produced by each expansion embedding is further weighted by the IDF weight of its most
likely token, σi. Note that Equation (4.4) can be applied to rerank the documents obtained from
the initial query, or as part of a full re-execution of the full dense retrieval operation including
the additional fe expansion embeddings.

In both ranking and reranking, ColBERT-PRF has 4 parameters: fb, the number of feedback
documents; K, the number of clusters; fe ≤ K, the number of expansion embeddings; and β , the
importance of the expansion embeddings during scoring. Figure 4.1 presents the five stages of
ColBERT-PRF in its ranking configuration.

Furthermore, we provide the pseudo-code of our proposed ColBERT PRF ReRanker in Algo-
rithm 2. The ColBERT-PRF Ranker can be easily obtained by inserting lines 3-4 of Algorithm 1
at line 10 of Algorithm 2 to perform retrieval using both the original query embeddings and the
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expansion embeddings, and similarly adapting the MaxSim scoring in Eq. (2.21) to encapsulate
the original query embeddings as well as the expansion embeddings.

Finally, we demonstrate the stages of ColBERT-PRF, for both ColBERT-PRF Ranker and
ReRanker scenarios, when defined as PyTerrier pipelines (see the notations introduced in Sec-
tion 2.1.2). In Listing 1, we portray the experimental pipelines for ColBERT E2E and ColBERT-
PRF. The original source code can be found in the PyTerrier_ColBERT repository.5

Listing 1: ColBERT-PRF Pipeline.

1 # Loading the ColBERT index

2 from pyterrier_colbert.ranking import ColBERTFactory

3 pytcolbert = ColBERTFactory("/path/to/checkpoint.dnn",

4 "/path/to/index", "index_name")

5 # Build the experimental pipeline

6 def prf(pytcolbert, rerank, fb_docs=3, fb_embs=10, beta=1.0, k=24) -> Transformer:

7 # Pipeline for ColBERT E2E: dense_e2e

8 dense_e2e = (pytcolbert.set_retrieve()

9 >> pytcolbert.index_scorer(query_encoded=True, add_ranks=True,

10 batch_size=10000))

11 if rerank:

12 # Build pipeline for ColBERT-PRF ReRanker

13 prf_pipe = (

14 dense_e2e

15 >> ColbertPRF(pytcolbert, k=k, fb_docs=fb_docs,

16 fb_embs=fb_embs, beta=beta, return_docs=True)

17 >> (pytcolbert.index_scorer(query_encoded=True,

18 add_ranks=True,

19 batch_size=5000) %1000)

20 )

21 else:

22 # Build pipeline for ColBERT-PRF Ranker

23 prf_pipe = (

24 dense_e2e

25 >> ColbertPRF(pytcolbert, k=k, fb_docs=fb_docs,

26 fb_embs=fb_embs, beta=beta, return_docs=False)

27 >> pytcolbert.set_retrieve(query_encoded=True)

28 >> (pytcolbert.index_scorer(query_encoded=True,

29 add_ranks=True,

30 batch_size=5000) % 1000)

31 )

32 return prf_pipe

5 http://github.com/terrierteam/pyterrier_colbert
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Algorithm 2: The ColBERT PRF (reranking) algorithm
Input : A query Q,

number of feedback documents fb,
number of representative embeddings K,
number of expansion embeddings fe

Output :A set B of (docid, score) pairs
COLBERT PRF(Q):

1 A← ColBERT E2E(Q)
2 Φ(Q, fb)← set of all document embeddings from

the fb top-scored documents in A
3 V ← /0
4 υ1, . . . ,υK = KMeans

(
K, Φ(Q, fb)

)
5 for υi in υ1, . . . ,υK do
6 ti← argmaxt

1
r ∑τ∈Ft(υi,r)1[τ = t]

7 σi← log
(

N+1
Ni+1

)
8 V ←V ∪

{
(υi,σi)

}
9 Fe←TopScoring(V, fe)

10 B← /0
11 for (d,s) in A do
12 s← s+β ∑(υi,σi)∈Fe max j=1,...,|d|σiυ

T
i φd j

13 B← B∪
{
(d,s)

}
14 return B

4.2.4 Illustrative Example

We now illustrate the effect of ColBERT-PRF upon one query from the TREC 2019 Deep
Learning track, ‘do goldfish grow’. We use PCA to quantize the 128-dimension embeddings
into 2 dimensions purely to allow visualisation. Firstly, Figure 4.2(a)shows the embeddings of
the original query (black ellipses); the red [MASK] tokens are also visible, clustered around
the original query terms (##fish, gold, grow). Meanwhile, document embeddings extracted
from 10 feedback documents are shown as light blue ellipses in Figure 4.2(a). There appear
to be visible clusters of document embeddings near the query embeddings, but also other
document embeddings exhibit some clustering. The mass of embeddings near the origin is
not distinguishable in PCA. Figure 4.2(b) demonstrates the application of KMeans clustering
upon the document embeddings; we map back to the original tokens by virtue of Equation (4.2).
In Figure 4.2(b), the point size is indicative of the IDF of the corresponding token. We can see
that the cluster centroids with high IDF correspond to the original query tokens (‘gold’, ‘##fish’,
‘grow’), as well as the related terms (‘tank’, ‘size’). In contrast, a centroid with low IDF is ‘the’.
This illustrates the utility of our proposed ColBERT-PRF approach in using KMeans to identify
representative clusters of embeddings, as well as using IDF to differentiate useful clusters.
Furthermore, Figure 4.2(b) also includes, marked by an × and denoted ‘tank (war)’, the
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(a) Query & doc. embeddings. (b) Cluster centroids, K = 24.

Figure 4.2: Example showing how ColBERT-PRF operates for the query ‘do goldfish grow’ in
a 2D PCA space. In Figure 4.2(b), the point size is representative of IDF; five high IDF and
one low IDF centroids are shown. For contrast, × ‘tank (war)’ denotes the embedding of ‘tank’
occurring in a non-fish context.

embedding for the word ‘tank’ when placed in the passage “While the soldiers advanced, the tank

bombarded the troops with artillery”. It can be seen that, even in the highly compressed PCA
space, the ‘tank’ centroid embedding is distinct from the embedding of ‘tank (war)’. This shows
the utility of ColBERT-PRF when operating in the embedding space, as the PRF process for
the query ‘do goldfish grow’ will not retrieve documents containing ‘tank (war)’, but will focus
on a fish-related context, thereby dealing with the polysemous nature of a word such as ‘tank’.
To the best of our knowledge, this is a unique feature of ColBERT-PRF among PRF approaches.

4.2.5 Discussion

To the best of our knowledge ColBERT-PRF is the first investigation of pseudo-relevance feedback
for multiple representation dense retrieval. Existing works on neural pseudo-relevance feedback
that have been introduced in Section 2.4.2, such as Neural PRF and BERT-QE only function as
rerankers. Other approaches such as DeepCT and doc2query use neural models (cf. Section 2.2.3)
to augment documents before indexing using a traditional inverted index. CEQE (cf. Section 2.4.2)
generates words to expand the initial query, which is then executed on the inverted index. However,
returning the BERT embeddings back to textual word forms can result in polysemous words
negatively affecting retrieval. In contrast, ColBERT-PRF operates entirely on an existing dense
index representation (without augmenting documents), and can function for both ranking as
well as reranking. By retrieving using feedback embeddings directly, ColBERT-PRF addresses
polysemous words (such as ‘tank’, illustrated above). It is also of note that it also requires
no additional neural network training beyond that of ColBERT. Indeed, while ANCE-PRF (cf.
Section 2.4.3) requires further training of the refined query encoder, ColBERT-PRF does not
require any further retraining. Furthermore, compared to the single embedding of ANCE-PRF,
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ColBERT-PRF is also more explainable in nature, as the expansion embeddings can be mapped
to tokens (as shown in Figure 4.2), and their contribution to document scoring can be examined,
as we will show in Section 4.3.3.4.
In the following, we first show the retrieval effectiveness of ColBERT-PRF for passage ranking
and document ranking tasks in Section 4.3 and Section 4.4, respectively. In particular, in
Section 4.3, we examine the characteristics of ColBERT-PRF, including how ColBERT-PRF
addresses polysemous words, how ColBERT-PRF demonstrates compared with the traditional
query expansion techniques and how to quantify the extent of the semantic matching ability of
ColBERT-PRF. Next, we discuss three variants of ColBERT-PRF with different discriminative
power measure methods in Section 4.5, and we address the effectiveness and efficiency trade-off
of ColBERT-PRF in Section 4.6.

4.3 Passage Ranking Effectiveness of ColBERT-PRF

In this section, we analyse the performance of ColBERT-PRF for passage ranking. In particular,
we evaluated the performance of ColBERT-PRF on TREC 2019 and TREC 2020 query sets.
Section 4.3.1 describes the research question addressed by our passage ranking experiments.
The experimental setup and the obtained results are detailed in Section 4.3.2 and Section 4.3.3,
respectively.

4.3.1 Research Questions

Our passage ranking experiments address the four following research questions:

• RQ4.1 Can a multiple representation dense retrieval approach be enhanced by pseudo-
relevance feedback, i.e., can ColBERT-PRF outperform ColBERT dense retrieval?

• RQ4.2 How does ColBERT-PRF compare to other existing baselines and state-of-the-art
approaches, namely:

(a) lexical (sparse) baselines, including using PRF,

(b) neural augmentation approaches, namely DeepCT and docT5query,

(c) BERT-QE Reranking models,

(d) embedding based query expansion models, namely the three variants of CEQE
models: CEQE-Max, CEQE-Centroid and CEQE-Mul?

• RQ4.3 What is the impact of the parameters of ColBERT-PRF, namely the number of
clusters and expansion embeddings, the number of feedback passages and the β parameter
controlling the influence of the expansion embeddings?

• RQ4.4 To what extent does ColBERT-PRF perform semantic matching?
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4.3.2 Experimental Setup

Now we introduce the experimental setup for the evaluation of ColBERT-PRF on the passage
ranking task. More specifically, the dataset and metrics are introduced in Section 4.3.2.1, then the
implementation details and baselines are detailed in Sections 4.3.2.2 and 4.3.2.3, respectively.

4.3.2.1 Dataset & Measures

Experiments are conducted on the MSMARCO passage corpus, using 43 TREC 2019 DL track
topics and 54 TREC 2020 DL track topics (cf. Section 2.5.1).
We perform the evaluation on the TREC 2019 and TREC 2020 query sets using the metrics
introduced in Section 2.5, namely the mean reciprocal rank (MRR) and normalised discounted
cumulative gain (nDCG) calculated at rank cutoff 10, as well as Recall and Mean Average
Prevision (MAP) at rank 1000. For the MRR, MAP and Recall metrics, we treat passages with
label grade 1 as non-relevant, following (Craswell et al., 2021a,b). In addition, following the
efficiency metrics introduced in Section 2.5, we report the Mean Response Time (MRT) for
each retrieval system. For significance testing, we use the paired t-test (p < 0.05) and apply the
Holm-Bonferroni multiple testing correction.

4.3.2.2 Implementation and Settings

We conduct experiments using PyTerrier (cf. Section 2.1.2) and, in particular using our PyTer-
rier_ColBERT plugin6, which includes ColBERT-PRF as well as our adaptations of the ColBERT
source code. ColBERT and ColBERT-PRF are expressed as PyTerrier transformer operations.
In addition, the ColBERT-PRF and the baselines results are available in our virtual appendix7.
In terms of the ColBERT configuration, we train ColBERT upon the MSMARCO passage
ranking triples file for 44,000 batches, applying the parameters specified by Khattab & Zaharia
in (Khattab and Zaharia, 2020): Maximum document length is set to 180 tokens and queries are
encoded into 32 query embeddings (including [MASK] tokens); We encode all passages to a
FAISS index that has been trained using 5% of all embeddings; At retrieval time, FAISS retrieves
k′ = 1000 passage embeddings for every query embedding. ColBERT-PRF is implemented
using the KMeans implementation (Arthur and Vassilvitskii, 2007) of sci-kit learn (sklearn).
For query expansion settings, we follow the default settings of Terrier (Ounis et al., 2005),
which is 10 expansion terms obtained from 3 feedback passages; we follow the same default
setting for ColBERT-PRF, additionally using representative values, namely K = 24 clusters8, and
β = {0.5,1} for the weight of the expansion embeddings. We later show the impact of these
parameters when we address RQ4.3.

6 github.com/terrierteam/pyterrier_colbert 7 https://github.com/Xiao0728/ColBERT-PRF-VirtualAppendix
8 Indeed, K = 24 gave reasonable looking clusters in our initial investigations, and, as we shall see in Section 6.3, is
an effective setting for the TREC 2019 query set.
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4.3.2.3 Baselines

To test the effectiveness of our proposed dense PRF approach, we compare with five families
of baseline models, for which we vary the use of a BERT-based reranker (namely BERT or
ColBERT). For the BERT reranker, we use OpenNIR (MacAvaney, 2020) and capreolus/
bert-base-msmarco fine-tuned model from (Li et al., 2020). For the ColBERT reranker,
unless otherwise noted, we use the existing pre-indexed ColBERT representation of passages
for efficient reranking. The five families are:

• Lexical Retrieval Approaches: These are traditional retrieval models using a sparse
inverted index, which are introduced in Section 2.1.1, with and without BERT and ColBERT
rerankers, namely: (i) BM25 (ii) BM25+BERT (iii) BM25+ColBERT, (iv) BM25+RM3,
(v) BM25+RM3+BERT and (vi) BM25+RM3+ColBERT.

• Neural Augmentation Approaches: These use neural components to augment the
(sparse) inverted index that have been discussed in Section 2.2.3: (i) BM25+DeepCT
and (ii) BM25+docT5query, both without and with BERT and ColBERT rerankers. For
BM25+docT5query+ColBERT, the ColBERT reranker is applied on expanded passage
texts encoded at querying time, rather than the indexed ColBERT representation. The
response time for BM25+docT5query+ColBERT reflects this difference.

• Dense Retrieval Models: This family consists of the dense retrieval approaches: (i) ANCE
(cf. Section 2.3.1): The ANCE model is a single representation dense retrieval model. We
use the trained models provided by the authors trained on MSMARCO training data. (ii)
ANCE-PRF (cf. Section 2.4.3): The ANCE-PRF is a PRF variant of ANCE model – we
use the results released by the authors.(iii) ColBERT E2E (cf. Section 2.3.2): ColBERT
end-to-end (E2E) is the dense retrieval version of ColBERT, as defined in Section 4.1.

• BERT-QE Models: We apply BERT-QE (cf. Section 2.4.2 on top of a strong sparse baseline
and our dense retrieval baseline, ColBERT E2E, i.e., (i) BM25+RM3+ColBERT+BERT-
QE and (ii) ColBERT E2E+BERT-QE; Where possible, we use the ColBERT index for
scoring passages; for identifying the top scoring chunks within passages, we use ColBERT
in a slower “text” mode, i.e., without using the index. For the BERT-QE parameters, we
follow the settings in (Zheng et al., 2020), in particular using the recommended settings
of α = 0.4 and β = 0.9, which are also the most effective on MSMARCO. Indeed, to the
best our knowledge, this is the first application of BERT-QE upon dense retrieval, the first
application of BERT-QE on MSMARCO and the first application using ColBERT. We did
attempt to apply BERT-QE using the BERT re-ranker, but we found it to be ineffective on
MSMARCO, and exhibiting a response time exceeding 30 seconds per query, hence we
omit it from our experiments.
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• CEQE Models: As discussed in Section 2.4.2, this family consists of three CEQE variants,
i.e., CEQE-Max, CEQE-Centroid, and CEQE-Mul. We apply each CEQE query expansion
variant on top of the documents retrieved by BM25. Compared with the original CEQE,
we apply the pipeline BM25 + RM3 + BM25 rather than the Dirichlet LM + RM3 + BM25
pipeline for generating the expansion terms.

4.3.3 Passage Ranking Results

Now we analyse the evaluation performance of our proposed ColBERT-PRF model for the
passage ranking task and answer each of the posed research questions from Section 4.3.3.1 to
Section 4.3.3.4.

4.3.3.1 RQ4.1 – Overall Effectiveness of ColBERT-PRF

In this section, we examine the effectiveness of a pseudo-relevance feedback technique for the
ColBERT dense retrieval model on passage ranking task. As discussed in Section 2.5.3, this
set of experiments can be described as the in-domain evaluation as the evaluation and training
queries are from the same domain. On analysing Table 4.1, we first note that the ColBERT
dense retrieval approach outperforms the single representation based dense retrieval models, i.e.,
ANCE and its PRF variant ANCE-PRF for all metrics on both test query sets, probably because
the single representation used in ANCE provides limited information for matching queries and
documents (Luan et al., 2021). In particular, compared with ANCE-PRF, ColBERT-PRF shows
markedly improvement on all metrics for both query sets and shows significant improvement in
terms of MAP on TREC 2019 and nDCG@10 on TREC 2020. This indicates that the PRF mech-
anism that explicitly expands query with expansion embeddings to refine the query representation
is superior to implicitly learning from PRF information to form a better query representation.
Based on this, we then compare the performances of our proposed ColBERT-PRF models,
instantiated as ColBERT-PRF Ranker & ColBERT-PRF ReRanker, with the more effective
ColBERT E2E model. We find that both the Ranker and ReRanker models outperform ColBERT
E2E on all the metrics for both used query sets. Typically, on the TREC 2019 test queries,
both the Ranker and ReRanker models exhibit significant improvements in terms of MAP over
the ColBERT E2E model. In particular, we observe a 26% increase in MAP on TREC 20199

and 10% for TREC 2020 over ColBERT E2E for the ColBERT-PRF Ranker. In addition, both
ColBERT-PRF Ranker and ReRanker exhibit significant improvements over ColBERT E2E in
terms of nDCG@10 on TREC 2019 queries.
The high effectiveness of ColBERT-PRF Ranker (which is indeed higher than ColBERT-PRF
ReRanker) can be explained in that the expanded query obtained using the PRF process
introduces more relevant passages, thus it increases recall after re-executing the query on

9 Indeed, this is 8% higher than the highest MAP among all TREC 2019 participants (Craswell et al., 2021a).
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the dense index. As can be seen from Table 4.1, ColBERT-PRF Ranker exhibits significant
improvements over both ANCE and ColBERT E2E models on Recall. On the other hand, the
effectiveness of ColBERT-PRF ReRanker also suggests that the expanded query provides a better
query representation, which can better rank documents in the existing candidate set. Overall,
in response to RQ4.1, we conclude that our proposed ColBERT-PRF model is effective compared
to the ColBERT E2E dense retrieval model.
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4.3.3.2 RQ4.2 - Comparison to Baselines

Next, to address RQ4.2(a)-(c), we analyse the performances of the ColBERT-PRF Ranker and
ColBERT-PRF ReRanker approaches in comparison to different groups of baselines, namely
sparse (lexical) retrieval approaches, neural augmented baselines, and BERT-QE.
For RQ4.2(a), we compare the ColBERT-PRF Ranker and ReRanker models with the lexical
retrieval approaches. For both query sets, both Ranker and ReRanker provide significant
improvements on all evaluation measures compared to the BM25 and BM25+RM3 models. This
is mainly due to the more effective contexualised representation employed in the ColBERT-PRF
models than the traditional sparse representation used in the lexical retrieval approaches.
Furthermore, both ColBERT-PRF Ranker and ReRanker outperform the sparse retrieval
approaches when reranked by either the BERT or the ColBERT models – e.g., BM25+(Col)BERT
and BM25+RM3+(Col)BERT – on all metrics. In particular, ColBERT-PRF Ranker exhibits
marked improvements over the BM25 with BERT or ColBERT reranking approach for MAP on
the TREC 2019 queries. This indicates that our query expansion in the contextualised embedding
space produces query representations that result in improved retrieval effectiveness. Hence,
in answer to RQ4.2(a), we find that our proposed ColBERT-PRF models show significant
improvements in retrieval effectiveness over sparse baselines.
To further gauge the extent of improvements brought by the PRF additional information in
the sparse retrieval and the dense retrieval paradigms, we compare the amount of performance
improvements in terms of MAP for ColBERT-PRF vs. ColBERT, ANCE-PRF vs. ANCE, and
BM25+RM3 vs. BM25 in Figure 4.3. We observe that more queries improved, and by a larger
margin, by ColBERT-PRF compared to both RM3 and ANCE-PRF. Furthermore, from Figure 4.3,
we find that among the failed queries for ColBERT-PRF, most of these queries also failed for
the ANCE-PRF and RM3 approaches. These queries are hard queries that may struggle to be
improved by a PRF technique. On the other hand, in Table 4.2, we present the number of queries
whose performances are improved, unchanged and degraded when comparing a retrieval system
with and without a PRF mechanism applied. We find that ColBERT-PRF has the highest number
of improved queries and the lowest number of degraded queries. In the bottom half of Table 4.2,
we compute Spearman’s ρ correlation coefficient between the performance improvements of
different PRF methods – a high positive correlation coefficient would be indicative that the two
methods demonstrate a similar effect on different types of queries. From Table 4.2, we see that
the correlation coefficient between ColBERT-PRF vs. ColBERT and ANCE-PRF vs. ANCE is
highest among all the compared pairs (0.41). Overall, this tells us that while there is no strong
correlations between the queries improved by applying PRF to each baseline, ColBERT-PRF
and ANCE-PRF are the most correlated pair. Indeed, only moderate correlations are observed,
showing that the approaches improve different queries. Moreover, from Figure 4.3 we see that
ColBERT-PRF improves more queries and with further margin than ANCE-PRF.
For RQ4.2(b), on analysing the neural augmentation approaches, we observe that both the
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Figure 4.3: Per-query analysis on the TREC 2019 query set.

Table 4.2: Comparison of different PRF mechanisms: (i) numbers of queries improved, unchanged
or degraded compared to their respective baselines; (ii) performance improvement correlation
(Spearman’s ρ correlation coefficient) between pairs of PRF mechanisms.

BM25+RM3 vs. BM25 ANCE-PRF vs. ANCE ColBERT-PRF vs. ColBERT E2E

Improved/Unchanged/Degraded Improved/Unchanged/Degraded Improved/Unchanged/Degraded
23/1/19 26/1/16 30/0/13

BM25+RM3 vs. BM25 1.00 0.37 0.34
ANCE-PRF vs. ANCE 0.37 1.00 0.41
ColBERT-PRF vs. ColBERT E2E 0.34 0.41 1.00

DeepCT and docT5query neural components could lead to effectiveness improvements over
the corresponding lexical retrieval models without neural augmentation. However, despite
their improved effectiveness, our proposed ColBERT-PRF models exhibit marked improve-
ments over the neural augmentation approaches. Specifically, on the TREC 2019 query set,
ColBERT-PRF Ranker significantly outperforms 4 out of 6 neural augmentation baselines and the
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BM25+DeepCT baseline on MAP. Meanwhile, both ColBERT-PRF Ranker and ReRanker exhibit
significant improvements over BM25+DeepCT and BM25+docT5query on MAP for TREC
2020 queries, and exhibit improvements upto 9.5% improvements over neural augmentation
approaches with neural re-ranking (e.g., MAP 0.4671→0.5116). On analysing these comparisons,
the effectiveness of the ColBERT-PRF models indicates that the query representation enrichment
in a contextualised embedding space leads to a higher effectiveness performance than the sparse
representation passage enrichment. Thus, in response to RQ4.2(b), the ColBERT-PRF models
exhibit markedly higher performances than the neural augmentation approaches.
We further compare the ColBERT-PRF models with the recently proposed BERT-QE Reranking
model. In particular, we provide results when using BERT-QE to rerank both BM25+RM3 as well
as ColBERT E2E. Before comparing the ColBERT-PRF models with the BERT-QE rerankers,
we first note that BERT-QE doesn’t provide benefit to MAP on either query set, but can lead to a
marginal improvement for nDCG@10 and MRR@10. However, the BERT-QE reranker models
still underperform compared to our ColBERT-PRF models. Indeed, ColBERT E2E+BERT-QE
exhibits a performance significantly lower than both ColBERT-PRF Ranker and ReRanker on the
TREC 2019 query set. Hence, in response to RQ4.2(c), we find that the ColBERT-PRF models
significantly outperform the BERT-QE reranking models.
Finally, we consider the mean response times reported in Table 4.1, noting that ColBERT PRF
exhibits higher response times than other ColBERT-based baselines, and similar to BERT-based
re-rankers. There are several reasons for ColBERT PRF’s speed: Firstly, the KMeans clustering
of the feedback embeddings is conducted online, and the scikit-learn implementation we used
is fairly slow – we tried other markedly faster KMeans implementations, but they were limited
in terms of effectiveness (particularly for MAP), perhaps due to the lack of the KMeans++
initialisation procedure (Arthur and Vassilvitskii, 2007), which scikit-learn adopts; Secondly Col-
BERT PRF adds more expansion embeddings to the query - for the ranking setup, each feedback
embedding can potentially cause a further k′ = 1000 passages to be scored - further tuning of Col-
BERT’s k′ parameter may allow efficiency improvements for ColBERT-PRF without much loss of
effectiveness, at least for the first retrieval stage.Based on this, we further investigate how to attain
more of a balance between the effectiveness and the efficiency in leveraging techniques such as
approximate scoring technique (Macdonald and Tonellotto, 2021) and other clustering algorithms.

4.3.3.3 RQ4.3 - Impact of ColBERT-PRF Parameters.

To address RQ4.3, we investigate the impact of the parameters of ColBERT-PRF. In particular,
when varying the values of a specific hyper-parameter type, we fix all the other hyper-parameters
to their default setting, i.e. fb = 3, fe = 10, β = 1 and k = 24. Firstly, concerning the number
of clusters, K, and the number of expansion embeddings fe selected from those clusters
( fe ≤ K), Figures 4.5(a) and (b) report, for ColBERT-PRF Ranker and ColBERT-PRF ReRanker,
respectively, the MAP (y-axis) performance for different fe (x-axis) selected from K clusters
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(a) Cluster centroids, K = 8. (b) Cluster centroids, K = 64.

Figure 4.4: Embeddings selected using different number of clustering centroids K for the query
‘do goldfish grow’; point size is representative of the magnitude of IDF.

(different curves). We observe that, with the same number of clusters and expansion embeddings,
ColBERT-PRF Ranker exhibits a higher MAP performance than ColBERT-PRF ReRanker – as
we also observed in Section 4.3.3.1.
Then, for a given fe value, Figures 4.5(a) and (b) show that the best performance is achieved
by ColBERT-PRF when using K = 24. To explain this, we refer to Figure 4.4 together with
Figure 4.2(b), which both show the centroid embeddings obtained using different numbers of
clusters K. Indeed, if the number of clusters K is too small, the informativeness of the returned
embeddings would be limited. For instance, in Figure 4.4(a), the centroid embeddings represent
stopwords such as ‘in’ and ‘##’’ are included, which are unlikely to be helpful for retrieving
more relevant passages. However, if K is too large, the returned embeddings contain more noise,
and hence are not suitable for expansion – for instance, using K = 64, feedback embeddings
representing ‘innocent’ and ‘stunt’ are identified in Figure 4.4(b), which could cause a topic drift.
Next, we analyse the impact of the number of feedback passages, fb. Figure 4.5(c) reports the
MAP performance in response to different number of fb for both ColBERT-PRF Ranker and
ReRanker. We observe that, when fb = 3, both Ranker and ReRanker obtain their peak MAP
values. In addition, for a given fb value, the Ranker exhibits a higher performance than the
ReRanker. Similar to existing PRF models, we also find that considering too many feedback
passages causes a query drift, in this case by identifying unrelated embeddings.
Finally, we analyse the impact of the β parameter, which controls the emphasis of the expansion
embeddings during the final passage scoring. Figure 4.5(d) reports MAP as β is varied for
ColBERT-PRF Ranker and ReRanker. From the figure, we observe that in both scenarios, the
highest MAP is obtained for β ∈ [0.6,0.8], but good effectiveness is maintained for higher values
of β , which emphasises the high utility of the centroid embeddings for effective retrieval.
Overall, in response to RQ4.3, we find that ColBERT-PRF, similar to existing PRF approaches, is
sensitive to the number of feedback passages and the number of expansion embeddings that are
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(a) Impact of K and fe on ColBERT-PRF Ranker. (b) Impact of K and fe on ColBERT-PRF ReRanker.

(c) Impact of pseudo-relevance feedback size fb. (d) Impact of expansion embedding weight β .

Figure 4.5: MAP on the TREC 2019 query set while varying the number of clusters (K), number
of expansion embeddings ( fe), as well as the feedback set size fb and expansion embedding
weight β . β = 0 & fe = 0 correspond to the original ColBERT.

added to the query ( fb & fe) as well as their relative importance during scoring (cf. β ). However,
going further, the K parameter of KMeans has a notable impact on performance: if too high,
noisy clusters can be obtained; too low and the obtained centroids can represent stopwords. Yet,
the stable and effective results across the hyperparameters demonstrate the overall promise of
ColBERT-PRF.

4.3.3.4 RQ4.4 - Semantic Matching by ColBERT-PRF

We now analyse the expansion embeddings and the retrieved passages in order to better understand
the behaviour of ColBERT-PRF, and why it demonstrates advantages over traditional (sparse) QE
techniques.
Firstly, it is useful to inspect tokens corresponding to the expansion embeddings. Table 4.310 lists
three example queries from both the TREC 2019 and 2020 query sets and their tokenised forms
as well as the expansion tokens generated by the ColBERT-PRF model. For a given query, we

10 In Table 4.3, the expansion embedding ‘(breeds|##kshi)’, which appears for each query, is projected to be close to
the embedding of the [D] token, which ColBERT places in each passage.
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[SEP]
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Figure 4.6: ColBERT-PRF interaction matrix between query (qid: 106375) and passage (docid:
4337532) embeddings. The darker shading indicate a higher similarity. The highest similarity
among all the passage embeddings for a given query embedding is highlight with a X symbol.
The histogram depicts the magnitude of contribution for each query embedding to the final score
of the passage.

used our default setting for the ColBERT-PRF model, i.e., selecting ten expansion embeddings;
Equation (4.2) is used to resolve embeddings to tokens. On examination of Table 4.3, it is clear to
see the relation of the expansion embeddings to the original query - for instance, we observe that
expansion embeddings for the tectonic concept of active margin relate to ‘oceanic’, ‘volcanoes’
and ‘continental’ ‘plate’. Overall, we find that most of the expansion tokens identified are credible
supplementary information for each user query and can indeed clarify the information needs.
To answer RQ4.4, we further conduct analysis to measure the ability to perform semantic
matching within the ColBERT MaxSim operation. Indeed, as the ColBERT model’s matching
behaviour is performed using contextualised BERT embeddings for each token, polysemous
words (which have the same surface form, but different meanings) will have distinct embeddings,
while synonymous words will have similar embeddings. Hence it is possible to see the extent that
synonymous words, or more generally, semantic matches – where the query token is not matched
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1133167: how is the weather in jamaica
1037798: who is robert gray

1114819: what is durable medical equipment consist of
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104861: cost of interior concrete flooring

1117099: what is a active margin
131843: definition of a sigmet

47923: axon terminals or synaptic knob definition
207786: how are some sharks warm blooded

19335: anthropological definition of environment
405717: is cdg airport in main paris

1106007: define visceral
1103812: who formed the commonwealth of independent states

1129237: hydrogen is a liquid below what temperature
87452: causes of military suicide

182539: example of monotonic function
146187: difference between a mcdouble and a double cheeseburger

490595: rsa definition key
156493: do goldfish grow
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130510: definition declaratory judgment

1124210: tracheids are part of
359349: how to find the midsegment of a trapezoid

148538: difference between rn and bsn
168216: does legionella pneumophila cause pneumonia

87181: causes of left ventricular hypertrophy
573724: what are the social determinants of health

489204: right pelvic pain causes
ColBERT E2E
ColBERT-PRF

Figure 4.7: Per-query semantic matching proportion measurements (measured to rank 10) for
the ColBERT E2E (shown as red bars) and ColBERT-PRF (shown as cyan bars) models on the
TREC 2019 passage ranking query set.
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Figure 4.8: Mean Semantic Matching Proportion (Mean SMP) as rank varies.

with an embedding representing the same word in the document – are occurring during retrieval.
Indeed, we see this as a particular advantage for the ColBERT multiple representation model,
which is not possible for models such as ANCE where the whole query and the whole document
are each represented in a single representation embedding.
In particular, we examine which of the query embeddings match most strongly with a passage
embedding that corresponds to exactly the same token - a so called exact match; in contrast a
semantic match is a query embedding matching with a passage embedding which has a different
token id. Indeed, in (Formal et al., 2021b), the authors concluded that ColBERT is able to conduct
exact matches for important terms based on their embedded representations. In contrast, little
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Table 4.3: Examples of the expanded queries by the ColBERT PRF model on the TREC 2019 &
2020 query sets. The symbol | denotes that there are multiple tokens that are highly likely for a
particular expansion embedding. Token with darker red colour indicate its higher effectiveness
contribution.

