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Abstract 
 

The consumption of fossil fuels has been recognised as a major contributor to climate 

change, air pollution, and environmental degradation. In response to the growing public 

awareness of these issues, regulatory bodies and the public are emphasising the need to 

reduce harmful gas emissions and our dependence on fossil fuels. The transport sector, in 

particular the automobile market, has been a significant source of pollutants, leading to a 

shift towards electric vehicles (EVs) to combat emissions. 

The broader adoption of EVs faces many challenges related to their initial costs, driving 

range, and overall performance – all of which are linked to the battery cell. Battery themal 

management systems (BTMS) play a vital role in overcoming these barriers due to the direct 

influence on the battery cells’ operational temperature to their performance. 

While extensive research has focused on steady-state scenarios, the unsteady nature of 

EVs necessitates a deeper understanding. In particular, battery cooling is influenced by 

unsteady heat generation, extreme driving conditions, and mechanical vibrations. Therefore, 

robust BTMS technologies require dynamic tools capable of predicting the thermal evolution 

of battery cells. 

This thesis utilises a battery module based on real cell dimensions and employs high-

fidelity simulations to investigate various temporal scenarios. The research explores the 

impact of disturbances on the battery cells and evaluates the system linearity using Fast 

Fourier Transforms (FFT) and Phase portraits (Lissajous patterns). 

Firstly, a battery module subjected to unsteady surface heat flux and the corresponding 

numerical data is analysed to examine the extent of nonlinearity of the thermal system. Water 

and nonfluids are found to be far better at attaining linearity. However, regardless of fluid 

type, as long as the disturbances are of low amplitudes and short, the system can be 

approximated as linear. Increasing the forcing frequency causes the nonlinearity of the 

system to increase.  

Furthermore, a battery module is subjected to realistic transient scenarios from standard 

driving cycles. The resultant surface-averaged temperature of each battery cell is analysed 

to determine the maximum overshoot, settling, heating, and cooling times. The results show 

that water-cooled battery cells consistently remain within their safe operating range and 
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exhibit quicker response times to changes in the internal generation compared to air. 

regardless of coolant type, short period ramps result in higher values of settling time. 

Lastly, batteries can experience mechanical vibrations due to several reasons, such as 

road roughness, the effects of which have largely been unexplored. A series of high-fidelity 

numerical simulations of a vibration battery cell are conducted to attain further 

understanding of the heat transfer processes involved and to identify conditions under which 

the thermal dynamics can be predicted. The resultant data is analysed and shows that only 

the water-cooled battery cells under low modulation amplitudes can be characterised as 

linear. Using air always leads to a strongly nonlinear thermal response. 
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Nomenclature  
 

𝐴 Electrode area (m2)  
 

𝑗0 Current density of exchange 

(A/m2) 

𝑎 Amplitude 𝑗𝑛 Local charge current density 

(A/m2) 

𝑐𝑒 Electrolyte concentration 

(m·mol/L) 

𝑗𝐿𝑖 Current density in the Li-ion 

battery cell (A/m2) 

𝑐𝑠,𝑚𝑎𝑥 Lithium concentration maximum 

in both electrodes, solid phase 

(m·mol/L) 

𝑘 Thermal conductivity (W/m·K) 

𝑐𝑠,𝑠𝑢𝑟𝑓 Lithium concentration at the 

surface, solid phase (m·mol/L) 

𝑘 Turbulent viscosity 

𝑐𝑙 Lithium concentration, 

electrolyte phase (m·mol/L) 

𝑘𝑒
𝑒𝑓𝑓

 Effective electrolyte 

conductivity (S/m) 

𝑐𝑝 Specific heat capacity (J/kg·K) 𝑘𝐷,𝑒
𝑒𝑓𝑓

 Effective diffusion electrolyte 

conductivity (S/m) 

𝐷 Diameter (m) 𝑘𝑠
𝑒𝑓𝑓

 Effective solid conductivity 

(S/m) 

𝑑𝑙 Length from inlet to battery cell 

(m) 

𝑘0 Reaction rate constant 

𝐹 Faraday constant (C/mol) 𝐿 Total model length (m) 

𝐹𝑑 Discrete Fourier transform 𝐿𝑐 Length from inlet to battery cell 

(m) 

𝑓 Frequency (Hz) 𝑚 Mass (kg) 

𝑔 Gravity (9.81 m/s2) 𝑛𝑑𝑑 Nondimensional delay  

𝐺𝑟 Grashof number 𝑁𝑢 Nusselt number 

𝐺𝑘 Turbulent kinetic energy for 

velocity 

𝑁𝑢 Time-averaged Nusselt number 

𝐺𝑏 Turbulent kinetic energy for 

buoyancy 

𝑛𝑒 Euclidean norm 

ℎ Heat transfer coefficient 

(W/m2·K) 

𝑃 Power (W) 

𝐻 Total model height (m) 𝑝 Pressure (Pa) 

𝐼 Current (A) 𝑞′′ Heat flux (W/ m2) 
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𝑅 Universal Gas constant 

(J/K·mol) 

𝑢 Velocity (m/s) 

𝑅𝑒 Reynolds Number 𝑢′ Fluctuating velocity (m/s) 

𝑅𝑖 Internal resistance (Ω) 𝑉 Voltage (V) 

𝑆𝑐 Heat source term (W/m3) 𝑉𝑠 Battery cell volume (m3) 

𝑆𝑡 Strouhal number   

𝑇 Temperature (K) ∆𝑥 Cell-to-cell length internal (m) 

𝑡 time (s) 𝑥, 𝑦, 𝑧 Cartesian coordinate system 

𝑡𝑑 Cross corelation time delay (s) 𝑌𝑀 Fluctuating dilatation 

𝑈𝑒𝑞 Open circuit potential (Volts)   

Greek Symbols 

𝛼 Thermal diffusivity (m2/s)  𝛿 Kronecker delta function 

𝛼𝑎 Anodic Charge transfer 

coefficient 

 𝛿𝑛𝑙 Measure of nonlinearity 

𝛼𝑐 Cathodic Charge transfer 

coefficient 

 𝜈 Kinematic viscosity (m2/s) 

𝛽 Coefficient of volume expansion  𝜎𝜖 Turbulent Prandtl number for 𝜖 

𝜖 Dissipation rate  𝜎𝑘 Turbulent Prandtl number for 𝑘 

𝜌 Density (kg/m3)  𝜙𝑠 Potential, solid phase (Volts) 

𝜇 Dynamic viscosity (kg/m·s)  𝜙𝑒 Potential, electrolyte phase 

(Volts) 

𝜇𝑡 Turbulent viscosity (kg/m·s)  𝜙𝑓_𝑆𝑂𝑈 Face value 2nd order upwind 

𝜏 Shear stress (Pa)  𝜙 Cell-centred value 

𝜂 Local over potential (V)  ∇𝜙 Cell-centred gradient 

Subscripts 

𝑓 Fluid  𝑖, 𝑗, 𝑘 Coordinate directions 

𝑆 Solid  𝑟𝑒𝑓 Reference 

𝑛𝑓 Nanofluid  𝑠𝑢𝑟𝑓 Surface 
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List of Abbreviations  
 

Abbreviation 
 

Meaning 

BTMS Battery Thermal Management System 

CBD Central Business District 

CFD Computational Fluid Dynamics 

CFL Courant-Friedrichs-Lewy 

CHT Conjugate Heat Transfer 

CPCM Composite Phase Change Material 

DCT Dimensionless Cooling Time 

DHT Dimensionless Heating Time 

DST Dimensionless Settling Time 

EV Electric Vehicle 

FFT Fast Fourier Transforms 

FTP Federal Test Procedure 

HEC Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

IEA International Energy Agency 

Li-ion Lithium ion 

MSMD Multi-Scale Multi-Domain 

NYCC New York City Cycle 

P2D Pseudo Two-Dimensional 

PCM Phase Change Material 

PISO Pressure Implicit with Splitting of Operator 

RANS Reynolds-Averages Navier Stokes 

SIMPLE Semi-Implicit Method for Pressure-Linked Equations 

SISO Single Input Single Output   

UN ECE United Nations Economic Commission for Europe 

US-EPA United States – Environmental Protection Agency 

UUDS Urban Dynamometer Driving Schedule 

 

  



xvii | P a g e  

 

Publications stemming from this work 
 

A. Saeed, N. Karimi, M.C. Paul, “Analysis of the unsteady thermal response of a Li-ion 

battery pack to dynamic loads”, Energy 231 (Sep. 2021), 120947, 

https://doi.org/10.1016/J.ENERGY.2021.120947. 

 

A. Saeed, N. Karimi, M.C. Paul, “Computational assessment of the thermal response of 

a Li-ion battery module to transient loads”, Journal of Power Sources 552 (Dec. 2022), 

232217, https://doi.org/10.1016/j.jpowsour.2022.232217. 

 

A. Saeed, N. Karimi, M.C. Paul, “On the effects of harmonic axial vibration on the 

thermal response of a Li-ion battery cell - Characterisation of the system dynamics”, 

Applied Energy (Dec. 2023). Manuscript Submitted for review. 

  



1 | P a g e  

 

Chapter 1. Introduction 

1.1 Motivation 
 

The electrification of vehicles illustrates a transformative shift in the automotive 

industry. As public awareness of climate change and environmental degradation has 

increased, governments, agencies, automobile manufacturers, and consumers recognise the 

importance of reducing greenhouse gas emissions and dependence on fossil fuels [1]. As a 

result, automakers are boosting their attention to electric vehicles and hybrid-electric 

vehicles (HEV) as attractive alternatives to internal combustion engine (ICE) vehicles in 

helping reach environmental, societal, and health objectives. Thus, the motivation behind 

the electrification of cars can be summarised by three primary factors – (i) environmental 

concerns, (ii) energy security, and (iii) advancements in battery technology [2, 3]. 

Statistics by the U.S. Energy Information Administration and the House of Commons 

Business, Energy and Industrial Strategy Committee show that the transportation sector is 

one of the most significant contributors of carbon dioxide, with passenger vehicles 

accounting for a substantial portion [4]. EVs offer zero tailpipe emissions, making them 

essential in tackling air pollution and, consequently, the quality of human life. EVs enable 

the use of diverse energy sources, such as renewable energy, decreasing the reliance on 

imported oil and leading to solid and sustainable energy systems [5, 6]. Additionally, a 

significant portion of the fuel consumed by ICE vehicles is transformed into heat energy 

during the combustion cycle, further contributing to climate change. Whereas EVs are two 

to four times more efficient than traditional ICE vehicles, further reducing the overall 

footprint of the transport sector [7]. A report by the International Energy Agency (IEA), 

“Global EV Outlook 2021”, shows that EV fleets are growing at an incredible pace 

throughout several of the world’s largest automobile markets, accounting for an almost 50% 

increase in 2020 compared to 2019 [1]. Thus, the automobile industry plays a vital role in 

mitigating climate change. A general wireframe of an EV with the battery pack highlighted 

in red and a view focused on the battery pack can be seen in Figures 1-1a and 1-1b, 

respectively.  

The introduction of advanced battery technologies in the late 20th century has catapulted 

EV development. Although the electrification of vehicles offers several advantages, 

numerous factors influence the positive perception of EVs [8]. These factors include initial 

vehicle costs, driving range, and overall EV performance, all linked to the battery cell [9, 

10]. Battery packs make up the most considerable capital required during the manufacturing 
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phase. However, the costs of battery packs have continued to decrease with emerging energy 

storage solutions, particularly lithium-ion (Li-ion) and Li-ion-based battery cells [11]. Li-

ion batteries offer lightweight, high-energy density, long life cycle, and improved safety 

compared to Lead-acid or Nickel-metal hybrid batteries [12]. Nevertheless, even when using 

Li-ion battery cells, EVs still have a shorter driving range than their counterparts. Figure 1-

2 shows the typical composition of a Li-ion cell, a battery module comprising many battery 

cells and the makeup of a battery pack containing many battery modules. 

 

Figure 1-1 – a) General EV wireframe and b) Battery pack comprised of 48 battery 

modules [13, 14]. 

Finding energy storage solutions capable of quick charging, high mileage, and high-

performance driving is imperative to ensure a continued trend in phasing out ICE vehicles 

and adopting EVs. However, the Battery safety and performance – charge and discharge 

capacity and life cycle – are dominated by its’ operational temperature. Consequently, the 
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battery thermal management system is a crucial part of EVs’ overall battery management 

system [12, 15]. 

 

Figure 1-2 – a) Typical Li-ion battery cell composition, b) Battery module made up of 

many battery cells, and c) battery pack comprising of many battery modules [16]. 

The operational and design constraints posed on automakers by the thermal limitations 

[17, 18] for working batteries to ensure high performance and safety have made the 

underlying heat transfer dynamics of battery cells the centre of attention of extensive 

research [19–21].  

1.2 Battery Cell Thermal Limitations and Modelling 
 

It is challenging to develop a systematic and comprehensive cooling mechanism to 

ensure high-performance and safety of Li-ion batteries due to the sheer number of 

electrochemical materials and mixtures used by commercial batteries [22, 23]. Nevertheless, 

the temperature change of batteries is inevitable since they are affected by environmental 

and operational conditions [24]. Therefore, effective BTMSs are required to maintain the 

optimal temperature range and minimise the adverse effects on the battery cells’ chemistry. 

Previous studies [25] have shown that Li-ion battery cells’ optimal operational capacity is 

between 15oC and 35oC. Further, the maximum cell-to-cell temperature difference within a 

battery module should not exceed 5oC [26]. The combination of tight temperature tolerances, 
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the battery cells’ complex, and relatively unstable chemistry, unreasonably high or low 

temperatures can lead to irreversible electrolyte loss, threatening the battery cell’s life and 

safety. Further, this threat is magnified when hundreds or thousands of cells are tightly 

connected in an EV [27]. The existence of significant temperature differences between the 

battery cells for prolonged periods can cause poor inconsistency within the battery module 

leading to cell-by-cell thermal variations. This further enlarges the hot spots within the 

battery module, creating a vicious cycle. The discrepancies will directly impact the charging 

and discharging capabilities of the entire battery pack, i.e. the weakest cell may determine 

the performance of the whole battery pack [28, 29]. The high energy density of Li-ion cells 

far outperforms all previous competing batteries; however, with the growing EV market, 

EVs demand higher energy density batteries and to amass more cells into a battery pack to 

increase the overall mileage. As a result, internal heat generation and heat accumulation 

within a battery module is further risen, acknowledging the importance of an effective 

BTMS. 

Developing highly robust BTMSs requires more profound knowledge and understanding 

of three mechanisms – thermal generation, thermal transport, and thermal dissipation [30]. 

The three mechanisms can be assessed at either the cell level, where the thermal performance 

of a single battery cell can be researched, or at the module level, where a group of battery 

cells are evaluated together. A battery thermal workflow describing the two different levels 

of research can is shown in Figure 1-3. Assessing the thermal response of a single cell offers 

the value of heat generation, its transport throughout the battery cell, and the necessary 

boundary conditions required under steady and transient states [31]. Whereas the battery 

module shows the dispersion and management of the heat to ensure the battery cells remain 

within their optimal temperature range while minimising the cell-to-cell temperature 

variations [31, 32]. The combination of responses from both levels provides essential 

information, such as battery cell temperature history and distribution, which is vital to design 

powerful BTMSs for combating thermal runaway and ensuring safe operation. 

A battery module’s thermal configuration first requires understanding of the battery cell, 

which includes factors such as the cell geometry and thermal properties and, most 

importantly, the electrochemical characteristics of each battery cell. The three most popular 

battery cell shapes are prismatic, pouch, and cylindrical [33, 34]. The difference between the 

three battery types can be seen in Figure 1-4. The shape and thermal properties of the battery 

cell directly impact the current distribution within the battery cell and the internal and 

external thermal gradients. Prismatic and pouch cells are susceptible to deformation in high-
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pressure and humidity environments, impacting their safety and useability [35]. On the other 

hand, cylindrical batteries are less prone to deforming but suffer from uneven cooling – flow 

facing side of the battery cell will cool more than the backside. However, cylindrical cells 

are the most used shape within EVs since they are easier to manufacture and offer far easier 

thermal management control while tightly packed [33, 36]. Increasing the battery cell 

dimensions can lead to higher energy densities but directly impacts the surface area-to-

volume ratio, resulting in the battery cell retaining more heat and higher temperature 

gradients. 

 

Figure 1-3 – Workflow for modelling for thermal issues at the cell and module level 

[30]. 

Furthermore, the most used coolants within EVs are air, liquid, and phase change 

materials (PCM) – with air being the most frequent [37]. Although it has poor thermal 

conductivity and heat capacity, its applicable simplicity and low cost makes air-based BTMS 

the preferred method of cooling by several manufacturers [30]. Generally, fans are used to 

propel air over the surface of the battery cells, as seen in Figure 1-5. However, the air 

temperature can rise significantly due to heat absorption from the battery cell near the inlet 

leading to higher temperatures for battery cells closer to the outlet – an undesirable result 

[38]. However, this result can be mitigated by increasing the surface heat transfer area or 

increasing the Reynolds number (Re) by increasing the flow rate.  
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Figure 1-4 – Different battery cell types [39]. 

Moreover, battery modules are not configured in a purely series manner. Instead, 

manufacturers pack battery cells to maximise space and energy density using a series-

parallel configuration, with the two standard methods for battery arrangement being aligned 

or staggered [40]. An example of both designs can be seen in Figure 1-6. In Figure 1-6a, 35 

battery cells are organised in a 5S7P method – five cells in series and seven in parallel. Using 

the series-parallel approach over the series-only arrangement brings three main advantages. 

As previously stated, the first advantage is maximised space efficiency since most EVs come 

equipped with thousands of battery cells. Further, a study by Wang et al. [36] shows that a 

series-parallel configuration dramatically reduces the coolant flow path resulting in a more 

uniform cooling of the battery cells. Lastly, reducing the flow path decreases the pressure 

drop across the system, resulting in less parasitic power consumption.  

Further, the thermal performance of the aligned and staggered arrangements was 

compared by Yang et al. [40]. The study used air as the coolant fluid and found that the 

maximum temperature is directly proportional to the longitudinal distance between each cell 

for the staggered arrangement. Whereas for the aligned setting, it is inversely proportional. 

The authors could further enhance the cell heat dissipation by increasing the spacing between 

each cell. However, this would lead to fewer tightly packed battery cells, sacrificing space 
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efficiency. Although both arrangements offer different benefits, the ever-increasing need to 

pack more battery cells together into a single battery pack necessities the need to use the 

staggered arrangement for maximised space efficiency and being able to control the battery 

cells’ temperature effectively. 

 

Figure 1-5 – Battery cell configuration (Fully series) [38]. Where blue are cooled battery 

cells and red are hot battery cells. 

In large-scale battery modules (which contain hundreds of battery cells) or in cases of 

high battery cell discharge rates, the cooling capabilities of air cannot meet the requirements 

set within BTMSs [27, 41]. However, liquid coolants, such as water, offer numerous 

advantages over air. Liquid coolants require far less driving power (low Re required) while 

being over 35 hundred times more efficient [42]. Also, liquid cooling can significantly 

reduce the operational noise and the battery module can be more tightly packed without 

causing thermal problems [37]. However, operational complexities, high maintenance costs, 

and potential for leakage make liquid cooling less desirable for manufacturers. Nevertheless, 

a study by Bandhauer et al. [25] showed that the heat transfer problem from battery cells is 

a low conductivity problem rather than a heat flux issue. Thus, high thermal conductivity 

liquid-coolants such as water are ideal for cooling battery cells. As battery cell technologies 

further advance and bring about high energy and power density battery cells, the thermal 

problem might eventually become a heat flux issue. 

Additionally, liquid cooling has two modes, direct and indirect cooling. The former is 

when the liquid flows over the battery cells. In contrast, the latter is when the liquid is used 

to cool another material responsible for extracting heat from the battery cells. An example 

of indirect cooling would be using a copper plate to extract heat from the surface of the 

battery cells, and the plate would be cooled using a liquid. Direct cooling offers some 

advantages over its counterpart; for example, it is far better at achieving temperature 

uniformity from one end of the battery cell to the other [33]. However, to effectively cool 

the battery module, the cooling media must have high thermal conductivity – to remove heat 
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from the battery cells quickly, high heat capacity – to avoid boiling, and low viscosity – to 

avoid large pressure drops across the system. Coolants with low heat capacity would require 

far less energy to boil, introducing two-phase convection and adding further complexities to 

an already complex BTMS. Additionally, the coolant having direct contact with the battery 

cells can be dangerous in direct cooling, from the possibility of a short circuit to 

electrochemical corrosion, compromising the safety and lifetime of the battery pack. 

However, the possibility of a short circuit can be mitigated by using dielectric liquids, i.e. 

deionised water, as suggested in a study by Zhu et al. [43]. 

 

Figure 1-6 – Series-Parallel battery cell configuration. a) Aligned and b) staggered 

arrangement [38]. Where blue are cooled battery cells and red are hot battery cells. 
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Additionally, another potential liquid coolant for BTMSs are Nanofluids. The 

advancement of technology and the invention of high-performance devices requires fluids 

different from traditional fluids – water, oil, and oil-based mixtures. The fluids must be 

capable of high heat transfer rates for optimal performance, from the macro-level (engines) 

to the micro-level (microchips) [44, 45]. Modern nanotechnology has allowed the invention 

of nanofluids, which use a conventional fluid, like water, as the base fluid but carry 

suspended metallic nanoparticles throughout. Typically, metals are far better conductors of 

heat; therefore, nanofluids utilise the flow characteristics of a fluid with the thermal 

conductivity of metals, achieving the best of both. A one percent nanoparticle concentration 

significantly enhances the base fluid’s thermal properties, improving its’ convective heat 

transfer rate by up to 10% [44]. Therefore, many studies have been conducted to determine 

the impact of using nanofluids for cooling battery cells [46–48]. A study by Wiriyasart et al. 

[49] used a mixture of water and Titanium dioxide nanoparticles and found that adding 

nanoparticles in comparison to only having the base fluid led to significantly better cooling 

performance, resulting in a 27.6% decrease in the battery surface temperature. Study by 

Sefidan et al. [46] used a mixture of water and Aluminium oxide nanoparticles and found 

that the maximum cell temperature dropped from 16K to 24K depending on the cell 

arrangements and maintained far better temperature uniformity across the battery module. 

However, these studies are conducted numerically using an indirect battery cell cooling 

approach.  

Nanofluids are modelled using two methods: single-phase or two-phase [50]. The former 

is modelled by taking the changes in the thermophysical properties – thermal conductivity 

and dynamic viscosity – and applying them to the base fluid [51]. The latter is when the 

nanofluids’ fluid and solid phases are treated separately. The first modelling method is far 

simple and easy to compute, whereas two-phase modelling is far more complicated and 

computationally expensive. Therefore, in the following thesis, nanofluids are modelled using 

the single-phase method. 

1.3 Aims and Objectives 
 

The overall objectives of this thesis are three-fold. First, it aims to provide a further 

understanding of heat transfer with an unsteady output from a battery module using different 

cooling mediums. The heat transfer characteristics are broken down into simpler harmonics 

and studied in greater detail to find areas where the thermal output from a battery cell can be 

predicted and where the predictions fail due to complex harmonics. Second, assess the ability 

of a BTMS to react to realistic scenarios in which much power is drawn from a battery 



Chapter 1. Introduction 

 

10 | P a g e  

 

module in a short period. The delay in response to the heating up of the battery cell and the 

time taken to cool down each battery cell back to its original temperature are studied in 

detail. Lastly, attain a better understanding of the thermal aspects of a battery cell due to 

vibrations. In particular, the influence of different vibrational frequencies and amplitudes is 

carefully examined. The specific objectives of this thesis are as follows: 

• Develop a numerical heat transfer model using a realistic battery module in which 

the battery cells undergo unsteady thermal inputs based on preexisting data. 

• Compare the numerical results against other numerical and experimental data to 

ensure the validity of the numerical model. 

• Using numerous coolant fluids, analysing the spatiotemporal evolution in Nusselt 

number and battery cell temperatures. 

• Analyse the nonlinearity of the dynamic response of heat convection and 

determine parameters in which the battery cell behaviour can and cannot be 

predicted. 
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Chapter 2. Literature Review 

2.1 Existing research 
 

The rapid development of EVs has accelerated the trend for more significant research. 

Therefore, many theoretical, numerical, and experimental studies have been conducted over 

the last decade to understand the thermal characteristics and heat generation of battery 

packs/modules/cells.  

