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Abstract

This thesis presents an analysis of T2K data using a new external reactor constraint

from Daya Bay instead of the regular one-dimensional Gaussian provided by the Particle

Data Group (PDG). Both the PDG and Daya Bay data sets can be used to update the

prior of given parameters in the T2K analyses. Applying Daya Bay’s two-dimensional

constraint on the mixing angle θ13 and mass splitting ∆m2
32 improves the constraint on

the mass splitting parameter by 25% in normal hierarchy and 18% in inverted hierarchy

compared to using the PDG external prior. Furthermore, denoted with a Bayes fac-

tor value which compares two hypotheses using the posterior results, it was found that

there was a small increase in the preference for normal hierarchy over inverted hierarchy,

B(NH/IH): PDG = 2.77 and Daya Bay = 2.79. There was a slightly larger increase

for the upper octant in the octant degeneracy, B(UO/LO): PDG = 2.27 and Daya

Bay = 2.38. The thesis also describes development work towards the first full joint-fit

between two long baseline experiments, T2K and NOvA, showcasing the increase in

statistical sensitivity for the oscillation parameters and the potential to solve some of

the current degeneracies limiting the sensitivity of both experiments. Finally, there is

an introductory insight into an alternate parameterisation of neutrino oscillations that

could be used to better understand the constraint from the T2K data.
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Chapter 1

Introduction

Not all questions are answered,

but fortunately some answers

are questioned.

Terry Pratchett

1.1 Experimental ν History

Neutrinos are incredibly elusive particles. They are the most abundant massive particle

in the universe, yet their low mass and lack of electric charge make them exceedingly

difficult to study, as they only interact via the weak force. The neutrino was initially

postulated by Wolfgang Pauli in the 1930s to explain the results of an electron emission

experiment carried out by James Chadwick [1]. Initially, the beta decay (β decay) pro-

cess was believed to be a two body decay, ZX → Z+1Y + e, thus the electron should

have been monoenergetic upon emission. Instead a spectrum of energy was found, de-

picted in Figure 1.1. In a letter to a radioactivity conference, Pauli proposed a spin 1
2

electrically neutral fermion called the "neutron", that requires a mass of the same order

of magnitude to that of the electron [2]. In 1931, James Chadwick later confirmed a

somewhat massive particle in the nucleus that became the neutron that we know and

understand today [3], thus Pauli’s proposed particle was renamed, the neutrino.

1
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Figure 1.1: The Electron energy spectrum recorded by James Chadwick. Taken from
[4].

The initial detection of the ‘invisible’ neutrino did not arise until 1956 (initially 1953

but the background was far too large), when Reines and Cowan carried out "Project

Poltergeist" [5]. The experiment was designed to measure the products of the inverse

beta-decay process denoted in equation 1.1:

ν̄ + p → n+ e+, (1.1)

where p and n are protons and neutrons respectively, e+ is a positron and ν̄ is an

antineutrino. The experimental set-up used a tank of liquid scintillator sandwiching

a layer of water doped with cadmium chloride (CdCl2) and surrounded by 110 photo-

multiplier tubes (PMTs). When the neutrino interaction occurs, the positron would

quickly undergo positron-electron annihilation, emitting two photons that can be de-

tected by the PMTs. The neutron is then captured by the CdCl2 and a further pair of

photons are emitted with a delayed signal of ∼20µs [6]. With significant evidence to

support the existence of neutrinos, the progression of understanding was rapid.
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Only six years after the detection of the (anti)neutrino, a team of researchers work-

ing on the Alternating Gradient Synchrotron (AGS) [7], at the Brookhaven National

Laboratory, created the first beam of neutrinos. They collided 15 GeV protons with a

beryllium target, creating pions that further decayed into muons and neutrinos with a

high branching ratio. These neutrinos travelled a short distance to a 10 ton aluminium

spark chamber where the neutrino interactions with aluminium would be captured by

surrounding cameras. This allowed a cohort of researchers led by Leon Lederman,

Melvin Schwartz and Jack Steinberger to probe if the neutrinos produced via this de-

cay method were different to those produced by the inverse beta-decay process. If the

neutrinos were the same nature then there should have been an equal number of elec-

tron and muon events. However, Lederman et al found many more muon events than

electron events [8], confirming the discovery of the muon neutrino.

Understanding that neutrinos were related to corresponding isospin doublets (νe for

the electron and νµ for the muon), it was inevitable for the hunt to begin again upon

the discovery of the third and heaviest lepton, the tau, τ [9], for the ντ . It was not

until the year 2000 that the tau neutrino was discovered by the Direct Observation of

Nu-Tau (DONUT) experiment. Using a nuclear emulsion technique and producing a

predominantly tau neutrino beam, DONUT was able to measure and identify tau neu-

trino interactions by capturing the short lived tau lepton produced by the tau neutrino

interaction, decaying into a muon or electron [10].

It would be natural for one to think about the existence of more generations of neutrinos

and leptons after the continuous discoveries, but with a joint-fit of four detectors in the

Large Electron-Positron collider measuring the mass of the Z0 boson, it was concluded

that the best fit was three generations [11].
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1.2 Neutrino Oscillations

In the 1960’s an experiment was proposed by Ray Davis using methods suggested by

Pontecorvo [12] to measure the neutrino flux emitted by the nuclear fusion processes,

namely the proton−proton and the Carbon-Nitrogen-Oxygen chains from the sun’s

core. These neutrinos are now commonly called, solar neutrinos. The Homestake Ex-

periment [13], located in South Dakota, would measure the Sun’s neutrino flux using a

380 cubic litre tank filled with tetrachloroethylene (C2Cl4), and measured the product

of the radiochemical inverse beta decay, 37Cl + νe → 37Ar + e−. The Argon atoms were

extracted and the neutrino flux was calculated using the known cross-section. When

comparing the results to that predicted by the Standard Solar Model (SSM) [14], Davis

et al found that the measured flux was actually a third smaller than predicted. Ini-

tially, both the model and experiment were blamed for the discrepancy and this birthed

the "Solar Neutrino Problem". Further experiments then supported the results of the

Homestake experiment, SAGE [15] and GALLEX [16] used an equivalent radiochemical

process as Homestake, but substituted the use of Chlorine for Gallium. Kamiokande

[17] used a water Cherenkov detector but found the same result, solidifying this dis-

crepancy. The main issue was that the comparisons were model dependent, relying

on the Standard Solar Model predictions. In the early 2000’s, the Sudbury Neutrino

Observatory (SNO) [18] was the first model-independent measurement of the neutrino

flux, and this used a heavy water detector that was sensitive to not only Charged Cur-

rent interactions, but also Neutral Current. Thus, it could measure the total flux of

neutrinos from the sun. When the data were collected, SNO released the analysis that

the measured total flux agreed with the SSM and deemed conclusively that neutrinos

change favour state as they propagate [19].

Cosmic Rays interact with nuclei in the earth’s atmosphere to produce secondary par-

ticles such as pions and muons. These, in turn, decay to produce neutrinos of varying
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flavour

π± → µ± +
(−)
νµ

µ± → e± +
(−)
νe +

(−)
νµ.

(1.2)

These are known as atmospheric neutrinos. Unlike solar neutrinos, these were not ex-

pected to be a specific flavour but due to the decays taking place (above), there should

have been roughly 2 νµs to every one νe. However, similar to the solar neutrino problem,

there was a significant difference in that the measured muon-neutrino flux was smaller

than the expected value [20]. A double ratio was calculated with the total number of

muon-neutrino N µ and electron-neutrino N e events over the Monte Carlo simulated

data that accounted for known physics and detector limitations

R =
(Nµ/Ne)Data

(Nµ/Ne)Simulated
. (1.3)

One would expect the result of R to be ∼ 1 if there were no oscillations to account

for, but the measurements and calculation by Super-K [21], Soudan2 [22], IMB [23]

and Kamiokande [24] obtained a value of R ∼ 0.6. This result would suggest that

the expected number of events Nµ was lower than the recorded value. Super-K also

performed an analysis by comparing the flux of down-going atmospheric neutrinos,

i.e those produced above the detector with a baseline of ∼50−100 km, to up-going

atmospheric neutrinos, i.e baseline length of ∼100−13000 km, depending on the zenith

angle. It was found that there was a clear flux difference, with fewer upward-going

muon neutrinos than downward-going. This was a definitive measurement of muon

neutrino disappearance and that neutrinos oscillate [25].

At the time of initial postulation, the hypothesis of neutrino oscillations was not sup-

ported due to the belief that neutrinos were indeed massless1. However, Bruno Pon-
1The Standard Model still suggests that this is the case!
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tecorvo had been devising a theory that included the idea of mixing and oscillation [26].

This was not a new idea and had previously been postulated in the meson sector with

K̄0 ↔ K0 by Gell-mann et al [27]. Pontecorvo posed the possibility as to whether or

not such an event could happen with any other set of neutral particles.

The standard model predicts that symmetries should be conserved and have been ob-

served to do so under the electromagnetic force and the strong nuclear but not the

weak force. Such symmetries include parity, P, and charge conjugation, C. Parity is

the quantum mechanical operator that inverts a particle’s spatial coordinates such that

x⃗ → −x⃗. In essence, reflecting a particle into its mirror image. Charge conjugation

transforms a particle to an anti-particle and vice versa. In the 1950’s, a problem arose

known as the Tau-Theta puzzle which found two particles, tau and theta, that were

believed to be the same mass and lifetime but decayed into different products. These

particles later became known as charged kaons. Lee and Yang proposed that parity

may not be conserved under the weak force and an experiment carried out by C. S. Wu

et al that looked at the beta decay of a Cobalt isotope, 60Co, which is mediated by the

weak interaction, found as a result that parity is maximally violated [28].

It was then believed that applying a product of the two symmetries, creating charge-

parity symmetry, CP , would be conserved in weak interactions. However, this was

shown to be violated by Cronin and Fitch et al when studying the decay products of

Kaons [29]. CP gives a definitive symmetry between matter and antimatter, if CP is

conserved then there is no difference between them. This becomes special for particle

physicists as it satisfies the conditions laid out by Andrei Sakharov in order to explain

the matter-antimatter asymmetry observed in the universe [30]. The three conditions

required for matter and antimatter to be produced at different rates include:

• Baryon number violation;
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• Charge and Charge-Parity symmetry violation;

• The universe fell out of thermal equilibrium early in its evolution.

The CP violation observed in the meson sector was not sufficiently large to support

the second condition. As such, other avenues like B factories and neutrinos are being

explored to find if CP symmetry is also violated through propagation and mixing as

opposed to just in decay. Advancing to the late 1990’s, the idea of neutrinos changing

flavour was gaining acceptance and if neutrinos can undertake time-dependent neutrino

oscillations, then it would imply that they must have mass.

1.3 3ν Oscillation Formalism and MSW Effect

The statement that neutrinos have mass and that there are three individual flavours

we see that there is a spectrum of fixed mass for each of the three flavours, |νi⟩ corre-

sponding to a fixed flavour state, |να⟩, with α = [e, µ, τ ]. It could therefore be stated

that the superposition of mass eigenstates make neutrino flavour α [31], creating the

equation,

|να⟩ =
∑
i

U∗
αi |νi⟩ , |ν̄α⟩ =

∑
i

Uαi |ν̄i⟩ (1.4)

where U αi is an individual component from the unitary Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix. This matrix determines the amplitude of mixing between the

flavour and mass eigenstate components, through the following form,

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (1.5)
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This can be decomposed into four individual rotation matrices,

U =


1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

Atmospheric


c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13


︸ ︷︷ ︸

LBL + Reactor


c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar


1 0 0

0 eiϕ2 0

0 0 eiϕ3


︸ ︷︷ ︸

Majorana Phases

(1.6)

where sij = sin(θij) and cij = cos(θij) and θij are the mixing angles between the mass

states. A further unanswered question in the sector of neutrinos is whether or not they

are of the Dirac or Majorana type. A Majorana neutrino particle would be its own

anti-particle and a more detailed report of this case can be found in [32]. Experiments

such as CUORE and KamLAND-Zen [33] are searching for the infamous neutrinoless

double beta decay, 0νββ, that can only be present if neutrinos have Majorana mass. For

the purpose of this thesis, the Majorana nature of the neutrino does not affect neutrino

oscillations, as the Majorana phases cancel, so the assumption will be made that they

are Dirac and that the complex phases ϕ2 and ϕ3 are = 0, yielding the identity matrix,

1, with diag [1,1,1], which can be ignored. Therefore the PMNS matrix becomes

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 . (1.7)

The complex phase δCP is the charge-parity violating phase within neutrino mixing,

quantifying the phase difference between the flavour neutrinos. The measurement of

the CP phase comes from an analysis of the subsequent difference between neutrino

and antineutrino oscillations. If sin(δCP ) = 0, then P (νµ → νe) would be equal to
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P (ν̄µ → ν̄e) in a vacuum. However, as will be explained later in the thesis, this might

not be the case and this is a further glimpse into the matter-antimatter asymmetry

problem.

As the neutrino propagates through a vacuum, one can assume that t = cL, where

L is distance travelled and c is the speed of light, which we assume to be c = 1 in

natural units. The time evolution of the neutrino’s mass states as a plane-wave solution

becomes,

|νi(L)⟩ = ei(Eit−pi·L) |νi(0)⟩ . (1.8)

Focusing on the phase term,

Eit− pi · L, (1.9)

the assumption can be made that plane waves have a fixed energy and momentum

relationship, such that, E 2
i = m2

i + |pi|2. But with the nature of neutrinos it can be

stated that all mass states are ultrarelativistic, m i ≪ E. In order to equate the average

energy across all mass states, a binomial expansion must be performed [34]

pi =
√

E2
i +m2

i ≃ E − m2
i

2E
. (1.10)

There are two assumptions involved in the following steps, that E ≈ p and that t ≈ L.

Substituting equation 1.10 into equation 1.9, the phase is now defined as:

(E − m2
i

2E
)L− EL =

−m2
i

2E
L. (1.11)

Therefore the time evolution of the mass states for a neutrino that has travelled dis-

tance L becomes,
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|νi(L)⟩ = e
−im2

i L

2E |νi(0)⟩ , (1.12)

thus giving the neutrino a flavour at L,

|να(L)⟩ =
∑
i

U∗
αie

−im2
i L

2E |νi⟩ . (1.13)

Applying the conjugate to equation 1.4 yields the flavour of the neutrino after propa-

gation,

⟨νβ| =
∑
j

Uβj ⟨νj| , (1.14)

where, β and j, are flavour and mass eigenstates respectively. Then combining equations

1.13 and 1.14 produces the amplitude of oscillation,

⟨νβ|να(L)⟩ =
∑
i

∑
j

⟨νj|UβjU
∗
αie

−im2
i L

2E |νi⟩

=
∑
i

UβiU
∗
αie

−im2
i L

2E .

(1.15)

The final step is to square the amplitude to find the probability of a neutrino oscillating

from flavour α to flavour β having travelled distance L,

P (να → νβ) = | ⟨νβ|να(L)⟩ |2

=
∑
ij

UβiU
∗
αiU

∗
βjUαje

−i(m2
i−m2

j )
L
2E .

(1.16)

Expanding equation 1.16 with the use of the Kronecker delta δαβ and some exponential

to trigonometric identities we yield the full probability equation,
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P (να → νβ) = δαβ−4
∑
i>j

Re
{
UβiU

∗
αiU

∗
βjUαj

}
sin2

(
∆m2

ijL

4E

)

+2
∑
i>j

Im
{
UβiU

∗
αiU

∗
βjUαj

}
sin

(
∆m2

ijL

2E

) (1.17)

where ∆m2
ij = m2

i −m2
j (i,j = 1,2,3 ). A key aspect of equation 1.17 is that the oscil-

lation probability is dependent on the square of the mass splittings between the mass

eigenstates and not the absolute mass values, which are currently unknown but being

evaluated by experiments such as KATRIN [35]. There is an understanding on the

difference between the first two states, m(ν1) and m(ν2), such that m(ν1) < m(ν2) [36].

However, a topical question currently surrounding neutrino mass is the order in which

ν3 fits. Figure 1.2 illustrates the two mass ordering options, the left hand side shows

normal ordering, where m(ν1) < m(ν2) < m(ν3). The right hand side depicts inverted

ordering where m(ν3) < m(ν1) < m(ν2). Despite being unknown, the normal hierarchy

generated the name given the assumption that the ν1 is the lightest mass and given

its flavour composition is two-thirds electron, the lightest lepton, this makes sense.

Long-baseline and atmospheric neutrino experiments are trying to better probe and

understand the mass hierarchy degeneracy: as well as being interesting in itself, this

will allow for a better understanding of neutrino interactions and provide a constraint

on δCP .

Interestingly, the CP violating phase can only be observed in appearance channels

where, P (να → νβ) if α ̸= β. This occurs due to the imaginary part of equation 1.17

becoming zero due to the multiplication of complex conjugates of the same term.
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Figure 1.2: A diagram depicting the normal hierarchy, ν1 < ν2 < ν3 (left), and inverted
hierarchy, ν3 < ν1 < ν2 (right). The colours represent the flavour components of the
mass eigenstate (red represents νe, blue for νµ and green for ντ ), with the PMNS mixing
angles determining the size of the flavour component. Figure taken from [37].

Figure 1.3: Feymann diagrams showing the Charged Current interactions for electron
neutrinos on the left, electron antineutrinos in the middle, and Neutral Current inter-
actions on the right.
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1.3.1 Matter Effects

The formalism above is true for neutrinos propagating through a vacuum, but for many

instances this is not the case. Certainly in long-baseline neutrino oscillation experi-

ments, neutrinos will propagate through a medium, the Earth’s crust, which is com-

posite with non-exotic matter such as protons, neutrons and electrons. This can have

profound effects on the neutrinos oscillation probability depending on the flavour of

neutrino. There are two main interaction types, Charged Current (CC) scattering and

Neutral Current (NC) scattering, depicted in Figure 1.3. CC scattering occurs when

an electron neutrino or anti-neutrino interacts with an electron and exchanges a W±,

depending on the neutrino type. NC interactions are independent of neutrino flavour

and will exchange a Z0 boson. This is often referred to as the matter effect, or MSW ef-

fect, named after the postulators, Mikheyev–Smirnov–Wolfenstein [38, 39]. The matter

effect is accounted for by a perturbation to the vacuum Hamiltonian matrix, adding a

potential term, Ve, for the Charged Current scattering on the electron (anti)neutrinos,

Ve = ±
√
2GFNe, (1.18)

where GF is the Fermi coupling constant and Ne is the electron density of the matter

that the neutrinos are propagating through. The sign present at the front of equation

1.18 is to define the potential for electron neutrinos (+) and antineutrinos (−). One

can find the full derivation of the matter term by combining the vacuum Hamiltonian,

Hv, and the matter effect Hamiltonian, Hm, which includes the perturbation defined

in Equation 1.18 in [40] and [41]. Ignoring the influence of matter will lead to “fake

CP-violation” due to the difference in potential between neutrinos and antineutrinos

[42]. The strength of the matter effect term will vary depending on the energy of the

neutrino, or the density of the matter that the neutrino is propagating through, and

importantly it changes the probability’s dependence on the mass splitting terms. The

change in matter potential gives an experiment more sensitivity to the sign of ∆m2
32,
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giving insight into the aforementioned mass hierarchy degeneracy.

1.4 Current Status of Neutrinos

Neutrino oscillations have gathered a lot of interest in the scientific community over

the last few decades. Experiments past, present and future are dedicated to under-

standing and constraining the mixing parameters defined in the PMNS matrix. These

experiments are built with the purpose of being sensitive to components of this matrix

and can be categorised into groups. No individual experiment has good sensitivity to

all parameters and so the best-fits are a collection of decades of work across multiple

collaborations. Both solar and atmospheric neutrinos were mentioned in section 1.2,

but two other important sources are Accelerator neutrinos and Reactor neutrinos.

1.4.1 Solar Neutrinos

Briefly mentioned in section 1.2, solar neutrinos are those that originate as a product

of the ongoing nuclear reactions inside of the core of the Sun, specifically the CNO

cycle and the p-p chain. Knowing the predicted flux of electron neutrinos, the main

oscillation channel for solar neutrino experiments is the νe disappearance channel. This

gives sensitivity to the θ12 mixing angle and the ∆m2
21 mass splitting PMNS parame-

ters. The best measurement of ∆m2
21 to date was ironically made by a nuclear reactor

experiment, KamLAND. Figure 1.4 shows the comparison for the ∆m2
21 and tan2(θ12)

two dimensional constraint between KamLAND and joint solar constraints, where the

larger uncertainty for the solar experiments is present, unlike KamLAND which has

a much smaller uncertainty on the mass splitting. A global best-fit to the data sets

provides a good constraint of solar PMNS parameters.
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Figure 1.4: A comparison of the joint Solar experimental constraint and the KamLAND
constraint for the solar parameters, θ12 and ∆m2

21. Figure taken from [43].

1.4.2 Atmospheric Neutrinos

Atmospheric neutrinos are caused by cosmic rays interacting with the Earth’s atmo-

sphere creating a hadronic shower of charged pions and muons that further decay into

neutrinos. Discussed in section 1.2, neutrino oscillations were hinted at due to the

difference between the upgoing and downward going neutrino flux. Those with a large

L/E, traversing through the Earth, had more time to oscillate compared to those made

above a detector. Within the PMNS model, the νµ disappearance channel that is mea-

sured in atmospheric neutrinos, is dominated by θ23 and ∆m2
32, commonly referred to

as the atmospheric parameters.

1.4.3 Reactor Neutrinos

The initial postulation of neutrinos, described in Section 1.1, originated from a nuclear

process. Recent experiments, such as Daya Bay [44] and RENO [45], used existing
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nuclear reactors to measure the flux of emitted antineutrinos via the beta decay pro-

cess in nuclear fission reactions. Reactor experiments commonly have a short baseline

length O(1 km), measuring the ν̄e disappearance channel. This oscillation channel gives

sensitivity to the θ13 oscillation parameter, better than that of long-baseline accelerator

neutrino experiments. In 2012, Daya Bay published a non-zero θ13 result with a 5.3σ

confidence [46]. This was almost simultaneously confirmed by other experiments [47,

48]. This is further discussed in chapter 4 and chapter 6.