Original query terms Original query tokens Most likely tokens for expansion embeddings

TREC 2019 queries

what is a active margin what is a active margin (by|opposition) oceanic volcanoes ##cton

(margin|margins) (breeds|##kshi) continental plate

an each

what is wifi vs bluetooth what is wi ##fi vs blue
##tooth

##tooth (breeds|##kshi) phones devices wi ##fi

blue systems access point

what is the most popular
food in switzerland

what is the most popular
food in switzerland

##hs (swiss|switzerland) (influences|includes)

(breeds|##kshi) potato (dishes|food) (bologna|hog)

cheese gr (italians|french)

TREC 2020 queries

what is mamey what is ma ##me ##y (is|upset) (breeds|##kshi) flesh sap ##ote fruit ma

##me (larger|more) central

average annual income
data analyst

average annual income
data analyst

(analyst|analysts) (breeds|##kshi) (55|96)

(grow|growth) salary computer tax 2015 depending

##k

do google docs auto save do google doc ##s auto
save

(breeds|##kshi) doc (to|automatically)

google document save (saves|saved) drive

(changes|revisions) (back|to)

work has considered the extent that ColBERT-based models perform semantic (i.e. non-exact)
matching. Thus, firstly, following (Macdonald et al., 2021b), we look into the interaction matrix
between the query and passage embeddings. Figure 4.6 describes the interaction matrix between
the query “why did the us voluntarily enter ww1” expanded with 10 expansion embeddings and
its top returned passage embeddings11.
From Figure 4.6, we see that some query tokens, such as ‘the’, ‘us’, ‘w’ and ‘##w’, experience
exact matching as these tokens are in the same form with their corresponding returned highest
MaxSim scored passage tokens. In contrast, the remaining query tokens are performing semantic
matching to the passage as their corresponding passage tokens with the highest MaxSim score are
in different lexical forms, for instance, query token ‘why’ matches with passage token ‘reason’.
In particular, the expansion token ‘revolution’ and ‘entered’, which does not exist in the original
token but are expanded using ColBERT-PRF, also performs the exact matching. In addition, the
expansion tokens such as ‘attacked’ and ‘harbour’ further perform semantic matching to the
passages. This further indicates the usefulness of the expansion tokens to improve the matching
performance between query and passage pairs.

11 We use a FAISS index to map embeddings back to the most likely token.
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To quantify the extent that semantic matching takes place, we define a new measure that inspects
the MaxSim, and determines whether each query embedding is matched with the same token
(exact match) vs. an inexact (semantic) match with a different token. Formally, let ti and t j

respectively denote the token id of the i-th query embedding and j-th passage embedding,
respectively. Given a query q and the set Rk of the top-ranked k passages, the Semantic Match

Proportion (SMP) at rank cutoff k w.r.t. q and Rk is defined as:

SMP(q,Rk) = ∑
d∈Rk

∑i∈toks(q)1[ti ̸= t j] ·max j=1,...,|d|φ
T
qi

φd j

∑i∈toks(q)max j=1,...,|d|φ T
qi

φd j

, (4.5)

where toks(q) returns the indices of the query embeddings that correspond to BERT tokens, i.e.,
not [CLS], [Q], or [MASK] tokens12, Rk is the top ranked k passages, and 1[] is the indicator
function. The definition of exact vs. semantic matching is overall useful to compare the
matching behaviour between different models. However, polysemous words may be counted as
exact matches (e.g. ‘bank’ in ‘river bank’ vs. ‘national bank of greece’) while they may match
semantically. Nevertheless, the embedding similarity for such occurrences of ‘bank’ would be
low. As a consequence, we argue that the contribution of the polysemous words to the lexical
category of SMP, when calculated on top-ranked documents, is likely to be negligible.
Figure 4.7 depicts the per-query semantic matching proportion calculated at the rank cutoff 10 for
the ColBERT-PRF and ColBERT E2E models on the TREC 2019 query set. From the figure, we
observe that when the expansion embeddings are added to the original query by ColBERT-PRF,
SMP is increased for most of the queries over the original ColBERT E2E model. Next, on both
TREC 2019 and TREC 2020 query sets, we investigate the impact of the rank cutoff k to the
semantic match proportion on ColBERT-PRF model instantiated as Ranker and ReRanker models
as well as the ColBERT E2E model, which is portrayed in Figure 4.8. In general, from Figure 4.8,
we can see that Mean SMP grows as the rank cutoff k increases - this is expected, as we know
that ColBERT prefers exact matches, and the number of exact matches will be decreased by rank
(resulting in increasing SMP). However, ColBERT-PRF (both Ranker and Reranker) have, in
general, higher SMP than the original ColBERT ranking. This verifies the results from Figure 4.7.
The interesting exception is at the very highest ranks, where both ColBERT-PRF approaches
exhibit lower SMP than the baseline. This suggests that at the very top ranks, ColBERT-PRF
exhibits a higher preference for exact token matches than the E2E baseline. However, overall, the
higher SMPs exhibited by ColBERT-PRF indicate that, at deeper ranks, the embedding-based
query expansion has the ability to retrieve passages with a less lexical exact match between the
query and passage embeddings.
In addition, we further investigate the potential for topic drift when applying ColBERT-PRF
with the different number of expansion embeddings on the TREC 2019 queries. In particular, in

12 Indeed, [CLS], [Q], and [MASK] do not correspond to actual WordPiece tokens originating from the user’s query
and hence can never have exact matches, so we exclude them from this calculation.
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Figure 4.9: Potential topic drift analysis for ColBERT-PRF ReRanker on the TREC 2019 query
set.

Figure 4.9a13 we measure retrieval effectiveness (MAP) as the number of expansion embeddings
is varied and, in Figure 4.9b, we present Mean SMP (y-axis) calculated upon the retrieved results
after PRF, at different rank cutoffs (curves), also as the number of expansion embeddings is
varied (x-axis).
From Figure 4.9a, we can see that fe = 8 gives the highest (MAP) effectiveness (as also shown
earlier in Figure 4.5b). At the same time, from Figure 4.9b, we observe that (1) for 2≤ fe ≤ 8,
Mean SMP falls; (2) however, for fe > 8, Mean SMP rises again. This trend is apparent
when Mean SMP is analysed for 5 or more retrieved passages. This suggests that with more
than 8 expansion embeddings selected, excessive semantic matching occurs (Figure 4.9b) and
effectiveness approaches MAP 0.50 (Figure 4.9a). As expansion embeddings are selected by
using the IDF of the corresponding token, this suggests that given the size of the feedback set (3
passages, with length upto 180 tokens and on average 77 tokens), for more than 8 embeddings
we are starting to select non-informative expansion embeddings that can only be semantically
matched in the retrieved passages, and hence there is no further positive benefit in terms of
effectiveness. However, as effectiveness does not markedly decrease for fe > 8, this indicates
that there is little risk of topic drift with ColBERT-PRF, due to the contextualised nature of the
expansion embeddings. Overall, these analyses answer RQ4.4.

4.4 Document Ranking Effectiveness of ColBERT-PRF

After assessing the effectiveness of ColBERT-PRF on passage ranking for the in-domain eval-
uation in the previous section, we further demonstrate the performance of ColBERT-PRF on
document ranking. In this task, documents are longer than passages, hence they need to be
divided into smaller chunks, with lengths comparable to those of passages. Moreover, in docu-

13 This is a subset of the curves presented earlier in Figure 4.5b, repeated here for ease of reference.
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ment ranking we do not fine-tune the ColBERT model on the new collection due to the limited
number of queries available; hence, we leverage the ColBERT model trained on the MSMARCO
as detailed in Section 4.3.2, e.g., in a zero shot out-of-domain evaluation setting. Thus, in this
section, we focus on testing the effectiveness of our proposed ColBERT-PRF for the MSMARCO
document retrieval task and the TREC Robust04 document retrieval task. Research questions
and experimental setup for document ranking experiments are detailed in Section 4.4.1 and
Section 4.4.2, respectively. Results and analysis are discussed in Section 4.4.3.

4.4.1 Research Questions

Our document ranking experiments address the following research questions:

• RQ4.5: Can our pseudo-relevance feedback mechanism enhance the retrieval effectiveness
of dense retrieval models, i.e., ColBERT-PRF model outperform ColBERT, ANCE and
ANCE-PRF dense retrieval models for document retrieval task?

• RQ4.6: How does ColBERT-PRF compare to other existing baseline and state-of-the-art
approaches for document retrieval task, namely:

(a) lexical (sparse) baselines, including using PRF,

(b) BERT-QE Reranking models,

(c) embedding-based query expansion models, namely the three variants of the CEQE
model: CEQE-Max, CEQE-Centroid and CEQE-Mul?

4.4.2 Experimental Setup

In this section, we detail the experimental setup for ColBERT-PRF on the document ranking task,
including the dataset and metrics used, the implementation detail as well as the baselines.

4.4.2.1 Dataset & Measures

In this section, we evaluate our ColBERT-PRF on document ranking task using MSMARCO
document and Robust04 document datasets (cf. Section 2.5.1). To test the retrieval effectiveness
of the ColBERT-PRF model, we use the 43 test queries from the TREC Deep Learning Track
2019 and 45 test queries from the TREC Deep Learning Track 2020, respectively. In addition,
we also conducted the evaluation using 250 title-only and description-only query sets from the
TREC Robust04 document ranking task.
We report the following metrics for MSMARCO document ranking tasks, namely the normalised
discounted cumulative gain (NDCG) calculated at rank 10, Mean Average Precision (MAP) at
rank 1000 as well as Recall calculated at ranks 100 and 1000. For the Robust04 experiments,
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we use the same metrics used for passage ranking tasks in Section 4.3.2. For significance testing,
we use the paired t-test (p < 0.05) and apply the Holm-Bonferroni multiple testing correction.

4.4.2.2 Implementation and Settings

As the length of documents in these corpora are too long to be fitted into the BERT model,
and in particular our trained ColBERT model14 (limited to 512 and 180 BERT WordPiece
tokens, respectively), we split long documents into smaller passages and index the generated
passages following (Dai and Callan, 2019a). In particular, when building the index for each
document corpora, a sliding window of 150 tokens with a stride of 75 tokens is applied to split
the documents into passages. All the passages are encoded into a FAISS index. At retrieval time,
FAISS retrieves k′ = 1000 document embeddings for every query embedding. The final score
for each document is obtained by taking its highest ranking passage, a.k.a., it’s max passage.
To ensure a fair comparison, we apply passaging for all other indices used in this section, including
the Terrier inverted index, i.e., the ANCE dense index15. Similarly, all PRF methods are applied
on feedback passages, and max passage applied on the final ranking of passages.
Finally, we follow the same ColBERT-PRF implementation as introduced in Section 4.3.2.
For query expansion settings, we follow the default settings for the passage ranking task in
Section 4.3.3, which is 10 expansion terms obtained from 3 feedback passages16 and K = 24
clusters.

4.4.2.3 Baselines

To test the effectiveness of our ColBERT-PRF model on the document ranking task, we compare
with all the baseline models we used for the passage ranking task except the Neural Augmentation

Approaches, due to the high GPU indexing time required for performing the doc2query and
DeepCT processing for these large document corpora.

4.4.3 Document Ranking Results

In this section, we further investigate the effectiveness of our proposed ColBERT-PRF for
document ranking tasks. Table 4.4 and Table 4.5 present the performance of ColBERT-PRF
models as well as the baselines on the MSMARCO document dataset and the Robust04 dataset,
respectively.

14 It is a common practice to use models trained on the MSMARCO passage corpus (Nguyen
et al., 2016) for document retrieval (e.g. (Li et al., 2020, Nogueira et al., 2020)). 15 While
this is necessary for a fair comparison, it results in a small degradation in effectiveness
for the sparse baselines - this has also been observed by the authors of Anserini - see
github.com/castorini/anserini/blob/master/src/main/python/passage_retrieval/example/robust04.md.
16 We also tried filtering passages from the same document before applying PRF. We observed no significant
improvements across multiple measures.
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Table 4.4: the MSMARCO Document corpus. Comparison with baselines. Superscripts a...p
denote significant improvements over the indicated baseline model(s). The highest value in each
column is boldfaced.

TREC 2019 (43 queries) TREC 2020 (45 queries)

MAP nDCG@10 Recall@100 Recall@1000 MAP nDCG@10 Recall@100 Recall@1000

Lexical Retrieval Approaches

BM25 (a) 0.3145 0.5048 0.3891 0.6975 0.3650 0.4709 0.6095 0.8143
BM25+BERT (b) 0.3797 0.6279 0.4363 0.6977 0.4387 0.5993 0.6646 0.8147
BM25+ColBERT (c) 0.3862 0.6503 0.4378 0.6970 0.4390 0.6144 0.6580 0.8155
BM25+RM3 (d) 0.3650 0.5411 0.4203 0.7304 0.3822 0.4770 0.6380 0.8311
BM25+RM3+BERT (e) 0.3973 0.6330 0.4466 0.7304 0.4470 0.5981 0.6646 0.8305
BM25+RM3+ColBERT (f) 0.4083 0.6633 0.4506 0.7300 0.4467 0.6074 0.6580 0.8305

Dense Retrieval Models

ANCE (g) 0.2708 0.6468 0.3443 0.5349 0.4050 0.6256 0.5682 0.7197
ColBERT E2E (h) 0.3195 0.6342 0.3880 0.5642 0.4290 0.6113 0.6351 0.7951

BERT-QE Reranking Models

BM25 + RM3 + ColBERT + BERT-QE (i) 0.4340 0.6850 0.4626 0.7298 0.4728 0.6268 0.6848 0.8310
ColBERT E2E + BERT-QE (j) 0.3358 0.6668 0.3953 0.5642 0.4478 0.6244 0.7141 0.7951

Embedding based Query Expansion

CEQE-Max (k) 0.3778 0.5176 0.4313 0.7462 0.3956 0.4729 0.6546 0.8410
CEQE-Centroid (l) 0.3765 0.5103 0.4312 0.7432 0.3968 0.4746 0.6540 0.8390
CEQE-Mul (m) 0.3680 0.4959 0.4207 0.7360 0.3937 0.4809 0.6467 0.8351

ColBERT-PRF Models

ColBERT-PRF Ranker (β=1) 0.3851gh j 0.6681adklm 0.4467agh j 0.6252g 0.4885adghklm 0.6146adklm 0.7120acd f ghm 0.8128g

ColBERT-PRF ReRanker (β=1) 0.3473gh 0.6688adklm 0.4283gh j 0.5459 0.4739adgklm 0.6171adklm 0.6933agh 0.7782g

4.4.3.1 RQ4.5 - Effectiveness of ColBERT-PRF for Document Ranking

Similar to the passage retrieval task, in this section we validate the effectiveness of the pseudo-
relevance feedback technique for the ColBERT dense retrieval model on the document retrieval
task. On analysing Table 4.4, we found that both ColBERT-PRF Ranker and ReRanker models
significantly outperform both the single representation dense retrieval, namely ANCE, and the
multiple representation dense retrieval model, namely ColBERT E2E, in terms of MAP and Recall
on both TREC 2019 and TREC 2020 query sets. In particular, the application of ColBERT-PRF
leads to upto 21% and 14% improvements over ColBERT E2E in terms of MAP for TREC 2019
and TREC 2020 query sets, respectively.
Indeed, ColBERT-PRF outperforms all document retrieval runs to the TREC 2019 Deep Learning
track, exceeding the highest observed MAP by 23% in terms of MAP. Similarly, on the TREC
2020 query set, the MAP observed is markedly above that attained by the second-ranked group on
the leaderboard (Craswell et al., 2021b).17 In terms of nDCG@10, ColBERT-PRF outperforms
both the ANCE and ColBERT E2E models on both MSMARCO query sets. Moreover, both
the ColBERT-PRF Ranker and ReRanker models significantly outperform the ColBERT and
ANCE models w.r.t. Recall@100, indicating the effectiveness of the ColBERT-PRF refined query
representations.
Similarly, when comparing the performances of ColBERT-PRF with the dense retrieval models
without pseudo-relevance feedback on Robust04 in Table 4.5, we note that both ColBERT-PRF
Ranker and ReRanker models are markedly improved over the ANCE and ColBERT E2E models
on MAP, nDCG@10 and Recall on both title-only and description-only type of queries. Overall,

17 The first ranked group used expensive document expansion techniques.
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Table 4.5: the Robust corpus. Comparison with baselines. Superscripts a...p denote significant
improvements over the indicated baseline model(s). The highest value in each column is bold-
faced.

Robust title (250 queries) Robust description (250 queries)

MAP nDCG@10 MRR@10 Recall MAP nDCG@10 MRR@10 Recall

Lexical Retrieval Approaches

BM25 (a) 0.2319 0.4163 0.6330 0.6758 0.2193 0.3966 0.6570 0.6584
BM25+BERT (b) 0.2550 0.4820 0.7290 0.6819 0.2723 0.4709 0.7293 0.6721
BM25+ColBERT (c) 0.2770 0.4753 0.7307 0.6821 0.2658 0.4728 0.7349 0.6684
BM25+RM3 (d) 0.2542 0.4244 0.6139 0.7007 0.2619 0.4182 0.6277 0.7008
BM25+RM3+BERT (e) 0.2884 0.4839 0.7343 0.7037 0.2814 0.4708 0.7251 0.7081
BM25+RM3+ColBERT (f) 0.2840 0.4758 0.7277 0.7058 0.2766 0.4739 0.7419 0.7068

Dense Retrieval Models

ANCE (g) 0.1605 0.3713 0.6096 0.5410 0.1919 0.4242 0.7002 0.5794
ColBERT E2E (h) 0.2327 0.4446 0.7011 0.6076 0.2175 0.4352 0.6853 0.6054

BERT-QE Reranking Models

BM25 + RM3 + ColBERT + BERT-QE (i) 0.2762 0.4407 0.6302 0.7072 0.2926 0.4857 0.7369 0.7076
ColBERT E2E + BERT-QE (j) 0.2395 0.4523 0.6973 0.6078 0.2289 0.4468 0.6904 0.6055

Embedding based Query Expansion

CEQE-Max (l) 0.2829 0.4318 0.6334 0.7494 0.2745 0.4224 0.6461 0.7232
CEQE-Centroid (m) 0.2818 0.4299 0.6305 0.7457 0.2746 0.4217 0.6475 0.7278
CEQE-Mul (n) 0.2764 0.4267 0.6225 0.7375 0.2672 0.4076 0.6146 0.7256

ColBERT-PRF Models

ColBERT-PRF Ranker (β=1) 0.2715adgh j 0.4670adgh 0.6836dglmn 0.6476gh j 0.2627agh j 0.4605ah 0.6678 0.6347gh j

ColBERT-PRF ReRanker (β=1) 0.2642adgh j 0.4682adgh 0.6837dg 0.6158g 0.2592agh j 0.4624ah 0.6681 0.6289gh j

between the Ranker and ReRanker ColBERT-PRF models, we find that ColBERT-PRF Ranker
is more effective than ColBERT-PRF ReRanker, likely due to its increased Recall, consistent
with those obtained from the passage ranking task (Section 4.3). Thus, in response to RQ4.5, we
conclude that our ColBERT-PRF is effective at improving ColBERT E2E on document ranking
tasks, similar to the improvements observed in Section 4.3.

4.4.3.2 RQ4.6 - Comparison to Baselines

In the following, we compare the effectiveness of the ColBERT-PRF model with various baselines.
From Table 4.4, we find that ColBERT-PRF instantiated as the Ranker model significantly
improves over the BM25-based lexical retrieval baselines and the ColBERT E2E with BERT-
QE as the reranker, as well as all the CEQE variants models in terms of the nDCG@10 and
Recall@100 metrics on the TREC 2019 query set. In addition, for the TREC 2020 query set,
ColBERT-PRF significantly improves over all the baselines except those with BERT-based neural
reranking models, namely BERT, ColBERT and BERT-QE, in terms of the MAP and Recall@100
metrics.
Now let’s analyse the performance of ColBERT-PRF models on Robust04 query sets. From
Table 4.5, we observe that ColBERT-PRF models significantly outperform the BM25 on both
query sets and markedly outperform over BM25 + RM3 on title-only queries. In addition,
ColBERT-PRF shows a similar performance with CEQE models in terms of MAP but exhibits
marked improvements in terms of nDCG@10 and MRR@10. Moreover, when comparing with
the models with neural rerankers, both ColBERT-PRF Ranker and ReRanker models significantly
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outperform the ColBERT E2E + BERT-QE baseline and exhibit comparable performance to the
other neural reranker models. However, we argue that the limited performance of ColBERT-PRF
compared with the BERT-based reranking models for the Robust04 query sets comes from the
two following aspects: firstly, we used a zero-shot setting of ColBERT model for the document
ranking tasks, in that the ColBERT model was not trained on the larger document datasets;
second, we didn’t perform further parameter tuning for ColBERT-PRF on the document ranking
task. Thus, in response to RQ4.6, we find that ColBERT-PRF is more effective than most of the
baseline models and comparable to the BERT-based neural reranking models.

4.5 Measuring the Informativeness of Expansion Embeddings
of ColBERT-PRF

In this section, we investigate the effectiveness of the three variants of the ColBERT-PRF model
using different techniques to measure the informativeness of the expansion embeddings. The
strategies are detailed in Section 4.5.1. Accordingly, a research question is posed in Section 4.5.2,
with a corresponding experimental setup. Finally, Section 4.5.3 presents the performance and
analysis of the three ColBERT-PRF variants.

4.5.1 Methodology

In Section 4.2.2 we proposed to map each expansion embedding back to its most likely token,
and use the IDF of that token to measure the importance σ of each expansion embedding υi

generated by ColBERT-PRF. This results in a weight, σ(υi), that is used in the expanded MaxSim
calculation (Equation (4.4)). Indeed, notions of document frequency or collection frequency are
commonly used in PRF models to measure expansion terms (Amati, 2003). The intuition behind
this is that if a term appears more frequently in the feedback documents than in the whole corpus,
the term is taken as an informative term. In contrast, terms that occur frequently in the corpus will
not discriminate well relevant documents from other documents in the collection. In this section,
we revisit the use of IDF in ColBERT-PRF, by additionally using the collection frequency of the
token, while also examining the corresponding embeddings of the tokens. Indeed, in addition
to the document frequency focus of IDF, the collection frequency is also useful to reflect the
informativeness of a term within the whole collection, measured as follows:

σICT F(t) = log
(
|D|+1

t f (t,D)+1

)
, (4.6)

where |D| is the number of terms in the collection D and t f (t,D) is the number of occurrences of
expansion term t in the whole collection D.
However using either IDF or ICTF as expansion embedding weights does not consider the
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contextualised nature of the embeddings - that different tokens can have distinct meanings, and
these may be more or less useful for retrieval. The use of IDF or ICTF can mask such distinctions.
Hence, we examine a further method based directly on the embedded representations. In
particular, for each token, we examine all corresponding embeddings in the index, and determine
how ‘focused’ these are - we postulate that a token with more focused embeddings will only have
a single meaning (and therefore less polysemous), and hence more likely to be a good expansion
embedding. Specifically, we measure the Mean Cosine similarity (MCos) for the embeddings of
each token compared to the mean of all those embeddings:

σMCos(t) =
1

t f (t,D)

t f (t,D)

∑
j=1

cos(ϒ,φc j), (4.7)

where ϒ is the element-wise average embedding of all embeddings in the index for token t. MCos
is intended to approximate the semantic coherence of the embeddings for a given token. The
expansion embeddings of more coherent tokens are given a higher weight in ColBERT-PRF.

4.5.2 Research Question & Experimental Setup

Our informativeness measurement experiments address the following research question:

• RQ4.7: What is the impact of the effectiveness ColBERT-PRF using different informative-
ness of expansion embedding measurements methods, namely the IDF weighting method,
ICTF weighting method and the MCos weighting method?

In our experiments addressing RQ4.7, while testing IDF, ICTF and MCos importance measures,
we vary the parameter of ColBERT-PRF that controls the overall weight of the expansion
embeddings, β . We do not normalise the various importance measures σIDF(t), σICT F(t) and
σMCos(t) – their inherent differences in scales are addressed by varying β .
Dataset: The query sets we used to demonstrate the effectiveness of the three variants of ColBERT-
PRF proposed are the MSMARCO passage TREC 2019 and TREC 2020 passage query sets for
passage retrieval task and the Robust title and description query sets for document retrieval task.
Measures: Mean Average Precision (MAP) is used as the main metric.

4.5.3 Results

Figure 4.10 shows the impacts of the retrieval effectiveness of the different weighting methods
while β is varied, in terms of MAP, for ColBERT-PRF for both the MSMARCO passage ranking
task and the Robust04 document ranking task. Specifically, for the passage ranking task, we
measure the retrieval effectiveness on both the TREC 2019 and TREC 2020 passage ranking
queries, and using title-only and description-only types of queries of Robust04.
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(a) MSMARCO passage TREC 2019 query set.
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(b) MSMARCO passage TREC 2020 query set
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(c) Robust04 title query set.
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(d) Robust04 desciption query set.

Figure 4.10: Influence of different weighting methods. β = 0 corresponds to the original
ColBERT.

On analysing the figure, we see that, for both of the TREC 2019 and TREC 2020 query sets,
the peak MAP scores for all the three weighting methods are the same, approximately with
MAP=0.54 and MAP=0.51 respectively. In addition, according to Figure 4.10a and 4.10b, the
overall trend for IDF and ICTF weighting methods are the same and both reach the highest
MAP score with β ∈ [0.4,0.8]. When we compare with IDF and ICTF, we see that MCos
with β ∈ [4.0,6.0] exhibits the highest MAP performance. These trends allow us to draw the
following observations: the lines for IDF and ICTF are very similar, varying only in terms
of the β value needed to obtain the highest MAP; In contrast, the MCos weighting method
achieves a similar maximum MAP, but at a larger β value – this is due to the lack of common
normalisation. Indeed, as the maximum MAP values obtained are similar for IDF, ICTF and
MCos, this suggests that the MCos is correlated with IDF, and that the statistical approaches are
sufficient for measuring expansion embedding importance. A closer analysis of IDF and ICTF, as
calculated on the BERT tokens, found that they exhibit a very high correlation (Spearman’s ρ of
∼1.00 on the MSMARCO passage corpus). This is indeed higher than the correlation observed
on a traditional sparse Terrier inverted index (which uses a more conventional tokeniser) of
0.95 on the MSMARCO document index. The differences in correlations can be explained as
follows: firstly, due to the use of WordPieces by the BERT tokeniser, which reduces the presence
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of long-tail tokens (which are tokenised to smaller WordPieces); secondly, passage corpora use
smaller indexing units than document corpora, so it is less likely for terms to occur multiple
times – this results in collection frequency being more correlated to document frequency.
For the Robust04 query set (Figure 4.10c and 4.10d), we see that while the peak MAP values for
IDF and ICTF are again similar, the MCos weighting method gives lower MAP scores on the
Robust04 title and description query sets. This suggests that using the coherence of a token’s
embeddings may not well indicate the utility of the expansion embedding. Indeed, some tokens
with high embedding coherence could be stopword-like in nature. This motivates the continued
use of IDF and ICTF for identifying important expansion embeddings.
Overall, to address RQ4.7, we find that the statistical information, based on the IDF and ICTF
weighting methods, is more stable than the MCos weighting method for different retrieval tasks.
Use of IDF and ICTF were shown to be equivalent, due to the higher correlation between
document frequency and collection frequency on passage corpora.

4.6 Efficient Variants of ColBERT-PRF

In Section 4.3.3, we noted the high mean response time of the ColBERT PRF approach. Higher
response times are a feature of many PRF approaches, due to the need to analyse the contents of
the feedback documents, and decide upon the expansion terms/embeddings. In this section, we
investigate several efficient variants of our ColBERT-PRF model, by experimenting with different
clustering approaches, as well as different retrieval configurations of ColBERT.
In particular, we describe different variants in Section 4.6.1. Two research questions and the
implementation setup are detailed in Section 4.6.2.1. Results and analysis are discussed in
Section 4.6.3.

4.6.1 ColBERT-PRF variants

The overall workflow of a ColBERT-PRF Ranker model can be described into five stages, as
shown in Figure 4.1. These stages can be summarised as follows (for the ColBERT-PRF ReRanker
model, the fourth stage ANN retrieval is omitted):

• Stage 1: First-pass FAISS ANN Retrieval

• Stage 2: First-pass exact ColBERT MaxSim re-ranking

• Stage 3: Clustering of Feedback Documents and Expansion Embedding Weighting

• Stage 4: Second-pass FAISS ANN Retrieval

• Stage 5: Second-pass exact ColBERT MaxSim re-ranking
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(a) KMeans clustering.
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(b) KMeans-Closest clustering.
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(c) KMedoid clustering.

Figure 4.11: The illustration of different clustering methods. Dots in different colours indicate
the document embeddings belonging to different clusters. Blue stars represents the expansion
embedding, while the red diamond represents the indicative embedding used to measure the
informativeness of the expansion embeddings.

In the following, we discuss changes to the clustering (Stage 3 above, Section 4.6.1.1) and ANN
retrieval (Stages 1 & 4, Section 4.6.1.2).

4.6.1.1 Clustering

The default clustering technique in Stage 3 is the KMeans clustering algorithm. KMeans
clustering is a widely used clustering method, which groups the samples into k clusters according
to their Euclidean distance to each other. Hence, in ColBERT-PRF, given a set of document
embeddings and the number of clusters expected to be returned, KMeans clustering is employed
to return a list of representative centroid embeddings. Figure 4.11a provides an illustration
of the KMeans clustering method. Indeed, as shown in Figure 4.11a, we notice that both
cluster centroids (which can be applied as expansion embeddings for PRF) are distinct from
the input embeddings. As a consequence, while measuring the importance and selecting the
most informative ones among the representative centroid embeddings using IDF (or ICTF or
MCos), we are required to map each centroid embedding to a corresponding token id. As the
representative centroid embedding, by definition, is not an actual document embedding, we turn
to the FAISS ANN index and apply Equation (4.2) to obtain a list of token ids (see Section 4.2.2).
However, the main drawback of the above KMeans clustering method in ColBERT-PRF is that
the procedure of looking up the most likely token for each of the K centroid embeddings requires
another K FAISS lookups. To address this issue, we propose variants that avoid these additional
FAISS lookups, by using the most likely token within each cluster - to do so, we recognise that
the expansion embedding (which is added to the query) needs not perfectly alignment with the
embedding used to measure informativeness, which we call the indicative embedding.
Our first proposed alternative strategy is called KMeans-Closest, which is still based on KMeans
clustering but does not rely on additional FAISS lookups to obtain the most likely tokens. Once the
K centroid embeddings are computed, for each centroid we identify the closest feedback document
embedding in the corresponding cluster – the indicative embedding for each cluster – and we
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use its token id to measure the importance score, such as IDF of the expansion embeddings. As
shown in Figure 4.11b, the indicative embeddings (the diamonds) are the closest actual document
embeddings to the KMeans centroid embeddings (the blue stars).
Our second proposed clustering strategy is KMedoids (Khennak et al., 2019). The KMedoids
algorithm returns the medoid of each cluster – the medoid is the most centrally located embedding
of the input document embeddings. Thus, after applying clustering upon the feedback document
embeddings, for each cluster, we obtain the medoid (an indicative embedding for the cluster)
that is also an actual document embedding, and hence can be mapped back to a token id, without
requiring additional FAISS lookups for each centroid. Figure 4.11c depicts both the expansion
embeddings and the indicative embeddings are the returned medoid embeddings of the KMedoids
clustering algorithm.
Overall, while the use of the KMeans-Closest and KMedoids methods can speed up the third stage
of ColBERT-PRF, there might exist some potential risks (e.g., token id mismatch) thus hindering
the effectiveness – hence, we report effectiveness as well as efficiency in our experiments.

4.6.1.2 ANN Retrieval

The overall ColBERT-PRF Ranker process encapsulates a total of 5 stages, as shown in Figure 4.1.
An ANN retrieval stage is used in both stages 1 & 4, and hence forms a significant part of the
workflow. Indeed, as highlighted in Section 4.1, for each given query embedding, the approximate
nearest neighbour search produces k′ document embeddings for each query embedding, which
are then mapped to the corresponding documents, thereby forming an unordered set of candidate
documents. However, the contribution of the different query embeddings to the final score of the
document varies (cf. the contribution histogram in Figure 4.6)18. Therefore, it is not efficient to
take upto k′ = 1000 documents for each query embedding forward to the 2nd stage for accurate
MaxSim scoring, as not all of these documents will likely receive high scores.
To this end, we experiment with using Approximate Scoring (Macdonald and Tonellotto, 2021)
at the first stage, as well as in the later stage 4 retrieval. In particular, this approach makes use
of the MaxSim operator applied on the approximate cosine scores of the ANN algorithm, to
generate a ranking of candidates from the first stage. Indeed, as this is a ranking, rather than a set,
then the number of the candidates k can be directly controlled, rather than indirectly through k′.
While requires more computation in stage 1 (and has a small negative impact on the response
time of that stage), it has marked overall efficiency benefits (Macdonald and Tonellotto, 2021) for
ColBERT dense retrieval, as a smaller number of candidates can be passed to MaxSim without
loss of recall.
More specifically, for the ColBERT-PRF instantiated as Ranker model, we apply the Approximate

18 Indeed, in separate but orthogonal work (Tonellotto and Macdonald, 2021b), we show that query embeddings
vary in their ability to recall relevant documents, and some can even be discarded (pruned) from the ANN search
phase without significant loss of effectiveness.

106



Scoring technique only in the first stage or in both the first and fourth stages of the ColBERT-PRF-
Ranker model. Indeed, as we only require the most relevant three feedback passages for effective
PRF, accurately scoring thousands of passages retrieved by the 1st ANN stage is superfluous.
For the ColBERT-PRF instantiated as the ReRanker model, we apply Approximate Scoring in
the first stage. In addition, we further investigate the efficiency and effectiveness trade-off when
implementing the different clustering techniques and the Approximate Scoring technique in the
various ColBERT stages.

4.6.2 Experimental Setup

Now we describe the experimental setup for the efficient ColBERT-PRF variants, where Sec-
tion 4.6.2.1 introduces the research questions and Section 4.6.2.2 introduces the dataset and
measures. In addition, the experimental settings are detailed in Section 4.6.2.3.

4.6.2.1 Research Question & Experimental Setup

For the efficient ColBERT-PRF variants, we pose the following research questions:

• RQ4.8: What is the impact on efficiency and effectiveness of the ColBERT-PRF model
using different clustering methods, namely the KMeans and KMeans-Closest clustering
methods and the KMedoids clustering method?

• RQ4.9: What is the impact on efficiency and effectiveness of the ColBERT-PRF model
when instantiated using Approximate Scoring?