Studies by Yang et al. [40], Chu et al. [52], Panchal et al. [53], and Ling et al. [54] have 

numerically studied battery thermal management systems using varying designs but have 

focused on understanding the thermal behaviour of the battery cells. Yang et al. [40] used a 

two-dimensional conjugate heat transfer (CHT) model coupled with a one-dimensional 

electrochemical model to study the impact of the cooling performance of a battery module 

to varying designs for optimising airflow. The longitudinal and radial distance between the 

battery cells heavily impacts the fan power required to cool the battery cells effectively. 

However, there is a critical point at which the impact reverses due to the recirculation of air 

behind each battery cell, causing large temperature gradients to develop within each battery 

cell. The BTMS cooling configuration used by the authors can be seen in Figure 2-1; this 

figure shows a series-parallel, staggered battery cell arrangement.  

Chu et al. [52] used the parallel-series design to model a large battery pack with indirect 

liquid cooling. The authors verified their design using experimental data and found that the 

BTMS’s effectiveness highly depends on the heat transfer area. Increasing the cross-

sectional ratio of the coolant could lower the maximum battery cell temperature by up to 

2.5oC, and the heat transfer rate could be further improved by increasing the number of 

cooling walls. However, this method would incur large pressure drops across the system, 

causing considerable power required to drive the fluid. These results were also confirmed by 

Zhang et al. [55]. Zhang et al. [55] also found that increasing the coolant velocity did 

improve battery cell surface temperature but incurred more significant gradients within each 

battery cell due to heat dissipation from the cell surface to the surroundings leading to an 

overall worse outcome.  
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Figure 2-1 – BTMS cooling configuration (staggered arrangement) by Yang et al. [40]. 

Red section used during analysis. Where 𝑆𝑟 and 𝑆𝑥 are the radial and x-axis separation 

distance. 

Moreover, Panchal et al. [53] studied the heat transfer of a single battery using indirect 

liquid cooling, like Chu et al. [52]. However, Panchal et al. [53] used microchannels around 

the battery cell, whereas Chu et al. [52] used cooling walls. The authors used Starccm+ as 

their numerical modelling software and verified their design using experimental data. 

Increasing the discharge rate of the battery cell led to a more significant temperature 

distribution and higher heat flux measurements across different parts of the battery cell. 

Additionally, investigations have also been conducted by Ling et al. [54], Pesaran [31], Chen 

et al. [37], and Karimi and Li [56] on varying BTMS designs to optimise the heat transfer 

rate and maintain optimal battery temperature for safe operation. The preceding literature 

review indicates that the existing BTMSs are primarily concerned with accurately evaluating 

the temperature field of the cooling fluid and heat generation inside battery cells. However, 

due to the highly unsteady nature of EVs, steady-state cases rarely apply to real life. Thus, a 

summary of the formally stated literature is given. More detail on the steady-state cases can 

be found in BTMS review papers from different years; 2023 [19, 57, 58], 2022 [18, 20, 59, 

60], and 2021 [17, 21, 61, 62]. 

With the above in mind, it is imperative to understand the thermal behaviour of battery 

modules/cells under unsteady conditions, which needs to be addressed in most studies due 
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to the highly complex nature of the problem as well as the extensive computational resource 

requirement. Nevertheless, few studies exist on the transient (ramps/step change) [63–65] 

and unsteady (sinusoidal) [38, 66, 67] nature of battery cells. Wang et al. [38] investigated 

the thermal management of a Li-ion battery module under dynamic loads using numerical 

and experimental methods. The authors utilised a detailed computational fluid dynamic 

(CFD) analysis to create a reduced-order model capable of predicting the battery surface 

temperature using far less computational resources. The experimental setup comprised four 

cylindrical battery cells excited by a dynamic profile and a fixed fan, as shown in Figure 2-

2. The fixed fan controller used a feedback loop from the battery surface temperature sensors 

to reduce or turn off the airflow and avoid over-cooling. The feedback loop allowed the 

investigator to ensure the battery cells would remain within their optimal temperature range 

while minimising fan power consumption. The authors found that using a control algorithm 

to actively cool the battery module reduced parasitic power consumption by up to 30% 

compared to the same scenario using continuous cooling. Mahamud and Park [66] 

numerically studied the impact on the thermal performance of a fully-series battery module 

using reciprocating airflow. The authors used a single, fixed fan and flip doors to change the 

flow direction to improve temperature uniformity. The investigation found that using a 

reciprocating airflow reduced the cell-to-cell temperature by 4oC – a 72% decrease in 

comparison to a non-reciprocating flow. 

Additionally, Zhang et al. [67] numerically investigated optimisation techniques to 

enhance the thermal performance of air-cooled BTMSs by developing an efficient transient 

heat transfer model. The authors validated their model by comparing it against experimental 

data. They concluded that the transient heat transfer model could effectively predict the heat 

transfer rate and temperature of the battery cells at a low cost compared to full model 

simulations. Further, the authors suggested coolant channel optimisation techniques to 

enhance the cooling performance and reduce power requirements under different flow rates. 

Huang et al. [63] studied a battery module’s transient and ultimate thermal behaviour using 

indirect liquid cooling. The authors used a central cold plate as the BTMS and focused on 

understanding the relationship between discharge rate, inlet flow rate, and the corresponding 

heat transfer coefficient. The investigation found that increasing the flow rate of water will 

directly improve the cooling performance of the BTMS, as expected. However, the authors 

found an upper limit to the flow rate, after which the BTMS would no longer be effective in 

cooling the battery cells. An explanation of the upper limit could be the existence of large 

pressure drops across the system, decreasing the overall system performance. Moreover, an 
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abrupt change in the inlet flow rate would cause the BTMS response time to experience a 

hysteresis effect. At the end of the study, Huang et al. [63] presented two correlations, one 

for the Nusselt number and another for the time delay against the battery cell discharge rate. 

 

Figure 2-2 – Experimental setup used by Wang et al. [38]. 

The thermal performance of mini-channel cold plate BTMS under transient heat loads 

was numerically investigated by Fang et al. [64]. The study focused on the effects of 

changing the coolant flow rate, heat flux, and channel numbers on the overall performance 

of the BTMS. As expected, increasing the flow rate decreased the overall average 

temperature of the battery module and the cell-to-cell temperature deviation. However, much 

like the study by Huang et al. [63], Fang et al. [64] also found an upper limit to the flow, 

where exceeding this limit would begin to impact the BTMS negatively. The investigation 

revealed that the battery cell temperatures immediately increased by increasing the heat flux. 

Increasing the number of channels improved the performance of the cold plate slightly; 

however, it could lead to worse temperature uniformity due to a decrease in the per-channel 

flow velocity. Zhu et al. [65] developed an experimental setup to test a battery thermal 
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management system’s start-up and transient thermal behaviour. The study focused on 

understanding the effect of the flow rate, heat flux, and cold-source temperature on the start 

time delay of the BTMS and the corresponding transient thermal impact on the battery cells. 

As the flow rate of the refrigerant is decreased, the transient performance of the system is 

improved, leading to a quicker start-up. Thus, a quicker start-up allows the BTMS to combat 

changes in the battery cell temperature more effectively, lowering the average temperature 

and the maximum temperature difference. Increasing the heat flux improved the transient 

performance of the BTMS initially; however, increasing the heat flux above a certain point 

led to a weakened performance. 

The battery cells within a battery module are naturally subject to continuous vibrational 

excitation due to numerous factors: such as vehicle acceleration, deceleration, and road 

roughness [68]. Although the vibrations are inherently random, they are dominated by 

suspension systems and settings. However, only a few studies have chosen to study the 

impact of vibration on the thermal performance of a BTMS, such as [69–71]. Shukla et al. 

[69] investigated the impact on the thermal fields of Li-ion batteries under vibration. The 

authors focused on understanding each battery cell’s discharge temperature under three 

different frequencies and amplitudes. The investigation found that introducing vibration to 

the system dramatically influences the transient temperature distribution, and increasing the 

vibrational frequency further impacts the output surface temperature of each battery cell. 

Moreover, the battery cell’s top region (negative electrode) heats faster than the rest. 

However, a uniform temperature distribution is eventually reached. Finally, a maximum 

change of 5oC is observed when comparing the temperature distribution results of no 

vibration vs trainset cases. 

Zhang et al. [70] studied the impact of mechanical vibrations on the thermal fields of a 

small battery pack cooling using composite PCMs (CPCM). Much like Shukla et al. [69], 

Zhang et al. [70] also utilised an experimental approach to the study; however, they opted to 

use prismatic battery cells rather than cylindrical ones. The authors choose to study a 

frequency range of 10-30 Hz with a minimum vibration amplitude of two and a maximum 

amplitude of four millimetres. The study found that small vibrations enhanced the heat 

transfer characteristics of the CPCM, which aided in prolonging the latent heat utilisation of 

the CPCM, extending the optimal battery operating range. However, too low, too high, or 

prolonged periods of frequencies negatively impact heat transfer. Finally, changes in the 

vibration frequency proved to have the most significant impact on the performance of the 

BTMS, whereas changing the vibration amplitude led to minute differences in the heat 
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transfer properties of the battery cells. Another study on understanding the vibration impact 

on the trainset thermal of a battery and the corresponding performance of a BTMS was 

conducted by Joshy et al. [72]. The authors also used an experimental approach, however, 

used a PCM instead of a CPCM. The investigation found that increasing the vibrational 

frequency and amplitude caused the battery cell surface temperatures to increase. Further, at 

low discharge rate values, frequency significantly impacts the battery cells’ surface 

temperature compared to the vibrational amplitude. However, at high discharge rate values, 

the vibrational frequency and amplitude impact the battery cells’ surface temperature rise. 

2.2 Electrochemistry 
 

Electrochemistry is the process of electron transfer across a solution/electrode interface 

due to chemical reactions, a vital process that allows batteries to become energy storage 

devices [73]. Li-ion battery cells transfer Lithium-ions and electrons from the anode to the 

cathode across an electrolyte layer. During discharge, the anode produces positively charged 

Li-ions and negatively charged electrons during an oxidation half-reaction. Once the Li-ions 

move through the electrolyte and the electrons move through the external circuit – creating 

power – they recombine at the cathode in a reduction half-reaction [73, 74]. During 

discharge, the ions and electrons move from the negative electrode (anode) to the positive 

electrode (cathode) and during charging, these reactions and transports are reversed [75]. 

Figure 2-3 visually represents the charging and discharging process in a Li-ion cell. 

This process can be described using the following chemistry equations [73]. The anode 

half-reaction of a typical Li-ion cell using graphite is 

𝐿𝑖𝐶6  ⇌ 𝐶6 + 𝐿𝑖+ + 𝑒− 

 

(2.1) 

 

The cathode half-reaction for a Lithium-Cobalt oxide substrate is 

𝐶𝑜𝑂2 +  𝐿𝑖+ + 𝑒− ⇌ 𝐿𝑖𝐶𝑜𝑂2 

 

(2.2) 

 

Thus, the full reaction during discharge is  

𝐿𝑖𝐶6 +  𝐶𝑜𝑂2  ⇌ 𝐶6 + 𝐿𝑖𝐶𝑜𝑂2 

 

(2.3) 

 

During charging, Eq. (2.3) is reversed. Electrochemistry is an essential aspect of battery 

cells; therefore, vital for use within BTMS research to accurately represent the charge and 

discharging cycle. Furthermore, the operation characteristics of a battery cell are tied to its’ 

temperature – the working temperature of the battery cell directly influences the 
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electrochemistry of that cell. However, due to the sudden need and climb of BTMS research, 

few commercially available packages are capable of accurately evaluating a battery cell. 

Available packages are computationally extremely demanding; thus, most research takes the 

experimental route, as the literature shows. 

 

Figure 2-3 – Electrochemical structure of a Lithium-ion battery cell during charging and 

discharging [76]. 

Regardless, there have been numerous studies on implementing and improving 

electrochemistry in commercial CFD packages to improve numerical simulations of battery 

storage devices. The Pseudo 2D (P2D) scaling model was first proposed by Doyle, Fuller 

and Newman in 1993 [77] and later improved in 1994 [78]. The P2D model describes the 

inner workings of a Li-ion battery cell in detail with formulas based on the theory of the 

concentrated solution and the porous electrode. The P2D has been used as a building block 

for developing improved or simplified electrochemical models, which have been commonly 

used in battery state estimation and terminal voltage simulations. Studies by Ma et al. [79] 

and Dao et al. [80] developed simplified electrochemical models based on the modelling 

process of the P2D model and verified the simulated accuracy of the voltage estimation 

under charging and discharging conditions. Further, another study [81] simplified the P2D 

model, establishing a single-particle model considering the electrolyte phase, and verified 

its accuracy to sinusoidal excitations of current. However, Li-ion batteries are used in a wide 
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array of applications (from watches, pacemakers, and mobile phones to portable power packs 

and automobiles), thus, experiencing a wide frequency range of excitation [82]. Therefore, 

the electrochemical model must reflect accurate characteristics of a Li-ion battery cell under 

all excitations over a wide frequency band. 

Zhang et al. [76] tested the accuracy of the P2D model by numerically exciting a Li-ion 

battery cell within a frequency band of 0.01 kHz to 1 kHz. The authors stated that the P2D 

model can accurately capture the behaviour of the battery cell at high frequencies; however, 

it fails to achieve good accuracy at low frequencies. The study also presented a new and 

improved model capable of increased accuracy in the time and frequency domain. Panchal 

et al. [83] present a mathematical model capable of predicting the transient voltage and 

temperature distributions of a Li-ion battery cell. The authors first experimentally analysed 

the behaviour of a 18650 battery cell under four constant discharge rates. Later, they used 

the experimental data to develop and improve a numerical model using ANSYS CFD 

software. The study found that the experimental and numerical data on the voltage and 

temperature profiles were in close agreement. 

Moreover, Li et al. [84] experimentally and numerically studied the voltage and 

temperature profiles of a prismatic Li-ion battery cell for the sole purpose of improving the 

ANSYS Fluent MSMD electrochemical model coupled with mass, charge, energy 

conservation, and electrochemical kinetics. The authors found that separating the heat 

generation terms into their respective parts and improving the heat sources improved the 

overall temperature results of the numerical analysis. This phenomenon was also confirmed 

by Kim et al. [85] and Meng et al. [86], who found that most heat generation and high-

temperature gradients were due to electrical contact resistance. The distribution of discharge 

voltage and current density were also examined and agreed well with the experimental 

results. Finally, the non-uniformity in the voltage and current distribution was due to the 

shape of the battery cell rather than inaccuracies with the model. 

2.3 Research needs 
 

The literature on battery thermal management systems is relatively new, with most 

research occurring in the last decade. Therefore, there is still much to be unearthed regarding 

finding ways to best optimise a BTMS to operate battery cells within their optimal range and 

ensure the safety of the battery pack. Most research is primarily concerned with accurately 

evaluating the temperature of the coolant and heat generation inside the battery cells. 

Unsurprisingly, this demands costly computations to accurately predict the thermal 



Chapter 2. Literature Review 

 

19 | P a g e  

 

behaviour of the battery cells and the BTMS. Ultimately, the results from these studies will 

be used to improve or design new BTMSs to prevent thermal runaway of the battery pack. 

Furthermore, most literature uses steady-state scenarios, whereas the operation of EVs is 

highly dynamic by nature. Thus, high-order models are difficult to be utilised within BTMS 

[38]. There is a pressing need for low-cost predictive models to detect changes in the battery 

cells’ behaviour in advance. System dynamics can be studied from a single point or set of 

points, assuming that the dynamics of the measured quantity can also represent the dynamics 

of the whole system. Nevertheless, most studies on BTMS have concerned themselves with 

steady-state cases and have neglected the transient or unsteady nature of battery cells despite 

being critical in designing BTMSs. Therefore, there is a need for further research to 

understand the limits at which linear predictive tools can no longer be used to predict the 

thermal dynamics of a battery cell, further, how a battery module/cells are impacted, 

resulting in unsafe operation by different unsteady/transient scenarios. 

2.4 Overview 
 

The methods used in this work on battery thermal management and the numerical and 

theoretical details of the work shown throughout this thesis are presented in Chapter 3. The 

studies on unsteady battery surface heat flux, transient loads, and battery cell vibration are 

in Chapters 4, 5, and 6, respectively. A summary of the conclusions of the current work and 

suggestions for future research are in Chapter 7. Appendix A contains the main MATLAB 

code written to post-process the numerical datasets. Appendix B contains the C-code, which 

introduces vibration to the battery cell. 
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Chapter 3. Theoretical and Numerical Methods 

This chapter introduces the general methodology used to conduct the numerical analysis 

presented in this thesis; any specific set of equations or methods are discussed before each 

results chapter. The first part describes the Reynolds-Averaged Navier-Stokes (RANS) 

equations for turbulent flow. Then the numerical model of choice and discretisation scheme 

are discussed. Finally, the pressure solver method is discussed. 

3.1 Governing equations 
 

The Reynolds-Averaged Navier-Stokes (RANS) are time-averaged equations describing 

the motion of the fluid flow. RANS equations use Reynolds decomposition, where the 

instantaneous quantities are broken into their time-averaged and fluctuating portions, as 

proposed by Reynolds [87] in 1895. These equations can be used to give approximate time-

averaged solutions to the Navier-Stokes equations. 

The mass continuity equation expressing the law of mass conservation using the Einstein 

notation is given by [88]  

𝜕𝜌𝑓

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑓𝑢𝑗) = 0 

 

(3.1) 

 

where, 𝜌𝑓 is the fluid density, 𝑢 is the velocity component, 𝑡 is the time coordinate, and 𝑗 

denotes x, y, and z axial directions terms using Einstein notation.  

Newton’s second law of motion states that the momentum variation rate is equal to the 

applied forces [89]. Therefore, the conservation of momentum for the fluid flow in the 

cartesian form is given by 

𝜕

𝜕𝑡
(𝜌𝑓𝑢𝑗) +

𝜕

𝜕𝑥𝑗
(𝜌𝑓𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗 − 𝜌𝑓𝑢𝑖

′𝑢𝑗
′) 

 

(3.2) 

 

where 𝑝 is the static pressure, the terms 𝜌𝑓𝑢𝑖
′𝑢𝑗

′ are known as the Reynold stresses, and 𝜏𝑖𝑗 

is the stress tensor expressed as  

𝜏𝑖𝑗 = 𝜇𝑓 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜇𝑓 (

𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗 

 

(3.3) 

 

where 𝜇𝑓 is the molecular viscosity and 𝛿𝑖𝑗 is the Kronecker delta function defined in Eq. 

(3.4) [89, 90]. 
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𝛿𝑖𝑗 = {
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

} 

 

(3.4) 

 

The conservation of energy for heat within the system and its boundaries is defined using 

[88, 91] 

𝜕

𝜕𝑡
(𝑐𝑝,𝑓𝜌𝑓𝑇𝑓) +

𝜕

𝜕𝑥𝑗
(𝑐𝑝,𝑓𝜌𝑓𝑢𝑗𝑇𝑓) = −

𝜕

𝜕𝑥𝑗
(𝑞𝑗

′′) 

 

(3.5a) 

 

𝑞𝑗
′′ = 𝑐𝑝,𝑓𝜌𝑓 (−𝛼𝑓

𝜕𝑇𝑓

𝜕𝑥𝑗
+ 𝑇𝑓′𝑢𝑗

′) 

 

(3.5b) 

 

𝜌𝑐𝑝,𝑠

𝜕𝑇𝑠

𝜕𝑡
= 𝑘𝑠

𝜕2𝑇𝑠

𝜕𝑥𝑖
2 + 𝑆𝑐 

 

(3.5c) 

 

where Eqs. (3.5a and 3.5b) are for the fluid and Eq. (3.5c) is for heat conduction throughout 

the battery cell with an energy source term, 𝑆𝑐. 𝑐𝑝,𝑓 is the specific heat capacity of the fluid, 

𝑇𝑓 is the fluid temperature, 𝛼𝑓 is the fluid thermal diffusivity defined as the ratio of thermal 

conductivity and the volumetric heat capacity. 𝜌𝑠 is the density of the solid, 𝑐𝑝,𝑠 is the solid 

specific heat capacity, 𝑇𝑠 is the solid temperature, and 𝑘𝑠 is the thermal conductivity of the 

solid.  

3.2 Numerical schemes 
 

The RANS approach to turbulence requires the Reynold stresses in Eq. (3.2) to be modelled 

appropriately for closure. The most common method of modelling employs the Boussinesq 

approximation [97] which relates the Reynolds stresses to the mean velocity gradients as 

shown in Eq. (3.6), 

−𝜌𝑓𝑢𝑖
′𝑢𝑗

′ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗 

 

(3.6) 

 

where the Kronecker delta function, 𝛿𝑖𝑗, is defined in Eq. (3.4). The turbulent eddy viscosity, 

𝜇𝑡, is computed using the following relation. 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜖
 

 

(3.7a) 
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where 𝐶𝜇 is found using Eq. (3.7b). 

𝐶𝜇 =
1

𝐴0 + 𝐴𝑠
𝑘𝑈∗

𝜖

 

 

(3.7b) 

 

where the values of 𝑈∗, 𝐴0, 𝐴𝑠 and all other default values for the realisable 𝑘 − 𝜖 turbulence 

model are given in [95, 96]. 

The realisable 𝑘 − 𝜖 model is applied to the turbulence model in this work. This model 

builds on the standard 𝑘 − 𝜖 model proposed by Launder and Spalding [93] in 1974. The 

new model contains a new formulation for the turbulent viscosity, 𝑘, and the dissipation rate, 

𝜖. Unlike the standard model, the realisable model satisfies certain mathematical constraints 

on the Reynolds stresses. The realisable model can also provide superior performance for 

boundary layers, separation, and recirculation [94, 95]. As stated in refs. [95, 96], the 

turbulence model transport equations are 

𝜕

𝜕𝑡
(𝜌𝑓𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑓𝑘𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇𝑓 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝑓𝜖 − 𝑌𝑀 

 

(3.8a) 

 

𝜕

𝜕𝑡
(𝜌𝑓𝜖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑓𝜖𝑢𝑗)

=
𝜕

𝜕𝑥𝑗
[(𝜇𝑓 +

𝜇𝑡

𝜎𝜖
)

𝜕𝜖

𝜕𝑥𝑗
] + 𝜌𝑓𝐶1𝑆𝜖 − 𝜌𝑓𝐶2

𝜖2

𝑘 + √𝜈𝑓𝜖

+ 𝐶1𝜖

𝜖

𝑘
𝐶3𝜖𝐺𝑏  

 

(3.8b) 

 

where 𝐶1 is defined by 

𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

𝜂 + 5
 ] , 𝜂 = 𝑆

𝑘

𝜖
, 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 

 

(3.8c) 

 

𝜎𝑘 and 𝜎𝜖 are the turbulent Prandtl numbers for 𝑘 and 𝜖, respectively. 𝐺𝑘 is the turbulent 

kinetic energy generation due to mean velocity, 𝐺𝑏 is the turbulent kinetic energy generation 

due to buoyancy, 𝑌𝑀 is the fluctuating dilatation in compressible turbulence. 𝐶1𝜖, 𝐶2, and 𝐶3𝜖 

are constants.  

Furthermore, depending on the fluid type, different fluid models are used. As previously 

stated, the idea gas model is used when the coolant fluid is air, whereas the constant density 
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is applied for liquids (like water). The ideal gas model uses the ideal gas law to express 

density as a function of temperature. However, as the name suggests, the constant density 

model assumes no change in the fluid density irrespective of temperature and pressure. 

𝜌𝑓 =
𝑝

𝑅𝑇𝑓
 

 

(3.9a) 

 

𝜌𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(3.9b) 

 

where 𝑝 is the pressure and 𝑅 is the universal gas constant. The Reynolds number based on 

the battery cell diameter, 𝐷, is expressed using  

𝑅𝑒 =
𝑢𝑓𝜌𝑓𝐷

𝜇𝑓
 

 

(3.10) 

 

The Nusselt number, based on Newton’s law of cooling, is obtained using 

𝑞′′ = ℎ(𝑇𝑓 − 𝑇𝑓,𝑟𝑒𝑓) 

 

(3.11a) 

 

𝑁𝑢 =
𝑞′′𝐷

𝑘𝑓(𝑇𝑓 − 𝑇𝑓,𝑟𝑒𝑓)
 

 

(3.11b) 

 

where 𝑞′′ is the heat flux at the surface of the battery cell and 𝑇𝑓,𝑟𝑒𝑓 is the reference fluid 

temperature. Further, the importance of free convection (natural convection) is tested using 

the Richardson number (Ri) as defined in Eq. (3.12a), which describes the ratio of natural 

convection to forced convection. If the value of Ri is very low (𝑅𝑖 < 0.1), forced convection 

would dominate heat transfer, thus, natural convection can be ignored [92]. 