1.4.4 Accelerator Neutrinos

Neutrinos can be produced via the same decay channels to atmospheric neutrinos. The

aforementioned AGS experiment in Brookhaven national lab created a source of muon

neutrinos with the understanding of the pion decay chain and this led to the founda-

tion for future experiments. The first long-baseline accelerator neutrino experiment

was called KEK-to-Kamioka (K2K) [49], based in Japan. K2K had a baseline length

of 250 km from the neutrino beam source to the Super-Kamiokande far detector and

an average neutrino energy of 1.4 GeV. K2K had a smaller water Cherenkov detector

situated ∼ 300m downstream of the target to give better constraints on neutrino in-

teractions before propagation. MINOS [50] was another long-baseline experiment that

had a larger baseline and higher peak median neutrino energy, 735 km and 3 GeV, re-

spectively. Although the two experiments had similar setups, the detectors were not

identical and MINOS utilised a magnetised steel-scintillator design, as opposed to K2K’s

water Cherenkov technique. These experiments agreed with the atmospheric findings

of ∆m2
32.

K2K and MINOS were primarily focused on the muon neutrino disappearance channel,

emphasising searches on the atmosphere mass splitting and θ23 mixing angle. At the

time, “next-generation” experiments focused on the electron neutrino appearance chan-

nel. As the result of a non-zero θ13 allowed new long-baseline experiments such as T2K
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Figure 1.5: Comparison of measurements of θ23 and ∆m2
32. Figure taken from [51].

[52] and NOvA [53] to probe into measuring δCP through the electron (anti)neutrino

appearance in a muon (anti)neutrino beam. Both experiments have sensitivity to θ13,

|∆m2
32|, θ23 and δCP and the experimental setups are further explained in Chapter 3.

Figure 1.5 shows the 2D contours for the atmospheric mixing parameters, which is

measured via the
(−)
νµ survival channels. Comparing the long baseline and atmospheric

experiments, T2K has a world leading constraint. The other main measurements of

long-baseline experiments are the electron (anti)neutrino appearance channels. When

adding the matter effect to Equation 1.17, the appearance probability can be approxi-

mated via

P (νµ → νe) ≈Tθθ sin
2(2θ13)

sin2([1− V ]∆)

[1− V ]2
+ Tααα

2 sin
2(V∆)

V 2

−Tαθα sin(2θ13)
sin([1− V ]∆)

(1− V )

sin(V∆)

V
sin(∆) sin(δ)

+Tαθα sin(2θ13)
sin([1− V ]∆)

(1− V )

sin(V∆)

V
cos(∆) cos(δ)

(1.19)
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where,

Tθθ =sin2(θ23), Tαα = cos2(θ23) sin
2(2θ12), Tαθ = cos(θ13) sin(2θ12) sin(2θ23)

V =± 2
√
2GFne

E

|∆m2
31|

, ∆ =
∆m2

31L

4E
, α =

∆m2
21

∆m2
31

.
(1.20)

The sign of the third term containing sin(δ) will change if calculating the probability for

neutrinos (−) or antineutrinos (+). In the approximate formula, this term is propor-

tional to sin(2θ13) sin(δCP ), which changes sign for antineutrinos which is the hallmark

of charge-parity violation. Equation 1.19 shows a degeneracy between sin(2θ13) and

sin(δCP ) that allows for a large range of values for δCP if θ13 is poorly constrained. So

because of their high sensitivity to θ13, the reactor experiment results are often used

as an external constraint by long-baseline experiments, typically in the form of the

Particle Data Group (PDG) average [54]. When using this tighter constraint on θ13,

long-baseline experiments have better sensitivity to δCP through the electron appear-

ance channels. This is commonly referred to as the reactor constraint or sometimes the

PDG constraint.

1.5 Neutrino Interactions

Neutrino-nucleon interactions are dependent on the neutrino’s energy, and as such they

need to be carefully modelled due to the range of energies that a source of neutrinos can

have. These can be categorised in four channels: Charged Current Quasi-Elastic, Single

Pion production, Multiple Pion production and Deep-Inelastic Scattering. Illustrated

in Figure 1.6 is the neutrino and antineutrino cross section with respect to neutrino

energy, also displaying the dominant interaction channel for a given neutrino energy.

Neutrino interactions are an extremely complicated topic in their own right. For the

purpose of this thesis, only a brief outline will be given of the interaction channels and

models used to parameterise them.
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Figure 1.6: Left: neutrino Charged Current cross-section as function of energy showing
the contributions from Quasi-Elastic, Resonant and Deep Inelastic Scattering. Right:
antineutrino Charged Current cross-section as function of energy. Figure taken from
[55].

CCQE

For current generation long-baseline experiments that operate with an average neu-

trino energy in the range 0.1 GeV < Eν < 2 GeV, the dominant interaction type is the

Charged Current quasi-elastic (CCQE) interaction. The Charged Current interaction

exchanges a W± boson, producing the corresponding flavour lepton, depicted in the left

hand panel of Figure 1.7. The ‘one particle one hole’ interaction is defined as a neutrino

interacting with a single bound nucleon quasi-elastically and the nuclear ground state

‘hole’ is modelled using the Benhar spectral function (SF) nuclear model defined in [56].

This model features a distribution of momenta and removal energies of nucleons inside

the nucleus within the shell model picture. The physics of the nucleus structure is based

on the results of bubble chamber data, which informs the Llewellyn Smith model [57].

The two-particle-two-hole (2p2h) interaction mode, which involves a neutrino interact-

ing with a bound or correlated pair of nucleons, is generated via the Nieves model [59].

Unfortunately, for a water Cherenkov detector, the observable final state is virtually

indistinguishable from the final state of CCQE interactions. This can be problematic
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Figure 1.7: Tree level Feynman diagrams for the four charged current neutrino-nucleon
channels. Far left: electron neutrino CC quasi-elastic, middle left: electron antineu-
trino Charged Current qausi-elastic, middle right: electron neutrino Charged Current
resonant and far right: electron neutrino Deep Inelastic Scattering. Figure taken from
[58].

for neutrino energy reconstruction, inducing a bias due to incorrectly accounting for

momentum transfer and interaction products. For higher energy interactions, there is

better agreement with the initial Nieves model, however for lower energy interactions

there is a better agreement with the Martini model [60].

Single Pion Production

Single pion production (SPP) is the second most abundant interaction channel at the

T2K (the experiment on which this thesis is based) beam’s average neutrino energy

and the result of Charged Current Resonant (CCRES) interactions. It is important to

measure and constrain this interaction given it constitutes the largest background for

the CCQE measurement. These processes are modelled in the Rein–Sehgal formalism

[61], describing the neutrino interaction with the nucleon and the resulting excitation to

a resonant state. As de-excitation occurs, a Delta baryon can be produced that decays

into a neutral pion and nucleon combination. The tree level Feynman diagram for this

channel is shown in the third panel of Figure 1.7.

Corrections to the model are required in order to account for coherent scattering oc-

curring at higher neutrino energies with low momentum transfer. Both coherent and

resonant interactions produce a pion in the final state and differentiating them is im-
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portant but difficult. The low momentum transfer is modelled with the Berger-Sehgal

model [62].

Multiple Pion Production and Deep Inelastic Scattering

There can be instances in which the de-excitation of a resonant state can produce multi-

ple pions in the final state, if the momentum transfer is large enough. However, one can

see illustrated in Figure 1.6, that as the neutrino energy reaches 3 GeV, the dominant

interaction mode is Deep Inelastic Scattering (DIS). In this channel, the interaction is

no longer modelled as occurring with the nucleon as a whole, but instead it is better un-

derstood at quark level. This interaction causes changes in the structure of the nucleon

given the high energy impact, leading to the production of multiple pions or mesonic

particles, a tree level Feynman diagram illustrates this process in Figure 1.7 (far right).

The boundary between the multiple pion production and deep inelastic is an incredibly

difficult one to model, but a comprehensive overview can be found in [63].

Final State Interaction

Final State Interactions (FSI) are a combination of nuclear effects within the nucleus,

rather than a physical interaction, but worth noting as it is important for constraining

neutrino interaction topologies. FSI occurs after an initial neutrino interaction: the

hadronic final state further interacts as it exits the nucleon. This can happen via

elastic scattering, absorption, charge exchange and pion production, example of these

channels are depicted in Figure 1.8. Relating this to the T2K analysis, if a neutrino

interaction produces a resonant baryon that de-excites and produces a pion that is

reabsorbed inside of the nucleus, then the final state particle would just be the isospin

doublet of the neutrino, leading to a false CCQE signal. To model this, a cascade model

is used, with a description of the current status being found in [64].
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Figure 1.8: An illustration of potential FSI interactions that can occur in neutrino-
nucleus scattering, Figure taken from [65].



Chapter 2

An Alternate PMNS Parameterisation

Right or wrong, it’s very

pleasant to break something from

time to time.

Fyodor Dostoevsky

2.1 Neutrino Oscillations and the PMNS paradigm

The PMNS formalism is widely accepted amongst the oscillation community as it de-

scribes the behaviour of neutrinos as they propagate. A common practice for long-

baseline experiment is plotting the number of νe and ν̄e candidates against the PMNS

prediction, a style known as Bi-rate plots, as shown in Figure 2.1. The ellipse shape

occurs due to varying the value of δCP
1, where the smallest difference in oscillation

probability between neutrino and antinuetrino occurs at maximal CP-conserving val-

ues, 0 and π. The maximal CP-violating values of π
2

and 3π
2

suppress and enhance the

electron neutrino event rate respectively. As seen in Figure 2.1, the T2K data point lies

outside of the PMNS prediction, albeit that there is overlap when including the 68%

statistical error and 68% systematic error regions, giving an opportunity to look at a
1The ellipse can also be altered by other factors such as matter effect, flux and cross-section influ-

ence. However, the major factor is the value of δCP .

23
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Figure 2.1: T2K’s current Bi-rate plot depicting the predicted number of νe and ν̄e
events whilst varying some of the PMNS parameters. Solid (dashed) represents Normal
(Inverted) ordering. The red, blue, black and green colours show the effect of altering
the value of θ23 and the ellipse show the effects of varying δCP . Values of θ13, θ12
and ∆m2

21 are kept constant at the reactor and solar best-fit values outline in [54]. It is
interesting to note that T2K’s data point sits outside of the PMNS paradigm prediction
of the ellipses, creating rationale to look at alternate parameterisations. Figure taken
from [66].

non-standard PMNS parameterisation.

It was common practice to use an approximate formula to find the probability of a

neutrino propagating through a constant matter profile, which also reduced to a simple

variation. Yokomakura et al [67], showed that, even when using the exact formalism

for the probability of oscillation, it could still be broken down into dependent and inde-

pendent terms. A relevant example being that a muon to electron neutrino oscillation

probability formula could be approximated into,

Pµe(δ) = Aµe cos(δ)±Bµe sin(δ) + Cµe, (2.1)

where Pµe(δ) is the probability for a muon neutrino to oscillate to an electron neutrino,
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Aµe, Bµe and Cµe are CP-violating phase independent terms, finally cos(δ) and sin(δ)

are the dependent terms. A full approximation for the probability formula was shown in

Equation 1.19 [68], where one can see that the first two terms are equivalent to Cµe, the

third to Bµe, and the fourth to Aµe. This will still be true for probability calculations

in non-approximated formulas.

To switch between neutrino and antineutrino one would just flip the sign of the matter

potential V → −V and δ → −δ. This describes a parameterisation that differs from

the PMNS model as it treats sin(δ) and cos(δ) as independent parameters, as opposed

to just δCP . Depicted in Figure 2.2a is a T2K bi-probability plot. This is similar in

nature to the bi-rate plot shown in Figure 2.1, however the former plots the oscillation

probabilities for two channels, namely P(νµ → νe) and P(ν̄µ → ν̄e). The ellipse changes

depending on the average neutrino energy used and the mass ordering, where the other

oscillation parameters are kept at the constant values, which are shown in Table 2.1.

Parameter Value
θ12 33.5◦
θ13 8.51◦
θ23 45.0◦

∆m2
21 7.53×10−5 eV2/c4

∆m2
31 2.53×10−3 eV2/c4

Table 2.1: A table of oscillation parameters and their values to create Figures 2.2, 2.4
and 2.5. Both ∆m2

31 and θ23 values were chosen for maximal mixing and ∆m2
31, θ12 and

θ13 were based on best-fit values listed in [69].

The blue, red and green ellipses of figure 2.2a represent 0.5 GeV, 0.6 GeV and 0.7 GeV,

and the solid (dashed) represent normal (inverted) ordering. The major axis are nearly

aligned to the sin(δ) term shown in Figure 2.2b, the length does not change much as

we go either side of the 0.6 GeV peak energy. However, Figure 2.2c shows a greater

dependence in the cos(δ) term as one changes the neutrino energy. Given the difference

in behaviour of sin(δ) and cos(δ), they can be treated as independent parameters, now
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denoted, χS, and, χC , respectively. Treating χS and χC as coordinates in a parameter

space allows one to break unitarity that is otherwise conserved by the PMNS model,

when χ2
S + χ2

C ̸= 1. Implementing this relationship requires a polar transformation of

the Cartesian coordinates to ensure that the correct values of δCP are being simulated.

Fulfilling this transformation one creates polar coordinates, δ and ρ, via equations 2.2

and 2.3,

δCP =


arctan χs

χc
, if χc ≥ 0

arctan χs

χc
+ π, if χc < 0 and χs > 0

arctan χs

χc
− π, if χc < 0 and χs ≤ 0,

(2.2)

ρ =
√

χ2
s + χ2

c . (2.3)

The original probability formula is then modified to a linear combination form, ensuring

the use of the polar coordinates throughout,

P (νµ → νe) =
1 + ρ

2
Pµe(δ) +

1− ρ

2
Pµe(π + δ). (2.4)

The main motivation for this analysis was, instead of using the approximate formula

stated in equation 1.19, to fit for this extended paradigm inside of a neutrino oscilla-

tion propagator package, PROB3++ [70]. This includes a non-approximated MSW effect

inside of the Hamiltonian.
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Figure 2.2: Figure 2.2a shows the bi-probability for T2K at energies below, on and
above the average energy peak. Figures 2.2b and 2.2c are the separated effects of
contributions for sin(δ) and cos(δ). Relating to Equation 2.1, at the energy range of
500− 700GeV, there is a dominance of the sin δ term. At the oscillation maximum for
T2K, 600MeV, there is minimal cos δ contribution, suggesting limited sensitivity.
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Figure 2.3: The effect on the oscillation probability at T2K for (anti)neutrinos on the
(right) left whilst changing the cartesian coordinates representing sin(δ) and cos(δ), as
stated in Equation 2.1. When values of χS and χC are substituted into Equation 2.3
and equal 1, then unitarity is conserved. A visual demonstration shows that the new
implementation works, given the perfect overlap between the PMNS paradigm (blue)
and the altered parameterisation (green) of Equation 2.4. The red line shows the impact
of extending the parameter space by using both a maximal CP conserving, χC = −1,
and maximal CP violating, χS = −1, coordinate.
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2.2 T2K Oscillation Spectrum

Figure 2.3 shows the oscillation for P(νµ → νe) (left) and P(ν̄µ → ν̄e) (right). Similar

to that in earlier figures, the solid (dashed) represents normal (inverted) ordering. In

this formalism, if one selects coordinates, χs and χc, such that ρ = 1, then the second

term of Equation 2.4 is zero and one is left with an analysis equal to the PMNS for-

malism. Used as a validation tool, the coordinates χs = −1 and χc = 0, represent a

δCP = −π
2
. The overlap between the green and blue spectra in Figure 2.3 suggests a

correct implementation into the PROB3++ software, as one cannot see the green figure

due to the perfect agreement. As well as validating that the alternate parameterisation

was correctly implemented, it was also interesting to see the effect of adding a cos(δ)

to the coordinate system. The red and red-dashed lines represent a coordinate system

of χs = −1 and χc = −1, and it is interesting to see the shift in peak with an increase

(decrease) in normal (inverted) for the peak probability around the average neutrino

energy for T2K. The opposite occurs for antineutrinos as seen in Figure 2.3b.
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Figure 2.4: The effect on the oscillation probability at T2K for (anti)neutrinos on the
(right) left at a fixed value of δ, but allowing ρ to be larger (red), equal to (green), and
less than (blue) 1.



CHAPTER 2. AN ALTERNATE PMNS PARAMETERISATION 30

Figure 2.4 depicts the oscillation spectrum for T2K’s baseline length with three sets of

coordinates. The green, with coordinates χs = −
√
2/2 and χC = −

√
2/2, conserves

unitary. This is confirmed by substituting these coordinates into Equation 2.3 to find

ρ = 1. The other two coordinates violate unitarity. These were chosen to violate uni-

tarity in equal measure to better see the effects. The red and red-dashed coordinates,

χS = −1 and χC = −1, violate unitary above 1, whereas the blue and blue-dashed

line has coordinates χS = 1 −
√
2 and χC = 1 −

√
2 and violate unitarity below 1.

All three sets of coordinates represent the same value of δCP , substituting them into

Equation 2.2 will show δCP = −3π/4. In Figure 2.4, one can see visible shifts at the

oscillation probability peak, around 600 MeV and a difference in probability between

the red (red-dashed) and blue (blue-dashed). The red line has an increased peak prob-

ability compared to the blue. For antinuetrino, the effect is the opposite and there

is an increase in the peak probability for blue, and a decrease for red. This result is

not unexpected, as the coordinates used for the blue (blue-dashed) line stem towards

a ρ value of zero, suggesting no CP violation and the probability of electron neutrino

appearance would be similar to the electron antineutrino appearance. This does show

that T2K is not very sensitive to the spectral distortion and a full fit would be required

to identify if T2K is sensitive to unitarity violations.

2.3 NOvA Oscillation Spectrum

The extended parameterisation can also be applied to other experiment parameters.

Changing the length of the baseline to 810 km and the electron density for the matter

to 2.84 g/cm3 and keeping the same parameters as those listed in Table 2.1, one can

see the basic effect of extending the oscillation parameter space for NOvA. The wider

beam produced by the NuMI beam gives a better sensitivity to cos(δ). This can be

seen in NOvA’s bi-rate plot illustrated later in Figure 5.10b, as the width of the ellipse
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Figure 2.5: The effect on the oscillation probability at NOvA for (anti)neutrinos on the
(right) left at a fixed value of δ, but allowing ρ to be larger (red), equal to (green), and
less than (blue) 1.

is determined by the strength of the cos δ term. Looking at the oscillation spectra in

Figure 2.5, the effect of violating unitarity becomes more apparent at the oscillation

peak and ∼1.5 GeV. One can also see in the antineutrino spectrum that the peak shifts

to a higher (lower) energy for the blue (blue-dashed) line. Continuing the search for

distortions in the neutrino spectra has interesting prospects in finding experimental sen-

sitivity to unitarity violations, especially in experiments which use a wide-band beam.

Chapter 2 has given a introduction into a parameterisation that breaks unitarity viola-

tion within the PMNS paradigm by treating δCP as two independent parameters, sin(δ)

and cos(δ). It goes on to show a successful implementation of this alternate param-

eterisation into a probability calculator, Prob3++. Initial studies showcase the effect

of this paramterisation when applied to two long baseline neutrino experiments, T2K

and NOvA, highlighting the impact of the individual components of sin δ and cos δ and

potential unitarity violation.



Chapter 3

Long-Baseline Neutrino Experiments

Neutrino physics is largely an

art of learning a great deal by

observing nothing.

Haim Harari

3.1 T2K Experiment Overview

T2K (Tokai-to-Kamioka) [52] is a long baseline experiment situated in Japan that stud-

ies neutrino oscillations through the disappearance channels (νµ → νµ, ν̄µ → ν̄µ), and

the appearance (νµ → νe, ν̄µ → ν̄e). Protons are accelerated to 30 GeV at the Japan Pro-

Super‐Kamiokande J‐PARCNear Detectors

Neutrino Beam

295 km

Mt. Noguchi‐Goro
2,924 m

Mt. Ikeno‐Yama
1,360 m

1,700 m below sea level

Figure 3.1: An illustration of the T2K experiment, highlighting J-PARC, the near
detectors and the far detector. Figure taken from [71]
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ton Accelerator Research Complex (J-PARC) and collide with a graphite target. This

in turn will produce a decay chain resulting in a muon (anti)neutrino beam. The exper-

iment studies the oscillation channels by comparing the data collected at the complex

of near detectors, situated 280 m downstream of the beam target, to what is observed

in the far detector, Super-Kamiokande [21], after a 295 km propagation through the

Earth’s crust. A simple schematic of this is depicted in Figure 3.1. The goal of the

experiment is to measure and constrain the parameters of the PMNS matrix, namely

θ13, θ23 and δCP . T2K also has some sensitivity to constraining the mass hierarchy given

the propagation of the neutrinos through the Earth’s crust and the matter effect that

occurs.

This chapter will give an outline into the experimental setup for T2K. This includes: the

neutrino beam, the near detectors as well as their future upgrades and the far detector.

There will be a short overview of the NOvA experiment and its layout to give better

context into the joint-fit that is discussed later in this thesis.

3.2 T2K Beamline

The process of creating the neutrino beam for T2K starts within the linear accelerator

(LINAC) segment of the J-PARC’s accelerator complex. Negatively charged hydrogen

ions, H−, are accelerated to 400 MeV/c and passed through charge stripping foils, turn-

ing the ions into protons. These protons then pass into the Rapid Cycling Synchrotron

(RCS) and are further accelerated to 3 GeV/c before being injected into the Main Ring

(MR) to accelerate to a final momentum of 30 GeV/c as a train of eight bunches [72].

When the protons are at this stage then two extraction methods can be applied, slow

extraction and fast extraction. Fast extraction uses kicker magnets to extract all of the

bunches present in the MR and direct them toward the hadron beamline. The slow

extraction method uses an electrostatic separator to direct individual bunches in one



CHAPTER 3. LONG-BASELINE NEUTRINO EXPERIMENTS 34

Figure 3.2: A schematic of the primary and secondary beamlines of the J-PARC neu-
trino beam. Figure taken from [52].

cycle toward the neutrino beamline.