4.6.2.2 Dataset & Measures

We compare the efficiency and the effectiveness of ColBERT-PRF model efficient variants on
TREC 2019 and TREC 2020 query sets from MSMARCO passage.
For measuring the performance in terms of efficiency, we report the Mean Response Time (MRT)
for each stage of the ColBERT-PRF model (described in Figure 4.1) and its overall MRT. Mean
response times are measured with one Nvidia Titan RTX GPU (using a single thread for retrieval).
In addition, we report the effectiveness performance with the metrics used in Section 4.3.2,
namely MAP, nDCG@10, MRR and Recall. For significance testing, we use the paired t-test
(p < 0.05) and apply the Holm-Bonferroni multiple-testing correction technique.

4.6.2.3 Experimental Setting

For both KMeans-Closest and KMedoids clustering, we reuse the default setting of the KMeans
clustering algorithm, i.e., the number of clusters K = 24, the number of feedback documents
fb = 3, and the number of expansion embeddings fe = 10. As for β , based on the conclusions
obtained from Section 4.3, we pick the appropriate β for each query set, namely β = 1 and
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β = 0.5 for the TREC 2019 and TREC 2020 passage ranking query sets, respectively. For the
Approximate Scoring experiments, let k1 denote the number of passages retrieved in the Stage
1 ANN, and k4 denote the number of passages retrieved in the Stage 4 ANN. Then, for (i) the
ColBERT-PRF Ranker model, we apply with rank cutoff of k1 = 300 and k4 = 100019, and for
(ii) the ReRanker model, we apply with rank cutoff k1 = 1000 in the first stage only, to ensure
sufficient recall of relevant passages to be upranked after applying PRF. We later vary k1 and k4

to demonstrate their impact upon efficiency and effectiveness.

4.6.3 Results

Now we analyse the evaluation results, in response to RQ4.8 and RQ4.9, for the efficient variants
of ColBERT-PRF.

4.6.3.1 RQ4.8 - Clustering Variants

Table 4.6 lists the effectiveness and the efficiency performance for ColBERT E2E and the
ColBERT-PRF instantiated as Ranker and ReRanker models on both the TREC 2019 and TREC
2020 passage ranking query sets. In terms of efficiency, we measure the MRT of the different
ColBERT-PRF stages as well as the overall MRT for each model variant. From Table 4.6, we note
that, for both the TREC 2019 and TREC 2020 query sets, both the ColBERT-PRF Ranker and
ReRanker model variants implemented with KMeans-Closest and KMedoids clustering methods
are much faster than the KMeans clustering method model, without markedly compromising
their effectiveness. In particular, both KMeans-Closest and KMedoids still exhibit enhanced
nDCG@10 and MAP (significantly so) over the ColBERT E2E baseline. Moreover, this speed
benefit is obtained by omitting the FAISS lookup step in the default ColBERT-PRF with KMeans-
Closest and KMedoids clustering algorithms, as large efficiency improvements can be observed in
the Stage 3 column of Table 4.6 (e.g. on TREC 2019, ∼900ms for KMeans-Closest vs. ∼3000ms
for KMeans). Going further, KMedoids is faster still (218ms on TREC 2019), demonstrating
the benefit of a fast clustering algorithm, with no further loss of effectiveness compared to
KMeans-Closest.
Overall, in a reranking scenario, KMeans-Closest and KMedoids clustering methods experience
upto 2.48× and 4.54× speedups, respectively. Indeed, the mean response times of KMedoids of
766ms (TREC 2020) is very respectable compared to the ColBERT E2E baseline, despite the
normally expensive application of a PRF technique. Thus, in response to RQ4.8, we conclude that
for both the ColBERT-PRF Ranker and ReRanker models with KMeans-Closest or KMedoids
clustering are more efficient than the KMeans clustering method without compromising the
effectiveness.
19 Indeed, Macdonald and Tonellotto (2021) suggest k = 300 is sufficient for high precision retrieval.
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4.6.3.2 RQ4.9 - Variants using Approximate Scoring

Next, we consider the application of Approximate Scoring within ColBERT-PRF. Again, effi-
ciency and effectiveness results are reported in Table 4.6. We report response times only for
KMeans. Firstly, on examining the table, we find that Approximate Scoring applied in both the
first stage and the fourth stage of the ColBERT-PRF Ranker model exhibits similar effectiveness
performance but is much more efficient than the original ColBERT-PRF Ranker model. In addi-
tion, deploying Approximate Scoring within the ColBERT-PRF ReRanker model also reduces
the response time while still outperforming the ColBERT E2E model (but not by a significant
margin). From Table 4.6, we see that rows with Approximate Scoring techniques applied exhibit
increased Stage 1 times (43ms→ 95ms/90ms for Ranker, as MaxSim takes time to compute), but
are much faster in Stage 2, as the exact scoring only occurs in the selected high-quality candidates
(344ms→ 22ms/23ms for Ranker). The next effect of replacing both of the set retrieval ANN
stages with Approximate Scoring in Ranker is an up to 18% speedup in response times (4103ms
→ 3466ms), while still maintaining high effectiveness, e.g., significant improvements in MAP
over the baseline ColBERT E2E.
Next, we further study the trade-off between the efficiency and the effectiveness of ColBERT-PRF
applied with Approximate Scoring, as well as the benefits brought by the different clustering
techniques. Aligned with the table, Figure 4.12 presents both the effectiveness and efficiency of
the following three strategies on the TREC 2019 query set: (i) ColBERT-PRF Ranker applied with
Approximate Scoring in stage 1 using three different clustering techniques; (ii) ColBERT-PRF
Ranker applied with Approximate Scoring in both stage 1 and stage 4 using three different
clustering techniques and (iii) ColBERT-PRF ReRanker applied with Approximate Scoring in
stage 1 using three different clustering techniques. In each figure, we vary the cutoff, k1 or k4, of
Approximate Scoring to produce curves for each setting (100≤ {k1,k3} ≤ 730020). We provide
separate figures for MAP and nDCG@10. Each figure has two asterisk points (⋆) denoting
the performance of ColBERT E2E, and the ColBERT-PRF default setting (KMeans, ANN set
retrieval). For the points in each curve, the marker • indicates the corresponding performance is
significantly improved (and × indicates not significantly) over the ColBERT E2E baseline.
Firstly, we analyse ColBERT-PRF Ranker when only Stage 1 Approximate Scoring is applied.
From Figure 4.12b, we observe that, for the smaller k1, there is some minor degradation of
nDCG@10; but the impact on MAP (Figure 4.12a) is indistinguishable. In terms of efficiency, it
can easily be seen that KMedoids is the most efficient technique, followed by the KMeans-Closest
technique and finally the KMeans clustering technique.
We next consider Figure 4.12c and Figure 4.12d, where we applied the Approximate Scoring
technique for both the first and fourth stages for ColBERT-PRF Ranker model, with the different
clustering methods. More specifically, k1, the rank cutoff of the first stage Approximate Scoring
is fixed to 300, while k4 is varied. From Figure 4.12c, we find that all of the three clustering

20 7300 is the average number of passages retrieved by ColBERT E2E for k′ = 1000
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Table 4.6: Mean response time and the effectiveness on both TREC 2019 and TREC 2020 passage
ranking query sets. † indicates significant improvement over the ColBERT-E2E model. The
highest effectiveness and lowest response time value in each scenario is boldfaced.

Models PRF
Description

Mean Response Time (ms)
MAP nDCG@10 MRR Recall

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Overall

TREC 2019 query set

ColBERT E2E – 47 318 - - - 365 0.4318 0.6934 0.8529 0.7892

ColBERT-PRF
Ranker

KMeans 43 344 2997 61 658 4103 0.5431† 0.7352 0.8858 0.8706†
KMeans-Closest 45 333 903 116 641 2038 (2.01x) 0.5075† 0.7289 0.8497 0.8507†

KMedoids 45 327 218 134 610 1334 (3.07x) 0.5073† 0.7200 0.8723 0.8681†
Approximate Scoring (Stage 1) 95 22 3011 56 684 3868 (1.06x) 0.5478† 0.7314 0.8649 0.8649†

Approximate Scoring (Stages 1 & 4 ) 90 23 3158 129 66 3466 (1.18x) 0.5196† 0.7314 0.8042 0.8646†

ColBERT-PRF
ReRanker

KMeans 47 374 3047 - 75 3543 0.5040† 0.7369 0.8858 0.7961
KMeans-Closest 47 352 921 - 110 1430 (2.48x) 0.4700† 0.7062 0.8497 0.7890

KMedoids 47 351 257 - 139 794 (4.46x) 0.4744† 0.7235 0.8723 0.7892
Approximate Scoring (Stage 1) 93 56 3214 - 68 3431 (1.03x) 0.4565 0.7336 0.8858 0.6953

TREC 2020 query set

ColBERT E2E – 44 346 - - - 390 0.4654 0.6871 0.8525 0.8245

ColBERT-PRF
Ranker

KMeans 45 346 3033 54 677 4155 0.5116† 0.7152 0.8439 0.8837†
KMeans-Closest 45 348 945 120 647 2105 (1.97x) 0.4920† 0.7054 0.7850 0.8670†

KMedoids 45 338 222 134 609 1348 (3.08x) 0.4970† 0.7065 0.8363 0.8787†
Approximate Scoring (Stage 1) 91 22 3030 60 711 3914 (1.06x) 0.5062† 0.7108 0.8417 0.8802†

Approximate Scoring (Stages 1 & 4 ) 89 22 3086 137 63 3397 (1.22x) 0.4954† 0.7091 0.8019 0.8419

ColBERT-PRF
ReRanker

KMeans 47 374 2922 - 64 3477 0.5049† 0.7165 0.8439 0.8246
KMeans-Closest 46 352 987 - 106 1491 (2.33x) 0.4908† 0.7061 0.7850 0.8255

KMedoids 47 341 251 - 127 766 (4.54x) 0.4927† 0.7077 0.8363 0.8245
Approximate Scoring (Stage 1) 96 54 3110 - 72 3332 (1.04x) 0.4858 0.7127 0.8464 0.7550

techniques exhibit correlations between efficiency and effectiveness, in that increased MRT also
exhibits increased effectiveness. Moreover, reducing k4 results in more marked degradations for
MAP than for nDCG@10, and, for each of the three clustering methods, stable effectiveness can
be achieved with large enough k4.
Finally, we analyse the efficiency/effectiveness trade-off for ColBERT-PRF ReRanker. From
Figures 4.12e & 4.12f, we observe that the trade-off curves for ColBERT-PRF ReRanker model
with different clustering technique exhibit similar trend with Figure 4.12c & 4.12d, with the
slightly lower MAP values typically exhibited by ReRanker in comparison to the Ranker setting
of ColBERT-PRF. Overall, reducing k1 here can markedly impact both MAP and nDCG@10.
However, using sufficiently large k1 can still result in significantly enhanced MAP (denoted
using •), even with response times around 1000ms. This is markedly faster than the default
ColBERT-PRF ReRanker setting, which attains 3500ms (shown as ⋆) and much closer to the
default response time of ColBERT E2E (⋆).
Overall, in response to RQ4.9, we conclude that the Approximate Scoring technique is useful to
attain a better balance of effectiveness and efficiency for the ColBERT-PRF model, by reducing
the number of documents being re-ranked, and can also be combined with the more efficient
clustering techniques.
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Figure 4.12: Trade-off between efficiency and effectiveness for ColBERT-PRF implemented
with different clustering methods and the Approximate Scoring technique. The star coloured
with purple and the red represents the ColBERT E2E and the default ColBERT PRF Ranker
or ReRanker performance. A point marker of • indicates the corresponding performance is
significantly improved (and × indicates not significantly) over the ColBERT-E2E baseline.

4.7 Conclusion

In this chapter, we proposed a contextualised pseudo-relevance feedback mechanism for
multiple representation dense retrieval. Based on the feedback documents obtained from the
first-pass retrieval, our proposed ColBERT-PRF approach extracts representative feedback
embeddings using a clustering technique. It then identifies discriminative embeddings among
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these representative embeddings and appends them to the query representation. ColBERT-PRF
can be effectively applied in both ranking and reranking scenarios, and requires no further neural
network training beyond that of ColBERT. Indeed, our passage ranking experimental results
– on the TREC 2019 and 2020 Deep Learning track passage ranking query sets (cf. Table 4.1)
– showed that our proposed approach can significantly improve the retrieval effectiveness of the
state-of-the-art ColBERT dense retrieval approach. In particular, our ColBERT-PRF outperforms
ColBERT E2E model by 26% and 10% on TREC 2019 and TREC 2020 passage ranking query
sets (cf. Table 4.4). Our proposed ColBERT-PRF is a novel and extremely promising approach
into applying PRF in dense retrieval. It may also be adaptable to further multiple representation
dense retrieval approaches beyond ColBERT. We further validated the effectiveness of the
proposed ColBERT-PRF approach on the MSMARCO document ranking task and TREC
Robust04 document ranking task, where ColBERT-PRF is observed to exhibit upto 21% and 14%
improvements over ColBERT E2E model on TREC 2019 and TREC 2020 document ranking
query sets, respectively. Moreover, we investigated ColBERT-PRF variants with different
weighting approaches for measuring the usefulness of the expansion embeddings. Finally, in
order to trade-off the efficiency and the effectiveness, we explored the efficient variants of
ColBERT-PRF using the approximate scoring technique and/or different clustering algorithms,
bringing upto 4.54x speedup without compromising the retrieval effectiveness (cf. Table 4.6).
In conclusion, the main findings of this chapter can be summarised as follows:

• The pseudo-relevance feedback information from the top-returned documents in multiple
representation dense retrieval is beneficial for improving the retrieval effectiveness on
passage retrieval (cf. Section 4.3) and document retrieval (cf. Section 4.4). Indeed, our
proposed pseudo-relevance feedback mechanism can significantly improve the retrieval ef-
fectiveness over than ColBERT end-to-end model, the single representation dense retrieval
models, as well as most of the baselines for both passage ranking and document ranking
tasks;

• Techniques based on statistical information, namely IDF and ICTF, and on embedding
coherency, namely Mean Cosine Similarity, can be used to measure the informativeness of
expansion embeddings of ColBERT-PRF (Section 4.5);

• The trade-off of the retrieval effectiveness and efficiency of ColBERT-PRF can be at-
tained using different clustering techniques and/or candidate selection techniques based on
approximate scoring (Section 4.6).

Overall, in the proposed thesis statement in Section 1.1, we postulated that applying pseudo-
relevance feedback on contextualised token embeddings can refine the query representation
for multiple representation dense retrieval. Therefore, in this chapter, we explored how to
implement the pseudo-relevance feedback mechanism on ColBERT and proposed a method
named ColBERT-PRF to produce a refined query representation for effective dense retrieval.

112



Our proposed ColBERT-PRF makes it feasible to implement the pseudo-relevance feedback
technique in a multiple-representation dense retrieval setting. In particular, the provided extensive
experimental results demonstrate the effectiveness of our proposed ColBERT-PRF model.
However, one of the limitations of this chapter is that it only examines the in-domain retrieval
effectiveness of ColBERT-PRF models. Indeed, most of the dense retrieval models, such as ANCE
and ColBERT models, are shown to face challenges when it comes to out-of-domain evaluations
due to the knowledge shift between different domains. Therefore, in Chapter 5, we investigate
the out-of-domain effectiveness of dense-PRF models. Specifically, we use high-quality external
knowledge to assist in achieving effective dense external expansion. Moreover, we note that
the default ColBERT model applies only to BERT and WordPiece tokeniser. However, the
effect of the pretrained model and the tokenisation method for the contextualised late interaction
mechanism used by ColERT is still under investigation. Therefore, in Chapter 6, we extend
ColBERT to Col⋆ and ColBERT-PRF to Col⋆-PRF, by generalising the de-facto standard BERT
PLM to various different PLMs. Moreover, we also investigate the impact of different tokenisation
techniques on the nature of matches occurring among Col⋆ and Col⋆-PRF models in Chapter 6.
To this end, the ColBERT-PRF as well as the Col⋆-PRF models perform dense query expansion in
an unsupervised manner and might be affected by heuristic techniques such as clustering and IDF
statistics. Thus, in Chapter 7, we explore a new model that performs the dense query expansion in
a supervised way. In particular, we propose a contrastive weighting model to learn to assign high
weights for PRF tokens that can better discriminate the relevant documents from the non-relevant
documents.
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Chapter 5

Dense External Expansion

In Chapter 4, we validated the second hypothesis in our proposed thesis statement (cf. Section 1.1)
by proposing a method called ColBERT-PRF, which implements the pseudo-relevance feedback
mechanism on the multiple representation dense retrieval paradigm. In particular, similar to
the various pseudo-relevance feedback techniques in the literature (cf. Section 2.4), ColBERT-
PRF refines the input query representation based on the pseudo-relevance feedback information.
However, if the quality of the pseudo-relevance feedback documents is limited, for instance, the
limited vocabulary for the traditional sparse-PRF or the limited document representations for the
dense-PRF techniques may not help identify more relevant documents. Indeed, especially for
some hard queries, the feedback set may contain non-relevant documents, thus causing topic drift
from incorrect expansion terms. Therefore, we postulate the third hypothesis posed in our thesis
statement (cf. Section 1.1) and ask that: can performing external pseudo-relevance feedback

based query reformulation improve the zero-shot retrieval for both sparse and dense retrieval?

Indeed, it has previously been shown that high-quality external corpora can also produce feedback
documents with complementary information (Diaz and Metzler, 2006, Kwok and Chan, 1998,
Peng et al., 2009a,b, Xu et al., 2009)1. Thus, different query-related words can be extracted to
reformulate, typically expand, the original query. Usually, the additional collection is referred to
as the external collection while the local collection used is referred to as the target collection.
However, such external expansion approaches have only been studied for sparse retrieval methods
(cf. Section 2.1), and their effectiveness for recent dense retrieval methods (cf. Section 2.3)
remains uninvestigated.
Indeed, as we mentioned in Section 2.3, as the training of such dense retrieval models requires
large amounts of training data, there may not be enough training data for smaller corpora to train
effective domain-specific dense retrieval models. An attractive solution is to transfer sufficiently
trained dense retrieval models from large corpora to smaller domains. For instance, MacAvaney
et al. (2019) showed that an effective BERT reranker could be trained using the MSMARCO

1 This technique is also known as collection enrichment (Kwok and Chan, 1998); we prefer the modern nomenclature
of external expansion (Diaz and Metzler, 2006), which is more easily relatable to its definition.
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passage ranking data, for adhoc search, as well as COVID-related literature (MacAvaney et al.,
2020a). In contrast, attempts using zero-shot dense retrieval models have underperformed
compared to existing models (Chen et al., 2022, Thakur et al., 2021), which can also be supported
by the findings of the experiments discussed in the previous chapter, Section 4.4. Therefore, to
mitigate this domain shift between the external trained collection and the target collection which
has been discussed in Section 2.5.3, in this chapter, we propose to employ the external expansion
from the external high-quality collection thus improving zero-shot retrieval performance.
On the one hand, we investigate the benefit of the classical sparse PRF models, as introduced
in Section 2.4.1, that is supported by a pseudo-relevant feedback set obtained from different
dense retrieval approaches. Moreover, we study the effectiveness of external dense expansion on
dense retrieval. This facilitates an investigation into how external expansion changes the semantic
manner of retrieval. Finally, we investigate whether the sparse external retrieval can produce
feedback information that is useful for dense retrieval.
In summary, this chapter makes the following contributions:

• We investigate external expansion when mixing sparse & dense retrieval paradigms (in-
cluding both single representation and multiple representation dense retrieval); sparse and
zero-shot dense retrieval experiments are conducted on two classical TREC test collections
(Robust04 & WT10G);

• We also conduct the zero-shot evaluation on four BEIR datasets (Thakur et al., 2021)
(namely DBPedia, NFCorpus, TREC-COVID and Touché-2020) - a set of datasets selected
for evaluating zero-shot evaluation;

• We deploy two sparse weighting models (BM25 & DPH), two sparse PRF approaches
(RM3 & Bo1), two dense retrieval models (ANCE & ColBERT), and two dense RPF
approaches (ANCE-PRF & ColBERT-PRF);

• We analyse the propensity for a multiple representation PRF technique to perform semantic
vs. exact token matching, under normal and external PRF conditions.

The main findings of this chapter can be summarised as follows: (i) high-quality feedback
documents obtained using multiple representation dense retrieval, namely ColBERT, from a
high-quality external collection can significantly improve sparse retrieval for both Robust04
(by 12% for nDCG@10) and WT10G (by 28% for nDCG@10); (ii) significant sparse retrieval
effectiveness improvements are also observed when performing expansion using external feedback
documents obtained using a single representation dense retrieval, namely ANCE; (iii) extracting
PRF documents from an external collection using ColBERT or ANCE for dense retrieval can
significantly outperform the zero-shot dense retrieval models on target, indicating the utility of
the dense external expansion to improve the effectiveness of zero-shot dense retrieval.
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The remainder of this chapter is structured as follows: Section 5.1 discusses related works of
the external expansion technique; Section 5.2 instantiates this framework for external pseudo-
relevance expansions Section 5.3 elicits our research questions; Section 5.4 and Section 5.5
present the experimental setup and results of this work. Finally, we provide the concluding
remarks in Section 5.6.

5.1 Related Work on External Expansion

Instead of only obtaining the pseudo-relevance feedback documents from the target corpora,
another thread of related research focuses on bringing in more high-quality feedback documents
from an external corpora. For instance, Kwok and Chan (1998) proposed an external expansion
approach, which borrowed similar documents from an external collection when the quality of
the initial returned documents is poor, in order to improve PRF. External expansion techniques
were popular in the top runs in the TREC Robust Track (Voorhees, 2005, 2006). Indeed, Diaz
and Metzler (2006) studied the collection size and other characteristics that external corpora
should have to provide useful external information for a target collection. Meanwhile, Peng et al.
(2009a,b) further studied a selective external expansion approach based on the query performance
prediction, where external expansion was only applied when the external corpus was predicted
to better answer the query than the target corpus. However, these external corpora based query
reformulation techniques are only deployed in the classical sparse retrieval paradigm and have
not yet been explored for the newer dense retrieval paradigm.
More recently, initial investigations have taken place into how pseudo-relevance feedback infor-
mation can improve the effectiveness of dense retrieval. For instance, ColBERT-PRF identifies
representative and important embeddings from the pseudo-relevant set to expand the original
query embeddings. Based on the experimental results in Chapter 4, ColBERT-PRF (cf. Sec-
tion 4.2) was shown to be very effective, exhibiting performances as high as the top-ranked group
in terms of MAP and nDCG@10 in the TREC 2019 Deep Learning track. In contrast, instead
of performing query expansion, ANCE-PRF (cf. Section 2.4.3), employs the pseudo-relevance
feedback information within a retrained query encoder to capture the feedback information
while encoding the query into a single high-dimensional embedding. Both ColBERT-PRF and
ANCE-PRF aim to capture the useful information from the pseudo-relevance feedback documents
to obtain query representations of the two PRF models, however, they differ in the exact query
representation, by using multiple representation and single representation query embeddings,
respectively. Therefore, in this chapter, we build on top of the ColBERT-PRF and ANCE-PRF
models, respectively, to investigate the application of external expansion in PRF for dense re-
trieval. In addition, we also study external expansion in a hybrid framework of the dense (ANCE
and ColBERT) and sparse retrieval approaches.
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(a) Logical flow of ColBERT-PRF for external expansion.

(b) Logical flow of ANCE-PRF for external expansion

Figure 5.1: Dense PRF variants for external expansion.
Table 5.1: Summary of the different retrieval and PRF processes used in this work.

Process Inputs Outputs

Retrievers (Q→ R)

BM25 Query Text Retrieved Documents
DPH Query Text Retrieved Documents
ColBERT Query Text or Multi-Rep. Query Embs. Retrieved Documents
ANCE Query Text or Single-Rep. Query Emb. Retrieved Documents

PRF (R→ Q)

RM3 Query Text & Retrieved Documents Text Query Text w/ weights
Bo1 Query Text & Retrieved Documents Text Query Text w/ weights
ColBERT-PRF Orig. Query Embs. & Retrieved Document Embs. Multi-Rep. Query Embeddings w/ weights
ANCE-PRF Query Text & Retrieved Documents Single-Rep. Query Embedding

5.2 Our Proposed Method: Dense External Expansion

External expansion (Diaz and Metzler, 2006), also known as collection enrichment (Kwok
and Chan, 1998), is a classical PRF-based technique for improving retrieval effectiveness
given corpus. In particular, PRF is known to fail if the quality of the feedback documents are
poor (Kwok and Chan, 1998, Peng et al., 2009a,b, Xu et al., 2009). To address this, in external
expansion, a separate high-quality external index is used for an initial retrieval. By obtaining
a pseudo-relevant feedback set from the external index, it is assumed to identify additional and
higher quality expansion terms than might be found in a pseudo-relevant feedback set obtained
on the target corpus. This is particularly useful if the top-ranked documents on the target corpus
are homogeneous in their choice of vocabulary, or if there are few documents containing the
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original query terms. By expanding the query using an external corpus, the higher diversity of
expansion terms can result in more relevant documents being retrieved in the target corpus. In
summary, we hypothesise that external expansion can help to address the domain shift when
transferring a dense retrieval model towards a target collection in a zero-shot fashion.
Using the notation introduced in Section 2.1.2, where we used Ret(I,k)(q) to represent a retrieval
process performing on the index I and return k documents in response to the input query q. Based
on this, external expansion using a target index Itarget and an index of a higher quality corpus, Iext ,
can be expressed as follows:

RetBM25(Iext ,k′)
R» PRFRM3(Iext ,θ)

Q
» RetBM25(Itarget ,k). (5.1)

Based on this, we propose that the dense PRF models, namely ColBERT-PRF and ANCE-PRF,
can be instantiated for external expansion, operating entirely in a dense retrieval space:

RetDense(Iext ,k′)
R» PRFDense(Iext ,θ)

Q
» RetDense(Itarget ,k), (5.2)

where the subscript Dense can be instantiated as ColBERT or ANCE, considering whether the
dense retrieval is performed in multiple representation or single representation embedding spaces.
If instantiated as ColBERT, a set of expanded query embeddings are obtained from an index
of a high-quality external corpus, but are then executed on the index of the target corpus, Itarget .
Figure 5.1a shows the logical flow of query embeddings for ColBERT-PRF in an external
expansion setting. In contrast, when instantiating as ANCE, a refined query representation is
encoded using the high-quality feedback documents from the external corpus. The logical flow
of ANCE-PRF for external expansion is depicted in Figure 5.1b.
To the best of our knowledge, this is the first application of external expansion in a dense retrieval
space. For both ColBERT-PRF and ANCE-PRF models, external expansion is possible as long
as the underlying encoders used for both external and target retrieval – and expansion in the
case of ANCE-PRF – are unchanged. This ensures that the embedded query representations
generated from the external corpus can be used to retrieve documents on the target corpus.
A natural question that arises is as follows: If PRFDense already takes contextualised information

from the feedback documents into account (thereby addressing word mismatch and polysemy),

why is external PRFDense necessary? We answer this by arguing that a high-quality external
corpus, such as Wikipedia, can contain more broader information about the topic, which results
in more diverse and valuable expansion embeddings than the local corpus. Moreover, as the
expansion embeddings are contextualised, there is less risk of topic drift, as might occur for
a classical term-based feedback approach. Similarly, for the ANCE-PRF side, the high-quality
external corpus contains feedback documents that may have a more diverse description of the
query topic, thus further enriching the embedded query representation. On the other hand, using
the notation in Equation (5.2), it is clear to see that other “hybrid” formulations are possible.
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Indeed, while the PRF mechanism is tightly coupled (e.g. RM3 generates term-based queries,
suitable for the sparse retrieval models such as BM25; ColBERT-PRF generates embedding
queries, suitable for ColBERT)2, the first-stage retrieval can be varied independently. This allows
us to vary the choice of first stage ranker – for instance, sparse or multi-representation dense
(i.e. ColBERT) vs. single-representation dense (i.e. ANCE).
Indeed, in considering conventional and external PRF configurations in this manner, we are able
to determine (a) the impact of dense retrieval on identifying useful feedback documents that
may have a minimal lexical match with the original query, (b) the value of an external corpus,
(c) the benefit of a dense-based PRF technique.
Hence, based on the notations introduced in Section 2.1.2 and the established various retrieval
models, from the sparse retrieval models in Section 2.1 to the dense retrieval models in Sec-
tion 2.3, as well as the PRF retrieval pipelines in Section 2.4, Table 5.1 lists the inputs and
the corresponding outputs for the retrievers (top half of the table) and the PRF models (bottom
half). For instance, among the retrieval models, the inputs to the sparse retrieval models, namely
BM25 and DPH, are different from those of the dense retrieval models, ColBERT and ANCE.
In particular, the input query text is encoded into multiple query embeddings for ColBERT and
into a single query embedding for ANCE. In addition, for the PRF techniques, we see that there
are variations in the inputs and outputs are different among the sparse and dense PRF models.
Both RM3 and Bo1 take the query text and pseudo-relevance feedback document text as input
and produce an expanded query, i.e. words with weights. On the other hand, ColBERT-PRF takes
original query embeddings and the embeddings of the feedback document as input and outputs a
list of expansion embeddings with weights. In contrast, the ANCE-PRF’s inputs are the text of
the query and of the feedback documents and its output is a refined single representation query
embedding. In this way, it is clear that the PRF and subsequent retrieval stages are tightly coupled
– they cannot be mismatched; however it is possible to change the retrieval stage preceding PRF -
either to a different retrieval model, or even to a different index.

5.3 Research Questions

This chapter focuses on improving the performance of zero-shot dense retrieval models. In partic-
ular, we investigate the external pseudo-relevance feedback based on dense retrieval feedback
information, where the similarity search is conducted based on contextualised information rather
than the statistical information used by traditional sparse retrieval models.
Our experiments first study the effectiveness of applying and extracting terms (i.e. sparse
feedback) based on external feedback passages that have been identified by a contextualised
retrieval model. Thus, we pose our three research questions as follows:

2 Note that the reverse configurations are not tested – for instance, RM3 returns a bag of weighted terms, which
would not have sufficient contextual information to be accurately encoded by ColBERT.
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Table 5.2: Summary of the main configurations for each of the research questions.

Baselines Treatments

Research Stage 1 Stage 2 Stage 1 Stage 2
Questions (Target) (Target) (External) (Target)

RQ5.1 Sparse Sparse Dense or Sparse Sparse
RQ5.2 Dense Dense Dense Dense
RQ5.3 Sparse Dense Sparse Dense

RQ5.1: What is the benefit of using dense retrieval in obtaining external feedback documents for
sparse retrieval?
In addition, we investigate the performance of the zero-shot dense retrieval models using dense ex-
ternal expansion, in both single representation and multiple dense representation-based paradigms.
Accordingly, we propose the following second research question.
RQ5.2: What is the benefit of using dense retrieval, in the form of (a) multiple representation
(ColBERT) & (b) single representation (ANCE), in obtaining external feedback documents for
dense retrieval?
Next, we investigate the impact of the initial stage retrieval for the dense pseudo-relevance
feedback models, as follows:
RQ5.3: Do the dense pseudo-relevance feedback models require dense retrieval to obtain their
feedback documents?
Table 5.2 summarises the configurations of 1st and 2nd stage retrieval paradigms for the baselines
and treatments that are tested for each research question.

5.4 Experimental Setup

In the following, we describe the external and target datasets used in this work in Section 5.4.1.
Then the detailed implementation setup and baselines are discussed in Section 5.4.2 and Sec-
tion 5.4.3. Finally, the metrics used in our experiments are detailed in Section 5.4.4.

5.4.1 Datasets

Table 2.4 in Chapter 2 describes the detailed collection statics for both target collections and
external collection used in this work.
Target Collections: In this work, we evaluate using two TREC adhoc test collections, namely the
Robust04 and the WT10G as detailed in Section 2.5.1. For evaluation, we use the title-only and
also the (longer) description queries, 250 from Robust04 and 100 from WT10G. In addition, we
evaluate on four BEIR datasets, which are detailed in Section 2.5.1, namely DBPedia, NFCorpus,
TREC-COVID and Touché-2020 .
External Collection: The external collection used in this work is the MSMARCO passage
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corpus (cf. Section 2.5.1), which contains approximately 8.8M passages. Indeed, past work (Peng
et al., 2009a, Xu et al., 2009) have successfully used Wikipedia as an external corpus, due
to its encyclopedic nature. We use MSMARCO as introduced in Section 4.3.2, as it contains
high-quality passages about a number of topics, including from Wikipedia (Nguyen et al., 2016)3.

5.4.2 Implementation and Settings

All the experiments in this work are conducted on the PyTerrier IR experimentation platform
(cf. Section 2.1.2). We build the ColBERT dense indices following the same settings used in
Section 4.3.2.2, such as padding queries upto a length of 32 tokens, and truncating passages to 180
tokens. We employ the ColBERT model checkpoint and the implementation of the ColBERT-PRF
model used in Chapter 4 (which was trained on the MSMARCO passage training dataset), and
follow the ColBERT-PRF default parameter settings reported in Section 4.3 including using
3 feedback passages and 10 expansion embeddings.4 In addition, we build the ANCE dense
indices using the checkpoint released by the authors (Xiong et al., 2021). Similar to ColBERT,
ANCE, as well as the ANCE-PRF model, have also been trained using the MSMARCO passage
training dataset. For ANCE-PRF, we experiment with the author (Yu et al., 2021b) provided
model checkpoint trained with 3 feedback passages.5 Thus, we also use 3 feedback passages
for the ANCE-PRF experiments. For all external expansion experiments, we mix the source
from external and target corpus. For Robust04 and WT10G, we apply passaging (applying a
sliding window of length 150 tokens and stride 75), and documents are ranked by applying max
passage. ANCE dense indices are created using model checkpoints released by the original ANCE
authors (Xiong et al., 2021), which were also trained on the MSMARCO passage task. For sparse
PRF models, we employ both RM3 and Bo1 techniques (cf. Section 2.1) and follow the default
parameter settings of PyTerrier – i.e. 3 feedback passages and 10 expansion terms. For sparse
retrieval, we use the stemmed sparse index built using PyTerrier. Our virtual appendix contains
the result files of all experiments, and the notebooks needed to reproduce these experiments.6

5.4.3 Baselines

To test the effectiveness of our external pseudo-relevance expansion technique approach, we
compare it with the following baselines:

• Sparse Approaches: We apply sparse retrieval models without PRF, namely the BM25 and
DPH weighting models. We also combine these models with sparse pseudo-relevance ex-
pansion technique on the target inverted index, i.e. BM25 with RM3 PRF (cf. Section 2.4.1)

3 Our initial experiments found that performing external expansion using a num-
ber of other corpora did not improve retrieval effectiveness on MSMARCO.
4 github.com/terrierteam/pyterrier_colbert 5 github.com/yuhongqian/ANCE-PRF
6 github.com/Xiao0728/DenseExternalExpansion_VirtualAppendix
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& DPH with Bo1 PRF (cf. Section 2.4.1). Furthermore, we also instantiate these PRF mod-
els in an external expansion setting, i.e. RetBM25(ext)

R» PRFRM3(ext)
Q
» RetBM25(target) &

RetDPH (ext)
R» PRFBo1(ext)

Q
» RetBM25(target).