𝑅𝑖 =
𝐺𝑟

𝑅𝑒2
 

 

(3.12a) 

 

𝐺𝑟 =
𝑔𝛽(𝑇𝑠𝑢𝑟𝑓 − 𝑡𝑓,𝑟𝑒𝑓)𝐷3

𝜈2
 

 

(3.12b) 

 

where 𝐺𝑟 is the Grashof number, 𝑔 is gravity, 𝛽 is the coefficient of volume expansion, 

𝑇𝑠𝑢𝑟𝑓 is the temperature at the surface, and 𝜈 is the kinematic viscosity. 
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3.3 Discretisation schemes 
 

The spatial and energy derivatives are discretised using the second-order upwind scheme 

with a constant spatial step ∆𝑥 as stated in Eq. (3.13). 

𝜕𝑢−

𝜕𝑥
=

3𝑢𝑖
𝑛 − 4𝑢𝑖−1

𝑛 + 𝑢𝑖−2
𝑛

2∆𝑥
+ 𝑂((∆𝑥)2) 

 

(3.13a) 

 

𝜕𝑢+

𝜕𝑥
=

−𝑢𝑖+2
𝑛 + 4𝑢𝑖+1

𝑛 − 3𝑢𝑖
𝑛

2∆𝑥
+ 𝑂((∆𝑥)2) 

 

(3.13b) 

 

Eq. (3.13a) and Eq. (3.13b) are for the backward and forward differences, respectively. Most 

commercial CFD packages compute the second-order upwind scheme using the following 

expression [98–100]. 

𝜙𝑓,𝑆𝑂𝑈 = 𝜙 + ∇𝜙 ∙ 𝑟 

 

(3.14) 

 

In which 𝜙𝑓,𝑆𝑂𝑈 is the second-order upwind of the face value, 𝜙 is the cell-centred value, 

∇𝜙 is the cell-centred gradient in the upstream cell, and 𝑟 is the displacement vector from 

the upstream cell centroid to the face centroid. A visual representation of the second-order 

upwind scheme is shown in Figure 3-1. WW, W, E, and EE are the west-west, west, east, 

and east-east directions, respectively. 

 

Figure 3-1 – Visual representation of the second-order upwind scheme [101]. 
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The governing equations for transient simulations must be discretised in both space and 

time. Therefore, the temporal discretisation is achieved using the Courant-Friedrichs-Lewy 

(CFL) condition [102]. 

𝐶𝐹𝐿 =
𝑢∆𝑡

∆𝑥
≤ 1 

 

(3.15) 

 

where 𝑢 is the inlet flow velocity, ∆𝑡 is the user defined timestep, and ∆𝑥 is the cell-to-cell 

length interval. The target CFL number throughout this thesis was 0.9 to achieve stability 

and reduce computational load. 

3.4 Pressure solver 
 

The pressure and velocity coupling is resolved using the PIMPLE pressure correction 

algorithm. The PIMPLE method combines the PISO (Pressure Implicit with Splitting of 

Operator) and the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

algorithms. Spalding first introduced the SIMPLE method in the 1970s as a numerical 

procedure to solve the Navier-Stokes equations for steady-state cases [103], whereas the 

PISO method was proposed by Issa in 1986 [104] for solving unsteady compressible flows. 

All of these algorithms use an iterative approach to solve the pressure and velocity fields. 

However, the PIMPLE algorithm obtains far better stability over PISO, especially when the 

nature of the solution is inherently unstable. The PIMPLE method works by iteratively 

solving the system of equations numerous times (set by the user) before moving on to the 

next timestep, which allows the numerical solution to achieve better stability [104, 105]. A 

simple flow chart of the PIMPLE algorithm is shown in Figure 3-2. 
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Figure 3-2 – Simplified flow chart of the PIMPLE algorithm. 
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Chapter 4. Surface heat flux modulation of battery 

cells in a Li-ion battery module 

 

Comprehensive BTMSs capable of enhanced system efficiency and safety by predicting 

the thermal behaviour of the battery cells and adjusting the cooling system accordingly are 

a concerning issue for emerging electric vehicles. Not only is the ability to predict the battery 

cell’s behaviour hard to detect, but the complexity and highly transient nature of an EV also 

make the investigation intractable. Thus, understanding the conditions under which the 

thermal system dynamics can be predicted is of utmost concern.  

There are very few scenarios during which the battery cells of an EV will provide a 

constant load. Instead, the highly unpredictable nature of a driver continuously accelerating 

and decelerating the vehicle would lead to the battery cells being under a dynamic load. 

Therefore, this chapter presents the numerical analysis of a Li-ion battery module under 

unsteady loads imposed on the surface heat flux of the battery cells. The battery cells are 

modelled using real cell dimensions based on literature. Three different coolant fluids are 

used in this study: the choices being air, water, and nanofluids. A systematic approach to 

calculating the transfer functions is provided. The numerical results are compared against 

existing correlations and experimental data for validation. The Nusselt number output of the 

battery cells is analysed in the time and frequency domains before a rigorous approach of 

assessing the system linearity is discussed. 

4.1 Model configuration and assumptions 
 

The general configuration of the battery module used during this study was taken from 

Ref. [66]. The sketch of a typical battery module manufactured using the series-parallel 

approach, the simulated model, and a two-dimensional schematic of a single cell section are 

shown in Figures 4-1a, b, and c, respectively. The model uses a staggered cell arrangement 

with six primary cells. This number of cells was chosen based on previous studies, see Refs. 

[33, 40, 54]. Simulating an entire battery module would be computationally expensive and 

laborious; thus, only a section was simulated, outlined in green in Figure 4.1a. The battery 

cells have a radius, 𝑅, of 20mm [38, 40, 66]. The single cell section, shown in Figure 4.1c, 

has a height, 𝐻, of 50mm, length, 𝐿, of 100mm and depth of 100mm [66]. The proceeding 

analysis contains the following assumptions: 

• The flow is thermally and hydrodynamically fully developed. 
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• The flow is fully turbulent with a steady inlet velocity. 

• When air is used, the coolant fluid is treated as an ideal gas. Whereas for 

cases with water and nanofluids, the coolant fluid is simulated using a 

constant density model. 

• Gravitational effects are ignored. 

• The nanofluid is modelled as a single-phase liquid. 

 

Figure 4-1 – Complete model. a) General sketch of a battery module with the simulated 

model outlined in green, b) simulated model, c) single cell section 2D schematic. 

 

Additionally, the unsteady thermal heat flux was applied to the surface of each battery 

cell once the model achieved steady-state conditions. In justifying this approach, it is noted 

that heat generation in the battery cell can only be removed from the system once it reaches 

the surface of the battery cell [106, 107]. Consequently, the heat loss from each battery cell 

was modelled by a surface heat flux per Refs. [108–110]. The definition of each variable 
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used in this or the following sections, along with the corresponding units, can be found in 

the nomenclature. 

The boundary conditions applied to the numerical model include a no-slip boundary on 

the external surface of each battery cell. Further, the front, back, top, and bottom walls all 

have symmetry conditions since the battery cells can be packed in the y and z-directions. 

The ambient fluid temperature was set to 300K, and a pressure outlet condition was applied 

to the outlet. A general sketch of the numerical model with some of the boundary conditions 

can be seen in Figure 4-2. 

 

Figure 4-2 – General sketch of the numerical model. 

 

The thermal boundary of each battery cell was modelled as a constant heat flux of 

6500W/m2 under steady-state conditions. This value for the heat flux was chosen based on 

the current model geometry, the 85kW battery specifications of the Tesla Model S [111], 

and an average battery cell efficiency of 85% [112]. An inlet velocity of 30m/s (Re = 75,000) 

was chosen for the air cases. It should be noted that the expected air velocity of a vehicle 

being driven on outer city roads is 30m/s. Further, this value also corresponds with literature 

on BTMS, see Ref. [113]. Due to its poor thermal conductivity and capacity, higher flow 

velocities are mandatory to sufficiently cool down battery cells for optimal operation when 

using air as the coolant fluid. Furthermore, the Reynolds number for water and nanofluids 

was chosen to be 2,300, corresponding with previous studies [114–116]. The values of Re 

for the three coolant fluids are kept constant throughout the study. As a Re of 75,000, the 

Richardson number was 1.05 × 10-4, according to Eq. (3.12a). Therefore, gravitational 

effects were ignored since the calculated Ri is much lower than 0.1. 

Once the model reached steady-state conditions, the battery cells’ surface heat flux was 

modulated with time by superimposing a sinusoid with varying frequencies and amplitudes 

shown in Eq. (4.1), 

𝑞′′(𝑡) = 𝑞𝑠
′′(1 + 𝑎 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓 ∙ 𝑡)) (4.1) 
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where 𝑞′′(𝑡) is the heat flux at time 𝑡, 𝑞𝑠
′′ is the steady-state heat flux (6500W/m2), 𝑎 is the 

amplitude of disturbance and is regarded as the modulation/excitation amplitude from 

henceforth, and 𝑓 is the modulation frequency. Moreover, the frequency is non-

dimensionalised using the Strouhal number, 𝑆𝑡, as stated in Eq. (4.2a) and is then normalised 

using Eq. (4.2b). 

𝑆𝑡 =
𝑓𝐷

𝑢
 

(4.2a) 

 

𝑆𝑡 =
𝑆𝑡

𝑀𝐴𝑋(𝑆𝑡)
 

 

(4.2b) 

 

The changes of the single-phase nanofluids’ dynamic viscosity, 𝜇, and thermal 

conductivity, 𝑘, were calculated using the relations stated in Eq. (4.3a) and (4.3b) 

respectively. It is noted that the nanofluid mixture is comprised of Aluminium-oxide, 𝐴𝑙2𝑂3, 

and water. Eq. (4.3a) and (4.3b) are well-established models developed by Brinkman and 

Maxwell-Garnetts, respectively [117, 118],  

𝜇𝑛𝑓

𝜇𝑓
=

1

(1 − 𝜙)2.5
 

 

(4.3a) 

 

𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠 + 2𝑘𝑓 − 2𝜙(𝑘𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑓 + 𝜙(𝑘𝑓 − 𝑘𝑠)
 

 

(4.3b) 

 

where 𝜙 is the concentration of nanoparticles. During the nanofluid cases, nanoparticle 

concentrations of 2.5% and 5.0% were used. It is well-regarded that the nanoparticle 

concentration directly impacts their dispersion [119]. Nanoparticle concentrations higher 

than 5% begin to disrupt their dispersion due to higher surface tension. Eventually, the 

dispersion of the nanoparticles completely collapses, and the nanofluid becomes a base fluid 

with clumps of nanoparticles [120]. Therefore, a maximum nanoparticle concentration of 

5.0% was chosen. The thermophysical properties of the three coolants used throughout this 

study are given in Table 4-1, with all properties evaluated at a temperature of 300K.  
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Table 4-1 – Thermophysical properties. 

Material Type Density, ρ 

(kg/m3) 

Dynamic viscoity, μ 

(𝑚2/s) 

Thermal conductivity, k  

(W/mK) 

Air 1.1614 1.846e-05 0.02624 

Water 996.53 8.65e-04 0.597834 

Aluminium Oxide 

(𝐴𝑙2𝑂3)  

– – 30.0 

 

A parametric study was subsequently conducted, where the coolant fluid, modulation 

amplitude, and frequency were systematically varied. The battery cell surface heat flux was 

modulated at low frequencies (𝑓 ≤ 2 𝐻𝑧) since thermofluid systems often respond to low 

frequencies only [121, 122].  

The numerical analysis was conducted using a finite-volume-based CFD software called 

StarCCM+ v14.02-R8. The CFD software employed an unsteady, three-dimensional, 

turbulent flow solver coupled with the energy equation. The realisable 𝑘 − 𝜖 turbulence 

model was utilised to simulate the flow field around the battery cells. An implicit unsteady 

model was also used. Further, as previously mentioned, the ideal gas and constant density 

models were used for air and water/nanofluid cases, respectively. The timestep was set to be 

three orders of magnitude smaller than the physical time-scale to model the vortex shedding 

precisely. The second-order discretisation scheme was applied to every model for enhanced 

accuracy. Due to the high-mesh density and complexity of the model, the computational 

models were run in a high-performance computing (HPC) unit using a single compute node 

of the Intel Xeon 4830 (24 cores). The numerical data was then post-processed in MATLAB 

2019b. 

4.2 Calculation of Transfer functions 
 

Throughout this study, the heat transfer data produced by the numerical simulations is 

analysed by translating the data from the time domain into the frequency domain. This was 

done using MATLAB’s inbuilt Fast Fourier Transform functions. However, before applying 

FFT, the Nusselt number was normalised using Eq. (4.4). 

𝑁𝑜𝑟𝑚(𝑁𝑢(𝑡)) =
𝑁𝑢(𝑡)

𝑁𝑢
 

 

(4.4) 

 

where 𝑁𝑢(𝑡) is the Nusselt number at time 𝑡 and 𝑁𝑢 is the time-averaged Nusselt number. 

Transfer functions were utilised to predict the dynamic thermal response of battery cells to 
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perturbations in their surface heat flux. However, this would imply that the thermal 

characteristics of the dynamic system under investigation are linear. The amplitude of the 

transfer function was calculated using the following relation, 

𝑎(𝑓) = |𝑁𝑜𝑟𝑚(𝑁𝑢(𝑡))
𝑖
| (4.5) 

 

where the subscript 𝑖 refers to the battery cell. Further, cross-correlation was used to measure 

the time delay between the input signal and output response [122]. The non-dimensionalised 

time delay is defined in Eq. (4.6), 

𝑛𝑑𝑑 =
𝑡𝑑

𝑑𝑙𝑖/𝑢
 

 

(4.6) 

 

where 𝑛𝑑𝑑 is the non-dimensionalised delay, 𝑡𝑑 is the cross-correlation time delay, 𝑑𝑙𝑖 is 

the length from the inlet to the battery cell, and 𝑢 is the inlet velocity. Additionally, the cross-

correlation time delay was used to calculate the phase of the transfer function in radians, as 

defined in Eq. (4.7). 

𝑝ℎ𝑎𝑠𝑒 = 2𝜋𝑓 ∗ 𝑡𝑑 

 

(4.7) 

 

However, throughout this study, the non-dimensionalised delay was used to represent 

the phase of the transfer function. 

4.3 Grid independency study 
 

Figure 4-1b shows the polyhedral staggered mesh used to capture the fluid flow and heat 

transfer in the model. The boundary was modelled using twelve prism layers around each 

battery cell to augment model accuracy. Multiple test cases were carried out at different 

mesh cell sizes to determine the mesh grid at which the highest accuracy and lowest 

computational costs could be achieved. The outcome of the results is shown in Table 4-2. 

Here, the cell size refers to the master control of all other values, such as surface cell size, 

volume cell size, and prism layer thickness. The grid independence was achieved once the 

Nu of each cell fell within a variation band of one percent. All tests were carried out at a 

constant Re of 5,100. From Table 4-2, as the cell size is decreased, the mesh density (the 

number of cells) increases, and the resultant maximum change of Nu converges. The model 

accuracy and computational requirement were balanced by selecting a cell size of 0.0025, 

which is kept constant throughout this study. 
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Table 4-2 – Grid Independency. 

Test case Cell size (m) Number of cells 
Maximum change in 

Nu (%) 

1 0.01 116,051 ---- 

2 0.009 131,032 8.2 

3 0.008 167,373 6.5 

4 0.007 188,558 6.2 

5 0.006 199,886 5.9 

6 0.005 211,293 7.2 

7 0.004 232,619 4.1 

8 0.003 277,973 1.0 

9 0.002 637,396 0.4 

10 0.001 3,081,209 0.1 

 

4.4 Validation study 
 

The numerical model was validated by comparing it against existing numerical and 

experimental data. First, the model configuration was changed so that the flow occurs over 

a single cell rather than a bundle of cells. The comparison of the results from the simulated 

model and the numerical/experimental data are shown in Tables 4-3 to 4-5.  

Table 4-3 – Comparison of the numerical simulations with correlations and experimental 

data from literature – Single cylinder. 𝑭𝒍𝒖𝒊𝒅 = 𝑨𝒊𝒓. 

Reynolds Number 50 125 3,900 4,950 

Simulated Nusselt Number 3.67097 5.67048 38.19765 43.6583 

Correlations 

Churchill and Bernstein [123] 3.74082 5.68934 32.44680 36.55737 

Error (%) 1.9 0.33 15.06 16.26 

Experimental Data 

Yogini Patel [124] Cd   0.93±0.005  

Simulated Cd (Error)   
0.917 

(1.4%) 
 

 

From Table 4-3, at low values of Re (laminar region), the simulated Nusselt number is 

in excellent agreement with the values obtained from the Churchill and Bernstein [123] 

empirical correlation. As the value of Re increases (turbulent region), the errors also 
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increase, with the highest error being 16.26% at a Re of 4,950. Nevertheless, it should be 

noted that this error is still within the error limits of the correlations, which can reach over 

20% [123]. Further, the fluid flow characteristics were compared to experimental data at a 

Re of 3,900. The simulated drag coefficient, 𝐶𝑑, was found to be 0.917, whereas the 

experimental 𝐶𝑑 by Patel was 0.93, leading to an error of 1.4%.  

Table 4-4 – Comparison of the numerical simulations with the correlations from 

literature– Single cylinder. 𝑭𝒍𝒖𝒊𝒅 = 𝑾𝒂𝒕𝒆𝒓. 

Reynolds Number 50 235 10,700 18,900 26,500 

Simulated Nusselt Number 4.8849 11.025 84.2621 117.016 148.494 

Hilpert [125] 5.2459 10.8139 73.8475 105.1833 129.495 

Error (%) 7.39 1.91 12.36 10.11 12.79 

 

Churchill and Bernstein [123] 5.362 11.3654 81.450 112.5657 136.996 

Error (%) 9.77 3.09 3.34 3.80 7.74 

 

From Table 4-4, comparing the simulated Nu of the water simulations against 

correlations leads to a maximum error of 12.79% at a Re of 26,500 and the lowest error of 

1.91% at a Re of 235. Comparing the simulated results against the Churchill and Bernstein 

correlation leads to all errors being less than 10%. Further, the water validation cases were 

repeated for different Re values and compared against experimental data by Whitaker [126]. 

At all values of Re, the error is less than five percent, as shown in Table 4-5, where the 

highest error of 4.7% is at a Re of 9,700 (turbulent region) and the lowest error of 1.68% at 

a Re of 18 (laminar region). 

Table 4-5 – Comparison of the numerical simulations with the experimental data from 

literature – Single cylinder. 𝑭𝒍𝒖𝒊𝒅 = 𝑾𝒂𝒕𝒆𝒓. 

Reynolds Number 18 86 103 9,700 12,500 

Simulated Nusselt 

Number 
4.8849 11.025 12.225 148.494 174.25 

Stephen Whitaker 

[126] 
4.9667 11.4174 12.5997 155.4665 179.3675 

Error (%) 1.68 3.56 3.06 4.70 2.94 

 

The heat transfer for airflow across a bundle of cells was compared against the Grimson 

[127] empirical correlation. At an inlet velocity of 30m/s, the simulated model produced an 
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average Nusselt number of 215.056, whereas the previously mentioned correlation resulted 

in an average Nu of 233.053, leading to an error of 8.4%.  

The excellent agreement between the numerical results, empirical correlations, and 

experimental data for both the air and water cases confirms the validity of the numerical 

analysis presented in this study. 

4.5 Post processing 
 

A flow chart illustrating the steps taken during the numerical analysis is shown in Figure 

4-3. Once the numerical simulations were complete, their data was exported for post-

processing as text files. During post-processing, the nonlinearity of the outputs was 

calculated using FFT and phase portraits. If the nonlinearity measure was found to be less 

than 10%, transfer function analysis can be conducted [122]. These methods are further 

discussed in the following sections. The developed post-processing tools were validated 

against synthetic data to ensure the robustness of the analysis. 

 

Figure 4-3 – Post processing flow chart. 

 

4.6 Results and discussion 
 

In this section, the battery cells are excited by sinusoidal disturbances imposed on the 

surface heat flux and the resultant dynamic response of analysed (see details in sections 4.1 

and 4.2). It should be noted that Fourier transforms can be used to decompose any arbitrary 

temporal disturbance into a series of sinusoids [128]. Thus, understanding the system 

response to sinusoidal disturbances is paramount for predicting the battery cells’ behaviour 

to all temporal fluctuations imposed on the battery heat release. However, for this to hold, 
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the system must be linear, so it is essential to examine the deviation of linearity of the thermal 

system. This section focuses on addressing these two issues. 

The steady-state values of the heat convection coefficient, ℎ, for the different coolant 

fluids used throughout this study are shown in Figure 4-4. As expected, the poor thermal 

conductivity of air leads to shallow values of ℎ, whereas water results in higher heat 

convection coefficients due to its superior thermal conductivity. As proven by numerous 

studies, adding nanoparticles to a base fluid enhances the fluid’s ability to transfer heat, 

leading to higher values of heat convection coefficients, which is amplified by increasing 

the concentration of nanoparticles, as shown in Figure 4-4. 

 

Figure 4-4 – Heat transfer coefficient, ℎ, values for the different coolant fluids under 

steady-state conditions. 

 

The spatiotemporal response of the fluid temperature to sinusoidal heat flux disturbances 

imposed on the surface of each battery cell is shown in Figure 4-5. The modulation amplitude 

and frequency for the case shown in Figure 4-5 are 30% and 1.00 Hz, respectively. This 

figure depicts a typical convective system in which the fluid temperature tends to approach 

that of the battery cell as it flows downstream. The temperature at the surface of the battery 

cells rises when the sinusoid reaches its peak value, which is evident by the cooling region 

near the inlet receding and the downstream temperature increasing. As the sinusoid continues 

and reaches 180o, the cooling region advances; however, it does not equally represent the 

temperature field shown at 0o. This dissimilarity is due to the forcing frequency being 1.00 

Hz, which means that to process the sinusoidal change from 90o to 180o, only 0.25 seconds 
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are utilised, which is insufficient time for the model to reset to its previous state completely. 

Moreover, as the sinusoid progresses to 270o, the cooling regions near the inlet gain further 

ground since the battery cells’ surface temperature would be the lowest as this is the trough 

of the sinusoid. The decrease in temperature across the model allows the temperature field 

to reset as the sinusoid returns to its original position. 

 

 

Figure 4-5 – Spatiotemporal evolution of the temperature field due to sinusoidal 

disturbance imposed on the battery cells’ surface heat flux. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 30%, and 

𝑓 = 1.00 𝐻𝑧. 

 

For brevity, figures for all eight frequencies are not shown. Instead, four frequencies are 

chosen – 0.25, 1.00, 1.50, and 2.00 Hz – to show the evolution of the FFT response as the 

forcing frequency is increased. 

4.6.1 Linear cases 
 

The temporal response of the normalised Nusselt number and the corresponding 

response in the frequency domain is shown in Figure 4-6. This figure corresponds to a case 

with air as the coolant fluid, a modulation amplitude of 10%, and a forcing frequency of 0.25 

Hz. In Figure 4-6a, the Nusselt number of the three examined battery cells very closely 

represents a sinewave with an increase in amplitude for cells located further downstream. 

This increase is due to the increase in the fluid temperature as the coolant travels 

downstream, requiring a larger convective heat transfer coefficient to continue extracting 

heat flux produced on the surface of each battery cell. This phenomenon causes a more 

significant variation in Nu for downstream battery cells than those near the inlet, producing 

larger amplitudes. This behaviour is further confirmed in Figure 4-6b, which shows the 

spectral response of the time trace of Nu. The classical sign of a linear system is the equality 
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of the response frequency and the excitation frequency [128–130]. Although the spectral 

response contains two spikes, the second is insignificant. Thus, the modelled battery 

module’s heat transfer is linear. A rigorous method of assessing the nonlinearity will be put 

forward in a later section. 

 

Figure 4-6 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 10%, and 𝑓 = 0.25 𝐻𝑧. 