Following the extraction for the MR, the beamline comprises two segments. Following

the schematic in Figure 3.2, the primary segment’s initial stage is the preparation of

the extracted protons. Focused by an assortment of dipole and quadrupole magnets

the beam is monitored closely for its profile, position and intensity to ensure accep-

tance by the second segment within the primary beamline, the Arc section. The Arc

section, labelled 2 in Figure 3.2 is pivotal in ensuring that the direction of the beam is

toward the target. Surrounded by 14 doublet superconducting combined function mag-

nets (SCFM’s) [73] the beam is directed toward the final focusing area. This segment

consists of 10 normal magnets that focus the beam downward 3.36◦ with respect to the

horizontal on to the target.

The secondary beamline segment starts with a baffle and an optical transition radiation
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monitor (OTR) upstream from the target housing. The target comprises of a graphite

rod that is 90 cm in length, with a 2.6 cm diameter. The high energy protons collide with

the carbon of the target, producing mainly pions and kaons. These charged particles

will be focussed by the magnetic horn with an applied pulsed current of 250 kA located

downstream of the target, this is depicted in Figure 3.3. With a 250 kA current, the

horns can have a maximum magnetic field of 2.1 Telsa, increasing the neutrino flux at

the far detector by a factor of roughly 16. The polarity of the magnetic horn will define

the particle charge being focused depending on the requirement for a muon neutrino or

muon antineutrino beam. For a neutrino beam the horns will have a positive current,

and this is referred to as the Forward Horn Current, FHC. In antineutrino mode, the

horn will be pulsed with a negative current, known as the Reverse Horn Current, RHC.

Having passed through these three magnetic horns the hadrons will enter a 96 meter

decay volume, shown in the bottom schematic of Figure 3.3.

Focusing the positively charged hadrons will allow for the production of the muon

neutrino beam via the π+ and K+ decays:

π+ → µ+ + νµ

K+ → µ+ + νµ.

(3.1)

If running in RHC, the polarity of the current supplied to the magnetic horn reverses

and instead the negatively charged particles are focused toward the decay volume.

Given this, the decays then become:

π− → µ− + ν̄µ

K− → µ− + ν̄µ.

(3.2)

An issue that arises for this set-up is the contamination of wrong sign neutrinos and



CHAPTER 3. LONG-BASELINE NEUTRINO EXPERIMENTS 36

How to make a neutrino beam

15

Focus π,K produced in hadronic interactions.
Switch sign of horn current to focus π–, K– instead

Total three horns to
collect & focus mesons.

π,K+     +

π,K– –

B-field

π,K–      –

Figure 3.3: A comprehensive breakdown of the target region. The top schematic depicts
the graphite target located inside the first magnetic horn. The second segment shows
the locations of the other two horns. Finally, the bottom image identifies the tertiary
beamline located after the third magnetic horn. This is followed by the beam dump
and MUMON detector. The solid line signifies the off-axis beam path, the dashed is
the beam axis. Figure taken from [74].
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intrinsic wrong flavour neutrinos. Unfortunately, the horns are not 100% efficient at

only focussing the correct charged particles. This creates a flux of antineutrinos in what

should be a neutrino beam, known as “wrong sign” background. Referring to Figure 3.4,

one can see the wrong sign flux for both FHC and RHC. Another form of contamination

is known as the “intrinsic background”. In the instance of T2K, this refers to having an

electron neutrino flux in a muon neutrino beam, through the decays:

µ+ → e+ + ν̄µ + νe

K+ → π0 + e+ + νe.

(3.3)

Understanding and constraining the intrinsic background that exists in the flux is im-

portant for estimating the physics of oscillations and expectations in the far detector.

If these neutrinos propagate to Super-Kamiokande and interact, it can create false os-

cillation signals leading to fake CP violation.
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Figure 3.4: The left hand side shows the predicted flux in FHC mode, dominated by
νµ but showing the wrong sign and intrinsic νe background. The right hand side shows
the flux prediction for the RHC mode, dominated by ν̄µ. Figure taken from [75].

Figure 3.4 shows the flux for the various neutrino types, noting the logarithmic scale,



CHAPTER 3. LONG-BASELINE NEUTRINO EXPERIMENTS 38

the wrong sign background and intrinsic background is less than 3% and 1% respec-

tively, in both FHC and RHC run modes. One can see from Figure 3.4 that the wrong

sign background is larger in the RHC mode. This is due to the proton producing a

majority of positive particles after collision with the graphite target.

Downstream of the decay volume is the beam dump and the muon monitor detector,

MUMON. The beam dump is used to stop remnants of the primary beam produced

within the decay volume. Muons below an energy of ∼5 GeV/c are stopped by the

beam dump [52]. The muon monitor is designed to measure the direction and intensity

of the beam on very short timescales.

T2K has specifically designed the experiment around the J-PARC beam to utilise what

is known as the ‘off-axis technique’. Initially proposed by the Brookhaven National

Laboratory [76], it works by situating a consortium of detectors at a small angle off

axis with respect to the beam’s direction. Looking at the two-body pion decay, the

neutrino energy can be calculated via equation 3.4, given the defined direction of the

pion on the decay volume axis:

Eν =
m2

π −m2
µ

2(Eπ − pπ cos(θOA))
, (3.4)

where Eν and Eπ are the neutrino and pion energy respectively, m2
π and m2

µ are the

masses squared of the pion and muon, pπ is the momentum of the pion and cos(θOA)

is the angle of the outgoing neutrino with respect to the parent pion. Referring to the

bottom image in Figure 3.5, measuring the neutrino flux at differing off-axis ranges will

change the peak of the average neutrino energy. Measuring the neutrino flux on-axis

has a wide range of neutrino energies, peaking at roughly 1 GeV. Moving to 2.0◦ off-axis

one can see that the peak shifts to a more narrow peak situated at 0.8 GeV. This reduces

the spectrum of oscillation probabilities given the reduced range of neutrino energies.

T2K is designed to use a beam 2.5◦ off-axis. This results in a narrower band to the
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aforementioned values and importantly peaking at 0.6 GeV, represented in red in the

bottom panel of Figure 3.5.

Looking at the top and middle segment of Figure 3.5, a neutrino energy at 0.6 GeV is

the minimum for the muon neutrino disappearance and also a peak for the electron neu-

trino appearance. Having a peak neutrino flux at this energy optimises the sensitivity

to these two oscillation channels. This also highlights why it is important to understand

and constrain the wrong sign and intrinsic background in the neutrino flux due to the

indistinguishable interaction products at SK. The distance of the Super Kamiokande

detector from T2K sits on the oscillation peak for maximal electron neutrino appear-

ance. This creates a ‘narrow band’ beam, creating an environment that has maximum

sensitivity towards the measurement of δCP .

3.3 INGRID

The Interactive Neutrino GRID (INGRID) [78] is T2K’s only on-axis detector, located

280 metres downstream from the target. Its primary purpose is to measure the beam

intensity and the beam direction, playing quite an important role in reducing the sys-

tematic uncertainty in the flux given the off-axis nature of the experiment. Comprising

of 14 identical modules, stacked 7 vertically and 7 horizontally as shown in Figure 3.6,

the detector has a 10 × 10 m2 total x − y coverage. The detector was originally de-

signed with two additional modules located above the horizontal, slightly off-axis, with

the purpose of monitoring the beam’s axial symmetry.
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with the appearance maximum. Figure taken from [77].
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Figure 3.6: Layout of INGRID. With the vertical and horizontal formation, the middle
detectors are located on the beam’s axis. This figure also includes the unused off-axis
modules. Figure taken [52].

The modules themselves consist of 9 iron and 11 tracking scintillator planes sandwiched

together. The iron planes act as a target for the neutrinos, with a mass of 7.1 tonnes per

module and the scintillator planes consist of 24 bars placed vertically and horizontally.

As the neutrino interaction occurs, the final state particle will pass through the bar

and create scintillator light that is transported via wavelength-shifting fibres (WLS).

At one end of the WLS one will find the Multi-Pixel Photon Counter (MPPC) [79] that

is used as a read out mechanism. The size of the photon read-out is proportional to the

energy lost by the particle as it passes through the scintillator bars and this allows for

reconstruction of the particle’s energy, which in turn will allow one to find the neutrino

energy. To decrease the background and improve the interaction reconstruction, the

modules are surrounded by veto planes that contain scintillator bars segmented in the

direction of the beam [78]. An exploded view of the INGRID module can be seen in

Figure 3.7.

In the centre of the cross configuration of the INGRID detector where the vertical and
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Figure 3.7: A schematic of the INGRID module showing the breakdown of iron and
scintillator planes and the veto planes located on the outer segment of the module.
Figure taken from [80].

horizontal arms overlap sat a sub-detector of INGRID called the proton module. The

proton module was very similar to the modules that exist on the arms of INGRID,

however it used more finely-segmented scintillator bars and had no iron layers. This

module was used to monitor the charge current quasi-elastic interactions directly on-

axis, and as a comparison for the Monte Carlo predictions of the beam and interactions.

The proton module had much better tracking capabilities than the INGRID modules

with the finer scintillator bars and lack of iron planes, allowing for the reconstruction

of shorter tracks.

3.4 WAGASCI-BabyMIND

WAter-Grid-And-SCIntillator-Detector (WAGASCI) is a near detector located 280 m

downstream of the beam and sits at 1.5◦ off axis with respect to the beam. Assessing

Figure 3.5, it is visible to see the trend in the peak average neutrino energy as one

tends to on-axis, even though 1.5◦ is not present, the trend shows that WAGASCI will

have access to slightly higher neutrino energies than ND280. The objective of this de-

tector is to help measure and constrain the neutrino interaction cross-sections and aid

in reducing the uncertainties. The two components of the WAGASCI detector include
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the main target area, containing the relocated proton module and two target modules.

These target modules consist of a 3-dimensional scintillator grid format along with al-

ternating x − y scintillator planes. The cells located within the scintillator grid are

filled with the target material, water and scintillator, as shown in Figure 3.8b. One

key component to the detector’s construction is the ability to drain the water module,

known as water-in/water-out. The water-out mode allows one to make a measure-

ment of the neutrino-carbon interaction, which is useful for constraining the expected

background on the water-in measurements. This allows for a better constraint on the

oxygen-neutrino cross-section, reducing the uncertainty at the far detector. Surround-

ing the target area are muon range detectors known as, Wall-MRDs. These are made

up of sandwiched scintillator and iron planes, used to measure muons with a large angle

track but also situated at a distance from the target area allowing for a time of flight

measurement of the particle’s trajectory.

Immediately downstream of WAGASCI is the Baby Magnetised Iron Neutrino Detector

(BabyMIND) [81], as seen in Figure 3.8a. BabyMIND is made from alternating 33

magnetised iron plates that are 30 mm thick with 18 plastic scintillator planes. The

magnetic field inside of BabyMIND is 1.5 T, giving excellent charge identification and

momentum measurements for particles exiting the WASGASCI target volume. Muons

produced by the beam’s muon neutrinos interacting with the target material via CCQE

will lead to a decrease in the background uncertainty at the near detector. It is not the

primary muons produced, but depending on the interaction type, but a pion can decay

into a muon, muon antineutrino and electron neutrino. This effects the wrong sign

background depending on the horns polarity, so BabyMIND will also aid in reducing

the uncertainty in the flux model. BabyMIND has been optimised to measure the range

of muon energies that are expected to be produced by neutrino interactions with the

detector being 1.5◦ off-axis.
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(a) (b)

Figure 3.8: Left is the full detector schematic for WAGASCI-BabyMIND. One can see
the layout with WAGASCI being upstream and the surrounding Wall MRDs followed by
BabyMIND. Also included is the location of a separate emulsion-based experiment that
shares the housing, NINJA [82], which focuses on neutrino cross-section measurement
and interaction physics. On the right, the 3D grid layout of the WAGASCI module,
showing the alternating orientation of the scintillator planes and the grid cells containing
the water target. Figures from [83, 84].

3.5 ND280

The Near Detector at 280 m (ND280) immediately follows downstream from INGRID.

As described in Section 3.2, ND280 is situated 2.5◦ off-axis from the target with the

intention of measuring various aspects of the analysis such as the flux, cross-section

measurements, as well as wrong-sign and intrinsic contamination before oscillations

have occurred. ND280 is composed of a group of sub-detectors contained within a

metal “basket" as well as two sub-detectors outside of the basket, and their roles will

be discussed below.

3.5.1 Magnet and Side Muon Range Detector

The ND280 magnet encases all bar one of the various sub-detectors and is a refurbished

magnet previously used by the UA1 [86] and NOMAD [87] experiments. It consists of

two symmetric yokes1 that contain water-cooled aluminium coils operated with a 3 kA
1This is allow the detector to be opened up more conveniently.
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Figure 3.9: An exploded view of the ND280 detector, with the listed sub-detectors
visible and the surrounding magnet yoke. Figure taken from [85].

current that produces a uniform magnetic field of 0.2 T. The magnetic field allows for

particle charge determination and high resolution of the particle’s momentum within

the sub-detectors by tracking the path of the particles. The magnetic yoke contains

all of the various sub-detectors shown in Figure 3.9; the Electromagnetic Calorimeter,

the π0 detector, Fine Grained Detectors and Time Projection Chambers, except for the

Side Muon Range Detector (SMRD).

The SMRD [88] consists of polystyrene scintillator bars which sit inside the air gaps of

the magnetic yoke. A total of 192 horizontal modules and 248 vertical modules exist

inside of the ND complex, each embedded with a wavelength-shifting fibre. The main

purposes of the SMRD are to tag escaping muons that have a high angle with respect

to the beam, but also to identify tracks of particles that originate outside the detector,

such as those from cosmic muons.
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3.5.2 π0 Detector

The π0 detector (PØD) [89] is the most upstream sub-detector in the ND280 complex.

The primary function of the detector is to measure the rate of neutral current neutrino

interactions that produce a single π0 in the final state, hence the name. The PØD

is a scintillator detector with water target layers split into two segments, the central

water target and the upstream water target, shown in Figure 3.10. In between these

interaction targets exist the scintillator layers, comprising of two perpendicular layers

of triangular scintillator bars that are read out via WLS fibres (the same as those in

INGRID) and brass sheets. The water target is contained in bags and is easily remov-

able by draining the bags. Measurements are taken with and without water to allow

for a better constraint on the cross section on water and the intrinsic νe background.

The π0 final state in SK is the largest background given the decay into photons, which

are almost indistinguishable from electrons in a water Cerenkov detector, so it is im-

portant to understand them. Surrounding the central target are the ECals, also split

by central and upstream segments. These are used as a veto for cosmic showers and to

monitor interactions that have occurred in other sub-detectors. Importantly, they also

measure high angle particle tracks that may only pass through few X and Y planes

before leaving the detector, pivotal for correct event reconstruction.
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Figure 3.10: Schematic of scintillator layout in the PØD. Figure taken from [52].

3.5.3 Time Projection Chambers (TPCs)

Following on from the PØD sub-detector is the ND’s ‘Tracker’ sub-system. The tracker

consists or three time projection chambers and two fine grained scintillator detectors

sandwiched together, visualised in Figure 3.9. The three TPCs [90] are each built with

a double box system, as seen in Figure 3.11. The outer box is grounded and filled

with carbon dioxide to act as insulator for the inner box which forms a field cage and

filled with an Argon based gas mixture. A central cathode splits the inner box with

two anodes residing on either side of the TPC. The cathode has a high voltage supply

creating an electric field parallel to the magnetic field produced by the surrounding

magnet. As a charged particle traverses through the TPC, it ionises the TPC gas. Given

the electric field, the electrons will drift toward the anode which contains MicroMegas

[91] readout panels. Each TPC contains twelve MicroMegas modules, each with 1728

pads that read out the charge pulses. Using the read-out from the MicroMegas, one

can find the energy loss (dE
dx

) as a function of the particle true momentum. Comparing
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Figure 3.11: A schematic of the two box design of the TPC. All three time projection
chambers are identical [90].

Figure 3.12: The Monte Carlo predictions for the energy loss against particle momenta
drawn over the data obtained for one the TPCs. Left: positive particles traversing
through the TPC. Right: Negative particles traversing through the TPC. Figure taken
from [90].

this to a prediction from Monte Carlo gives a high efficiency for particle identification,

depicted in Figure 3.12. Alongside this, the magnetic field from the enclosing solenoid

causes the particles to have a circular projection on the read out phase which is used

to calculate the particle’s momentum. The direction of the curve allows for particle

charge determination, giving better event reconstruction and discrimination between a

neutrino and antineutrino interaction.
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3.5.4 Fine Grained Detectors (FGDs)

Sandwiched between the three TPCs are the two Fine Grained Detectors [92], FGD1

and FGD2. These sub-detectors act as the target mass for neutrino interactions with a

mass of 1.1 tonnes each. FGD1 is the more upstream detector of the two and comprises

of fifteen XY planes, each plane consists of 192 horizontal and 192 vertical scintillator

bars made from extruded polystyrene. Each bar is coated with titanium dioxide, TiO2,

which reflects the scintillator light back to the WLS to reduce the cross-talk between fi-

bres. FGD2 only contains seven of these XY modules and the space in between is filled

with a 2.5 cm thick layer of water, allowing a comparison of the interaction rates in the

two FGDs permitting cross-section measurements on carbon and water. Although it is

important to constrain the interaction cross-section, this depends on successfully defin-

ing the interaction type. The FGDs have fine granularity to track particles produced at

the interaction vertex that do not penetrate the TPCs, such as low-momentum protons.

Measuring the energy loss in the FGD and comparing it to the MC prediction allows for

good particle discrimination between protons and minimum ionising particles, shown

in Figure 3.13.

3.5.5 Electromagnetic Calorimeters (ECal)

ND280 contains three electronic calorimeter components, with a total of thirteen ECal

modules. Figure 3.9 shows the PØD ECal, which as the name suggest surrounds the

PØD2, the Barrel ECal (BrECal) that surrounds the tracker and the most downstream

sub-detector, the downstream ECal (DsECal). The barrel and downstream ECals both

enclose the tracker region and is often referred to as the tracker ECal (TrECal) [93].

The BrECal contains 31 scintillator-lead interleaved layers that alternate in orienta-

tion compared to the DsECals 34 layers and all scintillator bars contain WSL fibres,

read out via MPPCs. It is also used to track particles ejected with a high-angle from
2Not to be confused with the central and upstream ECals that exist in the PØD.
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Figure 3.13: Deposited energy against the track range in FGD1. The comparison with
the Monte Carlo predictions for protons, muons and pions, solid, dash and dash-dot
respectively, allow for good particle identification. Figure taken from [92].

the interaction vertex with respect to the beam, aiding the full reconstruction with the

information from the FGDs and TPCs. Finally, it is also used to measure outgoing pho-

tons which is crucial for reconstructing π0 events. The lead sheets act as an absorber

to encourage electromagnetic showers and further improve the event reconstruction.

The PØDECal is slightly different to the TrECal, both in its construction and function

due to the PØD sub-detector already containing the high-angle tracks. The PØDECal

contains just six scintillator layers interleaved with thicker lead layers that are ∼4 mm

as opposed to TrECal’s, 1.75 mm. Therefore, the aim of the PØDECal is to ensure

high-angle acceptance of the PØD by catching photons that exit a water layer without

passing through a scintillator layer.

3.5.6 ND280 Upgrade

Since 2022, T2K is entering a new era in its operational timeline with multiple upgrades

underway, the first of which are planned upgrades on the beam power at J-PARC and
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Figure 3.14: Exploded view of the ND plans, replacing the PØD with a super fine
grained detector and two high-angle time projection chambers. Not shown here is the
addition of time-of-flight panels that will surround the new upstream sub-detectors,
attached to the basket. Schematic taken form [95].

the components to handle this increase [94]. In parallel with this upgrade, ND280

will also be revamped. Figure 3.14 is an illustration of the upgrade plans for the near

detector complex [95]. The most upstream sub-detector, PØD, is being removed and

replaced with three different sub-detectors. The middle layer sub-detector is the Super

Fine Grained Detector (SFDG) (coloured grey in Figure 3.14) and surrounding that

above and below are the High-Angle Time Project Chambers (HA-TPCs). The SFGD

is comprised of two million plastic scintillator cubes, each with a volume of 1 cm3. Pro-

viding a target mass for the upstream sub-detector to two tonnes. All cubes will have

three wavelength-shifting fibres passing through them giving an improved 3 dimensional

reconstruction ability. This increase in spatial resolution means better particle identi-

fication, certainly for protons and electrons with tests currently ongoing to understand

the sensitivity to neutrons. If it proves fruitful then this should lead to a better under-

standing of antineutrino interactions.

Either side of the SFGD sit the High Angle Time Projection Chambers. The HA-TPCs
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are very similar to the existing TPCs further downstream, but the new versions lie hori-

zontal in the basket. These will have a very similar internal layout, with a key difference

being the use of resistive MicroMegas [96]. This reduces the number of readout planes

that exist on the anode but adds a small resistive film which smooths out the charge

distribution and improves spatial resolution allowing for excellent particle tracking. The

final upgrade is the addition of six time-of-flight (TOF) panels. These will surround the

new sub-detectors and attach to the metal basket. The panels consist of 20 scintillator

bars each that will provide better track direction determination, further improving the

interaction reconstruction. Overall, the upgrades bring exciting new particle tracking

and identification potential and impressive particle discrimination. Another impact of

the upgrade is the combination of the three new sub-detectors means that the angular

coverage will be nearly the same as the far detector. SK has an angular coverage of 4π,

giving the ability to reconstruct tracks in any direction. Prior to the upgrade, ND280

had a large preference to forward-going tracks. The new sub-detectors give accessibility

to high-angle and backward-going tracks, which were previously difficult to reconstruct.

Having a similar angular coverage will also lead to a reduction in systematic uncertainty

for future analyses.