• Neural Reranking Approaches: To aid in our comparisons, we further apply neural
rerankers, namely ColBERT and ANCE reranking models upon the sparse retrieval models.
For instance, applying a final ColBERT reranker upon BM25 with RM3 query expansion
would be denoted as: RetBM25

R» PRFRM3
Q
» RetBM25

R» ColBERT .

• Dense Approaches: We also deploy dense retrieval models, with and without a pseudo-
relevance feedback mechanism. In particular, for single representation dense retrieval,
we deploy ANCE (cf. Section 2.3.1)), and for multiple representation dense retrieval (cf.
Section 2.3.2)), we use the ColBERT-E2E model. For dense retrieval, we apply ColBERT-
PRF, which is proposed in Chapter 4, on both normal and external expansion settings.

5.4.4 Evaluation Metrics

We measure effectiveness for the scenarios described in Section 5.4.1 using the evaluation metrics
introduced in Section 2.5, in particular, in terms of Mean Average Precision (MAP) and Mean
Reciprocal Rank (MRR), as well as the normalised discounted cumulative gain calculated to rank
depth 10 and 20. Moreover, for each model, we compare the Recall calculated to rank depth
1000. When comparing with baseline models, we use the paired t-test (p < 0.05) and apply the
Holm-Bonferroni multiple testing correction, as per best practices in information retrieval (Sakai,
2021).

5.5 Results

We address the posed research questions in Sections 5.5.1 - 5.5.3. We summarise the overall
findings in Section 5.5.4, and in Section 5.5.5 provide an analysis of how ColBERT-PRF performs
matching.

5.5.1 RQ5.1: Dense External Expansion for Sparse Retrieval

Firstly, we examine the effectiveness of the obtained external feedback for sparse retrieval. In
Table 5.3, for four query sets (Robust04 title-only, Robust04 description-only, WT10G title-only
and WT10G description-only), we report results when external retrieval is performed using sparse
models (BM25 & DPH), as well using dense retrieval (ANCE & ColBERT). In the table, columns
are used to show the processes for each retrieval stage. On each test collection, we first report the
performance of the four sparse retrieval baselines, including the BM25, BM25 with RM3 query ex-
pansion model, DPH, and DPH with Bo1 query expansion model. Then, we measure the retrieval
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Table 5.3: External expansion for sparse retrieval. The top half table presents the results for
Robust04 query sets and the bottom half table presents the results for WT10G query sets.
Superscripts a-f denote significant improvements (paired t-test with Holm-Bonferroni correction,
p < 0.05) over the indicated baseline model(s). The highest value for a query set is boldfaced.

1st R» PRF
Q
» 2nd Robust04 (T) Robust04 (D)

MAP nDCG@10 nDCG@20 MRR Recall MAP nDCG@10 nDCG@20 MRR Recall

Target Retrieval Only

(a) BM25 - - .241 .432 .406 .654 .687 .245 .437 .411 .680 .690
(b) BM25target RM3target BM25target .275 .447 .429 .641 .738 .276 .444 .422 .625 .738
(c) DPH - - .250 .449 .421 .670 .698 .231 .430 .400 .696 .669
(d) DPHtarget Bo1target DPHtarget .284 .462 .443 .654 .752 .277 .468 .440 .689 .756

External Expansion: Sparse External Sparse Retrieval

(e) BM25ext RM3ext BM25target .270ac .446a .429a .632 .731ac .282acd .464abc .436abc .651b .748ac

(f) DPHext Bo1ext DPHtarget .278ac .460a .438ac .661b .740ac .281ac .470abc .439abc .680b .750ac

External Expansion: Dense External Sparse Retrieval (Ours)

ANCEext RM3ext BM25target .267ab .468ae .440ac .697be f .728ac .295ac . 501abce .470abce .752be f .767ac

ANCEext Bo1ext DPHtarget .274ac .467a .443ac .715abcde f .736ac .280ac .490abce f .456abce f .743be f .737ac

ColBERText RM3ext BM25target .270ac .471ae .441a .700be f .729ac .287acd .489abe .458abce .722be .759ac

ColBERText Bo1ext DPHtarget .277ac .482ace f .455acde f .723abcde f .734ac .280acd .485abce .453abc .738abe f .742ac

WT10G (T) WT10G (D)

Target Retrieval Only

(a) BM25 - - .189 .324 .323 .555 .693 .182 .343 .333 .614 .677
(b) BM25target RM3target BM25target .202 .328 .326 .505 .711 .218 .379 .358 .584 .751
(c) DPH - - .206 .342 .333 .576 .698 .187 .358 .334 .604 .670
(d) DPHtarget Bo1target DPHtarget .235 .364 .364 .574 .752 .230 .369 .358 .622 .748

External Expansion: Sparse External Sparse Retrieval

(e) BM25ext RM3ext BM25target .209ac .354b .341 .543b .729abc .233abc .391ab .383 .620abc .761ac

(f) DPHext Bo1ext DPHtarget .236cbcd .383abc .368abc .606b .740abc .250abc .405abc .398abcd .666b .786acd

External Expansion: Dense External Sparse Retrieval (Ours)

ANCEext RM3ext BM25target .238abce .420abce f .395abce .711abcde f .753a .251abc .534abcde .420abcde .707abcde .779ac

ANCEext Bo1ext DPHtarget .249abce .418abce f .400abcde f .721abcde f .782abc .252abc .425abcde .409abcd .683bce .783acd

ColBERText RM3ext BM25target .242abce .418abce f .400abce f .695abcde f .727a .257abce .444abcde .428abcde .721abcde .773ac

ColBERText Bo1ext DPHtarget .255abce f .417abce .402abcde f .687abcde f .768abc .256abc .436abcde .415abcde .686bce .776acd

effectiveness of the traditional external expansion models on the sparse retrieval and the external
expansion models for sparse retrieval but with feedback documents obtained using dense retrieval.
On analysing Table 5.3, firstly, we compare the performance of the external expansion models on
sparse retrieval using RM3 and Bo1 query expansion models with the sparse retrieval models
without any PRF mechanism applied and the sparse PRF models applied only on the target
collection on both Robust04 and WT10G test query sets. We notice that both RM3 and Bo1-based
external expansion models on sparse retrieval can significantly improve over the models without
the external expansion technique applied, which attests to the usefulness of the MSMARCO
passage as an external collection for both the Robust04 and WT10G corpora. Secondly, we
examine the performance of the external expansion with passages produced by dense retrieval.
There are four models reported under this external expansion scheme. We observe that the highest
values for most of the metrics reported are given by the external expansion models. Similarly, all
the external expansion models with dense retrieved passages are significantly improved over all
the baselines without the external expansion technique applied. When comparing the external
expansion models combining dense retrieval with sparse PRF, we find that the former models can
significantly improve over the traditional external expansion models using sparse retrieval, which
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indicates the superiority of the feedback documents produced by dense retrieval viz. the feedback
documents produced by the sparse retrieval, e.g. compared to baselines (e) & (f) in Table 5.3.
Across the query sets, we note that among the external expansion models using dense retrieval, for
the title query type, ColBERT is more effective than ANCE, while for the description query type,
no obvious pattern emerges among the single and multiple dense retrieval models. This suggests
that ColBERT is more suitable for the title (keyword) queries, perhaps due to its token-level
embeddings, rather than the single embedding of ANCE.
Overall, in answer to RQ5.1, we observe that external expansion models supplied with feedback
documents obtained from dense retrieval models can bring more benefits for title-only queries.

5.5.2 RQ5.2: Dense External Expansion for Dense Retrieval

Next, we analyse the effectiveness of external expansion using both ColBERT-PRF and
ANCE-PRF, in Sections 5.5.2.1 and 5.5.2.2, respectively.

5.5.2.1 RQ5.2(a): Dense Expansion on Multiple Representation Dense Retrieval

We now analyse the performance of the external expansion for dense retrieval models, where
the pseudo-relevance feedback information is obtained using dense retrieval models followed
by the ColBERT-PRF contextualised expansion technique. Table 5.4 reports the results of the
external expansion dense retrieval models as well as the sparse query expansion models, the
dense retrieval model without any query reformulation techniques applied and the dense retrieval
models with ColBERT-PRF applied.
From Table 5.4, we observe that the dense external expansion models give the highest value
for all the metrics on both Robust04 and WT10G title and description query sets. Indeed,
ColBERT-PRF improves over ColBERT end-to-end, verifying the results of Section 4.3 & 4.4 on
these smaller document corpora. We also find that ColBERT end-to-end dense retrieval model
exhibits lower performance than the two sparse query expansion models on both the Robust04 and
WT10G query sets – this may indicate underfitting for the title-only (keyword) and description
query formulations of Robust04 and WT10G, which differs from the “question-style” of the
MSMARCO passage dataset used to train the ColBERT model.
Next, we note that external expansion can significantly improve over all the dense baselines across
all the metrics and significantly improve over sparse query expansion models, i.e. (a) and (b)
baselines in Table 5.4, in terms of nDCG for title-only queries and MAP for the description queries.
One interesting observation is that, although Recall obtained by applying external expansion using
ColBERT-PRF outperforms that of both ColBERT end-to-end and ColBERT-PRF performed on
the target corpus, it is still lower than the sparse expansion methods. Indeed, this explains the
popular practice of applying a more expensive reranker on top of the sparse retrieval models
rather than on top of the dense expansion models. Moreover, when we look back to compare
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the external expansion dense model with the external expansion sparse model but using dense
retrieved passage models in Table 5.3, we find that some latter model variants exhibit superior
performance over the pure dense retrieval-based external expansion model. The complementary
effect of the contextualised matching models and the statistical information-based matching
models explains this observation, which is also observed in other recent work (Arabzadeh et al.,
2021, Gao et al., 2020).
In addition, we further conduct the zero-shot evaluation of the external expansion dense models on
four BEIR benchmarks and show the results in Table 5.5. Firstly, from the top half of Table 5.5, we
find that performing query reformulation using ColBERT-PRF on the target dataset can improve
the retrieval effectiveness on all compared datasets except DBPedia. In addition, performing the
external dense expansion using ColBERT can further bring significant improvements in terms
of nDCG@10 performance on both NFCorpus and Touché-2020 datasets. The ineffectiveness
of dense external expansion on the TREC-COVID and NFCorpus datasets are probably due to
the external corpora employed (MSMARCO), which contains less biomedical related content.
Indeed, TREC-COVID and NFCorpus are biomedical corpora (see Table 2.4), while MSMARCO
is a more general corpus. Moreover, MSMARCO predates the COVID-19 pandemic, and hence
is not a good source of external expansion for the TREC-COVID corpus.
In response to RQ5.2(a), we find that external feedback documents obtained using dense retrieval
are beneficial for both external expansion for both sparse & dense feedback and retrieval models.
Applying external expansion using a dense retrieval model can significantly improve over the
dense and sparse PRF models, i.e. the (a), (b) and (d) baselines in Table 5.4.
To visualise the impact of the external expansion, Table 5.6 lists three example queries from the
Robust04 title and description query sets. For each query example, we show both the sparse
expansion tokens generated by RM3 and the the most likely expansion tokens of the expansion
embeddings selected by the ColBERT-PRF model in the target corpora and the external corpora
(The FAISS ANN index is used to map an embedding back to the most likely token)7. The colour
of the token indicates the usefulness of the expansion token, with darker indicating higher utility.
Usefulness is measured by the difference in Average Precision when that expansion token is
removed. From the table, it can be observed that expansion using the external corpus can produce
some more useful expansion tokens than the target corpora. For instance, for the query: ‘how
are oscar winners selected’, expansion embeddings close to the embedding of ‘glamour’, ‘voting’
and ‘actors’ are selected which can be seen to better identify relevant documents than the target
collection (cf. ‘saturday’, ‘don’). Later, in Section 5.5.5, we examine the extent to these expansion
embeddings match exactly or inexactly with tokens in the documents (i.e. semantic matches).

7 Note that this mapping from embedding to BERT WordPiece token is inexact, hence some apparently meaningless
tokens, such as ##up, could actually be a useful expansion embedding for retrieval.
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Table 5.4: External expansion for multiple representation dense retrieval. The top half table
presents the results for Robust04 query sets and the bottom half table presents the results for
WT10G query sets. Superscripts a-f denote significant improvements (paired t-test with Holm-
Bonferroni correction, p < 0.05) over the indicated baseline model(s). The highest value for a
query set is boldfaced.

1st R» PRF
Q
» 2nd Robust04 (T) Robust04 (D)

MAP nDCG@10 nDCG@20 MRR Recall MAP nDCG@10 nDCG@20 MRR Recall

Baseline Runs

(a) BM25target RM3target BM25target .275 .447 .429 .641 .738 .277 .444 .422 .625 .738
(b) DPHtarget Bo1target DPHtarget .284 .462 .443 .654 .752 .277 .468 .440 .689 .756
(c) ColBERTtarget - - .237 .447 .421 .701 .608 .220 .435 .401 .685 .605
(d) ColBERTtarget ColBERT-PRFtarget ColBERTtarget .273 .467 .450 .684 .677 .265 .461 .437 .668 .672
(e) BM25target RM3target BM25target»ColBERT .261 .463 .442 .714 .741 .257 .460 .424 .706 .741
(f) DPHtarget Bo1target DPHtarget »ColBERT .260 .458 .437 .716 .755 .254 .458 .425 .709 .749

External Expansion: Dense External Dense Retrieval (Ours)

ColBERText ColBERT-PRFext ColBERTtarget .287cd .477ac .467cd .706d .714cd .281abcd .486c .459c .708a .705cd

External Expansion: Sparse External Dense Retrieval (Ours)

BM25ext ColBERT-PRFext ColBERTtarget .241 .429 .411 .634 .669c .231 .424 .397 .626 .644c

DPHext ColBERT-PRFext ColBERTtarget .243 .431 .414 .677 .674c .217 .400 .374 .614 .631c

WT10G (T) WT10G (D)

Baseline Runs

(a) BM25target RM3target BM25target .202 .328 .326 .505 .711 .218 .379 .358 .584 .751

(b) DPHtarget Bo1target DPHtarget .235 .364 .364 .574 .752 .230 .369 .358 .622 .748

(c) ColBERTtarget - - .160 .356 .337 .614 .510 .162 .360 .339 .655 .551

(d) ColBERTtarget ColBERT-PRFtarget ColBERTtarget .183 .397 .372 .600 .547 .190 .393 .363 .601 .516
(e) BM25target RM3target BM25target»ColBERT .199 .377 .358 .605 .711 .204 .388 .364 .692 .751
(f) DPHtarget Bo1target DPHtarget »ColBERT .202 .373 .355 .605 .757 .204 .389 .363 .692 .748

External Expansion: Dense External Dense Retrieval (Ours)

ColBERText ColBERT-PRFext ColBERTtarget .216cd .397ac .372ac .651a .614cd .226cd .408ac .394c .651 .644cd

External Expansion: Sparse External Dense Retrieval (Ours)

BM25ext ColBERT-PRFext ColBERTtarget .177 352 .337 .573 .590cd .199 .366 .360 .603 .645cd

DPHext ColBERT-PRFext ColBERTtarget .178 .360 .348 .568 .594cd .183 .345 .337 .605 .615cd

5.5.2.2 RQ5.2(b): Dense Expansion on Single Representation Dense Retrieval

We now analyse external dense expansion where the pseudo-relevance feedback documents are
produced by the ANCE model, then provided as input for the ANCE-PRF to refine the query
representation. Table 5.7 presents the performance of these configurations, as well as the baselines.
Firstly, we see that among the dense retrieval models, performing ANCE-PRF on both Robust04
and WT10G target collections improves over the zero-shot ANCE dense retrieval, i.e. baseline
‘d’ outperforms baseline ‘c’ in both collections in Table 5.7). We also observe that the external
dense retrieval model achieves the highest performance among the three dense retrieval models
on all metrics and significantly improve over ANCE performed only on the target collection.
When comparing to the baselines, we notice that the performance of all the zero-shot dense
retrieval models on all query sets is lower than sparse expansion models. However, refining the
query representation using the pseudo-relevance feedback information of the local collection
helps to improve the zero-shot retrieval performance. Performing ANCE-PRF augmentation using
the pseudo-relevance feedback documents from a high-quality external corpus results in further
improvement. This indicates that the refined query representation from external dense retrieval
encapsulates more broad knowledge from the external collection to represent the query. Moreover,
compared with the sparse expansion models followed by the ANCE reranker baselines, we notice
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Table 5.5: Zero-shot performance in terms of nDCG@10 on BEIR (Thakur et al., 2021). Super-
scripts a and b denote significant improvements (paired t-test with Holm-Bonferroni correction,p
< 0.05) over the indicated baseline model(s). The highest nDCG@10 score on a given dataset
is boldfaced. W/L denotes the number of queries of our Dense External Expansion models
improved/degraded in terms of the nDCG@10 score of the ColBERT or ANCE model on a given
dataset.

Dataset
Normal Target PRF External Expansion

(a) ColBERTtarget (b) ColBERTtarget
R» ColBERT-PRFtarget

Q
» ColBERTtarget (W/L) ColBERText

R» ColBERT-PRFext
Q
» ColBERTtarget (ours) (W/L)

DBPedia .392 .387 (121/202) .353 (154/180)

NFCorpus .316 .321 (116/87) .332ab (119/81)

T-COVID .533 .548 (26/18) .507 (24/23)

Touché-2020 .307 .348 (33/13) .353a (32/16)

(a) ANCEtarget (b) ANCEtarget
R» ANCE-PRFtarget

Q
» ANCEtarget (W/L) ANCEext

R» ANCE-PRFext
Q
» ANCEtarget (ours) (W/L)

DBPedia .265 .268 (132/137) .292ab (179/106)

NFCorpus .236 .239 (86/83) .258ab (104/63)

T-COVID .392 .430 (28/18) .430 (27/19)

Touché-2020 .291 .292 (27/18) .296 (27/18)

that applying the ANCE reranker degrades the performance in terms of MAP, nDCG@10 and
nDCG@20. This indicates that there is still a large gap in performing the semantic search based
on the single representation of the lexical matching.
Moreover, Table 5.5 presents the zero-shot performance evaluation of dense expansion on a single
representation dense retrieval model on BEIR benchmarks. From the bottom part of Table 5.5, we
find that dense external expansion using ANCE-PRF exhibits the highest nDCG@10 performance
on all the four compared datasets and significantly outperform both the ColBERT and ColBERT-
PRF models that are performed entirely on the target datasets. This indicates the usefulness of the
external expansion for effective zero-shot evaluation on different benchmarks. This is because
ANCE-PRF uses a supervised way of implementing the pseudo-relevance feedback and building
upon the large pre-trained BERT model. Thus, the large pre-trained BERT model is capable
of generating medical-related knowledge while performing the query refinement even without
relevant PRF information as input. While highly effective for ColBERT-PRF, as it performs the
PRF technique in an unsupervised way, it might be sensitive to the quality of the external corpus.
If there is no relevant context provided by the external corpus, ColBERT-PRF can not create the
relevant expansion embeddings out of thin air.
Overall, in response to RQ5.2(b), we find that external dense expansion on single representation
dense retrieval helps to improve zero-shot dense retrieval performance for both Robust04 and
WT10G.

5.5.3 RQ5.3: Sparse-obtained External Feedback for Dense Retrieval

Besides the dense pseudo-relevance feedback retrieval based on the dense external retrieval as
the first stage, we further investigate the performance of the external expansion on the sparse
retrieval scenarios. More specifically, we study two external sparse retrieval models using BM25
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Table 5.6: Qualitative analysis: Examples of the expansion tokens generated by the sparse,
namely RM3, and dense PRF, namely ColBERT-PRF, models on the target collection and the
external collection for the Robust04 title and description query sets. Expansion tokens (the
selected expansion tokens for RM3, or the most likely token for a given expansion embedding for
ColBERT-PRF) with higher usefulness are highlighted in a darker colour.

Robust04 title queries

Original query terms 308: implant dentistry

Sparse expansion terms (Target) colleg chiropract implant prosthesi dentistri dental patient dentist devic 1987

Sparse expansion terms (External) offer dental gener implant teeth tooth dentistri cosmet jaw whiten

Dense Expansion tokens (Target) implant tooth settlement insurance products ##rs life million sales ##1

Dense Expansion tokens (External) jaws dentistry titanium fuse ##´ implant dental tooth ##com replacement

Original query terms 632: southeast asia tin mining

Sparse expansion terms (Target) burmes burma deleg mine southeast asia myanmar prime command gen

Sparse expansion terms (External) or mine countri tin southeast china indonesia east asia hemisphe

Dense Expansion tokens (Target) burma cart tin mining vo followed defense where general 000

Dense Expansion tokens (External) bolivia indonesia cass ##´ tin england northern times world also

Original query terms 636: jury duty exemptions

Sparse expansion terms (Target) serv , man , eslick , exempt , summon , duti , command , juri , murder , soldier .

Sparse expansion terms (External) 2 juri, guidelin , servic , excus , exempt , employe , receiv , duti , court , year .

Dense Expansion tokens (Target) coating , soldier , jury , murder , fees , ##la , regulatory , city , ##2 , we .

Dense xpansion tokens (External) summons , correspondence , ##ror , jury , ##´ , circuit , duty , bar , five , business .

Robust04 description queries

Original query terms 633: what is the history of the welsh devolution movement

Sparse expansion terms (Target) movement vote labour nationalist assembl northern scottish histori elect devolut

Sparse expansion terms (External) assembl british richard govern wale welsh scottish devolut histori report

Dense Expansion tokens (Target) wales poll ##16 38 won put against cent 000 or

Dense Expansion tokens (External) odds dev literary ##´ scotland ##ol taken community history should

Original query terms 671: find documents that cite the specific benefits the salvation army provides those in need

Sparse expansion terms (Target) document , find , armi , ford , chariti , benefit , salvat , bush , shop , cite .

Sparse expansion terms (External) document , includ , contact , armi , salvat , assist , specif , benefit , nearest .

Dense Expansion tokens (Target) northern , valley , se , support , ##ly , many , should , we , who , one .

Dense Expansion tokens (External) salvation , accepts , rehabilitation , ##´ , documentation , ##ible , army , serving , 24 , health .

Original query terms 685: how are oscar winners selected

Sparse expansion terms (Target) award box academi pictur select best oscar nomin film winner

sparse expansion terms (External) select white best award gown academi actress worn oscar

Dense Expansion tokens (Target) emmy nominations film saturday don ##40 " " has as

Dense Expansion tokens (External) glamour winners voting oscar actors ##´ ##up film members actually

and DPH as the initial stage for both single and multiple representation dense-PRF paradigms.
Table 5.4 presents the results of the sparse external dense retrieval followed by the ColBERT-PRF
query expansion and ColBERT retrieval for both Robust04 and WT10G. Firstly, compared with
the baseline runs, we see that using either BM25 or DPH as initial stage retrieval models lead
significant improvement over ColBERT E2E and ColBERT-PRF but underperform the ColBERT-
PRF model on the target on other metrics as well as other baseline runs. This demonstrates that
sparse external expansion is a benefit for retrieving more relevant documents. Secondly, compared
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Table 5.7: External expansion for single representation dense retrieval. The top half table presents
the results for Robust04 query sets and the bottom half table presents the results for WT10G query
sets. Superscripts a-f denote significant improvements (paired t-test with Holm-Bonferroni correc-
tion, p< 0.05) over the indicated baseline model(s). The highest value for a query set is boldfaced.

1st R» PRF
Q
» 2nd Robust04 (T) Robust04 (D)

MAP nDCG@10 nDCG@20 MRR Recall MAP nDCG@10 nDCG@20 MRR Recall

Baseline Runs

(a) BM25target RM3target BM25target .275 .447 .429 .641 .738 .277 .444 .422 .625 .738

(b) DPHtarget Bo1target DPHtarget .284 .462 .443 .654 .752 .277 .468 .440 .689 .756
(c) ANCEtarget - - .131 .324 .295 .578 .539 .156 .369 .331 .641 .576
(d) ANCEtarget ANCE-PRFtarget ANCEtarget .155 .345 .312 .586 .541 .165 .381 .343 .649 .563
(e) BM25target RM3target BM25target »ANCE .193 .388 .363 .646 .741 .214 .421 .386 .702 .741

(f) DPHtarget Bo1target DPHtarget »ANCE .193 .384 .359 .643 .755 .215 .428 .391 .712 .749

External Expansion: Dense External Dense Retrieval (Ours)

ANCEext ANCE-PRFext ANCEtarget .180cd .388cd .354cd .610cd .585cd .183 .403 .368 .665 .585

External Expansion: Sparse External Dense Retrieval (Ours)

BM25ext ANCE-PRFext ANCEtarget .178cd .388c .357cd .630 .547d .181 .399 .362 .658 .551
DPHext ANCE-PRFext ANCEtarget .175cd .381c .350c .616 .550d .172 .370 .336 .618 .528

WT10G (T) WT10G (D)

Baseline Runs

(a) BM25target RM3target BM25target .202 .328 .326 .505 .711 .218 .379 .358 .584 .751

(b) DPHtarget Bo1target DPHtarget .235 .364 .364 .574 .752 .230 .369 .358 .622 .748
(c) ANCEtarget - - .081 .224 .196 .452 .404 .110 .283 .256 .606 .453
(d) ANCEtarget ANCE-PRFtarget ANCEtarget .103 .266 .240 .491 .434 .108 .289 .257 .589 .457
(e) BM25target RM3target BM25target »ANCE .172 .328 .311 .579 .711 .192 .363 .346 .640 .751
(f) DPHtarget Bo1target DPHtarget »ANCE .175 .321 .304 .568 .757 .193 .363 .352 .657 .748

External Expansion: Dense External Dense Retrieval (Ours)

ANCEext ANCE-PRFext ANCEtarget .117cd .289c .259c .541cd .452c .131cd .314 .291cd .629 .518cd

External Expansion: Sparse External Dense Retrieval (Ours)

BM25ext ANCE-PRFext ANCEtarget .123c .293c .267c .580c .427 .139d .312 .289 .571 .473
DPHext ANCE-PRFext ANCEtarget .112c .276c .254c .496 .413 .124 .294 .271 .517 .468

with the dense external dense retrieval models, the sparse external retrieval model exhibits lower
performance. These observations are consistent for both Robust04 and WT10G experiments.
This indicates that in an end-to-end ColBERT-PRF retrieval paradigm, dense retrieval is more
useful than sparse retrieval as the first stage to produce high-quality pseudo-relevance feedback
documents.
Moreover, in a single-representation-based ANCE-PRF scenario, Table 5.7 shows the performance
of sparse external dense retrieval models for both Robust04 and WT10G datasets. Firstly, we
analyse the top-half table for Robust04. We make the following observations for both the sparse
external ANCE-PRF dense retrieval models: (1) they exhibit higher performance than both ANCE
(row (e)) and ANCE-PRF (row (f)) performed only on target collection; (2) they show slightly
lower performance compared with ANCE reranking models in row (e) and row (f); (3) they show
similar performance with the dense external dense retrieval models. On the half-bottom table,
we make the following observations for the sparse external dense retrieval models as follows:
(1) similar to Robust04, both models outperform the ANCE and ANCE-PRF on WT10G target
collection; (2) however, they show a large drop compared with the ANCE reranking models in row
(e) and (f); (3) different to the observation for Robust04, sparse external dense retrieval exhibits
higher performance than dense external dense retrieval models. Based on this, we find that for the
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[SEP]
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Figure 5.2: ColBERT-PRF interaction matrix between Robust04 topic (qid: 405) and document
(docid: FT944-864) in an external expansion scenario. The darker shading indicates a higher sim-
ilarity. The highest similarity among all the document embeddings for a given query embeddings
is highlighted with a ‘×’ symbol. The top histogram presents the magnitude of contribution for
each query embedding to the final score of the document. The expansion tokens generated from
the target index are highlighted in purple colour while the expansion tokens generated from the
external index are highlighted in red colour.

single-representation ANCE-PRF dense retrieval model, sparse external retrieval as the first stage
could also produce high-quality feedback documents to refine the query representation using the
ANCE-PRF model.
Thus, in response to RQ5.3, we find that sparse external retrieval as the initial ranking stage is not
sufficient to improve the performance of a multiple representation-based ColBERT-PRF dense
retrieval model. However, for the single-representation ANCE-PRF dense retrieval model, sparse
external first-stage retrieval can improve the retrieval performance over the ANCE baseline,
although the ANCE baseline is comparatively weak (emphasising the difficulty of zero-shot
single-representation dense retrieval).

5.5.4 Summary of Observations

We now report a summary of the observations from the above experiments.
Dense External Expansion, Sparse Retrieval - Section 5.5.1: We observe that external sparse
expansion exhibits a similar performance to the target expansion sparse retrieval models. More-
over, external dense expansion can bring significant improvements over sparse retrieval models
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with expansion only performed on the target (12% improvement for Robust04 in nDCG@10:
0.432→ 0.482 and 28% for WT10G: 0.324→ 0.420 in Table 5.3).
Dense External, Dense Retrieval - Section 5.5.2 We find that external expansion using ColBERT
can significantly improve over the dense retrieval models as well as the dense retrieval with target
query expansion (7% improvement for Robust04 in nDCG@10: 0.447→ 0.477 and 21% 0.328
→ 0.397 in Table 5.4); Similarly, external expansion using ANCE can improve the retrieval
effectiveness of the dense retrieval (by 20% for Robust04 on nDCG@10: 0.324→ 0.388 and by
29% for WT10G: 0.224→ 0.289 in Table 5.7). In addition, performing dense external expansion
using ColBERT or ANCE can result in further improvements on four BEIR datasets in Table 5.5.
Sparse External, Dense Retrieval - Section 5.5.3: We find that sparse external expansion
brings limited useful information for ColBERT to improve the followed-up dense retrieval
effectiveness, and that even applying sparse external retrieval as the initial stage can bring useful
feedback documents to improve over the dense retrieval on target collection. This emphasises the
continuing utility of external expansion in general, even for modern retrieval models.
Overall Performances: The highest nDCG@10 performances observed for Robust04 are 0.482
for title queries and 0.490 for description queries performing external expansion using ColBERT
for sparse retrieval (see Table 5.3). The highest nDCG@10 performances for WT10G are 0.420
for title queries and 0.534 for description queries, obtained by performing external expansion
using ANCE for sparse retrieval. Finally, the overall baseline dense retrieval results are not as
effective as sparse retrieval in these zero-shot settings, which emphasises the overall difficulty
of zero-shot dense retrieval. However, the use of dense external expansion can significantly
improve effectiveness (e.g. for ColBERT-PRF, nDCG@10 0.447→0.477 in Table 5.4), it can
achieve similar performance to the best sparse retrieval (e.g. 0.482 in Table 5.3 is not statistically
distinguishable from 0.477). This demonstrates the benefit of external expansion for effective zero-
shot dense retrieval. In the next section, we analyse to explain the effectiveness of ColBERT-PRF.

5.5.5 Semantic Matching Analysis for ColBERT-based External Expansion

We now analyse the extent to which ColBERT-PRF prefers exact matches versus inexact (se-
mantic) matching using the Semantic Match Proportion (SMP) calculated using Equation 4.5
in Section 4.3.3.4. In this section, we further investigate the extent to which semantic matching
occurs when performing query expansion using PRF documents generated from a high-quality
external collection compared to only the target collection.
Figure 5.2 depicts the interaction matrix of the ColBERT-PRF model in an external expansion
scenario between the Robust04 title topic: “cosmic events” and its top-ranked document. Across
the top, the original query tokens, along with the ‘[MASK]’ query embeddings added for “query
augmentation” (cf. Section 2.3.2) are in black; the (most likely) tokens identified by ColBERT-
PRF from the target corpus are shown in purple, and those identified by ColBERT-PRF from the
external corpus are in red. On analysis of the figure, we observe that for the original query token
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Figure 5.3: Per-query Semantic Matching Proportion for 50 of the Robust04 title topics.