 

Increasing the forcing frequency from 0.25 Hz to 1.00 Hz while maintaining the same 

modulation amplitude and fluid type of 10% and air, respectively, the corresponding 

temporal evolution of Nu and spectral response is shown in Figure 4-7. Increasing the forcing 

frequency did not impact the shape of the Nu response or the number of spikes in the Fourier 

response. However, Nu's amplitude increased by as much as ten times. This increase can be 

attributed to the significant changes in the surface heat flux of the battery cells in a short 

period, leading to higher convective heat transfer coefficient values, which, consequently, 

increases the value of Nu. Figure 4-7 continues to show an equal value for the forcing 

frequency and the excitation frequency, thus making the system dynamics of this case linear. 

This is further supported by increasing the forcing frequency to 1.50 Hz and 2.00 Hz. The 

figures for the increase in the forcing frequency to 1.50 and 2.00 Hz can be seen in Figures 

4-8 and 4-9, respectively. The response in these two figures also equals their respective 

forcing frequencies, making them linear. 
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Figure 4-7 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 10%, and 𝑓 = 1.00 𝐻𝑧. 

 

 

Figure 4-8 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 10%, and 𝑓 = 1.50 𝐻𝑧. 
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Figure 4-9 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 10%, and 𝑓 = 2.00 𝐻𝑧. 

 

Figure 4-10 shows the Nusselt number temporal and spectral response, where the coolant 

fluid is water, and the modulation amplitude and frequency are 10% and 0.25 Hz, 

respectively. The temporal responses shown in Figures 4-6a and 4-10a differ significantly 

due to the significant difference in the thermophysical properties of the two fluids. The 

general trend observed in Figures 4-6 and 4-10 is the increase in the Nu amplitude for cells 

located further downstream. Figure 4-5 showed that the average coolant fluid temperature 

increases as the coolant reaches the outlet, and the cells are set to lose a fixed heat flux value 

from each battery cell’s surface. Therefore, the battery cells located downstream surrounded 

by the hotter fluid should feature larger Nu amplitudes fluctuations. The extent of this 

behaviour in the Nu amplitude is more significant in Figure 4-6 than in Figure 4-10. This 

can be attributed to the significant difference in the specific heat capacity of the two fluids. 

Unlike air, water can retain a far higher amount of heat energy before experiencing a 

temperature rise, resulting in a much more significant temperature increase in air. Unlike the 

temporal response from Figures 4-6 and 4-10, the spectra are quite similar, with a single 

prominent peak occurring at the forcing frequency and an insignificantly smaller second 

harmonic. Thus, as with the previous air cases, the water case can also be approximated as a 

dynamically linear system. 

Increasing the forcing frequency for cases with water as the coolant produced similar 

results to those shown for air in Figures 4-7, 4-8, and 4-9. The only observable difference 

was the increase in the Nu amplitude and the FFT response. Thus, for the sake of brevity, 
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the figures for cases with water, modulation amplitude of 10%, and forcing frequencies of 

1.00, 1.50, and 2.00 Hz are not shown. 

 

Figure 4-10 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟, 𝑎 = 10%, and 𝑓 = 0.25 𝐻𝑧. 

 

Further, the temporal and spectral response of Nu, where the coolant fluid is Al2O3-Water 

nanofluid with a nanoparticle concentration of 2.5%, and the modulation amplitude is 10% 

with an excitation frequency of 0.25 Hz, is shown in Figure 4-11. The responses in this figure 

very closely represent those shown for water with the same modulation amplitude and 

frequency, as shown in Figure 4-10. Thus, this case can also be approximated as a linear 

dynamic system. Further increasing the nanoparticle concentration to 5.0% led to results 

similar to those shown in Figure 4-11, with the most significant change being an increase in 

the normalised Nu amplitude. Due to the similarity among the cases of water and Al2O3-

Water nanofluids, no further nanofluid results are shown. 
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Figure 4-11 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑙2𝑂3 − 𝑊𝑎𝑡𝑒𝑟 (𝜙 = 2.5%), 𝑎 = 10%, and 𝑓 = 0.25 𝐻𝑧. 

 

Given information on the amplitude and phase of the dynamic response, a transfer 

function can be used to predict the dynamics of a linear system [128]. The classical concept 

of transfer functions is often used for linear systems, which are considered SISO (single 

input, single output). In this study, the surface heat flux imposed on the battery cell is 

considered the single input, and each battery cell’s corresponding normalised Nu is a single 

output. Consequently, six transfer functions are produced – one for each primary battery cell 

in the battery module. The amplitude and the non-dimensional delay of the transfer functions 

were calculated using the method outlined in Section 4.2 for air and water and are presented 

in Figures 4-12 and 4-13, respectively.  
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Figure 4-12 – Transfer functions of heat convection over the six primary battery cells. a) 

Transfer function amplitude, and b) non-dimensional delay of the transfer function. 

𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟 and 𝑎 = 10%. 

 

Figure 4-12 clearly shows that the transfer function’s amplitude decreases as the 

excitation frequency increases, suggesting that the system is more responsive to lower 

excitation frequencies. Former studies in which the inlet fluid velocity was excited rather 

than the thermal load have also exhibited a more substantial response at low frequencies 

[122, 131, 132]. In general, low frequencies tend to give the system more time to respond to 

the disturbances, leading to larger transfer function amplitudes due to the large wavelength 

of the excitation frequency. Additionally, as the modulation frequency is increased, the non-

dimensional delay decreases, which is also in line with findings from other studies [131, 

132]. This is again due to the available time between the disturbance and the heat convection 

becoming significant; thus, as the modulation frequency is increased, the non-dimensional 

delay decreases. As predicted, the transfer function amplitude of the cells located further 

downstream is greater than those nearer the inlet. This phenomenon can be explained by 

noting that the bulk temperature of the fluid flow increases as it travels towards the outlet. 

Therefore, as the fluid passes by each cell, the temperature difference between the surface 

of the battery cells and the fluid diminishes, which requires the convection coefficient 

magnitude to grow. Thus, larger amplitudes of the Nusselt number are produced, as evident 

by the temporals of the normalised Nusselt number in which the battery cells nearer the 

outlet produce significantly larger amplitudes than those near the inlet. 
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Figure 4-13 – Transfer functions of heat convection over the six primary battery cells. a) 

Transfer function amplitude, and b) non-dimensional delay of the transfer function. 

𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟 and 𝑎 = 10%. 

 

The transfer function amplitudes and the non-dimensional delay for the six primary 

battery cells with water as the coolant fluid is shown in Figure 4-13a and 4-13b, respectively. 

Through observation, Figures 4-12 and 4-13 show the same trend of decrease in the transfer 

function amplitude and non-dimensional delay as the forcing frequency increases. However, 

the transfer function amplitude is significantly larger for the water cases than the air cases. 

This can be explained as follows. As shown in Figure 4-4, the steady-state convection 

coefficients for water are significantly larger than those of air due to the significant 

difference in thermophysical properties. Hence, under steady-state conditions, the surface 

temperature of the battery cells would be significantly smaller when water is used as the 

coolant fluid. This implies that for a given disturbance in the surface heat flux, the water 

cases experience more significant fluctuations in the convection coefficient and, 

consequently, the Nusselt number, resulting in larger transfer function amplitudes. 

4.6.2 Mildly nonlinear cases 
 

The forgoing transfer function findings were primarily based on the assumption that the 

system is dynamically linear, as confirmed by the spectral responses shown throughout 

section 4.6.1, where an insignificant second peak is observed. However, increasing the 

modulation amplitude leads to some cases becoming either mildly nonlinear – a small second 

peak appears, or strongly nonlinear – where multiple large peaks occur. An example of a 

mildly nonlinear case can be seen in Figure 4-14, where the modulation amplitude is 30%, 

the forcing frequency is 0.25 Hz, and the coolant fluid is air. It is clearly observed that the 
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Nu response of batter cell one no longer represents a sinewave, and the response of cells 

three and six are starting to deviate from a regular sinewave, a clear indication of 

nonlinearity. This observation is further confirmed by the spectral response of Nu, where a 

small second peak and an insignificant third peak can be seen.  

Nevertheless, increasing the forcing frequency from 0.25 Hz to 1.00 Hz leads to a 

decrease in the nonlinear response of the system. Figure 4-15 shows the Nusselt number 

temporals and spectral response at a modulation amplitude of 30% and forcing frequency of 

1.00 Hz for air. Comparing Figures 4-14a and 4-15a, through observation, the Nu response 

of cell one has changed from nonlinear to linear. However, the spectral response of Nu still 

shows multiple harmonics. Although the strength of the second peak is lower than that shown 

in Figure 4-14b, it is still not insignificant. Thus, the case shown in Figure 4-15 is still mildly 

nonlinear. Furthermore, the general trend of increase in the normalised Nu amplitude is still 

observed as the forcing frequency increases, as shown in Figures 4-6, 4-7, 4-8, and 4-9. 

Figures 4-16 and 4-17 show air cases with a modulation amplitude of 30% with forcing 

frequencies of 1.50 and 2.00 Hz, respectively. Increasing the modulation frequency gives 

the same trend of the system’s nonlinearity decreasing. However, the spectral response of 

Nu still implicates the dynamics of these systems being mildly nonlinear. 

 

Figure 4-14 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 30%, and 𝑓 = 0.25 𝐻𝑧. 
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Figure 4-15 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 30%, and 𝑓 = 1.00 𝐻𝑧. 

 

 

Figure 4-16 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 30%, and 𝑓 = 1.50 𝐻𝑧. 
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Figure 4-17 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 30%, and 𝑓 = 2.00 𝐻𝑧. 

 

Increasing the modulation amplitude to 30% for water and the nanofluid cases led to 

results like those shown in Figures 4-10 and 4-11, where Nu’s temporal evolution and the 

spectral response show no signs of nonlinearity, making them dynamically linear. Thus, for 

brevity, they are not shown. 

However, increasing the modulation amplitude of the water cases to 60% leads to the 

appearance of nonlinearity. The time trace and spectral response of the Nusselt number for 

water with the modulation amplitude of 60% and forcing frequency of 0.25 Hz is shown in 

Figure 4-18a and 4-18b, respectively. From visual observation, the normalised Nu response 

in Figure 4-18a represents a regular sinewave. However, the FFT gives a multi-harmonic 

response – a significant spike at the excitation frequency and a minor spike at double the 

excitation frequency.  
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Figure 4-18 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟, 𝑎 = 60%, and 𝑓 = 0.25 𝐻𝑧. 

 

4.6.3 Strongly nonlinear cases 
 

An example of a completely nonlinear case can be found in Figure 4-19, where the 

coolant fluid is air, the amplitude of modulation is 60%, and the forcing frequency is 0.25 

Hz. As seen in Figure 4-19a, the temporal response of the normalised Nu for battery cell one 

has wholly deviated from a sinewave along with the response of cells three and six. This is 

further supported by the spectral analysis of Nu, shown in Figure 4-19b, where multiple 

prominent secondary peaks are observed. For the same case with a 30% amplitude 

modulation, three total peaks were observed in the spectral response for cell one; however, 

increasing the amplitude modulation to 60% leads to five total peaks occurring for the same 

cell, with the most significant peak being at the excitation frequency. This provides a clear 

indication that the system dynamics have become strongly nonlinear. 
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Figure 4-19 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 60%, and 𝑓 = 0.25 𝐻𝑧. 

 

Furthermore, as expected, keeping the same coolant fluid and modulation amplitude but 

increasing the forcing frequency decreases the nonlinearity. Figures 4-20, 4-21, and 4-22 

show the Nusselt number’s temporal and spectral response with a forcing frequency of 1.00, 

1.50, and 2.00 Hz, respectively. Comparing Figures 4-19a and 4-20a shows that although 

the normalised Nu for cell one does not conform to a regular sinewave, cell one from Figure 

4-20a is far closer to a sinewave than Figure 4-19a. Additionally, comparing Figures 4-19b 

and 4-20b shows that the spectral response of cell one from Figure 3-19b has five peaks, 

whereas cell one from Figure 4-20b only has four, indicating a reduction in the system’s 

nonlinearity. Regardless, the system remains strongly nonlinear due to the ratio of the 

harmonics.  

Increasing the forcing frequency to 1.50 Hz leads to another reduction in the harmonics 

appearing in the spectral response. As observed from Figure 4-21b, the spectral response of 

Nu for cell one only shows three peaks, whereas, in Figure 4-20b, the spectral response has 

four peaks. Although the number of harmonics has reduced with increasing modulation 

frequency, the strength of the harmonics has remained. Thus, increasing the forcing 

frequency still renders these cases strongly nonlinear. Moreover, just like in previous cases, 
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the trend of an increase in the normalised Nu amplitude with increasing modulating 

frequency is still present in the cases where the modulation amplitude is 60%.  

 

Figure 4-20 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 60%, and 𝑓 = 1.00 𝐻𝑧. 

 

 

Figure 4-21 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 60%, and 𝑓 = 1.50 𝐻𝑧. 
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Figure 4-22 – a) Temporal evolution of Nu over battery cells’ 1, 3, and 6, b) Spectral 

response of Nu. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, 𝑎 = 60%, and 𝑓 = 2.00 𝐻𝑧. 

 

4.6.4 Measure of nonlinearity 
 

The findings presented throughout Sections 4.6.1, 4.6.2, and 4.6.3 are further supported 

by Figures 4-23, 4-24, 4-25, and 4-26, which show the Lissajous patterns (phase portraits) 

of the normalised Nusselt number vs normalised input signal. Figures 4-23 and 4-24 are for 

the air cases at all three modulation amplitudes and forcing frequencies of 0.25 Hz and 2.00 

Hz, respectively. Figures 4-25 and 4-26 are for the cases of water at all three modulation 

amplitudes and forcing frequencies of 0.25 Hz and 2.00 Hz, respectively. Previous studies 

have used phase portraits as another method of analysing the linearity of a dynamic system 

[122, 133]. If a phase portrait of a dynamic system is perfectly axisymmetric, the system is 

considered a linear system [134]. However, if the dynamic system exhibits any signs of non-

linearity, the phase portraits would deviate from symmetry. Thus, phase portraits are an 

effective method of assessing the linearity of a dynamic system. 

In Figures 4-23a and 4-24a, the oval shapes of the phase portraits are axisymmetric; 

therefore, these two cases can be considered linear, as suggested by their spectral responses. 

However, observing Figures 4-23b and 4-24b, the oval shapes have begun to deviate from 

symmetry and can no longer be considered linear, corresponding to mildly nonlinear cases. 

The symmetrical feature is no longer present for the cases shown in Figures 4-23c and 4-

24c, indicating a clear departure from any signs of linearity. Thus, the Lissajous patterns 
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shown in Figures 4-23 and 4-24 confirm the analysis presented in Figures 4-6, 4-14, 4-19, 

and Figures 4-9, 4-17, and 4-22, respectively. 

 

Figure 4-23 – Lissajous patterns (phase portraits). a) linear case, 𝑎 = 10%, b) mildly 

nonlinear case, 𝑎 = 30%, c) strongly nonlinear case, 𝑎 = 60%. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, and 𝑓 =

0.25 𝐻𝑧. 

 

Further, the Lissajous patterns for the water cases confirm the validity of the FFT 

responses shown in previous sections. Comparing Figures 4-25a and 4-26a shows that as the 

forcing frequency increases, the system’s nonlinearity diminishes. As previously stated, this 

phenomenon can be described by the interaction time of the fluid and the battery cell’s 

surface heat flux. As the frequency of modulation increases, the time allowed for these 

complex interactions decreases, not allowing the disturbance to interact with the fluid around 

the battery cell fully. This trend continues throughout Figures 4-25b and 4-26b. A departure 
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from symmetry can be observed in Figure 4-25c; however, this deviation is not as significant 

as in Figures 4-23c and 4-24c. Therefore, the case presented in Figure 4-25c can be 

considered mildly nonlinear. Unlike the linear cases shown in section 4.6.1, predicting the 

dynamics of nonlinear systems is cumbersome and cannot be easily predicted using the 

classical transfer function approach. On many occasions, the dynamics of nonlinear systems 

can only be predicted using high-order modelling, which is time-consuming and 

computationally expensive. Therefore, it is essential to identify scenarios where the system 

dynamics are nonlinear. 

 

Figure 4-24 – Lissajous patterns (phase portraits). a) linear case, 𝑎 = 10%, b) mildly 

nonlinear case, 𝑎 = 30%, c) strongly nonlinear case, 𝑎 = 60%. 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, and 𝑓 =

2.00 𝐻𝑧. 
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Figure 4-25 – Lissajous patterns (phase portraits). a) linear case, 𝑎 = 10%, b) linear 

case, 𝑎 = 30%, c) mildly nonlinear case, 𝑎 = 60%. 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟, and 𝑓 = 0.25 𝐻𝑧. 
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Figure 4-26 – Lissajous patterns (phase portraits). a) linear case, 𝑎 = 10%, b) linear 

case, 𝑎 = 30%, c) mildly nonlinear case, 𝑎 = 60%. 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟, and 𝑓 = 2.00 𝐻𝑧. 

 

For any dynamic system that exhibits a perfectly linear behaviour, the output will have 

the same spectral content as the excitation. Therefore, it is necessary to develop appropriate 

methods for assessing the non-linearity of any given system. Once such method is by taking 

the discrete Fourier transform and the inverse discrete Fourier transform and then isolating 

the response of the thermal system at the forcing frequency. The difference between the 

actual output and the response at the forcing frequency can be used as a measure of 

nonlinearity.  
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The measure of nonlinearity used to assess the divergence of the system dynamics from 

linearity, described in Ref. [135], are calculated using the relation described in Eq. (4.8). 

𝛿𝑛𝐿 =
𝑛𝑒 − 𝐹𝑑

𝑛𝑒
 

 

(4.8) 

 

where 𝛿𝑛𝐿 is the measure of nonlinearity, 𝑛𝑒 is the Euclidean norm of the normalised Nusselt 

number of each battery cell, and 𝐹𝑑 is the discrete Fourier transform at the forcing frequency 

of the normalised Nusselt number of each battery cell. Eq. (4.8) collapses and equals zero 

for a completely linear system, whereas, for a strongly nonlinear system, the 𝛿𝑛𝐿 is equal to 

one. Thus, the system can only have a value between zero and one. The maximum measure 

of nonlinearity, 𝛿𝑛𝐿, at varying amplitudes of modulation and excitation frequencies for air 

and water are shown in Figure 4-27. The measure of nonlinearity for nanofluids at a 

concentration of 2.5 and 5.0% are similar to that of water, shown in Figure 3-27b, with minor 

differences; thus, they are not shown. 

 

 

Figure 4-27 – Maximum value of measure of nonlinearity in Nusselt number at different 

amplitudes of modulation and excitation frequencies. a) 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, b) 𝐹𝑙𝑢𝑖𝑑 =

𝑊𝑎𝑡𝑒𝑟. 

 

From Figure 4-27a, as the modulation amplitude is increased from 10 to 30%, there is a 

sharp increase in the measure of nonlinearity. This increase is further intensified as 

modulation amplitude is further increased to 60%, confirming the strongly nonlinear 

dynamic response of the system given in the spectral response and the Lissajous patterns. 
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However, doubling the forcing frequency from 0.25 Hz to 0.50 Hz drastically decreases the 

measure of nonlinearity irrespective of the modulation amplitude. This decrease continues 

as the forcing frequency is further increased; however, the decrease is less substantial than 

the decrease noticed at the beginning. A similar trend can also be observed in Figure 4-27b. 

However, the maximum measure of nonlinearity is far smaller for the cases of water than 

that of air. Therefore, as expected from the spectral response, the system dynamics behave 

linearly at low amplitudes and higher forcing frequencies tend to force the system to behave 

linearly. Most importantly, the tendency of air to feature highly nonlinear behaviour at high 

modulation amplitudes and low forcing frequencies is significantly stronger than that of 

water and nanofluids. 

The origin of nonlinear system behaviour in the present study is the interaction of the 

cooling fluid with the boundary layers around and the wake region behind each battery cell. 

It is well established that such interactions are rather complex [136, 137]. The current results 

of the measure of nonlinearity indicate that long-duration (low frequencies) disturbances 

have enough time to interact with the system, producing a nonlinear response. Conversely, 

low-duration disturbances (high frequencies) do not have enough time for the fluid-dynamic 

interactions and, hence, present dynamically linear systems at low modulation amplitudes. 

Furthermore, short-term disturbances, particularly at low amplitudes, generate linear 

dynamics. Thus, the classical transfer function approach can be a computationally 

inexpensive tool to predict thermal dynamics. However, this approach becomes inapplicable 

as the modulation amplitude increases; extensive high-order modelling is required to 

accurately evaluate the heat transfer dynamics. The significant difference between the 

measure of nonlinearity of air and water/nanofluid-cooled systems is probably due to the 

significant differences in their thermophysical properties and, in particular, the Prandtl 

number. Lower values of Prandtl number for air in comparison to water hinder convective 

heat transfer at fixed values of Re. This renders a stronger nonlinear response of Nu at any 

given amplitude for air. However, it should be noted that the current study does not consider 

the battery cell’s electrochemistry. Although it is speculated that electrochemistry does not 

considerably influence the results, this issue should still be noted during any generalisation 

of the results presented throughout this chapter. 

4.7 Conclusions 
 

One of the biggest issues facing the popularity of EVs is their battery performance which 

is heavily influenced by their operational temperature. Due to numerous vehicle manoeuvres 

and driving patterns, battery cells within EVs are exposed to a wide range of temporal 
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scenarios in heat generation and transfer. Therefore, effective thermal control of batteries is 

essential. One such method is the use of predictive tools to understand battery behaviour. 

However, such predictions are conventional for linear systems using the classical transfer 

function approach. However, this method becomes cumbersome and complicated for any 

real system with signs of nonlinearity. Hence, it is crucial to determine the conditions in 

which the battery thermal management system features linear and nonlinear dynamics due 

to disturbances imposed on the battery cell’s surface heat flux. This was achieved by utilising 

the principle of Fourier transforms – noting that any temporal disturbance can be broken 

down into a series of sinusoids with varying amplitudes and frequencies. Therefore, the 

system response was examined by numerically simulating a battery module with six primary 

cells, where each battery cell was imposed to sinusoidal fluctuations in the surface heat flux. 

The resultant Nusselt number was then analysed in the time and frequency domains. Further, 

a rigorous method of measuring the nonlinearity was applied to the computational data to 

determine conditions in which the system response could be dynamically nonlinear. The key 

findings of this study can be summarised as follows. 

• The dynamic response of the convective heat transfer from the battery module 

remains linear at low modulation amplitudes (𝑎 = 10%). 

• Under linear conditions, using the amplitude and phase delay, a transfer function 

can be developed to represent the surface-average Nusselt number which features 

characteristics of a conventional low-pass filter. This approach is only viable for 

disturbances at a low modulation amplitude and short duration. 

• As the modulation amplitude increases, the average Nusselt number becomes 

mildly nonlinear or strongly nonlinear. 

• Long-duration temporal disturbances (low frequency) of the battery cell’s surface 

heat flux tend to generate strongly nonlinear responses. This can be attributed to 

the long time available to complete the fluid dynamic and heat transport 

interactions. 

• Increasing the forcing frequency decreases the signs of nonlinearity. 
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Chapter 5. Transient loads on a Li-ion battery module 

 

Another primary concern for battery thermal management systems is the lack of ability 

to adequately manage the temperature of battery cells within a battery module due to 

significant power draws [138, 139]. The highly unpredictable nature of an automobile drive 

to harshly accelerate or decelerate the vehicle would lead to drastic strain on a battery pack. 

Thus, this chapter aims to understand the behaviour of a Li-ion battery module to power 

discharge in a short period. This is done by analysing the transient thermal response of said 

battery module due to temporal changes in the internal heat generation [140]. The battery 

module is designed based on real cell dimensions. Two coolant fluids are used throughout 

this chapter: air and water. The power surges are based on driving data taken from standard 

drive cycles, where large accelerations occur in short periods. The numerical results are 

compared against existing correlations, direct numerical simulation (DNS) data, and 

experimental data for validation. The average battery cell surface temperature is analysed, 

and a systematic approach to understand the delay of cooling, the time taken to reach the 

peak temperature, and the time taken to cool down the battery cells is provided. 

5.1 Model configuration and assumptions 
 

The general sketch of a battery module, the simulated module, and a three-dimensional 

schematic of a single cell section is given in Figure 5-1. The battery module was arranged 

using a staggered series-parallel configuration with six primary battery cells [33, 40, 54]. A 

single cell section has a length, 𝐿, of 100 mm, height, 𝐻, of 50 mm, and a depth, 𝐷, of 100 

mm [66], as shown in Figure 5-1c. The battery cells have a radius, 𝑅, of 20 mm [66]. The 

subsequent assumptions were made throughout this study: 

• The fluid flow is fully turbulent with a steady inlet velocity.  