3.6 Super-Kamiokande

The Super-Kamiokande [21] (Super-K) detector is operated as an independent collabo-

ration on its own but it is also used as the far detector for the T2K experiment. Located

295 km away and 2.5◦ off-axis from the neutrino beam in J-PARC for the purpose of

residing on the first oscillation maximum for a 600 MeV beam. Super-K is a 50 kt cylin-

drical water Cherenkov detector located 1 km inside of the Mozumi Mine, Kamioka,

giving sufficient shielding from cosmic muons to reduce the background from said cos-

mics. Super-K is split into two optically isolated volumes, the outer detector (OD) and

the inner detector (ID). Figure 3.15 depicts the 41 m tall tank that has a 39 m diameter.
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Figure 3.15: The Super-Kamiokande detector, showing its depth inside of Kamioka
mine, taken from [97].

When a neutrino interacts via charged current with the water target, the produced lep-

ton traverses the water at faster than the speed of light in the medium, which creates

Cherenkov radiation. This radiation is then registered by the photomultiplier tubes

(PMTs) that reside on the walls of the OD and the ID. The OD comprises of 1,885

sparsely spaced outward facing PMTs that are eight inches in diameter. This allows

the detector to identify particles originating from a background source such as the

aforementioned cosmic muons or neutrino interactions with the matter surrounding the

detector. The ID contains 11,129 inward facing twenty inch PMTs that covers roughly

40% of the inner detector surface area. This large coverage allows for better resolution

within the target region. Alongside the OD vetoing background noise, the ID also has a

fiducial volume boundary of which any event vertex that sits outside of said boundary

is rejected, increasing the purity of the samples.
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The photomultiplier tubes are a photosensor designed to measure an incident photon

by utilising the photoelectric effect of the photon striking a photocathode. This releases

an electron which is accelerated into a dynode that then emits a group of roughly three

electrons. The group of electrons are then accelerated creating a multiplying cascade

of electrons striking the chain of dynodes until finally a few million electrons reach the

anode which generates an electric signal that can be read out. The size of the charge

pulse is proportional to the number of incident photons. Events can be reconstructed

using the energy and timing information alongside the surrounding PMTs.

3.6.1 Water Cherenkov Detection

As mentioned above, Super-K is a Cherenkov light detector. Cherenkov light occurs as

a charge particle traverses through a dielectric medium at a greater velocity than the

phase velocity of light. Analogous to a sonic boom, the traversing particle emits a shock

wave of photons whilst its momentum is above the Cherenkov threshold. Equation 3.5

shows the angle at which the electromagnetic radiation is emitted due to the relativistic

charged lepton, commonly referred to as the “Cherenkov angle”;

cos(θc) =
1

βn
; (3.5)

where θc is the Cherenkov angle, n is the refractive index for the medium (in this case

water, n = 1.34), and β is the ratio of the particle’s velocity over the speed of light,

β = v/c. The assumption is made that the charged leptons are travelling relativistically,

giving β = 1 and thus the Cherenkov angle is ∼ 42◦. With the information from the

PMTs and the understanding of Cherenkov radiation, SK has an accurate selection

method for particle identification despite not having a magnetic field like the near

detector complex, which allows for particle charge identification, and thus neutrino

and antineutrino discrimination. Using the PMTs readout and hit timing, one can
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(a) Muon-like Cherenkov ring. (b) Electron-like Cherenkov ring.

Figure 3.16: Examples of muon(a) and electron(b) like Cherenkov rings captured by
SK. The colour of represents the energy of the incident photon and the hit timing
information is used to recreate the interaction vertex, denoted with a white cross.
Figure taken from [52].

work out the particle’s flavour as well as the momentum and interaction vertex. The

particle identification comes from the "fuzziness"3 of the reconstructed Cherenkov light

ring, as seen in Figure 3.16, with the noticeable difference between Figures 3.16a and

3.16b being the sharpness of the ring. Muons have a relatively large mass and thus

do not scatter very much as they traverse the water. They do lose energy which is

why the ring dissipates towards the centre, as the particle’s velocity reduces so does

the rate of Cherenkov radiation emission. On the other hand, electrons are much

lighter and scatter much more, causing electromagnetic showers that create this "fuzzy"

appearance. With the knowledge of the particle leptonic flavour and our understanding

of CCQE interactions, we can determine the flavour of neutrino that interacted with

the water target in the far detector.

3.6.2 Analysis Samples

Briefly mentioned in the previous section was the distinguishable nature of the Cherenkov

radiation produced by the electron and muon, giving information about the neutrino
3Yes, this is the official term.
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involved in the interaction. Unfortunately the other products, such as the proton can-

not be observed in SK due to their low velocity. There is the ability to detect an

outgoing neutron via capture on hydrogen from an electron antineutrino interaction,

however this has a very low efficiency. Therefore, the neutrino energy is reconstructed

via lepton kinematics alone. The assumption is made that the neutrino interacts with

a nucleon at rest, via CCQE and thus the neutrino energy can be reconstructed via:

Erec
ν =

2(mn − Eb)El +m2
l +m2

p − (mn − Eb)
2

2(mp − El + pl cos(θbeam)),
(3.6)

where mn,mp and ml are the rest masses for the neutron, proton and lepton respectively.

Eb is the binding energy for the nucleon, El and pl are the respective energy and

momentum of the lepton, cos(θbeam) is the angle of lepton with respect to the neutrino

direction and Ereco
ν is the energy of the reconstructed neutrino. For the newer analyses,

SK can deduce that a charged pion was produced in the initial interaction via charged

current resonance. The reconstruction equation becomes:

Erec
ν =

2mpEl +m2
∆++ −m2

p −m2
l

2(mp − El + pl cos(θbeam)),
(3.7)

where Erec
ν , mn,mp, ml, pl Eb and cos(θbeam) are the same as those described for equation

3.6. Finally, m2
∆++ is the mass squared of the Delta Baryon.

3.6.3 Gadolinium Doping

The lack of magnetic field4 means that SK does not have sensitivity to the charge of

the outgoing lepton, so constraining the wrong sign background at the near detector

is very important. In previous analyses, this was included in the simulation using the

neutron capture on a hydrogen nucleus which would de-excite and release a single pho-

ton of 2.2 MeV, which is just on the threshold for SK reconstruction and thus has a low

efficiency. The incoming electron antineutrino would interact with a proton via CCQE,
4SK contains magnetic coils to ensure there is no interference from the Earth’s magnetic field, so

enough to affect a particle’s momentum.
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producing a positron and a neutron. SK would see an electron-like event but with a

large inefficiency in observing the neutron information. Thus the electron antineutrino

would be indistinguishable from an electron neutrino. To aid this, the SK tank was

opened and drained in 2018 to replace broken PMTs, perform general cleaning and to

seal leaks that had occurred. After this, SK could be doped with Gadolinium sulphate,

Gd2(SO4)3, which allows neutrons to be captured in the Gadolinium nuclei with 75%

efficiency [98]. This produces a gamma cascade signal of 8 MeV on a time scale of 20µs

after the initial lepton signal [99]. This will help with neutrino-antineutrino discrimina-

tion in future analyses. SK will also benefit from the Gd doping with searches for low

energy (OMeV) electron antineutrinos that may have originated from pre-supernova

sources [100].

3.7 NOvA Experiment Overview

Chapter 5 shows a joint-fit between T2K and NOvA. Therefore it seems sensible to

give an overview into the NOvA experiment and its detector set up to highlight the

differences between the two experiments. This section contains a general overview, but

a much more detailed description can be found in the Technical Design Report [53].

The neutrinos from the Main Injector (NuMI) [101] Off-Axis νe Appearance (NOvA)

Experiment [53] is another long-baseline neutrino oscillation experiment, situated in

the United States of America. Like T2K, the experimental set-up consist of a beam

target, near detector and a far detector and is optimised for νe appearance and νµ dis-

appearance.

Starting at the NuMI facility in Fermi National Accelerator Laboratory (Fermilab),

Illinois, protons are accelerated using a multi-ring system to 120 GeV energy before
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Figure 3.17: A diagram of the NuMI beamline including the target, decay pipe and the
various monitors and absorbers, taken from [53].

colliding with a 0.95 m long graphite target. Secondary pions and kaons are focused

using a pair of magnetic horns in the same way as T2K. The charged hadrons are fo-

cused towards a 675 m decay volume where the products of the decays are the same

as described in section 3.2. Similarly to J-PARC, the polarity of the horns defines the

charge of hadrons focused toward the decay volume and the NuMI neutrino beam can

run in a Reverse Horn Current (RHC) or Forward Horn Current (FHC) mode. Further

down the beamline one will find the hadron absorber, designed to absorb the remaining

protons and mesons from the beam whilst the sequential muon monitors and ‘earth

shields’ are designed to absorb the remaining muons. The schematic of the beamline

process is illustrated in Figure 3.17.

Like T2K, the goal is to measure and constrain the values of the PMNS matrix and

an off-axis configuration allows NOvA to have a peak neutrino energy near the first

oscillation maximum, although the neutrino energy spectrum is slightly wider than

T2K’s. In order to measure neutrinos before oscillation, there is a 300 tonne segmented

liquid scintillator detector located 1.015 km downstream of the graphite target and 0.8◦

off-axis, situated 100 m underground in the Fermilab facility with the dimensions of

14.3 m × 2.9 m × 4.2 m. The ND comprises of a grid-like structure made of extruded

PVC spanning 16 cells wide. This is grouped with another 16 cells to form a plane-like

module. The modules are placed perpendicular to the beam and alternate sequentially
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Figure 3.18: A to-scale schematic showing NOvA’s near and far detector sizes with a
small figure showing the grid formation for the PVC cells. To the far right one can see
the layout of the wavelength-shifting fibre looping through the cell [103].

in the vertical (Y) and horizontal direction (X), giving the ability for three dimensional

tracking. The near detector contains 214 planes of these alternating modules giving a

total of 21,192 cells [102]. For the near detector the extrusion reaches a length of 3.9 m

long. The cells themselves are filled with liquid scintillator which also houses a looped

wavelength-shifting fibre leading to an avalanche photo diode (APD) which is used as

the read out mechanism. This is rendered in Figure 3.18.

NOvA’s far detector is located 810 km away from the proton target in Ash River,

Minnesota. Unlike T2K, NOvA’s near and far detector are functionally identical with

the main contrast being the size of the target volume. The extruded PVC length for

the far detector cells is 15.6 m as opposed to the near detector’s 3.9 m, creating a target

mass of 14 kt. The far detector contains 896 planes and houses a total of 344,054 cells,

each with a wavelength-shifting fibre looped through it leading to an APD. Interestingly,

the far detector is situated on the surface, which is unusual for a particle detector due

to the very high background from cosmic particles. In order to combat the high level

of background noise from cosmic muons, neutrinos and other higher energy particles,
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the detector is housed under an overburden comprising 1.2 m of concrete and 15 cm of

barite [104].



Chapter 4

Statistical Inference

Statistics: the only science that

enables different experts using

the same figures to draw

different conclusions.

Evan Esar

This chapter will discuss the Bayesian approach used in the oscillation analysis pro-

duced by the Markov Chain Monte Carlo 3, MaCh3, package. MaCh3 uses a Markov

Chain Monte Carlo (MCMC) [105] method to produce a simultaneous fit between the

near detector and far detector. Markov chains sample the parameter space of a model,

calculating likelihood values for each iteration, and build a posterior distribution using

Bayes’ theorem. Bayesian methodologies such as marginalisation and credible intervals

will also be related to the fitter results and their conclusions. An analysis overview,

including a discussion on systematics, will also be given in the later parts of the chapter.

4.1 Bayes’ Theorem

Bayesian Inference is a statistical method which uses Bayes’ theorem to update a hy-

pothesis as more data or information becomes available. Bayes’ theorem itself can be

61
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described as finding the conditional probability of an event happening with a set of

hypothesised data, testing a hypothesis, H, with prior information, B, and data set,

D. Combining the various strands of information, one can find the probability of the

posterior distribution for a given parameter, using Bayes’ Theorem:

p(H|D,B) =
p(H|B)p(D|H,B)

p(D|B)
, (4.1)

where p(H|B) is the prior probability and p(D|H,B) is the probability of the data set

being observed given the hypothesis and set of priors, B, also known as the likelihood

function, and this will be discussed further in section 4.5. The denominator, p(D|B), is a

normalisation factor used to keep the posterior probability from violating unitarity [106].

Finally, p(H|D,B), is the posterior probability, the probability of the hypothesis being

true, given a set of data and prior information. Relating equation 4.1 to the oscillation

analysis; the hypothesis, H, are the oscillation parameters and B is the collection of

priors placed on the model parameters used to define the prediction. When simplifying

Bayes theorem, it is easier to see the relationship between the posterior distribution,

likelihood function and prior distributions given that:

p(H|D,B) ∝ p(D|H,B)× P (H|B), (4.2)

and how the choice of prior distribution can have an effect on the posterior distribution,

this is depicted in [107].

4.2 Markov Chain Monte Carlo

It is important to give context behind Monte Carlo methodologies, and why a simple

Monte Carlo would not be effective for the T2K oscillation analysis due to naive sam-

pling. Section 4.2.1 gives an introduction to the methods, and Section 4.2.2 describes
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what is carried out in the analysis.

4.2.1 Monte Carlo

To build a suitable distribution and gather information about best fit values, lots of

parameter values would need to be sampled. This can be accomplished via a Monte

Carlo (MC) method [108]. The MC algorithm uses complete random sampling of the

model points within a distribution. If this distribution lies within a set of limits then

this is accepted and another random point is assessed. When the number of dimensions1

is low or very well constrained, i.e the boundaries on the parameters are tight, then this

would be an effective technique. T2K’s full oscillation analysis contains 779 systematics

(100 Flux, 75 cross-section, 552 ND280 detector systematics, 46 SK detector systematics

and 6 oscillation parameters). Figure 4.1 shows one of the correlation matrices used in

the T2K analysis, housing the flux and cross-section parameters. Other matrices also

contain the Near detector specific systematics and the Far detector specific systematics.

As one can guess, randomly sampling this space would be extremely inefficient and

computationally expensive and there will end up being simulations where there is more

sampling happening in low likelihood regions compared to more ‘favourable’ parameter

spaces. Therefore, an alternate approach is required.

4.2.2 Markov Chain Monte Carlo

MCMC is a stochastic process in which the points that are sampled are dependent on

the current point in parameter space and accepted or rejected, but independent of any

other point in the chain. This allows the simulation to sample regions in parameter

space that are of better interest to the analyser, depending on the condition set. In the

case of this analysis, when the parameter space of the model is sampled, it is desirable

to find the regions in which the likelihood is highest for obtaining the data. There are

conditions that must be satisfied for the MCMC to successfully converge to a stationary
1The number of parameters that exists in the model being sampled is the number of dimensions.
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Figure 4.1: The combined flux and cross-section correlation matrix used in the 2021
oscillation analysis, showing some of the parameters within the model. The red, heavily
correlated, bins are the flux normalisation parameters, and those named are the cross
section parameters within the model. Randomly sampling around this subset of pa-
rameters alone would be and inefficient sampling technique. Figure taken from [109].
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region:

• Irreducibility: Given any state, there is a non-zero probability that any other

state will be sampled in a finite number of steps.

• Recurrence: When the chain is within the stationary distribution, all subsequent

steps must be within that stationary distribution.

• Aperiodicity: The chain will not visit a given point with any fixed regularity.

A more thorough discussion on the conditions described above can be found in [110].

As the chain runs, it will build this multi-dimensional posterior probability, allowing

an analyser to understand what parameter values are most probable within the model

given some observed data set.

4.2.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [111] is an algorithm used within the MCMC to de-

cide if a sample is accepted or rejected, that utilises the proposed steps probability, and

compares it to the current state. Relating this to the analysis, the point in parameter

space will undergo a likelihood calculation, Lx⃗n , where, x⃗n, is the vector of parameter

values in the current step. The methodology can be simplified into 5 steps:

1. Begin the MCMC with a proposed step, consisting of a set of values for each

parameter in the model, x⃗n, the initialisation.

2. Step into a region of parameter space and create a vector of parameter values, y⃗n,

the proposal. It is important to note that y⃗n is in the vicinity of x⃗n, otherwise

this would inefficiently explore the parameter space.

3. Calculate the likelihood function for the parameter values of y⃗n.
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4. Compare to the likelihoods of x⃗n and y⃗n and accept or reject the step. The con-

dition for acceptance or rejection is based on the likelihood comparison between

the proposed, y⃗n, and the current step, x⃗n, such that:

α(x⃗n, y⃗n) = min

(
1,

P (y⃗n|D)

P (x⃗n|D)

)
. (4.3)

A random number is then generated from a uniform distribution between 0 and

1. If this value is smaller than α, then the step is accepted and x⃗n+1 = y⃗n. If the

step is rejected then x⃗n+1 = x⃗n for the next iteration.

5. Repeat steps 2-4 for N iterations.

Looking at the steps outlined above, step 4 is very important for building a posterior.

When the step is proposed and the likelihood is calculated, this will be compared to

the current steps likelihood and if the new proposed values in parameter space are more

probable then the step is accepted and the parameter values are saved. However, if the

likelihood is smaller, i.e Lx⃗n > Ly⃗n , the step will have to undergo a conditional basis to

determine acceptance. Figure 4.2 shows a flowchart of the acceptance/rejection method

outlined above.

Figure 4.2: A flow chart depicting the step acceptance algorithm used in the MCMC.
Figure taken from [112].

The chain will then move and propose a new step in the parameter space. If the pro-

posed step is rejected, then step x⃗n+1 = x⃗n, and x⃗n is saved to disk. This will build
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the posterior probability density histogram, where a region that has more saved points

will have a higher posterior probability than that of regions with less saved points. The

rejected step must not be saved to disk as this will skew the posterior probability distri-

bution. It is important that if the likelihood for the proposed step is smaller than the

current state that the step may still be accepted, otherwise this would just work as a

minimizer. Allowing less probable steps to be accepted ensures that every region in the

parameter space has a non-zero probability, fulfilling the aforementioned irreductibility

criteria.

4.2.4 Diagnostics

It is important to check the chain progression in order to improve the efficiency at which

the chain will converge to its stationary range. The tuning features of the MCMC in-

clude: the step proposal function, the step-sizes of the parameters and the total number

of steps determined for the chain, N. The total step count does not need to be pre-

determined and the chain can always be continued, but due to computational expense

one would prefer the convergence and posteriors to be reached in the lowest number of

steps. The proposal function itself comprises of a multi-variate Gaussian for each of the

parameters with the prior error on the parameter defining the sigma on the Gaussian,

multiplied by a scale factor that is individually tuned, as well as a global covariance

scale that defines a common scale for all parameters at the same time. These step sizes

will be changed as the model changes with correlations and anti-correlations accounted

for prior to running the MCMC. However, this becomes increasingly difficult with high

dimensional models. Fortunately, regardless of an initial position in parameter space

the chain will always arrive at the stationary distribution, but the sooner the better

[113].

The step sizes are tuned to ensure that once the chain has converged upon its station-
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ary region, that the parameter space is effectively sampled. Step size tuning becomes

important because having a small step size will increase the acceptance rate of the steps

but increase the time taken to find and map out the posterior likelihood [114]. Having

a small step-size also decreases the chains ability to step outside of high density regions,

stopping the MCMC from sampling all of the parameter space. The opposite effect can

happen if the step size is too large. The accepted steps ratio will be drastically reduced

as the MCMC is more likely to enter an unfavourable region. There is an optimum

acceptance ratio for the MCMC, suggested to be 0.23 [115] for the probability of ac-

cepting a step. Unfortunately, there is no golden equation for calculating the correct

step-size and proposal function for a given model and is more often a recursive process

with trial and error for each parameter. The right hand side of Figure 4.3a depicts a

poor step variation for a tested step scale. The ‘jumpy’ range in parameter variation

signifies a poorly sampled parameter space, affecting the number of accepted steps and

parameter space that is visited by the MCMC and suggesting that the step size is too

small. Alternatively, one can see the coverage of the parameter space that is achieved

with an appropriately tuned chain in Figure 4.3b. As this process has been carried

out for previous analyses, there are benchmarks than can be compared against. For

example, if one runs a fit using a known ND constraint, then the expected parameter

variation range would be very similar to the prior error range. It is worth noting that

the step acceptance rate alone is not sufficient to determine the stability of the chain,

as a poorly mixing chain can have a good acceptance ratio and efficiency, so other di-

agnostic criteria are also used.

Burn-In

As the MCMC chain embarks on its path to convergence, it may have an initial starting

point in parameter space that is highly unfavourable for the given data. It may take

some iterations before the chain finds its stationary range and correctly samples from
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(a)

(b)

Figure 4.3: A comparison of autocorrelation functions and parameter variations for
a poorly tuned MCMC (a) and a well tuned MCMC (b), specifically looking at the
axial mass cross-section parameter MQE

A . The red box on the left hand side shows the
acceptance criteria for the autocorrelation functions. The red line on the trace plots
represents the stationary range for the Markov Chain Monte Carlo, and represents the
post burn-in phase. Lag is defined as an iteration of the value, i, through the chain of
length, N, as described in Equation 4.4.
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a favourable likelihood region. This initial phase of the chain is known as the Burn-

In phase. Ideally, the step-size and proposal function will be well tuned so that this

Burn-in is as small as possible. It is important to cut these points from the finalised

posterior distribution as this will poorly represent the model’s posterior probability

function. One can see in Figure 4.4 how the chain travels to the stationary distribution

through the chain steps. The Burn-In phase for Figure 4.4 would be set at steps less

than one hundred thousand. This will vary on each iteration of a fit and is a good way

of diagnosing the stability of the chain.

Figure 4.4: An example of a set of chains converging towards a stationary distribution
into a low log-likelihood, favourable region. The long decline feature at low step values
is known as the "Burn-In" phase. Figure taken from [116].

Auto-Correlation

Aside from looking at the Burn-In phase, another diagnostic tool is the auto-correlation

function. The auto-correlation function will show a parameter’s correlation with itself,

k steps further along in the chain. Using the auto-correlation formula:

Ak =

∑N−k
i=1 (Xi − X̄)(Xi+k − X̄)∑N

i=1(Xi − X̄)2
, (4.4)

where Ak is the auto-correlation value, N is the total number of steps, k is known as

the lag where k is an iteration of the value through, i, through the chain of length, N.
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X̄ is the mean of the parameter distribution from the chain and Xi+k is the parameter

value for X that is k steps ahead of iteration, i. The general rule of thumb for an

acceptable auto-correlation is less than 0.2, at lag k of 10,000 as we want the steps

to be as random as possible. The left hand panel of Figure 4.3a shows the effect of a

poorly tuned step size on the auto-correlation function. Comparing this to the left pad

of Figure 4.3b, one can see that the chain converges on the aforementioned criteria for

the auto-correlation function.