‘cosmic’ experiences exact matching as the token is in the same form with its corresponding
returned highest Max-Sim scored document token. In contrast, the original query token ‘events’
experiences semantic matching, as its corresponding document token with the highest Max-Sim
score is ‘explosion’. Indeed, this match is semantically contextualised in nature, in that it is
unlikely that ‘events’ would somehow match ‘explosion’ except in the context of ‘cosmic’. It
is also possible to see the ‘[MASK]’ query embeddings added by ColBERT are mostly similar
in nature to the original query terms ‘cosmic’ and ‘events’, by virtue of the fact their Max-Sim
matches are with the same document tokens.
When looking at the tokens for the expansion embeddings, we see that the target index generates
expansion embeddings that seem unrelated to the query (e.g. ‘matthew’). In contrast, the
tokens for the externally sourced expansion embeddings are more related in nature to the query
(‘eclipse’, ‘meteor’, ‘galaxy’). Of these, ‘galaxy’ experiences an exact match, while other
expanded embeddings experience semantic matching (e.g. ‘eclipse’ matches with ‘cosmic’).
Now, we measure the difference of the semantic matching proportion performances with and with-
out applying the external expansion from the multiple representation dense retrieval. Figure 5.3
depicts the per-query semantic matching proportion for the first 50 Robust04 title queries against
the top 1 document for the external expansion of ColBERT-PRF and ColBERT-PRF on the target
index. We observe that among the sampled queries, 41/50 queries’ semantic matching values
are increased when performing ColBERT-PRF using feedback documents from the external
collection rather than the target. This indicates that the pseudo-relevance feedback documents
generated from the external collection contain broader and more useful information than the
small target collection to refine the original query representation to get closer to the relevant
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Figure 5.4: Mean Semantic Matching Proportion (Mean SMP) as rank varies.

document representations in the semantic matching space.
Next, we investigate the Mean SMP of different approaches, namely the ColBERT E2E on the tar-
get index, the ColBERT-PRF on the target index and the external expansion from ColBERT-PRF,
at different rank cutoffs, k. In particular, Figure 5.4 depicts the observed Mean SMP on both the
Robust04 title-only and description-only query sets. On observing Figure 5.4a, we find that both
of the ColBERT-PRF based approaches exhibit higher mean semantic matching proportion than
the ColBERT E2E approach performed on different rank cutoffs. In addition, external expansion
from ColBERT-PRF shows higher Mean SMP than ColBERT-PRF applied using only the target
index. Indeed, as most of the Robust04 title-only queries are short queries, their information needs
cannot be sufficiently described only using the original query representation. This observation
further verifies the findings from Figure 5.3. Expanding the ColBERT query representations
with expansion embeddings results in a better query representation, while expanding from a
higher quality external corpus will further improve the representation. Next, from Figure 5.4b,
we observe that for the description queries, at the initial ranks, ColBERT E2E exhibits higher
semantic matching than the ColBERT-PRF on the target index. Put another way, ColBERT-PRF
tends to experience higher exact matching on the very high ranks than ColBERT E2E. However,
across the range of rank cutoff values, external expansion from ColBERT-PRF shows the highest
semantic matching compared to both ColBERT-PRF and ColBERT E2E on the target collection.
Overall, we find that the external expansion for multiple representation dense retrieval results in a
higher semantic matching proportion than expansion only performed in the target index. This
demonstrates further the value of performing pseudo-relevance feedback using ColBERT-PRF.
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5.6 Conclusion

This chapter has revisited the pseudo-relevance feedback, in the form of external expansion, as
applied to improve the zero-shot retrieval and addressed our proposed third hypothesis in the
thesis statement in Section 1.1. In particular, our experiments employed popular dense retrieval
models from both the single representation and multiple representation families to extract useful
feedback documents from the high-quality external corpus (MSMARCO). More specifically,
we investigated different frameworks performing external expansion for zero-shot retrieval and
conducted extensive experiments on two TREC test collections (Robust04 and WT10G) and
four BEIR datasets (DBPedia, NFCorpus, TREC-COVID and Touché-2020), namely (a) dense

external expansion for sparse retrieval, (b) dense external expansion for dense retrieval and
(c) sparse-obtained external feedback for dense retrieval. Overall, we found that high-quality
feedback documents obtained from both multiple representation dense retrieval (cf. Table 5.4)
and single representation dense retrieval (cf. Table 5.7) can significantly improve sparse retrieval
on both test collections (by 12% and 28% for Robust04 and WT10G, respectively). Moreover,
we observed that performing external dense expansion can significantly outperform the zero-shot
dense retrieval models on target collection. In addition, we found that pseudo-relevance feedback
documents produced by the sparse retrieval model are beneficial to augment query representation.
Finally, we thoroughly investigated the semantic matching analysis for ColBERT-PRF and
observed that performing external expansion using multiple representation dense retrieval results
in higher semantic matching proportion than performing on the target.
However, one limitation of the models discussed in this chapter is that they have only been
experimented with using a single external corpus. Their effectiveness with multiple external
corpora for expansion has not been quantified. In addition, the proposed models are specific to
the BERT model. While their retrieval effectiveness is notable, the generalisation potential of
ColBERT and ColBERT-PRF to other pretrained language models remains under-explored. This
raises a natural question: can ColBERT and ColBERT-PRF models generalise to other pre-trained
language models? For instance, extending to the RoBERTa (Liu et al., 2020) and ALBERT (Lan
et al., 2020)-based models since they employed different tokenisation techniques to BERT model,
which may impact the input representation and data processing pipeline. Therefore, in the
following chapter, we delve deeper into examining the effectiveness of models that go beyond
BERT.
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Chapter 6

From ColBERT-PRF to Col⋆-PRF

In Chapter 4 and Chapter 5, we examined the effectiveness of our ColBERT-PRF technique for
dense query expansion and dense external expansion, respectively, and validated our second and
third posed hypotheses in our thesis statement (cf. Section 1.1). All of these validations have
been conducted upon ColBERT (cf. Section 2.3.2), which uses the BERT PLM (cf. Section 2.2.1).
Going further, this chapter further investigates our posed third hypothesis, namely that our key
ColBERT-PRF model can be effectively extended to various forms of late interaction dense
retrieval models.
In particular, as introduced in Section 2.3.2, ColBERT operates based on the token-level represen-
tations of query and document and consists of two stages: the Approximate Nearest Neighbour
Search (ANN Search) stage and the Contextualised Late Interaction stage. Moreover, ColBERT-
PRF also operates based on the token-wise dense representations of the pseudo-relevance feedback
passages. Hence, on the one hand, the representation of the query and document can have a direct
impact on the matching effectiveness. However, the de-facto PLM used by ColBERT is BERT
while, as we introduced in Section 2.2, there are various different types of PLMs that are more
extensively trained than BERT, such as ColRoBERTa and ELECTRA, and PLMs that are more
lightweight compared to BERT, such as miniLM and ALBERT.
ColBERT uses a contextualised late interaction mechanism and our proposed ColBERT-PRF
model uses the weighted contextualised late interaction for scoring. The nature of the match-
ing behaviour within the late interaction mechanism includes lexical and semantic matching,
introduced in Section 4.3.3.4, depends on the vocabulary. Sub-word tokenisation is the de-facto
standard tokenisation approach in neural IR, due to the advantages of a limited-size vocabulary
(cf. Section2.2). Tokenisation algorithms used by common contextualised models (cf. Section2.2)
include WordPiece (Schuster and Nakajima, 2012), used by the BERT and ELECTRA model,
Byte-Pair Encoding (BPE) (Bostrom and Durrett, 2020), used by the RoBERTa model, and
SentencePiece (Kudo and Richardson, 2018), used by the ALBERT and T5 models. Different
pretrained models, and their different tokenisation algorithms, lead to different embeddings in
different representation spaces. In addition, the same type of pretrained model can often be
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instantiated in differing sizes (number of layers, etc.), where larger models can be more effec-
tive. Therefore, in this chapter, we extend ColBERT to Col⋆, instantiating the late interaction
mechanism with various pretrained models using different types of tokenisation techniques.
Furthermore, we generalise our proposed ColBERT-PRF technique to Col⋆-PRF.
We extensively evaluate the retrieval effectiveness of the various extended Col⋆ and Col⋆-PRF
models. In addition, we are also concerned with the matching behaviour operated within the
contextualised late interaction. Therefore, we conduct the semantic matching proportion analysis
introduced in Section 4.3.3.4 to further explain the (weighted) contextualised late interaction
experienced by Col⋆-PRF. More specifically, we examine the semantic matching proportion
values overall as well as the more fine-grained matching behaviour on various salient types of
token families for both Col⋆ and Col⋆-PRF models. Finally, we also quantify the contribution
of different types of matching, namely lexical matching, semantic matching, and special token
matching to the overall retrieval effectiveness.
In summary, this chapter makes the following contributions: we study the effectiveness of
multi-representation dense retrieval with different pretrained models with different tokenisation
algorithms and we observe that: (i) ColBERT and ColBERT-PRF can be generalised upon var-
ious pretrained language models as Col⋆ and Col⋆-PRF, respectively; (ii) in terms of retrieval
effectiveness, we observe that applying the late interaction mechanism upon a RoBERTa model
(which employs BPE tokenisation) exhibits comparable retrieval effectiveness to ColBERT; (iii)
the Col⋆-PRF technique exhibits consistent improvements in retrieval effectiveness over the
corresponding underlying Col⋆ model. Moreover, our extensive semantic matching proportion
analysis yields the following new findings: (iv) applying the Col⋆ and Col⋆-PRF models with the
BPE tokeniser is more likely to perform semantic matching than the more common ColBERT
model; (v) among various salient token families, all of the (weighted) contextualised late interac-
tion models perform semantic matching, particularly for low IDF tokens and stopwords tokens;
(vi) performing only exact matching and the special token matching contribute more than only
semantic matching to the overall retrieval effectiveness. These insights help explain the matching
behaviour in contextualised late interaction retrieval with and without the pseudo-relevance
feedback mechanism and can shed light on the more effective dense retrieval model design and
retrieval.
The remainder of this chapter is organised as follows: Section 6.1 introduces our extended Col⋆
and Col⋆-PRF models. Next, we explain the semantic matching behaviour of the proposed Col⋆
and Col⋆-PRF models in Section 6.2, including the corresponding proposed research questions
(Section 6.2.1) and the experiment results (Section 6.2.2). Finally, we summarise our findings
and provide future work directions in Section 3.5.
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Table 6.1: Tokenisation for example inputs for 3 tokenisers, corresponding to BERT, ALBERT
and RoBERTa respectively.

Technique Example 1 Example 2

Sample Text casualties in ww2 Casualties
WordPiece [CLS] casualties in w ##w ##2 [SEP] [CLS] casualties [SEP]
SentencePiece [CLS] _casualties _in _ ww 2 [SEP] [CLS] _casualties [SEP]
BPE <s> Ġcasualties Ġin Ġw w 2 </s> <s> Cas ual ties </s>

6.1 Extending ColBERT-PRF to Col⋆-PRF

In this section, we first introduce the Col⋆ and Col⋆-PRF approaches in Section 6.1.1. Next,
we detail the research questions and provide the results and analysis of our proposed Col⋆ and
Col⋆-PRF approaches in Section 6.1.2 and Section 6.1.3, respectively.

6.1.1 Col⋆ and Col⋆-PRF

Tokenisation is an important technique to preprocess the input text before input to a contextualised
language model. In particular, as transformer-based models learn representations for each unique
token, a limited-size vocabulary is important. A larger vocabulary size would cause increased
memory and time complexity, and difficulty in learning accurate representations for rare tokens.
For these reasons, sub-word tokenisation is usually used to split the input text into small chunks
of text. Thus, frequently used words are given unique IDs, while rare words will be processed
into sub-words. Prevalent tokenisation techniques used by large pretrained language models
include WordPiece, Byte-Pair Encoding (BPE) and SentencePiece tokenisation techniques. For
instance, WordPiece is used by BERT and miniLM; BPE is used by RoBERTa and GPT models;
SentencePiece is used by ALBERT and T5 models. In particular, the BPE and WordPiece
tokenisation techniques merge the characters into larger tokens but control the vocabulary
size using different algorithms to maximise the likelihood of the training data. In contrast,
SentencePiece treats the whole sentence as one large token and learns to split it into sub-words.
Table 6.1 compares the outputs of the different tokenisation approaches for the example texts
“casualties in ww2” and “Casualties”. Firstly, each tokeniser has its own rule to mark
the beginning and end of the sentence and whether the token is sub-word token or not (## vs.
_ vs. Ġ). Moreover, we see that all three compared tokenisation techniques can produce tokens
of the more frequent words with their surface word form, such as in. However, for the rarer
words (ww2), the various tokenisers differ in how they split these words into sub-words and
encode as tokens. For instance, WordPiece and BPE produce separate the w, w and 2 in ww2,
while SentencePiece has a token for ww. Notably, RoBERTa’s BPE tokeniser is case-sensitive
(see also Table 6.2), and while the vocabulary contains the surface form of casulaties, the
less frequent uppercase word is broken into three sub-word tokens. This can directly impact the
matching behaviour within the late interaction mechanism, as further discussed in Section 6.2.2.1.
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Indeed, different tokenisers will directly affect the generated embeddings thus affecting the model
performance. For instance, studies have examined different tokenisation techniques for language
model pretraining (Bostrom and Durrett, 2020, Guo et al., 2021) and for low-resource language
models (Rajab, 2022, Toraman et al., 2022). However, the impact of differing tokenisers for
dense retrieval has not been previously investigated. Most recently, ColBERT-X (Nair et al.,
2022) replaced the BERT pretrained model with the XLM-RoBERTa pretrained model when
applying ColBERT for a cross-language retrieval task. However, ColBERT-X is motivated by
the cross-language abilities of the XLM-RoBERTa model and made no conclusions on the effect
of the different tokenisation techniques. In this work, we not only investigate the effect of the
different pretrained models in ColBERT but also study the effect of using different tokenisation
techniques upon English dense retrieval. In addition, we further inspect their impact on the
contextualised matching pattern occurring in the dense retrieval models.
More specifically, the characteristics of the Col⋆ models we introduce are summarised in Table 6.2.
The models can be classified within three families, according to the tokenisation technique each
model uses, namely WordPiece, BPE and SentencePiece. From the table, we can see that the
different base models have different vocabulary sizes and the number of parameters. Moreover,
their corresponding ColBERT-like dense indices vary considerably in size.

Table 6.2: Characteristics for different Col⋆ models with contextualised late interaction.

Col⋆ Model Tokeniser Vocab. Size Index size Embedding Dim. Number of Parameters HF Base Model

ColBERT-Base WordPiece 30,522 193G 128 1095M bert-base-uncased
ColBERT-Large WordPiece 30,522 - 128 3353M bert-large-uncased
ColBERT-Tiny WordPiece 30,522 - 128 44M bert-tiny
ColBERT-Mini WordPiece 30,522 - 128 112M bert-mini
ColBERT-Small WordPiece 30,522 - 128 288M bert-small
ColBERT-Medium WordPiece 30,522 - 128 414M bert-medium
ColELECTRA-Base WordPiece 30,522 - 128 1090M electra-small-discriminator
ColminiLM WordPiece 30,522 64G 32 227M -
ColRoBERTa-Base BPE 50,267 356G 128 1247M roberta-base
ColRoBERTa-Large BPE 50,267 - 128 3555M roberta-large
ColALBERT-Base SentencePiece 30,002 199G 128 119M albert-base-v2
ColALBERT-Large SentencePiece 30,002 - 128 218M albert-large-v2
ColALBERT-XLarge SentencePiece 30,002 - 128 631M albert-xlarge-v2
ColALBERT-XXLarge SentencePiece 30,002 - 128 2275M albert-xxlarge-v2

For the models with the WordPiece tokeniser, we apply the late interaction mechanism upon
six BERT models with various sized pretrained models, from BERT-Tiny to BERT-Large. The
aim of training these variants is to investigate the impact of the number of parameters of the
base model that ColBERT encoders are initialised from. In addition, for WordPiece tokeniser
models, we also apply ColminiLM and ColELECTRA models. miniLM (Wang et al., 2020a) is a
distilled variant of BERT, which aims to reduce the huge number of parameters while retaining
BERT’s performance. In our work, we use miniLM as a base model for the late interaction dense
retrieval mechanism and use m = 32 component embeddings. This thus represents a ColBERT-
like setting with minimal time- and space-efficiency overheads (Bergum, 2021). We denote this
as ColminiLM. Moreover, ELECTRA has been shown to achieve higher performance than a
similar-sized BERT on certain NLP tasks and can be implemented as an effective cross-encoder

138



0 500 1000 1500 2000 2500 3000 3500
Number of Parameters (M)

0.60

0.62

0.64

0.66

0.68

0.70

0.72

TR
EC

 2
02

0 
(n

DC
G@

10
)

BPE Tokeniser
SentencePiece Tokeniser
WordPiece Tokeniser

ColBERT-Base

ColBERT-Tiny

ColBERT-Mini
ColBERT-Small

ColBERT-Medium

ColBERT-Large

ColminiLM ColRoBERTa-Base

ColRoBERTa-Large

ColALBERT-Base

ColALBERT-Large
ColALBERT-XLarge

ColALBERT-XXLarge

ColELECTRA

Figure 6.1: The retrieval effectiveness (y-axis: nDCG@10) of Col⋆ models on TREC 2020 query
set. The x-axis shows the number of parameters of the Col⋆ models. Different markers indicate
the tokenisation technique used by the Col⋆ models.

for reranking (Gospodinov et al., 2023, MacAvaney et al., 2022), but its performance has yet to
be ascertained for dense retrieval. We implement the late interaction based on ELECTRA and
denote this as ColELECTRA.
Secondly, to consider the BPE tokeniser, we train ColRoBERTa with both Base and Large sizes.
RoBERTa employs the same model architecture as BERT but exploits the BPE tokeniser, with
an increased vocabulary size wrt. ColBERT and ColminiLM. We note that RoBERTa is used as
the base model for the ANCE dense retrieval model. We extend the ColBERT model using the
RoBERTa base model within its BPE tokeniser, denoted as ColRoBERTa. Similar to miniLM,
ALBERT aims at reducing the number of parameters of BERT by sharing parameters across trans-
former layers. In our experiments, we train four ColALBERT models by fine-tuning various sized
base models, including ‘Base’, ‘Large’, ’XLarge’ and ‘XXLarge’ ALBERT models. ColALBERT
models employ the SentencePiece tokeniser, which allows us a third tokeniser setting.
All the Col⋆ models listed in Table 6.2 are trained following the original ColBERT training
setup, with a batch size of 32 and the query length and document lengths are set as 32 and
180, respectively. Table 6.2 also provides salient details and statistics of the models and their
corresponding indices. In addition, for all the Col⋆ models, except ColminiLM, we fine-tune the
models upto 300k iterations, selecting the final model based on reranking effectiveness on the 2019
queries. For ColminiLM, we use the checkpoint vespa-engine/col-minilm provided by
the author of (Bergum, 2021) which was trained similarly. Since using the MSMARCO Dev
query set for validation is computationally expensive, we used a smaller set of TREC 2019
queries for validation instead. All the Col⋆ models are trained with the cosine similarity method.
Figure 6.1 shows the number of parameters and the tokeniser’s impact on the retrieval effectiveness
of various Col⋆ models. An ANOVA study indicates that both the number of parameters and
the type of tokeniser used have a significant impact on the nDCG@10 scores, at a significance
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level of p < 0.05. The performance of the models on natural language understanding tasks
tends to improve with an increase in the number of trainable parameters (Kaplan et al., 2020),
although this is not always the case (Zhong et al., 2021). Our findings, as displayed in Figure 6.1,
indicate that for BERT-based, ALBERT-based and RoBERTa-based Col⋆ models, retrieval
effectiveness tends to increase with an increase in the number of parameters. It should be
noted that larger parameterised models may be more prone to overfitting and require more
computational resources for both training and inference. Additionally, the quality of the training
data and the model architecture can also impact the retrieval performance of Col⋆ models. More
importantly, considering the environmentally friendly information retrieval (Scells et al., 2022),
we focus on the Col⋆ models with different tokenisation techniques and investigate the impact
of the tokenisation techniques on semantic matching behaviour. To this end, we select to index
ColBERT-Base, ColRoBERTa-Base and ColALBERT-Base models. We also compare with the
ColminiLM model, which reduces the embedding dimension from 128 to 32.

6.1.2 Research Questions

We pose three research questions about the effectiveness of Col⋆ and Col⋆-PRF models, as
follows:
Firstly, we investigate the effectiveness of Col⋆ models, which serving as the initial retrieval
stage of Col⋆-PRF, by posing our first research question:
RQ6.1: How does the retrieval effectiveness vary across different contextualised late interaction
models?
In addition, we investigate the effectiveness of implementing ColBERT-PRF technique across
various Col⋆ models, i.e., Col⋆-PRF models, by posing the second research question:
RQ6.2: How does Col⋆-PRF compare to its corresponding underlying Col⋆ model?
Furthermore, we examine the impact of the source pseudo-relevance feedback text by controlling
the initial retrieval stage of Col⋆-PRF models, and therefore ask:
RQ6.3: What is the impact of the controlling first stage retrieval for the Col⋆-PRF model?

6.1.3 Results and Analysis

We now present the results and analysis to address research questions RQ6.1 - RQ6.3 from
Section 6.1.3.1 to Section 6.1.3.3.

6.1.3.1 RQ6.1 - Retrieval Effectiveness across Col⋆?

To understand if the de-facto BERT base model can be replaced for implementing the late
interaction mechanism, we deploy the late interaction technique on various contextualised
pretrained language models (which also use varying tokenisers). Table 6.3 reports the evaluation
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Table 6.3: Performance of contextualised late interaction models. The † (⋄) symbol denotes
statistically significant differences compared to BM25 (ColBERT). The highest value in each
column is boldfaced.

Models TREC DL 2019 TREC DL 2020

MAP@1k nDCG@10 MRR@10 R@1k Mean SMP MAP@1k nDCG@10 MRR@10 R@1k Mean SMP

BM25 (PyTerrier) 0.286 0.480 0.640 0.755 - 0.293 0.494 0.615 0.807 -

BM25 » Late Interaction

ColBERT 0.459† 0.713† 0.847† 0.755 0.375 0.484† 0.707† 0.835† 0.807 0.387
ColminiLM 0.431† 0.654†⋄ 0.811† 0.755 0.362 0.458† 0.685† 0.866† 0.807 0.363
ColRoBERTa 0.458† 0.695† 0.865† 0.755 0.599 0.462† 0.695† 0.844† 0.807 0.607
ColALBERT 0.412†⋄ 0.634†⋄ 0.821† 0.755 0.367 0.401†⋄ 0.630†⋄ 0.751† 0.807 0.390

ANN Search » Late Interaction

ColBERT 0.445† 0.708† 0.857† 0.773 0.390 0.473† 0.690† 0.832† 0.806 0.406
ColminiLM 0.388†⋄ 0.631†⋄ 0.811† 0.698⋄ 0.382 0.434†⋄ 0.672† 0.860† 0.762⋄ 0.388
ColRoBERTa 0.426† 0.684† 0.866† 0.738 0.610 0.423†⋄ 0.666† 0.828† 0.760 0.622
ColALBERT 0.356⋄ 0.613†⋄ 0.769 0.772 0.381 0.367†⋄ 0.604†⋄ 0.745† 0.792 0.413

results for the selected Col⋆ models for both the reranking and end-to-end dense retrieval scenarios
on both TREC DL 2019 and 2020 query sets.
First, we analyse the ColminiLM model, which exploits a lightweight BERT model and uses the
identical WordPiece tokeniser as ColBERT. From the reranking results in Table 6.3, we see that
ColminiLM significantly outperforms BM25 and shows comparable performance to ColBERT
across the measures on both TREC 2019 and 2020 query sets, except markedly lower than
ColBERT in terms of nDCG@10 on TREC 2019 queries. Similarly, for the end-to-end retrieval
experiments, ColminiLM exhibits significant improvements over BM25. However, compared to
ColBERT, ColminiLM shows significantly lower MAP, nDCG@10 and Recall on TREC 2019
and significantly lower MAP and Recall on TREC 2020 queries. The lower performance of
ColminiLM can be explained in that, as shown in Table 6.2, it requires much fewer parameters
(only 20% of the ColBERT parameters). ColminiLM remains promising as it shows comparable
nDCG@10 performance on the test queries (TREC 2020) and it has a smaller index size (∼17%
of the ColBERT index size).
Next, we analyse ColRoBERTa. we observe that ColRoBERTa exhibits comparable retrieval
effectiveness to ColBERT and markedly improvements over BM25 when employed as a reranker
on top of the BM25 sparse retrieval across all the reported measures. In addition, it shows
comparable performance wrt. ColBERT in the dense end-to-end retrieval scenario on TREC 2019
and 2020 queries, except MAP on TREC 2020 query set. Overall, we find that ColRoBERTa is a
good replacement for ColBERT.
For ColALBERT, we observe that it shows lower performance than ColBERT across all the
reported measures on both reranking and end-to-end dense retrieval implementations on both
query sets. Similar to ColminiLM, ColALBERT has significantly fewer parameters and a
simplified model structure than ColBERT. Overall, ColALBERT has low performance in terms
of the precision measures: MAP, nDCG@10 and MRR@10, and surprisingly high performance
in terms of the Recall@1k.
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Figure 6.2: Impact of the expansion embedding weight β of Col⋆-PRF variants on the TREC
2019 query set.

Finally, it is notable that, at least on this query set, the other model families consistently do not
outperform the BERT family. This suggests that more recent families of pretrained language
models (ALBERT, RoBERTa) have not equated to improvements in a downstream retrieval task
compared to the original BERT model.
Answer to RQ6.1: We conclude that we can implement the contextualised late interaction
mechanism upon various pretrained models. More specifically, we find that, when compared to
the ColBERT model, ColRoBERTa exhibits a competitive performance to ColBERT. However,
consistent with the findings from Figure 6.1, we find that the ColminiLM and ColALBERT
models show slightly lower retrieval effectiveness than ColBERT due to their lightweight model
structures. Notably, no model family exceeds BERT in terms of effectiveness for a comparable
number of parameters.

6.1.3.2 RQ6.2 - Retrieval Effectiveness for Col⋆-PRF?

We now evaluate the retrieval effectiveness of implementing the ColBERT-PRF technique, pro-
posed in Chapter 4, on the Col⋆ models. These models have been deployed using various
pretrained models and tokenisers, introduced in Section 6.1.3.1. It is important to recall that in
Section 4.2.3, we introduced a parameter β to control the contribution of the expansion embed-
dings to the overall relevance score between an input query and a document. In particular, based
on the hyperparameter study conducted in Section 4.3.3.3, β = 1 is set as the default setting for the
ColBERT-PRF technique. For the Col⋆-PRF variants, namely ColBERT-PRF, ColRoBERTa-PRF,
ColALBERT-PRF, and ColminiLM-PRF models, we further tune the parameter β (ranging from
0 to 10) using the validation query set, specifically the TREC 2019 passage queries. Figure 6.2
presents the impact of the expansion embedding weight β of the established Col⋆-PRF variants
in both ranking and reranking scenarios of ColBERT-PRF (cf. Section 4.2.3).
From Figure 6.2, firstly, we observe that the impact of β on the Ranker and ReRanker settings for a
particular Col⋆-PRF model is similar. The Ranker and ReRanker scenarios for Col⋆-PRF models
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Table 6.4: Performance of Col⋆-PRF models. The † symbol denotes statistically significant
differences compared to the corresponding Col⋆ E2E model. The highest value in each column is
boldfaced.

Models TREC DL 2019 TREC DL 2020

MAP@1k nDCG@10 MRR@10 R@1k Mean SMP MAP@1k nDCG@10 MRR@10 R@1k Mean SMP

ColBERT E2E 0.445 0.708 0.857 0.773 0.390 0.473 0.690 0.832 0.806 0.406
ColBERT-PRF Ranker 0.532†+19.3% 0.731+3.2% 0.853 0.866† 0.409 0.495†+4.7% 0.714+3.5% 0.825 0.855† 0.456
ColBERT-PRF ReRanker 0.481†+8.1% 0.731+3.2% 0.857 0.773 0.411 0.494+4.4% 0.719+4.2% 0.849 0.806 0.457

ColminiLM E2E 0.388 0.631 0.811 0.698 0.382 0.434 0.672 0.860 0.762 0.388
ColminiLM-PRF Ranker 0.423†+9.4% 0.657+4.1% 0.788 0.761† 0.454 0.451†+3.9% 0.681+1.3% 0.805 0.818† 0.465
ColminiLM-PRF ReRanker 0.408†+5.2% 0.657+4.1% 0.788 0.698 0.460 0.444†+2.3% 0.679+1.1% 0.807 0.762 0.470

ColRoBERTa E2E 0.426 0.684 0.866 0.738 0.610 0.423 0.666 0.828 0.760 0.622
ColRoBERTa-PRF Ranker 0.476†+11.7% 0.707+3.4% 0.827 0.813† 0.555 0.463+9.5% 0.677+1.7% 0.792 0.817† 0.604
ColRoBERTa-PRF ReRanker 0.456†+7.1% 0.707+3.4% 0.827 0.738 0.555 0.457†+8.1% 0.675+1.4% 0.792 0.760 0.604

ColALBERT E2E 0.356 0.613 0.769 0.772 0.390 0.367 0.604 0.745 0.792 0.413
ColALBERT-PRF Ranker 0.422†+18.5% 0.645+5.2% 0.758 0.829† 0.313 0.411†+12.0% 0.656+8.6% 0.771 0.845† 0.371
ColALBERT-PRF ReRanker 0.368†+3.4% 0.646+5.3% 0.761 0.772 0.311 0.407†+10.9% 0.656+8.6% 0.771 0.792 0.373

are originally introduced in Section 4.2.3, where Col⋆-PRF Ranker conducts the 2nd round of
ANN search and late interaction scoring while the Col⋆-PRF ReRanker only performs another
round of late interaction rescoring using the refined query representation. When comparing
between the Col⋆-PRF models, we observe that the trend of ColBERT-PRF is similar to that of
ColminiLM-PRF, and both reach their highest MAP value when β falls within the range of [0.4,
1.6]. This is expected, due to the fact that miniLM is a distilled version of the BERT pretrained
language model. In contrast, ColRoBERTa-PRF, which uses the BPE tokeniser, achieves its
highest MAP performance with a smaller β value of 0.2. Similarly, ColALBERT-PRF, which
uses the SentencePiece tokeniser, also prefers a smaller β (β = 0.2) value for effective retrieval.
This means that the expansion embeddings are less useful for ColRoBERTa and ColALBERT
models than the BERT-based Col⋆ models. Therefore, we set β = 0.2 as the default value for
ColRoBERTa-PRF and ColALBERT-PRF models while we use β = 1 for ColBERT-PRF and
ColminiLM-PRF models. In Table 6.4, we compare the retrieval effectiveness of Col⋆-PRF
model, instantiated as both Ranking and ReRanking scenarios, to the Col⋆ models on both TREC
2019 and 2020 query sets.
For ColBERT-PRF, it should be noted that, in line with (Wang et al., 2023d), we use the
ColBERT model trained with a full 200k steps and a batch size of 32 rather than the one
that was trained with 44k steps and used in Chapter 4. In Table 6.4, we also observe that
the ColBERT-PRF models significantly outperform the ColBERT-E2E model on both TREC
2019 and 2020 query sets. These results aligh with the performance of the ColBERT-PRF
with fewer training steps (44k steps) reported in Table 4.1 in Section 4.3. Additionally, for the
ColminiLM-PRF models, we observe significant improvements over the ColminiLM E2E model.
These observations emphasise the effectiveness of our proposed ColBERT-PRF for the BERT-
based contextualised late interaction mechanism, particularly when used with the WordPiece
tokeniser. When comparing the ColBERT-PRF models with the ColminiLM-PRF models, namely
ColminiLM vs. ColBERT and ColminiLM-PRF vs. ColBERT-PRF for Ranker or ReRanker, we
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Table 6.5: The pseudo-relevance feedback passages in the controlled Col⋆-PRF Models.

Query what is a active margin

1st PRF
’Best Answer: An active margin is a tectonic plate boundary, a passive margin is a compositional transition within a
tectonic plate. As you probably know the theory of plate tectonics posits the outer layer of the Earth consist of plates
which move relative to each other driven by convection in the Mantle.’

2nd PRF

’An active plate margin is an actual plate boundary, where oceanic crust and continental crust crash into each other.
Active plate margins are often the site of earthquakes and volcanoes. Oceanic crust created by seafloor spreading in the
East Pacific Rise, for instance, may become part of the Ring of Fire, the horseshoe-shaped pattern of volcanoes and
earthquake zones around the Pacific ocean basin.’

3rd PRF
’Active Margins occur where oceanic lithosphere is being subducted beneath the edge of the continent. the result is a
relatively narrow margin that consists of highly deformed sediment that was scraped from the decending lithospheric
slab and plastered against the margin of the overriding continent. ’

Query what is the most popular food in switzerland

1st PRF

’Italian cuisine is popular in contemporary Switzerland, particularly pasta and pizza. Foods often associated with
Switzerland include cheese and chocolate. Swiss cheeses, in particular, Emmental cheese, Gruyere, Gruyère,
vacherin And, appenzeller are Famous swiss. Products the most popular cheese dishes are fondue And. racletten
the Italian-speaking part of Switzerland, the Ticino area, one will find a type of restaurant unique to the region. The
Grotto is a rustic eatery, offering traditional food ranging from pasta to homemade meat specialities. Popular dishes
are Luganighe and Luganighetta, a type of artisan sausages.’

2nd PRF
’Finally, there are a lot of sweets, including the second type of food that Switzerland is world famous for: Swiss
chocolate. In Switzerland, breakfast typically includes bread, butter or margarine, marmalade or honey, maybe
some cheese or cereals, plus milk, cold or hot chocolate, tea or coffee.’