• The ideal gas model is used for cases where the coolant is air. For cases with 

water, a constant density model is utilised. 

•  The fluid is thermally and hydrodynamically fully developed. 

• Gravitational effects and heat generation due to viscous resistance are 

ignored. 
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Figure 5-1 – a) General battery module design, b) Simulated model – blue region is the 

fluid, green regions are the battery cells, c) Schematic of a single cell section. 

 

Moreover, the unsteady internal heat generation was applied to each battery cell once the 

model reached steady-state conditions. When an EV is used, the current withdrawal from 

the battery cells causes heat generation inside each cell. The heat produced would need to 

travel to the surface of the battery cell before being convected by the fluid flow. Thus, the 

heat generation inside the battery cells was modelled using a volumetric heat source, 𝑆𝑐 – 

see Refs. [110, 141, 142]. The relationship between the volumetric heat source and current 

withdrawal from the battery cell is explained in section 5.3.  

A symmetry boundary condition was applied to the model’s top, bottom, front, and back 

regions since the battery module can be extended in the y and z-directions. The external 

surface of each battery cell is subject to a no-slip, boundary condition. Further, at the 
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interface of the battery cells’ surface, 𝑠, and the fluid, 𝑓, the temperature is set to be the 

same, 𝑇𝑠 = 𝑇𝑓. The flux entering the fluid domain is set to be equal to but opposite to the 

battery cells; this is to say that the heat flux leading each battery cell is equal to the heat flux 

entering the coolant fluid, 𝑞𝑠
′′ = −𝑞𝑓

′′. Finally, the ambient temperature of the fluid is set to 

300 K, and the outlet is given an atmospheric pressure boundary condition. 

The volumetric heat source, 𝑆𝑐, within each battery cell was modelled using a constant 

value of 2,000 W/m3 under steady-state conditions. This value was chosen to mimic a 

running electric vehicle’s battery and the fluid temperature prior to a sharp acceleration. 

Moreover, the internal heat generation value was calculated based on the current model 

geometry, shown in Figure 5-1, an average Li-ion energy conversion efficiency of 85% 

[112], and the 85 kW Tesla model S battery specifications [111]. The air’s poor thermal 

conductivity and heat capacity demands high inlet velocities for adequate operation and to 

avoid damaging the battery cells [113]. Thus, the inlet velocity for air was chosen to be 17.5 

m/s (Re = 44,000) based on the literature [113, 143]. For water, the Reynolds number was 

chosen to be 2,300 based on other studies [114–116]. The chosen Reynold numbers were 

kept constant throughout the study. The gravitational effects were safely ignored by 

calculating the Richardson number as described in Eq. (3.12a). At a Re of 44,000, the 

resultant Ri was equal to 0.000305. Forced convection would dominate the heat transfer if 

Ri < 0.1; therefore, the effects of natural convection were ignored. 

The numerical simulations were conducted using OpenFOAM v2006, an open-source 

finite-volume method-based CFD software. A conjugate heat transfer (CHT) model named 

chtMultiRegionFoam was utilised to simulate the conduction within the solid regions 

(battery cells) due to the internal heat generation and convection from the surface of each 

battery cell due to the fluid flow. The latter was modelled using a three-dimensional, 

unsteady, turbulent flow solver coupled with the energy equation. The 𝑘 − 𝜖 model 

mentioned in Chapter 3 was used to model the fluid flow accurately. The aforementioned 

ideal gas and constant density models were used to model air and water, respectively. The 

timestep was set to be five orders of magnitude smaller than the full-time scale to ensure 

accurate capture of the wake region and vortex shedding [144]. The second-order 

discretisation scheme was applied to every model and solver for enhanced accuracy. The 

study was conducted on an HPC called Cirrus using Intel Xeon E5-2695 Broadwell series 

processors, consisting of 36 cores. The resultant data was exported to MATLAB 2022a for 

post-processing. 
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5.2 Drive cycles 
 

A range of atmospheric pollutants are emitted by internal combustion engine vehicles; 

thus, these vehicles need to be regulated worldwide. However, exhaust emissions are 

inherently variable and can be influenced by the slightest change in driving conditions. 

Therefore, the best method is to ensure repeatable test procedures for all experiments under 

standardised laboratory conditions known as dynamometer drive cycles [145]. There are a 

plethora of drive cycles available for a wide array of conditions around the world; however, 

for the current study, three drive cycles were chosen to represent distinct methods of driving 

passenger vehicles. These three drive cycles are shown in Figure 5-2. The first is the New 

York City cycle (NYCC), low-speed stop-and-go traffic conditions representing inner-

city/central business district (CBD) driving. The second cycle is the SC03 drive cycle, also 

known as the Supplemental Federal Test Procedure (FTP) driving schedule. Finally, the first 

drive cycle is the Urban Dynamometer Driving Schedule (UDDS), also known as the city 

test. The US Environmental Protection Agency (US-EPA) uses the mentioned drive cycles 

are part of its standard vehicle and fuel emissions testing kit [146]. 

 

Figure 5-2 – Standard drive cycles. a) New York City cycle, b) SC03 drive cycle, c) 

Urban Dynamometer drive cycle. The solid-red lines represent the linear ramps and the 

dashed-green lines are for the single segments. 

 

The conditions under which the batteries in an electric vehicle would be under high loads 

can be approximated using the drive cycles shown in Figure 5-2. For example, the EVs 
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battery pack would be under extreme load each time the car is required to quickly accelerate 

to a high target speed. Therefore, two cases were chosen from the NYC cycle (NYCC1 and 

NYCC2), one from the SC03 cycle, and two from the UDDS cycle (UDDS1 and UDDS2). 

These cases are shown in Figure 5-2 as linear red lines. Furthermore, single-cycle segments 

were also chosen to simulate the battery module's thermal response and analyse the coolant's 

responsiveness to loading and offloading the internal heat generation – outlined using 

dashed-green lines in Figure 5-2. 

5.3 Internal heat generation 
 

The target speeds shown in Figure 5-2 were also used to calculate the approximate 

mechanical power required to achieve said target speed using Newton’s second law of 

motion as described in Eq. (5.1). This can then be used to form an equation for mechanical 

power by multiplying both sides by the change in velocity, 

𝐹 = 𝑚𝑎 

 

(5.1a) 

 

𝐹 ∙ 𝑑𝑢 = 𝑚𝑎 ∙ 𝑑𝑢 

 

(5.1b) 

 

where the left-hand side of Eq. (5.1b) is the mechanical power of the vehicle. Integrating 

both sides leads to an equation describing the mechanical power using a vehicle’s mass, 

acceleration, and velocity: 

𝑃 = 𝑚𝑎∆𝑢 

 

(5.2) 

 

where 𝑃 is the mechanical power, 𝑚 is the mass of a Tesla Model S – 2,250 kg, 𝑎 is the 

vehicle's acceleration – calculated from Figure 5-2, and ∆𝑢 is the change in velocity – also 

calculated from Figure 5-2. The battery standard used within the Tesla Model S is based on 

the specifications of the 18650 Lithium-ion cell format [111], the most commonly studied 

Li-ion cell – see Refs. [147–149] and Refs. [150, 151]. The battery cell current draw, 𝐼, can 

be calculated using the mechanical power equation and the 18650 cell specifications, which 

have an average nominal voltage of 3.5 V. 

𝐼 =
𝑃

𝑉
 

 

(5.3) 

 

Moreover, it was found that the internal resistance of a Li-ion cell is inherently wavering 

depending on its manufacturing quality, storage, usage, life cycle, and operational 
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temperatures [25, 29, 148]. Therefore, the internal resistance of a battery cell can be 

drastically inconsistent, from 2.83 mΩ [148, 152] to 81.6 mΩ [153, 154] and as high as 140 

mΩ [155] and 190 mΩ [156]. Since the current study is interested in extreme case scenarios, 

the highest internal resistance of 190 mΩ was chosen to simulate the worst-case scenario. 

Using this value of internal resistance, the current cell geometry shown in Figure 5-1, and a 

battery cell energy efficiency of 85%, linear ramps of the volumetric heat generation, 𝑆𝑐, 

were calculated to represent the five ramp and the two single-segment cases,  

𝑆𝑐 =
𝐼2𝑅𝑖

𝑉𝑠
 

 

(5.4) 

 

where 𝐼 is the battery cell current draw, 𝑅𝑖 is the battery cell internal resistance, and 𝑉𝑠 is the 

cell volume. 

5.4 Grid independency study 
 

As shown in Figure 5-1b, an unstructured tetrahedral mesh for the fluid and solid 

domains was produced. The fluid domain also contained prism cells to capture the boundary 

layer around each battery cell accurately. This type of mesh was chosen to reduce the mesh 

cell skewness while also reducing the overall cell count, as the cell count is directly linked 

to the computational demand of the model. Eight tests were conducted with varying cell 

sizes to determine the grid at which the highest accuracy could be achieved without 

overburdening the computational model. Here, cell size determines the values of all other 

mesh parameters, such as the surface and volumetric cell size and prism layer thickness. 

Once the Nusselt number of each battery cell fell within an error band of one percent, the 

grid independency would be achieved. All tests were carried out at a Re value of 4,000. The 

results of the grid independency can be seen in Table 5-1. As the cell size is decreased, the 

mesh density increases and the solution converges to within an error margin of one percent. 

To further balance the model accuracy and computational demand, a cell size of 0.00175 

was chosen. 
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Table 5-1 – Grid Independency. 

 Cell size (m) Number of cells Maximum change in Nu (%) 

Test 1 0.008 150,517 ---- 

Test 2 0.006 171,952 5.12 

Test 3 0.005 259,783 7.01 

Test 4 0.004 457,927 4.28 

Test 5 0.003 973,331 3.21 

Test 6 0.002 2,830,531 1.13 

Test 7 0.0015 5,978,251 0.62 

Test 8 0.001 16,754,751 0.10 

 

5.5 Validation study 
 

The present study was validated by comparing against existing numerical and 

experimental data. These comparisons are given in Figure 5-3. Firstly, the model parameters 

were modified so that the flow occurs over a single battery cell rather than a fleet and the 

top and bottom walls of the model were extended. The comparison of the simulated results 

against the empirical correlations by Churchill and Bernstein [123] and Hilpert [125] are 

shown in Figure 5-3a. The simulated results are in exceptional agreement with correlations 

at low values of Re (laminar region) and, as expected, as the value of Re is increased, the 

error also increases. The max error in Figure 5-3a is 6.96% at a Reynolds number of 10,000. 

It should be noted that the empirical correlations contain errors as high as 20% [123]. Thus, 

the simulated data is still within the acceptable error margins. Therefore, the current model 

can be said to have an excellent agreement against the two empirical correlations. 

The unsteady behaviour of the solver, chtMultiRegionFoam, was also evaluated by 

configuring the current model to become a simple channel flow without any battery cells. 

The inlet flow is exposed to ramped disturbances in its temperature, and the corresponding 

changes in the flow temperature at different locations along the domain were examined 

against DNS data by Christodoulou et al. [157]. The results of the comparison are shown in 

Figure 5-3b. Further, at a Re value of 3,900, the simulated drag coefficient, 𝐶𝑑, was 

compared against experimental data by Yogini Patel [124]. The current model resulted in a 
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drag coefficient of 0.9105, whereas the experimental results found it to be 0.93 ± 0.005, an 

error of approximately 2.1%. Air flow across a bundle of cylinders was also compared 

against the correlation provided by Grimson [127]. At a Reynolds number of 20,000, the 

average Nusselt number of the model shown in Figure 5-1b was found to be 141.72, whereas 

the Grimson correlation found it to be 130.06, revealing an error of 8.97%.  

The comparison of the single cylinder simulated results against the Churchill and 

Bernstein [123] correlation and against experimental data by Stephen Whitaker [126] is 

shown in Figure 5-3c and 5-3d, respectively. As anticipated, the numerical and experimental 

data in the laminar region are in excellent agreement with the simulated data. As the value 

of Re is increased, the error also increases. For comparison against the numerical data, the 

maximum error is found to be 7.89% at a Re of 8,000, with the lowest error being 0.74% at 

a Re of 150. However, comparing the experimental data, all errors are below 4%. 

The favourable agreement among the simulated results, DNS data, empirical correlations 

and experimental data for air and water confirm the validity of the numerical analysis 

presented in the following section. 
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Figure 5-3 – Validation study. a) Single cylinder and Refs. [123, 125], 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟, b) 

Comparison of temporal variations at the inlet, centre, and outlet for unsteady response, 

𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟; 𝑅𝑒 = 180, where the solid lines is the DNS data and the dashed lines are 

the current model, c) Single cylinder vs numerical data [123], 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟, and d) 

Single cylinder vs experimental data [126], 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟. 

 

5.6 Results and discussion 
 

This section presents the battery cells’ response to volumetric internal heat generation 

disturbances due to liner ramps and single-cycle segments. It should be noted that the inlet 

flow velocity of the fluids is kept constant; thus, the Reynolds number is also constant. 

Nusselt number is primarily a function of the Prandtl number, and Reynolds number in 

single-phase forced convection flows [158]; during cooling, variations in the coolant fluids’ 

Prandtl number can be considered insignificant. As long as Re is kept constant, any 

modulation imposed on the internal heat generation would result in minor changes in the 
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convective cooling. Therefore, the Nusselt number is not analysed; instead, the average 

surface temperature of the battery cells is considered. This allows for a thorough comparison 

between the effects of the different coolant fluids and the drive cycles and whether the 

individual battery cells’ temperature and the cell-to-cell temperature difference remain 

within the optimal range. The transient thermal response of each battery cell is characterised 

by calculating the settling time of the average battery cell surface temperature and the 

maximum overshoot. Further, the classical system dynamic definitions are utilised. Tay et 

al. [159] describe the settling time as the time needed for a system to reach and stay within 

a two percent range of the final equilibrium value. Whereas Ogata [160] defines the 

maximum overshoot as the ratio of the peak value of the system response to the desired value 

of the system response. 

The spatiotemporal response of the temperature field to a linear ramp using the SC03 

drive cycle in the internal heat generation is shown in Figure 5-4. Figure 5-4a shows the 

temperature field during steady-state conditions before introducing the SC03 ramp. It should 

be noted that the simulations were allowed to run for 15 seconds under steady-state 

conditions before introducing the ramps, which can also be seen in the figures showing the 

average battery cell surface temperatures, such as Figure 5-5. From Figure 5.4a, it can be 

seen that the temperature of the fluid and solid (battery cells) is nearly indistinguishable due 

to the small internal heat generation. However, as the simulation reaches a time of 50 

seconds, the temperature difference between the two regions is far more apparent, as 

observed in Figure 5-4b. Figures 5-4c and 5-4d show the temperature field after 100 seconds 

and at the end of the simulation – once the model has reached its’ new steady-state condition 

– at 300 seconds. Figure 5-4 depicts a conventional convective system; as the fluid travels 

further downstream, the fluid temperature begins to approach that of the battery cells. This 

phenomenon can be clearly seen in Figure 5-4d, where cells closer to the outlet exhibit larger 

temperatures than those at the inlet. 
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Figure 5-4 – 3D Spatiotemporals of the temperature field due to linear ramp using the 

SC03 drive cycle. Different stages of the temperature field a) 15 s – prior to ramp, b) 50 

s, c) 100 s, and d) final steady state condition (300s). 𝐹𝑙𝑢𝑖𝑑 = 𝑊𝑎𝑡𝑒𝑟. 

 

5.6.1 Linear ramps 
 

Figures 5-5a and 5-5c depict the transient response of the battery cell’s average surface 

temperature to internal heat generation ramps based on the NYCC1 and NYCC2 with air as 

the coolant fluid, respectively. As previously stated in Section 5.1, the lower limit of each 

internal heat generation ramp was set to 2,000 W/m3 and using the speed-time data from 

Figure 5-2a, the upper limit of the NYCC1 ramp was calculated to be 47,400 W/m3 with a 

duration of five seconds. It can be clearly seen that the temperature of the battery cells 

continues to increase even after the ramp has finished due to the time taken for the heat to 

conduct to the battery cells’ surface. Further, each battery cell’s overall temperature increase 

after reaching the new steady-state condition differs from the starting temperature 

differences. This can be attributed to the behaviour of a typical convective system. As the 

fluid flows towards the outlet, its’ temperature begins to reach that of the battery cells 

surface, diminishing the amount of heat being transferred to the fluid and increasing the time 

for the battery cells to cool down. The increase in the settling time is also due to the fluid 

heating up as it flows further downstream. A detailed analysis of each battery cell’s setting, 

heating, and cooling time is given later. 
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The temporal average surface temperature response of each primary battery cell to the 

NYCC1 and NYCC2 ramps in the internal heat generation on each battery with water as the 

coolant fluid are given in Figures 5-5b and 5-5d, respectively. The observed differences 

between the two fluids are due to the significant differences in their thermophysical 

properties. Unlike air, the water temperature responses contain no overshoot. The significant 

difference in the specific heat capacity of the two fluids allows water to retain a far higher 

amount of energy before an increase in temperature can be recorded. This allows water to 

remove larger quantities of heat from the surface of each battery cell. This also explains each 

battery cell’s far lower and tighter starting temperatures in the water cases. 

 

 

Figure 5-5 – Average battery cell surface temperature due to internal heat generation 

with air (left) and water (right) as the coolant fluids. a) and b) NYCC1, c) and d) 

NYCC2. 
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Furthermore, a much larger and steeper ramp was found using the data shown in Figure 

5-2b – the SC03 drive cycle. The upper limit for this drive cycle was calculated to be 196,750 

W/m3 with a total ramp duration of 14 seconds. This results in the SC03 internal heat 

generation being amplified by over four times as compared to NYCC1 in less than three 

times the duration and almost 13 times compared to NYCC2. Thus, the SC03 ramp generates 

higher battery temperatures, as shown in Figure 5-6. As expected with any convective 

system, as the fluid flows downstream, the battery cells at the outlet experience higher 

temperatures than those at the inlet. Although the general trend of Figure 5-6 is the same as 

those shown in Figure 5-5, due to the significant increase in internal heat generation, the 

average surface battery cell temperatures are also higher. Comparing the temperature 

differences for the NYCC1 and SC03 ramps leads to no apparent correlation between the 

two data sets. This is to say that increasing the upper ramp limit by four does not produce a 

temperature difference of the same magnitude. The trend of increasing settling time for the 

battery cells at the outlet between the two drive cycles can be seen. However, due to the 

significant differences between the ramps, battery cells influenced by the SC03 ramp require 

a longer settling time. 

 

Figure 5-6 – Average battery cell surface temperature due to internal heat generation 

with a) air and b) water using the SC03 drive cycle ramp. 

 

Figure 5-7 shows each battery cell’s average surface temperature temporals to ramps in 

the internal heat generation using the UDDS drive cycle. The left column is for air, and the 

right is for water. The UDDS1 ramp leads to results almost identical to the NYCC1 ramp. 

This is due to the upper limit of the UDDS1 ramp being 51,700 W/m3. However, the ramp 

duration for the UDDS1 ramp is 11 seconds – more than double that of NYCC1. In 
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comparison, the upper ramp limit for UDDS2 is 37,800 W/m3 with a ramp duration of seven 

seconds. The larger internal heat generation limit for the UDDS1 ramp leads to higher overall 

temperatures and more prominent peaks; however, the settling time of each battery cell 

decreases due to the more considerable ramp duration. This indicates that a longer ramp 

duration for an almost identical upper ramp limit leads the thermal system to react faster to 

achieve stability. This can be attributed to the thermal system’s ability to manage heat release 

through convection as the internal heat generation increases. Conversely, cases with a 

significantly large heat release in short periods would cause a sharp increase in the average 

battery cell surface temperature, resulting in considerable time required to reach the new 

equilibrium state, matching the behaviour observed in Figures 5-5a, 5-5c, 5-6a, 5-7a, and 5-

7c.  

Comparing the results of the two coolant fluids for any drive cycle ramp leads to the 

expected outcome; water is far more effective at achieving lower temperatures and a tighter 

spread. The two responses are shown in Figures 5-5a and 5-5b, where the NYCC1 ramp is 

used, water as the inlet coolant leads to the hottest battery cell being over 30% cooler without 

any correction due to overshooting and reaching this state over 25% faster than air. 

Furthermore, the recommended battery cell operation temperature is between 298 K and 318 

K [161], and the maximum cell-to-cell temperature difference should be 5 K [27]. The case 

of NYCC1 with water achieves both conditions, whereas air fails to sustain the safe operating 

parameters. However, changing the ramp to the SC03 drive cycle, both fluids fail to achieve 

the safe operating parameters for the battery cells. Comparing Figures 5-6a and 5-6b, a 

decrease of 33.8% for cell one and 28.2% for cell six can be observed when changing the 

coolant fluid from air to water. Further, changing the ramp case from NYCC1 to SC03 

increases the settling time of the battery cells due to a significant increase in internal heat 

generation. 
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Figure 5-7 – Average battery cell surface temperature due to internal heat generation 

with air (left) and water (right) as the coolant fluids. a) and b) UDDS1, c) and d) 

UDDS2. 

 

Figure 5-8 shows the values of the dimensionless setline time for all primary cells. The 

dimensionless setline time is calculated using the following equation: 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝐷𝑆𝑇) =
𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑟𝑎𝑚𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

 

(5.5) 

 

where the settling time is the time taken to reach two percent of the final value [159]. Figure 

5-8 shows downstream battery cells experience a higher DST value than those near the inlet. 

This is expected since the fluid temperature increases as it travels downstream, necessitating 

a longer time to extract heat from the battery cells. Additionally, the simulations in which 

air was used as the coolant fluid always produced a higher value of DST than water. The air 
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simulations are observed to have a steady increase in their value of DST, whereas DST for 

the water simulations jumps from cell two to three before having a general increase. Figure 

5-8 shows that the transient response of the battery module to long durations always 

produces lower values of DST. Conversely, shorter ramp periods tend to produce more 

significant values of DST. The physical origin of the delay in response to heating in the 

present study is heat conduction due to ramps being imposed on the internal heat generation 

inside the solid battery cells. It is well acknowledged that conduction is the slowest form of 

heat transfer compared to other forms of heat transfer – convection and radiation [158]. The 

results in Figure 5-8 indicate that short ramp durations, such as the NYCC1 case, release 

significant amounts of heat within the system very quickly, not permitting enough time for 

the heat to be conducted from the body of the battery cells to their surfaces effectively. As a 

result, higher values of DST are produced. Conversely, long ramp durations, such as the 

NYCC2 case, have sufficient time to conduct the heat to the battery cell’s surfaces before 

convecting, producing smaller values of DST. This implies that fluctuations in the battery 

cell’s internal heat generation over long periods will allow enough time for the system to 

react to these changes far quicker. However, short-term disturbances will require far longer 

for the system to stabilise. 

 

Figure 5-8 – Dimensionless Settling time of each battery cell using different drive cycle 

ramps: NYCC1 (○), NYCC2 (Δ), SC03 (□), UDDS1 (●), and UDDS2 (▲). 𝐹𝑙𝑢𝑖𝑑 =

𝐴𝑖𝑟 (𝑏𝑙𝑎𝑐𝑘) 𝑎𝑛𝑑 𝑤𝑎𝑡𝑒𝑟 (𝑏𝑙𝑢𝑒). 
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Moreover, Figures 5-9a and 5-9b show the maximum battery cell temperature against 

the dimensionless settling and heating time, respectively, where the latter is defined in Eq. 

(5.6). 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝐷𝐻𝑇)

=
𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ max 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑟𝑎𝑚𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

 

(5.6) 

 

It should be noted that the water simulations produce no overshoot. Thus, these 

simulations take longer to reach the maximum temperature than the air simulations, as shown 

in the average surface temperature graphs. Air simulations produce higher maximum 

temperatures due to their inferior thermophysical properties than water, which is also why 

air simulations have a higher temperature spread between each cell. As discussed in Figure 

5-8, the air-cooled models take longer to stabilise than water; therefore, their values of DST 

are higher. An observation from Figure 5-9 is that the air simulations produce results with a 

steep gradient, whereas the water simulations results have a far smaller gradient. This can 

be explained by the significant difference in thermophysical properties of the two fluids, 

which impact the degree of the reported DST and DHT. Air having far lower thermal 

conductivity and capacity, each battery cell would rise to its maximum temperature far 

quicker, producing an almost vertical line in the maximum battery cell temperature vs DST 

or DHT. Whereas water’s large specific heat capacity allows it to retain more heat energy 

before experiencing a temperature rise.  