Batch Mean

A final method for chain diagnostics is the Batch Mean method. This will take the

stored parameter values from a given chain, dividing them into equal groups and the

mean of these groups are compared. If a chain is covering the parameter space correctly

then there should be minimal variation in the chain’s subset mean. However, one should

not use this method alone. Depicted on the upper right hand plot of Figure 4.3a, the

variation in parameter value is minimal which would suggest a similar batched mean

result to that produced by the same chain used in Figure 4.3b, but as mentioned it

does not scan the parameter space well. A variation of the batch mean method is the

acceptance batch method, rather than taking the mean of the steps in intervals, one

can look at the acceptance rate in said intervals which should be also be consistent with

each other.

4.3 Posterior Analysis

When the MCMC concludes the required number of steps, the full posterior distribution

function is humanly impossible to interpret. With a full ND and FD joint-fit, the num-

ber of dimensions of the posterior would exceed 800. Most of these are parameters such
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as ND detector systematics, flux, cross-section and SK detector systematic parameters.

These are often referred to as nuisance parameters. They are important for the model,

and analysis and are utilised in the MCMC via a correlation matrix shown in Figure 4.1.

Given the difficulty of interpreting such a large dimension posterior, a process called

marginalisation is applied. Each systematic can be marginalised to assess systematic

constraints and behaviour. We can remove these by integrating the posterior over the

nuisance parameters allowing one to visualise the more parameter of choice on a one

dimension or two dimensional scale. These are known as ‘parameters of interest’. This

is to account for the effects that the nuisance parameters have on the final posterior

distribution. Marginalising over the nuisance parameters via:

P (θpoi|D) =

∫
P (η, θpoi|D) dη, (4.5)

will find the marginal posterior. Here, η is the vector of nuisance parameters and θpoi

are the parameters of interest. Often a one or two dimensional histogram showing

the parameter entries accepted in the MCMC chain is the easiest method of interpret-

ing MCMC outputs to create conclusions on the fit outcomes. One can compare the

marginalised posterior distributions of all the parameters to their prior in order to un-

derstand how well the model describes the data. It is almost always the case that two

of the oscillation parameters, θ12 and ∆m2
21, are marginalised over due to T2K’s low

sensitivity and the external constraint that is available from solar neutrino experiments

as a prior.

Point Estimates

Given the marginal posteriors, one would aptly look for a point estimate, error or a

value of best fit for a parameter in an imposed model given some data. This can be

done in a number of ways, with none being the ‘correct’, but all three being used:
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• Highest Posterior Density (HPD) - The highest posterior point, the modal

value of the distribution.

• Mean and RMS - Taking the arithmetic mean of the parameter values in the

chain and calculating the Root Mean Square to equate as the error,

• Gaussian - Fitting a symmetric Gaussian to the posterior distribution, using the

Gaussian’s mean and sigma as the point estimate and error respectively.

The HPD is created by binning the marginalised posterior into a 1D or 2D histogram,

depending on the number of parameters of interest, and using the central value of the

highest bin as the point estimate. This is the most common method used in MaCh3,

as the other two options depend on the posterior being a Gaussian, which is not the

case for some cross-section parameters, illustrated in Figure 4.5. If the marginalised

posterior is Gaussian, the agreement is good, however, when the marginalised posterior

distribution is non-Gaussian, the agreement can be poor. Following from this, there is

also a feature known as marginalisation bias. When marginalising over non-Gaussian

posteriors one can find a ‘shift’ in the point estimate for the posteriors, however this is

a known and usually small effect.

4.3.1 Credible Intervals

Credible intervals are a way of showing a degree of belief that a given range of the

model will contain the true value of an unknown parameter. Utilising the marginal

posteriors it is possible to build a Bayesian credible interval from the binned output for

individual or pairs of parameters. An X% credible interval is a statement of belief that

there is X% probability that the true value of this unknown parameter lies within the

interval range. This differs from the frequentist confidence interval, an X% confidence

level suggests that if one was to repeat the experiment N times then the true value of

the parameter would sit within the interval range for X% of N. The credible interval

can be calculated using equation 4.6,
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(a) (b)

Figure 4.5: Two marginalised posteriors for flux normalisation parameters. Left: A
Gaussian posterior showing good agreement between all three point estimate methods.
Right: a non-Gaussian emphasising the disagreement between the point estimates. Blue
is the arithmetic mean method, Gold is fitting a Gaussian and black shows the highest
posterior density.

α =

∫ θU

θL

π(θ|D)dθ, (4.6)

where, π(θ|D), is the posterior density, θU and θL are the parameters upper and lower

limits respectively, and α multiplied by 100% is the percentage of the posterior distri-

bution. An α = 0.68 equates to a 68% credible interval. Using the HPD method, one

starts with the highest populated bin and progressively adds the next highest bin until

a value, α, of the posteriors total integral is found.

Sequentially counting from the most populated bin under the desired credible interval

is trivial for a Gaussian posterior, however for a non-Gaussian posterior, this can pro-

duce unintuitive results. If one was to look at the posteriors for ∆m2
32, illustrated in

Figure 5.14a, the degeneracy that exists related to the mass ordering shows two peaks

in the posterior. This creates a disjointed contour which should not be neglected when

looking at model preferences.
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4.3.2 Prior Reweighting

Credible intervals are a tool for building conclusions of the unknown parameter values

of the model in the posterior, but it is also important to look at the effects of changing

the priors. Looking at Equation 4.1, the reliance on a prior to build the posterior

distribution used to analyse a model and data set is pivotal. As stated before, the

posterior is proportional to the likelihood multiplied to the prior and a very beneficial

tool in the Bayesian approach is the ability to alter the prior probability of a parameter

and see the effect on the posterior, without needing to re-run the MC by creating a

weight. If one was to replace an original prior, f(x), for parameter value x, with a new

prior, f(x′), for updated parameter value x′, then finding the weight is simply taking

the ratio of the two using Equation 4.7,

ω(x) =
f(x′)

f(x)
. (4.7)

Each step in the MCMC will have an individual weight calculated and this technique is

often used to see the effects on the posterior when updating the model. This could be the

application of external constraints on specific parameters, such as the reactor constraint

or checking the effect when enhancing or suppressing a cross-section parameter in the

Monte Carlo, without the need of generating a new MC with the updated prior, as

the results will be the same. This saves a large amount of computational time and

resources.

4.3.3 Bayes Factor

It is often desirable to test different models or hypotheses on the same data set to see

which hypothesis is more probable. For example, one can find if the model being fit to a

given data set has a preference for the normal ordering or inverted ordering in the mass
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ordering degeneracy. This is achieved by calculating a Bayes factor. If one refers back

to Equation 4.1, the global posterior is proportional to the global likelihood multiplied

by the model’s prior information. If we marginalise this for a specific model we can find

the marginal posterior as we would for an individual parameter. The Bayes’ factor is

in essence the ratio of the posterior probability and prior probability and as such can

be represented in the following way:

P (H1|D,B)

P (H2|D,B)
=

P (D|H1, B)

P (D|H2, B)
× P (H1|B)

P (H2|B)
, (4.8)

The components to the left hand side of Equation 4.8 represent the marginal posterior

probability for hypotheses H1 and H2. The middle term denotes the ratio of marginal

likelihoods for the two hypotheses and the far right is the prior information. Specifically

in this thesis we look at the octant degeneracy (the sign of θ23 − π/2) and the mass

hierarchy (the sign of ∆m2
32) as independent hypotheses to see which of those the model

finds more probable. We set the prior probability for these hypotheses to be equal,

meaning that the probability of stepping into a positive or negative ∆m2
32 parameter

space is 50%, and the same for the lower and upper octant of θ23. Thus, the Bayes

factor will be equivalent to the posterior odds ratio:

P (D|H1, B)

P (D|H2, B)
= B.F1,2, (4.9)

where B.F1,2 represents the Bayes’ factor quantity. However, it is important to quantify

the Bayes factor and its strength, rather than just stating that there is a preference

because this can induce a false conclusion, albeit at the reader’s discretion. In order to

aid this, the significance of the Bayes factor is categorised via the Jeffreys scale [117].

Table 4.1 denotes a modified version of the original scale taken from [118]. Relating this

to the mass hierarchy problem, where normal hierarchy is H1 and inverted hierarchy

is H2, one can simply take the ratio of entries in the MC chain for ∆m2
32 > 0 over

∆m2
32 < 0, to get a Bayes factor for NH/IH hierarchy, given the equal prior probability.
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Bayes Factor Grades of Evidence
1 to 3 Anecdotal in favour of H1

3 to 10 Moderate in favour of H1

10 to 30 Strong in favour of H1

30 to 100 Very Strong in favour of H1

> 100 Extreme in favour of H1

Table 4.1: The Jefferies scale for the Bayes factors and their corresponding grades of
evidence.

4.3.4 Posterior Predictive Distributions

An aspect that is important to testing the model against the data is the posterior

predictive approach. As mentioned in Section 4.3, it is impossible for one to interpret

and conceptualise the full posterior probability density function output of the MCMC

and so we marginalise over all parameters in order to aid this. Unfortunately this comes

as a trade off for understanding the full pdf. This can be overcome by sampling from

the posteriors and obtaining post-fit predictions of the data in order to assess whether

the model and data are in compatible regions of parameter space. One can create a

“best-fit spectrum” from the MCMC by taking random throws from the MC chain N

times, and build a Gaussian distribution of the predicted spectra from each throw. This

will also derive an “error band” on the prediction. The method used for this consists of:

• Draw 2500 random steps from the Markov chain.2

• Each draw corresponds to a vector of parameter values. Reweight the MC to each

draw to generate a new distribution of predicted events. Iterate through the bins

of the SK samples and get reweighted event rate for the given neutrino energy

bin.

• Draw a Gaussian around the distribution of event rates. Use the mean and sigma
2Important to note that the samples should be drawn from the post Burn-In region of the chain.
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of the Gaussian to establish the central value and uncertainty of the posterior

predictive.

Monitoring the comparison of the data and the distribution of fake data sets is a visual

check. If the data point is extreme compared to the predicted distribution, i.e on or

beyond the tails of the Gaussian, then the model will need to be reassessed and this

will need to be understood.

4.3.5 Goodness-of-Fit Metric

In conjunction to what was outlined above, it is just as important to test the goodness

of fit that the model provides to the data obtained. The approach used in this thesis

utilises the Bayesian posterior predictive p-value derived from [119]. The majority of

methods for calculating a p-value require that the fit be run with many different fake

data studies, which for a high parameter model would be problematic and computa-

tional expensive. However, an existing Markov chain allows one to create these fake

data sets and find a point likelihood using a similar method to the one above. To find

the p-value one needs to calculate two likelihoods: L1 and L2, via:

• Draw a random step from the Markov chain, ensuring the step is after the Burn-In

phase.

• Calculate the likelihood of obtaining the data given the parameter values of the

draw, this is L1.

• Reweight the Monte Carlo prediction to the parameter values, this creates a

prediction for the given draw.

• Iterating through each sample bin of the reweighted Monte Carlo, taking the

number of events as the mean of a Poisson distribution and generating a random

value from said distribution and setting that as the bin content.
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• Calculate the likelihood of obtaining this Poisson fluctuated data set against the

original MC prediction with the parameter values of the draw, L2.

• Repeat this cycle for a desired number of iterations, N .

One can then draw a 2D distribution of L1 against L2 and find the p-value using:

p =
N(L1 < L2)

NDraws

. (4.10)

Importantly, one should use the same parameter vector from each draw to calculate

both likelihoods. This is a variation of the traditional p-value test, where the data set

is compared to many statistical variation of the ‘best fit’ model. Instead, the data set

is compared to an ensemble of models by taking multiple draws corresponding to the

full posterior probability. This way there is an account for the systematic uncertainty

in the associated fit. The results of this hypothesis testing indicate the model’s ability

to fit the data better than with fake data, which is just a statistical fluctuation of the

observed data. Ideally, one would want a p-value of 0.5, as if the model is a good fit

then there should be an even chance for the data or fake to better the prediction.

4.4 MaCh3 Fitter algorithm

MaCh3 is an oscillation fitter program that utilises the methods mentioned above to

perform a joint-fit between the Near Detector and the Far detector simultaneously to

produce a posterior probability density function. Depicted in Figure 4.6, MaCh3 uses a

MCMC to semi-randomly traverse through the parameter space and build the posterior

distribution by implementing the algorithm described in section 4.2.3. T2K also has

two other main oscillation fitters: P-Theta [120] and Valor [121]. Both fitters are

quasi-frequentist that utilise an input from a separate near-detector fit, then they prop-

agate it to the far detector and use this as an input for the far-detector-only fit. MaCh3

has the added benefit of also performing a near-detector-only fit which can be used in
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Figure 4.6: A schematic of the MaCh3 package, showing the various inputs required
when running an oscillation analysis. These inputs come as covariance matrices that
are used for the step proposal, parameter error definition and correlations. Taken from
[124].

comparison with T2K’s other near detector fitter, BANFF (Beam and Near detector

Flux Task Force). BANFF uses a gradient minimization technique with MINUIT [122]

to find a global minimum within a parameter space. This allows BANFF to constrain

the cross-section and flux parameters, passing this information to P-Theta and VALOR

via a covariance matrix to be used as the aforementioned input. One benefit to using

the gradient method is the ability to find a point of best fit. As discussed in section

4.3, this cannot be done efficiently in MCMC and is only an estimate. P-Theta and

MaCh3 are used as comparison aids to ensure consistent results between the fitters,

these comparisons can be found in [123].
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4.5 Likelihood and Priors

4.5.1 Calculation of Likelihood

As discussed in section 4.4, as the MCMC steps through parameter space, it will calcu-

late the likelihood for the given parameters proposed to obtain the given data. Equation

4.11 shows the Poisson likelihood function used to find the ratio of predicted and ob-

served events.

− logP (θ⃗|D) =
ND∑

samples

NDbins∑
i

[
NND,p

i (θ⃗f , θ⃗x, θ⃗ND)]−NND,d
i log

(
NND,d

i /NND,p
i (θ⃗f , θ⃗x, θ⃗ND)

)]

+
SK∑

samples

SKbins∑
i

[
NSK,p

i (θ⃗f , θ⃗x, θ⃗SK)]−NSK,d
i log

(
NSK,d

i /NSK,p
i (θ⃗f , θ⃗x, θ⃗SK)

)]
+
1

2

osc∑
i,j

(θo,i − θ̄o,i)(V
−1
o )ij(θo,j − θ̄o,j)

+
1

2

flux∑
i,j

(θf,i − θ̄f,i)(V
−1
f )ij(θf,j − θ̄f,j)

+
1

2

xsec∑
i,j

(θx,i − θ̄x,i)(V
−1
x )ij(θx,j − θ̄x,j)

+
1

2

ND∑
i,j

(θND,i − θ̄ND,i)(V
−1
ND)ij(θND,j − θ̄ND,j)

+
1

2

SK∑
i,j

(θSK,i − θ̄SK,i)(V
−1
SK)ij(θSK,j − θ̄SK,j).

(4.11)

Breaking down the numerous variables in Equation 4.11, one has the subscript variables,

o, f, x, ND, SK at the base of the θ⃗, and these represent oscillation, flux, cross-section,

near detector and far detector parameters respectively. The Vy, where y is just a generic

substitution for the subscripts, terms are covariance matrices, individual to each of the

previously mentioned subscripts containing the constraints on these systematic param-

eters. These are also important for applying penalty terms based on the prior; the
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further from the prior central value, θ̄, for a given parameter, the larger the penalty

term. For parameters that have a physical boundary, then an extremely large likeli-

hood penalty is applied so that the probability of accepting that step is close to zero,

reducing the number of steps accepted in these regions.

The terms NND,d and NSK,d are the number of selected events at the near and far

detector, where NND,p and NSK,p are the number of predicted events for ND280 and

Super-K respectively. The events are placed into histogram bins depending on the

reconstructed energy of the neutrino and the bins are read into the analysis. The

ND data histograms are binned in terms of two-dimensional lepton kinematics of pµ−

cos(θµ) which is the lepton momentum and angle of the muon track with respect to

the beam. For the SK data histogram, three of the muon-like samples are binned in

one-dimension reconstructed energy histograms. The electron-like samples are binned

in two-dimensional neutrino and cos(θ) binning, where θ is the angle of the track with

respect to the angle of the beam. The number of predicted events is calculated using:

NND,p
i = ΦND

α (Ei, θ⃗f )σα(Ei, θ⃗x)χ
ND(Ei, θ⃗ND)M

ND, (4.12)

NSK,p
i = P (να → νβ, Ei, θ⃗o)Φ

SK
α (Ei, θ⃗f )σα(Ei, θ⃗x)χ

SK(Ei, θ⃗SK)M
SK , (4.13)

where, Φ is the neutrino flux, χ is the detector efficiency, M is the number of targets,

P is the oscillation probability for a neutrino to oscillate from flavour α to flavour β, σ

is the cross section for neutrino interactions and Ei is the incident neutrino energy in

bin i. The events are obtained by running a neutrino interaction simulation program,

NEUT [125] and tuned by T2K’s Neutrino Interaction Working Group (NIWG). The

neutrino interaction processes and nuclear effects for T2K were mentioned briefly in

Section 1.5, but much more information can be found in [126] and [127].

As stated in Section 4.3.2, it is possible to apply a new prior for a given parameter
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after the chains have been run, without requiring the analysis to be run again. This is

done via a process known as reweighting. This allows one to alter the prior used in the

chain by taking the ratio of the calculated likelihood for the original prior value and the

likelihood for the new prior value at each step, creating a new weight for each event.

This is done for each iteration of the chain and the weights are then stored and can

be applied accordingly. Reweighting is utilised in two main ways within the MaCh3

analysis. The first way is to reweight events according to the effect of systematics for

each proposed step. Relating this to Equation 4.11, this reweighting indirectly impacts

the likelihood calculation by changing the predicted number of samples in NND,p and

NSK,p as each throw of parameters will need a new prediction.

The other way is to compare the effects of applying different priors by directly reweight-

ing the posterior probability itself. This also effects the likelihood of Equation 4.11 by

altering the penalty term applied in (V −1
o )ij. This is most common on θ13. Reactor

experiments have a larger sensitivity to the oscillation parameter θ13 via the electron

antineutrino disappearance channel. One can see from Figure 4.7 the effect of applying

the reactor constraint as the prior on θ13. A shift in the HPD and a much tighter

constraint on the parameter shows the benefit of this reweighting.
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Figure 4.7: Left: The posterior probability density for θ13 with no reactor constraint
applied. Right: The same but with a reactor constraint applied. Reweighting to the
rector constraint produces a better constraint on the measurement of θ13, notice the
change of the x-axis. Taken from [128].
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4.5.2 Systematic Uncertainties

Having outlined how the fitter works towards building results, the dominant systematic

uncertainties that exist in the fit will be discussed further. Section 4.5.1 briefly touches

upon the numerous flux, cross section and detector systematic parameters that are

present in the model and how they influence the likelihood calculation.

Flux Model

The first term inside of Equation 4.12, ΦND
α (Ei, θ⃗f ), relates to the flux model. The flux

model used inside of the MaCh3 analysis is tuned using external NA61/SHINE [129]

data which utilises a replica T2K 90 cm graphite target to better map out hadronic

production, whilst also including a better physical model for secondary interactions

[130]. This tuning has a significant impact on the constraint of the flux parameters,

increasing the π± statistics and reducing the uncertainty on higher energy neutrinos

from kaon production from ∼10% down to ∼5%, compared to previous iterations of the

analysis [75].

Overall there are 100 flux systematic parameters, 50 for the near detector and 50 for the

far detector and these encapsulate the uncertainties on the hadron production model,

secondary interactions, beam profile and alignment. They are separated into 8 groups

with the four neutrino modes; νµ, νe, ν̄µ and ν̄e and repeated for FHC and RHC run

modes. The parameters are then further split into bins defined by neutrino energy with

varying width, the closer to the oscillation maximum, the finer the binning, and the

opposite for energies further away.

Cross-Section Systematics

T2K’s cross-section model is the largest source of uncertainty within the analysis, with

the simulation of neutrino interactions being a big focus of work. Taking a consortium

of external models to apply to neutrino-nuclear interactions induces a large uncertainty
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with models not completely agreeing across data space. With a total of 75 cross-section

systematics, these can be grouped into individual interaction modes that are generated

in the NEUT package [125]. A brief introduction to T2K’s cross section model was

given in Section 1.5. Uncertainties about the correctness of these models is encapsu-

lated by systematics included in the model.

Some of these parameters are defined as normalisation or shape parameters. Normali-

sation parameters act as a weight that affect all parameters of a given interaction type,

i.e CCQE parameters or 2p2h parameters. Shape parameters are sensitive to event

kinematics and as such the weight will vary on an event by event basis. These are

described by response functions which specify how the data prediction scales up and

down as the systematic changes and stored as cubic splines. These splines are used for

reweighting when calculating the number of events as cross-section parameters change

in the MCMC.

Detector Systematics

A large number of the systematics included in the fit are the ND280 and SK detector sys-

tematics. These uncertainties cover specific sub-detector efficiencies, such as the TPCs

tracking efficiency and charge identification efficiency. They also include observable-like

systematics such as the TPC momentum resolution uncertainty and TPC particle iden-

tification. For SK, the detector systematics largely surround the ring reconstruction

efficiency and the discriminating power of selections used for the data samples.

4.6 Combining T2K-NOvA

The T2K-NOvA joint-fit effort will use a combination of the individual experimental

likelihoods, obtained using the MCMC techniques outlined in section 4.2 to sample

their respective models represented by the full-likelihood of the two experiments inde-
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pendently, to better constrain the PMNS parameters thanks to the extended parameter

space available to be sampled outside of the individual experimental limits. Due to the

differences in degeneracies of certain parameters, namely δCP , θ23 and the mass ordering

problem, a combined analysis may produce a much clearer picture than either analysis

alone.