3rd PRF

’Switzerland. The food of the Swiss is unusual in that it has so many regional influences from the cuisine of
its neighbours. This includes the French, German and Italians. Historically, Switzerland was a farming country, and
the most popular crops and foods include cheese and potatoes as well as chocolate. The food in Europe can be
characterized by four categories: meats, sugar, cereals, and fats. Meats include tripe, fish, blood sausages, and wild
game. Brought from India and the New World, cane sugar became a necessary ingredient in European recipes and
foods.’

observe that the performance of a ColminiLM model exhibits a substantial decrease compared to
its corresponding ColBERT model. This aligns with the observation we made in Section 6.1.3.1:
the lightweight nature of ColminiLM comes at the cost of degraded retrieval effectiveness.
For ColRoBERTa-PRF models, we observe that both ColRoBERTa-PRF Ranker and ReRanker
models exhibit significant improvements over the ColRoBERTa E2E model on both compared
query sets (upto 9.4% on TREC DL19 and 3.9% on TREC DL20 queries in terms of MAP@1k).
In addition, ColRoBERTa-PRF Ranker leads to slight improvements over the ReRanker scenario.
Similar to ColRoBERTa models, for ColALBERT-PRF models, we observe that ColALBERT-
PRF Ranker model markedly outperforms ColALBERT E2E model on both query sets (upto
18.5% on TREC DL19 and 12% on TREC DL20 queries in terms of MAP@1k). These obser-
vations indicate that our proposed ColBERT-PRF technique can generalise to various Col⋆-PRF
models and is still effective across various underlying PLMs and tokenisation techniques.
Answer to RQ6.2: To summarise, we find that our proposed ColBERT-PRF generalises well
to Col⋆-PRF models with different PLMs and tokenisation techniques. More specifically, Col⋆-
PRF models lead significant improvements over the corresponding Col⋆ models. In particular,
ColALBERT-PRF brings upto 18.5% and 12% improvements over ColALBERT on the TREC
2019 & 2020 queries, respectively.
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Table 6.6: Examples of the expanded queries by the controlled Col⋆-PRF models with the same
first stage retrieval using ColBERT E2E on the two example queries. A token with a darker red
colour indicates its higher effectiveness contribution.

Original query terms Original query tokens Most likely tokens for expansion embeddings

ColBERT-PRF

what is a active margin what is a active margin ##riding , oceanic , volcanoes , ##cton , margin , ##hos ,

transition , consist , ford , ring

what is the most popular
food in switzerland

what is the most popular
food in switzerland

italians , rustic , switzerland , ##gan , ##ere , chocolate ,

ford , mar , cheese , wild

ColBERT » ColminiLM-PRF

what is a active margin what is a active margin ##erved , scraped , convergence , oceanic , volcanoes ,

##ud , ##pher , margin , crust , pacific

what is the most popular
food in switzerland

what is the most popular
food in switzerland

##champ , cricket , switzerland , ##ud , bread , italian ,

cheese , unique , region , includes

ColBERT » ColRoBERTa-PRF

what is a active margin Ġwhat, Ġis, Ġa, Ġactive,
Ġmargin

astered , heric , Ġtransitional , Ġmargin , ĠActive , oes ,

onic , ect , oe , ĠPacific

what is the most popular
food in switzerland

Ġwhat, Ġis, Ġthe, Ġmost,
Ġpopular, Ġfood, Ġin,
Ġsw, itzerland

isine , ĠLug , Ã¨re , eller , ĠSwitzerland , Ġmeats ,

Ġchocolate , Ġmar , ue , ages

ColBERT » ColALBERT-PRF

what is a active margin _what, _is, _a, _active,
_margin,

_seismic , _oceanic , _phosphorus , _passive , sphere ,

_basin , _crash , _lit , _continent , _margin

what is the most popular
food in switzerland

_what, _is, _the, _most,
_popular, _food, _in,

_neighbors , cher , _phosphorus , _switzerland ,

_dishes , _pur , _potatoes , _regional , _italian ,

_cheese

6.1.3.3 RQ6.3 - Control the PRF documents Col⋆-PRF?

We note that the first stage retrieval of the retrieval pipelines reported in Table 6.4 are var-
ied depending on different instantiations of the Col⋆-PRF models. For instance, the retrieval
pipeline for ColBERT-PRF can be expressed as ColBERT»ColBERT-PRF»ColBERT while
ColRoBERTa-PRF can be expressed as ColRoBERTa»ColRoBERTa-PRF»ColRoBERTa.
Different first-stage retrieval results in different pseudo-relevance feedback document sets, which
serve as the source information for the expansion embeddings in Col⋆-PRF models. Moreover,
pseudo-relevance feedback documents with varied quality can directly influence the effectiveness
of our Col⋆-PRF technique. Therefore, to eliminate the impact of the pseudo-relevance feedback
documents and examine the effectiveness of the Col⋆-PRF techniques themselves, we further
control the initial stage retrieval, categorised as sparse (e.g., BM25) or dense (e.g., ColBERT),
across various the Col⋆-PRF models.
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Table 6.7: The effectiveness of the controlled Col⋆-PRF models with the controlled pseudo-
relevance feedback information. The † (‡)symbol denotes statistically significant differences
compared to BM25 » ColBERT and (ColBERT E2E) model. The highest value in each column is
boldfaced.

Models TREC DL 2019 TREC DL 2020

MAP@1k nDCG@10 MRR@10 R@1k Mean SMP MAP@1k nDCG@10 MRR@10 R@1k Mean SMP

BM25 » ColBERT 0.459 0.713 0.847 0.755 0.375 0.484 0.707 0.835 0.807 0.387
ColBERT E2E 0.445 0.708 0.857 0.773 0.390 0.473 0.690 0.832 0.806 0.406

Sparse (BM25) » Col⋆-PRF

ColBERT-PRF 0.477 0.718 0.859 0.755 0.415 0.496 0.713 0.877 0.807 0.439
ColminiLM-PRF 0.407 0.607 0.699 0.755 0.422 0.433 0.651 0.748 0.807 0.472
ColRoBERTa-PRF 0.428 0.701 0.853 0.755 0.576 0.470 0.707 0.835 0.807 0.586
ColALBERT-PRF 0.436 0.644 0.841 0.755 0.371 0.427 0.666 0.768 0.807 0.371

Dense (ColBERT) » Col⋆-PRF

ColBERT-PRF 0.481† 0.731 0.857 0.773 0.411 0.494 0.719 0.849 0.806 0.457
ColminiLM-PRF 0.465 (0.657→)0.704 0.812 0.773 0.432 0.479 (0.679→)0.707 0.859 0.806 0.457
ColRoBERTa-PRF 0.430 (0.707→)0.723 0.848 0.773 0.563 0.489 (0.675→)0.724 0.857 0.806 0.593
ColALBERT-PRF 0.456 (0.645→)0.700 0.853 0.773 0.345 0.418 (0.656→)0.675 0.750 0.806 0.396

In particular, we present the ColBERT-produced PRF passages in Table 6.5 and the most likely
tokens for expansion embeddings selected by the Col⋆-PRF techniques using the controlled
ColBERT-produced PRF passages in Table 6.6. From Table 6.6, we observe that ColRoBERTa-
PRF, which is applied on a model with a BPE tokeniser, and ColALBERT, which uses the
SentencePiece tokeniser, tend to select whole words as the expansion embeddings. In con-
trast, ColBERT-PRF and ColminiLM-PRF tend to select more tokens that correspond to partial
words as the expansion embeddings. For instance, for the example query what is the

most popular food in switzerland, all four compared Col⋆-PRF methods identify
switzerland, either in lowercase or uppercase format, as the expansion tokens. At the same
time, different PRF methods identified different expansion terms, where ColBERT-PRF identifies
##gan as the expansion token based on the feedback terms Luganighe or Luganighetta
while ColRoBERTa identifies the expansion token isine based on the cuisine in the PRF
documents. This indicates Col⋆-PRF techniques can be influenced by different PLMs and to-
kenisation techniques during the expansion embeddings selection process thus performing our
controlled experiments is necessary.
In terms of the retrieval effectiveness of the controlled PRF docs for Col⋆-PRF models, Table 6.7
presents the controlled experimental results. From Table 6.7, firstly, we observe that Col⋆-PRF
with BM25-produced PRF docs exhibits higher performance than both the baselines. However,
ColminiLM-PRF, and ColALBERT-PRF models exhibit lower performance than both the base-
lines but ColRoBERTa-PRF shows comparable effectiveness to the baselines. Secondly, for the
Co⋆-PRF models with ColBERT-produced PRF docs, we observe that both ColBERT-PRF and
ColRoBERTa models significantly outperform both baselines. Moreover, ColminiLM-PRF and
ColALBERT-PRF exhibit comparable effectiveness to the baselines.
Furthermore, when comparing between the sparse and dense first-stage retrieval, the quality
of pseudo-relevance feedback documents can impact the retrieval effectiveness for Col⋆-PRF
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models. More specifically, we observe that all Col⋆-PRF models benefit more from the dense first-
stage retrieval than from the sparse first-stage retrieval, across both MAP@1000 and nDCG@10
measures. This indicates that higher-quality PRF documents will yield greater effectiveness for
ColBERT-PRF models across different PLMs and embedding spaces.
Moreover, we compare the results presented in Table 6.7, in particular, the ColBERT as the first
stage models, with the results presented in Table 6.4 (the reranker instantiations). We observe
that all the Col⋆-PRF models with PRF docs produced by ColBERT model exhibit higher
retrieval effectiveness than PRF docs produced by corresponding Col⋆ models, for instance,
ColBERT»ColminiLM-PRF improves over ColminiLM»ColminiLM-PRF, from 0.657
to 0.704. This might be expected, as the higher quality PRF docs provide a better source for
expansion embeddings.
Answer to RQ6.3: To summarise, in response to RQ6.3, we find that Col⋆-PRF techniques
can be influenced by the PLMs and benefit higher retrieval effectiveness from higher quality
PRF documents. In addition, with the controlled PRF documents for various Col⋆-PRF models,
ColBERT-PRF and ColRoBERTa-PRF perform better than ColminiLM and ColALBERT. Overall,
we find that ColBERT-PRF exhibits the highest performance among the selected Col⋆-PRF
models.

6.2 Semantic Matching Analysis

The improved retrieval effectiveness of Col⋆ (Section 6.1.3.1) and Col⋆-RPF models (Sec-
tion 6.1.3.2) motivates us to further investigate the semantic matching behaviour to obtain more
insights. Thus, to examine more deeply how the different contextualised late interaction models
perform retrieval, we turn to investigate their semantic matching behaviour. In particular, we
employ the semantic match proportion measure (cf. Equation (4.5)) to measure the semantic
contribution to relevance scoring of the documents with contextualised late interaction models.
Similar to the interaction matrix plot shown earlier in Figure 4.6, Figure 6.3 illustrates the
contextualised late interaction mechanism among a query and a document for ColBERT (left)
and ColRoBERTa (right) models. For every query token, on the columns, a X marks the matching
document tokens with the highest similarity score, hence contributing to the final relevance
score, as in Equation (4.5). In this case, for ColBERT, query tokens such as the, w, and ##w
exhibit exact match as with lexically identical document tokens. At the same time, semantic
matching behaviour occurs for the query tokens why and enter, matching with document
tokens because and entered, respectively. However, the late interaction for ColRoBERTa
produces different token forms and different lexical and semantic matches with document tokens
and some query tokens. Thus, we observe that the base model and the tokenisation algorithm
not only affect the model size (c.f. Table 6.2), but, more importantly, they impact the way the
matching between queries and documents is conducted within the late interaction mechanism.
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[SEP]
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Figure 6.3: Late interaction diagrams for ColBERT and ColRoBERTa models between the query:
why did the us voluntarily enter ww1 and the document: the usa entered ww2 because of pearl
harbor. For each column, the heatmap indicates the similarity scores among all the document
embeddings for each query embedding, where the highest similarity score is highlighted with
the symbol X. The top histogram depicts the magnitude of the contribution of the maximum
similarity of each query embedding for the final relevance score between the query and document.
The [MASK] tokens are omitted.

In the following, we further pose three research questions related to the matching behaviour of
our Col⋆ models in Section 6.2.1. Then we provide the results and analysis addressing each
posed research question in Section 6.2.2.

6.2.1 Research Questions

In this section, we conduct experiments to address the following research questions:
RQ6.4: How does the semantic matching behaviour vary across both Col⋆ and Col⋆-PRF models?
RQ6.5: Can we characterise the salient token families of matches, i.e., which type of tokens
contribute the most to semantic matching for Col⋆ and Col⋆-PRF models?
RQ6.6: Can we quantify the contribution of different types of matching behaviour, namely the
lexical match and semantic match as well as special token match, to the retrieval effectiveness of
Col⋆ and Col⋆-PRF Ranker & ReRanker models?
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6.2.2 Results and Analysis

As the contextualised late interaction mechanism is performed based on the token-level query
and document representations, we postulate that the retrieval effectiveness of the contextualised
late interaction itself, as well as the contextualised late interaction with the PRF mechanism, will
be affected by the underlying tokens generated by different tokenisers. Therefore, in this section,
we examine the matching behaviour for both Col⋆ and Col⋆-PRF models deployed across various
types of pretrained language models and tokenisers in Section 6.2.2.1. In addition, we further
investigate the semantic matching behaviour across various families of tokens in queries and
documents for both Col⋆ and Col⋆-PRF models in Section 6.2.2.2. Finally, we further measure
how the final retrieval effectiveness correlates with the lexical matches and the semantic matches
in Section 6.2.2.3.

6.2.2.1 RQ6.4: Semantic Matching Behaviour of Col⋆-PRF

We now analyse the semantic matching proportion scores for the selected Col⋆ models reported
in Table 6.3. In addition, we also analyse the semantic matching proportion scores for Col⋆-PRF
models without and with controlled PRF documents presented in Table 6.4 & Table 6.7,
respectively.
Firstly, for all the compared models without PRF, we report the Mean SMP values computed
at rank cutoff k = 10. From the Mean-SMP columns in Table 6.3, we observe that ColminiLM,
with the same tokenisation and vocabulary size of ColBERT, shows a similar, but slightly
reduced semantic matching behaviour to ColBERT. In addition, the SentencePiece tokeniser-based
ColALBERT model also shows comparable semantic matching scores. Finally, ColRoBERTa
performs more of its matching in the semantic space, both for the reranking and dense retrieval
scenarios. This is actually not in line with our expectations – indeed, with a larger vocabulary, we
expected to see more exact matches by ColRoBERTa. We explain further the ColRoBERTa’s
behaviour in the next section.
We now analyse the semantic matching behaviour of Col⋆-PRF in Table 6.4. We observe that, after
implementing the pseudo-relevance feedback mechanism for Col⋆ models, the semantic matching
proportion values for both ColBERT-PRF and ColminiLM-PRF models slightly higher than
ColBERT and ColminiLM, respectively. However, for ColRoBERTa-PRF and ColALBERT-PRF,
the semantic matching proportion values are lower compared to ColRoBERTa and ColALBERT,
respectively. Moreover, when comparing the Ranker and ReRanker PRF settings, we find that
there is no significant difference of the retrieval effectiveness between them, as they both work
on the same underlying tokeniser for a specific Col⋆-PRF model. Furthermore, the results of
Col⋆-PRF models with controlled PRF documents are presented in Table 6.7, we observe that the
semantic matching proportion values are similar for the Col⋆-PRF models with sparse and dense
retrieval generated PRF documents.
Answer to RQ6.4: Overall, we observe that using different tokenisers, before applying PRF
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Table 6.8: Salient token families of query (Q) and document (Doc) tokens.

Notation Type of Tokens Example

Q QuesToken Question tokens who, what, where, when, why, which, and how

D
oc

SubToken Sub-word tokens
Tokens beginning with ## for ColBERT and ColminiLM, not beginning
with space for ColRoBERTa, and not beginning with _ for ColALBERT

SwToken Stopwords tokens Terrier stopwords such as is and a
NumToken Numeric tokens Token corresponding to single-digit numbers

StemToken Stemmed tokens
Tokens in the same form as the matching query token after applying
Porter stemming

Lowid f Token Low IDF tokens Tokens with IDF below the 25th percentile of IDF distribution

Medid f Token Medium IDF tokens
Tokens with IDF between the 25th and the 75th percentiles of IDF
distribution

Highid f Token High IDF tokens Tokens with IDF above the 75th percentile of IDF distribution

technique, Col⋆ exhibits different amounts of semantic matching. In particular, the BPE
tokeniser-based ColRoBERTa model exhibits a stronger preference for semantic matching
compared to WordPiece and SentencePiece tokeniser-based models. Furthermore, after applying
PRF, Col⋆-PRF models experience different patterns from the Col⋆ models in terms of the
semantic matching behaviour. For instance, the semantic matching proportion values for
ColRoBERTa-PRF and ColALBERT-PRF decrease from ColRoBERTa and ColALBERT models,
respectively. In addition, we observe that the SMP values of ColBERT-PRF & ColminiLM-PRF
models are higher than the ColBERT & ColminiLM models, respectively. Overall, we conclude
that different PLMs with different tokenisers result in different inner matching behaviour for
different models. Based on the findings of RQ6.4, we next inspect how semantic matching pro-
portion values can be attributed to different families of tokens (Section 6.2.2.2), and to determine
the contribution of lexical vs. semantic matching types to retrieval effectiveness (Section 6.2.2.3).

6.2.2.2 RQ6.5: SMP on Salient Token Families

We now further deepen our analysis on the internals of the late interaction mechanism with and
without PRF mechanisms, by investigating the semantic matching contribution of individual
query and document tokens. To this end, we identify salient families of tokens in queries and
documents, based on our intuitions about how contextualised embeddings are matched. Table 6.8
summarises the identified token families. Moreover, Table 6.9 reports the observed SMP values
on salient token families for Col⋆ models, as the reranker on top of BM25 and end-to-end, on the
top half and for Col⋆-PRF models, without and with controlled the PRF docs, on the bottom half,
respectively.
Analysis For Col⋆ Models: To answer RQ6.5, we first inspect the semantic matching behaviour
for different Col⋆ models with various salient token families listed in Table 6.8. More specifically,
we are more concerned about what matching behaviour is performed for the question tokens
in the query and seven families of salient tokens in the document. The top half of Table 6.9
presents the semantic matching proportion scores for the above salient token families for all four
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Table 6.9: Mean semantic matching proportion for the salient document token families in query
and document on TREC DL 2020. The † symbol denotes improvement of the third quadrant
Col⋆-PRF models to the second quadrant Col⋆ models and ‡ symbol denotes improvement of
the fourth quadrant Col⋆-PRF models to the third quadrant Col⋆-PRF models. The highest value
among the salient token families in each column is boldfaced.

ColBERT ColminiLM ColRoBERTa ColALBERT ColBERT ColminiLM ColRoBERTa ColALBERT

BM25 (PyTerrier) » Late Interaction ANN Search » Late Interaction

All Types 0.387 0.363 0.607 0.390 0.406 0.388 0.622 0.413

Q QuesToken 0.085 0.087 0.090 0.067 0.087 0.089 0.091 0.070

D
oc

SubToken 0.009 0.011 0.126 0.179 0.013 0.020 0.133 0.190
SwToken 0.163 0.127 0.159 0.125 0.169 0.134 0.165 0.130
NumToken 0.017 0.018 0.003 0.001 0.019 0.018 0.004 0.001
StemToken 0.022 0.024 0.025 0.019 0.023 0.022 0.026 0.020
Lowid f Token 0.365 0.344 0.517 0.270 0.381 0.361 0.523 0.289
Medid f Token 0.021 0.018 0.068 0.018 0.025 0.026 0.074 0.018
Highid f Token 0.001 0.001 0.005 0.004 0.001 0.001 0.006 0.005

Col⋆ » Col⋆-PRF ColBERT » Col⋆-PRF

All Types 0.457† 0.470† 0.604 0.373 0.457 0.457‡ 0.593 0.396‡

Q QuesToken 0.011 0.010 0.037 0.031 0.011 0.010 0.037 0.043‡

D
oc

SubToken 0.040† 0.042† 0.134 0.121 0.040 0.042 0.128 0.144‡
SwToken 0.136 0.108 0.149 0.095 0.136 0.105 0.142‡ 0.117‡
NumToken 0.016 0.011 0.021† 0.007† 0.016 0.008 0.016 0.007
StemToken 0.220† 0.037† 0.026 0.026† 0.220 0.023 0.024 0.020
Lowid f Token 0.406† 0.398† 0.509 0.285 0.406 0.400‡ 0.500 0.296‡
Medid f Token 0.049† 0.067† 0.075† 0.036† 0.049 0.054 0.074 0.031
Highid f Token 0.002† 0.005† 0.010† 0.006† 0.002 0.002 0.009 0.004

contextualised late interaction models. We examine the semantic matching behaviour for both
the reranking and end-to-end dense retrieval scenarios on the TREC DL 2020 query set.
From the top half of Table 6.9, we observe that question tokens occurring in the query exhibit low
semantic matching scores. Among all the families of salient tokens from documents, semantic
matching prefers the low IDF (i.e. frequent) tokens, followed by the family of stopwords tokens.
However, semantic matching seldom occurs in the medium and high IDF tokens, which means
such rare tokens are more likely to exhibit exact matching during scoring. In addition, the
stemmed, numeric and sub-word token families all exhibit low semantic matching proportion.
This is because the numeric tokens are usually less semantically flexible and carry more specific
meaning than whole words, for instance, the ##1 and ##2 denotes WW1 and WW2, respectively and
hence do not need semantic matching. In addition, reducing a word to its base or root form in the
stemmed tokens often loses the specific nuances of words, for instance, booked and booking
are all stemmed as book. Finally, the sub-word tokens may lose the complete meaning of a
word.
Furthermore, comparing the different Col⋆ models, we observe that although ColBERT,
ColminiLM and ColALBERT show similar SMP values overall for all types of tokens in Table 6.3,
the results in Table 6.9 indicate that their semantic matching occurs for different types of tokens.
For instance, ColBERT and ColminiLM tend to perform semantic matching for the tokens with
relatively low IDF scores and sub-word tokens. ColALBERT (SentencePiece) behaves more
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similarly to the WordPiece-based models (ColBERT & ColminiLM), except that more semantic
matching comes from sub-word tokens and less from low-IDF tokens.
More interestingly, we observe that ColRoBERTa exhibits the highest semantic matching propor-
tion scores overall in Table 6.3 and for each type of tokens in Table 6.9. In particular, it has the
highest SMP value on the low IDF (i.e. frequent) tokens in Table 6.9. We explain these differences
as follows: as RoBERTa’s vocabulary is case-sensitive, some words can be represented by a
whole token when occurring in lower-case, but resort to sub-word tokens when starting with an
uppercase letter (see Casualties vs. casualties examples in the last row of Table 6.1).
To make a match between these words requires a semantic match (involving relatively frequent
sub-word tokens), where a case-insensitive model would have made an exact match (that would
likely have been easier to learn). Indeed, the original RoBERTa authors acknowledged that their
tokenisation configuration choice might not be the most effective (Liu et al., 2020). This analysis
indicates the challenges for search using case-sensitive contextualised language models.
Analysis For Col⋆-PRF Models: Next, we investigate the SMP values for various token families
for the Col⋆-PRF models, which are reported in the bottom half of Table 6.9. Firstly, from
Table 6.9, when comparing the Col⋆ » Col⋆-PRF models (the lower left quadrant of Table 6.9)
to the Col⋆ models (the upper right quadrant of Table 6.9), we observe that for the BERT-based
ColBERT-PRF and ColminiLM-PRF models, with the expanded query tokens, the semantic
matching proportion values increase across various types of tokens, except the subword tokens,
stopword tokens and the numeric tokens, compared with the Col⋆ models. On the other hand,
ColRoBERTa-PRF and ColALBERT-PRF models are more likely to perform semantic matching
for numeric,as well as medium and high IDF tokens. This is because, during the expansion
embedding selection, our dense query expansion technique tends to focus on tokens that have
high IDF scores (cf. the model details introduced in Section 4.2.2). Overall, the low IDF tokens
have the highest SMP values across all the Col⋆-PRF models. Therefore, the implementation of
our dense query expansion technique can alter the matching behaviour between the query and
document.
Furthermore, we examine the semantic matching with controlled PRF documents for all the
Col⋆-PRF models. The results are shown in the lower right quadrant of Table 6.9. Now, we
investigate the influence of the PRF documents for Col⋆-PRF models by comparing the fourth
quadrant to the third quadrant of Table 6.9. We observe that ColminiLM and ColRoBERTa show
slightly lower SMP values for all the types of tokens, except the low IDF tokens for ColminiLM
and the stopword tokens for ColRoBERTa. ColALBERT has higher SMP values overall and
on most types of tokens. These observations indicate that the quality of the pseudo-relevance
feedback documents can directly impact the matching behaviours for Col⋆-PRF models.
Answer to RQ6.5: Overall, in quantifying the extent of semantic matching for various token
families for both before and after ColBERT-PRF, we find that low IDF tokens are most likely to
exhibit semantic matching. In addition, our ColBERT-PRF dense query expansion method can
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Table 6.10: Impact of different types of matching behaviour for TREC DL 2020 on nDCG@10,
and relative decrease from All (∆). The † and ⋄ symbols denote statistically significant differences
compared to the BM25 and the all types matching of a model. The highest nDCG@10 value in
each column is boldfaced. The ▲ (▼) symbol denotes the decrease (improvement) of the relative
decrease percentage value of Col⋆-PRF models compared to the Col⋆ models.

Models All Types Lexical Matching Semantic Matching Special Token Matching

nDCG@10 nDCG@10 ∆ nDCG@10 ∆ nDCG@10 ∆

BM25 (PyTerrier) 0.494 - - - - - -

BM25 (PyTerrier) » Late Interaction

ColBERT 0.707† 0.527⋄ -25.5% 0.139†⋄ -80.3% 0.519⋄ -26.6%
ColminiLM 0.685† 0.487⋄ -28.8% 0.074†⋄ -89.1% 0.523⋄ -23.7%
ColRoBERTa 0.695† 0.397†⋄ -42.9% 0.261†⋄ -62.5% 0.635†⋄ -8.6%
ColALBERT 0.630† 0.505⋄ -19.8% 0.074†⋄ -88.2% 0.460⋄ -27.1%

ANN Search » Late Interaction

ColBERT 0.690† 0.492⋄ -28.7% 0.002†⋄ -99.7% 0.384⋄ -44.4%
ColminiLM 0.672† 0.426⋄ -36.6% 0.001†⋄ -99.9% 0.347†⋄ -48.4%
ColRoBERTa 0.666† 0.350†⋄ -47.5% 0.157†⋄ -76.4% 0.574⋄ -13.8%
ColALBERT 0.604† 0.411⋄ -32.0% 0.007†⋄ -98.8% 0.341†⋄ -43.4%

Col⋆-PRF Ranker

ColBERT-PRF 0.714† 0.568⋄ -25.4%▲ 0.021†⋄ -97.1%▲ 0.696⋄ -2.5%▲
ColminiLM-PRF 0.681† 0.575⋄ -15.6%▲ 0.004†⋄ -99.4%▲ 0.666⋄ -2.2%▲
ColRoBERTa-PRF 0.677† 0.550⋄ -18.8%▲ 0.115†⋄ -83.0%▼ 0.575⋄ -15.1%▼
ColALBERT-PRF 0.656† 0.594†⋄ -9.5%▲ 0.008†⋄ -98.8% 0.361†⋄ -45.0%▼

Col⋆-PRF-ReRanker

ColBERT-PRF 0.714† 0.594⋄ -16.8%▲ 0.029†⋄ -95.9%▲ 0.696⋄ -2.5%▲
ColminiLM-PRF 0.679† 0.596⋄ -12.2%▲ 0.007†⋄ -99.8%▲ 0.664⋄ -2.2%▲
ColRoBERTa-PRF 0.675† 0.550⋄ -18.5%▲ 0.123†⋄ -81.8%▼ 0.574⋄ -15.0%▼

ColALBERT-PRF 0.656† 0.600†⋄ -8.5%▲ 0.008†⋄ -98.8% 0.353†⋄ -46.2%▼

alter the matching behaviour. In the next section, we conduct further experiments to quantify the
contribution of different matching types to retrieval effectiveness.

6.2.2.3 RQ6.6: Contribution of Matching Types to Retrieval Effectiveness

Finally, as the ultimate outcome of matching behaviour is the ranking of the document, we
analyse how the final retrieval effectiveness correlates with the lexical matches and the semantic
matches for both Col⋆ and Col⋆-PRF models. To conduct this ablation, we also consider retrieval
using only “special” tokens, such as [CLS] and [Q], which always match semantically.
Analysis For Col⋆ Models: Now, we examine the retrieval effectiveness by conducting only
special matching, only semantic matching, as well as special token matching (e.g., [CLS],
[Q], [SEP] and [MASK] tokens for WordPiece tokeniser) for Col⋆ models in response to the
input queries of the TREC DL 2020 query set. Table 6.10 presents the impact of performing a
particular type of matching on the retrieval effectiveness (measured by nDCG@10) as well as the
reduction percentage compared to all types of matching for both Col⋆ models, in the first and
second groups, and Col⋆-PRF models, in the third and fourth groups in the table. From the 1st
and 2nd groups of Table 6.10, we find that performing each type of matching alone results in
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significant reductions in effectiveness compared to all types of matching, for both the reranking
and end-to-end dense retrieval scenarios. In particular, for all models except ColRoBERTa,
lexical matching contributes to the highest retrieval effectiveness; for ColRoBERTa, the special
tokens have excellent effectiveness (contributing 80-90% of the full effectiveness). Similarly,
semantic matching alone exhibits low effectiveness but is strongest for ColRoBERTa (this again
demonstrates the strong semantic properties of the ColRoBERTa token embeddings). Moreover,
Table 6.10 tells us that this semantic matching is mostly concentrated on frequent (low IDF)
tokens. Finally, the high performance of lexical matching is mostly related to medium and high
IDF tokens - indeed, this observation echoes the finding of Formal et al. (2021b) that ColBERT
is able to capture more important terms by performing exact matches. Our work systematically
quantifies and generalises this finding to various contextualised late interaction models. However,
different types of matching need to work together to achieve optimal retrieval effectiveness, as
performing any type of matching alone will result in a significant drop in retrieval effectiveness
compared to performing all types of matching.
Analysis For Col⋆-PRF Models: In addition, we further investigate the retrieval effectiveness
for Col⋆ models when implementing the ColBERT-PRF technique and instantiated to both the
Ranking and ReRanking scenarios, namely the Col⋆-PRF Ranker and ReRanker models. The
3rd and 4th groups of Table 6.10 report the contribution of the different types of matching to the
overall retrieval effectiveness of Col⋆-PRF models, specifically the lexical matching only and
semantic matching only, as well as the special token matching.
Firstly, comparing the Col⋆-PRF models, in the 3rd & 4th groups, to the Col⋆ models, the 2nd
group of Table 6.10, We observe that the lexical-only type of matching contributes more to
the overall nDCG@10 scores in the Col⋆-PRF models than in the Col⋆ models. For instance,
performing lexical-only matching results in a decrease of 47.5% for the ColRoBERTa model,
whereas it only causes decreases of 18.8% and 18.5% for the ColRoBERTa-PRF Ranker and
ReRanker models, respectively. In addition, we observe that performing only semantic matching
for the Col⋆-PRF models exhibit similar contributions to Col⋆ models. Finally, when comparing
between the contribution of special token matching for Col⋆ and Col⋆-PRF models, we observe
that performing only special token matching contributes more to the retrieval effectiveness of
the BERT-based Col⋆-PRF models (i.e., ColBERT-PRF and ColiminiLM-PRF models) than the
ColBERT and ColminiLM in Table 6.10, respectively. However, the importance of the special
token matching for ColRoBERTa-PRF and ColALBERT-PRF is less than for the ColRoBERTa
and ColALBERT models.
These observations indicate that our dense-PRF technique, typically by expanding with expansion
cannot follow, one model, one tokenisertokens split by different tokenisers, alters the matching
contribution to the overall retrieval effectiveness. Overall, among the three types of matching,
all the Col⋆-PRF models, except ColALBERT-PRF, benefit most from special token matching,
then from lexical and lowerest from semantic matching. Differently, the lexical-only matching
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contributes most to the ColALBERT-PRF model than the other two types of matching.
Answer to RQ6.6: In response to RQ6.6, we find that without applying ColBERT-PRF dense
query expansion technique, the late interaction mechanism benefits more from lexical matching
than semantic matching. In addition, special tokens, such as the [CLS] token, play a very
important role in matching, especially for the ColRoBERTa model. However, after applying
ColBERT-PRF, special token matching contributes most significantly to the overall retrieval
effectiveness of the Col⋆-PRF models. Conversely, semantic matching contributes the least to the
overall retrieval effectiveness.