Moreover, since the water results produce no overshoot, the maximum temperature 

reported by these results is the final steady-state temperature. Therefore, the water 

simulations generate a primarily horizontal trend line for the battery cell’s maximum 

temperature vs DST or DHT. The only exception is the SC03 ramp case due to its 

significantly massive internal heat generation. Two horizontal temperature lines are used to 

infer the safe operating temperatures. Li-ion battery cells’ maximum safe operating 

temperature is between 308 K and 318 K, depending on the literature [55, 161]. Therefore, 

it can be safely stated that battery cells below 308 K are always safe – such as those cooled 

using water. Battery cells between 308 K and 318 K can be considered safe – such as the 

first four cells in the NYCC1, UDDS1, and UDDS2 while using air as the coolant. Battery 

cells above 318 K will always operate outside the optimal range, such as the SC03 case with 

either coolant fluid. 
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Figure 5-9 – Maximum battery cell surface temperature vs a) Dimensionless settling 

time and b) Dimensionless heating time of each battery cell using different drive cycle 

ramps: NYCC1 (○), NYCC2 (Δ), SC03 (□), UDDS1 (●), and UDDS2 (▲). 𝐹𝑙𝑢𝑖𝑑 =

𝐴𝑖𝑟 (𝑏𝑙𝑎𝑐𝑘) 𝑎𝑛𝑑 𝑤𝑎𝑡𝑒𝑟 (𝑏𝑙𝑢𝑒). 

 

5.6.2 Single cycle segments 
 

The temporal response of the average battery cell surface temperatures to modulation in 

the internal heat generation ramps using the SC03 single-cycle segment is shown in Figures 

5-10a and 5-10b for air and water, respectively. The total duration of this segment is 40 

seconds. It can be seen that even after this segment is finished, the average surface 

temperature continues to increase, reaching a peak before decreasing and reaching a 

temperature similar to that prior to the segment. The steady-state condition for these figures 

was set so that if the overall temperature change over 10 seconds were less than one percent, 

the temperature would be considered stable, and the simulation would end. Therefore, even 

though the final temperatures are not equal to the starting temperatures, they are considered 

steady. The water single-segment case is far quicker to react to the change in the internal 

heat generation; as a result, the peak temperature of each battery cell occurs earlier and at a 

lower temperature than for the air case. The change in temperature for cells one and six – 

with air as the coolant – is 22.58 K and 31.33 K, respectively. Whereas changing to water as 

the coolant, the temperature difference for the same cells is 15.27 K and 21.49 K. Thus, 

water is far better at maintaining an overall cooler temperature of the battery cells; in 

particular, the average surface temperature of battery cells one and six is 32.3% and 31.5% 

lower, respectively. The superior thermophysical properties of water allow it to react 34% 

faster for cell one and 9.8% faster for cell six. 
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Figure 5-10 – Average battery cell surface temperature using the SC03 single segment 

internal heat generation ramp with a) air and b) water as the coolant fluids. Maximum 

battery cell surface temperature vs c) Dimensionless settling time and d) Dimensionless 

heating time of each battery cell using different single cycle segments: NYCC (Δ); SC03 

(○), 𝐹𝑙𝑢𝑖𝑑 = 𝐴𝑖𝑟 (𝑏𝑙𝑎𝑐𝑘) 𝑎𝑛𝑑 𝑤𝑎𝑡𝑒𝑟 (𝑏𝑙𝑢𝑒). 

 

Furthermore, the maximum battery cell surface temperature vs dimensionless heating 

and cooling time are given in Figures 5-10c and 5-10d. Here, the dimensionless cooling time 

(DCT) is defined as the ratio of the time the battery cell takes to reach the final steady-state 

condition after peaking and the ramp duration. As anticipated, the results of the 

dimensionless heating time for water are far more compact than that of air. In Figures 5-10c 

and 5-10d, the NYCC single-cycle segment with water as the coolant fluid produces an 

almost horizontal trend line. This is due to the slight increase in internal heat generation over 

a prolonged period allowing the thermal system to accommodate variations in the average 
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surface temperature. Figures 5-10a and 5-10b show that the heating phase of the SC03 

segment is far smaller than the cooling phase, which can be attributed to the delay in 

responding to changes in the internal heat generation. As the positive gradient in the internal 

heat generation ends, and the negative gradient ramp begins, the surface temperature of the 

battery cells continues to increase until all excess heat is washed away. This causes the DHT 

to have a graph scale of 0.6 to 1.1, whereas the DCT axes range from 2 to 6. Further, similar 

to Figure 5-9, two horizontal temperature lines indicate the safe operating range of the 

battery cells. As expected, the substantial amount of internal heat generated by the SC03 

drive cycle results in the battery module being outside the safe operating range. However, 

the first two battery cells can be considered safe when using water as the coolant fluid. 

Further, the minor increase in the internal heat generation from the NYCC single-cycle 

segment causes all battery cells to remain within the safe operating temperature range 

regardless of the coolant type. 

5.7 Conclusions 
 

The operating temperature of the battery cells is directly impacted by the range of 

temporal scenarios caused by the vast array of driving patterns and vehicle manoeuvres. 

Therefore, effective battery thermal management systems must be able to predict the battery 

cell’s temperature during these driving scenarios. Such predictions are trivial for simple 

systems with steady parameters. However, such predictions become intractable when real-

time driving data is utilised, during which the battery cells are rarely in steady-state 

scenarios. In this chapter, three different drive cycles were numerically analysed to find the 

points at which the battery cells experience extreme thermal loads – such as very high 

acceleration in a short period. The system response was modulated using linear ramps and 

single-cycle segments of internal heat generation. The consequent response was examined 

by analysing the battery cell’s average surface temperature. The simulation results of the two 

different fluids, air and water, were compared in the time domain. The key findings of this 

study can be summarised as follows. 

• Using air as the coolant fluid resulted in all ramp cases producing a delayed 

system response and was far slower at reaching the new steady-state condition. 

However, smaller DST values were produced using the same ramps for cases 

with water. Therefore, it is essential to analyse the battery cell response to 

understand each battery cell’s transient thermal behaviour. 
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• The ramp duration directly impacts the response of each case. Cases with a large 

ramp in a short period (NYCC1 – 2000 to 47,400 W/m3 in five seconds) produce 

high values of DST and create a sharper rise in DST per battery cell. 

• In most cases, using water as the coolant fluid leaves the battery cells within their 

safe operating range. 

• Water simulations tend to produce results with a small gradient. In contrast, air 

produces results with a steeper gradient for the maximum battery cell temperature 

vs DST or DHT. 

• The fluid properties of water allow it to maintain a minimum overall battery cell 

temperature change and reduce the cell-to-cell temperature differences. 

• The water single-cycle segment cases react as much as 34% faster to temporal 

changes in the internal heat generation than air. 
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Chapter 6. Harmonic axial vibrations of a Li-ion 

battery cell 

 

The most effective mode for a battery thermal management system is active cooling. 

This means the BTMS can predict the behaviour of the battery module/cell and regulate the 

coolant system for enhanced system performance and safety [162, 163]. However, predicting 

the transient behaviour of a battery cell is easier said than done; the complex and erratic 

driving behaviour of EVs makes the problem burdensome.  

The battery cells and the thermal management system are inherently exposed to 

vibrational excitations due to acceleration, deceleration, and road roughness. Although the 

vibrations are fundamentally random, they are influenced by the vehicle’s suspension system 

and settings. Therefore, this study aims to further our understanding of Li-ion battery cells’ 

behaviour to mechanical vibrations. This is done by numerically evaluating the unsteady 

thermal response of a battery cell to forced vibrations at numerous modulation frequencies 

and amplitudes. The battery cell is modelled using cell dimensions from other studies. The 

impact of different coolants – air and water – on the battery cell thermal output is also 

considered. Although the vibrational properties of the battery cell vary radically depending 

on the vehicle type, driving and environmental conditions, and road roughness, the 

vibrational frequencies are typically situated within 10 to 30 Hz [68]. The numerical results 

are compared against existing correlations and numerical and experimental data from the 

literature for rigorous validation. The Nusselt number output is analysed in the time and 

frequency domains to better understand a battery cell’s thermal behaviour to transient inputs. 

A visual representation of an EV driving on an uneven surface, vibrating the battery cells 

inside a battery module, is shown in Figure 6-1. 

 

 

 

 

 

 

 

 

  



Chapter 6. Harmonic axial vibrations of a Li-ion battery cell 

81 | P a g e  

 

 

Figure 6-1 – Visual representation of a battery cells vibration source. 

 

6.1 Model configuration and assumptions 
 

Figures 6-2a and 6-2b show the battery cell model schematic and the numerical model 

used during simulations. The numerical model has a total length, 𝐿, of 50D, where the inlet 

and outlet are 10D upstream and 40D downstream from the centre of the battery cell [164, 

165]. The model’s total height, 𝐻, is 12D, with the top and bottom boundaries equidistant 

from the centre. Moreover, a wake region of height 5D is generated around the battery cell 

leading to the outlet to capture the Karman street vortex accurately [166]. The battery cell 

has a radius of 20 mm [66]. The following assumptions are made throughout the analysis. 

• The fluid flow is fully turbulent with a steady inlet velocity. 

• The ideal gas and constant density models are used for cases with air and 

water, respectively. 

•  The fluid is thermally and hydrodynamically fully developed. 

• Gravitational effects are ignored. 
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Figure 6-2 – a) Battery cell model schematic, b) Numerical model. 

 

The battery cell modulations are applied to the numerical model once it has reached 

steady-state conditions. Heat generated inside each battery due to current withdrawal travels 

to the surface of the battery cell prior to being washed away by the cooling fluid. Thus, the 

heat generated inside the battery cell is modelled using a volumetric heat source, 𝑆𝑐, [110, 

141, 142] as defined in chapter 3. The primary sources of this heat generation are defined 

later in section 6.2. 

The following set of boundary conditions were applied to the numerical model. Since 

the numerical model can be expanded into the y-direction, the top and bottom walls are under 

a symmetry condition. A no-slip condition is given to the surface of the battery cell. The 
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fluid-solid (battery cell) interface contains two boundary conditions. First, the temperature 

of the fluid, 𝑓, and the solid, 𝑠, are equal, 𝑇𝑓 = 𝑇𝑠. Second, the heat flux leading the battery 

cell and entering the fluid domain is equal but opposite, 𝑞𝑓
′′ = −𝑞𝑠

′′. Finally, the inlet fluid 

temperature is set to 300 K, and the outlet is treated as an atmospheric pressure outlet. 

The steady-state conditions were achieved by setting the vibration frequency and 

amplitude to zero. The battery cells’ internal heat generation was set to 48,000 W/m3, 

extracted from the Multi-Scale-Multi-Domain (MSMD) battery simulation – see Section 6.2 

for more detail. The air’s poor thermal conductivity and capacity demands high fluid 

velocities for ideal operation [167]. Therefore, the inlet fluid velocity for air was 2.5 m/s (Re 

= 6,300) based on Refs. [36, 54]. The Reynold number for water was found to be 2,300 based 

on previous studies [114–116]. The Reynolds numbers are kept constant throughout the 

study. At a Re value of 6,300, the Gr was calculated to be 337,457.67. Using Eq. (3.12a), 

this results in a Ri of 0.0085. Sine the calculated value of 𝑅𝑖 < 0.1, gravitational effects were 

safely ignored. A total of three vibrational frequencies and three amplitudes of modulation 

are applied to the numerical model, leading to a total of nine cases for each coolant fluid. 

The vibration frequencies of 10, 20, and 30 Hz were chosen based on previous studies [69, 

70, 72] and per the UN ECE R100 standard, a European standard for testing EV Li-ion 

batteries for road safety [71]. The modulation amplitudes of 30, 40, and 50 mm/s were 

selected based on Refs. [68, 70, 72]. 

Ansys Fluent 2020-R2, a finite-volume-based CFD software, was used for numerical 

analysis. A conjugate heat transfer (CHT) model was utilised to simulate the conductive and 

convective heat transfer. A two-dimensional, unsteady, turbulent flow solver coupled with 

the energy equation and the realisable 𝑘 − 𝜖 turbulence model was used. The MSMD battery 

model was employed to simulate the realistic response of a battery cell to a given load, and 

the consequent thermal characteristics were exported and imported into the CHT model. The 

timestep was set to be six orders of magnitude smaller than the full-time scale to satisfy the 

CFL condition and accurately model vortex shedding [144]. Due to this study’s complex and 

computationally demanding nature, it was conducted on an HPC called ARCHIE-WeSt 

using an Intel Xeon Gold 6138 Skylake series processor. The single node of this processor 

consisted of 40 cores. The numerical data was exported to ParaView 5.10.1 for visualisation 

and MATLAB 2022a for post-processing.  
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6.2 MSMD battery model 
 

The multi-domain and multi-physics nature of Li-ion battery cells makes accurate 

modelling extremely challenging – the unique physics of batteries due to different length 

scales makes the problem convoluted [168]. During the thermal analysis of Li-ion batteries, 

the objective was to determine the heat generation, heat dissipation, and temperature 

distribution at the battery length scale. Moreover, the transport of ions occurs at the anode, 

cathode and separator layers, whereas transport in the active material occurs at the atomic 

level [169, 170]. Therefore, the MSMD battery model was utilised to simulate the physics 

throughout each domain of a battery cell. The MSMD battery model, in conjunction with 

Newman’s pseudo-two-dimensional (P2D) model, is an electrochemical-thermal model 

coupled with mass, charge, energy conservation, and electrochemical kinetics. This results 

in a comprehensive model for accurately evaluating the thermal behaviour of a battery cell 

[84].  

The Butler-Volmer equation is used to define the local charge due to current density 

[169] 

𝑗𝑛 = 𝑗0 {𝑒𝑥𝑝 (
𝛼𝑎𝐹

𝑅𝑇
𝜂) − 𝑒𝑥𝑝 (

𝛼𝑐𝐹

𝑅𝑇
𝜂)} 

 

(6.1a) 

 

where 𝑗𝑜 and 𝜂 are defined by 

𝑗0 = 𝐹𝑘0𝑐1
𝛼𝑎(𝑐𝑠,𝑚𝑎𝑥 − 𝑐𝑠,𝑠𝑢𝑟𝑓)

𝛼𝑎
𝑐𝑠,𝑠𝑢𝑟𝑓

𝛼𝑐  (6.1b) 

 

𝜂 = 𝜙𝑠 − 𝜙𝑒 − 𝑈𝑒𝑞 (6.1c) 

 

Ohm’s law as a function of current and potential gradients describes the charge 

conversation. Therefore, the transfer of ions in the electrolyte can be expressed using the 

Nernst-Planck equation [169]. 

𝜕

𝜕𝑥
(𝑘𝑒

𝑒𝑓𝑓 𝜕

𝜕𝑥
𝜙𝑒) +

𝜕

𝜕𝑥
(𝑘𝐷,𝑒

𝑒𝑓𝑓 𝜕

𝜕𝑥
𝑙𝑛(𝑐𝑒)) + 𝑗𝐿𝑖 = 0 

 

(6.2) 

 

whereas the change in the solid domains is restricted to Ohm’s law. 

𝜕

𝜕𝑥
(𝑘𝑠

𝑒𝑓𝑓 𝜕

𝜕𝑥
𝜙𝑠) = 𝑗𝐿𝑖 

 

(6.3) 
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Finally, heat generation due to electrochemical reactions within Li-ion batteries can be 

summarised into three primary sources [84]: an electronic-ohmic heat source, 𝑆𝑒, a reaction 

current heat source, 𝑆𝑟, and an ion-ohmic heat source, 𝑆𝑖. These three sources are defined in 

Eq. (6.4). 

𝑆𝑒 = 𝐼2
𝑅𝑐

𝐴
, (6.4a) 

𝑆𝑟 = 𝐴 ∫ 𝑗𝐿𝑖(𝜙𝑠 − 𝜙𝑒 − 𝑈𝑒𝑞)𝑑𝑥,

𝑥+𝑑𝑥

𝑥

 (6.4b) 

𝑆𝑖 = 𝐴 ∫ [𝜎𝑠
𝑒𝑓𝑓 (

𝜕𝜙𝑠

𝜕𝑥
)

2

+ 𝑘𝑠
𝑒𝑓𝑓 (

𝜕𝜙𝑒

𝜕𝑥
)

2

+ 𝑘𝐷,𝑒
𝑒𝑓𝑓 (

𝜕𝑙𝑛(𝑐𝑒)

𝜕𝑥
) (

𝜕𝜙𝑒

𝜕𝑥
)] 𝑑𝑥.

𝑥+𝑑𝑥

𝑥

 

(6.4c) 

 

The battery cell parameters used during analysis are shown in Table 6-1, which can be 

found in Refs. [171, 172] or are based on the 85 kW Tesla Model S battery specifications 

[111]. 

Table 6-1 – Battery cell parameters. 

Battery type Samsung 26FM-PCB 18650 Li-ion battery 

Nominal battery cell capacity 2600 mAh 

Nominal supply voltage 3.6V 

Maximum charge voltage 4.2V 

Minimum discharge voltage 2.2V 

C-Rate 1C 

 

6.3 Comparison at the forcing frequency 
 

The numerical data is analysed in the frequency domain using the FFT function in 

MATLAB 2022a. The dynamic thermal response of the battery cell is predicted by 

comparing the amplitude of the output signal and the forcing frequency. This comparison is 

conducted by first normalising the Nusselt number temporals using Eq. (6.5). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(𝑁𝑢(𝑡)) =
𝑁𝑢(𝑡)

𝑁𝑢
 

 

(6.5) 

 

where 𝑁𝑢(𝑡) is the Nusselt number at the current time and 𝑁𝑢 is the time-averaged Nusselt 

number. The amplitude at the forcing frequency was found using the following relation. 
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𝑎𝑚𝑝(𝑓) = |𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑(𝑁𝑢(𝑡))| 

 

(6.6) 

 

Moreover, cross-correlation was used measure the time delay between the output and the 

input signal. The time delay was then non-dimensionalised [122], 

𝑛𝑑𝑑 =
𝑡𝑑

𝐿𝑐/𝑢
 

 

(6.7) 

 

where 𝑛𝑑𝑑 is the non-dimensional delay, and 𝑡𝑑 and 𝐿𝑐 are the cross-correlation time delay 

and the length from the fluid inlet to the battery cell, respectively. The phase difference of 

the signal at the forcing frequency (in radians) was found using 𝑡𝑑. 

𝑝ℎ𝑎𝑠𝑒 = 2𝜋𝑓𝑡𝑑 

 

(6.8) 

 

However, during analysis, the non-dimensional delay was used to show the phase. 

6.4 Grid independency study 
 

The mesh on the entire model is made using an unstructured triangular method. Figure 

6-2 shows that the fluid domain is split into two zones – a far field zone and a wake region 

– for greater mesh control. A larger cell size of 0.004m is used in the far field to reduce the 

overall number of cells, thus, saving computational resources without impacting the 

accuracy of the numerical model. In the wake region, a finer mesh was used to model fluid 

flow accurately and the formation of vorticities, improving the numerical analysis. Eight 

tests were performed at a fixed Re of 4,000, as shown in Table 6-2. The cell size was 

systematically varied to determine the overall grid with the best accuracy and minimal 

computational impact. Once the Nu of the battery cell’s surface fell within a band of one 

percent, the grid independency would be achieved. As evident from Table 6-2, as the cell 

size is decreased, the absolute change in Nu decreases. As a result, a cell size of 0.0015 was 

chosen to optimise the numerical performance of the model further. 
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Table 6-2 – Grid Independency Tests. 

 Cell size (m) Number of cells Absolute change in Nu 

(%) 

Test 1 0.01 107,525 --- 

Test 2 0.008 178,881 8.98 

Test 3 0.006 232,937 8.21 

Test 4 0.004 411,117 4.99 

Test 5 0.003 693,852 1.89 

Test 6 0.002 903,522 1.05 

Test 7 0.0015 1,978,946 0.88 

Test 8 0.001 6,803,577 0.20 

 

6.5 Validation study 
 

The validation study was conducted by comparing against existing numerical and 

experimental data. Three types of validation studies were carried out: steady validation, 

unsteady validation, and battery model validation. For the first study, the battery cell was 

fixed, and the coolant fluid and fluid velocity were systematically varied. Vibration was 

introduced on the battery cell in the second study. The MSMD battery model was activated 

during the final study. The outcomes of the three validation studies can be seen in Figures 

6-3, 6-4, and 6-5, respectively. A comparison of the numerical model against the empirical 

correlations by Churchill and Bernstein [123] and Hilpert [125] with the fluid type being air, 

is shown in Figure 6-3a. When the value of Re is in the laminar range, the numerical model 

yields excellent agreement with the correlations. As the value of Re increased, the error also 

increased, with the highest error being 8.18% at a Re of 20,000. However, the highest error 

from Figure 6-3a is still within acceptable error margins since the correlations have errors as 

high as 20% [123]. Additionally, the simulated drag coefficient, 𝐶𝑑, was compared against 

the experimental data by Patel [124]. At a Re of 3,900 and the fluid being air, the simulation 

produced a value of 0.9115, whereas the experimental data reached 0.93 ± 0.005, an error of 

less than two percent. 

The comparison of the water numerical model against the empirical correlation by 

Churchill and Bernstein [123] and the experimental data by Whitaker [126] are shown in 
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Figure 6-3b and 6-3c, respectively. As anticipated, at low values of Re, the current 

simulation model and the numerical/experimental data yield similar values. In Figure 6-3b, 

the most significant error of 7.62% was found at a Re of 8,000 and 10,000. The experimental 

comparison found the most significant error of 3.72% at a Re of 2,000. Additionally, in 

Figure 6-3c, all errors were below four percent. 

 

 

Figure 6-3 – Steady validation study. a) air model vs Refs. [123, 125], b) water model vs 

numerical data [123], and c) water model vs experimental data [126]. 

 

The unsteady validation study is shown in Figure 6-4, where Fiure 5-4a and 5-4b 

compare the mean drag coefficient, 𝐶𝑑, against the frequency ratio and the mean Nu against 

the vibrational amplitude, respectively. The movement of the cylinders are captured using a 

re-mesher – during each timestep, the cylinder moves according to the set modulation 
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amplitude and frequency. During each movement, the mesh is regenerated around the 

cylinder using the controls mentioned in Section 6.4. This allows for enhanced accuracy by 

ensuring that the mesh cells stay the same. Here, the frequency ratio, 𝐹, is the ratio of the 

forced oscillation frequency, 𝐹0, and the Strouhal frequency, 𝐹𝑠 – 𝐹 = 𝐹0/𝐹𝑠. At 𝐹 = 0, the 

vibration is zero, Placzek et al. [173] provide an 𝐶𝑑 value of 1.37, whereas the simulated 𝐶𝑑 

was found to be 1.35, leading to an error of 1.45%. At an 𝐹 = 0.9, 𝐹 = 1.0, and 𝐹 = 1.1, 

the most significant error of 4.85% is found at a frequency ratio of 1.0. In Figure 6-4b, the 

dimensionless vibrational amplitude is defined as the vibrational amplitude divided by the 

inlet velocity. At 𝑉𝑎𝑚𝑝 = 0, no vibration, Karanth et al. [174] state a Nusselt number of 8.47, 

where the numerical model achieves 8.44, leading to an error of just 0.35%. The minute error 

at no vibration is expected due to the low value of Re, as evident from the steady validation 

in Figure 6-3a. Once the vibration is activated, the error increases but remains small, with 

the highest error being 0.45% at 𝑉𝑎𝑚𝑝 = 0.5 against Fu and Tong [175]. 

 

Figure 6-4 – Unsteady validation study. a) mean drag coefficient vs Ref. [173], b) mean 

Nusselt number vs Refs. [174, 175]. 

 

The MSMD and the Newman P2D battery model validation is shown in Figure 6-5. 

Comparing the average battery surface temperature at two different discharge rates of the 

simulated model and the data presented by Shukla et al. [69] are in close agreement. The 

most significant error of 2.9% is found in the 2C comparison; however, this error is reduced 

as the simulation progresses to a full battery discharge. 
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The rigorous validation studies and the excellent agreement amongst the simulated 

results and the empirical correlations, numerical and experimental data of the two fluids 

confirm the validity of analysis in this study. 

 

Figure 6-5 – Battery model validation. Cylindrical battery surface temperature at 

discharge rates of 1C and 2C vs Ref [69]. 