Adding the NOvA model parameters into the global model, and sampling through pa-

rameter space obtaining a likelihood for the NOvA data allows the joint-fit MCMC to

concurrently sample two independent models and two independent data sets, finding

a favourable region in parameter space. To test that the implementation of the joint

fit model is correct, fits are carried out on Asimov data sets. These Asimov data sets

are Monte Carlo simulations that are generated around the model, with all systematics

set to their prior central value and exactly equal to the PMNS prediction for a chosen

set of oscillation parameters [131]. The truth data is the Monte Carlo prediction. This

allows one to test the robustness and sensitivity of the fitter [123]. If the output of

the fit is not the same as the input, i.e the HPD of an oscillation parameter is not

the same as that used to generate the truth data set, then there is a problem within

the fitting framework. Not only does it test the robustness, but it also allows for an

experiment to determine the sensitivity to parameters, as Asimov data sets have no

statistical fluctuations, thus generating constraints as if the model perfectly describes

the data. The next chapter shows the effect on the sensitivity to these oscillation pa-

rameters when running a joint fit with Asimov data sets, generated around different

oscillation parameter points.

This chapter has presented an introduction into the statistical techniques used in the

analysis presented in this thesis and one of the analyses carried out by the T2K collab-

oration. Using the Metropolis-Hastings algorithm in the Markov Chain Monte Carlo

allows one to build a posterior distribution function in order to assess how well the
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model describes the data, and make conclusions about systematic uncertainties within

the analysis, or conclusions about parameter constraints. Giving a brief overview of

techniques such as reweighting and how this is implemented within the analysis to ap-

ply alternate priors to the MCMC without the need to re-run the fit. Finally, discussing

the goodness-of-fit analysis and how it can allow one to quantify the models ability to

describe the data by comparing it to its ability to describe a statistically fluctuated

data set.



Chapter 5

T2K-NOvA joint fit

Teamwork makes the dream

work.

John C. Maxwell

Both T2K and NOvA are trying to answer the same questions within neutrino physics,

but with different approaches. With dissimilar detector technologies, experiment base-

lines and model sensitivities, producing a joint fit between the two experiments will

hopefully lead to better constraints on the oscillation parameters and reduce the de-

generacies that are otherwise present in individual analyses [132].

As the joint fit is currently in development, this chapter will only be able to highlight

the framework and validation that has gone into the joint fit. Figures are shown that

visualise the increase in Monte Carlo sensitivity, but do not include the far detector data.

Due to the inter-collaboration nature of the joint fit, it is a rigorously monitored process,

with many external and internal adaptations that must be checked with simulations

before applying the joint analysis to far detector data. At the time of writing, data fits

are starting to be run and hopefully the results will be published soon after digesting

the outputs.

88
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5.1 Introduction to the Joint Fit

The working group of the joint fit effort is complicated. Collaborations do not usually

disclose details of the full analysis publicly. Therefore, doing so between two competing

experiments required a careful balance, so much so that a Memorandum of Understand-

ing (MOU) was agreed between the collaborations in order to formalise how much could

be shared with the wider collaborations and even more so externally. In the early stages

of the analysis, it was discussed how much should be shared between the collaborations

and it was decided to limit this as much as possible.

Figure 5.1 shows the two-dimensional (2D) 90% confidence level contour for the δCP −

sin2(θ23) parameter space of T2K (blue), NOvA (red) and SK (green). A distinct aspect

of this is the three different best-fit locations, but noticeably there is a disagreement

between T2K and NOvA as both experiments exclude the other’s best-fit point at the

90% confidence level. There is sufficient overlap in the contour that suggests that no

tension is present but this points to the importance of doing a full joint fit. There

is a good alignment between T2K and NOvA in ∆m2
32 − sin2(θ23) space, as shown in

Figure 1.5. Current fits, such as those composed by NuFIT [133], try and recreate con-

tours published by experiments with simplified systematic assumptions. Many ‘joint

fit’ attempts will multiply the likelihood distributions across the marginalised 2D pa-

rameter space. However, this does not account for the full correlations in likelihood and

only the more common two-dimensional projection and thus may not give an accurate

representation of a joint fit.

5.2 Joint-Analysis Technique and Shared Software

An important aspect to external joint fit methodologies is that they cannot account for

the full systematics and therefore not a full likelihood. It was discussed in the early

stages of the joint fit analysis as to the extent at which a likelihood was shared. Three
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Figure 5.1: A comparison of T2K (blue), NOvA (red) and SK (green) contours for
δCP − sin2(θ23) assuming normal (left) and inverted (right) hierarchy and marginalising
over all other parameters. Figure taken from [51].

options were presented; a marginalised likelihood, giving the likelihood of obtaining

the oscillation parameters only, a profiled likelihood, also only giving likelihood as a

function of the oscillation parameters, and finally the full likelihood, accounting for all

oscillation and nuisance parameters in the model. As the two experiments use different

approaches (T2K uses marginalisation and NOvA use profiling), sharing a full likeli-

hood allows either collaboration to present results as they normally would for internal

use. Also, providing a full likelihood did not require any new implementation and could

be easily shared.

The next pressing issue was how this likelihood function and the information was physi-

cally shared, given a strict MOU. Packages could not simply be swapped and ‘run’, and

so the solution was to treat each respective collaboration’s analysis as a ‘black box’.

This would take a vector of parameter values and return a log-likelihood, ultimately cal-

culated from a comparison to experimental data, but during the development stage this

is Monte Carlo predictions used as fake data. Due to the software implementation, they

will be referred to as containers, where “T2K’s container” and “NOvA’s container” are

from the respective experiments. T2K’s chosen package to be containerised was MaCh3

(described in section 4.4), and NOvA used an internal package know as CAFAna. Fig-
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MaCh3 MCMC fitter

Bifrost External

Bifrost Internal

CAFAna NOvA
LLH evaluation

MaCh3 T2K
LLH evaluation

Figure 5.2: Schematic of the MaCh3 fitting framework as used for this T2K+NOvA
joint analysis. The dashed boxes represent the NOvA container.

CAFAna fitter

Bifrost External

Bifrost Internal

MaCh3 T2K
LLH evaluation

CAFAna NOvA
LLH evaluation

Figure 5.3: Schematic of the CAFAna fitting framework as used for this T2K+NOvA
joint analysis. The dashed boxes represent the T2K container.

ures 5.2 and 5.3 depict the fitting framework implemented by both collaborations. The

blue box and red box represent the CAFAna and MaCh3 containers respectively. This

way, experiments only had access to their own packages, and could not see the inner

workings of the other. From this, the next issue was how to communicate with the con-

tainers themselves. A specialist C++ package called, ‘Bifrost’, was built. This utilised

std::stream to pipe in information and pipe out outputs that could be read by the

respective packages, depicted in Figures 5.2 and 5.3 as Bifrost Internal and External

respectively1.

Figure 5.2 represents the framework as used by T2K. MaCh3 will run a Markov Chain

Monte Carlo as described in section 4.2, inclusive of NOvA parameters. As a set of
1It is worth noting that Bifrost is independent of either experiment and just acts as a “bridge” of

information.
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parameters is proposed, the NOvA parameters are piped into the NOvA container via

Bifrost External, read by Bifrost Internal, and then NOvA’s log-likelihood calculation

will commence. Once finished, the value of log-likelihood for that given set of parameters

is returned and piped out via Bifrost and picked up by the MaCh3 fitter, combining

the likelihood and assessing whether or not to accept or reject the steps via the criteria

outlined in sub-section 4.2.3. This combined likelihood, written in equation 5.1, depicts

the joint likelihood of either experiment obtaining their respective data sets with a

given set of parameters.

LTotal = LT2K · LNOvA · LOther (5.1)

where LT2K and LNOvA are the likelihoods of T2K and NOvA respectively, and LOther

is the likelihood from external aspects such as the reactor constraint which must be

utilised after running as a weight instead of during either experiments individual like-

lihood calculation, since it must only be used once.

5.3 Container Validation

As discussed above, neither experiment can see the inner workings of the other con-

tainer, so it is important to confirm that the likelihood output from the container is

correct. To do this, extensive validations have occurred and will be discussed below.

It is worth noting that there is not just one container. In fact, five iterations of the

T2K container have been created and validated as the physics studies and operational

capability changes through requests of other collaborators or computational limitations.

The five iterations consist of:

Version 1 - The initial container storing all Monte Carlo simulations, Data2 and
2A very important point to highlight is that both experiments run a near detector and far detector

set-up (discussed in chapter 3). Real near detector data is used during the validation process and
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covariance matrices. This was a very large container that was O 10 GB, accessed

via a program called Docker [134].

Version 2 - Arguably the most important update, version 2 brought changes to

Bifrost and the containers that allowed mountable objects. In essence, this means

that the container no longer hosted the Monte Carlo, data or covariance matrices,

and instead they could be loaded/‘piped’ in. This created two major advantages.

Firstly, it allowed analysers to alter the inputs used for the fits. This meant

one could use real near detector data, near detector Monte Carlo generated data

sets or far detector data sets generated at different oscillation points (described

further in section 5.4), thus changing the sensitivity and physics. Secondly, it

drastically reduced the disk storage load for analysers. Those on shared resources

did not need multiple containers due to permission blockages and could store both

containers and container inputs in a common location.

Version 3 - This entailed a small tweak to Bifrost and the output from the

containers, changing the output from the parameters physical values to distance

from nominal in terms of the assigned prior uncertainty. This just created a

constant benchmark when running with real data or Monte Carlo generated data

at the near detector.

Version 4 - Mach3 has the ability to utilise Graphic Processing Units (GPUs)

inside of its core code, while NOvA’s package does not, so everything was run on

Central Processing Units (CPUs), which is slower. To aid this, T2K implemented

a new system for the propagation to the far detector. Originally, for every likeli-

hood calculation a new oscillation probability function was derived. This update

brought about using a binning system to eliminate the need to calculate an oscil-

lation weight at every step, drastically reducing the time taken to perform a fit

Monte Carlo sensitivity studies, but during development the far detector data is replaced with Monte
Carlo. This will of course be swapped out for real data once the collaborations agree that the analysis
is correct.
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from NOvA’s side using the T2K container.

Version 5 - Finally, the newest update allows one to calculate posterior predic-

tive p-values. Described initially in section 4.3.5, the use of this test statistic and

results are described in section 5.5. This capability required changes to both the

core code and Bifrost.

With each new version of a container came more validations, not only for the code

residing within the container, but also for the altered Bifrost mechanisms.

5.3.1 Oscillation Probability Calculation

As a neutrino propagates from the point of creation to a point of interaction, it traverses

matter and a given distance. Using the PMNS matrix the probability of oscillation from

a flavour state to another (or to remain the same flavour state) is calculated. Equation

4.13 includes this probability in the prediction. Unfortunately this is not a shared pack-

age between T2K and NOvA and the oscillation probability packages are PROB3++

and PMNSOpt respectively. The first aspect of validation the author was responsible

for was ensuring that these oscillation calculator packages produce compatible results.

To do this, various oscillation points outlined in Appendix A were used to produce an

oscillation probability for the four oscillation channels, P(
(−)
νµ → (−)

νµ) and P(
(−)
νµ → (−)

νe) as

a function of energy. These functions only rely on the PMNS parameters as well as the

baseline length, matter density and matter profile. As in a normal fit, a constant mat-

ter density was used with an electron density value of 2.84 g/cm3 and a baseline length

of 295 km. Figure 5.4 show the percentage difference of the probability calculated by

the two oscillation calculators in the νµ → νe oscillation channel. The spacing of test

points used for the scan is 100 MeV with a threshold for T2K being 200 MeV, equivalent

to the minimum energy threshold used in T2K’s analysis. One can see that the dis-

agreements are less than 1%, with these discrepancies occurring at regions where the
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sharp feature at 0.3 GeV is caused by the calculated oscillation minimum being slightly

different for the two probability calculators. The grey banded areas indicate regions

where the probability for the given oscillation channel is less than or equal to 0.02. The

red dashed line indicates a maximum for the oscillation channel. It is important that

the key take away is that the there is a very minimal amount of disagreement at the

oscillation maxmimum, as this is where both experiments focus their analyses. These

differences were deemed to be negligible and a sufficient level of agreement between the

two collaborations that there will be no meaningful effect on the sensitivity of the joint

fit.
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Figure 5.4: A comparison of PROB3++ and PMNSOpt at T2K’s baseline in the νµ → νe
oscillation channel using the Asimov 1 oscillation parameter set defined in Appendix A.
The grey banded area represents values of PT2K and PNOνA that are ≤ 0.02. The tan-like
component at 0.3GeV is caused by the oscillation probability being close to zero, and
the minimum occurring at slightly different energies for the two oscillation calculators.
The red dashed line depicts the oscillation maximum at 0.6Gev. Importantly, the
percentage difference between the probability calculated by PROB3++ and PMNSOpt
is minimal at that oscillation maximum.
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5.3.2 Log-Likelihood Scans

The main purpose of the container is to allow the sharing of the full likelihood function,

without sharing the package. Log-likelihood scans are the most important validation

technique used for the containers, with the main workflow being an input of parameter

values and returning a corresponding likelihood for said parameters. It is important

to note here why this became an integral part of validation. During the creation of

version 2 outlined above, it was important to make the container more versatile with

inputs by changing the way the data was handled in the container. Alongside this,

there were issues with the sheer time taken to run an analysis due to the large number

of parameters that exist in the T2K model. As mentioned in section 4.4, MaCh3 will

simultaneously fit both the near and far detector, making the parameter space over 750

dimensions, a difficult computational task for the profiling approach. To reduce this,

MaCh3 took a similar approach to that used by another T2K package, P-Theta, by

using a near detector fit, created by the BANFF group (introduced in Section 4.4), to

constrain the parameters that can be propagated to the far detector. This nullifies the

need to vary the near detector systematics, near detector flux and near detector only

cross-section parameters (the cross-section systematics that only apply to interactions

on a carbon target for example, as there is no carbon in the far detector target volume)

during the joint fit. This drastically reduces the parameter space to 147 parameters.

Validation checks such as predicted samples and log-likelihood scans were carried out to

ensure that the physics was not significantly altered as an expense to the reduction in

computational load. Therefore, T2K has two modes of fitting, MaCh3-postBANFF, the

reduced parameter model, and normal MaCh3 that continues to fit the near detector

and far detector simultaneously. The container utilises this MaCh3-postBANFF and

the log-likelihood scans shown are within this fit space.

The second validation implemented by the author was ensuring that the likelihood being

returned by the container is as expected, a log-likelihood plot is generated by passing
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a vector of parameter values to the container, keeping all but one parameter at the

nominal value and scanning the given parameter across a range of three sigma, where

sigma is defined as the prior uncertainty on the parameter. This process is repeated

for each parameter in the model. Figure 5.5 shows the log-likelihood scans for six T2K

systematics, obtained via the container (red) and the bare3 package (blue). The top pad

shows the scans themselves, whereas the bottom pad depicts the difference between the

output from the container and the MaCh3 package. The disagreement is of the order

O(10−12) and thus deemed negligible. The same is done for the NOvA parameters and

the NOvA container, depicted in Figure 5.6. Differences arose due to trivial issues,

including offset (seen in the bottom left of Figure 5.6) and binning issues where some

scans were stored in histograms as opposed to graphs leading to a shift in the minima.

The largest issue found with respect to the physics implications can be seen in the

bottom right of Figure 5.6, the final systematic in the NOvA model, ‘Cosmic Scale’,

was found to be off by a constant factor of 7. This was later confirmed by NOvA to

have been implemented in the container, and not in the bare CAFAna package that was

used to create the internal NOvA LLH scans handed over for comparison. It highlights

the importance to carry out these continuous verifications and make sure that every

discrepancy is understood.

3Bare is used to describe the MaCh3 package outside of the container.
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Figure 5.5: Likelihood scans for a selection of T2K systematic parameters. The blue
line represents the log-likelihood output via the T2K container, with red representing
the log-likelihood distribution obtained using the bare MaCh3 analysis package.
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Figure 5.6: Likelihood scans for a selection of NOvA systematic parameters. The blue
figure represents the log-likelihood output via the NOvA container, with red represent-
ing the log-likelihood distribution obtained using the bare CAFAna analysis package,
provided by NOvA collaborators.
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5.3.3 Comparison with Other Fitters

The final method of validation was comparing the output of an analysis to other fitters

running the same analysis. It was at this stage that NOvA built a new package that

used the likelihood calculator of CAFAna, but with a Markov Chain Monte Carlo fitter.

This produces a Bayesian posterior probability function that can then be marginalised

to find the marginal posterior distribution for a parameter of interest. This package is

called Aria and utilises a Metropolis−Hastings Algorithm (discussed in section 4.2.3),

just like MaCh3, making the outputs much more comparable. The marginalised pos-

terior distributions were also compared to another T2K fitter, P-Theta (mentioned in

section 4.4, a full MaCh3 fit that fits the near and far detector simultaneously and also

a MaCh3-postBANFF analysis. Each of these fits were prepared by different analysers

with the MaCh3-postBANFF being carried out by the author.

Figures 5.7 and 5.8 show the marginalised posterior distribution for δCP at Asimov

points 0 and 1, which are the respective NOvA and T2K best fit points for the 2020

analysis, defined in Appendix A. The sub-figures depict the posteriors (a) marginalised

over both hierarchies with equal prior, for (b) Normal Hierarchy and (c) Inverted Hier-

archy respectively. The bottom pad illustrates the ratio between MaCh3-postBANFF

and any of the other fitters. The largest difference that is visible from Figures 5.7 and

5.8 is the MaCh3 (blue) posterior. The fact that MaCh3 vs MaCh3 post-BANFF is the

largest difference is expected within the working group. The good agreement between

MaCh3-postBANFF, Aria and P-Theta is promising with all three analyses taking a

near detector constraint from BANFF. One could question why they do not agree per-

fectly but this is understood to be due to different statistics (MCMC steps) and also

step-tuning plays an important factor for convergence and coverage.
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Figure 5.7: A comparison of one-dimensional marginal posteriors for δCP , produced
by MaCh3 (blue), Ptheta (red), Aria (green) and MaCh3 post-BANFF (black) at the
Asimov 0 oscillation point, showing the one (dashed) and two (dotted) sigma credible
regions. The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range. Figures taken from [135].
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Figure 5.8: A comparison of one-dimensional marginal posteriors for δCP , produced
by MaCh3 (blue), Ptheta (red), Aria (green) and MaCh3 post-BANFF (black) at the
Asimov 1 oscillation point, showing the one (dashed) and two (dotted) sigma credible
regions. The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range. Figures taken from [135].
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Shown in Figure 5.7 and Figure 5.8 are the one-dimensional δCP sensitivity comparisons

for four individual fits, in order to compare and validate. It is important to highlight

that these do not use either container described in Section 5.1. Instead, Figure 5.9 shows

a comparison of Aria (NOvA only), T2K (T2K post-BANFF) and the joint T2K+NOvA

(using the T2K container) one-dimensional marginalised posterior for δCP at Asimov 0,

showcasing the increase in sensitivity of the joint fit compared to either experiment’s

individual fit. The T2K posteriors and the T2K container were generated by the author

of this thesis and due to the MOU not all figures for the various Asimov points have

been made official. The purpose of this segment is to highlight the author’s contribution

to the joint fit effort. Section 5.4 shows the marginalised posterior comparisons between

T2K, NOvA and a joint T2K+NOvA fit which was generated using the NOvA container,

the counterpart to the T2K container. These plots have been created by the author

using the available Markov Chain Monte Carlo chains open to the working group in

order to show the change in sensitivity to oscillation parameters at different Asimov

data points. Following from this, Section 5.5 shows the validation work for version 5 of

the T2K container, carried out by the author.
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Figure 5.9: Marginal posterior distributions of δCP for Asimov 0 in both hierarchies
(top), inverted hierarchy (left) and normal hierarchy (right). The NOvA (pink) pos-
terior were generated using Aria, the T2K (red) posterior was generated using the
post-BANFF model, and NOvA+T2K is joint fit using Aria and the T2K container.
Figures taken from [135].
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5.4 Fit Results

Utilising the framework and containers outlined in the previous sections and imple-

menting them together gives the ability to run a joint fit between T2K and NOvA.

Although a list of five oscillation parameters were given in Appendix A and initially

used for validation, the joint fit narrowed this down to three with focus being on Asi-

mov 0 - NOvA 2020 best fit [136], Asimov 1 - T2K 2020 best fit [137] and Asimov 4

- NuFit 5.1 Global fit [133]. These points were selected as they cover a good range

of parameter space, allowing the joint fit to probe the degeneracies that exist with an

individual experiment’s analysis. The three Asimov points are depicted as markers on

the bi-event rates in Figure 5.10, and were used to generate Asimov date sets, described

in Section 4.6.

Asimov 0 is degenerate for T2K given the insensitivity to the mass hierarchy (at this

oscillation point, values for normal hierarchy and inverted hierarchy exist that give iden-

tical values for the e-like samples on the x-axis). Asimov 1 is the only non degenerate

Asimov oscillation set used for both experiments. The combination of a near maximal

δCP with the assumption of normal hierarchy being true is a very non-degenerate region

for both experiments, illustrated in Figure 5.10. Asimov 4 is similarly degenerate to

Asimov 0, but although it resembles Asimov 0 at NOvA it is quite different in T2K,

being intermediate between Asimov points 0 and 1.

The following section shows the one and two dimensional posteriors for each Asi-

mov point in turn, illustrating the individual and (green) joint sensitivity for (blue)

T2K and (red) NOvA. There are four sets of one-dimensional posteriors for sin2(θ13),

sin2(θ23), δCP , ∆m2
32 and three sets of two-dimensional posteriors for sin2(θ13) − δCP ,

sin2(θ23)−δCP and sin2(θ23)−∆m2
32 which are commonly used to show the main degen-

eracies in the the individual experiments. Both experiments use real near detector data

and Monte Carlo generated far detector data, reweighted to each Asimov oscillation
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(a)

(b)

Figure 5.10: Bi-Event plots for T2K (top) and NOvA (bottom) with a marker depicting
the location of three Asimov parameter sets described in Appendix A.
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point. The PDG sin2(θ13) Gaussian constraint is applied throughout. It is worth not-

ing here that the first iteration of the joint fit only has a few correlations between the

models. Notably the oscillation parameters are fully correlated with some correlations

between influential systematics, more detail can be found in [138].