6.3 Conclusions

To summarise, in the proposed thesis statement in Section 1.1, we hypothesised that our key
ColBERT-PRF model can be generalised to various forms of late interaction dense retrieval mod-
els. Therefore, in this chapter, we provided a comprehensive study that thoroughly investigates
the semantic matching behaviour in multiple representation dense retrieval with and without
the pseudo-relevance feedback mechanism. In particular, we implement the late interaction
mechanism upon various contextualised pretrained models and different types of tokenisation
techniques. Therefore, we extended ColBERT to Col⋆ by applying the contextualised late in-
teraction mechanism upon various pretrained models with different tokenisers and generalised
ColBERT-PRF technique to Col⋆-PRF techniques. We found that we can extend ColBERT-PRF
model to Col⋆-PRF models and the choice of the base pretrained model ColBERT as well as for
ColBERT-PRF can greatly impact the retrieval performance, but models from the BERT family
remain the most effective.
In addition, we further quantified the extent of semantic matching for dense retrieval as well as
dense query expansion. Extensive experimental results yield the following findings for the Col⋆
models without PRF techniques: (i) Col⋆ models with different tokenisation methods show differ-
ent semantic matching values, in particular, the ColRoBERTa model exhibits higher SMP values
due to its case-sensitive tokeniser; (ii) among various salient families of tokens, low IDF and stop-
words tokens are more likely to perform semantic matching; (iii) performing only exact matching
and only special token matching contribute more than only semantic matching to all types match-
ing retrieval effectiveness. Overall, our experimental results explain how ColBERT-like models
perform retrieval, and can shed insight into more effective dense retrieval model design.
Moreover, for Col⋆ using PRF we found that: (iv) The implementation of the ColBERT-PRF
pseudo-relevance feedback technique will alter the proportion of semantic matching, for example,
the SMP values for ColRoBERTa-PRF and ColALBERT-PRF may decrease compared to those of
ColRoBERTa and ColALBERT models, while opposite observations can be made for ColBERT-
PRF and ColminiLM-PRF models, where the SMP values may increase (cf. Table 6.4); (v) In
consistent to Col⋆ models, low IDF tokens tend to perform semantic matching in Col⋆-PRF mod-
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els, however, the probability that a type of tokens’ semantic matching proportion alters depends on
the implementation of the pseudo-relevance feedback technique (cf. Table 6.9); (vi) Special token
matching contributes the most to the overall retrieval effectiveness of the Col⋆-PRF models.
However, one limitation of the Col⋆-PRF models is that the effective dense PRF mechanism
has not been transferred to the single representation dense retrieval models. We leave this as an
interesting future work and provide more discussions around this in Section 8.2. Moreover, this
chapter only examines the generalisation of the unsupervised manner of dense query expansion,
the ColBERT-PRF model. As we have discussed in Section 2.2, the pretrained language models
(PLMs), such as BERT, demonstrate a superior capability in capturing the contextual relationship
between words in a sentence. BERT, in particular, provides high-quality word embeddings that
effectively capture rich semantic information. However, the ColBERT-PRF model, operating
in an unsupervised manner, might fall short of fully harnessing the exceptional abilities of
PLMs like BERT for performing dense query expansion. In addition, ColBERT-PRF employs
heuristic techniques such as clustering and IDF statistics to estimate the informativeness of the
feedback embeddings. Consequently, it may have limited consideration of the surrounding context
information of the feedback tokens during selection. Therefore, in Chapter 7, we investigate a
supervised dense query expansion method. Specifically, we propose a BERT-based feedback
weight learning model, which is trained using a contrastive weighting target for each feedback
token. After training, the feedback weighting model selects and weights the usefulness of the
feedback embeddings for dense query expansion.
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Chapter 7

Learning Feedback Weights for Dense
Query Expansion

In the previous chapters, we presented all of the essential building blocks for our thesis statement
posed in Section 1.1. In particular, in Chapter 3, we proposed two possible query reformulation
frameworks GenQR and GenPRF using sequence-to-sequence generative language models to
generate query reformulations for sparse retrieval. Going beyond query reformulation models
for effective sparse retrieval, in Chapter 4, we proposed ColBERT-PRF to generate refined query
representations for improving the effectiveness of dense retrieval. Moreover, in Chapter 5, we
further improved the retrieval effectiveness of ColBERT-PRF for out-of-domain performance
using the external query expansion technique. Furthermore, in Chapter 6, we extended ColBERT-
PRF into the Col⋆-PRF models, which are deployed across various types of underlying PLMs as
well as different tokenisation techniques. These chapters well validated the posed hypotheses of
our thesis statement in Section 1.1.
However, although our proposed ColBERT-PRF is effective, it performs dense query expansion
in an unsupervised method, indicating that it may not fully harness the backbone BERT model
for PRF. In particular, ColBERT-PRF relies on clustering and inverse document frequency (IDF)
statistics for identifying the expansion embeddings — both of which are heuristics, and thus
may ignore valuable context present in the embeddings. For example, for the user query georgia

run off elections, effectiveness might be improved by adding an embedding for ‘US’, however,
this would not likely be selected due to its low IDF (indeed, ‘us’ is also a pronoun, and is often
included in stopword lists). Moreover, there is no direct connection between the expansion
embeddings selected by the heuristic and the semantic search algorithm itself. Instead, we
ask can we train a deep language model-based feedback weighting model for identifying the

discriminating expansion embeddings for query reformulation? Therefore, in this chapter, we
further investigate an effective dense expansion in a supervised manner.
Indeed, various sparse PRF models have been proposed for weighting the importance of terms
occurring in the feedback documents. For instance, Clinchant and Gaussier (2011) emphasised
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the importance of term rarity (cf. IDF) in selecting expansion terms, a finding echoed by Roy
et al. (2019) – indeed, the importance of IDF is a key insight brought into ColBERT-PRF. Going
further, while there have been several approaches that have proposed supervised models for
selecting high-quality expansion terms for sparse retrieval, e.g., (Cao et al., 2008, Imani et al.,
2019), none of these has tackled the problem from a dense retrieval perspective.
On the other hand, in recent years, contrastive learning has been used to optimise the query
and document representations produced by the BERT-based dense retrieval models in IR. More
specifically, some works focus on employing various negative sampling methods, such as the
in-batch (Yih et al., 2011) and cross-batch negative sampling (Qu et al., 2021), while some works
mine hard negative samples for more effective dense retrieval model, for instance, in the ANCE
model we introduced in Section 2.3.1. However, no effort has leveraged contrastive learning for
learning the expansion weights for dense query expansion.
Based on this, in this chapter, we propose a contrastive weighting method, called CWPRF, to select
and weight the usefulness of the feedback embeddings for dense expansion. More specifically,
for each feedback token, we construct a contrastive objective, where, given positive and negative
documents, CWPRF is trained to assign high weights to the tokens that are semantically closer to
tokens occurring in the positive document than to those in the negative document. Introducing the
PRF passages into the training procedure of CWPRF enables the model to take the surrounding
context into account when identifying the useful tokens from the PRF passages. Meanwhile,
training CWPRF with the contrastive objective allows it to learn the effective weights for
expansion embeddings that are tailored for the semantic ranking task.
Overall, our contributions of this chapter are summarised as follows:

• We propose CWPRF, a contrastive weighting method for dense query expansion;

• We construct the contrastive targets and train our CWPRF model to assign high expansion
weights for tokens that can discriminate the relevant documents from the non-relevant
documents. Based on the predicted weights, CWPRF helps to identify useful expansion
embeddings for generating refined query representations;

• We perform an extensive empirical evaluation and demonstrate how to effectively train our
CWPRF in a supervised way;

• Experiments show that our CWPRF can achieve significantly higher retrieval effectiveness
but with less execution time than the default ColBERT-PRF.

The remainder of this chapter is structured as follows: Section 7.1 introduces our proposed
feedback weighting model; Next, Section 7.2 and Section 7.3 describes our posed research
questions and the experimental setup of CWPRF, respectively. Next, we discuss the experimental
results of CWPRF for each posed research question in Section 7.4. Finally, we provide concluding
remarks of this chapter in Section 7.5.
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Figure 7.1: Overview of CWPRF for dense query expansion.

7.1 Contrastive Weighting for Dense PRF

This section first provides an implementation overview of CWPRF for dense query expansion
in Section 7.1.1. It then details the contrastive weighting method and the training procedure of
CWPRF in Sections 7.1.2 & 7.1.3, respectively.

7.1.1 CWPRF Implementation Overview

An overview of CWPRF in a multiple-representation dense expansion framework is illustrated in
Figure 7.1, where three stages are presented: (1) initial retrieval, (2) predicting the PRF tokens
weights and (3) retrieval with the refined query representation. We note that the first and the third
stages of this framework are shared with ColBERT-PRF (cf. Section 4.2).
In the initial retrieval stage, we obtain a result list in response to the original user’s query q. The top
fb documents are employed as the pseudo-relevance feedback documents. Then, as input for our
trained CWPRF model, we append the PRF passages to the query. The model outputs weights for
each query token as well as for the feedback tokens. Finally, according to these produced weights,
we identify fe feedback tokens with high weights as our expansion tokens and append their cor-
responding expansion embeddings obtained from ColBERT’s document encoder to the original
query representation. Following conventional PRF models summarised in Section 2.4.1, going
back to the Rocchio technique, the overall contribution of the expansion embeddings is further con-
trolled by a hyper-parameter denoted by β . Finally, the refined query representation is re-issued
to the underlying dense retrieval model, i.e. ColBERT, so as to return the final document list.
The core challenge, which lies in the second PRF stage, is how to accurately predict the expansion
weights for the refined query representation that can more effectively perform semantic search.
We propose a novel contrastive weighting model that learns to weight each feedback token
individually based on the extent it will increase the score of the relevant document w.r.t. the
non-relevant one(s).
Following ColBERT-PRF (Chapter 4), we again build our feedback representations from the
token-level representations of the feedback documents. While we could have considered using the
CLS of the feedback passages (which are thought to represent the meaning of the whole passage),
we note that, unlike in single representation dense retrieval, the CLS embeddings within the token-
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Figure 7.2: Target generation of CWPRF for the training query: “is a little caffeine ok during
pregnancy”. The target for a PRF token (blue bar) is generated by subtracting (a) the maximum
negative similarity score of the PRF token interacting with the tokens from the negative passage
(left-hand interaction plot) from (b) the maximum positive similarity of the PRF token interacting
with the tokens from the positive passage (right-hand interaction plot).

level representation dense retrieval paradigm exhibit limited retrieval effectiveness Tonellotto
and Macdonald (2021a), and hence are not useful for conducting effective pseudo-relevance
feedback.

7.1.2 CWPRF Feedback Embedding Weighting

Building on ColBERT, and taking an initially retrieved set of pseudo-relevant feedback passages
as input, the CWPRF model aims to predict the importance of each (token-level) feedback
embedding in the feedback passages. This is achieved using a separate BERT model instance,
which takes a list of input tokens and returns a scalar weight for each token: CWPRF(t1...tn) =
Linear(BERT(t1, ..tn),1)) ∈ Rn.

More specifically, given a document p in the pseudo-relevant set, which is tokenised into a se-
quence of PRF tokens p1, p2, ..., p|p|, we employ the ColBERT encoder to obtain its embeddings:

φp = ColBERT([CLS],[D], p1, ..., p|p|) ∈ R|p|×m. (7.1)

Then we obtain the feedback weight for each PRF token using CWPRF which takes the query
representations as well as the PRF representations as input:

ws = CWPRF(

query tokens︷ ︸︸ ︷
[CLS],[Q],q1,q|q|

PRF tokens︷ ︸︸ ︷
[D], p1, ..., p|p|) . (7.2)

According to the returned importance score for each of the feedback embeddings in φp, we identify
the highly important ranked embeddings as our expansion embeddings. The expansion embed-
dings are appended to the original query embeddings to refine the query representation. Note that
the original query is included in the invocation of CWPRF(·) – this is by design, to ensure that
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the CWPRF model considers the relation of the PRF tokens to the original query. However, we
ignore the predicted weights of the original query; following ColBERT-PRF, the weights of the
original embeddings are assumed to be unchanged. Furthermore, we apply a ReLU upon ws, to
ensure that the obtained feedback weights are non-negative. Finally, the score for a document can
be calculated as the summation of the weighted MaxSims using the refined query representation:

s′(q, fe,d) = s(q,d)+β

| fe|

∑
i=1

wsi ·MaxSim( fei,φd). (7.3)

In particular, the MaxSim function is the Maximum Similarity function used by the ColBERT
model and calculated using Equation (2.21).

7.1.3 Training CWPRF

To train CWPRF(·), we construct a contrastive target for each feedback token. In particular, we
use a conventional training file containing triples of ⟨q,d+,d−⟩, and supplement it with PRF
passages, i.e. the passages highly ranked for the original query q, which we assume to be relevant.
The aim of our training objective, therefore, is to identify which tokens of a feedback passage
p result in the positive passage being scored much higher than the negative passage, when the
feedback passage is itself treated as the query. Therefore, for each feedback token, and given
the positive and negative documents, CWPRF is trained to assign high weights to the tokens
that are semantically closer to the tokens occurring in the positive document than those in the
negative document. Hence, the target for the i-th PRF token, pi, is calculated as:

t(pi) = MaxSim(pi,d+)−MaxSim(pi,d−), (7.4)

where MaxSim(., .) measures the semantic similarity between representations, as per
Equation (7.3).
The target generation process for CWPRF is illustrated in Figure 7.2. This figure presents the
interaction matrices between a PRF document (“cause baby heart rate increase”) obtained from
the returned documents list in response to the query: “is a little caffeine ok during pregnancy”
compared to the positive and negative document. The shading is indicative of the magnitude of
dot product similarity between a PRF embedding and a document embedding, while the highest
document embedding for each PRF embedding is indicated with a •. For each PRF embedding,
we subtract the negative similarity from the positive similarity, resulting in an importance score
for each PRF embedding. In this example, ‘cause’ and ‘heart’ are the most important tokens.
These differences are used as targets for learning the CWPRF model.
In addition, we explore two training modes to train CWPRF: All-At-A-Time (AAAT) and One-
At-A-Time (OAAT). Suppose, for each training query, the top k ranked documents form the
pseudo-relevance feedback set. In the AAAT training mode, we append all the k PRF passages
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into one single PRF sequence, separated by the [SEP] special token, i.e.

pAAAT = p1
1, p1

2, .., p1
|p1|,[SEP], ..., pk

1, pk
2, .., pk

|pk|,[SEP]. (7.5)

However, in common with all BERT models, |pAAAT| is limited to 512 tokens, so some tokens
may be cut off for large feedback sets. Hence, in the OAAT training mode, each PRF document
is regarded as an individual PRF sequence.

pk
OAAT = pk

1, pk
2, .., pk

|pk|,[SEP], (7.6)

where k denotes the k-th pseudo-relevance feedback document. The CWPRF training is then
conducted for each feedback passage individually.
In-Batch Negative Sampling: In-Batch Negative (IBN) sampling is a technique that has been
widely used for training effective dense retrieval models such as DPR (cf. Section 2.3.1). However,
it has not previously been applied for query expansion weighting. To promote the discriminative
expansion embeddings and suppress the unimportant ones during our target generation, we adapt
the idea of in-batch negative (IBN) sampling during the training of CWPRF. Thus, each training
sample is equipped with one positive sample and B−1 negative samples, where B is the batch
size used during training. As a consequence, the target for the i-th PRF token is obtained as:

t(pi) = MaxSim(pi,d+)−
|B−1|
max
j=1

MaxSim(pi,d−j ). (7.7)

This ensures that the importance of each feedback embedding for ranking a positive passage
is discounted by its presence in all negative passages of the batch. While IBN is commonly used
for training ranking models on entire passages, our adaptation focuses instead on the token-level
embedding importance.
Loss Functions: CWPRF is trained to assign weights from the target signal using the following
objectives. For AAAT training, the loss is computed as follows:

LAAAT =
1
N

N

∑
i=1

(tpi−wspi)
2 , (7.8)

where N is the total number of tokens in the PRF sequence. For the OAAT training mode, we
compute the loss for each PRF sequence and add them to obtain the total loss:

LOAAT =
k

∑
j=1

(
1
N

N

∑
i=1

(tp j
i
−wsp j

i
)2

)
. (7.9)

At the inference time, we apply CWPRF consistently with its training mode, i.e. AAAT or OAAT.
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7.1.4 Discussion

Connection to ColBERT-PRF: Similar to ColBERT-PRF, CWPRF is implemented in the multi-
ple representation late interaction dense retrieval paradigm. However, in contrast to ColBERT-
PRF, CWPRF is a supervised approach, which is tailored for semantic search by selecting and
learning the contrastive weights for the discriminate expansion embeddings. The Kendall’s τ

correlation between the contrastive weights learned by CWPRF and the IDF weights assigned
by ColBERT-PRF is only 0.1, which indicates that CWPRF prioritises differently the feedback
embeddings. Moreover, compared to ColBERT-PRF, CWPRF has advantages over ColBERT-PRF
in that it can identify expansion embeddings that may have low IDF values. It can also avoid the
expensive clustering and nearest neighbour lookups used by ColBERT-PRF.
Connection to Learned Sparse Models: In practice, the CWPRF model structure is similar
to unexpanded learned sparse retrieval approaches (Dai and Callan, 2020a, Lin and Ma, 2021,
Mallia et al., 2021). Importantly, however, the learning objectives are different; learned sparse
retrieval optimises for relevance directly, while CWPRF is optimised to identify and weight the
most helpful query expansion embeddings.

7.2 Research Questions

In this section, we conduct experiments to address the following research questions:
RQ 7.1: How does the performance of CWPRF, in terms of the retrieval effectiveness, compare
to various baselines?
RQ 7.2: How does the performance of CWPRF, in terms of the retrieval efficiency, compare to
various baselines?
RQ 7.3: What is the impact of the training techniques on the retrieval effectiveness of CWPRF,
namely the in-batch negative sampling, the model initialisation as well as the initial retrieval stage?
RQ 7.4: What is the impact of the parameters of CWPRF, namely the number of feedback
passages fb, the number of the expansion embeddings fe and the parameter β?
RQ 7.5: How does CWPRF perform across various query types compared with ColBERT-PRF
(introduced in Chapter 4)?

7.3 Experimental Setup

In this section, we detail the dataset used in this chapter in Section 7.3.1, then we describe the
experimental settings and the baselines in Section 7.3.2 and Section 7.3.3, respectively.
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7.3.1 Datasets

We conduct our experiments using the MSMARCO passage ranking dataset (cf. Section 2.5.1).
We employ the TREC Deep Learning track 2019 query set as our validation set and use the TREC
2020 query set as our test set due to their dense judgements, which can provide more reliable
evaluations of PRF techniques. In addition, we also report the out-of-domain performance of
CWPRF on four BEIR datasets (cf. Section 2.5.1).
We evaluate our method using the official metrics of TREC that we introduced in Section 2.5.3,
namely nDCG@10, MAP@1000 and Recall@1000. We follow the standard practice of TREC
(non-relevant = 0 or 1 and relevant = 2 or 3) for the binary-relevance-based metrics (MAP and
Recall). To investigate the extent that the semantic matching, rather than exact token matches
occurs when retrieving documents, we also report the semantic match proportion (SMP) for the
ColBERT-based system. The calculation of SMP is detailed in Section 4.3.3.4, in Equation (4.5).
For significance testing, we use the paired t-test (p < 0.05) and apply the Holm-Bonferroni
multiple testing correction.

7.3.2 Experimental Implementation

Both the AAAT and OAAT training modes are trained using the MSMARCO triples training
set, i.e. the triplets of ⟨q,d+d−⟩. Following the settings of ColBERT that we used in Chapter 4
and Chapter 5, we use a ColBERT checkpoint trained using the MSMARCO passage ranking
training triplets for 44k steps. We employ the query encoder from the trained ColBERT model
to encode the query (the maximum query length is set to 32) and the document encoder to encode
the pseudo-relevance feedback documents (the maximum document length is set to 512 for
the AAAT training mode and 180 for the OAAT training mode). We set the maximum length
to 180 when encoding the positive and negative passages. Following the notations introduced
in Section 2.1.2, we use » to denote a retrieval pipeline, for instance BM25 » ColBERT

indicates applying the ColBERT reranker on the results obtained from BM25. For setting
the hyper-parameters of CWPRF, we use the TREC 2019 queries as our validation set; the
resulting settings of fb = 3, fe = 10 and β = 5 are obtained, as reported later in Section 7.4.4.
However, we note that fb = 3, fe = 10 is also the recommended setting for ColBERT-PRF (cf.
Chapter 4). The high β value indicates the high contribution of the CWPRF identified expansion
embeddings for semantic ranking. We further provide the ablations of performing only the
expansion embeddings in Section 7.4.4. For both CWPRF and ColBERT-PRF, we perform 5
sets of experiments with varied random seeds for each variant and report the median results.

7.3.3 Baselines

To test the effect of CWPRF, we compare the retrieval effectiveness of a CWPRF-based retrieval
system with the following 4 families of retrieval approaches:
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• Sparse Retrieval Systems (denoted as Sparse in Table 7.1): We compare with the
traditional lexical retrieval models, namely BM25 and BM25+RM3 (cf. Section 2.1.1), and
both with and without the ColBERT reranker, namely BM25 » ColBERT and BM25+RM3
» ColBERT models;

• Dense Retrieval Systems (denoted as Dense): We compare with both single-
representation and multiple-representation dense retrieval models, namely ANCE and
ColBERT (cf. Section 2.3);

• Learned Sparse Retrieval Systems (denoted as L-Sparse): We compare with SPLADE-v2,
DeepImpact and DocT5Query (cf. Section 2.2.3), which are reranked using ColBERT;

• Dense PRF models (denoted as D-PRF): we compare with the ANCE-PRF, Vector-PRF
and ColBERT-PRF models. We compare our proposed CWPRF model with the
more effective ColBERT-PRF Ranker model using the default KMeans clustering (cf.
Section 4.2), rather than comparing with the Reranker.

Moreover, when measuring the efficiency of CWPRF, we also compare with the recently proposed
variants of ColBERT-PRF, which avoid costly ANN lookups when calculating IDF values for
embeddings: KMedoids and KMeans-Closest (cf. Section 4.6).

7.4 Results and Discussion

This section studies the effectiveness as well as the efficiency performance of CWPRF in
Section 7.4.1 and Section 7.4.2, respectively. The effects of the various training strategies
are investigated in Section 7.4.3. In addition, we examine the impact of the hyperparameters
of CWPRF in Section 7.4.4. Next, we investigate the performance of CWPRF according to
various query types in Section 7.4.5. Finally, we also provide qualitative analysis of CWPRF in
Section 7.4.6.

7.4.1 RQ7.1 - Retrieval Effectiveness of CWPRF

Now we discuss the retrieval effectiveness, in terms of both the in-domain and out-of-domain
effectiveness, as well as the matching behaviour of our proposed models compared to various
families of baselines.
In-domain Effectiveness: To evaluate the effectiveness of implementing the CWPRF model
in a dense pseudo-relevance feedback framework, we compare CWPRF with various families
of baselines in Table 7.1. More specifically, the baseline families compared are sparse retrieval
models, dense retrieval approaches, learned sparse models as well as the existing dense PRF
models, each categorised as a block in Table 7.1.
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Table 7.1: Main results on both TREC 2019 and TREC 2020 queries. The superscripts ‘a-j’
denote significant improvements over the indicated baseline model. The highest effectiveness
value for each metric is boldfaced. Results not available for significance testing are denoted with
‘-’. † denotes results over-fitted to the test set.

Systems
TREC 2019 (Validation) TREC 2020 (Test)

MAP nDCG@10 Recall Mean-SMP MAP nDCG@10 Recall Mean-SMP

Sp
ar

se

(a) BM25 0.2864 0.4795 0.7553 - 0.2930 0.4936 0.8103 -
(b) BM25 » ColBERT 0.4597 0.6969 0.7553 0.3244 0.4721 0.6891 0.8072 0.3546
(c) BM25+RM3 0.3108 0.5156 0.7756 - 0.3203 0.5043 0.8423 -
(d) BM25+RM3 » ColBERT 0.4732 0.7059 0.7756 0.3404 0.4801 0.6866 0.8423 0.3560

D
en

se (e) ANCE 0.3715 0.6537 0.7571 - 0.4070 0.6447 0.7737 -
(f) ColBERT E2E 0.4310 0.6934 0.7892 0.3332 0.4648 0.6871 0.8245 0.3684

L
-S

pa
rs

e (g) SPLADE-v2 » ColBERT 0.4579 0.6957 0.8723 0.3327 0.4730 0.6794 0.8987 0.3682
(-) DeepImpact » ColBERT - 0.7220 - - - 0.6910 - -
(h) DocT5Query » ColBERT 0.5009 0.7136 0.8263 0.3400 0.4733 0.6934 0.8456 0.3618

D
-P

R
F (i) ANCE-PRF 0.4253 0.6807 0.7912 - 0.4452 0.6948 0.8148 -

(j) ColBERT-PRF 0.5244 0.7276 0.8760 0.3592 0.4904 0.6958 0.8858 0.3837
(-) Vector-PRF 0.4151 0.6629 0.6962 - 0.4341† 0.6598† 0.7948† -

O
ur

s CWPRF-AAAT 0.5319ace f gi 0.7444ace f gi 0.8596abe f i 0.2814 0.5136abce f gi 0.7246abcde f g j 0.8783abe f i 0.3240
CWPRF-OAAT 0.5252ace f gi 0.7244ace 0.8722abe f i 0.2923 0.5049abce f gi 0.7204acde f g 0.8783abe f i 0.3265

Among the variants of CWPRF, we observe that when comparing the CWPRF-AAAT and
CWPRF-OAAT models (the bottom block), CWPRF-AAAT, which is trained with all PRF
passages processed as a single sequence, consistently obtains a higher performance than CWPRF-
OAAT, where the PRF sequences are considered individually. This suggests that AAAT provides
more relevant context than OAAT for the CWPRF model.
Next, we compare our CWPRF model with other baseline models. Firstly, we observe that
the CWPRF models significantly outperform the sparse retrieval models and exhibit marked
improvements over sparse-retrieval reranked with the ColBERT reranker. When compared with
dense retrieval models, the CWPRF models significantly outperform both types of dense retrieval
models. In particular CWPRF exhibits 7.4% (TREC 2019 queries) and 5.5% (TREC 2020
queries) improvements in terms of nDCG@10 compared to the ColBERT E2E model where
no expansion embeddings are appended to the original query. This indicates the usefulness
of CWPRF for selecting expansion embeddings to augment the query representation. We also
compare the CWPRF models with the learned sparse systems, where the document tokens are
enriched and reweighted, then applied with a more advanced reranker. We find that both of the
CWPRF-AAAT and CWPRF-OAAT models significantly outperform the learned sparse models,
indicating the effectiveness of learning the feedback weights and refining the query representation
compared with document enrichment.
Finally, when comparing with existing dense PRF models, namely the ANCE-PRF, Vector-PRF
and ColBERT-PRF models, we find that the CWPRF models exhibit significant improvements
over ANCE-PRF on both query sets and significantly improves over ColBERT-PRF on the TREC
2020 query set. This indicates that our proposed CWPRF approach can select more appropriate
expansion embeddings that can help to retrieve more relevant documents, and minimise topic drift.
Out-of-domain Performance of CWPRF on BEIR: Moreover, we examine the performance of
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Table 7.2: Effectiveness of CWPRF on BEIR. All scores denote nDCG@10. The best score on a
given dataset is boldfaced. † denotes significant differences between CWPRF and the indicated
model using paired t-test with p < 0.05.

Models DBPedia NFCorpus TREC-COVID Touché-2020

ANCE 0.265† 0.236† 0.392† 0.291†
ANCE-PRF 0.268† 0.239† 0.430 0.292†
ColBERT 0.392 0.316† 0.533 0.307†
ColBERT-PRF 0.387 0.321 0.548 0.348

CWPRF-AAAT 0.385 0.321 0.524 0.348

the ColBERT and CWPRF (both trained on MSMARCO) in a zero-shot setting, using the BEIR
datasets. We choose four datasets from BEIR that have dense judgements (Amati et al., 2004).
Table 7.2 reports the performance of CWPRF as well as that of existing dense PRF models on
four BEIR benchmarks that we detailed in Section 2.5.1. From Table 7.2, we find that CWPRF
shows comparable performance with ColBERT-PRF but with much lower query latency. In
addition, CWPRF outperforms ANCE-PRF by a large margin, indicating the superiority of our
contrastive weighting method in such zero-shot settings.
Semantic Match Proportion: To further explain the effect of implementing CWPRF for dense
query expansion, following the previous chapters in this work, we also report the mean semantic

match proportion (SMP) values for the models using the ColBERT dense retrieval paradigm in
Table 7.1. In particular, SMP quantifies the extent to which a query token exhibits an exact match
(matching with the same document token) and a semantic match (matching with different doc-
ument tokens) in the top-ranked documents. On analysing Table 7.1, we find that, for both query
sets, the CWPRF models show lower Mean-SMP values than ColBERT-PRF, implying a more
‘focused’ retrieval. This is because CWPRF’s expansion embeddings correspond to the actual
tokens while ColBERT-PRF’s expansion embeddings can be the centroid embeddings from clus-
tering. By using more focused embeddings, nDCG@10 is improved compared to ColBERT-PRF.
Finally, we present the interaction matrix of CWPRF using the same example query: why did

the us voluntarilay enter ww1? and passage text that has been used to illustrate the
matching behaviour of ColBERT-PRF (cf. Figure 4.6). From Figure 4.6, firstly we observe that
the expansion tokens identified by CWPRF in response to the example query are different from
the ones identified by ColBERT-PRF (cf. Figure 4.6), where the expansion tokens are inning,
attacked, ##’, harbor, revolution, entered, did, w, m, us. In particular, CWPRF
identifies ##wi as an expansion token for ##w1 while ColBERT-PRF falls short in recognising
this good expansion token. Secondly, CWPRF’s expansion tokens tend to be more likely to per-
form the exact matching behaviour than the expansion embeddings identified by ColBERT-PRF.
Overall, in response to RQ7.1, these results show that the retrieval effectiveness, for both
in-domain and out-of-domain performance, can be markedly improved with the CWPRF
feedback weighting technique. Training CWPRF with all PRF passages as one context gives
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[SEP]
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Figure 7.3: CWPRF interaction matrix between query (qid: 106375) and passage (docid:
4337532) embeddings. Notations per Figure 4.6.

more precise retrieval at top ranks. In particular, from Table 7.1, we observe that the CWPRF
models achieve the highest nDCG@10 and MAP performances on both query sets and exhibit
upto 4.7% improvements on MAP and a 4.1% improvement on nDCG@10 for the TREC 2020
queries compared to ColBERT-PRF.

7.4.2 RQ7.2 - Retrieval Efficiency of CWPRF

Following the three stages described in Figure 7.1, we also report the mean execution time of each
stage for various dense PRF systems, including Vector-PRF, ANCE-PRF, variants of ColBERT-
PRF with differing efficiency and our CWPRF methods. As Table 7.3 shows, our CWPRF method
performs as efficiently as the most efficient ColBERT-PRF variant from Chapter 4 (KMedoids
variant) and brings upto 3.06x speedup than the default ColBERT-PRF method (KMeans variant).
Although CWPRF needs a longer execution time than Vector-PRF and ANCE-PRF, according to
the effectiveness and efficiency tradeoff in Figure 7.4, CWPRF can significantly outperform them
without adding much computational cost.
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Table 7.3: Mean execution time of dense pseudo-relevance feedback systems. C-PRF represents
ColBERT-PRF. Effectiveness and PRF Stage efficiencies are also presented in Figure 1.

Systems
Mean Execution Time (ms)

Stage 1 PRF Stage Stage 3 ALL

Vector-PRF
}

67
{

4 61 132
ANCE-PRF 111 63 241

C-PRF (KMeans) (default) }
387
{ 2997 719 4103

C-PRF (KMeans-Closest) 908 757 2052
C-PRF (KMedoids) 218 744 1349
CWPRF-AAAT 320 710 1417
CWPRF-OAAT 642 714 1743

0 500 1000 1500 2000 2500 3000
PRF Stage Mean Execution time (ms)

0.66

0.68

0.70

0.72

0.74

nD
CG

@
10

CWPRF (ours)
ANCE-PRF
Vector-PRF
ColBERT-PRF

CWPRF-AAAT

CWPRF-OAAT

ColBERT-PRF 
 KMeans (default)

ColBERT-PRF 
 KMeans-Closest

ColBERT-PRF 
 KMedoids

ANCE-PRF

Vector-PRF

Figure 7.4: Effectiveness (nDCG@10) versus dense PRF stage mean execution time on the TREC
2019 query set.

Figure 7.4 presents the trade-off between the retrieval effectiveness and the mean PRF stage
execution time for a variety of existing dense PRF techniques on the TREC 2019 Deep Learning
track queries, including Vector-PRF, ANCE-PRF, ColBERT-PRF variants and our proposed
CWPRF method. As the figure shows, the default ColBERT-PRF implementation outperforms
ANCE-PRF and Vector-PRF in terms of retrieval effectiveness but requires a longer execution
time. Meanwhile, our proposed CWPRF achieves the highest nDCG@10 score without requiring
high computational cost.
In summary, in response to RQ7.2, our CWPRF model achieves the highest nDCG@10 on the
test set among all the compared baselines, while reducing the computational overhead costs
compared with previous ColBERT-PRF approaches.

7.4.3 RQ7.3 - Effectiveness of Training Strategies of CWPRF

Next, we inspect the effect of each of the training techniques, namely in-batch negative training,
initialisation of the model, different learning objectives and training with PRF passages obtained
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from different retrieval approaches. Experiments for each training strategy are grouped in
Table 7.4.
Effect of In-Batch Negative Sampling: In Table 7.4, we see that training CWPRF with further
in-batch negative samples achieves higher retrieval effectiveness on both the TREC 2019 and
TREC 2020 query sets, for both the AAAT and OAAT training modes. In practice, more negative
training samples for the pseudo-relevance feedback tokens give more opportunity for the model
to learn to properly weight unimportant terms in the feedback. For instance, the stopword “it”
might occur in the feedback and positive passages, and not in the negative passage, resulting
in a high weight. By applying IBNs, there is more chance for “it” to occur in any of the negative
passages, reducing its learned target weight, and resulting in a more effective CWPRF model.
Effect of Model Initialisation: Here, we investigate the training from scratch and training with
the parameters initialised from an existing learned sparse model, namely uniCOIL (Lin and Ma,
2021). In the second group of Table 7.4, we find that this initialisation for CWPRF can lead to
higher performance compared with training from scratch. This is because the pretrained uniCOIL
model provides a better starting point than training from scratch. Hence, further fine-tuning with
the feedback weighting task dataset results in higher performance.
Effect of Initial Retrieval: Now, we further investigate the training of CWPRF using the PRF
passages obtained by sparse retrieval, using BM25, as well as by dense retrieval, using the
ColBERT E2E retrieval model. From the final experiment group in Table 7.4, we observe that
there is no obvious effectiveness difference between training CWPRF using different initial
retrieval systems. Thus, considering the training efficiency, our default CWPRF is trained using
the PRF passages obtained from a sparse BM25 initial retrieval.
To summarise, in response to RQ7.3, we find that the in-batch negative training technique and a
well-performed initialisation can lead to higher performance of CWPRF, while no significant
benefit is observed for different initial training retrieval model.

7.4.4 RQ7.4 - Impact of CWPRF Parameters.

The hyper-parameters for CWPRF are: the number of expansion embeddings fe and β , which
controls the overall contribution of the expansion embeddings. In addition, fb defines the number
of feedback documents used during training and retrieval of CWPRF.
We first vary the fe and β hyper-parameters during retrieval. Figure 7.5a and Figure 7.5b presents
the effectiveness of applying the CWPRF models while varying fe and β , respectively. Note
that fe = 0 or β = 0 represents the vanilla ColBERT model without any expansion embeddings
appended. From Figure 7.5a, we find that for both CWPRF-AAAT and CWPRF-OAAT models,
10 expansion terms give the highest MAP performance. Thus, we set fe = 10 as the default.
This echoes the default expansion setting identified for ColBERT-PRF (cf. Section 4.3.3.3).
For the β parameter (Figure 7.5b), we find that for both CWPRF-AAAT and OAAT models,
MAP performance shows a rising trend as higher β → 5 and becomes stable for β > 5. Indeed
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Table 7.4: Performance of CWPRF with different training strategies on the TREC 2019 & 2020
queries. ‘†’ denotes significant improvements over the ColBERT model. The highest value for
each metric within each group is boldfaced.