 

6.6 Computational optimisation 
 

Numerical simulations of a turbulence model with a refined mesh can be a 

computationally expensive task. Further, including the MSMD and the Newman P2D 

models with vibrational loads makes the simulations exceptionally computationally 

demanding. This might be the reason for a lack of CFD investigations on this problem. 

Hence, computational optimisations are of utmost importance. Therefore, the MSMD and 

the Newman P2D battery models were run alone, and the consequent temperature and heat 

generation data was exported into a CHT model. Furthermore, three-dimensional and two-

dimensional simulations were conducted and compared. The former results are shown in 

Figure 6-6a, where both simulations were run at a Re of 2,300, with water as the coolant 

fluid, a vibrational amplitude of 30 mm/s, and a vibrational frequency of 10 Hz. It can be 

clearly observed that importing the thermal data from the battery model simulations has an 

insignificant impact on the Nusselt number. However, the computational resources are 

significantly improved by eliminating the battery models. In Figure 6-6a, an error of 0.7% 

was found at the peaks and troughs of each modulation. Furthermore, comparing the 

amplitudes of the battery model on vs off simulations leads to an error of 16.7%. However, 
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removing the battery models from the simulation always underestimates the Nusselt number, 

making the errors acceptable at the gain of significantly improving the computational costs. 

The comparison of the three and two-dimensional models is shown in Figure 6-6b, where it 

can be seen that there is little to no difference between the two models. Therefore, a two-

dimensional CHT model was used to optimise the computational resources during the 

numerical analysis. 

 

Figure 6-6 – Computational optimisation. a) MSMD battery model on vs internal heat 

generation, b) 3D vs 2D simulation. Fluid Type: Water, 𝑎 = 30𝑚𝑚/𝑠, 𝑓 = 10𝐻𝑧. 
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6.7 Results and discussion 
 

This section discusses the dynamic thermal response of a battery cell to sinusoidal 

vibrations (see section 6.1). Here, we consider the cooling of a vibration battery cell as a 

single-input, single-output (SISO) dynamic model, where the input is the vibration 

(represented by its’ frequency and amplitude) and the average Nusselt number around the 

battery cell is the output. The Nusselt number is computationally calculated, and the linearity 

of the thermal dynamic model is then evaluated. This determines if the system dynamics can 

be predicted using the classical frequency response approach as a cost-effective method. In 

general, Fourier Transforms can decompose any capricious temporal disturbances into a 

sequence of sinusoidal components. Given a linear system, the dynamic output of the system 

can be easily determined by adding the sinusoids together [128]. Therefore, understanding 

the system response to temporal disturbances is vital to predicting the system response to 

any fluctuation imposed on the battery cell due to mechanical vibration.  

The spatiotemporal response of the flow temperature to a sinusoid vibration on the 

battery model is shown in Figure 6-7. This figure corresponds to an air flow with a Re of 

6,300, with a forcing vibration frequency of 10 Hz and amplitude of 50 mm/s. Figure 6-7 

depicts a typical flow-over-cylinder scenario as high-velocity air flows over the battery cell, 

generating a Karman Street vortex behind it. Due to the chosen model parameters shown in 

Figure 6-2b, vortex shedding occurs without introducing vibration into the model. However, 

the vortex shedding becomes stronger once vibration is activated. The positional changes of 

the battery cell are not visually observable in Figure 6-7 due to the minuscule vibrational 

amplitudes. Therefore, for further clarification, Figure 6-8 shows the temporal evolution of 

the flow streamlines. 

In Figure 6-8, the black cross represents the centre of the battery cell, whereas the red 

cross is a fixed point in the domain with (x, y) coordinates of (0, 0). Figure 6-8 shows an 

apparent positional change of the battery cell due to vibration. The battery cell travels a 

maximum distance of 2.7 mm in this figure, as expected from the literature [70]. Further, 

changes in the flow field can be clearly observed with the evolution of the sinusoid. At 0o, 

large recirculation zones in the wake of the battery cell can be clearly seen. As the sinusoid 

progresses to 90o, the battery cell travels upwards. During this movement, the cell’s surface 

presses the fluid at the top of the battery cell. As a result, the fluid at the bottom of the cell 

replenishes the vacant space caused by the movement. At 180o, a mirror image of the 0o 

streamline snapshot can be observed due to the batter cell’s downward action before reaching 

the sinusoid’s trough. From 90o to 180o, the pressing of the fluid by the battery cell is relaxed, 
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and the oncoming flow replenishes the vacant space left behind by the downward movement 

of the battery cell. As the sinusoid progresses to 270o from 180o, the recirculation zone 

behind the battery cell is shed. The vortex shedding continuously occurs, forming a wave-

like motion in the wake, as evident from Figure 6-7. The state of the wake is dominated by 

the behaviour of the battery cell due to vibration and vortex shedding. 

 

Figure 6-7 – Temperature field spatiotemporal due to a temporal sinusoidal vibration on 

the battery cell. Fluid Type: Air, 𝑎 = 50𝑚𝑚/𝑠, 𝑓 = 10𝐻𝑧. 
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Figure 6-8 – Streamline spatiotemporal exposed to a temporal sinusoidal vibration on the 

battery cell. Fluid Type: Air, 𝑎 = 50𝑚𝑚/𝑠, 𝑓 = 10𝐻𝑧. Where + is the centre of the 

circle and × is fixed point with coordinates (0,0). 

 

6.7.1 Air 
 

The temporal response of the Nusselt number and the spectral response with a 

modulation frequency of 10 Hz and the coolant fluid being air is shown in Figure 6-9. The 

battery cell thermal response shown in Figure 6-9a indicates that the Nusselt number 

represents a sine wave with many other additional frequencies; however, the overall shape 
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of the response is that of a typical sine wave. As the modulation amplitude is increased, the 

amplitude of Nu also increases, which is an expected response since crossflow disturbances 

destabilise the flow around the battery cell, increasing the radial mixing of the fluid [176]. 

Increasing the vibrational amplitude aids in expelling heat from the surface of the battery 

cell, improving the overall heat transfer. This behaviour is also confirmed by Figure 6-4, 

where increasing the modulation amplitude led to higher values of the average Nusselt 

number. A classical indicator of a linear system is an equal response from the FFT and the 

excitation frequency [129]. In Figure 6-9b, the most decisive response in the spectra is given 

at one hertz, whereas the forcing frequency is ten hertz. Additionally, two frequency 

responses, one at six and another at twelve hertz, are circled in Figure 6-9b. These two 

frequencies were present in the model before vibrations were introduced. They are caused 

by vortex shedding, which disturbs the flow as it travels over the battery cell, causing the 

Nusselt number output to appear sinusoidal. This phenomenon has been visualised and 

described in previous studies [174, 175, 177].  

Figure 6-10 shows the Nusselt number temporal response and FFT with air as the coolant 

fluid and a forcing frequency of 20 Hz. It can be observed that the response shown in Figure 

6-10a far better represents a sine wave compared to the response shown in Figure 6-9a. 

Nevertheless, the Nu response shown in Figure 6-10a only illustrates two complete waves, 

clearly indicating a nonlinear response. The spectra response further confirms this 

observation, as Figure 6-10b shows. Most importantly, unlike the response shown in Figure 

6-9b, the twelve-hertz pre-existing frequency gives the most decisive response. Furthermore, 

the spectral response also reveals an increase in the battery cell’s surface-average Nu 

response as the vibrational amplitude is increased from 30 mm/s to 50 mm/s. The temporal 

and spectral response of Nu at a modulation frequency of 30 Hz with air as the coolant fluid 

is shown in Figures 6-11a and 6-11b, respectively. Much like the response shown in Figure 

6-10, the spectral response of Figure 6-11 also clearly indicates nonlinearity. Thus, 

increasing the forcing frequency from 20 to 30 Hz led to little change in the heat transfer 

behaviour. Changing the modulation frequency from 10 to 20 Hz drastically changed the Nu 

response and the spectra. 

Nevertheless, systematically increasing the modulation frequency from 10 to 30 Hz with 

air as the coolant, the thermal response of the battery cell always appears strongly nonlinear, 

as shown in Figures 6-9, 6-10, and 6-11. The spectra of these modulation frequencies 

indicate that the excitation frequency never dominates the frequency response, and all 

harmonics occur below the excitation frequency. Additionally, the spectral response at the 
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modulation frequencies of 20 and 30 Hz clearly shows that the frequencies present before 

introducing vibration dominate the system heat transfer dynamics. Later, another method of 

assessing the system linearity will be put forward. 

 

Figure 6-9 – a) Temporal evolution of Nusselt, b) Spectral response of Nusselt number. 

Fluid Type: Air, 𝑓 = 10𝐻𝑧 (𝑆𝑡 = 0.16). 
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Figure 6-10 – a) Temporal evolution of Nusselt number, b) Spectral response of Nusselt 

number. Fluid Type: Air, 𝑓 = 20𝐻𝑧 (𝑆𝑡 = 0.32). 
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Figure 6-11 – a) Temporal evolution of Nusselt number, b) Spectral response of Nusselt 

number. Fluid Type: Air, 𝑓 = 30𝐻𝑧 (𝑆𝑡 = 0.48). 

 

6.7.2 Water 
 

The surface-averaged battery cell Nusselt number and the corresponding FFT response 

at the forcing frequencies of 10, 20, and 30 Hz, where the cooling fluid is water, are shown 

in Figures 6-12, 6-13, and 6-14, respectively. In Figure 6-12a, the Nusselt number response 
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of the 30 mm/s amplitude is representative of a typical sine wave. However, as the amplitude 

is increased, the Nu response shifts away from a sine wave, stipulating a multi-harmonic 

response. This shift is further evident from the FFT response shown in Figure 6-12b. 

Although the 30 mm/s amplitude shows a double harmonic response, the second peak is 

insignificant compared to the first; thus, the thermal response can be approximated as a linear 

dynamic system. However, the same cannot be said about the other two modulation 

amplitudes. From Figure 6-12a, although the Nu response of the 40 mm/s amplitude is 

representative of a typical sine wave, the spectral response depicts a double harmonic 

response. Further, the second peak in the 40 mm/s amplitude FFT response is not 

insignificant, indicating a mildly nonlinear system. Moving on to the Nu response from the 

50 mm/s amplitude clearly shows deviation from a sine wave, depicting a strong nonlinear 

response. This is evident from the spectral response of the 50 mm/s modulation amplitude 

in Figure 6-12b, showcasing a triple harmonic output. Further, the substantial spectral 

amplitudes shown in Figure 6-12b compared to the air results are due to the significant 

differences in the thermophysical properties of the two fluids. The heat capacity of water is 

significantly larger than that of air; therefore, water can retain far larger quantities of heat 

before experiencing an increase in temperature, allowing for a larger Nusselt number output, 

as observable from Figure 6-12a. 

The response of the 30 mm/s modulation amplitude in Figure 6-13b, where the 

modulation frequency is 20 Hz, continues to offer a linear response. However, the mildly 

nonlinear response of the 40 mm/s amplitude in Figure 6-12b is no longer a valid observation 

for Figure 6-13b due to the growth of the second and the appearance of a third harmonic. 

Therefore, the 40 mm/s amplitude response in Figure 6-13b is nonlinear. Further, the Nu 

response of the 40 mm/s amplitude in Figure 6-13a can be clearly seen to deviate from a 

typical sine wave. Simultaneously, the nonlinear response of Nu of the 50 mm/s amplitude 

has become more substantial compared to the response shown in Figure 6-12. This is further 

evident by the spectral response, which continues to be completely nonlinear. From Figure 

6-13b, the FFT response of the 50 mm/s amplitude shows that the first and second harmonics 

are almost equal, the third harmonic is moderately stronger than Figure 6-12b, and a fourth 

harmonic is present. This behaviour is further amplified in Figure 6-14, where the forcing 

frequency is 30 Hz. The 30 mm/s amplitude continues to be linear. The nonlinearity has 

increased in the 40 mm/s amplitude response due to the growth of the second and third 

harmonics. However, in the 50 mm/s amplitude response, substantial growth in the second, 

third, and fourth harmonics amplifies the nonlinear response. Moreover, the excitation 
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frequency of 30 Hz no longer dominates the dynamic response; instead, the strongest spectral 

response is given at a frequency of 60 Hz. 

 

 

Figure 6-12 – a) Temporal evolution of Nusselt number, b) Spectral response of Nusselt 

number. Fluid Type: Water, 𝑓 = 10𝐻𝑧 (𝑆𝑡 = 8). 
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Figure 6-13 – a) Temporal evolution of Nusselt number, b) Spectral response of Nusselt 

number. Fluid Type: Water, 𝑓 = 20𝐻𝑧 (𝑆𝑡 = 16). 
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Figure 6-14 – a) Temporal evolution of Nusselt number, b) Spectral response of Nusselt 

number. Fluid Type: Water, 𝑓 = 30𝐻𝑧 (𝑆𝑡 = 24). 
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6.7.3 Lissajous Patterns 
 

The findings presented in sections 6.7.1 and 6.7.2 are further supported by the Lissajous 

Patterns (phase portraits) of the normalised Nusselt number against the normalised input 

signal for air and water, as shown in Figures 6-15 and 6-16. Other studies have used phase 

portraits to determine the linearity of system dynamics [122, 133]. The dynamic system can 

be deemed linear if the phase portraits depict an axisymmetric response [134]. However, any 

deviation from symmetry would result in the system dynamics being mildly or strongly 

nonlinear. From Figure 6-15, none of the nine phase portraits show signs of symmetry, 

confirming that the spectral response of the air shown in Figures 6-9, 6-10, and 6-11 are 

completely nonlinear. 

However, moving to the water results, some figures in Figure 6-16 show signs of 

symmetry. A ‘butterfly’ effect can be observed in Figures 6-16a, 6-16d, and 6-16g; however, 

these figures do not show perfect symmetry due to a minor second harmonic in their 

respective spectra. Nevertheless, the minor deviation causing the asymmetric behaviour can 

be safely ignored, and the system dynamics can be approximated as linear. Further, Figures 

6-16b, 6-16e, and 6-16h correspond to the modulation amplitude of 40 mm/s at 10, 20, and 

30 Hz, respectively. Figure 6-16b shows minor signs of symmetry in line with its spectral 

response, resulting in a mildly nonlinear case. However, Figures 6-16e and 6-16h show 

slightly larger signs of asymmetry, indicating a nonlinear response as shown by their 

respective spectral responses. Although Figures 6-16c, 6-16f, and 6-16i may seem 

axisymmetric, the numerical analysis presents no signs of symmetry, resulting in a strongly 

nonlinear response. Unlike linear cases, the dynamics of nonlinear systems cannot be 

straightforwardly or quickly predicted using simple control engineering methods – i.e. 

transfer functions [176]. In most cases, high-order modelling is necessary to predict these 

dynamics, which are computationally very demanding. Therefore, identifying conditions of 

nonlinear system dynamics is crucial for effective BTMSs. 

 



Chapter 6. Harmonic axial vibrations of a Li-ion battery cell 

104 | P a g e  

 

 

Figure 6-15 – Lissajour Patterns (Phase portraits). Fluid type: Air. 𝑓 =  10𝐻𝑧 a) 𝑎 =

 30𝑚𝑚/𝑠, b) 𝑎 =  40𝑚𝑚/𝑠, c) 𝑎 =  50𝑚𝑚/𝑠; 𝑓 =  20𝐻𝑧 d) 𝑎 =  30𝑚𝑚/𝑠, e) 𝑎 =

 40𝑚𝑚/𝑠, f) 𝑎 =  50𝑚𝑚/𝑠; 𝑓 =  30𝐻𝑧 g) 𝑎 =  30𝑚𝑚/𝑠, h) 𝑎 =  40𝑚𝑚/𝑠, i) 𝑎 =

 50𝑚𝑚/𝑠. 
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Figure 6-16 – Lissajour Patterns (Phase portraits). Fluid type: Water. 𝑓 =  10𝐻𝑧 a) 𝑎 =

 30𝑚𝑚/𝑠, b) 𝑎 =  40𝑚𝑚/𝑠, c) 𝑎 =  50𝑚𝑚/𝑠; 𝑓 =  20𝐻𝑧 d) 𝑎 =  30𝑚𝑚/𝑠, e) 𝑎 =

 40𝑚𝑚/𝑠, f) 𝑎 =  50𝑚𝑚/𝑠; 𝑓 =  30𝐻𝑧 g) 𝑎 =  30𝑚𝑚/𝑠, h) 𝑎 =  40𝑚𝑚/𝑠, i) 𝑎 =

 50𝑚𝑚/𝑠. 

 

6.7.4 Forcing frequency approach 
 

The classical frequency response approach can be used to predict the system dynamics 

of linear or mildly nonlinear cases – given information on the amplitude and phase of the 

dynamic response [128]. The concept of frequency response is often used for SISO systems. 

In the present chapter, the vibrational disturbance is used as the single input, and the 

oscillating Nusselt number response is the single output. Therefore, the amplitude at the 

forcing frequency and the non-dimensional delay (phase response) are calculated and shown 

in Figures 6-17a and 6-17b, respectively. It should be noted that since the air cases always 
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have a strong nonlinear response with many harmonics, only the frequency response of the 

water cases is presented. Figure 6-17a shows that as the modulation frequency increases, the 

amplitude at the forcing frequency decreases. This stipulates that the system is more 

responsive to lower modulation frequencies, which aligns with previous studies’ findings 

[122, 131], where the fluid flow was excited and featured a stronger response at lower 

frequencies. Conventionally, lower excitation frequencies give the system sufficient time to 

respond to any disturbance, leading to a more substantial amplitude output. Moreover, the 

large amplitude can also be attributed to water’s significantly large thermal conductivity and 

capacity, as evident from Figures 6-12, 6-13, and 6-14. Thus, for a given disturbance, water-

cooled systems must experience significant variations in the convection coefficient, resulting 

in larger amplitudes in the frequency response.  

Additionally, from Figure 6-17b, the non-dimensional delay decreases as the modulation 

frequency increases. This also follows the pattern presented by previous studies [122, 131]. 

The diminishing delay with increasing frequency is due to the available time between the 

vibration occurring and the ability of the fluid to draw heat away from the battery cell 

becoming significantly shorter – shorter wavelength frequencies do not allow the fluid-

thermal reaction to complete as the frequency is increased.  

 

 

Figure 6-17 – Forcing frequency comparison, a) Amplitude response at the forcing 

frequency, and b) Phase response. Fluid Type: Water. 
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6.8 Conclusions 
 

EV battery modules/packs are exposed to mechanical vibrations due to numerous 

environmental and driving factors, which renders their thermal response inherently unsteady. 

Therefore, effective BTMSs require the ability to predict a battery cell’s temperature, which 

is conventional for linear systems through the classical frequency response approach (e.g. 

transfer functions). However, such methods become obsolete for systems featuring nonlinear 

dynamics. Thus, determining the condition under which the battery cooling dynamics feature 

linear or nonlinear responses to vibrational modulation is essential. In this chapter, the 

single-cell system response to vibrational loads was numerically examined by evaluating the 

surface-averaged Nusselt number of a battery cell. The results of the two fluids, air and 

water, were analysed in the time and frequency domains and evaluated using phase portraits. 

The vibrational input and the heat transfer output were considered as a SISO system to 

determine the applicability of the classical frequency response method. The key findings are 

summarised below. 

• The thermal system response is always nonlinear for all air cases, with the 

dominating frequency never being the excitation frequency. 

• The thermal system response can be approximated as linear for cases with water 

at low modulation amplitudes. The phase portraits display a ‘butterfly’ pattern 

for such cases. 

• As the excitation frequency is increased for the water cases, the second and third 

harmonic response is slightly amplified, increasing their nonlinearity. This can 

be clearly observed by comparing the 30 mm/s response at 10 and 20 Hz. 

• High-frequency temporal modulations generate a strong nonlinear response. This 

can be explained by the significant disturbance of the oncoming flow due to the 

high modulation speed. This causes increased radial mixing, impacting the 

battery cell heat transfer. 

• The classical frequency response method (transfer functions) can be utilised to 

predict heat transfer dynamics. However, this method only applies to water cases 

as they feature a linear response at low-amplitudes (i.e. 𝑎 < 50 𝑚𝑚/𝑠). 

It remains a future task to develop low-order models for predicting the thermal behaviour 

of nonlinear system dynamics and to integrate the findings of this chapter into a BTMS. 
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Chapter 7. Conclusions and future work 

 

The current work has studied the heat transfer dynamics of battery cells/modules that can 

influence the effectiveness of a BTMS which are crucial for maintaining the battery cells 

within their optimal temperature range. This is important because their operational 

temperature directly impacts the battery cell’s performance. Vehicle manoeuvres and driving 

patterns differ from user to user, directly impacting the thermal characteristics of the battery 

cells. Therefore, effective thermal control of batteries is essential for EVs to gain further 

popularity and outgrow the traditional ICE vehicle market. 

One method is to use predictive tools such as transfer functions as a cheap and effective 

method of modelling the battery's thermal behaviour. However, such predictions are 

effortless for linear systems and become laborious and complicated for any real system 

exhibiting a measure of nonlinearity larger than 10%. Therefore, it is essential to determine 

conditions in which the battery cells will feature linear or nonlinear thermal dynamics due 

to unsteady temporal disturbances. 

RANS-based numerical simulations coupled with the energy equation were carried out 

for battery cell/module under unsteady loads. The realisable 𝑘 − 𝜖 model was employed for 

enhanced model accuracy. When the inlet fluid was set to air, the ideal gas model was used. 

The model was switched to constant density for water and nanofluids. All models and 

equations utilised within the numerical simulations were discretised using the second-order 

upwind scheme, and the PIMPLE algorithm was used to solve for the velocity-pressure 

coupling. Due to the significance of the fluid flow, the impact of natural and forced 

convection was compared, and all gravitational effects were ignored. The current work was 

thoroughly validated against numerous empirical correlations and numerical and 

experimental data. The close agreement between the simulated results and the data 

mentioned earlier confirmed the analysis presented in this thesis.  

7.1 Summary of conclusions 
 

Considering the temporal modulation imposed on the battery cell’s surface heat flux, the 

resultant Nusselt number response was analysed in the time and frequency domains. The 

results showed that the convective heat transfer dynamic response remains linear at low 

modulation amplitudes (𝑎 = 10%) for all coolant fluids. Disturbances featuring low 

amplitude of modulation and short duration lead to linear conditions, which could be 

predicted using transfer function. As the modulation amplitude was increased (𝑎 = 30% or 
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𝑎 = 60%), the surface-averaged Nusselt number became mildly nonlinear or strongly 

nonlinear dependant on the coolant fluid. Low frequencies, such as 𝑓 = 0.25 𝐻𝑧, tend to 

generate a strong nonlinear response due to the prolonged time available for the fluid 

dynamic and heat transport interactions to occur. However, as the excitation frequency was 

increased, the measure of nonlinearity decreased. 

Furthermore, the system response of a battery module under high strain due to extreme 

thermal loads being imposed on the battery cells was also investigated. The average surface 

battery cell temperature was quantitively examined. The analysis revealed that when using 

air as the coolant fluid, all the ramp cases produce an overshoot in the temperature temporals. 

Additionally, the air cases also produce high values of the settling time than the water cases. 

The ramp duration directly impacts the response of each case – this is to say that regardless 

of the coolant fluid, a ramp duration of 5 seconds (NYCC1) will always produce the highest 

value of settling time. As expected, water is far better at achieving cooler battery cell 

temperatures, while also minimising the cell-to-cell temperature difference. When 

comparing the heating or cooling time of the two coolant fluids, water produces a more 

horizontal trend line, whereas air produces a vertical trend line. This difference in the trend 

lines is due to the difference in the two fluids thermophysical properties. The significantly 

larger heat capacity of water allows it to retain higher quantities of heat before experiencing 

an increase in its temperature. Comparing the SC03 single-cycle segment, water reacts 

almost 34% faster to the temporal changes in the internal heat generation than air. 