5.4.1 Asimov 0

Starting with Asimov 0, the NOvA best-fit point, the joint fit creates tighter cred-

ible intervals across all parameters, with one notable exception being the sensitivity

in δCP − sin2(θ13) parameter space marginalised over Inverted hierarchy, depicted in

Figure 5.15b. This could have occurred due to the pseudo-degenerate region of δCP at

this Asimov point. One can see from the blue star marker in Figure 5.10b, the input

value is near values of δCP = π/2 and −π/2 which suppresses and enhances the e-like

samples respectively. This creates this triple peak feature in the posterior, visualised

in Figure 5.13a.

It is expected that sensitivity to the PMNS parameters will increase. The main moti-

vation behind the joint fit is resolving degeneracies, where the mass hierarchy (NH or

IH) and octant degeneracy (wether sin2(θ23) less than or greater than 0.5) are separate

hypotheses that can be tested. As described in section 4.3.3, one can take the ratio of

the probabilities given two hypotheses, H1 and H2. Relating this to the degeneracies,

H1 is the Normal Hierarchy hypothesis, or sin2(θ23) < 0.5 and H2 are the alternatives.

Thankfully, having the MCMC posteriors probability, one does not need to run more

analyses with the assumption that a given hypothesis is true. Instead, one can take the

integral of the marginalised posterior, assuming a given hypothesis. For example, refer-

ring to Figure 5.14a, one can find the integral, i.e integration range 0 < ∆m2
32 < +∞,

of the marginalised posterior and take the ratio of the posterior probability in each

hypothesis, divided by the ratios of integrals on the prior. This gives one an indication
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to the preference of hypotheses for the mass hierarchy degeneracy.

Table 5.1 indicates the fraction of the Asimov 0 posterior probability for a given hy-

pothesis, where Sum is the sum of a given row or column, indicating the total integral

for one hypothesis. To find the Bayes factor for the mass hierarchy as an example, one

would simply take a ratio of the Sum of NH over the Sum of IH, finding the preference

of mass hierarchy hypotheses. The preference for Normal Hierarchy and upper octant

is expected given the oscillation parameters used to simulate the far detector data.

sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum
NH 0.202 0.172 0.227 0.531 0.324 0.462 0.733 0.496 0.689
IH 0.084 0.170 0.079 0.183 0.334 0.232 0.267 0.504 0.311

Sum 0.286 0.342 0.306 0.714 0.658 0.694 1.000

Table 5.1: Fraction of posterior probability lying in different combinations of hierarchy
and θ23-octant from fit to Asimov 0 simulated data for T2K+NOvA (green), T2K-only
(blue), and NOvA-only (red). The true Asimov point lays in Normal Hierarchy and
Upper Octant.
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Figure 5.11: Marginal posterior distributions of θ13 for Asimov 0 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.12: Marginal posterior distributions of θ23 for Asimov 0 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.13: Marginal posterior distributions of δCP for Asimov 0 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.14: Marginal posterior distributions of ∆m2
32 for Asimov 0 in both hierarchies

with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.15: Marginal posterior distributions of δCP − θ13 for Asimov 0 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.16: Marginal posterior distributions of δCP − θ23 for Asimov 0 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.17: Marginal posterior distributions of ∆m2
32−θ23 for Asimov 0 in both hierar-

chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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5.4.2 Asimov 1

Looking at Asimov 1, T2K best-fit point, the lack of degeneracy allows one to really

see the influence of performing a joint fit. The sensitivity increase is more prominent

throughout the posteriors. Again, the only questionable credible region comes in the

δCP − sin2(θ13) parameter space, illustrated in Figure 5.22b. This ‘wobbly’ contour

is the result of low MCMC steps in the Inverted Hierarchy region, visualised by the

non-smooth one dimensional marginalised posterior evident in Figure 5.18b.

For Asimov 1, there are also no standout features shown in table 5.2. The fraction

of posterior in Inverted Hierarchy and lower octant being zero is a clear indication of

the lack of degeneracy at this Asimov point. There is a very similar sensitivity to the

octant degeneracy in both experiments, with no real increase from the joint fit.

sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum
NH 0.270 0.233 0.284 0.728 0.530 0.713 0.998 0.763 0.997
IH 0.000 0.057 0.001 0.002 0.180 0.002 0.002 0.238 0.003

Sum 0.270 0.290 0.285 0.730 0.710 0.715 1.000

Table 5.2: Fraction of posterior probability lying in different combinations of hierarchy
and θ23-octant from fit to Asimov 1 simulated data for T2K+NOvA (green), T2K-only
(blue), and NOvA-only (red).The true Asimov point lays in Normal Hierarchy and
Upper Octant.
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Figure 5.18: Marginal posterior distributions of θ13 for Asimov 1 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.19: Marginal posterior distributions of θ23 for Asimov 1 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.20: Marginal posterior distributions of δCP for Asimov 1 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.21: Marginal posterior distributions of ∆m2
32 for Asimov 1 in both hierarchies

with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.22: Marginal posterior distributions of δCP − θ13 for Asimov 1 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.23: Marginal posterior distributions of δCP − θ23 for Asimov 1 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.24: Marginal posterior distributions of ∆m2
32−θ23 for Asimov 1 in both hierar-

chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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5.4.3 Asimov 4

Finally, Asimov 4 is a very degenerate oscillation point for both experiments. Focusing

on δCP , T2K only has sensitivity to negative values of δCP regardless of the assumed

mass hierarchy. However, this is the opposite for NOvA as they can only obtain nega-

tive values of δCP if Inverted hierarchy was true, so this creates this large difference in

posterior probability visible in Figure 5.27a. As the posteriors are normalised in each

figure, the contribution of δCP in the Normal Hierarchy (Figure 5.27c) looks larger than

it actually is. The triple peak feature seen in Figure 5.27c is created by CP conserving

values of δCP = −π/π better describing the data if normal hierarchy is assumed, but

due the narrow band beam of T2K these are nearly indistinguishable. For the mass hi-

erarchy sensitivity itself, T2K has none and NOvA is also limited, illustrated in Figure

5.28a showing the joint fit sensitivity to the correct assumed mass hierarchy. Overall,

there is an increase in sensitivity that can be seen in the marginal posteriors when

combining the two experiments for all Asimov points, highlighting the impact this joint

fit can have on lifting degeneracies.

Finally, Asimov 4 has one interesting feature. In table 5.3, both experiments show an

individual preference for the incorrect Normal Hierarchy hypothesis, albeit insignificant,

but the joint fit sensitivity gives preference for the correct Inverted Hierarchy. The

incorrect preference is understood to be a result of the small change in event rate,

where a bigger fraction of the prior gives similar results in normal hierarchy than in

inverted.

sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum
NH 0.097 0.199 0.212 0.227 0.346 0.377 0.324 0.545 0.589
IH 0.184 0.136 0.123 0.492 0.319 0.288 0.676 0.455 0.411

Sum 0.281 0.335 0.335 0.719 0.665 0.665 1.000

Table 5.3: Fraction of posterior probability lying in different combinations of hierarchy
and θ23-octant from fit to Asimov 4 simulated data for T2K+NOvA (green), T2K-only
(blue), and NOvA-only (red). The true Asimov point lays in Inverted Hierarchy and
Upper Octant.
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Figure 5.25: Marginal posterior distributions of θ13 for Asimov 4 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.26: Marginal posterior distributions of θ23 for Asimov 4 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.27: Marginal posterior distributions of δCP for Asimov 4 in both hierarchies
with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.28: Marginal posterior distributions of ∆m2
32 for Asimov 4 in both hierarchies

with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.



CHAPTER 5. T2K-NOVA JOINT FIT 129

0.018 0.019 0.02 0.021 0.022 0.023 0.024
13θ2sin

3−

2−

1−

0

1

2

3C
P

δ σ1

σ2

T2K + NOvA

T2K

NOvA

Asimov Point (IH)

NH+IH

(a) Both hierarchies.

0.018 0.019 0.02 0.021 0.022 0.023 0.024
13θ2sin

3−

2−

1−

0

1

2

3C
P

δ σ1

σ2

T2K + NOvA

T2K

NOvA

Asimov Point (IH)

IH

(b) Inverted hierarchy

0.018 0.019 0.02 0.021 0.022 0.023 0.024
13θ2sin

3−

2−

1−

0

1

2

3C
P

δ σ1

σ2

T2K + NOvA

T2K

NOvA

Asimov Point (IH)

NH

(c) Normal hierarchy.

Figure 5.29: Marginal posterior distributions of δCP − θ13 for Asimov 4 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.30: Marginal posterior distributions of δCP − θ23 for Asimov 4 in both hierar-
chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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Figure 5.31: Marginal posterior distributions of ∆m2
32−θ23 for Asimov 4 in both hierar-

chies with equal priors (top), and assuming inverted hierarchy (left) or normal hierarchy
(right). The darker shade shows the one sigma interval range, and the lighter shaded
region shows the two sigma interval range.
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5.5 Goodness-of-Fit Metrics

A key aspect to the joint fit is ensuring that the joint-model fits the data well. The

author’s final task was through a posterior predictive p-value described in section 4.3.5

in which one fraction of fake data sets with log-likelihood (L2) worse than the ‘real’4

data (L1) with a random throw of parameter values from the Markov Chain Monte

Carlo. Fortunately, the MCMC means one can create a fake data set by reweighting

the Monte Carlo with a vector of parameter values (the throw), and apply a Poisson

fluctuation to that data set, then repeating many times to find the fraction. This test

statistic allows one to find if the ensemble of models represented by the prior gives

a good fit or not. With respect to the joint fit, this is achieved by randomly throw-

ing from the MCMC posterior chain, including both the T2K and NOvA parameters

and generating log-likelihoods for T2K and NOvA and comparing them to randomly

generated statically fluctuated Monte Carlo. Summing the respective likelihoods for

T2K+NOvA gives the 2 dimensional distribution defined in section 4.3.5.

However, in version 4 of the NOvA container it was not possible to run the NOvA soft-

ware in such a way to take a vector of parameter values and generate a fake data set for

lots of throws; this was remedied in version 5. Implementing the changes into Bifrost

brought new challenges given the inability to view inside the respective containers. The

major issue was actually getting the container to apply statistical fluctuations and set

this as a ‘true’ data set, but then allowing one to reset this data file to calculate a

normal likelihood, L1, for the next throw.

In order to test the implementation of the Bifrost and container updates in version 5

for the posterior predictive p-value, a T2K+NOvA joint fit was run using the Asimov 4

data set. From this posterior, a posterior predictive p-value was generated, illustrated
4It should be emphasised that the ’real’ data in this analysis is truth data generated via Monte

Carlo prediction as the joint fit is still in development.
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in Figure 5.32. The diagonal line represents L1 = L2, defining equal likelihood for the

model to describe the real data and the statistically fluctuated fake data. The y-axis is

the χ2, where χ2 = −2 lnL, between the Asimov 4 truth data and the MC prediction,

and the x-axis is the χ2 between fake data and MC prediction. The p-value itself is

calculated by the ratio of L1/L2, or the number of throws below that diagonal line over

the total number of throws, signifying the probability to better describe the data over

fake data. Figure 5.32 shows a p-value of 1 which suggests that the model describes the

data incredibly well. Thankfully, the realisation that the reason this skew exists and

the low χ2 distribution in the y-axis is present, is because of the use of Asimov data,

generated via the Monte Carlo. An Asimov data set, by definition does not include

any of the statistical fluctuations expected in the real data, thus the log-likelihood

contribution, L1, is minimal. Therefore, it is also difficult to tell if the Bifrost changes

are indeed working. In order to test the posterior predictive method with a data set

that (realistically) includes statistical fluctuations, a joint fit was carried out using a

Poisson fluctuation around the Asimov 4 data. This includes a realistic χ2 contribution

from L1 and therefore a better representation of the test applied when using real data.

Building the posterior distribution in this analysis adds more statistical and systematic

uncertainty. Using the MCMC chains from this analysis and the steps mentioned in

section 4.3.5, the p-value depicted in Figure 5.33 was obtained with a value of 0.76,

showing around 3/4 of the distribution below the L1/L2 line. One may notice the

difference in magnitude of the χ2 data distribution between Figures 5.32 and 5.33,

and this is due to the statistical and systematic uncertainty generated when using a

statistical fluctuated Asimov data set. Of course since the test is not yet applied to the

real data, this is not reflective of the true goodness-of-fit of the joint fit model, as that

can only be obtained when it is run with the real data samples. However, the fact that

the returned value is not extreme in the range [0,1] indicates that the implementation

is working and now validated, ready for the real data fits.
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Figure 5.32: A posterior predictive p-value distribution generated from the posterior
of a T2K+NOvA joint fit with the Asimov 4 data set, before statistical fluctuations.
The severe pull in the distribution is due to the lack of statistical uncertainties in the
Asimov fit.
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Figure 5.33: A posterior predictive p-value distribution generated from the posterior of
a T2K+NOvA joint fit posterior, using a statistically fluctuated version of the Asimov
4 data set. Adding statistical variation into the data sets produces a more appropriate
p-value of 0.76.



Chapter 6

Daya Bay Constraint

If I have seen further, it is by

standing on the shoulders of

giants.

Isaac Newton

Throughout this thesis, there have been multiple mentions of using an external reactor

constraint, commonly referred to as the PDG constraint. A one-dimensional constraint

of sin2(θ13) used by experiments to increase the sensitivity to not only θ13, but also

other correlated parameters. The PDG reactor constraint comes as a combination of

results from a group of reactor experiments: Daya Bay, Double Chooz and Reno, cre-

ating a one-dimensional Gaussian distribution. The effects of applying this constraint

can be seen in the marginalised posterior probability for θ13, exhibited in Figure 4.7.

The left panel shows the posterior distribution without the application of the constraint

and the right side shows the distribution with this weighting applied. One can see the

reduction in the 3 σ interval range and much tighter constraint in the 1σ interval. Fur-

thermore, applying this constraint gives MCMC steps in a less favourable region a very

small weight, which also has an impact on the posterior of other parameters, as noted

previously in Section 1.4.4 it would have an impact on the posterior probability for δCP .

But given T2K’s data, this also has a substantial effect on sin2(θ23). The left panel of

135
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Figure 6.1: Left: The marginalised posterior probability density for sin2(θ23) with no
reactor constraint applied. Right: The same but with the reactor constraint applied.
Reweighting to the reactor constraint produces a better constraint on the measurement
of sin2(θ23). Figures taken from [123].

Figure 6.1 shows the marginalised posterior for sin2(θ23), a bi-modal distribution creat-

ing a disjointed 1σ credible interval. When applying the reweighting, the unfavourable

steps of sin2(θ13) that receive a heavy weight from the constraint mostly lay within the

lower octant segment and thus change the shape of the posterior, visible on the right

hand side of Figure 6.1. This reduces the bi-modal feature and eliminates the disjoint

feature, creating a preference for the upper octant hypothesis. This happens due to

the PDG’s lower best-fit value of θ13, as shown in Figure 4.7. Referring to Equation

1.19, the leading order term for the νµ → νe channel is determined by the magnitude

of sin2(2θ13) and sin2(θ23). Therefore, if the PDG pulls the value of θ13 down, then the

T2K fit must increase the value of θ23 to compensate, thus increasing the preference for

the upper octant.

Diving into the PDG constraint itself, one can see from Figure 6.2, that the 2018

constraint is dominated by Daya Bay with a very similar best-fit value and error re-

gion. Using this and the other listed reactor experiments, PDG creates the averaged

one-dimensional Gaussian. Two experiments, Daya Bay and RENO have also released

constraints on |∆m2
32| as shown in Figure 6.3. More recently, the Daya Bay collab-
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Figure 6.2: A global comparison of experimental constraints on sin2(θ13). This includes
T2K, Daya Bay, NOvA, MINOS and RENO, using their 2018 oscillation results. The
blue shaded region is the 2018 PDG best-fit constraint. Figure taken from [139].

Figure 6.3: A global comparison of experimental constraints on |∆m2
32|. This includes

T2K, Daya Bay, NOvA, MINOS and RENO, using their 2018 oscillation results. The
blue shaded region is the 2018 PDG best-fit constraint. Figure taken from [139].

oration have also released a two-dimensional constraint, on both the amplitude (θ13)

and the location (∆m2
32) of the oscillation dip. This analysis investigates whether the

additional constraint on ∆m2
32 has noticeable effects on the final results when used by

the T2K analysis.

6.1 The Daya Bay Experiment

The Daya Bay experiment [140, 141] is a nuclear reactor neutrino experiment, situ-

ated in Daya Bay, China, that is designed for sensitivity to the sin2(θ13) mixing angle

through the electron antineutrino disappearance channel. The experiment consists of

three main components: the neutrino sources, the experiment halls and the antineu-
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Figure 6.4: A schematic of the Daya Bay experiment. The figure shows the nuclear
reactor cores (D1-D2, L1-L4), the Antineutrino Detectors (AD1-AD8) and the corre-
sponding experiment halls, EH1-EH3. Halls EH1 and EH2 are the location of the near
detectors and EH3 is the far detector hall. Figure taken from [141].

trino detectors themselves. The antineutrinos are sourced from three nuclear power

plants, the Daya Bay nuclear power plant, the Ling Ao nuclear power plant and the

Ling Ao-II nuclear power plant. Each plant comprises of two identical cores spaced

88 m apart. Ling Ao is located 1100 m from Daya Bay and Ling Ao-II is separated

by another 500 m, depicted in Figure 6.4. The experiment halls (labelled E1-3) house

the antineutrino detectors and act as near detectors (EH1, EH2) and a far detector

(EH3), located ∼500 m and ∼1600 m respectively. The experiment uses eight identical

antineutrino detectors (AD1-8), each consisting of 20 tonnes of liquid scintillator doped

with Gadolinium and surrounded by 192 20 cm photo-multiplier tubes. The ADs are

sensitive to low-energy antineutrinos produced by the products of nuclear fission reac-

tion from the aforementioned power plants, observing these via the Inverse β−Decay

(IBD) process. The doped scintillator gives excellent discrimination between electron

antineutrinos and electron neutrinos, which are otherwise indistinguishable, due to the

neutron capture prompt signal.

One can see the oscillation probability spectrum for the electron antineutrino survival
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channel at the bottom of Figure 6.4. The far detector is located near the dip of the

survival probability which is driven by the sin2(θ13) mixing angle, giving the experiment

sensitivity to θ13. The frequency however is governed by the mass-splitting term. This

is shown in the electron antineutrino survival probability formula,

P (ν̄e → ν̄e) = 1− cos4(θ13) sin
2(2θ12) sin

2∆21

− sin2(2θ13)
(
cos2(θ12) sin

2∆31 + sin2(θ12) sin
2∆32

)
,

(6.1)

where,

∆ij =
∆m2

ijL

E
. (6.2)

Given Daya Bay’s short baseline of ∼1.6 km and the low energy of the reactor an-

tineutrinos, the second term of Equation 6.1 is very small and thus negligible, meaning

the leading term is governed by the θ13 mixing angle. Because of this, the two mass

splittings, ∆m2
31 and ∆m2

32, are unresolvable from a single sin2(∆3j) dependence, where

j = 1, 2. Therefore, Daya Bay and other short-baseline experiments released best-fits of

an effective mass splitting, ∆m2
ee, essentially averaging between the two existing mass

splittings [142]. Relating to equation 6.1, one can rewrite the electron disappearance

probability as:

P (ν̄e → ν̄e) = 1− cos4(θ13) sin
2(2θ12) sin

2∆21

− sin2(2θ13) sin
2(∆ee).

(6.3)

This simplification works if the following equation is true,

sin2(∆ee) ≈ cos2(θ12) sin
2∆31 + sin2(θ12) sin

2∆32, (6.4)

which is best approximated if:
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∆m2
ee ≡ cos2(θ12)∆m2

31 + sin2(θ12)∆m2
32 (6.5)

for L/E < 0.84 km/MeV. Daya Bay satisfies this criteria with the low energy neu-

trinos and short baselines. This is a non-trivial simplification and unfortunately a

non-standard one also. Different definitions have arisen by both Daya Bay, RENO and

theorists in varying literature [143–145]. However, Parke et al. show in [142] that for

experiments such as Daya Bay, Equation 6.5 is most accurate.

More generally, it is shown in [146] that the oscillation probability can be expressed

with a more complicated form:

P (ν̄e → ν̄e) = 1−2s213c
2
13

+2s213c
2
13

√
1− 4s212c

2
12 sin

2(∆21) cos(2∆32 ± ϕ)

−4c413s
2
12c

2
12 sin

2(∆21),

(6.6)

where,

ϕ = arctan

(
sin(2∆21)

cos(2∆21) + tan2(θ12)

)
. (6.7)

However, this prescription is not necessary for Daya Bay and Equation 6.5 is accurate

enough. Daya Bay and current reactor experiments have a small L/E ratio, leading

to the phase term (Equation 6.7) tending to zero and the root contained in the third

term of Equation 6.6 tending to 1, shown in [146], due to the small magnitude of the

solar mixing parameters. The oscillation probability stated in Equation 6.6 does be-

come important for future experiments with a larger L/E ratio. The next-generation

reactor experiment, JUNO, will use the same energy reactor neutrinos but a baseline

∼50 times longer, so the more exact expression is necessary because ϕ is large and thus

the cos(2∆32 ± ϕ) term gives access to the neutrino mass hierarchy in a way that is
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independent of the matter effect [144]. Figure 6.5 shows a comparison of the formulae

for Daya Bay’s baseline length and average neutrino energy. The largest difference is of

the order ∼ 1%. Similarly to the T2K-NOvA comparisons described in Section 5.3.1,

where a 1% difference was shown to be negligible at current precision and does not

change the interpretation of the data.