Models
TREC 2019 (Validation) TREC 2020 (Test)

MAP nDCG@10 MAP nDCG@10

ColBERT E2E 0.4310 0.6934 0.4648 0.6871

Effect of In-Batch Negative Sampling (IBN)

CWPRF-AAAT 0.5168† 0.7331 0.4938 0.7079
CWPRF-AAAT-IBN 0.5244† 0.7332 0.4966† 0.7045
CWPRF-OAAT 0.5050 0.7064 0.5084† 0.7125
CWPRF-OAAT-IBN 0.5151† 0.7269 0.5094† 0.7118

Effect of Model Initialisation (Init)

CWPRF-AAAT-Init 0.5304† 0.7301 0.5125† 0.7184†
CWPRF-AAAT-IBN-Init 0.5319† 0.7444† 0.5136† 0.7246†
CWPRF-OAAT-Init 0.5151† 0.7269 0.4948† 0.7112
CWPRF-OAAT-IBN-Init 0.5252† 0.7244 0.5049† 0.7204†

Effect of Initial Retrieval Stage

CWPRF-AAAT (BM25) 0.5168† 0.7331 0.4938 0.7079
CWPRF-AAAT (ColBERT) 0.5109† 0.7346† 0.4869 0.7002
CWPRF-OAAT (BM25) 0.5050 0.7064 0.5084† 0.7125
CWPRF-OAAT (ColBERT) 0.5138† 0.7170 0.4983 0.6904

Table 7.5: Contribution of the expansion embeddings of CWPRF on the TREC 2020 test query
set. † denotes significant differences over ColBERT using paired t-test with p < 0.05.

Systems MAP nDCG@10 Recall

ColBERT (only Q) 0.4648 0.6871 0.8245
CWPRF-AAAT (only exp) 0.4824 0.6925 0.8697†
CWPRF-AAAT (Q & exp) 0.5136† 0.7246† 0.8783†
CWPRF-OAAT (only exp) 0.4639 0.6750 0.8600
CWPRF-OAAT (Q & exp) 0.5049† 0.7204† 0.8783†

for β > 5, it appears that the feedback embeddings are dominating over the original query
embeddings. This indicates the high contribution of the selected expansion embeddings during
retrieval. Based on this, we set β = 5 as the default setting of CWPRF.
Indeed, we further quantify the contribution of the expansion embeddings of CWPRF technique
and the original query embeddings in respectively in Table 7.5. We find that for CWPRF-AAAT,
using only the 10 selected expansion embeddings for reranking, markedly outperforms using
the query embeddings alone, which verifies the high contribution of CWPRF selected expansion
embeddings.
Furthermore, we study how many PRF passages are needed for CWPRF. We conduct experiments
to train both the CWPRF-AAAT and CWPRF-OAAT models with a different number of PRF
passages. We note that similar to the setting of the ANCE-PRF model, due to the input length of
BERT-based encoders, for the CWPRF-AAAT training, the maximum number of PRF passages
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Figure 7.5: Impact of the hyperparameters of CWPRF on the TREC 2019 query set. ‘baseline’
represents the model without any expansion, i.e. ColBERT E2E.

is set to 3. On the other hand, for the OAAT training mode, as each PRF document is treated
independently, there is no such requirement. The nDCG@10 results are presented in Figure 7.6.
We observe that for CWPRF-OAAT, three feedback documents employed for training alone or
evaluation alone give higher performance than other fb values. Overall, the combination of fb = 3
for both training and retrieval gives the highest performance. In addition, for CWPRF-AAAT, we
find that a high MAP performance is achieved by training with only the top two PRF passages.
However, this is not stable, as during retrieval, more PRF passages are needed under this setting.
This indicates the model might not be trained enough. Moreover, we observe a similar trend for
fb = 3 used for both training and retrieval. Thus, based on this observation, we suggest to set
fb = 3 as the default for the training and evaluation of CWPRF.
To summarise, in response to RQ7.4, we recommend using the parameters where the number of
feedback passages fb = 3 and the number of expansion embeddings fe = 10 as well as β = 5 for
CWPRF. Note that fb = 3 and fe = 10 are also the default setting for ColBERT-PRF reported in
Section 4.3.3.3.

7.4.5 RQ7.5 - Performance of CWPRF on Different Query Types

We further investigate the performance of the CWPRF models compared to ColBERT on different
query types using the query taxonomy of Bolotova et al. (2022). Specifically, we combine the
TREC 2019 and TREC 2020 queries to create a single query pool, consisting of 97 queries. Then,
the merged queries are classified using a trained query category classifier according to the query
taxonomy introduced by Bolotova et al. (2022). Figure 7.7a and Figure 7.7b illustrate the absolute
difference in performance between the CWPRF-AAAT model and the ColBERT-PRF model
in terms of MAP and nDCG@10, respectively. Similarly, Figure 7.7c and Figure 7.7d provide
comparisons for the CWPRF-OAAT model against ColBERT-PRF. From Figure 7.7, it is evident
that CWPRF-AAAT demonstrates improvement across all query types in terms of MAP and
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Figure 7.6: Impact of the number of feedback passages fb during training (x-axis) and retrieval
(y-axis) for CWPRF, in terms of MAP on the TREC 2019 query set.

nDCG@10, except for the NOT-A-QUESTION type. However, it is worth noting that the number
of queries belonging to the NOT-A-QUESTION type is quite low, comprising only approximately
1% (a single query) of the total. Similarly, we observe that CWPRF-OAAT also enhances
performance across various query types, except for the single NOT-A-QUESTION type in terms
of MAP, and the REASON type (with a ratio of approximately 4.1%) in terms of nDCG@10.
To summarise, in response to RQ7.5, we find that CWPRF exhibits higher retrieval effectiveness
across various types of queries. These observations further highlight the effectiveness and robust-
ness of our proposed CWPRF models compared to ColBERT-PRF across diverse query types.

7.4.6 Qualitative Analysis

Table 7.6 presents an example of the expansion tokens identified by CWPRF and the ColBERT-
PRF technique as well as their retrieved top-ranked document. We observe that the two comparing
methods can generate some expansion tokens in common but not necessarily receive the same
weights. In particular, compared to the ColBERT-PRF model, CWPRF can bring a highly relevant
document (Label=2) to the top rank, by expanding with tokens: “revision” and “allows”, which
are helpful in retrieving the more relevant document (indicated by their darker shading). Indeed,
this superior ability to retrieve highly relevant documents at high ranks is more useful in a real-life
retrieval scenario. Unexpectedly, “allow” and “allows” are identified by CWPRF as important ex-
pansion tokens. This indicates that CWPRF can take the context into account – more so than IDF.
The second example in Table 7.6 is selected from a case when CWPRF underperforms ColBERT-
PRF. Indeed, while CWPRF experiences a performance drop compared to ColBERT-PRF, it can
still retrieve a document with label 3 at the top rank. This indicates the benefits of our contrastive
weighting technique for bringing more relevant documents to the top positions.
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Figure 7.7: Performance of CWPRF compared to ColBERT-PRF across different types of queries
according to the query type taxonomy proposed by Bolotova et al. (2022). The percentage of
queries within each query type, relative to the total number of queries in the query pool, is
indicated within each bar.

Overall, we see that CWPRF can select more useful expansion embeddings to help bring more
relevant documents on top, which would be more useful when implementing in a retrieval system
in a real-life scenario.

7.5 Conclusions

To summarise, in the proposed thesis statement in Section 1.1, we hypothesised that we can
employ the pseudo-relevance feedback information to train an effective dense query expansion
model. Therefore, in this chapter, we proposed a deep language model-based contrastive
weighting approach (CWPRF) for selecting useful query expansion embeddings and calibrating
their expansion weights for semantic search. In particular, CWPRF is trained with a contrastive
objective to learn to assign a high weight for feedback embeddings that can distinguish relevant
documents from non-relevant documents. During retrieval, the embeddings of tokens appearing
in the feedback documents that CWPRF predicts to be important are appended to the query
embeddings. Extensive experiments performed on two query sets demonstrate that our proposed
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Table 7.6: Example of the expansion tokens identified by the CWPRF and ColBERT-PRF
approaches, as well as the top returned passage for each approach after applying PRF. Tokens
with a darker red contribute more to nDCG@10.

Approach
CWPRF > ColBERT-
PRF

QID 156498: Query: do google docs auto save

CWPRF

Expansion tokens doc google save ##s allows revision automatically deleted allow just

Top returned passage af-
ter PRF

DOCNO: 104801 TEXT: Allow Google Docs to automatically save your docu-
ment. As you add new content to your Google Doc, the changes you make to the
document are automatically saved to your drive. Next to the“Help” tab at the top
of your screen, you will see light gray text.

Label=2

ColBERT-PRF

Expansion tokens ##’ doc automatically google document save saves drive changes back

Top returned passage af-
ter PRF

DOCNO: 104803 TEXT: Allow Google Docs save and sync your changes auto-
matically. In the offline application, Google Drive automatically saves changes
made to a document every few seconds. When your computer connects to the
internet, the Google Drive application will function like its online counterpart.

Label=1

CWPRF < ColBERT-
PRF

QID 67316: Query: can fever cause miscarriage early pregnancy

CWPRF

Expansion tokens fever cause pregnancy mis ##carriage increases baby temperature causing birth

Top returned passage af-
ter PRF

DOCNO: 6680964 TEXT: 1 A temperature above 103F (39.50C) during early
weeks of pregnancy (usually the first trimester) may be responsible for a miscar-
riage, spinal cord or mental defects in the baby. Fever in early pregnancy may
cause more harm than fever in late pregnancy.

Label=3

ColBERT-PRF

Expansion tokens defects ##’ ##ping bath trim fever studies pregnancy early during

Top returned passage af-
ter PRF

DOCNO: 7348851 TEXT: A temperature higher than 100.4 degrees Fahrenheit
– or the illness causing the fever – could harm both you and your developing baby.
A high fever increases the risk of birth defects or miscarriage in early pregnancy.
The higher the fever and the longer it lasts, the higher the risk. If you want to lower
your fever without using medicine like acetaminophen – or just don’t have any on
hand – you can try these methods: 1 Lie down and place a cool, damp washcloth on
your forehead. 2 Take a lukewarm tub bath or sponge bath.

Label=3

CWPRF approach can significantly outperform the ColBERT dense retrieval model. In particular,
CWPRF significantly improves over ColBERT-PRF by 4.1% in terms of nDCG@10 (cf.
Table 7.1) on the TREC 2020 query set without requiring a high computational cost.
Overall, the findings for the CWPRF can be summarised as follows: (i) In terms of the retrieval
effectiveness of CWPRF, for both in-domain and out-of-domain performance, we found that
our CWPRF exhibits markedly improvements over various baselines and achieves the highest
nDCG@10 and MAP performances on both query sets; (ii) In terms of the tradeoff between
the retrieval effectiveness and efficiency, we found that CWPRF model achieves the highest
nDCG@10 score on the test set while reducing the computational overhead costs compared with
the various ColBERT-PRF approaches introduced in Chapter 4; (iii) Moreover, CWPRF enhances
performance across various query types in terms of nDCG@10.
Based on these findings in this chapter as well as the previous chapter, we can conclude that the
pseudo-relevance feedback information can be leveraged in both unsupervised, i.e. our proposed
ColBERT-PRF model, and supervised way, i.e. our proposed CWPRF model, for effective dense
query expansion. Both our proposed ColBERT-PRF and CWPRF models exhibit significant
improvements over existing dense query expansion methods but perform in a different method.
However, there are also some limitations to the CWPRF method. It is unclear how it may be
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adapted for the single-representation dense retrieval PRF model. In addition, in this work, we did
not test the effect of the hard negative sampling and the number of negative samples for CWPRF.
Finally, while we have focused on passage retrieval, longer document retrieval can be addressed
through splitting documents into passages during indexing, retrieval and PRF, and applying a
max-passage aggregation (Dai and Callan, 2019b) to obtain a document ranking.
For future work, we will also consider a hybrid approach to incorporate both the learned weights
produced by CWPRF and the statistical information in the expansion embedding identification
process. In the next chapter, we will close this thesis by summarising the results and conclusions
of each chapter and discussing possible future directions uncovered by this work.
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Chapter 8

Conclusions and Future Work

8.1 Contributions and Conclusions

This thesis addressed the challenges of using pseudo-relevance feedback techniques for more
effective sparse and dense retrieval. Specifically, we argued that the pseudo-relevance feedback
information can be used in neural-based models to improve retrieval effectiveness, for both sparse
and dense retrieval. In Chapter 1, we argued that the existing neural pseudo-relevance feedback
models have the following challenges:

• Challenge 1: How to use the pretrained knowledge of sequence-to-sequence generative
language models to generate query reformulations to further enhance adhoc retrieval
effectiveness?

• Challenge 2: How to effectively implement a pseudo-relevance feedback mechanism for
effective dense retrieval?

• Challenge 3: Most dense retrieval models are shown to face challenges when it comes to
out-of-domain evaluations. However, the question arises: How can we employ high-quality
external knowledge on the dense query expansion models, such as ColBERT-PRF, to
improve the out-of-domain performance of dense retrieval models?

• Challenge 4: While the default ColBERT and ColBERT-PRF models have only been
applied to the BERT model and its corresponding WordPiece tokeniser, the extent that
ColBERT and ColBERT-PRF generalise across various types of pretrained models and the
tokenisation method is still under-investigated.

• Challenge 5: The ColBERT-PRF models perform dense query expansion in an unsuper-
vised manner, depending on heuristical techniques such as clustering and IDF statistics. A
challenge is therefore how to perform effective dense expansion in a supervised way.

To address the above five challenges, we have proposed various models in this thesis. In the
following, we discuss our main contributions and conclusions in addressing these challenges:
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• Conclusion 1: Generative Query Reformulation for Effective Adhoc Search. To
address the first challenge, we cast the query reformulation task as a text generation
task. Accordingly, we explored two possible generative query reformulation frameworks,
GenQR and GenPRF (cf. Chapter 3). In particular, models under the GenQR framework
directly take a query as input, while models under the GenPRF framework also incorporate
contextual information extracted from the pseudo-relevant feedback documents. Moreover,
under each framework, we investigated both fine-tuning and direct prompting methods
to leverage the learned knowledge of T5 and FLAN-T5, respectively (cf. Section 3.1).
In particular, for the T5-based query reformulation models, we investigated the use of
weakly supervised query pairs to fine-tune the T5-based query reformulation models (cf.
Section 3.1.3). The results of Section 3.4.1 to 3.4.3 demonstrate that the reformulated
queries generated by the GenQR and GenPRF models can significantly improve over the
original query and statistical query expansion approaches as well as show comparable
performance to existing neural-PRF models.

• Conclusion 2: Semantic PRF for Effective Dense Retrieval. To address challenge 2, we
proposed ColBERT-PRF, where we implement the pseudo-relevance feedback mechanism
on multiple representation dense retrieval (cf. Chapter 4). More specifically, in Section 4.2,
ColBERT-PRF applies clustering to the embeddings occurring in the pseudo-relevant set,
and then identifies the most discriminative embeddings among the cluster centroids. The
identified expansion embeddings are appended to the original query as the refined query
representation. Experiments in Section 4.3 & Section 4.4 shown that pseudo-relevance
feedback information from the top-returned passages in multiple representation dense
retrieval is beneficial for improving the retrieval effectiveness on passage retrieval and
document retrieval, respectively. In addition, we investigated various techniques to measure
the informativeness of expansion embeddings of ColBERT-PRF in Section 4.5, namely
the statistical methods: IDF and ICTF, and on embedding coherency, namely Mean
Cosine Similarity. Finally, we investigated the various efficient variants of ColBERT-
PRF in Section 4.6, the experiment results demonstrate that the trade-off of the retrieval
effectiveness and efficiency of ColBERT-PRF can be attained using different clustering
techniques and/or candidate selection techniques based on approximate scoring.

• Conclusion 3: Dense External Expansion. To address the third challenge, in Chapter 5,
we studied the effectiveness of external dense expansion on dense retrieval. More specifi-
cally, we investigated external expansion when mixing sparse & dense retrieval paradigms
(including both single representation and multiple representation dense retrieval) in Sec-
tion 5.2. We conducted experiments on two classical TREC test collections (Robust04 &
WT10G) as well as four BEIR datasets, namely DBPedia, NFCorpus, TREC-COVID and
Touché-2020. Moreover, we investigated different frameworks performing external expan-
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sion for zero-shot retrieval, namely (a) dense external expansion for sparse retrieval, (b)
dense external expansion for dense retrieval and (c) sparse-obtained external feedback for

dense retrieval. The results presented in Section 5.5 show that pseudo-relevance feedback,
in the form of external expansion, can result in effective zero-shot retrieval.

• Conclusion 4: From ColBERT-PRF to Col⋆-PRF. To address challenge 4, in Chapter 6,
we studied the effectiveness of multi-representation dense retrieval as well as the dense
query expansion models with different pretrained models with different tokenisation tech-
niques (cf. Section 6.1). In particular, experimental results in Section 6.1.3 demonstrate that
ColBERT and ColBERT-PRF can generalise upon various pretrained language models as
Col⋆ and Col⋆-PRF, respectively. Moreover, we further examined the matching behaviour
of the multiple representation dense retrieval models before and after the implementation
pseudo-relevance feedback mechanism in Section 6.2. The extensive experimental analysis
yields new findings that can shed light on the more effective dense retrieval model design
and retrieval, including (i) applying the Col⋆ and Col⋆-PRF models with the BPE tokeniser
is more likely to perform semantic matching than the more common ColBERT model; (ii)
among various salient token families, all of the (weighted) contextualised late interaction
models perform semantic matching, particularly for low IDF tokens and stopwords tokens;
(iii) performing only exact matching and the special token matching contribute more than
only semantic matching to the overall retrieval effectiveness.

• Conclusion 5: Learning Feedback Weights for Dense Query Expansion. Finally, to
address the fifth challenge, we propose a contrastive weighting method, called CWPRF,
to select and weight the usefulness of the feedback embeddings for dense expansion in
Chapter 7. In particular, CWPRF performs in a supervised way by training with the
contrastive objective allowing it to learn the effective weights for expansion embeddings
that are tailored for the semantic ranking task (cf. Section 7.1). More specifically, for each
feedback token, we constructed a contrastive objective, where, given positive and negative
documents, CWPRF is trained to assign high weights to the tokens that are semantically
closer to tokens occurring in the positive document than to those in the negative document.
Experimental results presented in Section 7.4 & Section 7.4.2 demonstrated that CWPRF
can achieve significantly higher retrieval effectiveness but with less execution time than
the default ColBERT-PRF. In addition, extensive empirical evaluations in Section 7.4.3 &
Section 7.4.4 demonstrate how to effectively train our CWPRF in a supervised way. Finally,
we showed that CWPRF enhances performance across various query types in terms of
nDCG@10 (cf. Section 7.4.5).

Next, based on the results obtained in Chapters 3 to 7, we now validate our thesis statement posed
in Section 1.1. Our thesis stated that we can use the neural models based on the pseudo-relevance
feedback information to improve the retrieval effectiveness of the sparse as well as the dense
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retrieval. In the following, we discuss the corresponding experimental results and observations
that validate our proposed thesis statement.

• Claim 1: Pseudo-relevance feedback information can be used by a sequence-to-sequence

neural model to generate more effective query reformulations for sparse retrieval. Our
experiments in Chapter 3 validated this claim by showing that our proposed Generative
Query Reformulation models can significantly outperform the retrieval results based on the
original query as well as the various baseline models (cf. Table 3.6). Specifically, Table 3.9
provides the qualitative analysis of our proposed generative query reformulation models
that they can produce queries that are more precise than RM3 (in terms of nDCG@10)
while also enhancing Recall (cf. Table 3.6).

• Claim 2: Moreover, applying pseudo-relevance feedback on contextualised embeddings can

refine the query representation for multiple representation dense retrieval, in particular, for

the ColBERT model. We validated this claim in Chapter 4, where we propose ColBERT-PRF
by implementing the pseudo-relevance feedback mechanism on the multiple representation
dense retrieval. In particular, ColBERT-PRF employs the clustering technique to find the
representative centroid embeddings based on the pseudo-relevance feedback document
embeddings. Then ColBERT-PRF uses IDF as an informativeness measurement method
to identify the most suitable expansion embeddings among the extracted representative
centroid embeddings. Extensive experiments results demonstrated that ColBERT-PRF can
significantly outperform the existing various families of baselines for passage retrieval
(cf. Table 4.1) and long document retrieval (cf. Table 4.4 for MSMARCO document
ranking dataset) & Table 4.5 for Robust04 document ranking dataset). In particular, our
ColBERT-PRF outperforms the ColBERT E2E model by 26% and 10% on TREC 2019
and TREC 2020 passage ranking query sets (cf. Table 4.4). Furthermore, efficient variants
of ColBERT-PRF using the approximate scoring technique and/or different clustering
algorithms can bring upto 4.54x speedup without compromising the retrieval effectiveness
(cf. Table 4.6).

• Claim 3: Furthermore, performing external pseudo-relevance feedback to refine the

query representation can improve the zero-shot performance for both sparse and dense

retrieval. We argue that we validated this claim in Chapter 5 by proposing the external
dense expansion technique and performing the zero-shot evaluation. In particular, we
examined the external expansion uses both the sparse and dense retrieval paradigms in
different settings, see Section 5.2. More specifically, when experimenting with the setting
denote as “Dense External, Sparse Retrieval” in Table 5.3, we observed that external sparse
expansion exhibits similar performance to the target expansion sparse retrieval models,
where external dense expansion can bring significant improvements over sparse retrieval
models with expansion only performed on the target (12% improvement for Robust04 in
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nDCG@10: 0.432→ 0.482 and 28% for WT10G: 0.324→ 0.420 in Table 5.3). In addition,
when experimenting with the setting “Dense External, Dense Retrieval”, we find that
(i) external expansion using ColBERT can significantly improve over the dense retrieval
models as well as the dense retrieval with target query expansion (7% improvement for
Robust04 in nDCG@10: 0.447→ 0.477 and 21% 0.328→ 0.397 in Table 5.4); (ii) external
expansion using ANCE can improve the retrieval effectiveness of the dense retrieval (by
20% for Robust04 on nDCG@10: 0.324→ 0.388 and by 29% for WT10G: 0.224→ 0.289
in Table 5.7); (iii) performing dense external expansion using ColBERT or ANCE can
result in further improvements on four BEIR datasets in Table 5.5. Finally, we investigated
the setting “Sparse External, Dense Retrieval”, and found that sparse external expansion
brings limited useful information for ColBERT to improve the followed-up dense retrieval
effectiveness, and that even applying sparse external retrieval as an initial stage can bring
useful feedback documents to improve over the dense retrieval on the target collection (cf.
Table 5.4 & Table 5.7).

• Claim 4: In addition, our key ColBERT-PRF model can be effectively extended to various

forms of late interaction dense retrieval models. In Chapter 6, we have validated this Claim.
In particular, we firstly extended ColBERT to Col⋆ by instantiating the late interaction
mechanism with various pretrained models using different types of tokenisation techniques.
Then, we generalised our proposed ColBERT-PRF technique to Col⋆-PRF. Furthermore, we
extensively evaluated the retrieval effectiveness of the various extended Col⋆-PRF models,
and found that (i) the implementation of the ColBERT-PRF pseudo-relevance feedback
technique will alter the proportion of semantic matching, for example, the SMP values for
ColRoBERTa-PRF and ColALBERT-PRF may decrease compared to those of ColRoBERTa
and ColALBERT models, while opposite observations can be made for ColBERT-PRF
and ColminiLM-PRF models, where the SMP values may increase (cf. Table 6.4); (ii)
inconsistent to Col⋆ models, low IDF tokens tend to perform semantic matching in Col⋆-
PRF models, however, the extent that a type of tokens’ semantic matching proportion alters
depends on the implementation of the pseudo-relevance feedback technique (cf. Table 6.9);
(iii) special token matching contributes the most to the overall retrieval effectiveness of
the Col⋆-PRF models. Conversely, semantic matching contributes the least to the overall
retrieval effectiveness (cf. Table 6.10).

• Claim 5: Finally, pseudo-relevance feedback information can be used to train a deep lan-

guage model-based feedback weighting model for identifying the discriminating expansion

embeddings for query reformulation. We argue that we have validated this claim in Chap-
ter 7, where we proposed a deep language model-based contrastive weighting approach
(CWPRF) for selecting useful query expansion embeddings for effective dense retrieval (cf.
Section 7.1). In particular, for each feedback token, we construct a contrastive objective,
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where, given positive and negative documents, CWPRF is trained to assign high weights
to the tokens that are semantically closer to tokens occurring in the positive document
than to those in the negative document. Moreover, we conducted extensive experiments
to evaluate the proposed CWPRF model and found that in terms of retrieval effectiveness,
the CWPRF approaches achieve the highest nDCG@10 and MAP performances on both
query sets and exhibit upto 4.7% improvements on MAP and a 4.1% improvement on
nDCG@10 for the test queries compared to ColBERT-PRF (cf. Table 7.1). In addition, in
terms of efficiency, as shown in Table 7.3, our CWPRF method performs as efficiently as
the most efficient ColBERT-PRF variant (KMedoids variant cf. Section 4.6) and brings upto
3.06x speedup than the default ColBERT-PRF method (KMeans variant, cf. Section 4.6).
Overall, we find CWPRF model achieves the highest nDCG@10 on the test set among all
the compared baselines, while reducing the computational overhead costs compared with
previous ColBERT-PRF approaches.

In summary, we have validated each of the proposed claims in our thesis statement in Section 1.1.
We have shown that we can use the pseudo-relevance feedback technique in the neural language
models to improve sparse retrieval effectiveness using the generative query reformulation models
and to improve dense retrieval effectiveness using ColBERT-PRF models. In addition, we have
shown that we can employ the external dense expansion method to further improve zero-short
retrieval evaluation. Furthermore, we have shown that ColBERT-PRF can be generalised to Col⋆-
PRF across various pretrained language models with different tokenisation techniques. Finally,
we have shown that we can employ the pseudo-relevance feedback information to learn the
feedback weights for effective dense query expansion. In addition to the significant improvements
of the proposed pseudo-relevance feedback techniques, observed on various test collections,
existing studies have indicated that evaluation metrics such as nDCG are highly correlated with
user preferences (Radlinski and Craswell, 2010, Sanderson et al., 2010). Therefore, the proposed
methods are likely to benefit user’s satisfaction with the search engine. In the following, we
describe several further directions for neural pseudo-relevance feedback models.

8.2 Directions for Future Work

In this section, we discuss possible future directions that could further benefit from the neural
pseudo-relevance feedback models for effective information retrieval.
PRF-Trained Dense Retrieval Models: On analysing the training objectives employed in the
neural retrieval model, for instance, the commonly used negative log-likelihood loss, many works,
such as ANCE (Xiong et al., 2021) and ColBERT-v2 (Santhanam et al., 2022) found that the
negative sampling strategy is critical for effective training. As we have introduced in Section 2.3.1,
different negative sampling strategies have been studied, for instance, random negative sampling,
in-batch negative sampling and the dynamic hard negative sampling techniques. However, even
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with the hard negative samples, it is hard to train an effective dense retrieval model due to the
high possibility of a large amount of false negatives or unlabeled positives (Qu et al., 2020)
occurring in the training dataset. For instance, in the popular used MSMARCO training dataset
(introduced in Section 2.5.1), each query in the training dataset has an average of 1.1 judged
positive passages, while Qu et al. (2020) showed that upto 70% of the top returned passages are
actually positive passages that were not annotated by the assessors. Thus, these false-negative
samples can hinder the training of an effective dense retrieval model using the cross-entropy object
upon triplets of ⟨query,relevant,non-relevant⟩. Thus, in the future, we would like to explore a
more effective training strategy to incorporate the pseudo-relevance feedback documents, which
are often regarded as false negatives in the negative samples, as additional training examples for
improving the dense retrieval model. As a result, a PRF-trained dense retrieval model is expected
to have better query and document encoders to produce more discriminating representations thus
achieving a better ranking performance.
Selective Dense-PRF: Although pseudo-relevance feedback techniques have shown their use-
fulness for both sparse and dense retrieval, most query expansion models expand and re-weight
the original query using the same number of expansion terms regardless of the type of the input
query. For instance, in RM3 and ColBERT-PRF, the default setting for the number of expansion
terms/embeddings is 10. A thread of research focuses on performing query expansion selectively
based on the input query. Several selective query expansion models have shown that retrieval
effectiveness can be improved by performing query expansion selectively (Amati et al., 2004,
Carmel and Yom-Tov, 2010, Cronen-Townsend et al., 2004, He and Ounis, 2004). However,
these methods are based on the sparse retrieval paradigm and no works have investigated such
benefit would also occur for dense-PRF models. Thus, we would like to investigate the effect
of retrieval effectiveness in performing dense-PRF in a selective way. Furthermore, we would
like to investigate the effect of the retrieval effectiveness using a different number of expansion
embeddings/tokens in response to different types of queries.
Generative Dense Query Expansion: In Chapter 3, we introduce the sequence-to-sequence
model-based generative query reformulation and generative pseudo-relevance feedback tech-
niques for sparse retrieval. However, these works treat the user query as a single unit to input
into the prompt of pretrained large language models for the query reformulation task. Recent
research has indicated that breaking the task into multiple intermediate steps for prompting LLM
can yield significant improvements in performance. For instance, the Chain-of-Thought (CoT)
method (Wei et al., 2022b) was recently proposed to introduce a chain of intermediate thoughts
to bridge the user input and the LLM output to solve a math problem. In addition, the very
recent Tree-of-Thought (ToT) (Yao et al., 2023) technique maintains a tree of the intermediate
steps for solving a problem. However, the applicability and effectiveness of these advanced
prompting methods have not been observed for the information retrieval task yet. Moreover,
studies by Bendersky et al. (2010) have shown that modelling query concepts through term
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dependencies analysis, especially for long complex user queries, can further enhance retrieval
effectiveness. Thus, we would like to investigate a Concept-of-Thought method for prompting
the LLMs to generate more diverse and well-represented expansion terms for generative query
reformulation tasks.
Dense QE for Single Representation: ANCE-PRF and Vector-PRF, which are introduced
in Section 2.4.3, have tried to implement the pseudo-relevance feedback mechanism to the
single representation dense retrieval. However, the improvement brought by the additional PRF
information is limited. It is because, on the one hand, ANCE-PRF performs query reformulation
implicitly by training a new query encoder which conditions on the query as well as the PRF
documents as the input. On the other hand, Vector-PRF reformulates the query representation
heuristically via the weighted combination of the query and PRF document representations.
Moreover, a single representation dense retrieval encodes the whole query or document as a
single embedding, it is impossible to disentangle the actual expanded information for a query.
Motivated by the TCT-ColBERT models (Lin et al., 2020a, 2021b), which also belong to the
single representation dense retrieval family but the query and document representations are
obtained by applying the average pooling over the query or document token-level representations
rather than using the [CLS] embeddings. Therefore, we would like to investigate a single dense
PRF method that can explicitly refine the query representation. In particular, we would like to first
identify the useful tokens from the token-level embeddings, and then employ these selected useful
information to refine the query representation. By doing this, we can inspect the importance of
the tokens that can be used for query expansion.

8.3 Concluding Remarks

This thesis has addressed a challenging task: the information retrieval task. In particular, this
thesis contributed to the development of effective information retrieval models based on pseudo-
relevance feedback information. Specifically, we have shown that the pseudo-relevance feedback
information can be used by the sequence-to-sequence generative models to refine the query
representation for sparse retrieval. Moreover, pseudo-relevance feedback information can also
be used to refine the query representation for more effective dense retrieval models in both
unsupervised and supervised manners. However, in Section 8.2, we have identified a number of
interesting directions in this field. This thesis has laid a solid foundation and provided strong
motivation for further exploring these research directions in the future. We believe that pseudo-
relevance feedback information will continue to benefit the future development of the effective
information retrieval field.
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Appendix A

Prompts

For the FlanQR model, to determine the prompt input into the FLAN model to perform the
query reformulation task in Section 3.3.2, we examined 14 different prompts. Table A.1 lists the
prompts as well as their corresponding retrieval effectiveness, in terms of nDCG@10, on the
TREC 2019 query set.

Table A.1: Prompts for the FlanQR model (with β = 1). Retrieval effectiveness is evaluated
in terms of nDCG@10 on the TREC 2019 query set. The prompt with the highest retrieval
effectiveness is highlighted in bold.

Prompts nDCG@10

Provide 10 related keywords for the query: input query 0.4480
What are some synonyms for the keywords in my query that might help me refine my search, query: input query 0.4024
Expand the following query with relevant terms: input query 0.5169
Provide additional keywords to better represent the information need in the query: input query 0.4611
Suggest related terms to enhance the search query: input query 0.4389
What are some related phrases or words to refine the query: input query 0.4970
Improve the search effectiveness by suggesting expansion terms for the query: input query 0.4884
Improve the search effectiveness by suggesting 10 expansion terms for the query: input query 0.4912
List relevant terms to augment the given query for better search results: input query 0.5026
For the query: input query, identify associated words or phrases to improve information retrieval 0.4635
Help refine the search query: input query, by providing semantically related terms 0.4207
To better capture the users information need, suggest expansion terms for the query: input query 0.5252
To better capture the users information need, suggest 10 expansion terms for the query: input query 0.4711
Clarify the query: input query by generating contextually relevant words or phrases. 0.4611
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