Finally, EV battery packs are exposed to mechanical vibrations during operation, making 

their thermal response unsteady. Although the vibrations are random, they are primarily 

influenced by the vehicle's suspension system and settings and reside in the 10 to 30 Hz 

range. The spectra response revealed that air cases always display strong nonlinearity, and 

the dominating response is never at the forcing frequency. The system dynamics of water at 

low modulation amplitudes can be approximated as linear. However, as the excitation 

frequency is increased, the nonlinear response is amplified, and the system deviates from 

linearity. Further, high-frequency (30 Hz) temporal disturbances generate the strongest 

nonlinear response. The classical approach of frequency response – such as transfer 

functions – can be used to predict the system heat transfer dynamics; however, such 

predictions are only limited to the water cases at low amplitudes as they feature a linear 

response (𝑎 < 50 𝑚𝑚/𝑠). 
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7.2 Recommendations of future work 
 

This work investigated the thermal response of battery cells/modules to various unsteady 

disturbances. Since the process of heat generation and transfer of Li-ion battery cells is 

complex, there are numerous ways to enhance the effectiveness of battery thermal 

management systems and further push the use of EVs to combat the global climate impact. 

Further, BTMS is still immature, with the biggest research boom being conducted in the last 

decade. Therefore, some suggestions for future work are put forward. 

1. The nanofluids modelling was simplified and treated as a single-phase liquid to 

save on computational resources. Modelling nanofluids using a liquid and solid 

phase is far more representative of their true nature. Further, the impact of having 

metallic particles near batteries may cause magnetic coupling. This would result 

in a far more comprehensive nanofluid investigation. Further, the influence of the 

direct flow of nanoparticles over a battery module can also be analysed. 

 

2. The flow rate of the coolant fluid could be linked directly to the temperature of 

the battery cells making the BTMS an active control system. The control system 

would monitor each battery cell and the cell-to-cell temperature difference and 

take measures to prevent over or under-cooling of the battery cells. The response 

time of the coolant system to temporal changes could benefit from an active 

control system. 

 

3. The vibrational study was only conducted on a single battery cell. This could be 

further expanded to include numerous cells under synchronous or asynchronous 

motion. Previous works have studied the fluid dynamics of asynchronous motion 

of tandem cylinders [178, 179]. The methodology of these studies can be 

replicated to find the thermal impact on tandem battery cells. Moreover, the 

vibration direction could be changed from longitudinal to transverse (vibration 

in x-direction), after which multi-degrees of freedom can be introduced so that 

the battery cells can vibrate diagonally. 

 

4. The problems investigated throughout this thesis could be combined into a single 

problem. An example would be a battery module in which the cells are under 

vibration and unsteady thermal loads due to extreme power draw. The resultant 

Nusselt number would be analysed in the time and frequency domain. The 

analysis would then be compared against the results shown in Chapters 4 and 6.  
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5. Finally, the results of all studies conducted throughout this thesis could be 

combined and integrated into a BTMS. The results could also be used to develop 

low-order models that predict the nonlinear system dynamic response of heat 

transfer to unsteady inputs. 
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Appendix 

Appendix A – Post-processing code 
 

 A1 – FFT 
 

% FFT analysis of battery analysis under fluctuationg loads 
% Written by: Ali Saeed - 2140637 
% Writing start date: 17/05/20 
 
% Clear variables, workspace and close all open windows 
clear 
clc 
close all 
% Store all variables with 32 bit precision 
format long; 
 
allfolders = dir('C:\Users\aligs\Desktop\MATLAB\Fres'); %Main folder for all 
case files 
for k = 3:length(allfolders) %Starts from real folders by point 3 
    myfolder = allfolders(k).name; %Finds the name of the folder 
    myfolder = fullfile(allfolders(k).folder,myfolder);%Finds full file 
name/file path 
    cd(myfolder)%change directory to main folder 
    sub = strcat(myfolder,'\T'); %Add \T to original file name 
    cd(sub) %Enter one of the Folders 
    csvfiles = dir('*.csv'); %Read CSV Files 
     
    for file = csvfiles' %Loop over all CSV Files 
        fprintf(1,'Working with %s\n',file.name) %Tracks the file we are 
working with and displays it 
        fullFileName = fullfile(sub,file.name); %Identifies File patch 
        str = file.name; %Identifies File name 
        dat = csvread(fullFileName,1,0); %Reads data in File skipping 3 rows & 
0 coloumns 
        Fs = 1.0/(dat(2,1)-dat(1,1)); 
        fname = str(1:i); 
         
        time = dat(int32(25*Fs)+1:int32(125*Fs),1); %Calculates time increments 
of 1 cell from 25-125 
        time = time'; %Inverse Time cells 
        data = dat(int32(25*Fs)+1:int32(125*Fs),2:7); %Calculates Nu in 
increments 1 cell in increments of 1 cell increase 25-125 
        data = data'; %Inverse Nu Data 
        [rows,columns] = size(data); %Calculates the size of rows & coloumns 
pores for Nu 
        T = 1/Fs; % Calculates Sampling period 
        L = columns; % Calculates Length of signal by using size of coloumns 
        n = 2^nextpow2(L); %Calculates the positive next powers of 2 
        fname1 = strcat(fname,'_Time'); fname2 = fname1; %File name suffix 
_Time is added 
        fname1 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname1); 
%Filepath where first file is saved 
        fname2 = fullfile(sub,fname2); 
         
        time2 = dat(int32(32*Fs)+1:int32(40*Fs),1); %Calculates time increments 
of 1 cell from 25-125 
        time2 = time2-min(time2); 
        time2 = time2'; %Inverse Time cells 
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        data2 = dat(int32(32*Fs)+1:int32(40*Fs),2:7); %Calculates Nu in 
increments 1 cell in increments of 1 cell increase 25-125 
        data2 = data2'; %Inverse Nu Data 
        figure('units','normalized','outerposition',[0 0 1 1],'Visible','off'); 
        set(gcf,'CreateFcn','set(gcf,''Visible'',''on'')'); 
        mark = ['r-*'; 'y-+'; 'b-o'; 'k-p'; 'k-s'; 'g-d']; 
        mark2 = ['r'; 'y'; 'b'; 'k'; 'k'; 'g']; 
        for i = [1,3,6] 
            txt = ['Cell ',num2str(i)]; 
            time2 = time2/max(time2); 
            data2(i,:) = data2(i,:)/mean(data2(i,:)); 
            
plot(time2,data2(i,:),mark(i,:),'MarkerIndices',1:200:length(data2(i,:)),'Displ
ayName',txt,'LineWidth',1.1) %Plots Nu of each pore with time in 6 different 
plots 
            ylabel('Normalised Nu') 
            xlabel('Normalised Time') 
            hold on 
        end 
        ax = gca; 
        ax.FontSize = 22; 
        ax.LineWidth = 1.2; 
        pbaspect([1 1 1]) 
        legend('show','orientation','vertical','FontSize',18); 
        saveas(gcf,fname1,'tiff') 
        hold off 
         
        figure('units','normalized','outerposition',[0 0 1 1],'Visible','off'); 
        set(gcf,'CreateFcn','set(gcf,''Visible'',''on'')'); 
        xx = Fs*(0:(L/2))/L; %Calculating the Frequency Domain         
        xxtick = 0:0.25:2; 
        j = 1; 
        for i = [1,3,6] 
            data(i,:) = data(i,:)/mean(data(i,:)); %Nu Numbers (Output) at each 
pore normalized (Around 1) 
            data(i,:) = data(i,:)-mean(data(i,:)); %Nu Number (Output) at each 
pore normalized (Around 0) 
            yy = fft(data(i,:)); %Calculates the Discrete Fourier Transform 
            pp2 = abs(yy/L); %Calculates the two-sided spectrum PP2 
            pp1 = pp2(1:L/2+1); %Calculates the single-sided spectrum PP1 based 
on PP2 
            pp1(2:end-1) = 2*pp1(2:end-1); 
            subplot(3,1,j) 
            txt = ['Cell ',num2str(i)]; 
            plot(xx,pp1,mark2(i,:),'DisplayName',txt,'LineWidth',1.1) 
            set(gca,'XLim',[0,2]); 
            set(gca,'XTick',xxtick) 
            set(gca,'YLim',[0,0.025]); 
            ax = gca; 
            ax.FontSize = 22; 
            ax.LineWidth = 1.2; 
            pbaspect([3.5 1 0.5]) 
            ylabel('Spectra') 
            xlabel('Freq (Hz)') 
            legend('show','orientation','vertical','FontSize',18); 
            j = j+1; 
        end 
        fname1 = strcat(fname,'_FFT'); 
        fname1 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname1); 
        saveas(gcf,fname1,'tiff') 
    end 
    cd .. 
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end 
cd ..\.. 

 

 A2 – Transfer functions 
 

% Time-Delay analysis of battery analysis under fluctuationg loads 
% Written by: Ali Saeed - 2140637 
% Writing start date: 17/05/20 
 
% Clear variables, workspace and close any open windows 
clear 
clc 
close all 
% Store all variables with 32 bit precision 
format long; 
 
allfolders = dir('C:\Users\aligs\Desktop\MATLAB\Fres'); %Main folder for all 
case files 
for k = 3:length(allfolders) %Starts from real folders by point 3 
    myfolder = allfolders(k).name; %Finds the name of the folder 
    myfolder = fullfile(allfolders(k).folder,myfolder);%Finds full file 
name/file path 
    cd(myfolder)%change directory to main folder 
    sub = strcat(myfolder,'\T'); %Add \T to original file name 
    cd(sub) %Enter one of the Folders 
    csvfiles = dir('*.csv'); %Read CSV Files 
    j = 0; %Start Counter 
    am = 0.1; 
     
    for file = csvfiles' %Loop over all CSV Files 
        fprintf(1,'Working with %s\n',file.name) %Tracks the file we are 
working with and displays it 
        fullFileName = fullfile(sub,file.name); %Identifies File patch 
        str = file.name; %Identifies File name 
        dat = csvread(fullFileName,1,0); %Reads data in File skipping 3 rows & 
0 coloumns 
        j = j+1; %Read one & add  to counter 
        Fs = 1.0/(dat(2,1)-dat(1,1)); 
        Fr = input('Forcing Frequency = /n'); 
        fname = str(1:i); 
 
        velocity = 30; %Velocity of the fluid 
        diameter = 0.04; %Diameter of the battery cells 
        st = (Fr*diameter)/velocity; %Strouhal Number (Normalised Frequency) 
         
        time1 = dat(int32(0*Fs)+1:int32(125*Fs),1); %Calculates increments of 1 
cell from 0-125 
        %Used for calculating time lag 
        time2 = dat(int32(25*Fs)+1:int32(125*Fs),1); %Calculates increments of 
1 cell from 25-125 
        %Used for amplitude analysis 
        data1 = dat(int32(0*Fs)+1:int32(125*Fs),2:7); %Calculates Nu in 
increments 1 cell increase 0-125 
        %Used for calculating time lag 
        data2 = dat(int32(25*Fs)+1:int32(125*Fs),2:7); %Calculates Nu in 
increments 1 cell increase 25-125 
        %Used for amplitude analysis 
        time1 = time1'; %Inverse Time1 
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        time2 = time2'; %Inverse Time2 
        data1 = data1'; %Inverse Nu Data1 
        data2 = data2'; %Inverse Nu Data2 
         
        [rows,columns] = size(data1); %Calculates the size of rows & coloumns 
pores for Nu (0-125) 
        T = 1/Fs;    % Calculates Sampling period 
        L = columns; % Calculates Length of signal by using size of coloumns 
        n = 2^nextpow2(L); %Calculates the positive next powers of 2 
         
        aa = 1.0+am*sin(2.0*pi*Fr*time1); %Input flow signal (inlet - 0-125)    
        aa = aa/mean(aa); %Normalized signal (Around 1 - 0-125) 
        bb = 1.0+am*sin(2.0*pi*Fr*time2); %Input flow signal (inlet - 25-125)    
        bb = bb/mean(bb); %Normalized signal (Around 1 - 25 - 125) 
        for i = 1:6 %Loop over the 6 cells 
            cc = data1(i,:)/mean(data1(i,:)); %Nu Numbers (Output) at each pore 
normalized (Around 1 - 0-125) 
            dd = data2(i,:)/mean(data2(i,:)); %Nu Numbers (Output) at each pore 
normalized (Around 1 - 25-125) 
            aa = aa-mean(aa); %Input flow signal normalized (Around 0 - 0-125) 
            bb = bb-mean(bb); %Input flow signal normalized (Around 0 - 25-125) 
            cc = cc-mean(cc); %Nu Numbers (Output) at each pore normalized 
(Around 0 - 0-125) 
            dd = dd-mean(dd); %Nu Numbers (Output) at each pore normalized 
(Around 0 - 25-125) 
            amplit(i) = rms(dd)/rms(bb); %Amplitude Output/Input flow Ratio for 
all particles (25-125) 
            [acor,lag] = xcorr(aa,cc); %cross correlation of input and output 
signal (0-125) 
            [~,I] = max((acor)); %calculates the maximum of the cross 
correlation (When lag equals the delay) 
            lagDiff = lag(I); %Lag difference between 2 signals 
            timeDiff = (abs(lagDiff))/Fs; %Time difference between 2 signals 
            phaselag(j,i) = timeDiff*2.0*180.0*Fr; %Convert phase lag signal in 
Angles degrees 
             
            H=0.05; %Defining the distance from the inlet to the first particle 
            if i == 1 %Calculating the distance between each particle from 
inlet onwards 
                dist = 1*H; 
            elseif i == 2 
                dist = 3*H; 
            elseif i == 3 
                dist = 5*H; 
            elseif i == 4 
                dist = 7*H; 
            elseif i == 5 
                dist = 9*H; 
            elseif i == 6 
                dist = 11*H; 
            end 
             
            timeDiff=timeDiff/(dist/velocity); %Non-Dimensionalising time 
Difference using velocity and cell distance 
            res1(j,i) = amplit(i); %Amplitude Ratio for all 8 Frequencies 
across all cells (25-125) 
            res3(j,i)= timeDiff; %Time delay/Lag for all 8 Frequencies across 
all cells (0-125) 
        end 
        freq(j) = st; %8 Frequency Values (Now Strouhal Number) 
    end 
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    freq=freq/max(freq); %Normalises the Strouhal number around 1 by dividing 
by the maximum value 
     
    AmpAve1=mean(res1(1,1:6)); 
    AmpAve2=mean(res1(2,1:6)); 
    AmpAve3=mean(res1(3,1:6)); 
    AmpAve4=mean(res1(4,1:6)); 
    AmpAve5=mean(res1(5,1:6)); 
    AmpAve6=mean(res1(6,1:6)); 
    AmpAve7=mean(res1(7,1:6)); 
    AmpAve8=mean(res1(8,1:6)); 
    
AmpAve1_8=[AmpAve1,AmpAve2,AmpAve3,AmpAve4,AmpAve5,AmpAve6,AmpAve7,AmpAve8]; 
     
    TdAve1=mean(res3(1,1:6)); 
    TdAve2=mean(res3(2,1:6)); 
    TdAve3=mean(res3(3,1:6)); 
    TdAve4=mean(res3(4,1:6)); 
    TdAve5=mean(res3(5,1:6)); 
    TdAve6=mean(res3(6,1:6)); 
    TdAve7=mean(res3(7,1:6)); 
    TdAve8=mean(res3(8,1:6)); 
    TdAve1_8=[TdAve1,TdAve2,TdAve3,TdAve4,TdAve5,TdAve6,TdAve7,TdAve8]; 
     
    figure('units','normalized','outerposition',[0 0 1 1],'Visible','off'); 
    set(gcf,'CreateFcn','set(gcf,''Visible'',''on'')'); 
    mark = ['k-*'; 'k-<'; 'k->'; 'k-^'; 'k-v';'k-o'; 'k-+'; 'k-p'; 'k-s'; 'k-
d']; 
    for i= 1:6 
        ax1 = subplot(1,2,1); 
        dispnam = strcat('C ',num2str(i)); 
        plot(freq,res1(:,i),mark(i,:),'DisplayName',dispnam,'LineWidth',1.1); 
        pbaspect([1 1 1]) %Sets Aspect Ratio to 1 (Square Plot) 
        hold on 
        ax3 = subplot(1,2,2); 
        plot(freq,res3(:,i),mark(i,:),'DisplayName',dispnam,'LineWidth',1.1); 
        pbaspect([1 1 1]) %Sets Aspect Ratio to 1 (Square Plot) 
        xlim([0 1]) %Limits X Axis with a range from 0-1 
        hold on 
    end 
    ax1 = subplot(1,2,1); 
    dispnam1= 'C-Average'; %Renames Best Fit Line as a low pass filter 
    plot11 = plot(freq,AmpAve1_8,'LineWidth',2, 'DisplayName',dispnam1, 
'Color','b', 'LineStyle','--'); 
    xlim([0 1]) %Limits X Axis with a range from 0-1 
     
    ax3 = subplot(1,2,2); 
    dispnam1= 'C-Average'; %Renames Best Fit Line as a low pass filter 
    plot111 = plot(freq,TdAve1_8,'LineWidth',2, 'DisplayName',dispnam1, 
'Color','b', 'LineStyle','--'); 
    xlim([0 1]) %Limits X Axis with a range from 0-1 
     
    fname1 = strcat(fname,'_TransferFunction'); 
    fname1 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname1); 
    saveas(gcf,fname1,'tiff') 
    cd .. 
end 
cd ..\.. 
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 A3 – Phase portraits 
 

% Clear variables, workspace and close all open windows 
clear 
clc 
% close all 
% Store all variables with 32 bit precision 
format long; 
 
allfolders = dir('C:\Users\aligs\Desktop\MATLAB\Fres'); %Main folder for all 
case files 
for k = 3:length(allfolders) %Starts from real folders by point 3 
    myfolder = allfolders(k).name; %Finds the name of the folder 
    myfolder = fullfile(allfolders(k).folder,myfolder);%Finds full file 
name/file path 
    cd(myfolder)%change directory to main folder 
    sub = strcat(myfolder,'\T'); %Add \T to original file name 
    cd(sub) %Enter one of the Folders 
    csvfiles = dir('*.csv'); %Read CSV Files 
    am = input('Please input the amplitude -> (0.1), (0.3), (0.6)\n'); 
     
    for file = csvfiles' %Loop over all CSV files 
        fprintf(1,'Working with %s\n',file.name) %Tracks the file we are 
working with & displays it 
        fullFileName = fullfile(sub,file.name); %Identifies File patch 
        str = file.name; %Identifies File name 
        dat = csvread(fullFileName,1,0); %Reads data in File skipping 3 rows & 
0 coloumns 
        Fs = 1.0/(dat(2,1)-dat(1,1)); 
        Fr = input('Forcing Frequency = /n'); 
        fname = str(1:i); 
         
        time = dat(int32(45*Fs)+1:int32(50*Fs),1); %Calculates time increments 
of 1 cell from 25-125 
        time = time'; %Inverse Time cells 
        data = dat(int32(45*Fs)+1:int32(50*Fs),2:7); %Calculates Nu in 
increments 1 cell in increments of 1 cell increase 25-125 
        data = data'; %Inverse Nu Data 
        [rows,columns] = size(data); %Calculates the size of rows & coloumns 
pores for Nu 
        T = 1/Fs; % Calculates Sampling period 
        L = columns; % Calculates Length of signal by using size of coloumns 
        n = 2^nextpow2(L); %Calculates the positive next powers of 2 
         
        fname1 = strcat(fname,'_FP'); %Filename suffix _FP added 
        fname1 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname1); 
         
        aa = 1.0+am*sin(2.0*pi*Fr*time); %Input flow signal (inlet) 
        figure('units','normalized','outerposition',[0 0 1 1],'Visible','off'); 
        set(gcf,'CreateFcn','set(gcf,''Visible'',''on'')'); 
        for i = [1,3,6] 
            data(i,:) = data(i,:)/mean(data(i,:)); 
            plot(aa,data(i,:),'k','LineWidth',2) 
            set(gca,'XLim',[0.88,1.12]); 
            set(gca,'YLim',[0.4,1.6]);  
            axis square 
            hold on 
            ylabel('Normalised Nu') 
            xlabel('Normalized Input Signal') 
        end 
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        ax = gca; 
        ax.FontSize = 22; 
        ax.LineWidth = 1.2; 
        saveas(gcf,fname1,'tiff') 
        hold off 
    end 
    cd .. 
end 
cd ..\.. 

 

 A4 – Measure of nonlinearity 
 

% Clear variables, workspace and close all open windows 
clear 
clc 
close all 
% Store all variables with 32 bit precision 
format long; 
 
allfolders = dir('C:\Users\aligs\Desktop\MATLAB\Fres'); %Main folder for all 
case files 
for k = 3:length(allfolders) %Starts from real folders by point 3 
    myfolder = allfolders(k).name; %Finds the name of the folder 
    myfolder = fullfile(allfolders(k).folder,myfolder);%Finds full file 
name/file path 
    cd(myfolder)%change directory to main folder 
    sub = strcat(myfolder,'\T'); %Add \T to original file name 
    cd(sub) %Enter one of the Folders 
    csvfiles = dir('*.csv'); %Read CSV Files 
    j = 0; 
     
    figure('units','normalized','outerposition',[0 0 1 1],'Visible','off'); 
    set(gcf,'CreateFcn','set(gcf,''Visible'',''on'')'); 
    for file = csvfiles' %Loop over all CSV Files 
        fprintf(1,'Working with %s\n',file.name) %Tracks the file we are 
working with and displays it 
        fullFileName = fullfile(sub,file.name); %Identifies File patch 
        str = file.name; %Identifies File name 
        dat = csvread(fullFileName,1,0); %Reads data in File skipping 3 rows & 
0 coloumns 
        j = j+1; %Reads one and adds to counter 
        Fs = 1.0/(dat(2,1)-dat(1,1)); 
        Fr = input('Forcing Frequency = /n'); 
        fname = str(1:i); 
         
        time = dat(int32(25*Fs)+1:int32(125*Fs),1); %Calculates time increments 
of 1 cell from 25-125 
        time = time'; %Inverse Time cells 
        data = dat(int32(25*Fs)+1:int32(125*Fs),2:7); %Calculates Nu in 
increments 1 cell in increments of 1 cell increase 25-125 
        data = data'; %Inverse Nu Data 
        [rows,columns] = size(data); %Calculates the size of rows & coloumns 
pores for Nu 
        T = 1/Fs; % Calculates Sampling period 
        L = columns; % Calculates Length of signal by using size of coloumns 
        n = 2^nextpow2(L); %Calculates the positive next powers of 2 
         
        for i = 1:6 %Loop over the 6 battery cells 
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            data(i,:) = data(i,:)/mean(data(i,:)); %Nu Numbers at each pore 
Normalized (Around 1) 
            data(i,:) = data(i,:)-mean(data(i,:)); %Nu Numbers at each pore 
Normalized (Around 0) 
            yy = fft(data(i,:)); %Calculates the Discrete Fourier Transform 
            p2 = size(yy); 
            p1 = zeros(p2); 
            indx = nearest(Fr*L/Fs+1); %Calculates the Frequency x 100 (+ 1) 
            p1(indx-2:indx+2) = 2*yy(indx-2:indx+2); 
            y = ifft(p1); y = real(y); 
            Mho(i) = norm(data(i,:)-y)/norm(data(i,:)); 
            nonlin(j,i) = Mho(i); 
        end 
        mark = ['k-*'; 'k-<'; 'k->'; 'k-^'; 'k-v';'k-o'; 'k-+'; 'k-p'; 'k-s'; 
'k-d']; 
        dispnam = strcat('Frequency ',num2str(j)); 
        plot([1:6],Mho,mark(j,:),'DisplayName',dispnam) 
        hold on         
    end 
    legend('show','orientation','horizontal','location','northoutside'); 
    title('Nonlinearity Factor in Nusselt Numbers over Different Battery 
Cells') 
    ylabel('\mu (-)') 
    xlabel('Battery Cells (-)') 
    ax = gca; 
    ax.FontSize = 12; 
    ax.LineWidth = 1.2; 
    fname1 = strcat(fname,'_NLT'); 
    fname1 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname1); 
    saveas(gcf,fname1,'tiff') 
    hold off 
    fname2 = strcat(fname,'.txt'); 
    fname2 = fullfile('C:\Users\aligs\Desktop\MATLAB\Fres',fname2); 
    dlmwrite(fname2,nonlin,'delimiter','\t','precision',12) 
    cd .. 
end 
cd ..\.. 
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Appendix B – Battery cell vibration code 
 

The following code is specific for a modulation amplitude of 30 mm/s and forcing 

frequency of 10 Hz. 

#include"udf.h" 

#include "math.h" 

 

DEFINE_CG_MOTION(moving_box,dt,vel,omega,time,dtime) 

{ 

 

real t = time; 

NV_S(vel,=,0.0); 

NV_S(omega,=,0.0); 

vel[1] = 0.03*sin(2*3.14159*10*t); 

 

} 
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