Although not as sensitive as the effect in JUNO, the combination of T2K and the mea-

surement of ∆m2
ee has some slight swensitivity to the mass hierarchy, due to the the

known sign of ∆m2
21, in that m2 > m1. In T2K’s analysis, the constraint is expressed

on ∆m2
32, and in Equation 6.5, for a given value of ∆m2

ee the value of |∆m2
32| depends

on the mass ordering and hence the reactor constraint is different for the two cases.

Figure 6.5: The upper panel contains a comparison of the P (ν̄e → ν̄e) survival prob-
ability using the full ∆m2

32 and ∆m2
ee formulas. Bottom pad: the ratio of the two

expressions. Figure taken from [147].
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6.2 Daya Bay’s Log-Likelihood Surface
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Figure 6.6: Left: A 2D histogram surface plot containing the ∆χ2 value (colour coded
z-axis) for a given set of θ13 and ∆m2

32 values in Inverted Hierarchy. Right: The same
but in Normal Hierarchy. Here, ∆χ2 = −2 ln

(
L

Lmax

)
, where L is the likelihood value of

the current entry, and Lmax is the maximum likelihood in the distribution. Showing the
difference in correlation between the two hierarchies hypotheses and the mixing angle,
θ13. Data taken from [148].

The results from Daya Bay’s analysis can be shown in two dimensional histograms rep-

resenting ∆χ2 surface plots, for both hierarchies, depicted in Figure 6.6. This constraint

in sin2(θ13)−∆m2
32 space has three interesting components. It contains an asymmetry

for the constraint in either hierarchy, visible with the ∆χ2 surface plot and has a small

correlation between sin2(θ13) and ∆m2
32 for both hierarchies. Although minor, there is

a negative correlation coefficients of 0.133 in Inverted Hierarchy and 0.113 in Normal

Hierarchy. Published T2K analyses to date assume no correlations between oscillation

parameter priors when running a fit. To implement this would require a modification of

the fitting code. However in MaCh3, the new Daya Bay constraint can be incorporated

by reweighting the existing analysis posteriors via the technique outlined in Section

4.3.2, which makes it possible to compare the effects of the 2D constraint without re-

running the analyses.

Daya Bay’s data release [148] is a text file containing varying data points of the θ13

mixing angle and effective mass splitting with a corresponding ∆χ2, rather than being
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plotted over a function. As a first attempt, the data points were simply filled into a two-

dimensional histogram. The binning is determined by the data points published, and

the initial reweighting was achieved by simply finding the bin content that contained

the θ13 and |∆m2
32| values of the MCMC step. However, this meant that areas with the

highest density of steps, i.e the best fit point, would receive the same reweighting. In

order to increase the accuracy of the reweighting, multiple methods such as a ‘slicing’

technique, fitting two half Gaussians and also, looking into performing a MINUIT fit to

obtain a function that best describes the surface plot were considered. These methods

were tested in order to try and extend Daya Bay’s surface plot range. Although T2K

and Daya Bay have similar sensitivities to ∆m2
32, Daya Bay is much more sensitive to

θ13. Due to the lower sensitivity, a large integral of T2K θ13 posteriors sits outside of

Daya Bay’s published data range. Therefore, extrapolation would be required in order

to give these more extreme MCMC steps a weight. However since these points will

be reweighted by a lower prior probability, they do not contribute much to the final

distribution. It was important to test that the loss in MCMC statistics did not effect

results and make sure they were still sufficient to produce stable contours. As there was

no need to extrapolate outside of Daya Bay’s data fit range, the main focus shifting to

ensuring a good interpolation of the published data. This was achieved using Delaunay

triangulation to find a ∆χ2 value between the given data points, creating smoother

contours and less disjoint regions due to disproportionate reweighting.

6.3 Data Fit Results

Posterior distributions are used to build credible intervals. One can see these effects on

the posterior distributions for no constraint applied (green), with the one-dimensional

PDG Gaussian (blue) and the two-dimensional Daya Bay constraint applied (red),

marginalised over both, for inverted (∆m2
32 < 0) and normal ordering (∆m2

32 > 0).

The Daya Bay constraint used in this analysis contains more data than the Daya Bay
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result used in the PDG constraint. Looking at the one-dimensional sin2(θ13), the up-

dated Daya Bay constraint is slightly better as shown in Table 6.1. However, using the

two-dimensional constraint trades the sensitivity in sin2(θ13) for sensitivity to ∆m2
32.

Value of sin2(θ13) Data reference

PDG 0.0220 ± 0.0007 [139, 149–152]

Daya Bay 0.0217 ± 0.0006 [148]

Table 6.1: A comparison of the one-dimensional sin2(θ13) priors for The PDG and Daya
Bay constraint used in this analysis and the respective data releases used to create the
constraint.

6.3.1 One-Dimensional Posteriors

Starting with the one-dimensional distribution of θ13, Figure 6.7 shows, as expected, a

much tighter constraint when applying either of the reactor constraints to T2K’s poste-

rior. There is a visible shift in the interval range of the Daya Bay constraint compared

to the PDG (see Table 6.2), which is interesting given the dominance of Daya Bay in the

PDG constraint itself, exhibited in Figure 6.2. This PDG constraint uses an older data

release from Daya Bay [151], highlighting Daya Bay’s increase in sensitivity with more

data. It is visible in Figure 6.7 that using the Daya Bay constraint with T2K prefers a

smaller value of sin2(θ13) compared to using the PDG external constraint, evidenced in

Table 6.2. This is expected given the different priors listed in Table 6.1.
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sin2(θ13)(×10−2)

Applied Constraint Both NH IH

No External Constraint 2.44+0.51
−0.40 2.36+0.44

−0.40 2.63+0.48
−0.40

1D PDG Constraint 2.21+0.07
−0.08 2.20+0.07

−0.08 2.22+0.07
−0.07

2D Daya Bay Constraint 2.19+0.06
−0.07 2.19+0.06

−0.07 2.19+0.07
−0.06

Table 6.2: A comparison of the highest posterior density points for sin2(θ13) in both
hierarchies with equal priors, and assuming normal or inverted hierarchy when using no
external constraint, one-dimensional PDG external constraint and the two-dimensional
Daya Bay external constraint.

The one-dimensional posteriors for ∆m2
32, shown in Figure 6.8 show the most drastic

change when applying the Daya Bay constraint. There is a tighter constraint in both

normal (Figure 6.8c) and inverted (Figure 6.8b) hierarchy with a larger pull in the best

fit point in the normal hierarchy due to Daya Bay’s lower best-fit point, as stated in

Table 6.3. One can also see the posteriors integrals in Table 6.6, indicating an increase

in the fractional posterior probability for normal hierarchy when using the Daya Bay

constraint. This reflects in the Bayes factor value shown in Table 6.7. Although there

is an increase in the hypothesis preference compared to using the PDG constraint, it is

still not substantial.
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∆m2
32(×10−3 eV −2)

Applied Constraint Both NH IH

No External Constraint N/A 2.50+0.06
−0.06 −2.55+0.06

−0.06

1D PDG Constraint N/A 2.50+0.06
−0.06 −2.54+0.05

−0.06

2D Daya Bay Constraint N/A 2.48+0.05
−0.04 −2.56+0.05

−0.04

Table 6.3: A comparison of the highest posterior density points for ∆m2
32 in both

hierarchies with equal priors, and assuming normal or inverted hierarchy when using no
external constraint, one-dimensional PDG external constraint and the two-dimensional
Daya Bay external constraint.

Figure 6.9 shows no real change in the constraint of θ23 between either of the reactor

constraints. There is a bin’s width different in the interval ranges, noticeable in Figure

6.9. There is a significant shift in the highest posterior density point when applying

either reactor constraint, moving T2K’s best-fit point from the lower octant (θ23 < 0.5)

to the upper octant (θ23 > 0.5), as shown in Table 6.4. As stated in the beginning

of the chapter, the decrease in θ13 causes an increase in θ23 to better model T2K’s

large electron neutrino event rate. This is also evident in the fraction of posterior table

(Table 6.6), used to calculate the Bayes factors shown in Table 6.7, with an increased

preference for the upper octant, B(UO/LO) = 2.38. This is marginally larger than the

PDG Bayes factor of 2.27 and the Bayes factor for no external constraint applied is 1.37.
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sin2(θ23)

Applied Constraint Both NH IH

No External Constraint 0.49+0.06
−0.02 0.49+0.06

−0.02 0.49+0.06
−0.02

1D PDG Constraint 0.54+0.02
−0.05 0.53+0.03

−0.04 0.54+0.03
−0.04

2D Daya Bay Constraint 0.54+0.02
−0.05 0.53+0.03

−0.04 0.54+0.02
−0.05

Table 6.4: A comparison of the highest posterior density points for sin2(θ23) in both
hierarchies with equal priors, and assuming normal or inverted hierarchy when using no
external constraint, one-dimensional PDG external constraint and the two-dimensional
Daya Bay external constraint.

The final one-dimensional distribution is δCP . As shown in Figure 6.10a and Table 6.5,

there is a minor increase to the constraint when comparing the PDG (blue) with the

Daya Bay constraint (green). Both constraints still allow a CP -conserving value of π

inside of the 2σ interval.

δCP

Applied Constraint Both NH IH

No External Constraint −1.79+1.10
−0.97 −2.42+5.56

−0.72 −1.16+0.66
−0.91

1D PDG Constraint −1.85+0.85
−0.79 −2.17+0.97

−0.66 −1.29+0.54
−0.72

2D Daya Bay Constraint −1.85+0.91
−0.72 −2.17+1.04

−0.60 −1.29+0.53
−0.66

Table 6.5: A comparison of the highest posterior density points for δCP in both hier-
archies with equal priors, and assuming normal or inverted hierarchy when using no
external constraint, one-dimensional PDG external constraint and the two-dimensional
Daya Bay external constraint.
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sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum
NH 0.257 0.237 0.229 0.369 0.498 0.507 0.626 0.735 0.736
IH 0.165 0.069 0.067 0.209 0.196 0.197 0.374 0.265 0.264

Sum 0.422 0.306 0.296 0.578 0.694 0.704 1.000

Table 6.6: Fraction of posterior probability lying in different combinations of mass hier-
archy and θ23-octant from fit to T2K data for T2K without a reactor constraint (green),
T2K with PDG reactor constraint (blue), and T2K with 2D Daya Bay constraint (red).

B(H1/H2) No RC PDG RC Daya Bay RC

B(NH/IH) 1.67 2.77 2.79

B(UO/LO) 1.37 2.27 2.38

Table 6.7: A comparison of Bayes factors for no reactor constraint, PDG constraint
and Daya Bay looking at mass hierarchy hypotheses and octant hypotheses.
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(c) Normal Hierarchy

Figure 6.7: Posterior distributions for sin2(θ13), showing the change in credible intervals
for no reactor constraint applied (green), with the PDG one-dimensional constraint
(blue) and the Daya Bay two-dimensional constraint (red). The darker shade shows
the one sigma interval range, and the lighter shaded region shows the two sigma interval
range.
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(c) Normal Hierarchy

Figure 6.8: Posterior distributions for ∆m2
32, showing the change in credible intervals

for no reactor constraint applied (green), with the PDG one-dimensional constraint
(blue) and the Daya Bay two-dimensional constraint (red). The darker shade shows
the one sigma interval range, and the lighter shaded region shows the two sigma interval
range.
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Figure 6.9: Posterior distributions for sin2(θ23), showing the change in credible intervals
for no reactor constraint applied (green), with the PDG one-dimensional constraint
(blue) and the Daya Bay two-dimensional constraint (red). The darker shade shows
the one sigma interval range, and the lighter shaded region shows the two sigma interval
range.
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Figure 6.10: Posterior distributions for δCP , showing the change in credible intervals for
no reactor constraint applied (green), with the PDG one-dimensional constraint (blue)
and the Daya Bay two-dimensional constraint (red). The darker shade shows the one
sigma interval range, and the lighter shaded region shows the two sigma interval range.
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6.3.2 Two-Dimensional Posteriors

T2K also publishes sets of two-dimensional posterior distributions and their correspond-

ing credible contours. In this section, the conventional 2D posterior plots used by T2K

and NOvA will be shown, followed by other parameters in conjunction with ∆m2
32 to

better illustrate how using the 2D Daya Bay constraint can affect other oscillation pa-

rameters.

Figure 6.11 shows the constraint of δCP − sin2(θ13), illustrating why T2K uses a reactor

constrain to improve its measurement of δCP . The width of the contour when using the

Daya Bay constraint is very similar to the PDG reactor constraint due to the similar

constraint on θ13 compared to T2K-only. Due to this better constrained range of θ13,

one sees a decrease in the uncertainty on δCP for both external constraints. The next set

of contours are in the δCP −sin2(θ23) parameter space which is important in comparison

with NOvA due to the way the degeneracies affect their experiment, illustrated in Fig-

ure 6.12. As seen with the one-dimensional projections for the individual parameters,

there is no significant difference between the PDG and Daya Bay constraint. The only

notable feature exists in Figure 6.12c, with a better constraint of δCP in the normal

hierarchy.

The two-dimensional contours for ∆m2
32 − sin2(θ23) show the largest differences in con-

straint between the PDG and Daya Bay constraint. Figure 6.13a illustrates the narrow-

ing constraint on the normal hierarchy values of δm2
32, with visible overlap between the

PDG’s 1 σ and Daya Bay’s 2σ contour. The same is visible in the inverted hierarchy

pad (bottom pad of Figure 6.13a).

Following this, the contours for ∆m2
32 − sin2(θ13) are shown in Figure 6.14. This show-

cases the increase in sensitivity when applying the Daya Bay constraint. Both exter-

nal constraints create an increase in sensitivity compared to T2K without an external
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constraint and the PDG constraint. Furthermore, one can see the small correlations

mentioned in Section 6.2.

Finally, Figure 6.15 shows the two-dimensional constraint for ∆m2
32 − δCP . One will

notice the tighter constraint on δCP in inverted hierarchy (bottom pad of Figure 6.15a,

when both hierarchies are fit simultaneously). This is due to the lifting of the mass

hierarchy degeneracy for maximal CP -violation seen by T2K, as noted in Section 5.4

for Asimov point 1. Additionally, it was noted in Section B of [137] that T2K could

observe a correlation between ∆m2
32− δCP in the muon (anti)neutrino survival channel,

which looks to be visible in Figures 6.15b and 6.15c. This could be further studied

using the 2D Daya Bay constraint.
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Figure 6.11: Posterior distributions for δCP − sin2(θ13), showing the change in credible
intervals for no reactor constraint applied (green), with the PDG one-dimensional con-
straint (blue) and the Daya Bay two-dimensional constraint (red). The darker shade
shows the one sigma interval range, and the lighter shaded region shows the two sigma
interval range.
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Figure 6.12: Posterior distributions for δCP − sin2(θ23), showing the change in credible
intervals for no reactor constraint applied (green), with the PDG one-dimensional con-
straint (blue) and the Daya Bay two-dimensional constraint (red). The darker shade
shows the one sigma interval range, and the lighter shaded region shows the two sigma
interval range.
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Figure 6.13: Posterior distributions for ∆m2
32−sin2(θ23), showing the change in credible

intervals for no reactor constraint applied (green), with the PDG one-dimensional con-
straint (blue) and the Daya Bay two-dimensional constraint (red). The darker shade
shows the one sigma interval range, and the lighter shaded region shows the two sigma
interval range.
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Figure 6.14: Posterior distributions for ∆m2
32−sin2(θ13), showing the change in credible

intervals for no reactor constraint applied (green), with the PDG one-dimensional con-
straint (blue) and the Daya Bay two-dimensional constraint (red). The darker shade
shows the one sigma interval range, and the lighter shaded region shows the two sigma
interval range.
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Figure 6.15: Posterior distributions for ∆m2
32 − δCP , showing the change in credible

intervals for no reactor constraint applied (green), with the PDG one-dimensional con-
straint (blue) and the Daya Bay two-dimensional constraint (red). The darker shade
shows the one sigma interval range, and the lighter shaded region shows the two sigma
interval range.
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The contents of this chapter have given an overview into the reactor neutrino experi-

ment, Daya Bay, and their two-dimensional constraint on the mixing angle and mass

splitting, θ13 − ∆m2
ee. The effective mass splitting term ∆m2

ee is interesting due to

being invariant under mass hierarchy selection. This thesis carried out an analysis

of using Daya Bay’s data release as a prior, and comparing it to the standard one-

dimensional constraint on the mixing angle, θ13 prior, when combining it with T2K’s

current Bayesian analysis. Overall, there was an increase in constraint on some of the

oscillation parameters, namely θ23, θ23 and |∆m2
32|, when using Daya Bays 2D prior,

with no significant increase to the other three oscillation parameters. Another aspect

of the analysis was looking into the Bayes Factor, which allows one to find a prefer-

ence in hypotheses. The two hypotheses in question were the octant degeneracy and

mass hierarchy degeneracy, with a small increase in both when compared to the current

standard T2K analysis.



Chapter 7

Conclusion

Started making it, had a

breakdown, Bon Appetit

James Acaster

This thesis focused on how T2K’s measurement of oscillation parameters combine with

external information. The first was an initial introduction into a beyond-the-standard

PMNS parameterisation and how the cyclic parameter δCP has two different observ-

able effects that can be decomposed as two terms to test consistency with the PMNS

model. Although this ultimately took a back seat to the T2K-NOvA joint fit effort, it

demonstrates that this formalism can successfully be carried out even with a numeri-

cal probability calculator like PROB3++ that cannot explore the expanded parameter

space directly. Furthermore, there are on-going studies within T2K to implement this

into other analysis fitters with results due to be published in the near future.

The second variation is through the efforts of a full joint fit between two long-baseline

neutrino experiments, T2K and NOvA. Chapter 5 highlighted the workflow of the con-

tainers and the increase in sensitivity that was present in the Markov chain Monte Carlo

posteriors, for a series of selected Asimov points that show a range of parameter values.

A significant improvement in the sensitivity to the mass hierarchy is visible, as well as
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improvements to all other oscillation parameters. Although the marginalised posterior

distributions shown throughout Chapter 5 are just the MC sensitivity, the results are

interesting due to the contrast in best-fit points by the two experiments. With data fits

currently ongoing, T2K-NOvA will enter a review period for both collaborations, with

a public release of the analysis expected shortly after.

Finally, Chapter 6 shows the effects of adding a new external input on T2K’s oscil-

lation parameter constraints. Ordinarily, T2K would use the PDG’s one-dimensional

Gaussian constraint on the θ13 mixing angle, capitalising on the increase in constraint,

notably moving T2K’s best-fit point for the mixing angle, θ23, from the lower octant to

the upper octant. Daya Bay released the first two-dimensional constraint on θ13−∆m2
ee

which shows a small correlation between the two parameters. When applying this con-

straint with T2K’s data and model, an enhanced measurement of |∆m2
32| is achieved,

improving the 1σ constraint by 25% in normal hierarchy and 18% in inverted hierarchy.

The Bayes factors displayed in Table 6.7 indicate a small increase in preference for both

the normal mass hierarchy hypothesis and the upper octant hypothesis, although the

interpretation of this is up to the reader’s discretion. This reweighting has now been

implemented inside of the oscillation analysis and will hopefully yield some interesting

results in future iterations as T2K increases the amount of data collected. To progress

this analysis, one could perform a joint likelihood surface reweighting by combining the

results of Daya Bay and Reno, as shown in [153]. This is likely to become of greater

interest to the community once the current generation of reactor of experiments release

their final results, especially if an accepted combination is made available in the 2D

parameter space.

The analysis work presented here has many potential avenues for moving forward. A

measurement of ∆m2
ee from reactor experiments can potentially give more information

on the mass hierarchy given the increase in precision on ∆m2
32 when combining with
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long-baseline, experiments as it relates differently in normal hierarchy or inverted hi-

erarchy, as discussed in Section 6.3. Future experiments may have a wide-band beam

that will give greater sensitivity to the CP conserving term, cos(δ), and with greater

statistical precision it will be interesting to investigate the consistency with the stan-

dard model and test alternate parameterisations for potential unitarity violations, like

that shown in Chapter 2.

Looking to the future, T2K started undergoing upgrades on the Near Detector. Cou-

pling this with the upgrades to the J-PARC beam will lead to reduction in systematics

and improvements on the cross-section, flux and oscillation model. Future Experiments

will pave the way for exciting conclusions within particle physics and beyond and allow

a deeper understanding of neutrino physics and its implications, which could explain

the unanswered questions of today.
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Appendix A

Full Set of Asimov Oscillation

Parameter Sets

The full list and description of the five Asimov oscillation parameter sets used through-

out the aforementioned studies [54] are presented in this Appendix. Three parameters

were kept constant in all five points, ∆m2
21, θ12, θ13, due to the application of solar and

reactor priors.

∆m2
21 = (7.53± 0.18)× 10−5 eV2/c4

sin2(θ12) = 0.307± 0.013

sin2(θ13) = (2.18± 0.007)× 10−2

(A.1)

A.1 Asimov 0

This Asimov set corresponds to the NOvA 2020 Best Fit value.
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∆m2
32 = 2.41× 10−3 eV2/c4

sin2(θ23) = 0.57

δCP = 0.83π

(A.2)

A.2 Asimov 1

This is equivalent to T2K Asimov A and very similar to T2K 2020 Best fit point.

∆m2
32 = 2.509× 10−3 eV2/c4

sin2(θ23) = 0.528

δCP = 1.49π

(A.3)

A.3 Asimov 2

The values for this are the same as T2K Asimov B and is CP conserving.

∆m2
32 = 2.509× 10−3 eV2/c4

sin2(θ23) = 0.45

δCP = 0

(A.4)

A.4 Asimov 3

This Asimov point was chosen at the maximal-mixing value.
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∆m2
32 = 2.45× 10−3 eV2/c4

sin2(θ23) = 0.5

δCP = 0.5π

(A.5)

A.5 Asimov 4

Global fitters performing joint analysis prefer IH + UO + maximum CP viola-

tion. This Asimov point is chosen to cover this option.

∆m2
32 = −2.45× 10−3 eV2/c4

sin2(θ23) = 0.55

δCP = 1.5π

(A.6)
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